WorldWideScience

Sample records for anaerobic benzene communities

  1. Anaerobic benzene oxidation by Geobacter species.

    Science.gov (United States)

    Zhang, Tian; Bain, Timothy S; Nevin, Kelly P; Barlett, Melissa A; Lovley, Derek R

    2012-12-01

    The abundance of Geobacter species in contaminated aquifers in which benzene is anaerobically degraded has led to the suggestion that some Geobacter species might be capable of anaerobic benzene degradation, but this has never been documented. A strain of Geobacter, designated strain Ben, was isolated from sediments from the Fe(III)-reducing zone of a petroleum-contaminated aquifer in which there was significant capacity for anaerobic benzene oxidation. Strain Ben grew in a medium with benzene as the sole electron donor and Fe(III) oxide as the sole electron acceptor. Furthermore, additional evaluation of Geobacter metallireducens demonstrated that it could also grow in benzene-Fe(III) medium. In both strain Ben and G. metallireducens the stoichiometry of benzene metabolism and Fe(III) reduction was consistent with the oxidation of benzene to carbon dioxide with Fe(III) serving as the sole electron acceptor. With benzene as the electron donor, and Fe(III) oxide (strain Ben) or Fe(III) citrate (G. metallireducens) as the electron acceptor, the cell yields of strain Ben and G. metallireducens were 3.2 × 10(9) and 8.4 × 10(9) cells/mmol of Fe(III) reduced, respectively. Strain Ben also oxidized benzene with anthraquinone-2,6-disulfonate (AQDS) as the sole electron acceptor with cell yields of 5.9 × 10(9) cells/mmol of AQDS reduced. Strain Ben serves as model organism for the study of anaerobic benzene metabolism in petroleum-contaminated aquifers, and G. metallireducens is the first anaerobic benzene-degrading organism that can be genetically manipulated.

  2. Anaerobic benzene oxidation via phenol in Geobacter metallireducens.

    Science.gov (United States)

    Zhang, Tian; Tremblay, Pier-Luc; Chaurasia, Akhilesh Kumar; Smith, Jessica A; Bain, Timothy S; Lovley, Derek R

    2013-12-01

    Anaerobic activation of benzene is expected to represent a novel biochemistry of environmental significance. Therefore, benzene metabolism was investigated in Geobacter metallireducens, the only genetically tractable organism known to anaerobically degrade benzene. Trace amounts (Geobacter metallireducens anaerobically oxidizing benzene to carbon dioxide with the reduction of Fe(III). Phenol was not detected in cell-free controls or in Fe(II)- and benzene-containing cultures of Geobacter sulfurreducens, a Geobacter species that cannot metabolize benzene. The phenol produced in G. metallireducens cultures was labeled with (18)O during growth in H2(18)O, as expected for anaerobic conversion of benzene to phenol. Analysis of whole-genome gene expression patterns indicated that genes for phenol metabolism were upregulated during growth on benzene but that genes for benzoate or toluene metabolism were not, further suggesting that phenol was an intermediate in benzene metabolism. Deletion of the genes for PpsA or PpcB, subunits of two enzymes specifically required for the metabolism of phenol, removed the capacity for benzene metabolism. These results demonstrate that benzene hydroxylation to phenol is an alternative to carboxylation for anaerobic benzene activation and suggest that this may be an important metabolic route for benzene removal in petroleum-contaminated groundwaters, in which Geobacter species are considered to play an important role in anaerobic benzene degradation.

  3. Benzene removal by a novel modification of enhanced anaerobic biostimulation.

    Science.gov (United States)

    Xiong, Wenhui; Mathies, Chris; Bradshaw, Kris; Carlson, Trevor; Tang, Kimberley; Wang, Yi

    2012-10-01

    A novel modification of enhanced anaerobic bioremediation techniques was developed by using non-activated persulfate to accelerate the organic phosphorus breakdown and then stimulate benzene biodegradation by nitrate and sulfate reduction. Benzene concentrations in groundwater where nitrate, triethyl phosphate and persulfate were successfully injected were reduced at removal efficiencies greater than 77% to the levels below the applicable guideline. Soil benzene was removed effectively by the modification of the enhanced anaerobic bioremediation with removal efficiencies ranging between 75.9% and 92.8%. Geochemical analytical results indicated that persulfate effectively breaks down triethyl phosphate into orthophosphate, thereby promoting nitrate and sulfate utilization. Microbial analyses (quantitative polymerase chain reaction, denaturing gradient gel electrophoresis and 16S ribosomal RNA) demonstrated that benzene was primarily biodegraded by nitrate reduction while sulfate reduction played an important role in benzene removal at some portions of the study site. Enrichment in the heavier carbon isotope ¹³C of residual benzene with the increased removal efficiency provided direct evidence for benzene biodegradation. Nitrogen, sulfur and oxygen isotope analyses indicated that both nitrate reduction and sulfate reduction were occurring as bioremediation mechanisms.

  4. Anaerobic degradation of benzene by marine sulfate-reducing bacteria

    Science.gov (United States)

    Musat, Florin; Wilkes, Heinz; Musat, Niculina; Kuypers, Marcel; Widdel, Friedrich

    2010-05-01

    Benzene, the archetypal aromatic hydrocarbon is a common constituent of crude oil and oil-refined products. As such, it can enter the biosphere through natural oil seeps or as a consequence of exploitation of fossil fuel reservoirs. Benzene is chemically very stable, due to the stabilizing aromatic electron system and to the lack of functional groups. Although the anaerobic degradation of benzene has been reported under denitrifying, sulfate-reducing and methanogenic conditions, the microorganisms involved and the initial biochemical steps of degradation remain insufficiently understood. Using marine sediment from a Mediterranean lagoon a sulfate-reducing enrichment culture with benzene as the sole organic substrate was obtained. Application of 16S rRNA gene-based methods showed that the enrichment was dominated (more than 85% of total cells) by a distinct phylotype affiliated with a clade of Deltaproteobacteria that include degraders of other aromatic hydrocarbons, such as naphthalene, ethylbenzene and m-xylene. Using benzoate as a soluble substrate in agar dilution series, several pure cultures closely related to Desulfotignum spp. and Desulfosarcina spp. were isolated. None of these strains was able to utilize benzene as a substrate and hybridizations with specific oligonucleotide probes showed that they accounted for as much as 6% of the total cells. Incubations with 13C-labeled benzene followed by Halogen in situ Hybridization - Secondary Ion Mass Spectroscopy (HISH-SIMS) analysis showed that cells of the dominant phylotype were highly enriched in 13C, while the accompanying bacteria had little or no 13C incorporation. These results demonstrate that the dominant phylotype was indeed the apparent benzene degrader. Dense-cell suspensions of the enrichment culture did not show metabolic activity toward added phenol or toluene, suggesting that benzene degradation did not proceed through anaerobic hydroxylation or methylation. Instead, benzoate was identified in

  5. Anaerobic benzene degradation by Gram-positive sulfate-reducing bacteria.

    Science.gov (United States)

    Abu Laban, Nidal; Selesi, Drazenka; Jobelius, Carsten; Meckenstock, Rainer U

    2009-06-01

    Despite its high chemical stability, benzene is known to be biodegradable with various electron acceptors under anaerobic conditions. However, our understanding of the initial activation reaction and the responsible prokaryotes is limited. In the present study, we enriched a bacterial culture that oxidizes benzene to carbon dioxide under sulfate-reducing conditions. Community analysis using terminal restriction fragment length polymorphism, 16S rRNA gene sequencing and FISH revealed 95% dominance of one phylotype that is affiliated to the Gram-positive bacterial genus Pelotomaculum showing that sulfate-reducing Gram-positive bacteria are involved in anaerobic benzene degradation. In order to get indications of the initial activation mechanism, we tested the substrate utilization, performed cometabolism tests and screened for putative metabolites. Phenol, toluene, and benzoate could not be utilized as alternative carbon sources by the benzene-degrading culture. Cometabolic degradation experiments resulted in retarded rates of benzene degradation in the presence of phenol whereas toluene had no effect on benzene metabolism. Phenol, 2-hydroxybenzoate, 4-hydroxybenzoate, and benzoate were identified as putative metabolites in the enrichment culture. However, hydroxylated aromatics were shown to be formed abiotically. Thus, the finding of benzoate as an intermediate compound supports a direct carboxylation of benzene as the initial activation mechanism but additional reactions leading to its formation cannot be excluded definitely.

  6. Metagenomic and proteomic analyses to elucidate the mechanism of anaerobic benzene degradation

    Energy Technology Data Exchange (ETDEWEB)

    Abu Laban, Nidal [Helmholtz (Germany)

    2011-07-01

    This paper presents the mechanism of anaerobic benzene degradation using metagenomic and proteomic analyses. The objective of the study is to find out the microbes and biochemistry involved in benzene degradation. Hypotheses are proposed for the initial activation mechanism of benzene under anaerobic conditions. Two methods for degradation, molecular characterization and identification of benzene-degrading enzymes, are described. The physiological and molecular characteristics of iron-reducing enrichment culture are given and the process is detailed. Metagenome analysis of iron-reducing culture is presented using a pie chart. From the metagenome analysis of benzene-degrading culture, putative mobile element genes were identified in the aromatic-degrading configurations. Metaproteomic analysis of iron-reducing cultures and the anaerobic benzene degradation pathway are also elucidated. From the study, it can be concluded that gram-positive bacteria are involved in benzene degradation under iron-reducing conditions and that the catalysis mechanism of putative anaerobic benzene carboxylase needs further investigation.

  7. Identification of genes specifically required for the anaerobic metabolism of benzene in Geobacter metallireducens

    DEFF Research Database (Denmark)

    Zhang, Tian; Tremblay, Pier-Luc; Chaurasia, Akhilesh Kumar;

    2014-01-01

    Although the biochemical pathways for the anaerobic degradation of many of the hydrocarbon constituents in petroleum reservoirs have been elucidated, the mechanisms for anaerobic activation of benzene, a very stable molecule, are not known. Previous studies have demonstrated that Geobacter...

  8. Integrated Anaerobic-Aerobic Biodegradation of Multiple Contaminants Including Chlorinated Ethylenes, Benzene, Toluene, and Dichloromethane.

    Science.gov (United States)

    Yoshikawa, Miho; Zhang, Ming; Toyota, Koki

    2017-01-01

    Complete bioremediation of soils containing multiple volatile organic compounds (VOCs) remains a challenge. To explore the possibility of complete bioremediation through integrated anaerobic-aerobic biodegradation, laboratory feasibility tests followed by alternate anaerobic-aerobic and aerobic-anaerobic biodegradation tests were performed. Chlorinated ethylenes, including tetrachloroethylene (PCE), trichloroethylene (TCE), cis-dichloroethylene (cis-DCE), and vinyl chloride (VC), and dichloromethane (DCM) were used for anaerobic biodegradation, whereas benzene, toluene, and DCM were used for aerobic biodegradation tests. Microbial communities involved in the biodegradation tests were analyzed to characterize the major bacteria that may contribute to biodegradation. The results demonstrated that integrated anaerobic-aerobic biodegradation was capable of completely degrading the seven VOCs with initial concentration of each VOC less than 30 mg/L. Benzene and toluene were degraded within 8 days, and DCM was degraded within 20 to 27 days under aerobic conditions when initial oxygen concentrations in the headspaces of test bottles were set to 5.3% and 21.0%. Dehalococcoides sp., generally considered sensitive to oxygen, survived aerobic conditions for 28 days and was activated during the subsequent anaerobic biodegradation. However, degradation of cis-DCE was suppressed after oxygen exposure for more than 201 days, suggesting the loss of viability of Dehalococcoides sp., as they are the only known anaerobic bacteria that can completely biodegrade chlorinated ethylenes to ethylene. Anaerobic degradation of DCM following previous aerobic degradation was complete, and yet-unknown microbes may be involved in the process. The findings may provide a scientific and practical basis for the complete bioremediation of multiple contaminants in situ and a subject for further exploration.

  9. Anaerobic degradation of benzene by enriched consortia with humic acids as terminal electron acceptors

    Energy Technology Data Exchange (ETDEWEB)

    Cervantes, Francisco J., E-mail: fjcervantes@ipicyt.edu.mx [Division de Ciencias Ambientales, Instituto Potosino de Investigacion Cientifica y Tecnologica (IPICyT), Camino a la Presa San Jose 2055, Col. Lomas 4a. Seccion, San Luis Potosi, SLP, 78216 Mexico (Mexico); Mancilla, Ana Rosa; Toro, E. Emilia Rios-del [Division de Ciencias Ambientales, Instituto Potosino de Investigacion Cientifica y Tecnologica (IPICyT), Camino a la Presa San Jose 2055, Col. Lomas 4a. Seccion, San Luis Potosi, SLP, 78216 Mexico (Mexico); Alpuche-Solis, Angel G.; Montoya-Lorenzana, Lilia [Division de Biologia Molecular, Instituto Potosino de Investigacion Cientifica y Tecnologica (IPICyT), Camino a la Presa San Jose 2055, Col. Lomas 4a. Seccion, San Luis Potosi, SLP, 78216 Mexico (Mexico)

    2011-11-15

    Highlights: {yields} Enriched consortia were able to couple the anaerobic degradation of benzene to the reduction of humic acids. {yields} Electron-equivalents derived from anaerobic benzene oxidation were highly recovered as reduced humic acids. {yields} Several species from classes {beta}-, {delta}- and {gamma}-Proteobacteria were enriched during the anaerobic degradation of benzene. - Abstract: The anaerobic degradation of benzene coupled to the reduction of humic acids (HA) was demonstrated in two enriched consortia. Both inocula were able to oxidize benzene under strict anaerobic conditions when the humic model compound, anthraquinone-2,6-disulfonate (AQDS), was supplied as terminal electron acceptor. An enrichment culture originated from a contaminated soil was also able to oxidize benzene linked to the reduction of highly purified soil humic acids (HPSHA). In HPSHA-amended cultures, 9.3 {mu}M of benzene were degraded, which corresponds to 279 {+-} 27 micro-electron equivalents ({mu}Eq) L{sup -1}, linked to the reduction of 619 {+-} 81 {mu}Eq L{sup -1} of HPSHA. Neither anaerobic benzene oxidation nor reduction of HPSHA occurred in sterilized controls. Anaerobic benzene oxidation did not occur in soil incubations lacking HPSHA. Furthermore, negligible reduction of HPSHA occurred in the absence of benzene. The enrichment culture derived from this soil was dominated by two {gamma}-Proteobacteria phylotypes. A benzene-degrading AQDS-reducing enrichment originated from a sediment sample showed the prevalence of different species from classes {beta}-, {delta}- and {gamma}-Proteobacteria. The present study provides clear quantitative demonstration of anaerobic degradation of benzene coupled to the reduction of HA.

  10. Identification of genes specifically required for the anaerobic metabolism of benzene in Geobacter metallireducens

    Directory of Open Access Journals (Sweden)

    Tian eZhang

    2014-05-01

    Full Text Available Although the biochemical pathways for the anaerobic degradation of many of the hydrocarbon constituents in petroleum reservoirs have been elucidated, the mechanisms for anaerobic activation of benzene, a very stable molecule, are not known. Previous studies have demonstrated that Geobacter metallireducens can anaerobically oxidize benzene to carbon dioxide with Fe(III as the sole electron acceptor and that phenol is an intermediate in benzene oxidation. In an attempt to identify enzymes that might be involved in the conversion of benzene to phenol, whole-genome gene transcript abundance was compared in cells metabolizing benzene and cells metabolizing phenol. Eleven genes had significantly higher transcript abundance in benzene-metabolizing cells. Five of these genes had annotations suggesting that they did not encode proteins that could be involved in benzene metabolism and were not further studied. Strains were constructed in which one of the remaining six genes was deleted. The strain in which the monocistronic gene Gmet 0232 was deleted metabolized phenol, but not benzene. Transcript abundance of the adjacent monocistronic gene, Gmet 0231, predicted to encode a zinc-containing oxidoreductase, was elevated in cells metabolizing benzene, although not at a statistically significant level. However, deleting Gmet 0231 also yielded a strain that could metabolize phenol, but not benzene. Although homologs of Gmet 0231 and Gmet 0232 are found in microorganisms not known to anaerobically metabolize benzene, the adjacent localization of these genes is unique to G. metallireducens. The discovery of genes that are specifically required for the metabolism of benzene, but not phenol in G. metallireducens is an important step in potentially identifying the mechanisms for anaerobic benzene activation.

  11. Field-based and laboratory stable isotope probing surveys of the identities of both aerobic and anaerobic benzene-metabolizing microorganisms in freshwater sediment.

    Science.gov (United States)

    Liou, J S-C; Derito, C M; Madsen, E L

    2008-08-01

    Laboratory incubations of coal-tar waste-contaminated sediment microbial communities under relatively controlled physiological conditions were used to interpret results of a field-based stable isotope probing (SIP) assay. Biodegradation activity of 13C-benzene was examined by GC/MS determination of net 13CO2 production and by GC headspace analysis of benzene loss. Key experimental variables were: the site of the assays (laboratory serum-bottle incubations and in situ field sediments), benzene concentration (10, 36 or 200 p.p.m. in laboratory assays), and physiological conditions (anaerobic with or without sulfate or nitrate additions versus aerobic headspace or the uncontrolled field). In anaerobic laboratory incubations of benzene at 10 p.p.m., greater than 60% of the substrate was eliminated within 15 days. During anaerobic incubations of 200 p.p.m. benzene (70 days), 0.9% benzene mineralization occurred. When benzene (36 p.p.m.) was added to sediment with air in the serum-bottle headspace, 14% of the initial 13C was mineralized to 13CO2 in 2.5 days. In the field experiment (178 microg 13C-benzene dosed to undisturbed sediments), net 13CO2 production reached 0.3% within 8.5 h. After isopycnic separation of 13C (heavy)-labelled DNA from the above biodegradation assays, sequencing of 13C-DNA clone libraries revealed a broad diversity of taxa involved in benzene metabolism and distinctive libraries for each biodegradation treatment. Perhaps most importantly, in the field SIP experiment the clone libraries produced were dominated by Pelomonas (betaproteobacteria) sequences similar to those found in the anaerobic 10 p.p.m. benzene laboratory experiment. These data indicate that the physiological conditions that prevail and govern in situ biodegradation of pollutants in the field may be interpreted by knowing the physiological preferences of potentially active populations.

  12. Identification of enzymes involved in anaerobic benzene degradation by a strictly anaerobic iron-reducing enrichment culture.

    Science.gov (United States)

    Abu Laban, Nidal; Selesi, Draženka; Rattei, Thomas; Tischler, Patrick; Meckenstock, Rainer U

    2010-10-01

    Anaerobic benzene degradation was studied with a highly enriched iron-reducing culture (BF) composed of mainly Peptococcaceae-related Gram-positive microorganisms. The proteomes of benzene-, phenol- and benzoate-grown cells of culture BF were compared by SDS-PAGE. A specific benzene-expressed protein band of 60 kDa, which could not be observed during growth on phenol or benzoate, was subjected to N-terminal sequence analysis. The first 31 amino acids revealed that the protein was encoded by ORF 138 in the shotgun sequenced metagenome of culture BF. ORF 138 showed 43% sequence identity to phenylphosphate carboxylase subunit PpcA of Aromatoleum aromaticum strain EbN1. A LC/ESI-MS/MS-based shotgun proteomic analysis revealed other specifically benzene-expressed proteins with encoding genes located adjacent to ORF 138 on the metagenome. The protein products of ORF 137, ORF 139 and ORF 140 showed sequence identities of 37% to phenylphosphate carboxylase PpcD of A. aromaticum strain EbN1, 56% to benzoate-CoA ligase (BamY) of Geobacter metallireducens and 67% to 3-octaprenyl-4-hydroxybenzoate carboxy-lyase (UbiD/UbiX) of A. aromaticum strain EbN1 respectively. These genes are proposed as constituents of a putative benzene degradation gene cluster (∼ 17 kb) composed of carboxylase-related genes. The identified gene sequences suggest that the initial activation reaction in anaerobic benzene degradation is probably a direct carboxylation of benzene to benzoate catalysed by putative anaerobic benzene carboxylase (Abc). The putative Abc probably consists of several subunits, two of which are encoded by ORFs 137 and 138, and belongs to a family of carboxylases including phenylphosphate carboxylase (Ppc) and 3-octaprenyl-4-hydroxybenzoate carboxy-lyase (UbiD/UbiX).

  13. Physiological and phylogenetic characterization of a stable chlorate-reducing benzene-degrading microbial community

    NARCIS (Netherlands)

    Weelink, S.A.B.; Tan, N.C.G.; Broeke, ten H.; Doesburg, van W.C.J.; Langenhoff, A.A.M.; Gerritse, J.; Stams, A.J.M.

    2007-01-01

    stable anoxic enrichment culture was obtained that degraded benzene with chlorate as an electron acceptor. The benzene degradation rate was 1.65 mM benzene per day, which is similar to reported aerobic benzene degradation rates but 20¿1650 times higher than reported for anaerobic benzene degradation

  14. Removal of benzene and toluene in horizontal-flow anaerobic immobilized biomass reactor (HAIBR) in the presence of sulfate

    Energy Technology Data Exchange (ETDEWEB)

    Cattony, E.B.M.; Chinalia, F.A.; Adorno, M.A.T.; Moraes, E.M.; Zaiat, M.; Foresti, E.; Varesche, M.B.A. [Sao Paulo Univ., Sao Carlos, SP (Brazil). Biological Processes Laboratory

    2004-07-01

    The removal of toluene and benzene from organic waste by microorganisms was tested in two bioreactors. Two horizontal-flow anaerobic immobilized biomass (HAIB) reactors were fed with Zinder medium to stimulate anaerobic sulfate-reducing bacteria (SRB). The chemical oxygen demand (COD) and sulfate analysis were assessed and acetic acid, toluene and benzene were analyzed in gas chromatography. Microbial communities were characterized by fluorescence, optical electron microscopy and molecular biology analysis. The HAIB reactors achieved steady state within 2 weeks following hydrocarbon compound amendments. Depletion of sulfate was achieved after this time, along with removal of toluene and benzene. The inflow COD for both reactors was more than 95 per cent. The HAIB reactor operated under sulfidogenic conditions. It was concluded that the use of benzene and toluene is an efficient and cost-effective method for treating contaminated water, particularly for tropical developing countries. The study emphasized the importance of SRB populations in bioreactors to degrade organic aromatics under oxygen reduced conditions. 10 refs., 4 figs.

  15. Field-based and laboratory stable isotope probing surveys of the identities of both aerobic and anaerobic benzene-metabolizing microorganisms in freshwater sediment

    Energy Technology Data Exchange (ETDEWEB)

    Liou, J.S.C.; DeRito, C.M.; Madsen, E.L. [Cornell University, Ithaca, NY (United States). Dept. of Microbiology

    2008-08-15

    Laboratory incubations of coal-tar waste-contaminated sediment microbial communities under relatively controlled physiological conditions were used to interpret results of a field-based stable isotope probing (SIP) assay. Biodegradation activity of {sub 13}C-benzene was examined by GC/MS determination of net (CO{sub 2})-{sub 13}C production and by GC headspace analysis of benzene loss. In anaerobic laboratory incubations of benzene at 10 p.p.m., greater than 60% of the substrate was eliminated within 15 days. During anaerobic incubations of 200 p.p.m. benzene (70 days), 0.9% benzene mineralization occurred. When benzene (36 p.p.m.) was added to sediment with air in the serum-bottle headspace, 14% of the initial C-13 was mineralized to (CO{sub 2})-{sub 13}C in 2.5 days. In the field experiment (178 {mu} g {sub 13}C-benzene dosed to undisturbed sediments), net (CO{sub 2})-{sub 13}C production reached 0.3% within 8.5 h. After isopycnic separation of {sub 13}C (heavy)-labelled DNA from the above biodegradation assays, sequencing of {sub 13}C-DNA clone libraries revealed a broad diversity of taxa involved in benzene metabolism and distinctive libraries for each biodegradation treatment. Perhaps most importantly, in the field SIP experiment the clone libraries produced were dominated by Pelomonas (betaproteobacteria) sequences similar to those found in the anaerobic 10 p.p.m. benzene laboratory experiment. These data indicate that the physiological conditions that prevail and govern in situ biodegradation of pollutants in the field may be interpreted by knowing the physiological preferences of potentially active populations.

  16. Degradation of benzene and other aromatic hydrocarbons by anaerobic bacteria

    NARCIS (Netherlands)

    Weelink, S.A.B.

    2008-01-01

    Accidental spills, industrial discharges and gasoline leakage from underground storage tanks have resulted in serious pollution of the environment with monoaromatic hydrocarbons, such as benzene, toluene, ethylbenzene and xylene (so-called BTEX). High concentrations of BTEX have been detected in soi

  17. Biotransformation of toluene, benzene and naphthalene under anaerobic conditions.

    NARCIS (Netherlands)

    Langenhoff, A.A.M.

    1997-01-01

    Aromatic hydrocarbons are widespread in nature, due to increasing industrial activity, and often contribute to polluted soils, sediments, and groundwater. Most of these compounds are toxic at relatively high concentrations, but some are already carcinogenic at very low concentrations, e.g. benzene.

  18. Exocellular electron transfer in anaerobic microbial communities

    NARCIS (Netherlands)

    Stams, A.J.M.; Bok, de F.A.M.; Plugge, C.M.; Eekert, van M.H.A.; Dolfing, J.; Schraa, G.

    2006-01-01

    Exocellular electron transfer plays an important role in anaerobic microbial communities that degrade organic matter. Interspecies hydrogen transfer between microorganisms is the driving force for complete biodegradation in methanogenic environments. Many organic compounds are degraded by obligatory

  19. Anaerobic digestion of linear alkyl benzene sulfonates: biodegradation kinetics and metabolite analysis.

    Science.gov (United States)

    García, M T; Campos, E; Ribosa, I; Latorre, A; Sánchez-Leal, J

    2005-09-01

    In the present work the effect of the alkyl chain length and the position of the sulfophenyl substituent of the linear alkylbenzene sulfonates (LAS) on their anaerobic biodegradability have been investigated. Degradation kinetics of the linear alkyl benzene sulfonates homologues, 2phiC10LAS, 2phiC12LAS and 2phiC14LAS, have been studied. It has been also investigated the effect of the isomer type on the degradation rate of the LAS molecule through the comparative study of the 2phiC10LAS and 5phiC10LAS isomers. Batch anaerobic biodegradation tests were performed using sludge from the anaerobic digester of a wastewater treatment plant as microorganisms source. Ultimate biodegradation was evaluated from the biogas production whereas primary biodegradation was determined by specific analysis of the surfactant. LAS homologues and isomers showed a negligible primary biodegradation under anaerobic conditions. Furthermore, analysis of sulfophenyl carboxilates (SPC) by LC-MS indicated a low and constant level of these LAS degradation metabolites over the test period. These data are consistent with a minimal transformation of the LAS parent molecule in the anaerobic digesters. On the other hand, the addition of the shortest alkyl chain length homologues, decyl and dodecylbenzene sulfonates, reduces the biogas production whereas the most hydrophobic homologue, the tetradecylbenzene sulfonate, enhances the biogas production. This LAS homologue seems to increase the availability of organic compounds sorbed on the anaerobic sludge promoting their biodegradation.

  20. Anaerobic biodegradation of benzene series compounds by mixed cultures based on optional electronic acceptors

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A series of batch experiments were performed using mixed bacterial consortia to investigate biodegradation performance of benzene,toluene,ethylbenzene and three xylene isomers (BTEX) under nitrate,sulfate and ferric iron reducing conditions.The results showed that toluene,ethylbenzeoe,m-xylene and o-xylene could be degraded independently by the mixed cultures coupled to nitrate,sulfate and ferric iron reduction.Under ferric iron reducing conditions the biodegradation of benzene and p-xylene could be occurred only in the presence of other alkylbenzenes.Alkylbenzenes can serve as the primary substrates to stimulate the transformation of benzene and p-xylene under anaerobic conditions.Benzene and p-xylene are more toxic than toluene and ethylbenzene,under the three terminal electron acceptors conditions,the degradation rates decreased with toluene > ethylbenzene > m-xylene > o-xylene > benzene > p-xylene.Nitrate was a more favorable electron acceptor compared to sulfate and ferric iron.The ratio between sulfate consumed and the loss of benzene,toluene,ethylbenzene,o-xylene,m-xylene,p-xylene was 4.44,4.51,4.42,4.32,4.37 and 4.23,respectively;the ratio between nitrate consumed and the loss of these substrates was 7.53,6.24,6.49,7.28,7.81,7.61,respectively;the ratio between the consumption of ferric iron and the loss of toluene,ethylbenzene,o-xylene,m-xylenewas 17.99,18.04,18.07,17.97,respectively.

  1. Relationship between microbial activity and microbial community structure in six full-scale anaerobic digesters

    NARCIS (Netherlands)

    Regueiro, L.; Veiga, P.; Figueroa, M.; Alonso-Gutierrez, J.; Stams, A.J.M.; Lema, J.M.; Carballa, M.

    2012-01-01

    High activity levels and balanced anaerobic microbial communities are necessary to attain proper anaerobic digestion performance. Therefore, this work was focused on the kinetic performance and the microbial community structure of six full-scale anaerobic digesters and one lab-scale co-digester. Hyd

  2. Microbial communities mediating algal detritus turnover under anaerobic conditions

    Directory of Open Access Journals (Sweden)

    Jessica M. Morrison

    2017-01-01

    Full Text Available Background Algae encompass a wide array of photosynthetic organisms that are ubiquitously distributed in aquatic and terrestrial habitats. Algal species often bloom in aquatic ecosystems, providing a significant autochthonous carbon input to the deeper anoxic layers in stratified water bodies. In addition, various algal species have been touted as promising candidates for anaerobic biogas production from biomass. Surprisingly, in spite of its ecological and economic relevance, the microbial community involved in algal detritus turnover under anaerobic conditions remains largely unexplored. Results Here, we characterized the microbial communities mediating the degradation of Chlorella vulgaris (Chlorophyta, Chara sp. strain IWP1 (Charophyceae, and kelp Ascophyllum nodosum (phylum Phaeophyceae, using sediments from an anaerobic spring (Zodlteone spring, OK; ZDT, sludge from a secondary digester in a local wastewater treatment plant (Stillwater, OK; WWT, and deeper anoxic layers from a seasonally stratified lake (Grand Lake O’ the Cherokees, OK; GL as inoculum sources. Within all enrichments, the majority of algal biomass was metabolized within 13–16 weeks, and the process was accompanied by an increase in cell numbers and a decrease in community diversity. Community surveys based on the V4 region of the 16S rRNA gene identified different lineages belonging to the phyla Bacteroidetes, Proteobacteria (alpha, delta, gamma, and epsilon classes, Spirochaetes, and Firmicutes that were selectively abundant under various substrate and inoculum conditions. Within all kelp enrichments, the microbial communities structures at the conclusion of the experiment were highly similar regardless of the enrichment source, and were dominated by the genus Clostridium, or family Veillonellaceae within the Firmicutes. In all other enrichments the final microbial community was dependent on the inoculum source, rather than the type of algae utilized as substrate

  3. Microbial communities mediating algal detritus turnover under anaerobic conditions

    Science.gov (United States)

    Morrison, Jessica M.; Murphy, Chelsea L.; Baker, Kristina; Zamor, Richard M.; Nikolai, Steve J.; Wilder, Shawn; Elshahed, Mostafa S.

    2017-01-01

    Background Algae encompass a wide array of photosynthetic organisms that are ubiquitously distributed in aquatic and terrestrial habitats. Algal species often bloom in aquatic ecosystems, providing a significant autochthonous carbon input to the deeper anoxic layers in stratified water bodies. In addition, various algal species have been touted as promising candidates for anaerobic biogas production from biomass. Surprisingly, in spite of its ecological and economic relevance, the microbial community involved in algal detritus turnover under anaerobic conditions remains largely unexplored. Results Here, we characterized the microbial communities mediating the degradation of Chlorella vulgaris (Chlorophyta), Chara sp. strain IWP1 (Charophyceae), and kelp Ascophyllum nodosum (phylum Phaeophyceae), using sediments from an anaerobic spring (Zodlteone spring, OK; ZDT), sludge from a secondary digester in a local wastewater treatment plant (Stillwater, OK; WWT), and deeper anoxic layers from a seasonally stratified lake (Grand Lake O’ the Cherokees, OK; GL) as inoculum sources. Within all enrichments, the majority of algal biomass was metabolized within 13–16 weeks, and the process was accompanied by an increase in cell numbers and a decrease in community diversity. Community surveys based on the V4 region of the 16S rRNA gene identified different lineages belonging to the phyla Bacteroidetes, Proteobacteria (alpha, delta, gamma, and epsilon classes), Spirochaetes, and Firmicutes that were selectively abundant under various substrate and inoculum conditions. Within all kelp enrichments, the microbial communities structures at the conclusion of the experiment were highly similar regardless of the enrichment source, and were dominated by the genus Clostridium, or family Veillonellaceae within the Firmicutes. In all other enrichments the final microbial community was dependent on the inoculum source, rather than the type of algae utilized as substrate. Lineages enriched

  4. [Prolonged cultivation of an anaerobic bacterial community producing hydrogen].

    Science.gov (United States)

    Belokopytov, B F; Ryzhmanova, Ia V; Laurinavichius, K S; Shcherbakova, V A

    2012-01-01

    This paper studies various methods of long-term maintenance of the process of hydrogen evolution during the growth of an aerobic bacterial community on a starch-containing environment. When cultured in separable trip fermentation mode for 72 days, from 0.10 to 0.23 H2/l of medium/day was formed. The regime of regular reseeding lasted more than 100 days, forming an average of 0.81 1 H2/l of medium/day. The advantages and disadvantages of different methods of microbial hydrogen production during a dark starch fermentation process are presented. From the obtained H2 forming microbial communities, we isolated an anaerobic spore-forming bacterium (strain BF). Phylogenetic analysis of the 16S RNA gene sequence of the new strain showed that according to its genotype it belongs to the Clostridium butyricum species.

  5. Mechanism of uranium (VI) removal by two anaerobic bacterial communities

    Energy Technology Data Exchange (ETDEWEB)

    Martins, Monica [Centro de Ciencias do Mar, Universidade do Algarve, FCT-DQF (edificio 8), Campus de Gambelas, 8005-139 Faro (Portugal); Faleiro, Maria Leonor [IBB - Centro de Biomedicina Molecular e Estrutural, Universidade do Algarve, FCT, Campus de Gambelas, 8005-139 Faro (Portugal); Costa, Ana M. Rosa da [Centro de Investigacao em Quimica do Algarve, Universidade do Algarve, FCT, DQF, Campus de Gambelas, 8005-139 Faro (Portugal); Chaves, Sandra; Tenreiro, Rogerio [Universidade de Lisboa, Faculdade de Ciencias, Centro de Biodiversidade, Genomica Integrativa e Funcional (BioFIG), Campus de FCUL, Campo Grande, 1749-016 Lisboa (Portugal); Matos, Antonio Pedro [Servico de Anatomia Patologica, Hospital Curry Cabral, Lisboa (Portugal); Costa, Maria Clara, E-mail: mcorada@ualg.pt [Centro de Ciencias do Mar, Universidade do Algarve, FCT-DQF (edificio 8), Campus de Gambelas, 8005-139 Faro (Portugal)

    2010-12-15

    The mechanism of uranium (VI) removal by two anaerobic bacterial consortia, recovered from an uncontaminated site (consortium A) and other from an uranium mine (consortium U), was investigated. The highest efficiency of U (VI) removal by both consortia (97%) occurred at room temperature and at pH 7.2. Furthermore, it was found that U (VI) removal by consortium A occurred by enzymatic reduction and bioaccumulation, while the enzymatic process was the only mechanism involved in metal removal by consortium U. FTIR analysis suggested that after U (VI) reduction, U (IV) could be bound to carboxyl, phosphate and amide groups of bacterial cells. Phylogenetic analysis of 16S rRNA showed that community A was mainly composed by bacteria closely related to Sporotalea genus and Rhodocyclaceae family, while community U was mainly composed by bacteria related to Clostridium genus and Rhodocyclaceae family.

  6. Microbial community analysis of anaerobic reactors treating soft drink wastewater.

    Directory of Open Access Journals (Sweden)

    Takashi Narihiro

    Full Text Available The anaerobic packed-bed (AP and hybrid packed-bed (HP reactors containing methanogenic microbial consortia were applied to treat synthetic soft drink wastewater, which contains polyethylene glycol (PEG and fructose as the primary constituents. The AP and HP reactors achieved high COD removal efficiency (>95% after 80 and 33 days of the operation, respectively, and operated stably over 2 years. 16S rRNA gene pyrotag analyses on a total of 25 biofilm samples generated 98,057 reads, which were clustered into 2,882 operational taxonomic units (OTUs. Both AP and HP communities were predominated by Bacteroidetes, Chloroflexi, Firmicutes, and candidate phylum KSB3 that may degrade organic compound in wastewater treatment processes. Other OTUs related to uncharacterized Geobacter and Spirochaetes clades and candidate phylum GN04 were also detected at high abundance; however, their relationship to wastewater treatment has remained unclear. In particular, KSB3, GN04, Bacteroidetes, and Chloroflexi are consistently associated with the organic loading rate (OLR increase to 1.5 g COD/L-d. Interestingly, KSB3 and GN04 dramatically decrease in both reactors after further OLR increase to 2.0 g COD/L-d. These results indicate that OLR strongly influences microbial community composition. This suggests that specific uncultivated taxa may take central roles in COD removal from soft drink wastewater depending on OLR.

  7. Community Anaerobic Digester: Powered by Students and Driving Practical Applications

    Energy Technology Data Exchange (ETDEWEB)

    Richmond Hall, Joan [Vermont Sustainable Jobs Fund, Montpelier, VT (United States); O' Leary, Mary [Vermont Sustainable Jobs Fund, Montpelier, VT (United States)

    2016-03-23

    The Vermont Tech Community Anaerobic Digester (VTCAD) was conceived and funded by a partnership of educational, agricultural, waste management and environmental groups to create a living laboratory demonstrating the value of recycling nutrients, renewable energy and agricultural co-products from organic wastes. VTCAD was constructed on the Randolph Center, Vermont campus of Vermont Tech, a public college offering engineering technology, agricultural, renewable energy education and workforce training. With funding from the U.S. Department of Energy (DOE), the Vermont State Colleges and others, construction was completed in early 2014 and the facility has been operational since April 2014. At full power, VTCAD uses 16,000 gallons of manure and organic residuals to produce 8,880 kilowatt hours (kWh) of electricity per day, ‘waste’ heat that will be used to heat four campus buildings, bedding material for the college dairy herds and recycled nutrients used as crop fertilizer. VTCAD uses a mixture of manure from co-managed farms and organic residuals collected from the community. Feedstock materials include brewery residuals, the glycerol by-product of biodiesel production from waste cooking oil, grease trap waste, and waste paper and, soon, locally collected pre- and post-consumer food residuals.

  8. Effects of Oxytetracycline on Methane Production and the Microbial Communities During Anaerobic Digestion of Cow Manure

    Institute of Scientific and Technical Information of China (English)

    KE Xin; WANG Chun-yong; LI Run-dong; ZHANG Yun

    2014-01-01

    The effects of different concentrations of oxytetracycline (OTC) on the dynamics of bacterial and archaeal communities during the mesophilic anaerobic digestion (37°C) of cow manure were investigated. Before anaerobic digestion, OTC was added to digesters at concentrations of 20, 50, and 80 mg L-1, respectively. Compared with no-antibiotic control, all methane productions underwent different levels of inhibition at different concentrations of OTC. Changes in the bacterial and archaeal communities were discussed by using PCR-denaturing gradient gel electrophoresis (DGGE). Results showed that OTC affected the richness and diversity of bacterial and archaeal communities. The bacterial genus Flavobacterium and an uncultured bacterium (JN256083.1) were detected throughout the entire process of anaerobic digestion and seemed to be the functional bacteria. Methanobrevibacter boviskoreani and an uncultured archaeon (FJ230982.1) dominated the archaeal communities during anaerobic digestion. These microorganisms may have high resistance to OTC and may play vital roles in methane production.

  9. Spatial Variation in Anaerobic Microbial Communities in Wetland Margin Soils

    Science.gov (United States)

    Rich, H.; Kannenberg, S.; Ludwig, S.; Nelson, L. C.; Spawn, S.; Porterfield, J.; Schade, J. D.

    2012-12-01

    Climate change is predicted to increase the severity and frequency of precipitation and drought events, which may result in substantial temporal variation in the size of wetlands. Wetlands are the world's largest natural emitter of methane, a greenhouse gas that is 20 times more effective at trapping heat than carbon dioxide. Changes in the dynamics of wetland size may lead to changes in the extent and timing of inundation of soils in ephemeral margins, which is likely to influence microbes that rely on anoxic conditions. The impact on process rates may depend on the structure of the community of microbes present in the soil, however, the link between microbial structure and patterns in process rates in soils is not well understood. Our goal was to use molecular techniques to compare microorganism communities in two wetlands that differ in the extent and duration of inundation of marginal soils to assess how these communities may change with changes in climate, and the potential consequences for methane production. This will allow us to examine how community composition changes with soil conditions such as moisture content, frequency of drought and abundance of available carbon. The main focus of this project was to determine the presence or absence of acetoclastic (AC) and hydrogenotrophic (HT) methanogens. AC methanogens use acetate as their main substrate, while HT methanogens use Hydrogen and Carbon dioxide. The relative proportion of these pathways depends on soil conditions, such as competition with other anaerobic microbes and the amount of labile carbon, and spatial patterns in the presence of each can give insight into the soil conditions of a wetland site. We sampled soil from three different wetland ponds of varying permanence in the St Olaf Natural Lands in Northfield, Minnesota, and extracted DNA from these soil samples with a MoBio PowerSoil DNA Isolation Kit. With PCR and seven different primer sets, we tested the extracted DNA for the presence of

  10. Microbial community dynamics in mesophilic anaerobic co-digestion of mixed waste.

    Science.gov (United States)

    Supaphol, Savaporn; Jenkins, Sasha N; Intomo, Pichamon; Waite, Ian S; O'Donnell, Anthony G

    2011-03-01

    This paper identifies key components of the microbial community involved in the mesophilic anaerobic co-digestion (AD) of mixed waste at Rayong Biogas Plant, Thailand. The AD process is separated into three stages: front end treatment (FET); feed holding tank and the main anaerobic digester. The study examines how the microbial community structure was affected by the different stages and found that seeding the waste at the beginning of the process (FET) resulted in community stability. Also, co-digestion of mixed waste supported different bacterial and methanogenic pathways. Typically, acetoclastic methanogenesis was the major pathway catalysed by Methanosaeta but hydrogenotrophs were also supported. Finally, the three-stage AD process means that hydrolysis and acidogenesis is initiated prior to entering the main digester which helps improve the bioconversion efficiency. This paper demonstrates that both resource availability (different waste streams) and environmental factors are key drivers of microbial community dynamics in mesophilic, anaerobic co-digestion.

  11. Biogas production using anaerobic groundwater containing a subterranean microbial community associated with the accretionary prism

    OpenAIRE

    Baito, Kyohei; Imai, Satomi; Matsushita, Makoto; Otani, Miku; Sato, Yu; Kimura, Hiroyuki

    2014-01-01

    In a deep aquifer associated with an accretionary prism, significant methane (CH4) is produced by a subterranean microbial community. Here, we developed bioreactors for producing CH4 and hydrogen (H2) using anaerobic groundwater collected from the deep aquifer. To generate CH4, the anaerobic groundwater amended with organic substrates was incubated in the bioreactor. At first, H2 was detected and accumulated in the gas phase of the bioreactor. After the H2 decreased, rapid CH4 production was ...

  12. Inactivation of ANAMMOX communities under concurrent operation of anaerobic ammonium oxidation (ANAMMOX) and denitrification

    DEFF Research Database (Denmark)

    Chamchoi, N.; Nitisoravut, S.; Schmidt, Jens Ejbye

    2008-01-01

    A concurrent operation of anaerobic ammonium oxidation (ANAMMOX) and denitrification was investigated in a well known UASB reactor seeding with both ANAMMOX and anaerobic granular sludges. ANAMMOX activity was confirmed by hydroxylamine test and the hybridization of biomass using the gene probes......–nitrate concentrations in all reactors confirmed the undergone concurrent denitrification which thrives when sufficient organic matter is available. COD concentration over 300 mg l−1 was found to inactivate or eradicate ANAMMOX communities....

  13. Methanogenic degradation of (amino)aromatic compounds by anaerobic microbial communities

    NARCIS (Netherlands)

    Linkova, Y.V.; Stams, A.J.M.

    2011-01-01

    Degradation of a range of aromatic substrates by anaerobic microbial communities was studied. Active methanogenic microbial communities decomposing aminoaromatic acids and azo dyes into CH4 and CO2 were isolated. Products of primary conversion were found to be 2-hydroxybenzyl and benzyl alcohols gra

  14. Anaerobic transformation of carbon monoxide by microbial communities of Kamchatka hot springs.

    Science.gov (United States)

    Kochetkova, Tatiana V; Rusanov, Igor I; Pimenov, Nikolay V; Kolganova, Tatyana V; Lebedinsky, Alexander V; Bonch-Osmolovskaya, Elizaveta A; Sokolova, Tatyana G

    2011-05-01

    Carbon monoxide (CO) is one of the common gaseous compounds found in hot volcanic environments. It is known to serve as the growth substrate for a number of thermophilic prokaryotes, both aerobic and anaerobic. The goal of this work was to study the process of anaerobic transformation of CO by microbial communities inhabiting natural thermal environments: hot springs of Uzon Caldera, Kamchatka. The anaerobic microbial community of Treshchinny Spring (80°C, pH 6.5) was found to exhibit two peaks of affinity for CO (K (S1) = 54 nM and K (S2) = 1 μM). The actual rate of anaerobic CO transformation by the microbial community of this spring, calculated after obtaining the concentration dependence curve and extrapolated to the natural concentration of CO dissolved in the hot spring water (20 nM), was found to be 120 μmol l(-1) of sediment day(-1). In all the hot springs studied, more than 90% of the carbon of (14)CO upon anaerobic incubation was recovered as (14)CO(2). From 1 to 5% of (14)CO was transformed to volatile fatty acids (VFA). The number of microorganisms capable of anaerobic CO oxidation determined by dilution-to-extinction method reached 10(6) cells ml(-1) of sediment. CO-transforming anaerobic thermophilic microorganisms isolated from the springs under study exhibited hydrogenogenic type of CO oxidation and belonged to the bacterial genera Carboxydocella and Dictyoglomus. These data suggest a significant role of hydrogenogenic carboxydotrophic prokaryotes in anaerobic CO transformation in Uzon Caldera hot springs.

  15. Microbial community changes in aquifer sediment microcosm for anaerobic anthracene biodegradation under methanogenic condition

    Institute of Scientific and Technical Information of China (English)

    Rui Wan; Shuying Zhang; Shuguang Xie

    2012-01-01

    The widespread distribution of polycyclic aromatic hydrocarbons(PAHs)in groundwater has become an important environmental issue.Knowledge of microbial community changes could aid in identification of particular microorganisms that are capable of degrading PAHs in contaminated aquifers.Therefore,16S rRNA gene clone library analysis was used to identify the archaeal and bacterial communities in an aquifer sediment microcosm used for anaerobic anthracene degradation under methanogenic conditions.A remarkable shift of the archaeal community structure occurred after anaerobic anthracene degradation,but the types of the abundant bacterial phyla did not change.However,a decrease of both archaeal and bacterial diversity was observed.Bacterial genera Bacillus,Rhodococcus and Herbaspirillum might have links with anaerobic anthracene degradation,suggesting a role of microbial consortia.This work might add some new information for understanding the mechanism of PAH degradation under methanogenic conditions.

  16. Effect of continuous oleate addition on microbial communities involved in anaerobic digestion process

    DEFF Research Database (Denmark)

    Baserba, Manel Garrido; Angelidaki, Irini; Karakashev, Dimitar Borisov

    2012-01-01

    In the present study, the microbial diversity in anaerobic reactors, continuously exposed to oleate, added to a manure reactor influent, was investigated. Relative changes in archaeal community were less remarkable in comparison to changes in bacterial community indicating that dominant archaeal ...... a comprehensive picture on oleate degrading microbial communities in high organic strength wastewater. The findings might be utilized for development of strategies for biogas production from lipid-riched wastes....

  17. The impacts of triclosan on anaerobic community structures, function, and antimicrobial resistance.

    Science.gov (United States)

    McNamara, Patrick J; LaPara, Timothy M; Novak, Paige J

    2014-07-01

    Triclosan is a widespread antimicrobial agent that accumulates in anaerobic digesters used to treat the residual solids generated at municipal wastewater treatment plants; there is very little information, however, about how triclosan impacts microbial communities in anaerobic digesters. We investigated how triclosan impacts the community structure, function and antimicrobial resistance genes in lab-scale anaerobic digesters. Previously exposed (to triclosan) communities were amended with 5, 50, and 500 mg/kg of triclosan, corresponding to the median, 95th percentile, and 4-fold higher than maximum triclosan concentration that has been detected in U.S. biosolids. Triclosan amendment caused all of the Bacteria and Archaea communities to structurally diverge from that of the control cultures (based on ARISA). At the end of the experiment, all triclosan-amended Archaea communities had diverged from the control communities, regardless of the triclosan concentration added. In contrast, over time the Bacteria communities that were amended with lower concentrations of triclosan (5 mg/kg and 50 mg/kg) initially diverged and then reconverged with the control community structure. Methane production at 500 mg/kg was nearly half the methane production in control cultures. At 50 mg/kg, a large variability in methane production was observed, suggesting that 50 mg/kg may be a tipping point where function begins to fail in some communities. When previously unexposed communities were exposed to 500 mg triclosan/kg, function was maintained, but the abundance of a gene encoding for triclosan resistance (mexB) increased. This research suggests that triclosan could inhibit methane production in anaerobic digesters if concentrations were to increase and may also select for resistant Bacteria. In both cases, microbial community composition and exposure history alter the influence of triclosan.

  18. Characterization and Adaptation of Anaerobic Sludge Microbial Communities Exposed to Tetrabromobisphenol A.

    Directory of Open Access Journals (Sweden)

    Emilie Lefevre

    Full Text Available The increasing occurrence of tetrabromobisphenol A (TBBPA in the environment is raising questions about its potential ecological and human health impacts. TBBPA is microbially transformed under anaerobic conditions to bisphenol A (BPA. However, little is known about which taxa degrade TBBPA and the adaptation of microbial communities exposed to TBBPA. The objectives of this study were to characterize the effect of TBBPA on microbial community structure during the start-up phase of a bench-scale anaerobic sludge reactor, and identify taxa that may be associated with TBBPA degradation. TBBPA degradation was monitored using LC/MS-MS, and the microbial community was characterized using Ion Torrent sequencing and qPCR. TBBPA was nearly completely transformed to BPA via reductive debromination in 55 days. Anaerobic reactor performance was not negatively affected by the presence of TBBPA and the bulk of the microbial community did not experience significant shifts. Several taxa showed a positive response to TBBPA, suggesting they may be associated with TBBPA degradation. Some of these taxa had been previously identified as dehalogenating bacteria including Dehalococcoides, Desulfovibrio, Propionibacterium, and Methylosinus species, but most had not previously been identified as having dehalogenating capacities. This study is the first to provide in-depth information on the microbial dynamics of anaerobic microbial communities exposed to TBBPA.

  19. Microbial community structure and dynamics during anaerobic digestion of various agricultural waste materials.

    Science.gov (United States)

    Ziganshin, Ayrat M; Liebetrau, Jan; Pröter, Jürgen; Kleinsteuber, Sabine

    2013-06-01

    The influence of the feedstock type on the microbial communities involved in anaerobic digestion was investigated in laboratory-scale biogas reactors fed with different agricultural waste materials. Community composition and dynamics over 2 months of reactors' operation were investigated by amplicon sequencing and profiling terminal restriction fragment length polymorphisms of 16S rRNA genes. Major bacterial taxa belonged to the Clostridia and Bacteroidetes, whereas the archaeal community was dominated by methanogenic archaea of the orders Methanomicrobiales and Methanosarcinales. Correlation analysis revealed that the community composition was mainly influenced by the feedstock type with the exception of a temperature shift from 38 to 55 °C which caused the most pronounced community shifts. Bacterial communities involved in the anaerobic digestion of conventional substrates such as maize silage combined with cattle manure were relatively stable and similar to each other. In contrast, special waste materials such as chicken manure or Jatropha press cake were digested by very distinct and less diverse communities, indicating partial ammonia inhibition or the influence of other inhibiting factors. Anaerobic digestion of chicken manure relied on syntrophic acetate oxidation as the dominant acetate-consuming process due to the inhibition of aceticlastic methanogenesis. Jatropha as substrate led to the enrichment of fiber-degrading specialists belonging to the genera Actinomyces and Fibrobacter.

  20. Impact of acclimation methods on microbial communities and performance of anaerobic fluidized bed membrane bioreactors

    KAUST Repository

    Labarge, Nicole

    2016-10-17

    An anaerobic fluidized bed membrane bioreactor (AFMBR) is a new and effective method for energy-efficient treatment of low strength wastewater, but the factors that affect performance are not well known. Different inocula and acclimation methods of the granular activated carbon (GAC) used in the reactor were examined here to determine their impact on chemical oxygen demand (COD) removal and microbial community composition of domestic wastewater-fed AFMBRs. AFMBRs inoculated with anaerobic digester sludge (D) or domestic wastewater (W) and fed domestic wastewater, or inoculated with a microbiologically diverse anaerobic bog sediment and acclimated using methanol (M), all produced the same COD removal of 63 ± 12% using a diluted wastewater feed (100 ± 21 mg L−1 COD). However, an AFMBR with GAC inoculated with anaerobic digester sludge and acclimated using acetate (A) showed significantly increased wastewater COD removal to 84 ± 6%. In addition, feeding the AFMBR with the M-acclimated GAC with an acetate medium for one week subsequently increased COD removal to 70 ± 6%. Microbial communities enriched on the GAC included Geobacter, sulfur-reducing bacteria, Syntrophaceae, and Chlorobiaceae, with reactor A having the highest relative abundance of Geobacter. These results showed that acetate was the most useful substrate for acclimation of GAC communities, and GAC harbors unique communities relative to those in the AFMBR influent and recirculated solution.

  1. Community analysis of a full-scale anaerobic bioreactor treating paper mill wastewater

    NARCIS (Netherlands)

    Roest, C.; Heilig, G.H.J.; Smidt, H.; Vos, de W.M.; Stams, A.J.M.; Akkermans, A.D.L.

    2005-01-01

    To get insight into the microbial community of an Upflow Anaerobic Sludge Blanket reactor treating paper mill wastewater, conventional microbiological methods were combined with 16S rRNA gene analyses. Particular attention was paid to microorganisms able to degrade propionate or butyrate in the pres

  2. Biohydrogen Production from Cheese Processing Wastewater by Anaerobic Fermentation Using Mixed Microbial Communities

    Science.gov (United States)

    Hydrogen (H2) production from simulated cheese processing wastewater via anaerobic fermentation was conducted using mixed microbial communities under mesophilic conditions. In batch H2 fermentation experiments H2 yields of 8 and 10 mM/g-COD fed were achieved at food-to-microorganism (F/M) ratios of ...

  3. Benzene, toluene and p-xylene interactions and the role of microbial communities in remediation using bioventing

    Energy Technology Data Exchange (ETDEWEB)

    Sui, H. [Tianjin Univ., Tianjin (China). School of Chemical Engineering and Technology; Tianjin Univ., Tianjin (China). National Engineering Research Center for Distillation Technology; Li, X.G.; Jiang, B. [Tianjin Univ., Tianjin (China). National Engineering Research Center for Distillation Technology

    2005-04-01

    Bioventing is a promising in-situ soil remediation technology used to clean soils and groundwater contaminated by aromatic hydrocarbon components benzene, toluene and xylene (BTX). These contaminants are present at numerous hazardous waste sites. Bioventing provides enough oxygen to stimulate aerobic biodegradation by indigenous microorganisms. It is not constrained by contaminant volatility and can therefore be applied to contaminants that are readily biodegradable even if they are not highly volatile. This study examined the volatilization and biodegradation of BTX during bioventing from unsaturated soil. It focused on the occurrence of any substrate interaction and the effects of indigenous microbial inocula. The soil was inoculated with indigenous microorganisms obtained from the Dagang Oil Field in Tianjin, China. Then, different amounts of BTX were added to the soil in a stainless steel column through which carbon dioxide free air and pure nitrogen flowed. The volatilization-to-biodegradation ratios of BTX were 6:1, 2:1 and 2:1 respectively. After 3 weeks, the final concentration in the soil gas was 0.128 mg/L benzene, 0.377 mg/L toluene and 0.143 mg/L xylene. The substrate interactions that occurred were as follows: benzene and xylene degradation was accelerated while toluene was being degraded; and, the presence of xylene increased the lag period for benzene degradation. It was concluded that bioventing is an effective remediation technology for aromatic hydrocarbons and can significantly reduce the remediation time if target residual BTX concentration of 0.1 mg/L is to be reached. BTX removal becomes more significant with time, particularly when soils are inoculated with indigenous microbial communities from contaminated soil. 22 refs., 5 tabs., 7 figs.

  4. Microbial community analysis in sludge of anaerobic wastewater treatment systems : integrated culture-dependent and culture-independent approaches

    OpenAIRE

    Roest, C.

    2007-01-01

    The need for clean water is increasing and anaerobic wastewater treatment can be used as a cost-effective solution for purification of organically polluted industrial waste streams. This thesis presents results from microbiological investigations of several full-scale and lab-scale anaerobic wastewater treatments systems. Anaerobic wastewater treatment has gained popularity and is now one of the key technologies in environmental biotechnology. However, knowledge of the microbial community str...

  5. Organic micropollutants in aerobic and anaerobic membrane bioreactors: Changes in microbial communities and gene expression

    KAUST Repository

    Harb, Moustapha

    2016-07-09

    Organic micro-pollutants (OMPs) are contaminants of emerging concern in wastewater treatment due to the risk of their proliferation into the environment, but their impact on the biological treatment process is not well understood. The purpose of this study is to examine the effects of the presence of OMPs on the core microbial populations of wastewater treatment. Two nanofiltration-coupled membrane bioreactors (aerobic and anaerobic) were subjected to the same operating conditions while treating synthetic municipal wastewater spiked with OMPs. Microbial community dynamics, gene expression levels, and antibiotic resistance genes were analyzed using molecular-based approaches. Results showed that presence of OMPs in the wastewater feed had a clear effect on keystone bacterial populations in both the aerobic and anaerobic sludge while also significantly impacting biodegradation-associated gene expression levels. Finally, multiple antibiotic-type OMPs were found to have higher removal rates in the anaerobic MBR, while associated antibiotic resistance genes were lower.

  6. Chemical and microbial community analysis during aerobic biostimulation assays of non-sulfonated alkyl-benzene-contaminated groundwater.

    Science.gov (United States)

    Martínez-Pascual, Eulàlia; Jiménez, Nuria; Vidal-Gavilan, Georgina; Viñas, Marc; Solanas, A M

    2010-10-01

    A chemical and microbial characterization of lab-scale biostimulation assays with groundwater samples taken from an industrial site in which the aquifer had been contaminated by linear non-sulfonate alkyl benzenes (LABs) was carried out for further field-scale bioremediation purposes. Two lab-scale biodegradability assays were performed, one with a previously obtained gas-oil-degrading consortium and another with the native groundwater flora. Results for the characterization of the groundwater microbial population of the site revealed the presence of an important LAB-degrading microbial population with a strong degrading capacity. Among the microorganisms identified at the site, the detection of Parvibaculum lavamentivorans, which have been described in other studies as alkyl benzene sulfonates degraders, is worth mentioning. Incubation of P. lavamentivorans DSMZ13023 with LABs as reported in this study shows for the first time the metabolic capacity of this strain to degrade such compounds. Results from the biodegradation assays in this study showed that the indigenous microbial population had a higher degrading capacity than the gas-oil-degrading consortium, indicating the strong ability of the native community to adapt to the presence of LABs. The addition of inorganic nutrients significantly improved the aerobic biodegradation rate, achieving levels of biodegradation close to 90%. The results of this study show the potential effectiveness of oxygen and nutrients as in situ biostimulation agents as well as the existence of a complex microbial community that encompasses well-known hydrocarbon- and LAS-degrading microbial populations in the aquifer studied.

  7. Influence of phenylacetic acid pulses on anaerobic digestion performance and archaeal community structure in WWTP sewage sludge digesters

    NARCIS (Netherlands)

    Cabrol, L.; Urra, J.; Rosenkranz, F.; Kroff, P.A.; Plugge, C.M.; Lesty, Y.; Chamy, R.

    2015-01-01

    The effect of phenylacetic acid (PAA) pulses on anaerobic digestion (AD) performance and archaeal community structure was evaluated in anaerobic digesters treating sewage sludge from a wastewater treatment plant (WWTP). Four pilot-scale continuous stirred tank reactors were set up at a full-scale mu

  8. Biogas production using anaerobic groundwater containing a subterranean microbial community associated with the accretionary prism.

    Science.gov (United States)

    Baito, Kyohei; Imai, Satomi; Matsushita, Makoto; Otani, Miku; Sato, Yu; Kimura, Hiroyuki

    2015-09-01

    In a deep aquifer associated with an accretionary prism, significant methane (CH₄) is produced by a subterranean microbial community. Here, we developed bioreactors for producing CH₄ and hydrogen (H₂) using anaerobic groundwater collected from the deep aquifer. To generate CH₄, the anaerobic groundwater amended with organic substrates was incubated in the bioreactor. At first, H₂ was detected and accumulated in the gas phase of the bioreactor. After the H₂ decreased, rapid CH₄ production was observed. Phylogenetic analysis targeting 16S rRNA genes revealed that the H₂ -producing fermentative bacterium and hydrogenotrophic methanogen were predominant in the reactor. The results suggested that syntrophic biodegradation of organic substrates by the H₂ -producing fermentative bacterium and the hydrogenotrophic methanogen contributed to the CH₄ production. For H₂ production, the anaerobic groundwater, amended with organic substrates and an inhibitor of methanogens (2-bromoethanesulfonate), was incubated in a bioreactor. After incubation for 24 h, H₂ was detected from the gas phase of the bioreactor and accumulated. Bacterial 16S rRNA gene analysis suggested the dominance of the H₂ -producing fermentative bacterium in the reactor. Our study demonstrated a simple and rapid CH4 and H2 production utilizing anaerobic groundwater containing an active subterranean microbial community.

  9. Bacterial community composition and abundance in leachate of semi-aerobic and anaerobic landfills

    Institute of Scientific and Technical Information of China (English)

    Wei Zhang; Bo Yue; Qi Wang; Zechun Huang; Qifei Huang; Zengqiang Zhang

    2011-01-01

    The abundance and phylogenetic composition of bacterial community in leachate of semi-aerobic and anaerobic landfill were compared through real-time polymerase chain reaction and denaturing gradient gel electrophoresis.In semi-aerobic landfill scenario,the bacterial 16S rRNA copy numbers in leachate had no significant reduction from initial stage to stable period.In the scenario of anaerobic landfill,the largest bacterial 16S rRNA gene copy number was found in leachate at initial stage,but it reduced significantly at stable period.Moreover,methane-oxidizing bacteria population in stable period was lower than that in initial period in both two landfill processes.However,semi-aerobic landfill leachate had more methanotrophic bacteria populations than that in the anaerobic one.Furthermore,according to the sequences and phylogenetic analysis,obvious difference could be detected in bacterial community composition in different scenarios.Proteobacteria and bacteroidetes took up a dominantly higher proportion in semi-aerobic landfill leachate.To summarize up,different landfill methods and its landfill ages had crucial impacts on bacterial abundance and composition in leachate of semi-aerobic and anaerobic landfills.

  10. Seasonal Variation on Microbial Community and Methane Production during Anaerobic Digestion of Cattle Manure in Brazil.

    Science.gov (United States)

    Resende, Juliana Alves; Godon, Jean-Jacques; Bonnafous, Anaïs; Arcuri, Pedro Braga; Silva, Vânia Lúcia; Otenio, Marcelo Henrique; Diniz, Cláudio Galuppo

    2016-04-01

    Anaerobic digestion is an alternative method for the treatment of animal manure and wastewater. The anaerobic bioconversion of biomass requires a multi-step biological process, including microorganisms with distinct roles. The diversity and composition of microbial structure in pilot-scale anaerobic digestion operating at ambient temperature in Brazil were studied. Influence of the seasonal and temporal patterns on bacterial and archaeal communities were assessed by studying the variations in density, dynamic and diversity and structure. The average daily biogas produced in the summer and winter months was 18.7 and 16 L day(-1), respectively, and there was no difference in the average methane yield. Quantitative PCR analysis revealed that no differences in abundances and dynamics were found for bacterial communities and the total number of Archaea in different seasons. Analysis of bacterial clone libraries revealed a predominance of Firmicutes (54.5 %/summer and 46.7 %/winter) and Bacteroidetes (31.4 %/summer and 44.4 %/winter). Within the Archaea, the phylum Euryarchaeota was predominant in both digesters. Phylogenetic distribution showed changes in percentage between the phyla identified, but no alterations were recorded in the quality and amount of produced methane or community dynamics. The results may suggest that redundancy of microbial groups may have occurred, pointing to a more complex microbial community in the ecosystem related to this ambient temperature system.

  11. Methanogenic community dynamics in anaerobic co-digestion of fruit and vegetable waste and food waste

    Institute of Scientific and Technical Information of China (English)

    Jia Lin; Jiane Zuo; Ruofan Ji; Xiaojie Chen; Fenglin Liu; Kaijun Wang; Yunfeng Yang

    2012-01-01

    A lab-scale continuously-stirred tank reactor (CSTR),used for anaerobic co-digestion of fruit and vegetable waste (FVW) and food waste (FW) at different mixture ratios,was operated for 178 days at the organic loading rate of 3 kg VS (volatile solids)/(m3.day).The dynamics of the Archaeal community and the correlations between environmental variables and methanogenic community structure were analyzed by polymerase chain reactions - denaturing gradient gel electrophoresis (PCR-DGGE) and redundancy analysis (RDA),respectively.PCR-DGGE results demonstrated that the mixture ratio of FVW to FW altered the community composition of Aachaea.As the FVW/FW ratio increased,Methanoculleus,Methanosaeta and Methanosarcina became the predominant methanogens in the community.Redundancy analysis results indicated that the shift of the methanogenic community was significantly correlated with the composition of acidogenic products and methane production yield.Different mixture ratios of substrates led to different compositions of intermediate metabolites,which may affect the methanogenic community.These results suggested that the analysis of microbial communities could be used to diagnose anaerobic processes.

  12. Electron transfer in syntrophic communities of anaerobic bacteria and archaea

    NARCIS (Netherlands)

    Stams, A.J.M.; Plugge, C.M.

    2009-01-01

    Interspecies electron transfer is a key process in methanogenic and sulphate-reducing environments. Bacteria and archaea that live in syntrophic communities take advantage of the metabolic abilities of their syntrophic partner to overcome energy barriers and break down compounds that they cannot dig

  13. Cellulose accessibility and microbial community in solid state anaerobic digestion of rape straw.

    Science.gov (United States)

    Tian, Jiang-Hao; Pourcher, Anne-Marie; Bureau, Chrystelle; Peu, Pascal

    2017-01-01

    Solid state anaerobic digestion (SSAD) with leachate recirculation is an appropriate method for the valorization of agriculture residues. Rape straw is a massively produced residue with considerable biochemical methane potential, but its degradation in SSAD remains poorly understood. A thorough study was conducted to understand the performance of rape straw as feedstock for laboratory solid state anaerobic digesters. We investigated the methane production kinetics of rape straw in relation to cellulose accessibility to cellulase and the microbial community. Improving cellulose accessibility through milling had a positive influence on both the methane production rate and methane yield. The SSAD of rape straw reached 60% of its BMP in a 40-day pilot-scale test. Distinct bacterial communities were observed in digested rape straw and leachate, with Bacteroidales and Sphingobacteriales as the most abundant orders, respectively. Archaeal populations showed no phase preference and increased chronologically.

  14. Significance of anaerobes and oral bacteria in community-acquired pneumonia.

    Directory of Open Access Journals (Sweden)

    Kei Yamasaki

    Full Text Available BACKGROUND: Molecular biological modalities with better detection rates have been applied to identify the bacteria causing infectious diseases. Approximately 10-48% of bacterial pathogens causing community-acquired pneumonia are not identified using conventional cultivation methods. This study evaluated the bacteriological causes of community-acquired pneumonia using a cultivation-independent clone library analysis of the 16S ribosomal RNA gene of bronchoalveolar lavage specimens, and compared the results with those of conventional cultivation methods. METHODS: Patients with community-acquired pneumonia were enrolled based on their clinical and radiological findings. Bronchoalveolar lavage specimens were collected from pulmonary pathological lesions using bronchoscopy and evaluated by both a culture-independent molecular method and conventional cultivation methods. For the culture-independent molecular method, approximately 600 base pairs of 16S ribosomal RNA genes were amplified using polymerase chain reaction with universal primers, followed by the construction of clone libraries. The nucleotide sequences of 96 clones randomly chosen for each specimen were determined, and bacterial homology was searched. Conventional cultivation methods, including anaerobic cultures, were also performed using the same specimens. RESULTS: In addition to known common pathogens of community-acquired pneumonia [Streptococcus pneumoniae (18.8%, Haemophilus influenzae (18.8%, Mycoplasma pneumoniae (17.2%], molecular analysis of specimens from 64 patients with community-acquired pneumonia showed relatively higher rates of anaerobes (15.6% and oral bacteria (15.6% than previous reports. CONCLUSION: Our findings suggest that anaerobes and oral bacteria are more frequently detected in patients with community-acquired pneumonia than previously believed. It is possible that these bacteria may play more important roles in community-acquired pneumonia.

  15. Interrogation of Chesapeake Bay sediment microbial communities for intrinsic alkane-utilizing potential under anaerobic conditions.

    Science.gov (United States)

    Johnson, Jamie M; Wawrik, Boris; Isom, Catherine; Boling, Wilford B; Callaghan, Amy V

    2015-02-01

    Based on the transient exposure of Chesapeake Bay sediments to hydrocarbons and the metabolic versatility of known anaerobic alkane-degrading microorganisms, it was hypothesized that distinct Bay sediment communities, governed by geochemical gradients, would have intrinsic alkane-utilizing potential under sulfate-reducing and/or methanogenic conditions. Sediment cores were collected along a transect of the Bay. Community DNA was interrogated via pyrosequencing of 16S rRNA genes, PCR of anaerobic hydrocarbon activation genes, and qPCR of 16S rRNA genes and genes involved in sulfate reduction/methanogenesis. Site sediments were used to establish microcosms amended with n-hexadecane under sulfate-reducing and methanogenic conditions. Sequencing of 16S rRNA genes indicated that sediments associated with hypoxic water columns contained significantly greater proportions of Bacteria and Archaea consistent with syntrophic degradation of organic matter and methanogenesis compared to less reduced sediments. Microbial taxa frequently associated with hydrocarbon-degrading communities were found throughout the Bay, and the genetic potential for hydrocarbon metabolism was demonstrated via the detection of benzyl-(bssA) and alkylsuccinate synthase (assA) genes. Although microcosm studies did not indicate sulfidogenic alkane degradation, the data suggested that methanogenic conversion of alkanes was occurring. These findings highlight the potential role that anaerobic microorganisms could play in the bioremediation of hydrocarbons in the Bay.

  16. The Analysis of a Microbial Community in the UV/O3-Anaerobic/Aerobic Integrated Process for Petrochemical Nanofiltration Concentrate (NFC Treatment by 454-Pyrosequencing.

    Directory of Open Access Journals (Sweden)

    Chao Wei

    Full Text Available In this study, high-throughput pyrosequencing was applied on the analysis of the microbial community of activated sludge and biofilm in a lab-scale UV/O3- anaerobic/aerobic (A/O integrated process for the treatment of petrochemical nanofiltration concentrate (NFC wastewater. NFC is a type of saline wastewater with low biodegradability. From the anaerobic activated sludge (Sample A and aerobic biofilm (Sample O, 59,748 and 51,231 valid sequence reads were obtained, respectively. The dominant phylotypes related to the metabolism of organic compounds, polycyclic aromatic hydrocarbon (PAH biodegradation, assimilation of carbon from benzene, and the biodegradation of nitrogenous organic compounds were detected as genus Clostridium, genera Pseudomonas and Stenotrophomonas, class Betaproteobacteria, and genus Hyphomicrobium. Furthermore, the nitrite-oxidising bacteria Nitrospira, nitrite-reducing and sulphate-oxidising bacteria (NR-SRB Thioalkalivibrio were also detected. In the last twenty operational days, the total Chemical Oxygen Demand (COD and Total Organic Carbon (TOC removal efficiencies on average were 64.93% and 62.06%, respectively. The removal efficiencies of ammonia nitrogen and Total Nitrogen (TN on average were 90.51% and 75.11% during the entire treatment process.

  17. Enhanced phosphorus recovery and biofilm microbial community changes in an alternating anaerobic/aerobic biofilter.

    Science.gov (United States)

    Tian, Qing; Ong, Say Kee; Xie, Xuehui; Li, Fang; Zhu, Yanbin; Wang, Feng Rui; Yang, Bo

    2016-02-01

    The operation of an alternating anaerobic/aerobic biofilter (AABF), treating synthetic wastewater, was modified to enhance recovery of phosphorus (P). The AABF was periodically fed with an additional carbon source during the anaerobic phase to force the release of biofilm-sequestered P which was then harvested and recovered. A maximum of 48% of the total influent P was found to be released in the solution for recovery. Upon implementation of periodic P bio-sequestering and P harvesting, the predominant bacterial communities changed from β-Proteobacteria to γ-Proteobacteria groups. The genus Pseudomonas of γ-Proteobacteria was found to enrich greatly with 98% dominance. Dense intracellular poly-P granules were found within the cells of the biofilm, confirming the presence of P accumulating organisms (PAOs). Periodic addition of a carbon source to the AABF coupled with intracellular P reduction during the anaerobic phase most probably exerted environmental stress in the selection of Pseudomonas PAOs over PAOs of other phylogenic types. Results of the study provided operational information on the selection of certain microbial communities for P removal and recovery. This information can be used to further advance P recovery in biofilm systems such as the AABFs.

  18. Dynamics of microbial community in a mesophilic anaerobic digester treating food waste: Relationship between community structure and process stability.

    Science.gov (United States)

    Li, Lei; He, Qin; Ma, Yao; Wang, Xiaoming; Peng, Xuya

    2015-01-01

    Organic loading rate (OLR) disturbances were introduced into a mesophilic anaerobic digester treating food waste (FW) to induce stable and deteriorative phases. The microbial community of each phase was investigated using 454-pyrosequencing. Results show that the relative abundance of acid-producing bacteria and syntrophic volatile fatty acid (VFA) oxidizers increased dramatically at deteriorative phase, while the dominant methanogens did not shift from acetoclastic to hydrogenotrophic groups. The mismatching between bacteria and methanogens may partially be responsible for the process deterioration. Moreover, the succession of predominant hydrogenotrophic methanogens reduced the consumption efficiency of hydrogen; meanwhile, the dominant Methanosaeta with low acetate degradation rate, and the increase of inhibitors concentrations further decreased its activity, which may be the other causes for the process failure. These results improve the understanding of the microbial mechanisms of process instability, and provide theoretical basis for the efficient and stable operation of anaerobic digester treating FW.

  19. Polychlorinated biphenyl (PCB) anaerobic degradation in marine sediments: microcosm study and role of autochthonous microbial communities.

    Science.gov (United States)

    Matturro, Bruna; Ubaldi, Carla; Grenni, Paola; Caracciolo, Anna Barra; Rossetti, Simona

    2016-07-01

    Polychlorobiphenyl (PCB) biodegradation was followed for 1 year in microcosms containing marine sediments collected from Mar Piccolo (Taranto, Italy) chronically contaminated by this class of hazardous compounds. The microcosms were performed under strictly anaerobic conditions with or without the addition of Dehalococcoides mccartyi, the main microorganism known to degrade PCBs through the anaerobic reductive dechlorination process. Thirty PCB congeners were monitored during the experiments revealing that the biodegradation occurred in all microcosms with a decrease in hepta-, hexa-, and penta-chlorobiphenyls (CBs) and a parallel increase in low chlorinated PCBs (tri-CBs and tetra-CBs). The concentrations of the most representative congeners detected in the original sediment, such as 245-245-CB and 2345-245-CB, and of the mixture 2356-34-CB+234-245-CB, decreased by 32.5, 23.8, and 46.7 %, respectively, after only 70 days of anaerobic incubation without any bioaugmentation treatment. Additionally, the structure and population dynamics of the microbial key players involved in the biodegradative process and of the entire mixed microbial community were accurately defined by Catalyzed Reporter Deposition Fluorescence In Situ Hybridization (CARD-FISH) in both the original sediment and during the operation of the microcosm. The reductive dehalogenase genes of D. mccartyi, specifically involved in PCB dechlorination, were also quantified using real-time PCR (qPCR). Our results demonstrated that the autochthonous microbial community living in the marine sediment, including D. mccartyi (6.32E+06 16S rRNA gene copy numbers g(-1) sediment), was able to efficiently sustain the biodegradation of PCBs when controlled anaerobic conditions were imposed.

  20. Increasing concentrations of phenol progressively affect anaerobic digestion of cellulose and associated microbial communities.

    Science.gov (United States)

    Chapleur, Olivier; Madigou, Céline; Civade, Raphaël; Rodolphe, Yohan; Mazéas, Laurent; Bouchez, Théodore

    2016-02-01

    Performance stability is a key issue when managing anaerobic digesters. However it can be affected by external disturbances caused by micropollutants. In this study the influence of phenol on the methanization of cellulose was evaluated through batch toxicity assays. Special attention was given to the dynamics of microbial communities by means of automated ribosomal intergenic spacer analysis. We observed that, as phenol concentrations increased, the different steps of anaerobic cellulose digestion were unevenly and progressively affected, methanogenesis being the most sensitive: specific methanogenic activity was half-inhibited at 1.40 g/L of phenol, whereas hydrolysis of cellulose and its fermentation to VFA were observed at up to 2.00 g/L. Depending on the level of phenol, microbial communities resisted either through physiological or structural adaptation. Thus, performances at 0.50 g/L were maintained in spite of the microbial community's shift. However, the communities' ability to adapt was limited and performances decreased drastically beyond 2.00 g/L of phenol.

  1. Triclocarban Influences Antibiotic Resistance and Alters Anaerobic Digester Microbial Community Structure.

    Science.gov (United States)

    Carey, Daniel E; Zitomer, Daniel H; Hristova, Krassimira R; Kappell, Anthony D; McNamara, Patrick J

    2016-01-01

    Triclocarban (TCC) is one of the most abundant organic micropollutants detected in biosolids. Lab-scale anaerobic digesters were amended with TCC at concentrations ranging from the background concentration of seed biosolids (30 mg/kg) to toxic concentrations of 850 mg/kg to determine the effect on methane production, relative abundance of antibiotic resistance genes, and microbial community structure. Additionally, the TCC addition rate was varied to determine the impacts of acclimation time. At environmentally relevant TCC concentrations (max detect = 440 mg/kg), digesters maintained function. Digesters receiving 450 mg/kg of TCC maintained function under gradual TCC addition, but volatile fatty acid concentrations increased, pH decreased, and methane production ceased when immediately fed this concentration. The concentrations of the mexB gene (encoding for a multidrug efflux pump) were higher with all concentrations of TCC compared to a control, but higher TCC concentrations did not correlate with increased mexB abundance. The relative abundance of the gene tet(L) was greater in the digesters that no longer produced methane, and no effect on the relative abundance of the class 1 integron integrase encoding gene (intI1) was observed. Illumina sequencing revealed substantial community shifts in digesters that functionally failed from increased levels of TCC. More subtle, yet significant, community shifts were observed in digesters amended with TCC levels that did not inhibit function. This research demonstrates that TCC can select for a multidrug resistance encoding gene in mixed community anaerobic environments, and this selection occurs at concentrations (30 mg/kg) that can be found in full-scale anaerobic digesters (U.S. median concentration = 22 mg/kg, mean = 39 mg/kg).

  2. Bacterial community structure in treated sewage sludge with mesophilic and thermophilic anaerobic digestion.

    Science.gov (United States)

    Stiborova, Hana; Wolfram, Jan; Demnerova, Katerina; Macek, Tomas; Uhlik, Ondrej

    2015-11-01

    Stabilized sewage sludge is applied to agricultural fields and farmland due to its high organic matter content. The aim of this study was to investigate the effects of two types of sludge stabilization, mesophilic anaerobic digestion (MAD) and thermophilic anaerobic digestion (TAD), on bacterial communities in sludge, including the presence of pathogenic microorganisms. Bacterial community structure and phylogenetic diversity were analyzed in four sewage sludge samples from the Czech Republic. Analysis of 16S ribosomal RNA (rRNA) genes showed that investigated sludge samples harbor diverse bacterial populations with only a few taxa present across all samples. Bacterial diversity was higher in sludge samples after MAD versus TAD treatment, and communities in MAD-treated sludge shared the highest genetic similarities. In all samples, the bacterial community was dominated by reads affiliated with Proteobacteria. The sludge after TAD treatment had considerably higher number of reads of thermotolerant/thermophilic taxa, such as the phyla Deinococcus-Thermus and Thermotogae or the genus Coprothermobacter. Only one operational taxonomic unit (OTU), which clustered with Rhodanobacter, was detected in all communities at a relative abundance >1 %. All of the communities were screened for the presence of 16S rRNA gene sequences of pathogenic bacteria using a database of 122 pathogenic species and ≥98 % identity threshold. The abundance of such sequences ranged between 0.23 and 1.57 % of the total community, with lower numbers present after the TAD treatment, indicating its higher hygienization efficiency. Sequences clustering with nontuberculous mycobacteria were present in all samples. Other detected sequences of pathogenic bacteria included Streptomyces somaliensis, Acinetobacter calcoaceticus, Alcaligenes faecalis, Gordonia spp., Legionella anisa, Bordetella bronchiseptica, Enterobacter aerogenes, Brucella melitensis, and Staphylococcus aureus.

  3. A proposed taxonomy of anaerobic fungi (class neocallimastigomycetes suitable for large-scale sequence-based community structure analysis.

    Directory of Open Access Journals (Sweden)

    Sandra Kittelmann

    Full Text Available Anaerobic fungi are key players in the breakdown of fibrous plant material in the rumen, but not much is known about the composition and stability of fungal communities in ruminants. We analyzed anaerobic fungi in 53 rumen samples from farmed sheep (4 different flocks, cattle, and deer feeding on a variety of diets. Denaturing gradient gel electrophoresis fingerprinting of the internal transcribed spacer 1 (ITS1 region of the rrn operon revealed a high diversity of anaerobic fungal phylotypes across all samples. Clone libraries of the ITS1 region were constructed from DNA from 11 rumen samples that had distinctly different fungal communities. A total of 417 new sequences were generated to expand the number and diversity of ITS1 sequences available. Major phylogenetic groups of anaerobic fungi in New Zealand ruminants belonged to the genera Piromyces, Neocallimastix, Caecomyces and Orpinomyces. In addition, sequences forming four novel clades were obtained, which may represent so far undetected genera or species of anaerobic fungi. We propose a revised phylogeny and pragmatic taxonomy for anaerobic fungi, which was tested and proved suitable for analysis of datasets stemming from high-throughput next-generation sequencing methods. Comparing our revised taxonomy to the taxonomic assignment of sequences deposited in the GenBank database, we believe that >29% of ITS1 sequences derived from anaerobic fungal isolates or clones are misnamed at the genus level.

  4. Obtaining representative community profiles of anaerobic digesters through optimisation of 16S rRNA amplicon sequencing protocols

    DEFF Research Database (Denmark)

    Kirkegaard, Rasmus Hansen; McIlroy, Simon Jon; Karst, Søren Michael

    A reliable and reproducible method for identification and quantification of the microorganisms involved in biogas production is important for the study and understanding of the microbial communities responsible for the function of anaerobic digester systems. DNA based identification using 16S r...... of the community composition . As such sample specific optimisation and standardisation of DNA extraction, as well PCR primer selection, are essential to minimising the potential for such biases. The aim of this study was to develop a protocol for optimized community profiling of anaerobic digesters. The Fast...

  5. Optimisation of 16S rDNA amplicon sequencing protocols for microbial community profiling of anaerobic digesters

    DEFF Research Database (Denmark)

    Kirkegaard, Rasmus Hansen; McIlroy, Simon Jon; Larsen, Poul

    A reliable and reproducible method for identification and quantification of the microorganisms involved in biogas production is important for the study and understanding of the microbial communities responsible for the function of anaerobic digester systems. DNA based identification using 16S r...... of the community composition. As such sample specific optimisation and standardisation of DNA extraction, as well PCR primer selection, are essential to minimising the potential for such biases. The aim of this study was to develop a protocol for optimized community profiling of anaerobic digesters. The Fast...

  6. Biological sulphide removal from anaerobically treated domestic sewage: reactor performance and microbial community dynamics.

    Science.gov (United States)

    Garcia, Graziella Patrício Pereira; Diniz, Renata Côrtes Oliveira; Bicalho, Sarah Kinaip; Franco, Vitor Araujo de Souza; Gontijo, Eider Max de Oliveira; Toscano, Rodrigo Argolo; Canhestro, Kenia Oliveira; Santos, Merly Rita Dos; Carmo, Ana Luiza Rodrigues Dias; Lobato, Livia Cristina S; Brandt, Emanuel Manfred F; Chernicharo, Carlos A L; Calabria de Araujo, Juliana

    2015-01-01

    We developed a biological sulphide oxidation system and evaluated two reactors (shaped similar to the settler compartment of an up-flow anaerobic sludge blanket [UASB] reactor) with different support materials for biomass retention: polypropylene rings and polyurethane foam. The start-up reaction was achieved using microorganisms naturally occurring on the open surface of UASB reactors treating domestic wastewater. Sulphide removal efficiencies of 65% and 90% were achieved with hydraulic retention times (HRTs) of 24 and 12 h, respectively, in both reactors. However, a higher amount of elemental sulphur was formed and accumulated in the biomass from reactor 1 (20 mg S(0) g(-1) VTS) than in that from reactor 2 (2.9 mg S(0) g(-1) VTS) with an HRT of 24 h. Denaturing gradient gel electrophoresis (DGGE) results revealed that the the pink and green biomass that developed in both reactors comprised a diverse bacterial community and had sequences related to phototrophic green and purple-sulphur bacteria such as Chlorobium sp., Chloronema giganteum, and Chromatiaceae. DGGE band patterns also demonstrated that bacterial community was dynamic over time within the same reactor and that different support materials selected for distinct bacterial communities. Taken together, these results indicated that sulphide concentrations of 1-6 mg L(-1) could be efficiently removed from the effluent of a pilot-scale UASB reactor in two sulphide biological oxidation reactors at HRTs of 12 and 24 h, showing the potential for sulphur recovery from anaerobically treated domestic wastewater.

  7. Kinetic modelling and microbial community assessment of anaerobic biphasic fixed film bioreactor treating distillery spent wash.

    Science.gov (United States)

    Acharya, Bhavik K; Pathak, Hilor; Mohana, Sarayu; Shouche, Yogesh; Singh, Vasdev; Madamwar, Datta

    2011-08-01

    Anaerobic digestion, microbial community structure and kinetics were studied in a biphasic continuously fed, upflow anaerobic fixed film reactor treating high strength distillery wastewater. Treatment efficiency of the bioreactor was investigated at different hydraulic retention times (HRT) and organic loading rates (OLR 5-20 kg COD m⁻³ d⁻¹). Applying the modified Stover-Kincannon model to the reactor, the maximum removal rate constant (U(max)) and saturation value constant (K(B)) were found to be 2 kg m⁻³ d⁻¹ and 1.69 kg m⁻³ d⁻¹ respectively. Bacterial community structures of acidogenic and methanogenic reactors were assessed using culture-independent analyses. Sequencing of 16S rRNA genes exhibited a total of 123 distinct operational taxonomic units (OTUs) comprising 49 from acidogenic reactor and 74 (28 of eubacteria and 46 of archaea) from methanogenic reactor. The findings reveal the role of Lactobacillus sp. (Firmicutes) as dominant acid producing organisms in acidogenic reactor and Methanoculleus sp. (Euryarchaeotes) as foremost methanogens in methanogenic reactor.

  8. Community analysis of a full-scale anaerobic bioreactor treating paper mill wastewater.

    Science.gov (United States)

    Roest, Kees; Heilig, Hans G H J; Smidt, Hauke; de Vos, Willem M; Stams, Alfons J M; Akkermans, Antoon D L

    2005-03-01

    To get insight into the microbial community of an Upflow Anaerobic Sludge Blanket reactor treating paper mill wastewater, conventional microbiological methods were combined with 16S rRNA gene analyses. Particular attention was paid to microorganisms able to degrade propionate or butyrate in the presence or absence of sulphate. Serial enrichment dilutions allowed estimating the number of microorganisms per ml sludge that could use butyrate with or without sulphate (10(5)), propionate without sulphate (10(6)), or propionate and sulphate (10(8)). Quantitative RNA dot-blot hybridisation indicated that Archaea were two-times more abundant in the microbial community of anaerobic sludge than Bacteria. The microbial community composition was further characterised by 16S rRNA-gene-targeted Denaturing Gradient Gel Electrophoresis (DGGE) fingerprinting, and via cloning and sequencing of dominant amplicons from the bacterial and archaeal patterns. Most of the nearly full length (approximately 1.45 kb) bacterial 16S rRNA gene sequences showed less than 97% similarity to sequences present in public databases, in contrast to the archaeal clones (approximately. 1.3 kb) that were highly similar to known sequences. While Methanosaeta was found as the most abundant genus, also Crenarchaeote-relatives were identified. The microbial community was relatively stable over a period of 3 years (samples taken in July 1999, May 2001, March 2002 and June 2002) as indicated by the high similarity index calculated from DGGE profiles (81.9+/-2.7% for Bacteria and 75.1+/-3.1% for Archaea). 16S rRNA gene sequence analysis indicated the presence of unknown and yet uncultured microorganisms, but also showed that known sulphate-reducing bacteria and syntrophic fatty acid-oxidising microorganisms dominated the enrichments.

  9. Biogas production and methanogenic archaeal community in mesophilic and thermophilic anaerobic co-digestion processes.

    Science.gov (United States)

    Yu, D; Kurola, J M; Lähde, K; Kymäläinen, M; Sinkkonen, A; Romantschuk, M

    2014-10-01

    Over 258 Mt of solid waste are generated annually in Europe, a large fraction of which is biowaste. Sewage sludge is another major waste fraction. In this study, biowaste and sewage sludge were co-digested in an anaerobic digestion reactor (30% and 70% of total wet weight, respectively). The purpose was to investigate the biogas production and methanogenic archaeal community composition in the anaerobic digestion reactor under meso- (35-37 °C) and thermophilic (55-57 °C) processes and an increasing organic loading rate (OLR, 1-10 kg VS m(-3) d(-1)), and also to find a feasible compromise between waste treatment capacity and biogas production without causing process instability. In summary, more biogas was produced with all OLRs by the thermophilic process. Both processes showed a limited diversity of the methanogenic archaeal community which was dominated by Methanobacteriales and Methanosarcinales (e.g. Methanosarcina) in both meso- and thermophilic processes. Methanothermobacter was detected as an additional dominant genus in the thermophilic process. In addition to operating temperatures, the OLRs, the acetate concentration, and the presence of key substrates like propionate also affected the methanogenic archaeal community composition. A bacterial cell count 6.25 times higher than archaeal cell count was observed throughout the thermophilic process, while the cell count ratio varied between 0.2 and 8.5 in the mesophilic process. This suggests that the thermophilic process is more stable, but also that the relative abundance between bacteria and archaea can vary without seriously affecting biogas production.

  10. Relationship between phenol degradation efficiency and microbial community structure in an anaerobic SBR.

    Science.gov (United States)

    Rosenkranz, F; Cabrol, L; Carballa, M; Donoso-Bravo, A; Cruz, L; Ruiz-Filippi, G; Chamy, R; Lema, J M

    2013-11-01

    Phenol is a common wastewater contaminant from various industrial processes, including petrochemical refineries and chemical compounds production. Due to its toxicity to microbial activity, it can affect the efficiency of biological wastewater treatment processes. In this study, the efficiency of an Anaerobic Sequencing Batch Reactor (ASBR) fed with increasing phenol concentrations (from 120 to 1200 mg L(-1)) was assessed and the relationship between phenol degradation capacity and the microbial community structure was evaluated. Up to a feeding concentration of 800 mg L(-1), the initial degradation rate steadily increased with phenol concentration (up to 180 mg L(-1) d(-1)) and the elimination capacity remained relatively constant around 27 mg phenol removed∙gVSS(-1) d(-1). Operation at higher concentrations (1200 mg L(-1)) resulted in a still efficient but slower process: the elimination capacity and the initial degradation rate decreased to, respectively, 11 mg phenol removed∙gVSS(-1) d(-1) and 154 mg L(-1) d(-1). As revealed by Denaturing Gradient Gel Electrophoresis (DGGE) analysis, the increase of phenol concentration induced level-dependent structural modifications of the community composition which suggest an adaptation process. The increase of phenol concentration from 120 to 800 mg L(-1) had little effect on the community structure, while it involved drastic structural changes when increasing from 800 to 1200 mg L(-1), including a strong community structure shift, suggesting the specialization of the community through the emergence and selection of most adapted phylotypes. The thresholds of structural and functional disturbances were similar, suggesting the correlation of degradation performance and community structure. The Canonical Correspondence Analysis (CCA) confirmed that the ASBR functional performance was essentially driven by specific community traits. Under the highest feeding concentration, the most abundant ribotype probably involved in

  11. Comparison of microbial communities during the anaerobic digestion of Gracilaria under mesophilic and thermophilic conditions.

    Science.gov (United States)

    Azizi, Aqil; Kim, Wonduck; Lee, Jung Hyun

    2016-10-01

    Mesophilic and thermophilic anaerobic digesters (MD and TD, respectively) utilizing Gracilaria and marine sediment as the substrate and inoculum, respectively, were compared by analyzing their performances and microbial community changes. During three successive transfers, the average cumulative methane yields in the MD and TD were 222.6 ± 17.3 mL CH4/g volatile solids (VS) and 246.1 ± 11 mL CH4/g VS, respectively. The higher hydrolysis rate and acidogenesis in the TD resulted in a several fold greater accumulation of volatile fatty acids (acetate, propionate, and butyrate) followed by a larger pH drop with a prolonged recovery than in the MD. However, the operational stability between both digesters remained comparable. Pyrosequencing analyses revealed that the MD had more complex microbial diversity indices and microbial community changes than the TD. Interestingly, Methanomassiliicoccales, the seventh methanogen order was the predominant archaeal order in the MD along with bacterial orders of Clostridiales, Bacteriodales, and Synergistales. Meanwhile, Coprothermobacter and Methanobacteriales dominated the bacterial and archaeal community in the TD, respectively. Although the methane yield is comparable, both MD and TD show a different profile of pH, VFA and the microbial communities.

  12. Performance and microbial community variations of anaerobic digesters under increasing tetracycline concentrations

    KAUST Repository

    Xiong, Yanghui

    2017-04-01

    The impact of different concentrations of tetracycline on the performance of anaerobic treatment was evaluated. Results revealed that for all of the tested tetracycline concentrations, no major sustained impact on methane production was observed. Instead, a significant increase in propionic acid was observed in the reactor subjected to the highest concentration of tetracycline (20 mg/L). Microbial community analyses suggest that an alternative methanogenic pathway, specifically that of methanol-utilizing methanogens, may be important for ensuring the stability of methane production in the presence of high tetracycline concentrations. In addition, the accumulation of propionate was due to an increase in volatile fatty acids (VFA)-producing bacteria coupled with a reduction in propionate utilizers. An increase in the abundance of tetracycline resistance genes associated with ribosomal protection proteins was observed after 30 days of exposure to high concentrations of tetracycline, while other targeted resistance genes showed no significant changes. These findings suggest that anaerobic treatment processes can robustly treat wastewater with varying concentrations of antibiotics while also deriving value-added products and minimizing the dissemination of associated antibiotic resistance genes.

  13. Process stability and microbial community structure in anaerobic hydrogen-producing microflora from food waste containing kimchi.

    Science.gov (United States)

    Jo, Ji Hye; Jeon, Che Ok; Lee, Dae Sung; Park, Jong Moon

    2007-09-15

    Hydrogen production by the dark fermentation of food wastes is an economic and environmentally friendly technology to produce the clean energy source as well as to treat the problematic wastes. However, the long-term operations of the continuous anaerobic reactor for fermentative hydrogen production were frequently unstable. In this study, the structure of microbial community within the anaerobic reactor during unstable hydrogen production was examined by denaturing gradient gel electrophoresis (DGGE) and terminal restriction fragment length polymorphism (T-RFLP) techniques. The changes in microbial community from H(2)-producing Clostridium spp. to lactic acid-producing Lactobacillus spp. were well coincident with the unexpected process failures and the changes of metabolites concentrations in the effluent of the anaerobic reactor. As the rate of hydrogen production decreased, effluent lactic acid concentration increased. Low rate of hydrogen production and changes in microbial community were related to the 'kimchi' content and storage temperature of food waste feed solution. After low temperature control of the storage tank of the feed solution, any significant change in microbial community within the anaerobic reactor did not occur and the hydrogen production was very stably maintained for a long time.

  14. Activity, Microenvironments, and Community Structure of Aerobic and Anaerobic Ammonium Oxidizing Prokaryotes in Estuarine Sediment (Randers Fjord, DK)

    DEFF Research Database (Denmark)

    Schramm, Andreas; Revsbech, Niels Peter; Dalsgaard, Tage

    2006-01-01

    ACTIVITY, MICROENVIRONMENTS, AND COMMUNITY STRUCTURE OF AEROBIC AND ANAEROBIC AMMONIUM OXIDIZING PROKARYOTES IN ESTUARINE SEDIMENT (RANDERS FJORD, DK) A. Schramm 1, N.P. Revsbech 1, T. Dalsgaard 2, E. Piña-Ochoa 3, J. de la Torré 4, D.A. Stahl 4, N. Risgaard-Petersen 2 1 Department of Biological...

  15. Hydrogen production by anaerobic microbial communities exposed to repeated heat treatments.

    Science.gov (United States)

    Duangmanee, T; Padmasiri, S I; Simmons, J J; Raskin, L; Sung, S

    2007-09-01

    Biological hydrogen production by anaerobic mixed communities was studied in laboratory-scale bioreactors using sucrose as the substrate. A bioreactor in which a fraction of the return sludge was exposed to repeated heat treatments performed better than a control bioreactor without repeated heat treatment of return sludge and produced a yield of 2.15 moles of hydrogen per mole of sucrose, with 50% hydrogen in the biogas. Terminal restriction fragment length polymorphism analysis showed that two different Clostridium groups (comprised of one or more species) were dominant during hydrogen production. The relative abundance of two other non-Clostridium groups increased during periods of decreased hydrogen production. The first group consisted of Bifidobacterium thermophilum, and the second group included one or more of Bacillus, Melissococcus, Spirochaeta, and Spiroplasma spp.

  16. Succession of microbial community and enhanced mechanism of a ZVI-based anaerobic granular sludge process treating chloronitrobenzenes wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Liang, E-mail: felix79cn@hotmail.com [Department of Environmental Engineering, Zhejiang University, Hangzhou 310058 (China); Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou 310058 (China); Jin, Jie [Department of Environmental Engineering, Zhejiang University, Hangzhou 310058 (China); Lin, Haizhuan [Department of Environmental Engineering, Zhejiang University, Hangzhou 310058 (China); Wenzhou Environmental Protection Design Scientific Institute, Wenzhou 325000 (China); Gao, Kaituo [Department of Environmental Engineering, Zhejiang University, Hangzhou 310058 (China); Xu, Xiangyang, E-mail: xuxy@zju.edu.cn [Department of Environmental Engineering, Zhejiang University, Hangzhou 310058 (China); Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou 310058 (China)

    2015-03-21

    Highlights: • The combined ZVI–UASB process was established for the degradation of chloronitrobenzenes. • There were the better shock resistance and buffering capacity for anaerobic acidification in the combined process. • Novel ZVI-based anaerobic granular sludge (ZVI–AGS) was successfully developed. • Adaptive shift of microbial community was significant in ZVI-based anaerobic granular sludge system. - Abstract: The combined zero-valent iron (ZVI) and upflow anaerobic sludge blanket (UASB) process is established for the treatment of chloronitrobenzenes (ClNBs) wastewater, and the succession of microbial community and its enhanced mechanism are investigated in the study. Results showed that compared with the control UASB (R1), the stable COD removal, ClNBs transformation, and dechlorination occurred in the combined system (R2) when operated at influent COD and 3,4-Dichloronitrobenzene (3,4-DClNB) loading rates of 4200–7700 g m{sup −3} d{sup −1} and 6.0–70.0 g m{sup −3} d{sup −1}, and R2 had the better shock resistance and buffering capacity for the anaerobic acidification. The dechlorination for the intermediate products of p-chloroanaline (p-ClAn) to analine (AN) occurred in R2 reactor after 45 days, whereas it did not occur in R1 after a long-term operation. The novel ZVI-based anaerobic granular sludge (ZVI–AGS) was successfully developed in the combined system, and higher microbial activities including ClNB transformation and H{sub 2}/CH{sub 4} production were achieved simultaneously. The dominant bacteria were closely related to the groups of Megasphaera, Chloroflexi, and Clostridium, and the majority of archaea were correlated with the groups of Methanosarcinalesarchaeon, Methanosaetaconcilii, and Methanothrixsoehngenii, which are capable of reductively dechlorinating PCB, HCB, and TCE in anaerobic niche and EPS secretion.

  17. Microbial community structure and performance of an anaerobic reactor digesting cassava pulp and pig manure.

    Science.gov (United States)

    Panichnumsin, P; Ahring, B; Nopharatana, A; Chaiprasert, P

    2012-01-01

    Microbial community dynamics in response to changes in substrate types (i.e. pig manure (PM), cassava pulp (CP) and mixtures of PM and CP) were investigated in an anaerobic continuously stirred tank reactor (CSTR). Molecular identification of bacterial and archaeal domains were performed, using a 16S rDNA clone library with polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) screening and phylogenetic analysis. Analysis of bacterial clone libraries revealed that the differences in the community structure corresponded to the substrate types. However, the Bacteroidetes were the most abundant group in all substrates, followed by the Clostridia. With pure PM, the dominant bacterial groups were Bacteroidales, Clostridia and Paludibacter. With a co-substrate, at CP to PM (CP:PM) ratio of 50:50, the sequences analysis revealed the greatest diversity of bacterial communities at class level, and the sequences affiliated with Cytophaga sp. became an exclusive predominant. With CP alone, Bacteroides sp. was the dominant species and this reactor had the lowest diversity of bacteria. Archaea observed in the CSTR fed with all substrate types were Methanosaeta sp., Methanosaeta concilii and Methanospirillum hungatei. Among the Archaea, Methanosaeta sp. was the exclusive predominant. The relative distribution of Archaea also changed regarding to the substrate types.

  18. Similar PAH fate in anaerobic digesters inoculated with three microbial communities accumulating either volatile fatty acids or methane.

    Directory of Open Access Journals (Sweden)

    Florence Braun

    Full Text Available Urban sludge produced on wastewater treatment plants are often contaminated by organic pollutants such as polycyclic aromatic hydrocarbons (PAH. Their removal under methanogenic conditions was already reported, but the factors influencing this removal remain unclear. Here, we determined the influence of microbial communities on PAH removal under controlled physico-chemical conditions. Twelve mesophilic anaerobic digesters were inoculated with three microbial communities extracted from ecosystems with contrasting pollution histories: a PAH contaminated soil, a PCB contaminated sediment and a low contaminated anaerobic sludge. These anaerobic digesters were operated during 100 days in continuous mode. A sterilised activated sludge, spiked with 13 PAH at concentrations usually encountered in full-scale wastewater treatment plants, was used as substrate. The dry matter and volatile solid degradation, the biogas production rate and composition, the volatile fatty acids (VFA production and the PAH removals were monitored. Bacterial and archaeal communities were compared in abundance (qPCR, in community structure (SSCP fingerprinting and in dominant microbial species (454-pyrosequencing. The bioreactors inoculated with the community extracted from low contaminated anaerobic sludge showed the greater methane production. The PAH removals ranged from 10% to 30%, respectively, for high and low molecular weight PAH, whatever the inoculums tested, and were highly correlated with the dry matter and volatile solid removals. The microbial community structure and diversity differed with the inoculum source; this difference was maintained after the 100 days of digestion. However, the PAH removal was not correlated to these diverse structures and diversities. We hence obtained three functional stable consortia with two contrasted metabolic activities, and three different pictures of microbial diversity, but similar PAH and matter removals. These results confirm

  19. Similar PAH fate in anaerobic digesters inoculated with three microbial communities accumulating either volatile fatty acids or methane.

    Science.gov (United States)

    Braun, Florence; Hamelin, Jérôme; Bonnafous, Anaïs; Delgenès, Nadine; Steyer, Jean-Philippe; Patureau, Dominique

    2015-01-01

    Urban sludge produced on wastewater treatment plants are often contaminated by organic pollutants such as polycyclic aromatic hydrocarbons (PAH). Their removal under methanogenic conditions was already reported, but the factors influencing this removal remain unclear. Here, we determined the influence of microbial communities on PAH removal under controlled physico-chemical conditions. Twelve mesophilic anaerobic digesters were inoculated with three microbial communities extracted from ecosystems with contrasting pollution histories: a PAH contaminated soil, a PCB contaminated sediment and a low contaminated anaerobic sludge. These anaerobic digesters were operated during 100 days in continuous mode. A sterilised activated sludge, spiked with 13 PAH at concentrations usually encountered in full-scale wastewater treatment plants, was used as substrate. The dry matter and volatile solid degradation, the biogas production rate and composition, the volatile fatty acids (VFA) production and the PAH removals were monitored. Bacterial and archaeal communities were compared in abundance (qPCR), in community structure (SSCP fingerprinting) and in dominant microbial species (454-pyrosequencing). The bioreactors inoculated with the community extracted from low contaminated anaerobic sludge showed the greater methane production. The PAH removals ranged from 10% to 30%, respectively, for high and low molecular weight PAH, whatever the inoculums tested, and were highly correlated with the dry matter and volatile solid removals. The microbial community structure and diversity differed with the inoculum source; this difference was maintained after the 100 days of digestion. However, the PAH removal was not correlated to these diverse structures and diversities. We hence obtained three functional stable consortia with two contrasted metabolic activities, and three different pictures of microbial diversity, but similar PAH and matter removals. These results confirm that PAH removal

  20. Effects of the antimicrobial tylosin on the microbial community structure of an anaerobic sequencing batch reactor.

    Science.gov (United States)

    Shimada, Toshio; Li, Xu; Zilles, Julie L; Morgenroth, Eberhard; Raskin, Lutgarde

    2011-02-01

    The effects of the antimicrobial tylosin on a methanogenic microbial community were studied in a glucose-fed laboratory-scale anaerobic sequencing batch reactor (ASBR) exposed to stepwise increases of tylosin (0, 1.67, and 167 mg/L). The microbial community structure was determined using quantitative fluorescence in situ hybridization (FISH) and phylogenetic analyses of bacterial 16S ribosomal RNA (rRNA) gene clone libraries of biomass samples. During the periods without tylosin addition and with an influent tylosin concentration of 1.67 mg/L, 16S rRNA gene sequences related to Syntrophobacter were detected and the relative abundance of Methanosaeta species was high. During the highest tylosin dose of 167 mg/L, 16S rRNA gene sequences related to Syntrophobacter species were not detected and the relative abundance of Methanosaeta decreased considerably. Throughout the experimental period, Propionibacteriaceae and high GC Gram-positive bacteria were present, based on 16S rRNA gene sequences and FISH analyses, respectively. The accumulation of propionate and subsequent reactor failure after long-term exposure to tylosin are attributed to the direct inhibition of propionate-oxidizing syntrophic bacteria closely related to Syntrophobacter and the indirect inhibition of Methanosaeta by high propionate concentrations and low pH.

  1. Microbial community in anoxic-oxic-settling-anaerobic sludge reduction process revealed by 454 pyrosequencing analysis.

    Science.gov (United States)

    Ning, Xinqiang; Qiao, Wenwen; Zhang, Lei; Gao, Xu

    2014-12-01

    Modification of the anoxic-oxic (AO) process by inserting a sludge holding tank (SHT) into the sludge return line forms an anoxic-oxic-settling-anaerobic (A+OSA) process that can achieve a 48.98% sludge reduction rate. The 454 pyrosequencing method was used to obtain the microbial communities of the AO and A+OSA processes. Results showed that the microbial community structures of the 2 processes were different as a result of the SHT insertion. Bacteria assigned to the phyla Proteobacteria and Bacteroidetes commonly existed and dominated the microbial populations of the 2 processes. However, the relative abundance of these populations shifted in the presence of SHT. The relative abundance of Proteobacteria decreased during the A+OSA process. A specific comparison at the class level showed that Sphingobacteria was enriched in the A+OSA process. The result suggested that the fermentative bacteria Sphingobacteria may have key functions in reducing the sludge from the A+OSA process. Uncultured Nitrosomonadaceae gradually became the dominant ammonia-oxidizing bacteria, and the nitrite-oxidizing bacterium Nitrospira was enriched in the A+OSA process. Both occurrences were favorable for stabilized nitrogen removal. The known denitrifying species in the A+OSA process were similar to those in the AO process; however, their relative abundance also decreased.

  2. Evaluation of A Novel Split-Feeding Anaerobic/Oxic Baffled Reactor (A/OBR) For Foodwaste Anaerobic Digestate: Performance, Modeling and Bacterial Community

    Science.gov (United States)

    Wang, Shaojie; Peng, Liyu; Jiang, Yixin; Gikas, Petros; Zhu, Baoning; Su, Haijia

    2016-10-01

    To enhance the treatment efficiency from an anaerobic digester, a novel six-compartment anaerobic/oxic baffled reactor (A/OBR) was employed. Two kinds of split-feeding A/OBRs R2 and R3, with influent fed in the 1st, 3rd and 5th compartment of the reactor simultaneously at the respective ratios of 6:3:1 and 6:2:2, were compared with the regular-feeding reactor R1 when all influent was fed in the 1st compartment (control). Three aspects, the COD removal, the hydraulic characteristics and the bacterial community, were systematically investigated, compared and evaluated. The results indicated that R2 and R3 had similar tolerance to loading shock, but the R2 had the highest COD removal of 91.6% with a final effluent of 345 mg/L. The mixing patterns in both split-feeding reactors were intermediate between plug-flow and completely-mixed, with dead spaces between 8.17% and 8.35% compared with a 31.9% dead space in R1. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) analysis revealed that the split-feeding strategy provided a higher bacterial diversity and more stable bacterial community than that in the regular-feeding strategy. Further analysis indicated that Firmicutes, Bacteroidetes, and Proteobacteria were the dominant bacteria, among which Firmicutes and Bacteroidetes might be responsible for organic matter degradation and Proteobacteria for nitrification and denitrification.

  3. The Gibbs free energy of formation of halogenated benzenes, benzoates and phenols and their potential role as electron acceptors in anaerobic environments.

    Science.gov (United States)

    Dolfing, Jan; Novak, Igor

    2015-02-01

    The sequence of redox reactions in the natural environment generally follows the electron affinity of the electron acceptors present and can be rationalized by the redox potentials of the appropriate half-reactions. Answering the question how halogenated aromatics fit into this sequence requires information on their Gibbs free energy of formation values. In 1992 Gibbs free energy data for various classes of halogenated aromatic compounds were systematically explored for the first time based on Benson's group contribution method. Since then more accurate quantum chemical calculation methods have become available. Here we use these methods to estimate enthalpy and Gibbs free energy of formation values of all chlorinated and brominated phenols. These data and similar state-of-the-art datasets for halogenated benzenes and benzoates were then used to calculate two-electron redox potentials of halogenated aromatics for standard conditions and for pH 7. The results underline the need to take speciation into consideration when evaluating redox potentials at pH 7 and highlight the fact that halogenated aromatics are excellent electron acceptors in aqueous environments.

  4. Anaerobic methanethiol degradation and methanogenic community analysis in an alkaline (pH 10) biological process for liquefied petroleum gas desulfurization

    NARCIS (Netherlands)

    Leerdam, van R.C.; Bonilla-Salinas, M.; Bok, de F.A.M.; Bruning, H.; Lens, P.N.L.; Stams, A.J.M.; Janssen, A.J.H.

    2008-01-01

    Anaerobic methanethiol (MT) degradation by mesophilic (30 degrees C) alkaliphilic (pH 10) communities was studied in a lab-scale Upflow Anaerobic Sludge Bed (UASB) reactor inoculated with a mixture of sediments from the Wadden Sea (The Netherlands), Soap Lake (Central Washington), and Russian soda l

  5. Quantitative and qualitative transitions of methanogen community structure during the batch anaerobic digestion of cheese-processing wastewater.

    Science.gov (United States)

    Lee, Changsoo; Kim, Jaai; Shin, Seung Gu; O'Flaherty, Vincent; Hwang, Seokhwan

    2010-08-01

    Qualitative and quantitative shifts in methanogen community structure, associated with process performance data, were investigated during the batch anaerobic digestion of a cheese-processing wastewater, whey permeate. Denaturing gradient gel electrophoresis (DGGE) and real-time PCR techniques were applied to obtain qualitative and quantitative microbial data sets, respectively, based on methanogen 16S rRNA genes. Throughout the operation, dynamic variations in both qualitative and quantitative community structures were observed, with repeated shifts in dominance between the aceticlastic Methanosarcinaceae (suggested mainly by the detection of a Methanosarcina-like population) and the hydrogenotrophic Methanomicrobiales (suggested mainly by the detection of a Methanofollis-like population). This trend corresponded well to the diauxic utilization of acetate and longer-chain fatty acids (C(3)-C(6)), mainly propionate. Joint-plot non-metric multidimensional scaling (NMS) analysis demonstrated that the qualitative and quantitative community shifts had significant correlations with the composition of residual organic acids and the methane production rate, respectively. This suggests the potential use of microbial community shift analysis as an indicative tool for diagnosing anaerobic digestion processes. The results suggest that more attention should be directed to quantitative, as well as qualitative, approaches for a better understanding of anaerobic digestion, particularly in terms of biogas production efficiency, under dynamic and transitional conditions.

  6. The biotransformation of brewer's spent grain into biogas by anaerobic microbial communities.

    Science.gov (United States)

    Malakhova, Dina V; Egorova, Maria A; Prokudina, Ljuba I; Netrusov, Alexander I; Tsavkelova, Elena A

    2015-12-01

    The present study reports on the biotransformation of the brewer's spent grain (BSG) in co-digestion with Jerusalem artichoke (JA, Helianthus tuberosus L.) phytomass by thermophilic (+55 °C) and mesophilic (+30 °C) anaerobic methanogenic communities. BSG is a by-product of the beer-brewing process generated in large amounts, in which utilization provokes a negative effect on the environment. In this study, we will show an effective conversion of BSG into biogas by selected microbial communities, obtained from different sources (animal manure and previously isolated microbial consortia). The stimulation of methanogenesis was reached by the co-digestion of JA's phytomass (stem and leaves). The optimized conditions for microbial stable cultivation included the use of nutrient medium, containing yeast extract and trace element solution. The optimal BSG concentration in biogas production was 50 and 100 g L(-1). Under thermophilic conditions, the maximum total methane production reached 64%, and it comprised around 6-8 and 9-11 of L CH4 per 100 g of fermented BSG without and with co-digested JA, respectively, when the fresh inoculum was added. Although, after a year of re-cultivation, the values reduced to around 6-7, and 6-10 L CH4/100 g BSG, correspondingly, the selected microbial communities showed effective biotransformation of BSG. The supplementation of soil with the residual fermented BSG (10%, w/w) resulted in the promotion of lettuce (Lepidium sativum L.) growth. The results obtained demonstrate a potential for complete BSG utilization via biogas production and application as a soil additive.

  7. Intrinsic and enhanced biodegradation of benzene in strongly reduced aquifers

    NARCIS (Netherlands)

    Heiningen, W.N.M. van; Rijnaarts, H.H.M; Langenhoff, A.A.M.

    1999-01-01

    Laboratory microcosm studies were performed to examine intrinsic and enhanced benzene bioremediation using five different sediment and groundwater samples from three deeply anaerobic aquifers sited in northern Netherlands. The influence of addition of nitrate, sulfate, limited amounts of oxygen, and

  8. Natural Biological Attenuation of Benzene in Groundwater

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Benzene has been found in subsurface unsaturated soil and groundwater beneath a petro-chemical plant. Although the groundwater contained several mg/L of benzene in the area immediately beneath the source, benzene was not detected in monitoring wells approximately 800m down stream. All kinds of physical processes such as adsorption and advection/dispersion are considered to account for the observed attenuation. The results indicated that the attenuation was primarily due to natural biological processes occurring within the aquifer. The evidence for the natural bioremediation of benzene from the groundwater included: (1) analysis of groundwater chemistry, (2) laboratory studies demonstrating benzene biodegradation in aquifer samples, and (3) computer simulations examining benzene transport. Laboratory experiments indicated that for conditions similar to those in the plume, the aerobic degradation of benzene by the naturally occurring microorganisms in the polluted groundwater samples was quite rapid with a half-life time of from 5 to 15 days. In situ analyses indicated the level of dissolved oxygen in the groundwater was over 2mg/L. Thus, oxygen should not limit the biodegradation. In fact, the benzene was also shown to degrade under anaerobic conditions. The results from the modeling simulations indicate that biodegradation is the dominant process influencing attenuation of the benzene.

  9. Nitrate stimulation of indigenous nitrate-reducing, sulfide-oxidising bacterial community in wastewater anaerobic biofilms.

    Science.gov (United States)

    Garcia-de-Lomas, Juan; Corzo, Alfonso; Carmen Portillo, M; Gonzalez, Juan M; Andrades, Jose A; Saiz-Jimenez, Cesáreo; Garcia-Robledo, Emilio

    2007-07-01

    The role of the nitrate-reducing, sulfide-oxidising bacteria (NR-SOB) in the nitrate-mediated inhibition of sulfide net production by anaerobic wastewater biofilms was analyzed in two experimental bioreactors, continuously fed with the primary effluent of a wastewater treatment plant, one used as control (BRC) and the other one supplemented with nitrate (BRN). This study integrated information from H(2)S and pH microelectrodes, RNA-based molecular techniques, and the time course of biofilm growth and bioreactors water phase. Biofilms were a net source of sulfide for the water phase (2.01 micromol S(2-)(tot)m(-2)s(-1)) in the absence of nitrate dosing. Nitrate addition effectively led to the cessation of sulfide release from biofilms despite which a low rate of net sulfate reduction activity (0.26 micromol S(2-)(tot)m(-2)s(-1)) persisted at a deep layer within the biofilm. Indigenous NR-SOB including Thiomicrospira denitrificans, Arcobacter sp., and Thiobacillus denitrificans were stimulated by nitrate addition resulting in the elimination of most sulfide from the biofilms. Active sulfate reducing bacteria (SRB) represented comparable fractions of total metabolically active bacteria in the libraries obtained from BRN and BRC. However, we detected changes in the taxonomic composition of the SRB community suggesting its adaptation to a higher level of NR-SOB activity in the presence of nitrate.

  10. Monitoring bacterial and archaeal community shifts in a mesophilic anaerobic batch reactor treating a high-strength organic wastewater.

    Science.gov (United States)

    Lee, Changsoo; Kim, Jaai; Shin, Seung Gu; Hwang, Seokhwan

    2008-09-01

    Shifts in bacterial and archaeal communities, associated with changes in chemical profiles, were investigated in an anaerobic batch reactor treating dairy-processing wastewater prepared with whey permeate powder. The dynamics of bacterial and archaeal populations were monitored by quantitative real-time PCR and showed good agreement with the process data. A rapid increase in bacterial populations and a high rate of substrate fermentation were observed during the initial period. Growth and regrowth of archaeal populations occurred with biphasic production of methane, corresponding to the diauxic consumption of acetate and propionate. Bacterial community structure was examined by denaturing gel gradient electrophoresis (DGGE) targeting 16S rRNA genes. An Aeromonas-like organism was suggested to be mainly responsible for the rapid fermentation of carbohydrate during the initial period. Several band sequences closely related to the Clostridium species, capable of carbohydrate fermentation, lactate or ethanol fermentation, and/or homoacetogenesis, were also detected. Statistical analyses of the DGGE profiles showed that the bacterial community structure, as well as the process performance, varied with the incubation time. Our results demonstrated that the bacterial community shifted, reflecting the performance changes and, particularly, that a significant community shift corresponded to a considerable process event. This suggested that the diagnosis of an anaerobic digestion process could be possible by monitoring bacterial community shifts.

  11. Bacterial community dynamics in a swine wastewater anaerobic reactor revealed by 16S rDNA sequence analysis.

    Science.gov (United States)

    Liu, An-Chi; Chou, Chu-Yang; Chen, Ling-Ling; Kuo, Chih-Horng

    2015-01-20

    Anaerobic digestion is a microbiological process of converting organic wastes into digestate and biogas in the absence of oxygen. In practice, disturbance to the system (e.g., organic shock loading) may cause imbalance of the microbial community and lead to digester failure. To examine the bacterial community dynamics after a disturbance, this study simulated an organic shock loading that doubled the chemical oxygen demand (COD) loading using a 4.5L swine wastewater anaerobic completely stirred tank reactor (CSTR). Before the shock (loading rate=0.65gCOD/L/day), biogas production rate was about 1-2L/L/day. After the shock, three periods representing increased biogas production rates were observed during days 1-7 (∼4.0L/L/day), 13 (3.3L/L/day), and 21-23 (∼6.1L/L/day). For culture-independent assessments of the bacterial community composition, the 454 pyrosequencing results indicated that the community contained >2500 operational taxonomic units (OTUs) and was dominated by three phyla: Bacteroidetes, Firmicutes, and Proteobacteria. The shock induced dynamic changes in the community composition, which was re-stabilized after approximately threefold hydraulic retention time (HRT). Intriguingly, upon restabilization, the community composition became similar to that observed before the shock, rather than reaching a new equilibrium.

  12. Anaerobic carbon monoxide dehydrogenase diversity in the homoacetogenic hindgut microbial communities of lower termites and the wood roach.

    Directory of Open Access Journals (Sweden)

    Eric G Matson

    Full Text Available Anaerobic carbon monoxide dehydrogenase (CODH is a key enzyme in the Wood-Ljungdahl (acetyl-CoA pathway for acetogenesis performed by homoacetogenic bacteria. Acetate generated by gut bacteria via the acetyl-CoA pathway provides considerable nutrition to wood-feeding dictyopteran insects making CODH important to the obligate mutualism occurring between termites and their hindgut microbiota. To investigate CODH diversity in insect gut communities, we developed the first degenerate primers designed to amplify cooS genes, which encode the catalytic (β subunit of anaerobic CODH enzyme complexes. These primers target over 68 million combinations of potential forward and reverse cooS primer-binding sequences. We used the primers to identify cooS genes in bacterial isolates from the hindgut of a phylogenetically lower termite and to sample cooS diversity present in a variety of insect hindgut microbial communities including those of three phylogenetically-lower termites, Zootermopsis nevadensis, Reticulitermes hesperus, and Incisitermes minor, a wood-feeding cockroach, Cryptocercus punctulatus, and an omnivorous cockroach, Periplaneta americana. In total, we sequenced and analyzed 151 different cooS genes. These genes encode proteins that group within one of three highly divergent CODH phylogenetic clades. Each insect gut community contained CODH variants from all three of these clades. The patterns of CODH diversity in these communities likely reflect differences in enzyme or physiological function, and suggest that a diversity of microbial species participate in homoacetogenesis in these communities.

  13. Investigation into the effect of high concentrations of volatile fatty acids in anaerobic digestion on methanogenic communities

    Energy Technology Data Exchange (ETDEWEB)

    Franke-Whittle, Ingrid H., E-mail: ingrid.whittle@uibk.ac.at [Institut für Mikrobiologie, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck (Austria); Walter, Andreas [Institut für Mikrobiologie, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck (Austria); Ebner, Christian [Abwasserverband Zirl und Umgebung, Meilbrunnen 5, 6170 Zirl (Austria); Insam, Heribert [Institut für Mikrobiologie, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck (Austria)

    2014-11-15

    Highlights: • Different methanogenic communities in mesophilic and thermophilic reactors. • High VFA levels do not cause major changes in archaeal communities. • Real-time PCR indicated greater diversity than ANAEROCHIP microarray. - Abstract: A study was conducted to determine whether differences in the levels of volatile fatty acids (VFAs) in anaerobic digester plants could result in variations in the indigenous methanogenic communities. Two digesters (one operated under mesophilic conditions, the other under thermophilic conditions) were monitored, and sampled at points where VFA levels were high, as well as when VFA levels were low. Physical and chemical parameters were measured, and the methanogenic diversity was screened using the phylogenetic microarray ANAEROCHIP. In addition, real-time PCR was used to quantify the presence of the different methanogenic genera in the sludge samples. Array results indicated that the archaeal communities in the different reactors were stable, and that changes in the VFA levels of the anaerobic digesters did not greatly alter the dominating methanogenic organisms. In contrast, the two digesters were found to harbour different dominating methanogenic communities, which appeared to remain stable over time. Real-time PCR results were inline with those of microarray analysis indicating only minimal changes in methanogen numbers during periods of high VFAs, however, revealed a greater diversity in methanogens than found with the array.

  14. Enhanced waste activated sludge digestion using a submerged anaerobic dynamic membrane bioreactor: performance, sludge characteristics and microbial community

    Science.gov (United States)

    Yu, Hongguang; Wang, Zhiwei; Wu, Zhichao; Zhu, Chaowei

    2016-02-01

    Anaerobic digestion (AD) plays an important role in waste activated sludge (WAS) treatment; however, conventional AD (CAD) process needs substantial improvements, especially for the treatment of WAS with low solids content and poor anaerobic biodegradability. Herein, we propose a submerged anaerobic dynamic membrane bioreactor (AnDMBR) for simultaneous WAS thickening and digestion without any pretreatment. During the long-term operation, the AnDMBR exhibited an enhanced sludge reduction and improved methane production over CAD process. Moreover, the biogas generated in the AnDMBR contained higher methane content than CAD process. Stable carbon isotopic signatures elucidated the occurrence of combined methanogenic pathways in the AnDMBR process, in which hydrogenotrophic methanogenic pathway made a larger contribution to the total methane production. It was also found that organic matter degradation was enhanced in the AnDMBR, thus providing more favorable substrates for microorganisms. Pyrosequencing revealed that Proteobacteria and Bacteroidetes were abundant in bacterial communities and Methanosarcina and Methanosaeta in archaeal communities, which played an important role in the AnDMBR system. This study shed light on the enhanced digestion of WAS using AnDMBR technology.

  15. Microbial community in anaerobic hydrogen-producing microflora enriched from sludge compost.

    Science.gov (United States)

    Ueno, Y; Haruta, S; Ishii, M; Igarashi, Y

    2001-11-01

    Hydrogen production by thermophilic anaerobic microflora enriched from sludge compost was studied by using an artificial medium containing cellulose powder. Hydrogen gas was evolved with the formation of acetate, ethanol, and butyrate by decomposition of the cellulose powder. The hydrogen production yield was 2.0 mol/mol-hexose by either batch or chemostat cultivation. A medium that did not contain peptone demonstrated a lower hydrogen production yield of 1.0 mol/mol-hexose with less formation of butyrate. The microbial community in the microflora was investigated through isolation of the microorganisms by both plating and denaturing gradient gel electrophoresis (DGGE) of the' PCR-amplified V3 region of 16S rDNA. Sixty-eight microorganisms were isolated from the microflora and classified into nine distinct groups by genetic fingerprinting of the PCR-DGGE or by a random amplified polymorphic DNA analysis and determination of the partial sequence of 16S rDNA. Most of the isolates belonged to the cluster of the thermophilic Clostridium/Bacillus subphylum of low G+C gram-positive bacteria. Product formation by most of the isolated strains corresponded to that produced by the microflora. Thermoanaerobacterium thermosaccharolyticium was isolated in the enrichment culture with or without added peptone. and was detected with strong intensity by PCR-DGGE. Two other thermophilic cellulolytic microorganisms, Clostridium thermocellum and Clostridium cellulosi, were also detected by PCR-DGGE, although they could not be isolated. These findings imply that hydrogen production from cellulose by microflora is performed by a consortium of several species of microorganisms.

  16. Biohydrogen production from cheese processing wastewater by anaerobic fermentation using mixed microbial communities

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Peilin [Department of Agricultural and Biological Engineering, Mississippi State University, Mississippi State, MS 39762 (United States); Zhang, Ruihong [Department of Biological and Agricultural Engineering, University of California at Davis, Davis, CA 95616 (United States); McGarvey, Jeffery A. [U.S. Department of Agriculture, Agricultural Research Service, Foodborne Contaminants Research Unit, Albany, CA 94710 (United States); Benemann, John R. [Benemann Associates, Walnut Creek, CA 94595 (United States)

    2007-12-15

    Hydrogen (H{sub 2}) production from simulated cheese processing wastewater via anaerobic fermentation was conducted using mixed microbial communities under mesophilic conditions. In batch H{sub 2} fermentation experiments H{sub 2} yields of 8 and 10 mM/g COD fed were achieved at food-to-microorganism (F/M) ratios of 1.0 and 1.5, respectively. Butyric, acetic, propionic, and valeric acids were the major volatile fatty acids (VFA) produced in the fermentation process. Continuous H{sub 2} fermentation experiments were also performed using a completely mixed reactor (CSTR). The pH of the bioreactor was controlled in a range of 4.0-5.0 by addition of carbonate in the feed material. Maximum H{sub 2} yields were between 1.8 and 2.3 mM/g COD fed for the loading rates (LRs) tested with a hydraulic retention time (HRT) of 24 h. Occasionally CH{sub 4} was produced in the biogas with concurrent reductions in H{sub 2} production; however, continuous H{sub 2} production was achieved for over 3 weeks at each LR. The 16S rDNA analysis of DNA extracted from the bioreactors during periods of high H{sub 2} production revealed that more than 50% of the bacteria present were members of the genus Lactobacillus and about 5% were Clostridia. When H{sub 2} production in the bioreactors decreased concurrent reductions in the genus Lactobacillus were also observed. Therefore, the microbial populations in the bioreactors were closely related to the conditions and performance of the bioreactors. (author)

  17. Archaeal and anaerobic methane oxidizer communities in the Sonora Margin cold seeps, Guaymas Basin (Gulf of California).

    Science.gov (United States)

    Vigneron, Adrien; Cruaud, Perrine; Pignet, Patricia; Caprais, Jean-Claude; Cambon-Bonavita, Marie-Anne; Godfroy, Anne; Toffin, Laurent

    2013-08-01

    Cold seeps, located along the Sonora Margin transform fault in the Guaymas Basin, were extensively explored during the 'BIG' cruise in June 2010. They present a seafloor mosaic pattern consisting of different faunal assemblages and microbial mats. To investigate this mostly unknown cold and hydrocarbon-rich environment, geochemical and microbiological surveys of the sediments underlying two microbial mats and a surrounding macrofaunal habitat were analyzed in detail. The geochemical measurements suggest biogenic methane production and local advective sulfate-rich fluxes in the sediments. The distributions of archaeal communities, particularly those involved in the methane cycle, were investigated at different depths (surface to 18 cm below the sea floor (cmbsf)) using complementary molecular approaches, such as Automated method of Ribosomal Intergenic Spacer Analysis (ARISA), 16S rRNA libraries, fluorescence in situ hybridization and quantitative polymerase chain reaction with new specific primer sets targeting methanogenic and anaerobic methanotrophic lineages. Molecular results indicate that metabolically active archaeal communities were dominated by known clades of anaerobic methane oxidizers (archaeal anaerobic methanotroph (ANME)-1, -2 and -3), including a novel 'ANME-2c Sonora' lineage. ANME-2c were found to be dominant, metabolically active and physically associated with syntrophic Bacteria in sulfate-rich shallow sediment layers. In contrast, ANME-1 were more prevalent in the deepest sediment samples and presented a versatile behavior in terms of syntrophic association, depending on the sulfate concentration. ANME-3 were concentrated in small aggregates without bacterial partners in a restricted sediment horizon below the first centimetres. These niche specificities and syntrophic behaviors, depending on biological surface assemblages and environmental availability of electron donors, acceptors and carbon substrates, suggest that ANME could support

  18. Adaption of microbial community during the start-up stage of a thermophilic anaerobic digester treating food waste.

    Science.gov (United States)

    Wu, Bo; Wang, Xing; Deng, Ya-Yue; He, Xiao-Lan; Li, Zheng-Wei; Li, Qiang; Qin, Han; Chen, Jing-Tao; He, Ming-Xiong; Zhang, Min; Hu, Guo-Quan; Yin, Xiao-Bo

    2016-10-01

    A successful start-up enables acceleration of anaerobic digestion (AD) into steady state. The microbial community influences the AD performance during the start-up. To investigate how microbial communities changed during the start-up, microbial dynamics was analyzed via high-throughput sequencing in this study. The results confirmed that the AD was started up within 25 d. Thermophilic methanogens and bacterial members functioning in hydrolysis, acidogenesis, and syntrophic oxidation became predominant during the start-up stage, reflecting a quick adaption of microorganisms to operating conditions. Such predominance also indicated the great contribution of these members to the fast start-up of AD. Redundancy analysis confirmed that the bacterial abundance significantly correlated with AD conditions. The stable ratio of hydrogenotrophic methanogens to aceticlastic methanogens is also important to maintain the stability of the AD process. This work will be helpful to understand the contribution of microbial community to the start-up of AD.

  19. Reactor performance of a 750 m(3) anaerobic digestion plant: varied substrate input conditions impacting methanogenic community.

    Science.gov (United States)

    Wagner, Andreas Otto; Malin, Cornelia; Lins, Philipp; Gstraunthaler, Gudrun; Illmer, Paul

    2014-10-01

    A 750 m(3) anaerobic digester was studied over a half year period including a shift from good reactor performance to a reduced one. Various abiotic parameters like volatile fatty acids (VFA) (formic-, acetic-, propionic-, (iso-)butyric-, (iso-)valeric-, lactic acid), total C, total N, NH4 -N, and total proteins, as well as the organic matter content and dry mass were determined. In addition several process parameters such as temperature, pH, retention time and input of substrate and the concentrations of CH4, H2, CO2 and H2S within the reactor were monitored continuously. The present study aimed at the investigation of the abundance of acetogens and total cell numbers and the microbial methanogenic community as derived from PCR-dHPLC analysis in order to put it into context with the determined abiotic parameters. An influence of substrate quantity on the efficiency of the anaerobic digestion process was found as well as a shift from a hydrogenotrophic in times of good reactor performance towards an acetoclastic dominated methanogenic community in times of reduced reactor performance. After the change in substrate conditions it took the methano-archaeal community about 5-6 weeks to be affected but then changes occurred quickly.

  20. Substrate type and free ammonia determine bacterial community structure in full-scale mesophilic anaerobic digesters treating cattle or swine manure

    Directory of Open Access Journals (Sweden)

    Jiabao eLi

    2015-11-01

    Full Text Available The microbial-mediated anaerobic digestion (AD process represents an efficient biological process for the treatment of organic waste along with biogas harvest. Currently, the key factors structuring bacterial communities and the potential core and unique bacterial populations in manure anaerobic digesters are not completely elucidated yet. In this study, we collected sludge samples from 20 full-scale anaerobic digesters treating cattle or swine manure, and investigated the variations of bacterial community compositions using high-throughput 16S rRNA amplicon sequencing. Clustering and correlation analysis suggested that substrate type and free ammonia (FA play key roles in determining the bacterial community structure. The COD: NH4+-N (C:N ratio of substrate and FA were the most important available operational parameters correlating to the bacterial communities in cattle and swine manure digesters, respectively. The bacterial populations in all of the digesters were dominated by phylum Firmicutes, followed by Bacteroidetes, Proteobacteria and Chloroflexi. Increased FA content selected Firmicutes, suggesting that they probably play more important roles under high FA content. Syntrophic metabolism by Proteobacteria, Chloroflexi, Synergistetes and Planctomycetes are likely inhibited when FA content is high. Despite the different manure substrates, operational conditions and geographical locations of digesters, core bacterial communities were identified. The core communities were best characterized by phylum Firmicutes, wherein Clostridium predominated overwhelmingly. Substrate-unique and abundant communities may reflect the properties of manure substrate and operational conditions. These findings extend our current understanding of the bacterial assembly in full-scale manure anaerobic digesters.

  1. Microbial community structures in an integrated two-phase anaerobic bioreactor fed by fruit vegetable wastes and wheat straw

    Institute of Scientific and Technical Information of China (English)

    Chong Wang; Jiane Zuo; Xiaojie Chen; Wei Xing; Linan Xing; Peng Li; Xiangyang Lu

    2014-01-01

    The microbial community structures in an integrated two-phase anaerobic reactor (ITPAR) were investigated by 16S rDNA clone library technology.The 75 L reactor was designed with a 25 L rotating acidogenic unit at the top and a 50 L conventional upflow methanogenic unit at the bottom,with a recirculation connected to the two units.The reactor had been operated for 21 stages to co-digest fruit/vegetable wastes and wheat straw,which showed a very good biogas production and decomposition of cellulosic materials.The results showed that many kinds of cellulose and glycan decomposition bacteria related with Bacteroidales,Clostridiales and Syntrophobacterales were dominated in the reactor,with more bacteria community diversities in the acidogenic unit.The methanogens were mostly related with Methanosaeta,Methanosarcina,Methanoculleus,Methanospirillum and Methanobacterium; the predominating genus Methanosaeta,accounting for 40.5%,54.2%,73.6% and 78.7% in four samples from top to bottom,indicated a major methanogenesis pathway by acetoclastic methanogenesis in the methanogenic unit.The beta diversity indexes illustrated a more similar distribution of bacterial communities than that of methanogens between acidogenic unit and methanogenic unit.The differentiation of methanogenic community composition in two phases,as well as pH values and volatile fatty acid (VFA) concentrations confirmed the phase separation of the ITPAR.Overall,the results of this study demonstrated that the special designing of ITPAR maintained a sufficient number of methanogens,more diverse communities and stronger syntrophic assodations among microorganisms,which made two phase anaerobic digestion of cellulosic materials more efficient.

  2. Microbial community analysis of swine wastewater anaerobic lagoons by next-generation DNA sequencing

    Science.gov (United States)

    Anaerobic lagoons are a standard practice for the treatment of swine wastewater. This practice relies heavily on microbiological processes to reduce concentrated organic material and nutrients. Despite this reliance on microbiological processes, research has only recently begun to identify and enume...

  3. Strain-resolved microbial community proteomics reveals simultaneous aerobic and anaerobic function during gastrointestinal tract colonization of a preterm infant

    Directory of Open Access Journals (Sweden)

    Brandon eBrooks

    2015-07-01

    Full Text Available While there has been growing interest in the gut microbiome in recent years, it remains unclear whether closely related species and strains have similar or distinct functional roles and if organisms capable of both aerobic and anaerobic growth do so simultaneously. To investigate these questions, we implemented a high-throughput mass spectrometry-based proteomics approach to identify proteins in fecal samples collected on days of life 13-21 from an infant born at 28 weeks gestation. No prior studies have coupled strain-resolved community metagenomics to proteomics for such a purpose. Sequences were manually curated to resolve the genomes of two strains of Citrobacter that were present during the later stage of colonization. Proteome extracts from fecal samples were processed via a nano-2D-LC-MS/MS and peptides were identified based on information predicted from the genome sequences for the dominant organisms, Serratia and the two Citrobacter strains. These organisms are facultative anaerobes, and proteomic information indicates the utilization of both aerobic and anaerobic metabolisms throughout the time series. This may indicate growth in distinct niches within the gastrointestinal tract. We uncovered differences in the physiology of coexisting Citrobacter strains, including differences in motility and chemotaxis functions. Additionally, for both Citrobacter strains we resolved a community-essential role in vitamin metabolism and a predominant role in propionate production. Finally, in this case study we detected differences between genome abundance and activity levels for the dominant populations. This underlines the value in layering proteomic information over genetic potential.

  4. Performance of biological phosphorus removal and characteristics of microbial community in the oxic-settling-anaerobic process by FISH analysis

    Institute of Scientific and Technical Information of China (English)

    Jian-fang WANG; Qing-liang ZHAO; Wen-biao JIN; Shi-jie YOU; Jin-na ZHANG

    2008-01-01

    Performance of biological phosphorus removal in the oxic-settling-anaerobic (OSA) process was investigated. Cell staining and fluorescent in situ hybridization (FISH) were used to analyze characteristics and microbial community of sludge.Experimental results showed that phosphorus removal efficiency was near 60% and the amount of biological phosphorus accumulation in aerobic sludge of the OSA system was up to 26.9 mg/g. Biological phosphorus removal efficiency was partially inhibited by carbon sources in the continuous OSA system. Contrasted to the OSA system, biological phosphorus removal efficiency was enhanced by 14% and the average total phosphorus (TP) contents of aerobic sludge were increased by 0.36 mg/g when sufficient carbon sources were supplied in batch experiments. Staining methods indicated that about 35% of microorganisms had typical characteristics of phosphorus accumulating organisms (PAOs). FISH analysis demonstrated that PAOMIX-binding bacteria were predominant microbial communities in the OSA system, which accounted for around 28% of total bacteria.

  5. A time-course analysis of four full-scale anaerobic digesters in relation to the dynamics of change of their microbial communities.

    Science.gov (United States)

    Pycke, B F G; Etchebehere, C; Van de Caveye, P; Negroni, A; Verstraete, W; Boon, N

    2011-01-01

    This study describes the microbial community richness, -dynamics, and -organization of four full-scale anaerobic digesters during a time-course study of 45 days. The microbial community was analyzed using a Bacteria- and Archaea-targeting 16S rRNA gene-based Terminal-Restriction Fragment Length Polymorphism approach. Clustering analysis separated meso- and thermophilic reactors for both archaeal and bacterial communities. Regardless of the operating temperature, each installation possessed a distinct community profile. For both microbial domains, about 8 dominant terminal-restriction fragments could be observed, with a minimum of 4 and a maximum of 14. The bacterial community organization (a coefficient which describes the specific degree of evenness) showed a factor 2 more variation in the mesophilic reactors, compared with the thermophilic ones. The archaeal community structure of the mesophilic UASB reactor was found to be more stable. The community composition was highly dynamic for Bacteria and Archaea, with a rate of change between 20-50% per 15 days. This study illustrated that microbial communities in full-scale anaerobic digesters are unique to the installation and that community properties are dynamic. Converging complex microbial processes such as anaerobic digestion which rely on a multitude of microbial teams apparently can be highly dynamic.

  6. Linking microbial community, environmental variables and methanogenesis in anaerobic biogas digesters of chemically enhanced primary treatment sludge.

    Science.gov (United States)

    Ju, Feng; Lau, Frankie; Zhang, Tong

    2017-02-27

    Understanding the influences of biotic and abiotic factors on microbial community structure and methanogenesis are important for its engineering and ecological significance. In this study, four biogas digesters were supplied with the same inoculum and feeding sludge, but operated at different sludge retention time (7 to 16 days) and organic loading rates for 90 days to determine the relative influence of biotic and environmental factors on the microbial community assembly and methanogenic performance. Despite different operational parameters, all digester communities were dominated by Bacteroidales, Clostridiales and Thermotogales, and followed the same trend of population dynamics over time. Network and multivariate analyses suggest that deterministic factors, including microbial competition (involving Bacteroidales spp.), niche differentiation (e.g., within Clostridiales spp.), and periodic microbial immigration (from feed sludge), are the key drivers of microbial community assembly and dynamics. A yet-to-be-cultured phylotype of Bacteroidales (GenBank ID: GU389558.1) is implicated as a strong competitor for carbohydrates. Moreover, biogas-producing rate and methane content were significantly related with the abundances of functional populations rather than any operational or physicochemical parameter, revealing microbiological mediation of methanogenesis. Combined, this study enriches our understandings of biological and environmental drivers of microbial community assembly and performance in anaerobic digesters.

  7. Temperature regulates methane production through the function centralization of microbial community in anaerobic digestion.

    Science.gov (United States)

    Lin, Qiang; De Vrieze, Jo; He, Guihua; Li, Xiangzhen; Li, Jiabao

    2016-09-01

    Temperature is crucial for the performance of anaerobic digestion process. In this study of anaerobic digestion of swine manure, the relationship between the microbial gene expression and methane production at different temperatures (25-55°C) was revealed through metatranscriptomic analysis. Daily methane production and total biogas production increased with temperature up to 50°C, but decreased at 55°C. The functional gene expression showed great variation at different temperatures. The function centralization (opposite to alpha-diversity), assessed by the least proportions of functional pathways contributing for at least 50% of total reads positively correlated to methane production. Temperature regulated methane production probably through reducing the diversity of functional pathways, but enhancing central functional pathways, so that most of cellular activities and resource were invested in methanogenesis and related pathways, enhancing the efficiency of conversion of substrates to methane. This research demonstrated the importance of function centralization for efficient system functioning.

  8. Chronic exposure to triclosan sustains microbial community shifts and alters antibiotic resistance gene levels in anaerobic digesters.

    Science.gov (United States)

    Carey, Daniel E; Zitomer, Daniel H; Kappell, Anthony D; Choi, Melinda J; Hristova, Krassimira R; McNamara, Patrick J

    2016-08-10

    Triclosan, an antimicrobial chemical found in consumer personal care products, has been shown to stimulate antibiotic resistance in pathogenic bacteria. Although many studies focus on antibiotic resistance pertinent to medical scenarios, resistance developed in natural and engineered environments is less studied and has become an emerging concern for human health. In this study, the impacts of chronic triclosan (TCS) exposure on antibiotic resistance genes (ARGs) and microbial community structure were assessed in lab-scale anaerobic digesters. TCS concentrations from below detection to 2500 mg kg(-1) dry solids were amended into anaerobic digesters over 110 days and acclimated for >3 solid retention time values. Four steady state TCS concentrations were chosen (30-2500 mg kg(-1)). Relative abundance of mexB, a gene coding for a component of a multidrug efflux pump, was significantly higher in all TCS-amended digesters (30 mg kg(-1) or higher) relative to the control. TCS selected for bacteria carrying tet(L) and against those carrying erm(F) at concentrations which inhibited digester function; the pH decrease associated with digester failure was suspected to cause this selection. Little to no impact of TCS was observed on intI1 relative abundance. Microbial communities were also surveyed by high-throughput 16S rRNA gene sequencing. Compared to the control digesters, significant shifts in community structure towards clades containing commensal and pathogenic bacteria were observed in digesters containing TCS. Based on these results, TCS should be included in studies and risk assessments that attempt to elucidate relationships between chemical stressors (e.g. antibiotics), antibiotic resistance genes, and public health.

  9. Evaluation of system performance and microbial communities of a bioaugmented anaerobic membrane bioreactor treating pharmaceutical wastewater.

    Science.gov (United States)

    Ng, Kok Kwang; Shi, Xueqing; Ng, How Yong

    2015-09-15

    In this study, a control anaerobic membrane bioreactor (C-AnMBR) and a bioaugmented anaerobic membrane bioreactor (B-AnMBR) were operated for 210 d to treat pharmaceutical wastewater. Both the bioreactors were fed with the pharmaceutical wastewater containing TCOD of 16,249 ± 714 mg/L and total dissolved solids (TDS) of 29,450 ± 2209 mg/L with an organic loading rate (OLR) of 13.0 ± 0.6 kgCOD/m(3)d. Under steady-state condition, an average total chemical oxygen demand (TCOD) removal efficiency of 46.1 ± 2.9% and 60.3 ± 2.8% was achieved by the C-AnMBR and the B-AnMBR, respectively. The conventional anaerobes in the C-AnMBR cannot tolerate the hypersaline conditions well, resulting in lower TCOD removal efficiency, biogas production and methane yield than the B-AnMBR seeded from the coastal shore. Pyrosequencing analysis indicated that marine bacterial species (Oliephilus sp.) and halophilic bacterial species (Thermohalobacter sp.) were only present in the B-AnMBR; these species could possibly degrade complex and recalcitrant organic matter and withstand hypersaline environments. Two different dominant archaeal communities, genus Methanosaeta (43.4%) and Methanolobus (61.7%), were identified as the dominant methanogens in the C-AnMBR and the B-AnMBR, respectively. The species of genus Methanolobus was reported resistant to penicillin and required sodium and magnesium for growth, which could enable it to thrive in the hypersaline environment.

  10. Comparative performance and microbial community of single-phase and two-phase anaerobic systems co-digesting cassava pulp and pig manure

    DEFF Research Database (Denmark)

    Panichnumsin, P.; Ahring, B.K.; Nopharatana, A.

    2010-01-01

    In this study, we illustrated the performance and microbial community of single- and two-phase systems anaerobically co-digesting cassava pulp and pig manure. The results showed that the volatile solid reduction and biogas productivity of two-phase CSTR were 66 ± 4% and 2000 ± 210 ml l-1 d-1, whi...

  11. Anaerobic co-digestion of biodiesel waste glycerin with municipal wastewater sludge: microbial community structure dynamics and reactor performance.

    Science.gov (United States)

    Razaviarani, Vahid; Buchanan, Ian D

    2015-04-01

    Two 10 L completely mixed reactors operating at 37°C and 20 days SRT were used to evaluate the relationships between reactor performance and microbial community dynamics during anaerobic co-digestion of biodiesel waste glycerin (BWG) with municipal wastewater sludge (MWS). The addition of up to 1.35% (v/v) BWG to reactor feeds yielded increased VS and COD removal together with enhanced the biogas production and methane yield. This represented 50% of the MWS feed COD. Pyrosequencing analysis showed Methanosaeta (acetoclastic) and Methanomicrobium (hydrogenotrophic) to be the methanogenic genera present in greatest diversity during stable reactor operation. Methanosaeta sequences predominated at the lowest BWG loading while those of Methanomicrobium were present in greatest abundance at the higher BWG loadings. Genus Candidatus cloacamonas was present in the greatest number of bacterial sequences at all loadings. Alkalinity, pH, biogas production and methane yield declined and VFA concentrations (especially propionate) increased during the highest BWG loading.

  12. Anammox for nitrogen removal from anaerobically pre-treated municipal wastewater: Effect of COD/N ratios on process performance and bacterial community structure.

    Science.gov (United States)

    Leal, Cíntia Dutra; Pereira, Alyne Duarte; Nunes, Fernando Terra; Ferreira, Luísa Ornelas; Coelho, Aline Carolina Cirilo; Bicalho, Sarah Kinaip; Mac Conell, Erika F Abreu; Ribeiro, Thiago Bressani; de Lemos Chernicharo, Carlos Augusto; de Araújo, Juliana Calábria

    2016-07-01

    Long-term effects of COD/N ratios on the nitrogen removal performance and bacterial community of an anammox reactor were evaluated by adding a synthetic medium (with glucose) and real anaerobic effluent to a SBR. At a COD/N ratio of 2.8 (COD, 390mg·L(-1)) ammonium removal efficiency was 66%, while nitrite removal remained high (99%). However, at a COD/N ratio of 5.0 (COD, 300mg·L(-1)), ammonium and nitrite removal efficiencies were high (84% and 99%, respectively). High COD, nitrite, and ammonium removal efficiencies (80%, 90% and 95%, respectively) were obtained on adding anaerobically pre-treated municipal wastewater (with nitrite) to the reactor. DGGE revealed that the addition of anaerobic effluent changed the bacterial community structure and selected for DNA sequences related to Brocadia sinica and Chloroflexi. Adding glucose and anaerobic effluent increased denitrifiers concentration threefold. Thus, the possibility of using the anammox process to remove nitrogen from anaerobically pre-treated municipal wastewater was demonstrated.

  13. Vertical profiles of community abundance and diversity of anaerobic methanotrophic archaea (ANME) and bacteria in a simple waste landfill in north China.

    Science.gov (United States)

    Dong, Jun; Ding, Linjie; Wang, Xu; Chi, Zifang; Lei, Jiansen

    2015-03-01

    Anaerobic methane oxidation (AMO) is considered to be an important sink of CH4 in habitats as marine sediments. But, few studies focused on AMO in landfills which may be an important sink of CH4 derived from waste fermentation. To show evidence of AMO and to uncover function anaerobic methanotroph (ANME) community in landfill, different age waste samples were collected in Jinqianpu landfill located in north China. Through high-throughput sequencing, Methanomicrobiales and Methanosarcinales archaea associated with ANME and reverse methanogenic archaea of Methanosarcina and Methanobacterium were detected. Sulfate-reducing bacteria (SRB) (Desulfobulbus and Desulfococcus) which could couple with ANME-conducting AMO were also found. But, the community structure of ANME had no significant difference with depths. From the results of investigation, we can come to a conclusion that sulfate-dependent anaerobic methane oxidation (SR-DAMO) would be the dominant AMO process in the landfill, while iron-dependent anaerobic methane oxidation (M/IR-DAMO) process was weak though concentration of ferric iron was large in the landfill. Denitrification-dependent anaerobic methane oxidation (NR-DAMO) was negative because of lack of nitrate and relevant function microorganisms in the landfill. Results also indicate that CH4 mitigation would have higher potential by increasing electron acceptor contents and promoting the growth of relevant function microorganisms.

  14. Microbial community dynamics of a continuous mesophilic anaerobic biogas digester fed with sugar beet silage

    Energy Technology Data Exchange (ETDEWEB)

    Demirel, B.; Neumann, L.; Scherer, P. [Hochschule fuer Angewandte Wissenschaften, Fakultaet Life Sciences, Lifetec Process Engineering, Hamburg (Germany)

    2008-08-15

    The aim of the study was to investigate the long-term fermentation of an extremely sour substrate without any addition of manure. In the future, the limitation of manure and therefore the anaerobic digestion of silage with a very low buffering capacity will be an increasing general bottleneck for energy production from renewable biomass. During the mesophilic anaerobic digestion of sugar beet silage (without top and leaves) as the sole substrate (without any addition of manure), which had an extreme low pH of around 3.3, the highest specific gas production rate (spec. GPR) of 0.72 L/g volatile solids (VS) d was achieved at a hydraulic retention time (HRT) of 25 days compared to an organic loading rate (OLR) of 3.97 g VS/L d at a pH of around 6.80. The methane (CH{sub 4}) content of the digester ranged between 58 and 67 %, with an average of 63 %. The use of a new charge of substrate (a new harvest of the same substrate) with higher phosphate content improved the performance of the biogas digester significantly. The change of the substrate charge also seemed to affect the methanogenic population dynamics positively, thus improving the reactor performance. Using a new substrate charge, a further decrease in the HRT from 25 to 15 days did not influence the digester performance and did not seem to affect the structure of the methanogenic population significantly. However, a decrease in the HRT affected the size of the methanogenic population adversely. The lower spec. GPR of 0.54 L/g VS d attained on day 15 of the HRT could be attributed to a lower size of methanogenic population present in the anaerobic digester during this stage of the process. Furthermore, since sugar beet silage is a relatively poor substrate, in terms of the buffering capacity and the availability of nutrients, an external supply of buffering agents and nutrients is a prerequisite for a safe and stable digester operation. (Abstract Copyright [2008], Wiley Periodicals, Inc.)

  15. Influence of fertilizer draw solution properties on the process performance and microbial community structure in a side-stream anaerobic fertilizer-drawn forward osmosis – ultrafiltration bioreactor

    KAUST Repository

    Kim, Youngjin

    2017-02-27

    In this study, a side-stream anaerobic fertilizer-drawn forward osmosis (FDFO) and ultrafiltration (UF) membrane bioreactor (MBR) hybrid system was proposed and operated for 55 days. The FDFO performance was first investigated in terms of flux decline with various fertilizers draw solution. Flux decline was very severe with all fertilizers due to the absence of aeration and the sticky property of sludge. Flux recovery by physical cleaning varied significantly amongst tested fertilizers which seriously affected biofouling in FDFO via reverse salt flux (RSF). Besides, RSF had a significant impact on nutrient accumulation in the bioreactor. These results indicated that nutrient accumulation negatively influenced the anaerobic activity. To elucidate these phenomena, bacterial and archaeal community structures were analyzed by pyrosequencing. Results showed that bacterial community structure was affected by fertilizer properties with less impact on archaeal community structure, which resulted in a reduction in biogas production and an increase in nitrogen content.

  16. Effects of digestate from anaerobically digested cattle slurry and plant materials on soil microbial community and emission of CO2 and N2O

    DEFF Research Database (Denmark)

    Johansen, Anders; Carter, Mette Sustmann; Jensen, Erik S.

    2013-01-01

    and fertility because they contain more mineral nitrogen (N) and less organic carbon (C) than the non-digested input materials (e.g. raw animal slurry or fresh plant residues). Hence, an incubation study was performed where (1) water, (2) raw cattle slurry, (3) anaerobically digested cattle slurry/maize, (4......Anaerobic digestion of animal manure and crop residues may be employed to produce biogas as a climate-neutral source of energy and to recycle plant nutrients as fertilizers. However, especially organic farmers are concerned that fertilizing with the digestates may impact the soil microbiota...... of the other treatments during the 9 days. Regarding microbial community composition, grass-clover induced the largest changes in microbial diversity measures compared to the controls, where raw cattle slurry and the two anaerobically digested materials (cattle slurry/maize, cattle slurry/grass-clover) only...

  17. Inhibition of residual n-hexane in anaerobic digestion of lipid-extracted microalgal wastes and microbial community shift.

    Science.gov (United States)

    Yun, Yeo-Myeong; Shin, Hang-Sik; Lee, Chang-Kyu; Oh, You-Kwan; Kim, Hyun-Woo

    2016-04-01

    Converting lipid-extracted microalgal wastes to methane (CH4) via anaerobic digestion (AD) has the potential to make microalgae-based biodiesel platform more sustainable. However, it is apparent that remaining n-hexane (C6H14) from lipid extraction could inhibit metabolic pathway of methanogens. To test an inhibitory influence of residual n-hexane, this study conducted a series of batch AD by mixing lipid-extracted Chlorella vulgaris with a wide range of n-hexane concentration (∼10 g chemical oxygen demand (COD)/L). Experimental results show that the inhibition of n-hexane on CH4 yield was negligible up to 2 g COD/L and inhibition to methanogenesis became significant when it was higher than 4 g COD/L based on quantitative mass balance. Inhibition threshold was about 4 g COD/L of n-hexane. Analytical result of microbial community profile revealed that dominance of alkane-degrading sulfate-reducing bacteria (SRB) and syntrophic bacteria increased, while that of methanogens sharply dropped as n-hexane concentration increased. These findings offer a useful guideline of threshold n-hexane concentration and microbial community shift for the AD of lipid-extracted microalgal wastes.

  18. Biochemical toxicity of benzene.

    Science.gov (United States)

    Rana, S V S; Verma, Yeshvandra

    2005-04-01

    Human exposure to benzene in work environment is a global occupational health problem. After inhalation or absorption, benzene targets organs viz. liver, kidney, lung, heart and brain etc. It is metabolized mainly in the liver by cytochrome P450 multifunctional oxygenase system. Benzene causes haematotoxicity through its phenolic metabolites that act in concert to produce DNA strand breaks, chromosomal damage, sister chromatid exchange, inhibition of topoisomerase II and damage to mitotic spindle. The carcinogenic and myelotoxic effects of benzene are associated with free radical formation either as benzene metabolites or lipid peroxidation products. Benzene oxide and phenol have been considered as proheptons. Liver microsomes play an important role in biotransformation of benzene whereas in kidney, it produces degenerative intracellular changes. Cohort studies made in different countries suggest that benzene induces multiple myeloma in petrochemical workers. Though extensive studies have been performed on its toxicity, endocrinal disruption caused by benzene remains poorly known. Transgenic cytochrome P450 IIE1 mice may help in understanding further toxic manifestations of benzene.

  19. Inoculum composition determines microbial community and function in an anaerobic sequential batch reactor.

    Science.gov (United States)

    Perrotta, Allison R; Kumaraswamy, Rajkumari; Bastidas-Oyanedel, Juan R; Alm, Eric J; Rodríguez, Jorge

    2017-01-01

    The sustainable recovery of resources from wastewater streams can provide many social and environmental benefits. A common strategy to recover valuable resources from wastewater is to harness the products of fermentation by complex microbial communities. In these fermentation bioreactors high microbial community diversity within the inoculum source is commonly assumed as sufficient for the selection of a functional microbial community. However, variability of the product profile obtained from these bioreactors is a persistent challenge in this field. In an attempt to address this variability, the impact of inoculum on the microbial community structure and function within the bioreactor was evaluated using controlled laboratory experiments. In the course of this work, sequential batch reactors were inoculated with three complex microbial inocula and the chemical and microbial compositions were monitored by HPLC and 16S rRNA amplicon analysis, respectively. Microbial community dynamics and chemical profiles were found to be distinct to initial inoculate and highly reproducible. Additionally we found that the generation of a complex volatile fatty acid profile was not specific to the diversity of the initial microbial inoculum. Our results suggest that the composition of the original inoculum predictably contributes to bioreactor community structure and function.

  20. Inoculum composition determines microbial community and function in an anaerobic sequential batch reactor

    Science.gov (United States)

    Perrotta, Allison R.; Kumaraswamy, Rajkumari; Bastidas-Oyanedel, Juan R.; Alm, Eric J.

    2017-01-01

    The sustainable recovery of resources from wastewater streams can provide many social and environmental benefits. A common strategy to recover valuable resources from wastewater is to harness the products of fermentation by complex microbial communities. In these fermentation bioreactors high microbial community diversity within the inoculum source is commonly assumed as sufficient for the selection of a functional microbial community. However, variability of the product profile obtained from these bioreactors is a persistent challenge in this field. In an attempt to address this variability, the impact of inoculum on the microbial community structure and function within the bioreactor was evaluated using controlled laboratory experiments. In the course of this work, sequential batch reactors were inoculated with three complex microbial inocula and the chemical and microbial compositions were monitored by HPLC and 16S rRNA amplicon analysis, respectively. Microbial community dynamics and chemical profiles were found to be distinct to initial inoculate and highly reproducible. Additionally we found that the generation of a complex volatile fatty acid profile was not specific to the diversity of the initial microbial inoculum. Our results suggest that the composition of the original inoculum predictably contributes to bioreactor community structure and function. PMID:28196102

  1. Comparing mesophilic and thermophilic anaerobic digestion of chicken manure: Microbial community dynamics and process resilience

    Energy Technology Data Exchange (ETDEWEB)

    Niu, Qigui; Takemura, Yasuyuki; Kubota, Kengo [Department of Civil and Environmental Engineering, Graduate School of Engineering Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579 (Japan); Li, Yu-You, E-mail: yyli@epl1.civil.tohoku.ac.jp [Department of Civil and Environmental Engineering, Graduate School of Engineering Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579 (Japan); Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi’an University of Architecture and Technology, Xi’an (China)

    2015-09-15

    Highlights: • Microbial community dynamics and process functional resilience were investigated. • The threshold of TAN in mesophilic reactor was higher than the thermophilic reactor. • The recoverable archaeal community dynamic sustained the process resilience. • Methanosarcina was more sensitive than Methanoculleus on ammonia inhibition. • TAN and FA effects the dynamic of hydrolytic and acidogenic bacteria obviously. - Abstract: While methane fermentation is considered as the most successful bioenergy treatment for chicken manure, the relationship between operational performance and the dynamic transition of archaeal and bacterial communities remains poorly understood. Two continuous stirred-tank reactors were investigated under thermophilic and mesophilic conditions feeding with 10%TS. The tolerance of thermophilic reactor on total ammonia nitrogen (TAN) was found to be 8000 mg/L with free ammonia (FA) 2000 mg/L compared to 16,000 mg/L (FA1500 mg/L) of mesophilic reactor. Biomethane production was 0.29 L/gV S{sub in} in the steady stage and decreased following TAN increase. After serious inhibition, the mesophilic reactor was recovered successfully by dilution and washing stratagem compared to the unrecoverable of thermophilic reactor. The relationship between the microbial community structure, the bioreactor performance and inhibitors such as TAN, FA, and volatile fatty acid was evaluated by canonical correspondence analysis. The performance of methanogenic activity and substrate removal efficiency were changed significantly correlating with the community evenness and phylogenetic structure. The resilient archaeal community was found even after serious inhibition in both reactors. Obvious dynamics of bacterial communities were observed in acidogenic and hydrolytic functional bacteria following TAN variation in the different stages.

  2. Comparative Analysis of Methanogenic Communities in Different Laboratory-Scale Anaerobic Digesters

    Directory of Open Access Journals (Sweden)

    Ayrat M. Ziganshin

    2016-01-01

    Full Text Available Comparative analysis of methanogenic archaea compositions and dynamics in 11 laboratory-scale continuous stirred tank reactors fed with different agricultural materials (chicken manure, cattle manure, maize straw, maize silage, distillers grains, and Jatropha press cake was carried out by analysis of the methyl coenzyme-M reductase α-subunit (mcrA gene. Various taxa within Methanomicrobiales, Methanobacteriaceae, Methanosarcinaceae, Methanosaetaceae, and Methanomassiliicoccales were detected in the biogas reactors but in different proportions depending on the substrate type utilized as well as various process parameters. Improved coverage and higher taxonomic resolution of methanogens were obtained compared to a previous 16S rRNA gene based study of the same reactors. Some members of the genus Methanoculleus positively correlated with the relative methane content, whereas opposite correlations were found for Methanobacterium. Specific biogas production was found to be significantly correlating with Methanosarcinaceae. Statistical analysis also disclosed that some members of the genus Methanoculleus positively correlated with the ammonia level, whereas the prevalence of Methanocorpusculum, Methanobacterium, and Methanosaeta was negatively correlated with this parameter. These results suggest that the application of methanogenic archaea adapted to specific feedstock might enhance the anaerobic digestion of such waste materials in full-scale biogas reactors.

  3. Comparative Analysis of Methanogenic Communities in Different Laboratory-Scale Anaerobic Digesters

    Science.gov (United States)

    Ziganshin, Ayrat M.; Ziganshina, Elvira E.

    2016-01-01

    Comparative analysis of methanogenic archaea compositions and dynamics in 11 laboratory-scale continuous stirred tank reactors fed with different agricultural materials (chicken manure, cattle manure, maize straw, maize silage, distillers grains, and Jatropha press cake) was carried out by analysis of the methyl coenzyme-M reductase α-subunit (mcrA) gene. Various taxa within Methanomicrobiales, Methanobacteriaceae, Methanosarcinaceae, Methanosaetaceae, and Methanomassiliicoccales were detected in the biogas reactors but in different proportions depending on the substrate type utilized as well as various process parameters. Improved coverage and higher taxonomic resolution of methanogens were obtained compared to a previous 16S rRNA gene based study of the same reactors. Some members of the genus Methanoculleus positively correlated with the relative methane content, whereas opposite correlations were found for Methanobacterium. Specific biogas production was found to be significantly correlating with Methanosarcinaceae. Statistical analysis also disclosed that some members of the genus Methanoculleus positively correlated with the ammonia level, whereas the prevalence of Methanocorpusculum, Methanobacterium, and Methanosaeta was negatively correlated with this parameter. These results suggest that the application of methanogenic archaea adapted to specific feedstock might enhance the anaerobic digestion of such waste materials in full-scale biogas reactors. PMID:28074084

  4. Benzene from Traffic

    DEFF Research Database (Denmark)

    Palmgren, F.; Berkowicz, R.; Skov, H.;

    The measurements of benzene showed very clear decreasing trends in the air concentrations and the emissions since 1994. At the same time the measurements of CO and NOx also showed a decreasing trend, but not so strong as for benzene. The general decreasing trend is explained by the increasing...... number of petrol vehicles with three way catalysts, 60-70% in 1999. The very steep decreasing trend for benzene at the beginning of the period from 1994 was explained by the combination of more catalyst vehicles and reduced benzene content in Danish petrol. The total amount of aromatics in petrol......, including toluene, increased only weakly. The analyses of air concentrations were confirmed by analyses of petrol sold in Denmark. The concentration of benzene at Jagtvej in Copenhagen is still in 1998 above the expected new EU limit value, 5 µg/m3 as annual average. However, the reduced content of benzene...

  5. Anaerobic mineralization of 2,4,6-tribromophenol to CO2 by a synthetic microbial community comprising Clostridium, Dehalobacter, and Desulfatiglans.

    Science.gov (United States)

    Li, Zhiling; Yoshida, Naoko; Wang, Aijie; Nan, Jun; Liang, Bin; Zhang, Chunfang; Zhang, Dongdong; Suzuki, Daisuke; Zhou, Xue; Xiao, Zhixing; Katayama, Arata

    2015-01-01

    Anaerobic mineralization of 2,4,6-tribromophenol (2,4,6-TBP) was achieved by a synthetic anaerobe community comprising a highly enriched culture of Dehalobacter sp. phylotype FTH1 acting as a reductive debrominator; Clostridium sp. strain Ma13 acting as a hydrogen supplier via glucose fermentation; and a novel 4-chlorophenol-degrading anaerobe, Desulfatiglans parachlorophenolica strain DS. 2,4,6-TBP was debrominated to phenol by the combined action of Ma13 and FTH1, then mineralized into CO2 by sequential introduction of DS, confirmed using [ring-(14)C(U)] phenol. The optimum concentrations of glucose, SO4(2-), and inoculum densities were 0.5 or 2.5mM, 1.0 or 2.5mM, and the densities equivalent to 10(4)copiesmL(-1) of the 16S rRNA genes, respectively. This resulted in the complete mineralization of 23μM 2,4,6-TBP within 35days (0.58μmolL(-1)d(-1)). Thus, using a synthetic microbial community of isolates or highly enriched cultures would be an efficient, optimizable, low-cost strategy for anaerobic bioremediation of halogenated aromatics.

  6. Metabolic and microbial community dynamics during the anaerobic digestion of maize silage in a two-phase process.

    Science.gov (United States)

    Sträuber, Heike; Lucas, Rico; Kleinsteuber, Sabine

    2016-01-01

    Two-phasic anaerobic digestion processes (hydrolysis/acidogenesis separated from acetogenesis/methanogenesis) can be used for biogas production on demand or a combined chemicals/bioenergy production. For an effective process control, detailed knowledge about the microbial catalysts and their correlation to process conditions is crucial. In this study, maize silage was digested in a two-phase process and interrelationships between process parameters and microbial communities were revealed. In the first-phase reactor, alternating metabolic periods were observed which emerged independently from the feeding frequency. During the L-period, up to 11.8 g L(-1) lactic acid was produced which significantly correlated to lactic acid bacteria of the genus Lactobacillus as the most abundant community members. During the alternating G-period, the production of volatile fatty acids (up to 5.3, 4.0 and 3.1 g L(-1) for propionic, n-butyric and n-caproic acid, respectively) dominated accompanied by a high gas production containing up to 28 % hydrogen. The relative abundance of various Clostridiales increased during this metabolic period. In the second-phase reactor, the metabolic fluctuations of the first phase were smoothed out resulting in a stable biogas production as well as stable bacterial and methanogenic communities. However, the biogas composition followed the metabolic dynamics of the first phase: the hydrogen content increased during the L-period whereas highest CH4/CO2 ratios (up to 2.8) were reached during the G-period. Aceticlastic Methanosaeta as well as hydrogenotrophic Methanoculleus and Methanobacteriaceae were identified as dominant methanogens. Consequently, a directed control of the first-phase stabilizing desired metabolic states can lead to an enhanced productivity regarding chemicals and bioenergy.

  7. Methane seep in shallow-water permeable sediment harbors high diversity of anaerobic methanotrophic communities, Elba, Italy

    Directory of Open Access Journals (Sweden)

    S Emil Ruff

    2016-03-01

    Full Text Available The anaerobic oxidation of methane (AOM is a key biogeochemical process regulating methane emission from marine sediments into the hydrosphere. AOM is largely mediated by consortia of anaerobic methanotrophic archaea (ANME and sulfate-reducing bacteria (SRB, and has mainly been investigated in deep-sea sediments. Here we studied methane seepage at four spots located at 12 m water depth in coastal, organic-carbon depleted permeable sands off the Island of Elba (Italy. We combined biogeochemical measurements, sequencing-based community analyses and in situ hybridization to investigate the microbial communities of this environment. Increased alkalinity, formation of free sulfide and nearly stoichiometric methane oxidation and sulfate reduction rates up to 200 nmol g-1 day-1 indicated the predominance of sulfate-coupled AOM. With up to 40 cm thickness the zones of AOM activity were unusually large and occurred in deeper sediment horizons (20–50 cm below seafloor as compared to diffusion-dominated deep-sea seeps, which is likely caused by advective flow of pore water due to the shallow water depth and permeability of the sands. Hydrodynamic forces also may be responsible for the substantial phylogenetic and unprecedented morphological diversity of AOM consortia inhabiting these sands, including the clades ANME-1a/b, ANME-2a/b/c, ANME-3 and their partner bacteria SEEP-SRB1a and SEEP-SRB2. High microbial dispersal, the availability of diverse energy sources and high habitat heterogeneity might explain that the emission spots shared few microbial taxa, despite their physical proximity. Although the biogeochemistry of this shallow methane seep was very different to that of deep-sea seeps, their key functional taxa were very closely related, which supports the global dispersal of key taxa and underlines strong selection by methane as the predominant energy source. Mesophilic, methane-fueled ecosystems in shallow-water permeable sediments may comprise

  8. Densities and Kinematic Viscosities for the Systems Benzene + Methyl Formate, Benzene + Ethyl Formate, Benzene + Propyl Formate, and Benzene + Butyl Formate

    DEFF Research Database (Denmark)

    Emmerling, Uwe; Rasmussen, Peter

    1998-01-01

    Densities and kinematic viscosities have been measured for the system benzene + methyl formate at 20°C and for the systems benzene + ethyl formate, benzene + propyl formate, and benzene + butyl formate from 20°C to 50°C. The results for the system benzene + methyl formate have been correlated usi...

  9. Anaerobic bio-removal of uranium (VI) and chromium (VI): Comparison of microbial community structure

    Energy Technology Data Exchange (ETDEWEB)

    Martins, Monica [Centro de Ciencias do Mar, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro (Portugal); Faleiro, Maria Leonor [IBB - Centro de Biomedicina Molecular e Estrutural, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro (Portugal); Chaves, Sandra; Tenreiro, Rogerio [Universidade de Lisboa, Faculdade de Ciencias, Centro de Biodiversidade, Genomica Integrativa e Funcional (BioFIG), Campus de FCUL, Campo Grande 1749-016 Lisboa (Portugal); Santos, Erika [Centro de Ciencias do Mar, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro (Portugal); Costa, Maria Clara, E-mail: mcorada@ualg.pt [Centro de Ciencias do Mar, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro (Portugal)

    2010-04-15

    Several microbial communities, obtained from uranium contaminated and non-contaminated samples, were investigated for their ability to remove uranium (VI) and the cultures capable for this removal were further assessed on their efficiency for chromium (VI) removal. The highest efficiency for removal of both metals was observed on a consortium from a non-contaminated soil collected in Monchique thermal place, which was capable to remove 91% of 22 mg L{sup -1} U(VI) and 99% of 13 mg L{sup -1} Cr(VI). This study revealed that uranium (VI) removing communities have also ability to remove chromium (VI), but when uranium (VI) was replaced by chromium (VI) several differences in the structure of all bacterial communities were observed. TGGE and phylogenetic analysis of 16S rRNA gene showed that the uranium (VI) removing bacterial consortia are mainly composed by members of Rhodocyclaceae family and Clostridium genus. On the other hand, bacteria from Enterobacteriaceae family were detected in the community with ability for chromium (VI) removal. The existence of members of Enterobacteriaceae and Rhodocyclaceae families never reported as chromium or uranium removing bacteria, respectively, is also a relevant finding, encouraging the exploitation of microorganisms with new abilities that can be useful for bioremediation.

  10. Anaerobic bio-removal of uranium (VI) and chromium (VI): comparison of microbial community structure.

    Science.gov (United States)

    Martins, Mónica; Faleiro, Maria Leonor; Chaves, Sandra; Tenreiro, Rogério; Santos, Erika; Costa, Maria Clara

    2010-04-15

    Several microbial communities, obtained from uranium contaminated and non-contaminated samples, were investigated for their ability to remove uranium (VI) and the cultures capable for this removal were further assessed on their efficiency for chromium (VI) removal. The highest efficiency for removal of both metals was observed on a consortium from a non-contaminated soil collected in Monchique thermal place, which was capable to remove 91% of 22 mg L(-1) U(VI) and 99% of 13 mg L(-1) Cr(VI). This study revealed that uranium (VI) removing communities have also ability to remove chromium (VI), but when uranium (VI) was replaced by chromium (VI) several differences in the structure of all bacterial communities were observed. TGGE and phylogenetic analysis of 16S rRNA gene showed that the uranium (VI) removing bacterial consortia are mainly composed by members of Rhodocyclaceae family and Clostridium genus. On the other hand, bacteria from Enterobacteriaceae family were detected in the community with ability for chromium (VI) removal. The existence of members of Enterobacteriaceae and Rhodocyclaceae families never reported as chromium or uranium removing bacteria, respectively, is also a relevant finding, encouraging the exploitation of microorganisms with new abilities that can be useful for bioremediation.

  11. An enhanced anaerobic membrane bioreactor treating bamboo industry wastewater by bamboo charcoal addition: Performance and microbial community analysis.

    Science.gov (United States)

    Xia, Tian; Gao, Xinyi; Wang, Caiqin; Xu, Xiangyang; Zhu, Liang

    2016-11-01

    In this study, two anaerobic membrane bioreactors (AnMBRs) were operated for 150days to treat bamboo industry wastewater (BIWW), and one of them was enhanced with bamboo charcoal (B-AnMBR). During the steady period, average chemical oxygen demand (COD) removal efficiencies of 94.5±2.9% and 89.1±3.1% were achieved in B-AnMBR and AnMBR, respectively. The addition of bamboo charcoal (BC) increased the amount of biomass and improved the performance of the systems. A higher biogas production and methane yield were also observed in B-AnMBR. Regarding the issue of membrane fouling, BC lowered the soluble microbial product (SMP) content by approximately 62.73mg/L and decreased the membrane resistance, thereby mitigating membrane fouling. Analysis of the microbial communities demonstrated that BC increased the microbial diversity and promoted the activity of Methanosaeta, Methanospirillum, and Methanobacterium, which are dominant in methane production.

  12. Shifts in the community structure and activity of anaerobic ammonium oxidation bacteria along an estuarine salinity gradient

    Science.gov (United States)

    Zheng, Yanling; Jiang, Xiaofen; Hou, Lijun; Liu, Min; Lin, Xianbiao; Gao, Juan; Li, Xiaofei; Yin, Guoyu; Yu, Chendi; Wang, Rong

    2016-06-01

    Anaerobic ammonium oxidation (anammox) is a major microbial pathway for nitrogen (N) removal in estuarine and coastal environments. However, understanding of anammox bacterial dynamics and associations with anammox activity remains scarce along estuarine salinity gradient. In this study, the diversity, abundance, and activity of anammox bacteria, and their potential contributions to total N2 production in the sediments along the salinity gradient (0.1-33.8) of the Yangtze estuarine and coastal zone, were studied using 16S rRNA gene clone library, quantitative polymerase chain reaction assay, and isotope-tracing technique. Phylogenetic analysis showed a significant change in anammox bacterial community structure along the salinity gradient (P important factor in controlling the relative role of anammox to total N2 production in the Yangtze estuarine and coastal zone. Overall, our data demonstrated a biogeographical distribution of anammox bacterial diversity, abundance, and activity along the estuarine salinity gradient and suggested that salinity is a major environmental control on anammox process in the estuarine and coastal ecosystems.

  13. Biogas production and microbial community shift through neutral pH control during the anaerobic digestion of pig manure.

    Science.gov (United States)

    Zhou, Jun; Zhang, Rui; Liu, Fenwu; Yong, Xiaoyu; Wu, Xiayuan; Zheng, Tao; Jiang, Min; Jia, Honghua

    2016-10-01

    Laboratory-scale reactors, in which the pH could be auto-adjusted, were employed to investigate the mesophilic methane fermentation with pig manure (7.8% total solids) at pH 6.0, 7.0, and 8.0. Results showed that the performance of anaerobic digestion was strongly dependent on pH value. Biogas production and methane content at neutral pH 7.0 were significantly higher (16,607mL, 51.81%) than those at pH 6.0 (6916mL, 42.9%) and 8.0 (9739mL, 35.6%). Denaturing gradient gel electrophoresis fingerprinting and Shannon's index indicated that the samples contained highly diverse microbial communities. The major genus at pH 7.0 was Methanocorpusculum, compared with that was Methanosarcina at both pH 6.0 and 8.0. Our research revealed that cultures maintained at pH 7.0 could support increased biogas production, which has significant implications for the scale-up biogas engineering.

  14. Unravelling the active microbial community in a thermophilic anaerobic digester-microbial electrolysis cell coupled system under different conditions.

    Science.gov (United States)

    Cerrillo, Míriam; Viñas, Marc; Bonmatí, August

    2017-03-01

    Thermophilic anaerobic digestion (AD) of pig slurry coupled to a microbial electrolysis cell (MEC) with a recirculation loop was studied at lab-scale as a strategy to increase AD stability when submitted to organic and nitrogen overloads. The system performance was studied, with the recirculation loop both connected and disconnected, in terms of AD methane production, chemical oxygen demand removal (COD) and volatile fatty acid (VFA) concentrations. Furthermore, the microbial population was quantitatively and qualitatively assessed through DNA and RNA-based qPCR and high throughput sequencing (MiSeq), respectively to identify the RNA-based active microbial populations from the total DNA-based microbial community composition both in the AD and MEC reactors under different operational conditions. Suppression of the recirculation loop reduced the AD COD removal efficiency (from 40% to 22%) and the methane production (from 0.32 to 0.03 m(3) m(-3) d(-1)). Restoring the recirculation loop led to a methane production of 0.55 m(3) m(-3) d(-1) concomitant with maximum MEC COD and ammonium removal efficiencies of 29% and 34%, respectively. Regarding microbial analysis, the composition of the AD and MEC anode populations differed from really active microorganisms. Desulfuromonadaceae was revealed as the most active family in the MEC (18%-19% of the RNA relative abundance), while hydrogenotrophic methanogens (Methanobacteriaceae) dominated the AD biomass.

  15. Effects of oxytetracycline on archaeal community, and tetracycline resistance genes in anaerobic co-digestion of pig manure and wheat straw.

    Science.gov (United States)

    Wang, Xiaojuan; Pan, Hongjia; Gu, Jie; Qian, Xun; Gao, Hua; Qin, Qingjun

    2016-12-01

    In this study, the effects of different concentrations of oxytetracycline (OTC) on biogas production, archaeal community structure, and the levels of tetracycline resistance genes (TRGs) were investigated in the anaerobic co-digestion products of pig manure and wheat straw. PCR denaturing gradient gel electrophoresis analysis and real-time quantitative polymerase chain reaction (RT-qPCR) (PCR) were used to detect the archaeal community structure and the levels of four TRGs: tet(M), tet(Q), tet(W), and tet(C). The results showed that anaerobic co-digestion with OTC at concentrations of 60, 100, and 140 mg/kg (dry weight of pig manure) reduced the cumulative biogas production levels by 9.9%, 10.4%, and 14.1%, respectively, compared with that produced by the control, which lacked the antibiotic. The addition of OTC substantially modified the structure of the archaeal community. Two orders were identified by phylogenetic analysis, that is, Pseudomonadales and Methanomicrobiales, and the methanogen present during anaerobic co-digestion with OTC may have been resistant to OTC. The abundances of tet(Q) and tet(W) genes increased as the OTC concentration increased, whereas the abundances of tet(M) and tet(C) genes decreased as the OTC concentration increased.

  16. Differences in microbial communities and performance between suspended and attached growth anaerobic membrane bioreactors treating synthetic municipal wastewater

    KAUST Repository

    Harb, Moustapha

    2015-08-14

    Two lab-scale anaerobic membrane bioreactors (AnMBRs), one up-flow attached-growth (UA) and another continuously stirred (CSTR), were operated under mesophilic conditions (35 °C) while treating synthetic municipal wastewater (800 mg L−1 COD). Each reactor was attached to both polyvinylidene fluoride (PVDF) and polyethersulfone (PES) microfiltration (MF) membranes in an external cross-flow configuration. Both reactors were started up and run under the same operating conditions for multiple steady-state experiments. Chemical oxygen demand (COD) removal rates were similar for both reactors (90–96%), but captured methane was found to be 11–18% higher for the CSTR than the UA reactor. Ion Torrent sequencing targeting 16S rRNA genes showed that several operational taxonomic units (OTUs) most closely related to fermentative bacteria (e.g., Microbacter margulisiae) were dominant in the suspended biomass of the CSTR, accounting for 30% of the microbial community. Conversely, methanogenic archaea (e.g., Methanosaeta) and syntrophic bacteria (e.g., Smithella propionica) were found in significantly higher relative abundances in the UA AnMBR as compared to the CSTR due to their affinity for surface attachment. Of the methanogens that were present in the CSTR sludge, hydrogenotrophic methanogens dominated (e.g., Methanobacterium). Measured EPS (both proteins and carbohydrates), which has been broadly linked to fouling, was determined to be consistently lower in the UA AnMBR membrane samples than in CSTR AnMBR membrane samples. Principal component analysis (PCA) based on HPLC profiles of soluble microbial products (SMPs) further demonstrated these differences between reactor types in replicate runs. The results of this study showed that reactor configuration can significantly impact the development of the microbial communities of AnMBRs that are responsible for both membrane and reactor performance.

  17. Microbial community analysis in sludge of anaerobic wastewater treatment systems : integrated culture-dependent and culture-independent approaches

    NARCIS (Netherlands)

    Roest, C.

    2007-01-01

    The need for clean water is increasing and anaerobic wastewater treatment can be used as a cost-effective solution for purification of organically polluted industrial waste streams. This thesis presents results from microbiological investigations of several full-scale and lab-scale anaerobic wastewa

  18. Microbial community structure of a pilot-scale thermophilic anaerobic digester treating poultry litter.

    Science.gov (United States)

    Smith, Ami M; Sharma, Deepak; Lappin-Scott, Hilary; Burton, Sara; Huber, David H

    2014-03-01

    The microbial community structure of a stable pilot-scale thermophilic continuous stirred tank reactor digester stabilized on poultry litter was investigated. This 40-m(3) digester produced biogas with 57% methane, and chemical oxygen demand removal of 54%. Bacterial and archaeal diversity were examined using both cloning and pyrosequencing that targeted 16S rRNA genes. The bacterial community was dominated by phylum Firmicutes, constituting 93% of the clones and 76% of the pyrotags. Of the Firmicutes, class Clostridia (52% pyrotags) was most abundant followed by class Bacilli (13% pyrotags). The bacterial libraries identified 94 operational taxonomic units (OTUs) and pyrosequencing identified 577 OTUs at the 97% minimum similarity level. Fifteen OTUs were dominant (≥2% abundance), and nine of these were novel unclassified Firmicutes. Several of the dominant OTUs could not be classified more specifically than Clostridiales, but were most similar to plant biomass degraders, including Clostridium thermocellum. Of the rare pyrotag OTUs (99% of the archaeal clones. Based on the primary methanogen, as well as digester chemistry (high VA and ammonia levels), we propose that bacterial acetate oxidation is the primary pathway in this digester for the control of acetate levels.

  19. Massively parallel tag sequencing reveals the complexity of anaerobic marine protistan communities

    Directory of Open Access Journals (Sweden)

    Chistoserdov Andrei

    2009-11-01

    Full Text Available Abstract Background Recent advances in sequencing strategies make possible unprecedented depth and scale of sampling for molecular detection of microbial diversity. Two major paradigm-shifting discoveries include the detection of bacterial diversity that is one to two orders of magnitude greater than previous estimates, and the discovery of an exciting 'rare biosphere' of molecular signatures ('species' of poorly understood ecological significance. We applied a high-throughput parallel tag sequencing (454 sequencing protocol adopted for eukaryotes to investigate protistan community complexity in two contrasting anoxic marine ecosystems (Framvaren Fjord, Norway; Cariaco deep-sea basin, Venezuela. Both sampling sites have previously been scrutinized for protistan diversity by traditional clone library construction and Sanger sequencing. By comparing these clone library data with 454 amplicon library data, we assess the efficiency of high-throughput tag sequencing strategies. We here present a novel, highly conservative bioinformatic analysis pipeline for the processing of large tag sequence data sets. Results The analyses of ca. 250,000 sequence reads revealed that the number of detected Operational Taxonomic Units (OTUs far exceeded previous richness estimates from the same sites based on clone libraries and Sanger sequencing. More than 90% of this diversity was represented by OTUs with less than 10 sequence tags. We detected a substantial number of taxonomic groups like Apusozoa, Chrysomerophytes, Centroheliozoa, Eustigmatophytes, hyphochytriomycetes, Ichthyosporea, Oikomonads, Phaeothamniophytes, and rhodophytes which remained undetected by previous clone library-based diversity surveys of the sampling sites. The most important innovations in our newly developed bioinformatics pipeline employ (i BLASTN with query parameters adjusted for highly variable domains and a complete database of public ribosomal RNA (rRNA gene sequences for taxonomic

  20. Performance and microbial community analysis of the anaerobic reactor with coke oven gas biomethanation and in situ biogas upgrading

    DEFF Research Database (Denmark)

    Wang, Wen; Xie, Li; Luo, Gang;

    2013-01-01

    (HFM). With pH control at 8.0, the added H2 and CO were fully consumed and no negative effects on the anaerobic degradation of sewage sludge were observed. The maximum CH4 content in the biogas was 99%. The addition of SCOG resulted in enrichment and dominance of homoacetogenetic genus Treponema......A new method for simultaneous coke oven gas (COG) biomethanation and in situ biogas upgrading in anaerobic reactor was developed in this study. The simulated coke oven gas (SCOG) (92% H2 and 8% CO) was injected directly into the anaerobic reactor treating sewage sludge through hollow fiber membrane...

  1. Effect of the Organic Loading Rate Increase and the Presence of Zeolite on Microbial Community Composition and Process Stability During Anaerobic Digestion of Chicken Wastes.

    Science.gov (United States)

    Ziganshina, Elvira E; Belostotskiy, Dmitry E; Ilinskaya, Olga N; Boulygina, Eugenia A; Grigoryeva, Tatiana V; Ziganshin, Ayrat M

    2015-11-01

    This study investigates the effect of the organic loading rate (OLR) increase from 1.0 to 3.5 g VS L(-1) day(-1) at constant hydraulic retention time (HRT) of 35 days on anaerobic reactors' performance and microbial diversity during mesophilic anaerobic digestion of ammonium-rich chicken wastes in the absence/presence of zeolite. The effects of anaerobic process parameters on microbial community structure and dynamics were evaluated using a 16S ribosomal RNA gene-based pyrosequencing approach. Maximum 12 % of the total ammonia nitrogen (TAN) was efficiently removed by zeolite in the fixed zeolite reactor (day 87). In addition, volatile fatty acids (VFA) in the fixed zeolite reactor accumulated in lower concentrations at high OLR of 3.2-3.5 g VS L(-1) day(-1). Microbial communities in the fixed zeolite reactor and reactor without zeolite were dominated by various members of Bacteroidales and Methanobacterium sp. at moderate TAN and VFA levels. The increase of the OLR accompanied by TAN and VFA accumulation and increase in pH led to the predominance of representatives of the family Erysipelotrichaceae and genera Clostridium and Methanosarcina. Methanosarcina sp. reached relative abundances of 94 and 57 % in the fixed zeolite reactor and reactor without zeolite at the end of the experimental period, respectively. In addition, the diminution of Synergistaceae and Crenarchaeota and increase in the abundance of Acholeplasmataceae in parallel with the increase of TAN, VFA, and pH values were observed.

  2. Influence of applied voltage on the performance of bioelectrochemical anaerobic digestion of sewage sludge and planktonic microbial communities at ambient temperature.

    Science.gov (United States)

    Feng, Qing; Song, Young-Chae; Bae, Byung-Uk

    2016-11-01

    The influence of applied voltage on the bioelectrochemical anaerobic digestion of sewage sludge was studied at ambient temperature (25±2°C). The stability of the bioelectrochemical anaerobic digestion was considerably good in terms of pH, alkalinity and VFAs at 0.3V and 0.5V, but VFA accumulation occurred at 0.7V. The specific methane production rate (370mLCH4/L.d) was the highest at 0.3V, but the methane content (80.6%) in biogas and the methane yield (350mLCH4/gCODr) were higher at 0.5V, significantly better than those of 0.7V. The VS removal efficiency was 64-66% at 0.3V and 0.5V, but only 31% at 0.7V. The dominant species of planktonic microbial communities was Cloacamonas at 0.3V and 0.5V, but the percentage of hydrolytic bacteria species such as Saprospiraceae, Fimbriimonas, and Ottowia pentelensis was much higher at 0.7V. The optimal applied voltage for bioelectrochemical anaerobic digestion was 0.3-0.5V according to digestion performance and planktonic microbial communities.

  3. Selenite Reduction by Anaerobic Microbial Aggregates: Microbial Community Structure, and Proteins Associated to the Produced Selenium Spheres

    KAUST Repository

    Gonzalez-Gil, Graciela

    2016-04-26

    Certain types of anaerobic granular sludge, which consists of microbial aggregates, can reduce selenium oxyanions. To envisage strategies for removing those oxyanions from wastewater and recovering the produced elemental selenium (Se0), insights into the microbial community structure and synthesis of Se0 within these microbial aggregates are required. High-throughput sequencing showed that Veillonellaceae (c.a. 20%) and Pseudomonadaceae (c.a.10%) were the most abundant microbial phylotypes in selenite reducing microbial aggregates. The majority of the Pseudomonadaceae sequences were affiliated to the genus Pseudomonas. A distinct outer layer (∼200 μm) of selenium deposits indicated that bioreduction occurred in the outer zone of the microbial aggregates. In that outer layer, SEM analysis showed abundant intracellular and extracellular Se0 (nano)spheres, with some cells having high numbers of intracellular Se0 spheres. Electron tomography showed that microbial cells can harbor a single large intracellular sphere that stretches the cell body. The Se0 spheres produced by the microorganisms were capped with organic material. X-ray photoelectron spectroscopy (XPS) analysis of extracted Se0 spheres, combined with a mathematical approach to analyzing XPS spectra from biological origin, indicated that proteins and lipids were components of the capping material associated to the Se0 spheres. The most abundant proteins associated to the spheres were identified by proteomic analysis. Most of the proteins or peptide sequences capping the Se0 spheres were identified as periplasmic outer membrane porins and as the cytoplasmic elongation factor Tu protein, suggesting an intracellular formation of the Se0 spheres. In view of these and previous findings, a schematic model for the synthesis of Se0 spheres by the microorganisms inhabiting the granular sludge is proposed.

  4. Selenite Reduction by Anaerobic Microbial Aggregates: Microbial Community Structure, and Proteins Associated to the Produced Selenium Spheres

    Science.gov (United States)

    Gonzalez-Gil, Graciela; Lens, Piet N. L.; Saikaly, Pascal E.

    2016-01-01

    Certain types of anaerobic granular sludge, which consists of microbial aggregates, can reduce selenium oxyanions. To envisage strategies for removing those oxyanions from wastewater and recovering the produced elemental selenium (Se0), insights into the microbial community structure and synthesis of Se0 within these microbial aggregates are required. High-throughput sequencing showed that Veillonellaceae (c.a. 20%) and Pseudomonadaceae (c.a.10%) were the most abundant microbial phylotypes in selenite reducing microbial aggregates. The majority of the Pseudomonadaceae sequences were affiliated to the genus Pseudomonas. A distinct outer layer (∼200 μm) of selenium deposits indicated that bioreduction occurred in the outer zone of the microbial aggregates. In that outer layer, SEM analysis showed abundant intracellular and extracellular Se0 (nano)spheres, with some cells having high numbers of intracellular Se0 spheres. Electron tomography showed that microbial cells can harbor a single large intracellular sphere that stretches the cell body. The Se0 spheres produced by the microorganisms were capped with organic material. X-ray photoelectron spectroscopy (XPS) analysis of extracted Se0 spheres, combined with a mathematical approach to analyzing XPS spectra from biological origin, indicated that proteins and lipids were components of the capping material associated to the Se0 spheres. The most abundant proteins associated to the spheres were identified by proteomic analysis. Most of the proteins or peptide sequences capping the Se0 spheres were identified as periplasmic outer membrane porins and as the cytoplasmic elongation factor Tu protein, suggesting an intracellular formation of the Se0 spheres. In view of these and previous findings, a schematic model for the synthesis of Se0 spheres by the microorganisms inhabiting the granular sludge is proposed. PMID:27199909

  5. Selenite reduction by anaerobic microbial aggregates: Microbial community structure, and proteins associated to the produced selenium spheres.

    Directory of Open Access Journals (Sweden)

    Graciela eGonzalez-Gil

    2016-04-01

    Full Text Available Certain types of anaerobic granular sludge, which consists of microbial aggregates, can reduce selenium oxyanions. To envisage strategies for removing those oxyanions from wastewater and recovering the produced elemental selenium (Se0, insights into the microbial community structure and synthesis of Se0 within these microbial aggregates are required. High-throughput sequencing showed that Veillonellaceae (c.a. 20 % and Pseudomonadaceae (c.a.10 % were the most abundant microbial phylotypes in selenite reducing microbial aggregates. The majority of the Pseudomonadaceae sequences were affiliated to the genus Pseudomonas. A distinct outer layer (~200 m of selenium deposits indicated that bioreduction occurred in the outer zone of the microbial aggregates. In that outer layer, SEM analysis showed abundant intracellular and extracellular Se0 (nano spheres, with some cells having high numbers of intracellular Se0 spheres. Electron tomography showed that microbial cells can harbor a single large intracellular sphere that stretches the cell body. The Se0 spheres produced by the microorganisms were capped with organic material. X-ray photoelectron spectroscopy (XPS analysis of extracted Se0 spheres, combined with a mathematical approach to analyzing XPS spectra from biological origin, indicated that proteins and lipids were components of the capping material associated to the Se0 spheres. The most abundant proteins associated to the spheres were identified by proteomic analysis. Most of the proteins or peptide sequences capping the Se0 spheres were identified as periplasmic outer membrane porins and as the cytoplasmic elongation factor Tu protein, suggesting an intracellular formation of the Se0 spheres. In view of these and previous findings, a schematic model for the synthesis of Se0 spheres by the microorganisms inhabiting the granular sludge is proposed.

  6. Performance of and methanogenic communities involved in an innovative anaerobic process for the treatment of food wastewater in a pilot plant.

    Science.gov (United States)

    Lee, Seungyong; Lee, Bowon; Han, Gyuseong; Yoon, Heechul; Kim, Woong

    2015-01-01

    In this study, dual-cylindrical anaerobic digesters were designed and built on the pilot plant scale for the improvement of anaerobic digestion efficiency. The removal efficiency of organics, biogas productivity, yield, and microbial communities was evaluated as performance parameters of the digester. During the stable operational period in the continuous mode, the removal efficiencies of chemical oxygen demand and total solids were 74.1 and 65.1%, respectively. Biogas productivities of 63.9 m(3)/m(3)-FWW and 1.3 m(3)/kg-VSremoved were measured. The hydrogenotrophic methanogen orders, Methanomicrobiales and Methanobacteriales, were predominant over the aceticlastic methanogen order, Methanosarcinaceae, probably due to the tolerance of the hydrogenotrophs to environmental perturbation in the field and their faster growth rate compared with that of the aceticlastics.

  7. Risk factor benzene

    Energy Technology Data Exchange (ETDEWEB)

    Stobbe, H.

    1981-01-01

    Nearly one hundred years ago clinical and epidemiological studies have already assigned benzene as a markedly haematotoxic substance. Nowadays benzene is known as an important professional noxa, which is straight off directed against the haematopoietic system, essentially to a dose-time-effect. By this it can be taken as a model also for other noxious substances. Similar solvents often contain so-called 'hidden benzene', that means not declared benzene, so that the consumer doesn't know what dangerous substance are available for his personal use. Impairments caused by benzene mostly are manifested earliest after months, years or for tens of years, and the point is, that these haematopoietic disorders are irreversible disturbances of the haematopoietic stem cell compartment. The consequence of this fact is a deep involvement of the proliferation of the erythro-, mono-, granulo- and thrombopoietic cell lines, mostly with predominance of one of these myeloproliferative cell systems. In the further progression of the impairments due to benzene three different clinical pictures can be observed: the aplastic bone marrow syndrome (i.e. aplastic anemia), the haematopoietic dysplasia (i.e. preleukemia) and the acute leukemias (with the subtypes erythroleukosis, myeloblastic-promyelocytic or myelomonocytic from respectively). Also the transition from one clinical picture to another is possible.

  8. Methanosarcina Play an Important Role in Anaerobic Co-Digestion of the Seaweed Ulva lactuca: Taxonomy and Predicted Metabolism of Functional Microbial Communities

    Science.gov (United States)

    FitzGerald, Jamie A.; Allen, Eoin; Wall, David M.; Jackson, Stephen A.; Murphy, Jerry D.; Dobson, Alan D. W.

    2015-01-01

    Macro-algae represent an ideal resource of third generation biofuels, but their use necessitates a refinement of commonly used anaerobic digestion processes. In a previous study, contrasting mixes of dairy slurry and the macro-alga Ulva lactuca were anaerobically digested in mesophilic continuously stirred tank reactors for 40 weeks. Higher proportions of U. lactuca in the feedstock led to inhibited digestion and rapid accumulation of volatile fatty acids, requiring a reduced organic loading rate. In this study, 16S pyrosequencing was employed to characterise the microbial communities of both the weakest (R1) and strongest (R6) performing reactors from the previous work as they developed over a 39 and 27-week period respectively. Comparing the reactor communities revealed clear differences in taxonomy, predicted metabolic orientation and mechanisms of inhibition, while constrained canonical analysis (CCA) showed ammonia and biogas yield to be the strongest factors differentiating the two reactor communities. Significant biomarker taxa and predicted metabolic activities were identified for viable and failing anaerobic digestion of U. lactuca. Acetoclastic methanogens were inhibited early in R1 operation, followed by a gradual decline of hydrogenotrophic methanogens. Near-total loss of methanogens led to an accumulation of acetic acid that reduced performance of R1, while a slow decline in biogas yield in R6 could be attributed to inhibition of acetogenic rather than methanogenic activity. The improved performance of R6 is likely to have been as a result of the large Methanosarcina population, which enabled rapid removal of acetic acid, providing favourable conditions for substrate degradation. PMID:26555136

  9. Methanosarcina Play an Important Role in Anaerobic Co-Digestion of the Seaweed Ulva lactuca: Taxonomy and Predicted Metabolism of Functional Microbial Communities.

    Directory of Open Access Journals (Sweden)

    Jamie A FitzGerald

    Full Text Available Macro-algae represent an ideal resource of third generation biofuels, but their use necessitates a refinement of commonly used anaerobic digestion processes. In a previous study, contrasting mixes of dairy slurry and the macro-alga Ulva lactuca were anaerobically digested in mesophilic continuously stirred tank reactors for 40 weeks. Higher proportions of U. lactuca in the feedstock led to inhibited digestion and rapid accumulation of volatile fatty acids, requiring a reduced organic loading rate. In this study, 16S pyrosequencing was employed to characterise the microbial communities of both the weakest (R1 and strongest (R6 performing reactors from the previous work as they developed over a 39 and 27-week period respectively. Comparing the reactor communities revealed clear differences in taxonomy, predicted metabolic orientation and mechanisms of inhibition, while constrained canonical analysis (CCA showed ammonia and biogas yield to be the strongest factors differentiating the two reactor communities. Significant biomarker taxa and predicted metabolic activities were identified for viable and failing anaerobic digestion of U. lactuca. Acetoclastic methanogens were inhibited early in R1 operation, followed by a gradual decline of hydrogenotrophic methanogens. Near-total loss of methanogens led to an accumulation of acetic acid that reduced performance of R1, while a slow decline in biogas yield in R6 could be attributed to inhibition of acetogenic rather than methanogenic activity. The improved performance of R6 is likely to have been as a result of the large Methanosarcina population, which enabled rapid removal of acetic acid, providing favourable conditions for substrate degradation.

  10. New perspectives in anaerobic digestion

    DEFF Research Database (Denmark)

    van Lier, J.B.; Tilche, A.; Ahring, Birgitte Kiær;

    2001-01-01

    The IWA specialised group on anaerobic digestion (AD) is one of the oldest working groups of the former IAWQ organisation. Despite the fact that anaerobic technology dates back more than 100 years, the technology is still under development, adapting novel treatment systems to the modern...... requirements. In fact, most advances were achieved during the last three decades, when high-rate reactor systems were developed and a profound insight was obtained in the microbiology of the anaerobic communities. This insight led to a better understanding of anaerobic treatment and, subsequently, to a broader...

  11. Towards Biogeochemical Modeling of Anaerobic Oxidation of Methane: Characterization of Microbial Communities in Methane-bearing North American Continental Margin Sediments

    Science.gov (United States)

    Graw, M. F.; Solomon, E. A.; Chrisler, W.; Krause, S.; Treude, T.; Ruppel, C. D.; Pohlman, J.; Colwell, F. S.

    2015-12-01

    Methane advecting through continental margin sediments may enter the water column and potentially contribute to ocean acidification and increase atmospheric methane concentrations. Anaerobic oxidation of methane (AOM), mediated by syntrophic consortia of anaerobic methanotrophic archaea and sulfate-reducing bacteria (ANME-SRB), consumes nearly all dissolved methane in methane-bearing sediments before it reaches the sediment-water interface. Despite the significant role ANME-SRB play in carbon cycling, our knowledge of these organisms and their surrounding microbial communities is limited. Our objective is to develop a metabolic model of ANME-SRB within methane-bearing sediments and to couple this to a geochemical reaction-transport model for these margins. As a first step towards this goal, we undertook fluorescent microscopic imaging, 16S rRNA gene deep-sequencing, and shotgun metagenomic sequencing of sediments from the US Pacific (Washington) and northern Atlantic margins where ANME-SRB are present. A successful Illumina MiSeq sequencing run yielded 106,257 bacterial and 857,834 archaeal 16S rRNA gene sequences from 12 communities from the Washington Margin using both universal prokaryotic and archaeal-specific primer sets. Fluorescent microscopy confirmed the presence of cells of the ANME-2c lineage in the sequenced communities. Microbial community characterization was coupled with measurements of sediment physical and geochemical properties and, for samples from the US Atlantic margin, 14C-based measurements of AOM rates and 35S-based measurements of sulfate reduction rates. These findings have the potential to increase understanding of ANME-SRB, their surrounding microbial communities, and their role in carbon cycling within continental margins. In addition, they pave the way for future efforts at developing a metabolic model of ANME-SRB and coupling it to geochemical models of the US Washington and Atlantic margins.

  12. Microbial community structure and dynamics in two-stage vs single-stage thermophilic anaerobic digestion of mixed swine slurry and market bio-waste.

    Science.gov (United States)

    Merlino, Giuseppe; Rizzi, Aurora; Schievano, Andrea; Tenca, Alberto; Scaglia, Barbara; Oberti, Roberto; Adani, Fabrizio; Daffonchio, Daniele

    2013-04-15

    The microbial community of a thermophilic two-stage process was monitored during two-months operation and compared to a conventional single-stage process. Qualitative and quantitative microbial dynamics were analysed by Denaturing Gradient Gel Electrophoresis (DGGE) and real-time PCR techniques, respectively. The bacterial community was dominated by heat-shock resistant, spore-forming clostridia in the two-stage process, whereas a more diverse and dynamic community (Firmicutes, Bacteroidetes, Synergistes) was observed in the single-stage process. A significant evolution of bacterial community occurred over time in the acidogenic phase of the two-phase process with the selection of few dominant species associated to stable hydrogen production. The archaeal community, dominated by the acetoclastic Methanosarcinales in both methanogen reactors, showed a significant diversity change in the single-stage process after a period of adaptation to the feeding conditions, compared to a constant stability in the methanogenic reactor of the two-stage process. The more diverse and dynamic bacterial and archaeal community of single-stage process compared to the two-stage process accounted for the best degradation activity, and consequently the best performance, in this reactor. The microbiological perspective proved a useful tool for a better understanding and comparison of anaerobic digestion processes.

  13. Potential and optimization of two-phase anaerobic digestion of oil refinery waste activated sludge and microbial community study

    Science.gov (United States)

    Wang, Qinghong; Liang, Ying; Zhao, Peng; Li, Qing X.; Guo, Shaohui; Chen, Chunmao

    2016-12-01

    Oil refinery waste activated sludge produced from oil wastewater biological treatment is a major industrial sludge. Two-phase anaerobic digestion of oil refinery waste activated sludge was studied for the first time. Thermal pretreatment under 170 °C is effective on sludge solubilization. At the optimum hydrolytic-acidogenic condition which was pH of 6.5, temperature of 55 °C and HRT of 2 days, 2754 mg/L volatile fatty acids (VFAs) were produced and acetic acid and butyric acid were the key components. Comparative studies of single-phase and two-phase anaerobic digestion in terms of organic removal, biogas production and methane concentration were conducted. The cumulative methane production and soluble COD (SCOD) removal efficiency in the two-phase system were 228 mL/g COD added and 77.8%, respectively, which were 1.6 and 2.1 times higher than those in single-phase anaerobic digestion. Such improved performance is attributed to intensification of dominant microbial population in separated reactors. Caloramator, Ureibacillus, Dechloromonas, Petrobacter, and T78 played important roles in hydrolytic-acidification and oil-organics degradation. Syntrophic bacteria in the family Porphyromonadaceae and the genus Anaerobranca provide acetate for methanogen. The results demonstrated the potential and operating condition of two-phase anaerobic digestion in treatment of oil refinery waste activated sludge.

  14. Effects of Metal Nanoparticles on Methane Production from Waste-Activated Sludge and Microorganism Community Shift in Anaerobic Granular Sludge

    Science.gov (United States)

    Wang, Tao; Zhang, Dong; Dai, Lingling; Chen, Yinguang; Dai, Xiaohu

    2016-05-01

    Extensive use of nanoparticles (NPs) in consumer and industrial products has led to concerns about their potential environmental impacts; however, the influences of different NPs (e.g., nZVI (nano zero-valent iron), Ag NPs, Fe2O3 NPs and MgO NPs) on the anaerobic digestion of sludge have not yet been studied in depth. Additionally, a new guideline or the use of different NPs in the anaerobic digestion of sludge should be established to improve the anaerobic digestion of sludge and avoid inhibitory effects. This study investigated the effects of four representative NPs (i.e., nZVI, Ag NPs, Fe2O3 NPs and MgO NPs) on methane production during the anaerobic digestion of waste activated sludge (WAS). The presence of 10 mg/g total suspended solids (TSS) nZVI and 100 mg/g TSS Fe2O3 NPs increased methane production to 120% and 117% of the control, respectively, whereas 500 mg/g TSS Ag NPs and 500 mg/g TSS MgO NPs generated lower levels of methane production (73.52% and 1.08% that of the control, respectively). These results showed that low concentrations of nZVI and Fe2O3 NPs promoted the amount of microbes (Bacteria and Archaea) and activities of key enzymes but that higher concentrations of Ag NPs and MgO NPs inhibited them.

  15. Potential and optimization of two-phase anaerobic digestion of oil refinery waste activated sludge and microbial community study.

    Science.gov (United States)

    Wang, Qinghong; Liang, Ying; Zhao, Peng; Li, Qing X; Guo, Shaohui; Chen, Chunmao

    2016-12-01

    Oil refinery waste activated sludge produced from oil wastewater biological treatment is a major industrial sludge. Two-phase anaerobic digestion of oil refinery waste activated sludge was studied for the first time. Thermal pretreatment under 170 °C is effective on sludge solubilization. At the optimum hydrolytic-acidogenic condition which was pH of 6.5, temperature of 55 °C and HRT of 2 days, 2754 mg/L volatile fatty acids (VFAs) were produced and acetic acid and butyric acid were the key components. Comparative studies of single-phase and two-phase anaerobic digestion in terms of organic removal, biogas production and methane concentration were conducted. The cumulative methane production and soluble COD (SCOD) removal efficiency in the two-phase system were 228 mL/g COD added and 77.8%, respectively, which were 1.6 and 2.1 times higher than those in single-phase anaerobic digestion. Such improved performance is attributed to intensification of dominant microbial population in separated reactors. Caloramator, Ureibacillus, Dechloromonas, Petrobacter, and T78 played important roles in hydrolytic-acidification and oil-organics degradation. Syntrophic bacteria in the family Porphyromonadaceae and the genus Anaerobranca provide acetate for methanogen. The results demonstrated the potential and operating condition of two-phase anaerobic digestion in treatment of oil refinery waste activated sludge.

  16. Potential and optimization of two-phase anaerobic digestion of oil refinery waste activated sludge and microbial community study

    Science.gov (United States)

    Wang, Qinghong; Liang, Ying; Zhao, Peng; Li, Qing X.; Guo, Shaohui; Chen, Chunmao

    2016-01-01

    Oil refinery waste activated sludge produced from oil wastewater biological treatment is a major industrial sludge. Two-phase anaerobic digestion of oil refinery waste activated sludge was studied for the first time. Thermal pretreatment under 170 °C is effective on sludge solubilization. At the optimum hydrolytic-acidogenic condition which was pH of 6.5, temperature of 55 °C and HRT of 2 days, 2754 mg/L volatile fatty acids (VFAs) were produced and acetic acid and butyric acid were the key components. Comparative studies of single-phase and two-phase anaerobic digestion in terms of organic removal, biogas production and methane concentration were conducted. The cumulative methane production and soluble COD (SCOD) removal efficiency in the two-phase system were 228 mL/g COD added and 77.8%, respectively, which were 1.6 and 2.1 times higher than those in single-phase anaerobic digestion. Such improved performance is attributed to intensification of dominant microbial population in separated reactors. Caloramator, Ureibacillus, Dechloromonas, Petrobacter, and T78 played important roles in hydrolytic-acidification and oil-organics degradation. Syntrophic bacteria in the family Porphyromonadaceae and the genus Anaerobranca provide acetate for methanogen. The results demonstrated the potential and operating condition of two-phase anaerobic digestion in treatment of oil refinery waste activated sludge. PMID:27905538

  17. Cultivating microbial dark matter in benzene-degrading methanogenic consortia.

    Science.gov (United States)

    Luo, Fei; Devine, Cheryl E; Edwards, Elizabeth A

    2016-09-01

    The microbes responsible for anaerobic benzene biodegradation remain poorly characterized. In this study, we identified and quantified microbial populations in a series of 16 distinct methanogenic, benzene-degrading enrichment cultures using a combination of traditional 16S rRNA clone libraries (four cultures), pyrotag 16S rRNA amplicon sequencing (11 cultures), metagenome sequencing (1 culture) and quantitative polymerase chain reaction (qPCR; 12 cultures). An operational taxonomic unit (OTU) from the Deltaproteobacteria designated ORM2 that is only 84% to 86% similar to Syntrophus or Desulfobacterium spp. was consistently identified in all enrichment cultures, and typically comprised more than half of the bacterial sequences. In addition to ORM2, a sequence belonging to Parcubacteria (candidate division OD1) identified from the metagenome data was the only other OTU common to all the cultures surveyed. Culture transfers (1% and 0.1%) were made in the presence and absence of benzene, and the abundance of ORM2, OD1 and other OTUs was tracked over 415 days using qPCR. ORM2 sequence abundance increased only when benzene was present, while the abundance of OD1 and other OTUs increased even in the absence of benzene. Deltaproteobacterium ORM2 is unequivocally the benzene-metabolizing population. This study also hints at laboratory cultivation conditions for a member of the widely distributed yet uncultivated Parcubacteria (OD1).

  18. Nanoscale zero-valent iron/persulfate enhanced upflow anaerobic sludge blanket reactor for dye removal: Insight into microbial metabolism and microbial community

    Science.gov (United States)

    Pan, Fei; Zhong, Xiaohan; Xia, Dongsheng; Yin, Xianze; Li, Fan; Zhao, Dongye; Ji, Haodong; Liu, Wen

    2017-03-01

    This study investigated the efficiency of nanoscale zero-valent iron combined with persulfate (NZVI/PS) for enhanced degradation of brilliant red X-3B in an upflow anaerobic sludge blanket (UASB) reactor, and examined the effects of NZVI/PS on anaerobic microbial communities during the treatment process. The addition of NZVI (0.5 g/L) greatly enhanced the decolourization rate of X-3B from 63.8% to 98.4%. The Biolog EcoPlateTM technique was utilized to examine microbial metabolism in the reactor, and the Illumina MiSeq high-throughput sequencing revealed 22 phyla and 88 genera of the bacteria. The largest genera (Lactococcus) decreased from 33.03% to 7.94%, while the Akkermansia genera increased from 1.69% to 20.23% according to the abundance in the presence of 0.2 g/L NZVI during the biological treatment process. Meanwhile, three strains were isolated from the sludge in the UASB reactors and identified by 16 S rRNA analysis. The distribution of three strains was consistent with the results from the Illumina MiSeq high throughput sequencing. The X-ray photoelectron spectroscopy results indicated that Fe(0) was transformed into Fe(II)/Fe(III) during the treatment process, which are beneficial for the microorganism growth, and thus promoting their metabolic processes and microbial community.

  19. Bacterial community shift for monitoring the co-composting of oil palm empty fruit bunch and palm oil mill effluent anaerobic sludge.

    Science.gov (United States)

    Zainudin, Mohd Huzairi Mohd; Ramli, Norhayati; Hassan, Mohd Ali; Shirai, Yoshihito; Tashiro, Kosuke; Sakai, Kenji; Tashiro, Yukihiro

    2017-02-14

    A recently developed rapid co-composting of oil palm empty fruit bunch (OPEFB) and palm oil mill effluent (POME) anaerobic sludge is beginning to attract attention from the palm oil industry in managing the disposal of these wastes. However, a deeper understanding of microbial diversity is required for the sustainable practice of the co-compositing process. In this study, an in-depth assessment of bacterial community succession at different stages of the pilot scale co-composting of OPEFB-POME anaerobic sludge was performed using 454-pyrosequencing, which was then correlated with the changes of physicochemical properties including temperature, oxygen level and moisture content. Approximately 58,122 of 16S rRNA gene amplicons with more than 500 operational taxonomy units (OTUs) were obtained. Alpha diversity and principal component analysis (PCoA) indicated that bacterial diversity and distributions were most influenced by the physicochemical properties of the co-composting stages, which showed remarkable shifts of dominant species throughout the process. Species related to Devosia yakushimensis and Desemzia incerta are shown to emerge as dominant bacteria in the thermophilic stage, while Planococcus rifietoensis correlated best with the later stage of co-composting. This study proved the bacterial community shifts in the co-composting stages corresponded with the changes of the physicochemical properties, and may, therefore, be useful in monitoring the progress of co-composting and compost maturity.

  20. Optimization and microbial community analysis for production of biogas from solid waste residues of palm oil mill industry by solid-state anaerobic digestion.

    Science.gov (United States)

    Suksong, Wantanasak; Kongjan, Prawit; Prasertsan, Poonsuk; Imai, Tsuyoshi; O-Thong, Sompong

    2016-08-01

    This study investigated the improvement of biogas production from solid-state anaerobic digestion (SS-AD) of oil palm biomass by optimizing of total solids (TS) contents, feedstock to inoculum (F:I) ratios and carbon to nitrogen (C:N) ratios. Highest methane yield from EFB, OPF and OPT of 358, 280 and 324m(3)CH4ton(-1)VS, respectively, was achieved at TS content of 16%, C:N ratio of 30:1 and F:I ratio of 2:1. The main contribution to methane from biomass was the degradation of cellulose and hemicellulose. The highest methane production of 72m(3)CH4ton(-1) biomass was achieved from EFB. Bacteria community structure in SS-AD process of oil palm biomass was dominated by Ruminococcus sp. and Clostridium sp., while archaea community was dominated by Methanoculleus sp. Oil palm biomass has great potential for methane production via SS-AD.

  1. Microbial community structure and diversity in an integrated system of anaerobic-aerobic reactors and a constructed wetland for the treatment of tannery wastewater in Modjo, Ethiopia.

    Directory of Open Access Journals (Sweden)

    Adey Feleke Desta

    Full Text Available A culture-independent approach was used to elucidate the microbial diversity and structure in the anaerobic-aerobic reactors integrated with a constructed wetland for the treatment of tannery wastewater in Modjo town, Ethiopia. The system has been running with removal efficiencies ranging from 94%-96% for COD, 91%-100% for SO4(2- and S(2-, 92%-94% for BOD, 56%-82% for total Nitrogen and 2%-90% for NH3-N. 16S rRNA gene clone libraries were constructed and microbial community assemblies were determined by analysis of a total of 801 unique clone sequences from all the sites. Operational Taxonomic Unit (OTU--based analysis of the sequences revealed highly diverse communities in each of the reactors and the constructed wetland. A total of 32 phylotypes were identified with the dominant members affiliated to Clostridia (33%, Betaproteobacteria (10%, Bacteroidia (10%, Deltaproteobacteria (9% and Gammaproteobacteria (6%. Sequences affiliated to the class Clostridia were the most abundant across all sites. The 801 sequences were assigned to 255 OTUs, of which 3 OTUs were shared among the clone libraries from all sites. The shared OTUs comprised 80 sequences belonging to Clostridiales Family XIII Incertae Sedis, Bacteroidetes and unclassified bacterial group. Significantly different communities were harbored by the anaerobic, aerobic and rhizosphere sites of the constructed wetland. Numerous representative genera of the dominant bacterial classes obtained from the different sample sites of the integrated system have been implicated in the removal of various carbon- containing pollutants of natural and synthetic origins. To our knowledge, this is the first report of microbial community structure in tannery wastewater treatment plant from Ethiopia.

  2. Comparison of bacterial community structure and dynamics during the thermophilic composting of different types of solid wastes: anaerobic digestion residue, pig manure and chicken manure.

    Science.gov (United States)

    Song, Caihong; Li, Mingxiao; Jia, Xuan; Wei, Zimin; Zhao, Yue; Xi, Beidou; Zhu, Chaowei; Liu, Dongming

    2014-09-01

    This study investigated the impact of composting substrate types on the bacterial community structure and dynamics during composting processes. To this end, pig manure (PM), chicken manure (CM), a mixture of PM and CM (PM + CM), and a mixture of PM, CM and anaerobic digestion residue (ADR) (PM + CM + ADR) were selected for thermophilic composting. The bacterial community structure and dynamics during the composting process were detected and analysed by polymerase chain reaction-denaturing gradient gel electrophoresis (DGGE) coupled with a statistic analysis. The physical-chemical analyses indicated that compared to single-material composting (PM, CM), co-composting (PM + CM, PM + CM + ADR) could promote the degradation of organic matter and strengthen the ability of conserving nitrogen. A DGGE profile and statistical analysis demonstrated that co-composting, especially PM + CM + ADR, could improve the bacterial community structure and functional diversity, even in the thermophilic stage. Therefore, co-composting could weaken the screening effect of high temperature on bacterial communities. Dominant sequencing analyses indicated a dramatic shift in the dominant bacterial communities from single-material composting to co-composting. Notably, compared with PM, PM + CM increased the quantity of xylan-degrading bacteria and reduced the quantity of human pathogens.

  3. Reductive dechlorination of hexachlorocyclohexane (HCH) isomers in soil under anaerobic conditions

    NARCIS (Netherlands)

    Middeldorp, P.J.M.; Doesburg, van W.C.J.; Schraa, G.; Stams, A.J.M.

    2005-01-01

    The biological anaerobic reductive dechlorination of -hexachlorocyclohexane under methanogenic conditions was tested in a number of contaminated soil samples from two locations in the Netherlands. Soils from a heavily polluted location showed rapid dechlorination of -hexachlorocyclohexane to benzene

  4. Biogas production from protein-rich biomass: fed-batch anaerobic fermentation of casein and of pig blood and associated changes in microbial community composition.

    Directory of Open Access Journals (Sweden)

    Etelka Kovács

    Full Text Available It is generally accepted as a fact in the biogas technology that protein-rich biomass substrates should be avoided due to inevitable process inhibition. Substrate compositions with a low C/N ratio are considered difficult to handle and may lead to process failure, though protein-rich industrial waste products have outstanding biogas generation potential. This common belief has been challenged by using protein-rich substrates, i.e. casein and precipitated pig blood protein in laboratory scale continuously stirred mesophilic fed-batch biogas fermenters. Both substrates proved suitable for sustained biogas production (0.447 L CH4/g protein oDM, i.e. organic total solids in high yield without any additives, following a period of adaptation of the microbial community. The apparent key limiting factors in the anaerobic degradation of these proteinaceous materials were the accumulation of ammonia and hydrogen sulfide. Changes in time in the composition of the microbiological community were determined by next-generation sequencing-based metagenomic analyses. Characteristic rearrangements of the biogas-producing community upon protein feeding and specific differences due to the individual protein substrates were recognized. The results clearly demonstrate that sustained biogas production is readily achievable, provided the system is well-characterized, understood and controlled. Biogas yields (0.45 L CH4/g oDM significantly exceeding those of the commonly used agricultural substrates (0.25-0.28 L CH4/g oDM were routinely obtained. The results amply reveal that these high-energy-content waste products can be converted to biogas, a renewable energy carrier with flexible uses that can replace fossil natural gas in its applications. Process control, with appropriate acclimation of the microbial community to the unusual substrate, is necessary. Metagenomic analysis of the microbial community by next-generation sequencing allows a precise determination of the

  5. Biogas production from protein-rich biomass: fed-batch anaerobic fermentation of casein and of pig blood and associated changes in microbial community composition.

    Science.gov (United States)

    Kovács, Etelka; Wirth, Roland; Maróti, Gergely; Bagi, Zoltán; Rákhely, Gábor; Kovács, Kornél L

    2013-01-01

    It is generally accepted as a fact in the biogas technology that protein-rich biomass substrates should be avoided due to inevitable process inhibition. Substrate compositions with a low C/N ratio are considered difficult to handle and may lead to process failure, though protein-rich industrial waste products have outstanding biogas generation potential. This common belief has been challenged by using protein-rich substrates, i.e. casein and precipitated pig blood protein in laboratory scale continuously stirred mesophilic fed-batch biogas fermenters. Both substrates proved suitable for sustained biogas production (0.447 L CH4/g protein oDM, i.e. organic total solids) in high yield without any additives, following a period of adaptation of the microbial community. The apparent key limiting factors in the anaerobic degradation of these proteinaceous materials were the accumulation of ammonia and hydrogen sulfide. Changes in time in the composition of the microbiological community were determined by next-generation sequencing-based metagenomic analyses. Characteristic rearrangements of the biogas-producing community upon protein feeding and specific differences due to the individual protein substrates were recognized. The results clearly demonstrate that sustained biogas production is readily achievable, provided the system is well-characterized, understood and controlled. Biogas yields (0.45 L CH4/g oDM) significantly exceeding those of the commonly used agricultural substrates (0.25-0.28 L CH4/g oDM) were routinely obtained. The results amply reveal that these high-energy-content waste products can be converted to biogas, a renewable energy carrier with flexible uses that can replace fossil natural gas in its applications. Process control, with appropriate acclimation of the microbial community to the unusual substrate, is necessary. Metagenomic analysis of the microbial community by next-generation sequencing allows a precise determination of the alterations in

  6. Study of anaerobic ammonium oxidation bacterial community in the aged refuse bioreactor with 16S rRNA gene library technique.

    Science.gov (United States)

    Wang, Chao; Xie, Bing; Han, Lu; Xu, Xiaofan

    2013-10-01

    In order to investigate the anaerobic ammonium-oxidation (Anammox) nitrogen removal pathway of the aged refuse bioreactor treating landfill leachate, a lab-scale bioreactor was established and run for 35 weeks, the performance of the bioreactor and its bacterial community structure of Planctomycetes were analyzed. The results showed that the average TN removal rate of landfill leachate could be reached to 89%. 16S rRNA gene library of Planctomycetes revealed that Anammox sequences accounted for 28.3% of the total Planctomycetes sequences in the bioreactor, and previously recognized Anammox bacterium Candidatus Kuenenia stuttgartiensis was the only detected Anammox species in the reactor. It was also found that Anammox bacteria distributed at different sites of the bioreactor while mostly concentrated in the middle and low-middle part. Results above confirmed that Anammox process could happen in aged refuse bioreactor treating landfill leachate and provided an alternative nitrogen removal pathway in practical landfills.

  7. Pyrosequencing of mcrA and archaeal 16S rRNA genes reveals diversity and substrate preferences of methanogen communities in anaerobic digesters.

    Science.gov (United States)

    Wilkins, David; Lu, Xiao-Ying; Shen, Zhiyong; Chen, Jiapeng; Lee, Patrick K H

    2015-01-01

    Methanogenic archaea play a key role in biogas-producing anaerobic digestion and yet remain poorly taxonomically characterized. This is in part due to the limitations of low-throughput Sanger sequencing of a single (16S rRNA) gene, which in the past may have undersampled methanogen diversity. In this study, archaeal communities from three sludge digesters in Hong Kong and one wastewater digester in China were examined using high-throughput pyrosequencing of the methyl coenzyme M reductase (mcrA) and 16S rRNA genes. Methanobacteriales, Methanomicrobiales, and Methanosarcinales were detected in each digester, indicating that both hydrogenotrophic and acetoclastic methanogenesis was occurring. Two sludge digesters had similar community structures, likely due to their similar design and feedstock. Taxonomic classification of the mcrA genes suggested that these digesters were dominated by acetoclastic methanogens, particularly Methanosarcinales, while the other digesters were dominated by hydrogenotrophic Methanomicrobiales. The proposed euryarchaeotal order Methanomassiliicoccales and the uncultured WSA2 group were detected with the 16S rRNA gene, and potential mcrA genes for these groups were identified. 16S rRNA gene sequencing also recovered several crenarchaeotal groups potentially involved in the initial anaerobic digestion processes. Overall, the two genes produced different taxonomic profiles for the digesters, while greater methanogen richness was detected using the mcrA gene, supporting the use of this functional gene as a complement to the 16S rRNA gene to better assess methanogen diversity. A significant positive correlation was detected between methane production and the abundance of mcrA transcripts in digesters treating sludge and wastewater samples, supporting the mcrA gene as a biomarker for methane yield.

  8. Effects of hydrogen and acetate on benzene mineralisation under sulphate-reducing conditions.

    Science.gov (United States)

    Rakoczy, Jana; Schleinitz, Kathleen M; Müller, Nicolai; Richnow, Hans H; Vogt, Carsten

    2011-08-01

    Syntrophic mineralisation of benzene, as recently proposed for a sulphate-reducing enrichment culture, was tested in product inhibition experiments with acetate and hydrogen, both putative intermediates of anaerobic benzene fermentation. Using [(13)C(6)]-benzene enabled tracking the inhibition of benzene mineralisation sensitively by analysis of (13)CO(2). In noninhibited cultures, hydrogen was detected at partial pressures of 2.4 × 10(-6) ± 1.5 × 10(-6) atm. Acetate was detected at concentrations of 17 ± 2 μM. Spiking with 0.1 atm hydrogen produced a transient inhibitory effect on (13)CO(2) formation. In cultures spiked with higher amounts of hydrogen, benzene mineralisation did not restart after hydrogen consumption, possibly due to the toxic effects of the sulphide produced. An inhibitory effect was also observed when acetate was added to the cultures (0.3, 3.5 and 30 mM). Benzene mineralisation resumed after acetate was degraded to concentrations found in noninhibited cultures, indicating that acetate is another key intermediate in anaerobic benzene mineralisation. Although benzene mineralisation by a single sulphate reducer cannot be ruled out, our results strongly point to an involvement of syntrophic interactions in the process. Thermodynamic calculations revealed that, under in situ conditions, benzene fermentation to hydrogen and acetate yielded a free energy change of ΔG'=-83.1 ± 5.6 kJ mol(-1). Benzene mineralisation ceased when ΔG' values declined below -61.3 ± 5.3 kJ mol(-1) in the presence of acetate, indicating that ATP-consuming reactions are involved in the pathway.

  9. In vitro Characterization of Phenylacetate Decarboxylase, a Novel Enzyme Catalyzing Toluene Biosynthesis in an Anaerobic Microbial Community.

    Science.gov (United States)

    Zargar, K; Saville, R; Phelan, R M; Tringe, S G; Petzold, C J; Keasling, J D; Beller, H R

    2016-08-10

    Anaerobic bacterial biosynthesis of toluene from phenylacetate was reported more than two decades ago, but the biochemistry underlying this novel metabolism has never been elucidated. Here we report results of in vitro characterization studies of a novel phenylacetate decarboxylase from an anaerobic, sewage-derived enrichment culture that quantitatively produces toluene from phenylacetate; complementary metagenomic and metaproteomic analyses are also presented. Among the noteworthy findings is that this enzyme is not the well-characterized clostridial p-hydroxyphenylacetate decarboxylase (CsdBC). However, the toluene synthase under study appears to be able to catalyze both phenylacetate and p-hydroxyphenylacetate decarboxylation. Observations suggesting that phenylacetate and p-hydroxyphenylacetate decarboxylation in complex cell-free extracts were catalyzed by the same enzyme include the following: (i) the specific activity for both substrates was comparable in cell-free extracts, (ii) the two activities displayed identical behavior during chromatographic separation of cell-free extracts, (iii) both activities were irreversibly inactivated upon exposure to O2, and (iv) both activities were similarly inhibited by an amide analog of p-hydroxyphenylacetate. Based upon these and other data, we hypothesize that the toluene synthase reaction involves a glycyl radical decarboxylase. This first-time study of the phenylacetate decarboxylase reaction constitutes an important step in understanding and ultimately harnessing it for making bio-based toluene.

  10. Study on the bio-methane yield and microbial community structure in enzyme enhanced anaerobic co-digestion of cow manure and corn straw.

    Science.gov (United States)

    Wang, Xuemei; Li, Zifu; Zhou, Xiaoqin; Wang, Qiqi; Wu, Yanga; Saino, Mayiani; Bai, Xue

    2016-11-01

    The use of enzymes to improve anaerobic co-digestion (AcoD) of cow manure and corn straw was explored in this study, including cellulase pretreatment and direct additions of amylase and protease. The effects of enzymes on microbial community structure were investigated though PCR-DGGE method. Results showed that AcoD with amylase achieved the highest methane yield of 377.63ml·CH4/g·VS, which was an increase of 110.79%. The methane increment consumed the amylase of 4.18×10(-5)g/ml·CH4. Enzymes mainly affected the bacteria in the hydrolysis stage rather than the bacteria in the hydrogenesis and acetogenesis stage and the archaea in the methanogenesis stage. However, the experimental results demonstrated that enzymes had no negative influence on microbial communities; the predominant microbial communities were similar. Therefore, AcoD with amylase was an effective way to improve the bio-methane yield of cow manure and corn straw.

  11. Impact of Anaerobic Phenanthrene Biodegradation on Bacterial and Archaeal Communities%菲厌氧降解对细菌和古细菌群落的影响

    Institute of Scientific and Technical Information of China (English)

    张书颖; 谢曙光

    2011-01-01

    利用TRFLP技术研究了受垃圾渗滤液污染的地下沉积物中细菌和古细菌群落在菲厌氧降解前后的变化。结果表明:细菌群落在生物降解过程中变化很大,物种丰度及Shannon-Weiner指数分别由15和2.39增加到23和2.88;古细菌群落在生物降解过程中变化较小,物种丰度及Shannon-Weiner指数变化不大。%Terminal restriction fragment length polymorphism(TRFLP) was used to investigate the change of bacterial and archaeal communities in leachate-contaminated aquifer in response to anaerobic phenanthrene biodegradation.Results show that a great change in bacterial community occurred with phenanthrene biodegradation.The ribotype and Shannon-Weiner index increase from 15 to 23,and 2.39 to 2.88 respectively.However,archaeal community only shows an insignificant change with phenanthrene biodegradation,and ribotype and Shannon-Weiner index vary slightly.

  12. Anaerobic bacteria

    Science.gov (United States)

    Brook I, Goldstein EJ. Diseases caused by non-spore forming anaerobic bacteria. In: Goldman L, Schafer AI, eds. Goldman's Cecil Medicine . 25th ed. Philadelphia, PA: Elsevier Saunders; 2015:chap 297. Stedman's Online ...

  13. Economic viability of anaerobic digestion

    Energy Technology Data Exchange (ETDEWEB)

    Wellinger, A. [INFOENERGIE, Ettenhausen (Switzerland)

    1996-01-01

    The industrial application of anaerobic digestion is a relatively new, yet proven waste treatment technology. Anaerobic digestion reduces and upgrades organic waste, and is a good way to control air pollution as it reduces methane and nitrous gas emissions. For environmental and energy considerations, anaerobic digestion is a nearly perfect waste treatment process. However, its economic viability is still in question. A number of parameters - type of waste (solid or liquid), digester system, facility size, product quality and end use, environmental requirements, cost of alternative treatments (including labor), and interest rates - define the investment and operating costs of an anaerobic digestion facility. Therefore, identical facilities that treat the same amount and type of waste may, depending on location, legislation, and end product characteristics, reveal radically different costs. A good approach for evaluating the economics of anaerobic digestion is to compare it to treatment techniques such as aeration or conventional sewage treatment (for industrial wastewater), or composting and incineration (for solid organic waste). For example, the cost (per ton of waste) of in-vessel composting with biofilters is somewhat higher than that of anaerobic digestion, but the investment costs 1 1/2 to 2 times more than either composting or anaerobic digestion. Two distinct advantages of anaerobic digestion are: (1) it requires less land than either composting or incinerating, which translates into lower costs and milder environmental and community impacts (especially in densely populated areas); and (2) it produces net energy, which can be used to operate the facility or sold to nearby industries.

  14. Succession of lignocellulolytic bacterial consortia bred anaerobically from lake sediment

    NARCIS (Netherlands)

    Korenblum, Elisa; Jiménez Avella, Diego; van Elsas, Jan

    2016-01-01

    Anaerobic bacteria degrade lignocellulose in various anoxic and organically rich environments, often in a syntrophic process. Anaerobic enrichments of bacterial communities on a recalcitrant lignocellulose source were studied combining polymerase chain reaction–denaturing gradient gel electrophoresi

  15. Anaerobic digestion of manure and mixture of manure with lipids: biogas reactor performance and microbial community analysis

    DEFF Research Database (Denmark)

    Mladenovska, Zuzana; Dabrowski, Slawomir; Ahring, Birgitte Kiær

    2003-01-01

    Anaerobic digestion of cattle manure and a mixture of cattle manure with glycerol trioleate (GTO) was studied in lab-scale, continuously stirred tank reactors (CSTR) operated at 37degreesC. The reactor. codigesting manure and lipids exhibited a significantly higher specific methane yield...... and a higher removal of VS than the reactor treating manure. Microbial population analysis done by cultivation - most probable number (MPN) test and specific methanogenic activity (SMA) measurement, revealed higher MPN and increased SMA of methanogenic populations of biomass from the reactor codigesting manure...... and lipids. Spatial microbial distribution and activity was studied in digested materials fractionated into size of particles > 200 mum, 50-200 mum and 0.45-50 mum. With manure, the main pool of methanogenic activity from propionate, butyrate and hydrogen was associated with the particles > 200 mum, while...

  16. Effect of iron-manganese-sepiolite as heterogeneous Fenton-like catalyst on the performance and microbial community of anaerobic granular sludge treatment system.

    Science.gov (United States)

    Su, Chengyuan; Li, Weiguang; Chen, Menglin; Huang, Zhi; Wu, Lei

    2016-01-01

    Both short-term and long-term exposure experiments have been carried out to investigate the influence of iron (Fe)-manganese (Mn)-sepiolite, as a heterogeneous Fenton-like catalyst, on the performance and microbial community of anaerobic granular sludge. During the short-term exposure experiments, chemical oxygen demand (COD) removal efficiency decreased from 73.1% to 64.1% with the presence of 100mg/L of catalyst. However, long-term exposure to the catalyst did not significantly affect the COD removal efficiency (81.8%) as compared to the control (83.5%). Meanwhile, the absorption peaks of coenzyme F420 in extracellular polymeric substances (EPS) of sludge samples were remarkable by excitation-emission matrix (EEM) fluorescence spectra. After long-term exposure, the presence of the catalyst increased secretions of EPS from 83.7mg/g VSS to 89.1mg/g VSS. Further investigations with high throughput sequencing indicated that the abundance of Methanosaeta increased from 57.7% to 70.4% after long-term exposure. In bacterial communities, Proteobacteria, Firmicutes, and Synergistetes were predominant.

  17. Study of microbial community and biodegradation efficiency for single- and two-phase anaerobic co-digestion of brown water and food waste.

    Science.gov (United States)

    Lim, J W; Chen, C-L; Ho, I J R; Wang, J-Y

    2013-11-01

    The objective of this work was to study the microbial community and reactor performance for the anaerobic co-digestion of brown water and food waste in single- and two-phase continuously stirred tank reactors (CSTRs). Bacterial and archaeal communities were analyzed after 150 days of reactor operation. As compared to single-phase CSTR, methane production in two-phase CSTR was found to be 23% higher. This was likely due to greater extent of solubilization and acidification observed in the latter. These findings could be attributed to the predominance of Firmicutes and greater bacterial diversity in two-phase CSTR, and the lack of Firmicutes in single-phase CSTR. Methanosaeta was predominant in both CSTRs and this correlated to low levels of acetate in their effluent. Insights gained from this study would enhance the understanding of microorganisms involved in co-digestion of brown water and food waste as well as the complex biochemical interactions promoting digester stability and performance.

  18. Microbial community adaptation influences long-chain fatty acid conversion during anaerobic codigestion of fats, oils, and grease with municipal sludge.

    Science.gov (United States)

    Ziels, Ryan M; Karlsson, Anna; Beck, David A C; Ejlertsson, Jörgen; Yekta, Sepehr Shakeri; Bjorn, Annika; Stensel, H David; Svensson, Bo H

    2016-10-15

    Codigesting fats, oils, and greases with municipal wastewater sludge can greatly improve biomethane recovery at wastewater treatment facilities. Process loading rates of fats, oils, and greases have been previously tested with little knowledge of the digester microbial community structure, and high transient fat loadings have led to long chain fatty acid (LCFA) accumulation and digester upsets. This study utilized recently-developed quantitative PCR assays for syntrophic LCFA-degrading bacteria along with 16S amplicon sequencing to relate changes in microbial community structure to LCFA accumulation during transient loading increases to an anaerobic codigester receiving waste restaurant oil and municipal wastewater sludge. The 16S rRNA gene concentration of the syntrophic β-oxidizing genus Syntrophomonas increased to ∼15% of the Bacteria community in the codigester, but stayed below 3% in the control digester that was fed only wastewater sludge. Methanosaeta and Methanospirillum were the dominant methanogenic genera enriched in the codigester, and together comprised over 80% of the Archaea community by the end of the experimental period. Constrained ordination showed that changes in the codigester Bacteria and Archaea community structures were related to measures of digester performance. Notably, the effluent LCFA concentration in the codigester was positively correlated to the specific loading rate of waste oil normalized to the Syntrophomonas 16S rRNA concentration. Specific loading rates of 0-1.5 × 10(-12) g VS oil/16S gene copies-day resulted in LCFA concentrations below 30 mg/g TS, whereas LCFA accumulated up to 104 mg/g TS at higher transient loading rates. Based on the community-dependent loading limitations found, enhanced biomethane production from high loadings of fats, oils and greases can be achieved by promoting a higher biomass of slow-growing syntrophic consortia, such as with longer digester solids retention times. This work also

  19. Organic loading rate impact on biohydrogen production and microbial communities at anaerobic fluidized thermophilic bed reactors treating sugarcane stillage.

    Science.gov (United States)

    Santos, Samantha Christine; Rosa, Paula Rúbia Ferreira; Sakamoto, Isabel Kimiko; Varesche, Maria Bernadete Amâncio; Silva, Edson Luiz

    2014-05-01

    This study aimed to evaluate the effect of high organic loading rates (OLR) (60.0-480.00 kg COD m(-3)d(-1)) on biohydrogen production at 55°C, from sugarcane stillage for 15,000 and 20,000 mg CODL(-1), in two anaerobic fluidized bed reactors (AFBR1 and AFBR2). It was obtained, for H2 yield and content, a decreasing trend by increasing the OLR. The maximum H2 yield was observed in AFBR1 (2.23 mmol g COD added(-1)). The volumetric H2 production was proportionally related to the applied hydraulic retention time (HRT) of 6, 4, 2 and 1h and verified in AFBR1 the highest value (1.49 L H2 h(-1)L(-1)). Among the organic acids obtained, there was a predominance of lactic acid (7.5-22.5%) and butyric acid (9.4-23.8%). The microbial population was set with hydrogen-producing fermenters (Megasphaera sp.) and other organisms (Lactobacillus sp.).

  20. Fuel Dependence of Benzene Pathways

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, H; Eddings, E; Sarofim, A; Westbrook, C

    2008-07-14

    The relative importance of formation pathways for benzene, an important precursor to soot formation, was determined from the simulation of 22 premixed flames for a wide range of equivalence ratios (1.0 to 3.06), fuels (C{sub 1}-C{sub 12}), and pressures (20 to 760 torr). The maximum benzene concentrations in 15 out of these flames were well reproduced within 30% of the experimental data. Fuel structural properties were found to be critical for benzene production. Cyclohexanes and C{sub 3} and C{sub 4} fuels were found to be among the most productive in benzene formation; and long-chain normal paraffins produce the least amount of benzene. Other properties, such as equivalence ratio and combustion temperatures, were also found to be important in determining the amount of benzene produced in flames. Reaction pathways for benzene formation were examined critically in four premixed flames of structurally different fuels of acetylene, n-decane, butadiene, and cyclohexane. Reactions involving precursors, such as C{sub 3} and C{sub 4} species, were examined. Combination reactions of C{sub 3} species were identified to be the major benzene formation routes with the exception of the cyclohexane flame, in which benzene is formed exclusively from cascading fuel dehydrogenation via cyclohexene and cyclohexadiene intermediates. Acetylene addition makes a minor contribution to benzene formation, except in the butadiene flame where C{sub 4}H{sub 5} radicals are produced directly from the fuel, and in the n-decane flame where C{sub 4}H{sub 5} radicals are produced from large alkyl radical decomposition and H atom abstraction from the resulting large olefins.

  1. Methanogenic community development in anaerobic granular bioreactors treating trichloroethylene (TCE)-contaminated wastewater at 37 °C and 15 °C.

    Science.gov (United States)

    Siggins, Alma; Enright, Anne-Marie; O'Flaherty, Vincent

    2011-04-01

    Four expanded granular sludge bed (EGSB) bioreactors were seeded with a mesophilically-grown granular sludge and operated in duplicate for mesophilic (37 °C; R1 & R2) and low- (15°; R3 & R4) temperature treatment of a synthetic volatile fatty acid (VFA) based wastewater (3 kg COD m(-3) d(-1)) with one of each pair (R1 & R3) supplemented with increasing concentrations of trichloroethylene (TCE; 10, 20, 40, 60 mg l(-1)) and one acting as a control. Bioreactor performance was evaluated by % COD removal efficiency and % biogas methane (CH(4)) content. Quantitative Polymerase Chain Reaction (qPCR) was used to investigate the methanogenic community composition and dynamics in the bioreactors during the trial, while specific methanogenic activity (SMA) and toxicity assays were utilized to investigate the activity and TCE/dichloroethylene (DCE) toxicity thresholds of key trophic groups, respectively. At both 37 °C and 15 °C, TCE levels of 60 mg l(-1) resulted in the decline of % COD removal efficiencies to 29% (Day 235) and 37% (Day 238), respectively, and in % biogas CH(4) to 54% (Day 235) and 5% (Day 238), respectively. Despite the inhibitory effect of TCE on the anaerobic digestion process, the main drivers influencing methanogenic community development, as determined by qPCR and Non-metric multidimensional scaling analysis, were (i) wastewater composition and (ii) operating temperature. At the apical TCE concentration both SMA and qPCR of methanogenic archaea suggested that acetoclastic methanogens were somewhat inhibited by the presence of TCE and/or its degradation derivatives, while competition by dechlorinating organisms may have limited the availability of H(2) for hydrogenotrophic methanogenesis. In addition, there appeared to be an inverse correlation between SMA levels and TCE tolerance, a finding that was supported by the analysis of the inhibitory effect of TCE on two additional biomass sources. The results indicate that low-temperature anaerobic

  2. Establishment and metabolic analysis of a model microbial community for understanding trophic and electron accepting interactions of subsurface anaerobic environments

    Directory of Open Access Journals (Sweden)

    Yang Zamin K

    2010-05-01

    Full Text Available Abstract Background Communities of microorganisms control the rates of key biogeochemical cycles, and are important for biotechnology, bioremediation, and industrial microbiological processes. For this reason, we constructed a model microbial community comprised of three species dependent on trophic interactions. The three species microbial community was comprised of Clostridium cellulolyticum, Desulfovibrio vulgaris Hildenborough, and Geobacter sulfurreducens and was grown under continuous culture conditions. Cellobiose served as the carbon and energy source for C. cellulolyticum, whereas D. vulgaris and G. sulfurreducens derived carbon and energy from the metabolic products of cellobiose fermentation and were provided with sulfate and fumarate respectively as electron acceptors. Results qPCR monitoring of the culture revealed C. cellulolyticum to be dominant as expected and confirmed the presence of D. vulgaris and G. sulfurreducens. Proposed metabolic modeling of carbon and electron flow of the three-species community indicated that the growth of C. cellulolyticum and D. vulgaris were electron donor limited whereas G. sulfurreducens was electron acceptor limited. Conclusions The results demonstrate that C. cellulolyticum, D. vulgaris, and G. sulfurreducens can be grown in coculture in a continuous culture system in which D. vulgaris and G. sulfurreducens are dependent upon the metabolic byproducts of C. cellulolyticum for nutrients. This represents a step towards developing a tractable model ecosystem comprised of members representing the functional groups of a trophic network.

  3. Quantitative microbiological analysis of bacterial community shifts in a high-rate anaerobic bioreactor treating sulfite evaporator condensate.

    Science.gov (United States)

    Ney, U; Macario, A J; Conway de Macario, E; Aivasidis, A; Schoberth, S M; Sahm, H

    1990-08-01

    The bacterial population of a high-rate, anaerobic, fixed-bed loop reactor treating sulfite evaporator condensate from the pulp industry was studied over a 14-month period. This period was divided into seven cycles that included a startup at the beginning of each cycle. Some 82% of the total biomass was immobilized on and between the porous glass rings filling the reactor. The range of the total number of microorganisms in these biofilms was 2 x 10 to 7 x 10 cells per ml. Enumeration and characterization by microbiological methods and by phase-contrast, epifluorescence, and electron microscopy showed that the samples consisted mainly of the following methanogens: a Methanobacterium sp., a Methanosarcina sp., a Methanobrevibacter sp., and a Methanothrix sp., as well as furfural-degrading sulfate-reducing bacteria resembling Desulfovibrio furfuralis. Viable counts of hydrogenotrophic methanogens were relatively stable (mostly within the range of 3.2 x 10 to 7.5 x 10 cells per ml), but Methanobrevibacter cells increased from fixed bed into a second reactor vessel. Acetotrophic methanogens reached their highest numbers of 1.3 x 10 to 2.6 x 10 cells per ml in the last fermentation cycles. They showed a morphological shift from sarcinalike packets in early samples to single coccoid forms in later phases of the fermentation. Furfural-degrading sulfate reducers reached counts of 1 x 10 to 5.8 x 10 cells per ml. The distribution of the chief metabolic groups between free fluid and biofilms was analyzed in the fifth fermentation cycle: 4.5 times more furfural degraders were found in the free fluid than in the biofilms. In contrast, 5.8 times more acetotrophic and 16.6 times more hydrogenotrophic methanogens were found in the biofilms than in the free liquid. The data concerning time shifts of morphotypes among the trophic groups of methanogens corroborated the trends observed by using immunological assays on the same samples.

  4. Quantitative analysis of a high-rate hydrogen-producing microbial community in anaerobic agitated granular sludge bed bioreactors using glucose as substrate.

    Science.gov (United States)

    Hung, Chun-Hsiung; Lee, Kuo-Shing; Cheng, Lu-Hsiu; Huang, Yu-Hsin; Lin, Ping-Jei; Chang, Jo-Shu

    2007-06-01

    Fermentative H(2) production microbial structure in an agitated granular sludge bed bioreactor was analyzed using fluorescence in situ hybridization (FISH) and polymerase chain reaction-denatured gradient gel electrophoresis (PCR-DGGE). This hydrogen-producing system was operated at four different hydraulic retention times (HRTs) of 4, 2, 1, and 0.5 h and with an influent glucose concentration of 20 g chemical oxygen demand/l. According to the PCR-DGGE analysis, bacterial community structures were mainly composed of Clostridium sp. (possibly Clostridium pasteurianum), Klebsiella oxytoca, and Streptococcus sp. Significant increase of Clostridium/total cell ratio (68%) was observed when the reactor was operated under higher influent flow rate. The existence of Streptococcus sp. in the reactor became more important when operated under a short HRT as indicated by the ratio of Streptococcus probe-positive cells to Clostridium probe-positive cells changing from 21% (HRT 4 h) to 38% (HRT 0.5 h). FISH images suggested that Streptococcus cells probably acted as seeds for self-flocculated granule formation. Furthermore, combining the inspections with hydrogen production under different HRTs and their corresponding FISH analysis indicated that K. oxytoca did not directly contribute to H(2) production but possibly played a role in consuming O(2) to create an anaerobic environment for the hydrogen-producing Clostridium.

  5. Impact of aluminum chloride on process performance and microbial community structure of granular sludge in an upflow anaerobic sludge blanket reactor for natural rubber processing wastewater treatment.

    Science.gov (United States)

    Thanh, Nguyen Thi; Watari, Takahiro; Thao, Tran Phuong; Hatamoto, Masashi; Tanikawa, Daisuke; Syutsubo, Kazuaki; Fukuda, Masao; Tan, Nguyen Minh; Anh, To Kim; Yamaguchi, Takashi; Huong, Nguyen Lan

    In this study, granular sludge formation was carried out using an aluminum chloride supplement in an upflow anaerobic sludge blanket (UASB) reactor treating natural rubber processing wastewater. Results show that during the first 75 days after the start-up of the UASB reactor with an organic loading rate (OLR) of 2.65 kg-COD·m(-3)·day(-1), it performed stably with a removal of 90% of the total chemical oxygen demand (COD) and sludge still remained in small dispersed flocs. However, after aluminum chloride was added at a concentration of 300 mg·L(-1) and the OLR range was increased up to 5.32 kg-COD·m(-3)·day(-1), the total COD removal efficiency rose to 96.5 ± 2.6%, with a methane recovery rate of 84.9 ± 13.4%, and the flocs began to form granules. Massively parallel 16S rRNA gene sequencing of the sludge retained in the UASB reactor showed that total sequence reads of Methanosaeta sp. and Methanosarcina sp., reported to be the key organisms for granulation, increased after 311 days of operation. This indicates that the microbial community structure of the retained sludge in the UASB reactor at the end of the experiment gave a good account of itself in not only COD removal, but also granule formation.

  6. Changes in microbial community during hydrogen and methane production in two-stage thermophilic anaerobic co-digestion process from biowaste.

    Science.gov (United States)

    Zahedi, S; Solera, R; Micolucci, F; Cavinato, C; Bolzonella, D

    2016-03-01

    In this paper, the microbial community in a two-phase thermophilic anaerobic co-digestion process was investigated for its role in hydrogen and methane production, treating waste activated sludge and treating the organic fraction of municipal solid waste. In the acidogenic phase, in which hydrogen is produced, Clostridium sp. clusters represented 76% of total Firmicutes. When feeding the acidogenic effluent into the methanogenic reactors, these acidic conditions negatively influenced methanogenic microorganisms: Methanosaeta sp., (Methanobacteriales, Methanomicrobiales, Methanococcales) decreased by 75%, 50%, 38% and 52%, respectively. At the same time, methanogenic digestion lowered the numbers of Clostridium sp. clusters due to both pH increasing and substrate reduction, and an increase in both Firmicutes genera (non Clostridium) and methanogenic microorganisms, especially Methanosaeta sp. (208%). This was in accordance with the observed decrease in acetic (98%) and butyric (100%) acid contents. To ensure the activity of the acetate-utilizing methanogens (AUM) and the acetogens, high ratios of H2-utilizing methanogens (HUM)/AUM (3.6) were required.

  7. Improved Monitoring of Semi-Continuous Anaerobic Digestion of Sugarcane Waste: Effects of Increasing Organic Loading Rate on Methanogenic Community Dynamics

    Directory of Open Access Journals (Sweden)

    Athaydes Francisco Leite

    2015-09-01

    Full Text Available The anaerobic digestion of filter cake and its co-digestion with bagasse, and the effect of gradual increase of the organic loading rate (OLR from start-up to overload were investigated. Understanding the influence of environmental and technical parameters on the development of particular methanogenic pathway in the biogas process was an important aim for the prediction and prevention of process failure. The rapid accumulation of volatile organic acids at high OLR of 3.0 to 4.0 gvs·L−1·day−1 indicated strong process inhibition. Methanogenic community dynamics of the reactors was monitored by stable isotope composition of biogas and molecular biological analysis. A potential shift toward the aceticlastic methanogenesis was observed along with the OLR increase under stable reactor operating conditions. Reactor overloading and process failure were indicated by the tendency to return to a predominance of hydrogenotrophic methanogenesis with rising abundances of the orders Methanobacteriales and Methanomicrobiales and drop of the genus Methanosarcina abundance.

  8. Improved Monitoring of Semi-Continuous Anaerobic Digestion of Sugarcane Waste: Effects of Increasing Organic Loading Rate on Methanogenic Community Dynamics

    Science.gov (United States)

    Leite, Athaydes Francisco; Janke, Leandro; Lv, Zuopeng; Harms, Hauke; Richnow, Hans-Hermann; Nikolausz, Marcell

    2015-01-01

    The anaerobic digestion of filter cake and its co-digestion with bagasse, and the effect of gradual increase of the organic loading rate (OLR) from start-up to overload were investigated. Understanding the influence of environmental and technical parameters on the development of particular methanogenic pathway in the biogas process was an important aim for the prediction and prevention of process failure. The rapid accumulation of volatile organic acids at high OLR of 3.0 to 4.0 gvs·L−1·day−1 indicated strong process inhibition. Methanogenic community dynamics of the reactors was monitored by stable isotope composition of biogas and molecular biological analysis. A potential shift toward the aceticlastic methanogenesis was observed along with the OLR increase under stable reactor operating conditions. Reactor overloading and process failure were indicated by the tendency to return to a predominance of hydrogenotrophic methanogenesis with rising abundances of the orders Methanobacteriales and Methanomicrobiales and drop of the genus Methanosarcina abundance. PMID:26404240

  9. Impact of the substrate loading regime and phosphoric acid supplementation on performance of biogas reactors and microbial community dynamics during anaerobic digestion of chicken wastes.

    Science.gov (United States)

    Belostotskiy, Dmitry E; Ziganshina, Elvira E; Siniagina, Maria; Boulygina, Eugenia A; Miluykov, Vasili A; Ziganshin, Ayrat M

    2015-10-01

    This study evaluates the effects of increasing organic loading rate (OLR) and decreasing hydraulic retention time (HRT) as well as phosphoric acid addition on mesophilic reactors' performance and biogas production from chicken wastes. Furthermore, microbial community composition in reactors was characterized by a 16S rRNA gene-based pyrosequencing analysis. Each step of increasing OLR impacted on the activity of microorganisms what caused a temporary decrease in biogas production. The addition of phosphoric acid resulted in the increased biogas production with values between 361 and 447 mL g(VS)(-1) from day 61 to day 74 compared to control reactor (309-350 mL g(VS)(-1)). With reactors' operation, Bacteroidetes phylotypes were noticeably replaced with Firmicutes representatives, and significant increase of Clostridium sp. was identified. Within Euryarchaeota, Methanosarcina sp. dominated in all analyzed samples, in which high ammonium levels were detected (3.4-4.9 NH4(+)-N g L(-1)). These results can help in better understanding the anaerobic digestion process of simultaneously ammonium/phosphate-rich substrates.

  10. Analysis of trichloroethylene removal and bacterial community function based on pH-adjusted in an upflow anaerobic sludge blanket reactor.

    Science.gov (United States)

    Zhang, Ying; Hu, Miao; Li, Pengfei; Wang, Xin; Meng, Qingjuan

    2015-11-01

    The study reported the upflow anaerobic sludge blanket (UASB) reactor performance in treating wastewater containing trichloroethylene (TCE) and characterized variations of bacteria composition and structure by changing the pH from 6.0 to 8.0. A slightly acidic environment (pH < 7.0) had a greater impact on the TCE removal. Illumina pyrosequencing was applied to investigate the bacterial community changes in response to pH shifts. The results demonstrated that pH greatly influenced the dominance and presence of specific populations. The potential TCE degradation pathway in the UASB reactor was proposed. Importantly, the genus Dehalobacter which was capable of reductively dechlorinating TCE was detected, and it was not found at pH of 6.0, which presumably is the reason why the removal efficiency of TCE was the lowest (80.73 %). Through Pearson correlation analyses, the relative abundance of Dehalobacter positively correlated with TCE removal efficiency (R = 0.912). However, the relative abundance of Lactococcus negatively correlated with TCE removal efficiency according to the results from Pearson correlation analyses and redundancy analysis (RDA).

  11. The Effect of Feedstocks on Microbial Communities in Anaerobic Digesters%原料差异对厌氧消化微生物群落的影响

    Institute of Scientific and Technical Information of China (English)

    史宏伟; 邹德勋; 左剑恶; 朱保宁; 刘研萍; 李秀金

    2011-01-01

    Food waste, vegetable residue, and wheat stalk were anaerobically digested for biogas production, and the digestate were analyzed by PCR-DGGE to identify anaerobic micro-organism strains and compare the differences in microorganism communities among three feedstocks. Three hydraulic retention times( HRT) of 30 d, 20 d and 50 d for all digesters were used at the same temperature of 35±1 ℃. The digestion parameters and microbial communities were analyzed in the experiments under optimal conditions. The daily biogas yields were 756 mL· g-1VS-1, 696 mL·g-1VS-1 and 433 mL·g-1VS-1 for kitchen waste, vegetable residue, and wheat straw, respectively. The methane contents in the biogas ranged between 51.5%~55.1%. The microbial communities and the variations of bacteria and archaea in three digesters were investigated by PCR-DGGE techniques. The Shannon-Wiener index of bacteria and archaea were 3.14±0.17 and 2.11 ±0.45, respectively. The Simpson index of bacteria and archaea were 0.94±0.02 and 0.83 ±0.09, respectively. Although the bacteria species of Bacteroidetes and the archaea species of Melhanosaeta and Methanospirillum were found to be dominant in the digesters, the quantity and community strains were different for three feedstocks investigated. The findings could provide useful information for the future studies.%以餐厨垃圾、果蔬垃圾、麦秸3种不同原料分别进行厌氧消化,研究了各反应器在最佳运行条件下的消化特性和微生物群落组成.结果表明:VS产气率南高到低依次为餐厨垃圾(756.4 mL·g-1VS-1)、麦秸( 696.5 mL·g-1VS-1)和果蔬垃圾(433.5 mL·g-1VS-1),甲烷含量在51.5%-55.1%之间,利用PCR-DGGE技术系统地分析了不同原料消化系统内细菌和古菌的群落结构构成及差异.结果表明,虽然3组样品中细菌和古菌的群落存在相同的优势微生物,但其数量和群落结构差异也较为明显,细菌中以拟杆菌(Bac te ro idetes)以及古菌中甲烷鬃菌

  12. Microbial community characteristics of semi-dry anaerobic digestion with organic waste%有机生活垃圾半干发酵菌群的分布变化特征

    Institute of Scientific and Technical Information of China (English)

    于美玲; 张大雷; 李玉婷; 董晓莹; 王晓明; 寇巍

    2015-01-01

    The organic waste mainly refers to the solid waste that is generated by residents’ daily life. If the organic waste is converted into energy through anaerobic digestion, it will reduce the adverse impact on the environment and contribute to reduction in consumption of fossil fuel. Analysis of the space and time differences of various kinds of microbial community in fermentation process, plays a very important role for controlling the fermentation process effectively, understanding the fermentation stage, optimization of fermentation conditions and improving the efficiency of biogas production. This paper investigated the temporal and spatial distribution of microbial community during the semi-dry fermentation of organic waste, and studied the relationship of acid production, methane production and ammonia production using most probable number (MPN). The experiment used anaerobic fermentation under one-time charging medium temperature (37℃), and designed six sampling positions. The inoculum was biogas slurry fermented with pig manure, and the concentration was 30%, pH value was adjusted to 7.0 before anaerobic fermentation. The results showed that, in the early stage of organic waste anaerobic fermentation, large amounts of air existed in the reactor, and there was less number of anaerobic bacteria. With the formation of the anaerobic environment and rich nutrients, the number of anaerobic bacteria began to rise. The anaerobic acidification bacteria and anaerobic ammonification bacteria proliferated earliest, and the acidification bacteria was prior to reach maximum than ammonification bacteria and occupied the dominant position. The methane bacteria didn’t proliferate at the start-up phase, they enter the fast growth stage after 15 days, and the peak value was 3.24×109 mL-1 on the 25th day. In the gas peak decline period, the number of anaerobic ammonification bacteria and anaerobic acidification bacteria began to decline, however, the methane bacteria

  13. Effect of changing temperature on anaerobic hydrogen production and microbial community composition in an open-mixed culture bioreactor

    Energy Technology Data Exchange (ETDEWEB)

    Karadag, Dogan; Puhakka, Jaakko A. [Department of Chemistry and Bioengineering, Tampere University of Technology, Tampere (Finland)

    2010-10-15

    The temperature effect (37-65 C) on H{sub 2} production from glucose in an open-mixed culture bioreactor using an enrichment culture from a hot spring was studied. The dynamics of microbial communities was investigated by polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE). At 45 and 60 C the H{sub 2} production was the highest i.e. 1.71 and 0.85 mol H{sub 2}/mol glucose, respectively. No H{sub 2} was produced at temperatures 50 and 55 C. At 37-45 C, H{sub 2} production was produced by butyrate type fermentation while fermentation mechanism changed to ethanol type at 60 C. Clostridium species were dominant at 37-45 C while at 50-55 C and 60 C the culture was dominated by Bacillus coagulans and Thermoanaerobacterium, respectively. In the presence of B. Coagulans the metabolism was directed to lactate production. The results show that the mixed culture had two optima for H{sub 2} production and that the microbial communities and metabolic patterns promptly changed according to changing temperatures. (author)

  14. Anaerobic biodegradability of macropollutants

    DEFF Research Database (Denmark)

    Angelidaki, Irini

    2002-01-01

    A variety of test procedures for determination of anaerobic biodegradability has been reported. This paper reviews the methods developed for determination of anaerobic biodegradability of macro-pollutants. Anaerobic biodegradability of micro-pollutants is not included. Furthermore, factors import...

  15. Methane Potential and Microbial Community Dynamics in Anaerobic Digestion of Silage and Dry Cornstalks: a Substrate Exchange Study.

    Science.gov (United States)

    Zhao, Ye; Yuan, Xufeng; Wen, Boting; Wang, Xiaofen; Zhu, Wanbin; Cui, Zongjun

    2017-01-01

    Silage and dry are the two typical cornstalk forms. Either form could be used as substrate in biogas plants and might be replaced by another when shortage occurred. This study focused on the feeding sequence of these two kinds of feedstocks, aiming to discuss their specific methane potential (SMP). A 15-day hydraulic retention time was chosen for semi-continuous experiments based on the batch test results. In semi-continuous experiments, before and after feedstocks were exchanged, the significantly decreased and comparable SMPs of silage and dry cornstalks indicated that a basis of unstable digestion would result in incomplete methane release from the subsequent digestion. A higher similarity of bacterial community structure and greater quantity of bacteria were shown in acidified silage cornstalk digestion through band similarity analysis. Methanosaetaceae and methanomicrobiales were the predominant methanogens, and aceticlastic methanogenesis was the main route for methane production. The different feeding sequences affected the hydrolysis course and further influenced the methanogenic proliferation. Our work suggests that silage cornstalk digestion should be conducted before dry cornstalk digestion.

  16. Microbial community analysis in a combined anaerobic and aerobic digestion system for treatment of cellulosic ethanol production wastewater.

    Science.gov (United States)

    Shan, Lili; Yu, Yanling; Zhu, Zebing; Zhao, Wei; Wang, Haiman; Ambuchi, John J; Feng, Yujie

    2015-11-01

    This study investigated the microbial diversity established in a combined system composed of a continuous stirred tank reactor (CSTR), expanded granular sludge bed (EGSB) reactor, and sequencing batch reactor (SBR) for treatment of cellulosic ethanol production wastewater. Excellent wastewater treatment performance was obtained in the combined system, which showed a high chemical oxygen demand removal efficiency of 95.8% and completely eliminated most complex organics revealed by gas chromatography-mass spectrometry (GC-MS). Denaturing gradient gel electrophoresis (DGGE) analysis revealed differences in the microbial community structures of the three reactors. Further identification of the microbial populations suggested that the presence of Lactobacillus and Prevotella in CSTR played an active role in the production of volatile fatty acids (VFAs). The most diverse microorganisms with analogous distribution patterns of different layers were observed in the EGSB reactor, and bacteria affiliated with Firmicutes, Synergistetes, and Thermotogae were associated with production of acetate and carbon dioxide/hydrogen, while all acetoclastic methanogens identified belonged to Methanosaetaceae. Overall, microorganisms associated with the ability to degrade cellulose, hemicellulose, and other biomass-derived organic carbons were observed in the combined system. The results presented herein will facilitate the development of an improved cellulosic ethanol production wastewater treatment system.

  17. Fermentative hydrogen production and bacterial community structure in high-rate anaerobic bioreactors containing silicone-immobilized and self-flocculated sludge.

    Science.gov (United States)

    Wu, Shu-Yii; Hung, Chun-Hsiung; Lin, Chi-Neng; Chen, Hsin-Wei; Lee, An-Sheng; Chang, Jo-Shu

    2006-04-01

    A novel continuously stirred anaerobic bioreactor (CSABR) seeded with silicone-immobilized sludge was developed for high-rate fermentative H2 production using sucrose as the limiting substrate. The CSABR system was operated at a hydraulic retention time (HRT) of 0.5-6 h and an influent sucrose concentration of 10-40 g COD/L. With a high feeding sucrose concentration (i.e., 30-40 g COD/L) and a short HRT (0.5 h), the CSABR reactor produced H2 more efficiently with the highest volumetric rate (VH2) of 15 L/h/L (i.e., 14.7 mol/d/L) and an optimal yield of ca. 3.5 mol H2/mol sucrose. The maximum VH2 value obtained from this work is much higher than any other VH2 values ever documented. Formation of self-flocculated granular sludge occurred during operation at a short HRT. The granule formation is thought to play a pivotal role in the dramatic enhancement of H2 production rate, because it led to more efficient biomass retention. A high biomass concentration of up to 35.4 g VSS/L was achieved even though the reactor was operated at an extremely low HRT (i.e., 0.5 h). In addition to gaining high biomass concentrations, formation of granular sludge also triggered a transition in bacterial community structure, resulting in a nearly twofold increase in the specific H2 production rate. According to denatured-gradient-gel-electrophoresis analysis, operations at a progressively decreasing HRT resulted in a decrease in bacterial population diversity. The culture with the best H2 production performance (at HRT = 0.5 h and sucrose concentration = 30 g COD/L) was eventually dominated by a presumably excellent H2-producing bacterial species identified as Clostridium pasteurianum.

  18. COMPARISON OF TRICHLOROETHYLENE REDUCTIVE DEHALOGENATION BY MICROBIAL COMMUNITIES STIMULATED ON SILICON-BASED ORGANIC COMPOUNDS AS SLOW-RELEASE ANAEROBIC SUBSTRATES. (R828772C001)

    Science.gov (United States)

    Microcosm studies were conducted to demonstrate the effectiveness of tetrabutoxysilane (TBOS) as a slow-release anaerobic substrate to promote reductive dehalogenation of trichloroethylene (TCE). The abiotic hydrolysis of TBOS and tetrakis(2-ethylbutoxy)silane (TKEBS), and the...

  19. Biomarkers of environmental benzene exposure

    Energy Technology Data Exchange (ETDEWEB)

    Weisel, C.; Yu, R.; Roy, A.; Georgopoulos, P. [Environmental and Occupational Health Sciences Institute, Piscataway, NJ (United States)

    1996-12-01

    Environmental exposures to benzene result in increases in body burden that are reflected in various biomarkers of exposure, including benzene in exhaled breath, benzene in blood and urinary trans-trans-muconic acid and S-phenylmercapturic acid. A review of the literature indicates that these biomarkers can be used to distinguish populations with different levels of exposure (such as smokers from nonsmokers and occupationally exposed from environmentally exposed populations) and to determine differences in metabolism. Biomarkers in humans have shown that the percentage of benzene metabolized by the ring-opening pathway is greater at environmental exposures than that at higher occupational exposures, a trend similar to that found in animal studies. This suggests that the dose-response curve is nonlinear; that potential different metabolic mechanisms exist at high and low doses; and that the validity of a linear extrapolation of adverse effects measured at high doses to a population exposed to lower, environmental levels of benzene is uncertain. Time-series measurements of the biomarker, exhaled breath, were used to evaluate a physiologically based pharmacokinetic (PBPK) model. Biases were identified between the PBPK model predictions and experimental data that were adequately described using an empirical compartmental model. It is suggested that a mapping of the PBPK model to a compartmental model can be done to optimize the parameters in the PBPK model to provide a future framework for developing a population physiologically based pharmacokinetic model. 44 refs., 3 figs., 1 tab.

  20. Anaerobic Thermophiles

    Directory of Open Access Journals (Sweden)

    Francesco Canganella

    2014-02-01

    Full Text Available The term “extremophile” was introduced to describe any organism capable of living and growing under extreme conditions. With the further development of studies on microbial ecology and taxonomy, a variety of “extreme” environments have been found and an increasing number of extremophiles are being described. Extremophiles have also been investigated as far as regarding the search for life on other planets and even evaluating the hypothesis that life on Earth originally came from space. The first extreme environments to be largely investigated were those characterized by elevated temperatures. The naturally “hot environments” on Earth range from solar heated surface soils and water with temperatures up to 65 °C, subterranean sites such as oil reserves and terrestrial geothermal with temperatures ranging from slightly above ambient to above 100 °C, to submarine hydrothermal systems with temperatures exceeding 300 °C. There are also human-made environments with elevated temperatures such as compost piles, slag heaps, industrial processes and water heaters. Thermophilic anaerobic microorganisms have been known for a long time, but scientists have often resisted the belief that some organisms do not only survive at high temperatures, but actually thrive under those hot conditions. They are perhaps one of the most interesting varieties of extremophilic organisms. These microorganisms can thrive at temperatures over 50 °C and, based on their optimal temperature, anaerobic thermophiles can be subdivided into three main groups: thermophiles with an optimal temperature between 50 °C and 64 °C and a maximum at 70 °C, extreme thermophiles with an optimal temperature between 65 °C and 80 °C, and finally hyperthermophiles with an optimal temperature above 80 °C and a maximum above 90 °C. The finding of novel extremely thermophilic and hyperthermophilic anaerobic bacteria in recent years, and the fact that a large fraction of them belong

  1. Acclimation of aerobic-activated sludge degrading benzene derivatives and co-metabolic degradation activities of trichloroethylene by benzene derivative-grown aerobic sludge.

    Science.gov (United States)

    Wang, Shizong; Yang, Qi; Bai, Zhiyong; Wang, Shidong; Wang, Yeyao; Nowak, Karolina M

    2015-01-01

    The acclimation of aerobic-activated sludge for degradation of benzene derivatives was investigated in batch experiments. Phenol, benzoic acid, toluene, aniline and chlorobenzene were concurrently added to five different bioreactors which contained the aerobic-activated sludge. After the acclimation process ended, the acclimated phenol-, benzoic acid-, toluene-, aniline- and chlorobenzene-grown aerobic-activated sludge were used to explore the co-metabolic degradation activities of trichloroethylene (TCE). Monod equation was employed to simulate the kinetics of co-metabolic degradation of TCE by benzene derivative-grown sludge. At the end of experiments, the mixed microbial communities grown under different conditions were identified. The results showed that the acclimation periods of microorganisms for different benzene derivatives varied. The maximum degradation rates of TCE for phenol-, benzoic acid-, toluene-, aniline- and chlorobenzene-grown aerobic sludge were 0.020, 0.017, 0.016, 0.0089 and 0.0047 mg g SS(-1) h(-1), respectively. The kinetic of TCE degradation in the absence of benzene derivative followed Monod equation well. Also, eight phyla were observed in the acclimated benzene derivative-grown aerobic sludge. Each of benzene derivative-grown aerobic sludge had different microbial community composition. This study can hopefully add new knowledge to the area of TCE co-metabolic by mixed microbial communities, and further the understanding on the function and applicability of aerobic-activated sludge.

  2. Impact of a new gasoline benzene regulation on ambient air pollutants in Anchorage, Alaska

    Science.gov (United States)

    Yano, Yuriko; Morris, Stephen S.; Salerno, Christopher; Schlapia, Anne M.; Stichick, Mathew

    2016-05-01

    The purpose of this study was to quantify the impact of a new U.S. Environmental Protection Agency (EPA) standard that limits the amount of benzene allowed in gasoline on ambient benzene concentrations. This new standard, together with two companion regulations that limit cold-temperature automotive emissions and the permeability of portable fuel containers, was expected to lower the levels of ambient benzene and other volatile organic compounds (VOCs) nationwide. In this study the impact of the gasoline benzene standard was evaluated in Anchorage, Alaska in a two-phase ambient air monitoring study conducted before and after the new gasoline standard was implemented. Gasoline sold by Anchorage retailers was also evaluated in each phase to determine the content of benzene and other gasoline components. The average benzene content in Anchorage gasoline was reduced by 70%, from 5.05% (w/w) to 1.53% (w/w) following the implementation of the standard. The annual mean ambient benzene concentration fell by 51%, from 0.99 ppbv in Phase 1 to 0.49 ppbv in Phase 2. Analysis suggests the change in gasoline benzene content alone reduced benzene emissions by 46%. The changes in toluene, ethylbenzene, and xylene content in gasoline between Phase 1 and 2 were relatively small and the differences in the mean ambient concentrations of these compounds between phases were modest. Our results suggest that cold winter communities in high latitude and mountainous regions may benefit more from the gasoline benzene standard because of high benzene emissions resulting from vehicle cold start and a tendency to develop atmospheric stagnation conditions in the winter.

  3. Long-chain fatty acids inhibition and adaptation process in anaerobic thermophilic digestion: Batch tests, microbial community structure and mathematical modelling

    DEFF Research Database (Denmark)

    Paltsi, Jordi; Illa, J.; Prenafeta-Boldu, F.X.

    2010-01-01

    Biomass samples taken during the continuous operation of thermophilic anaerobic digestors fed with manure and exposed to successive inhibitory pulses of long-chain fatty acids (LCFA) were characterized in terms of specific metabolic activities and 16S rDNA DGGE profiling of the microbial communit...

  4. Anaerobic Biodegradation of Microcystin by Bacterial Community from Sediment of Dianchi Lake%滇池沉积物菌群对微囊藻毒素的厌氧生物降解

    Institute of Scientific and Technical Information of China (English)

    陈晓国; 杨霞; 陈锦; 张圣虎; 肖邦定

    2009-01-01

    好氧微生物降解已经被证明是微囊藻毒素(MC)自然转化的主要途径,但是厌氧降解的作用尚不明确.为了揭示这一降解过程,研究了滇池沉积物中混合菌群在厌氧条件下对MCLR的降解能力,并考察了环境因素和外加营养源对该过程的影响.结果表明,厌氧条件下MCLR在2 d内从5 mg/L迅速降解到检测限以下,说明该菌群在厌氧条件下对MCLR具有较强的降解能力,并且可以利用MCLR作为唯一氮源.在实验温度范围内,MCLR的降解速率随着温度的升高而增大.酸性条件下MCLR的厌氧降解缓慢(pH=5.0)甚至停止(pH=3.0),而中性(pH=7.0)和碱性(pH为9.0、11.0)条件下降解速率没有显著差异.单独添加葡萄糖可以产生酸性物质而使体系的pH下降,从而抑制MCLR的降解,但是同时添加硝酸盐可以消除这一影响.单独添加硝酸盐对MCLR的厌氧降解也有显著的抑制作用,说明硝酸根在这一过程中未被MCLR厌氧降解菌用作最终电子受体.以上结果表明,厌氧降解可能是沉积物中MCLR转化的另一重要途径,该过程在MCLR污染治理方面具有潜在的应用价值.%Aerobic biodegradation has been identified as the main attenuation mechanism for microcystin, but the role of anaerobic microcystin biodegradation remains unclear. To elucidate this process, we assessed the potential for anaerobic microcystin LR biodegradation by sediment microbial community from Dianchi Lake and evaluated the effects of environmental factors and additional nutrient sources on the rates of anaerobic biodegradation. The results showed that microcystin LR was rapidly degraded from 5 mg/L to below detection limit within 2 days, demonstrating that the indigenous microorganisms can efficiently degrade microcystin LR under anaerobic conditions and can use microcystin LR as a sole nitrogen source. The rates of anaerobic microcystin LR biodegradation increased with increasing incubation temperature within the

  5. Double photoionization of halogenated benzene

    Energy Technology Data Exchange (ETDEWEB)

    AlKhaldi, Mashaal Q. [Institut für Optik und Atomare Physik, Technische Universität Berlin, Hardenbergstr. 36, D-10623 Berlin (Germany); Wehlitz, Ralf, E-mail: rwehlitz@gmail.com [Synchrotron Radiation Center, University of Wisconsin–Madison, Stoughton, Wisconsin 53589 (United States)

    2016-01-28

    We have experimentally investigated the double-photoionization process in C{sub 6}BrF{sub 5} using monochromatized synchrotron radiation. We compare our results with previously published data for partially deuterated benzene (C{sub 6}H{sub 3}D{sub 3}) over a wide range of photon energies from threshold to 270 eV. A broad resonance in the ratio of doubly to singly charged parent ions at about 65 eV appears shifted in energy compared to benzene data. This shift is due to the difference in the bond lengths in two molecules. A simple model can explain the shape of this resonance. At higher photon energies, we observe another broad resonance that can be explained as a second harmonic of the first resonance.

  6. Functionalization of benzene by superhalogens

    Science.gov (United States)

    Srivastava, Ambrish Kumar; Kumar, Abhishek; Misra, Neeraj

    2017-03-01

    We perform ab initio MP2/6-311++G(d,p) calculations to analyze the molecular properties and aromaticity of NO3, BO2 as well as BF4 superhalogen substituted benzene and compare them with well known electron withdrawing group substituted benzene such as C6H5F and C6H5CN in neutral and ionic forms. It has been noticed that the properties (including aromaticity) of C6H5BO2 closely resemble those of C6H5F and C6H5CN. On the contrary, C6H5NO3 possesses some quite different properties such as high electron affinity, small frontier orbital energy gap and enhanced aromaticity. It is also revealed that C6H5BF4 exists only in the form of C6H5F⋯BF3 complex.

  7. Anaerobic Digestion: Process

    DEFF Research Database (Denmark)

    Angelidaki, Irini; Batstone, Damien J.

    2011-01-01

    with very little dry matter may also be called a digest. The digest should not be termed compost unless it specifically has been composted in an aerated step. This chapter describes the basic processes of anaerobic digestion. Chapter 9.5 describes the anaerobic treatment technologies, and Chapter 9.......6 addresses the mass balances and environmental aspects of anaerobic digestion....

  8. Human risk assessment of benzene after a gasoline station fuel leak

    Directory of Open Access Journals (Sweden)

    Miriam dos Anjos Santos

    2013-06-01

    Full Text Available OBJECTIVE: To assess the health risk of exposure to benzene for a community affected by a fuel leak. METHODS: Data regarding the fuel leak accident with, which occurred in the Brasilia, Federal District, were obtained from the Fuel Distributor reports provided to the environmental authority. Information about the affected population (22 individuals was obtained from focal groups of eight individuals. Length of exposure and water benzene concentration were estimated through a groundwater flow model associated with a benzene propagation model. The risk assessment was conducted according to the Agency for Toxic Substances and Disease Registry methodology. RESULTS: A high risk perception related to the health consequences of the accident was evident in the affected community (22 individuals, probably due to the lack of assistance and a poor risk communication from government authorities and the polluting agent. The community had been exposed to unsafe levels of benzene (> 5 µg/L since December 2001, five months before they reported the leak. The mean benzene level in drinking water (72.2 µg/L was higher than that obtained by the Fuel Distributer using the Risk Based Corrective Action methodology (17.2 µg/L.The estimated benzene intake from the consumption of water and food reached a maximum of 0.0091 µg/kg bw/day (5 x 10-7 cancer risk per 106 individuals. The level of benzene in water vapor while showering reached 7.5 µg/m3 for children (1 per 104 cancer risk. Total cancer risk ranged from 110 to 200 per 106 individuals. CONCLUSIONS: The population affected by the fuel leak was exposed to benzene levels that might have represented a health risk. Local government authorities need to develop better strategies to respond rapidly to these types of accidents to protect the health of the affected population and the environment.

  9. In situ detection of anaerobic alkane metabolites in subsurface environments.

    Science.gov (United States)

    Agrawal, Akhil; Gieg, Lisa M

    2013-01-01

    Alkanes comprise a substantial fraction of crude oil and refined fuels. As such, they are prevalent within deep subsurface fossil fuel deposits and in shallow subsurface environments such as aquifers that are contaminated with hydrocarbons. These environments are typically anaerobic, and host diverse microbial communities that can potentially use alkanes as substrates. Anaerobic alkane biodegradation has been reported to occur under nitrate-reducing, sulfate-reducing, and methanogenic conditions. Elucidating the pathways of anaerobic alkane metabolism has been of interest in order to understand how microbes can be used to remediate contaminated sites. Alkane activation primarily occurs by addition to fumarate, yielding alkylsuccinates, unique anaerobic metabolites that can be used to indicate in situ anaerobic alkane metabolism. These metabolites have been detected in hydrocarbon-contaminated shallow aquifers, offering strong evidence for intrinsic anaerobic bioremediation. Recently, studies have also revealed that alkylsuccinates are present in oil and coal seam production waters, indicating that anaerobic microbial communities can utilize alkanes in these deeper subsurface environments. In many crude oil reservoirs, the in situ anaerobic metabolism of hydrocarbons such as alkanes may be contributing to modern-day detrimental effects such as oilfield souring, or may lead to more beneficial technologies such as enhanced energy recovery from mature oilfields. In this review, we briefly describe the key metabolic pathways for anaerobic alkane (including n-alkanes, isoalkanes, and cyclic alkanes) metabolism and highlight several field reports wherein alkylsuccinates have provided evidence for anaerobic in situ alkane metabolism in shallow and deep subsurface environments.

  10. In situ detection of anaerobic alkane metabolites in subsurface environments

    Directory of Open Access Journals (Sweden)

    Lisa eGieg

    2013-06-01

    Full Text Available Alkanes comprise a substantial fraction of crude oil and refined fuels. As such, they are prevalent within deep subsurface fossil fuel deposits and in shallow subsurface environments such as aquifers that are contaminated with hydrocarbons. These environments are typically anaerobic, and host diverse microbial communities that can potentially use alkanes as substrates. Anaerobic alkane biodegradation has been reported to occur under nitrate-reducing, sulfate-reducing, and methanogenic conditions. Elucidating the pathways of anaerobic alkane metabolism has been of interest in order to understand how microbes can be used to remediate contaminated sites. Alkane activation primarily occurs by addition to fumarate, yielding alkylsuccinates, unique anaerobic metabolites that can be used to indicate in situ anaerobic alkane metabolism. These metabolites have been detected in hydrocarbon-contaminated shallow aquifers, offering strong evidence for intrinsic anaerobic bioremediation. Recently, studies have also revealed that alkylsuccinates are present in oil and coal seam production waters, indicating that anaerobic microbial communities can utilize alkanes in these deeper subsurface environments. In many crude oil reservoirs, the in situ anaerobic metabolism of hydrocarbons such as alkanes may be contibuting to modern-day detrimental effects such as oilfield souring, or may lead to more benefical technologies such as enhanced energy recovery from mature oilfields. In this review, we briefly describe the key metabolic pathways for anaerobic alkane (including n-alkanes, isoalkanes, and cyclic alkanes metabolism and highlight several field reports wherein alkylsuccinates have provided evidence for anaerobic in situ alkane metabolism in shallow and deep subsurface environments.

  11. Carcinogenic effects of benzene: Cesare Maltoni's contributions.

    Science.gov (United States)

    Mehlman, Myron A

    2002-12-01

    Cesare Maltoni's contributions to understanding, identifying, and characterizing widely used commercial chemicals in experimental animals are among the most important methods developed in the history of toxicology and serve to protect working men and women, the general population, and our environment from hazardous substances. Maltoni developed experimental methods that have reached the "platinum standard" for protection of public health. Benzene was among the 400 or more chemicals that Maltoni and his associates tested for carcinogenicity. In 1976, Maltoni reported that benzene is a potent experimental carcinogen. Maltoni's experiments clearly demonstrated that benzene is carcinogenic in Sprague-Dawley rats, Wistar rats, Swiss mice, and RF/J mice when administered by inhalation or ingestion. Benzene caused carcinomas of the Zymbal gland, oral cavity, nasal cavities; cancers of the skin, forestomach, mammary glands, and lungs; angiosarcomas and hepatomas of the liver; and hemolymphoreticular cancers. Thus, benzene was shown to be a multipotential carcinogen that produced cancers in several species of animals by various routes of administration. On November 2, 1977, Chemical Week reported that Maltoni provided a "bombshell" when he demonstrated the "first direct link" between benzene and cancer. In this paper, I shall summarize early experiments and human studies and reports; Maltoni's experimental contribution to understanding the carcinogenicity of benzene in humans and animals; earlier knowledge concerning benzene toxicity; and benzene standards and permissible exposure levels.

  12. Production of Phenol from Benzene via Cumene

    Science.gov (United States)

    Daniels, D. J.; And Others

    1976-01-01

    Describes an undergraduate chemistry laboratory experiment involving the production of phenol from benzene with the intermediate production of isopropylbenzene and isopropylbenzene hydroperoxide. (SL)

  13. In vitro Characterization of Phenylacetate Decarboxylase, a Novel Enzyme Catalyzing Toluene Biosynthesis in an Anaerobic Microbial Community

    DEFF Research Database (Denmark)

    Zargar, K.; Saville, R.; Phelan, R. M.;

    2016-01-01

    an anaerobic, sewage-derived enrichment culture that quantitatively produces toluene from phenylacetate; complementary metagenomic and metaproteomic analyses are also presented. Among the noteworthy findings is that this enzyme is not the well-characterized clostridial p-hydroxyphenylacetate decarboxylase (Csd...... similarly inhibited by an amide analog of p-hydroxyphenylacetate. Based upon these and other data, we hypothesize that the toluene synthase reaction involves a glycyl radical decarboxylase. This first-time study of the phenylacetate decarboxylase reaction constitutes an important step in understanding...

  14. Chemical of current interest--benzene.

    Science.gov (United States)

    Marcus, W L

    1987-03-01

    Benzene is one of the world's major commodity chemicals. It is derived from petroleum and coal and is used both as a solvent and as a starting material in chemical syntheses. The numerous industrial uses of benzene over the last century need not be recounted here, but the most recent addition to the list of uses of benzene is as a component in a mixture of aromatic compounds added to gasoline for the purpose of replacing lead compounds as anti-knock ingredients. The best known and longest recognized toxic effect of benzene is the depression of bone marrow function seen in occupationally exposed individuals. These people have been found to display anemia, leucopenia, and/or thrombocytopenia. When pancytopenia, i.e., the simultaneous depression of all three cell types, occurs and is accompanied by bone marrow necrosis, the syndrome is called aplastic anemia. In addition to observing this decrease in humans and relating it to benzene exposure, it has been possible to establish animal models which mimic the human disease. The result has been considerable scientific investigation into the mechanism of benzene toxicity. Although the association between benzene exposure and aplastic anemia has been recognized and accepted throughout most of this century, it is only recently that leukemia, particularly of the acute myelogenous type, has been related to benzene. The acceptance of benzene as an etiological agent in aplastic anemia in large measure derives from our ability to reproduce the disease in most animals treated with sufficiently high doses of benzene over the necessary time period. Unfortunately, despite extensive efforts in several laboratories, it has not been possible to establish a reproducible, reliable model for the study of benzene-induced leukemia. The recent demonstration that several animals exposed to benzene either by inhalation or in the drinking water during studies by Drs. B. Goldstein and C. Maltoni suggests that such a model may be forthcoming

  15. Mechanistic considerations in benzene physiological model development

    Energy Technology Data Exchange (ETDEWEB)

    Medinsky, M.A.; Kenyon, E.M.; Seaton, M.J.; Schlosser, P.M. [Chemical Industry Institute of Toxicology, Research Triangle Park, NC (United States)

    1996-12-01

    Benzene, an important industrial solvent, is also present in unleaded gasoline and cigarette smoke. The hematotoxic effects of benzene in humans are well documented and include aplastic anemia, pancytopenia, and acute myelogenous leukemia. However, the risks of leukemia at low exposure concentrations have not been established. A combination of metabolites (hydroquinone and phenol, for example) may be necessary to duplicate the hematotoxic effect of benzene, perhaps due in part to the synergistic effect of phenol on myeloperoxidase-mediated oxidation of hydroquinone to the reactive metabolite benzoquinone. Because benzene and its hydroxylated metabolites (phenol, hydroquinone, and catechol) are substrates for the same cytochrome P450 enzymes, competitive interactions among the metabolites are possible. In vivo data on metabolite formation by mice exposed to various benzene concentrations are consistent with competitive inhibition of phenol oxidation by benzene. In vitro studies of the metabolic oxidation of benzene, phenol, and hydroquinone are consistent with the mechanism of competitive interaction among the metabolites. The dosimetry of benzene and its metabolites in the target tissue, bone marrow, depends on the balance of activation processes such as enzymatic oxidation and deactivation processes such as conjugation and excretion. Phenol, the primary benzene metabolite, can undergo both oxidation and conjugation. Thus the potential exists for competition among various enzymes for phenol. Zonal localization of phase I and phase 11 enzymes in various regions of the liver acinus also impacts this competition. Biologically based dosimetry models that incorporate the important determinants of benzene flux, including interactions with other chemicals, will enable prediction of target tissue doses of benzene and metabolites at low exposure concentrations relevant for humans. 39 refs., 4 figs., 2 tabs.

  16. Comparison of the microbial communities in solid-state anaerobic digestion (SS-AD) reactors operated at mesophilic and thermophilic temperatures.

    Science.gov (United States)

    Li, Yueh-Fen; Nelson, Michael C; Chen, Po-Hsu; Graf, Joerg; Li, Yebo; Yu, Zhongtang

    2015-01-01

    The microbiomes involved in liquid anaerobic digestion process have been investigated extensively, but the microbiomes underpinning solid-state anaerobic digestion (SS-AD) are poorly understood. In this study, microbiome composition and temporal succession in batch SS-AD reactors, operated at mesophilic or thermophilic temperatures, were investigated using Illumina sequencing of 16S rRNA gene amplicons. A greater microbial richness and evenness were found in the mesophilic than in the thermophilic SS-AD reactors. Firmicutes accounted for 60 and 82 % of the total Bacteria in the mesophilic and in the thermophilic SS-AD reactors, respectively. The genus Methanothermobacter dominated the Archaea in the thermophilic SS-AD reactors, while Methanoculleus predominated in the mesophilic SS-AD reactors. Interestingly, the data suggest syntrophic acetate oxidation coupled with hydrogenotrophic methanogenesis as an important pathway for biogas production during the thermophilic SS-AD. Canonical correspondence analysis (CCA) showed that temperature was the most influential factor in shaping the microbiomes in the SS-AD reactors. Thermotogae showed strong positive correlation with operation temperature, while Fibrobacteres, Lentisphaerae, Spirochaetes, and Tenericutes were positively correlated with daily biogas yield. This study provided new insight into the microbiome that drives SS-AD process, and the findings may help advance understanding of the microbiome in SS-AD reactors and the design and operation of SS-AD systems.

  17. Microbial Aspects of Anaerobic BTEX Degradation

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Combined with conventional methods, developments in both geochemical (delineation of redox processes) and molecular microbial methods (analysis of 16S rDNA genes and functional genes) have allowed us to study in details microorganisms and genes involved in the anaerobic degradation of benzene, toluene, ethylbenzene and xylene (BTEX) under specific redox conditions. This review summarizes recent research in this field. The potential for anaerobic BTEX degradation is widely spread. Specific groups of microorganisms appear to be involved in degradation under different redox conditions. Members of the Azoarcus/Thauera cluster perform BTEX degradation under denitrifying conditions, Geobacteraceae under Fe (III) reducing conditions and Desulfobacteriaceae under sulfate reducing conditions. The information so far obtained on biochemistry and molecular genetics of BTEX degradation indicates that each BTEX compound is funneled into the central benzyol-CoA pathway by a different peripheral pathway. The peripheral pathways of per BTEX compound show similarities among different physiological groups of microorganisms. We also describe how knowledge obtained on the microbial aspects of BTEX degradation can be used to enhance and monitor anaerobic BTEX degradation.

  18. 不同结构好氧/厌氧潜流人工湿地微生物群落代谢特性%Characteristics of microbial community metabolism in aerobic/anaerobic subsurface flow constructed wetland

    Institute of Scientific and Technical Information of China (English)

    赵艳; 李锋民; 王昊云; 李扬; 王震宇

    2012-01-01

    Four different structures of aerobic/anaerobic subsurface flow constructed wetland had different purification efficiencies for COD and N.To investigate the characteristics of the microbial community metabolism and its relationship with water purification,carbon source analysis,principal component analysis and cluster analysis were used on the average well color development(AWCD) values obtained from the Biolog Ecoplate.The results showed that the degree of microbial utilization of carbohydrate and its derivatives,amino acids and its derivatives were significantly higher than that of fatty acid,lipid,metabolic intermediate and secondary metabolites.The degree of microbial utilization of four kinds of carbon sources in the sampling site(the sampling site which proceeded anaerobic reaction) in the group of OBAAO(aerobic-buffer-anaerobic anoxic-aerobic) aeration were the lowest,and it had significant difference with that of the other sampling sites(p0.05).The results of principal component analysis and cluster analysis indicated that the microbial community of the sampling site 3.3 in the group of OBAAO aeration had high difference from those of the other 3 sampling sites which were preceding anaerobic reaction.The group of OBAAO aeration extending the length of anaerobic stage provided the anaerobic environment for microorganisms.However,because of the lack of carbon source as energy,the microbial activity was inhibited.The microbial utilization degrees in sampling site 4.3(the sampling site which proceeded anaerobic reaction) in the group of OBAAO aeration multiple spot influent had certain advantage.The group of OBAAO aeration multiple spot influent,by adding influent and extending the length of anaerobic stage,effectively promoted the strength of denitrification,and increased the removal efficiency of nitrogen within horizontal subsurface flow constructed wetlands.%4种不同结构的好氧/厌氧多级串联潜流人工湿地对COD和氮的去

  19. Effect of repeated benzene inhalation exposures on benzene metabolism, binding to hemoglobin, and induction of micronuclei.

    Science.gov (United States)

    Sabourin, P J; Sun, J D; MacGregor, J T; Wehr, C M; Birnbaum, L S; Lucier, G; Henderson, R F

    1990-05-01

    Metabolism of benzene is thought to be necessary to produce the toxic effects, including carcinogenicity, associated with benzene exposure. To extrapolate from the results of rodent studies to potential health risks in man, one must know how benzene metabolism is affected by species, dose, dose rate, and repeated versus single exposures. The purpose of our studies was to determine the effect of repeated inhalation exposures on the metabolism of [14C]benzene by rodents. Benzene metabolism was assessed by characterizing and quantitating urinary metabolites, and by quantitating 14C bound to hemoglobin and micronuclei induction. F344/N rats and B6C3F1 mice were exposed, nose-only, to 600 ppm benzene or to air (control) for 6 hr/day, 5 days/week for 3 weeks. On the last day, both benzene-pretreated and control animals were exposed to 600 ppm, 14C-labeled benzene for 6 hr. Individual benzene metabolites in urine collected for 24 hr after the exposure were analyzed. There was a significant decrease in the respiratory rate of mice (but not rats) pretreated with benzene which resulted in lower levels of urinary [14C]benzene metabolites. The analyses indicated that the only effects of benzene pretreatment on the metabolite profile in rat or mouse urine were a slight shift from glucuronidation to sulfation in mice and a shift from sulfation to glucuronidation in rats. Benzene pretreatment also had no effect, in either species, on formation of [14C]benzene-derived hemoglobin adducts. Mice and rats had similar levels of hemoglobin adduct binding, despite the higher metabolism of benzene by mice. This indicates that hemoglobin adduct formation occurs with higher efficiency in rats. After 1 week of exposure to 600 ppm benzene, the frequency of micronucleated, polychromatic erythrocytes (PCEs) in mice was significantly increased. Exposure to the same level of benzene for an additional 2 weeks did not further increase the frequency of micronuclei in PCEs. These results indicate

  20. Microbial community structure in a thermophilic aerobic digester used as a sludge pretreatment process for the mesophilic anaerobic digestion and the enhancement of methane production.

    Science.gov (United States)

    Jang, Hyun Min; Park, Sang Kyu; Ha, Jeong Hyub; Park, Jong Moon

    2013-10-01

    An effective two-stage sewage sludge digestion process, consisting of thermophilic aerobic digestion (TAD) followed by mesophilic anaerobic digestion (MAD), was developed for efficient sludge reduction and methane production. Using TAD as a biological pretreatment, the total volatile suspended solid reduction (VSSR) and methane production rate (MPR) in the MAD reactor were significantly improved. According to denaturing gradient gel electrophoresis (DGGE) analysis, the results indicated that the dominant bacteria species such as Ureibacillus thermophiles and Bacterium thermus in TAD were major routes for enhancing soluble organic matter. TAD pretreatment using a relatively short SRT of 1 day showed highly increased soluble organic products and positively affected an increment of bacteria populations which performed interrelated microbial metabolisms with methanogenic species in the MAD; consequently, a quantitative real-time PCR indicated greatly increased Methanosarcinales (acetate-utilizing methanogens) in the MAD, resulting in enhanced methane production.

  1. Reator compartimentado anaeróbio/aeróbio: sistema de baixo custo para tratamento de esgotos de pequenas comunidades Anaerobic/aerobic baffled reactor: low cost system for sewage treatment in small communities

    Directory of Open Access Journals (Sweden)

    Gustavo H. R. da Silva

    2005-06-01

    /aerobic reactor to treat sanitary sewage in small urban and rural communities. The system performance was evaluated at several hydraulic detention times (HDT. The best values of chemical oxygen demand (CODtotal - 73.7% and total suspended solids (TSS removal - 78.8% were obtained for HDTtotal of 8 h (4 h for the anaerobic phase and 4 h for the aerobic phase. The baffled reactor presented good operational stability, a necessary feature of low cost systems.

  2. Interphase cytogenetics of workers exposed to benzene

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, L.; Wang, Yunxia; Venkatesh, P. [Univ. of California, Berkeley, CA (United States)] [and others

    1996-12-01

    Fluorescence in situ hybridization (FISH) is a powerful new technique that allows numerical chromosome aberrations (aneuploidy) to be detected in interphase cells. In previous studies, FISH has been used to demonstrate that the benzene metabolites hydroquinone and 1,2,4-benzenetriol induce aneuploidy of chromosomes 7 and 9 in cultures of human cells. In the present study, we used an interphase FISH procedure to perform cytogenetic analyses on the blood cells of 43 workers exposed to benzene (median=31 ppm, 8-hr time-weighted average) and 44 matched controls from Shanghai, China. High benzene exposure (>31 ppm, n=22) increased the hyperdiploid frequency of chromosome 9 (p<0.01), but lower exposure (<31 ppm, n=21) did not. Trisomy 9 was the major form of benzene-induced hyperdiploidy. The level of hyperdiploidy in exposed workers correlated with their urinary phenol level (r= 0.58, p < 0.0001), a measure of internal benzene close. A significant correlation was also found between hyperdiploicly and decreased absolute lymphocyte count, an indicator of benzene hematotoxicity, in the exposed group (r=-0.44, p=0.003) but not in controls (r=-0.09, P=0.58). These results show that high benzene exposure induces aneuploidy of chromosome 9 in nondiseased individuals, with trisomy being the most prevalent form. They further highlight the usefulness of interphase cytogenetics and FISH for the rapid and sensitive detection of aneuploidy in exposed human populations. 35 refs., 3 figs., 2 tabs.

  3. Benzene metabolites induce apoptosis in lymphocytes.

    Science.gov (United States)

    Martínez-Velázquez, M; Maldonado, V; Ortega, A; Meléndez-Zajgla, J; Albores, A

    2006-08-01

    Benzene is an important environmental pollutant with important health implications. Exposure to this aromatic hydrocarbon is associated with hematotoxicity, and bone marrow carcinogenic effects. It has been shown that benzene induces oxidative stress, cell cycle alterations, and programmed cell death in cultured cells. Hepatic metabolism of benzene is thought to be a prerequisite for its bone marrow toxicity. Nevertheless, there are no reports on the cellular effects of reactive intermediates derived from hepatic metabolism of benzene. Thus, the goal of this project was to determine the cellular alterations of benzene metabolites produced by the cultured hepatic cell line HepG2. Supernatants collected from these cells were applied to a culture of freshly isolated lymphocytes. A higher decrease in cell viability was found in cells exposed to these supernatants than to unmetabolized benzene. This viability decrease was due to apoptosis, as determined by Terminal deoxynucleotidyl Transferase Biotin-dUTP Nick End Labeling (TUNEL) assay and internucleosomal fragmentation of DNA. When supernatants were analyzed by HPLC, we found that not all the hydrocarbon was biotransformed, since a 28 microM concentration (37%) remained. The only metabolite found in the culture medium was muconic acid. The present results show that muconic acid derived from benzene metabolism is able to cooperate with the pollutant for the induction of apoptosis in rat lymphocytes.

  4. Reduction of benzene toxicity by toluene.

    Science.gov (United States)

    Plappert, U; Barthel, E; Seidel, H J

    1994-01-01

    BDF1 mice were exposed in inhalation chambers to benzene (900 ppm, 300 ppm) and/or toluene (500 ppm, 250 ppm) 6 hr per day, 5 days per week, for up to 8 weeks. Benzene alone induced a slight anemia after 4 and 8 weeks and a reduction of BFU-E and CFU-E numbers in the marrow. The coexposure to toluene reduced the degree of anemia. These results confirm previous studies where toluene was found to reduce benzene toxicity. This protective effect was most pronounced when DNA damage was studied in peripheral blood cells, bone marrow, and liver using the single cell gel (SCG) assay. With benzene alone, either with 300 or 900 ppm, a significant increase in DNA damage was detected in cells sampled from all three organs. Toluene alone did not induce a significant increase in DNA damage. The coexposure of benzene and toluene reduced the extent of DNA damage to about 50% of benzene alone. This result is considered a clear indication for a protective effect of toluene on the genetic toxicity of benzene.

  5. Excited state of protonated benzene and toluene

    Energy Technology Data Exchange (ETDEWEB)

    Esteves-López, Natalia; Dedonder-Lardeux, Claude; Jouvet, Christophe, E-mail: Christophe.jouvet@univ-amu.fr [Aix-Marseille Université, CNRS, UMR-7345, Physique des Interactions Ioniques et Moléculaires (PIIM), Marseille (France)

    2015-08-21

    We present photo-fragmentation electronic spectra of the simplest protonated aromatic molecules, protonated benzene and toluene, recorded under medium resolution conditions and compared with the photo-fragmentation spectrum of protonated pyridine. Despite the resolution and cold temperature achieved in the experiment, the electronic spectra of protonated benzene and toluene are structure-less, thus intrinsically broadened. This is in agreement with the large geometrical changes and the fast dynamic toward internal conversion predicted by ab initio calculations for protonated benzene [Rode et al., J. Phys. Chem. A 113, 5865–5873 (2009)].

  6. Anaerobic degradation of Polychlorinated Biphenyls (PCBs) and Polychlorinated Biphenyls Ethers (PBDEs), and microbial community dynamics of electronic waste-contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Song, Mengke [Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Graduate University of Chinese Academy of Sciences, Beijing 100039 (China); Luo, Chunling, E-mail: clluo@gig.ac.cn [Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Li, Fangbai [Guangdong Institute of Eco-environmental and Soil Sciences, Guangzhou 510650 (China); Jiang, Longfei [Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); College of Life Sciences, Nanjing Agricultural University, Nanjing 210095 (China); Wang, Yan [Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Zhang, Dayi [Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ (United Kingdom); Zhang, Gan [Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China)

    2015-01-01

    Environmental contamination caused by electronic waste (e-waste) recycling is attracting increasing attention worldwide because of the threats posed to ecosystems and human safety. In the present study, we investigated the feasibility of in situ bioremediation of e-waste-contaminated soils. We found that, in the presence of lactate as an electron donor, higher halogenated congeners were converted to lower congeners via anaerobic halorespiration using ferrous ions in contaminated soil. The 16S rRNA gene sequences of terminal restriction fragments indicated that the three dominant strains were closely related to known dissimilatory iron-reducing bacteria (DIRB) and those able to perform dehalogenation upon respiration. The functional species performed the activities of ferrous oxidation to ferric ions and further ferrous reduction for dehalogenation. The present study links iron cycling to degradation of halogenated materials in natural e-waste-contaminated soil, and highlights the synergistic roles of soil bacteria and ferrous/ferric ion cycling in the dehalogenation of polychlorinated biphenyls (PCBs) and polybrominated biphenyl ethers (PBDEs). - Highlights: • The biodegradation PCBs and PBDEs in e-waste contaminated soils was studied. • DIRB and arylhalorespiring bacteria were responsive to dehalogenation respiration. • Soil bacteria and Fe ion cycling play synergistic roles in dehalogenation.

  7. Performance and microbial community dynamics in a two-phase anaerobic co-digestion system using cassava dregs and pig manure.

    Science.gov (United States)

    Ren, Jiwei; Yuan, Xufeng; Li, Jie; Ma, Xuguang; Zhao, Ye; Zhu, Wanbing; Wang, Xiaofen; Cui, Zongjun

    2014-03-01

    The two-phase anaerobic co-digestion of cassava dregs (CD) with pig manure (PM) was evaluated using four sequencing batch reactors (SBRs) and a continuously stirred tank reactor (CSTR). The effect of seven different PM to CD volatile solid ratios (10:0, 8:2, 6:4, 5:5, 4:6, 2:8 and 0:10) on the acidification phase was investigated. Results indicated the concentrations of soluble chemical oxygen demand, NH4-N and volatile fatty acids increased substantially at seven ratios. Co-acidification of PM and CD performed well. Methanogenic fermentation of the acidification products at seven ratios was steady in CSTR. The highest methane yield and VS removal of 0.352m(3)/kg VSadded and 68.5% were achieved at PM:CD (4:6). The microbial population in CSTR was analyzed using molecular methods. Findings revealed that bacteria such as Firmicutes and Bacteroidetes, archaea such as Methanobacteriales and Methanomicrobiales were advantageous populations. Co-digestion of PM and CD supported higher quantity and diversity of methanogens.

  8. Efficient performance and the microbial community changes of submerged anaerobic membrane bioreactor in treatment of sewage containing cellulose suspended solid at 25°C.

    Science.gov (United States)

    Watanabe, Ryoya; Nie, Yulun; Takahashi, Shintaro; Wakahara, Shinichiro; Li, Yu-You

    2016-09-01

    Influence of cellulose as suspended solid (SS) on the performance of submerged anaerobic membrane bioreactor (SAnMBR) was evaluated at 25°C using two types of synthetic sewage (SS contained or not). During the 110days operation, COD and BOD removal, CH4 gas recovery and cellulose accumulation were investigated in detail. The influence of cellulose as SS in sewage on the SAnMBR performance was not significant at HRT longer than12h and 65-72% of the influent COD was recovered as methane gas at HRT of 12h. At HRT of 6h, the quality of effluent got worse and the accumulation of cellulose was found in reactor. 16S rRNA analysis revealed that the microbial diversity distribution including Archaea and Bacteria changed due to the addition of SS in sewage and specific microbe for cellulose degradation such as Proteobacteria was detected. Sludge in SAnMBR could acclimate to characteristics of sewage by self-adaptation.

  9. Effects of temperature and organic loading rate on the performance and microbial community of anaerobic co-digestion of waste activated sludge and food waste.

    Science.gov (United States)

    Gou, Chengliu; Yang, Zhaohui; Huang, Jing; Wang, Huiling; Xu, Haiyin; Wang, Like

    2014-06-01

    Anaerobic co-digestion of waste activated sludge and food waste was investigated semi-continuously using continuously stirred tank reactors. Results showed that the performance of co-digestion system was distinctly influenced by temperature and organic loading rate (OLR) in terms of gas production rate (GPR), methane yield, volatile solids (VS) removal efficiency and the system stability. The highest GPR at 55 °C was 1.6 and 1.3 times higher than that at 35 and 45 °C with the OLR of 1 g VSL(-1)d(-1), and the corresponding average CH₄ yields were 0.40, 0.26 and 0.30 L CH₄ g(-1)VSadded, respectively. The thermophilic system exhibited the best load bearing capacity at extremely high OLR of 7 g VSL(-1)d(-1), while the mesophilic system showed the best process stability at low OLRs (< 5 g VSL(-1)d(-1)). Temperature had a more remarkable effect on the richness and diversity of microbial populations than the OLR.

  10. Anaerobic degradation of polychlorinated biphenyls (PCBs) and polychlorinated biphenyls ethers (PBDEs), and microbial community dynamics of electronic waste-contaminated soil.

    Science.gov (United States)

    Song, Mengke; Luo, Chunling; Li, Fangbai; Jiang, Longfei; Wang, Yan; Zhang, Dayi; Zhang, Gan

    2015-01-01

    Environmental contamination caused by electronic waste (e-waste) recycling is attracting increasing attention worldwide because of the threats posed to ecosystems and human safety. In the present study, we investigated the feasibility of in situ bioremediation of e-waste-contaminated soils. We found that, in the presence of lactate as an electron donor, higher halogenated congeners were converted to lower congeners via anaerobic halorespiration using ferrous ions in contaminated soil. The 16S rRNA gene sequences of terminal restriction fragments indicated that the three dominant strains were closely related to known dissimilatory iron-reducing bacteria (DIRB) and those able to perform dehalogenation upon respiration. The functional species performed the activities of ferrous oxidation to ferric ions and further ferrous reduction for dehalogenation. The present study links iron cycling to degradation of halogenated materials in natural e-waste-contaminated soil, and highlights the synergistic roles of soil bacteria and ferrous/ferric ion cycling in the dehalogenation of polychlorinated biphenyls (PCBs) and polybrominated biphenyl ethers (PBDEs).

  11. [Epigenic modifications associated with low benzene exposure].

    Science.gov (United States)

    Fustinoni, Silvia; Bollati, Valentina; Bertazzi, Pier Alberto

    2013-01-01

    DNA methylation, mitochondrial DNA copy number and telomeres shortening are cellular modifications associated with an increasing number of tumors, cardiovascular and aging diseases. In our studies these modifications were evaluated in subjects occupationally exposed to low levels of benzene and in the general population. In peripheral blood lymphocytes a decrease of DNA methylation with the increase of personal benzene exposure was found, both in Alu and LINE-1 repetitive elements, and in the global DNA. Telomere length shortening in subjects exposed to traffic exhausts and an increase in mitochondrial DNA copy number correlated to benzene exposure was also found. DNA methylation measured in specimen repeats collected at intervals of 8 years decreased more markedly in exposed subjects than in controls. Our studies highlighted the association of epigenetic modifications of DNA with low benzene exposure.

  12. Anaerobic Digestion and its Applications

    Science.gov (United States)

    Anaerobic digestion is a natural biological process. The initials "AD" may refer to the process of anaerobic digestion, or the built systems of anaerobic digesters. While there are many kinds of digesters, the biology is basically the same for all. Anaerobic digesters are built...

  13. Microbial Communities and Their Performances in Anaerobic Hybrid Sludge Bed-Fixed Film Reactor for Treatment of Palm Oil Mill Effluent under Various Organic Pollutant Concentrations

    Directory of Open Access Journals (Sweden)

    Kanlayanee Meesap

    2012-01-01

    Full Text Available The anaerobic hybrid reactor consisting of sludge and packed zones was operated with organic pollutant loading rates from 6.2 to 8.2 g COD/L day, composed mainly of suspended solids (SS and oil and grease (O&G concentrations between 5.2 to 10.2 and 0.9 to 1.9 g/L, respectively. The overall process performance in terms of chemical oxygen demands (COD, SS, and O&G removals was 73, 63, and 56%, respectively. When the organic pollutant concentrations were increased, the resultant methane potentials were higher, and the methane yield increased to 0.30 L CH4/g CODremoved. It was observed these effects on the microbial population and activity in the sludge and packed zones. The eubacterial population and activity in the sludge zone increased to 6.4 × 109 copies rDNA/g VSS and 1.65 g COD/g VSS day, respectively, whereas those in the packed zone were lower. The predominant hydrolytic and fermentative bacteria were Pseudomonas, Clostridium, and Bacteroidetes. In addition, the archaeal population and activity in the packed zone were increased from to 9.1 × 107 copies rDNA/g VSS and 0.34 g COD-CH4/g VSS day, respectively, whereas those in the sludge zone were not much changed. The most represented species of methanogens were the acetoclastic Methanosaeta, the hydrogenotrophic Methanobacterium sp., and the hydrogenotrophic Methanomicrobiaceae.

  14. The Influence of Micro-Oxygen Addition on Desulfurization Performance and Microbial Communities during Waste-Activated Sludge Digestion in a Rusty Scrap Iron-Loaded Anaerobic Digester

    Directory of Open Access Journals (Sweden)

    Renjun Ruan

    2017-02-01

    Full Text Available In this study, micro-oxygen was integrated into a rusty scrap iron (RSI-loaded anaerobic digester. Under an optimal RSI dosage of 20 g/L, increasing O2 levels were added stepwise in seven stages in a semi-continuous experiment. Results showed the average methane yield was 306 mL/g COD (chemical oxygen demand, and the hydrogen sulphide (H2S concentration was 1933 ppmv with RSI addition. O2 addition induced the microbial oxidation of sulphide by stimulating sulfur-oxidizing bacteria and chemical corrosion of iron, which promoted the generation of FeS and Fe2S3. In the 6th phase of the semi-continuous test, deep desulfurization was achieved without negatively impacting system performance. Average methane yield was 301.1 mL/g COD, and H2S concentration was 75 ppmv. Sulfur mass balance was described, with 84.0%, 11.90% and 0.21% of sulfur present in solid, liquid and gaseous phases, respectively. The Polymerase Chain Reaction-Denaturing Gradient Gel Electrophoresis (PCR-DGGE analysis revealed that RSI addition could enrich the diversity of hydrogenotrophic methanogens and iron-reducing bacteria to benefit methanogenesis and organic mineralization, and impoverish the methanotroph (Methylocella silvestris to reduce the consumption of methane. Micro-oxygen supplementation could enhance the diversity of iron-oxidizing bacteria arising from the improvement of Fe(II release rate and enrich the sulphur-oxidising bacteria to achieved desulfurization. These results demonstrated that RSI addition in combination with micro-oxygenation represents a promising method for simultaneously controlling biogas H2S concentration and improving digestion performance.

  15. The effect of cyclic anaerobic-aerobic conditions on biodegradation of azo dyes.

    Science.gov (United States)

    Yaşar, Semra; Cirik, Kevser; Cinar, Ozer

    2012-03-01

    The effect of cyclic anaerobic-aerobic conditions on the biodegradative capability of the mixed microbial culture for the azo dye Remazol Brilliant Violet 5R (RBV-5R) was investigated in the sequencing batch reactor (SBR) fed with a synthetic textile wastewater. The SBR had a 12-h cycle time with anaerobic-aerobic periods of 3/9, 6/6 and 9/3 h. General SBR performance was assessed by measurement of catabolic enzymes (catechol 2,3-dioxygenase, azo reductase), chemical oxygen demand (COD), color and amount of aromatic amines. In this study, under steady-state conditions, the anaerobic period of the cyclic SBR was found to allow the reductive decolorization of azo dye. Longer anaerobic periods resulted in higher color removal efficiencies, approximately 71% for the 3-h, 87% for 6-h and 92% for the 9-h duration. Total COD removal efficiencies were over 84% under each of the cyclic conditions and increased as the length of the anaerobic period was increased; however, the highest color removal rate was attained for the cycle with the shortest anaerobic period of 3 h. During the decolorization of RBV-5R, two sulfonated aromatic amines (benzene based and naphthalene based) were formed. Additionally, anaerobic azo reductase enzyme was found to be positively affected with the increasing duration of the anaerobic period; however; it was vice versa for the aerobic catechol 2,3-dioxygenase (C23DO) enzyme.

  16. 硫酸盐还原型甲烷厌氧氧化菌群驯化及其群落特征%Acclimatization and Characteristics of Microbial Community in Sulphate-Dependent Anaerobic Methane Oxidation

    Institute of Scientific and Technical Information of China (English)

    席婧茹; 刘素琴; 李琳; 刘俊新

    2014-01-01

    The greenhouse effect of methane is 26 times worse than that of carbon dioxide, and wastewater containing high concentrations of sulfate is harmful to water, soil and plants. Therefore, anaerobic oxidation of methane driven by sulfate is one of the effective ways for methane reduction. In this paper, with sulfate as the electron accepter, a microbial consortium capable of oxidating methane under anaerobic condition was cultured. The diversity and characteristics of bacterial and archaeal community were investigated by PCR-DGGE, and phylogenetic analysis of the dominant microorganisms was also carried out. The DGGE fingerprints showed that microbial community structure changed distinctly, and the abundance of methane-oxidizing archea and sulfate-reducing bacteria increased in the acclimatization system added sulfate. After acclimatization, the bacterial diversity increased, while archaea diversity decreased slightly. The representative bands in the DGGE profiles were excised and sequenced. Results indicated that the dominant species in the acclimatization system were Spirochaetes, Desulfuromonadales, Methanosarcinales, Methanosaeta. Methane converted into carbon dioxide while sulfate transformed into hydrogen sulfide and sulfur in the process of anaerobic methane oxidation accompanied by sulphate reduction.%甲烷的温室效应是二氧化碳的26倍,高浓度硫酸盐废水对水体、土壤和植物均有危害。硫酸盐为氧化剂的甲烷厌氧氧化是减少甲烷的主要途径之一。本研究以硫酸盐作为电子受体,驯化培养硫酸盐还原型甲烷厌氧氧化菌群,采用 PCR-DGGE技术分析细菌和古菌菌群多样性和群落结构特征,并对其中的优势菌进行系统发育分析。 DGGE 指纹图谱结果表明,硫酸盐的加入使微生物群落结构和优势种群数量发生了明显的改变,其增强了甲烷氧化古菌和硫酸盐还原细菌的丰度,加入硫酸盐驯化的菌群,其细菌

  17. Development of antibiotic resistance genes in microbial communities during long-term operation of anaerobic reactors in the treatment of pharmaceutical wastewater.

    Science.gov (United States)

    Aydin, Sevcan; Ince, Bahar; Ince, Orhan

    2015-10-15

    Biological treatment processes offer the ideal conditions in which a high diversity of microorganisms can grow and develop. The wastewater produced during these processes is contaminated with antibiotics and, as such, they provide the ideal setting for the acquisition and proliferation of antibiotic resistance genes (ARGs). This research investigated the occurrence and variation in the ARGs found during the one-year operation of the anaerobic sequencing batch reactors (SBRs) used to treat pharmaceutical wastewater that contained combinations of sulfamethoxazole-tetracycline-erythromycin (STE) and sulfamethoxazole-tetracycline (ST). The existence of eighteen ARGs encoding resistance to sulfamethoxazole (sul1, sul2, sul3), erythromycin (ermA, ermF, ermB, msrA, ereA), tetracycline (tetA, tetB, tetC, tetD, tetE, tetM, tetS, tetQ, tetW, tetX) and class Ι integron gene (intΙ 1) in the STE and ST reactors was investigated by quantitative real-time PCR. Due to the limited availability of primers to detect ARGs, Illumina sequencing was also performed on the sludge and effluent of the STE and ST reactors. Although there was good reactor performance in the SBRs, which corresponds to min 80% COD removal efficiency, tetA, tetB, sul1, sul2 and ermB genes were among those ARGs detected in the effluent from STE and ST reactors. A comparison of the ARGs acquired from the STE and ST reactors revealed that the effluent from the STE reactor had a higher number of ARGs than that from the ST reactor; this could be due to the synergistic effects of erythromycin. According to the expression of genes results, microorganisms achieve tetracycline and erythromycin resistance through a combination of three mechanisms: efflux pumping protein, modification of the antibiotic target and modifying enzymes. There was also a significant association between the presence of the class 1 integron and sulfamethoxazole resistance genes.

  18. Anaerobic Digestion Foaming Causes

    OpenAIRE

    Ganidi, Nafsika

    2008-01-01

    Anaerobic digestion foaming has been encountered in several sewage treatment plants in the UK. Foaming has raised major concerns for the water utilities due to significant impacts on process efficiency and operational costs. Several foaming causes have been suggested over the past few years by researchers. However, the supporting experimental information is limited and in some cases site specific. The present report aimed to provide a better understanding of the anaerobic di...

  19. Benzene toxicity of the occurrence of benzene in the ambient air of the Houston area

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Y.C.

    1980-01-01

    This study was conducted by either literature review or actual field survey. Results are summarized as follows: (1) long-term occupational exposure of workers to benzene vapor at levels of 3 to 7 ppM, 2 to 3 ppM and 1.6 ppM may result in a decreased level of leucocyte alkaline phosphates, an increased incidence of chromosome aberrations and an increased level of ALA in erythrocytes, respectively; (2) benzene is capable of causing fetotoxic effects in animals at levels as low as 10 ppM by volume; (3) exposure of animals to or less than 1 ppM benzene vapor may result in leucopenia, an inverse ratio of muscle antagonist chronaxy and a decreased level of ascorbic acid in fetus's and mother's liver as well as whole embryo; (4) benzene is causally associated with the increased incidence of pancytopenia, including unicytopenia, bicytopenia and aplastic anemia, and chromosome aberrations in occupational exposure population, and at best benzene must also be considered as a leukemogen; (5) since it can be emitted into the atmosphere from both man-made and natural sources, benzene in some concentrations is presented everywhere in the various compartments of the environment; (6) the findings of the emission of benzene from certain natural sources indicate that reducing benzene to a zero-level of exposure is theoretically impossible; (7) the annual average of benzene concentration detected in the Houston ambient air is 2.50 ppB, which is about 2.4 times higher than the nation-wide annual average exposure level and may have some health implications to the general public; and (8) in the Houston area, stationary sources are more important than mobile sources in contributing to benzene in the ambient air.

  20. Anaerobic treatment of phthalates

    NARCIS (Netherlands)

    Kleerebezem, R.

    1999-01-01

    Phthalic acid isomers (dicarboxy benzenes) play an important role in our human environment as constituents of polyester fibres, films, polyethylene terephthalate (PET) bottles and other plastics. Due to the use and generation of water during phthalic acid production from the corresponding xylenes, a

  1. In situ detection of anaerobic alkane metabolites in subsurface environments

    OpenAIRE

    Lisa eGieg; Akhil eAgrawal

    2013-01-01

    Alkanes comprise a substantial fraction of crude oil and refined fuels. As such, they are prevalent within deep subsurface fossil fuel deposits and in shallow subsurface environments such as aquifers that are contaminated with hydrocarbons. These environments are typically anaerobic, and host diverse microbial communities that can potentially use alkanes as substrates. Anaerobic alkane biodegradation has been reported to occur under nitrate-reducing, sulfate-reducing, and methanogenic cond...

  2. In situ detection of anaerobic alkane metabolites in subsurface environments

    OpenAIRE

    Agrawal, Akhil; Gieg, Lisa M.

    2013-01-01

    Alkanes comprise a substantial fraction of crude oil and refined fuels. As such, they are prevalent within deep subsurface fossil fuel deposits and in shallow subsurface environments such as aquifers that are contaminated with hydrocarbons. These environments are typically anaerobic, and host diverse microbial communities that can potentially use alkanes as substrates. Anaerobic alkane biodegradation has been reported to occur under nitrate-reducing, sulfate-reducing, and methanogenic conditi...

  3. Anaerobic degradation of 1,1,2,2-tetrachloroethane and association with microbial communities in a freshwater tidal wetland, Aberdeen Proving Ground, Maryland : laboratory experiments and comparisons to field data

    Science.gov (United States)

    Lorah, Michelle M.; Voytek, Mary A.; Kirshtein, Julie D.; Jones, Elizabeth J.

    2003-01-01

    Defining biodegradation rates and processes is a critical part of assessing the feasibility of monitored natural attenuation as a remediation method for ground water containing organic contaminants. During 1998?2001, the U.S. Geological Survey conducted a microbial study at a freshwater tidal wetland along the West Branch Canal Creek, Aberdeen Proving Ground, Maryland, as part of an investigation of natural attenuation of chlorinated volatile organic compounds (VOCs) in the wetland sediments. Geochemical analyses and molecular biology techniques were used to investigate factors controlling anaerobic degradation of 1,1,2,2-tetrachloroethane (TeCA), and to characterize the microbial communities that potentially are important in its degradation. Rapid TeCA and daughter product degradation observed in laboratory experiments and estimated with field data confirm that natural attenuation is a feasible remediation method at this site. The diverse microbial community that seems to be involved in TeCA degradation in the wetland sediments varies with changing spatial and seasonal conditions, allowing continued effective natural attenuation throughout the year. Rates of TeCA degradation in anaerobic microcosm experiments conducted with wetland sediment collected from two different sites (WB23 and WB30) and during three different seasons (March?April 1999, July?August 1999, and October?November 2000) showed little spatial variability but high seasonal variability. Initial first-order degradation rate constants for TeCA ranged from 0.10?0.01 to 0.16?0.05 per day (half-lives of 4.3 to 6.9 days) for March?April 1999 and October?November 2000 microcosms incubated at 19 degrees Celsius, whereas lower rate constants of 0 ? 0.03 and 0.06 ? 0.03 per day were obtained in July?August 1999 microcosms incubated at 19 degrees Celsius. Microbial community profiles showed that low microbial biomass and microbial diversity in the summer, possibly due to competition for nutrients by the

  4. Field metabolomics and laboratory assessments of anaerobic intrinsic bioremediation of hydrocarbons at a petroleum-contaminated site.

    Science.gov (United States)

    Parisi, Victoria A; Brubaker, Gaylen R; Zenker, Matthew J; Prince, Roger C; Gieg, Lisa M; Da Silva, Marcio L B; Alvarez, Pedro J J; Suflita, Joseph M

    2009-03-01

    Field metabolomics and laboratory assays were used to assess the in situ anaerobic attenuation of hydrocarbons in a contaminated aquifer underlying a former refinery. Benzene, ethylbenzene, 2-methylnaphthalene, 1,2,4- and 1,3,5-trimethylbenzene were targeted as contaminants of greatest regulatory concern (COC) whose intrinsic remediation has been previously reported. Metabolite profiles associated with anaerobic hydrocarbon decay revealed the microbial utilization of alkylbenzenes, including the trimethylbenzene COC, PAHs and several n-alkanes in the contaminated portions of the aquifer. Anaerobic biodegradation experiments designed to mimic in situ conditions showed no loss of exogenously amended COC; however, a substantive rate of endogenous electron acceptor reduction was measured (55 ± 8 µM SO(4) day(-1)). An assessment of hydrocarbon loss in laboratory experiments relative to a conserved internal marker revealed that non-COC hydrocarbons were being metabolized. Purge and trap analysis of laboratory assays showed a substantial loss of toluene, m- and o-xylene, as well as several alkanes (C(6)-C(12)). Multiple lines of evidence suggest that benzene is persistent under the prevailing site anaerobic conditions. We could find no in situ benzene intermediates (phenol or benzoate), the parent molecule proved recalcitrant in laboratory assays and low copy numbers of Desulfobacterium were found, a genus previously implicated in anaerobic benzene biodegradation. This study also showed that there was a reasonable correlation between field and laboratory findings, although with notable exception. Thus, while the intrinsic anaerobic bioremediation was clearly evident at the site, non-COC hydrocarbons were preferentially metabolized, even though there was ample literature precedence for the biodegradation of the target molecules.

  5. Anaerobic Biodegradation of Detergent Surfactants

    Directory of Open Access Journals (Sweden)

    Erich Jelen

    2009-03-01

    Full Text Available Detergent surfactantscan be found in wastewater in relevant concentrations. Most of them are known as ready degradable under aerobic conditions, as required by European legislation. Far fewer surfactants have been tested so far for biodegradability under anaerobic conditions. The natural environment is predominantly aerobic, but there are some environmental compartments such as river sediments, sub-surface soil layer and anaerobic sludge digesters of wastewater treatment plants which have strictly anaerobic conditions. This review gives an overview on anaerobic biodegradation processes, the methods for testing anaerobic biodegradability, and the anaerobic biodegradability of different detergent surfactant types (anionic, nonionic, cationic, amphoteric surfactants.

  6. Use of Fixed-Film Bioreactors, in Situ Microcosms, and Molecular Biological Analyses to Evaluate Bioremediation of Chlorinated Benzenes By Indigenous Bacteria and a Bioaugmented Dechlorinating Consortium

    Science.gov (United States)

    Lorah, M. M.; Teunis, J. A.

    2014-12-01

    Evaluation of bioremediation is complicated by contaminant mixtures, high concentrations, variable site conditions, and multiple possible degradation pathways. In this study, fixed-film bioreactor experiments, in situ microcosms, and microbial analyses were utilized to evaluate both anaerobic and aerobic biodegradation processes for tri- and dichlorobenzene isomers, monochlorobenzene, and benzene in a wetland. Biofilm-based bioreactors provide a robust assessment tool because of their typically high degree of stability, even with major and repeated perturbations. Two bioreactor units seeded with an anaerobic dechlorinating consortium (WBC-2) and one unit seeded only with bacteria indigenous to the site were operated under flow-through conditions to compare biougmentation and natural attenuation. Electron donor levels were varied to fluctuate between anaerobic and aerobic conditions, and inflow concentrations of total chlorobenzenes were transitioned from 1-10 mg/L to 50-100 mg/L. Biodegradation resulted in removal efficiencies of 80 to 99 percent for the different compounds and inflow concentrations. Degradation efficiency in the native bioreactor was not impacted by cycling between anaerobic and aerobic conditions, although removal rates for monochlorobenzene and benzene increased under aerobic conditions. In situ microcosms were incubated below the wetland surface in sets of 3 treatments—unamended, biostimulated (lactate addition), and bioaugmented (WBC-2 and lactate). Additional treatment sets contained 13C-labeled contaminants to monitor for production of 13C-containing carbon dioxide and cellular material. Microcosm results verified that WBC-2 bioaugmentation can enhance biodegradation, with complete mineralization of chlorobenzene and benzene in bioaugmented and native treatments. Microbial analyses using QuantArrayTM for functional and taxonomic genes indicated potential for co-occurrence of anaerobic and aerobic biodegradation. Compared to the unamended

  7. Ionic Liquid Catalyst Used in Deep Desulfuration of the Coking Benzene for Producing Sulfurless Benzene

    Institute of Scientific and Technical Information of China (English)

    ZHOU Xia-Ping; WANG Yan-Liang; MENG Fan-Wei; FAN Xing-Ming; QIN Song-Bo

    2008-01-01

    For the widening need of benzene used in organic synthesis, ionic liquid catalyst was prepared to study the process of deep desulfuration in the coking benzene. The result shows that the effect of de-thiophene by the ionic liquid catalyst (N-methyl imidazolium hydrogen sulfate [Hmim][HSO4]) is related to its acid function value.Hammett indicator was used to determine the acid function value H0 of the ionic liquid. It can be concluded that while the acid function value is in the range from -4 to -12, the ionic liquid catalyst can make the concentration certain acid quantity and strength, the ionic liquid catalyst helps to form alkyl thiophene through Friedel-Crafts reaction, which differs from the character of benzene and it is absolutely necessary for the separation and refinement of benzene. But overabundant quantity and higher acid value of [Hmim][HSO4] are more suitable for the side copolymerization of benzene, thiophene and alkene, thereby affecting repeated use of the ionic liquid catalyst([Hmim][HSO4]). In our research, thiophene derivant produced by desulfurization in the coking benzene was used as the polymer to provide the passing channel of the charges. The ionic liquid composition in poor performance after repeated use was made to prepare conductive material (resisting to static electricity) as an "electron-receiving" and "electron-giving" doping agent. The result shows that thiophene derivant after desulfuration in the coking benzene can be used to prepare doping conductive materials.

  8. Performance and microbial communities of a continuous stirred tank anaerobic reactor treating two-phases olive mill solid wastes at low organic loading rates.

    Science.gov (United States)

    Rincón, B; Raposo, F; Borja, R; Gonzalez, J M; Portillo, M C; Saiz-Jimenez, C

    2006-02-24

    A study of the performance and microbial communities of a continuous stirred tank reactor (CSTR) treating two-phases olive mill solid wastes (OMSW) was carried out at laboratory-scale. The reactor operated at a mesophilic temperature (35 degrees C) and an influent substrate concentration of 162 g total chemical oxygen demand (COD)L(-1) and 126 g volatile solids (VS)L(-1). The data analyzed in this work corresponded to a range of organic loading rates (OLR) of between 0.75 and 3.00 g CODL(-1)d(-1), getting removal efficiencies in the range of 97.0-95.6%. Methane production rate increased from 0.164 to 0.659 L CH(4)L(reactor)(-1)d(-1) when the OLR increased within the tested range. Methane yield coefficients were 0.225 L CH(4)g(-1) COD removed and 0.290 L CH(4)g(-1) VS removed and were virtually independent of the OLR applied. A molecular characterization of the microbial communities involved in the process was also accomplished. Molecular identification of microbial species was performed by PCR amplification of 16S ribosomal RNA genes, denaturing gradient gel electrophoresis (DGGE), cloning and sequencing. Among the predominant microorganisms in the bioreactor, the Firmicutes (mainly represented by Clostridiales) were the most abundant group, followed by the Chloroflexi and the Gamma-Proteobacteria (Pseudomonas species as the major representative). Other bacterial groups detected in the bioreactor were the Actinobacteria, Bacteroidetes and Deferribacteres. Among the Archaea, the methanogen Methanosaeta concilii was the most representative species.

  9. Analysis of Methanogenic Community of Anaerobic Granular Sludge Based on mcrA Gene%基于mcrA基因的厌氧颗粒污泥产甲烷菌群分析

    Institute of Scientific and Technical Information of China (English)

    刘春; 李亮; 马俊科; 吴根; 杨景亮

    2011-01-01

    The methanogenic community in anaerobic granular sludge from a full-scale UASB treating avernectin wastewater was analyzed based on mcrA gene, compared to 16S rRNA gene. The results indicated that the diversity indices of methanogenic community, including Shannon diversity index, Margalef richness index and Berger-Parker dominance index, were no difference between mcrA gene-based and 16S rRNA gene-based PCR products analysis by DGGE, although their DGGE band patterns were different, implying that the diversity analysis of methanogenic community based on mcrA genes was consistent with 16S rRNA gene. The phylogenetic analysis of dominant methanogenic populations based on these two target genes also showed resemble and Methanobacteriales and Methanosarcinales were determined to be the main orders of methanogenic populations in anaerobic granular sludge. On the other hand, the difference in phylogenetic analysis suggested simultaneously some group-specific of the two target genes. The hybridization of methanogenic community in FISH analysis based on two target genes was almost identical except a little different hybridization areas. The average relative abundance of methanogenic community was 24.25% ± 6.47% detected by FISH based on mcrA gene, lower than that based on 16S rRNA gene (33.42% ±2.34% ). Then it could be concluded that the analysis of methanogenic community based on mcrA gene and 16S rRNA gene exhibited high resemblance and mcrA gene could used to be target gene for methanogenic community, as an alternative of 16S rRNA gene.%基于mcrA基因对阿维菌素废水处理工业化UASB厌氧颗粒污泥中产甲烷菌群进行分析,并与基于16S rRNA基因的产甲烷菌群分析结果进行比较.结果表明,基于2种目标基因PCR产物的DGGE图谱存在差异,但根据图谱计算所得产甲烷菌群Shannon多样性指数、Margalef丰富度指数和Berger-Parker优势度指数没有差异,表明基于2种目标基因的产甲烷菌群多

  10. Bacterial community distribution of anaerobic ammonium oxidation biofilter at low temperature%低温厌氧氨氧化生物滤池细菌群落沿层分布规律

    Institute of Scientific and Technical Information of China (English)

    曾涛涛; 李冬; 刘涛; 邱文新; 蔡言安; 许达; 张杰

    2013-01-01

    通过扫描电镜(SEM)、变性梯度凝胶电泳技术(DGGE)和克隆测序等方法,对低温(14.9~16.2℃)稳定运行的上流式厌氧氨氧化(ANAMMOX)生物滤池内上(140~190 cm)、中(60~140 m)、下(10~60 cm)3部分细菌群落分布进行研究.研究结果表明:大部分氨氮、亚氮在反应器中部呈比例地去除,总氮去除负荷达2.4 kg/(m3.d);类似ANAMMOX菌的球形细菌主要分布在反应器中部;生物滤柱上部细菌多样性最高,中部其次,下层细菌多样性最低,细菌群落结构沿层变化是适应生物滤柱沿层氮素变化的结果;生物滤柱不同滤层分布着同一种厌氧氨氧化菌(ANAMMOX)与好氧氨氧化菌(AOB),克隆测序鉴定ANAMMOX菌为Candidatus Kuenenia stuttgartiensis,AOB为Nitrosomonas sp.ENI-11:AOB的存在能够消耗进水中的微量溶解氧,为反应器创造厌氧环境,有利于生物滤柱中部富集较多的ANAMMOX菌.%Techniques of scanning electron microscopy (SEM), denaturing gradient gel electrophoresis (DGGE), cloning and sequencing were utilized together to study bacterial community distribution of upper (140-190 cm), middle (60-140 cm) and lower (10-60 cm) parts of an up-flow anaerobic ammonium oxidation (ANAMMOX) biofilter, which was run stably at low temperature (14.9-16.2 ℃). The results show that a large proportion of ammonia and nitrite proportional disappears in the middle part of biofilter and a high total nitrogen removal rate of 2.4 kg/(m3·d) is obtained. The spherical bacteria, which is similar to ANAMMOX bacteria, predominates in the middle part of biofilter. There is the highest bacterial diversity in the upper part of biofilter, followed by middle part and minimum bacterial diversity in lower part. Bacterial community structures varied in different parts of biofilter due to nitrogen distinction along biofilter layer. There is only one type of ANAMMOX bacterium and AOB presented in different parts of biofilter, which are identified as

  11. Anaerobic bacteria in otitis media.

    Science.gov (United States)

    Fulghum, R S; Daniel, H J; Yarborough, J G

    1977-01-01

    Anaerobic bacteria, Peptostrepotococcus intermedius and Propionibacterium acnes, were found in mixed culture specimens from four to ten tested cases of chronic secretory otitis media. These anaerobic bacteria were in a mixed infection flora with aerobic bacteria most often Staphylococcus epidermidis and Cornybacterium sp. which do not fit any established species. The findings of anaerobic bacteria in otitis media is consistent with the sporadic report of the involvement of anaerobic bacteria in otitis media in the literature since 1898.

  12. Behavioral changes in mice following benzene inhalation.

    Science.gov (United States)

    Evans, H L; Dempster, A M; Snyder, C A

    1981-01-01

    Although benzene is an important occupational health hazard and a carcinogen, the possibility that behavioral changes may forewarn of the later-occurring hematological changes has not been investigated. A time-sampling protocol was used to quantify the occurrence of 7 categories of behavior in the homecage following daily 6-hr exposures to two strains of adult mice (CD1 and C57BL/6J). The behavioral categories were stereotypic behavior, sleeping, resting, eating, grooming, locomotion, and fighting. The inhalation exposures were designed to reflect occupational exposure. Dynamic vapor exposure techniques in standard inhalation chambers were employed. Exposure to 300 or 900 ppm benzene increased the occurrence of eating and grooming and reduced the number of mice that were sleeping or resting. The responses to benzene of both the CD1 and the C57 strains were similar. The positive findings with benzene inhalation indicate the utility of behavioral investigations into the toxicology of inhaled organic solvents. The methods described herein illustrate an objective observation of animal behavior that is capable of documenting toxicity and of guiding detailed follow-up studies aimed at mechanism of action.

  13. Cultivation of anaerobic and facultatively anaerobic bacteria from spacecraft-associated clean rooms.

    Science.gov (United States)

    Stieglmeier, Michaela; Wirth, Reinhard; Kminek, Gerhard; Moissl-Eichinger, Christine

    2009-06-01

    In the course of this biodiversity study, the cultivable microbial community of European spacecraft-associated clean rooms and the Herschel Space Observatory located therein were analyzed during routine assembly operations. Here, we focused on microorganisms capable of growing without oxygen. Anaerobes play a significant role in planetary protection considerations since extraterrestrial environments like Mars probably do not provide enough oxygen for fully aerobic microbial growth. A broad assortment of anaerobic media was used in our cultivation strategies, which focused on microorganisms with special metabolic skills. The majority of the isolated strains grew on anaerobic, complex, nutrient-rich media. Autotrophic microorganisms or microbes capable of fixing nitrogen were also cultivated. A broad range of facultatively anaerobic bacteria was detected during this study and also, for the first time, some strictly anaerobic bacteria (Clostridium and Propionibacterium) were isolated from spacecraft-associated clean rooms. The multiassay cultivation approach was the basis for the detection of several bacteria that had not been cultivated from these special environments before and also led to the discovery of two novel microbial species of Pseudomonas and Paenibacillus.

  14. Contrastive Analysis of the Raman Spectra of Polychlorinated Benzene: Hexachlorobenzene and Benzene

    Directory of Open Access Journals (Sweden)

    Zhengjun Zhang

    2011-12-01

    Full Text Available Detection of persistent pollutants such as polychlorinated benzene in environment in trace amounts is challenging, but important. It is more difficult to distinguish homologues and isomers of organic pollutantd when present in trace amounts because of their similar physical and chemical properties. In this work we simulate the Raman spectra of hexachlorobenzene and benzene, and figure out the vibration mode of each main peak. The effect on the Raman spectrum of changing substituents from H to Cl is analyzed to reveal the relations between the Raman spectra of homologues and isomers of polychlorinated benzene, which should be helpful for distinguishing one kind of polychlorinated benzene from its homologues and isomers by surface enhanced Raman scattering.

  15. Diversity of anaerobic microbes in spacecraft assembly clean rooms.

    Science.gov (United States)

    Probst, Alexander; Vaishampayan, Parag; Osman, Shariff; Moissl-Eichinger, Christine; Andersen, Gary L; Venkateswaran, Kasthuri

    2010-05-01

    Although the cultivable and noncultivable microbial diversity of spacecraft assembly clean rooms has been previously documented using conventional and state-of-the-art molecular techniques, the occurrence of obligate anaerobes within these clean rooms is still uncertain. Therefore, anaerobic bacterial communities of three clean-room facilities were analyzed during assembly of the Mars Science Laboratory rover. Anaerobic bacteria were cultured on several media, and DNA was extracted from suitable anaerobic enrichments and examined with conventional 16S rRNA gene clone library, as well as high-density phylogenetic 16S rRNA gene microarray (PhyloChip) technologies. The culture-dependent analyses predominantly showed the presence of clostridial and propionibacterial strains. The 16S rRNA gene sequences retrieved from clone libraries revealed distinct microbial populations associated with each clean-room facility, clustered exclusively within gram-positive organisms. PhyloChip analysis detected a greater microbial diversity, spanning many phyla of bacteria, and provided a deeper insight into the microbial community structure of the clean-room facilities. This study presents an integrated approach for assessing the anaerobic microbial population within clean-room facilities, using both molecular and cultivation-based analyses. The results reveal that highly diverse anaerobic bacterial populations persist in the clean rooms even after the imposition of rigorous maintenance programs and will pose a challenge to planetary protection implementation activities.

  16. The anaerobic digestion process

    Energy Technology Data Exchange (ETDEWEB)

    Rivard, C.J. [National Renewable Energy Lab., Golden, CO (United States); Boone, D.R. [Oregon Graduate Inst., Portland, OR (United States)

    1996-01-01

    The microbial process of converting organic matter into methane and carbon dioxide is so complex that anaerobic digesters have long been treated as {open_quotes}black boxes.{close_quotes} Research into this process during the past few decades has gradually unraveled this complexity, but many questions remain. The major biochemical reactions for forming methane by methanogens are largely understood, and evolutionary studies indicate that these microbes are as different from bacteria as they are from plants and animals. In anaerobic digesters, methanogens are at the terminus of a metabolic web, in which the reactions of myriads of other microbes produce a very limited range of compounds - mainly acetate, hydrogen, and formate - on which the methanogens grow and from which they form methane. {open_quotes}Interspecies hydrogen-transfer{close_quotes} and {open_quotes}interspecies formate-transfer{close_quotes} are major mechanisms by which methanogens obtain their substrates and by which volatile fatty acids are degraded. Present understanding of these reactions and other complex interactions among the bacteria involved in anaerobic digestion is only now to the point where anaerobic digesters need no longer be treated as black boxes.

  17. Anaerobic digestion without biogas?

    NARCIS (Netherlands)

    Kleerebezem, R.; Joosse, B.; Rozendaal, R.; Van Loosdrecht, M.C.M.

    2015-01-01

    Anaerobic digestion for the production of methane containing biogas is the classic example of a resource recovery process that combines stabilization of particulate organic matter or wastewater treatment with the production of a valuable end-product. Attractive features of the process include the pr

  18. Decolourisation of textile wastewater in a submerged anaerobic membrane bioreactor.

    Science.gov (United States)

    Spagni, Alessandro; Casu, Stefania; Grilli, Selene

    2012-08-01

    Azo dye decolourisation can be easily achieved by biological reduction under anaerobic conditions. The aim of this study was to evaluate the applicability of submerged anaerobic membrane bioreactors (SAMBRs) for the decolourisation of dyeing wastewater containing azo dyes. The reactive orange 16 was used as model of an azo dye. The results demonstrated that very high decolourisation (higher than 99%) can be achieved by SAMBRs. Although decolourisation was not significantly influenced by the azo dye concentrations up to 3.2 g L(-1), methane production was greatly inhibited (up to 80-85%). Since volatile fatty acids accumulated in the treatment system with the azo dye concentration increase, methanogenes seem to be the most sensitive microbial populations of the anaerobic ecological community. The results demonstrated that anaerobic process combined with membrane filtration can deal with highly concentrated wastewaters that result from stream separation of industrial discharges.

  19. GIBBS FREE-ENERGY OF FORMATION OF HALOGENATED AROMATIC-COMPOUNDS AND THEIR POTENTIAL ROLE AS ELECTRON-ACCEPTORS IN ANAEROBIC ENVIRONMENTS

    NARCIS (Netherlands)

    DOLFING, J; HARRISON, BK

    1992-01-01

    The Gibbs free energies of formation of various classes of halogenated aromatic compounds were estimated with Benson's method. The data were used to evaluate the potential of these compounds to serve as electron acceptors in anaerobic environments. The results indicate that for (chloro) benzenes, be

  20. Recent advances in the metabolism and toxicity of benzene.

    Science.gov (United States)

    Kalf, G F

    1987-01-01

    Benzene is a heavily used industrial chemical, a petroleum byproduct, an additive in unleaded gas, and a ubiquitous environmental pollutant. Benzene is also a genotoxin, hematotoxin, and carcinogen. Chronic exposure causes aplastic anemia in humans and animals and is associated with increased incidence of leukemia in humans and lymphomas and certain solid tumors in rodents. Bioactivation of benzene is required for toxicity. In the liver, the major site of benzene metabolism, benzene is converted by a cytochrome P-450-mediated pathway to phenol, the major metabolite, and the secondary metabolites, hydroquinone and catechol. The target organ of benzene toxicity, the hematopoietically active bone marrow, metabolizes benzene to a very limited extent. Phenol is metabolized in the marrow cells by a peroxidase-mediated pathway to hydroquinone and catechol, and ultimately to quinones, the putative toxic metabolites. Benzene and its metabolites appear to be nonmutagenic, but they cause myeloclastogenic effects such as micronuclei, chromosome aberrations, and sister chromatid exchange. It is unknown whether these genomic changes, or the ability of the quinone metabolites to form adducts with DNA, are involved in benzene carcinogenicity. Benzene, through its active metabolites, appears to exert its hematological effects on the bone marrow stromal microenvironment by preventing stromal cells from supporting hemopoiesis of the various progenitor cells. Recent advances in our understanding of the mechanisms by which benzene exerts its genotoxic, hematotoxic, and carcinogenic effects are detailed in this review.

  1. Structural basis of enzymatic benzene ring reduction.

    Science.gov (United States)

    Weinert, Tobias; Huwiler, Simona G; Kung, Johannes W; Weidenweber, Sina; Hellwig, Petra; Stärk, Hans-Joachim; Biskup, Till; Weber, Stefan; Cotelesage, Julien J H; George, Graham N; Ermler, Ulrich; Boll, Matthias

    2015-08-01

    In chemical synthesis, the widely used Birch reduction of aromatic compounds to cyclic dienes requires alkali metals in ammonia as extremely low-potential electron donors. An analogous reaction is catalyzed by benzoyl-coenzyme A reductases (BCRs) that have a key role in the globally important bacterial degradation of aromatic compounds at anoxic sites. Because of the lack of structural information, the catalytic mechanism of enzymatic benzene ring reduction remained obscure. Here, we present the structural characterization of a dearomatizing BCR containing an unprecedented tungsten cofactor that transfers electrons to the benzene ring in an aprotic cavity. Substrate binding induces proton transfer from the bulk solvent to the active site by expelling a Zn(2+) that is crucial for active site encapsulation. Our results shed light on the structural basis of an electron transfer process at the negative redox potential limit in biology. They open the door for biological or biomimetic alternatives to a basic chemical synthetic tool.

  2. Fertilization stimulates anaerobic fuel degradation of antarctic soils by denitrifying microorganisms.

    Science.gov (United States)

    Powell, Shane M; Ferguson, Susan H; Snape, Ian; Siciliano, Steven D

    2006-03-15

    Human activities in the Antarctic have resulted in hydrocarbon contamination of these fragile polar soils. Bioremediation is one of the options for remediation of these sites. However, little is known about anaerobic hydrocarbon degradation in polar soils and the influence of bioremediation practices on these processes. Using a field trial at Old Casey Station, Antarctica, we assessed the influence of fertilization on the anaerobic degradation of a 20-year old fuel spill. Fertilization increased hydrocarbon degradation in both anaerobic and aerobic soils when compared to controls, but was of most benefit for anaerobic soils where evaporation was negligible. This increased biodegradation in the anaerobic soils corresponded with a shift in the denitrifier community composition and an increased abundance of denitrifiers and benzoyl-CoA reductase. A microcosm study using toluene and hexadecane confirmed the degradative capacity within these soils under anaerobic conditions. It was observed that fertilized anaerobic soil degraded more of this hydrocarbon spike when incubated anaerobically than when incubated aerobically. We conclude that denitrifiers are actively involved in hydrocarbon degradation in Antarctic soils and that fertilization is an effective means of stimulating their activity. Further, when communities stimulated to degrade hydrocarbons under anaerobic conditions are exposed to oxygen, hydrocarbon degradation is suppressed. The commonly accepted belief that remediation of polar soils requires aeration needs to be reevaluated in light of this new data.

  3. Diversity and ecophysiological features of thermophilic carboxydotrophic anaerobes

    NARCIS (Netherlands)

    Sokolova, T.G.; Henstra, A.M.; Sipma, J.; Parshina, S.N.; Stams, A.J.M.; Lebedinsky, A.V.

    2009-01-01

    Both natural and anthropogenic hot environments contain appreciable levels of carbon monoxide (CO). Anaerobic microbial communities play an important role in CO conversion in such environments. CO is involved in a number of redox reactions. It is biotransformed by thermophilic methanogens, acetogens

  4. [Materials for the substantiation of the biological MAC of benzene].

    Science.gov (United States)

    Ulanova, I P; Avilova, G G; Karpukhina, E A; Karimova, L K; Boĭko, V I; Makar'eva, L M

    1990-09-01

    Relatively great amount of benzene-originated phenol, the presence of a definite relationship between phenol amount in the urine and benzene content in the air indicate that it is reasonable to use a phenol sample as an exposure test. To determine the intensity of benzene exposure, data on phenol content in the urine of people working at some big-tonnage enterprises has been analyzed. On the basis of the national and foreign literature data on the correlation between the phenol urine concentration and the level of benzene exposure a regression equation was deduced, which has made it possible to calculate phenol content in the urine on the level of average working day benzene concentration adopted in the USSR. This value equals 15 mg/l, which was proposed as a biological benzene MAC.

  5. Ecogenomics of microbial communities in bioremediation of chlorinated contaminated sites

    OpenAIRE

    Maphosa, Farai; Shakti H Lieten; Dinkla, Inez; Stams, Alfons J.; Smidt, Hauke; Fennell, Donna E.

    2012-01-01

    Organohalide compounds such as chloroethenes, chloroethanes, and polychlorinated benzenes are among the most significant pollutants in the world. These compounds are often found in contamination plumes with other pollutants such as solvents, pesticides, and petroleum derivatives. Microbial bioremediation of contaminated sites, has become commonplace whereby key processes involved in bioremediation include anaerobic degradation and transformation of these organohalides by organohalide respirin...

  6. Assessment of anaerobic bacterial diversity and its effects on anaerobic system stability and the occurrence of antibiotic resistance genes.

    Science.gov (United States)

    Aydin, Sevcan; Ince, Bahar; Ince, Orhan

    2016-05-01

    This study evaluated the link between anaerobic bacterial diversity and, the biodegradation of antibiotic combinations and assessed how amending antibiotic combination and increasing concentration of antibiotics in a stepwise fashion influences the development of resistance genes in anaerobic reactors. The biodegradation, sorption and occurrence of the known antibiotic resistance genes (ARGs) of erythromycin and tetracycline were investigated using the processes of UV-HPLC and qPCR analysis respectively. Ion Torrent sequencing was used to detect microbial community changes in response to the addition of antibiotics. The overall results indicated that changes in the structure of a microbial community lead to changes in biodegradation capacity, sorption of antibiotics combinations and occurrence of ARGs. The enhanced biodegradation efficiency appeared to generate variations in the structure of the bacterial community. The results suggested that controlling the ultimate Gram-negative bacterial community, especially Acinetobacter-related populations, may promote the successful biodegradation of antibiotic combinations and reduce the occurrence of ARGs.

  7. Anaerobic BTEX degradation in soil bioaugmented with mixed consortia under nitrate reducing conditions

    Institute of Scientific and Technical Information of China (English)

    DOU Junfeng; LIU Xiang; HU Zhifeng

    2008-01-01

    Different concentrations of BTEX, including benzene, toluene, ethylbenzene, and three xylene isomers, were added into soil samples to investigate the anaerobic degradation potential by the augmented BTEX-adapted consortia under niwate reducing conditiom. All the BTEX substrates could be anaerobically biodegraded to non-detectable levels within 70 d when the initial concentrations were below 100 mg/kg in soil. Toluene was degraded faster than any other BTEX compounds, and the high-to-low order ofdegradation rates were toluene>ethylbenzene>m. xylene>o-xylene>benzene>P. xylene. Nitrite was accumulated with nitrate reduction. but the accumulation of nitrite had no inhibitory effect on the degradation of BTEX throughout the whole incubation. Indigenous bacteria in tIle soil could enhance the BTEX biodegradation ability of the enriched mixed bacteria. When the six BTEX compounds were simultaneously present in soil, there was no apparent inhibitory effect on their degradation with lower initial concentrations. Alternatively, benzene, o-xylene, and P-xylene degradation were inhibited with higher initial concentrations of 300 mg/kg. Higher BTEX biodegradation rates were observed in soil samples with the addition of sodium acetate compared to the presence of a single BTEX substrate. and the hypothesis of primary-substrate stimulation or cometabolic enhancement of BTEX biodegradation seems likely.

  8. Anaerobic Digestion of Piggery Waste

    NARCIS (Netherlands)

    Velsen, van A.F.M.

    1981-01-01

    Anaerobic digestion is a biological process by which organic matter is converted to methane and carbon dioxide by microbes in the absence of air (oxygen). In nature, anaerobic conversions occur at all places where organic material accumulates and the supply of oxygen is deficient, e.g. in marshes an

  9. Anaerobic digestion of solid material

    DEFF Research Database (Denmark)

    Vavilin, V.A.; Lokshina, L.Y.; Flotats, X.

    2007-01-01

    A new multidimensional (3 and 2D) anaerobic digestion model for cylindrical reactor with non-uniform influent concentration distributions was developed to study the way in which mixing intensity affects the efficiency of continuous-flow anaerobic digestion. Batch experiments reported and simulate...

  10. Anaerobic degradation of increased phenol concentrations in batch assays.

    Science.gov (United States)

    Wirth, Benjamin; Krebs, Maria; Andert, Janet

    2015-12-01

    Phenol is a wastewater contaminant depicting an environmental hazard. It can be found in effluents from various industrial processes and becomes even more common as a waste by-product of biomass-based bioenergy concepts. Because of its toxicity to anaerobic microorganisms, it can be recalcitrant during biogas production and anaerobic wastewater treatment. This study tested increased phenol loads (100 to 5000 mg L(-1)) as the sole carbon source in a semi-continuous mesophilic anaerobic adaption experiment using an unadapted microbial community from a standard biogas plant. Phenol was completely degraded at starting concentrations of up to 2000 mg L(-1). At 5000 mg L(-1), complete inhibition of the anaerobic community was observed. Lag times were reduced down to less than a day treating 2000 mg L(-1) after 16 weeks of adaption to gradually increased phenol concentrations. Specific degradation rates increased consecutively up to 7.02 mg gVS (-1) day(-1) at 2000 mg L(-1). This concentration was completely degraded within less than 12 days. The microbial community composition was assessed using 16S rRNA gene-based terminal restriction fragment length polymorphism (T-RFLP) analysis. In the bacterial community, no clear shift was visible. Clostridia were with the highest relative abundance of 27 %, the most prominent bacterial class. T-RFs representing Clostridia, Anaerolinaceae, Flavobacteria, and Bacteroidea appeared at similar relative abundance level throughout the experiment. The archaeal community, however, changed from a Methanosarcinales-dominated community (57%) to a community with a nearly even distribution of Methanobacteriales (21%) and Methanosarcinales (34%) with increasing starting phenol concentration.

  11. An efficient synthesis of substituted benzene-1,2-dicarboxaldehydes

    Institute of Scientific and Technical Information of China (English)

    ZHU Peter C; WANG Dei-Haw; LU Kaitao; MANI Neelakandha

    2007-01-01

    Substituted-benzene-1,2-dicarbaldehydes were synthesized by the reaction of substituted-1,2-bis (dibromomethyl) benzenes with fuming sulfuric acid, followed by hydrolysis, The yields were significantly improved by introducing solid sodium bicarbonate into the reaction mixture before hydrolysis and workup.

  12. An efficient synthesis of substituted benzene-1,2-dicarboxaldehydes

    Institute of Scientific and Technical Information of China (English)

    ZHU; Peter; C; WANG; Der-Haw; MANI; Neelakandha

    2007-01-01

    Substituted-benzene-1,2-dicarbaldehydes were synthesized by the reaction of substituted-1,2-bis(dibromomethyl) benzenes with fuming sulfuric acid,followed by hydrolysis. The yields were signifi-cantly improved by introducing solid sodium bicarbonate into the reaction mixture before hydrolysis and workup.

  13. Benzene as a Chemical Hazard in Processed Foods

    Science.gov (United States)

    Salviano dos Santos, Vânia Paula; Medeiros Salgado, Andréa; Guedes Torres, Alexandre; Signori Pereira, Karen

    2015-01-01

    This paper presents a literature review on benzene in foods, including toxicological aspects, occurrence, formation mechanisms, and mitigation measures and analyzes data reporting benzene levels in foods. Benzene is recognized by the IARC (International Agency for Research on Cancer) as carcinogenic to humans, and its presence in foods has been attributed to various potential sources: packaging, storage environment, contaminated drinking water, cooking processes, irradiation processes, and degradation of food preservatives such as benzoates. Since there are no specific limits for benzene levels in beverages and food in general studies have adopted references for drinking water in a range from 1–10 ppb. The presence of benzene has been reported in various food/beverage substances with soft drinks often reported in the literature. Although the analyses reported low levels of benzene in most of the samples studied, some exceeded permissible limits. The available data on dietary exposure to benzene is minimal from the viewpoint of public health. Often benzene levels were low as to be considered negligible and not a consumer health risk, but there is still a need of more studies for a better understanding of their effects on human health through the ingestion of contaminated food. PMID:26904662

  14. Benzene as a Chemical Hazard in Processed Foods

    Directory of Open Access Journals (Sweden)

    Vânia Paula Salviano dos Santos

    2015-01-01

    Full Text Available This paper presents a literature review on benzene in foods, including toxicological aspects, occurrence, formation mechanisms, and mitigation measures and analyzes data reporting benzene levels in foods. Benzene is recognized by the IARC (International Agency for Research on Cancer as carcinogenic to humans, and its presence in foods has been attributed to various potential sources: packaging, storage environment, contaminated drinking water, cooking processes, irradiation processes, and degradation of food preservatives such as benzoates. Since there are no specific limits for benzene levels in beverages and food in general studies have adopted references for drinking water in a range from 1–10 ppb. The presence of benzene has been reported in various food/beverage substances with soft drinks often reported in the literature. Although the analyses reported low levels of benzene in most of the samples studied, some exceeded permissible limits. The available data on dietary exposure to benzene is minimal from the viewpoint of public health. Often benzene levels were low as to be considered negligible and not a consumer health risk, but there is still a need of more studies for a better understanding of their effects on human health through the ingestion of contaminated food.

  15. [Benzene in soft drinks: a study in Florence (Italy)].

    Science.gov (United States)

    Bonaccorsi, Guglielmo; Perico, Andrea; Colzi, Alessio; Bavazzano, Paolo; Di Giusto, Maurizio; Lamberti, Ilaria; Martino, Gianrocco; Puggelli, Francesco; Lorini, Chiara

    2012-01-01

    The aim of this study was to determine the amount of benzene present in soft drinks sold in Florence (Italy). We analyzed 28 different types of soft drinks, by measuring concentrations of benzoic acid, sorbic acid, ascorbic acid (using high performance liquid chromatography with UV detection) and benzene (using gas chromatography and mass spectrometry). Data was analysed by using SPSS 18.0.Traces of benzene were detected in all analyzed beverages, with a mean concentration of 0.45 µg/L (range: 0.15-2.36 µg/L). Statistically significant differences in mean benzene concentrations were found between beverages according to the type of additive indicated on the drink label, with higher concentrations found in beverages containing both ascorbic acid and sodium benzoate. Two citrus fruit-based drinks were found to have benzene levels above the European limit for benzene in drinking water of 1 µg /L. Sodium benzoate and ascorbic acid were also detected in the two drinks.In conclusion, not all soft drink producers have taken steps to eliminate benzoic acid from their soft drinks and thereby reduce the risk of formation of benzene, as recommended by the European Commission. Furthermore, the presence of benzene in trace amounts in all beverages suggests that migration of constituents of plastic packaging materials or air-borne contamination may be occurring.

  16. Catalytic conversion of alcohols to hydrocarbons with low benzene content

    Energy Technology Data Exchange (ETDEWEB)

    Narula, Chaitanya K.; Davison, Brian H.; Keller, Martin

    2016-09-06

    A method for converting an alcohol to a hydrocarbon fraction having a lowered benzene content, the method comprising: converting said alcohol to a hydrocarbon fraction by contacting said alcohol, under conditions suitable for converting said alcohol to said hydrocarbon fraction, with a metal-loaded zeolite catalyst catalytically active for converting said alcohol to said hydrocarbon fraction, and contacting said hydrocarbon fraction with a benzene alkylation catalyst, under conditions suitable for alkylating benzene, to form alkylated benzene product in said hydrocarbon fraction. Also described is a catalyst composition useful in the method, comprising a mixture of (i) a metal-loaded zeolite catalyst catalytically active for converting said alcohol to said hydrocarbon, and (ii) a benzene alkylation catalyst, in which (i) and (ii) may be in a mixed or separated state. A reactor for housing the catalyst and conducting the reaction is also described.

  17. Catalytic conversion of alcohols to hydrocarbons with low benzene content

    Energy Technology Data Exchange (ETDEWEB)

    Narula, Chaitanya K.; Davison, Brian H.; Keller, Martin

    2016-03-08

    A method for converting an alcohol to a hydrocarbon fraction having a lowered benzene content, the method comprising: converting said alcohol to a hydrocarbon fraction by contacting said alcohol, under conditions suitable for converting said alcohol to said hydrocarbon fraction, with a metal-loaded zeolite catalyst catalytically active for converting said alcohol to said hydrocarbon fraction, and contacting said hydrocarbon fraction with a benzene alkylation catalyst, under conditions suitable for alkylating benzene, to form alkylated benzene product in said hydrocarbon fraction. Also described is a catalyst composition useful in the method, comprising a mixture of (i) a metal-loaded zeolite catalyst catalytically active for converting said alcohol to said hydrocarbon, and (ii) a benzene alkylation catalyst, in which (i) and (ii) may be in a mixed or separated state. A reactor for housing the catalyst and conducting the reaction is also described.

  18. Urinary t,t-muconic acid, S-phenylmercapturic acid and benzene as biomarkers of low benzene exposure.

    Science.gov (United States)

    Fustinoni, Silvia; Buratti, Marina; Campo, Laura; Colombi, Antonio; Consonni, Dario; Pesatori, Angela C; Bonzini, Matteo; Farmer, Peter; Garte, Seymour; Valerio, Federico; Merlo, Domenico F; Bertazzi, Pier A

    2005-05-30

    This research compared the capability of urinary trans,trans-muconic acid (t,t-MA), S-phenylmercapturic acid (S-PMA) and benzene excreted in urine (U-benzene) to monitor low benzene exposure and evaluated the influence of smoking habit on these indices. Gasoline attendants, urban policemen, bus drivers and two groups of referents working in two large Italian cities (415 people) were studied. Median benzene exposure was 61, 22, 21, 9 and 6 microg/m3, respectively, with higher levels in workers than in referents. U-benzene, but not t,t-MA and S-PMA, showed an exposure-related increase. All the biomarkers were strongly influenced by cigarette smoking, with values up to five-fold higher in smokers compared to non-smokers. In conclusion, in the range of investigated benzene exposure (<478 microg/m3 or <0.15 ppm), the smoking habit may be regarded as a major source of benzene intake; among the study indices, U-benzene is the marker of choice for the biological monitoring of occupational and environmental exposure.

  19. Competitive Nitration of Benzene-Fluorobenzene and Benzene-Toluene Mixtures: Orientation and Reactivity Studies Using HPLC

    Science.gov (United States)

    Blankespoor, Ronald L.; Hogendoorn, Stephanie; Pearson, Andrea

    2007-01-01

    The reactivity and orientation effects of a substituent are analyzed by using HPLC to determine the competitive nitration of the benzene-toluene and benzene-fluorobenzene mixtures. The results have shown that HPLC is an excellent instrumental method to use in analyzing these mixtures.

  20. A Quantum Monte Carlo Study of mono(benzene)TM and bis(benzene)TM Systems

    CERN Document Server

    Bennett, M Chandler; Mitas, Lubos

    2016-01-01

    We present a study of mono(benzene)TM and bis(benzene)TM systems, where TM={Mo,W}. We calculate the binding energies by quantum Monte Carlo (QMC) approaches and compare the results with other methods and available experiments. The orbitals for the determinantal part of each trial wave function were generated from several types of DFT in order to optimize for fixed-node errors. We estimate and compare the size of the fixed-node errors for both the Mo and W systems with regard to the electron density and degree of localization in these systems. For the W systems we provide benchmarking results of the binding energies, given that experimental data is not available.

  1. A quantum Monte Carlo study of mono(benzene) TM and bis(benzene) TM systems

    Science.gov (United States)

    Bennett, M. Chandler; Kulahlioglu, A. H.; Mitas, L.

    2017-01-01

    We present a study of mono(benzene) TM and bis(benzene) TM systems, where TM = {Mo, W}. We calculate the binding energies by quantum Monte Carlo (QMC) approaches and compare the results with other methods and available experiments. The orbitals for the determinantal part of each trial wave function were generated from several types of DFT functionals in order to optimize for fixed-node errors. We estimate and compare the size of the fixed-node errors for both the Mo and W systems with regard to the electron density and degree of localization in these systems. For the W systems we provide benchmarking results of the binding energies, given that experimental data is not available.

  2. Isolation and Cultivation of Anaerobes

    DEFF Research Database (Denmark)

    Aragao Börner, Rosa

    2016-01-01

    Anaerobic microorganisms play important roles in different biotechnological processes. Their complex metabolism and special cultivation requirements have led to less isolated representatives in comparison to their aerobic counterparts.In view of that, the isolation and cultivation of anaerobic...... microorganisms is still a promising venture, and conventional methodologies as well as considerations and modifications are presented here. An insight into new methodologies and devices as well as a discussion on future perspectives for the cultivation of anaerobes may open the prospects of the exploitation...

  3. New routes lead to benzene, propanal

    Energy Technology Data Exchange (ETDEWEB)

    Joseph Haggin

    1993-05-10

    An ongoing research program at Oxford University in England has resulted in two new schemes for direct catalytic conversion of methane. One scheme produces aromatics, principally benzene, by oligomerization. The second scheme produces propanal in high yield by the judicious combination of three catalytic processes that have all been used before. One of the most active research areas is the catalytic conversion of methane to methanol, but so far the best yield has been about 8%, much too low for commercial interest. Likewise, the direct catalytic conversion of methane to ethane and/or ethylene has yet to produce either yields or selectivities high enough to compete with these products from crude oil. The paper describes these two new processes and their improved yields.

  4. Benzene conversion by manganese dioxide assisted silent discharge plasma

    Institute of Scientific and Technical Information of China (English)

    LU Bin; JI Min; YU Xin; FENG Tao; YAO Shuiliang

    2007-01-01

    Non-thermal plasma technologies have shown their promising potential specially for the low concentration of volatile organic compound control in indoor air in recent years.But it is also high energy consuming.So,to improve the energy efficiency,adding catalysts which enhance the plasma chemical reactions to plasma reactors may be a good selection.Therefore,in this study the manganese dioxide assisted silent discharge plasma was developed for benzene conversion at a relatively high energy efficiency.The results show that MnO2 could promote complete oxidation of benzene with O2 and O3 produced in the plasma discharge zone.The energy efficiency of benzene conversion with MnO2 was two folds as much as that without catalysts.It was also found that the site of MnO2 in the reactor and the energy density had effects on benzene conversion.While the energy density was lower than 48 J/L,benzene conversion decreased with the increase in the distance between MnO2 bed and the plasma discharge zone.Whereas when the energy density was higher than 104 J/L,benzene conversion had an optimal value that was governed by the distance between MnO2 bed and the plasma discharge zone.The mechanism of benzene oxidation in plasma discharges and over MnO2 is discussed in detail.

  5. Analysis of bacterial community diversity in anaerobic fluidized bed bioreactors treating 2,4-dinitroanisole (DNAN) and n-methyl-4-nitroaniline (MNA) using 16S rRNA gene clone libraries.

    Science.gov (United States)

    Arnett, Clint M; Rodriguez, Giselle; Maloney, Stephen W

    2009-01-01

    Clone libraries were used to evaluate the effects of 2,4-dinitroanisole (DNAN) and n-methyl-4-nitroaniline (MNA) on bacterial populations within three anaerobic bioreactors. Prior to the addition of DNAN and MNA greater than 69% of the clones in each reactor were identified as a single Desulfuromonales species. However, after 60 days of treatment the Desulfuromonales distribution decreased to less than 13% of the distribution and a clone identified as a Levilinea sp. became the dominant organism at greater than 27% of the clone distribution in each reactor suggesting the species may play an important roll in the reduction of DNAN and MNA.

  6. Anaerobic Biodegradation of Detergent Surfactants

    OpenAIRE

    Erich Jelen; Ute Merrettig-Bruns

    2009-01-01

    Detergent surfactantscan be found in wastewater in relevant concentrations. Most of them are known as ready degradable under aerobic conditions, as required by European legislation. Far fewer surfactants have been tested so far for biodegradability under anaerobic conditions. The natural environment is predominantly aerobic, but there are some environmental compartments such as river sediments, sub-surface soil layer and anaerobic sludge digesters of wastewater treatment plants which have str...

  7. [Effects of nitrate on organic removal and microbial community structure in the sediments].

    Science.gov (United States)

    Liu, Jin; Deng, Dai-Yong; Sun, Guo-Ping; Liu, Yong-Ding; Xu, Mei-Ying

    2013-07-01

    The strategy promoted pollutant degradation and transformation under the anaerobic circumstance by adding nitrate as an electron acceptor has been widely used in sediment bioremediation. However, few literature reports on organic removal characteristics and microbial community responses in the contaminated river sediment under the nitrate reduction condition. Methods including the polar and non-polar chemical fractionation, relative abundance detection of organic matters by GC-MS were combined and applied to investigate organic removals and PCR-DGGE analysis was used for microbial community structures in sediment incubation systems with or without calcium nitrate addition. The results indicated that the addition of calcium nitrate could significantly enhance removal efficiencies of organic pollutants. The removal efficiency of total organic carbon (TOC) and the total peak area of organic matters in GC-MS were 47.25% and 29.55% which were higher than those of the control. The effect descending order of organic pollutants was: silicon materials > alkanes > polycyclic aromatic hydrocarbons > heterocyclic compounds > olefins > benzene homologues > polar compounds > phthalates > aldehydes and ketones > alkyl esters. And removal rates of silicon materials, the persistent organic pollutants, benzene homologues and heterocyclic compounds were 46.73%, 36.25%, 23.19% and 35.92% which were higher than those of the control. The PCR-DGGE profile of bacterial 16S rDNA V3 fragments showed obviously different microbial community structures between the treatment and the control systems. Blastn analysis revealed that sequences of 10 predominant bands from DGGE profile were closely related to Proteobacteria, Actinobacteria, Clostridia, Chloroflexi, Caldiserica and uncultured bacterium. The research findings provide some helpful scientific information for promoting organic pollutant removal of river sediment by nitrate reduction.

  8. Aryl hydrocarbon receptor mediates benzene-induced hematotoxicity.

    Science.gov (United States)

    Yoon, Byung-Il; Hirabayashi, Yoko; Kawasaki, Yasushi; Kodama, Yukio; Kaneko, Toyozo; Kanno, Jun; Kim, Dae-Yong; Fujii-Kuriyama, Yoshiaki; Inoue, Tohru

    2002-11-01

    Benzene can induce hematotoxicity and leukemia in humans and mice. Since a review of the literature shows that the CYP2E1 knockout mouse is not known to possess any benzene toxicity, the metabolism of benzene by CYP2E1 in the liver is regarded to be prerequisite for its cytotoxicity and genotoxicity, although the mechanism is not fully understood yet. Because it was found some years ago that benzene was also a substrate for CYP1A1, we investigated the involvement of the aryl hydrocarbon receptor (AhR) in benzene hematotoxicity using AhR wild-type (AhR(+/+)), heterozygous (AhR(+/-)), and homozygous (AhR(-/-)) male mice. Interestingly, following a 2-week inhalation of 300 ppm benzene (a potent dose for leukemogenicity), no hematotoxicity was induced in AhR(-/-) mice. Further, there were no changes in cellularity of peripheral blood and bone marrow (BM), nor in levels of granulocyte-macrophage colony-forming units in BM. This lack of hematotoxicity was associated with the lack of p21 overexpression, which was regularly seen in the wild-type mice following benzene inhalation. Combined treatment with two major benzene metabolites, phenol and hydroquinone, induced hemopoietic toxicity, although it was not known whether this happened due to a surprising lack of expression of CYP2E1 by AhR knockout, or due to a lack of other AhR-mediated CYP enzymes, including 1A1 (i.e., a possible alternative pathway of benzene metabolism). The former possibility, evaluated in the present study, failed to show a significant relationship between AhR and the expression of CYP2E1. Furthermore, a subsequent evaluation of AhR expression after benzene inhalation tended to show higher but less significant expression in the liver, and none in the BM, compared with sham control. Although this study failed to identify the more likely of the above-mentioned two possibilities, the study using AhR knockout mice on benzene inhalation presents the unique possibility that the benzene toxicity may be

  9. Anaerobic biodegradation of fluoranthene under methanogenic conditions in presence of surface-active compounds

    DEFF Research Database (Denmark)

    Fuchedzhieva, Nadezhda; Karakashev, Dimitar Borisov; Angelidaki, Irini

    2008-01-01

    biodegradation was most likely as a result of the increased fluoranthene solubility. The results indicate that LAS can be considered as a promising agent for facilitation of the process of anaerobic polycyclic aromatic hydrocarbons (PAH) biodegradation under methanogenic conditions.......Bacillus cereus isolated from municipal wastewater treatment plant was used as a model strain to assess the efficiency of two anionic surfactants, a chemical surfactant and a biosurfactant during fluoranthene biodegradation under anaerobic methanogenic conditions. The surfactants selected...... for the study were linear alkyl benzene sulphonates (LAS) and rhamnolipid-biosurfactant complex from Pseudomonas sp. PS-17. Biodegradation of fluoranthene was monitored by GC/MS for a period up to 12th day. No change in the fluoranthene concentration was registered after 7th day. The presence of LAS enhanced...

  10. Ammonia and temperature determine potential clustering in the anaerobic digestion microbiome.

    Science.gov (United States)

    De Vrieze, Jo; Saunders, Aaron Marc; He, Ying; Fang, Jing; Nielsen, Per Halkjaer; Verstraete, Willy; Boon, Nico

    2015-05-15

    Anaerobic digestion is regarded as a key environmental technology in the present and future bio-based economy. The microbial community completing the anaerobic digestion process is considered complex, and several attempts already have been carried out to determine the key microbial populations. However, the key differences in the anaerobic digestion microbiomes, and the environmental/process parameters that drive these differences, remain poorly understood. In this research, we hypothesized that differences in operational parameters lead to a particular composition and organization of microbial communities in full-scale installations. A total of 38 samples were collected from 29 different full-scale anaerobic digestion installations, showing constant biogas production in function of time. Microbial community analysis was carried out by means of amplicon sequencing and real-time PCR. The bacterial community in all samples was dominated by representatives of the Firmicutes, Bacteroidetes and Proteobacteria, covering 86.1 ± 10.7% of the total bacterial community. Acetoclastic methanogenesis was dominated by Methanosaetaceae, yet, only the hydrogenotrophic Methanobacteriales correlated with biogas production, confirming their importance in high-rate anaerobic digestion systems. In-depth analysis of operational and environmental parameters and bacterial community structure indicated the presence of three potential clusters in anaerobic digestion. These clusters were determined by total ammonia concentration, free ammonia concentration and temperature, and characterized by an increased relative abundance of Bacteroidales, Clostridiales and Lactobacillales, respectively. None of the methanogenic populations, however, could be significantly attributed to any of the three clusters. Nonetheless, further experimental research will be required to validate the existence of these different clusters, and to which extent the presence of these clusters relates to stable or sub

  11. Molecular analysis of the biomass of a fluidized bed reactor treating synthetic vinasse at anaerobic and micro-aerobic conditions

    NARCIS (Netherlands)

    Rodriguez, E.; Lopes, A.; Fdz-Polanco, M.; Stams, A.J.M.; Garcia Encina, P.A.

    2012-01-01

    The microbial communities (Bacteria and Archaea) established in an anaerobic fluidized bed reactor used to treat synthetic vinasse (betaine, glucose, acetate, propionate, and butyrate) were characterized by denaturing gradient gel electrophoresis (DGGE) and phylogenetic analysis. This study was focu

  12. Effects of ferric iron on the anaerobic treatment and microbial biodiversity in a coupled microbial electrolysis cell (MEC)--anaerobic reactor.

    Science.gov (United States)

    Zhang, Jingxin; Zhang, Yaobin; Quan, Xie; Chen, Shuo

    2013-10-01

    Adding Fe(III) into a MEC - anaerobic reactor enhanced the degradation of organic matters. To clarify the respective effects of combining Fe(III) dosage and a MEC and Fe(III) dosage only on strengthening anaerobic digestion, three anaerobic reactors were operated in parallel: a MEC - anaerobic reactor with dosing Fe(OH)3 (R1), an anaerobic reactor with dosing Fe(OH)3 (R2) and a common anaerobic reactor (R3). With increasing influent COD from 1500 to 4000 mg/L, the COD removal in R1 was maintained at 88.3% under a voltage of 0.8 V, which was higher than that in reactor R2 and R3. When the power was cut off, the COD removal in R1 decreased by 5.9%. The addition of Fe(OH)3 enhanced both anaerobic digestion and anodic oxidation, resulting in the effective mineralization of volatile fatty acids (VFAs). The reduced Fe(II) combined with electric field resulted more extracellular polymeric substances (EPS) production. Quantitative real - time PCR showed a higher abundance of bacteria in the anodic biofilm and R1. Pyrosequencing and denaturing gradient gel electrophoresis (DGGE) analysis revealed that the dominant bacteria and archaea communities were richer and more abundant in the anode biofilm and R1.

  13. Functional and phylogenetic diversity of anaerobic BTEX-degrading microorganisms in contaminated aquifers

    OpenAIRE

    2007-01-01

    Microbial communities involved in anaerobic BTEX degradation in contaminated groundwater, and factors which control and limit their metabolic activities are poorly understood. Within this thesis, microbes involved in anaerobic toluene degradation at a number of impacted sites across Germany are investigated using tools of molecular microbial ecology. This is done to circumvent known pitfalls of cultivation-based environmental microbiology, and to provide a better understanding of the true key...

  14. Association between genetic variants in VEGF, ERCC3 and occupational benzene haematotoxicity.

    NARCIS (Netherlands)

    Hosgood 3rd, H.D.; Zhang, L.; Shen, M.; Berndt, S.I.; Vermeulen, R.; Li, G.; Yin, S.; Yeager, M.; Yuenger, J.; Rothman, N.; Chanock, S.; Smith, M.; Lan, Q.

    2009-01-01

    INTRODUCTION: Benzene is an established human haematotoxin, with substantial interindividual variation in benzene-induced toxicity. METHODS: To further examine if genetic variation contributes to benzene haematotoxicity, we analysed 1023 tagSNPs in 121 gene regions important for benzene metabolism,

  15. Special Issue on “Microbial Ecology of Anaerobic Digestion”

    Directory of Open Access Journals (Sweden)

    Sabine Kleinsteuber

    2014-06-01

    Full Text Available Anaerobic digestion (AD is an efficient and sustainable way of using organic carbon from residual biomass and organic waste for the production of renewable energy, while simultaneously recycling nutrients and cleaning up waste streams. The process relies on complex microbial communities comprised of diverse functional guilds; these communities have manifold metabolic pathways and interactions. In contrast to the conventional view of an anaerobic digester as a black box, advanced microbiological methods have paved the way for understanding and even controlling complex microbial networks. Nowadays, microbial resource management is crucial for technological progress in AD, and offers new perspectives concerning sustainable waste management, renewable energy production, resource efficiency, and advanced bio-refineries; these perspectives lead to novel applications of AD processes that go beyond biogas as the main product. [...

  16. Magnetically rotational reactor for absorbing benzene emissions by ionic liquids

    Institute of Scientific and Technical Information of China (English)

    Yangyang; Jiang; Chen; Guo; Huizhou; Liu

    2007-01-01

    A magnetically rotational reactor (MRR) has been developed and used in absorbing benzene emissions. The MRR has a permanent magnet core and uses magnetic ionic liquid [bmim]FeCl4 as absorbent. Benzene emissions were carried by N2 into the MRR and were absorbed by the magnetic ionic liquid. The rotation of the permanent magnet core provided impetus for the agitation of the magnetic ionic liquid, enhancing mass transfer and making benzene better dispersed in the absorbent. 0.68 g benzene emissions could be absorbed by a gram of [bmim]FeCl4, 0.27 and 0.40 g/ghigher than that by [bmim]PF6 and [bmim]BF4, respectively. The absorption rate increased with increasing rotation rate of the permanent magnet.

  17. Electronic structure of benzene adsorbed on Ni and Cu surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Weinelt, M.; Nilsson, A.; Wassdahl, N. [Uppsala Univ. (Sweden)] [and others

    1997-04-01

    Benzene has for a long time served as a prototype adsorption system of large molecules. It adsorbs with the molecular plane parallel to the surface. The bonding of benzene to a transition metal is typically viewed to involve the {pi} system. Benzene adsorbs weakly on Cu and strongly on Ni. It is interesting to study how the adsorption strength is reflected in the electronic structure of the adsorbate-substrate complex. The authors have used X-ray Emission (XE) and X-ray Absorption (XA) spectroscopies to selectively study the electronic states localized on the adsorbed benzene molecule. Using XES the occupied states can be studies and with XAS the unoccupied states. The authors have used beamline 8.0 and the Swedish endstation equipped with a grazing incidence x-ray spectrometer and a partial yield absorption detector. The resolution in the XES and XAS were 0.5 eV and 0.05 eV, respectively.

  18. Non-Collinearity in Small Magnetic Cobalt-Benzene Molecules

    CERN Document Server

    González, J W; Delgado, F; Aguilera-Granja, F; Ayuela, A

    2016-01-01

    Cobalt clusters covered with benzene in the form of rice-ball structures have recently been synthesized using laser ablation. Here, we investigate the types of magnetic order such clusters have, and whether they retain any magnetic order at all. We use different density functional theory (DFT) methods to study the experimentally relevant three cobalt atoms surrounded by benzene rings. We found that the benzene rings induce a ground state with non-collinear magnetization, with the magnetic moments localized on the cobalt centers and lying on the plane formed by the three cobalt atoms. This is surprising because nanostructures and small clusters based on pure cobalt typically have a predominantly ferromagnetic order, and additional organic ligands such as benzene tend to remove the magnetization. We analyze the magnetism of such a cluster using an anisotropic Heisenberg model where the involved parameters are obtained by a comparison with the DFT results. Moreover, we propose electron paramagnetic resonance as ...

  19. Enhanced π-frustration in carbo-benzenic chromophores.

    Science.gov (United States)

    Baglai, Iaroslav; Maraval, Valérie; Bijani, Christian; Saffon-Merceron, Nathalie; Voitenko, Zoia; Volovenko, Yulian M; Chauvin, Remi

    2013-09-28

    The synthesis, structure, and absorption spectra of highly π-frustrated carbo-benzenes with indolic enamine substituents more or less directly conjugated to the C18 macro-aromatic core are described, and their peculiar reactivity is analyzed.

  20. Positronium quenching in liquid and solid octanol and benzene

    DEFF Research Database (Denmark)

    Shantarovich, V.P.; Mogensen, O.E.; Goldanskii, V.I.

    1970-01-01

    The lifetimes of orthopositronium in several solutions in liquid and solid octanol and benzene have been measured. The Ps-quenching constant was found to be two to thirty times higher in the solid than in the liquid phase....

  1. Which ornamental plant species effectively remove benzene from indoor air?

    Science.gov (United States)

    Liu, Yan-Ju; Mu, Yu-Jing; Zhu, Yong-Guan; Ding, Hui; Crystal Arens, Nan

    Phytoremediation—using plants to remove toxins—is an attractive and cost effective way to improve indoor air quality. This study screened ornamental plants for their ability to remove volatile organic compounds from air by fumigating 73 plant species with 150 ppb benzene, an important indoor air pollutant that poses a risk to human health. The 10 species found to be most effective at removing benzene from air were fumigated for two more days (8 h per day) to quantify their benzene removal capacity. Crassula portulacea, Hydrangea macrophylla, Cymbidium Golden Elf., Ficus microcarpa var. fuyuensis, Dendranthema morifolium, Citrus medica var. sarcodactylis, Dieffenbachia amoena cv. Tropic Snow; Spathiphyllum Supreme; Nephrolepis exaltata cv. Bostoniensis; Dracaena deremensis cv. Variegata emerged as the species with the greatest capacity to remove benzene from indoor air.

  2. Organometallic chemistry using partially fluorinated benzenes.

    Science.gov (United States)

    Pike, Sebastian D; Crimmin, Mark R; Chaplin, Adrian B

    2017-03-28

    Fluorobenzenes, in particular fluorobenzene (FB) and 1,2-difluorobenzene (1,2-DiFB), are increasingly becoming recognised as versatile solvents for conducting organometallic chemistry and transition-metal-based catalysis. The presence of fluorine substituents reduces the ability to donate π-electron density from the arene and consequently fluorobenzenes generally bind weakly to metal centres, allowing them to be used as essentially non-coordinating solvents or as readily displaced ligands. In this context, examples of well-defined complexes of fluorobenzenes are discussed, including trends in binding strength with increasing fluorination and different substitution patterns. Compared to more highly fluorinated benzenes, FB and 1,2-DiFB typically demonstrate greater chemical inertness, however, C-H and C-F bond activation reactions can be induced using appropriately reactive transition metal complexes. Such reactions are surveyed, including catalytic examples, not only to provide perspective for the use of FB and 1,2-DiFB as innocent solvent media, but also to highlight opportunities for their exploitation in contemporary organic synthesis.

  3. Spectroscopic studies of cryogenic fluids: Benzene in argon and helium

    Science.gov (United States)

    Nowak, R.; Bernstein, E. R.

    1987-09-01

    Energy shifts and bandwidths of the 610 vibronic feature of the 1B2u←1A1g optical absorption spectrum of benzene dissolved in supercritical argon and helium, and in liquid argon are reported as a function of pressure, temperature, and density. Benzene/Ar solutions display red shifts of the 610 transition with increasing density but the dependence is found to be nonlinear at high densities. Benzene/He solutions evidence blue shifts of the 610 transition as a function of increasing density which also becomes nonlinear at high densities. Only small spectral shifts are recorded if the density is kept constant and pressure and temperature are varied simultaneously. In addition, a small density independent temperature effect on the transition energy shift is identified. Experimental results are compared to dielectric (Onsager-Böttcher and Wertheim) and quantum statistical mechanical (Schweizer-Chandler) theories of solvent effects on solute absorption energy. Reasonably good agreement between experiment and theory is found only for the benzene/Ar system at relatively low densities. The theory fails to predict energy shifts for both the benzene/He and high density benzene/Ar systems. This result is different from the findings for the benzene/N2 and benzene/C3H8 solutions and can be interpreted qualitatively in terms of competition between dispersive attractive and repulsive interactions as a function of density. The failure of the theory to describe these transition energy shifts is attributed to the omission of explicit repulsive interactions terms in the theoretical models employed.

  4. Can Cooper pairs in benzene lead to Efimov states?

    Science.gov (United States)

    Squire, R. H.; March, N. H.; Rubio, A.

    2015-02-01

    Cooper pairs have been experimentally verified in benzene at 38.3 eV. We have proposed previously that the six most loosely bound electrons in benzene form three equivalent Cooper pairs. We further propose in this manuscript that these three weakly interacting bosons (Cooper pairs) should form an infinite number of Efimov states (possibly Booromean rings) which is what a photon of high energy will then encounter.

  5. Chemical accuracy from quantum Monte Carlo for the Benzene Dimer

    OpenAIRE

    Azadi, Sam; Cohen, R. E

    2015-01-01

    We report an accurate study of interactions between Benzene molecules using variational quantum Monte Carlo (VMC) and diffusion quantum Monte Carlo (DMC) methods. We compare these results with density functional theory (DFT) using different van der Waals (vdW) functionals. In our QMC calculations, we use accurate correlated trial wave functions including three-body Jastrow factors, and backflow transformations. We consider two benzene molecules in the parallel displaced (PD) geometry, and fin...

  6. Pentachlorophenol (PCP) degradation microorganism community structure under microaeration condition

    Institute of Scientific and Technical Information of China (English)

    Chen Yuancai; Hao Yuan; Fu Shiyu; Zhan Huaiyu

    2007-01-01

    The comparison of pentachlorophenol (PCP)degradation was conducted under micro-aeration and anaerobic condition with three series of batch experiment,results of which indicated that during micro-aeration condition co-immobilized of anaerobic granular sludge and isolated aerobic bacterial species could enhance the efficiency of PCP reduction through the synergism of aerobes and anaerobes reductive dechlorination and exchange of metabolites within the co-immobilized granular sludge.While during anaerobic condition,there was no great difference in the three series.The specific activities experiment further confirmed that strict anaerobes were not affected over the presence of micro aeration environment.Microorganism community construction of co-immobilized anaerobic granular sludge and the mixed isolated aerobic community was also deduced.By the efficient cooperation of aerobes and anaerobes,the high efficiency removal rate of PCP was implemented.

  7. Potential for anaerobic conversion of xenobiotics

    DEFF Research Database (Denmark)

    Mogensen, Anders Skibsted; Dolfing, J.; Haagensen, Frank;

    2003-01-01

    This review covers the latest research on the anaerobic biodegradation of aromatic xenobiotic compounds, with emphasis on surfactants, polycyclic aromatic hydrocarbons, phthalate esters, polychlorinated biphenyls, halogenated phenols, and pesticides. The versatility of anaerobic reactor systems...

  8. RISK FACTORS IN NEONATAL ANAEROBIC INFECTIONS

    Directory of Open Access Journals (Sweden)

    M. S. Tabib

    2008-06-01

    Full Text Available Anaerobic bacteria are well known causes of sepsis in adults but there are few studies regarding their role in neonatal sepsis. In an attempt to define the incidence of neonatal anaerobic infections a prospective study was performed during one year period. A total number of 400 neonates under sepsis study were entered this investigation. Anaerobic as well as aerobic cultures were sent. The patients were subjected to comparison in two groups: anaerobic culture positive and anaerobic culture negative and this comparison were analyzed statistically. There were 7 neonates with positive anaerobic culture and 35 neonates with positive aerobic culture. A significant statistical relationship was found between anaerobic infections and abdominal distention and pneumonia. It is recommended for those neonates with abdominal distention and pneumonia refractory to antibiotic treatment to be started on antibiotics with anaerobic coverage.

  9. Anaerobic toxicity of cationic silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Gitipour, Alireza; Thiel, Stephen W. [Biomedical, Chemical, and Environmental Engineering, University of Cincinnati, Cincinnati, OH (United States); Scheckel, Kirk G. [USEPA, Office of Research and Development, Cincinnati, OH (United States); Tolaymat, Thabet, E-mail: tolaymat.thabet@epa.gov [USEPA, Office of Research and Development, Cincinnati, OH (United States)

    2016-07-01

    The microbial toxicity of silver nanoparticles (AgNPs) stabilized with different capping agents was compared to that of Ag{sup +} under anaerobic conditions. Three AgNPs were investigated: (1) negatively charged citrate-coated AgNPs (citrate-AgNPs), (2) minimally charged polyvinylpyrrolidone coated AgNPs (PVP-AgNPs) and (3) positively charged branched polyethyleneimine coated AgNPs (BPEI-AgNPs). The AgNPs investigated in this experiment were similar in size (10–15 nm), spherical in shape, but varied in surface charge which ranged from highly negative to highly positive. While, at AgNPs concentrations lower than 5 mg L{sup −1}, the anaerobic decomposition process was not influenced by the presence of the nanoparticles, there was an observed impact on the diversity of the microbial community. At elevated concentrations (100 mg L{sup −1} as silver), only the cationic BPEI-AgNPs demonstrated toxicity similar in magnitude to that of Ag{sup +}. Both citrate and PVP-AgNPs did not exhibit toxicity at the 100 mg L{sup −1} as measured by biogas evolution. These findings further indicate the varying modes of action for nanoparticle toxicity and represent one of the few studies that evaluate end-of-life management concerns with regards to the increasing use of nanomaterials in our everyday life. These findings also highlight some of the concerns with a one size fits all approach to the evaluation of environmental health and safety concerns associated with the use of nanoparticles. - Highlights: • At concentrations -1 the anaerobic decomposition process was not impacted. • An impact on the microbial community at concentrations -1 were observed. • At high concentrations (100 mg L{sup −1}), the cationic BPEI-AgNPs demonstrated toxicity. • Toxicity was demonstrated without the presence of oxidative dissolution of silver. • A one size fits all approach for the evaluation of NPs may not be accurate.

  10. Effect of zinc and benzene on respiration and excretion of mussel larvae (Perna perna (Linnaeus, 1758 (Mollusca; Bivalvia

    Directory of Open Access Journals (Sweden)

    RADLVC. Jorge

    Full Text Available The presence of pollutants in the ocean may affect different physiological parameters of animals. Oxygen consumption and ammonia excretion were evaluated in D-shaped larvae of mussels (Perna perna exposed to zinc sulphate (ZnSO4 and benzene (C6H6. When compared to the control group, both pollutants presented a significant reduction in oxygen consumption. A reduction in the ammonia excretion was also observed, both for ZnSO4 and C6H6 and also in the oxygen consumption. The results indicate that anaerobic metabolism may occur at the beginning of P. perna mussels development, as observed in veliger larvae. The O:N ratio under experimental conditions showed low values indicating that catabolism in veliger larvae was predominantly proteic.

  11. Arsenic, Anaerobes, and Astrobiology

    Science.gov (United States)

    Stolz, J. F.; Oremland, R. S.; Switzer Blum, J.; Hoeft, S. E.; Baesman, S. M.; Bennett, S.; Miller, L. G.; Kulp, T. R.; Saltikov, C.

    2013-12-01

    Arsenic is an element best known for its highly poisonous nature, so it is not something one would associate with being a well-spring for life. Yet discoveries made over the past two decades have delineated that not only are some microbes resistant to arsenic, but that this element's primary redox states can be exploited to conserve energy and support prokaryotic growth ('arsenotrophy') in the absence of oxygen. Hence, arsenite [As(III)] can serve as an electron donor for chemo- or photo-autotrophy while arsenate [As(V)] will serve as an electron acceptor for chemo-heterotrophs and chemo-autotrophs. The phylogenetic diversity of these microbes is broad, encompassing many individual species from diverse taxonomic groups in the Domain Bacteria, with fewer representatives in the Domain Archaea. Speculation with regard to the evolutionary origins of the key functional genes in anaerobic arsenic transformations (arrA and arxA) and aerobic oxidation (aioB) has led to a disputation as to which gene and function is the most ancient and whether arsenic metabolism extended back into the Archaean. Regardless of its origin, robust arsenic metabolism has been documented in extreme environments that are rich in their arsenic content, such as hot springs and especially hypersaline soda lakes associated with volcanic regions. Searles Lake, CA is an extreme, salt-saturated end member where vigorous arsenic metabolism occurs, but there is no detectable sulfate-reduction or methanogenesis. The latter processes are too weak bio-energetically to survive as compared with arsenotrophy, and are also highly sensitive to the abundance of borate ions present in these locales. These observations have implications with respect to the search for microbial life elsewhere in the Solar System where volcanic-like processes have been operative. Hence, because of the likelihood of encountering dense brines in the regolith of Mars (formed by evapo-concentration) or beneath the ice layers of Europa

  12. Anaerobic bacteria in the intestinal microbiota of Brazilian children

    Science.gov (United States)

    Talarico, Silvia T; Santos, Florenza E; Brandt, Katia Galeão; Martinez, Marina B; Taddei, Carla R

    2017-01-01

    OBJECTIVE: Changes in the neonatal gut environment allow for the colonization of the mucin layer and lumen by anaerobic bacteria. The aim of the present study was to evaluate Bifidobacterium, Lactobacillus and Lactococcus colonization through the first year of life in a group of 12 Brazilian infants and to correlate these data with the levels of Escherichia coli. The presence of anaerobic members of the adult intestinal microbiota, including Eubacterium limosum and Faecalibacterium prausnitzii, was also evaluated. METHODS: Fecal samples were collected during the first year of life, and 16S rRNA from anaerobic and facultative bacteria was detected by real-time PCR. RESULTS: Bifidobacterium was present at the highest levels at all of the studied time points, followed by E. coli and Lactobacillus. E. limosum was rarely detected, and F. prausnitzii was detected only in the samples from the latest time points. CONCLUSION: These results are consistent with reports throughout the world on the community structure of the intestinal microbiota in infants fed a milk diet. Our findings also provide evidence for the influence of the environment on intestinal colonization due to the high abundance of E. coli. The presence of important anaerobic genera was observed in Brazilian infants living at a low socioeconomic level, a result that has already been well established for infants living in developed countries.

  13. 21 CFR 866.2120 - Anaerobic chamber.

    Science.gov (United States)

    2010-04-01

    ... and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2120 Anaerobic chamber. (a) Identification. An anaerobic chamber is a device intended for medical purposes to maintain an anaerobic...

  14. The phenomenon of granulation of anaerobic sludge.

    NARCIS (Netherlands)

    Hulshoff Pol, L.W.

    1989-01-01

    Successful high-rate anaerobic wastewater treatment can only be accomplished when the slowgrowing anaerobic biomass is efficiently held back in the anaerobic treatment system. This biomass retention can be achieved in various ways including immobilization of the organisms on fixed materials and immo

  15. Effect of increasing total solids contents on anaerobic digestion of food waste under mesophilic conditions: performance and microbial characteristics analysis.

    Directory of Open Access Journals (Sweden)

    Jing Yi

    Full Text Available The total solids content of feedstocks affects the performances of anaerobic digestion and the change of total solids content will lead the change of microbial morphology in systems. In order to increase the efficiency of anaerobic digestion, it is necessary to understand the role of the total solids content on the behavior of the microbial communities involved in anaerobic digestion of organic matter from wet to dry technology. The performances of mesophilic anaerobic digestion of food waste with different total solids contents from 5% to 20% were compared and the microbial communities in reactors were investigated using 454 pyrosequencing technology. Three stable anaerobic digestion processes were achieved for food waste biodegradation and methane generation. Better performances mainly including volatile solids reduction and methane yield were obtained in the reactors with higher total solids content. Pyrosequencing results revealed significant shifts in bacterial community with increasing total solids contents. The proportion of phylum Chloroflexi decreased obviously with increasing total solids contents while other functional bacteria showed increasing trend. Methanosarcina absolutely dominated in archaeal communities in three reactors and the relative abundance of this group showed increasing trend with increasing total solids contents. These results revealed the effects of the total solids content on the performance parameters and the behavior of the microbial communities involved in the anaerobic digestion of food waste from wet to dry technologies.

  16. Ecogenomics of microbial communities in bioremediation of chlorinated contaminated sites

    Directory of Open Access Journals (Sweden)

    Farai eMaphosa

    2012-10-01

    Full Text Available Organohalide compounds such as chloroethenes, chloroethanes and polychlorinated benzenes are among the most significant pollutants in the world. These compounds are often found in contamination plumes with other pollutants such as solvents, pesticides and petroleum derivatives. Microbial bioremediation of contaminated sites, has become commonplace whereby key processes involved in bioremediation include anaerobic degradation and transformation of these organohalides by organohalide respiring bacteria and also via hydrolytic, oxygenic and reductive mechanisms by aerobic bacteria. Microbial ecogenomics has enabled us to not only study the microbiology involved in these complex processes but also develop tools to better monitor and assess these sites during bioremediation. Microbial ecogenomics have capitalized on recent advances in high-throughput and -output genomics technologies in combination with microbial physiology studies to address these complex bioremediation problems at a system level. Advances in environmental metagenomics, transcriptomics and proteomics have provided insights into key genes and their regulation in the environment. They have also given us clues into microbial community structures, dynamics and functions at contaminated sites. These techniques have not only aided us in understanding the lifestyles of common organohalide respirers, for example Dehalococcoides, Dehalobacter and Desulfitobacterium, but also provided insights into novel and yet uncultured microorganisms found in organohalide respiring consortia. In this paper we look at how ecogenomic studies have aided us to understand the microbial structures and functions in response to environmental stimuli such as the presence of chlorinated pollutants.

  17. Perspectives of Anaerobic Soil Disinfestation

    NARCIS (Netherlands)

    Lamers, J.G.; Runia, W.T.; Molendijk, L.P.G.; Bleeker, P.O.

    2010-01-01

    Biological soil disinfestation is an environmentally friendly method to disinfest soil. From now on we refer to it as anaerobic soil disinfestation (ASD). With ASD a green manure crop (40 t/ha) is homogeneously incorporated into the topsoil (0-30 cm) after which the field is lightly compacted and ir

  18. Products of the Benzene + O(3P) Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Taatjes, Craig A.; Osborn, David L.; Selby, Talitha M.; Meloni, Giovanni; Trevitt, Adam J.; Epifanovsky, Evgeny; Krylov, Anna I.; Sirjean, Baptiste; Dames, Enoch; Wang, Hai

    2009-12-21

    The gas-phase reaction of benzene with O(3P) is of considerable interest for modeling of aromatic oxidation, and also because there exist fundamental questions concerning the prominence of intersystem crossing in the reaction. While its overall rate constant has been studied extensively, there are still significant uncertainties in the product distribution. The reaction proceeds mainly through the addition of the O atom to benzene, forming an initial triplet diradical adduct, which can either dissociate to form the phenoxy radical and H atom, or undergo intersystem crossing onto a singlet surface, followed by a multiplicity of internal isomerizations, leading to several possible reaction products. In this work, we examined the product branching ratios of the reaction between benzene and O(3P) over the temperature range of 300 to 1000 K and pressure range of 1 to 10 Torr. The reactions were initiated by pulsed-laser photolysis of NO2 in the presence of benzene and helium buffer in a slow-flow reactor, and reaction products were identified by using the multiplexed chemical kinetics photoionization mass spectrometer operating at the Advanced Light Source (ALS) of Lawrence Berkeley National Laboratory. Phenol and phenoxy radical were detected and quantified. Cyclopentadiene and cyclopentadienyl radical were directly identified for the first time. Finally, ab initio calculations and master equation/RRKM modeling were used to reproduce the experimental branching ratios, yielding pressure-dependent rate expressions for the reaction channels, including phenoxy + H, phenol, cyclopentadiene + CO, which are proposed for kinetic modeling of benzene oxidation.

  19. Anaerobic granular sludge and biofilm reactors

    DEFF Research Database (Denmark)

    Skiadas, Ioannis V.; Gavala, Hariklia N.; Schmidt, Jens Ejbye

    2003-01-01

    by the immobilization of the biomass, which forms static biofilms, particle-supported biofilms, or granules depending on the reactor's operational conditions. The advantages of the high-rate anaerobic digestion over the conventional aerobic wastewater treatment methods has created a clear trend for the change......-rate anaerobic treatment systems based on anaerobic granular sludge and biofilm are described in this chapter. Emphasis is given to a) the Up-flow Anaerobic Sludge Blanket (UASB) systems, b) the main characteristics of the anaerobic granular sludge, and c) the factors that control the granulation process...

  20. Genotoxicity of intermittent co-exposure to benzene and toluene in male CD-1 mice.

    Science.gov (United States)

    Wetmore, Barbara A; Struve, Melanie F; Gao, Pu; Sharma, Sheela; Allison, Neil; Roberts, Kay C; Letinski, Daniel J; Nicolich, Mark J; Bird, Michael G; Dorman, David C

    2008-06-17

    Benzene is an important industrial chemical. At certain levels, benzene has been found to produce aplastic anemia, pancytopenia, myeloblastic anemia and genotoxic effects in humans. Metabolism by cytochrome P450 monooxygenases and myeloperoxidase to hydroquinone, phenol, and other metabolites contributes to benzene toxicity. Other xenobiotic substrates for cytochrome P450 can alter benzene metabolism. At high concentrations, toluene has been shown to inhibit benzene metabolism and benzene-induced toxicities. The present study investigated the genotoxicity of exposure to benzene and toluene at lower and intermittent co-exposures. Mice were exposed via whole-body inhalation for 6h/day for 8 days (over a 15-day time period) to air, 50 ppm benzene, 100 ppm toluene, 50 ppm benzene and 50 ppm toluene, or 50 ppm benzene and 100 ppm toluene. Mice exposed to 50 ppm benzene exhibited an increased frequency (2.4-fold) of micronucleated polychromatic erythrocytes (PCE) and increased levels of urinary metabolites (t,t-muconic acid, hydroquinone, and s-phenylmercapturic acid) vs. air-exposed controls. Benzene co-exposure with 100 ppm toluene resulted in similar urinary metabolite levels but a 3.7-fold increase in frequency of micronucleated PCE. Benzene co-exposure with 50 ppm toluene resulted in a similar elevation of micronuclei frequency as with 100 ppm toluene which did not differ significantly from 50 ppm benzene exposure alone. Both co-exposures - 50 ppm benzene with 50 or 100 ppm toluene - resulted in significantly elevated CYP2E1 activities that did not occur following benzene or toluene exposure alone. Whole blood glutathione (GSH) levels were similarly decreased following exposure to 50 ppm benzene and/or 100 ppm toluene, while co-exposure to 50 ppm benzene and 100 ppm toluene significantly decreased GSSG levels and increased the GSH/GSSG ratio. The higher frequency of micronucleated PCE following benzene and toluene co-exposure when compared with mice exposed to

  1. [Anaerobic bacteria 150 years after their discovery by Pasteur].

    Science.gov (United States)

    García-Sánchez, José Elías; García-Sánchez, Enrique; Martín-Del-Rey, Ángel; García-Merino, Enrique

    2015-02-01

    In 2011 we celebrated the 150th anniversary of the discovery of anaerobic bacteria by Louis Pasteur. The interest of the biomedical community on such bacteria is still maintained, and is particularly focused on Clostridium difficile. In the past few years important advances in taxonomy have been made due to the genetic, technological and computing developments. Thus, a significant number of new species related to human infections have been characterised, and some already known have been reclassified. At pathogenic level some specimens of anaerobic microflora, that had not been isolated from human infections, have been now isolated in some clinical conditions. There was emergence (or re-emergence) of some species and clinical conditions. Certain anaerobic bacteria have been associated with established infectious syndromes. The virulence of certain strains has increased, and some hypotheses on their participation in certain diseases have been given. In terms of diagnosis, the routine use of MALDI-TOF has led to a shortening of time and a cost reduction in the identification, with an improvement directly related to the improvement of data bases. The application of real-time PCR has been another major progress, and the sequencing of 16srRNA gene and others is currently a reality for several laboratories. Anaerobes have increased their resistance to antimicrobial agents, and the emergence of resistance to carbapenems and metronidazole, and multi-resistance is a current reality. In this situation, linezolid could be an effective alternative for Bacteroides. Fidaxomicin is the only anti-anaerobic agent introduced in the recent years, specifically for the diarrhoea caused by C.difficile. Moreover, some mathematical models have also been proposed in relation with this species.

  2. Microbial degradation of 4-monobrominated diphenyl ether with anaerobic sludge

    Energy Technology Data Exchange (ETDEWEB)

    Shih, Yang-hsin, E-mail: yhs@ntu.edu.tw [Department of Agricultural Chemistry, National Taiwan University, Taipei 106, Taiwan, ROC (China); Chou, Hsi-Ling [Department of Soil and Environmental Sciences, National Chung Hsing University, Taichung 407, Taiwan, ROC (China); Peng, Yu-Huei [Department of Agricultural Chemistry, National Taiwan University, Taipei 106, Taiwan, ROC (China)

    2012-04-30

    Highlights: Black-Right-Pointing-Pointer BDE-3 was degraded with two anaerobes in different rates. Black-Right-Pointing-Pointer Glucose addition augment the debromination efficiencies. Black-Right-Pointing-Pointer Hydrogen gas was detected and relative microbes were identified. Black-Right-Pointing-Pointer Extra-carbon source enhanced degradation partial due to H{sub 2}-generation bacteria. - Abstract: Polybrominated diphenyl ethers (PBDEs) are widely used flame retardant additives for many plastic and electronic products. Owing to their ubiquitous distribution in the environment, multiple toxicity to humans, and increasing accumulation in the environment, the fate of PBDEs is of serious concern for public safety. In this study, the degradation of 4-monobrominated diphenyl ether (BDE-3) in anaerobic sludge and the effect of carbon source addition were investigated. BDE-3 can be degraded by two different anaerobic sludge samples. The by-products, diphenyl ether (DE) and bromide ions, were monitored, indicating the reaction of debromination within these anaerobic samples. Co-metabolism with glucose facilitated BDE-3 biodegradation in terms of kinetics and efficiency in the Jhongsing sludge. Through the pattern of amplified 16S rRNA gene fragments in denatured gradient gel electrophoresis (DGGE), the composition of the microbial community was analyzed. Most of the predominant microbes were novel species. The fragments enriched in BDE-3-degrading anaerobic sludge samples are presumably Clostridium sp. This enrichment coincides with the H{sub 2} gas generation and the facilitation of debromination during the degradation process. Findings of this study provide better understanding of the biodegradation of brominated DEs and can facilitate the prediction of the fate of PBDEs in the environment.

  3. Potential application of anaerobic extremophiles for hydrogen production

    Science.gov (United States)

    Pikuta, Elena V.; Hoover, Richard B.

    2004-11-01

    In processes of the substrate fermentation most anaerobes produce molecular hydrogen as a waste end product, which often controls the culture growth as an inhibitor. Usually in nature the hydrogen is easily removed from an ecosystem, due to its physical features, and an immediate consumption by the secondary anaerobes that sometimes behave as competitors for electron donors; a classical example of this kind of substrate competition in anaerobic microbial communities is the interaction between methanogens and sulfate- or sulfur-reducers. Previously, on the mixed cultures of anaerobes at neutral pH, it was demonstrated that bacterial hydrogen production could provide a good alternative energy source. At neutral pH the original cultures could easily contaminated by methanogens, and the most unpleasant side effect of these conditions is the development of pathogenic bacteria. In both cases the rate of hydrogen production was dramatically decreased since some part of the hydrogen was transformed to methane, and furthermore, the cultivation with pathogenic contaminants on an industrial scale would create an unsafe situation. In our laboratory the experiments with obligately alkaliphilic bacteria producing hydrogen as an end metabolic product were performed at different conditions. The mesophilic, haloalkaliphilic and obligately anaerobic bacterium Spirochaeta americana ASpG1T was studied and various cultivation regimes were compared for the most effective hydrogen production. In a highly mineralized media with pH 9.5-10.0 not many known methanogens are capable of growth, and the probability of developing pathogenic contaminants is theoretically is close to zero (in medicine carbonate- saturated solutions are applied as antiseptics). Therefore the cultivation of alkaliphilic hydrogen producing bacteria could be considered as a safe and economical process for large-scale industrial bio-hydrogen production in the future. Here we present and discuss the experimental data

  4. 1-[(3-Benzyloxy-2-nitrophenoxymethyl]benzene

    Directory of Open Access Journals (Sweden)

    Hoong-Kun Fun

    2012-08-01

    Full Text Available The asymmetric unit of the title compound, C20H17NO4, consists of two crystallographically independent molecules. In one of the molecules, the central benzene ring forms dihedral angles of 2.26 (6 and 58.68 (6° with the terminal benzene rings and the dihedral angle between the terminal benzene rings is 56.45 (6°. The corresponding values for the other molecule are 35.17 (6, 70.97 (6 and 69.62 (6°, respectively. In the crystal, an inversion dimer linked by a pair of C—H...O hydrogen bonds occurs for one of the unique molecules. C—H...π and π–π [centroid–centroid distances = 3.7113 (8 and 3.7216 (7 Å] interactions link the components into a three-dimensional network.

  5. Phylogenetic diversity and in situ detection of eukaryotes in anaerobic sludge digesters

    Science.gov (United States)

    Matsubayashi, Miri; Shimada, Yusuke; Li, Yu-You; Harada, Hideki

    2017-01-01

    Eukaryotic communities in aerobic wastewater treatment processes are well characterized, but little is known about them in anaerobic processes. In this study, abundance, diversity and morphology of eukaryotes in anaerobic sludge digesters were investigated by quantitative real-time PCR (qPCR), 18S rRNA gene clone library construction and catalyzed reporter deposition-fluorescence in situ hybridization (CARD-FISH). Samples were taken from four different anaerobic sludge digesters in Japan. Results of qPCR of rRNA genes revealed that Eukarya accounted from 0.1% to 1.4% of the total number of microbial rRNA gene copy numbers. The phylogenetic affiliations of a total of 251 clones were Fungi, Alveolata, Viridiplantae, Amoebozoa, Rhizaria, Stramenopiles and Metazoa. Eighty-five percent of the clones showed less than 97.0% sequence identity to described eukaryotes, indicating most of the eukaryotes in anaerobic sludge digesters are largely unknown. Clones belonging to the uncultured lineage LKM11 in Cryptomycota of Fungi were most abundant in anaerobic sludge, which accounted for 50% of the total clones. The most dominant OTU in each library belonged to either the LKM11 lineage or the uncultured lineage A31 in Alveolata. Principal coordinate analysis indicated that the eukaryotic and prokaryotic community structures were related. The detection of anaerobic eukaryotes, including the members of the LKM11 and A31 lineages in anaerobic sludge digesters, by CARD-FISH revealed their sizes in the range of 2–8 μm. The diverse and uncultured eukaryotes in the LKM11 and the A31 lineages are common and ecologically relevant members in anaerobic sludge digester. PMID:28264042

  6. Anaerobic Microbial Degradation of Hydrocarbons: From Enzymatic Reactions to the Environment.

    Science.gov (United States)

    Rabus, Ralf; Boll, Matthias; Heider, Johann; Meckenstock, Rainer U; Buckel, Wolfgang; Einsle, Oliver; Ermler, Ulrich; Golding, Bernard T; Gunsalus, Robert P; Kroneck, Peter M H; Krüger, Martin; Lueders, Tillmann; Martins, Berta M; Musat, Florin; Richnow, Hans H; Schink, Bernhard; Seifert, Jana; Szaleniec, Maciej; Treude, Tina; Ullmann, G Matthias; Vogt, Carsten; von Bergen, Martin; Wilkes, Heinz

    2016-01-01

    Hydrocarbons are abundant in anoxic environments and pose biochemical challenges to their anaerobic degradation by microorganisms. Within the framework of the Priority Program 1319, investigations funded by the Deutsche Forschungsgemeinschaft on the anaerobic microbial degradation of hydrocarbons ranged from isolation and enrichment of hitherto unknown hydrocarbon-degrading anaerobic microorganisms, discovery of novel reactions, detailed studies of enzyme mechanisms and structures to process-oriented in situ studies. Selected highlights from this program are collected in this synopsis, with more detailed information provided by theme-focused reviews of the special topic issue on 'Anaerobic biodegradation of hydrocarbons' [this issue, pp. 1-244]. The interdisciplinary character of the program, involving microbiologists, biochemists, organic chemists and environmental scientists, is best exemplified by the studies on alkyl-/arylalkylsuccinate synthases. Here, research topics ranged from in-depth mechanistic studies of archetypical toluene-activating benzylsuccinate synthase, substrate-specific phylogenetic clustering of alkyl-/arylalkylsuccinate synthases (toluene plus xylenes, p-cymene, p-cresol, 2-methylnaphthalene, n-alkanes), stereochemical and co-metabolic insights into n-alkane-activating (methylalkyl)succinate synthases to the discovery of bacterial groups previously unknown to possess alkyl-/arylalkylsuccinate synthases by means of functional gene markers and in situ field studies enabled by state-of-the-art stable isotope probing and fractionation approaches. Other topics are Mo-cofactor-dependent dehydrogenases performing O2-independent hydroxylation of hydrocarbons and alkyl side chains (ethylbenzene, p-cymene, cholesterol, n-hexadecane), degradation of p-alkylated benzoates and toluenes, glycyl radical-bearing 4-hydroxyphenylacetate decarboxylase, novel types of carboxylation reactions (for acetophenone, acetone, and potentially also benzene and

  7. Retrospective exposure assessment for benzene in the Australian petroleum industry

    Energy Technology Data Exchange (ETDEWEB)

    Glass, D.C. [Deakin Univ., Occupational Hygiene Unit, Geelong, VIC (Australia); Melbourne Univ., Dept. of Public Health and Community Medicine, Carlton, VIC (Australia); Adams, G.G.; Manuell, R.W.; Bisby, J.A. [Melbourne Univ., Dept. of Public Health and Community Medicine, Carlton, VIC (Australia)

    2000-07-01

    An excess of lympho-haematopoietic (LH) cancers has been identified in the Australian petroleum industry through the Health Watch surveillance programme. A nested case-control study is being conducted to investigate this excess. This paper describes the methods used to provide quantitative estimates of benzene exposure for each of the subjects in the case-control study. Job histories were compiled for each subject from interviews and company employment records. Site visits and telephone interviews were used to identify the tasks included in each job title. Details about the tasks such as their frequency, the technology in use and about changes that had taken place over the years were also gathered. Exposure dated back to the late 1940s for a few subjects. Collaborating petroleum companies provided recent benzene exposure monitoring data. These were used to generate Base Estimates of exposure for each task, augmented with data from the literature where necessary. Past exposures were estimated from the Base Estimates by means of an exposure algorithm. The modifying effects of technological changes and changes to the product were used in the algorithm. The algorithm was then computed to give, for each job, for each subject, an estimate of average benzene exposure in ppm in the workplace atmosphere (Workplace Estimate). This value was multiplied by the years for which the job was held and these values summed to give an estimate of Cumulative Estimate of benzene in ppm-years. The occupational hygienists performing the exposure assessment did so without knowledge of the case or control status of subjects. Overall exposures to benzene in the Australian petroleum industry were low, and virtually all activities and jobs were below a time-weighted average of 5 ppm. Exposures in terminals were generally higher than at refineries. Exposures in upstream areas were extremely low. Estimates of Cumulative Estimate to benzene ranged from 0.005 to 50.9 ppm-years. (Author)

  8. Solubilization of benzene and cyclohexane by sodium deoxycholate micelles

    Energy Technology Data Exchange (ETDEWEB)

    Christian, S.D.; Smith, L.S.; Bushong, D.S.; Tucker, E.E.

    1982-10-01

    Vapor pressure-solubility data were obtained for the aqueous systems benzene-sodium deoxycholate and cyclohexane- sodium deoxycholate at 25/sup 0/C. The results are consistent with a mass action model similar to the BET equation. Equilibrium constants are inferred to characterize interactions of hydrocarbons with solubilization sites assumed to consist of units of four deoxycholate anions. Although addition of sodium chloride increases the middle aggregation number, solubilization results are affected very little by variation in salt concentration. When pure liquid hydrocarbon standard states are employed, solubilization results for benzene and cyclohexane (at varying salt concentrations) are quite similar. 26 references.

  9. Anaerobic mesophilic treatment of cattle manure in an upflow anaerobic sludge blanket reactor with prior pasteurization.

    Science.gov (United States)

    Marañón, Elena; Castrillón, Leonor; Fernández, Juan José; Fernández, Yolanda; Peláez, Ana Isabel; Sánchez, Jesús

    2006-02-01

    Different autonomous communities located in northern Spain have large populations of dairy cattle. In the case of Asturias, the greatest concentration of dairy farms is found in the areas near the coast, where the elimination of cattle manure by means of its use as a fertilizer may lead to environmental problems. The aim of the present research work was to study the anaerobic treatment of the liquid fraction of cattle manure at mesophilic temperature using an upflow anaerobic sludge blanket (UASB) reactor combined with a settler after a pasteurization process at 70 degrees C for 2 hr. The manure used in this study came from two different farms, with 40 and 200 cows, respectively. The manure from the smaller farm was pretreated in the laboratory by filtration through a 1-mm mesh, and the manure from the other farm was pretreated on the farm by filtration through a separator screw press (0.5-mm mesh). The pasteurization process removed the pathogenic microorganisms lacking spores, such as Enterococcus, Yersinia, Pseudomonas, and coliforms, but bacterial spores are only reduced by this treatment, not removed. The combination of a UASB reactor and a settler proved to be effective for the treatment of cattle manure. In spite of the variation in the organic loading rate and total solids in the influent during the experiment, the chemical oxygen demand (COD) of the effluent from the settler remained relatively constant, obtaining reductions in the COD of approximately 85%.

  10. Complex community of nitrite-dependent anaerobic methane oxidation bacteria in coastal sediments of the Mai Po wetland by PCR amplification of both 16S rRNA and pmoA genes.

    Science.gov (United States)

    Chen, Jing; Zhou, Zhichao; Gu, Ji-Dong

    2015-02-01

    In the present work, both 16S rRNA and pmoA gene-based PCR primers were employed successfully to study the diversity and distribution of n-damo bacteria in the surface and lower layer sediments at the coastal Mai Po wetland. The occurrence of n-damo bacteria in both the surface and subsurface sediments with high diversity was confirmed in this study. Unlike the two other known n-damo communities from coastal areas, the pmoA gene-amplified sequences in the present work clustered not only with some freshwater subclusters but also within three newly erected marine subclusters mostly, indicating the unique niche specificity of n-damo bacteria in this wetland. Results suggested vegetation affected the distribution and community structures of n-damo bacteria in the sediments and n-damo could coexist with sulfate-reducing methanotrophs in the coastal ecosystem. Community structures of the Mai Po n-damo bacteria based on 16S rRNA gene were different from those of either the freshwater or the marine. In contrast, structures of the Mai Po n-damo communities based on pmoA gene grouped with the marine ones and were clearly distinguished from the freshwater ones. The abundance of n-damo bacteria at this wetland was quantified using 16S rRNA gene PCR primers to be 2.65-6.71 × 10(5) copies/g dry sediment. Ammonium and nitrite strongly affected the community structures and distribution of n-damo bacteria in the coastal Mai Po wetland sediments.

  11. Repeated pulse feeding induces functional stability in anaerobic digestion.

    Science.gov (United States)

    De Vrieze, Jo; Verstraete, Willy; Boon, Nico

    2013-07-01

    Anaerobic digestion is an environmental key technology in the future bio-based economy. To achieve functional stability, a minimal microbial community diversity is required. This microbial community should also have a certain 'elasticity', i.e. the ability to rapidly adapt to suboptimal conditions or stress. In this study it was evaluated whether a higher degree of functional stability could be achieved by changing the feeding pattern, which can change the evenness, dynamics and richness of the bacterial community. The first reactor (CSTR stable ) was fed on daily basis, whereas the second reactor (CSTR dynamic ) was fed every 2 days. Average biogas production was 0.30 l CH4 l(-1) day(-1) in both reactors, although daily variation was up to four times higher in the CSTR dynamic compared with the CSTR stable during the first 50 days. Bacterial analysis revealed that this CSTR dynamic had a two times higher degree of bacterial community dynamics. The CSTR dynamic also appeared to be more tolerant to an organic shock load of 8 g COD l(-1) and ammonium levels up to 8000 mg TAN l(-1). These results suggest that the regular application of a limited pulse of organic material and/or a variation in the substrate composition might promote higher functional stability in anaerobic digestion.

  12. Assessment of microbial communities associated with fermentative-methanogenic biodegradation of aromatic hydrocarbons in groundwater contaminated with a biodiesel blend (B20).

    Science.gov (United States)

    Ramos, Débora Toledo; da Silva, Márcio Luís Busi; Nossa, Carlos Wolfgang; Alvarez, Pedro J J; Corseuil, Henry Xavier

    2014-09-01

    A controlled field experiment was conducted to assess the potential for fermentative-methanogenic biostimulation (by ammonium-acetate injection) to enhance biodegradation of benzene, toluene, ethylbenzene and xylenes (BTEX) as well as polycyclic aromatic hydrocarbons (PAHs) in groundwater contaminated with biodiesel B20 (20:80 v/v soybean biodiesel and diesel). Changes in microbial community structure were assessed by pyrosequencing 16S rRNA analyses. BTEX and PAH removal began 0.7 year following the release, concomitantly with the increase in the relative abundance of Desulfitobacterium and Geobacter spp. (from 5 to 52.7 % and 15.8 to 37.3 % of total Bacteria 16S rRNA, respectively), which are known to anaerobically degrade hydrocarbons. The accumulation of anaerobic metabolites acetate and hydrogen that could hinder the thermodynamic feasibility of BTEX and PAH biotransformations under fermentative/methanogenic conditions was apparently alleviated by the growing predominance of Methanosarcina. This suggests the importance of microbial population shifts that enrich microorganisms capable of interacting syntrophically to enhance the feasibility of fermentative-methanogenic bioremediation of biodiesel blend releases.

  13. Characterization of changes in gene expression and biochemical pathways at low levels of benzene exposure

    NARCIS (Netherlands)

    Thomas, Reuben; Hubbard, Alan E.; McHale, Cliona M.; Zhang, Luoping; Rappaport, Stephen M.; Lan, Qing; Rothman, Nathaniel; Vermeulen, Roel; Guyton, Kathryn Z.; Jinot, Jennifer; Sonawane, Babasaheb R.; Smith, Martyn T.

    2014-01-01

    Benzene, a ubiquitous environmental pollutant, causes acute myeloid leukemia (AML). Recently, through transcriptome profiling of peripheral blood mononuclear cells (PBMC), we reported dose-dependent effects of benzene exposure on gene expression and biochemical pathways in 83 workers exposed across

  14. In situ volatile fatty acids influence biogas generation from kitchen wastes by anaerobic digestion.

    Science.gov (United States)

    Xu, Zhiyang; Zhao, Mingxing; Miao, Hengfeng; Huang, Zhenxing; Gao, Shumei; Ruan, Wenquan

    2014-07-01

    Anaerobic digestion is considered to be an efficient way of disposing kitchen wastes, which can not only reduce waste amounts, but also produce biogas. However, the excessive accumulation of volatile fatty acids (VFA) caused by high organic loads will inhibit anaerobic digestion intensively. Effects of the VFA composition on biogas generation and microbial community are still required for the investigation under various organic loads of kitchen wastes. Our results showed that the maximum specific methane production was 328.3 ml g TS(-1), and acetic acid was the main inhibitor in methanogenesis. With the increase of organic load, aceticlastic methanogenesis was more sensitive to acetic acid than hydrogenotrophic methanogenesis. Meanwhile, methanogenic microbial community changed significantly, and few species grew well under excessive organic loads. This study provides an attempt to reveal the mechanism of VFA inhibition in anaerobic digestion of kitchen wastes.

  15. Assessment of potential anaerobic biotransformation of organic pollutants in sediment caps.

    Science.gov (United States)

    Smith, Anthony M; Kirisits, Mary Jo; Reible, Danny D

    2012-11-15

    In situ capping is a remedial approach for reducing the risk of biota exposure to sediment contaminants. Biotransformation of contaminants in sand-based sediment caps, rarely considered in sediment cap design, could further reduce the exposure risk. The anaerobic biotransformation of benzene, toluene, ethylbenzene, xylenes (BTEX), monochlorobenzene, dichlorobenzenes and naphthalene was evaluated with sediments from Onondaga Lake in dilute sediment slurries and in sand-capped sediment laboratory-scale columns. The percentage of sediment samples demonstrating biotransformation under anaerobic conditions in slurries incubated at 12°C was greatest for BTEX, followed by monochlorobenzene, 1,4-dichlorobenzene, 1,2-dichlorobenzene and 1,3-dichlorobenzene. Only toluene biotransformation was observed in sand cap columns. The rate of toluene biotransformation diminished over time, which might be due to inhibition caused by hydrogen from the experimental setup. Results suggest potential for the biotransformation of toluene, and possibly other pollutants, in sand-based sediment caps under anaerobic conditions at low temperatures.

  16. Are there Efimov trimers in hexafluorobenzene rather than in benzene vapor itself?

    Energy Technology Data Exchange (ETDEWEB)

    Squire, R.H., E-mail: richard.squire@mail.wvu.edu [Department of Natural Sciences, West Virginia University – Institute of Technology, Montgomery, WV 25136 (United States); March, N.H. [Department of Physics, University of Antwerp, Groenborgerlaan 171, B-2020, Antwerp (Belgium); Oxford University, Oxford, England (United Kingdom); Abdus Salam International Center for Theoretical Physics, Trieste (Italy)

    2014-08-22

    Is there a spectroscopic method to detect an Efimov state? Following our proposal of an Efimov state arising from three pseudo bosons (generalized Cooper pairs) in benzene, our spectroscopic studies have found no evidence of Efimov trimers (ET) in h{sub 6}- or d{sub 6}-benzene. However, hexafluoro-benzene has shown peaks that we attributed to ET and the pseudo bosons. The experimental evidence suggests that benzene pseudo bosons and subsequently ET are quite sensitive to the surroundings.

  17. Theoretical study of the solvent effect on the aromaticity of benzene: a NICS analysis.

    Science.gov (United States)

    Junqueira, Georgia M A; Dos Santos, Hélio F

    2014-03-01

    Nucleus-independent chemical shift (NICS) quantities for benzene-benzene and benzene-water species were obtained and are discussed in gas phase and in solution. Besides standard polarizable continuum model (PCM) calculations, sequential Monte Carlo/quantum mechanics (S-MC/QM) were also performed. Benzene was shown to be slightly more aromatic in condensate phase when we considered the average solvent configuration (ASEC) approach with explicit molecules.

  18. Simple and convenient method for culturing anaerobic bacteria.

    OpenAIRE

    Behbehani, M J; Jordan, H. V.; Santoro, D L

    1982-01-01

    A simple and convenient method for culturing anaerobic bacteria is described. Cultures can be grown in commercially available flasks normally used for preparation of sterile external solutions. A special disposable rubber flask closure maintains anaerobic conditions in the flask after autoclaving. Growth of a variety of anaerobic oral bacteria was comparable to that obtained after anaerobic incubation of broth cultures in Brewer Anaerobic Jars.

  19. Instrument for benzene and toluene emission measurements of glycol regenerators

    Science.gov (United States)

    Hanyecz, Veronika; Mohácsi, Árpád; Puskás, Sándor; Vágó, Árpád; Szabó, Gábor

    2013-11-01

    We introduce an in-field and in-explosive atmosphere useable instrument, which can measure the benzene and toluene concentration in two gas and two glycol samples produced by natural gas dehydration units. It is a two-phase, on-line gas chromatograph with a photoacoustic spectroscopy based detector. The time resolution is 10 min per cycle and the minimum detectable concentrations are 2 mg m-3 for benzene, 3 mg m-3 for toluene in natural gas, and 5 g m-3 for benzene and 6 g m-3 for toluene in glycol. Test measurements were carried out at a dehydration plant belonging to MOL Hungarian Oil and Gas Company. Benzene and toluene emissions of gas dehydration unit are calculated from the measured values based on mass balance of a glycol regenerator. The relationship between the outdoor temperature and the measured concentration was observed which is caused by temperature-dependent operation of the whole dehydration unit. Emission decreases with increase of outdoor temperature.

  20. Spectroscopic studies of cryogenic fluids: Benzene in nitrogen

    Science.gov (United States)

    Nowak, R.; Bernstein, E. R.

    1987-05-01

    Energy shifts and bandwidths for the 1B2u←1A1g optical absorption of benzene in supercritical nitrogen are presented as a function of pressure, temperature, and density. The pressure and density dependence of energy shifts of room temperature emission of benzene in nitrogen fluid is also reported. Both absorption and emission spectra exhibit shifts to lower energy as a function of density, whereas almost no spectral shifts are observed if the density is kept constant and temperature and pressure varied simultaneously. Thus, density is the fundamental microscopic parameter for energy shifts of optical transitions in supercritical nitrogen. This result is analogous to the findings for the liquid benzene/propane system and can be interpreted qualitatively in terms of changes occurring in the intermolecular potential; however, in the benzene/supercritical nitrogen system an additional small density independent temperature effect on the transition energy has been identified. Experimental results are compared to dielectric (Onsager-Böttcher and Wertheim) and microscopic quantum statistical mechanical (Schweizer-Chandler) theories of solvent effects on solute electronic spectra. Reasonably good agreement between experiment and theory is found. The results demonstrate that liquid state theory can be used to describe the supercritical nitrogen fluid.

  1. 1,4-Bis[3-chloro-2-(chloromethylpropyl]benzene

    Directory of Open Access Journals (Sweden)

    2009-03-01

    Full Text Available The title molecule, C14H18Cl4, possesses a crystallographically imposed inversion centre, which coincides with the centre of benzene ring. In the absence of classical intermolecular interactions, van der Waals forces help the molecules to pack in the crystal.

  2. Effects of benzene inhalation on murine pluripotent stem cells.

    Science.gov (United States)

    Cronkite, E P; Inoue, T; Carsten, A L; Miller, M E; Bullis, J E; Drew, R T

    1982-03-01

    Effects of benzene inhalation on mouse pluripotent hematopoietic stem cells have been evaluated. Male mice 8--12 wk old were exposed to 400 ppm benzene for 6 h/d, 5 d/wk, for up to 9 1/2 wk. At various time intervals exposed and control animals were killed, and cardiac blood was evaluated for changes in white blood cell (WBC) and red blood cell (RBC) content. In addition, femora and tibiae were evaluated for total marrow cellularity, stem cell content (as measured by the spleen colony technique), and the percent of stem cells in DNA synthesis (as determined by the tritiated thymidine cytocide technique). Exogenous spleen colonies grown from marrow of exposed animals were counted, identified, and scored by histological type. Exposure to benzene caused significant depressions of RBCs and WBCs throughout the exposure period, which continued for at least 14 d after exposure. Bone marrow cellularity and stem cell content were also depressed in exposed animals throughout the study. Tritiated thymidine cytocide of spleen colony-forming cells was generally increased in exposed animals, perhaps indicating a compensatory response to the reduction of circulating cells. Spleen colonies of all types were depressed after exposure to benzene. The significance of the reduction in cellularity, stem cell content, and changes in morphology of spleen colonies is discussed in relation to cellular toxicity and residual injury.

  3. The ototoxic effects of ethyl benzene in rats

    NARCIS (Netherlands)

    Cappaert, N.L.M.; Klis, S.F.L.; Muijser, H.; Groot, J.C.M.J. de; Kulig, B.M.; Smoorenburg, G.F.

    1999-01-01

    Exposure to organic solvents has been shown to be ototoxic in animals and there is evidence that these solvents can induce hearing loss in humans. In this study, the effects of inhalation of the possibly ototoxic solvent ethyl benzene on the cochlear function and morphology were evaluated using thre

  4. Benzene Removal by Iron Oxide Nanoparticles Decorated Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Aamir Abbas

    2016-01-01

    Full Text Available In this paper, carbon nanotubes (CNTs impregnated with iron oxide nanoparticles were employed for the removal of benzene from water. The adsorbents were characterized using scanning electron microscope, X-ray diffraction, BET surface area, and thermogravimetric analysis. Batch adsorption experiments were carried out to study the adsorptive removal of benzene and the effect of parameters such as pH, contact time, and adsorbent dosage. The maximum removal of benzene was 61% with iron oxide impregnated CNTs at an adsorbent dosage 100 mg, shaking speed 200 rpm, contact time 2 hours, initial concentration 1 ppm, and pH 6. However, raw CNTs showed only 53% removal under same experimental conditions. Pseudo-first-order kinetic model was found well to describe the obtained data on benzene removal from water. Initial concentration was varied from 1 to 200 mg/L for isotherms study. Langmuir isotherm model was observed to best describe the adsorption data. The maximum adsorption capacities were 987.58 mg/g and 517.27 mg/g for iron oxide impregnated CNTs and raw CNTs, respectively. Experimental results revealed that impregnation with iron oxide nanoparticles significantly increased the removal efficiency of CNTs.

  5. Electronic states of 1,4-bis(phenylethynyl)benzene

    DEFF Research Database (Denmark)

    Nguyen, Duy Duc; Jones, Nykola; Hoffmann, Søren Vrønning

    2012-01-01

    The electronic transitions of 1,4-bis(phenylethynyl)benzene (BPEB) were investigated by UV synchrotron radiation linear dichroism (SRLD) spectroscopy in the range 25,000 – 58,000 cm–1 (400 – 170 nm) on molecular samples aligned in stretched polyethylene. The investigation was supported by variable...

  6. Development of microbial engineered whole-cell systems for environmental benzene determination.

    Science.gov (United States)

    Di Gennaro, P; Bruzzese, N; Anderlini, D; Aiossa, M; Papacchini, M; Campanella, L; Bestetti, G

    2011-03-01

    This paper reports the development of two recombinant bacterial systems that can be used to monitor environmental benzene contamination based on Escherichia coli, which carry genes coding for benzene dioxygenase and benzene dihydrodiol dehydrogenase from Pseudomonas putida MST. E. coli strains express these two enzymes under the control of the Ptac promoter or without any induction. These activities can be detected electrochemically or colorimetrically and used to monitor benzene pollution in environmental air samples collected from an oil refinery assessing benzene by different laboratory experimental procedures. The procedures involving whole-cell bioassays determine the concentration of benzene through benzene dioxygenase activity, which allows for direct correlation of oxygen consumption, and through the benzene dihydrodiol dehydrogenase that causes catechol accumulation and restores NADH necessary for the activity of the first enzyme. Oxygen consumption and catechol production deriving from both enzymatic activities are related to benzene concentration and their measurements determined the sensitivity of the system. The results indicated that the sensitivity was enough to detect the benzene vapor at a lower concentration level of 0.01 mM in about 30 min. The possibility for on-line monitoring of benzene concentration by our new recombinant cells results from the fact that no particular treatment of environmental samples is required. This is a major advantage over other biosensors or assays. Moreover, the development of microbial cells that did not require any addition or effectors for the transcription of the specific enzymes, allowed these systems to be more versatile in automated environmental benzene monitoring.

  7. Toxicogenomic analysis of gene expression changes in rat liver after a 28-day oral benzene exposure

    NARCIS (Netherlands)

    Heijne, W.H.M.; Jonker, D.; Stierum, R.H.; Ommen, B. van; Groten, J.P.

    2005-01-01

    Benzene is an industrial chemical, component of automobile exhaust and cigarette smoke. After hepatic bioactivation benzene induces bone marrow, blood and hepatic toxicity. Using a toxicogenomics approach this study analysed the effects of benzene at three dose levels on gene expression in the liver

  8. In situ biodegradation potential of aromatic hydrocarbons in anaerobic groundwaters

    Science.gov (United States)

    Acton, D. W.; Barker, J. F.

    1992-04-01

    Three types of experiments were conducted to assess the potential for enhancing the in situ biodegradation of nine aromatic hydrocarbons in anaerobic, leachate-impacted aquifers at North Bay, Ontario, and at Canada Forces Base Borden. Laboratory micrososms containing authentic aquifer material and groundwater from the North Bay site were amended with nitrate and glucose. No significant losses of aromatic hydrocarbons were observed compared to unamended controls, over a period of 187 days. A total of eight in situ biodegradation columns were installed in the North Bay and Borden aquifers. Remedial additions included electron acceptors (nitrate and sulphate) and primary substrates (acetate, lactate and yeast extract). Six aromatic hydrocarbons [toluene, ethylbenzene, m-xylene, o-xylene, cumene and 1,2,4-trimethylbenzene ( 1,2,4-TMB)] were completely degraded in at least one in situ column at the North Bay site. Only toluene was degraded in the Borden aquifer. In all cases, aromatic hydrocarbon attenuation was attributed to biodegradation by methanogenic and fermentative bacteria. No evidence of aromatic hydrocarbon degradation was observed in columns remediated with nitrate or primary substrates. A continuous forced gradient injection experiment with sulphate addition was conducted at the North Bay site over a period of 51 days. The concentration of six aromatic hydrocarbons was monitored over time in the injection wells and at piezometer fences located 2, 5 and 10 m downgradient. All compounds except toluene reached injection concentration between 14 and 26 days after pumping began, and showed some evidence of selective retardation. Toluene broke through at a subdued concentration (˜ 50% of injection levels), and eventually declined to undetectable levels on day 43. This attenuation was attributed to adaptation and biodegradation by anaerobic bacteria. The results from these experiments indicate that considerable anaerobic biodegradation of aromatic hydrocarbons in

  9. Anaerobic digestion of pulp and paper mill wastewater and sludge.

    Science.gov (United States)

    Meyer, Torsten; Edwards, Elizabeth A

    2014-11-15

    Pulp and paper mills generate large amounts of waste organic matter that may be converted to renewable energy in form of methane. The anaerobic treatment of mill wastewater is widely accepted however, usually only applied to few selected streams. Chemical oxygen demand (COD) removal rates in full-scale reactors range between 30 and 90%, and methane yields are 0.30-0.40 m(3) kg(-1) COD removed. Highest COD removal rates are achieved with condensate streams from chemical pulping (75-90%) and paper mill effluents (60-80%). Numerous laboratory and pilot-scale studies have shown that, contrary to common perception, most other mill effluents are also to some extent anaerobically treatable. Even for difficult-to-digest streams such as bleaching effluents COD removal rates range between 15 and 90%, depending on the extent of dilution prior to anaerobic treatment, and the applied experimental setting. Co-digestion of different streams containing diverse substrate can level out and diminish toxicity, and may lead to a more robust microbial community. Furthermore, the microbial population has the ability to become acclimated and adapted to adverse conditions. Stress situations such as toxic shock loads or temporary organic overloading may be tolerated by an adapted community, whereas they could lead to process disturbance with an un-adapted community. Therefore, anaerobic treatment of wastewater containing elevated levels of inhibitors or toxicants should be initiated by an acclimation/adaptation period that can last between a few weeks and several months. In order to gain more insight into the underlying processes of microbial acclimation/adaptation and co-digestion, future research should focus on the relationship between wastewater composition, reactor operation and microbial community dynamics. The potential for engineering and managing the microbial resource is still largely untapped. Unlike in wastewater treatment, anaerobic digestion of mill biosludge (waste activated

  10. 污泥厌氧发酵工艺的产氢效能与细菌种群特征%Performances of Biohydrogen Production and Characteristics of Bacterial Community in Anaerobic Digester of Activated Sludge

    Institute of Scientific and Technical Information of China (English)

    杨雪; 万春黎; 杜茂安; 李观元; 万芳

    2012-01-01

    目的 探讨产氢效能与微生物种群间的关系,为产氢工艺的优化提供理论指导.方法 经碱处理后的剩余污泥为研究对象,分别设置3种典型的pH条件(酸性5.0、中性7.0、碱性11.0),研究剩余污泥发酵产氢量、底物降解情况以及产氢过程中微生物种群的演替规律.结果 碱性条件下的产氢量最大可以达到14.4 mL/g.变性梯度凝胶电泳(DGGE)图谱显示出,碱性条件下典型的产氢茵属主要有Clostridium sp.、Enterococcus durans、Eubacterium sp..结论 碱性条件下的产氢可能主要与蛋白质的降解关系最密切,同时Eubacterium sp.只在碱性发酵装置中存在,推断是导致产氢量差异的重要原因.%This study investigated the hydrogen-producing performances of alkaline pretreated sludge and structure of bacterial community, and discussed the relationship between the performances and succession of bacterial community. It could further provide theoretical guidance for hydrogen-producing process. Taking alkaline pretreated sludge as seed sludge, the effects of three different pH conditions (acidic pH of 5. 0, neutral pH of 7. 0,and alkaline pH of 11.0)on hydrogen production,degradation of complex organics,and succession of bacterial community were investigated. The results showed that alkaline pH was the optimum condition and the maximum hydrogen yield was 14. 4 mL/g-MLSS. The denaturing gradient gel electrophoresis (DGGE) results indicated that alkaline pH was more proper for cultivation of hydrogen producing communities. The Clostridium sp. ,Enterococcus durans,and Eubacterium sp. were the dominant hydrogen produced bacterial populations. Hydrogen producing was most correlative with protein consuming under alkaline pH. And Eubacterium sp. only existed under alkaline pH could be the reason for relatively higher hydrogen-producing.

  11. Anaerobic Fungi: A Potential Source of Biological H2 in the Oceanic Crust

    Science.gov (United States)

    Ivarsson, Magnus; Schnürer, Anna; Bengtson, Stefan; Neubeck, Anna

    2016-01-01

    The recent recognition of fungi in the oceanic igneous crust challenges the understanding of this environment as being exclusively prokaryotic and forces reconsiderations of the ecology of the deep biosphere. Anoxic provinces in the igneous crust are abundant and increase with age and depth of the crust. The presence of anaerobic fungi in deep-sea sediments and on the seafloor introduces a type of organism with attributes of geobiological significance not previously accounted for. Anaerobic fungi are best known from the rumen of herbivores where they produce molecular hydrogen, which in turn stimulates the growth of methanogens. The symbiotic cooperation between anaerobic fungi and methanogens in the rumen enhance the metabolic rate and growth of both. Methanogens and other hydrogen-consuming anaerobic archaea are known from subseafloor basalt; however, the abiotic production of hydrogen is questioned to be sufficient to support such communities. Alternatively, biologically produced hydrogen could serve as a continuous source. Here, we propose anaerobic fungi as a source of bioavailable hydrogen in the oceanic crust, and a close interplay between anaerobic fungi and hydrogen-driven prokaryotes. PMID:27433154

  12. Quantum Monte Carlo Study of π-Bonded Transition Metal Organometallics: Neutral and Cationic Vanadium-Benzene and Cobalt-Benzene Half Sandwiches.

    Science.gov (United States)

    Horváthová, L; Dubecký, M; Mitas, L; Štich, I

    2013-01-08

    We present accurate quantum Monte Carlo (QMC) calculations that enabled us to determine the structure, spin multiplicity, ionization energy, dissociation energy, and spin-dependent electronic gaps of neutral and positively charged vanadium-benzene and cobalt-benzene systems. From total/ionization energy, we deduce a sextet (quintet) state of neutral (cationic) vanadium-benzene systems and quartet (triplet) state of the neutral (cationic) cobalt-benzene systems. Vastly different energy gaps for the two spin channels are predicted for the vanadium-benzene system and broadly similar energy gaps for the cobalt-benzene system. For this purpose, we have used a multistage combination of techniques with consecutive elimination of systematic biases except for the fixed-node approximation in QMC. Our results significantly differ from the established picture based on previous less accurate calculations and point out the importance of high-level many-body methods for predictive calculations of similar transition metal-based organometallic systems.

  13. Molecular ecology of anaerobic reactor systems

    DEFF Research Database (Denmark)

    Hofman-Bang, H. Jacob Peider; Zheng, D.; Westermann, Peter;

    2003-01-01

    Anaerobic reactor systems are essential for the treatment of solid and liquid wastes and constitute a core facility in many waste treatment plants. Although much is known about the basic metabolism in different types of anaerobic reactors, little is known about the microbes responsible...... to the abundance of each microbe in anaerobic reactor systems by rRNA probing. This chapter focuses on various molecular techniques employed and problems encountered when elucidating the microbial ecology of anaerobic reactor systems. Methods such as quantitative dot blot/fluorescence in-situ probing using various...

  14. Anaerobic soil disinfestation and Brassica seed meal amendment alter soil microbiology and system resistance

    Science.gov (United States)

    Brassica seed meal amendments and anaerobic soil disinfestation control a spectrum of soil-borne plant pathogens via a diversity of mechanisms. Transformations in microbial community structure and function in certain instances were determinants of disease control and enhanced plant performance. Fo...

  15. How to use molecular biology tools for the study of the anaerobic digestion process?

    NARCIS (Netherlands)

    Cabezas, Angela; Araujo, de Juliana Calabria; Callejas, Cecilia; Galès, Amandine; Hamelin, Jérôme; Marone, Antonella; Machado de Sousa, Diana; Trably, Eric; Etchebehere, Claudia

    2015-01-01

    Anaerobic digestion is used with success for the treatment of solid waste, urban and industrial effluents with a concomitant energy production. The process is robust and stable, but the complexity of the microbial community involved in the process is not yet fully comprehensive. Nowadays, the stu

  16. Evaluation of a prereduced anaerobically sterilized medium (PRAS II) system for identification anaerobic microorganisms.

    Science.gov (United States)

    Beaucage, C M; Onderdonk, A B

    1982-09-01

    A prereduced, anaerobically sterilized system of tubed media (PRAS II; Scott Laboratories, Fiskeville, R.I.) was evaluated for accuracy in the identification of anerobic microorganisms. PRAS II was found to be a rapid and accurate identification system for obligate anaerobes which does not require the use of gas cannula inoculation or incubation in a special anaerobic environment.

  17. Evaluation of a prereduced anaerobically sterilized medium (PRAS II) system for identification anaerobic microorganisms.

    OpenAIRE

    Beaucage, C M; Onderdonk, A B

    1982-01-01

    A prereduced, anaerobically sterilized system of tubed media (PRAS II; Scott Laboratories, Fiskeville, R.I.) was evaluated for accuracy in the identification of anerobic microorganisms. PRAS II was found to be a rapid and accurate identification system for obligate anaerobes which does not require the use of gas cannula inoculation or incubation in a special anaerobic environment.

  18. Microbial Ecology of Anaerobic Digesters: The Key Players of Anaerobiosis

    Science.gov (United States)

    Ali Shah, Fayyaz; Mahmood, Qaisar; Maroof Shah, Mohammad; Pervez, Arshid; Ahmad Asad, Saeed

    2014-01-01

    Anaerobic digestion is the method of wastes treatment aimed at a reduction of their hazardous effects on the biosphere. The mutualistic behavior of various anaerobic microorganisms results in the decomposition of complex organic substances into simple, chemically stabilized compounds, mainly methane and CO2. The conversions of complex organic compounds to CH4 and CO2 are possible due to the cooperation of four different groups of microorganisms, that is, fermentative, syntrophic, acetogenic, and methanogenic bacteria. Microbes adopt various pathways to evade from the unfavorable conditions in the anaerobic digester like competition between sulfate reducing bacteria (SRB) and methane forming bacteria for the same substrate. Methanosarcina are able to use both acetoclastic and hydrogenotrophic pathways for methane production. This review highlights the cellulosic microorganisms, structure of cellulose, inoculum to substrate ratio, and source of inoculum and its effect on methanogenesis. The molecular techniques such as DGGE (denaturing gradient gel electrophoresis) utilized for dynamic changes in microbial communities and FISH (fluorescent in situ hybridization) that deal with taxonomy and interaction and distribution of tropic groups used are also discussed. PMID:24701142

  19. Microbial Ecology of Anaerobic Digesters: The Key Players of Anaerobiosis

    Directory of Open Access Journals (Sweden)

    Fayyaz Ali Shah

    2014-01-01

    Full Text Available Anaerobic digestion is the method of wastes treatment aimed at a reduction of their hazardous effects on the biosphere. The mutualistic behavior of various anaerobic microorganisms results in the decomposition of complex organic substances into simple, chemically stabilized compounds, mainly methane and CO2. The conversions of complex organic compounds to CH4 and CO2 are possible due to the cooperation of four different groups of microorganisms, that is, fermentative, syntrophic, acetogenic, and methanogenic bacteria. Microbes adopt various pathways to evade from the unfavorable conditions in the anaerobic digester like competition between sulfate reducing bacteria (SRB and methane forming bacteria for the same substrate. Methanosarcina are able to use both acetoclastic and hydrogenotrophic pathways for methane production. This review highlights the cellulosic microorganisms, structure of cellulose, inoculum to substrate ratio, and source of inoculum and its effect on methanogenesis. The molecular techniques such as DGGE (denaturing gradient gel electrophoresis utilized for dynamic changes in microbial communities and FISH (fluorescent in situ hybridization that deal with taxonomy and interaction and distribution of tropic groups used are also discussed.

  20. Cellulose fermentation by nitrogen-fixing anaerobic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Canale-Parola, E.

    1992-12-13

    In anaerobic natural environments cellulose is degraded to methane, carbon dioxide and other products by the combined activities of many diverse microorganisms. We are simulating processes occurring in natural environments by constructing biologically-defined, stable, heterogeneous bacterial communities (consortia) that we use as in vitro systems for quantitative studies of cellulose degradation under conditions of combined nitrogen deprivation. These studies include the investigation of (i) metabolic interactions among members of cellulose-degrading microbial populations, and (ii) processes that regulate the activity or biosynthesis of cellulolytic enzymes. In addition, we are studying the sensory mechanisms that, in natural environments, may enable motile cellulolytic bacteria to migrate toward cellulose. This part of our work includes biochemical characterization of the cellobiose chemoreceptor of cellulolytic bacteria. Finally, an important aspect of our research is the investigation of the mechanisms by which multienzyme complexes of anaerobic bacteria catalyze the depolymerization of crystalline cellulose and of other plant cell wall polysacchaddes. The research will provide fundamental information on the physiology and ecology of cellulose-fermenting, N{sub 2}-fixing bacteria, and on the intricate processes involved in C and N cycling in anaerobic environments. Furthermore, the information will be valuable for the development of practical applications, such as the conversion of plant biomass (e.g., agricultural, forestry and municipal wastes) to automotive fuels such as ethanol.

  1. Supplementary measurements for air monitoring under NOVANA - Benzene and PAH; Supplerende maalinger til luftovervaagning under NOVANA - benzen og PAH

    Energy Technology Data Exchange (ETDEWEB)

    Ellermann, T.; Klenoe Noejgaard, J.; Bossi, R.

    2011-10-15

    The report presents results from a project carried out for the Danish Environmental Protection Agency. The aim of the project was to carry out several measuring campaigns in order to be able to better assess the monitoring needs for PAH and benzene in relation to EU's air quality directives. The results show that the mean concentrations of benzene are almost at the same level in Denmark's four largest cities, and that the concentrations are both below the threshold value (5mug/m3) as well as below the lower assessment threshold (2mug/m3). The report presents a method for objectively estimation the benzene concentration based on measurements of CO. The method can be applied to fulfil the monitoring need for benzene in those zones where no measurements of benzene are made. Measurements of PAH, especially benzo(a)pyrene, have been made during 12 months in the period 2010-2011 in an area with many wood burning furnaces are used (the town Jyllinge). The concentrations of benzo(a)pyrene in Jyllinge is almost three times higher than in the street H.C. Andersens Boulevard in Copenhagen. The concentrations of benzo(a)pyrene in Jylllinge are 0,6 ng/m3, which corresponds to the upper assessment threshold (0,6 ng/m3) and is 40% below the measuring value (1 ng/m3). On this basis, there is a need for re-evaluating the monitoring of PAH in the sub-programme for air under NOVANA. Measurements of PM{sub 10} showed that the levels in the towns Jyllinge, Lille Valby/Risoe and at the H.C. Oersted Institute in Copenhagen are all at about 20-22 mug/m3. (LN)

  2. Transport and phase equilibria of benzene in FAU type zeolites

    Science.gov (United States)

    Saravanan, Chandra

    We have studied lattice models for self-diffusion of benzene in FAU type zeolites, to explore the effect of the thermodynamics of confined fluids on the transport properties of molecules in zeolites. Our model assumes that benzene molecules are located near Na+ ions in supercages, and in 12-ring windows separating adjacent supercages, respectively. The study was performed in three stages. First, to disentangle the effect of a vapor-liquid phase equilibria on diffusion in zeolites, the transport of benzene in Na-Y is modeled in the absence of attractive guest-guest interactions. The loading dependence of diffusion coefficient, Dtheta, at a constant temperature, referred to as a diffusion isotherm, is modeled with site-blocking effects using a mean field theory (MFT) that yields, Dq=16kq a2q, where atheta ≅ 11 A is the mean intercage jump length and 1/ktheta is the mean supercage residence time. A completely analytical expression is derived to calculate ktheta. The MFT is tested using a mean field approximation (MFA) where ktheta and atheta are calculated from kinetic Monte Carlo simulations yielding excellent qualitative agreement. Further calculations are performed to test MFA by calculating "exact" diffusion coefficients from mean square displacement (MSD) calculations also yielding excellent qualitative agreement. Next, by including guest-guest attractive interactions, we have performed lattice grand canonical Monte Carlo simulations of benzene adsorption in Na-X zeolite to determine whether strongly confined benzene molecules exhibit subcritical properties. We observe a phase transition from low to high density of adsorbed benzene, analogous to vapor-liquid equilibrium, at temperatures as high as 300 K and above. By performing thermodynamic integration to construct the coexistence curve, we obtain a critical point for benzene in Na-X at Tc = 370 +/- 20 K, thetac = 0.45 +/- 0.05 fractional coverage. We suggest that careful adsorption experiments should be

  3. Anaerobic electrochemical membrane bioreactor and process for wastewater treatment

    KAUST Repository

    Amy, Gary

    2015-07-09

    An anaerobic electrochemical membrane bioreactor (AnEMBR) can include a vessel into which wastewater can be introduced, an anode electrode in the vessel suitable for supporting electrochemically active microorganisms (EAB, also can be referred to as anode reducing bacteria, exoelectrogens, or electricigens) that oxidize organic compounds in the wastewater, and a cathode membrane electrode in the vessel, which is configured to pass a treated liquid through the membrane while retaining the electrochemically active microorganisms and the hydrogenotrophic methanogens (for example, the key functional microbial communities, including EAB, methanogens and possible synergistic fermenters) in the vessel. The cathode membrane electrode can be suitable for catalyzing the hydrogen evolution reaction to generate hydro en.

  4. Product formation from thiophene by a mixed bacterial culture. Influence of benzene as growth substrate

    DEFF Research Database (Denmark)

    Rivas, Isabelle Marie; Mosbæk, Hans; Arvin, Erik

    2003-01-01

    The influence of benzene as a growth substrate on the cometabolic conversion of thiophene was investigated in batch systems with microorganisms originating from an creosote contaminated site. Benzene was shown to stimulate the conversion of thiophene with a first-order rate, during the initial...... phase of transformation. The microorganisms were able to transform thiophene in the absence of benzene at a zero-order rate. Thiophene was converted to five oxidation products, regardless of the presence of benzene. Benzene had no influence on the distribution of these oxidation products. The main...

  5. The Grand Canonical Monte Carlo Simulations of Benzene and Propylene in ITQ-1 Zeolite

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Grand Canonical Monte Carlo (GCMC) simulations have been performed to study the localization and adsorption behavior of benzene and propylene, in purely siliceous MWW zeolite (ITQ-1). By analyzing the locations of benzene and propylene in ITQ-1, it can be deduced that the alkylation of benzene and propylene will mainly happen in 12-MR supercages at the external surface or close to the external surface. The adsorption isotherms of benzene and propylene at 315K and 0~3.5kPa are predicted, and the results for benzene generally coincide with the trend from the experiments of a series of aromatic compounds.

  6. Anaerobic oxidation of methane above gas hydrates at Hydrate Ridge, NE Pacific Ocean

    DEFF Research Database (Denmark)

    Treude, T.; Boetius, A.; Knittel, K.;

    2003-01-01

    At Hydrate Ridge (HR), Cascadia convergent margin, surface sediments contain massive gas hydrates formed from methane that ascends together with fluids along faults from deeper reservoirs. Anaerobic oxidation of methane (AOM), mediated by a microbial consortium of archaea and sulfate-reducing...... bacteria, generates high concentrations of hydrogen sulfide in the surface sediments. The production of sulfide supports chemosynthetic communities that gain energy from sulfide oxidation. Depending on fluid flow, the surface communities are dominated either by the filamentous sulfur bacteria Beggiatoa...

  7. In-situ Investigation of BBr_3/benzene Solution by Fourier Transformation Infrared Spectroscopy

    Institute of Scientific and Technical Information of China (English)

    YU Li-li; GAI Li-gang; CUI De-Hang; WANG Qi-long

    2009-01-01

    By means of the in-situ Fourier transformation infrared spectroscopy(FTIR), the properties of BBr_3/ benzene solution, which is usually used as the reactant and solution to synthesize BN by benzene-thermal method, have been investigated. The results show that there are some side reactions between BBr_3 and benzene: (1) BBr_3 as an electron-deficient molecule reacts with benzene at room temperature; (2) below 100℃, substitution of Br atom for H atom of benzene(ring-H) dominates in BBr_3/benzene solution; (3) cracking of benzene ring occurs at a temperature above 100℃; (4) decomposition of benzene molecules and formation of long-chain aliphatic compounds feature the spectra of BBr_3/benzene solution collected at above 160℃. They are unfavor for BN to form when BBr_3 is excessive in the synthesis of BN by benzene-thermal route. On the basis of the experimental results, a coordination reaction mechanism via a η~2-C_6H_6 binding mode in BBr_3/benzene solution is suggested.

  8. Benzene exposure and the effect of traffic pollution in Copenhagen, Denmark

    Energy Technology Data Exchange (ETDEWEB)

    Skov, H.; Hansen, A.B.; Andersen, H.V.; Loefstroem, P.; Christensen, C.S. [National Environmental Research Inst., Roskilde (Denmark). Dept. of Atmospheric Environment; Lorenzen, G. [Environmental Protection Agency, Copenhagen (Denmark)

    2001-05-01

    Benzene is a carcinogenic compound, which is emitted from petrol-fuelled cars and thus is found ubiquitous in all cities. As part of the project Monitoring of Atmospheric Concentrations of Benzene in European Towns and Homes (MACBETH) six campaigns were carried out in the Municipality of Copenhagen, Denmark. The campaigns were distributed over 1 year. In each campaign, the personal exposure to benzene of 50 volunteers (non-smokers living in non-smoking families) living and working in Copenhagen was measured. Simultaneously, benzene was measured in their homes and in an urban network distributed over the municipality. The Radiello diffusive sampler was applied to sample 5 days averages of benzene and other hydrocarbons. Comparison of the results with those from a BTX-monitor showed excellent agreement. The exposure and the concentrations in homes and in the urban area were found to be close to log-normal distribution. The annual averages of the geometrical mean values were 5.22, 4.30 and 2.90{mu}gm{sup -3} for personal exposure, home concentrations and urban concentrations, respectively. Two main parameters are controlling the general level of benzene in Copenhagen: firstly, the emission from traffic and secondly, dispersion due to wind speed. The general level of exposure to benzene and home concentrations of benzene were strongly correlated with the outdoor level of benzene, which indicated that traffic is an important source for indoor concentrations of benzene and for the exposure to benzene. (Author)

  9. Benzene-induced hematotoxicity and bone marrow compensation in B6C3F1 mice.

    Science.gov (United States)

    Farris, G M; Robinson, S N; Gaido, K W; Wong, B A; Wong, V A; Hahn, W P; Shah, R S

    1997-04-01

    Long-term inhalation exposure of benzene has been shown to cause hematotoxicity and an increased incidence of acute myelogenous leukemia in humans. The progression of benzene-induced hematotoxicity and the features of the toxicity that may play a major role in the leukemogenesis are not known. We report the hematological consequences of benzene inhalation in B6C3F1 mice exposed to 1, 5, 10, 100, and 200 ppm benzene for 6 hr/day, 5 days/week for 1, 2, 4, or 8 weeks and a recovery group. There were no significant effects on hematopoietic parameters from exposure to 10 ppm benzene or less. Exposure of mice to 100 and 200 ppm benzene reduced the number of total bone marrow cells, progenitor cells, differentiating hematopoietic cells, and most blood parameters. Replication of primitive progenitor cells in the bone marrow was increased during the exposure period as a compensation for the cytotoxicity induced by 100 and 200 ppm benzene. In mice exposed to 200 ppm benzene, the primitive progenitor cells maintained an increased percentage of cells in S-phase through 25 days of recovery compared with controls. The increased replication of primitive progenitor cells in concert with the reported genotoxicity induced by benzene provides the components necessary for producing an increased incidence of lymphoma in mice. Furthermore, we propose this mode of action as a biologically plausible mechanism for benzene-induced leukemia in humans exposed to high concentrations of benzene.

  10. Benzene exposure and the effect of traffic pollution in Copenhagen, Denmark

    Science.gov (United States)

    Skov, Henrik; Hansen, Asger B.; Lorenzen, Gitte; Andersen, Helle Vibeke; Løfstrøm, Per; Christensen, Carsten S.

    Benzene is a carcinogenic compound, which is emitted from petrol-fuelled cars and thus is found ubiquitous in all cities. As part of the project Monitoring of Atmospheric Concentrations of Benzene in European Towns and Homes (MACBETH) six campaigns were carried out in the Municipality of Copenhagen, Denmark. The campaigns were distributed over 1 year. In each campaign, the personal exposure to benzene of 50 volunteers (non-smokers living in non-smoking families) living and working in Copenhagen was measured. Simultaneously, benzene was measured in their homes and in an urban network distributed over the municipality. The Radiello diffusive sampler was applied to sample 5 days averages of benzene and other hydrocarbons. Comparison of the results with those from a BTX-monitor showed excellent agreement. The exposure and the concentrations in homes and in the urban area were found to be close to log-normal distribution. The annual averages of the geometrical mean values were 5.22, 4.30 and 2.90 μg m -3 for personal exposure, home concentrations and urban concentrations, respectively. Two main parameters are controlling the general level of benzene in Copenhagen: firstly, the emission from traffic and secondly, dispersion due to wind speed. The general level of exposure to benzene and home concentrations of benzene were strongly correlated with the outdoor level of benzene, which indicated that traffic is an important source for indoor concentrations of benzene and for the exposure to benzene.

  11. Biomarkers of internal dose for the assessment of environmental exposure to benzene.

    Science.gov (United States)

    Lovreglio, Piero; D'Errico, Maria Nicolà; Fustinoni, Silvia; Drago, Ignazio; Barbieri, Anna; Sabatini, Laura; Carrieri, Mariella; Apostoli, Pietro; Soleo, Leonardo

    2011-10-01

    The urinary excretion of t,t-muconic acid (t,t-MA), S-phenylmercapturic acid (SPMA) and urinary benzene and the influence of a smoking habit and of exposure to urban traffic on the urinary excretion of these biomarkers were investigated in 137 male adults from the general population. All subjects were not occupationally exposed to benzene and resident in two cities in Puglia (Southern-Italy). Environmental exposure to benzene was measured using passive personal samplers. The biomarkers t,t-MA, SPMA and urinary benzene were determined in urine samples collected from each subject at the end of the environmental sampling. The percentage of cases above the limit of detection was higher for SPMA and urinary benzene in smokers than in non-smokers, and for airborne benzene and urinary benzene in subjects exposed to urban traffic. Airborne benzene was correlated with the time spent in urban traffic during the environmental sampling. Among the biomarkers, urinary benzene was found to be correlated with airborne benzene only in non-smokers, and with the time spent in urban traffic, both in smokers and non-smokers considered together, and in non-smokers only. Finally, multiple regression analysis showed that the urinary excretion of all the biomarkers was dependent on the number of cigarettes smoked per day and, for urinary benzene, also on the time spent in urban traffic. In conclusion, urinary benzene seems to be a more valid biomarker than t,t-MA and SPMA to assess environmental exposure to extremely low concentrations of benzene. Cigarette smoking prevailed over traffic exhaust fumes in determining the internal dose of benzene.

  12. Modulation of the immune response to Listeria monocytogenes by benzene inhalation.

    Science.gov (United States)

    Rosenthal, G J; Snyder, C A

    1985-09-30

    Benzene is a potent bone marrow toxicant. While all blood cell types are targets for benzene poisoning, lymphocytes are particularly sensitive. The immunotoxic consequences of benzene or its metabolites have been demonstrated in a number of in vitro studies; however, little data exist regarding the effects of benzene on host resistance to infectious agents. This investigation examined the effects of benzene on murine resistance to an infectious agent, Listeria monocytogenes. Four concentrations of benzene were employed, 10, 30, 100, and 300 ppm. To determine recovery from the effects of benzene, two exposure regimens were employed: 5 days prior to infection (preexposure), or 5 days prior to and 7 days during infection (continuous exposure). Appropriate air controls were maintained. Splenic bacterial counts and immune responsive cell populations were determined from mice killed at Days 1, 4, and 7 of infection. Preexposure to benzene produced increased bacterial numbers at Day 4 of the infection only at the highest benzene concentration (300 ppm). In contrast, continuous exposure produced increased bacterial numbers at Day 4 of infection at all but the lowest benzene concentration (10 ppm). Bacteria counts were not increased in any benzene-treated group at Day 1 or Day 7 of infection. The increased bacterial numbers at Day 4 suggest an effect on cell-mediated immune responses. Both T and B lymphocytes were particularly sensitive to benzene exhibiting reductions at all concentrations greater than or equal to 30 ppm for both exposure regimens. Esterase-positive cells, however, were relatively resistant to benzenes effects. The results point to a benzene-induced delay in the immune response to L. monocytogenes.

  13. Gene expression profile in bone marrow and hematopoietic stem cells in mice exposed to inhaled benzene

    Energy Technology Data Exchange (ETDEWEB)

    Faiola, Brenda; Fuller, Elizabeth S.; Wong, Victoria A.; Recio, Leslie

    2004-05-18

    Acute myeloid leukemia and chronic lymphocytic leukemia are associated with benzene exposure. In mice, benzene induces chromosomal breaks as a primary mode of genotoxicity in the bone marrow (BM). Benzene-induced DNA lesions can lead to changes in hematopoietic stem cells (HSC) that give rise to leukemic clones. To gain insight into the mechanism of benzene-induced leukemia, we investigated the DNA damage repair and response pathways in total bone marrow and bone marrow fractions enriched for HSC from male 129/SvJ mice exposed to benzene by inhalation. Mice exposed to 100 ppm benzene for 6 h per day, 5 days per week for 2 week showed significant hematotoxicity and genotoxicity compared to air-exposed control mice. Benzene exposure did not alter the level of apoptosis in BM or the percentage of HSC in BM. RNA isolated from total BM cells and the enriched HSC fractions from benzene-exposed and air-exposed mice was used for microarray analysis and quantitative real-time RT-PCR. Interestingly, mRNA levels of DNA repair genes representing distinct repair pathways were largely unaffected by benzene exposure, whereas altered mRNA expression of various apoptosis, cell cycle, and growth control genes was observed in samples from benzene-exposed mice. Differences in gene expression profiles were observed between total BM and HSC. Notably, p21 mRNA was highly induced in BM but was not altered in HSC following benzene exposure. The gene expression pattern suggests that HSC isolated immediately following a 2 weeks exposure to 100 ppm benzene were not actively proliferating. Understanding the toxicogenomic profile of the specific target cell population involved in the development of benzene-associated diseases may lead to a better understanding of the mechanism of benzene-induced leukemia and may identify important interindividual and tissue susceptibility factors.

  14. Carbon monoxide conversion by anaerobic bioreactor sludges

    NARCIS (Netherlands)

    Sipma, J.; Stams, A.J.M.; Lens, P.N.L.; Lettinga, G.

    2003-01-01

    Seven different anaerobic sludges from wastewater treatment reactors were screened for their ability to convert carbon monoxide (CO) at 30 and 55degreesC
    Seven different anaerobic sludges from wastewater treatment reactors were screened for their ability to convert carbon monoxide (CO) at 30 and

  15. Anaerobic critical velocity in four swimming techniques.

    Science.gov (United States)

    Neiva, H P; Fernandes, R J; Vilas-Boas, J P

    2011-03-01

    The aim of this study was to assess critical velocity in order to control and evaluate anaerobic swimming training. 51 highly trained male swimmers performed maximal 15, 25, 37.5 and 50 m in the 4 swimming techniques to determine critical velocity from the distance-time relationship. Anaerobic critical velocity was compared with 100 m swimming performance and corresponding partials. Complementarily, 9 swimmers performed a 6×50 m (4 min interval) training series at front crawl individual anaerobic critical velocity, capillary blood lactate concentrations being assessed after each repetition. The mean±SD values of anaerobic critical velocity and its relationship with the 100 m event were: 1.61±0.07 (r=0.60, p=0.037), 1.53±0.05 (r=0.81, p=0.015), 1.33±0.05 (r=0.83, p=0.002), and 1.75±0.05 (r=0.74, p=0.001), for butterfly, backstroke, breaststroke and front crawl, respectively. However, differences between anaerobic critical velocity and performance were observed (with exception of the second half of the 100 m swimming events in breaststroke and butterfly). Lactate concentration values at the end of the series were 14.52±1.06 mmol.l (-1), which suggests that it was indeed an anaerobic training set. In this sense, anaerobic critical velocity can be used to prescribe anaerobic training intensities.

  16. Integrated anaerobic and aerobic treatment of sewage.

    NARCIS (Netherlands)

    Kaijun Wang,

    1994-01-01

    This thesis describes results of investigations dealing with sequential concept of anaerobic-aerobic treatment of municipal wastewater. The main purposes of the study were 1) to develop a proper anaerobic hydrolytic pretreatment unit, consisting of a Hydrolysis Upflow Sludge Bed (HUSB-) reactor and

  17. Anaerobic degradation of linear alkylbenzene sulfonate

    DEFF Research Database (Denmark)

    Mogensen, Anders Skibsted; Haagensen, Frank; Ahring, Birgitte Kiær

    2003-01-01

    increases during anaerobic stabilization due to transformation of easily degradable organic matter. Hence, LAS is regarded as resistant to biodegradation under anaerobic conditions. We present data from a lab-scale semi-continuously stirred tank reactor (CSTR) spiked with linear dodecylbenzene sulfonate (C...

  18. Effect of Ethanol and Ethanol Biodegradation Products on Prospects for Natural Anaerobic Biodegradation of Benzene at Gasoline Spill Sites

    Science.gov (United States)

    There has been an increasing use of biofuels (ethanol in particular) in the fuel supply nationwide, and an increase in the number of stations that sell gasoline that contains more than 10% ethanol. The U.S. EPA needs to understand the fate of these materials if they are released ...

  19. Molecular Dynamics Investigation of Benzene in Supercritical Water

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Microscopic structure and diffusion properties of benzene in ambient water (298 K, 0.1 MPa) and super critical water (673-773 K, 25-35 MPa) are investigated by molecular dynamics simulation with site-site models. It is found that at the ambient condition, the water molecules surrounding a benzene molecule form a hydrogen bond network. The hydrogen bond interaction between supercritical water molecules decreases dramatically under supercritical conditions. The diffusion coefficients of both the solute molecule and solvent molecule at supercritical conditions increase by 30-180 times than those at the ambient condition. With the temperature approaching the critical temperature, the change of diffusion coefficient with pressure becomes pronounced.

  20. Electronic Conductivity of Polypyrrole−Dodecyl Benzene Sulfonate Complexes

    DEFF Research Database (Denmark)

    West, Keld; Bay, Lasse; Nielsen, Martin Meedom

    2004-01-01

    The electronic conductivity of the electroactive polymer polypyrrole-dodecyl benzene sulfonate (PPy-DBS) has been characterized as function of the redox level. The polymer was synthesized with different isomers of the dopant anions: the common mixed DBS tenside and three well-defined synthetic...... dodecyl isomers (with the benzene group at positions 1, 2 and 6). The conductivity was measured both by van der Pauw measurements on PPy-DBS in the oxidized, dry state as function of temperature, and by electrochemical impedance spectroscopy as function of potential in 0.1 M NaCl aqueous electrolyte...... carriers is at a minimum. The conductivity is further reduced because of the uptake of water at low potentials, creating electrolytic domains that separate the electronic domains and inhibit hopping. There is a pronounced hysteresis in the conductivity as a function of potential. However, the major part...

  1. Overtone spectroscopy of benzene derivatives using thermal lensing

    Science.gov (United States)

    Vipin Prasad, J.; Rai, S. B.; Thakur, S. N.

    1989-12-01

    The vibrational overtones of CH stretching oscillators are reported as observed by conventional IR spectroscopy and dual-beam thermal lensing spectroscopy for benzene, fluorobenzene, chlorobenzene, bromobenzene and benzonitrile in the liquid phase at room temperature. The stretching frequency ω e, the anharmonicity constant ω eχ e and the change in CH bond length on substitution in benzene have been determined for all these molecules under the local-mode approximation. Effects of substitution on the change in CH stretching frequency have been discussed in terms of the electronegativity of the substituents as well as the inductive part of the Hammett σ. Variation of thermal lensing signal with chopping frequency and laser power has also been studied.

  2. Prospects of Anaerobic Digestion Technology in China

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    As the world's largest developing country, China must face the problem of managing municipal solid waste, and the challenge of organic waste disposal is even more serious. Considering the characteristics of traditional waste disposal technologies and the subsequent secondary pollution, anaerobic digestion has various advantages such as reduction in the land needed for disposal and preservation of environmental quality. In light of the energy crisis, this paper focuses on the potential production of biogas from biowaste through anaerobic digestion processes, the problems incurred by the waste collection system, and the efficiency of the anaerobic digestion process. Use of biogas in a combined heat and power cogeneration system is also discussed. Finally, the advantages of anaerobic digestion technology for the Chinese market are summarized. The anaerobic digestion is suggested to be a promising treating technology for the organic wastes in China.

  3. Toxicants inhibiting anaerobic digestion: a review.

    Science.gov (United States)

    Chen, Jian Lin; Ortiz, Raphael; Steele, Terry W J; Stuckey, David C

    2014-12-01

    Anaerobic digestion is increasingly being used to treat wastes from many sources because of its manifold advantages over aerobic treatment, e.g. low sludge production and low energy requirements. However, anaerobic digestion is sensitive to toxicants, and a wide range of compounds can inhibit the process and cause upset or failure. Substantial research has been carried out over the years to identify specific inhibitors/toxicants, and their mechanism of toxicity in anaerobic digestion. In this review we present a detailed and critical summary of research on the inhibition of anaerobic processes by specific organic toxicants (e.g., chlorophenols, halogenated aliphatics and long chain fatty acids), inorganic toxicants (e.g., ammonia, sulfide and heavy metals) and in particular, nanomaterials, focusing on the mechanism of their inhibition/toxicity. A better understanding of the fundamental mechanisms behind inhibition/toxicity will enhance the wider application of anaerobic digestion.

  4. Comparison of measurement methods for benzene and toluene

    Science.gov (United States)

    Wideqvist, U.; Vesely, V.; Johansson, C.; Potter, A.; Brorström-Lundén, E.; Sjöberg, K.; Jonsson, T.

    Diffusive sampling and active (pumped) sampling (tubes filled with Tenax TA or Carbopack B) were compared with an automatic BTX instrument (Chrompack, GC/FID) for measurements of benzene and toluene. The measurements were made during differing pollution levels and different weather conditions at a roof-top site and in a densely trafficked street canyon in Stockholm, Sweden. The BTX instrument was used as the reference method for comparison with the other methods. Considering all data the Perkin-Elmer diffusive samplers, containing Tenax TA and assuming a constant uptake rate of 0.406 cm3 min-1, showed about 30% higher benzene values compared to the BTX instrument. This discrepancy may be explained by a dose-dependent uptake rate with higher uptake rates at lower dose as suggested by laboratory experiments presented in the literature. After correction by applying the relationship between uptake rate and dose as suggested by Roche et al. (Atmos. Environ. 33 (1999) 1905), the two methods agreed almost perfectly. For toluene there was much better agreement between the two methods. No sign of a dose-dependent uptake could be seen. The mean concentrations and 95% confidence intervals of all toluene measurements (67 values) were (10.80±1.6) μg m -3 for diffusive sampling and (11.3±1.6) μg m -3 for the BTX instrument, respectively. The overall ratio between the concentrations obtained using diffusive sampling and the BTX instrument was 0.91±0.07 (95% confidence interval). Tenax TA was found to be equal to Carbopack B for measuring benzene and toluene in this concentration range, although it has been proposed not to be optimal for benzene. There was also good agreement between the active samplers and the BTX instrument.

  5. Pure Benzene Will Be Serous Short of Supply

    Institute of Scientific and Technical Information of China (English)

    John Zheng

    2007-01-01

    @@ Benzene is one of the important ba-sic raw materials for petrochemicals.It can be used to synthesize a seriesof important chemical products suchas synthetic rubbers, synthetic resins,synthetic fibers, pharmaceuticals,pesticides, explosives and dyestuffs.It can also be used as a solvent forcoatings and rubbers and as a blend-ing agent to increase gasoline's oc-tane number in the refining sector.

  6. Adsorption isotherms for benzene on diatomites from China

    Institute of Scientific and Technical Information of China (English)

    YANG, Yu-Xianga; WU, Jie-Da; JIANG, Zhong-Liang; HUANG, Meng-Jian; CHEN, Rong-San; DAI, An-Bang

    2000-01-01

    In this paper, benzene adsorption isotherm and their hysteresis on two important local diatomites were determined at 25℃, ani their silicon hydroxyl group (SiOH) nunber was determined, their properties were reported, and the relationship between surface structure, surface SiOH number per nm2and adsorption isotherm with hysteresis was discussed. The specific surface was also calculated from the isotherms, and pore-size distribution was determined.

  7. Catalytic transformation of methyl benzenes over zeolite catalysts

    KAUST Repository

    Al-Khattaf, S.

    2011-02-01

    Catalytic transformation of three methyl benzenes (toluene, m-xylene, and 1,2,4-trimethyl benzene) has been investigated over ZSM-5, TNU-9, mordenite and SSZ-33 catalysts in a novel riser simulator at different operating conditions. Catalytic experiments were carried out in the temperature range of 300-400 °C to understand the transformation of these alkyl benzenes over large pore (mordenite and SSZ-33) in contrast to medium-pore (ZSM-5 and TNU-9) zeolite-based catalysts. The effect of reaction conditions on the isomerization to disproportionation product ratio, distribution of trimethylbenzene (TMB) isomers, and p-xylene/o-xylene ratios are reported. The sequence of reactivity of the three alkyl benzenes depends upon the pore structure of zeolites. The zeolite structure controls primarily the diffusion of reactants and products while the acidity of these zeolites is of a secondary importance. In the case of medium pore zeolites, the order of conversion was m-xylene > 1,2,4-TMB > toluene. Over large pore zeolites the order of reactivity was 1,2,4-TMB > m-xylene > toluene for SSZ-33 catalyst, and m-xylene ∼ 1,2,4-TMB > toluene over mordenite. Significant effect of pore size between ZSM-5 and TNU-9 was observed; although TNU-9 is also 3D 10-ring channel system, its slightly larger pores compared with ZSM-5 provide sufficient reaction space to behave like large-pore zeolites in transformation of aromatic hydrocarbons. We have also carried out kinetic studies for these reactions and activation energies for all three reactants over all zeolite catalysts under study have been calculated. © 2011 Elsevier B.V.

  8. 2-Phenylimidazolium hemi(benzene-1,3-dicarboxylate monohydrate

    Directory of Open Access Journals (Sweden)

    Wen-Yu Zhang

    2011-08-01

    Full Text Available The asymmetric unit of the title compound, C9H9N2+·0.5C8H4O4−·H2O, contains one 2-phenylimidazolium cation, half a benzene-1,3-dicarboxylate anion and one water molecule. In the crystal, components are connected by N—H...O and O—H...O hydrogen-bonding interactions into a three-dimensional network.

  9. LED Irradiation of a Photocatalyst for Benzene, Toluene, Ethyl Benzene,and Xylene Decomposition%LED Irradiation of a Photocatalyst for Benzene,Toluene,Ethyl Benzene,and Xylene Decomposition

    Institute of Scientific and Technical Information of China (English)

    JO Wan-Kuen; KANG Hyun-Jung

    2012-01-01

    Studies on the use of gas phase applications of light emitting diodes (LEDs) in photocatalysis are scarce although their photocatalytic decomposition kinetics of environmental pollutants are likely different from those in aqueous solutions.The present study evaluated the use of chips of visible light LEDs to irradiate nitrogen doped titania (N-TiO2) prepared by hydrolysis to decompose gaseous benzene,toluene,ethyl benzene,m-xylene,p-xylene,and o-xylene.Photocatalysts calcined at different temperatures were characterized by various analytical instruments.The degradation efficiency of benzene was close to zero for all conditions.For the other compounds,a conventional 8 W daylight lamp/N-TiO2 unit gave a higher photocatalytic degradation efficiency as compared with that of visible-LED/N-TiO2 units.However,the ratios of degradation efficiency to electric power consumption were higher for the photocatalytic units that used two types of visible-LED lamps (blue and white LEDs).The highest degradation efficiency was observed with the use of a calcination temperature of 350 ℃.The average degradation efficiencies for toluene,ethyl benzene,m-xylene,p-xylene,and o-xylene were 35%,68%,94%,and 93%,respectively.The use of blue-and white-LEDs,high light intensity,and low initial concentrations gave high photocatalytic activities for the photocatalytic units using visible-LEDs.The morphological and optical properties of the photocatalysts were correlated to explain the dependence of photocatalytic activity on calcination temperature.The results suggest that visible-LEDs are energy efficient light source for photocatalytic gas phase applications,but the activity depends on the operational conditions.

  10. STABILITY OF HEMOGLOBIN AND ALBUMIN ADDUCTS OF BENZENE OXIDE AND 1,4-BENZOQUINONE AFTER ADMINISTRATION OF BENZENE TO F344 RATS

    Science.gov (United States)

    The stability of cysteinyl adducts of benzene oxide (BO) and mono-S-substituted cysteinyl adducts of 1,4-benzoquinone (1,4-BQ) was investigated in both hemoglobin (Hb) and albumin (Alb) following administration of a single oral dose of 400 mg [U-14C/13C6]benzene/kg body weight ...

  11. Alkylation reaction by propene of benzene on the high-temperature chlorination alumina catalyst; Koonensoshori arumina shokubaijo deno benzen no puropen nioru arukiruka hanno

    Energy Technology Data Exchange (ETDEWEB)

    Imanishi, Kazuhiro; Inui, Kanichiro; Honda, Kazuki; Shobu, Akinori

    1999-09-01

    Alkylation reaction by propene of benzene on alumina catalyst (AmLSA) chlorinated at 1073K was carried out using semibatch reactor (liquid phase catalytic reaction) and fixed bed flow reactor (vapor phase catalytic reaction) at atmospheric pressure 303K and 303-623K respectively. Products in liquid phase catalytic reaction were isopropyl benzene (IPB), diisopropyl benzene (di-IPB), triisopropyl benzene (tri-IPB), and the dissolution of the catalytic activity kind to the organic solvent was not observed. It was estimated, when propene was made to adsorb on Am LSA, because the generation of isopropylidene and 2 - propylene cation which coordinated in a strong Lewis acid point was observed, isopropyl reaction these cation benzene - complex. The generation of the high order substitute was promoted, when sodium was added to the catalyst, and the meta/para ratio of di-IPB increased. In vapor phase catalytic reaction, tetraisopropyl benzene (tetra-IPB) was also formed, and in the temperature of 473K or less, it was promoted further than the case in which the generation of tetra-IPB and di, tri was liquid phase catalytic reaction. IPB selectivity and selectivity of total replacement arthroplasty benzenes of consumed propene standard increased, when benzene/propene ratio in the raw material gas increased. In addition, at all reaction temperatures, the oligomerization of propene was generated, and the deactivation of the catalyst was caused. (translated by NEDO)

  12. Benzene exposure on a crude oil production vessel

    Energy Technology Data Exchange (ETDEWEB)

    Kirkeleit, J; Riise, T.; Bratveit, M.; Moen, B.E. [University of Bergen (Norway). Dept. of Public Health and Primary Health Care

    2006-07-01

    Objectives: The aim was to describe the personal exposure to benzene on a typical crude oil production vessel and to identify factors influencing the exposure level. Methods: The study population included process operators, deck workers, mechanics and contractors on a production vessel in the Norwegian sector of the North Sea. The personal exposure to benzene during ordinary activity, during a short shutdown and during tank work was monitored using organic vapour passive dosimeter badges (3MTM3500). Information on the tasks performed on the day of sampling was recorded. Exposure was assessed by grouping the measurements according to job category, mode of operation and the tasks performed on the sampling day. Univariate analysis of variance was used to test the differences between the groups. Results: Forty-two workers participated in the exposure assessment, comprising a total of 139 measurements. The arithmetic and geometric mean of benzene exposure for all measurements was 0.43 and 0.02 p.p.m., respectively. Twenty-five measurements (18%) were below the limit of detection (0.001 p.p.m.), while ten samples (7%) exceeded the occupational exposure limit of 0.6 p.p.m. The geometric mean exposure was 0.004 p.p.m. (95% CI 0.003-0.006) during ordinary activity, 0.01 p.p.m. (95% CI 0.005-0.02) during shutdown and 0.28 p.p.m. (95% CI 0.16-0.49) during tank work. Workers performing annual cleaning and maintenance of tanks containing crude oil or residues of crude oil had higher levels of exposure than workers performing other tasks, including work near open hydrocarbon-transport systems (all P < 0.001). However, because of the mandatory use of respirators, the actual personal benzene exposure was lower. The job categories explained only 5% of the variance in exposure, whereas grouping by mode of operation explained 54% of the variance and grouping by task 68%. Conclusion: The results show that, although benzene exposure during ordinary and high activity seems to be low in

  13. Monitoring low benzene exposure: comparative evaluation of urinary biomarkers, influence of cigarette smoking, and genetic polymorphisms.

    Science.gov (United States)

    Fustinoni, Silvia; Consonni, Dario; Campo, Laura; Buratti, Marina; Colombi, Antonio; Pesatori, Angela C; Bonzini, Matteo; Bertazzi, Pier A; Foà, Vito; Garte, Seymour; Farmer, Peter B; Levy, Leonard S; Pala, Mauro; Valerio, Federico; Fontana, Vincenzo; Desideri, Arianna; Merlo, Domenico F

    2005-09-01

    Benzene is a human carcinogen and an ubiquitous environmental pollutant. Identification of specific and sensitive biological markers is critical for the definition of exposure to low benzene level and the evaluation of the health risk posed by this exposure. This investigation compared urinary trans,trans-muconic acid (t,t-MA), S-phenylmercapturic acid, and benzene (U-benzene) as biomarkers to assess benzene exposure and evaluated the influence of smoking and the genetic polymorphisms CYP2E1 (RsaI and DraI) and NADPH quinone oxidoreductase-1 on these indices. Gas station attendants, urban policemen, bus drivers, and two groups of controls were studied (415 subjects). Median benzene exposure was 61, 22, 21, 9 and 6 microg/m(3), respectively, with higher levels in workers than in controls. U-benzene, but not t,t-MA and S-phenylmercapturic acid, showed an exposure-related increase. All the biomarkers were strongly influenced by cigarette smoking, with values up to 8-fold higher in smokers compared with nonsmokers. Significant correlations of the biomarkers with each other and with urinary cotinine were found. A possible influence of genetic polymorphism of CYP2E1 (RsaI and/or DraI) on t,t-MA and U-benzene in subjects with a variant allele was found. Multiple linear regression analysis correlated the urinary markers with exposure, smoking status, and CYP2E1 (RsaI; R(2) up to 0.55 for U-benzene). In conclusion, in the range of investigated benzene levels (<478 micro/m(3) or <0.15 ppm), smoking may be regarded as the major source of benzene intake; among the study indices, U-benzene is the marker of choice for biomonitoring low-level occupational and environmental benzene exposure.

  14. Current understandings and perspectives on non-cancer health effects of benzene: A global concern

    Energy Technology Data Exchange (ETDEWEB)

    Bahadar, Haji [International Campus, Tehran University of Medical Sciences (Iran, Islamic Republic of); Pharmaceutical Sciences Research Center and Faculty of Pharmacy, Tehran University of Medical Sciences (Iran, Islamic Republic of); Mostafalou, Sara [Pharmaceutical Sciences Research Center and Faculty of Pharmacy, Tehran University of Medical Sciences (Iran, Islamic Republic of); Abdollahi, Mohammad, E-mail: Mohammad.Abdollahi@UToronto.Ca [Pharmaceutical Sciences Research Center and Faculty of Pharmacy, Tehran University of Medical Sciences (Iran, Islamic Republic of)

    2014-04-15

    Objective: Benzene, as a volatile organic compound, is known as one of the main air pollutants in the environment. The aim of this review is to summarize all available evidences on non-cancerous health effects of benzene providing an overview of possible association of exposure to benzene with human chronic diseases, specially, in those regions of the world where benzene concentration is being poorly monitored. Methodology: A bibliographic search of scientific databases including PubMed, Google Scholar, and Scirus was conducted with key words of “benzene toxic health effects”, “environmental volatile organic compounds”, “diabetes mellitus and environmental pollutants”, “breast cancer and environmental pollution”, “prevalence of lung cancer”, and “diabetes prevalence”. More than 300 peer reviewed papers were examined. Experimental and epidemiologic studies reporting health effects of benzene and volatile organic compounds were included in the study. Results: Epidemiologic and experimental studies suggest that benzene exposure can lead to numerous non-cancerous health effects associated with functional aberration of vital systems in the body like reproductive, immune, nervous, endocrine, cardiovascular, and respiratory. Conclusion: Chronic diseases have become a health burden of global dimension with special emphasis in regions with poor monitoring over contents of benzene in petrochemicals. Benzene is a well known carcinogen of blood and its components, but the concern of benzene exposure is more than carcinogenicity of blood components and should be evaluated in both epidemiologic and experimental studies. Aspect of interactions and mechanism of toxicity in relation to human general health problems especially endocrine disturbances with particular reference to diabetes, breast and lung cancers should be followed up. - Highlights: • Benzene is a volatile organic compound and established blood carcinogen. • Exposure to benzene needs to be

  15. Effects of microbial inhibitors on anaerobic degradation of DDT

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y.S.; Chiu, T.C.; Yen, J.H. [National Taiwan Univ., Taipei (Taiwan)

    2004-09-15

    Chlorinated insecticide DDT [1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane] was extensively used for controlling pests in the agricultural field and human-being living environments in the past several decades. Due to the chemical stability, DDT was extremely persistent and recalcitrant in soils and sediments and it was banned by nations. Microorganisms usually play important roles in reducing organochlorine compounds in the environments. Under low-oxygen conditions, microbial dechlorination is thought as the onset of highly chlorinated compounds. Methanogenic and sulfate-reducing bacteria participate in microbial dechlorination under anaerobic condition has been reported. In this study, a mixed anaerobic culture enabling to dechlorinate DDT was obtained from river sediment in Taiwan. In order to understand the effect of these microorganisms on DDT dechlorination, microbial inhibitors BESA (2-bromoethanesulfonate) and molybdate, for inhibiting methanogenic and sulfate-reducing bacteria, respectively, were chosen to investigate the interaction between specific microbial communities and their degradation activities. Besides, a molecular technique, denaturing gradient gel electrophoresis (DGGE), based on analyzing the 16S rDNA of bacteria, was used for monitoring the bacterial community structure in this study.

  16. Biogas production from brewery spent grain enhanced by bioaugmentation with hydrolytic anaerobic bacteria.

    Science.gov (United States)

    Čater, Maša; Fanedl, Lijana; Malovrh, Špela; Logar, Romana Marinšek

    2015-06-01

    Lignocellulosic substrates are widely available but not easily applied in biogas production due to their poor anaerobic degradation. The effect of bioaugmentation by anaerobic hydrolytic bacteria on biogas production was determined by the biochemical methane potential assay. Microbial biomass from full scale upflow anaerobic sludge blanket reactor treating brewery wastewater was a source of active microorganisms and brewery spent grain a model lignocellulosic substrate. Ruminococcus flavefaciens 007C, Pseudobutyrivibrio xylanivorans Mz5(T), Fibrobacter succinogenes S85 and Clostridium cellulovorans as pure and mixed cultures were used to enhance the lignocellulose degradation and elevate the biogas production. P. xylanivorans Mz5(T) was the most successful in elevating methane production (+17.8%), followed by the coculture of P. xylanivorans Mz5(T) and F. succinogenes S85 (+6.9%) and the coculture of C. cellulovorans and F. succinogenes S85 (+4.9%). Changes in microbial community structure were detected by fingerprinting techniques.

  17. Colonizing the embryonic zebrafish gut with anaerobic bacteria derived from the human gastrointestinal tract.

    Science.gov (United States)

    Toh, Michael C; Goodyear, Mara; Daigneault, Michelle; Allen-Vercoe, Emma; Van Raay, Terence J

    2013-06-01

    The zebrafish has become increasingly popular for microbiological research. It has been used as an infection model for a variety of pathogens, and is also emerging as a tool for studying interactions between a host and its resident microbial communities. The mouse microbiota has been transplanted into the zebrafish gut, but to our knowledge, there has been no attempt to introduce a bacterial community derived from the human gut. We explored two methods for colonizing the developing gut of 5-day-old germ-free zebrafish larvae with a defined anaerobic microbial community derived from a single human fecal sample. Both environmental exposure (static immersion) and direct microinjection into the gut resulted in the establishment of two species-Lactobacillus paracasei and Eubacterium limosum-from a community of 30 strains consisting of 22 anaerobic species. Of particular interest is E. limosum, which, as a strict anaerobe, represents a group of bacteria which until now have not been shown to colonize the developing zebrafish gut. Our success here indicates that further investigation of zebrafish as a tool for studying human gut microbial communities is warranted.

  18. Critical issues in benzene toxicity and metabolism: The effect of interactions with other organic chemicals on risk assessment

    Energy Technology Data Exchange (ETDEWEB)

    Medinsky, M.A.; Schlosser, P.M.; Bond, J.A. [Chemical Industry Institute of Toxicology, Research Triangle Park, NC (United States)

    1994-11-01

    Benzene, an important industrial solvent, is also present in unleaded gasoline and cigarette smoke. The hematotoxic effects of benzene are well documented and include aplastic anemia and pancytopenia. Some individuals exposed repeatedly to cytotoxic concentrations of benzene develop acute myeloblastic anemia. It has been hypothesized that metabolism of benzene is required for its toxicity, although administration of no single benzene metabolite duplicates the toxicity of benzene. Several investigators have demonstrated that a combination of metabolites (hydroquinone and phenol, for example) is necessary to duplicate the hematotoxic effect of benzene. Enzymes implicated in the metabolic activation of benzene and its metabolites include the cytochrome P450 monooxygenases and myeloperoxidase. Since benzene and its hydroxylated metabolites (phenol, hydroquinone, and catechol) are substrates for the same cytochrome P450 enzymes, competitive interactions among the metabolites are possible. In vivo data on metabolite formation by mice exposed to various benzene concentrations are consistent with competitive inhibition of phenol oxidation by benzene. Other organic molecules that are substrates for cytochrome P450 can inhibit the metabolism of benzene. For example, toluene has been shown to inhibit the oxidation of benzene in a noncompetitive manner. Enzyme inducers, such as ethanol, can alter the target tissue dosimetry of benzene metabolites by inducing enzymes responsible for oxidation reactions involved in benzene metabolism. 24 refs., 6 figs., 2 tabs.

  19. A physiological model for simulation of benzene metabolism by rats and mice.

    Science.gov (United States)

    Medinsky, M A; Sabourin, P J; Lucier, G; Birnbaum, L S; Henderson, R F

    1989-06-15

    Studies conducted by the National Toxicology Program on the chronic toxicity of benzene indicated that B6C3F1 mice are more sensitive to the toxic effects of benzene than are F344 rats. A physiological model was developed to describe the uptake and metabolism of benzene in rats and mice and to determine if the observed differences in toxic effects could be explained by differences in the pathways for metabolism of benzene or by differences in uptake of benzene. Major pathways for elimination of benzene included metabolism to hydroquinone glucuronide or hydroquinone sulfate, phenyl glucuronide or phenyl sulfate, muconic acid, and prephenyl mercapturic acid or phenyl mercapturic acid. Model simulations for total benzene metabolized and for profiles of benzene metabolites were conducted for oral or inhalation exposure and compared to data for urinary excretion of benzene metabolites after exposure of rats and mice to [14C]- or [3H]-benzene by inhalation or gavage. Results for total amount of benzene metabolized, expressed per kilogram body weight, indicated that for inhalation exposure concentrations up to 1000 ppm, mice metabolized at least two to three times as much benzene as did rats. Simulations of oral exposure to benzene resulted in more benzene metabolized per kilogram body weight by rats at oral exposures of greater than 50 mg/kg. Patterns of metabolites formed after either route of exposure were very different for F344/N rats and B6C3F1 mice. Rats primarily formed the detoxification metabolite, phenyl sulfate. Mice formed hydroquinone glucuronide and muconic acid in addition to phenyl sulfate. Hydroquinone and muconic acid are associated with pathways leading to the formation of the putative toxic metabolites of benzene. Metabolic rate parameters, Vmax and Km, were very different for hydroquinone conjugate and muconic acid formation compared to formation of phenyl conjugates and phenyl mercapturic acids. Putative toxication pathways could be characterized as

  20. Intraspecific variation in aerobic and anaerobic locomotion

    DEFF Research Database (Denmark)

    Svendsen, Jon Christian; Tirsgård, Bjørn; Cordero, Gerardo A.;

    2015-01-01

    Intraspecific variation and trade-off in aerobic and anaerobic traits remain poorly understood in aquatic locomotion. Using gilthead sea bream (Sparus aurata) and Trinidadian guppy (Poecilia reticulata), both axial swimmers, this study tested four hypotheses: (1) gait transition from steady...... to unsteady (i.e., burst-assisted) swimming is associated with anaerobic metabolism evidenced as excess post exercise oxygen consumption (EPOC); (2) variation in swimming performance (critical swimming speed; U crit) correlates with metabolic scope (MS) or anaerobic capacity (i.e., maximum EPOC); (3...

  1. Energy from anaerobic methane production. [Sweden

    Energy Technology Data Exchange (ETDEWEB)

    1982-02-01

    Since 1970 Swedish researchers have been testing the ANAMET (anaerobic-aerobic-methane) process, which involves converting industrial wastewaters via an initial anaerobic microbiological step followed by an aerobic one. Recycling the biomass material in each step allows shorter hydraulic retention times without decreasing stability or solids reduction. Since the first ANAMET plants began operating at a Swedish sugar factory in 1972, 17 more plants have started up or are under construction. Moreover, the ANAMET process has engendered to offshoot BIOMET (biomass-methane) process, a thermophilic anaerobic scheme that can handle sugar-beet pulp as well as grass and other soft, fast-growing biomasses.

  2. Anaerobic degradation and toxicity of commercial cationic surfactants in anaerobic screening tests.

    Science.gov (United States)

    García, M T; Campos, E; Sánchez-Leal, J; Ribosa, I

    2000-09-01

    Anaerobic biodegradability and toxicity on anaerobic bacteria of di(hydrogenated tallow) dimethyl ammonium chloride (DHTDMAC) and two esterquats have been investigated. A batch test system containing municipal digester solids as a source of anaerobic bacteria, based on the method proposed by the ECETOC, has been applied. To evaluate the potential toxicity of such surfactants on anaerobic sludge, a co-substrate, an easily biodegradable compound in anaerobic conditions, has been added to the samples to test and the effects on biogas production have been determined. For the esterquats studied high biodegradation levels were obtained and no toxic effects on anaerobic bacteria were observed even at the highest concentrations tested, 100 and 200 mg C/l, respectively. On the contrary, DHTDMAC was not degradated at the same test conditions. However, no inhibitory effects on the biogas production were detected for this surfactant at concentrations <100 mg C/l.

  3. Hematotoxicity and concentration-dependent conjugation of phenol in mice following inhalation exposure to benzene.

    Science.gov (United States)

    Wells, M S; Nerland, D E

    1991-04-01

    Benzene is metabolized to one or more hematotoxic species. Saturation of benzene metabolism could limit the production of toxic species. Saturation of phase II enzymes involved in the conjugation of the phenolic metabolites of benzene also could affect the hematotoxicity of benzene. To investigate the latter possibility, we exposed male Swiss mice, via the inhalation route, to various concentrations of benzene for 6 h per day for 5 days. Following termination of the final exposure the mice were killed and the levels of phenylsulfate and phenylglucuronide in the blood determined. Spleen weights were recorded and the number of white blood cells counted. At low benzene exposure concentrations phenylsulfate is the major conjugated form of phenol in the blood. At high exposure concentrations, phenylglucuronide is the predominant species. The reductions in spleen weight and white blood cell numbers correlated with the concentration of phenylsulfate in the blood, but are most probably not causally related.

  4. Real-time diode laser measurements of vapor-phase benzene.

    Science.gov (United States)

    Jeffers, J D; Roller, C B; Namjou, K; Evans, M A; McSpadden, L; Grego, J; McCann, P J

    2004-01-15

    An absorption spectrometer equipped with a IV-VI semiconductor tunable mid-IR diode laser was used to make sensitive measurements of benzene (C(6)H(6)) gas in the 5.1-microm spectral range. Wavelength modulation coupled with second-harmonic detection achieved accurate real-time quantification of benzene concentrations down to a minimum detection limit of 1 ppmv with an integration time of 4 s. A variety of calibrated benzene-sensing measurements were made, including the determination of the benzene concentrations in vehicle exhaust and headspace vapors from unleaded gasoline and other liquids. Kinetic phenomena, including the monitoring of benzene evaporation and absorption/desorption by granulated activated carbon were observed with the instrument. Measurements were performed that allowed experimental determination of the activation energy for desorption of benzene from activated carbon, which was found to be 198 meV/molecule (19.0 kJ/mol).

  5. Mechanism and Effect of Temperature on Variations in Antibiotic Resistance Genes during Anaerobic Digestion of Dairy Manure

    Science.gov (United States)

    Sun, Wei; Qian, Xun; Gu, Jie; Wang, Xiao-Juan; Duan, Man-Li

    2016-07-01

    Animal manure comprises an important reservoir for antibiotic resistance genes (ARGs), but the variation in ARGs during anaerobic digestion at various temperatures and its underlying mechanism remain unclear. Thus, we performed anaerobic digestion using dairy manure at three temperature levels (moderate: 20 °C, mesophilic: 35 °C, and thermophilic: 55 °C), to analyze the dynamics of ARGs and bacterial communities by quantitative PCR and 16S rRNA gene sequencing. We found that 8/10 detected ARGs declined and 5/10 decreased more than 1.0 log during thermophilic digestion, whereas only four and five ARGs decreased during moderate and mesophilic digestion, respectively. The changes in ARGs and bacterial communities were similar under the moderate and mesophilic treatments, but distinct from those in the thermophilic system. Potential pathogens such as Bacteroidetes, Proteobacteria, and Corynebacterium were removed by thermophilic digestion but not by moderate and mesophilic digestion. The bacterial community succession was the dominant mechanism that influenced the variation in ARGs and integrons during anaerobic digestion. Thermophilic digestion decreased the amount of mesophilic bacteria (Bacteroidetes and Proteobacteria) carrying ARGs. Anaerobic digestion generally decreased the abundance of integrons by eliminating the aerobic hosts of integrons (Actinomycetales and Bacilli). Thermophilic anaerobic digestion is recommended for the treatment and reuse of animal manure.

  6. Mechanism and Effect of Temperature on Variations in Antibiotic Resistance Genes during Anaerobic Digestion of Dairy Manure.

    Science.gov (United States)

    Sun, Wei; Qian, Xun; Gu, Jie; Wang, Xiao-Juan; Duan, Man-Li

    2016-07-22

    Animal manure comprises an important reservoir for antibiotic resistance genes (ARGs), but the variation in ARGs during anaerobic digestion at various temperatures and its underlying mechanism remain unclear. Thus, we performed anaerobic digestion using dairy manure at three temperature levels (moderate: 20 °C, mesophilic: 35 °C, and thermophilic: 55 °C), to analyze the dynamics of ARGs and bacterial communities by quantitative PCR and 16S rRNA gene sequencing. We found that 8/10 detected ARGs declined and 5/10 decreased more than 1.0 log during thermophilic digestion, whereas only four and five ARGs decreased during moderate and mesophilic digestion, respectively. The changes in ARGs and bacterial communities were similar under the moderate and mesophilic treatments, but distinct from those in the thermophilic system. Potential pathogens such as Bacteroidetes, Proteobacteria, and Corynebacterium were removed by thermophilic digestion but not by moderate and mesophilic digestion. The bacterial community succession was the dominant mechanism that influenced the variation in ARGs and integrons during anaerobic digestion. Thermophilic digestion decreased the amount of mesophilic bacteria (Bacteroidetes and Proteobacteria) carrying ARGs. Anaerobic digestion generally decreased the abundance of integrons by eliminating the aerobic hosts of integrons (Actinomycetales and Bacilli). Thermophilic anaerobic digestion is recommended for the treatment and reuse of animal manure.

  7. The use of S-phenylmercapturic acid as a biomarker in molecular epidemiology studies of benzene.

    Science.gov (United States)

    Farmer, Peter B; Kaur, Balvinder; Roach, Jonathan; Levy, Len; Consonni, Dario; Bertazzi, Pietro A; Pesatori, Angela; Fustinoni, Silvia; Buratti, Marina; Bonzini, Matteo; Colombi, Antonio; Popov, Todor; Cavallo, Domenico; Desideri, Arianna; Valerio, Federico; Pala, Mauro; Bolognesi, Claudia; Merlo, Franco

    2005-05-30

    S-Phenylmercapturic acid (S-PMA), is a urinary metabolite of benzene, thought to be derived from the condensation product of benzene oxide with glutathione. S-PMA may be determined by GC, HPLC (UV or fluorescence detection), GC-MS, LC-MS/MS or immunoassays. The limit of sensitivities of most of these techniques is 1 microg/l urine or below. It has been suggested that S-PMA may have value as a biomarker for low level human exposure to benzene, in view of the facts that urinary excretion of S-PMA has been found to be related to airborne benzene in occupationally exposed workers, and that only low background levels of S-PMA have been found in control subjects. We have evaluated the use of S-PMA as a biomarker, using a commercially available analytical service, in a multicentre European study of populations exposed to varying levels of benzene, in Italy (Milan, Genoa) and in Bulgaria (Sofia). These were filling station attendants, urban policemen, bus drivers, petrochemical workers and referents (a total of 623 subjects). S-PMA was measured at the end of the work shift by an immunoassay procedure. Urinary benzene (in Milan only) and the benzene metabolite trans,trans-muconic acid (t,t-MA) were measured before and after the work shift. Air-borne benzene was measured as a monitor of exposure. Urinary benzene was the most discriminatory biomarker and showed a relationship with airborne benzene at all levels of exposure studied (including groups exposed to <0.1 ppm benzene), whereas t,t-MA and S-PMA, as determined by immunoassay, were suitable only in the highest exposed workers (petrochemical industry, geometric mean 1765 microg/m3 (0.55 ppm) benzene). All three biomarkers were positively correlated with smoking as measured by urinary cotinine).

  8. Tissue distribution of DNA adducts and their persistence in blood of mice exposed to benzene.

    OpenAIRE

    Li, G.; Wang, C.; Xin, W. (Weidong); Yin, S

    1996-01-01

    Chemicals combine with DNA, resulting in DNA damage, which could initiate carcinogenesis. To study whether benzene or benzene metabolites bind to DNA, DNA adducts in various tissues and their persistence in leukocytes were examined using the 32P-postlabeling assay. LACA mice were dosed ip with benzene at 500 mg/kg bw twice for 5 days. Two additional spots of DNA adducts are formed in bone marrow cells, liver cells, and peripheral blood compared with control mice. The relative adduct labeling ...

  9. Reduction of benzene metabolism and toxicity in mice that lack CYP2E1 expression.

    Science.gov (United States)

    Valentine, J L; Lee, S S; Seaton, M J; Asgharian, B; Farris, G; Corton, J C; Gonzalez, F J; Medinsky, M A

    1996-11-01

    Transgenic CYP2E1 knockout mice (cyp2e1-/-) were used to investigate the involvement of CYP2E1 in the in vivo metabolism of benzene and in the development of benzene-induced toxicity. After benzene exposure, absence of CYP2E1 protein was confirmed by Western blot analysis of mouse liver samples. For the metabolism studies, male cyp2e1-/- and wild-type control mice were exposed to 200 ppm benzene, along with a radiolabeled tracer dose of [14C]benzene (1.0 Ci/mol) by nose-only inhalation for 6 hr. Total urinary radioactivity and all radiolabeled individual metabolites were reduced in urine of cyp2e1-/- mice compared to wild-type controls during the 48-hr period after benzene exposure. In addition, a significantly greater percentage of total urinary radioactivity could be accounted for as phenylsulfate conjugates in cyp2e1-/- mice compared to wild-type mice, indicating the importance of CYP2E1 in oxidation of phenol following benzene exposure in normal mice. For the toxicity studies, male cyp2e1-/-, wild-type, and B6C3F1 mice were exposed by whole-body inhalation to 0 ppm (control) or 200 ppm benzene, 6 hr/day for 5 days. On Day 5, blood, bone marrow, thymus, and spleen were removed for evaluation of micronuclei frequencies and tissue cellularities. No benzene-induced cytotoxicity or genotoxicity was observed in cyp2e1-/- mice. In contrast, benzene exposure resulted in severe genotoxicity and cytotoxicity in both wild-type and B6C3F1 mice. These studies conclusively demonstrate that CYP2E1 is the major determinant of in vivo benzene metabolism and benzene-induced myelotoxicity in mice.

  10. ANALYSES OF CHROMOSOME ABERRATIONS IN LYMPHOCYTES AND BONE MARROW CELLS INDUCED BY RADIATION OR BENZENE

    Institute of Scientific and Technical Information of China (English)

    张鸿源; 王兰金; 等

    1995-01-01

    The chromosomoe and chromatid type aberration can be induced by benzene and the dicentric and ring ones were not observed in vitro experiment but observed in vivo one.In vitro experiment a good linear reression can be given between benzene concentrations and total aberration cells while power regression for radiation dose.The chromosome aberrations induced by benzene combined with radiation in rabbit blood lymphocytes are higher than in bone marryow cells.

  11. Assessing benzene-induced toxicity on wild type Euglena gracilis Z and its mutant strain SMZ.

    Science.gov (United States)

    Peng, Cheng; Arthur, Dionne M; Sichani, Homa Teimouri; Xia, Qing; Ng, Jack C

    2013-11-01

    Benzene is a representative member of volatile organic compounds and has been widely used as an industrial solvent. Groundwater contamination of benzene may pose risks to human health and ecosystems. Detection of benzene in the groundwater using chemical analysis is expensive and time consuming. In addition, biological responses to environmental exposures are uninformative using such analysis. Therefore, the aim of this study was to employ a microorganism, Euglena gracilis (E. gracilis) as a putative model to monitor the contamination of benzene in groundwater. To this end, we examined the wild type of E. gracilis Z and its mutant form, SMZ in their growth rate, morphology, chlorophyll content, formation of reactive oxygen species (ROS) and DNA damage in response to benzene exposure. The results showed that benzene inhibited cell growth in a dose response manner up to 48 h of exposure. SMZ showed a greater sensitivity compared to Z in response to benzene exposure. The difference was more evident at lower concentrations of benzene (0.005-5 μM) where growth inhibition occurred in SMZ but not in Z cells. We found that benzene induced morphological changes, formation of lipofuscin, and decreased chlorophyll content in Z strain in a dose response manner. No significant differences were found between the two strains in ROS formation and DNA damage by benzene at concentrations affecting cell growth. Based on these results, we conclude that E. gracilis cells were sensitive to benzene-induced toxicities for certain endpoints such as cell growth rate, morphological change, depletion of chlorophyll. Therefore, it is a potentially suitable model for monitoring the contamination of benzene and its effects in the groundwater.

  12. Benzene inhalation effects upon tetanus antitoxin. Responses and leukemogenesis in mice

    Energy Technology Data Exchange (ETDEWEB)

    Stoner, R D; Drew, R T; Bernstein, D M

    1980-01-01

    The effects of inhaled benzene on primary and secondary antibody responses and the incidence of leukemia in mice are reported. Young adult mice were given 5, 12, or 22 exposures to 400 ppM benzene for 6 hrs/day 5 days/week. After the exposure periods, the mice were immunized with absorbed tetanus toxoid (APTT) and/or fluid tetanus toxid (FTT). Exposure to benzene increasingly suppressed primary antibody responses to both antigens. Secondary antibody responses to FTT were nearly normal in animals given 10, 15, or 20 exposures to 400 ppM benzene. Other groups of mice were exposed to either 200 ppM or 50 ppM benzene. Primary antibody responses elicited with FTT and/or APTT were nearly normal in all mice exposed to 50 ppM benzene and in mice exposed to 200 ppM benzene for 5 days. However, 10 and 20 exposures to 200 ppM benzene inhibited antibody production. The effects of chronically inhaled 300 ppM benzene on the time of onset and incidence of leukemia in 400 7-month-old female HRS/J mice were also studied. Two genotypes were used; the (hr/hr) hairless mice are leukemia-prone, whereas the (hr/+) haired mice are more resistant to leukemia. The exposure continued for a period of 6 months. Lymphoid, myeloid, and mixed (lymphoid and myeloid) leukemias were observed. Ninety percent of the (hr/hr) mice exposed to benzene died from leukemia as compared with 91% for the (hr/hr) air control group. Eighty-five percent of the (hr/+) mice exposed to benzene died from leukemia as compared with 81% for the (hr/+) air control group. Exposures to 300 ppM benzene did not alter the time of onset or the incidence of leukemia commonly expected in HRS/J mice.

  13. Microbial network for waste activated sludge cascade utilization in an integrated system of microbial electrolysis and anaerobic fermentation

    DEFF Research Database (Denmark)

    Liu, Wenzong; He, Zhangwei; Yang, Chunxue

    2016-01-01

    of interaction, which have not been sufficiently studied so far. It is therefore important to understand how choosing operational parameters can influence reactor performances. The current study highlights the interaction offermentative bacteria and exoelectrogens in the integrated system....... in an integrated system of microbial electrolysis cell (MEC) and anaerobic digestion (AD) for waste activated sludge (WAS). Microbial communities in integrated system would build a thorough energetic and metabolic interaction network regarding fermentation communities and electrode respiring communities...... investigated the interaction of fermentation communities and electrode respiring communities in an integrated system of WAS fermentation and MEC for hydrogen recovery. A high energy recovery was achieved in the MECs feeding WAS fermentation liquid through alkaline pretreatment. Some anaerobes belonging...

  14. Antimicrobial resistance and susceptibility testing of anaerobic bacteria.

    Science.gov (United States)

    Schuetz, Audrey N

    2014-09-01

    Infections due to anaerobic bacteria can be severe and life-threatening. Susceptibility testing of anaerobes is not frequently performed in laboratories, but such testing is important to direct appropriate therapy. Anaerobic resistance is increasing globally, and resistance trends vary by geographic region. An overview of a variety of susceptibility testing methods for anaerobes is provided, and the advantages and disadvantages of each method are reviewed. Specific clinical situations warranting anaerobic susceptibility testing are discussed.

  15. Anaerobe Tolerance to Oxygen and the Potentials of Anaerobic and Aerobic Cocultures for Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    M.T. Kato

    1997-12-01

    Full Text Available The anaerobic treatment processes are considered to be well-established methods for the elimination of easily biodegradable organic matter from wastewaters. Some difficulties concerning certain wastewaters are related to the possible presence of dissolved oxygen. The common belief is that anaerobes are oxygen intolerant. Therefore, the common practice is to use sequencing anaerobic and aerobic steps in separate tanks. Enhanced treatment by polishing off the residual biodegradable oxygen demand from effluents of anaerobic reactors, or the biodegradation of recalcitrant wastewater pollutants, usually requires sequenced anaerobic and aerobic bacteria activities. However, the combined activity of both bacteria can also be obtained in a single reactor. Previous experiments with either pure or mixed cultures showed that anaerobes can tolerate oxygen to a certain extent. The oxygen toxicity to methanogens in anaerobic sludges was quantified in batch experiments, as well as in anaerobic reactors. The results showed that methanogens have a high tolerance to oxygen. In practice, it was confirmed that dissolved oxygen does not constitute any detrimental effect on reactor treatment performance. This means that the coexistence of anaerobic and aerobic bacteria in one single reactor is feasible and increases the potentials of new applications in wastewater treatment

  16. Modeling of Pervaporation Separation Benzene from Dilute Aqueous Solutions Through Polydimethylsiloxane Membranes

    Institute of Scientific and Technical Information of China (English)

    彭福兵; 姜忠义

    2005-01-01

    A modified solution-diffusion model was established based on Flory-Huggins thermodynamic theory and Fujita's free volume theory. This model was used for description of the mass transfer of removal benzene from dilute aqueous solutions through polydimethylsiloxane (PDMS) membranes. The effect of component concentration on the interaction parameter between components, that of the polymer membrane on the selectivity to benzene, and that of feed concentration and temperature on the permeation flux and separation factor of benzene/water through PDMS membranes were investigated. Calculated pervaporation fluxes of benzene and water were compared with the experimental results and were in good agreement with the experimental data.

  17. Combined analysis of job and task benzene air exposures among workers at four US refinery operations.

    Science.gov (United States)

    Burns, Amanda; Shin, Jennifer Mi; Unice, Ken M; Gaffney, Shannon H; Kreider, Marisa L; Gelatt, Richard H; Panko, Julie M

    2017-03-01

    Workplace air samples analyzed for benzene at four US refineries from 1976 to 2007 were pooled into a single dataset to characterize similarities and differences between job titles, tasks and refineries, and to provide a robust dataset for exposure reconstruction. Approximately 12,000 non-task (>180 min) personal samples associated with 50 job titles and 4000 task (job titles and task codes across all four refineries, and (5) our analysis of variance (ANOVA) of the distribution of benzene air concentrations for select jobs/tasks across all four refineries. The jobs and tasks most frequently sampled included those with highest potential contact with refinery product streams containing benzene, which reflected the targeted sampling approach utilized by the facility industrial hygienists. Task and non-task data were analyzed to identify and account for significant differences within job-area, task-job, and task-area categories. This analysis demonstrated that in general, areas with benzene containing process streams were associated with greater benzene air concentrations compared to areas with process streams containing little to no benzene. For several job titles and tasks analyzed, there was a statistically significant decrease in benzene air concentration after 1990. This study provides a job and task-focused analysis of occupational exposure to benzene during refinery operations, and it should be useful for reconstructing refinery workers' exposures to benzene over the past 30 years.

  18. Tissue distribution of DNA adducts and their persistence in blood of mice exposed to benzene

    Energy Technology Data Exchange (ETDEWEB)

    Guilan Li; Wang Chunguang; Songnian Yin [Institute of Occupational Medicine Chinese Academy of Preventive Medicine, Beijing (China); Weidong Xin [Medical College of Qingdao, Shandong Province (China)

    1996-12-01

    Chemicals combine with DNA, resulting in DNA damage, which could initiate carcinogenesis. To study whether benzene or benzene metabolites bind to DNA, DNA adducts in various tissues and their persistence in leukocytes were examined using the {sup 32}P-postlabeling assay. LACA mice were dosed in with benzene at 500 mg/kg bw twice daily for 5 days. Two additional spots of DNA adducts are formed in bone marrow cells, liver cells, and peripheral blood compared with control mice. The relative adduct labeling values are 10.39, 11.32, and 13.77 adducts; x 10{sup -8} nucleotides in these tissues, respectively. DNA adducts in blood leukocytes were observed at 1, 4, 7, 14, and 21 days after exposure to benzene, but adduct levels decreased as a function of time. Relative adduct labeling of {open_quotes}adduct B{close_quotes} declined linearly but mildly, while {open_quotes}adduct C{close_quotes} displayed a stepwise decrease. The relative adduct labeling values of both these adducts at day 14 were 50% of those at day 1 after the last treatment. Both adducts were still detectable at day 21 after benzene exposure. These studies demonstrate that benzene could induce DNA adducts; in bone marrow, liver, and white blood cells of mice dosed with benzene and that measurement of adducts in white blood cells may be useful as a biomarker to predict carcinogenic risk of benzene to workers exposed to benzene. 9 refs., 3 figs.

  19. Determination of benzene in different food matrices by distillation and isotope dilution HS-GC/MS

    Energy Technology Data Exchange (ETDEWEB)

    Medeiros Vinci, Raquel [Department of Food Safety and Food Quality, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent (Belgium); Canfyn, Michael [Food, Medicines and Consumer Safety, Scientific Institute of Public Health, Rue Juliette Wytsmanstraat 14, 1050 Brussels (Belgium); De Meulenaer, Bruno [Department of Food Safety and Food Quality, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent (Belgium); Schaetzen, Thibault de; Van Overmeire, Ilse; De Beer, Jacques [Food, Medicines and Consumer Safety, Scientific Institute of Public Health, Rue Juliette Wytsmanstraat 14, 1050 Brussels (Belgium); Van Loco, Joris, E-mail: Joris.VanLoco@iph.fgov.BE [Food, Medicines and Consumer Safety, Scientific Institute of Public Health, Rue Juliette Wytsmanstraat 14, 1050 Brussels (Belgium)

    2010-07-05

    Benzene is classified by the IARC as carcinogenic to humans. Several sources may contribute for the occurrence of benzene in foods, such as, environmental contamination and the reaction of benzoate salts with ascorbic acid (naturally present or added as food additives). Matrix effect on benzene recovery (e.g. in fatty foods) and artefactual benzene formation from benzoate during analysis in the presence of ascorbate are some of the challenges presented when determining benzene in a wide range of foodstuffs. Design of experiment (DOE) was used to determine the most important variables in benzene recovery from headspace GC/MS. Based on the results of the DOE, a versatile method for the extraction of benzene from all kind of food commodities was developed. The method which consisted of distillation and isotope dilution HS-GC/MS was in-house validated. Artefactual benzene was prevented by addition of a borate buffer solution (pH 11) under distillation conditions. The method presented in this study allows the use of a matrix-independent calibration with detection limits below the legal limit established by the European Council for benzene in drinking water (1 {mu}g L{sup -1}).

  20. Determination of benzene in different food matrices by distillation and isotope dilution HS-GC/MS.

    Science.gov (United States)

    Vinci, Raquel Medeiros; Canfyn, Michael; De Meulenaer, Bruno; de Schaetzen, Thibault; Van Overmeire, Ilse; De Beer, Jacques; Van Loco, Joris

    2010-07-01

    Benzene is classified by the IARC as carcinogenic to humans. Several sources may contribute for the occurrence of benzene in foods, such as, environmental contamination and the reaction of benzoate salts with ascorbic acid (naturally present or added as food additives). Matrix effect on benzene recovery (e.g. in fatty foods) and artefactual benzene formation from benzoate during analysis in the presence of ascorbate are some of the challenges presented when determining benzene in a wide range of foodstuffs. Design of experiment (DOE) was used to determine the most important variables in benzene recovery from headspace GC/MS. Based on the results of the DOE, a versatile method for the extraction of benzene from all kind of food commodities was developed. The method which consisted of distillation and isotope dilution HS-GC/MS was in-house validated. Artefactual benzene was prevented by addition of a borate buffer solution (pH 11) under distillation conditions. The method presented in this study allows the use of a matrix-independent calibration with detection limits below the legal limit established by the European Council for benzene in drinking water (1 microg L(-1)).

  1. Pressure Dependence of Molar Volume near the Melting Point in Benzene

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The pressure dependence of the molar volume was at constant temperatures close to the melting point in benzene. The molar volume of benzene was calculated using experimental data for the thermal expansivity for constant temperatures of 25℃, 28.5℃, 40℃, and 51℃ at various pressures for both the solid and liquid phases. The predictions are in good agreement with the observed volumes in both the solid and liquid phases of benzene. The predicted values of the molar volume for a constant temperature of 28.5℃ in the liquid phase of benzene agree well with experimental data in the literature.

  2. Electrostatic-field-enhanced photoexfoliation of bilayer benzene: A first-principles study

    Science.gov (United States)

    Uchida, Kazuki; Silaeva, Elena P.; Watanabe, Kazuyuki

    2016-06-01

    Photoexfoliation of bilayer benzene in an external electrostatic (dc) field is studied using time-dependent density functional theory combined with molecular dynamics. We find that the dc-field-induced force on the upper benzene in addition to the repulsive interaction between the positively charged benzene molecules induced by the laser field leads to fast athermal exfoliation. Thus, we conclude that the dc field enhances the photoexfoliation due to dc-field emission in addition to laser-assisted photoemission. The athermal exfoliation process is shown to depend crucially on the charge state of benzene molecules rather than on the excitation energy supplied by the laser.

  3. Assisted bioremediation tests on three natural soils contaminated with benzene

    Directory of Open Access Journals (Sweden)

    Maria Manuela Carvalho

    2015-07-01

    Full Text Available Bioremediation is an attractive and useful method of remediation of soils contaminated with petroleum hydrocarbons because it is simple to maintain, applicable in large areas, is economic and enables an effective destruction of the contaminant. Usually, the autochthone microorganisms have no ability to degrade these compounds, and otherwise, the contaminated sites have inappropriate environmental conditions for microorganism’s development. These problems can be overcome by assisted bioremediation (bioaugmentation and/or biostimulation. In this study the assisted bioremediation capacity on the rehabilitation of three natural sub-soils (granite, limestone and schist contaminated with benzene was evaluated. Two different types of assisted bioremediation were used: without and with ventilation (bioventing. The bioaugmentation was held by inoculating the soil with a consortium of microorganisms collected from the protection area of crude oil storage tanks in a refinery. In unventilated trials, biostimulation was accomplished by the addition of a nutrient mineral media, while in bioventing oxygen was also added. The tests were carried out at controlled temperature of 25 ºC in stainless steel columns where the moist soil contaminated with benzene (200 mg per kg of soil occupied about 40% of the column’s volume. The processes were daily monitored in discontinued mode. Benzene concentration in the gas phase was quantified by gas chromatography (GC-FID, oxygen and carbon dioxide concentrations were monitored by respirometry. The results revealed that the three contaminated soils were remediated using both technologies, nevertheless, the bioventing showed faster rates. With this work it was proved that respirometric analysis is an appropriate instrument for monitoring the biological activity.

  4. An anaerobic mitochondrion that produces hydrogen

    NARCIS (Netherlands)

    Boxma, Brigitte; Graaf, Rob M. de; Staay, Georg W.M. van der; Alen, Theo A. van; Ricard, Guenola; Gabaldón, Toni; Hoek, Angela H.A.M. van; Moon-van der Staay, Seung Yeo; Koopman, Werner J.H.; Hellemond, Jaap J. van; Tielens, Aloysius G.M.; Friedrich, Thorsten; Veenhuis, Marten; Huynen, Martijn A.; Hackstein, Johannes H.P.

    2005-01-01

    Hydrogenosomes are organelles that produce ATP and hydrogen, and are found in various unrelated eukaryotes, such as anaerobic flagellates, chytridiomycete fungi and ciliates. Although all of these organelles generate hydrogen, the hydrogenosomes from these organisms are structurally and metabolicall

  5. Anaerobic Toxicity of Cationic Silver Nanoparticles

    Data.gov (United States)

    U.S. Environmental Protection Agency — Toxicity data for the impact of nano-silver on anaerobic degradation. This dataset is associated with the following publication: Gitipour, A., S. Thiel, K. Scheckel,...

  6. Anaerobic membrane bioreactor under extreme conditions (poster)

    NARCIS (Netherlands)

    Munoz Sierra, J.D.; De Kreuk, M.K.; Spanjers, H.; Van Lier, J.B.

    2013-01-01

    Membrane bioreactors ensure biomass retention by the application of micro or ultrafiltration processes. This allows operation at high sludge concentrations. Previous studies have shown that anaerobic membrane bioreactors is an efficient way to retain specialist microorganisms for treating wastewater

  7. Anaerobic degradation of toluene and o-xylene by a methanogenic consortium.

    Science.gov (United States)

    Edwards, E A; Grbić-Galić, D

    1994-01-01

    Toluene and o-xylene were completely mineralized to stoichiometric amounts of carbon dioxide, methane, and biomass by aquifer-derived microorganisms under strictly anaerobic conditions. The source of the inoculum was creosote-contaminated sediment from Pensacola, Fla. The adaptation periods before the onset of degradation were long (100 to 120 days for toluene degradation and 200 to 255 days for o-xylene). Successive transfers of the toluene- and o-xylene-degrading cultures remained active. Cell density in the cultures progressively increased over 2 to 3 years to stabilize at approximately 10(9) cells per ml. Degradation of toluene and o-xylene in stable mixed methanogenic cultures followed Monod kinetics, with inhibition noted at substrate concentrations above about 700 microM for o-xylene and 1,800 microM for toluene. The cultures degraded toluene or o-xylene but did not degrade m-xylene, p-xylene, benzene, ethylbenzene, or naphthalene. The degradative activity was retained after pasteurization or after starvation for 1 year. Degradation of toluene and o-xylene was inhibited by the alternate electron acceptors oxygen, nitrate, and sulfate. Degradation was also inhibited by the addition of preferred substrates such as acetate, H2, propionate, methanol, acetone, glucose, amino acids, fatty acids, peptone, and yeast extract. These data suggest that the presence of natural organic substrates or contaminants may inhibit anaerobic degradation of pollutants such as toluene and o-xylene at contaminated sites.

  8. Biodegradation and speciation of roxarsone in an anaerobic granular sludge system and its impacts.

    Science.gov (United States)

    Zhang, Fei-Fei; Wang, Wei; Yuan, Shou-Jun; Hu, Zhen-Hu

    2014-08-30

    Roxarsone (3-nitro-4-hydroxy benzene arsenic acid) is an organoarsenic feed additive and has been widely used in the poultry industry to prevent coccidiosis and improve feed efficiency. The presence of roxarsone and its degradation products results in the instability of the anaerobic methanogenic process. This study investigated the degradation and speciation of roxarsone in an anaerobic granular sludge (AGS) system and the impacts of roxarsone and its degradation products on the structure of AGS. Roxarsone inhibited methane production, and the added roxarsone was rapidly degraded into 3-amino-4-hydroxyphenylarsonic acid (HAPA). After 240 days of incubation, the distribution of arsenic differed between the aqueous solution and the AGS in the assays of 20 and 350mg/L roxarsone. Species analysis indicated that HAPA was completely degraded in all of the assays with roxarsone addition after 240 days of incubation. Species distribution was affected by the phases and the initial concentration of roxarsone added. The concentration of As(III) was higher than that of As(V) in both the aqueous solution and the AGS in all assays with roxarsone addition. The toxicity of roxarsone and its degradation products resulted in changes in the structure and the microorganism species in the AGS.

  9. trans-Dichloridobis(triphenylphosphane-κPpalladium(II benzene hemisolvate

    Directory of Open Access Journals (Sweden)

    Frank Meyer-Wegner

    2012-04-01

    Full Text Available The title complex, [PdCl2(C18H15P2]·0.5C6H6, has the PdII ion in a square-planar coordination mode (r.m.s. deviation for Pd, P and Cl atoms = 0.024 Å with the PPh3 and Cl ligands mutually trans. The benzene solvent molecule is located about a crystallographic inversion centre. The title complex is isostructural with trans-dichloridobis(triphenylphosphanepalladium(II 1,4-dichlorobenzene sesquisolvate [Kitano et al. (1983. Acta Cryst. C39, 1015–1017].

  10. Bis[diethyl(hydroxyammonium] benzene-1,4-dicarboxylate

    Directory of Open Access Journals (Sweden)

    De-Ming Xie

    2010-08-01

    Full Text Available In the centrosymmetric title compound, 2C4H12NO+·C8H4O42−, two N,N-diethyl(hydroxyammonium cations are linked to a benzene-1,4-dicarboxylate dianion by a combination of O—H...O and N—H...O hydrogen bonds, which can be described in graph-set terminology as R22(7. The crystal structure is further stabilized by C—H...O hydrogen bonds, leading to the fomation of a ribbon-like network.

  11. Inoculum selection is crucial to ensure operational stability in anaerobic digestion.

    Science.gov (United States)

    De Vrieze, Jo; Gildemyn, Sylvia; Vilchez-Vargas, Ramiro; Jáuregui, Ruy; Pieper, Dietmar H; Verstraete, Willy; Boon, Nico

    2015-01-01

    Anaerobic digestion is considered a key technology for the future bio-based economy. The microbial consortium carrying out the anaerobic digestion process is quite complex, and its exact role in terms of "elasticity", i.e., the ability to rapidly adapt to changing conditions, is still unknown. In this study, the role of the initial microbial community in terms of operational stability and stress tolerance was evaluated during a 175-day experiment. Five different inocula from stable industrial anaerobic digesters were fed a mixture of waste activated sludge and glycerol. Increasing ammonium pulses were applied to evaluate stability and stress tolerance. A different response in terms of start-up and ammonium tolerance was observed among the different inocula. Methanosaetaceae were the dominant acetoclastic methanogens, yet, Methanosarcinaceae increased in abundance at elevated ammonium concentrations. A shift from a Firmicutes to a Proteobacteria dominated bacterial community was observed in failing digesters. Methane production was strongly positively correlated with Methanosaetaceae, but also with Bacteria related to Anaerolinaceae, Clostridiales, and Alphaproteobacteria. Volatile fatty acids were strongly positively correlated with Betaproteobacteria and Bacteroidetes, yet ammonium concentration only with Bacteroidetes. Overall, these results indicate the importance of inoculum selection to ensure stable operation and stress tolerance in anaerobic digestion.

  12. EFFECT OF MUSIC ON ANAEROBIC EXERCISE PERFORMANCE

    OpenAIRE

    Atan, T.

    2013-01-01

    For years, mostly the effects of music on cardiorespiratory exercise performance have been studied, but a few studies have examined the effect of music on anaerobic exercise. The purpose of this study was to assess the effect of listening to music and its rhythm on anaerobic exercise: on power output, heart rate and the concentration of blood lactate. 28 male subjects were required to visit the laboratory on 6 occasions, each separated by 48 hours. Firstly, each subject performed the Running-...

  13. Anaerobic digester for treatment of organic waste

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, V. K. [Indian Insitute of Technology, Delhi (India)]|[ENEA, Centro Ricerche Trisaia, Matera (Italy); Fortuna, F.; Canditelli, M.; Cornacchia, G. [ENEA, Centro Ricerche Trisaia, Matera (Italy). Dipt. Ambiente; Farina, R. [ENEA, centro Ricerche ``Ezio Clementel``, Bologna (Italy). Dipt. Ambiente

    1997-09-01

    The essential features of both new and more efficient reactor systems and their appropriate applications for various organic waste management situations, description of several working plants are discussed in the present communication. It is hoped that significant development reported here would be useful in opening a new vista to the application of anaerobic biotechnology for the waste treatment of both low/high organic strength and specialized treatment for toxic substances, using appropriate anaerobic methods.

  14. Anaerobic digestion foaming causes – A review

    OpenAIRE

    Ganidi, Nafsika; Tyrrel, Sean F.; Cartmell, Elise

    2009-01-01

    Anaerobic digestion foaming has been encountered in several sewage treatment plants in the UK. Foaming has raised major concerns for the water companies due to significant impacts on process efficiency and operational costs. Several foaming causes have been identified over the past few years by researchers. However, the supporting experimental information is limited and in some cases absent. The present report aims to provide a detailed review of the current anaerobic digestion foaming proble...

  15. Exposition by inhalation to the benzene, toluene, ethyl-benzene and xylenes (BTEX) in the air. Sources, measures and concentrations; Exposition par inhalation au benzene, toluene, ethylbenzene et xylenes (BTEX) dans l'air. Source, mesures et concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Del Gratta, F.; Durif, M.; Fagault, Y.; Zdanevitch, I

    2004-12-15

    This document presents the main techniques today available to characterize the benzene, toluene, ethyl-benzene and xylene (BTEX) concentrations in the air for different contexts: urban and rural areas or around industrial installations but also indoor and occupational area. It provides information to guide laboratories and research departments. A synthesis gives also the main emissions sources of these compounds as reference concentrations measured in different environments. (A.L.B.)

  16. SLEEP DEPRIVATION INDUCED ANXIETY AND ANAEROBIC PERFORMANCE

    Directory of Open Access Journals (Sweden)

    Selma Arzu Vardar

    2007-12-01

    Full Text Available The aim of this study was to investigate the effects of sleep deprivation induced anxiety on anaerobic performance. Thirteen volunteer male physical education students completed the Turkish version of State Anxiety Inventory and performed Wingate anaerobic test for three times: (1 following a full-night of habitual sleep (baseline measurements, (2 following 30 hours of sleep deprivation, and (3 following partial-night sleep deprivation. Baseline measurements were performed the day before total sleep deprivation. Measurements following partial sleep deprivation were made 2 weeks later than total sleep deprivation measurements. State anxiety was measured prior to each Wingate test. The mean state anxiety following total sleep deprivation was higher than the baseline measurement (44.9 ± 12.9 vs. 27.6 ± 4.2, respectively, p = 0.02 whereas anaerobic performance parameters remained unchanged. Neither anaerobic parameters nor state anxiety levels were affected by one night partial sleep deprivation. Our results suggest that 30 hours continuous wakefulness may increase anxiety level without impairing anaerobic performance, whereas one night of partial sleep deprivation was ineffective on both state anxiety and anaerobic performance

  17. Anaerobic Biodegradation of Ethylene Glycol within Hydraulic Fracturing Fluid

    Science.gov (United States)

    Heyob, K. M.; Mouser, P. J.

    2014-12-01

    Ethylene glycol (EG) is a commonly used organic additive in hydraulic fracturing fluids used for shale gas recovery. Under aerobic conditions, this compound readily biodegrades to acetate and CO2 or is oxidized through the glycerate pathway. In the absence of oxygen, organisms within genera Desulfovibrio, Acetobacterium, and others can transform EG to acetaldehyde, a flammable and suspected carcinogenic compound. Acetaldehyde can then be enzymatically degraded to ethanol or acetate and CO2. However, little is known on how EG degrades in the presence of other organic additives, particularly under anaerobic conditions representative of deep groundwater aquifers. To better understand the fate and attenuation of glycols within hydraulic fracturing fluids we are assessing their biodegradation potential and pathways in batch anaerobic microcosm treatments. Crushed Berea sandstone was inoculated with groundwater and incubated with either EG or a synthetic fracturing fluid (SFF) containing EG formulations. We tracked changes in dissolved organic carbon (DOC), EG, and its transformation products over several months. Approximately 41% of bulk DOC in SFF is degraded within 21 days, with 58% DOC still remaining after 63 days. By comparison, this same SFF degrades by 70% within 25 days when inoculated with sediment-groundwater microbial communities, suggesting that bulk DOC degradation occurs at a slower rate and to a lesser extent with bedrock. Aerobic biodegradation of EG occurs rapidly (3-7 days); however anaerobic degradation of EG is much slower, requiring several weeks for substantial DOC loss to be observed. Ongoing experiments are tracking the degradation pathways of EG alone and in the presence of SFF, with preliminary data showing incomplete glycol transformation within the complex hydraulic fracturing fluid mixture. This research will help to elucidate rates, processes, and pathways for EG biodegradation and identify key microbial taxa involved in its degradation.

  18. Proposed mode of action of benzene-induced leukemia: Interpreting available data and identifying critical data gaps for risk assessment.

    Science.gov (United States)

    Meek, M E Bette; Klaunig, James E

    2010-03-19

    Mode of action is defined as a series of key biological events leading to an observed toxicological effect (for example, metabolism to a toxic entity, cell death, regenerative repair and tumors). It contrasts with mechanism of action, which generally involves a detailed understanding of the molecular basis for an effect. A framework to consider the weight of evidence for hypothesized modes of action in animals and their relevance to humans, has been widely adopted and used by government agencies and international organizations. The framework, developed and refined through its application in case studies for principally non-DNA-reactive carcinogens, has more recently been extended to DNA-reactive carcinogens, non-cancer endpoints and different life stages. In addition to increasing transparency, use of the framework promotes consistency in decision-making concerning adequacy of weight of evidence, facilitates peer input and review and identifies critical research needs. The framework provides an effective tool to facilitate discussion between the research and risk assessment communities on critical data gaps, which if filled, would permit more refined estimates of risk. As a basis for additionally coordinating and focusing research on critical data gaps in a risk assessment context, five key events in the mode of action for benzene-induced leukemia are proposed: (1) benzene metabolism via Cytochrome P450, (2) the interaction of benzene metabolites with target cells in the bone marrow, (3) formation of initiated, mutated target cells, (4) selective proliferation of the mutated cells and (5) production of leukemia. These key events are considered in a framework analysis of human relevance as a basis to consider appropriate next steps in developing research strategies.

  19. Male mice deficient in microsomal epoxide hydrolase are not susceptible to benzene-induced toxicity.

    Science.gov (United States)

    Bauer, Alison K; Faiola, Brenda; Abernethy, Diane J; Marchan, Rosemarie; Pluta, Linda J; Wong, Victoria A; Gonzalez, Frank J; Butterworth, Byron E; Borghoff, Susan J; Everitt, Jeffrey I; Recio, Leslie

    2003-04-01

    Enzymes involved in benzene metabolism are likely genetic determinants of benzene-induced toxicity. Polymorphisms in human microsomal epoxide hydrolase (mEH) are associated with an increased risk of developing leukemia, specifically those associated with benzene. This study was designed to investigate the importance of mEH in benzene-induced toxicity. Male and female mEH-deficient (mEH-/-) mice and background mice (129/Sv) were exposed to inhaled benzene (0, 10, 50, or 100 ppm) 5 days/week, 6 h/day, for a two-week duration. Total white blood cell counts and bone marrow cell counts were used to assess hematotoxicity and myelotoxicity. Micronucleated peripheral blood cells were counted to assess genotoxicity, and the p21 mRNA level in bone marrow cells was used as a determinant of the p53-regulated DNA damage response. Male mEH-/- mice did not have any significant hematotoxicity or myelotoxicity at the highest benzene exposure compared to the male 129/Sv mice. Significant hematotoxicity or myelotoxicity did not occur in the female mEH-/- or 129/Sv mice. Male mEH-/- mice were also unresponsive to benzene-induced genotoxicity compared to a significant induction in the male 129/Sv mice. The female mEH-/- and 129/Sv mice were virtually unresponsive to benzene-induced genotoxicity. While p21 mRNA expression was highly induced in male 129/Sv mice after exposure to 100-ppm benzene, no significant alteration was observed in male mEH-/- mice. Likewise, p21 mRNA expression in female mEH-/- mice was not significantly induced upon benzene exposure whereas a significant induction was observed in female 129/Sv mice. Thus mEH appears to be critical in benzene-induced toxicity in male, but not female, mice.

  20. A novel high-throughput multi-parameter flow cytometry based method for monitoring and rapid characterization of microbiome dynamics in anaerobic systems.

    Science.gov (United States)

    Dhoble, Abhishek S; Bekal, Sadia; Dolatowski, William; Yanz, Connor; Lambert, Kris N; Bhalerao, Kaustubh D

    2016-11-01

    A novel multidimensional flow cytometry based method has been demonstrated to monitor and rapidly characterize the dynamics of the complex anaerobic microbiome associated with perturbations in external environmental factors. While community fingerprinting provides an estimate of the meta genomic structure, flow cytometry provides a fingerprint of the community morphology including its autofluorescence spectrum in a high-throughput manner. Using anaerobic microbial consortia perturbed with the controlled addition of various carbon sources, it is possible to quantitatively discriminate between divergent microbiome analogous to community fingerprinting techniques using automated ribosomal intergenic spacer analysis (ARISA). The utility of flow cytometry based method has also been demonstrated in a fully functional industry scale anaerobic digester to distinguish between microbiome composition caused by varying hydraulic retention time (HRT). This approach exploits the rich multidimensional information from flow cytometry for rapid characterization of the dynamics of microbial communities.

  1. Alkylation of Benzene with Propylene Catalyzed by Ionic Liquids

    Institute of Scientific and Technical Information of China (English)

    Sun Xuewen; Zhao Suoqi

    2006-01-01

    The alkylation of benzene with propylene catalyzed by ionic liquids to obtain cumene was investigated. Propylene conversion and cumene selectivity under mild reaction conditions were improved greatly after the ionic liquid was modified with HCl. Under the conditions of 20 oC, 0.1MPa, 5 min of reaction time, and a molar ratio of benzene to propylene of 10:1, propylene conversion increased from 83.6% to 100%, and cumene selectivity increased from 90.86% to 98.47%. In addition, it was found that the reaction could be carried out in two different stages so as to obtain a better result. At the first stage, the key reaction was alkylation and a higher propylene conversion was obtained at a lower temperature;At the second stage, the key reaction was transalkylation and a higher temperature was used to improve cumene selectivity. The reaction temperature, pressure and the amount of catalyst used in this work were lower than those used in traditional alkylation processes.

  2. Catalytic oxidation of benzene using DBD corona discharges.

    Science.gov (United States)

    Lu, B; Zhang, X; Yu, X; Feng, T; Yao, S

    2006-09-01

    Plasma oxidation of benzene (C(6)H(6)) in oxygen and nitrogen was investigated using a dielectric barrier discharge (DBD) reactor with or without MnO2 or TiO2 at atmospheric pressure and without external heating except plasma heating. An alternative current power supply was used to generate corona discharges for the plasma oxidation. The energy density was controlled under 200 J/L to keep an increase in gas temperature less than 167 K. C(6)H(6) was oxidized to carbon monoxide (CO) and dioxide (CO(2)). Typically, the energy efficiency at an energy density of 92J/L was about 0.052, 0.039, and 0.024 mol/kWh with MnO2, TiO2, and without MnO2 and TiO2, respectively. Benzene oxidation mechanism was mentioned. A comparison on energy efficiency as a function of initial concentration of hydrocarbons, inorganic sulphur compounds, and chloro (fluoro and bromo) carbons was given.

  3. Benzene oxide is a substrate for glutathione S-transferases.

    Science.gov (United States)

    Zarth, Adam T; Murphy, Sharon E; Hecht, Stephen S

    2015-12-01

    Benzene is a known human carcinogen which must be activated to benzene oxide (BO) to exert its carcinogenic potential. BO can be detoxified in vivo by reaction with glutathione and excretion in the urine as S-phenylmercapturic acid. This process may be catalyzed by glutathione S-transferases (GSTs), but kinetic data for this reaction have not been published. Therefore, we incubated GSTA1, GSTT1, GSTM1, and GSTP1 with glutathione and BO and quantified the formation of S-phenylglutathione. Kinetic parameters were determined for GSTT1 and GSTP1. At 37 °C, the putative Km and Vmax values for GSTT1 were 420 μM and 450 fmol/s, respectively, while those for GSTP1 were 3600 μM and 3100 fmol/s. GSTA1 and GSTM1 did not exhibit sufficient activity for determination of kinetic parameters. We conclude that GSTT1 is a critical enzyme in the detoxification of BO and that GSTP1 may also play an important role, while GSTA1 and GSTM1 seem to be less important.

  4. Irradiated Benzene Ice Provides Clues to Meteoritic Organic Chemistry

    Science.gov (United States)

    Callahan, Michael Patrick; Gerakines, Perry Alexander; Martin, Mildred G.; Hudson, Reggie L.; Peeters, Zan

    2013-01-01

    Aromatic hydrocarbons account for a significant portion of the organic matter in carbonaceous chondrite meteorites, as a component of both the low molecular weight, solvent-extractable compounds and the insoluble organic macromolecular material. Previous work has suggested that the aromatic compounds in carbonaceous chondrites may have originated in the radiation-processed icy mantles of interstellar dust grains. Here we report new studies of the organic residue made from benzene irradiated at 19 K by 0.8 MeV protons. Polyphenyls with up to four rings were unambiguously identified in the residue by gas chromatography-mass spectrometry. Atmospheric pressure photoionization Fourier transform mass spectrometry was used to determine molecular composition, and accurate mass measurements suggested the presence of polyphenyls, partially hydrogenated polyphenyls, and other complex aromatic compounds. The profile of low molecular weight compounds in the residue compared well with extracts from the Murchison and Orgueil meteorites. These results are consistent with the possibility that solid phase radiation chemistry of benzene produced some of the complex aromatics found in meteorites.

  5. Separation of Benzene and Cyclohexane by Batch Extractive Distillation

    Institute of Scientific and Technical Information of China (English)

    XU Jiao; ZHANG Weijiang; GUI Xia

    2007-01-01

    Azeotropic liquid mixture cannot be separated by conventional distillation. But extractive distillation or combination of the two can be valid for them. An experiment to separate benzene and cyclohexane by batch extractive distillation was carried out with N, N-dimethylformide (DMF), dimethyl sulfoxide (DMSO) and their mixture as extractive solvent. The effect of the operation parameterssuch as solvent flow rate and reflux ratio on the separation was studied under the same operating conditions. The results show that the separation effect was improved with the increase of solvent flow rate and the reflux ratio; all the three extractive solvents can separate benzene and cyclohexane, with DMF being the most efficient one, the mixture the second, and DMSO the least. In the experiment the best operation conditions are with DMF as extractive solvent, the solvent flow rate being 12.33 mL/min, and the reflux ratio being 6. As a result, we can get cyclohexane from the top of tower with the average product content being 86.98%, and its recovering ratio being 83.10%.

  6. Chemical accuracy from quantum Monte Carlo for the benzene dimer

    Energy Technology Data Exchange (ETDEWEB)

    Azadi, Sam, E-mail: s.azadi@ucl.ac.uk [Department of Earth Science and Thomas Young Centre, University College London, London WC1E 6BT (United Kingdom); Cohen, R. E. [London Centre for Nanotechnology, University College London, London WC1E 6BT, United Kingdom and Extreme Materials Initiative, Geophysical Laboratory, Carnegie Institution of Washington, Washington, D.C. 20015 (United States)

    2015-09-14

    We report an accurate study of interactions between benzene molecules using variational quantum Monte Carlo (VMC) and diffusion quantum Monte Carlo (DMC) methods. We compare these results with density functional theory using different van der Waals functionals. In our quantum Monte Carlo (QMC) calculations, we use accurate correlated trial wave functions including three-body Jastrow factors and backflow transformations. We consider two benzene molecules in the parallel displaced geometry, and find that by highly optimizing the wave function and introducing more dynamical correlation into the wave function, we compute the weak chemical binding energy between aromatic rings accurately. We find optimal VMC and DMC binding energies of −2.3(4) and −2.7(3) kcal/mol, respectively. The best estimate of the coupled-cluster theory through perturbative triplets/complete basis set limit is −2.65(2) kcal/mol [Miliordos et al., J. Phys. Chem. A 118, 7568 (2014)]. Our results indicate that QMC methods give chemical accuracy for weakly bound van der Waals molecular interactions, comparable to results from the best quantum chemistry methods.

  7. Analyzing Benzene and Cyclohexane Emulsion Droplet Collisions on Ultramicroelectrodes.

    Science.gov (United States)

    Li, Yan; Deng, Haiqiang; Dick, Jeffrey E; Bard, Allen J

    2015-11-03

    We report the collisions of single emulsion oil droplets with extremely low dielectric constants (e.g., benzene, ε of 2.27, or cyclohexane, ε of 2.02) as studied via emulsion droplet reactor (EDR) on an ultramicroelectrode (UME). By applying appropriate potentials to the UME, we observed the electrochemical effects of single-collision signals from the bulk electrolysis of single emulsion droplets. Different hydrophobic redox species (ferrocene, decamethyl-ferrocene, or metalloporphyrin) were trapped in a mixed benzene (or cyclohexane) oil-in-water emulsion using an ionic liquid as the supporting electrolyte and emulsifier. The emulsions were prepared using ultrasonic processing. Spike-like responses were observed in each i-t response due to the complete electrolysis of all of the above-mentioned redox species within the droplet. On the basis of these single-particle collision results, the collision frequency, size distribution, i-t decay behavior of the emulsion droplets, and possible mechanisms are analyzed and discussed. This work demonstrated that bulk electrolysis can be achieved in a few seconds in these attoliter reactors, suggesting many applications, such as analysis and electrosynthesis in low dielectric constant solvents, which have a much broader potential window.

  8. Anaerobic Nitrogen Fixers on Mars

    Science.gov (United States)

    Lewis, B. G.

    2000-07-01

    The conversion of atmospheric nitrogen gas to the protein of living systems is an amazing process of nature. The first step in the process is biological nitrogen fixation, the transformation of N2 to NH3. The phenomenon is crucial for feeding the billions of our species on Earth. On Mars, the same process may allow us to discover how life can adapt to a hostile environment, and render it habitable. Hostile environments also exist on Earth. For example, nothing grows in coal refuse piles due to the oxidation of pyrite and marcasite to sulfuric acid. Yet, when the acidity is neutralized, alfalfa and soybean plants develop root nodules typical of symbiotic nitrogen fixation with Rhizobium species possibly living in the pyritic material. When split open, these nodules exhibited the pinkish color of leghemoglobin, a protein in the nodule protecting the active nitrogen-fixing enzyme nitrogenase against the toxic effects of oxygen. Although we have not yet obtained direct evidence of nitrogenase activity in these nodules (reduction of acetylene to ethylene, for example), these findings suggested the possibility that nitrogen fixation was taking place in this hostile, non-soil material. This immediately raises the possibility that freeliving anaerobic bacteria which fix atmospheric nitrogen on Earth, could do the same on Mars.

  9. Application of dynamic membranes in anaerobic membranes in anaerobic membrane bioreactor systems

    NARCIS (Netherlands)

    Erşahin, M.E.

    2015-01-01

    Anaerobic membrane bioreactors (AnMBRs) physically ensure biomass retention by the application of a membrane filtration process. With growing application experiences from aerobic membrane bioreactors (MBRs), the combination of membrane and anaerobic processes has received much attention and become m

  10. Variability of benzene exposure among filling station attendants; Variabilita` dell`esposizione a benzene tra gli addetti all`erogazione di carburanti

    Energy Technology Data Exchange (ETDEWEB)

    Carere, A.; Iacovella, N.; Turrio Baldassarri, L. [Istituto Superiore di Sanita`, Rome (Italy). Lab. di Tossicologia Comparata ed Ecotossicologia; Fuselli, S.; Iavarone, I.; Lagorio, S.; Proietto, A.R. [Istituto Superiore di Sanita`, Rome (Italy). Lab. di Igiene Ambientale

    1996-12-01

    A monitoring survey of filling station attendants aimed at identifying sources of variability of exposure to benzene and other aromatics was carried out. Concurrent samples of the worker`s breathing zone air, atmospheric air in the service station proximity, and gasoline were collected, along with information about daily workloads and other exposure-related factors. Benzene personal exposure was characterised by a small between-worker variability and a predominant within-worker variance component. Such elevated day-to-day variability yields to imprecise estimates of mean personal exposure. Almost 70% of the overall personal exposure variance was explained by a model including daily benzene from dispensed fuel, presence of a shelter over the refueling area, amount of fuel supplied to the station if a delivery occurred, and background atmospheric benzene concentration.

  11. Effect of oxygen on the microbial activities of thermophilic anaerobic biomass.

    Science.gov (United States)

    Pedizzi, C; Regueiro, L; Rodriguez-Verde, I; Lema, J M; Carballa, M

    2016-07-01

    Low oxygen levels (μgO2L(-1)) in anaerobic reactors are quite common and no relevant consequences are expected. On the contrary, higher concentrations could affect the process. This work aimed to study the influence of oxygen (4.3 and 8.8mgO2L(-1), respectively) on the different microbial activities (hydrolytic, acidogenic and methanogenic) of thermophilic anaerobic biomass and on the methanogenic community structure. Batch tests in presence of oxygen were conducted using specific substrates for each biological activity and a blank (with minimum oxygen) was included. No effect of oxygen was observed on the hydrolytic and acidogenic activities. In contrast, the methane production rate decreased by 40% in all oxygenated batches and the development of active archaeal community was slower in presence of 8.8mgO2L(-1). However, despite this sensitivity of methanogens to oxygen at saturation levels, the inhibition was reversible.

  12. MiR-133a regarded as a potential biomarker for benzene toxicity through targeting Caspase-9 to inhibit apoptosis induced by benzene metabolite (1,4-Benzoquinone).

    Science.gov (United States)

    Chen, Yujiao; Sun, Pengling; Bai, Wenlin; Gao, Ai

    2016-11-15

    Benzene is an environmental and industrial chemical which is widely utilized in various applications. Our previous study showed that miR-133a expression was down-regulated in chronic benzene poisoning workers, but the mechanism of miR-133a in benzene-induced hematotoxicity remains unclear. In this population-based study, benzene-exposed group recruited workers whose concentration of air benzene was 3.50±1.60mg/m(3), and control workers who were exposed to 0.06±0.01mg/m(3) air benzene. By comparison, Caspase-9 and Caspase-3 was up-regulated while miR-133a expression decreased in benzene-exposed workers. Pearson correlation analysis showed that miR-133a was reversely correlated with pro-apoptotic gene Caspase-9 in population-based study. Moreover, multiple linear regressions indicated that miR-133a was positively associated with blood cells count. To explore the underlying mechanism of miR-133a in benzene-induced hematotoxicity, AO/EB staining and TEM ultrastructural analysis were conducted to verify the activation of apoptosis in Human Leukemic U937 Cells induced by benzene metabolites (1,4-Benzoquinone, 1,4-BQ), while the mechanism of miR-133a in 1,4-BQ-induced apoptosis was performed using lentivirus vectors transfection. The results demonstrated that 1,4-BQ evidently induced mitochondria-mediated apoptosis and increased pro-apoptotic genes (Caspase-9 and Caspase-3) expression in a dose-dependent manner. The mechanistic study showed 1,4-BQ decreased miR-133a expression and miR-133a over-expression attenuated 1, 4-BQ-caused upregulation of Caspase-9, Caspase-3 and apoptosis. In conclusion, our research suggested that benzene induced hematotoxicity by decreasing miR-133a and caspase-dependent apoptosis which might contribute to the underlying mechanism of miR-133a in benzene-induced hematotoxicity.

  13. Anaerobic ammonium-oxidizing (anammox) bacteria and associated activity in fixed-film biofilters of a marine recirculating aquaculture system.

    Science.gov (United States)

    Tal, Yossi; Watts, Joy E M; Schreier, Harold J

    2006-04-01

    Microbial communities in the biological filter and waste sludge compartments of a marine recirculating aquaculture system were examined to determine the presence and activity of anaerobic ammonium-oxidizing (anammox) bacteria. Community DNA was extracted from aerobic and anaerobic fixed-film biofilters and the anaerobic sludge waste collection tank and was analyzed by amplifying 16S rRNA genes by PCR using anammox-selective and universal GC-clamped primers. Separation of amplified PCR products by denaturing gradient gel electrophoresis and sequencing of the different phylotypes revealed a diverse biofilter microbial community. While Planctomycetales were found in all three communities, the anaerobic denitrifying biofilters contained one clone that exhibited high levels of sequence similarity to known anammox bacteria. Fluorescence in situ hybridization studies using an anammox-specific probe confirmed the presence of anammox Planctomycetales in the microbial biofilm from the denitrifying biofilters, and anammox activity was observed in these biofilters, as detected by the ability to simultaneously consume ammonia and nitrite. To our knowledge, this is the first identification of anammox-related sequences in a marine recirculating aquaculture filtration system, and our findings provide a foundation for incorporating this important pathway for complete nitrogen removal in such systems.

  14. Hydrogenation of Benzene over Mo2C/Al2O3 Catalyst

    Institute of Scientific and Technical Information of China (English)

    Zhang Jing; Wu Weicheng

    2008-01-01

    The process of benzene hydrogenation over Mo2C catalyst has been studied.Mo2C was the active phase in benzene hydrogenation.The major problem with the metal carbides was their poor stability due to deactivation by carbon deposition.

  15. Genome-wide functional profiling reveals genes required for tolerance to benzene metabolites in yeast.

    Directory of Open Access Journals (Sweden)

    Matthew North

    Full Text Available Benzene is a ubiquitous environmental contaminant and is widely used in industry. Exposure to benzene causes a number of serious health problems, including blood disorders and leukemia. Benzene undergoes complex metabolism in humans, making mechanistic determination of benzene toxicity difficult. We used a functional genomics approach to identify the genes that modulate the cellular toxicity of three of the phenolic metabolites of benzene, hydroquinone (HQ, catechol (CAT and 1,2,4-benzenetriol (BT, in the model eukaryote Saccharomyces cerevisiae. Benzene metabolites generate oxidative and cytoskeletal stress, and tolerance requires correct regulation of iron homeostasis and the vacuolar ATPase. We have identified a conserved bZIP transcription factor, Yap3p, as important for a HQ-specific response pathway, as well as two genes that encode putative NAD(PH:quinone oxidoreductases, PST2 and YCP4. Many of the yeast genes identified have human orthologs that may modulate human benzene toxicity in a similar manner and could play a role in benzene exposure-related disease.

  16. Alternatives for Benzene in the Extraction of Bitumen Fume from Exposure Sample Media.

    Science.gov (United States)

    Sutter, Benjamin; Ravera, Christel; Hussard, Caroline; Langlois, Eddy

    2016-01-01

    Benzene is frequently used to extract collected bitumen fumes from personal sampler substrates. However, this solvent is particularly dangerous because of its carcinogenicity (group 1 of the International Agency for Research on Cancer classification). Therefore, to prevent the exposure of laboratory technicians to benzene during the fume extraction step from samplers, a compromise had to be found to identify a less toxic solvent with the same extraction capacity. To compare the extraction capacities of selected solvents, bitumen fumes were generated in the laboratory from three different batches of road surfacing bitumen collected on dedicated bitumen fume samplers. The samplers were then extracted by benzene and the solvents tested. Of 11 selected solvents less toxic than benzene and used in studies on bitumen and bitumen fume analyses, n-hexane and n-heptane were identified as alternatives to benzene. In particular, the results demonstrated that n-heptane was the best candidate solvent for benzene replacement, due to its extraction efficiency comparable to benzene for the three bitumen fumes tested and its low toxicity, which is highly compatible with benzene replacement.

  17. Differential susceptibility of rats and guinea pigs to the ototoxic effects of ethyl benzene

    NARCIS (Netherlands)

    Cappaert, NLM; Klis, SFL; Muijser, H; Kulig, BM; Ravensberg, LC; Smoorenburg, GF

    2002-01-01

    The present study was designed to compare the ototoxic effects of volatile ethyl benzene in guinea pigs and rats. Rats showed deteriorated auditory thresholds in the mid-frequency range, based on electrocochleography, after 550-ppm ethyl benzene (8 h/day, 5 days). Outer hair cell (OHC) loss was foun

  18. Multiphoton Ionization of Mixed Benzene-Water-Metanol Clusters. Competitive Microscopic Solvation

    Science.gov (United States)

    Börnsen, K. O.; Selzle, H. L.; Schlag, E. W.

    1990-10-01

    Clusters of benzene with polar molecules are observed from a supersonic jet expansion of a ternary mixture of benzene, water and methanol seeded in Helium. It is found that complex formation with methanol is strongly enhanced when a single water molecule is preadsorbed.

  19. Assessment of human exposure to benzene through foods from the Belgian market.

    Science.gov (United States)

    Medeiros Vinci, Raquel; Jacxsens, Liesbeth; Van Loco, Joris; Matsiko, Eric; Lachat, Carl; de Schaetzen, Thibault; Canfyn, Michael; Van Overmeire, Ilse; Kolsteren, Patrick; De Meulenaer, Bruno

    2012-08-01

    Benzene is a volatile organic compound known to be carcinogenic to humans (Group 1) and may be present in food. In the present study, 455 food samples from the Belgian market were analyzed for benzene contents and some possible sources of its occurrence in the foodstuffs were evaluated. Benzene was found above the level of detection in 58% of analyzed samples with the highest contents found in processed foods such as smoked and canned fish, and foods which contained these as ingredients (up to 76.21 μg kg(-1)). Unprocessed foods such as raw meat, fish, and eggs contained much lower concentrations of benzene. Using the benzene concentrations in food, a quantitative dietary exposure assessment of benzene intake was conducted on a national representative sample of the Belgian population over 15 years of age. The mean benzene intake for all foods was 0.020 μg kg bw d(-1) according to a probabilistic analysis. These values are below the minimum risk level for oral chronic exposure to benzene (0.5 μg kg bw d(-1)).

  20. Benzene bioremediation using cow dung microflora in two phase partitioning bioreactor

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Dipty [Environmental Biotechnology Laboratory, Department of Life Sciences, University of Mumbai, Vidyanagari Campus, Santacruz (E), Mumbai-400 098 (India); Fulekar, M.H., E-mail: mhfulekar@yahoo.com [Environmental Biotechnology Laboratory, Department of Life Sciences, University of Mumbai, Vidyanagari Campus, Santacruz (E), Mumbai-400 098 (India)

    2010-03-15

    Bioremediation of benzene has been carried out using cow dung microflora in a bioreactor. The bioremediation of benzene under the influence of cow dung microflora was found to be 100% and 67.5%, at initial concentrations of 100 mg/l and 250 mg/l within 72 h and 168 h respectively; where as at higher concentration (500 mg/l), benzene was found to be inhibitory. Hence the two phase partitioning bioreactor (TPPB) has been designed and developed to carryout biodegradation at higher concentration. In TPPB 5000 mg/l benzene was biodegraded up to 50.17% over a period of 168 h. Further the Pseudomonas putida MHF 7109 was isolated from cow dung microflora as potential benzene degrader and its ability to degrade benzene at various concentrations was evaluated. The data indicates 100%, 81% and 65% degradation at the concentrations of 50 mg/l, 100 mg/l, 250 mg/l within the time period of 24 h, 96 h and 168 h respectively. The GC-MS data also shows the presence of catechol and 2-hydroxymuconic semialdehyde, which confirms the established pathway of benzene biodegradation. The present research proves the potential of cow dung microflora as a source of biomass for benzene biodegradation in TPPB.

  1. Effects of benzene inhalation on lymphocyte subpopulations and immune response in mice.

    Science.gov (United States)

    Aoyama, K

    1986-08-01

    To clarify the immunotoxicity of benzene, the effects of benzene inhalation on T and B lymphocytes and immune responses in mice were examined. BALB/c male mice were exposed to 50 or 200 ppm benzene vapor, 6 hr/day for 7 or 14 consecutive days. T and B lymphocytes, in blood and spleen, were detected by the cytotoxicity assay with anti-Thy-1.2 monoclonal antibody and the membrane immunofluorescence test with anti-immunoglobulin antibody, respectively. Humoral immune response to sheep red blood cells was determined by the hemolytic plaque-forming cell assay. Cell-mediated immune response was measured by contact sensitivity (CS) to picryl chloride. The activity of suppressor cells was evaluated in spleen by the suppressive effect on passive transfer of CS. The ratio and absolute number of T and B lymphocytes in blood and spleen were depressed after a 7-day exposure at 50 ppm benzene. The depression of B lymphocytes was dose dependent and more intense than that of T lymphocytes. The ability to form antibodies was suppressed by benzene at all exposure levels, but the CS response was resistant to benzene inhalation and rather enhanced at 200 ppm exposure for 14 days. The activity of suppressor cells could not be detected at this dose level. These data show that benzene inhalation effects on humoral and cell-mediated immune responses are a result of the selective toxicity of benzene to B lymphocytes and suppressor T cells.

  2. Formation of a new benzene-ethane co-crystalline structure under cryogenic conditions.

    Science.gov (United States)

    Vu, Tuan Hoang; Cable, Morgan L; Choukroun, Mathieu; Hodyss, Robert; Beauchamp, Patricia

    2014-06-12

    We report the first experimental finding of a solid molecular complex between benzene and ethane, two small apolar hydrocarbons, at atmospheric pressure and cryogenic temperatures. Considerable amounts of ethane are found to be incorporated inside the benzene lattice upon the addition of liquid ethane onto solid benzene at 90-150 K, resulting in formation of a distinctive co-crystalline structure that can be detected via micro-Raman spectroscopy. Two new features characteristic of these co-crystals are observed in the Raman spectra at 2873 and 1455 cm(-1), which are red-shifted by 12 cm(-1) from the υ1 (a1g) and υ11 (eg) stretching modes of liquid ethane, respectively. Analysis of benzene and ethane vibrational bands combined with quantum mechanical modeling of isolated molecular dimers reveal an interaction between the aromatic ring of benzene and the hydrogen atoms of ethane in a C-H···π fashion. The most favored configuration for the benzene-ethane dimer is the monodentate-contact structure, with a calculated interaction energy of 9.33 kJ/mol and an equilibrium bonding distance of 2.66 Å. These parameters are comparable to those for a T-shaped co-crystalline complex between benzene and acetylene that has been previously reported in the literature. These results are relevant for understanding the hydrocarbon cycle of Titan, where benzene and similar organics may act as potential hydrocarbon reservoirs due to this incorporation mechanism.

  3. 11. USING BIOMARKERS TO IMPROVE BENZENE RISK ASSESSMENT AND FIND THE CAUSES OF LEUKAEMIA

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@Benzene is an established cause of leukemia at high doses, but the risk it poses at exposures of ≤1ppm in air is diffcult to quantify. Molecular biomarkers may improve the accuracy of this risk assessment. We have therefore attempted to develop and validate biomarkers of exposure, early effect and susceptibility to benzene. We have shown

  4. FORMATION OF HEMOGLOBIN AND ALBUMIN ADDUCTS OF BENZENE OXIDE IN MOUSE, RAT, AND HUMAN BLOOD

    Science.gov (United States)

    Little is known about the formation and disposition of benzene oxide (BO), the initial metabolite arising from oxidation of benzene by cytochrome P450. In this study, reactions of BO with hemoglobin (Hb) and albumin (Alb) were investigated in blood from B6C3F1 mice, F344 rats, ...

  5. The effect of outside conditions on anaerobic ammonia oxidation reaction

    Institute of Scientific and Technical Information of China (English)

    YANG Min; WANG Shu-bo

    2016-01-01

    Organic carbon, inorganic carbon, temperature, pH and ORP are all to have a certain influence on the anaerobic ammonia oxidation reaction. We can draw some conclusions on the optimum conditions of anaerobic ammonia oxidation reaction. The optimum temperature of the anaerobic ammonia oxidation reaction is 30-35℃. And the optimum pH of the anaerobic ammonia reaction is 7.5-8.3. The presence of organic matters can affect the anaerobic ammonia reaction, and different organic matters have different influence on it. The concentration of the inorganic carbon also exist great influence on the reaction. High inorganic carbon concentration also can inhibit anaerobic ammonia oxidation reaction.

  6. Metabolic interactions between methanogenic consortia and anaerobic respiring bacteria

    DEFF Research Database (Denmark)

    Stams, A.J.; Oude Elferink, S.J.; Westermann, Peter

    2003-01-01

    Most types of anaerobic respiration are able to outcompete methanogenic consortia for common substrates if the respective electron acceptors are present in sufficient amounts. Furthermore, several products or intermediate compounds formed by anaerobic respiring bacteria are toxic to methanogenic...... consortia. Despite the potentially adverse effects, only few inorganic electron acceptors potentially utilizable for anaerobic respiration have been investigated with respect to negative interactions in anaerobic digesters. In this chapter we review competitive and inhibitory interactions between anaerobic...... respiring populations and methanogenic consortia in bioreactors. Due to the few studies in anaerobic digesters, many of our discussions are based upon studies of defined cultures or natural ecosystems...

  7. 优化苯塔流程减少石油苯损失%To Optimize the Benzene Tower Process and Reduce Oil Benzene Loss

    Institute of Scientific and Technical Information of China (English)

    聂玉萍; 佟文媛

    2015-01-01

    歧化装置包括歧化和烷基化转移部分及苯-甲苯分馏部分,通过探讨歧化装置各部分操作及石油苯产量状况,围绕如何减少石油苯损失,提高石油苯产量展开讨论,最终得出结论并制定对策以期能够减少石油苯损失,提高石油苯产量,从而提高经济效益。%Disproportionation unit includes disproportionation and alkylation transfer part and the benzene-toluene fractionation part, this paper discussed how to reduce oil benzene loss and improve oil benzene production through the discussion of the operation of each part of disproportionation unit and the status of oil benzene production, and eventually reached a conclusion and developed countermeasures to reduce oil benzene loss and improve oil benzene production, thus enhancing economic efficiency.

  8. Hydrogen Storage in Benzene Moiety Decorated Single-Walled Carbon Nanotubes

    Institute of Scientific and Technical Information of China (English)

    ZHANG Bing-Yun; LIANG Qi-Min; SONG Chen; XIA Yue-Yuan; ZHAO Ming-wen; LIU Xiang-Dong; ZHANG Hong-Yu

    2006-01-01

    The hydrogen storage capacity of(5,5)single-walled carbon nanotubes(SWNTs)decorated chemically with benzene moieties is studied by using molecular dynamics simulations(MDSs)and density functional theory(DFT) calculations.It is found that benzene molecules colliding on (5,5) SWNTs at incident energy of 50 eV form very stable configurations of benzene moiety adsorption on the wall of SWNTs.The MDSs indicate that when the benzene moiety decorated(5,5)SWNTs and a pristine(5,5)SWNT are put in a box in which hydrogen molecules are filled to a pressure of~26 atm,the hydrogen storage capacity of the benzene moiety decorated(5,5)SWNT is about 4.7wt.% and that of the pristine (5,5) SwNT is nearly 3.9 wt.%.

  9. The influence of ethanol on the stem cell toxicity of benzene in mice.

    Science.gov (United States)

    Seidel, H J; Bader, R; Weber, L; Barthel, E

    1990-08-01

    BDF1 mice were exposed to 100, 300, and 900 ppm benzene vapor, and the numbers of hematopoietic progenitor cells, early and late erythroid progenitors (BFU-E and CFU-E) and granuloid progenitors (CFU-C), were determined with and without additional exposure to ethanol (5, 10, 15 vol%) in the drinking water. The duration of benzene inhalation was up to 4 weeks, 6 hr per day, 5 days per week. It was shown that the number of CFU-E per femur was depressed in a dose-dependent manner by benzene alone and also by ethanol combined with a given benzene concentration. CFU-E showed rapid regeneration after the end of the exposure, but not BFU-E and CFU-C. Prolongation of the ethanol exposure after withdrawal of benzene had only a marginal effect on progenitor cell regeneration.

  10. Marine environmental protection: An application of the nanometer photo catalyst method on decomposition of benzene.

    Science.gov (United States)

    Lin, Mu-Chien; Kao, Jui-Chung

    2016-04-15

    Bioremediation is currently extensively employed in the elimination of coastal oil pollution, but it is not very effective as the process takes several months to degrade oil. Among the components of oil, benzene degradation is difficult due to its stable characteristics. This paper describes an experimental study on the decomposition of benzene by titanium dioxide (TiO2) nanometer photocatalysis. The photocatalyst is illuminated with 360-nm ultraviolet light for generation of peroxide ions. This results in complete decomposition of benzene, thus yielding CO2 and H2O. In this study, a nonwoven fabric is coated with the photocatalyst and benzene. Using the Double-Shot Py-GC system on the residual component, complete decomposition of the benzene was verified by 4h of exposure to ultraviolet light. The method proposed in this study can be directly applied to elimination of marine oil pollution. Further studies will be conducted on coastal oil pollution in situ.

  11. Sorption of phenanthrene and benzene on differently structural kerogen: important role of micropore-filling.

    Science.gov (United States)

    Zhang, Yulong; Ma, Xiaoxuan; Ran, Yong

    2014-02-01

    Shale was thermally treated to obtain a series of kerogen with varied maturation. Their chemical, structural and porous properties were related to the sorption and/or desorption behaviors of phenanthrene and benzene. As the treatment temperature increases, aliphatic and carbonyl carbon of the kerogen samples decrease, while their aromaticity and maturation increase. Meanwhile, the isothermal nonlinearity of phenanthrene and benzene increases whereas the sorption capacity and micropore adsorption volumes (Vo,d) initially increase and then decrease. The Vo,d of benzene is significantly correlated with, but higher than that of phenanthrene, suggesting similar micropore filling mechanism and molecular sieve effect. The benzene desorption exhibits hysteresis, which is related to the pore deformation of the kerogen and the entrapment of solute in the kerogen matrix. The Vo,d of phenanthrene and benzene on the kerogen samples accounts for 23-46% and 36-65% of the maximum sorption volumes, respectively, displaying the importance of the micropore filling.

  12. ANAEROBIC BIOLOGICAL TREATMENT OF PRODUCED WATER

    Energy Technology Data Exchange (ETDEWEB)

    John R. Gallagher

    2001-07-31

    During the production of oil and gas, large amounts of water are brought to the surface and must be disposed of in an environmentally sensitive manner. This is an especially difficult problem in offshore production facilities where space is a major constraint. The chief regulatory criterion for produced water is oil and grease. Most facilities have little trouble meeting this criterion using conventional oil-water separation technologies. However, some operations have significant amounts of naphthenic acids in the water that behave as oil and grease but are not well removed by conventional technologies. Aerobic biological treatment of naphthenic acids in simulated-produced water has been demonstrated by others; however, the system was easily overloaded by the large amounts of low-molecular-weight organic acids often found in produced waters. The objective of this research was to determine the ability of an anaerobic biological system to treat these organic acids in a simulated produced water and to examine the potential for biodegradation of the naphthenic acids in the anaerobic environment. A small fixed-film anaerobic biological reactor was constructed and adapted to treat a simulated produced water. The bioreactor was tubular, with a low-density porous glass packing material. The inocula to the reactor was sediment from a produced-water holding pond from a municipal anaerobic digester and two salt-loving methanogenic bacteria. During start-up, the feed to the reactor contained glucose as well as typical produced-water components. When glucose was used, rapid gas production was observed. However, when glucose was eliminated and the major organic component was acetate, little gas was generated. Methane production from acetate may have been inhibited by the high salt concentrations, by sulfide, or because of the lack, despite seeding, of microbes capable of converting acetate to methane. Toluene, a minor component of the produced water (0.1 g/L) was removed in the

  13. Decomposition of Alternative Chirality Amino Acids by Alkaliphilic Anaerobe from Owens Lake, California

    Science.gov (United States)

    Townsend, Alisa; Pikuta, Elena V.; Guisler, Melissa; Hoover, Richard B.

    2009-01-01

    The study of alkaliphilic microbial communities from anaerobic sediments of Owens and Mono Lakes in California led to the isolation of a bacterial strain capable of metabolizing amino acids with alternative chirality. According to the phylogenetic analysis, the anaerobic strain BK1 belongs to the genus Tindallia; however, despite the characteristics of other described species of this genus, the strain BK1 was able to grow on D-arginine and Dlysine. Cell morphology of this strain showed straight, motile, non-spore-forming rods with sizes 0.45 x 1.2-3 microns. Physiological characteristics of the strain showed that it is catalase negative, obligately anaerobic, mesophilic, and obligately alkaliphilic. This isolate is unable to grow at pH 7 and requires CO3 (2-) ions for growth. The strain has chemo-heterotrophic metabolism and is able to ferment various proteolysis products and some sugars. It plays the role of a primary anaerobe within the trophic chain of an anaerobic microbial community by the degradation of complex protein molecules to smaller and less energetic molecules. The new isolate requires NaCl for growth, and can grow within the range of 0.5-13 %, with the optimum at 1 % NaCl (w/v). The temperature range for the growth of the new isolate is 12-40 C with optimum at 35 C. The pH range for the growth of strain BK1 occurs between 7.8 and 11.0 with optimum at 9.5. This paper presents detailed physiological characteristics of the novel isolate from Owens Lake, a unique relic ecosystem of Astrobiological significance, and makes an accent on the ability of this strain to utilize L-amino acids.

  14. Oxygen Effects in Anaerobic Digestion - II

    Directory of Open Access Journals (Sweden)

    Deshai Botheju

    2010-04-01

    Full Text Available Standard models describing bio-gasification using anaerobic digestion do not include necessary processes to describe digester dynamics under the conditions of oxygen presence. Limited oxygenation in anaerobic digestion can sometimes be beneficial. The oxygen effects included anaerobic digestion model, ADM 1-Ox, was simulated against experimental data obtained from laboratory scale anaerobic digesters operated under different oxygenation conditions. ADM 1-Ox predictions are generally in good agreement with the trends of the experimental data. ADM 1-Ox simulations suggest the existence of an optimum oxygenation level corresponding to a peak methane yield. The positive impact of oxygenation on methane yield is more pronounced at conditions characterized by low hydrolysis rate coefficients (slowly degradable feed and low biomass concentrations. The optimum oxygenation point moves towards zero when the hydrolysis rate coefficient and the biomass concentration increase. Accordingly, the impact of oxygenation on methane yield can either be positive or negative depending on the digestion system characteristics. The developed ADM 1-Ox model can therefore be a valuable tool for recognizing suitable operating conditions for achieving the maximum benefits from partial aeration in anaerobic digestion.

  15. A strategy for aromatic hydrocarbon bioremediation under anaerobic conditions and the impacts of ethanol: A microcosm study

    Science.gov (United States)

    Chen, Yu Dao; Barker, James F.; Gui, Lai

    2008-02-01

    Increased use of ethanol-blended gasoline (gasohol) and its potential release into the subsurface have spurred interest in studying the biodegradation of and interactions between ethanol and gasoline components such as benzene, toluene, ethylbenzene and xylene isomers (BTEX) in groundwater plumes. The preferred substrate status and the high biological oxygen demand (BOD) posed by ethanol and its biodegradation products suggests that anaerobic electron acceptors (EAs) will be required to support in situ bioremediation of BTEX. To develop a strategy for aromatic hydrocarbon bioremediation and to understand the impacts of ethanol on BTEX biodegradation under strictly anaerobic conditions, a microcosm experiment was conducted using pristine aquifer sand and groundwater obtained from Canadian Forces Base Borden, Canada. The initial electron accepter pool included nitrate, sulfate and/or ferric iron. The microcosms typically contained 400 g of sediment, 600˜800 ml of groundwater, and with differing EAs added, and were run under anaerobic conditions. Ethanol was added to some at concentrations of 500 and 5000 mg/L. Trends for biodegradation of aromatic hydrocarbons for the Borden aquifer material were first developed in the absence of ethanol, The results showed that indigenous microorganisms could degrade all aromatic hydrocarbons (BTEX and trimethylbenzene isomers-TMB) under nitrate- and ferric iron-combined conditions, but not under sulfate-reducing conditions. Toluene, ethylbenzene and m/p-xylene were biodegraded under denitrifying conditions. However, the persistence of benzene indicated that enhancing denitrification alone was insufficient. Both benzene and o-xylene biodegraded significantly under iron-reducing conditions, but only after denitrification had removed other aromatics. For the trimethylbenzene isomers, 1,3,5-TMB biodegradation was found under denitrifying and then iron-reducing conditions. Biodegradation of 1,2,3-TMB or 1,2,4-TMB was slower under iron

  16. Electronic noses for monitoring benzene occupational exposure in biological samples of Egyptian workers

    Directory of Open Access Journals (Sweden)

    Ehab I. Mohamed

    2013-02-01

    Full Text Available Objectives: Benzene is commonly emitted in several industries, leading to widespread environmental and occupational exposure hazards. While less toxic solvents have been substituted for benzene, it is still a component of petroleum products and is a trace impurity in industrial products resulting in continued higher occupational exposures in industrial settings in developing countries. Materials and Methods: We investigated the potential use of an electronic nose (e-nose to monitor the headspace volatiles in biological samples from benzene-exposed Egyptian workers and non-exposed controls. The study population comprised 150 non-smoking male workers exposed to benzene and an equal number of matching non-exposed controls. We determined biomarkers of benzene used to estimate exposure and risk including: benzene in exhaled air and blood; and its urinary metabolites such as phenol and muconic acid using gas chromatography technique and a portable e-nose. Results: The average benzene concentration measured in the ambient air of the workplace of all studied industrial settings in Alexandria, Egypt; was 97.56±88.12 μg/m3 (range: 4.69–260.86 μg/m3. Levels of phenol and muconic acid were signifi cantly (p < 0.001 higher in both blood and urine of benzene-exposed workers as compared to non-exposed controls. Conclusions: The e-nose technology has successfully classifi ed and distinguished benzene-exposed workers from non-exposed controls for all measured samples of blood, urine and the exhaled air with a very high degree of precision. Thus, it will be a very useful tool for the low-cost mass screening and early detection of health hazards associated with the exposure to benzene in the industry.

  17. The effect of the source of microorganisms on adaptation of hydrolytic consortia dedicated to anaerobic digestion of maize silage.

    Science.gov (United States)

    Poszytek, Krzysztof; Pyzik, Adam; Sobczak, Adam; Lipinski, Leszek; Sklodowska, Aleksandra; Drewniak, Lukasz

    2017-02-17

    The main aim of this study was to evaluate the effect of the source of microorganisms on the selection of hydrolytic consortia dedicated to anaerobic digestion of maize silage. The selection process was investigated based on the analysis of changes in the hydrolytic activity and the diversity of microbial communities derived from (i) a hydrolyzer of a commercial agricultural biogas plant, (ii) cattle slurry and (iii) raw sewage sludge, during a series of 10 passages. Following the selection process, the adapted consortia were thoroughly analyzed for their ability to utilize maize silage and augmentation of anaerobic digestion communities. The results of selection of the consortia showed that every subsequent passage of each consortium leads to their adaptation to degradation of maize silage, which was manifested by the increased hydrolytic activity of the adapted consortia. Biodiversity analysis (based on the 16S rDNA amplicon sequencing) confirmed the changes microbial community of each consortium, and showed that after the last (10th) passage all microbial communities were dominated by the representatives of Lactobacillaceae, Prevotellaceae, Veillonellaceae. The results of the functional analyses showed that the adapted consortia improved the efficiency of maize silage degradation, as indicated by the increase in the concentration of glucose and volatile fatty acids (VFAs), as well as the soluble chemical oxygen demand (sCOD). Moreover, bioaugmentation of anaerobic digestion communities by the adapted hydrolytic consortia increased biogas yield by 10-29%, depending on the origin of the community. The obtained results also indicate that substrate input (not community origin) was the driving force responsible for the changes in the community structure of hydrolytic consortia dedicated to anaerobic digestion.

  18. Effect Of Polar Component(1-Propanol On The RelativeVolatility Of The Binary System N-Hexane - Benzene

    Directory of Open Access Journals (Sweden)

    Khalid Farhod Chasib Al-Jiboury

    2008-01-01

    Full Text Available Vapor-liquid equilibrium data are presented for the binary systems n-hexane - 1-propanol, benzene - 1-propanol and n-hexane – benzene at 760 mm of mercury pressure. In addition ternary data are presented at selected compositions with respect to the 1-propanol in the 1-propanol, benzene, n-hexane system at 760 mmHg. The results indicate the relative volatility of n-hexane relative to benzene increases appreciably with addition of 1-propanol

  19. In situ FTIR Investigation of Magnetic Field Effect on Heterogeneous Photocatalytic Degradation of Benzene over Pt/TiO2

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    In situ FTIR spectroscopy was utlized to investigate the magnetic field effect on the heterogeneous photocatalytic degradation of benzene over platinized titania (Pt/TiO2). The results revealed that the employment of magnetic field may not change the mechanism of photocatalytic degradation of benzene, however, it greatly facilitate the conversion of benzene to phenol and quinone, as well as the transformation from phenol to quinone, resulting in opening the benzene ring easily and promoting the production of CO2.

  20. Nonthermal plasma assisted photocatalytic oxidation of dilute benzene

    Indian Academy of Sciences (India)

    J Karuppiah; E Linga Reddy; L Sivachandiran; R Karvembu; Ch Subrahmanyam

    2012-07-01

    Oxidative decomposition of low concentrations (50-1000 ppm) of diluted benzene in air was carried out in a nonthermal plasma (NTP) dielectric barrier discharge (DBD) reactor with the inner electrode made up of stainless steel fibres (SMF) modified with transition metal oxides in such a way to integrate the catalyst in discharge zone. Typical results indicate the better performance of MnO and TiO2/MnO modified systems, which may be attributed to the in situ decomposition of ozone on the surface of MnO that may lead to the formation of atomic oxygen; whereas ultraviolet light induced photocatalytic oxidation may be taking place with TiO2 modified systems. Water vapour improved the selectivity to total oxidation.

  1. Assessment of population exposure to air pollution by benzene.

    Science.gov (United States)

    Tchepel, Oxana; Penedo, Ana; Gomes, Madalena

    2007-05-01

    Biomonitoring is one of the methods that allow to identify population groups that have significantly higher exposures to a particular chemical than the general population. However, use of biomonitoring is particularly useful when applied in combination with other methods of pollution exposure assessment. The current study is focused on the developing of the modelling approach to estimate population exposure to benzene through inhalation. The model is based on a microenvironment approach and is adapted to be applied in urban areas where the pattern of exposure is complex. The results provided by the model may be used in combination with human biomonitoring in order to select who and where should monitoring be done, as well as for interpretation and extrapolation of biomonitoring results.

  2. Localized helium excitations in 4He_N-benzene clusters

    CERN Document Server

    Huang, P; Huang, Patrick

    2003-01-01

    We compute ground and excited state properties of small helium clusters 4He_N containing a single benzene impurity molecule. Ground-state structures and energies are obtained for N=1,2,3,14 from importance-sampled, rigid-body diffusion Monte Carlo (DMC). Excited state energies due to helium vibrational motion near the molecule surface are evaluated using the projection operator, imaginary time spectral evolution (POITSE) method. We find excitation energies of up to ~23 K above the ground state. These states all possess vibrational character of helium atoms in a highly anisotropic potential due to the aromatic molecule, and can be categorized in terms of localized and collective vibrational modes. These results appear to provide precursors for a transition from localized to collective helium excitations at molecular nanosubstrates of increasing size. We discuss the implications of these results for analysis of anomalous spectral features in recent spectroscopic studies of large aromatic molecules in helium clu...

  3. Benzene ring chains with lithium adsorption: Vibrations and their implications

    CERN Document Server

    Stegmann, Thomas; Seligman, Thomas H

    2016-01-01

    Lithium adsorption on aromatic molecules and polyacenes have been found to produce strong distortions associated to spontaneous symmetry breaking and lesser ones in more general cases. For polyphenyls we find similar, but more varied behaviour; an important feature is the fact that adsorption largely suppresses the torsion present in naked polyphenyl. The spectra of the vibrational modes distinguish the different structures of skeletons and adsorbates. In the more regular adsorption schemes the lowest states are bending and torsion modes of the skeleton, which are essential followed by the adsorbate. Based on this we propose the possible use of such a chain of adsorbates on a chain of benzene rings as a quantum register with the lowest vibrations transmitting qubits for control gates. To strengthen this view and to show the effect of heavier alkalines we also present the very symmetric adsorption of ten rubidium atoms on pentaphenyl.

  4. Separation of Scintillation and Cherenkov Lights in Linear Alkyl Benzene

    CERN Document Server

    Li, Mohan; Yeh, Minfang; Wang, Zhe; Chen, Shaomin

    2015-01-01

    To separate scintillation and Cherenkov lights in water-based liquid scintillator detectors is a desired feature for future neutrino and proton decay researches. Linear alkyl benzene (LAB) is one important ingredient of a water-based liquid scintillator being developed. In this paper we observed a good separation of scintillation and Cherenkov lights in an LAB sample. The rising and decay times of the scintillation light of the LAB were measured to be $(7.7\\pm3.0)\\ \\rm{ns}$ and $(36.6\\pm2.4)\\ \\rm{ns}$, respectively, while the full width [-3$\\sigma$, 3$\\sigma$] of the Cherenkov light was 12 ns dominated by the time resolution of our photomultiplier tubes. The light yield of the scintillation was measured to be $(1.01\\pm0.12)\\times10^3\\ \\rm{photons}/\\rm{MeV}$.

  5. Adsorption of benzene, cyclohexane and hexane on ordered mesoporous carbon.

    Science.gov (United States)

    Wang, Gang; Dou, Baojuan; Zhang, Zhongshen; Wang, Junhui; Liu, Haier; Hao, Zhengping

    2015-04-01

    Ordered mesoporous carbon (OMC) with high specific surface area and large pore volume was synthesized and tested for use as an adsorbent for volatile organic compound (VOC) disposal. Benzene, cyclohexane and hexane were selected as typical adsorbates due to their different molecular sizes and extensive utilization in industrial processes. In spite of their structural differences, high adsorption amounts were achieved for all three adsorbates, as the pore size of OMC is large enough for the access of these VOCs. In addition, the unusual bimodal-like pore size distribution gives the adsorbates a higher diffusion rate compared with conventional adsorbents such as activated carbon and carbon molecular sieve. Kinetic analysis suggests that the adsorption barriers mainly originated from the difficulty of VOC vapor molecules entering the pore channels of adsorbents. Therefore, its superior adsorption ability toward VOCs, together with a high diffusion rate, makes the ordered mesoporous carbon a promising potential adsorbent for VOC disposal.

  6. 3-[(E-(4-Ethylphenyliminomethyl]benzene-1,2-diol

    Directory of Open Access Journals (Sweden)

    Zeynep Keleşoğlu

    2009-08-01

    Full Text Available The title compound, C15H15NO2, adopts the enol–imine tautomeric form. The dihedral angle between the two benzene rings is 48.1 (1°. Intramolecular O—H...N and O—H...O hydrogen bonds generate S(6 and S(5 ring motifs, respectively. In the crystal, molecules are linked into centrosymmetric R22(10 dimers via pairs of O—H...O hydrogen bonds and the dimers may interact through very weak by π–π interactions [centroid–centroid distance = 4.150 (1 Å]. The ethyl group is disordered over two orientations, with occupancies of 0.587 (11 and 0.413 (11.

  7. Pre-commissioning of 120 kt/a Unit for Hydrotreating Crude Coke Oven Benzene Implemented at Baoyuan Chemical Company

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ The Baoyuan Chemical Company, Ltd. in Taiyuan has per-formed the precommissioning of a 120 kt/a unit for hydrotreating crude coke oven benzene. This unit is the phase II construction of the 300 kt/a crude benzene hydrotreating project, which adopts the process technology for hydrotreating crude coke oven benzene developed indepen-dently by our own efforts.

  8. Anaerobic lipid degradation through acidification and methanization.

    Science.gov (United States)

    Kim, Ijung; Kim, Sang-Hyoun; Shin, Hang-Sik; Jung, Jin-Young

    2010-01-01

    In biological wastewater treatment high lipid concentration is known to inhibit microorganisms and cause active biomass flotation. To reduce lipid inhibition, a two-phase anaerobic system, consisting of an anaerobic sequencing batch reactor (ASBR) and an upflow anaerobic sludge blanket (UASB) reactor, was applied to synthetic dairy wastewater. During 153 days of operation, the two-phase system showed stable performance in lipid degradation. In the ASBR, a 13% lipid removal efficiency and 10% double bond removal efficiency were maintained. In the UASB, the chemical oxygen demand (COD), lipid and volatile fatty acid (VFA) removal efficiencies were more than 80%, 70% and 95%, respectively, up to organic loading rate 6.5 g COD/L/day. There were no operational problems such as serious scum formation or sludge washout. Protein degradation occurred prior to degradation during acidogenesis.

  9. Biochemistry and physiology of anaerobic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-05-18

    We welcome you to The Power of Anaerobes. This conference serves two purposes. One is to celebrate the life of Harry D. Peck, Jr.,who was born May 18, 1927 and would have celebrated his 73rd birthday at this conference. He died November 20, 1998. The second is to gather investigators to exchange views within the realm of anaerobic microbiology, an area in which tremendous progress has been seen during recent years. It is sufficient to mention discoveries of a new form of life (the archaea), hyper or extreme thermophiles, thermophilic alkaliphiles and anaerobic fungi. With these discoveries has come a new realization about physiological and metabolic properties of microorganisms, and this in turn has demonstrated their importance for the development, maintenance and sustenance of life on Earth.

  10. Kinetics and modeling of anaerobic digestion process

    DEFF Research Database (Denmark)

    2003-01-01

    Anaerobic digestion modeling started in the early 1970s when the need for design and efficient operation of anaerobic systems became evident. At that time not only was the knowledge about the complex process of anaerobic digestion inadequate but also there were computational limitations. Thus......, the first models were very simple and consisted of a limited number of equations. During the past thirty years much research has been conducted on the peculiarities of the process and on the factors that influence it on the one hand while an enormous progress took place in computer science on the other....... The combination of both parameters resulted in the development of more and more concise and complex models. In this chapter the most important models found in the literature are described starting from the simplest and oldest to the more recent and complex ones....

  11. Multivariate monitoring of anaerobic co-digestion

    DEFF Research Database (Denmark)

    Madsen, Michael; Holm-Nielsen, Jens Bo

    Anaerobic digestion processes for production of renewable energy in the form of biogas, and in the future hydrogen, are becoming increasingly important worldwide. Sustainable solutions for renewable energy production systems are given high political priority, amongst other things due to global...... warming and environmental concerns. Anaerobic digestion applied in agriculture can simultaneously convert heterogeneous biomasses and wastes from the primary agricultural sector and from the bio processing industries, for instance food processing, pharma, and biofuel production, into valuable organic...... fertiliser and renewable energy. Meanwhile, in order for the biogas sector to become a significant player in the energy su