WorldWideScience

Sample records for anaerobic bacterium thermoanaerobacter

  1. Ethanol production from wet-exploded wheat straw hydrolysate by thermophilic anaerobic bacterium Thermoanaerobacter BG1L1 in a continuous immobilized reactor

    DEFF Research Database (Denmark)

    Georgieva, Tania I.; Mikkelsen, Marie Just; Ahring, Birgitte Kiær

    2008-01-01

    to sugar mixtures of glucose and xylose ranging from 12 to 41 g/l. The organism, thermophilic anaerobic bacterium Thermoanaerobacter BG1L1, exhibited significant resistance to high levels of acetic acid (up to 10 g/l) and other metabolic inhibitors present in the hydrolysate. Although the hydrolysate...... was not detoxified, ethanol yield in a range of 0.39-0.42 g/g was obtained. Overall, sugar efficiency to ethanol was 68-76%. The reactor was operated continuously for approximately 143 days, and no contamination was seen without the use of any agent for preventing bacterial infections. The tested microorganism has...

  2. Continuous Ethanol Fermentation of Pretreated Lignocellulosic Biomasses, Waste Biomasses, Molasses and Syrup Using the Anaerobic, Thermophilic Bacterium Thermoanaerobacter italicus Pentocrobe 411.

    Science.gov (United States)

    Andersen, Rasmus Lund; Jensen, Karen Møller; Mikkelsen, Marie Just

    2015-01-01

    Lignocellosic ethanol production is now at a stage where commercial or semi-commercial plants are coming online and, provided cost effective production can be achieved, lignocellulosic ethanol will become an important part of the world bio economy. However, challenges are still to be overcome throughout the process and particularly for the fermentation of the complex sugar mixtures resulting from the hydrolysis of hemicellulose. Here we describe the continuous fermentation of glucose, xylose and arabinose from non-detoxified pretreated wheat straw, birch, corn cob, sugar cane bagasse, cardboard, mixed bio waste, oil palm empty fruit bunch and frond, sugar cane syrup and sugar cane molasses using the anaerobic, thermophilic bacterium Thermoanaerobacter Pentocrobe 411. All fermentations resulted in close to maximum theoretical ethanol yields of 0.47-0.49 g/g (based on glucose, xylose, and arabinose), volumetric ethanol productivities of 1.2-2.7 g/L/h and a total sugar conversion of 90-99% including glucose, xylose and arabinose. The results solidify the potential of Thermoanaerobacter strains as candidates for lignocellulose bioconversion.

  3. Continuous Ethanol Fermentation of Pretreated Lignocellulosic Biomasses, Waste Biomasses, Molasses and Syrup Using the Anaerobic, Thermophilic Bacterium Thermoanaerobacter italicus Pentocrobe 411.

    Directory of Open Access Journals (Sweden)

    Rasmus Lund Andersen

    Full Text Available Lignocellosic ethanol production is now at a stage where commercial or semi-commercial plants are coming online and, provided cost effective production can be achieved, lignocellulosic ethanol will become an important part of the world bio economy. However, challenges are still to be overcome throughout the process and particularly for the fermentation of the complex sugar mixtures resulting from the hydrolysis of hemicellulose. Here we describe the continuous fermentation of glucose, xylose and arabinose from non-detoxified pretreated wheat straw, birch, corn cob, sugar cane bagasse, cardboard, mixed bio waste, oil palm empty fruit bunch and frond, sugar cane syrup and sugar cane molasses using the anaerobic, thermophilic bacterium Thermoanaerobacter Pentocrobe 411. All fermentations resulted in close to maximum theoretical ethanol yields of 0.47-0.49 g/g (based on glucose, xylose, and arabinose, volumetric ethanol productivities of 1.2-2.7 g/L/h and a total sugar conversion of 90-99% including glucose, xylose and arabinose. The results solidify the potential of Thermoanaerobacter strains as candidates for lignocellulose bioconversion.

  4. Continuous Ethanol Fermentation of Pretreated Lignocellulosic Biomasses, Waste Biomasses, Molasses and Syrup Using the Anaerobic, Thermophilic Bacterium Thermoanaerobacter italicus Pentocrobe 411.

    Science.gov (United States)

    Andersen, Rasmus Lund; Jensen, Karen Møller; Mikkelsen, Marie Just

    2015-01-01

    Lignocellosic ethanol production is now at a stage where commercial or semi-commercial plants are coming online and, provided cost effective production can be achieved, lignocellulosic ethanol will become an important part of the world bio economy. However, challenges are still to be overcome throughout the process and particularly for the fermentation of the complex sugar mixtures resulting from the hydrolysis of hemicellulose. Here we describe the continuous fermentation of glucose, xylose and arabinose from non-detoxified pretreated wheat straw, birch, corn cob, sugar cane bagasse, cardboard, mixed bio waste, oil palm empty fruit bunch and frond, sugar cane syrup and sugar cane molasses using the anaerobic, thermophilic bacterium Thermoanaerobacter Pentocrobe 411. All fermentations resulted in close to maximum theoretical ethanol yields of 0.47-0.49 g/g (based on glucose, xylose, and arabinose), volumetric ethanol productivities of 1.2-2.7 g/L/h and a total sugar conversion of 90-99% including glucose, xylose and arabinose. The results solidify the potential of Thermoanaerobacter strains as candidates for lignocellulose bioconversion. PMID:26295944

  5. Hemicellulases from the ethanologenic thermophile Thermoanaerobacter ethanolicus and related anaerobic thermophiles. Final report, September 1992--June 1996

    Energy Technology Data Exchange (ETDEWEB)

    Wiegel, J.

    1998-05-01

    The SHORT TERM GOALS of this application were to characterize hemicellulases from anaerobic thermophiles on the biochemical and molecular level to extend the presently limited knowledge of hemicellulases in anaerobic thermophilic bacteria. This objective includes the following TASKS: (1) Traditional purification and biochemical/biophysical characterization of xylanases from the newly isolated, slightly alkalitolerant strain NDF190, and the slightly acid-tolerant strain YS485, both with high xylanolytic activities, and of the 4-0-methyl glucuronidase and arabinosidase from strain NDF190 and the acetyl (xylan) esterase from T. ethanolicus. This also includes determining the N-terminal sequences and obtaining gene probes. (2) Elucidation of the regulation of hemicellulolytic enzymes in anaerobic thermophiles. (3) To clone into E. coli and identify the multiplicity of the enzymes involved in hemicellulose degradation by T. ethanolicus and other suitable organisms. (4) To purify and characterize the recombinant enzymes with the goal of identifying the best enzymes for cloning into the ethanologenic T. ethanolicus to obtain an optimized hemicellulose utilization by this bacterium (one of our long term goals).

  6. Hemicellulases from the ethanologenic thermophile, Thermoanaerobacter ethanolicus and related anaerobic thermophiles. Final report, September 1992--June 1996

    Energy Technology Data Exchange (ETDEWEB)

    Wiegel, J.

    1998-09-01

    The short term goals of this application were to characterize hemicellulases from anaerobic thermophiles on the biochemical and molecular level to extend the presently limited knowledge of hemicellulases in anaerobic thermophilic bacteria. This objective includes the following tasks: (1) Traditional purification and biochemical/biophysical characterization of xylanases from the newly isolated, slightly alkalitolerant strain NDF190, and the slightly acid-tolerant strain YS485, both with high xylanolytic activities, and of the 4-O-methyl glucuronidase and arabinosidase from strain NDF190 and the acetyl (xylan) esterase from T. ethanolicus. This also includes determining the N-terminal sequences and obtaining gene probes. (2) Elucidation of the regulation of hemicellulolytic enzymes in anaerobic thermophiles. (3) To clone into E. coli and identify the multiplicity of the enzymes involved in hemicellulose degradation by T. ethanolicus and other suitable organisms. (4) To purify and characterize the recombinant enzymes with the goal of identifying the best enzymes for cloning into the ethanologenic T. ethanolicus to obtain an optimized hemicellulose utilization by this bacterium.

  7. Isolation and characterization of a new CO-utilizing strain, Thermoanaerobacter thermohydrosulfuricus subsp. carboxydovorans, isolated from a geothermal spring in Turkey.

    KAUST Repository

    Balk, Melike

    2009-08-23

    A novel anaerobic, thermophilic, Gram-positive, spore-forming, and sugar-fermenting bacterium (strain TLO) was isolated from a geothermal spring in Ayaş, Turkey. The cells were straight to curved rods, 0.4-0.6 microm in diameter and 3.5-10 microm in length. Spores were terminal and round. The temperature range for growth was 40-80 degrees C, with an optimum at 70 degrees C. The pH optimum was between 6.3 and 6.8. Strain TLO has the capability to ferment a wide variety of mono-, di-, and polysaccharides and proteinaceous substrates, producing mainly lactate, next to acetate, ethanol, alanine, H(2), and CO(2). Remarkably, the bacterium was able to grow in an atmosphere of up to 25% of CO as sole electron donor. CO oxidation was coupled to H(2) and CO(2) formation. The G + C content of the genomic DNA was 35.1 mol%. Based on 16S rRNA gene sequence analysis and the DNA-DNA hybridization data, this bacterium is most closely related to Thermoanaerobacter thermohydrosulfuricus and Thermoanaerobacter siderophilus (99% similarity for both). However, strain TLO differs from Thermoanaerobacter thermohydrosulfuricus in important aspects, such as CO-utilization and lipid composition. These differences led us to propose that strain TLO represents a subspecies of Thermoanaerobacter thermohydrosulfuricus, and we therefore name it Thermoanaerobacter thermohydrosulfuricus subsp. carboxydovorans.

  8. Characterization of Electrical Current-Generation Capabilities from Thermophilic Bacterium Thermoanaerobacter pseudethanolicus Using Xylose, Glucose, Cellobiose, or Acetate with Fixed Anode Potentials.

    Science.gov (United States)

    Lusk, Bradley G; Khan, Qaiser Farid; Parameswaran, Prathap; Hameed, Abdul; Ali, Naeem; Rittmann, Bruce E; Torres, Cesar I

    2015-12-15

    Thermoanaerobacter pseudethanolicus 39E (ATCC 33223), a thermophilic, Fe(III)-reducing, and fermentative bacterium, was evaluated for its ability to produce current from four electron donors-xylose, glucose, cellobiose, and acetate-with a fixed anode potential (+ 0.042 V vs SHE) in a microbial electrochemical cell (MXC). Under thermophilic conditions (60 °C), T. pseudethanolicus produced high current densities from xylose (5.8 ± 2.4 A m(-2)), glucose (4.3 ± 1.9 A m(-2)), and cellobiose (5.2 ± 1.6 A m(-2)). It produced insignificant current when grown with acetate, but consumed the acetate produced from sugar fermentation to produce electrical current. Low-scan cyclic voltammetry (LSCV) revealed a sigmoidal response with a midpoint potential of -0.17 V vs SHE. Coulombic efficiency (CE) varied by electron donor, with xylose at 34.8% ± 0.7%, glucose at 65.3% ± 1.0%, and cellobiose at 27.7% ± 1.5%. Anode respiration was sustained over a pH range of 5.4-8.3, with higher current densities observed at higher pH values. Scanning electron microscopy showed a well-developed biofilm of T. pseudethanolicus on the anode, and confocal laser scanning microscopy demonstrated a maximum biofilm thickness (Lf) greater than ~150 μm for the glucose-fed biofilm.

  9. Growth of a Strictly Anaerobic Bacterium on Furfural (2-Furaldehyde)

    OpenAIRE

    Brune, Gerhard; Schoberth, Siegfried M.; Sahm, Hermann

    1983-01-01

    A strictly anaerobic bacterium was isolated from a continuous fermentor culture which converted the organic constituents of sulfite evaporator condensate to methane and carbon dioxide. Furfural is one of the major components of this condensate. This furfural isolate could degrade furfural as the sole source of carbon and energy in a defined mineral-vitamin-sulfate medium. Acetic acid was the major fermentation product. This organism could also use ethanol, lactate, pyruvate, or fumarate and c...

  10. RNA-Seq-based analysis of cold shock response in Thermoanaerobacter tengcongensis, a bacterium harboring a single cold shock protein encoding gene.

    Directory of Open Access Journals (Sweden)

    Bo Liu

    Full Text Available BACKGROUND: Although cold shock responses and the roles of cold shock proteins in microorganisms containing multiple cold shock protein genes have been well characterized, related studies on bacteria possessing a single cold shock protein gene have not been reported. Thermoanaerobacter tengcongensis MB4, a thermophile harboring only one known cold shock protein gene (TtescpC, can survive from 50° to 80 °C, but has poor natural competence under cold shock at 50 °C. We therefore examined cold shock responses and their effect on natural competence in this bacterium. RESULTS: The transcriptomes of T. tengcongensis before and after cold shock were analyzed by RNA-seq and over 1200 differentially expressed genes were successfully identified. These genes were involved in a wide range of biological processes, including modulation of DNA replication, recombination, and repair; energy metabolism; production of cold shock protein; synthesis of branched amino acids and branched-chain fatty acids; and sporulation. RNA-seq analysis also suggested that T. tengcongensis initiates cell wall and membrane remodeling processes, flagellar assembly, and sporulation in response to low temperature. Expression profiles of TtecspC and failed attempts to produce a TtecspC knockout strain confirmed the essential role of TteCspC in the cold shock response, and also suggested a role of this protein in survival at optimum growth temperature. Repression of genes encoding ComEA and ComEC and low energy metabolism levels in cold-shocked cells are the likely basis of poor natural competence at low temperature. CONCLUSION: Our study demonstrated changes in global gene expression under cold shock and identified several candidate genes related to cold shock in T. tengcongensis. At the same time, the relationship between cold shock response and poor natural competence at low temperature was preliminarily elucidated. These findings provide a foundation for future studies on genetic

  11. High ethanol producing derivatives of Thermoanaerobacter ethanolicus

    Science.gov (United States)

    Ljungdahl, Lars G.; Carriera, Laura H.

    1983-01-01

    Derivatives of the newly discovered microorganism Thermoanaerobacter ethanolicus which under anaerobic and thermophilic conditions continuously ferment substrates such as starch, cellobiose, glucose, xylose and other sugars to produce recoverable amounts of ethanol solving the problem of fermentations yielding low concentrations of ethanol using the parent strain of the microorganism Thermoanaerobacter ethanolicus are disclosed. These new derivatives are ethanol tolerant up to 10% (v/v) ethanol during fermentation. The process includes the use of an aqueous fermentation medium, containing the substrate at a substrate concentration greater than 1% (w/v).

  12. Thermoanaerobacter pentosaceus sp. nov., an anaerobic, extreme thermophilic, high ethanol-yielding bacterium isolated from household waste

    DEFF Research Database (Denmark)

    Tomás, Ana Faria; Karakashev, Dimitar Borisov; Angelidaki, Irini

    2013-01-01

    and xylose, but not cellulose, Avicel®, mannitol, inositol, glycerol, acetate, lactate, ethanol, butanol or peptone. Ethanol was the major fermentation product and a maximum yield of 1.39 mol of ethanol per mol xylose was achieved when sulphite was added to the cultivation medium. Thiosulphite...

  13. Thermoanaerobacter mathranii sp. nov., an ethanol-producing, extremely thermophilic anaerobic bacterium from a hot spring in Iceland

    DEFF Research Database (Denmark)

    Larsen, L.; Nielsen, P.; Ahring, B.K.

    1997-01-01

    occurred in the range of 50-75 degrees C. The pH range for growth was 4.7-8.8, with an optimum at pH 7.0. Strain A3 was sensitive to tetracycline, chloramphenicol, penicillin G. neomycin, and vancomycin at 100 mg/l but was not sensitive to chloramphenicol and neomycin at 10 mg/l, which indicates...

  14. Aminomonas paucivorans gen. nov., sp. nov., a mesophilic, anaerobic, amino-acid-utilizing bacterium

    OpenAIRE

    Baena, S.; Fardeau, Marie-Laure; Ollivier, Bernard; Labat, Marc; Thomas, P; Garcia, Jean-Louis; Patel, B.K.C.

    1999-01-01

    A novel, asaccharolytic, amino-acid-degrading bacterium, designated strain GLU-3T, was isolated from an anaerobic lagoon of a dairy wastewater treatment plant. Strain GLU-3T stained Gram-negative and was an obligately anaerobic, non-spore-forming, slightly curved, rod-shaped bacterium (0.3 x 4.0-6.0 micrometers) which existed singly or in pairs. The DNA G+C content was 43 mol%. Optimum growth occurred at 35°C and pH 7.5 on arginine, histidine, threonine and glycine. Acetate was the end-produc...

  15. Isolation and characterization of an anaerobic ruminal bacterium capable of degrading hydrolyzable tannins.

    OpenAIRE

    Nelson, K E; A. N. Pell; Schofield, P; Zinder, S

    1995-01-01

    An anaerobic diplococcoid bacterium able to degrade hydrolyzable tannins was isolated from the ruminal fluid of a goat fed desmodium (Desmodium ovalifolium), a tropical legume which contains levels as high as 17% condensed tannins. This strain grew under anaerobic conditions in the presence of up to 30 g of tannic acid per liter and tolerated a range of phenolic monomers, including gallic, ferulic, and p-coumaric acids. The predominant fermentation product from tannic acid breakdown was pyrog...

  16. Xylan degradation by the anaerobic bacterium Bacteroides xylanolyticus.

    OpenAIRE

    Schyns, P.J.Y.M.J.

    1997-01-01

    Plant cell walls are the major reservoir of fixed carbon in nature. The mineralization of the fiber material, the so called lignocellulosic complex, proceeds almost exclusively by microbial processes in both aerobic and anaerobic environments. In anaerobic microbial processes the energy of the plant polymers can be conserved in fermentation products. The valorization of agricultural waste plant materials can consist of low and high technological processes. These include the production of biog...

  17. Cloning, sequencing, and sequence analysis of two novel plasmids from the thermophilic anaerobic bacterium Anaerocellum thermophilum

    DEFF Research Database (Denmark)

    Clausen, Anders; Mikkelsen, Marie Just; Schrøder, I.;

    2004-01-01

    The nucleotide sequence of two novel plasmids isolated from the extreme thermophilic anaerobic bacterium Anaerocellum thermophilum DSM6725 (A. thermophilum), growing optimally at 70degreesC, has been determined. pBAS2 was found to be a 3653 bp plasmid with a GC content of 43%, and the sequence...

  18. A thermostable cyclodextrin glycosyltransferase from Thermoanaerobacter sp. 5K

    Science.gov (United States)

    Cyclodextrin glycosyltransferase (CGTase) from the thermophilic anaerobe Thermoanaerobacter sp. 5K was purified and characterized. The enzyme was purified with ammonium sulfate precipitation followed by a-CD-bound, epoxy-activated Sepharose 6B affinity chromatography. Molecular weight of the purifie...

  19. Dehalobacter restrictus gen. nov. and sp. nov., a strictly anaerobic bacterium that reductively dechlorinates tetra- and trichloroethene in an anaerobic respiration

    NARCIS (Netherlands)

    Holliger, C; Hahn, D; Harmsen, H; Ludwig, W; Schumacher, W; Tindall, B; Vazquez, F; Weiss, N; Zehnder, AJB

    1998-01-01

    The highly enriched anaerobic bacterium that couples the reductive dechlorination of tetrachloroethene to growth, previously referred to as PER-K23, was obtained in pure culture and characterized. The bacterium, which does not form spores, is a small, gram-negative rod with one lateral flagellum. It

  20. Anaerobic CO2 fixation by the acetogenic bacterium Moorella thermoacetica

    Energy Technology Data Exchange (ETDEWEB)

    Hu, P; Rismani-Yazdi, H; Stephanopoulos, G

    2013-05-16

    Anaerobic bacteria such as Moorella thermoacetica have the capacity of fixing carbon dioxide with carbon monoxide and hydrogen for the production of ethanol, acetic acid, and other useful chemicals. In this study, we evaluated the fixation of CO2 for the production of acetic acid, as a product in its own right but also as precursor for lipid synthesis by oleaginous organisms. We achieved maximum cell optical density of 11.3, acetic acid titer of 31 g/L, and productivity of 0.55 g/L-h at CO mass-transfer rate of 83 mM/h. We also showed electron availability by CO mass transfer limited the process at CO mass transfer rates lower than 30 mM/h. Further enhancement of mass-transfer rate removed such limitations in favor of biological kinetics as main limitation. This work underlines the potential of microbial processes for converting syngas to fuel and chemical products in processes suitable for distributed feedstock utilization. (c) 2013 American Institute of Chemical Engineers AIChE J, 59: 3176-3183, 2013

  1. p-cresol methylhydroxylase from a denitrifying bacterium involved in anaerobic degradation of p-cresol.

    OpenAIRE

    Hopper, D. J.; Bossert, I D; Rhodes-Roberts, M E

    1991-01-01

    A bacterium, strain PC-07, previously isolated as part of a coculture capable of growing on p-cresol under anaerobic conditions with nitrate as the acceptor was identified as an Achromobacter sp. The first enzyme of the pathway, p-cresol methylhydroxylase, which converts its substrate into p-hydroxybenzyl alcohol, was purified. The enzyme had an Mr of 130,000 and the spectrum of a flavocytochrome. It was composed of flavoprotein subunits of Mr 54,000 and cytochrome subunits of Mr 12,500. The ...

  2. Draft genome of an Aerophobetes bacterium reveals a facultative lifestyle in deep-sea anaerobic sediments

    Institute of Scientific and Technical Information of China (English)

    Yong Wang; Zhao-Ming Gao; Jiang-Tao Li; Salim Bougouffa; Ren Mao Tian; Vladimir B.Bajic; Pei-Yuan Qian

    2016-01-01

    Aerophobetes (or CD12) is a recently defined bacterial phylum,of which the metabolic processes and ecological importance remain unclear.In the present study,we obtained the draft genome of an Aerophobetes bacterium TCS1 from saline sediment near the Thuwal cold seep in the Red Sea using a genome binning method.Analysis of 16S rRNA genes of TCS1 and close relatives revealed wide distribution of Aerophobetes in deep-sea sediments.Phylogenetic relationships showed affinity between Aerophobetes TCS1 and some thermophilic bacterial phyla.The genome of TCS1 (at least 1.27 Mbp)contains a full set of genes encoding core metabolic pathways,including glycolysis and pyruvate fermentation to produce acetyl-CoA and acetate.The identification of cross-membrane sugar transporter genes further indicates its potential ability to consume carbohydrates preserved in the sediment under the microbial mat.Aerophobetes bacterium TCS1 therefore probably carried out saccharolytic and fermentative metabolism.The genes responsible for autotrophic synthesis of acetyl-CoA via the Wood-Ljungdahl pathway were also found in the genome.Phylogenetic study of the essential genes for the Wood-Ljungdahl pathway implied relative independence of Aerophobetes bacterium from the known acetogens and methanogens.Compared with genomes of acetogenic bacteria,Aerophobetes bacterium TCS 1 genome lacks the genes involved in nitrogen metabolism,sulfur metabolism,signal transduction and cell motility.The metabolic activities of TCS1 might depend on geochemical conditions such as supplies of CO2,hydrogen and sugars,and therefore the TCS1 might be a facultative bacterium in anaerobic saline sediments near cold seeps.

  3. Draft genome of an Aerophobetes bacterium reveals a facultative lifestyle in deep-sea anaerobic sediments

    KAUST Repository

    Wang, Yong

    2016-07-01

    Aerophobetes (or CD12) is a recently defined bacterial phylum, of which the metabolic processes and ecological importance remain unclear. In the present study, we obtained the draft genome of an Aerophobetes bacterium TCS1 from saline sediment near the Thuwal cold seep in the Red Sea using a genome binning method. Analysis of 16S rRNA genes of TCS1 and close relatives revealed wide distribution of Aerophobetes in deep-sea sediments. Phylogenetic relationships showed affinity between Aerophobetes TCS1 and some thermophilic bacterial phyla. The genome of TCS1 (at least 1.27 Mbp) contains a full set of genes encoding core metabolic pathways, including glycolysis and pyruvate fermentation to produce acetyl-CoA and acetate. The identification of cross-membrane sugar transporter genes further indicates its potential ability to consume carbohydrates preserved in the sediment under the microbial mat. Aerophobetes bacterium TCS1 therefore probably carried out saccharolytic and fermentative metabolism. The genes responsible for autotrophic synthesis of acetyl-CoA via the Wood–Ljungdahl pathway were also found in the genome. Phylogenetic study of the essential genes for the Wood–Ljungdahl pathway implied relative independence of Aerophobetes bacterium from the known acetogens and methanogens. Compared with genomes of acetogenic bacteria, Aerophobetes bacterium TCS1 genome lacks the genes involved in nitrogen metabolism, sulfur metabolism, signal transduction and cell motility. The metabolic activities of TCS1 might depend on geochemical conditions such as supplies of CO2, hydrogen and sugars, and therefore the TCS1 might be a facultative bacterium in anaerobic saline sediments near cold seeps. © 2016, Science China Press and Springer-Verlag Berlin Heidelberg.

  4. Roles of Thioredoxins in the Obligate Anaerobic Green Sulfur Photosynthetic Bacterium Chlorobaculum tepidum

    Institute of Scientific and Technical Information of China (English)

    Naomi Hosoya-Matsuda; Kazuhito Inoue; Toru Hisabori

    2009-01-01

    Thioredoxin is a small ubiquitous protein that is involved in the dithiol-disulfide exchange reaction, by way of two cysteine residues located on the molecule surface. In order to elucidate the role of thioredoxin in Chlorobaculum tepidum, an anaerobic green sulfur bacterium that uses various inorganic sulfur compounds and H2S as electron donors under strict anaerobic conditions for growth, we applied the thioredoxin affinity chromatography method (Motohashi et al., 2001). In this study, 37 cytoplasmic proteins were captured as thioredoxin target candidates, including proteins involved in sulfur assimilation. Furthermore, six of the candidate proteins were members of the reductive tricarboxylic acid cycle (pyruvate orthophosphate dikinase, pyruvate flavodoxin/ferredoxin oxidoreductase, α-oxoglutarate synthase, citrate lyase, citrate synthase, malate dehydrogenase). The redox sensitivity of three enzymes was then examined: citrate lyase, citrate synthase, and malate dehydrogenase, using their recombinant proteins. Based on the information relating to the target proteins, the significance of thioredoxin as a reductant for the metabolic pathway in the anaerobic photosyn-thetic bacteria is discussed.

  5. Identification of a denitrifying bacterium and verification of its anaerobic ammonium oxidation ability

    Institute of Scientific and Technical Information of China (English)

    HU; Baolan; ZHENG; Ping; LI; Jinye; XU; Xiangyang; JIN; Rencun

    2006-01-01

    A strain D3 of denitrifying bacterium was isolated from an anammox reactor, and identified as Pseudomonas mendocina based on the morphological and physiological assay, Vitek test,Biolog test, (G+C) mol% content, and 16S rDNA phylogenetic analysis. As a typical denitrifying bactration of 88.5 mg N/L. The optimal pH and growth temperature were 7.84 and 34.9℃, respectively.Strain D3 was able to oxidize ammonia under anaerobic condition. The maximum nitrate and ammoof ammonia to nitrate was 1:1.91. Electron microscopic observation revealed peculiar cell inclusions in strain D3. Because of its relation to anammox activity, strain D3 was presumed to be anammoxosome.The present investigation proved that denitrifying bacteria have the anammox ability, and the results have engorged the range of anammox populations.

  6. The glucose transport system of the hyperthermophilic anaerobic bacterium Thermotoga neapolitana

    Energy Technology Data Exchange (ETDEWEB)

    Galperin, M.Y.; Noll, K.M.; Romano, A.H. [Univ. of Connecticut, Storrs, CT (United States)

    1996-08-01

    The glucose transport system of the extremely thermophilic anaerobic bacterium Thermotoga neapolitana was studied with the nonmetabolizable glucose analog 2-deoxy-D-glucose (2-DOG). T. neapolitana accumulated 2-DOG against a concentration gradient in an intracellular free sugar pool that was exchangeable with external D-glucose. This active transport of 2-DOG was dependent upon the presence of sodium ion and an external source of energy, such as pyruvate, and was inhibited by arsenate and gramicidin D. There was no phosphoenolpyruvate-dependent phosphorylation of glucose, 2-DOG, or fructose by cell extracts or toluene-treated cells, indicating the absence of a phosphoenolpyruvate:sugar phosphotransferase system. These data indicate that D-glucose is taken up by T.neapolitana via an active transport system that is energized by an ion gradient generated by ATP, derived from substrate-level phosphorylation. 33 refs., 3 figs., 1 tab.

  7. A novel electrophototrophic bacterium Rhodopseudomonas palustris strain RP2, exhibits hydrocarbonoclastic potential in anaerobic environments

    Directory of Open Access Journals (Sweden)

    Krishnaveni Venkidusamy

    2016-07-01

    Full Text Available An electrophototrophic, hydrocarbonoclastic bacterium Rhodopseudomonas palustris stain RP2 was isolated from the anodic biofilms of hydrocarbon fed microbial electrochemical remediation systems (MERS. Salient properties of the strain RP2 were direct electrode respiration, dissimilatory metal oxide reduction, spore formation, anaerobic nitrate reduction, free living diazotrophy and the ability to degrade n-alkane components of petroleum hydrocarbons in anoxic, photic environments. In acetate fed microbial electrochemical cells, a maximum current density of 305±10 mA/m2 (1000Ω was generated (power density 131.65±10 mW/m2 by strain RP2 with a coulombic efficiency of 46.7 ± 1.3%. Cyclic voltammetry studies showed that anaerobically grown cells of strain RP2 is electrochemically active and likely to transfer electrons extracellularly to solid electron acceptors through membrane bound compounds, however, aerobically grown cells lacked the electrochemical activity. The ability of strain RP2 to produce current (maximum current density 21±3 mA/m2; power density 720±7 µW/m2, 1000Ω using petroleum hydrocarbon (PH as a sole energy source was also examined using an initial concentration of 800 mg l-1 of diesel range hydrocarbons (C9- C36 with a concomitant removal of 47.4 ± 2.7% hydrocarbons in MERS. Here, we also report the first study that shows an initial evidence for the existence of a hydrocarbonoclastic behavior in the strain RP2 when grown in different electron accepting and illuminated conditions (anaerobic and MERS degradation. Such observations reveal the importance of photoorganotrophic growth in the utilization of hydrocarbons from contaminated environments. Identification of such novel petrochemical hydrocarbon degrading electricigens, not only expands the knowledge on the range of bacteria known for the hydrocarbon bioremediation but also shows a biotechnological potential that goes well beyond its applications to MERS.

  8. A Novel Electrophototrophic Bacterium Rhodopseudomonas palustris Strain RP2, Exhibits Hydrocarbonoclastic Potential in Anaerobic Environments.

    Science.gov (United States)

    Venkidusamy, Krishnaveni; Megharaj, Mallavarapu

    2016-01-01

    An electrophototrophic, hydrocarbonoclastic bacterium Rhodopseudomonas palustris stain RP2 was isolated from the anodic biofilms of hydrocarbon fed microbial electrochemical remediation systems (MERS). Salient properties of the strain RP2 were direct electrode respiration, dissimilatory metal oxide reduction, spore formation, anaerobic nitrate reduction, free living diazotrophy and the ability to degrade n-alkane components of petroleum hydrocarbons (PH) in anoxic, photic environments. In acetate fed microbial electrochemical cells, a maximum current density of 305 ± 10 mA/m(2) (1000Ω) was generated (power density 131.65 ± 10 mW/m(2)) by strain RP2 with a coulombic efficiency of 46.7 ± 1.3%. Cyclic voltammetry studies showed that anaerobically grown cells of strain RP2 is electrochemically active and likely to transfer electrons extracellularly to solid electron acceptors through membrane bound compounds, however, aerobically grown cells lacked the electrochemical activity. The ability of strain RP2 to produce current (maximum current density 21 ± 3 mA/m(2); power density 720 ± 7 μW/m(2), 1000 Ω) using PH as a sole energy source was also examined using an initial concentration of 800 mg l(-1) of diesel range hydrocarbons (C9-C36) with a concomitant removal of 47.4 ± 2.7% hydrocarbons in MERS. Here, we also report the first study that shows an initial evidence for the existence of a hydrocarbonoclastic behavior in the strain RP2 when grown in different electron accepting and illuminated conditions (anaerobic and MERS degradation). Such observations reveal the importance of photoorganotrophic growth in the utilization of hydrocarbons from contaminated environments. Identification of such novel petrochemical hydrocarbon degrading electricigens, not only expands the knowledge on the range of bacteria known for the hydrocarbon bioremediation but also shows a biotechnological potential that goes well beyond its applications to MERS. PMID:27462307

  9. Periplasmic Manganese in a Subsurface Bacterium During Anaerobic Growth on Birnessite

    Science.gov (United States)

    Langley, S.; Glasauer, S.; Beveridge, T.

    2002-12-01

    In subsurface environments, where oxygen is not metabolically available for energy production, bacteria use alternate terminal electron acceptors (TEAs) to respire and grow. Anaerobic TEAs include, but are not limited to, Fe3+ and Mn4+. These metals can be present as mineral phases (e.g., ferrihydrite and hematite in the case of iron; birnessite and pyrolusite in the case of manganese). Bacteria bind strongly to minerals and reduce the metal by a process called dissimilatory metal reduction (DMR). Shewanella putrefaciens strain CN32 is a Gram-negative bacterium capable of DMR. In previous reports, when this organism was grown on birnessite, we observed cytoplasmic granules of a Mn-rich mineral phase, and an unusual deposition of electron-dense material within the periplasm (that region of the cell located between the inner and outer membranes). In an attempt to characterize the periplasmic precipitates, CN32 was inoculated into an anaerobic defined medium (DM), supplemented with 20 mM Mn (birnessite) and incubated in an anaerobic chamber. Reduced and total Mn concentrations were monitored using atomic absorption spectrophotometry, and cell numbers determined by viable counts on trypticase soy agar. TEM, combined with energy dispersive X-ray spectroscopy (EDS), was used to localize and confirm the presence of any Mn-rich depositions. Soluble Mn concentration increased steadily after inoculation, indicating active metabolism and metal reduction by the cells. Viable counts indicated that the cells reached their maximum number on day 9. Stained thin sections from 4-day-old samples examined with TEM showed cells in close association with the mineral. Secondary mineral products derived from birnessite reduction were evident (e.g., manganese phosphate). TEM-EDS also revealed the presence of ~30 nm-thick deposits of electron-dense material in the periplasm of some cells. However, examination of similar sections which had not been previously stained with osmium tetroxide

  10. Evaluation of continuous ethanol fermentation of dilute-acid corn stover hydrolysate using thermophilic anaerobic bacterium Thermoanaerobacter BG1L1

    DEFF Research Database (Denmark)

    Georgieva, Tania I.; Ahring, Birgitte Kiær

    2007-01-01

    Dilute sulfuric acid pretreated corn stover is potential feedstock of industrial interest for second generation fuel ethanol production. However, the toxicity of corn stover hydrolysate (PCS) has been a challenge for fermentation by recombinant xylose fermenting organisms. In this work, the therm......Dilute sulfuric acid pretreated corn stover is potential feedstock of industrial interest for second generation fuel ethanol production. However, the toxicity of corn stover hydrolysate (PCS) has been a challenge for fermentation by recombinant xylose fermenting organisms. In this work...... fermented yielding ethanol of 0.39–0.42 g/g-sugars consumed. Xylose was nearly completely utilized (89–98%) for PCS up to 10% TS, whereas at 15% TS, xylose conversion was lowered to 67%. The reactor was operated continuously for 135 days, and no contamination was seen without the use of any agent...

  11. Desulfatirhabdium butyrativorans gen. nov., sp. nov., a butyrate-oxidizing, sulfate-reducing bacterium isolated from an anaerobic bioreactor

    NARCIS (Netherlands)

    Balk, M.; Altinbas, M.; Rijpstra, W.I.C.; Sinninghe Damste, J.S.; Stams, A.J.M.

    2008-01-01

    A novel sulfate-reducing bacterium, strain HB1T, was isolated from an upflow anaerobic sludge blanket (UASB) reactor treating paper-mill wastewater operated at 37 °C. Cells of strain HB1T were oval to rod-shaped, 1¿1.3 µm wide and 2.6¿3.5 µm long and Gram-negative. The optimum temperature for growth

  12. Dethiosulfovibrio peptidovorans gen. nov., sp. nov., a new anaerobic, slightly halophilic, thiosulfate-reducing bacterium from corroding offshore oil wells

    OpenAIRE

    Magot, M; Ravot, G; Campaignolle, X.; Ollivier, Bernard; Patel, B.K.C.; Fardeau, Marie-Laure; Thomas, P; Crolet, J.L.; Garcia, Jean-Louis

    1997-01-01

    A strictly anaerobic thiosulfate-reducing bacterium was isolated from a corroding offshore oil well in Congo and was designated strain SEBR 4207(T). Pure culture of the strain induced a very active pitting corrosion of mild steel, with penetration rates of up to 4 mm per year. This constitutes the first experimental evidence of the involvement of thiosulfate reduction in microbial corrosion of steel. Strain SEBR 4207(T) cells were vibrios (3 to 5 by 1 micrometer), stained gram negative, and p...

  13. Establishment of a Genetic Transformation System and Its Application in Thermoanaerobacter tengcongensis

    Institute of Scientific and Technical Information of China (English)

    Bo Liu; Chuan Wang; Haihua Yang; Huarong Tan

    2012-01-01

    The whole-genome sequence of Thermoanaerobacter tengcongensis,an anaerobic thermophilic bacterium isolated from the Tengchong hot spring in China,was completed in 2002.However,in vivo studies on the genes of this strain have been hindered in the absence of genetic manipulation system.In order to establish such a system,the plasmid pBOL01 containing the replication origin of the T.tengcongensis chromosome and a kanamycin resistance cassette,in which kanamycin resistance gene expression was controlled by the tte1482 promoter from T.tengcongensis,was constructed and introduced into T.tengcongensis via electroporation.Subsequently,the high transformation efficiency occurred when using freshly cultured T.tengcongensis cells without electroporation treatment,suggesting that T.tengcongensis is naturally competent under appropriate growth stage.A genetic transformation system for this strain was then established based on these important components,and this system was proved to be available for studying physiological characters of T.tengcongensis in vivo by means of hisG gene disruption and complementation.

  14. Roseimarinus sediminis gen. nov., sp. nov., a facultatively anaerobic bacterium isolated from coastal sediment.

    Science.gov (United States)

    Wu, Wen-Jie; Liu, Qian-Qian; Chen, Guan-Jun; Du, Zong-Jun

    2015-07-01

    A Gram-stain-negative, facultatively anaerobic, non-motile and pink-pigmented bacterium, designated strain HF08(T), was isolated from marine sediment of the coast of Weihai, China. Cells were rod-shaped, and oxidase- and catalase-positive. The isolate grew optimally at 33 °C, at pH 7.5-8.0 and with 2-3% (w/v) NaCl. The dominant cellular fatty acids were iso-C15 : 0, anteiso-C15 : 0 and iso-C14 : 0. Menaquinone 7 (MK-7) was the major respiratory quinone and the DNA G+C content was 44.8 mol%. Phylogenetic analysis based on 16S rRNA gene sequences revealed that the isolate was a member of the class Bacteroidia, and shared 88-90% sequence similarity with the closest genera Sunxiuqinia, Prolixibacter, Draconibacterium, Mariniphaga and Meniscus. Based on the phylogenetic and phenotypic evidence presented, a novel species in a new genus of the family Prolixibacteraceae is proposed, with the name Roseimarinus sediminis gen. nov., sp. nov. The type strain of Roseimarinus sediminis is HF08(T) ( = KCTC 42261(T) = CICC 10901(T)). PMID:25866024

  15. Respiration and respiratory enzyme activity in aerobic and anaerobic cultures of the marine denitrifying bacterium, Pseudomonas perfectomarinus

    Science.gov (United States)

    Packard, T. T.; Garfield, P. C.; Martinez, R.

    1983-03-01

    Oxygen consumption, nitrate reduction, respiratory electron transport activity, and nitrate reductase activity were measured in aerobic and anaerobic cultures of the marine bacterium, Pseudomonas perfectomarinus. The respiratory electron transport activity was closely correlated with oxygen consumption ( r = 0.98) in aerobic cultures and nearly as well correlated with nitrate reductase activity ( r = 0.91) and nitrate reduction ( r = 0.85) in anaerobic cultures. It was also well correlated with biomass in both aerobic ( r = 0.99) and anaerobic ( r = 0.94) cultures supporting the use of tetrazolium reduction as an index of living biomass. Time courses of nitrate and nitrate in the anaerobic cultures demonstrated that at nitrate concentrations above 1 mM, denitrification proceeds stepwise. Time courses of pH in anaerobic cultures revealed a rise from 7 to 8.5 during nitrite reduction indicating net proton utilization. This proton utilization is predicted by the stoichiometry of denitrification. Although the experiments were not under 'simulated in situ' conditions, the results are relevant to studies of denitrification, to bacterial ATP production, and to the respiratory activity of marine plankton in the ocean.

  16. Candidatus Desulfofervidus auxilii, a hydrogenotrophic sulfate-reducing bacterium involved in the thermophilic anaerobic oxidation of methane.

    Science.gov (United States)

    Krukenberg, Viola; Harding, Katie; Richter, Michael; Glöckner, Frank Oliver; Gruber-Vodicka, Harald R; Adam, Birgit; Berg, Jasmine S; Knittel, Katrin; Tegetmeyer, Halina E; Boetius, Antje; Wegener, Gunter

    2016-09-01

    The anaerobic oxidation of methane (AOM) is mediated by consortia of anaerobic methane-oxidizing archaea (ANME) and their specific partner bacteria. In thermophilic AOM consortia enriched from Guaymas Basin, members of the ANME-1 clade are associated with bacteria of the HotSeep-1 cluster, which likely perform direct electron exchange via nanowires. The partner bacterium was enriched with hydrogen as sole electron donor and sulfate as electron acceptor. Based on phylogenetic, genomic and metabolic characteristics we propose to name this chemolithoautotrophic sulfate reducer Candidatus Desulfofervidus auxilii. Ca. D. auxilii grows on hydrogen at temperatures between 50°C and 70°C with an activity optimum at 60°C and doubling time of 4-6 days. Its genome draft encodes for canonical sulfate reduction, periplasmic and soluble hydrogenases and autotrophic carbon fixation via the reductive tricarboxylic acid cycle. The presence of genes for pili formation and cytochromes, and their similarity to genes of Geobacter spp., indicate a potential for syntrophic growth via direct interspecies electron transfer when the organism grows in consortia with ANME. This first ANME-free enrichment of an AOM partner bacterium and its characterization opens the perspective for a deeper understanding of syntrophy in anaerobic methane oxidation. PMID:26971539

  17. Structure and morphology of magnetite anaerobically-produced by a marine magnetotactic bacterium and a dissimilatory iron-reducing bacterium

    Science.gov (United States)

    Sparks, N.H.C.; Mann, S.; Bazylinski, D.A.; Lovley, D.R.; Jannasch, H.W.; Frankel, R.B.

    1990-01-01

    Intracellular crystals of magnetite synthesized by cells of the magnetotactic vibroid organism, MV-1, and extracellular crystals of magnetite produced by the non-magnetotactic dissimilatory iron-reducing bacterium strain GS-15, were examined using high-resolution transmission electron microscopy, electron diffraction and 57Fe Mo??ssbauer spectroscopy. The magnetotactic bacterium contained a single chain of approximately 10 crystals aligned along the long axis of the cell. The crystals were essentially pure stoichiometric magnetite. When viewed along the crystal long axis the particles had a hexagonal cross-section whereas side-on they appeared as rectangules or truncated rectangles of average dimension, 53 ?? 35 nm. These findings are explained in terms of a three-dimensional morphology comprising a hexagonal prism of {110} faces which are capped and truncated by {111} end faces. Electron diffraction and lattice imaging studies indicated that the particles were structurally well-defined single crystals. In contrast, magnetite particles produced by the strain, GS-15 were irregular in shape and had smaller mean dimensions (14 nm). Single crystals were imaged but these were not of high structural perfection. These results highlight the influence of intracellular control on the crystallochemical specificity of bacterial magnetites. The characterization of these crystals is important in aiding the identification of biogenic magnetic materials in paleomagnetism and in studies of sediment magnetization. ?? 1990.

  18. Structure and morphology of magnetite anaerobically-produced by a marine magnetotactic bacterium and a dissimilatory iron-reducing bacterium

    Science.gov (United States)

    Sparks, N. H. C.; Mann, S.; Bazylinski, D. A.; Lovley, D. R.; Jannasch, H. W.; Frankel, R. B.

    1990-04-01

    Intracellular crystals of magnetite synthesized by cells of the magnetotactic vibroid organism, MV-1, and extracellular crystals of magnetite produced by the non-magnetotactic dissimilatory iron-reducing bacterium strain GS-15, were examined using high-resolution transmission electron microscopy, electron diffraction and 57Fe Mo¨ssbauer spectroscopy. The magnetotactic bacterium contained a single chain of approximately 10 crystals aligned along the long axis of the cell. The crystals were essentially pure stoichiometric magnetite. When viewed along the crystal long axis the particles had a hexagonal cross-section whereas side-on they appeared as rectangules or truncated rectangles of average dimension, 53 × 35 nm. These findings are explained in terms of a three-dimensional morphology comprising a hexagonal prism of 110 faces which are capped and truncated by 111 end faces. Electron diffraction and lattice imaging studies indicated that the particles were structurally well-defined single crystals. In contrast, magnetite particles produced by the strain, GS-15 were irregular in shape and had smaller mean dimensions (14 nm). Single crystals were imaged but these were not of high structural perfection. These results highlight the influence of intracellular control on the crystallochemical specificity of bacterial magnetites. The characterization of these crystals is important in aiding the identification of biogenic magnetic materials in paleomagnetism and in studies of sediment magnetization.

  19. Elemental sulfur and thiosulfate disproportionation by Desulfocapsa sulfoexigens sp. nov., a new anaerobic bacterium isolated from marine surface sediment

    DEFF Research Database (Denmark)

    Finster, Kai; Liesack, Werner; Thamdrup, Bo

    1998-01-01

    A mesophilic, anaerobic, gram-negative bacterium, strain SB164P1, was enriched and isolated from oxidized marine surface sediment with elemental sulfur as the sole energy substrate in the presence of ferrihydrite. Elemental sulfur was disproportionated to hydrogen sulfide and sulfate. Growth...... chemolithoautotrophically exclusively by the disproportionation of inorganic sulfur compounds. Comparative 16S rDNA sequencing analysis placed strain SB164P1 into the delta subclass of the class Proteobacteria. Its closest relative is Desulfocapsa thiozymogenes, and slightly more distantly related are Desulfofustis...

  20. Breakdown of food waste by anaerobic fermentation and non-oxygen producing photosynthesis using a photosynthetic bacterium.

    Science.gov (United States)

    Mekjinda, N; Ritchie, R J

    2015-01-01

    Large volumes of food waste are produced by restaurants, hotels, etc generating problems in its collection, processing and disposal. Disposal as garbage increases the organic matter in landfills and leachates. The photosynthetic bacterium Rhodopseudomonas palustris (CGA 009) easily broke down food waste. R. palustris produces H2 under anaerobic conditions and digests a very wide range of organic compounds. R. palustris reduced BOD by ≈70% and COD by ≈33%, starch, ammonia, nitrate, was removed but had little effect on reducing sugar or the total phosphorus, lipid, protein, total solid in a 7-day incubation. R. palustris produced a maximum of 80ml H2/g COD/day. A two-stage anaerobic digestion using yeast as the first stage, followed by a R. palustris digestion was tested but production of H2 was low. PMID:25465509

  1. Caloramator quimbayensis sp. nov., an anaerobic, moderately thermophilic bacterium isolated from a terrestrial hot spring.

    Science.gov (United States)

    Rubiano-Labrador, Carolina; Baena, Sandra; Díaz-Cárdenas, Carolina; Patel, Bharat K C

    2013-04-01

    An anaerobic, moderately thermophilic, terminal-spore-forming bacterium, designated strain USBA A(T), was isolated from a terrestrial hot spring located at an altitude of 2683 m in the Andean region of Colombia (04° 50' 14.0″ N 75° 32' 53.4″ W). Cells of strain USBA A(T) were Gram-stain-positive, straight to slightly curved rods (0.9×2.5 µm), that were arranged singly or in pairs, and were motile by means of flagella. Growth occurred at 37-55 °C and pH 6.0-8.0, with a doubling time of 2 h under the optimal conditions (50 °C and pH 7.0). Glucose fermentation in strain USBA A(T) required yeast extract or peptone (each at 0.2 %, w/v). The novel strain fermented sugars, amino acids, Casamino acids, propanol, propionate, starch and dextrin, but no growth was observed on galactose, lactose, xylose, histidine, serine, threonine, benzoate, butyrate, lactate, pyruvate, succinate, methanol, ethanol, glycerol, casein, gelatin or xylan. The end products of glucose fermentation were formate, acetate, ethanol and lactate. Strain USBA A(T) did not grow autotrophically (with CO2 as carbon source and H2 as electron donor) and did not reduce thiosulfate, sulfate, elemental sulfur, sulfite, vanadium (V) or Fe (III) citrate. Growth of strain USBA A(T) was inhibited by ampicillin, chloramphenicol, kanamycin, penicillin and streptomycin (each at 10 µg ml(-1)). The predominant fatty acids were iso-C15 : 0, C16 : 0 and iso-C17 : 0 and the genomic DNA G+C content was 32.6 mol%. 16S rRNA gene sequence analysis indicated that strain USBA A(T) belonged in the phylum Firmicutes and that its closest relative was Caloramator viterbiensis JW/MS-VS5(T) (95.0 % sequence similarity). A DNA-DNA relatedness value of only 30 % was recorded in hybridization experiments between strain USBA A(T) and Caloramator viterbiensis DSM 13723(T). Based on the phenotypic, chemotaxonomic and phylogenetic evidence and the results of the DNA-DNA hybridization experiments, strain USBA A

  2. Fervidicella metallireducens gen. nov., sp. nov., a thermophilic, anaerobic bacterium from geothermal waters.

    Science.gov (United States)

    Ogg, Christopher D; Patel, Bharat K C

    2010-06-01

    A strictly anaerobic, thermophilic bacterium, designated strain AeB(T), was isolated from microbial mats colonizing a run-off channel formed by free-flowing thermal water from a bore well (registered number 17263) of the Great Artesian Basin, Australia. Cells of strain AeB(T) were slightly curved rods (2.5-6.0x1.0 mum) that stained Gram-negative and formed spherical terminal to subterminal spores. The strain grew optimally in tryptone-yeast extract-Casamino acids medium at 50 degrees C (range 37-55 degrees C) and pH 7 (range pH 5-9). Strain AeB(T) grew poorly on yeast extract (0.2 %) and tryptone (0.2 %) as sole carbon sources, which were obligately required for growth on other energy sources. Growth of strain AeB(T) increased in the presence of various carbohydrates and amino acids, but not organic acids. End products detected from glucose fermentation were ethanol, acetate, CO2 and H2. In the presence of 0.2 % yeast extract, iron(III), manganese(IV), vanadium(V) and cobalt(III) were reduced, but not sulfate, thiosulfate, sulfite, elemental sulfur, nitrate or nitrite. Iron(III) was also reduced in the presence of tryptone, peptone, Casamino acids and amyl media (Research Achievement), but not starch, xylan, chitin, glycerol, ethanol, pyruvate, benzoate, lactate, acetate, propionate, succinate, glycine, serine, lysine, threonine, arginine, glutamate, valine, leucine, histidine, alanine, aspartate, isoleucine or methionine. Growth was inhibited by chloramphenicol, streptomycin, tetracycline, penicillin, ampicillin and NaCl concentrations >2 %. The DNA G+C content was 35.4+/-1 mol%, as determined by the thermal denaturation method. 16S rRNA gene sequence analysis indicated that strain AeB(T) is a member of the family Clostridiaceae, class Clostridia, phylum 'Firmicutes', and is positioned approximately equidistantly between the genera Sarcina, Anaerobacter, Caloramator and Clostridium (16S rRNA gene similarity values of 87.8-90.9 %). On the basis of 16S rRNA gene

  3. Caloramator quimbayensis sp. nov., an anaerobic, moderately thermophilic bacterium isolated from a terrestrial hot spring.

    Science.gov (United States)

    Rubiano-Labrador, Carolina; Baena, Sandra; Díaz-Cárdenas, Carolina; Patel, Bharat K C

    2013-04-01

    An anaerobic, moderately thermophilic, terminal-spore-forming bacterium, designated strain USBA A(T), was isolated from a terrestrial hot spring located at an altitude of 2683 m in the Andean region of Colombia (04° 50' 14.0″ N 75° 32' 53.4″ W). Cells of strain USBA A(T) were Gram-stain-positive, straight to slightly curved rods (0.9×2.5 µm), that were arranged singly or in pairs, and were motile by means of flagella. Growth occurred at 37-55 °C and pH 6.0-8.0, with a doubling time of 2 h under the optimal conditions (50 °C and pH 7.0). Glucose fermentation in strain USBA A(T) required yeast extract or peptone (each at 0.2 %, w/v). The novel strain fermented sugars, amino acids, Casamino acids, propanol, propionate, starch and dextrin, but no growth was observed on galactose, lactose, xylose, histidine, serine, threonine, benzoate, butyrate, lactate, pyruvate, succinate, methanol, ethanol, glycerol, casein, gelatin or xylan. The end products of glucose fermentation were formate, acetate, ethanol and lactate. Strain USBA A(T) did not grow autotrophically (with CO2 as carbon source and H2 as electron donor) and did not reduce thiosulfate, sulfate, elemental sulfur, sulfite, vanadium (V) or Fe (III) citrate. Growth of strain USBA A(T) was inhibited by ampicillin, chloramphenicol, kanamycin, penicillin and streptomycin (each at 10 µg ml(-1)). The predominant fatty acids were iso-C15 : 0, C16 : 0 and iso-C17 : 0 and the genomic DNA G+C content was 32.6 mol%. 16S rRNA gene sequence analysis indicated that strain USBA A(T) belonged in the phylum Firmicutes and that its closest relative was Caloramator viterbiensis JW/MS-VS5(T) (95.0 % sequence similarity). A DNA-DNA relatedness value of only 30 % was recorded in hybridization experiments between strain USBA A(T) and Caloramator viterbiensis DSM 13723(T). Based on the phenotypic, chemotaxonomic and phylogenetic evidence and the results of the DNA-DNA hybridization experiments, strain USBA A

  4. Clostridium acetireducens sp nov, a novel amino acid-oxidizing, acetate-reducing anaerobic bacterium

    NARCIS (Netherlands)

    Orlygsson, J; Krooneman, J; Collins, Matthew D.; Pascual, C; Gottschall, JC

    1996-01-01

    Strain 30A(T) (T = type strain), which was isolated from an anaerobic bioreactor fed on waste from a potato starch factory in De Krim, The Netherlands, is a nonmotile, gram-positive, anaerobic, rod-shaped organism that is able to degrade various amino acids, including alanine, leucine, isoleucine, v

  5. Isolation and characterization of Caldicellulosiruptor lactoaceticus sp. nov., an extremely thermophilic, cellulolytic, anaerobic bacterium

    DEFF Research Database (Denmark)

    Mladenovska, Zuzana; Mathrani, Indra M.; Ahring, Birgitte Kiær

    1995-01-01

    and ethanol occurred as minor fermentation products. Only a restricted number of carbon sources (cellulose, xylan, starch, pectin, cellobiose, xylose, maltose and lactose) were used as substrates. During growth on Avicel, the bacterium produced free cellulases with carboxymethylcellulase and avicelase...

  6. Metabolic engineering of ethanol production in Thermoanaerobacter mathranii

    Energy Technology Data Exchange (ETDEWEB)

    Shou Yao

    2010-11-15

    Strain BG1 is a xylanolytic, thermophilic, anaerobic, Gram-positive bacterium originally isolated from an Icelandic hot spring. The strain belongs to the species Thermoanaerobacter mathranii. The strain ferments glucose, xylose, arabinose, galactose and mannose simultaneously and produces ethanol, acetate, lactate, CO{sub 2}, and H2 as fermentation end-products. As a potential ethanol producer from lignocellulosic biomass, tailor-made BG1 strain with the metabolism redirected to produce ethanol is needed. Metabolic engineering of T. mathranii BG1 is therefore necessary to improve ethanol production. Strain BG1 contains four alcohol dehydrogenase (ADH) encoding genes. They are adhA, adhB, bdhA and adhE encoding primary alcohol dehydrogenase, secondary alcohol dehydrogenase, butanol dehydrogenase and bifunctional alcohol/acetaldehyde dehydrogenase, respectively. The presence in an organism of multiple alcohol dehydrogenases with overlapping specificities makes the determination of the specific role of each ADH difficult. Deletion of each individual adh gene in the strain revealed that the adhE deficient mutant strain fails to produce ethanol as the fermentation product. The bifunctional alcohol/acetaldehyde dehydrogenase, AdhE, is therefore proposed responsible for ethanol production in T. mathranii BG1, by catalyzing sequential NADH-dependent reductions of acetyl-CoA to acetaldehyde and then to ethanol under fermentative conditions. Moreover, AdhE was conditionally expressed from a xylose-induced promoter in a recombinant strain (BG1E1) with a concomitant deletion of a lactate dehydrogenase. Over-expression of AdhE in strain BG1E1 with xylose as a substrate facilitates the production of ethanol at an increased yield. With a cofactor-dependent ethanol production pathway in T. mathranii BG1, it may become crucial to regenerate cofactor to increase the ethanol yield. Feeding the cells with a more reduced carbon source, such as mannitol, was shown to increase ethanol

  7. Anaerobic oxidation of fatty acids by Clostridium bryantii sp. nov. : a sporeforming, obligately syntrophic bacterium

    OpenAIRE

    Stieb, Marion; Schink, Bernhard

    1985-01-01

    From marine and freshwater mud samples strictly anaerobic, Gram-positive, sporeforming bacteria were isolated which oxidized fatty acids in obligately syntrophic association with H2-utilizing bacteria. Even-numbered fatty acids with up to 10 carbon atoms were degraded to acetate and Hz, odd-numbered fatty acids with up to 11 carbon atoms including 2-methylbutyrate were degraded to acetate, propionate and H2. Neither fumarate, sulfate, thiosulfate, sulfur, nor nitrate were reduced. A marine is...

  8. Isolation, Growth, and Metabolism of an Obligately Anaerobic, Selenate-Respiring Bacterium, Strain SES-3

    OpenAIRE

    Oremland, Ronald S.; Blum, Jodi Switzer; Culbertson, Charles W.; Visscher, Pieter T.; Miller, Laurence G.; Dowdle, Phillip; Strohmaier, Frances E.

    1994-01-01

    A gram-negative, strictly anaerobic, motile vibrio was isolated from a selenate-respiring enrichment culture. The isolate, designated strain SES-3, grew by coupling the oxidation of lactate to acetate plus CO2 with the concomitant reduction of selenate to selenite or of nitrate to ammonium. No growth was observed on sulfate or selenite, but cell suspensions readily reduced selenite to elemental selenium (Se0). Hence, SES-3 can carry out a complete reduction of selenate to Se0. Washed cell sus...

  9. Reductive dechlorination of methoxychlor and DDT by human intestinal bacterium Eubacterium limosum under anaerobic conditions.

    Science.gov (United States)

    Yim, You-Jin; Seo, Jiyoung; Kang, Su-Il; Ahn, Joong-Hoon; Hur, Hor-Gil

    2008-04-01

    Methoxychlor [1,1,1-trichloro-2,2-bis(p-methoxyphenyl)ethane], a substitute for 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (DDT), is a compound of environmental concern because of potential long-term health risks related to its endocrine-disrupting and carcinogenic potency. In order to determine the metabolic fate of methoxychlor and DDT in the human intestinal gut, Eubacterium limosum (ATCC 8486), a strict anaerobe isolated from the human intestine that is capable of O-demethylation toward O-methylated isoflavones, was used as a model intestinal microbial organism. Under anaerobic incubation conditions, E. limosum completely transformed methoxychlor and DDT in 16 days. Based on gas chromatography-mass chromatography analyses, the metabolites produced from methoxychlor and DDT by E. limosum were confirmed to be 1,1-dichloro-2,2-bis(p-methoxyphenyl)ethane (methoxydichlor) and 1,1-dichloro-2,2-bis(p-chlorophenyl)ethane (DDD), respectively. This study suggests that E. limosum in the human intestinal gut might be a participant in the reductive dechlorination of methoxychlor to the more antiandrogenic active methoxydichlor.

  10. Themoanaerobacterium calidifontis sp. nov., a novel anaerobic, thermophilic, ethanol-producing bacterium from hot springs in China.

    Science.gov (United States)

    Shang, Shu-mei; Qian, Long; Zhang, Xu; Li, Kun-zhi; Chagan, Irbis

    2013-06-01

    A novel thermophilic Gram staining positive strain Rx1 was isolated from hot springs in Baoshan of Yunnan Province, China. The strain was characterized as a hemicellulose-decomposing obligate anaerobe bacterium that is rod-shaped (diameter: 0.5-0.7 μm; length: 2.0-6.7 μm), spore-forming, and motile. Its growth temperature range is 38-68 °C (optimum 50-55 °C) and pH range is 4.5-8.0 (optimum 7.0). The maximum tolerance concentration of NaCl was 3 %. Rx1 converted thiosulfate to elemental sulfur and reduced sulfite to hydrogen sulfide. The bacterium grew by utilizing xylan and starch, as well as a wide range of monosaccharide and polysaccharides, including glucose and xylose. The main products of fermentation were ethanol, lactate, acetate, CO2, and H2. The maximum xylanase activity in the culture supernatant after 30 h of incubation at 55 °C was 16.2 U/ml. Rx1 DNA G + C content was 36 mol %. 16S rRNA gene sequence analysis indicated that strain Rx1 belonged to the genus Thermoanaerobacterium of the family 'Thermoanaerobacteriaceae' (Firmicutes), with Thermoanaerobacterium aciditolerans 761-119 (99.2 % 16S rRNA gene sequence similarity) being its closest relative. DNA-DNA hybridization between Rx1 and T. aciditolerans 761-119 showed 36 % relatedness. Based on its physiological and biochemical tests and DNA-DNA hybridization analyses, the isolate is considered to represent a novel species in the genus Thermoanaerobacterium, for which the name Thermoanaerobacterium calidifontis sp. nov. is proposed, with the type strain is Rx1 (=JCM 18270 = CCTCC M 2011109).

  11. Brevibacterium rufescens nov. comb. , a facultative anaerobic methylotrophic bacterium from oil-bearing strata

    Energy Technology Data Exchange (ETDEWEB)

    Nazina, T.N.

    1981-03-01

    The paper presents the results of studying the bacterial population from the microaerophilic zone of oil-bearing strata of the Apsheron Peninsula. The incidence of bacteria capable of growing at the account of organic substances present in stratal water could reach dozens of thousands of cells in 1 ml. A bacterium predominant in the bacterial cenosis of the microaerophilic zone was islated as a pure culture. A new combination, Brevibacterium rufescens nov. comb. was created on the basis of morphological, physiologo-biochemical properties and the GC content in the DNA of the organism under study. The microorganism is adapted to its habitat in a number of properties. The necessity of recreating the genus Brevibacterium is discussed.

  12. Genome-enabled studies of anaerobic, nitrate-dependent iron oxidation in the chemolithoautotrophic bacterium Thiobacillus denitrificans

    Directory of Open Access Journals (Sweden)

    Harry R Beller

    2013-08-01

    Full Text Available Thiobacillus denitrificans is a chemolithoautotrophic bacterium capable of anaerobic, nitrate-dependent U(IV and Fe(II oxidation, both of which can strongly influence the long-term efficacy of in situ reductive immobilization of uranium in contaminated aquifers. We previously identified two c-type cytochromes involved in nitrate-dependent U(IV oxidation in T. denitrificans and hypothesized that c-type cytochromes would also catalyze Fe(II oxidation, as they have been found to play this role in anaerobic phototrophic Fe(II-oxidizing bacteria. Here we report on efforts to identify genes associated with nitrate-dependent Fe(II oxidation, namely (a whole-genome transcriptional studies [using FeCO3, Fe2+, and U(IV oxides as electron donors under denitrifying conditions], (b Fe(II oxidation assays performed with knockout mutants targeting primarily highly expressed or upregulated c-type cytochromes, and (c random transposon-mutagenesis studies with screening for Fe(II oxidation. Assays of mutants for 26 target genes, most of which were c-type cytochromes, indicated that none of the mutants tested were significantly defective in nitrate-dependent Fe(II oxidation. The non-defective mutants included the c1-cytochrome subunit of the cytochrome bc1 complex (complex III, which has relevance to a previously proposed role for this complex in nitrate-dependent Fe(II oxidation and to current concepts of reverse electron transfer. A transposon mutant with a disrupted gene associated with NADH:ubiquinone oxidoreductase (complex I was ~35% defective relative to the wild-type strain; this strain was similarly defective in nitrate reduction with thiosulfate as the electron donor. Overall, our results indicate that nitrate-dependent Fe(II oxidation in T. denitrificans is not catalyzed by the same c-type cytochromes involved in U(IV oxidation, nor have other c-type cytochromes yet been implicated in the process.

  13. Calculibacillus koreensis gen. nov., sp. nov., an anaerobic Fe(III)-reducing bacterium isolated from sediment of mine tailings.

    Science.gov (United States)

    Min, Ui-Gi; Kim, So-Jeong; Hong, Heeji; Kim, Song-Gun; Gwak, Joo-Han; Jung, Man-Young; Kim, Jong-Geol; Na, Jeong-Geol; Rhee, Sung-Keun

    2016-06-01

    A strictly anaerobic bacterium, strain B5(T), was isolated from sediment of an abandoned coal mine in Taebaek, Republic of Korea. Cells of strain B5(T) were non-spore-forming, straight, Gram-positive rods. The optimum pH and temperature for growth were pH 7.0 and 30°C, respectively, while the strain was able to grow within pH and temperature ranges of 5.5-7.5 and 25-45°C, respectively. Growth of strain B5(T) was observed at NaCl concentrations of 0 to 6.0% (w/v) with an optimum at 3.0-4.0% (w/v). The polar lipids consisted of phosphatidylethanolamine, phosphatidylglycerol, an unknown phospholipid and three unknown polar lipids. Strain B5(T) grew anaerobically by reducing nitrate, nitrite, ferric-citrate, ferric-nitrilotriacetate, elemental sulfur, thiosulfate, and anthraquinone-2-sulfonate in the presence of proteinaceous compounds, organic acids, and carbohydrates as electron donors. The isolate was not able to grow by fermentation. Strain B5(T) did not grow under aerobic or microaerobic conditions. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain B5(T) is most closely related to the genus Tepidibacillus (T. fermentans STGH(T); 96.3%) and Vulcanibacillus (V. modesticaldus BR(T); 94.6%). The genomic DNA G+C content (36.9 mol%) of strain B5(T) was higher than those of T. fermentans STGH(T) (34.8 mol%) and V. modesticaldus BR(T) (34.5 mol%). Based on its phenotypic, chemotaxonomic, and phylogenetic properties, we describe a new species of a novel genus Calculibacillus, represented by strain B5(T) (=KCTC 15397(T) =JCM 19989(T)), for which we propose the name Calculibacillus koreensis gen. nov., sp. nov. PMID:27225457

  14. Caldicellulosiruptor obsidiansis sp. nov., an anaerobic, extremely thermophilic, cellulolytic bacterium isolated from Obsidian Pool, Yellowstone National Park

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton-Brehm, Scott [ORNL; Elkins, James G [ORNL; Phelps, Tommy Joe [ORNL; Keller, Martin [ORNL; Carroll, Sue L [ORNL; Allman, Steve L [ORNL; Podar, Mircea [ORNL; Mosher, Jennifer J [ORNL; Vishnivetskaya, Tatiana A [ORNL

    2010-01-01

    A novel, obligately anaerobic, extremely thermophilic, cellulolytic bacterium, designated OB47T, was isolated from Obsidian Pool, Yellowstone National Park, WY, USA. The isolate was a non-motile, non-spore forming, Gram-positive rod approximately 2 m long by 0.2 m wide and grew at temperatures between 55-85oC with the optimum at 78oC. The pH range for growth was 6.0-8.0 with values of near 7.0 being optimal. Growth on cellobiose produced the fastest specific growth rates at 0.75 hr-1. The organism also displayed fermentative growth on glucose, maltose, arabinose, fructose, starch, lactose, mannose, sucrose, galactose, xylose, arabinogalactan, Avicel, xylan, filter paper, processed cardboard, pectin, dilute acid-pretreated switchgrass and Populus. OB47T was unable to grow on mannitol, fucose, lignin, Gelrite, acetate, glycerol, ribose, sorbital, carboxymethylcellulose and casein. Yeast extract stimulated growth and thiosulfate, sulfate, nitrate, and sulfur were not reduced. Fermentation end products were mainly acetate, H2, and CO2 although lactate and ethanol were produced in 5 l batch fermentations. The G+C content of the DNA was 35 mol% and sequence analysis of the small subunit ribosomal RNA gene placed OB47T within the genus Caldicellulosiruptor. Based on its phylogenetic and phenotypic properties, the isolate is proposed to be designated Caldicellulosiruptor obsidiansis sp. nov. and OB47T is the type stain (ATCC = ____, JCM = ____).

  15. Biohydrogen production in a continuous stirred tank bioreactor from synthesis gas by anaerobic photosynthetic bacterium: Rhodopirillum rubrum.

    Science.gov (United States)

    Younesi, Habibollah; Najafpour, Ghasem; Ku Ismail, Ku Syahidah; Mohamed, Abdul Rahman; Kamaruddin, Azlina Harun

    2008-05-01

    Hydrogen may be considered a potential fuel for the future since it is carbon-free and oxidized to water as a combustion product. Bioconversion of synthesis gas (syngas) to hydrogen was demonstrated in continuous stirred tank bioreactor (CSTBR) utilizing acetate as a carbon source. An anaerobic photosynthetic bacterium, Rhodospirillum rubrum catalyzed water-gas shift reaction which was applied for the bioconversion of syngas to hydrogen. The continuous fermentation of syngas in the bioreactor was continuously operated at various gas flow rates and agitation speeds, for the period of two months. The gas flow rates were varied from 5 to 14 ml/min. The agitation speeds were increasingly altered in the range of 150-500 rpm. The pH and temperature of the bioreactor was set at 6.5 and 30 degrees C. The liquid flow rate was kept constant at 0.65 ml/min for the duration of 60 days. The inlet acetate concentration was fed at 4 g/l into the bioreactor. The hydrogen production rate and yield were 16+/-1.1 mmol g(-1)cell h(-1) and 87+/-2.4% at fixed agitation speed of 500 rpm and syngas flow rate of 14 ml/min, respectively. The mass transfer coefficient (KLa) at this condition was approximately 72.8h(-1). This new approach, using a biocatalyst was considered as an alternative method of conventional Fischer-Tropsch synthetic reactions, which were able to convert syngas into hydrogen.

  16. A novel multienzyme complex from a newly isolated facultative anaerobic bacterium, Paenibacillus sp. TW1.

    Science.gov (United States)

    Tachaapaikoon, C; Kyu, K L; Pason, P; Ratanakhanockchai, K

    2012-06-01

    A multienzyme complex from newly isolated Paenibacillus sp. TW1 was purified from pellet-bound enzyme preparations by elution with 0.25% sucrose and 1.0% triethylamine (TEA), ultrafiltration and Sephacryl S-400 gel filtration chromatography. The purified multienzyme complex showed a single protein band on non-denaturing polyacrylamide gel electrophoresis (native-PAGE). The high molecular mass of the purified multienzyme complex was approximately 1,950 kDa. The complex consisted of xylanase and cellulase activities as the major and minor enzyme subunits, respectively. The complex appeared as at least 18 protein bands on sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and as 15 xylanases and 6 cellulases on zymograms. The purified multienzyme complex contained xylanase, α-L-arabinofuranosidase, carboxymethyl cellulase (CMCase), avicelase and cellobiohydrolase. The complex could effectively hydrolyze corn hulls, corncobs and sugarcane bagasse. These results indicate that the multienzyme complex that is produced by this bacterium is a large, novel xylanolytic-cellulolytic enzyme complex.

  17. Anaerobic chemolithotrophic growth of the haloalkaliphilic bacterium strain MLMS‑1 by disproportionation of monothioarsenate

    Science.gov (United States)

    Planer-Friedrich, B.; Hartig, C.; Lohmayer, R.; Suess, E.; McCann, Shelley; Oremland, Ronald S.

    2015-01-01

    A novel chemolithotrophic metabolism based on a mixed arsenic−sulfur species has been discovered for the anaerobic deltaproteobacterium, strain MLMS-1, a haloalkaliphile isolated from Mono Lake, California, U.S. Strain MLMS‑1 is the first reported obligate arsenate-respiring chemoautotroph which grows by coupling arsenate reduction to arsenite with the oxidation of sulfide to sulfate. In that pathway the formation of a mixed arsenic−sulfur species was reported. That species was assumed to be monothioarsenite ([H2AsIIIS−IIO2] −), formed as an intermediate by abiotic reaction of arsenite with sulfide. We now report that this species is monothioarsenate ([HAsVS−IIO3] 2−) as revealed by X-ray absorption spectroscopy. Monothioarsenate forms by abiotic reaction of arsenite with zerovalent sulfur. Monothioarsenate is kinetically stable under a wide range of pH and redox conditions. However, it was metabolized rapidly by strain MLMS-1 when incubated with arsenate. Incubations using monothioarsenate confirmed that strain MLMS-1 was able to grow (μ = 0.017 h−1 ) on this substrate via a disproportionation reaction by oxidizing the thio-group-sulfur (S−II) to zerovalent sulfur or sulfate while concurrently reducing the central arsenic atom (AsV) to arsenite. Monothioarsenate disproportionation could be widespread in nature beyond the already studied arsenic and sulfide rich hot springs and soda lakes where it was discovered.

  18. Isolation, growth, and metabolism of an obligately anaerobic, selenate- respiring bacterium, strain SES-3

    Science.gov (United States)

    Oremland, R.S.; Blum, J.S.; Culbertson, C.W.; Visscher, P.T.; Miller, L.G.; Dowdle, P.; Strohmaier, F.E.

    1994-01-01

    A gram-negative, strictly anaerobic, motile vibrio was isolated from a selenate-respiring enrichment culture. The isolate, designated strain SES-3, grew by coupling the oxidation of lactate to acetate plus CO2 with the concomitant reduction of selenate to selenite or of nitrate to ammonium. No growth was observed on sulfate or selenite, but cell suspensions readily reduced selenite to elemental selenium (Se0). Hence, SES-3 can carry out a complete reduction of selenate to Se0. Washed cell suspensions of selenate- grown cells did not reduce nitrate, and nitrate-grown cells did not reduce selenate, indicating that these reductions are achieved by separate inducible enzyme systems. However, both nitrate-grown and selenate-grown cells have a constitutive ability to reduce selenite or nitrite. The oxidation of [14C]lactate to 14CO2 coupled to the reduction of selenate or nitrate by cell suspensions was inhibited by CCCP (carbonyl cyanide m- chlorophenylhydrazone), cyanide, and azide. High concentrations of selenite (5 mM) were readily reduced to Se0 by selenate-grown cells, but selenite appeared to block the synthesis of pyruvate dehydrogenase. Tracer experiments with [75Se]selenite indicated that cell suspensions could achieve a rapid and quantitative reduction of selenite to Se0. This reduction was totally inhibited by sulfite, partially inhibited by selenate or nitrite, but unaffected by sulfate or nitrate. Cell suspensions could reduce thiosulfate, but not sulfite, to sulfide. These results suggest that reduction of selenite to Se0 may proceed, in part, by some of the components of a dissimilatory system for sulfur oxyanions.

  19. Characterization of Alkaliphilus hydrothermalis sp nov., a novel alkaliphilic anaerobic bacterium, isolated from a carbonaceous chimney of the Prony hydrothermal field, New Caledonia

    OpenAIRE

    Ben Aissa, F.; Postec, A.; Erauso, G.; Payri, Claude; Pelletier, Bernard; Hamdi, M.; Fardeau, Marie-Laure; Ollivier, Bernard

    2015-01-01

    A novel anaerobic, alkaliphilic, Gram-positive staining bacterium was isolated from a hydrothermal chimney in the Prony Bay, New Caledonia. This strain designated FatMR1(T) grew at temperatures from 20 to 55 A degrees C (optimum 37 A degrees C) and at pH between 7.5 and 10.5 (optimum 8.8-9). NaCl is not required for growth (optimum 0.2-0.5 %), but is tolerated up to 3 %. Sulfate, thiosulfate, elemental sulfur, sulfite, nitrate and nitrite are not used as terminal electron acceptors. Strain Fa...

  20. Sphaerochaeta multiformis sp. nov., an anaerobic, psychrophilic bacterium isolated from subseafloor sediment, and emended description of the genus Sphaerochaeta.

    Science.gov (United States)

    Miyazaki, Masayuki; Sakai, Sanae; Ritalahti, Kirsti M; Saito, Yayoi; Yamanaka, Yuko; Saito, Yumi; Tame, Akihiko; Uematsu, Katsuyuki; Löffler, Frank E; Takai, Ken; Imachi, Hiroyuki

    2014-12-01

    An anaerobic, psychrophilic bacterium, strain MO-SPC2(T), was isolated from a methanogenic microbial community in a continuous-flow bioreactor that was established from subseafloor sediments collected from off the Shimokita Peninsula of Japan in the north-western Pacific Ocean. Cells were pleomorphic: spherical, annular, curved rod, helical and coccoid cell morphologies were observed. Motility only occurred in helical cells. Strain MO-SPC2(T) grew at 0-17 °C (optimally at 9 °C), at pH 6.0-8.0 (optimally at pH 6.8-7.2) and in 20-40 g NaCl l(-1) (optimally at 20-30 NaCl l(-1)). The strain grew chemo-organotrophically with mono-, di- and polysaccharides. The major end products of glucose fermentation were acetate, ethanol, hydrogen and carbon dioxide. The abundant polar lipids of strain MO-SPC2(T) were phosphatidylglycolipids, phospholipids and glycolipids. The major cellular fatty acids were C14 : 0, C16 : 0 and C16 : 1ω9. Isoprenoid quinones were not detected. The G+C content of the DNA was 32.3 mol%. 16S rRNA gene-based phylogenetic analysis showed that strain MO-SPC2(T) was affiliated with the genus Sphaerochaeta within the phylum Spirochaetes, and its closest relatives were Sphaerochaeta pleomorpha Grapes(T) (88.4 % sequence identity), Sphaerochaeta globosa Buddy(T) (86.7 %) and Sphaerochaeta coccoides SPN1(T) (85.4 %). Based on phenotypic characteristics and phylogenetic traits, strain MO-SPC2(T) is considered to represent a novel species of the genus Sphaerochaeta, for which the name Sphaerochaeta multiformis sp. nov. is proposed. The type strain is MO-SPC2(T) ( = JCM 17281(T) = DSM 23952(T)). An emended description of the genus Sphaerochaeta is also proposed.

  1. Characterization of a corrinoid protein involved in the C1 metabolism of strict anaerobic bacterium Moorella thermoacetica.

    Science.gov (United States)

    Das, Amaresh; Fu, Zheng-Qing; Tempel, Wolfram; Liu, Zhi-Jie; Chang, Jessie; Chen, Lirong; Lee, Doowon; Zhou, Weihong; Xu, Hao; Shaw, Neil; Rose, John P; Ljungdahl, Lars G; Wang, Bi-Cheng

    2007-04-01

    The strict anaerobic, thermophilic bacterium Moorella thermoacetica metabolizes C1 compounds for example CO(2)/H(2), CO, formate, and methanol into acetate via the Wood/Ljungdahl pathway. Some of the key steps in this pathway include the metabolism of the C1 compounds into the methyl group of methylenetetrahydrofolate (MTHF) and the transfer of the methyl group from MTHF to the methyl group of acetyl-CoA catalyzed by methyltransferase, corrinoid protein and CO dehydrogenase/acetyl CoA synthase. Recently, we reported the crystallization of a 25 kDa methanol-induced corrinoid protein from M. thermoacetica (Zhou et al., Acta Crystallogr F 2005; 61:537-540). In this study we analyzed the crystal structure of the 25 kDa protein and provide genetic and biochemical evidences supporting its role in the methanol metabolism of M. thermoacetia. The 25 kDa protein was encoded by orf1948 of contig 303 in the M. thermoacetica genome. It resembles similarity to MtaC the corrinoid protein of the methanol:CoM methyltransferase system of methane producing archaea. The latter enzyme system also contains two additional enzymes MtaA and MtaB. Homologs of MtaA and MtaB were found to be encoded by orf2632 of contig 303 and orf1949 of contig 309, respectively, in the M. thermoacetica genome. The orf1948 and orf1949 were co-transcribed from a single polycistronic operon. Metal analysis and spectroscopic data confirmed the presence of cobalt and the corrinoid in the purified 25 kDa protein. High resolution X-ray crystal structure of the purified 25 kDa protein revealed corrinoid as methylcobalamin with the imidazole of histidine as the alpha-axial ligand replacing benziimidazole, suggesting base-off configuration for the corrinoid. Methanol significantly activated the expression of the 25 kDa protein. Cyanide and nitrate inhibited methanol metabolism and suppressed the level of the 25 kDa protein. The results suggest a role of the 25 kDa protein in the methanol metabolism of M

  2. Anoxybacillusgeothermalis sp. nov., a facultatively anaerobic, endospore-forming bacterium isolated from mineral deposits in a geothermal station.

    Science.gov (United States)

    Filippidou, Sevasti; Jaussi, Marion; Junier, Thomas; Wunderlin, Tina; Jeanneret, Nicole; Palmieri, Fabio; Palmieri, Ilona; Roussel-Delif, Ludovic; Vieth-Hillebrand, Andrea; Vetter, Alexandra; Chain, Patrick S; Regenspurg, Simona; Junier, Pilar

    2016-08-01

    A novel endospore-forming bacterium designated strain GSsed3T was isolated from deposits clogging aboveground filters from the geothermal power platform of Groß Schönebeck in northern Germany. The novel isolate was Gram-staining-positive, facultatively anaerobic, catalase-positive and oxidase-positive. Optimum growth occurred at 60 °C, 0.5 % (w/v) NaCl and pH 7-8. Analysis of the 16S rRNA gene sequence similarity indicated that strain GSsed3T belonged to the genus Anoxybacillus, and showed 99.8 % sequence similarity to Anoxybacillus rupiensis R270T, 98.2 % similarity to Anoxybacillus tepidamans GS5-97T, 97.9 % similarity to Anoxybacillus voinovskiensis TH13T, 97.7 % similarity to Anoxybacillus caldiproteolyticus DSM 15730T and 97.6 % similarity to Anoxybacillus amylolyticus MR3CT. DNA-DNA hybridization (DDH) indicated only 16 % relatedness to Anoxybacillus rupiensis DSM 17127T. Furthermore, DDH estimation based on genomes analysis indicated only 19.9 % overall nucleotide similarity to Anoxybacillus amylolyticus DSM 15939T. The major respiratory menaquinone was MK-8. The polar lipid profile consisted of phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, one unknown phosphoglycolipid and one unknown phospholipid. The predominant cellular fatty acids were iso-C15 : 0, iso-C17 : 0, C16 : 0, iso-C16 : 0 and anteiso-C17 : 0. The peptidoglycan type was A1γ meso-Dpm-direct. The genomic DNA G+C content of the strain was 46.9 mol%. The phenotypic, genotypic and chemotaxonomic characterization indicated that strain GSsed3T differs from related species of the genus. Therefore, strain GSsed3T is considered to be a representative of a novel species of the genus Anoxybacillus, for which the name Anoxybacillus geothermalis sp. nov. is proposed. The type strain of Anoxybacillus geothermalis is GSsed3T (=CCOS808T =ATCC BAA2555T).

  3. Clostridium swellfunianum sp. nov., a novel anaerobic bacterium isolated from the pit mud of Chinese Luzhou-flavor liquor production.

    Science.gov (United States)

    Liu, Chaolan; Huang, Dan; Liu, Laiyan; Zhang, Jin; Deng, Yu; Chen, Ling; Zhang, Wenxue; Wu, Zhengyun; Fan, Ao; Lai, Dengyi; Dai, Lirong

    2014-10-01

    A novel Gram-positive, strictly anaerobic, spore-forming, rod-shaped bacterium, designated strain S11-3-10(T), was isolated from the pit mud used for Chinese Luzhou-flavor liquor production. Phylogenetic analysis based on 16S rRNA gene sequencing revealed that the strain formed a monophyletic clade with the closely related type strains of Clostridium cluster I and was most closely related to Clostridium amylolyticum JCM 14823(T) (94.38%). The temperature, pH, and NaCl range for growth was determined to be 20-45 °C (optimum 37 °C), 4.0-10.0 (optimum pH 7.3), and 0-3.0% (w/v), respectively. The strain was able to tolerate up to 7.5 % (v/v) ethanol. Yeast extract or peptone was found to be required for growth. Acids were found to be produced from glucose, mannose and trehalose. The major end products from glucose fermentation were identified as ethanol, acetate and hydrogen. The polar lipids were found to consist of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol and unidentified phospholipids and polar lipids. The major fatty acids (>5%) were identified as iso-C(15:0), C(16:0), C(16:0)dma, C(14:0), anteiso-C(15:0) and iso-C(13:0). No respiratory quinone was detected. The diamino acid in the cell wall peptidoglycan was identified as meso-diaminopimelic acid and the whole-cell sugars were found to include galactose and glucose as major components. The DNA G+C content was determined to be 36.4 mol%. Based on the phylogenetic, chemotaxonomic and phenotypic evidence, the isolate is considered to represent a novel species of the genus Clostridium for which the name Clostridium swellfunianum sp. nov. is proposed. The type strain is S11-3-10(T) (=DSM 27788(T) = JCM 19606(T) = CICC 10730(T)).

  4. Fervidicola ferrireducens gen. nov., sp. nov., a thermophilic anaerobic bacterium from geothermal waters of the Great Artesian Basin, Australia.

    Science.gov (United States)

    Ogg, Christopher D; Patel, Bharat K C

    2009-05-01

    A strictly anaerobic, thermophilic bacterium, designated strain Y170(T), was isolated from a microbial mat colonizing thermal waters of a run-off channel created by the free-flowing waters of a Great Artesian Basin (GAB) bore well (New Lorne bore; registered number 17263). Cells of strain Y170(T) were slightly curved rods (1.2-12x0.8-1.1 mum) and stained Gram-negative. The strain grew optimally in tryptone-yeast extract-glucose medium at 70 degrees C (temperature range for growth was 55-80 degrees C) and pH 7 (pH range for growth was 5-9). Strain Y170(T) grew poorly on yeast extract as a sole carbon source, but not on tryptone (0.2 %). Yeast extract could not be replaced by tryptone and was obligately required for growth on tryptone, peptone, glucose, fructose, galactose, cellobiose, mannose, sucrose, xylose, mannitol, formate, pyruvate, Casamino acids and threonine. No growth was observed on arabinose, lactose, maltose, raffinose, chitin, xylan, pectin, starch, acetate, benzoate, lactate, propionate, succinate, myo-inositol, ethanol, glycerol, amyl media, aspartate, leucine, glutamate, alanine, arginine, serine and glycine. End products detected from glucose fermentation were acetate, ethanol and presumably CO(2) and H(2). Iron(III), manganese(IV), thiosulfate and elemental sulfur, but not sulfate, sulfite, nitrate or nitrite, were used as electron acceptors in the presence of 0.2 % yeast extract. Iron(III) in the form of amorphous Fe(III) oxhydroxide and Fe(III) citrate was also reduced in the presence of tryptone, peptone and Casamino acids, but not with chitin, xylan, pectin, formate, starch, pyruvate, acetate, benzoate, threonine, lactate, propionate, succinate, inositol, ethanol, glycerol, mannitol, aspartate, leucine, glutamate, alanine, arginine, serine or glycine. Strain Y170(T) was not able to utilize molecular hydrogen and/or carbon dioxide in the presence or absence of iron(III). Chloramphenicol, streptomycin, tetracycline, penicillin and ampicillin and

  5. Desulfurispira natronophila gen. nov. sp. nov.: an obligately anaerobic dissimilatory sulfur-reducing bacterium from soda lakes

    NARCIS (Netherlands)

    Sorokin, D.Y.; Muyzer, G.

    2010-01-01

    Anaerobic enrichment cultures with elemental sulfur as electron acceptor and either acetate or propionate as electron donor and carbon source at pH 10 and moderate salinity inoculated with sediments from soda lakes in Kulunda Steppe (Altai, Russia) resulted in the isolation of two novel members of t

  6. Anaerobic n-Alkane Metabolism by a Sulfate-Reducing Bacterium, Desulfatibacillum aliphaticivorans Strain CV2803T

    OpenAIRE

    Cravo-Laureau, Cristiana; Grossi, Vincent; Raphel, Danielle; Matheron, Robert; Hirschler-Réa, Agnès

    2005-01-01

    The alkane-degrading, sulfate-reducing bacterium Desulfatibacillum aliphaticivorans strain CV2803T, recently isolated from marine sediments, was investigated for n-alkane metabolism. The total cellular fatty acids of this strain had predominantly odd numbers of carbon atoms (C odd) when the strain was grown on a C-odd alkane (pentadecane) and even numbers of carbon atoms (C even) when it was grown on a C-even alkane (hexadecane). Detailed analyses of those fatty acids by gas chromatography/ma...

  7. Acetoanaerobium pronyense sp. nov., an anaerobic alkaliphilic bacterium isolated from a carbonate chimney of the Prony Hydrothermal Field (New Caledonia)

    OpenAIRE

    Bes, M. (Marta); Merrouch, M.; Joseph, Manon; Quéméneur, Marianne; Payri, Claude; Pelletier, Bernard; Ollivier, Bernard; Fardeau, Marie-Laure; Erausol, G.; A. Postec

    2015-01-01

    A novel anaerobic bacterial strain, ST07-YET, was isolated from a carbonate chimney of the Prony Hydrothermal Field (PHF) in New Caledonia. Cells were Gram-stain-positive, straight rods (0.7-0.8 x 3.0-5.0 mu m) and motile by means of lateral flagella. Strain ST07-YET was mesophilic (optimum 35 degrees C), moderately alkaliphilic and halotolerant (optimum pH 8.7 and 5 gr l(-1) NaCl). Elemental sulfur, sulfate, thiosulfate, sulfite, nitrate and nitrite were not used as terminal electron accepto...

  8. Anaerobic humus and Fe(III) reduction and electron transport pathway by a novel humus-reducing bacterium, Thauera humireducens SgZ-1.

    Science.gov (United States)

    Ma, Chen; Yu, Zhen; Lu, Qin; Zhuang, Li; Zhou, Shun-Gui

    2015-04-01

    In this study, an anaerobic batch experiment was conducted to investigate the humus- and Fe(III)-reducing ability of a novel humus-reducing bacterium, Thauera humireducens SgZ-1. Inhibition tests were also performed to explore the electron transport pathways with various electron acceptors. The results indicate that in anaerobic conditions, strain SgZ-1 possesses the ability to reduce a humus analog, humic acids, soluble Fe(III), and Fe(III) oxides. Acetate, propionate, lactate, and pyruvate were suitable electron donors for humus and Fe(III) reduction by strain SgZ-1, while fermentable sugars (glucose and sucrose) were not. UV-visible spectra obtained from intact cells of strain SgZ-1 showed absorption peaks at 420, 522, and 553 nm, characteristic of c-type cytochromes (cyt c). Dithionite-reduced cyt c was reoxidized by Fe-EDTA and HFO (hydrous ferric oxide), which suggests that cyt c within intact cells of strain SgZ-1 has the ability to donate electrons to extracellular Fe(III) species. Inhibition tests revealed that dehydrogenases, quinones, and cytochromes b/c (cyt b/c) were involved in reduction of AQS (9, 10-anthraquinone-2-sulfonic acid, humus analog) and oxygen. In contrast, only NADH dehydrogenase was linked to electron transport to HFO, while dehydrogenases and cyt b/c were found to participate in the reduction of Fe-EDTA. Thus, various different electron transport pathways are employed by strain SgZ-1 for different electron acceptors. The results from this study help in understanding the electron transport processes and environmental responses of the genus Thauera.

  9. Characterization of Alkaliphilus hydrothermalis sp. nov., a novel alkaliphilic anaerobic bacterium, isolated from a carbonaceous chimney of the Prony hydrothermal field, New Caledonia.

    Science.gov (United States)

    Ben Aissa, Fatma; Postec, Anne; Erauso, Gaël; Payri, Claude; Pelletier, Bernard; Hamdi, Moktar; Fardeau, Marie-Laure; Ollivier, Bernard

    2015-01-01

    A novel anaerobic, alkaliphilic, Gram-positive staining bacterium was isolated from a hydrothermal chimney in the Prony Bay, New Caledonia. This strain designated FatMR1(T) grew at temperatures from 20 to 55 °C (optimum 37 °C) and at pH between 7.5 and 10.5 (optimum 8.8-9). NaCl is not required for growth (optimum 0.2-0.5%), but is tolerated up to 3%. Sulfate, thiosulfate, elemental sulfur, sulfite, nitrate and nitrite are not used as terminal electron acceptors. Strain FatMR1(T) fermented pyruvate, yeast extract, peptone and biotrypcase and used fructose as the only sugar. The main fermentation products from fructose and proteinaceous compounds (e.g. peptone and biotrypcase) were acetate, H2 and CO2. Crotonate was disproportionated to acetate and butyrate. The predominant cellular fatty acids were C14:0 and C16:0. The G + C content of the genomic DNA was 37.1 mol%. On the basis of phylogenetic, genetic, and physiological properties, strain FatMR1(T) (=DSM 25890(T), =JCM 18390(T)) belonging to the phylum Firmicutes, class Clostridia, order Clostridiales, is proposed as a novel species of the genus Alkaliphilus, A. hydrothermalis sp. nov. PMID:25319677

  10. Acetoanaerobium pronyense sp. nov., an anaerobic alkaliphilic bacterium isolated from a carbonate chimney of the Prony Hydrothermal Field (New Caledonia).

    Science.gov (United States)

    Bes, Méline; Merrouch, Mériem; Joseph, Manon; Quéméneur, Marianne; Payri, Claude; Pelletier, Bernard; Ollivier, Bernard; Fardeau, Marie-Laure; Erauso, Gaël; Postec, Anne

    2015-08-01

    A novel anaerobic bacterial strain, ST07-YET, was isolated from a carbonate chimney of the Prony Hydrothermal Field (PHF) in New Caledonia. Cells were Gram-stain-positive, straight rods (0.7-0.8 × 3.0-5.0 μm) and motile by means of lateral flagella. Strain ST07-YET was mesophilic (optimum 35 °C), moderately alkaliphilic and halotolerant (optimum pH 8.7 and 5 g l- 1 NaCl). Elemental sulfur, sulfate, thiosulfate, sulfite, nitrate and nitrite were not used as terminal electron acceptors. Yeast extract, peptone, tryptone, Casamino acids, crotonate, pyruvate, galactose, maltose, sucrose, ribose, trehalose and glucose were used as carbon sources. Glucose fermentation led to acetate, H2 and CO2 formation. Arginine, serine, histidine, lysine, methionine and cysteine improved growth, but the Stickland reaction was negative for the combinations of amino acids tested. The major metabolic products from yeast extract fermentation were H2, CO2, acetate, butyrate, isobutyrate, isovalerate and propionate. The predominant cellular fatty acids were C16  :  0, C16  :  1cis9, C14  :  0 and C16  :  1cis7 (>5 % of total fatty acids). The G+C content of the genomic DNA was 32.9 mol%. Phylogenetic analysis revealed that strain ST07-YET was most closely related to Clostridium sticklandii DSM 519T and Acetoanaerobium noterae NOT-3T (96.7 % and 96.8 % 16S rRNA gene sequence similarity, respectively). On the basis of phylogenetic, chemotaxonomic and physiological properties, strain ST07-YET is proposed to represent a novel species of the genus Acetoanaerobium (order Clostridiales, phylum Firmicutes) with the name Acetoanaerobium pronyense sp. nov. The type strain is ST07-YET ( = DSM 27512T = JCM 19400T). PMID:25948619

  11. Alkalitalea saponilacus gen. nov., sp. nov., an obligately anaerobic, alkaliphilic, xylanolytic bacterium from a meromictic soda lake.

    Science.gov (United States)

    Zhao, Baisuo; Chen, Shulin

    2012-11-01

    A Gram-positive, obligately anaerobic, motile, slender, flexible rod, designated SC/BZ-SP2(T), was isolated from mixed alkaline water and sediment of Soap Lake, Washington State, USA. Strain SC/BZ-SP2(T) formed salmon to pink colonies and was alkaliphilic. The isolate grew at pH(35 °C) 7.5-10.5 (optimum pH(35 °C) 9.7), at 8-40 °C (optimum 35-37 °C) and with 0.35-1.38 M Na(+) (optimum 0.44-0.69 M Na(+)). The isolate utilized L-arabinose, D-ribose, D-xylose, D-fructose, D-mannose, D-galactose, cellobiose, maltose, sucrose, trehalose, sorbitol, xylan, malate and yeast extract as carbon and energy sources; best growth was observed with L-arabinose, cellobiose, maltose and trehalose. The major fermentation products from beechwood xylan were propionate and acetate. The dominant fatty acids were iso-C(15:0), anteiso-C(15:0), iso-C(17:0) 3-OH, C(17:0) 3-OH and C(15:0) 3-OH. The cell-wall sugars were ribose, xylose, galactose and glucose. Thiosulfate and sulfite could be reduced to sulfide. The genomic DNA G+C content was 39.5 ± 0.9 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain SC/BZ-SP2(T) belonged to the family Marinilabiliaceae of the order Bacteroidales, class Bacteroidia. The most closely related strains were Alkaliflexus imshenetskii Z-7010(T) (91.8% 16S rRNA gene sequence similarity), Marinilabilia salmonicolor Cy s1(T) (91.0%) and Anaerophaga thermohalophila Fru22(T) (90.4%). On the basis of phenotypic, chemotaxonomic and phylogenetic features, strain SC/BZ-SP2(T) represents a novel species in a new genus of the family Marinilabiliaceae, for which the name Alkalitalea saponilacus gen. nov., sp. nov. is proposed. The type strain of Alkalitalea saponilacus is SC/BZ-SP2(T) (=ATCC BAA-2172(T) =DSM 24412(T)). PMID:22199219

  12. Lactivibrio alcoholicus gen. nov., sp. nov., an anaerobic, mesophilic, lactate-, alcohol-, carbohydrate- and amino-acid-degrading bacterium in the phylum Synergistetes.

    Science.gov (United States)

    Qiu, Yan-Ling; Hanada, Satoshi; Kamagata, Yoichi; Guo, Rong-Bo; Sekiguchi, Yuji

    2014-06-01

    A mesophilic, obligately anaerobic, lactate-, alcohol-, carbohydrate- and amino-acid- degrading bacterium, designated strain 7WAY-8-7(T), was isolated from an upflow anaerobic sludge blanket reactor treating high-strength organic wastewater from isomerized sugar production processes. Cells of strain 7WAY-8-7(T) were motile, curved rods (0.7-1.0×5.0-8.0 µm). Spore formation was not observed. The strain grew optimally at 37 °C (range for growth was 25-40 °C) and pH 7.0 (pH 6.0-7.5), and could grow fermentatively on yeast extract, glucose, ribose, xylose, malate, tryptone, pyruvate, fumarate, Casamino acids, serine and cysteine. The main end-products of glucose fermentation were acetate and hydrogen. In co-culture with the hydrogenotrophic methanogen Methanospirillum hungatei DSM 864(T), strain 7WAY-8-7(T) could utilize lactate, glycerol, ethanol, 1-propanol, 1-butanol, L-glutamate, alanine, leucine, isoleucine, valine, histidine, asparagine, glutamine, arginine, lysine, threonine, 2-oxoglutarate, aspartate and methionine. A Stickland reaction was not observed with some pairs of amino acids. Yeast extract was required for growth. Nitrate, sulfate, thiosulfate, elemental sulfur, sulfite and Fe (III) were not used as terminal electron acceptors. The G+C content of the genomic DNA was 61.4 mol%. 16S rRNA gene sequence analysis revealed that the isolate belongs to the uncultured environmental clone clade (called 'PD-UASB-13' in the Greengenes database) in the bacterial phylum Synergistetes, showing less than 90% sequence similarity with closely related described species such as Aminivibrio pyruvatiphilus and Aminobacterium colombiense (89.7% and 88.7%, respectively). The major cellular fatty acids were iso-C(13 : 0), iso-C(15 : 0), anteiso-C(15 : 0), C(18 : 1), C(19 : 1), C(20 : 1) and C(21 : 1). A novel genus and species, Lactivibrio alcoholicus gen. nov., sp. nov. is proposed to accommodate strain 7WAY-8-7(T) ( = JCM 17151(T

  13. Deletion of a gene cluster for [Ni-Fe] hydrogenase maturation in the anaerobic hyperthermophilic bacterium Caldicellulosiruptor bescii identifies its role in hydrogen metabolism.

    Science.gov (United States)

    Cha, Minseok; Chung, Daehwan; Westpheling, Janet

    2016-02-01

    The anaerobic, hyperthermophlic, cellulolytic bacterium Caldicellulosiruptor bescii grows optimally at ∼80 °C and effectively degrades plant biomass without conventional pretreatment. It utilizes a variety of carbohydrate carbon sources, including both C5 and C6 sugars, released from plant biomass and produces lactate, acetate, CO2, and H2 as primary fermentation products. The C. bescii genome encodes two hydrogenases, a bifurcating [Fe-Fe] hydrogenase and a [Ni-Fe] hydrogenase. The [Ni-Fe] hydrogenase is the most widely distributed in nature and is predicted to catalyze hydrogen production and to pump protons across the cellular membrane creating proton motive force. Hydrogenases are the key enzymes in hydrogen metabolism and their crystal structure reveals complexity in the organization of their prosthetic groups suggesting extensive maturation of the primary protein. Here, we report the deletion of a cluster of genes, hypABFCDE, required for maturation of the [Ni-Fe] hydrogenase. These proteins are specific for the hydrogenases they modify and are required for hydrogenase activity. The deletion strain grew more slowly than the wild type or the parent strain and produced slightly less hydrogen overall, but more hydrogen per mole of cellobiose. Acetate yield per mole of cellobiose was increased ∼67 % and ethanol yield per mole of cellobiose was decreased ∼39 %. These data suggest that the primary role of the [Ni-Fe] hydrogenase is to generate a proton gradient in the membrane driving ATP synthesis and is not the primary enzyme for hydrogen catalysis. In its absence, ATP is generated from increased acetate production resulting in more hydrogen produced per mole of cellobiose.

  14. Crystallization and preliminary X-ray study of a thermostable alanine racemase from Thermoanaerobacter tengcongensis MB4

    Science.gov (United States)

    Dong, Hui; Xu, Shujing; Lu, Xiaoyun; He, Guangzheng; Zhao, Ranran; Chen, Shuai; Fu, Sheng; Ju, Jiansong

    2013-01-01

    Alanine racemase (AlrMB4), a dimeric PLP-dependent thermostable enzyme from the anaerobic eubacterium Thermoanaerobacter tengcongensis MB4, was expressed and purified with a His6 tag in a form suitable for X-ray crystallographic analysis. Crystals were grown by the hanging-drop vapour-diffusion method at 289 K using a solution consisting of 0.1 M bis-tris pH 7.0, 22%(w/v) polyethylene glycol 4000. X-ray diffraction data were collected to 2.6 Å resolution. The crystal belonged to the orthorhombic space group P212121, with two protein molecules in an asymmetric unit. PMID:23722847

  15. Crystallization and preliminary X-ray study of a thermostable alanine racemase from Thermoanaerobacter tengcongensis MB4

    International Nuclear Information System (INIS)

    A thermostable alanine racemase from T. tengcongensis MB4 was expressed in E. coli and purified. Crystallization and preliminary X-ray crystallographic analysis were performed for the recombinant enzyme. Alanine racemase (AlrMB4), a dimeric PLP-dependent thermostable enzyme from the anaerobic eubacterium Thermoanaerobacter tengcongensis MB4, was expressed and purified with a His6 tag in a form suitable for X-ray crystallographic analysis. Crystals were grown by the hanging-drop vapour-diffusion method at 289 K using a solution consisting of 0.1 M bis-tris pH 7.0, 22%(w/v) polyethylene glycol 4000. X-ray diffraction data were collected to 2.6 Å resolution. The crystal belonged to the orthorhombic space group P212121, with two protein molecules in an asymmetric unit

  16. Isolation, identification and metabolic characterization of an anaerobic thermophilic bacterium%一嗜热厌氧杆菌的分离、鉴定及其代谢特征

    Institute of Scientific and Technical Information of China (English)

    兰贵红; 葛菊; 刘海昌; 唐全武; 张辉; 乔代容; 曹毅

    2012-01-01

    [Objective] To isolate, protect thermophilic microbial resources from petroleum reservoirs and analyze these main metabolic characterization. [Methods] The strain BF1 was isolated by Hungte anaerobic technique from Chenghai 1 Unit of Dagang oil field in China. Its taxonomic status determined by physiological, biochemical and 16S Rrna gene sequence analysis. Its effect of sulfur metabolism on the corrosion current was measured by electrochemical analysis. [Results] The strain BF1 was Gram-negative, strictly thermophilic anaerobic, top-sporulating, non-motile, rods, 0.42 μmx(l.6-5.4) μm, grew solitary, in pairs or in chains. Growth occurred at 45 °C-75 °C (optimum 60 °C), at Ph 4.5-8.5 (optimum 6.5). Specific growth rate (μm) was 0.99 h-1 and doubling time was 42 min. Substrates included glucose, melizitose, raffinose, mannose, lactose, fructose and ribose. The main products of glucose fermentation were CO2, H2, acetate and ethanol. The strain could reduce thiosulfate and sulfite to sulfide, and its tolerance limits were 75 mmol/L and 50 mmol/L, respectively. The electrochemical impedance reduced from 2 099 Ω/cm2 to 776 Ω/cm2 and the corrosion current increased from 9.936e-006 A to 3.25e-005 A after thiosulfate (50 mmol/L) was reduced. The fatty acids were mainly composed of saturated long chain fatty acids, with C15:0 the most, accounting for 70.6%. The G+C content of DNA was 34.0 mol%. The 16S Rrna gene sequence analysis indicated that the closest phylogenetic relatives were Thermoanaerobacter pseudethanolicus DSM2355T and T. Brockii subsp. Brockii DSM1457T, 98.3% and 98.0%, respectively. However, the strain BF1 was different with T. Pseudethanolicus DSM2355T and T. Brockii subsp. Brockii DSM1457T in doubling time, optimum temperature and substrates utilized, and different with T. Pseudethanolicus DSM 2355T in fatty acid profile. [Conclusion] The strain BF1 may be a new species of Thermoanaerobacter genus, the exact taxonomic status of it requires DNA

  17. Conversion of hemicelluloses and D-xylose into ethanol by the use of thermophilic anaerobic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-05-01

    Ethanol is a CO{sub 2} neutral liquid fuel that can substitute the use of fossil fuels in the transportation sector, thereby reducing the CO{sub 2} emission to the atmosphere. CO{sub 2} emission is suspected to contribute significantly to the so-called greenhouse effect, the global heating. Substrates for production of ethanol must be cheap and plentiful. This can be met by the use of lignocellulosic biomass such as willow, wheat straw, hardwood and softwood. However, the complexity of these polymeric substrates and the presence of several types of carbohydrates (glucose, xylose, mannose, galactose, arabinose) require additional treatment to release the useful carbohydrates and ferment the major carbohydrates fractions. The costs related to the ethanol-production must be kept at a minimum to be price competitive compared to gasoline. Therefore all of the carbohydrates present in lignocellulose need to be converted into ethanol. Glucose can be fermented to ethanol by yeast strains such as Saccharomyces cerevisiae, which, however, is unable to ferment the other major carbohydrate fraction, D-xylose. Thermophilic anaerobic ethanol producing bacteria can be used for fermentation of the hemicelluloses fraction of lignocellulosic biomass. However, physiological studies of thermophilic anaerobic bacteria have shown that the ethanol yield decreases at increasing substrate concentration. The biochemical limitations causing this phenomenon are not known in detail. Physiological and biochemical studies of a newly characterized thermophilic anaerobic ethanol producing bacterium, Thermoanaerobacter mathranii, was performed. This study included extraction of intracellular metabolites and enzymes of the pentose phosphate pathway and glycolysis. These studies revealed several bottlenecks in the D-xylose metabolism. This knowledge makes way for physiological and genetic engineering of this strain to improve the ethanol yield and productivity at high concentration of D-xylose. (au)

  18. Metabolic engineering to improve ethanol production in Thermoanaerobacter mathranii

    DEFF Research Database (Denmark)

    Yao, Shuo; Mikkelsen, Marie Just

    2010-01-01

    Thermoanaerobacter mathranii can produce ethanol from lignocellulosic biomass at high temperatures, but its biotechnological exploitation will require metabolic engineering to increase its ethanol yield. With a cofactor-dependent ethanol production pathway in T. mathranii, it may become crucial...... to regenerate cofactor to increase the ethanol yield. Feeding the cells with a more reduced carbon source, such as mannitol, was shown to increase ethanol yield beyond that obtained with glucose and xylose. The ldh gene coding for lactate dehydrogenase was previously deleted from T. mathranii to eliminate...... an NADH oxidation pathway. To further facilitate NADH regeneration used for ethanol formation, a heterologous gene gldA encoding an NAD+-dependent glycerol dehydrogenase was expressed in T. mathranii. One of the resulting recombinant strains, T. mathranii BG1G1 (Δldh, P xyl GldA), showed increased ethanol...

  19. Characterization of an acidotolerant, thermophilic Thermoanaerobacter sp.xyl-d with a high xylose conversion%一株高效降解木糖的耐酸、嗜热厌氧杆菌的生理特性及产物分析

    Institute of Scientific and Technical Information of China (English)

    张文静; 马诗淳; 邓宇; 张辉

    2011-01-01

    [目的]分离高效降解木糖的嗜热厌氧杆菌菌株,用于发酵生产生物燃料乙醇,为后继的构建基因工程菌株及联合生物工艺提供材料.[方法]运用亨盖特厌氧操作技术从胜利油田油层采出液两年的富集样中分离到一株嗜热厌氧杆菌xyl-d.采用形态学观察、生理生化指标鉴定及基于16S rRNA的系统发育学分析确定其分类地位.[结果]菌株xyl-d为革兰氏阴性厌氧杆菌,菌体大小为(1.35-5.08) μm x(0.27-0.40) μm,单生、成对或成簇生长,芽胞圆形,端生.温度生长范围30 - 85℃(最适温度65℃);pH范围3.0-10.0(最适pH7.5);NaCl浓度范围0% -4%(最适NaC1浓度2.0%).发酵D-木糖的产物是乙醇、乙酸、CO2及少量的异丁醇、丙酸.菌株xyl-d的(G+C)mol%含量为45.6%,与热厌氧杆菌属模式菌株威吉利热厌氧杆菌(Thermoanaerobacter wiegelii)DSM10319T及嗜热乙醇杆菌(Thermoanaerobacter ethanolicus)DSM 2246T的16S rRNA序列相似性均为99.3%.菌株利用D-木糖产乙醇的最佳初始pH为8.5;少量酵母粉能刺激生长并显著提高发酵D-木糖的产醇率,使乙醇成为主要的发酵产物;培养基中乙醇浓度达到7% (V/V)时菌体生长受到抑制,最佳生长条件下D-木糖的降解率可达91.37%,最佳产醇条件下发酵1摩尔D-木糖可产生1.29摩尔的乙醇.[结论]菌株xyl-d是从特殊生境(油藏)中分离到的一株高效降解D-木糖的耐酸、嗜热的厌氧杆菌,其为半纤维素降解产乙醇的联合生物工艺提供了菌源.%[Objective] We screened a thertnophilic xylolytic bacterium that produced fuel ethanol from a high-temperature oil reservoir, and provided microbial resources to genetic engineering strains construction and consolidated bioprocessing. [Methods] We adopted Hungate anaerobic technique to isolate strain xyl-d from oil reservoir water sample enriched for two years from Shengli Oilfield in China, and we identified strain xyl-d with

  20. Genome sequence of Victivallis vadensis ATCC BAA-548, an anaerobic bacterium from the phylum Lentisphaerae, isolated from the human gastro-intestinal tract

    Energy Technology Data Exchange (ETDEWEB)

    Van Passel, Mark W.J. [Wageningen University and Research Centre, The Netherlands; Kant, Ravi [University of Helsinki; Palva, Airi [University of Helsinki; Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Copeland, A [U.S. Department of Energy, Joint Genome Institute; Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Glavina Del Rio, Tijana [U.S. Department of Energy, Joint Genome Institute; Dalin, Eileen [U.S. Department of Energy, Joint Genome Institute; Tice, Hope [U.S. Department of Energy, Joint Genome Institute; Bruce, David [Los Alamos National Laboratory (LANL); Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Davenport, Karen W. [Los Alamos National Laboratory (LANL); Sims, David [Los Alamos National Laboratory (LANL); Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Han, Cliff [Los Alamos National Laboratory (LANL); Larimer, Frank W [ORNL; Land, Miriam L [ORNL; Hauser, Loren John [ORNL; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Ovchinnikova, Galina [U.S. Department of Energy, Joint Genome Institute; Richardson, Paul [U.S. Department of Energy, Joint Genome Institute; De Vos, Willem M. [Wageningen University and Research Centre, The Netherlands; Smidt, Hauke [Wageningen University and Research Centre, The Netherlands; Zoetendal, Erwin G. [Wageningen University and Research Centre, The Netherlands

    2011-01-01

    Victivallis vadensis ATCC BAA-548 represents the first cultured representative from the novel phylum Lentisphaerae, a deep-branching bacterial lineage. Few cultured bacteria from this phylum are known, and V. vadensis therefore represents an important organism for evolutionary studies. V. vadensis is a strictly anaerobic sugar-fermenting isolate from the human gastro-intestinal tract.

  1. Spore-Forming Thermophilic Bacterium within Artificial Meteorite Survives Entry into the Earth's Atmosphere on FOTON-M4 Satellite Landing Module.

    Directory of Open Access Journals (Sweden)

    Alexander Slobodkin

    Full Text Available One of the key conditions of the lithopanspermia hypothesis is that microorganisms situated within meteorites could survive hypervelocity entry from space through the Earth's atmosphere. So far, all experimental proof of this possibility has been based on tests with sounding rockets which do not reach the transit velocities of natural meteorites. We explored the survival of the spore-forming thermophilic anaerobic bacterium, Thermoanaerobacter siderophilus, placed within 1.4-cm thick basalt discs fixed on the exterior of a space capsule (the METEORITE experiment on the FOTON-M4 satellite. After 45 days of orbital flight, the landing module of the space vehicle returned to Earth. The temperature during the atmospheric transit was high enough to melt the surface of basalt. T. siderophilus survived the entry; viable cells were recovered from 4 of 24 wells loaded with this microorganism. The identity of the strain was confirmed by 16S rRNA gene sequence and physiological tests. This is the first report on the survival of a lifeform within an artificial meteorite after entry from space orbit through Earth's atmosphere at a velocity that closely approached the velocities of natural meteorites. The characteristics of the artificial meteorite and the living object applied in this study can serve as positive controls in further experiments on testing of different organisms and conditions of interplanetary transport.

  2. Dimeric structure of the N-terminal domain of PriB protein from Thermoanaerobacter tengcongensis solved ab initio.

    Science.gov (United States)

    Liebschner, Dorothee; Brzezinski, Krzysztof; Dauter, Miroslawa; Dauter, Zbigniew; Nowak, Marta; Kur, Józef; Olszewski, Marcin

    2012-12-01

    PriB is one of the components of the bacterial primosome, which catalyzes the reactivation of stalled replication forks at sites of DNA damage. The N-terminal domain of the PriB protein from the thermophilic bacterium Thermoanaerobacter tengcongensis (TtePriB) was expressed and its crystal structure was solved at the atomic resolution of 1.09 Å by direct methods. The protein chain, which encompasses the first 104 residues of the full 220-residue protein, adopts the characteristic oligonucleotide/oligosaccharide-binding (OB) structure consisting of a five-stranded β-barrel filled with hydrophobic residues and equipped with four loops extending from the barrel. In the crystal two protomers dimerize, forming a six-stranded antiparallel β-sheet. The structure of the N-terminal OB domain of T. tengcongensis shows significant differences compared with mesophile PriBs. While in all other known structures of PriB a dimer is formed by two identical OB domains in separate chains, TtePriB contains two consecutive OB domains in one chain. However, sequence comparison of both the N-terminal and the C-terminal domains of TtePriB suggests that they have analogous structures and that the natural protein possesses a structure similar to a dimer of two N-terminal domains.

  3. Regulation of enzyme activity of alcohol dehydrogenase through its interactions with pyruvate-ferredoxin oxidoreductase in Thermoanaerobacter tengcongensis.

    Science.gov (United States)

    Wang, Qian; Wang, Quanhui; Tong, Wei; Bai, Xue; Chen, Zhen; Zhao, Jingjing; Zhang, Jiyuan; Liu, Siqi

    2012-01-20

    Alcohol dehydrogenases (ADHs) from thermophilic microorganisms are interesting enzymes that have their potential applications in biotechnology and potentially provide insight into the mechanisms of action of thermo-tolerant proteins. The molecular mechanisms of ADHs under thermal stress in vivo have yet to be explored. Herein, we employed a proteomic strategy to survey the possible interactions of secondary-ADH (2-ADH) with other proteins in Thermoanaerobacter tengcongensis (T. tengcongensis) cultured at 75°C and found that 2-ADH, pyruvate-ferredoxin oxidoreductase (PFOR) and several glycolytic enzymes coexisted in a protein complex. Using anion exchange chromatography, the elution profile indicated that the native 2-ADH was present in two forms, PFOR-bound and PFOR-free. Immuno-precipitation and pull down analysis further validated the interactions between 2-ADH and PFOR. The kinetic behaviours of 2-ADH either in the recombinant or native form were evaluated with different substrates. The enzyme activity of 2-ADH was inhibited in a non-competitive mode by PFOR, implying the interaction of 2-ADH and PFOR negatively regulated alcohol formation. In T. tengcongensis, PFOR is an enzyme complex located at the upstream of 2-ADH in the alcohol generation pathway. These findings, therefore, offered a plausible mechanism for how alcohol metabolism is regulated by hetero-interactions between 2-ADH and PFOR, especially in anaerobic thermophiles. PMID:22222371

  4. Dimeric structure of the N-terminal domain of PriB protein from Thermoanaerobacter tengcongensis solved ab initio

    Energy Technology Data Exchange (ETDEWEB)

    Liebschner, Dorothee [National Cancer Institute, Argonne National Laboratory, Argonne, IL 60439 (United States); Brzezinski, Krzysztof [National Cancer Institute, Argonne National Laboratory, Argonne, IL 60439 (United States); University of Bialystok, 15-399 Bialystok (Poland); Dauter, Miroslawa [Argonne National Laboratory, Argonne, IL 60439 (United States); Dauter, Zbigniew, E-mail: dauter@anl.gov [National Cancer Institute, Argonne National Laboratory, Argonne, IL 60439 (United States); Nowak, Marta; Kur, Józef; Olszewski, Marcin, E-mail: dauter@anl.gov [Gdansk University of Technology, 80-952 Gdansk (Poland); National Cancer Institute, Argonne National Laboratory, Argonne, IL 60439 (United States)

    2012-12-01

    The N-terminal domain of the PriB protein from the thermophilic bacterium T. tengcongensis (TtePriB) was expressed and its crystal structure has been solved at the atomic resolution of 1.09 Å by direct methods. PriB is one of the components of the bacterial primosome, which catalyzes the reactivation of stalled replication forks at sites of DNA damage. The N-terminal domain of the PriB protein from the thermophilic bacterium Thermoanaerobacter tengcongensis (TtePriB) was expressed and its crystal structure was solved at the atomic resolution of 1.09 Å by direct methods. The protein chain, which encompasses the first 104 residues of the full 220-residue protein, adopts the characteristic oligonucleotide/oligosaccharide-binding (OB) structure consisting of a five-stranded β-barrel filled with hydrophobic residues and equipped with four loops extending from the barrel. In the crystal two protomers dimerize, forming a six-stranded antiparallel β-sheet. The structure of the N-terminal OB domain of T. tengcongensis shows significant differences compared with mesophile PriBs. While in all other known structures of PriB a dimer is formed by two identical OB domains in separate chains, TtePriB contains two consecutive OB domains in one chain. However, sequence comparison of both the N-terminal and the C-terminal domains of TtePriB suggests that they have analogous structures and that the natural protein possesses a structure similar to a dimer of two N-terminal domains.

  5. Experimental study on reduction of U (Ⅵ) by an anaerobic bacterium, Shewanella putrefaciens: Application to sandstone-hosted interlayer oxidation-zone type uranium deposits, China

    Institute of Scientific and Technical Information of China (English)

    MIN; Maozhong; XU; Huifang; L.; L.; Barton; PENG; Xinjian

    2005-01-01

    An experimental study on reduction of U (Ⅵ) by anaerobic bacteria, Shewane//a putrefaciens, is first reported here in China. The experimental conditions were: 35℃ and pH =7.0-7.4, corresponding to a physicochemical environments in which the sandstone-hosted interlayer oxidation-zone type uranium deposit formed in Northwest China's Xinjiang. Bacteria adopted in the present experiment, Shewanella putrefaciens, occur extensively in natural environment. Our study shows that nano-crystal precipitates of uraninite quickly occurred on the surface of the cells within one week. It was found that the pitchblende was characterized by a random arrangement of uraninite nanocrystals (2-4 nm) in it, significantly different from natural pitchblende in which uraninite nanocrystals are arranged in order. Finally, a possible mechanism of uranium biomineralization by microorganisms in the deposits is discussed. Our investigation may supply a technical train of thoughts for bioremediation of nuclear-contaminated water environments and for underground dissolving extraction of the sandstone-hosted uranium ores.

  6. 嗜热厌氧纤维素分解菌的分离、鉴定及其酶学特性%Isolation, identification and enzyme characterization of a thermophilic cellulolytic anaerobic bacterium

    Institute of Scientific and Technical Information of China (English)

    赵银瓶; 马诗淳; 孙颖杰; 黄艳; 邓宇

    2012-01-01

    [目的]分离高效降解纤维素的嗜热厌氧菌,通过与嗜热产乙醇菌株联合培养的方式,为生产纤维素乙醇提供微生物资源.[方法]利用厌氧分离技术从降解纤维素的马粪富集物中分离到一株嗜热厌氧细菌HCp.采用形态学观察、生理生化鉴定、结合16S rDNA序列的系统发育学分析确定该菌株的分类地位,利用DNS酶活分析方法测定此分离菌株的酶学性质.[结果]分离菌株HCp革兰氏染色阴性,直杆,细胞单个或成对出现,菌体大小为(0.35 -0.50) μm×(2.42 -6.40) μm,严格厌氧,形成芽胞,能运动,对新霉素有一定的抗性.此菌能利用滤纸纤维素、纤维素粉、微晶纤维素、脱脂棉和水稻秸秆、明胶等,还可以利用葡萄糖、纤维二糖、木糖、木聚糖、果糖、蔗糖、核糖、半乳糖、麦芽糖、山梨糖、海藻糖、蜜二糖、甘露糖等.该菌株在pH6.5 -8.5、温度35 - 70℃、盐浓度0% - 1.0%范围内利用纤维素生长,最适pH为6.85,最适温度为60℃,最适NaCl浓度为0.2%,最佳生长条件下,在10 d内滤纸纤维素降解率可达90.40%.在HCp的纤维小体中,滤纸酶、羧甲基纤维素酶、β-葡萄糖苷酶、木聚糖酶的最适作用温度分别为70℃、70℃、70℃、60℃,并且羧甲基纤维素酶具有较高的热稳定性.部分长度的16S rDNA序列分析表明,分离菌株HCp与Acetivibrio cellulolyticus、A.cellulosolvens相似性为97.5%.[结论]分离菌株HCp是从马粪富集物中分离到的一株嗜热厌氧细菌,该菌具有较强的降解纤维素能力,生长温度范围广,酶的热稳定性好,纤维素底物利用广泛等特性,为纤维素降解产乙醇提供了良好的材料.%[Objective ] To identify a thermophilic bacterium from horse manure to degrade cellulose efficiently, and to enrich microbial resources producing cellulolytic ethanol by co-culturing with thermophilic ethanol producing bacterium. [Methods] We used Hungate anaerobic

  7. High ethanol tolerance of the thermophilic anaerobic ethanol producer Thermoanaerobacter BG1L1

    DEFF Research Database (Denmark)

    Georgieva, Tania I.; Mikkelsen, Marie Just; Ahring, Birgitte Kiær

    2007-01-01

    to exogenously added ethanol was studied in a continuous immobilized reactor system at a growth temperature of 70 degrees C. Ethanol tolerance was evaluated based on inhibition of fermentative performance e.g.. inhibition of substrate conversion. At the highest ethanol concentration tested (8.3% v/v), the strain...... was able to convert 42% of the xylose initially present, indicating that this ethanol concentration is not the upper limit tolerated by the strain. Long-term strain adaptation to high ethanol concentrations (6 - 8.3%) resulted in an improvement of xylose conversion by 25% at an ethanol concentration of 5......% v/v, which is the concentration required in practice for economically efficient product recovery. For all ethanol concentrations tested, relatively high and stable ethanol yields (0.40 - 0.42 g/g) were seen. The strain demonstrated a remarkable, ethanol tolerance, which is the second highest...

  8. Anaerobes beyond anaerobic digestion

    OpenAIRE

    Sousa, D. Z.; Pereira, M A; Alves, M.M.

    2009-01-01

    Anaerobic microorganisms are widespread in nature. Sediments, gastrointestinal tracks, volcanic vents, geothermal sources are examples of habitats where anaerobic metabolism prevail, in some cases at extreme temperature, pH and pressure conditions. In such microbial ecosystems waste of some is food for others in a true integrated structure. Anaerobic microorganisms are able to use a wide variety of organic and inorganic compounds. Recalcitrant compounds, such as hydrocarbons, a...

  9. Isolation and characterization of a new CO-utilizing strain, Thermoanaerobacter thermohydrosulfuricus subsp. carboxydovorans, isolated from a geothermal spring in Turkey

    NARCIS (Netherlands)

    Balk, M.; Heilig, G.H.J.; Eekert, van M.H.A.; Stams, A.J.M.; Rijpstra, W.I.C.; Sinninghe-Damsté, J.S.; Vos, de W.M.; Kengen, S.W.M.

    2009-01-01

    A novel anaerobic, thermophilic, Gram-positive, spore-forming, and sugar-fermenting bacterium (strain TLO) was isolated from a geothermal spring in Aya¿, Turkey. The cells were straight to curved rods, 0.4-0.6 mum in diameter and 3.5-10 mum in length. Spores were terminal and round. The temperature

  10. Optimization of titanium dioxide enrichment of phosphopeptides and application in the Thermoanaerobacter tengcongensis phosphoproteome analysis%二氧化钛富集磷酸肽方法优化及在腾冲嗜热厌氧菌磷酸化蛋白质组分析中的应用

    Institute of Scientific and Technical Information of China (English)

    林威; 王京兰; 应万涛; 钱小红

    2012-01-01

    Using titanium dioxide is a very good strategy for the phosphopeptide enrichment. There are many other factors can affect the enrichment efficiency, and the optimization of parameters was needed for better enrichment results. In this study, the peptide mixtures of six standard proteins were used as the model samples to evaluate and optimize the parameters such as the proportion of acetonitrile and trifluoroacetic acid in loading buffer and the TiO2-to-pep-tide ratio. The results showed that 80% (v/v) acetonitrile, 1% (v/v) trifluoroacetic acid and 40 :1 (m/m) TiO2-to-peptide ratio were the optimum parameters to obtain the best enrichment selectivity and maximum phosphopeptides identification. For the first time, the optimum enrichment conditions were applied for the phosphoproteome analysis of the Thermoanaerobacter tengcongensis, an anaerobic, saccharolytic, thermophilic bacterium isolated from a hot spring in Tengchong, China, and 25 phosphorylated proteins were identified in the preliminary experiment. The results provided a reference for further study on this organism survived under extreme environment.%为了提高二氧化钛富集磷酸肽法对磷酸肽的富集效率,以6种标准蛋白酶切肽段混合物为研究对象,对二氧化钛富集磷酸肽过程中的乙腈比例、三氟乙酸比例、二氧化钛用量等条件分别进行了优化.结果表明在乙腈含量为80% (v/v),三氟乙酸含量为1%(v/v),二氧化钛用量与需要富集肽段的质量比为40∶1的条件下,可以取得较好的富集效果.将优化后的富集方法应用于腾冲嗜热厌氧菌磷酸化蛋白质的分析,初步鉴定到25个磷酸化蛋白质,为进一步研究这种极端环境下生存的低等生物的生命活动提供了参考信息.

  11. In Situ Analysis of Sulfur Species in Sulfur Globules Produced from Thiosulfate by Thermoanaerobacter sulfurigignens and Thermoanaerobacterium thermosulfurigenes▿ †

    OpenAIRE

    Lee, Yong-Jin; Prange, Alexander; Lichtenberg, Henning; Rohde, Manfred; Dashti, Mona; Wiegel, Juergen

    2007-01-01

    The Firmicutes Thermoanaerobacter sulfurigignens and Thermoanaerobacterium thermosulfurigenes convert thiosulfate, forming sulfur globules inside and outside cells. X-ray absorption near-edge structure analysis revealed that the sulfur consisted mainly of sulfur chains with organic end groups similar to sulfur formed in purple sulfur bacteria, suggesting the possibility that the process of sulfur globule formation by bacteria is an ancient feature.

  12. Racemization of enantiopure secondary alcohols by Thermoanaerobacter ethanolicus secondary alcohol dehydrogenase

    KAUST Repository

    Musa, Musa M.

    2013-01-01

    Controlled racemization of enantiopure phenyl-ring-containing secondary alcohols is achieved in this study using W110A secondary alcohol dehydrogenase from Thermoanaerobacter ethanolicus (W110A TeSADH) and in the presence of the reduced and oxidized forms of its cofactor nicotinamide-adenine dinucleotide. Racemization of both enantiomers of alcohols accepted by W110A TeSADH, not only with low, but also with reasonably high, enantiomeric discrimination is achieved by this method. Furthermore, the high tolerance of TeSADH to organic solvents allows TeSADH-catalyzed racemization to be conducted in media containing up to 50% (v/v) of organic solvents. © 2013 The Royal Society of Chemistry.

  13. Zymomonas mobilis: a bacterium for ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Baratti, J.C.; Bu' Lock, J.D.

    1986-01-01

    Zymomonas mobilis is a facultative anaerobic gram negative bacterium first isolated in tropical countries from alcoholic beverages like the African palm wine, the Mexican pulque and also as a contaminant of cider (cider sickness) or beer in the European countries. It is one of the few facultative anaerobic bacteria degrading glucose by the Entner-Doudoroff pathway usually found in strictly aerobic microorganisms. Some work was devoted to this bacterium in the 50s and 60s and was reviewed by Swings and De Ley in their classical paper published in 1977. During the 70s there was very little work on the bacterium until 1979 and the first report by the Australian group of P.L. Rogers on the great potentialities of Z. mobilis for ethanol production. At that time the petroleum crisis had led the developed countries to search for alternative fuel from renewable resources. The Australian group clearly demonstrated the advantages of the bacterium compared to the yeasts traditionally used for the alcoholic fermentation. As a result, there was a considerable burst in the Zymomonas literature which started from nearly zero in the late 70s to attain 70 papers published in the field in 1984. In this article, papers published from 1982 to 1986 are reviewed.

  14. Amino Acid Metabolism of Thermoanaerobacter Strain AK90: The Role of Electron-Scavenging Systems in End Product Formation

    Directory of Open Access Journals (Sweden)

    Sean Michael Scully

    2015-01-01

    Full Text Available The catabolism of the 20 amino acids by Thermoanaerobacter strain AK90 (KR007667 was investigated under three different conditions: as single amino acids without an electron-scavenging system, in the presence of thiosulfate, and in coculture with a hydrogenotrophic methanogen. The strain degraded only serine without an alternative electron acceptor but degraded 11 amino acids (alanine, cysteine, isoleucine, leucine, lysine, methionine, phenylalanine, serine, threonine, tyrosine, and valine under both of the electron-scavenging systems investigated. Acetate was the dominant end product from alanine, cysteine, lysine, serine, and threonine under electron-scavenging conditions. The branched-chain amino acids, isoleucine, leucine, and valine, were degraded to their corresponding fatty acids under methanogenic conditions and to a mixture of their corresponding fatty acids and alcohols in the presence of thiosulfate. The partial pressure of hydrogen seems to be of importance for the branched-chain alcohol formation. This was suggested by low but detectable hydrogen concentrations at the end of cultivation on the branched-chain amino acid in the presence of thiosulfate but not when cocultured with the methanogen. A more detailed examination of the role of thiosulfate as an electron acceptor was performed with Thermoanaerobacter ethanolicus (DSM 2246 and Thermoanaerobacter brockii (DSM 1457.

  15. Conversion of hemicellulose and D-xylose into ethanol by the use of thermophilic anaerobic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Sommer, Peter

    1998-02-01

    Ethanol is a CO{sub 2} neutral liquid fuel that can substitute the use of fossil fuels in the transportation sector, thereby reducing the CO{sub 2} emission to the atmoshpere. CO{sub 2} emission is suspected to contribute significantly to the so-called greenhouse effect, the global heating. Substrates for production of ethanol must be cheap and plentiful. This can be met by the use of lignocellulosic biomass such as willow, wheat straw, hardwood and softwood. However, the complexity of these polymeric substrates and the presence of several types of carbohydrates (glucose, xylose, mannose, galactose, arabinose) require additional treatment to release the useful carbohydrates and ferment the major carbohydrates fractions. The costs related to the ethanol-production must be kept at a minimum to be price competitive compared to gasoline. Therefore all of the carbohydrates present in lignocellulose need to be converted into ethanol. Glucose can be fermented to ethanol by yeast strains such as Saccharomyces cerevisiae, which, however, is unable to ferment the other major carbohydrate fraction, D-xylose. The need for a microorganism able to ferment D-xylose is therefore apparent. Thermophilic anaerobic ethanol producing bacteria can therefore be considered for fermentation of D-xylose. Screening of 130 thermophilic anaerobic bacterial strains, from hot-springs, mesophilic and thermophilic biogas plants, paper pulp industries and brewery waste, were examined for production of ethanol from D-xylose and wet-oxidized hemicellulose hydrolysate. Several strains were isolated and one particular strain was selected for best performance during the screening test. This strain was characterized as a new species, Thermoanaerobacter mathranii. However, the ethanol yield on wet-oxidized hemicellulose hydrolysate was not satisfactory. The bacterium was adapted by isolation of mutant strains, now resistant to the inhibitory compounds present in the hydrolysate. Growth and ethanol yield

  16. Anaerobic Process.

    Science.gov (United States)

    Yang, Qian; Ju, Mei-Ting; Li, Wei-Zun; Liu, Le; Wang, Yan-Nan; Chang, Chein-Chi

    2016-10-01

    A review of the literature published in 2015 on the focus of Anaerobic Process. It is divided into the following sections. Pretreatment Organic waste Multiple-stage co-digestion Process Methodology and Technology. PMID:27620085

  17. Anaerobic bacteria

    Science.gov (United States)

    Brook I, Goldstein EJ. Diseases caused by non-spore forming anaerobic bacteria. In: Goldman L, Schafer AI, eds. Goldman's Cecil Medicine . 25th ed. Philadelphia, PA: Elsevier Saunders; 2015:chap 297. Stedman's Online ...

  18. Extreme thermophilic ethanol production from rapeseed straw: using the newly isolated Thermoanaerobacter pentosaceus and combining it with Saccharomyces cerevisiae in a two-step process

    DEFF Research Database (Denmark)

    Tomás, Ana Faria; Karagöz, Pınar; Karakashev, Dimitar Borisov;

    2013-01-01

    The newly isolated extreme thermophile Thermoanaerobacter pentosaceus was used for ethanol production from alkaline-peroxide pretreated rapeseed straw (PRS). Both the liquid and solid fractions of PRS were used. T. pentosaceus was able to metabolize the typical process inhibitors present in ligno...

  19. Abyssivirga alkaniphila gen. nov., sp. nov., an alkane-degrading, anaerobic bacterium from a deep-sea hydrothermal vent system, and emended descriptions of Natranaerovirga pectinivora and Natranaerovirga hydrolytica.

    Science.gov (United States)

    Schouw, Anders; Leiknes Eide, Tove; Stokke, Runar; Birger Pedersen, Rolf; Helene Steen, Ida; Bødtker, Gunhild

    2016-04-01

    A strictly anaerobic, mesophilic, syntrophic, alkane-degrading strain, L81T, was isolated from a biofilm sampled from a black smoker chimney at the Loki's Castle vent field. Cells were straight, rod-shaped, Gram-positive-staining and motile. Growth was observed at pH 6.2-9.5, 14-42 °C and 0.5-6 % (w/w) NaCl, with optima at pH 7.0-8.2, 37 °C and 3% (w/w) NaCl. Proteinaceous substrates, sugars, organic acids and hydrocarbons were utilized for growth. Thiosulfate was used as an external electron acceptor during growth on crude oil. Strain L81T was capable of syntrophic hydrocarbon degradation when co-cultured with a methanogenic archaeon, designated strain LG6, isolated from the same enrichment. Phylogenetic analysis based on the 16S rRNA gene sequence indicated that strain L81T is affiliated with the family Lachnospiraceae, and is most closely related to the type strains of Natranaerovirga pectinivora (92 % sequence similarity) and Natranaerovirga hydrolytica (90%). The major cellular fatty acids of strain L81T were C15 : 0, anteiso-C15 : 0 and C16 : 0, and the profile was distinct from those of the species of the genus Natranaerovirga. The polar lipids were phosphatidylglycerol, diphosphatidylglycerol, three unidentified phospholipids, four unidentified glycolipids and two unidentified phosphoglycolipids. The G+C content of genomic DNA was determined to be 31.7 mol%. Based on our phenotypic, phylogenetic and chemotaxonomic results, strain L81T is considered to represent a novel species of a new genus of the family Lachnospiraceae, for which we propose the name Abyssivirga alkaniphila gen. nov., sp. nov. The type strain of Abyssivirga alkaniphila is L81T (=DSM 29592T=JCM 30920T). We also provide emended descriptions of Natranaerovirga pectinivora and Natranaerovirga hydrolytica. PMID:26822139

  20. Isolation from swine feces of a bacterium which decarboxylates p-hydroxyphenylacetic acid to 4-methylphenol (p-cresol).

    OpenAIRE

    L. A. Ward; Johnson, K A; Robinson, I.M.; Yokoyama, M T

    1987-01-01

    An obligate anaerobe has been isolated from swine feces which decarboxylates p-hydroxyphenylacetic acid to 4-methylphenol (p-cresol). The bacterium was an ovoid rod, gram positive, nonsporeforming, and nonmotile. Lactate and acetate were major end products of glucose fermentation. Based on its characteristics, the bacterium is tentatively assigned to the genus Lactobacillus.

  1. 浮霉菌门严格厌氧产氢细菌(Thermopirellula anaerolimosa)的分离及其生理特性%Isolation and characterization of Thermopirellula anaerolimosa gen.nov., sp.nov., an obligate anaerobic hydrogen-producing bacterium of the phylum Planctomycetes

    Institute of Scientific and Technical Information of China (English)

    刘冬英; 刘奕; 门学慧; 郭群群; 郭荣波; 邱艳玲

    2012-01-01

    [Objective] To cultivate various yet-to-be cultured heterotrophs from anaerobic granule sludge, we used a selective culture medium with low concentrations of substrates supplemented a variety of antibiotics.[Methods] An obligate anaerobic, thermophilic, hydrogen-producing bacterium, strainVM20-7 , was isolated from an upflow anaerobic sludge blanket ( UASB ) reactor treating high-strength organic wastewater from isomerized sugar production processes.[Results] Cells of strain VM20-7T are non-motile, spherical, pear or teardrop shaped, occurring singly°r as aggregates (0.7 -2.0 μm×0.7 -2.0 μm).Spore formation was not observed.Growth temperature ranges from 35 - 50℃ ( optimum 45℃ ), pH ranges from 6.0 - 8.3 ( optimum 7.0 - 7.5 ) , NaCl tolerant concentration ranges from 0% -0.5% ( w/v, optimum 0% ).Nitrate, sulfate, thiosulfate, sulfite, elemental sulfur and Fe (Ⅲ) -NTA were not used as terminal electron acceptors.Strain VM20-7 utilizes a wide range of carbohydrates, including glucose, maltose, ribose, xylose, sucrose, galactose, mannose, raffinose, pectin, yeast extract and xylan.Acetate and H2 are the main end products of glucose fermentation.The G + C content of the genomic DNA was 60.9 mol% .16S rRNA gene sequence analysis revealed that it is related to the Pirellula-Rhodopirellula-Blastopirellula (PRB) clade within the order Planctomycetales (82.7 -84.3% similarity with 16S rRNA genes of other known related species).[Conclusion] The first obligate anaerobic bacterium within the phylum Planctomycetes was isolated with low concentration of carbohydrates and antibiotics.On the basis of the physiological and phylogenetic data, the name Thermopirellula anaerolimosa gen.nov., sp.nov.is proposed for strain VM20-7T( =CGMCC 1.5169T = JCM 17478T = DSM24165T).%[目的]厌氧颗粒污泥中含有大量未知微生物资源,利用低浓度底物及添加抗生素的培养基进行厌氧发酵细菌的筛选,并对分离菌株进行生理生化特性研究.[方法]

  2. A strictly anaerobic betaproteobacterium Georgfuchsia toluolica gen. nov., sp. nov. degrades aromatic compounds with Fe(III), Mn(IV) or nitrate as an electron acceptor

    NARCIS (Netherlands)

    Weelink, S.A.B.; Doesburg, van W.C.J.; Talarico Saia, F.; Rijpstra, I.; Smidt, H.; Röling, W.; Stams, A.J.M.

    2009-01-01

    A bacterium (strain G5G6) that grows anaerobically with toluene was isolated from a polluted aquifer (Banisveld, the Netherlands). The bacterium uses Fe(III), Mn(IV) and nitrate as terminal electron acceptors for growth on aromatic compounds. The bacterium does not grow on sugars, lactate or acetate

  3. Anaerobic Dehalogenation of Hydroxylated Polychlorinated Biphenyls by Desulfitobacterium dehalogenans

    OpenAIRE

    Wiegel, Juergen; Zhang, Xiaoming; Wu, Qingzhong

    1999-01-01

    Ten years after reports on the existence of anaerobic dehalogenation of polychlorinated biphenyls (PCBs) in sediment slurries, we report here on the rapid reductive dehalogenation of para-hydroxylated PCBs (HO-PCBs), the excreted main metabolites of PCB in mammals, which can exhibit estrogenic and antiestrogenic activities in humans. The anaerobic bacterium Desulfitobacterium dehalogenans completely dehalogenates all flanking chlorines (chlorines in ortho position to the para-hydroxyl group) ...

  4. Microbiological Hydrogen Production by Anaerobic Fermentation and Photosynthetic Process

    Energy Technology Data Exchange (ETDEWEB)

    Asada, Y.; Ohsawa, M.; Nagai, Y.; Fukatsu, M.; Ishimi, K.; Ichi-ishi, S.

    2009-07-01

    Hydrogen gas is a clean and renewable energy carrier. Microbiological hydrogen production from glucose or starch by combination used of an anaerobic fermenter and a photosynthetic bacterium, Rhodobacter spheroides RV was studied. In 1984, the co-culture of Clostridium butyricum and RV strain to convert glucose to hydrogen was demonstrated by Miyake et al. Recently, we studied anaerobic fermentation of starch by a thermophilic archaea. (Author)

  5. Taxonomic characterization of the cellulose-degrading bacterium NCIB 10462

    Energy Technology Data Exchange (ETDEWEB)

    Dees, C.; Ringleberg, D.; Scott, T.C. [Oak Ridge National Lab., TN (United States); Phelps, T. [Univ. of Tennessee, Knoxville, TN (United States)

    1994-06-01

    The gram negative cellulase-producing bacterium NCIB 10462 has been previously named Pseudomonas fluorescens subsp. or var. cellulosa. Since there is renewed interest in cellulose-degrading bacteria for use in bioconversion of cellulose to chemical feed stocks and fuels, we re-examined the characteristics of this microorganism to determine its proper taxonomic characterization and to further define it`s true metabolic potential. Metabolic and physical characterization of NCIB 10462 revealed that this was an alkalophilic, non-fermentative, gram negative, oxidase positive, motile, cellulose-degrading bacterium. The aerobic substrate utilization profile of this bacterium was found to have few characteristics consistent with a classification of P. fluorescens with a very low probability match with the genus Sphingomonas. Total lipid analysis did not reveal that any sphingolipid bases are produced by this bacterium. NCIB 10462 was found to grow best aerobically but also grows well in complex media under reducing conditions. NCIB 10462 grew slowly under full anaerobic conditions on complex media but growth on cellulosic media was found only under aerobic conditions. Total fatty acid analysis (MIDI) of NCIB 10462 failed to group this bacterium with a known pseudomonas species. However, fatty acid analysis of the bacteria when grown at temperatures below 37{degrees}C suggest that the organism is a pseudomonad. Since a predominant characteristic of this bacterium is it`s ability to degrade cellulose, we suggest it be called Pseudomonas cellulosa.

  6. Anaerobic workout

    OpenAIRE

    McAdam, Ewan J.

    2010-01-01

    Anaerobic technology cannot directly replace current wastewater treatment processes exclusively. The UASB reactor configuration removes slightly less organic carbon by comparison as the process relies on lamella separation for passive clarification rather than using fine pores like anMBR. By contrast, whilst anMBR can operate as a single unit process for organic carbon removal, the membrane surface has to be cleaned using gas sparging to limit surface deposition, which requires extra energy. ...

  7. Strain and bioprocess improvement of a thermophilic anaerobe for the production of ethanol from wood

    OpenAIRE

    Herring, Christopher D; Kenealy, William R.; Joe Shaw, A.; Covalla, Sean F.; Olson, Daniel G; Zhang, Jiayi; Ryan Sillers, W.; Tsakraklides, Vasiliki; Bardsley, John S.; Rogers, Stephen R.; Thorne, Philip G.; Johnson, Jessica P.; Foster, Abigail; Shikhare, Indraneel D.; Klingeman, Dawn M

    2016-01-01

    Background The thermophilic, anaerobic bacterium Thermoanaerobacterium saccharolyticum digests hemicellulose and utilizes the major sugars present in biomass. It was previously engineered to produce ethanol at yields equivalent to yeast. While saccharolytic anaerobes have been long studied as potential biomass-fermenting organisms, development efforts for commercial ethanol production have not been reported. Results Here, we describe the highest ethanol titers achieved from T. saccharolyticum...

  8. Biosynthesis Of Gold Nanoparticles By Marine Purple Non Sulphur Bacterium, Rhodopseudomonas Sp.

    OpenAIRE

    Abirami. G; Asmathunisha. N; Kathiresan. K

    2013-01-01

    This paper describes for the first time that an anaerobic marine bacterium is capable of producing gold nanoparticles. A marine purple non-sulphur bacterium was isolated from mangrove sediment and identified as Rhodopseudomonas sp. . The bacterial culture was tested for the synthesis of gold nanoparticles by using aqueous HAuCl4 solution as substrate in darkness. The gold nanoparticles synthesized were found to be of cubical structure in the size range of 10–20 nm.

  9. Identification and Overexpression of a Bifunctional Aldehyde/Alcohol Dehydrogenase Responsible for Ethanol Production in Thermoanaerobacter mathranii

    DEFF Research Database (Denmark)

    Yao, Shuo; Just Mikkelsen, Marie

    2010-01-01

    Thermoanaerobacter mathranii contains four genes, adhA, adhB, bdhA and adhE, predicted to code for alcohol dehydrogenases involved in ethanol metabolism. These alcohol dehydrogenases were characterized as NADP(H)-dependent primary alcohol dehydrogenase (AdhA), secondary alcohol dehydrogenase (Adh......B), butanol dehydrogenase (BdhA) and NAD(H)-dependent bifunctional aldehyde/alcohol dehydrogenase (AdhE), respectively. Here we observed that AdhE is an important enzyme responsible for ethanol production in T. mathranii based on the constructed adh knockout strains. An adhE knockout strain fails to produce...... ethanol as a fermentation product, while other adh knockout strains showed no significant difference from the wild type. Further analysis revealed that the ΔadhE strain was defective in aldehyde dehydrogenase activity, but still maintained alcohol dehydrogenase activity. This showed that AdhE is the major...

  10. Anaerobic biodegradability of macropollutants

    DEFF Research Database (Denmark)

    Angelidaki, Irini

    2002-01-01

    A variety of test procedures for determination of anaerobic biodegradability has been reported. This paper reviews the methods developed for determination of anaerobic biodegradability of macro-pollutants. Anaerobic biodegradability of micro-pollutants is not included. Furthermore, factors import...

  11. Clostridium difficile: the anaerobe that made the grade.

    Science.gov (United States)

    Brazier, Jon S

    2012-04-01

    Unlike other anaerobic bacteria of clinical importance, Clostridium difficile has managed to enter into the realm of public awareness. Following the trail blazed by methicillin-resistant Staphylococcus aureus (MRSA), C. difficile has made the transition from being an obscure anaerobic bacterium, mainly of interest to specialist anaerobic microbiologists, to that of an infamous "superbug" responsible for outbreaks of hospital-acquired infection that commonly result in serious disease and death. This report picks out key moments, particularly in the UK, which tracked the rise in both the public and political awareness of this organism. PMID:22293217

  12. Decreased competiveness of the foodborne pathogen, Campylobacter jejuni, co-culture with the hyper-ammonia anaerobe, Clostridium aminophilum

    Science.gov (United States)

    Campylobacter spp. are a leading bacterial cause of human foodborne illness. When co-cultured in anaerobic Bolton broth with the hyper-ammonia-producing bacterium, Clostridium aminophilum, ammonia accumulation was greater (P 1...

  13. Deep Conversion of Carbon Monoxide to Hydrogen and Formation of Acetate by the Anaerobic Thermophile Carboxydothermus hydrogenoformans

    NARCIS (Netherlands)

    Henstra, A.M.; Stams, A.J.M.

    2011-01-01

    Carboxydothermus hydrogenoformans is a thermophilic strictly anaerobic bacterium that catalyses the water gas shift reaction, the conversion of carbon monoxide with water to molecular hydrogen and carbon dioxide. The thermodynamically favorable growth temperature, compared to existing industrial cat

  14. [Achievement of Sulfate-Reducing Anaerobic Ammonium Oxidation Reactor Started with Nitrate-Reducting Anaerobic Ammonium Oxidation].

    Science.gov (United States)

    Liu, Zheng-chuan; Yuan, Lin-jiang; Zhou, Guo-biao; Li, Jing

    2015-09-01

    The transformation of nitrite-reducing anaerobic ammonium oxidation to sulfate-reducing anaerobic ammonium oxidation in an UASB was performed and the changes in microbial community were studied. The result showed that the sulfate reducing anaerobic ammonium oxidation process was successfully accomplished after 177 days' operation. The removal rate of ammonium nitrogen and sulfate were up to 58. 9% and 15. 7%, the removing load of ammonium nitrogen and sulfate were 74. 3 mg.(L.d)-1 and 77. 5 mg.(L.d)-1 while concentration of ammonium nitrogen and sulfate of influent were 130 mg.(L.d)-1 and 500 mg.(L.d)-1, respectively. The lost nitrogen and sulphur was around 2 in molar ratio. The pH value of the effluent was lower than that of the influent. Instead of Candidatus brocadia in nitrite reducing anaerobic ammonium oxidation granular sludge, Bacillus benzoevorans became the dominant species in sulfate reducing anaerobic ammonium oxidation sludge. The dominant bacterium in the two kinds of anaerobic ammonium oxidation process is different. Our results imply that the two anaerobic ammonium oxidation processes are carried out by different kind of bacterium. PMID:26717697

  15. Anaerobic thermophiles.

    Science.gov (United States)

    Canganella, Francesco; Wiegel, Juergen

    2014-01-01

    The term "extremophile" was introduced to describe any organism capable of living and growing under extreme conditions. With the further development of studies on microbial ecology and taxonomy, a variety of "extreme" environments have been found and an increasing number of extremophiles are being described. Extremophiles have also been investigated as far as regarding the search for life on other planets and even evaluating the hypothesis that life on Earth originally came from space. The first extreme environments to be largely investigated were those characterized by elevated temperatures. The naturally "hot environments" on Earth range from solar heated surface soils and water with temperatures up to 65 °C, subterranean sites such as oil reserves and terrestrial geothermal with temperatures ranging from slightly above ambient to above 100 °C, to submarine hydrothermal systems with temperatures exceeding 300 °C. There are also human-made environments with elevated temperatures such as compost piles, slag heaps, industrial processes and water heaters. Thermophilic anaerobic microorganisms have been known for a long time, but scientists have often resisted the belief that some organisms do not only survive at high temperatures, but actually thrive under those hot conditions. They are perhaps one of the most interesting varieties of extremophilic organisms. These microorganisms can thrive at temperatures over 50 °C and, based on their optimal temperature, anaerobic thermophiles can be subdivided into three main groups: thermophiles with an optimal temperature between 50 °C and 64 °C and a maximum at 70 °C, extreme thermophiles with an optimal temperature between 65 °C and 80 °C, and finally hyperthermophiles with an optimal temperature above 80 °C and a maximum above 90 °C. The finding of novel extremely thermophilic and hyperthermophilic anaerobic bacteria in recent years, and the fact that a large fraction of them belong to the Archaea has definitely

  16. Anaerobic Thermophiles

    Directory of Open Access Journals (Sweden)

    Francesco Canganella

    2014-02-01

    Full Text Available The term “extremophile” was introduced to describe any organism capable of living and growing under extreme conditions. With the further development of studies on microbial ecology and taxonomy, a variety of “extreme” environments have been found and an increasing number of extremophiles are being described. Extremophiles have also been investigated as far as regarding the search for life on other planets and even evaluating the hypothesis that life on Earth originally came from space. The first extreme environments to be largely investigated were those characterized by elevated temperatures. The naturally “hot environments” on Earth range from solar heated surface soils and water with temperatures up to 65 °C, subterranean sites such as oil reserves and terrestrial geothermal with temperatures ranging from slightly above ambient to above 100 °C, to submarine hydrothermal systems with temperatures exceeding 300 °C. There are also human-made environments with elevated temperatures such as compost piles, slag heaps, industrial processes and water heaters. Thermophilic anaerobic microorganisms have been known for a long time, but scientists have often resisted the belief that some organisms do not only survive at high temperatures, but actually thrive under those hot conditions. They are perhaps one of the most interesting varieties of extremophilic organisms. These microorganisms can thrive at temperatures over 50 °C and, based on their optimal temperature, anaerobic thermophiles can be subdivided into three main groups: thermophiles with an optimal temperature between 50 °C and 64 °C and a maximum at 70 °C, extreme thermophiles with an optimal temperature between 65 °C and 80 °C, and finally hyperthermophiles with an optimal temperature above 80 °C and a maximum above 90 °C. The finding of novel extremely thermophilic and hyperthermophilic anaerobic bacteria in recent years, and the fact that a large fraction of them belong

  17. Biodegradation of heavy oils by halophilic bacterium

    Institute of Scientific and Technical Information of China (English)

    Ruixia Hao; Anhuai Lu

    2009-01-01

    A halophilic bacterial strain TM-1 was isolated from the reservoir of the Shengli oil field in East China. Strain TM-1, which was found to be able to degrade crude oils, is a gram-positive non-motile bacterium with a coccus shape that can grow at temperatures of up to 58 ℃ and in 18% NaCl solution. Depending on the culture conditions, the organism may occur in tetrads. In addition, strain TM-1 pro-duced acid from glucose without gas formation and was catalase-negative. Furthermore, strain TM-I was found to be a facultative aer-obe capable of growth under anaerobic conditions. Moreover, it produced butylated hydroxytoluene, 1,2-benzenedicarboxylic acid-bis ester and dibutyl phthalate and could use different organic substrates. Laboratory studies indicated that strain TM-1 affected different heavy oils by degrading various components and by changing the chemical properties of the oils. In addition, growth of the bacterium in heavy oils resulted in the loss of aromatic hydrocarbons, resins and asphaltenes, and enrichment with light hydrocarbons and an overall redistribution of these hydrocarbons.

  18. Biohydrogen Production by the Thermophilic Bacterium Caldicellulosiruptor saccharolyticus: Current Status and Perspectives

    NARCIS (Netherlands)

    Bielen, A.A.M.; Verhaart, M.R.A.; Oost, van der J.; Kengen, S.W.M.

    2013-01-01

    Caldicellulosiruptor saccharolyticus is one of the most thermophilic cellulolytic organisms known to date. This Gram-positive anaerobic bacterium ferments a broad spectrum of mono-, di- and polysaccharides to mainly acetate, CO2 and hydrogen. With hydrogen yields approaching the theoretical limit fo

  19. Syntrophomonas zehnderi sp. nov., an anaerobe that degrades long chain fatty acids in co-culture with Methanobacterium formicicum

    NARCIS (Netherlands)

    Sousa, D.Z.; Smidt, H.; Alves, M.M.; Stams, A.J.M.

    2007-01-01

    An anaerobic, mesophilic, syntrophic fatty-acid-oxidizing bacterium, designated strain OL-4T, was isolated as a co-culture with Methanobacterium formicicum DSM 1535NT from an anaerobic expanded granular sludge bed reactor used to treat an oleate-based effluent. Strain OL-4T degraded oleate, a mono-u

  20. 胞内氧化还原水平对嗜热厌氧乙醇菌发酵代谢的影响%Effects of Intracellular Redox Level on Fermentation Metabolism of Thermoanaerobacter ethanolicus

    Institute of Scientific and Technical Information of China (English)

    孙焕民; 过敏; 伊日布斯

    2012-01-01

    Coenzyme NADH/NAD + plays an important role in intracellular oxidation-reduction reactions, and is a necessary cofactor for cell growth and energy metabolism. Regulating the intracellular NADH/NAD+ ratio of microorganisms is an effective means to alter microbial metabolic pathway directionally and obtain the target metabolic products efficiently. Thermoanaerobacter ethanolicus is a representative thermophilic anaerobic and ethanologenic bacteria. This study altered intracellular NADH/NAD+ ratio using carbon sources at different redox status. Then its effect on cell growth and distribution of metabolic products was studied. When glucose and mannitol at different ratios were used as the substrate for fermentation, variations occurred with respect to intracellular redox level, growth characteristics of cells and metabolic products. When glucose was used as the only carbon source, T. ethanolicus grew well, and the ethanol production was 0. 79g/L. However, both of the intracellular NADH/NAD + ratio and ethanol/acetic acid ratio were low, being 0.474 and 4. 82 respectively. As the ratio of glucose in the mixed carbon source decreased, the NADH/NAD+ ratio increased, and the ethanol/ acetic acid ratio in the fermentation products also showed an increasing trend. When mannitol was used as the only carbon source, the ethanol concentration in the fermentation products was 0. 389g/L, and the NADH/NAD* ratio and ethanol/acetic acid ratio were 1.04 and 16.0 respectively.%辅酶NADH/NAD+在细胞内氧化还原反应中起着重要的作用,是细胞生长和能量代谢必不可少的辅因子.调节微生物胞内NADH/NAD+的比率是定向改变微生物代谢,高效获得目标代谢产物的有效手段.嗜热厌氧乙醇菌(Thermoanaerobacter ethanolicus)是高温厌氧菌中乙醇产量较高的代表性菌株,本文利用不同氧化还原态的碳源改变T.ethanolicus的胞内NADH/NAD+含量和比例,进而研究了其对细胞生长、代谢产物分布的影

  1. Proteomic dataset of the organohalide-respiring bacterium Dehalococcoides mccartyi strain CBDB1 grown on hexachlorobenzene as electron acceptor.

    Science.gov (United States)

    Schiffmann, Christian L; Otto, Wolfgang; Hansen, Rasmus; Nielsen, Per Halkjær; Adrian, Lorenz; Seifert, Jana; von Bergen, Martin; Jehmlich, Nico

    2016-06-01

    The proteome of the anaerobic organohalide-respiring bacterium Dehalococcoides mccartyi strain CBDB1 was analyzed by nano liquid chromatography coupled to mass spectrometry (LC-MS/MS). Two different preparation methods, (i) in-solution and (ii) in-gel proteolytic digestion were assessed to elucidate the core and the functional proteome of bacterial cultures grown in synthetic anaerobic medium with hexachlorobenzene as sole electron acceptor. A detailed analysis of the data presented is available (Schiffmann et al., 2014) [1]. PMID:26958645

  2. Intracellular iron minerals in a dissimilatory iron-reducing bacterium.

    Science.gov (United States)

    Glasauer, Susan; Langley, Sean; Beveridge, Terry J

    2002-01-01

    Among prokaryotes, there are few examples of controlled mineral formation; the formation of crystalline iron oxides and sulfides [magnetite (Fe3O4) or greigite (Fe3S4)] by magnetotactic bacteria is an exception. Shewanella putrefaciens CN32, a Gram-negative, facultative anaerobic bacterium that is capable of dissimilatory iron reduction, produced microscopic intracellular grains of iron oxide minerals during growth on two-line ferrihydrite in a hydrogen-argon atmosphere. The minerals, formed at iron concentrations found in the soil and sedimentary environments where these bacteria are active, could represent an unexplored pathway for the cycling of iron by bacteria. PMID:11778045

  3. pmoA Primers for Detection of Anaerobic Methanotrophs▿

    OpenAIRE

    Luesken, F.A.; Zhu, B.; Alen, T.A. van; Butler, M.K.; Diaz, M. R.; Song, B.; Op den Camp, H.J.M.; M. S. M. Jetten; Ettwig, K.F.

    2011-01-01

    Published pmoA primers do not match the pmoA sequence of “Candidatus Methylomirabilis oxyfera,” a bacterium that performs nitrite-dependent anaerobic methane oxidation. Therefore, new pmoA primers for the detection of “Ca. Methylomirabilis oxyfera”-like methanotrophs were developed and successfully tested on freshwater samples from different habitats. These primers expand existing molecular tools for the study of methanotrophs in the environment.

  4. Methanol coneversion by a novel thermophilic homoacetogenic bacterium Moorella mulderi sp.nov. isolated from a bioreactor

    NARCIS (Netherlands)

    Balk, M.; Weijma, J.; Friedrich, M.W.; Stams, A.J.M.

    2003-01-01

    A thermophilic, anaerobic, spore-forming bacterium (strain TMS) was isolated from a thermophilic bioreactor operated at 65 degreesC with methanol as the energy source. Cells were gram-positive straight rods, 0.4-0.6 mum x 2-8 mum, growing as single cells or in pairs. The temperature range for growth

  5. Clostridium peptidivorans sp. nov., a peptide-fermenting bacterium from an olive mill wastewater treatment digester

    OpenAIRE

    Mechichi, T.; Fardeau, Marie-Laure; Labat, Marc; Garcia, Jean-Louis; Verhé, F.; Patel, B.K.C.

    2000-01-01

    A new peptid-degrading, strictly anaerobic bacterium, designated strain TMC4T, was isolated from an olive mill wastewater treatment digester. Cells of strain TMC4T were motile, rod-shaped (5-10 x 0.6-1.2 microns), stained Gram-positive and formed terminal to subterminal spores that distended the cells. Optimal growth occurred at 37°C and pH 7 in an anaerobic basal medium containing 0.5% Casamino acids. Arginine, lysine, cysteine, methionine, histidine, serine, isoleucine, yeast extract, pepto...

  6. Gender comparisons in anaerobic power and anaerobic capacity tests.

    OpenAIRE

    Maud, P. J.; Shultz, B B

    1986-01-01

    The purpose of the study was to compare anaerobic power and anaerobic capacity test scores between young active men and women. Three performance measures of anaerobic power and two of anaerobic capacity were administered to a sample comprising 52 male and 50 female college students (means age = 21.4 yrs). Results indicated significant differences between men and women in body height, weight and per cent fat, in fat free mass (FFM), anaerobic power, and anaerobic capacity when recorded as gros...

  7. Degradation Action of the Anaerobic Bacteria and Oxygen to the Polymer

    Institute of Scientific and Technical Information of China (English)

    LU Xiang-Guo; ZHANG Ke

    2008-01-01

    Oxygen could prohibit anaerobic bacterium in the produced water and degrade the polymer molecular chains.Aiming at problems making up aerobic polymer solution by the produced water in Daqing Oil Field, some evaluations were done on the viscosity characteristics of polymer solution and bactericide in anaerobic and aerobic environments. Reasonable aerobic concentration of the produced water was obtained. The experimental results indicate that the viscosity of polymer solution confected by the produced water in the aerobic environment is higher than that of the polymer solution confected by the produced water in the anaerobic environment, and the reasonable ments, but the sterilization effect is better in the aerobic environment.

  8. My Lifelong Passion for Biochemistry and Anaerobic Microorganisms.

    Science.gov (United States)

    Thauer, Rudolf Kurt

    2015-01-01

    Early parental influence led me first to medical school, but after developing a passion for biochemistry and sensing the need for a deeper foundation, I changed to chemistry. During breaks between semesters, I worked in various biochemistry labs to acquire a feeling for the different areas of investigation. The scientific puzzle that fascinated me most was the metabolism of the anaerobic bacterium Clostridium kluyveri, which I took on in 1965 in Karl Decker's lab in Freiburg, Germany. I quickly realized that little was known about the biochemistry of strict anaerobes such as clostridia, methanogens, acetogens, and sulfate-reducing bacteria and that these were ideal model organisms to study fundamental questions of energy conservation, CO2 fixation, and the evolution of metabolic pathways. My passion for anaerobes was born then and is unabated even after 50 years of study.

  9. Lactococcus lactis - a diploid bacterium

    DEFF Research Database (Denmark)

    Michelsen, Ole; Hansen, Flemming G.; Jensen, Peter Ruhdal

    In contrast to higher eukaryotes, bacteria are haploid, i.e. they store their genetic information in a single chromosome, which is then duplicated during the cell cycle. If the growth rate is sufficiently low, the bacterium is born with only a single copy of the chromosome, which gets duplicated...... before the bacterium divides. Fast-growing bacteria have overlapping rounds of replication, and can contain DNA corresponding to more than four genome equivalents. However, the terminus region of the chromosome is still present in just one copy after division, and is not duplicated until right before...... the next division. Thus, the regions of the chromosome that are the last to be replicated are haploid even in fast-growing bacteria. In contrast to this general rule for bacteria, we found that Lactococcus lactis, a bacterium which has been exploited for thousands of years for the production of fermented...

  10. Biohydrogen Production by the Thermophilic Bacterium Caldicellulosiruptor saccharolyticus: Current Status and Perspectives

    OpenAIRE

    Kengen, Servé W. M.; Verhaart, Marcel R. A.; John van der Oost; Abraham A. M. Bielen

    2013-01-01

    Caldicellulosiruptor saccharolyticus is one of the most thermophilic cellulolytic organisms known to date. This Gram-positive anaerobic bacterium ferments a broad spectrum of mono-, di- and polysaccharides to mainly acetate, CO2 and hydrogen. With hydrogen yields approaching the theoretical limit for dark fermentation of 4 mol hydrogen per mol hexose, this organism has proven itself to be an excellent candidate for biological hydrogen production. This review provides an overview of the resear...

  11. Anaerobic Digestion: Process

    DEFF Research Database (Denmark)

    Angelidaki, Irini; Batstone, Damien J.

    2011-01-01

    with very little dry matter may also be called a digest. The digest should not be termed compost unless it specifically has been composted in an aerated step. This chapter describes the basic processes of anaerobic digestion. Chapter 9.5 describes the anaerobic treatment technologies, and Chapter 9...

  12. Anaerobic sludge granulation

    NARCIS (Netherlands)

    Hulshoff Pol, L.W.; Castro Lopes, de S.I.; Lettinga, G.; Lens, P.N.L.

    2004-01-01

    This paper reviews different theories on anaerobic sludge granulation in UASB-reactors that have been proposed during the past two decades
    This paper reviews different theories on anaerobic sludge granulation in UASB-reactors that have been proposed during the past two decades. The initial stage

  13. Single Bacterium Detection Using Sers

    Science.gov (United States)

    Gonchukov, S. A.; Baikova, T. V.; Alushin, M. V.; Svistunova, T. S.; Minaeva, S. A.; Ionin, A. A.; Kudryashov, S. I.; Saraeva, I. N.; Zayarny, D. A.

    2016-02-01

    This work is devoted to the study of a single Staphylococcus aureus bacterium detection using surface-enhanced Raman spectroscopy (SERS) and resonant Raman spectroscopy (RS). It was shown that SERS allows increasing sensitivity of predominantly low frequency lines connected with the vibrations of Amide, Proteins and DNA. At the same time the lines of carotenoids inherent to this kind of bacterium are well-detected due to the resonance Raman scattering mechanism. The reproducibility and stability of Raman spectra strongly depend on the characteristics of nanostructured substrate, and molecular structure and size of the tested biological object.

  14. Genome Sequence of the Facultative Anaerobe Oerskovia enterophila DFA-19 (DSM 43852T).

    Science.gov (United States)

    Jag, Vanessa; Poehlein, Anja; Bengelsdorf, Frank R; Daniel, Rolf; Dürre, Peter

    2016-01-01

    Here, we report the draft genome sequence of Oerskovia enterophila DFA-19 (DSM 43852(T)), a facultative anaerobe soil bacterium, which was originally isolated from millipede feces and first described as Promicromonospora enterophila The genome consists of a circular chromosome comprising approximately 4.65 Mb and 4,044 predicted protein-encoding genes. PMID:27634998

  15. A genomic view of methane oxidation by aerobic bacteria and anaerobic archaea

    OpenAIRE

    Chistoserdova, Ludmila; Vorholt, Julia A.; Lidstrom, Mary E.

    2005-01-01

    Recent sequencing of the genome and proteomic analysis of a model aerobic methanotrophic bacterium, Methylococcus capsulatus (Bath) has revealed a highly versatile metabolic potential. In parallel, environmental genomics has provided glimpses into anaerobic methane oxidation by certain archaea, further supporting the hypothesis of reverse methanogenesis.

  16. Genome Sequence of the Facultative Anaerobe Oerskovia enterophila DFA-19 (DSM 43852T)

    Science.gov (United States)

    Jag, Vanessa; Bengelsdorf, Frank R.; Daniel, Rolf

    2016-01-01

    Here, we report the draft genome sequence of Oerskovia enterophila DFA-19 (DSM 43852T), a facultative anaerobe soil bacterium, which was originally isolated from millipede feces and first described as Promicromonospora enterophila. The genome consists of a circular chromosome comprising approximately 4.65 Mb and 4,044 predicted protein-encoding genes. PMID:27634998

  17. Inactivation of Mg Chelatase during Transition from Anaerobic to Aerobic Growth in Rhodobacter capsulatus

    OpenAIRE

    Willows, Robert D; Lake, Vanessa; Roberts, Thomas Hugh; Beale, Samuel I.

    2003-01-01

    The facultative photosynthetic bacterium Rhodobacter capsulatus can adapt from an anaerobic photosynthetic mode of growth to aerobic heterotrophic metabolism. As this adaptation occurs, the cells must rapidly halt bacteriochlorophyll synthesis to prevent phototoxic tetrapyrroles from accumulating, while still allowing heme synthesis to continue. A likely control point is Mg chelatase, the enzyme that diverts protoporphyrin IX from heme biosynthesis toward the bacteriochlorophyll biosynthetic ...

  18. Anaerobic Digestion and its Applications

    Science.gov (United States)

    Anaerobic digestion is a natural biological process. The initials "AD" may refer to the process of anaerobic digestion, or the built systems of anaerobic digesters. While there are many kinds of digesters, the biology is basically the same for all. Anaerobic digesters are built...

  19. Genome analysis of the Anerobic Thermohalophilic bacterium Halothermothrix orenii

    Energy Technology Data Exchange (ETDEWEB)

    Mavromatis, Konstantinos; Ivanova, Natalia; Anderson, Iain; Lykidis, Athanasios; Hooper, Sean D.; Sun, Hui; Kunin, Victor; Lapidus, Alla; Hugenholtz, Philip; Patel, Bharat; Kyrpides, Nikos C.

    2008-11-03

    Halothermothirx orenii is a strictly anaerobic thermohalophilic bacterium isolated from sediment of a Tunisian salt lake. It belongs to the order Halanaerobiales in the phylum Firmicutes. The complete sequence revealed that the genome consists of one circular chromosome of 2578146 bps encoding 2451 predicted genes. This is the first genome sequence of an organism belonging to the Haloanaerobiales. Features of both Gram positive and Gram negative bacteria were identified with the presence of both a sporulating mechanism typical of Firmicutes and a characteristic Gram negative lipopolysaccharide being the most prominent. Protein sequence analyses and metabolic reconstruction reveal a unique combination of strategies for thermophilic and halophilic adaptation. H. orenii can serve as a model organism for the study of the evolution of the Gram negative phenotype as well as the adaptation under thermohalophilic conditions and the development of biotechnological applications under conditions that require high temperatures and high salt concentrations.

  20. Isolation of a bacterium that reductively dechlorinates tetrachloroethene to ethene

    Energy Technology Data Exchange (ETDEWEB)

    Maymo-Gatell, X.; Chien, Yueh-tyng; Zinder, S.H. [Cornell Univ., Ithaca, NY (United States)] [and others

    1997-06-06

    Tetrachloroethene is a prominent groundwater pollutant that can be reductively dechlorinated by mixed anaerobic microbial populations to the nontoxic product ethene. Strain 195, a coccoid bacterium that dechlorinates tetrachlorethene to ethene, was isolated and characterized. Growth of strain 195 with H{sub 2} and tetrachloroethene as the electron donor and acceptor pair required extracts from mixed microbial cultures. Growth of strain 195 was resistant to ampicillin and vancomycin; its cell wall did not react with a peptidoglycan-specific lectin and its ultrastructure resembled S-layers of Archaea. Analysis of the 16S ribosomal DNA sequence of strain 195 indicated that it is a eubacterium without close affiliation to any known groups. 24 refs., 4 figs., 1 tab.

  1. Oxidation and methylation of dissolved elemental mercury by anaerobic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Haiyan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Chinese Academy of Sciences (CAS), Beijing (China); Lin, Hui [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Zheng, Wang [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Tomanicek, Stephen J [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Johs, Alexander [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Feng, Xinbin [Chinese Academy of Sciences (CAS), Beijing (China); Elias, Dwayne A [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Liang, Liyuan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gu, Baohua [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2013-08-04

    Methylmercury is a neurotoxin that poses significant health risks to humans. Some anaerobic sulphate- and iron-reducing bacteria can methylate oxidized forms of mercury, generating methylmercury1-4. One strain of sulphate-reducing bacteria (Desulfovibrio desulfuricans ND132) can also methylate elemental mercury5. The prevalence of this trait among different bacterial strains and species remains unclear, however. Here, we compare the ability of two strains of the sulphate-reducing bacterium Desulfovibrio and one strain of the iron-reducing bacterium Geobacter to oxidise and methylate elemental mercury in a series of laboratory incubations. Experiments were carried out under dark, anaerobic conditions, in the presence of environmentally-relevant concentrations of elemental mercury. We report differences in the ability of these organisms to oxidise and methylate elemental mercury. In line with recent findings5, we show that Desulfovibrio desulfuricans ND132 can both oxidise and methylate elemental mercury. However, the rate of methylation of elemental mercury is only about one third the rate of methylation of oxidized mercury. We also show that Desulfovibrio alaskensis G20 can oxidise, but not methylate, elemental mercury. Geobacter sulfurreducens PCA is able to oxidise and methylate elemental mercury in the presence of cysteine. We suggest that the activity of methylating and non-methylating bacteria may together enhance the formation of methylmercury in anaerobic environments.

  2. A commensal symbiotic interrelationship for the growth of Symbiobacterium toebii with its partner bacterium, Geobacillus toebii

    Directory of Open Access Journals (Sweden)

    Masui Ryoji

    2011-10-01

    Full Text Available Abstract Background Symbiobacterium toebii is a commensal symbiotic thermophile that absolutely requires its partner bacterium Geobacillus toebii for growth. Despite development of an independent cultivation method using cell-free extracts, the growth of Symbiobacterium remains unknown due to our poor understanding of the symbiotic relationship with its partner bacterium. Here, we investigated the interrelationship between these two bacteria for growth of S. toebii using different cell-free extracts of G. toebii. Results Symbiobacterium toebii growth-supporting factors were constitutively produced through almost all growth phases and under different oxygen tensions in G. toebii, indicating that the factor may be essential components for growth of G. toebii as well as S. toebii. The growing conditions of G. toebii under different oxygen tension dramatically affected to the initial growth of S. toebii and the retarded lag phase was completely shortened by reducing agent, L-cysteine indicating an evidence of commensal interaction of microaerobic and anaerobic bacterium S. toebii with a facultative aerobic bacterium G. toebii. In addition, the growth curve of S. toebii showed a dependency on the protein concentration of cell-free extracts of G. toebii, demonstrating that the G. toebii-derived factors have nutrient-like characters but not quorum-sensing characters. Conclusions Not only the consistent existence of the factor in G. toebii during all growth stages and under different oxygen tensions but also the concentration dependency of the factor for proliferation and optimal growth of S. toebii, suggests that an important biosynthetic machinery lacks in S. toebii during evolution. The commensal symbiotic bacterium, S. toebii uptakes certain ubiquitous and essential compound for its growth from environment or neighboring bacteria that shares the equivalent compounds. Moreover, G. toebii grown under aerobic condition shortened the lag phase of S

  3. Characterization of Bacteriophages Virulent for Clostridium perfringens and Identification of Phage Lytic Enzymes as Alternatives to Antibiotics for Potential Control of the Bacterium

    Science.gov (United States)

    Clostridium perfringens is a Gram-positive, spore-forming anaerobic bacterium that plays a significant role in human food-borne disease as well as non-food-borne human, animal, and poultry diseases. There has been a resurgent interest in the use of bacteriophages or their gene products to control b...

  4. Draft Genome Sequence of the Sulfate-Reducing Bacterium Desulfotomaculum copahuensis Strain CINDEFI1 Isolated from the Geothermal Copahue System, Neuquén, Argentina

    Science.gov (United States)

    Yaakop, Amira Suriaty; Chan, Chia Sing; Urbieta, M. Sofía; Ee, Robson; Tan-Guan-Sheng, Adrian; Donati, Edgardo R.

    2016-01-01

    Desulfotomaculum copahuensis strain CINDEFI1 is a novel spore-forming sulfate-reducing bacterium isolated from the Copahue volcano area, Argentina. Here, we present its draft genome in which we found genes related with the anaerobic respiration of sulfur compounds similar to those present in the Copahue environment. PMID:27540078

  5. Effects of Oxytetracycline on Methane Production and the Microbial Communities During Anaerobic Digestion of Cow Manure

    Institute of Scientific and Technical Information of China (English)

    KE Xin; WANG Chun-yong; LI Run-dong; ZHANG Yun

    2014-01-01

    The effects of different concentrations of oxytetracycline (OTC) on the dynamics of bacterial and archaeal communities during the mesophilic anaerobic digestion (37°C) of cow manure were investigated. Before anaerobic digestion, OTC was added to digesters at concentrations of 20, 50, and 80 mg L-1, respectively. Compared with no-antibiotic control, all methane productions underwent different levels of inhibition at different concentrations of OTC. Changes in the bacterial and archaeal communities were discussed by using PCR-denaturing gradient gel electrophoresis (DGGE). Results showed that OTC affected the richness and diversity of bacterial and archaeal communities. The bacterial genus Flavobacterium and an uncultured bacterium (JN256083.1) were detected throughout the entire process of anaerobic digestion and seemed to be the functional bacteria. Methanobrevibacter boviskoreani and an uncultured archaeon (FJ230982.1) dominated the archaeal communities during anaerobic digestion. These microorganisms may have high resistance to OTC and may play vital roles in methane production.

  6. Anaerobic bacteria in otitis media.

    Science.gov (United States)

    Fulghum, R S; Daniel, H J; Yarborough, J G

    1977-01-01

    Anaerobic bacteria, Peptostrepotococcus intermedius and Propionibacterium acnes, were found in mixed culture specimens from four to ten tested cases of chronic secretory otitis media. These anaerobic bacteria were in a mixed infection flora with aerobic bacteria most often Staphylococcus epidermidis and Cornybacterium sp. which do not fit any established species. The findings of anaerobic bacteria in otitis media is consistent with the sporadic report of the involvement of anaerobic bacteria in otitis media in the literature since 1898.

  7. Complete genome sequence of the novel Porphyromonadaceae bacterium strain ING2-E5B isolated from a mesophilic lab-scale biogas reactor.

    Science.gov (United States)

    Hahnke, Sarah; Maus, Irena; Wibberg, Daniel; Tomazetto, Geizecler; Pühler, Alfred; Klocke, Michael; Schlüter, Andreas

    2015-01-10

    In this study, the whole genome sequence of the mesophilic, anaerobic Porphyromonadaceae bacterium strain ING2-E5B (LMG 28429, DSM 28696) is reported. The new isolate belongs to the phylum Bacteroidetes and was obtained from a biogas-producing lab-scale completely stirred tank reactor (CSTR) optimized for anaerobic digestion of maize silage in co-fermentation with pig and cattle manure. The genome of strain ING2-E5B contains numerous genes encoding proteins and enzymes involved in the degradation of complex carbohydrates and proteinaceous compounds. Moreover, it possesses genes catalyzing the production of volatile fatty acids. Hence, this bacterium was predicted to be involved in hydrolysis and acidogenesis during anaerobic digestion and biomethanation.

  8. Potential Application of Anaerobic Extremophiles for Hydrogen Production

    Science.gov (United States)

    Pikuta, Elena V.; Hoover, Richard B.

    2004-01-01

    During substrate fermentation many anaerobes produce the hydrogen as a waste product, which often regulates the growth of the cultures as an inhibitor. In nature the hydrogen is usually removed from the ecosystem due to its physical properties or by consumption of hydrogen by secondary anaerobes, which sometimes behave as competitors for electron donors as is seen in the classical example in anaerobic microbial communities via the interaction between methanogens and sulfate- or sulfur- reducers. It was demonstrated previously on mixed cultures of anaerobes at neutral pH that bacterial hydrogen production could provide an alternative energy source. But at neutral pH the original cultures can easily be contaminated by methanogens, a most unpleasant side effect of these conditions is the development of pathogenic bacteria. In both cases the rate of hydrogen production was dramatically decreased since some part of the hydrogen was transformed to methane, and the cultivation of human pathogens on a global scale is very dangerous. In our laboratory, experiments with obligately alkaliphilic bacteria that excrete hydrogen as the end metabolic product were performed at different temperature regimes. Mesophilic and moderately thermophilic bacterial cultures have been studied and compared for the most effective hydrogen production. For high-mineralized media with pH 9.5-10.0 not many methanogens are known to exist. Furthermore, the development of pathogenic contaminant microorganisms is virtually impossible: carbonate-saturated solutions are used as antiseptics in medicine. Therefore the cultivation of alkaliphilic hydrogen producing bacteria could be considered as most safe process for global Scale industry in future. Here we present experimental data on the rates of hydrogen productivity for mesophilic, alkaliphilic, obligately anaerobic bacterium Spirocheta americana ASpG1 and moderately thermophilic, alkaliphilic, facultative anaerobe Anoxybacillus pushchinoensis K1 and

  9. The anaerobic digestion process

    Energy Technology Data Exchange (ETDEWEB)

    Rivard, C.J. [National Renewable Energy Lab., Golden, CO (United States); Boone, D.R. [Oregon Graduate Inst., Portland, OR (United States)

    1996-01-01

    The microbial process of converting organic matter into methane and carbon dioxide is so complex that anaerobic digesters have long been treated as {open_quotes}black boxes.{close_quotes} Research into this process during the past few decades has gradually unraveled this complexity, but many questions remain. The major biochemical reactions for forming methane by methanogens are largely understood, and evolutionary studies indicate that these microbes are as different from bacteria as they are from plants and animals. In anaerobic digesters, methanogens are at the terminus of a metabolic web, in which the reactions of myriads of other microbes produce a very limited range of compounds - mainly acetate, hydrogen, and formate - on which the methanogens grow and from which they form methane. {open_quotes}Interspecies hydrogen-transfer{close_quotes} and {open_quotes}interspecies formate-transfer{close_quotes} are major mechanisms by which methanogens obtain their substrates and by which volatile fatty acids are degraded. Present understanding of these reactions and other complex interactions among the bacteria involved in anaerobic digestion is only now to the point where anaerobic digesters need no longer be treated as black boxes.

  10. Anaerobic biotransformation of estrogens

    Energy Technology Data Exchange (ETDEWEB)

    Czajka, Cynthia P. [Department of Microbiology, University of Manitoba, Winnipeg, MB, R3T 2N2 (Canada); Londry, Kathleen L. [Department of Microbiology, University of Manitoba, Winnipeg, MB, R3T 2N2 (Canada)]. E-mail: londryk@cc.umanitoba.ca

    2006-08-31

    Estrogens are important environmental contaminants that disrupt endocrine systems and feminize male fish. We investigated the potential for anaerobic biodegradation of the estrogens 17-{alpha}-ethynylestradiol (EE2) and 17-{beta}-estradiol (E2) in order to understand their fate in aquatic and terrestrial environments. Cultures were established using lake water and sediment under methanogenic, sulfate-, iron-, and nitrate-reducing conditions. Anaerobic degradation of EE2 (added at 5 mg/L) was not observed in multiple trials over long incubation periods (over three years). E2 (added at 5 mg/L) was transformed to estrone (E1) under all four anaerobic conditions (99-176 {mu}g L{sup -1} day{sup -1}), but the extent of conversion was different for each electron acceptor. The oxidation of E2 to E1 was not inhibited by E1. Under some conditions, reversible inter-conversion of E2 and E1 was observed, and the final steady state concentration of E2 depended on the electron-accepting condition but was independent of the total amount of estrogens added. In addition, racemization occurred and E1 was also transformed to 17-{alpha}-estradiol under all but nitrate-reducing conditions. Although E2 could be readily transformed to E1 and in many cases 17-{alpha}-estradiol under anaerobic conditions, the complete degradation of estrogens under these conditions was minimal, suggesting that they would accumulate in anoxic environments.

  11. Initiation of Anaerobic Degradation of p-Cresol by Formation of 4-Hydroxybenzylsuccinate in Desulfobacterium cetonicum

    OpenAIRE

    Müller, Jochen A.; Galushko, Alexander S.; Kappler, Andreas; Bernhard SCHINK

    2001-01-01

    The anaerobic bacterium Desulfobacterium cetonicum oxidized p-cresol completely to CO2 with sulfate as the electron acceptor. During growth, 4-hydroxybenzylsuccinate accumulated in the medium. This finding indicated that the methyl group of p-cresol is activated by addition to fumarate, analogous to anaerobic toluene, m-xylene, and m-cresol degradation. In cell extracts, the formation of 4-hydroxybenzylsuccinate from p-cresol and fumarate was detected at an initial rate of 0.57 nmol min21 (mg...

  12. Anaerobic biological treatment

    International Nuclear Information System (INIS)

    The Enso-Fenox process has been very successfully used to remove chlorinated phenolic compounds from pulp bleaching effluents. It is a two-stage anaerobic/aerobic process consisting of a nonmethanogenic anaerobic fluidized bed followed by a trickling filter. Studies have been conducted on reductive dechlorination of chlorinated aromatic compounds under anaerobic conditions with chlorinated phenols as the sole carbon and energy source. Approximately 40% of the added chlorophenols was converted to CH4 and CO2. Substrate loading rates were 20 mg/L/d at hydraulic detention times of 2-4 days with 90% substrate conversion efficiency. Reductive dechlorination of mono, di-, tri-, and pentachlorophenols has been demonstrated in anaerobic sewage sludge. The following constituents were tested in the laboratory at their approximate concentrations in coal conversion wastewater (CCWW) and were anaerobically degraded in serum bottles: 1,000 mg/L phenol; 500 mg/L resorcinol; 1,000 mg/L benzoic acid; 500 mg/L p-cresol; 200 mg/L pyridine; 2,000 mg/L benzoic acid; 250 mg/L 40 methylcatechol; 500 mg/L 4-ethylpyridine; and 2,000 mg/L hexanoic acid. A petrochemical may initially exhibit toxicity to an unacclimated population of methane-fermenting bacteria, but with acclimation the toxicity may be greatly reduced or disappear. In addition, the microorganisms may develop the capacity to actually degrade compounds which showed initial toxicity. Since biomass digestion requires a complete consortium of bacteria, it is relevant to study the effect of a given process as well as to individual steps within the process. A toxicant can inhibit the rate-limiting step and/or change the step that is rate-limiting. Both manifestations of toxicity can severely affect the overall process

  13. Improvement and characterization of a hyperthermophilic glucose isomerase from Thermoanaerobacter ethanolicus and its application in production of high fructose corn syrup.

    Science.gov (United States)

    Liu, Zhi-Qiang; Zheng, Wei; Huang, Jian-Feng; Jin, Li-Qun; Jia, Dong-Xu; Zhou, Hai-Yan; Xu, Jian-Miao; Liao, Cheng-Jun; Cheng, Xin-Ping; Mao, Bao-Xing; Zheng, Yu-Guo

    2015-08-01

    High fructose corn syrup (HFCS) is an alternative of liquid sweetener to sucrose that is isomerized by commercial glucose isomerase (GI). One-step production of 55 % HFCS by thermostable GI has been drawn more and more attentions. In this study, a new hyperthermophilic GI from Thermoanaerobacter ethanolicus CCSD1 (TEGI) was identified by genome mining, and then a 1317 bp fragment encoding the TEGI was synthesized and expressed in Escherichia coli BL21(DE3). To improve the activity of TEGI, two amino acid residues, Trp139 and Val186, around the active site and substrate-binding pocket based on the structural analysis and molecular docking were selected for site-directed mutagenesis. The specific activity of mutant TEGI-W139F/V186T was 2.3-fold and the value of k cat/K m was 1.86-fold as compared to the wild type TEGI, respectively. Thermostability of mutant TEGI-W139F/V186T at 90 °C for 24 h showed 1.21-fold extension than that of wild type TEGI. During the isomerization of glucose to fructose, the yield of fructose could maintain above 55.4 % by mutant TEGI-W139F/V186T as compared to 53.8 % by wild type TEGI at 90 °C. This study paved foundation for the production of 55 % HFCS using the thermostable TEGI.

  14. Crystal Structure of a Thermostable Alanine Racemase from Thermoanaerobacter tengcongensis MB4 Reveals the Role of Gln360 in Substrate Selection.

    Directory of Open Access Journals (Sweden)

    Xiaoliang Sun

    Full Text Available Pyridoxal 5'-phosphate (PLP dependent alanine racemase catalyzes racemization of L-Ala to D-Ala, a key component of the peptidoglycan network in bacterial cell wall. It has been extensively studied as an important antimicrobial drug target due to its restriction in eukaryotes. However, many marketed alanine racemase inhibitors also act on eukaryotic PLP-dependent enzymes and cause side effects. A thermostable alanine racemase (AlrTt from Thermoanaerobacter tengcongensis MB4 contains an evolutionarily non-conserved residue Gln360 in inner layer of the substrate entryway, which is supposed to be a key determinant in substrate specificity. Here we determined the crystal structure of AlrTt in complex with L-Ala at 2.7 Å resolution, and investigated the role of Gln360 by saturation mutagenesis and kinetic analysis. Compared to typical bacterial alanine racemase, presence of Gln360 and conformational changes of active site residues disrupted the hydrogen bonding interactions necessary for proper PLP immobilization, and decreased both the substrate affinity and turnover number of AlrTt. However, it could be complemented by introduction of hydrophobic amino acids at Gln360, through steric blocking and interactions with a hydrophobic patch near active site pocket. These observations explained the low racemase activity of AlrTt, revealed the essential role of Gln360 in substrate selection, and its preference for hydrophobic amino acids especially Tyr in bacterial alanine racemization. Our work will contribute new insights into the alanine racemization mechanism for antimicrobial drug development.

  15. Sequencing of the amylopullulanase (apu) gene of Thermoanaerobacter ethanolicus 39E, and identification of the active site by site-directed mutagenesis.

    Science.gov (United States)

    Mathupala, S P; Lowe, S E; Podkovyrov, S M; Zeikus, J G

    1993-08-01

    The complete nucleotide sequence of the gene encoding the dual active amylopullulanase of Thermoanaerobacter ethanolicus 39E (formerly Clostridium thermohydrosulfuricum) was determined. The structural gene (apu) contained a single open reading frame 4443 base pairs in length, corresponding to 1481 amino acids, with an estimated molecular weight of 162,780. Analysis of the deduced sequence of apu with sequences of alpha-amylases and alpha-1,6 debranching enzymes enabled the identification of four conserved regions putatively involved in substrate binding and in catalysis. The conserved regions were localized within a 2.9-kilobase pair gene fragment, which encoded a M(r) 100,000 protein that maintained the dual activities and thermostability of the native enzyme. The catalytic residues of amylopullulanase were tentatively identified by using hydrophobic cluster analysis for comparison of amino acid sequences of amylopullulanase and other amylolytic enzymes. Asp597, Glu626, and Asp703 were individually modified to their respective amide form, or the alternate acid form, and in all cases both alpha-amylase and pullulanase activities were lost, suggesting the possible involvement of 3 residues in a catalytic triad, and the presence of a putative single catalytic site within the enzyme. These findings substantiate amylopullulanase as a new type of amylosaccharidase.

  16. Complete Genome Sequence of the Filamentous Anoxygenic Phototrophic Bacterium Chloroflexus aurantiacus

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Kuo-Hsiang [Washington University, St. Louis; Barry, Kerrie [U.S. Department of Energy, Joint Genome Institute; Chertkov, Olga [Los Alamos National Laboratory (LANL); Dalin, Eileen [U.S. Department of Energy, Joint Genome Institute; Han, Cliff [Los Alamos National Laboratory (LANL); Hauser, Loren John [ORNL; Honchak, Barbara M [Washington University, St. Louis; Karbach, Lauren E [Washington University, St. Louis; Land, Miriam L [ORNL; Lapidus, Alla L. [Joint Genome Institute, Walnut Creek, California; Larimer, Frank W [ORNL; Mikhailova, Natalia [U.S. Department of Energy, Joint Genome Institute; Pitluck, Sam [Joint Genome Institute, Walnut Creek, California; Pierson, Beverly K [University of Puget Sound, Tacoma, WA

    2011-01-01

    Chloroflexus aurantiacus is a thermophilic filamentous anoxygenic phototrophic (FAP) bacterium, and can grow phototrophically under anaerobic conditions or chemotrophically under aerobic and dark conditions. According to 16S rRNA analysis, Chloroflexi species are the earliest branching bacteria capable of photosynthesis, and Cfl. aurantiacus has been long regarded as a key organism to resolve the obscurity of the origin and early evolution of photosynthesis. Cfl. aurantiacus contains a chimeric photosystem that comprises some characters of green sulfur bacteria and purple photosynthetic bacteria, and also has some unique electron transport proteins compared to other photosynthetic bacteria.

  17. Mageeibacillus indolicus gen. nov., sp. nov: A novel bacterium isolated from the female genital tract

    OpenAIRE

    Austin, Michele N.; Rabe, Lorna K.; Srinivasan, Sujatha; Fredricks, David N.; Wiesenfeld, Harold C.; Hillier, Sharon L.

    2014-01-01

    Three isolates of a bacterium recovered from human endometrium using conventional culture methods were characterized biochemically and subjected to 16S rRNA gene sequencing and phylogenetic analysis. Isolates were non-motile, obligately anaerobic, non-spore forming, asaccharolytic, non-cellulolytic, indole positive, Gram positive rods. Cell wall fatty acid profiling revealed C14:0, C16:0, C18:2 ω6, 9c, C18:1 ω9c and C18:0 to be the major fatty acid composition. The DNA mol % G+C was determine...

  18. Ercella succinigenes gen. nov., sp. nov., ananaerobic succinate-producing bacterium

    OpenAIRE

    Van Gelder, A.H.; Sousa, D.Z.; Rijpstra, W.I.C.; J. S. Sinninghe Damsté; Stams, A. J. M.; Sánchez-Andrea, I.

    2014-01-01

    A novel anaerobic succinate-producing bacterium, strain ZWBT, was isolated from sludge collected from a biogas desulfurization bioreactor (Eerbeek, The Netherlands). Cells were non-spore forming, motile, slightly curved rods (0.4 to 0.5 µm in diameter and 2 to 3 µm in length), and stained Gram-negative. The temperature range for growth was 25 to 40°C, with an optimum at 37°C. The pH range for growth was 7.0 to 9.0, with an optimum at pH 7.5. Strain ZWBT ferments glycerol and several carbohydr...

  19. Complete genome sequence of Enterobacter cloacae GGT036: a furfural tolerant soil bacterium.

    Science.gov (United States)

    Gong, Gyeongtaek; Um, Youngsoon; Park, Tai Hyun; Woo, Han Min

    2015-01-10

    Enterobacter cloacae is a facultative anaerobic bacterium to be an important cause of nosocomial infection. However, the isolated E. cloacae GGT036 showed higher furfural-tolerant cellular growth, compared to industrial relevant strains such as Escherichia coli and Corynebacterium glutamicum. Here, we report the complete genome sequence of E. cloacae GGT036 isolated from Mt. Gwanak, Seoul, Republic of Korea. The genomic DNA sequence of E. cloacae GGT036 will provide valuable genetic resources for engineering of industrially relevant strains being tolerant to cellular inhibitors present in lignocellulosic hydrolysates.

  20. Isolation of pigmentation mutants of the green filamentous photosynthetic bacterium Chloroflexus aurantiacus

    International Nuclear Information System (INIS)

    Mutants deficient in the production of bateriochlorophyll c (Bchl c) and one mutant lacking colored carotenoids were isolated from the filamentous gliding bacterium Chloroflexus aurantiacus, Mutagenesis was achieved by using UV radiation or N-methyl-N'-nitro-N-nitrosoguanidine. Several clones were isolated that were deficient in Bchl c synthesis. All reverted. One double mutant deficient both in Bchl c synthesis and in the synthesis of colored carotenoids under anaerobic conditions was isolated. Isolation of a revertant in Bchl c synthesis from this double mutant produced a mutant strain of Chloroflexus that grew photosynthetically under anaerobic conditions and lacked colored carotenoids. Analysis of pigment contents and growth rates of the mutants revealed a positive association between growth rate and content of Bchl c under light-limiting conditions. 11 references, 4 figures, 3 tables

  1. Identification of a Ruminococcaceae Species as the Methyl tert-Butyl Ether (MTBE) Degrading Bacterium in a Methanogenic Consortium.

    Science.gov (United States)

    Liu, Tong; Ahn, Hyeri; Sun, Weimin; McGuinness, Lora R; Kerkhof, Lee J; Häggblom, Max M

    2016-02-01

    The widespread use of methyl tert-butyl ether (MTBE) has caused major contamination of groundwater sources and is a concern due to its taste and odor problems, as well as its toxicity. MTBE can be degraded anaerobically which makes bioremediation of contaminated aquifers a potential solution. Nevertheless, the organisms and mechanisms that are responsible for anaerobic MTBE degradation are still unknown. The aim of our research was to identify the organisms actively degrading MTBE. For this purpose we characterized an anaerobic methanogenic culture enriched with MTBE as the sole carbon source from the New Jersey Arthur Kill intertidal strait sediment. The cultures were analyzed using stable isotope probing (SIP) combined with terminal restriction fragment length polymorphism (T-RFLP), high-throughput sequencing and clone library analysis of bacterial 16S rRNA genes. The sequence data indicated that phylotypes belonging to the Ruminococcaceae in the Firmicutes were predominant in the methanogenic cultures. SIP experiments also showed sequential incorporation of the (13)C labeled MTBE by the bacterial community with a bacterium most closely related to Saccharofermentans acetigenes identified as the bacterium active in O-demethylation of MTBE. Identification of the microorganisms responsible for the activity will help us better understand anaerobic MTBE degradation processes in the field and determine biomarkers for monitoring natural attenuation. PMID:26727046

  2. Anaerobic azo dye reduction

    OpenAIRE

    Zee, van der, KG Kristoffer

    2002-01-01

    Azo dyes, aromatic moieties linked together by azo (-N=N-) chromophores, represent the largest class of dyes used in textile-processing and other industries. The release of these compounds into the environment is undesirable, not only because of their colour, but also because many azo dyes and their breakdown products are toxic and/or mutagenic to life. To remove azo dyes from wastewater, a biological treatment strategy based on anaerobic reduction of the azo dyes, followed by aerobic transfo...

  3. Potential application of anaerobic extremophiles for hydrogen production

    Science.gov (United States)

    Pikuta, Elena V.; Hoover, Richard B.

    2004-11-01

    In processes of the substrate fermentation most anaerobes produce molecular hydrogen as a waste end product, which often controls the culture growth as an inhibitor. Usually in nature the hydrogen is easily removed from an ecosystem, due to its physical features, and an immediate consumption by the secondary anaerobes that sometimes behave as competitors for electron donors; a classical example of this kind of substrate competition in anaerobic microbial communities is the interaction between methanogens and sulfate- or sulfur-reducers. Previously, on the mixed cultures of anaerobes at neutral pH, it was demonstrated that bacterial hydrogen production could provide a good alternative energy source. At neutral pH the original cultures could easily contaminated by methanogens, and the most unpleasant side effect of these conditions is the development of pathogenic bacteria. In both cases the rate of hydrogen production was dramatically decreased since some part of the hydrogen was transformed to methane, and furthermore, the cultivation with pathogenic contaminants on an industrial scale would create an unsafe situation. In our laboratory the experiments with obligately alkaliphilic bacteria producing hydrogen as an end metabolic product were performed at different conditions. The mesophilic, haloalkaliphilic and obligately anaerobic bacterium Spirochaeta americana ASpG1T was studied and various cultivation regimes were compared for the most effective hydrogen production. In a highly mineralized media with pH 9.5-10.0 not many known methanogens are capable of growth, and the probability of developing pathogenic contaminants is theoretically is close to zero (in medicine carbonate- saturated solutions are applied as antiseptics). Therefore the cultivation of alkaliphilic hydrogen producing bacteria could be considered as a safe and economical process for large-scale industrial bio-hydrogen production in the future. Here we present and discuss the experimental data

  4. New perspectives in anaerobic digestion

    DEFF Research Database (Denmark)

    van Lier, J.B.; Tilche, A.; Ahring, Birgitte Kiær;

    2001-01-01

    requirements. In fact, most advances were achieved during the last three decades, when high-rate reactor systems were developed and a profound insight was obtained in the microbiology of the anaerobic communities. This insight led to a better understanding of anaerobic treatment and, subsequently, to a broader......The IWA specialised group on anaerobic digestion (AD) is one of the oldest working groups of the former IAWQ organisation. Despite the fact that anaerobic technology dates back more than 100 years, the technology is still under development, adapting novel treatment systems to the modern...

  5. Crystal Structure of a Thermostable Alanine Racemase from Thermoanaerobacter tengcongensis MB4 Reveals the Role of Gln360 in Substrate Selection

    Science.gov (United States)

    Wang, Xiaoyan; Xu, Shujing; Ju, Jiansong; Xu, Xiaoling

    2015-01-01

    Pyridoxal 5’-phosphate (PLP) dependent alanine racemase catalyzes racemization of L-Ala to D-Ala, a key component of the peptidoglycan network in bacterial cell wall. It has been extensively studied as an important antimicrobial drug target due to its restriction in eukaryotes. However, many marketed alanine racemase inhibitors also act on eukaryotic PLP-dependent enzymes and cause side effects. A thermostable alanine racemase (AlrTt) from Thermoanaerobacter tengcongensis MB4 contains an evolutionarily non-conserved residue Gln360 in inner layer of the substrate entryway, which is supposed to be a key determinant in substrate specificity. Here we determined the crystal structure of AlrTt in complex with L-Ala at 2.7 Å resolution, and investigated the role of Gln360 by saturation mutagenesis and kinetic analysis. Compared to typical bacterial alanine racemase, presence of Gln360 and conformational changes of active site residues disrupted the hydrogen bonding interactions necessary for proper PLP immobilization, and decreased both the substrate affinity and turnover number of AlrTt. However, it could be complemented by introduction of hydrophobic amino acids at Gln360, through steric blocking and interactions with a hydrophobic patch near active site pocket. These observations explained the low racemase activity of AlrTt, revealed the essential role of Gln360 in substrate selection, and its preference for hydrophobic amino acids especially Tyr in bacterial alanine racemization. Our work will contribute new insights into the alanine racemization mechanism for antimicrobial drug development. PMID:26218070

  6. Improvement and characterization of a hyperthermophilic glucose isomerase from Thermoanaerobacter ethanolicus and its application in production of high fructose corn syrup.

    Science.gov (United States)

    Liu, Zhi-Qiang; Zheng, Wei; Huang, Jian-Feng; Jin, Li-Qun; Jia, Dong-Xu; Zhou, Hai-Yan; Xu, Jian-Miao; Liao, Cheng-Jun; Cheng, Xin-Ping; Mao, Bao-Xing; Zheng, Yu-Guo

    2015-08-01

    High fructose corn syrup (HFCS) is an alternative of liquid sweetener to sucrose that is isomerized by commercial glucose isomerase (GI). One-step production of 55 % HFCS by thermostable GI has been drawn more and more attentions. In this study, a new hyperthermophilic GI from Thermoanaerobacter ethanolicus CCSD1 (TEGI) was identified by genome mining, and then a 1317 bp fragment encoding the TEGI was synthesized and expressed in Escherichia coli BL21(DE3). To improve the activity of TEGI, two amino acid residues, Trp139 and Val186, around the active site and substrate-binding pocket based on the structural analysis and molecular docking were selected for site-directed mutagenesis. The specific activity of mutant TEGI-W139F/V186T was 2.3-fold and the value of k cat/K m was 1.86-fold as compared to the wild type TEGI, respectively. Thermostability of mutant TEGI-W139F/V186T at 90 °C for 24 h showed 1.21-fold extension than that of wild type TEGI. During the isomerization of glucose to fructose, the yield of fructose could maintain above 55.4 % by mutant TEGI-W139F/V186T as compared to 53.8 % by wild type TEGI at 90 °C. This study paved foundation for the production of 55 % HFCS using the thermostable TEGI. PMID:26077737

  7. Energetics and kinetics of anaerobic aromatic and fatty acid degradation

    Energy Technology Data Exchange (ETDEWEB)

    McInerney, M.J.

    1992-11-16

    The kinetics of benzoate degradation by the anaerobic syntrophic bacterium, Syntrophus buswellii, was studied in coculture with Desulfovibrio strain G11. The threshold value for benzoate degradation was dependent on the acetate concentration with benzoate threshold values ranging from 2.4 [mu]M at 20 mM acetate to 30.0 [mu]M at 65 mM acetate. Increasing acetate concentrations also inhibited the rate of benzoate degradation with a apparent K[sub i] for acetate inhibition of 7.0 mM. Lower threshold values were obtained when nitrate rather than sulfate was the terminal electron acceptor. These data are consistent with a thermodynamic explanation for the threshold, and suggest that there is a minimum Gibbs free energy value required for the degradation of benzoate. An acetoacetyl-CoA thiolase has been isolated from Syntrophomonas wolfei; it is apparently a key enzyme controlling the synthesis of poly-B-hydroxyalkanoate from acetyl-CoA in this organism. Kinetic characterization of the acetoacetyl-CoA thiolase from S. wolfei showed that it is similar in its structural, kinetic, and apparent regulatory properties to other biosynthetic acetoacetyl-CoA thiolases from phylogenetically distinct bacteria that synthesize PHA. Intracellular concentrations of CoA and acetyl-CoA are believed to be critical factors regulating the activity of the acetoacetyl-CoA thiolase in S. wolfei. We have also isolated and characterized several new halophilic anaerobic fermentative anaerobes. Phylogenetic analysis indicates that one of these bacteria is a new species in the genus, Haloanaerobium. Two other species appear to be members of the genus, Halobacteroides. Several halophilic acetoclastic methanogenic bacteria have also been isolated and their physiological properties are currently under investigation. We have also isolated an acetate-using dissimilatory iron-reducing bacterium.

  8. Azoarcus sp. CIB, an anaerobic biodegrader of aromatic compounds shows an endophytic lifestyle.

    Directory of Open Access Journals (Sweden)

    Helga Fernández

    Full Text Available BACKGROUND: Endophytic bacteria that have plant growth promoting traits are of great interest in green biotechnology. The previous thought that the Azoarcus genus comprises bacteria that fit into one of two major eco-physiological groups, either free-living anaerobic biodegraders of aromatic compounds or obligate endophytes unable to degrade aromatics under anaerobic conditions, is revisited here. METHODOLOGY/PRINCIPAL FINDINGS: Light, confocal and electron microscopy reveal that Azoarcus sp. CIB, a facultative anaerobe β-proteobacterium able to degrade aromatic hydrocarbons under anoxic conditions, is also able to colonize the intercellular spaces of the rice roots. In addition, the strain CIB displays plant growth promoting traits such nitrogen fixation, uptake of insoluble phosphorus and production of indoleacetic acid. Therefore, this work demonstrates by the first time that a free-living bacterium able to degrade aromatic compounds under aerobic and anoxic conditions can share also an endophytic lifestyle. The phylogenetic analyses based on the 16S rDNA and nifH genes confirmed that obligate endophytes of the Azoarcus genus and facultative endophytes, such as Azoarcus sp. CIB, locate into different evolutionary branches. CONCLUSIONS/SIGNIFICANCE: This is the first report of a bacterium, Azoarcus sp. CIB, able to degrade anaerobically a significant number of aromatic compounds, some of them of great environmental concern, and to colonize the rice as a facultative endophyte. Thus, Azoarcus sp. CIB becomes a suitable candidate for a more sustainable agricultural practice and phytoremediation technology.

  9. Anaerobic wastewater treatment using anaerobic baffled bioreactor: a review

    Science.gov (United States)

    Hassan, Siti; Dahlan, Irvan

    2013-09-01

    Anaerobic wastewater treatment is receiving renewed interest because it offers a means to treat wastewater with lower energy investment. Because the microorganisms involved grow more slowly, such systems require clever design so that the microbes have sufficient time with the substrate to complete treatment without requiring enormous reactor volumes. The anaerobic baffled reactor has inherent advantages over single compartment reactors due to its circulation pattern that approaches a plug flow reactor. The physical configuration of the anaerobic baffled reactor enables significant modifications to be made; resulting in a reactor which is proficient of treating complex wastewaters which presently require only one unit, ultimately significant reducing capital costs. This paper also concerns about mechanism, kinetic and hydrodynamic studies of anaerobic digestion for future application of the anaerobic baffled reactor for wastewater treatment.

  10. Anaerobic Mercury Methylation and Demethylation by Geobacter bemidjiensis Bem.

    Science.gov (United States)

    Lu, Xia; Liu, Yurong; Johs, Alexander; Zhao, Linduo; Wang, Tieshan; Yang, Ziming; Lin, Hui; Elias, Dwayne A; Pierce, Eric M; Liang, Liyuan; Barkay, Tamar; Gu, Baohua

    2016-04-19

    Microbial methylation and demethylation are two competing processes controlling the net production and bioaccumulation of neurotoxic methylmercury (MeHg) in natural ecosystems. Although mercury (Hg) methylation by anaerobic microorganisms and demethylation by aerobic Hg-resistant bacteria have both been extensively studied, little attention has been given to MeHg degradation by anaerobic bacteria, particularly the iron-reducing bacterium Geobacter bemidjiensis Bem. Here we report, for the first time, that the strain G. bemidjiensis Bem can mediate a suite of Hg transformations, including Hg(II) reduction, Hg(0) oxidation, MeHg production and degradation under anoxic conditions. Results suggest that G. bemidjiensis utilizes a reductive demethylation pathway to degrade MeHg, with elemental Hg(0) as the major reaction product, possibly due to the presence of genes encoding homologues of an organomercurial lyase (MerB) and a mercuric reductase (MerA). In addition, the cells can strongly sorb Hg(II) and MeHg, reduce or oxidize Hg, resulting in both time and concentration-dependent Hg species transformations. Moderate concentrations (10-500 μM) of Hg-binding ligands such as cysteine enhance Hg(II) methylation but inhibit MeHg degradation. These findings indicate a cycle of Hg methylation and demethylation among anaerobic bacteria, thereby influencing net MeHg production in anoxic water and sediments. PMID:27019098

  11. 嗜热厌氧杆菌X514的盐度和pH生长范围研究%Study of Growth Range of pH and Salinity for Thermoanaerobacter sp.X514

    Institute of Scientific and Technical Information of China (English)

    谢天

    2011-01-01

    [Objective] The growth range of salinity and pH for thermoanaerobacter sp were researched. [ Methods] X514 were cultured in different culture mediums which contained multiple gradient salinities and initial pH, and then the growth ranges of X514 were determined. [Results] The optimum growth salinity of X514 was 0 g/L, and the best pH range was pH 7 -9. [Conclusion] Salinity had significant effect on the growth of X514, the best pH range of X514 were as the same as other thermoanaerobacter.%[目的]研究嗜热厌氧杆菌X514的盐度及pH生长范围.[方法]设置不同Nacl浓度梯度及pH范围,分别将X514在不同盐度及起始pH培养基中培养,测定不同时段下X514的生长情况.[结果]X514的最适生长盐度为0 g/L,最适生长pH范围为pH 7 -9.[结论]X514的生长受盐度影响明显,其最适生长pH范围与其他嗜热厌氧菌相似.

  12. Economic viability of anaerobic digestion

    Energy Technology Data Exchange (ETDEWEB)

    Wellinger, A. [INFOENERGIE, Ettenhausen (Switzerland)

    1996-01-01

    The industrial application of anaerobic digestion is a relatively new, yet proven waste treatment technology. Anaerobic digestion reduces and upgrades organic waste, and is a good way to control air pollution as it reduces methane and nitrous gas emissions. For environmental and energy considerations, anaerobic digestion is a nearly perfect waste treatment process. However, its economic viability is still in question. A number of parameters - type of waste (solid or liquid), digester system, facility size, product quality and end use, environmental requirements, cost of alternative treatments (including labor), and interest rates - define the investment and operating costs of an anaerobic digestion facility. Therefore, identical facilities that treat the same amount and type of waste may, depending on location, legislation, and end product characteristics, reveal radically different costs. A good approach for evaluating the economics of anaerobic digestion is to compare it to treatment techniques such as aeration or conventional sewage treatment (for industrial wastewater), or composting and incineration (for solid organic waste). For example, the cost (per ton of waste) of in-vessel composting with biofilters is somewhat higher than that of anaerobic digestion, but the investment costs 1 1/2 to 2 times more than either composting or anaerobic digestion. Two distinct advantages of anaerobic digestion are: (1) it requires less land than either composting or incinerating, which translates into lower costs and milder environmental and community impacts (especially in densely populated areas); and (2) it produces net energy, which can be used to operate the facility or sold to nearby industries.

  13. Anaerobic Digestion of Piggery Waste

    NARCIS (Netherlands)

    Velsen, van A.F.M.

    1981-01-01

    Anaerobic digestion is a biological process by which organic matter is converted to methane and carbon dioxide by microbes in the absence of air (oxygen). In nature, anaerobic conversions occur at all places where organic material accumulates and the supply of oxygen is deficient, e.g. in marshes an

  14. Presence of an unusual methanogenic bacterium in coal gasification waste

    Energy Technology Data Exchange (ETDEWEB)

    Tomei, F.A.; Rouse, D.; Maki, J.S.; Mitchell, R.

    1988-12-01

    Methanogenic bacteria growing on a pilot-scale, anaerobic filter processing coal gasification waste were enriched in a mineral salts medium containing hydrogen and acetate as potential energy sources. Transfer of the enrichments to methanol medium resulted in the initial growth of a strain of Methanosarcina barkeri, but eventually small cocci became dominant. The cocci growing on methanol produced methane and exhibited the typical fluorescence of methanogenic bacteria. They grew in the presence of the cell wall synthesis-inhibiting antibiotics D-cycloserine, fosfomycin, penicillin G, and vancomycin as well as in the presence of kanamycin, an inhibitor of protein synthesis in eubacteria. The optimal growth temperature was 37 degrees C, and the doubling time was 7.5 h. The strain lysed after reaching stationary phase. The bacterium grew poorly with hydrogen as the energy source and failed to grow on acetate. Morphologically, the coccus shared similarities with Methanosarcina sp. Cells were 1 ..mu..m wide, exhibited the typical thick cell wall and cross-wall formation, and formed tetrads. Packets and cysts were not formed. 62 refs., 4 figs.

  15. Electromicrobiology of Dissimilatory Sulfur Reducing Bacterium Desulfuromonas acetexigens

    KAUST Repository

    Bin Bandar, Khaled

    2014-12-01

    Bioelectrochmical systems (BES) are engineered electrochemical devices that harness hidden chemical energy of the wastewater in to the form of electricity or hydrogen. Unique microbial communities enrich in these systems for oxidation of organic matter as well as transfer of resulted electron to anode, known them as “electricigens” communities. Exploring novel electricigenesis microbial communities in the nature and understanding their electromicrobiology is one the important aspect for BES systems scale up. Herein, we report first time the electricigenesis property of an anaerobic, fresh water sediment, sulfur reducing bacterium Desulfuromona acetexigens. The electrochemical behavior of D. acetexigens biofilms grown on graphite-rod electrodes in batch-fed mode under an applied potential was investigated with traditional electroanalytical tools, and correlate the electron transfer from biofilms to electrode with a model electricigen Geobacter sulfurreducens electrochemical behavior. Research findings suggest that D. acetexigens has the ability to use electrode as electron acceptor in BES systems through establishing the direct contact with anode by expressing the membrane bound redox proteins, but not due to the secretion of soluble redox mediators. Preliminary results revealed that D. acetexigens express three distinct redox proteins in their membranes for turnover of the electrons from biofilm to electrode, and the 4 whole electricigenesis process observed to be unique in the D. acetexigens compared to that of well-studied model organism G. sulfurreducens.

  16. Ultrasound-mediated DNA transformation in thermophilic gram-positive anaerobes.

    Directory of Open Access Journals (Sweden)

    Lu Lin

    Full Text Available BACKGROUND: Thermophilic, Gram-positive, anaerobic bacteria (TGPAs are generally recalcitrant to chemical and electrotransformation due to their special cell-wall structure and the low intrinsic permeability of plasma membranes. METHODOLOGY/PRINCIPAL FINDINGS: Here we established for any Gram-positive or thermophiles an ultrasound-based sonoporation as a simple, rapid, and minimally invasive method to genetically transform TGPAs. We showed that by applying a 40 kHz ultrasound frequency over a 20-second exposure, Texas red-conjugated dextran was delivered with 27% efficiency into Thermoanaerobacter sp. X514, a TGPA that can utilize both pentose and hexose for ethanol production. Experiments that delivered plasmids showed that host-cell viability and plasmid DNA integrity were not compromised. Via sonoporation, shuttle vectors pHL015 harboring a jellyfish gfp gene and pIKM2 encoding a Clostridium thermocellum β-1,4-glucanase gene were delivered into X514 with an efficiency of 6x10(2 transformants/µg of methylated DNA. Delivery into X514 cells was confirmed via detecting the kanamycin-resistance gene for pIKM2, while confirmation of pHL015 was detected by visualization of fluorescence signals of secondary host-cells following a plasmid-rescue experiment. Furthermore, the foreign β-1,4-glucanase gene was functionally expressed in X514, converting the host into a prototypic thermophilic consolidated bioprocessing organism that is not only ethanologenic but cellulolytic. CONCLUSIONS/SIGNIFICANCE: In this study, we developed an ultrasound-based sonoporation method in TGPAs. This new DNA-delivery method could significantly improve the throughput in developing genetic systems for TGPAs, many of which are of industrial interest yet remain difficult to manipulate genetically.

  17. Anaerobic fungal populations

    International Nuclear Information System (INIS)

    The development of molecular techniques has greatly broadened our view of microbial diversity and enabled a more complete detection and description of microbial communities. The application of these techniques provides a simple means of following community changes, for example, Ishii et al. described transient and more stable inhabitants in another dynamic microbial system, compost. Our present knowledge of anaerobic gut fungal population diversity within the gastrointestinal tract is based upon isolation, cultivation and observations in vivo. It is likely that there are many species yet to be described, some of which may be non-culturable. We have observed a distinct difference in the ease of cultivation between the different genera, for example, Caecomyes isolates are especially difficult to isolate and maintain in vitro, a feature that is likely to result in the under representation of this genera in culture-based enumerations. The anaerobic gut fungi are the only known obligately anaerobic fungi. For the majority of their life cycles, they are found tightly associated with solid digesta in the rumen and/or hindgut. They produce potent fibrolytic enzymes and grow invasively on and into the plant material they are digesting making them important contributors to fibre digestion. This close association with intestinal digesta has made it difficult to accurately determine the amount of fungal biomass present in the rumen, with Orpin suggesting 8% contribution to the total microbial biomass, whereas Rezaeian et al. more recently gave a value of approximately 20%. It is clear that the rumen microbial complement is affected by dietary changes, and that the fungi are more important in digestion in the rumens of animals fed with high-fibre diets. It seems likely that the gut fungi play an important role within the rumen as primary colonizers of plant fibre, and so we are particularly interested in being able to measure the appearance and diversity of fungi on the plant

  18. IDENTIFICATION OF THE BACTERIUM TOMATO STEM CANKER

    Directory of Open Access Journals (Sweden)

    Goner A. Shaker

    2014-01-01

    Full Text Available Diseased tomato samples were collected from green house was evaluated for isolation, pathogenicity and biochemical tests. The symptoms of the infected tomato plants were as sudden wilting after curled on leaves and necrotic streak regions developed at the crown and base of the stem and the cavities deepen and expand up and down, brown discoloration and necrosis occurring on xylem and phloem vasculer. All of ages of tomato plant were susceptible to bacteria when the weather condition favorable and immediately, seen collapse symptom on tomato plant at once fail and die. The bacterium was isolated from diseased plant in all regions on nutrient Agar; a yellow bacterium was isolated from infected tomato plant in green houses and fields in Abu-Ghraib, Rashiedia and Qanat Al-Geiaysh nurseries in Baghdad provinces of Iraq. The bacterium was found gram positive, rod-shaped, non-motile and capable an aerobic growth and based on the morphological and biochemical characteristics revealed that this bacterium belongs to: Clavibacter michiganensis subsp. michiganensis. (smith pathogenicity and hypersensitivity of the bacterium Cmm showed the disease index were 18.33, 6.66, 16.66, 5, 0% for tomato seedlings were inoculated treatments as the wounding roots, without wounding roots, crown of the stem, petiole and control respectively.

  19. New recombinant bacterium comprises a heterologous gene encoding glycerol dehydrogenase and/or an up-regulated native gene encoding glycerol dehydrogenase, useful for producing ethanol

    DEFF Research Database (Denmark)

    2010-01-01

    is the Thermoanaerobacter mathranii strain BG1G1 (DSMZ Accession number 19229). Preferred Method: In the method above, the carbohydrate source is a polysaccharide selected from starch, glucose, lignocellulose, cellulose, hemicellulose, glycogen, xylan, glucuronoxylan, arabinoxylan, arabinogalactan, glucomannan, xyloglucan...

  20. Whole-Genome Transcription Profiling Reveals Genes Up-Regulated by Growth on Fucose in the Human Gut Bacterium “Roseburia inulinivorans”†

    OpenAIRE

    Karen P Scott; Martin, Jennifer C.; Campbell, Gillian; Mayer, Claus-Dieter; Flint, Harry J

    2006-01-01

    “Roseburia inulinivorans” is an anaerobic polysaccharide-utilizing firmicute bacterium from the human colon that was identified as a producer of butyric acid during growth on glucose, starch, or inulin. R. inulinivorans A2-194 is also able to grow on the host-derived sugar fucose, following a lag period, producing propionate and propanol as additional fermentation products. A shotgun genomic microarray was constructed and used to investigate the switch in gene expression that is involved in c...

  1. The complete genome sequence of Chlorobium tepidum TLS, a photosynthetic, anaerobic, green-sulfur bacterium

    OpenAIRE

    EISEN, JONATHAN A.; Karen E Nelson; Ian T Paulsen; Heidelberg, John F.; Wu, Martin; Dodson, Robert J; Deboy, Robert; Gwinn, Michelle L.; Nelson, William C.; Haft, Daniel H; Hickey, Erin K.; Peterson, Jeremy D.; Durkin, A. Scott; Kolonay, James L.; Yang, Fan

    2002-01-01

    The complete genome of the green-sulfur eubacterium Chlorobium tepidum TLS was determined to be a single circular chromosome of 2,154,946 bp. This represents the first genome sequence from the phylum Chlorobia, whose members perform anoxygenic photosynthesis by the reductive tricarboxylic acid cycle. Genome comparisons have identified genes in C. tepidum that are highly conserved among photosynthetic species. Many of these have no assigned function and may play novel role...

  2. Cloning, expression and characterization of glycoside hydrolases from the thermophilic cellulolytic anaerobic bacterium Caldicellulosiruptor kristjanssonii

    OpenAIRE

    Skalman, Lars Nygård

    2010-01-01

    Lignocellulosic biomass has great potential as a substrate for ethanol production as it is a renewable and rather abundant energy source. However, the rigid and complex structure of lignocellulose is a major bottleneck preventing the development of cost-effective production methods. By the use of thermostable cellulolytic enzymes, hydrolysis of cellulose and fermentation of glucose to ethanol could be performed at high temperatures and this would lower the production cost of ethanol significa...

  3. Anaerobic oxidation of p-cresol mediated by a partially purified methylhydroxylase from a denitrifying bacterium.

    OpenAIRE

    Bossert, I D; Whited, G; Gibson, D T; Young, L. Y.

    1989-01-01

    Anoxic cell extracts of a denitrifying bacterial isolate (PC-07) were shown to oxidize p-cresol to p-hydroxybenzoate. Oxidation of the substrate was independent of molecular oxygen and required nitrate as the natural terminal electron acceptor. Two enzyme activities were implicated in the pathway utilized by PC-07. A p-cresol methylhydroxylase mediated the oxidation of p-cresol to p-hydroxybenzaldehyde, which was further oxidized to p-hydroxybenzoate by an NAD+-dependent dehydrogenase. The PC...

  4. Deep Conversion of Carbon Monoxide to Hydrogen and Formation of Acetate by the Anaerobic Thermophile Carboxydothermus hydrogenoformans

    OpenAIRE

    Henstra, Anne M.; Stams, Alfons J. M.

    2011-01-01

    Carboxydothermus hydrogenoformans is a thermophilic strictly anaerobic bacterium that catalyses the water gas shift reaction, the conversion of carbon monoxide with water to molecular hydrogen and carbon dioxide. The thermodynamically favorable growth temperature, compared to existing industrial catalytic processes, makes this organism an interesting alternative for production of cheap hydrogen gas suitable to fuel CO-sensitive fuel cells in a future hydrogen economy, provided sufficiently lo...

  5. [Prolonged cultivation of an anaerobic bacterial community producing hydrogen].

    Science.gov (United States)

    Belokopytov, B F; Ryzhmanova, Ia V; Laurinavichius, K S; Shcherbakova, V A

    2012-01-01

    This paper studies various methods of long-term maintenance of the process of hydrogen evolution during the growth of an aerobic bacterial community on a starch-containing environment. When cultured in separable trip fermentation mode for 72 days, from 0.10 to 0.23 H2/l of medium/day was formed. The regime of regular reseeding lasted more than 100 days, forming an average of 0.81 1 H2/l of medium/day. The advantages and disadvantages of different methods of microbial hydrogen production during a dark starch fermentation process are presented. From the obtained H2 forming microbial communities, we isolated an anaerobic spore-forming bacterium (strain BF). Phylogenetic analysis of the 16S RNA gene sequence of the new strain showed that according to its genotype it belongs to the Clostridium butyricum species.

  6. Microbial selenite reduction with organic carbon and electrode as sole electron donor by a bacterium isolated from domestic wastewater.

    Science.gov (United States)

    Nguyen, Van Khanh; Park, Younghyun; Yu, Jaecheul; Lee, Taeho

    2016-07-01

    Selenium is said to be multifaceted element because it is essential at a low concentration but very toxic at an elevated level. For the purpose of screening a potential microorganism for selenite bioremediation, we isolated a bacterium, named strain THL1, which could perform both heterotrophic selenite reduction, using organic carbons such as acetate, lactate, propionate, and butyrate as electron donors under microaerobic condition, and electrotrophic selenite reduction, using an electrode polarized at -0.3V (vs. standard hydrogen electrode) as the sole electron donor under anaerobic condition. This bacterium determined to be a new strain of the genus Cronobacter, could remove selenite with an efficiency of up to 100%. This study is the first demonstration on a pure culture could take up electrons from an electrode to perform selenite reduction. The selenium nanoparticles produced by microbial selenite reduction might be considered for recovery and use in the nanotechnology industry. PMID:27099943

  7. Microflora of urogenital tract in pregnancy with asymptomatic bacterium

    International Nuclear Information System (INIS)

    The article contains results of research interrelationship from colonization of vagina and urinary tract diseases. E.coli one of the main factors in development asymptomatic bacterium. Presented high effects of penicillin medicaments and nitrofurans in treatment of asymptomatic bacterium

  8. How does oxygen inhibit central metabolism in the obligate anaerobe Bacteroides thetaiotaomicron.

    Science.gov (United States)

    Pan, N; Imlay, J A

    2001-03-01

    The molecular basis of obligate anaerobiosis is not well established. Bacteroides thetaiotaomicron is an opportunistic pathogen that cannot grow in fully aerobic habitats. Because microbial niches reflect features of energy-producing strategies, we suspected that aeration would interfere with its central metabolism. In anaerobic medium, this bacterium fermented carbohydrates to a mixture of succinate, propionate and acetate. When cultures were exposed to air, the formation of succinate and propionate ceased abruptly. In vitro analysis demonstrated that the fumarase of the succinate-propionate pathway contains an iron-sulphur cluster that is sensitive to superoxide. In vivo, fumarase activity fell to PFOR), the first enzyme in the acetate fermentation branch, to 3% of its anaerobic activity. This cluster-containing enzyme was damaged in vitro by molecular oxygen but not by superoxide. Thus, aerobic growth is precluded by the vulnerability of these iron-sulphur cluster enzymes to oxidation. Importantly, both enzymes were maintained in a stable, inactive form for long periods in aerobic cells; they were then rapidly repaired when the bacterium was returned to anaerobic medium. This result explains how this pathogen can easily recover from occasional exposure to oxygen. PMID:11260473

  9. Novel Waddlia Intracellular Bacterium in Artibeus intermedius Fruit Bats, Mexico.

    Science.gov (United States)

    Pierlé, Sebastián Aguilar; Morales, Cirani Obregón; Martínez, Leonardo Perea; Ceballos, Nidia Aréchiga; Rivero, Juan José Pérez; Díaz, Osvaldo López; Brayton, Kelly A; Setién, Alvaro Aguilar

    2015-12-01

    An intracellular bacterium was isolated from fruit bats (Artibeus intermedius) in Cocoyoc, Mexico. The bacterium caused severe lesions in the lungs and spleens of bats and intracytoplasmic vacuoles in cell cultures. Sequence analyses showed it is related to Waddlia spp. (order Chlamydiales). We propose to call this bacterium Waddlia cocoyoc.

  10. Degradation of Reactive Black 5 dye using anaerobic/aerobic membrane bioreactor (MBR) and photochemical membrane reactor

    International Nuclear Information System (INIS)

    Three different types of advance treatment methods were evaluated for the degradation of Reactive Black 5 (RB5). The performance of two stage anaerobic SBR-aerobic MBR, anaerobic MBR with immobilized and suspended biocells and an integrated membrane photocatalytic reactor (MPR) using slurry UV/TiO2 system were investigated. The results suggest that, nearly 99.9% color removal and 80-95% organic COD and TOC removal can be achieved using different reactor systems. Considering the Taiwan EPA effluent standard discharge criteria for COD/TOC, the degree of treatment achieved by combining the anaerobic-aerobic system was found to be acceptable. Anew, Bacilluscereus, high color removal bacterium was isolated from Anaerobic SBR. Furthermore, when this immobilized into PVA-calcium alginate pellets, and suspended in the anaerobic MBR was able to achieve high removal efficiencies, similar to the suspended biocells system. However, the immobilized cell Anaerobic MBR was found to be more advantageous, due to lower fouling rates in the membrane unit. Results from slurry type MPR system showed that this system was capable of mineralizing RB5 dyes with faster degradation rate as compared to other systems. The reactor was also able to separate the catalyst effectively and perform efficiently without much loss of catalyst activity.

  11. Genetic manipulation of carotenoid biosynthesis in the green sulfur bacterium Chlorobium tepidum

    DEFF Research Database (Denmark)

    Frigaard, Niels-Ulrik; Maresca, Julia A; Yunker, Colleen E;

    2004-01-01

    The green sulfur bacterium Chlorobium tepidum is a strict anaerobe and an obligate photoautotroph. On the basis of sequence similarity with known enzymes or sequence motifs, nine open reading frames encoding putative enzymes of carotenoid biosynthesis were identified in the genome sequence of C....... tepidum, and all nine genes were inactivated. Analysis of the carotenoid composition in the resulting mutants allowed the genes encoding the following six enzymes to be identified: phytoene synthase (crtB/CT1386), phytoene desaturase (crtP/CT0807), zeta-carotene desaturase (crtQ/CT1414), gamma......-carotene desaturase (crtU/CT0323), carotenoid 1',2'-hydratase (crtC/CT0301), and carotenoid cis-trans isomerase (crtH/CT0649). Three mutants (CT0180, CT1357, and CT1416 mutants) did not exhibit a discernible phenotype. The carotenoid biosynthetic pathway in C. tepidum is similar to that in cyanobacteria and plants...

  12. Arsenic, Anaerobes, and Astrobiology

    Science.gov (United States)

    Stolz, J. F.; Oremland, R. S.; Switzer Blum, J.; Hoeft, S. E.; Baesman, S. M.; Bennett, S.; Miller, L. G.; Kulp, T. R.; Saltikov, C.

    2013-12-01

    Arsenic is an element best known for its highly poisonous nature, so it is not something one would associate with being a well-spring for life. Yet discoveries made over the past two decades have delineated that not only are some microbes resistant to arsenic, but that this element's primary redox states can be exploited to conserve energy and support prokaryotic growth ('arsenotrophy') in the absence of oxygen. Hence, arsenite [As(III)] can serve as an electron donor for chemo- or photo-autotrophy while arsenate [As(V)] will serve as an electron acceptor for chemo-heterotrophs and chemo-autotrophs. The phylogenetic diversity of these microbes is broad, encompassing many individual species from diverse taxonomic groups in the Domain Bacteria, with fewer representatives in the Domain Archaea. Speculation with regard to the evolutionary origins of the key functional genes in anaerobic arsenic transformations (arrA and arxA) and aerobic oxidation (aioB) has led to a disputation as to which gene and function is the most ancient and whether arsenic metabolism extended back into the Archaean. Regardless of its origin, robust arsenic metabolism has been documented in extreme environments that are rich in their arsenic content, such as hot springs and especially hypersaline soda lakes associated with volcanic regions. Searles Lake, CA is an extreme, salt-saturated end member where vigorous arsenic metabolism occurs, but there is no detectable sulfate-reduction or methanogenesis. The latter processes are too weak bio-energetically to survive as compared with arsenotrophy, and are also highly sensitive to the abundance of borate ions present in these locales. These observations have implications with respect to the search for microbial life elsewhere in the Solar System where volcanic-like processes have been operative. Hence, because of the likelihood of encountering dense brines in the regolith of Mars (formed by evapo-concentration) or beneath the ice layers of Europa

  13. Anaerobic Digestion of Piggery Waste

    OpenAIRE

    Velsen, van, L.S.

    1981-01-01

    Anaerobic digestion is a biological process by which organic matter is converted to methane and carbon dioxide by microbes in the absence of air (oxygen). In nature, anaerobic conversions occur at all places where organic material accumulates and the supply of oxygen is deficient, e.g. in marshes and lake sediments. Microbial formation of methane also plays a role in the ruminant digestion.In digestion units, the external conditions acting upon the process can be regulated to speed it up as c...

  14. Molecular genetic studies on obligate anaerobic bacteria

    International Nuclear Information System (INIS)

    Molecular genetic studies on obligate anaerobic bacteria have lagged behind similar studies in aerobes. However, the current interest in biotechnology, the involvement of anaerobes in disease and the emergence of antibioticresistant strains have focused attention on the genetics of anaerobes. This article reviews molecular genetic studies in Bacteroides spp., Clostridium spp. and methanogens. Certain genetic systems in some anaerobes differ from those in aerobes and illustrate the genetic diversity among bacteria

  15. Anaerobic taurine oxidation: a novel reaction by a nitrate-reducing Alcaligenes sp.

    Science.gov (United States)

    Denger, K; Laue, H; Cook, A M

    1997-06-01

    Enrichment cultures were prepared under strictly anoxic conditions in medium representing fresh water and containing an organosulfonate as electron donor and carbon source, and nitrate as electron acceptor. The inoculum was from the anaerobic digestor of two communal sewage works. The natural organosulfonates 2-aminoethanesulfonate (taurine), DL-2-amino-3-sulfopropionate (cysteate) and 2-hydroxyethanesulfonate (isethionate) all gave positive enrichments, whereas unsubstituted alkanesulfonates, such as methanesulfonate and arenesulfonates, gave no enrichment. Two representative enrichments were used to obtain pure cultures, and strains NKNTAU (utilizing taurine) and NKNIS (utilizing isethionate) were isolated. Strain NKNTAU was examined in detail. Out of 18 tested organosulfonates, it utilized only one, taurine, and was identified as a novel Alcaligenes sp., a facultatively anaerobic bacterium. Carbon from taurine was converted to cell material and carbon dioxide. The amino group was released as ammonium ion and the sulfonate moiety was recovered as sulfate. Nitrate was reduced to nitrogen gas.

  16. Biological conversion of biogas to methanol using methanotrophs isolated from solid-state anaerobic digestate.

    Science.gov (United States)

    Sheets, Johnathon P; Ge, Xumeng; Li, Yueh-Fen; Yu, Zhongtang; Li, Yebo

    2016-02-01

    The aim of this work was to isolate methanotrophs (methane oxidizing bacteria) that can directly convert biogas produced at a commercial anaerobic digestion (AD) facility to methanol. A methanotrophic bacterium was isolated from solid-state anaerobic digestate. The isolate had characteristics comparable to obligate methanotrophs from the genus Methylocaldum. This newly isolated methanotroph grew on biogas or purified CH4 and successfully converted biogas from AD to methanol. Methanol production was achieved using several methanol dehydrogenase (MDH) inhibitors and formate as an electron donor. The isolate also produced methanol using phosphate with no electron donor or using formate with no MDH inhibitor. The maximum methanol concentration (0.43±0.00gL(-1)) and 48-h CH4 to methanol conversion (25.5±1.1%) were achieved using biogas as substrate and a growth medium containing 50mM phosphate and 80mM formate. PMID:26630583

  17. Metabolism of Kaempferia parviflora polymethoxyflavones by human intestinal bacterium Bautia sp. MRG-PMF1.

    Science.gov (United States)

    Kim, Mihyang; Kim, Nayoung; Han, Jaehong

    2014-12-24

    Poylmethoxyflavones (PMFs) are major bioactive flavonoids, which exhibit various biological activities, such as anticancer effects. The biotransformation of PMFs and characterization of a PMF-metabolizing human intestinal bacterium were studied herein for the first time. Hydrolysis of aryl methyl ether functional groups by human fecal samples was observed from the bioconversion of various PMFs. Activity-guided screening for PMF-metabolizing intestinal bacteria under anaerobic conditions resulted in the isolation of a strict anaerobic bacterium, which was identified as Blautia sp. MRG-PMF1. The isolated MRG-PMF1 was able to metabolize various PMFs to the corresponding demethylated flavones. The microbial conversion of bioactive 5,7-dimethoxyflavone (5,7-DMF) and 5,7,4'-trimethoxyflavone (5,7,4'-TMF) was studied in detail. 5,7-DMF and 5,7,4'-TMF were completely metabolized to 5,7-dihydroxyflavone (chrysin) and 5,7,4'-trihydroxyflavone (apigenin), respectively. From a kinetics study, the methoxy group on the flavone C-7 position was found to be preferentially hydrolyzed. 5-Methoxychrysin, the intermediate of 5,7-DMF metabolism by Blautia sp. MRG-PMF1, was isolated and characterized by nuclear magnetic resonance spectroscopy. Apigenin was produced from the sequential demethylation of 5,7,4'-TMF, via 5,4'-dimethoxy-7-hydroxyflavone and 7,4'-dihydroxy-5-methoxyflavone (thevetiaflavone). Not only demethylation activity but also deglycosylation activity was exhibited by Blautia sp. MRG-PMF1, and various flavonoids, including isoflavones, flavones, and flavanones, were found to be metabolized to the corresponding aglycones. The unprecedented PMF demethylation activity of Blautia sp. MRG-PMF1 will expand our understanding of flavonoid metabolism in the human intestine and lead to novel bioactive compounds. PMID:25437273

  18. The phenomenon of granulation of anaerobic sludge.

    NARCIS (Netherlands)

    Hulshoff Pol, L.W.

    1989-01-01

    Successful high-rate anaerobic wastewater treatment can only be accomplished when the slowgrowing anaerobic biomass is efficiently held back in the anaerobic treatment system. This biomass retention can be achieved in various ways including immobilization of the organisms on fixed materials and immo

  19. Viscosity evolution of anaerobic granular sludge

    NARCIS (Netherlands)

    Pevere, A.; Guibaud, G.; Hullebusch, van E.D.; Lens, P.N.L.; Baudu, M.

    2006-01-01

    The evolution of the apparent viscosity at steady shear rate of sieved anaerobic granular sludge (20¿315 ¿m diameter) sampled from different full-scale anaerobic reactors was recorded using rotation tests. The ¿limit viscosity¿ of sieved anaerobic granular sludge was determined from the apparent vis

  20. Kinetics and modeling of anaerobic digestion process

    DEFF Research Database (Denmark)

    Gavala, Hariklia N.; Angelidaki, Irini; Ahring, Birgitte Kiær

    2003-01-01

    Anaerobic digestion modeling started in the early 1970s when the need for design and efficient operation of anaerobic systems became evident. At that time not only was the knowledge about the complex process of anaerobic digestion inadequate but also there were computational limitations. Thus, th...

  1. Oxygen Effects in Anaerobic Digestion

    Directory of Open Access Journals (Sweden)

    Deshai Botheju

    2009-10-01

    Full Text Available Interaction of free oxygen in bio-gasification is a sparsely studied area, apart from the common argument of oxygen being toxic and inhibitory for anaerobic micro-cultures. Some studies have, however, revealed increased solubilisation of organic matter in the presence of some free oxygen in anaerobic digestion. This article analyses these counterbalancing phenomena with a mathematical modelling approach using the widely accepted biochemical model ADM 1. Aerobic oxidation of soluble carbon and inhibition of obligatory anaerobic organisms are modelled using standard saturation type kinetics. Biomass dependent first order hydrolysis kinetics is used to relate the increased hydrolysis rate with oxygen induced increase in biomass growth. The amended model, ADM 1-Ox (oxygen, has 25 state variables and 22 biochemical processes, presented in matrix form. The computer aided simulation tool AQUASIM 2.1 is used to simulate the developed model. Simulation predictions are evaluated against experimental data obtained using a laboratory batch test array comprising miniature anaerobic bio-reactors of 100 ml total volume each, operated under different initial air headspaces giving rise to the different oxygen loading conditions. The reactors were initially fed with a glucose solution and incubated at 35 Celsius, for 563 hours. Under the oxygen load conditions of 22, 44 and 88 mg/L, the ADM1-Ox model simulations predicted the experimental methane potentials quite adequately. Both the experimental data and the simulations suggest a linear reduction of methane potential with respect to the increase in oxygen load within this range.

  2. Anaerobic Treatment of Methanolic Wastes

    NARCIS (Netherlands)

    Lettinga, G.; Geest, van der A.Th.; Hobma, S.W.; Laan, van der J.B.R.

    1979-01-01

    Although it is well known that methanol can be fermented directly by a specific species of methane bacteria, viz. Methanosarcina barkeri, until now little information was available about the effect of important environmental factors on the anaerobic fermentation of methanol. As methanol can be the m

  3. Treatment of Alkaline Cr(VI)-Contaminated Leachate with an Alkaliphilic Metal-Reducing Bacterium.

    Science.gov (United States)

    Watts, Mathew P; Khijniak, Tatiana V; Boothman, Christopher; Lloyd, Jonathan R

    2015-08-15

    Chromium in its toxic Cr(VI) valence state is a common contaminant particularly associated with alkaline environments. A well-publicized case of this occurred in Glasgow, United Kingdom, where poorly controlled disposal of a cementitious industrial by-product, chromite ore processing residue (COPR), has resulted in extensive contamination by Cr(VI)-contaminated alkaline leachates. In the search for viable bioremediation treatments for Cr(VI), a variety of bacteria that are capable of reduction of the toxic and highly soluble Cr(VI) to the relatively nontoxic and less mobile Cr(III) oxidation state, predominantly under circumneutral pH conditions, have been isolated. Recently, however, alkaliphilic bacteria that have the potential to reduce Cr(VI) under alkaline conditions have been identified. This study focuses on the application of a metal-reducing bacterium to the remediation of alkaline Cr(VI)-contaminated leachates from COPR. This bacterium, belonging to the Halomonas genus, was found to exhibit growth concomitant to Cr(VI) reduction under alkaline conditions (pH 10). Bacterial cells were able to rapidly remove high concentrations of aqueous Cr(VI) (2.5 mM) under anaerobic conditions, up to a starting pH of 11. Cr(VI) reduction rates were controlled by pH, with slower removal observed at pH 11, compared to pH 10, while no removal was observed at pH 12. The reduction of aqueous Cr(VI) resulted in the precipitation of Cr(III) biominerals, which were characterized using transmission electron microscopy and energy-dispersive X-ray analysis (TEM-EDX) and X-ray photoelectron spectroscopy (XPS). The effectiveness of this haloalkaliphilic bacterium for Cr(VI) reduction at high pH suggests potential for its use as an in situ treatment of COPR and other alkaline Cr(VI)-contaminated environments. PMID:26048926

  4. Anaerobic granular sludge and biofilm reactors

    DEFF Research Database (Denmark)

    Skiadas, Ioannis V.; Gavala, Hariklia N.; Schmidt, Jens Ejbye;

    2003-01-01

    by the immobilization of the biomass, which forms static biofilms, particle-supported biofilms, or granules depending on the reactor's operational conditions. The advantages of the high-rate anaerobic digestion over the conventional aerobic wastewater treatment methods has created a clear trend for the change......-rate anaerobic treatment systems based on anaerobic granular sludge and biofilm are described in this chapter. Emphasis is given to a) the Up-flow Anaerobic Sludge Blanket (UASB) systems, b) the main characteristics of the anaerobic granular sludge, and c) the factors that control the granulation process...

  5. Isolation of a Bacterium Strain Degraded Agar

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    One in 58 strains of bacteria isolated from the compost showed clear colonies after a few days of growth on the plates containing medium made of only agar and water.Water suspension contained only agar (2 and 8g·L -1 ) with two controls (normal saline,LB medium) was inoculated with the bacterium BR5-1 to see whether there was an increasement of the alive bacteria concentration after 48 h of the growth.The results showed that there was a significant rising of the alive bacteria concentration in the agar susp...

  6. Swimming Efficiency of Bacterium Escherichia Coli

    CERN Document Server

    Chattopadhyay, S; Wu, X L; Yeung, C; Chattopadhyay, Suddhashil; Moldovan, Radu; Yeung, Chuck

    2005-01-01

    We use in vivo measurements of swimming bacteria in an optical trap to determine fundamental properties of bacterial propulsion. In particular, we determine the propulsion matrix, which relates the angular velocity of the flagellum to the torques and forces propelling the bacterium. From the propulsion matrix dynamical properties such as forces, torques, swimming speed and power can be obtained from measurements of the angular velocity of the motor. We find significant heterogeneities among different individuals even though all bacteria started from a single colony. The propulsive efficiency, defined as the ratio of the propulsive power output to the rotary power input provided by the motors, is found to be 0.2%.

  7. Effect of incubation conditions on anaerobic susceptibility testing results.

    OpenAIRE

    Murray, P R; Niles, A C

    1982-01-01

    We determined the effect of performing antimicrobial susceptibility tests in five different anaerobic incubation systems: GasPak jar, large GasPak jar, evacuated-gassed anaerobic jar, anaerobic chamber, and Bio-Bag. Growth of the anaerobes was equivalent in all five incubation systems. The results of testing 38 anaerobes against 11 antimicrobial agents were comparable for the anaerobic jars and anaerobic chamber. However, discordant results were observed for metronidazole and cefamandole test...

  8. Complete genome sequence of the filamentous anoxygenic phototrophic bacterium Chloroflexus aurantiacus

    Directory of Open Access Journals (Sweden)

    Larimer Frank W

    2011-06-01

    Full Text Available Abstract Background Chloroflexus aurantiacus is a thermophilic filamentous anoxygenic phototrophic (FAP bacterium, and can grow phototrophically under anaerobic conditions or chemotrophically under aerobic and dark conditions. According to 16S rRNA analysis, Chloroflexi species are the earliest branching bacteria capable of photosynthesis, and Cfl. aurantiacus has been long regarded as a key organism to resolve the obscurity of the origin and early evolution of photosynthesis. Cfl. aurantiacus contains a chimeric photosystem that comprises some characters of green sulfur bacteria and purple photosynthetic bacteria, and also has some unique electron transport proteins compared to other photosynthetic bacteria. Methods The complete genomic sequence of Cfl. aurantiacus has been determined, analyzed and compared to the genomes of other photosynthetic bacteria. Results Abundant genomic evidence suggests that there have been numerous gene adaptations/replacements in Cfl. aurantiacus to facilitate life under both anaerobic and aerobic conditions, including duplicate genes and gene clusters for the alternative complex III (ACIII, auracyanin and NADH:quinone oxidoreductase; and several aerobic/anaerobic enzyme pairs in central carbon metabolism and tetrapyrroles and nucleic acids biosynthesis. Overall, genomic information is consistent with a high tolerance for oxygen that has been reported in the growth of Cfl. aurantiacus. Genes for the chimeric photosystem, photosynthetic electron transport chain, the 3-hydroxypropionate autotrophic carbon fixation cycle, CO2-anaplerotic pathways, glyoxylate cycle, and sulfur reduction pathway are present. The central carbon metabolism and sulfur assimilation pathways in Cfl. aurantiacus are discussed. Some features of the Cfl. aurantiacus genome are compared with those of the Roseiflexus castenholzii genome. Roseiflexus castenholzii is a recently characterized FAP bacterium and phylogenetically closely related to Cfl

  9. Enzymes involved in the anaerobic oxidation of n-alkanes: from methane to long-chain paraffins

    Directory of Open Access Journals (Sweden)

    Amy V. Callaghan

    2013-05-01

    Full Text Available Anaerobic microorganisms play key roles in the biogeochemical cycling of methane and non-methane alkanes. To date, there appear to be at least three proposed mechanisms of anaerobic methane oxidation (AOM. The first pathway is mediated by consortia of archaeal anaerobic methane oxidizers and sulfate-reducing bacteria via ‘reverse methanogenesis’ and is catalyzed by a homologue of methyl-coenzyme M reductase. The second pathway is also mediated by anaerobic methane oxidizers and sulfate-reducing bacteria, wherein the archaeal members catalyze both methane oxidation and sulfate reduction and zero-valent sulfur is a key intermediate. The third AOM mechanism is a nitrite-dependent, intra-aerobic pathway described for the denitrifying bacterium, ‘Candidatus Methylomirabilis oxyfera.’ It is hypothesized that AOM proceeds via reduction of nitrite to nitric oxide, followed by the conversion of two nitric oxide molecules to dinitrogen and molecular oxygen. The latter can be used to functionalize the methane via a particulate methane monooxygenase. With respect to non-methane alkanes, there also appears to be novel mechanisms of activation. The most well-described pathway is the addition of non-methane alkanes across the double bond of fumarate to form alkyl-substituted succinates via the putative glycyl radical enzyme, alkylsuccinate synthase (also known as methylalkylsuccinate synthase. Other proposed mechanisms include anaerobic hydroxylation via ethylbenzene dehydrogenase-like enzymes and an ‘intra-aerobic’ denitrification pathway similar to that described for ‘M. oxyfera.’

  10. Anaerobic digestion of solid material

    DEFF Research Database (Denmark)

    Vavilin, V.A.; Lokshina, L.Y.; Flotats, X.;

    2007-01-01

    A new multidimensional (3 and 2D) anaerobic digestion model for cylindrical reactor with non-uniform influent concentration distributions was developed to study the way in which mixing intensity affects the efficiency of continuous-flow anaerobic digestion. Batch experiments reported and simulated...... earlier by Vavilin and Angelidaki (2005) were used to modernize a kinetic scheme and to obtain the corresponding kinetic coefficients. In the new models, hydrolytic microorganisms were included using Contois kinetics for the hydrolysis/acidogenesis degradation of municipal solid waste (MSW). Monod...... kinetics was applied for description of methanogenesis. Both hydrolytic and methanogenic microorganisms were assumed to be inhibited by high volatile fatty acids (VFA) concentration. According to the new distributed models, the mixing level reduction expressed by increasing dimensionless Peclet number may...

  11. Anaerobic procedures of wastewater treatment

    OpenAIRE

    Zupančič, Tadeja

    2013-01-01

    Highly polluted wastewater is formed in dairies, pig farms and slaughterhouses. Before released into watercourses, wastewater should be properly processed with different treatment procedures in wastewater treatment plants. The thesis deals with the descriptions of mechanical, physical and chemical, and biological wastewater treatment procedures and the description of the factors which affect the reactions in wastewater treatment plants. I give special emphasis on anaerobic wastewater treatmen...

  12. Purification and some properties of sulfur reductase from the iron-oxidizing bacterium Thiobacillus ferrooxidans NASF-1.

    Science.gov (United States)

    Ng, K Y; Sawada, R; Inoue, S; Kamimura, K; Sugio, T

    2000-01-01

    Thiobacillus ferrooxidans strain NASF-1 grown aerobically in an Fe2+ (3%)-medium produces hydrogen sulfide (H2S) from elemental sulfur under anaerobic conditions with argon gas at pH 7.5. Sulfur reductase, which catalyzes the reduction of elemental sulfur (S0) with NAD(P)H as an electron donor to produce hydrogen sulfide (H2S) under anaerobic conditions, was purified 69-fold after 35-65% ammonium sulfate precipitation and Q-Sepharose FF, Phenyl-Toyopearl 650 ML, and Blue Sepharose FF column chromatography, with a specific activity of 57.6 U (mg protein)(-1). The purified enzyme was quite labile under aerobic conditions, but comparatively stable in the presence of sodium hydrosulfite and under anaerobic conditions, especially under hydrogen gas conditions. The purified enzyme showed both sulfur reductase and hydrogenase activities. Both activities had an optimum pH of 9.0. Sulfur reductase has an apparent molecular weight of 120,000 Da, and is composed of three different subunits (M(r) 54,000 Da (alpha), 36,000 Da (beta), and 35,000 Da (gamma)), as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. This is the first report on the purification of sulfur reductase from a mesophilic and obligate chemolithotrophic iron-oxidizing bacterium. PMID:16232842

  13. Anaerobic digestion of aliphatic polyesters.

    Science.gov (United States)

    Šmejkalová, Pavla; Kužníková, Veronika; Merna, Jan; Hermanová, Soňa

    2016-01-01

    Anaerobic processes for the treatment of plastic materials waste represent versatile and effective approach in environmental protection and solid waste management. In this work, anaerobic biodegradability of model aliphatic polyesters, poly(L-lactic acid) (PLA), and poly(ɛ-caprolactone) (PCL), in the form of powder and melt-pressed films with varying molar mass, was studied. Biogas production was explored in batch laboratory trials at 55 ± 1°C under a nitrogen atmosphere. The inoculum used was thermophilic digested sludge (total solids concentration of 2.9%) from operating digesters at the Central Waste Water Treatment Plant in Prague, Czech Republic. Methanogenic biodegradation of PCLs typically yielded from 54 to 60% of the theoretical biogas yield. The biodegradability of PLAs achieved from 56 to 84% of the theoretical value. High biogas yield (up to 677 mL/g TS) with high methane content (more than 60%), comparable with conventionally processed materials, confirmed the potential of polyester samples for anaerobic treatment in the case of their exploitation in agriculture or as a packaging material in the food industry. PMID:27191559

  14. Research on the Nature of Thermophilic Anaerobic Ethanol Producer Thermo anaerobacter sp DF3 in Petroleum Reservoirs%一株产乙醇嗜热厌氧油藏微生物ThermoanaerobacterspDF3的性质研究

    Institute of Scientific and Technical Information of China (English)

    兰贵红; 邢钰; 曹毅; 乔代蓉; 邹长军; 邓宇; 张辉; 尹小波

    2012-01-01

    [目的]了解油藏微生物ThermoanaerobacterspDF3的生理生化特性,优化木糖产乙醇培养方案。[方法]利用厌氧分离技术从大港油田油层采出液中分离到一株产乙醇厌氧杆菌DF3采用生理生化鉴定与16SrDNA序列的系统发育学分析其系统发育地位,用气相色谱分析其代谢产物。[结果]菌株DF3是一株严格厌氧的嗜热细菌,呈直杆状,G-菌体大小为O.42μm×(1.60~5.20)μm,单生成对或成串生,产顶端芽孢;生长温度为45~78℃(最适65℃),能利用葡萄糖、木糖、果糖、核糖、甘露糖、阿拉伯糖、蔗糖、半乳糖、乳糖、纤维二糖、松三糖、棉子糖、淀粉等作为底物;其16SrRNA与zpseud。ethanolicw相似性为99.7%发酵葡萄糖与木糖的主要产物为乙醇,培养方案优化后其代谢木糖产乙醇终浓度为2.0g/L。[结论]通过试验证明菌株DF3是目前已知菌株中产乙醇活性较强的菌株之一,在65℃时代谢木糖能产生2.0g/L的乙醇目前代谢木糖高产乙醇的菌株均由国外分离获得,菌株DF3的分离获得为我国研究木质纤维素产乙醇提供了优良的出发菌株。%[Objective] The aim was to study the physiological and biochemical char- acteristics of Thermoanaerobacter sp DF3 in petroleum reservoirs and optimize the culture plan of producing ethanol from xylose. [Method] DF3, an anaerobic bacillus producing ethanol, was isolated from produced liquid from oil layer of Dagang oil field with anaerobic isolation technique. The phylogenetic position was analyzed by physiological and biochemical identification and phylogeny of 16S rDNA sequence. The metabolites were analyzed by gas chromatograph. [Result] The strain DF3 was a strict anaerobic thermophilic bacterium, which was straight in rod shape,and gram negative. Besides, it was 0.42 μmx(1.60-5.20) iJm in length. The strains can be soli- tary,in pairs or string and apical spore usually

  15. 嗜热乙醇杆菌中醛/醇脱氢酶的双启动子分析%The Promoter Analysis of the adhE Gene Encoding the Aldehyde/alcohol Dehydrogenase in Thermoanaerobacter ethanolicus

    Institute of Scientific and Technical Information of China (English)

    彭惠; 毛忠贵; 武国干; 邵蔚蓝

    2007-01-01

    克隆了嗜热乙醇杆菌(Thermoanaerobacter ethanolicus)中乙醇代谢的关键酶之一醛/醇脱氢酶(alcohol/acetaldehyde dehydrogenase,AdhE)基因的上游假定启动子序列,并进行了结构分析.结果表明,adhE的上游序列是启动子,能启动报告基因在大肠杆菌中持续表达.首次发现adhE的启动子序列中存在两个独立的启动子(P172和P37)和核糖体结合位点(SD172和SD37),分别都具有完整功能,但其活性均低于完整的启动子序列.由此推测嗜热乙醇杆菌中adhE的表达受这两个启动子协同调控.

  16. Potential for anaerobic conversion of xenobiotics

    DEFF Research Database (Denmark)

    Mogensen, Anders Skibsted; Dolfing, J.; Haagensen, Frank;

    2003-01-01

    This review covers the latest research on the anaerobic biodegradation of aromatic xenobiotic compounds, with emphasis on surfactants, polycyclic aromatic hydrocarbons, phthalate esters, polychlorinated biphenyls, halogenated phenols, and pesticides. The versatility of anaerobic reactor systems...... regarding the treatment of xenobiotics is shown with the focus on the UASB reactor, but the applicability of other reactor designs for treatment of hazardous waste is also included. Bioaugmentation has proved to be a viable technique to enhance a specific activity in anaerobic reactors and recent research...

  17. Anaerobic degradation of aromatic hydrocarbons

    International Nuclear Information System (INIS)

    This paper reports that toluene and m-xylene were rapidly mineralized in a denitrifying laboratory aquifer column operated under continuous flow conditions in the complete absence of molecular oxygen. A bacterium, tentatively identified as a Pseudomonas sp., was isolated from this column. This organism mineralized toluene and m-xylene under pure culture conditions with nitrate or nitrous oxide as the sole electron acceptors. Carbon balance studies using 0.3mM [ring-UL-14C]toluene revealed that more than 50 percent of the radioactivity was evolved as 14CO2

  18. Diffusion of magnetotactic bacterium in rotating magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Cebers, A., E-mail: aceb@tesla.sal.l [Department of Physics, University of Latvia, Zellu 8, Ri-bar ga, LV-1002 (Latvia)

    2011-02-15

    Swimming trajectory of a magnetotactic bacterium in a rotating magnetic field is a circle. Random reversals of the direction of the bacterium motion induces a random walk of the curvature center of the trajectory. In assumption of the distribution of the switching events according to the Poisson process the diffusion coefficient is calculated in dependence on the frequency of the rotating field and the characteristic time between the switching events. It is confirmed by the numerical simulation of the random walk of the bacterium in the rotating magnetic field. - Research highlights: Random switching of the flagella leads to diffusion of a bacterium in the field. Mean square displacement of the curvature center is proportional to time. Diffusion coefficient depends on the period of a rotating field. At zero frequency diffusion coefficient is the same as for a tumbling bacterium.

  19. Enrichment and characterization of an anaerobic cellulolytic microbial consortium SQD-1.1 from mangrove soil.

    Science.gov (United States)

    Gao, Zhao-Ming; Xu, Xun; Ruan, Ling-Wei

    2014-01-01

    Enrichment of microbial consortia provides an approach to simulate and investigate microbial communities in natural environments. In this study, a cellulolytic microbial consortium SQD-1.1 was enriched from mangrove soil of Qinglan port (Hainan, China) by 27 times continuous subcultivation under anaerobic static conditions. The consortium could completely degrade 0.2% (w/v) filter paper within 3 days and utilized it as the sole carbon source. PCR-denaturing gradient gel electrophoresis analysis revealed a stable microbial community structure in the incubation process of 10 days and in the procedure of subcultivation. Twenty-four operational taxonomic units belonging to seven phyla were obtained from the full-length 16S rRNA gene library. Five clones, closest related to the genera Alkaliflexus, Clostridium, Alistipes, Spirochaeta, and Trichococcus, were the predominant ones. Among them, M117, phylogeneticly showing high similarity (16S rRNA gene identity, 95.3%) with the cellulolytic anaerobic bacterium Clostridium straminisolvens CSK1(T), was the potential key cellulolytic bacterium. Using the plate cultivation method, 12 strains, including one potential new species and four potential new species of new genera, were isolated. The strain P2, corresponding to the most frequently detected clone (M05) in the 16S rRNA gene library, showed both CMCase and xylanase activity and may be another important cellulolytic bacterium. The findings of cellulase activity in cell pellet and cohesion and dockerin domains in metagenome data further suggested the potential of utilization of cellulosomes by the consortium to degrade cellulose. Consortium SQD-1.1 provides a candidate for investigating the mechanism of cellulose degradation under anoxic conditions in natural environments. PMID:23529681

  20. Molecular ecology of anaerobic reactor systems

    DEFF Research Database (Denmark)

    Hofman-Bang, H. Jacob Peider; Zheng, D.; Westermann, Peter;

    2003-01-01

    Anaerobic reactor systems are essential for the treatment of solid and liquid wastes and constitute a core facility in many waste treatment plants. Although much is known about the basic metabolism in different types of anaerobic reactors, little is known about the microbes responsible...... to the abundance of each microbe in anaerobic reactor systems by rRNA probing. This chapter focuses on various molecular techniques employed and problems encountered when elucidating the microbial ecology of anaerobic reactor systems. Methods such as quantitative dot blot/fluorescence in-situ probing using various...

  1. Fluctuation-Enhanced Sensing of Bacterium Odors

    CERN Document Server

    Chang, Hung-Chih; King, Maria D; Kwan, Chiman

    2009-01-01

    The goal of this paper is to explore the possibility to detect and identify bacteria by sensing their odor via fluctuation-enhanced sensing with commercial Taguchi sensors. The fluctuations of the electrical resistance during exposure to different bacterial odors, Escherichia coli and anthrax-surrogate Bacillus subtilis, have been measured and analyzed. In the present study, the simplest method, the measurement and analysis of power density spectra was used. The sensors were run in the normal heated and the sampling-and-hold working modes, respectively. The results indicate that Taguchi sensors used in these fluctuation-enhanced modes are effective tools of bacterium detection and identification even when they are utilizing only the power density spectrum of the stochastic sensor signal.

  2. The chemical formula of a magnetotactic bacterium.

    Science.gov (United States)

    Naresh, Mohit; Das, Sayoni; Mishra, Prashant; Mittal, Aditya

    2012-05-01

    Elucidation of the chemical logic of life is one of the grand challenges in biology, and essential to the progress of the upcoming field of synthetic biology. Treatment of microbial cells explicitly as a "chemical" species in controlled reaction (growth) environments has allowed fascinating discoveries of elemental formulae of a few species that have guided the modern views on compositions of a living cell. Application of mass and energy balances on living cells has proved to be useful in modeling of bioengineering systems, particularly in deriving optimized media compositions for growing microorganisms to maximize yields of desired bio-derived products by regulating intra-cellular metabolic networks. In this work, application of elemental mass balance during growth of Magnetospirillum gryphiswaldense in bioreactors has resulted in the discovery of the chemical formula of the magnetotactic bacterium. By developing a stoichiometric equation characterizing the formation of a magnetotactic bacterial cell, coupled with rigorous experimental measurements and robust calculations, we report the elemental formula of M. gryphiswaldense cell as CH(2.06)O(0.13)N(0.28)Fe(1.74×10(-3)). Remarkably, we find that iron metabolism during growth of this magnetotactic bacterium is much more correlated individually with carbon and nitrogen, compared to carbon and nitrogen with each other, indicating that iron serves more as a nutrient during bacterial growth rather than just a mineral. Magnetotactic bacteria have not only invoked some interest in the field of astrobiology for the last two decades, but are also prokaryotes having the unique ability of synthesizing membrane bound intracellular organelles. Our findings on these unique prokaryotes are a strong addition to the limited repertoire, of elemental compositions of living cells, aimed at exploring the chemical logic of life.

  3. Anaerobic digestion of coffee waste

    OpenAIRE

    L. Neves; Ribeiro, R.; Oliveira, Rosário; Alves, M. M.

    2005-01-01

    The anaerobic co-digestion of five different by-products from instant coffee substitutes production was studied in mesophilic conditions. The co-substrate was the excess of sewage sludge from the wastewater treatment plant located in the same coffee factory. Four of the tested wastes produced methane in the range of 0.24-0.28 m³CH4(STP)/kgVSinitial . Reduction of 50-73% in total solids and 75-80% in volatile solids were obtained and the hydrolysis rate constants were in the ran...

  4. Anaerobic degradation of tetrachloroethylene; Anaerober Abbau von Tetrachlorethylen

    Energy Technology Data Exchange (ETDEWEB)

    Diekert, G. [Stuttgart Univ. (Germany). Inst. fuer Mikrobiologie; Scholz-Muramatsu, H. [Stuttgart Univ. (Germany). Inst. fuer Siedlungswasserbau

    1996-12-31

    Dehalospirillum multivorans, a tetrachloroethylene-dechlorinating bacterium, was isolated in activated sludge. This organism is able to grow on a defined medium with hydrogen and tetrachloroethylene (PCE) as its only energy source. The organism was characterised and the physiology of dechlorination was studied. In this process PCE is dechlorinated to cis-1,2-dichloroethene (DCE) via trichloroethene (TCE). A fluidized-bed reactor which reduces PCE to DCE at a high rate (15 nmol/min/mg of protein at 5 {mu}M PCE) was inoculated with the bacterium. Meanwhile a reactor inoculated with D. multivorans and a fully dechlorinating mixed culture has become available which catalyses the complete dechlorination of PCE to ethene at just as high rates. Tetrachloroethene dehalogenase was purified from D. multivorans (unpublished results) and characterised. (orig./SR) [Deutsch] Aus Belebtschlamm wurde ein Tetrachlorethen-dechlorierendes Bakterium, Dehalospirillum multivorans, isoliert. Der Organismus waechst auf definiertem Medium mit Wasserstoff und Tetrachlorethen (PCE) als einziger Energiequelle. Der Organismus wurde charakterisiert und die Physiologie der Dechlorierung wurde untersucht. PCE wird dabei ueber Trichlorethen (TCE) bis zum cis-1,2-Dichlorethen (DCE) dechloriert. Mit diesem Bakterium wurde ein Wirbelschichtreaktor inokuliert, der mit hohen Raten (15 nmol/min/mg Protein bei 5 {mu}M PCE) PCE zu DCE reduziert. Inzwischen steht ein Reaktor zur Verfuegung, der mit D. multivorans und einer voellig dechlorierenden Mischkultur inokuliert wurde und der mit ebenso hohen Raten eine vollstaendige Dechlorierung von PCE bis zum Ethen katalysiert. Aus D. multivorans wurde die Tetrachlorethen-Dehalogenase gereinigt (unveroeffentlichte Ergebnisse) und charakterisiert. (orig./SR)

  5. Instrumentation in anaerobic treatment - research and practice

    NARCIS (Netherlands)

    Spanjers, H.; Lier, van J.B.

    2006-01-01

    High rate anaerobic treatment reactors are able to uncouple solids and liquid retention time, resulting in high biomass concentrations. Principal advantages of anaerobic treatment include: energy efficiency, low biomass yield, low nutrient requirement and high volumetric organic loadings. In order t

  6. Carbon monoxide conversion by anaerobic bioreactor sludges

    NARCIS (Netherlands)

    Sipma, J.; Stams, A.J.M.; Lens, P.N.L.; Lettinga, G.

    2003-01-01

    Seven different anaerobic sludges from wastewater treatment reactors were screened for their ability to convert carbon monoxide (CO) at 30 and 55degreesC
    Seven different anaerobic sludges from wastewater treatment reactors were screened for their ability to convert carbon monoxide (CO) at 30 and

  7. Anaerobic critical velocity in four swimming techniques.

    Science.gov (United States)

    Neiva, H P; Fernandes, R J; Vilas-Boas, J P

    2011-03-01

    The aim of this study was to assess critical velocity in order to control and evaluate anaerobic swimming training. 51 highly trained male swimmers performed maximal 15, 25, 37.5 and 50 m in the 4 swimming techniques to determine critical velocity from the distance-time relationship. Anaerobic critical velocity was compared with 100 m swimming performance and corresponding partials. Complementarily, 9 swimmers performed a 6×50 m (4 min interval) training series at front crawl individual anaerobic critical velocity, capillary blood lactate concentrations being assessed after each repetition. The mean±SD values of anaerobic critical velocity and its relationship with the 100 m event were: 1.61±0.07 (r=0.60, p=0.037), 1.53±0.05 (r=0.81, p=0.015), 1.33±0.05 (r=0.83, p=0.002), and 1.75±0.05 (r=0.74, p=0.001), for butterfly, backstroke, breaststroke and front crawl, respectively. However, differences between anaerobic critical velocity and performance were observed (with exception of the second half of the 100 m swimming events in breaststroke and butterfly). Lactate concentration values at the end of the series were 14.52±1.06 mmol.l (-1), which suggests that it was indeed an anaerobic training set. In this sense, anaerobic critical velocity can be used to prescribe anaerobic training intensities.

  8. 21 CFR 866.2120 - Anaerobic chamber.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Anaerobic chamber. 866.2120 Section 866.2120 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2120 Anaerobic chamber....

  9. Prospects of Anaerobic Digestion Technology in China

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    As the world's largest developing country, China must face the problem of managing municipal solid waste, and the challenge of organic waste disposal is even more serious. Considering the characteristics of traditional waste disposal technologies and the subsequent secondary pollution, anaerobic digestion has various advantages such as reduction in the land needed for disposal and preservation of environmental quality. In light of the energy crisis, this paper focuses on the potential production of biogas from biowaste through anaerobic digestion processes, the problems incurred by the waste collection system, and the efficiency of the anaerobic digestion process. Use of biogas in a combined heat and power cogeneration system is also discussed. Finally, the advantages of anaerobic digestion technology for the Chinese market are summarized. The anaerobic digestion is suggested to be a promising treating technology for the organic wastes in China.

  10. Anaerobic biorefinery: Current status, challenges, and opportunities.

    Science.gov (United States)

    Sawatdeenarunat, Chayanon; Nguyen, Duc; Surendra, K C; Shrestha, Shilva; Rajendran, Karthik; Oechsner, Hans; Xie, Li; Khanal, Samir Kumar

    2016-09-01

    Anaerobic digestion (AD) has been in use for many decades. To date, it has been primarily aimed at treating organic wastes, mainly manures and wastewater sludge, and industrial wastewaters. However, with the current advancements, a more open mind is required to look beyond these somewhat restricted original applications of AD. Biorefineries are such concepts, where multiple products including chemicals, fuels, polymers etc. are produced from organic feedstocks. The anaerobic biorefinery concept is now gaining increased attention, utilizing AD as the final disposal step. This review aims at evaluating the potential significance of anaerobic biorefineries, including types of feedstocks, uses for the produced energy, as well as sustainable applications of the generated residual digestate. A comprehensive analysis of various types of anaerobic biorefineries has been developed, including both large-scale and household level applications. Finally, future directives are highlighted showing how anaerobic biorefinery concept could impact the bioeconomy in the near future. PMID:27005786

  11. Final Report: Molecular mechanisms and kinetics of microbial anaerobic nitrate-dependent U(IV) and Fe(II) oxidation

    Energy Technology Data Exchange (ETDEWEB)

    O' Day, Peggy A. [Univ. of California, Merced, CA (United States); Asta, Maria P. [Univ. of California, Merced, CA (United States); Kanematsu, Masakazu [Univ. of California, Merced, CA (United States); Beller, Harry [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Zhou, Peng [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Steefel, Carl [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-02-27

    In this project, we combined molecular genetic, spectroscopic, and microscopic techniques with kinetic and reactive transport studies to describe and quantify biotic and abiotic mechanisms underlying anaerobic, nitrate-dependent U(IV) and Fe(II) oxidation, which influences the long-term efficacy of in situ reductive immobilization of uranium at DOE sites. In these studies, Thiobacillus denitrificans, an autotrophic bacterium that catalyzes anaerobic U(IV) and Fe(II) oxidation, was used to examine coupled oxidation-reduction processes under either biotic (enzymatic) or abiotic conditions in batch and column experiments with biogenically produced UIVO2(s). Synthesis and quantitative analysis of coupled chemical and transport processes were done with the reactive transport modeling code Crunchflow. Research focused on identifying the primary redox proteins that catalyze metal oxidation, environmental factors that influence protein expression, and molecular-scale geochemical factors that control the rates of biotic and abiotic oxidation.

  12. Production of volatile derivatives of metal(loid)s by microflora involved in anaerobic digestion of sewage sludge.

    Science.gov (United States)

    Michalke, K; Wickenheiser, E B; Mehring, M; Hirner, A V; Hensel, R

    2000-07-01

    Gases released from anaerobic wastewater treatment facilities contain considerable amounts of volatile methyl and hydride derivatives of metals and metalloids, such as arsine (AsH(3)), monomethylarsine, dimethylarsine, trimethylarsine, trimethylbismuth (TMBi), elemental mercury (Hg(0)), trimethylstibine, dimethyltellurium, and tetramethyltin. Most of these compounds could be shown to be produced by pure cultures of microorganisms which are representatives of the anaerobic sewage sludge microflora, i.e., methanogenic archaea (Methanobacterium formicicum, Methanosarcina barkeri, Methanobacterium thermoautotrophicum), sulfate-reducing bacteria (Desulfovibrio vulgaris, D. gigas), and a peptolytic bacterium (Clostridium collagenovorans). Additionally, dimethylselenium and dimethyldiselenium could be detected in the headspace of most of the pure cultures. This is the first report of the production of TMBi, stibine, monomethylstibine, and dimethylstibine by a pure culture of M. formicicum. PMID:10877769

  13. Isolation and characterization of a Klebsiella oxytoca strain for simultaneous azo-dye anaerobic reduction and bio-hydrogen production.

    Science.gov (United States)

    Yu, Lei; Li, Wen-Wei; Lam, Michael Hon-Wah; Yu, Han-Qing; Wu, Chao

    2012-07-01

    A facultative anaerobic bacteria strain GS-4-08, isolated from an anaerobic sequence batch reactor for synthetic dye wastewater treatment, was investigated for azo-dye decolorization. This bacterium was identified as a member of Klebsiella oxytoca based on Gram staining, morphology characterization and 16S rRNA gene analysis. It exhibited a good capacity of simultaneous decolorization and hydrogen production in the presence of electron donor. The hydrogen production was less affected even at a high Methyl Orange (MO) concentration of 0.5 mM, indicating a superior tolerability of this strain to MO. This efficient bio-hydrogen production from electron donor can not only avoid bacterial inhibition due to accumulation of volatile fatty acids during MO decolorization, but also can recover considerable energy from dye wastewater.

  14. Experimental evolution of aging in a bacterium

    Directory of Open Access Journals (Sweden)

    Stearns Stephen C

    2007-07-01

    Full Text Available Abstract Background Aging refers to a decline in reproduction and survival with increasing age. According to evolutionary theory, aging evolves because selection late in life is weak and mutations exist whose deleterious effects manifest only late in life. Whether the assumptions behind this theory are fulfilled in all organisms, and whether all organisms age, has not been clear. We tested the generality of this theory by experimental evolution with Caulobacter crescentus, a bacterium whose asymmetric division allows mother and daughter to be distinguished. Results We evolved three populations for 2000 generations in the laboratory under conditions where selection was strong early in life, but very weak later in life. All populations evolved faster growth rates, mostly by decreasing the age at first division. Evolutionary changes in aging were inconsistent. The predominant response was the unexpected evolution of slower aging, revealing the limits of theoretical predictions if mutations have unanticipated phenotypic effects. However, we also observed the spread of a mutation causing earlier aging of mothers whose negative effect was reset in the daughters. Conclusion Our results confirm that late-acting deleterious mutations do occur in bacteria and that they can invade populations when selection late in life is weak. They suggest that very few organisms – perhaps none- can avoid the accumulation of such mutations over evolutionary time, and thus that aging is probably a fundamental property of all cellular organisms.

  15. Bacillus nitroreducens sp. nov., a humus-reducing bacterium isolated from a compost.

    Science.gov (United States)

    Guo, Junhui; Wang, Yue Qiang; Yang, Guiqin; Chen, Yunqi; Zhou, Shungui; Zhao, Yong; Zhuang, Li

    2016-05-01

    A Gram-staining-positive, facultative anaerobic, motile and rod-shaped bacterium, designated GSS08(T), was isolated from a windrow compost pile and characterized by means of a polyphasic approach. Growth occurred with 0-4 % (w/v) NaCl (optimum 1 %), at pH 6.5-9.5 (optimum pH 7.5) and at 20-45 °C (optimum 37 °C). Anaerobic growth occurred with anthraquinone-2,6-disulphonate, fumarate and NO3 (-) as electron acceptor. The main respiratory quinone was MK-7. The predominant polar lipids were diphosphatidylglycerol and phosphatidylethanolamine. The major fatty acids (>5 %) were iso-C15:0 (43.1 %), anteiso-C15:0 (27.4 %) and iso-C16:0 (8.3 %). The DNA G + C content was 39.6 mol%. The phylogenetic analysis based on 16S rRNA gene sequences revealed that strain GSS08(T) formed a phyletic lineage with the type strain of Bacillus humi DSM 16318(T) with a high sequence similarity of 97.5 %, but it displayed low sequence similarity with other valid species in the genus Bacillus (<96.0 %). The DNA-DNA relatedness between strains GSS08(T) and B. humi DSM 16318(T) was 50.8 %. The results of phenotypic, chemotaxonomic and genotypic analyses clearly indicated that strain GSS08(T) represents a novel species, for which the name Bacillus nitroreducens sp. nov. is proposed. The type strain is GSS08(T) (=KCTC 33699(T) = MCCC 1K01091(T)).

  16. Genome Sequence of the Soil Bacterium Janthinobacterium sp. KBS0711

    OpenAIRE

    Shoemaker, William R.; Muscarella, Mario E.; Lennon, Jay T

    2015-01-01

    We present a draft genome of Janthinobacterium sp. KBS0711 that was isolated from agricultural soil. The genome provides insight into the ecological strategies of this bacterium in free-living and host-associated environments.

  17. Trichloroethylene Biodegradation by a Methane-Oxidizing Bacterium

    OpenAIRE

    Little, C. Deane; Palumbo, Anthony V; Herbes, Stephen E.; Lidstrom, Mary E.; Tyndall, Richard L.; Gilmer, Penny J.

    1988-01-01

    Trichloroethylene (TCE), a common groundwater contaminant, is a suspected carcinogen that is highly resistant to aerobic biodegradation. An aerobic, methane-oxidizing bacterium was isolated that degrades TCE in pure culture at concentrations commonly observed in contaminated groundwater. Strain 46-1, a type I methanotrophic bacterium, degraded TCE if grown on methane or methanol, producing CO2 and water-soluble products. Gas chromatography and 14C radiotracer techniques were used to determine...

  18. Effect of music on anaerobic exercise performance.

    Science.gov (United States)

    Atan, T

    2013-03-01

    For years, mostly the effects of music on cardiorespiratory exercise performance have been studied, but a few studies have examined the effect of music on anaerobic exercise. The purpose of this study was to assess the effect of listening to music and its rhythm on anaerobic exercise: on power output, heart rate and the concentration of blood lactate. 28 male subjects were required to visit the laboratory on 6 occasions, each separated by 48 hours. Firstly, each subject performed the Running-based Anaerobic Sprint Test (RAST) under 3 conditions on separate days: while listening to "slow rhythm music", "fast rhythm music" or "no music". 48 hours after the subjects completed RAST under 3 conditions, Wingate Anaerobic Power (WAN) tests were performed under 3 music conditions. The order of the 3 conditions (slow music, fast music and no music) was selected randomly to prevent an order effect. Results showed no significant differences between 3 conditions in anaerobic power assessments, heart rate or blood lactate (p > 0.05). On the basis of these results it can be said that music cannot improve anaerobic performance. The type of music had no impact on power outputs during RAST and WAN exercise. As a conclusion, listening to music and its rhythm cannot enhance anaerobic performance and cannot change the physiological response to supramaximal exercise. PMID:24744463

  19. Interactively interfacial reaction of iron-reducing bacterium and goethite for reductive dechlorination of chlorinated organic compounds

    Institute of Scientific and Technical Information of China (English)

    LI XiaoMin; LI YongTao; LI FangBai; ZHOU ShunGui; FENG ChunHua; LIU TongXu

    2009-01-01

    The interactively interfacial reactions between the iron-reducing bacterium (Shewanella decolorationis,S12) and iron oxide (α-FeOOH) were investigated to determine reductive dechlorination transformation of chlorinated organic compounds (chloroform and pentachlorophenol).The results showed that the interactive system of S12+ α-FeOOH exhibited relatively high dechlorination rate.By comparison,the S12 biotic system alone had no obvious dechlorination,and the α-FeOOH abiotic system showed low dechlorination rate.The enhanced dechlorination of chloroform and pentachlorophenol in the interactive system of S12+α-FeOOH was derived from the promoted generation of adsorbed Fe(Ⅱ) by S12.A decrease in redox potential of the Fe (Ⅲ)/Fe (Ⅱ) couple in the interactive reaction system was determined by cyclic voltammetry.Our results will give new insight into interactively interfacial reaction between iron-reducing bacterium and iron oxides for degradation of chlorinated organic compounds under anaerobic condition.

  20. Deferribacter thermophilus gen. nov., sp. nov., a novel thermophilic manganese- and iron-reducing bacterium isolated from a petroleum reservoir.

    Science.gov (United States)

    Greene, A C; Patel, B K; Sheehy, A J

    1997-04-01

    A thermophilic anaerobic bacterium, designated strain BMAT (T = type strain), was isolated from the production water of Beatrice oil field in the North Sea (United Kingdom). The cells were straight to bent rods (1 to 5 by 0.3 to 0.5 microns) which stained gram negative. Strain BMAT obtained energy from the reduction of manganese (IV), iron(III), and nitrate in the presence of yeast extract, peptone, Casamino Acids, tryptone, hydrogen, malate, acetate, citrate, pyruvate, lactate, succinate, and valerate. The isolate grew optimally at 60 degrees C (temperature range for growth, 50 to 65 degrees C) and in the presence of 2% (wt/vol) NaCl (NaCl range for growth, 0 to 5% [wt/vol]). The DNA base composition was 34 mol% G + C. Phylogenetic analyses of the 16S rRNA gene indicated that strain BMAT is a member of the domain Bacteria. The closest known bacterium is the moderate thermophile Flexistipes sinusarabici (similarity value, 88%). Strain BMAT possesses phenotypic and phylogenetic traits that do not allow its classification as a member of any previously described genus; therefore, we propose that this isolate should be described as a member of a novel species of a new genus, Deferribacter thermophilus gen. nov., sp. nov.

  1. Isolation of a Sulfur-oxidizing Bacterium That can Grow under Alkaline pH, from Corroded Concrete.

    Science.gov (United States)

    Maeda, T; Negishi, A; Oshima, Y; Nogami, Y; Kamimura, K; Sugio, T

    1998-01-01

    To study the early stages of concrete corrosion by bacteria, sulfur-oxidizing bacterium strain RO-1, which grows in an alkaline thiosulfate medium (pH 10.0) was isolated from corroded concreate and characterized. Strain RO-1 was a Gram negative, rod-shaped bacterium (0.5-0.6×0.9-1.5 μm). The mean G+C content of the DNA of strain RO-1 was 65.0 mol%. Optimum pH and temperature for growth were 8.0. and 30-37°C, respectively. When grown in thiosulfate medium with pH 10.0, growth rate of the strain was 48% of that observed at the optimum pH for growth. Strain RO-1 used sulfide, thiosulfate, and glucose, but not elemental sulfur or tetrathionate, as a sole energy source. Strain RO-1 grew under anaerobic conditions in pepton-NO3 (-) medium containing sodium nitrate as an electron acceptor, and had enzyme activities that oxidized sulfide, elemental sulfur, thiosulfate, sulfite, and glucose, but not tetrathionate. The bacterium had an activity to assimilate (14)CO2 into the cells when thiosulfate was used as an energy source. These results suggest that strain RO-1 is Thiobacillus versutus. Strain RO-1 exuded Ca(2+) from concrete blocks added to thiosulfate medium with pH 9.0 and the pH of the medium decreased from 9.0 to 5.5 after 22 days of cultivation. In contrast, Thiobacillus thiooxidans strain NB1-3 could not exude Ca(2+) in the same thiosulfate medium, suggesting that strain RO-1, but not T. thiooxidans NB1-3, is involved in the early stage of concrete corrosion because concrete structures just after construction contain calcium hydroxide and have a pH of 12-13. PMID:27388643

  2. Isolation of a Sulfur-oxidizing Bacterium That can Grow under Alkaline pH, from Corroded Concrete.

    Science.gov (United States)

    Maeda, T; Negishi, A; Oshima, Y; Nogami, Y; Kamimura, K; Sugio, T

    1998-01-01

    To study the early stages of concrete corrosion by bacteria, sulfur-oxidizing bacterium strain RO-1, which grows in an alkaline thiosulfate medium (pH 10.0) was isolated from corroded concreate and characterized. Strain RO-1 was a Gram negative, rod-shaped bacterium (0.5-0.6×0.9-1.5 μm). The mean G+C content of the DNA of strain RO-1 was 65.0 mol%. Optimum pH and temperature for growth were 8.0. and 30-37°C, respectively. When grown in thiosulfate medium with pH 10.0, growth rate of the strain was 48% of that observed at the optimum pH for growth. Strain RO-1 used sulfide, thiosulfate, and glucose, but not elemental sulfur or tetrathionate, as a sole energy source. Strain RO-1 grew under anaerobic conditions in pepton-NO3 (-) medium containing sodium nitrate as an electron acceptor, and had enzyme activities that oxidized sulfide, elemental sulfur, thiosulfate, sulfite, and glucose, but not tetrathionate. The bacterium had an activity to assimilate (14)CO2 into the cells when thiosulfate was used as an energy source. These results suggest that strain RO-1 is Thiobacillus versutus. Strain RO-1 exuded Ca(2+) from concrete blocks added to thiosulfate medium with pH 9.0 and the pH of the medium decreased from 9.0 to 5.5 after 22 days of cultivation. In contrast, Thiobacillus thiooxidans strain NB1-3 could not exude Ca(2+) in the same thiosulfate medium, suggesting that strain RO-1, but not T. thiooxidans NB1-3, is involved in the early stage of concrete corrosion because concrete structures just after construction contain calcium hydroxide and have a pH of 12-13.

  3. Antimicrobial resistance and susceptibility testing of anaerobic bacteria.

    Science.gov (United States)

    Schuetz, Audrey N

    2014-09-01

    Infections due to anaerobic bacteria can be severe and life-threatening. Susceptibility testing of anaerobes is not frequently performed in laboratories, but such testing is important to direct appropriate therapy. Anaerobic resistance is increasing globally, and resistance trends vary by geographic region. An overview of a variety of susceptibility testing methods for anaerobes is provided, and the advantages and disadvantages of each method are reviewed. Specific clinical situations warranting anaerobic susceptibility testing are discussed.

  4. Characterizing the Anaerobic Response of Chlamydomonas reinhardtii by Quantitative Proteomics

    OpenAIRE

    Terashima, Mia; Specht, Michael; Naumann, Bianca; Hippler, Michael

    2010-01-01

    The versatile metabolism of the green alga Chlamydomonas reinhardtii is reflected in its complex response to anaerobic conditions. The anaerobic response is also remarkable in the context of renewable energy because C. reinhardtii is able to produce hydrogen under anaerobic conditions. To identify proteins involved during anaerobic acclimation as well as to localize proteins and pathways to the powerhouses of the cell, chloroplasts and mitochondria from C. reinhardtii in aerobic and anaerobic...

  5. Anaerobe Tolerance to Oxygen and the Potentials of Anaerobic and Aerobic Cocultures for Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    M.T. Kato

    1997-12-01

    Full Text Available The anaerobic treatment processes are considered to be well-established methods for the elimination of easily biodegradable organic matter from wastewaters. Some difficulties concerning certain wastewaters are related to the possible presence of dissolved oxygen. The common belief is that anaerobes are oxygen intolerant. Therefore, the common practice is to use sequencing anaerobic and aerobic steps in separate tanks. Enhanced treatment by polishing off the residual biodegradable oxygen demand from effluents of anaerobic reactors, or the biodegradation of recalcitrant wastewater pollutants, usually requires sequenced anaerobic and aerobic bacteria activities. However, the combined activity of both bacteria can also be obtained in a single reactor. Previous experiments with either pure or mixed cultures showed that anaerobes can tolerate oxygen to a certain extent. The oxygen toxicity to methanogens in anaerobic sludges was quantified in batch experiments, as well as in anaerobic reactors. The results showed that methanogens have a high tolerance to oxygen. In practice, it was confirmed that dissolved oxygen does not constitute any detrimental effect on reactor treatment performance. This means that the coexistence of anaerobic and aerobic bacteria in one single reactor is feasible and increases the potentials of new applications in wastewater treatment

  6. Multivariate monitoring of anaerobic co-digestion

    DEFF Research Database (Denmark)

    Madsen, Michael; Holm-Nielsen, Jens Bo

    Anaerobic digestion processes for production of renewable energy in the form of biogas, and in the future hydrogen, are becoming increasingly important worldwide. Sustainable solutions for renewable energy production systems are given high political priority, amongst other things due to global...... warming and environmental concerns. Anaerobic digestion applied in agriculture can simultaneously convert heterogeneous biomasses and wastes from the primary agricultural sector and from the bio processing industries, for instance food processing, pharma, and biofuel production, into valuable organic...... distinct scales. The aim was to investigate, whether changes in the chemical environment in the anaerobic digesters could be monitored by NIRS enabling biogas plant operators to respond to the process dynamics. Results show that several key intermediates suitable for control of the anaerobic digestion...

  7. Exocellular electron transfer in anaerobic microbial communities

    NARCIS (Netherlands)

    Stams, A.J.M.; Bok, de F.A.M.; Plugge, C.M.; Eekert, van M.H.A.; Dolfing, J.; Schraa, G.

    2006-01-01

    Exocellular electron transfer plays an important role in anaerobic microbial communities that degrade organic matter. Interspecies hydrogen transfer between microorganisms is the driving force for complete biodegradation in methanogenic environments. Many organic compounds are degraded by obligatory

  8. An anaerobic mitochondrion that produces hydrogen

    NARCIS (Netherlands)

    Boxma, Brigitte; Graaf, Rob M. de; Staay, Georg W.M. van der; Alen, Theo A. van; Ricard, Guenola; Gabaldón, Toni; Hoek, Angela H.A.M. van; Moon-van der Staay, Seung Yeo; Koopman, Werner J.H.; Hellemond, Jaap J. van; Tielens, Aloysius G.M.; Friedrich, Thorsten; Veenhuis, Marten; Huynen, Martijn A.; Hackstein, Johannes H.P.

    2005-01-01

    Hydrogenosomes are organelles that produce ATP and hydrogen, and are found in various unrelated eukaryotes, such as anaerobic flagellates, chytridiomycete fungi and ciliates. Although all of these organelles generate hydrogen, the hydrogenosomes from these organisms are structurally and metabolicall

  9. [Isolation and characterization of new species hydrogen producing bacterium Ethanologenbacterium sp. strain X-1 and its capability of hydrogen production].

    Science.gov (United States)

    Xing, De-Feng; Ren, Nan-Qi; Li, Qiu-Bo

    2004-12-01

    To obtain hydrogen-producing bacterium of high efficiency, a strain X-1 of hydrogen-producing bacteria was isolated from the continuous stirred-tank reactor (CSTR) by anaerobic Hungate technique. The Comparative sequence analysis of 16S rDNA showed that homology of strain X-1 with Clostridium cellulose and Acetanaerobacterium elongatum is less than 94%. All sequence alignment of 16S-23S rDNA intergenic spacer regions (ISR) indicated displayed that consensus region is tRNA(Ala), and tRNA(Ile), variable region is not homologous. Morphological, physic-biochemical character, and comparative sequence analysis of 16S rDNA and 16S-23S rDNA ISR indicated that strain X-1 belong to new genus named Ethanologenbacterium gen. nov.. Strain X-1 is facultative anaerobe bacillus; its main fermentative products are acetic acid, ethanol, H2 and CO2. The metabolic character of strain X-1 is typical ethanol type fermentation. Its capability of hydrogen production was measured in the batch culture experiment. X-1's maximum specific hydrogen producing rate is 28.3 mmol H2/( g dry cell x h) at pH 4.0 and 36 degrees C. Result of identify and analysis of hydrogen production ability demonstrated strain X-1 belong to new genus of high hydrogen-producing bacteria.

  10. Mageeibacillus indolicus gen. nov., sp. nov.: a novel bacterium isolated from the female genital tract.

    Science.gov (United States)

    Austin, Michele N; Rabe, Lorna K; Srinivasan, Sujatha; Fredricks, David N; Wiesenfeld, Harold C; Hillier, Sharon L

    2015-04-01

    Three isolates of a bacterium recovered from human endometrium using conventional culture methods were characterized biochemically and subjected to 16S rRNA gene sequencing and phylogenetic analysis. Isolates were non-motile, obligately anaerobic, non-spore forming, asaccharolytic, non-cellulolytic, indole positive, Gram positive rods. Cell wall fatty acid profiling revealed C14:0, C16:0, C18:2 ω6, 9c, C18:1 ω9c and C18:0 to be the major fatty acid composition. The DNA mol % G+C was determined to be 44.2%. 16S rRNA gene sequence analysis revealed only 91% sequence similarity with the closest cultivated bacterial isolate, Saccharofermentans acetigenes. Based on genotypic and phenotypic data, all three isolates are considered to be members of the same species and data suggest it represents a novel genus and species in the order Clostridiales with an association with Clostridium rRNA cluster III within the family Ruminococcaceae. We propose the name, Mageeibacillus indolicus gen. nov., sp. nov. The type strain is BAA-2120(T) and CCUG 59143(T). PMID:25482717

  11. Biohydrogen Production by the Thermophilic Bacterium Caldicellulosiruptor saccharolyticus: Current Status and Perspectives.

    Science.gov (United States)

    Bielen, Abraham A M; Verhaart, Marcel R A; van der Oost, John; Kengen, Servé W M

    2013-01-17

    Caldicellulosiruptor saccharolyticus is one of the most thermophilic cellulolytic organisms known to date. This Gram-positive anaerobic bacterium ferments a broad spectrum of mono-, di- and polysaccharides to mainly acetate, CO2 and hydrogen. With hydrogen yields approaching the theoretical limit for dark fermentation of 4 mol hydrogen per mol hexose, this organism has proven itself to be an excellent candidate for biological hydrogen production. This review provides an overview of the research on C. saccharolyticus with respect to the hydrolytic capability, sugar metabolism, hydrogen formation, mechanisms involved in hydrogen inhibition, and the regulation of the redox and carbon metabolism. Analysis of currently available fermentation data reveal decreased hydrogen yields under non-ideal cultivation conditions, which are mainly associated with the accumulation of hydrogen in the liquid phase. Thermodynamic considerations concerning the reactions involved in hydrogen formation are discussed with respect to the dissolved hydrogen concentration. Novel cultivation data demonstrate the sensitivity of C. saccharolyticus to increased hydrogen levels regarding substrate load and nitrogen limitation. In addition, special attention is given to the rhamnose metabolism, which represents an unusual type of redox balancing. Finally, several approaches are suggested to improve biohydrogen production by C. saccharolyticus.

  12. Biohydrogen Production by the Thermophilic Bacterium Caldicellulosiruptor saccharolyticus: Current Status and Perspectives

    Directory of Open Access Journals (Sweden)

    Servé W. M. Kengen

    2013-01-01

    Full Text Available Caldicellulosiruptor saccharolyticus is one of the most thermophilic cellulolytic organisms known to date. This Gram-positive anaerobic bacterium ferments a broad spectrum of mono-, di- and polysaccharides to mainly acetate, CO2 and hydrogen. With hydrogen yields approaching the theoretical limit for dark fermentation of 4 mol hydrogen per mol hexose, this organism has proven itself to be an excellent candidate for biological hydrogen production. This review provides an overview of the research on C. saccharolyticus with respect to the hydrolytic capability, sugar metabolism, hydrogen formation, mechanisms involved in hydrogen inhibition, and the regulation of the redox and carbon metabolism. Analysis of currently available fermentation data reveal decreased hydrogen yields under non-ideal cultivation conditions, which are mainly associated with the accumulation of hydrogen in the liquid phase. Thermodynamic considerations concerning the reactions involved in hydrogen formation are discussed with respect to the dissolved hydrogen concentration. Novel cultivation data demonstrate the sensitivity of C. saccharolyticus to increased hydrogen levels regarding substrate load and nitrogen limitation. In addition, special attention is given to the rhamnose metabolism, which represents an unusual type of redox balancing. Finally, several approaches are suggested to improve biohydrogen production by C. saccharolyticus.

  13. Identification and characterization of Clostridium paraputrificum M-21, a chitinolytic, mesophilic and hydrogen-producing bacterium.

    Science.gov (United States)

    Evvyernie, D; Yamazaki, S; Morimoto, K; Karita, S; Kimura, T; Sakka, K; Ohmiya, K

    2000-01-01

    A strictly anaerobic, mesophilic and chitinolytic bacterial strain, M-21, was isolated from a soil sample collected from Mie University campus and identified as Clostridium paraputrificum based on morphological and physiological characteristics, and 16S rRNA sequence analysis. C. paraputrificum M-21 utilized chitin and N-acetyl-D-glucosamine (GlcNAc), a constituent monosaccharide of chitin, to produce a large amount of gas along with acetic acid and propionic acid as major fermentation products. Hydrogen and carbon dioxide accounted for 65% and 35% of the gas evolved, respectively. The conditions for 1 l batch culture of C. paraputrificum, including pH of the medium, incubation temperature and agitation speed, were optimized for hydrogen production with GlcNAc as the carbon source. The bacterium grew rapidly on GlcNAc with a doubling time of around 30 min, and produced hydrogen gas with a yield of 1.9 mol H2/mol GlcNAc under the following cultivation conditions: initial medium pH of 6.5, incubation temperature of 45 degrees C, agitation speed of 250 rpm, and working volume of 50% of the fermentor. The dry cell weight harvested from this culture was 2.0 g/l.

  14. Infections Caused by Actinomyces neuii: A Case Series and Review of an Unusual Bacterium

    Directory of Open Access Journals (Sweden)

    Nathan Zelyas

    2016-01-01

    Full Text Available Background. Actinomyces neuii is a Gram-positive bacillus rarely implicated in human infections. However, its occurrence is being increasingly recognized with the use of improved identification systems. Objective. To analyse A. neuii infections in Alberta, Canada, and review the literature regarding this unusual pathogen. Methods. Cases of A. neuii were identified in 2013-2014 in Alberta. Samples were cultured aerobically and anaerobically. A predominant catalase positive Gram-positive coryneform bacillus with no branching was isolated in each case. Testing was initially done with API-CORYNE® (bioMérieux and isolates were sent to the Provincial Laboratory for Public Health for further testing. Isolates’ identities were confirmed by matrix-assisted laser desorption ionization time-of-flight mass spectrometry microbial identification system (MALDI-TOF MS MIS; bioMérieux and/or DNA sequencing. Results. Six cases of A. neuii infection were identified. All patients had soft tissue infections; typically, incision and drainage were done followed by a course of antibiotics. Agents used included cephalexin, ertapenem, ciprofloxacin, and clindamycin. All had favourable outcomes. Conclusions. While A. neuii is infrequently recognized, it can cause a diverse array of infections. Increased use of MALDI-TOF MS MIS is leading to increased detection; thus, understanding the pathogenicity of this bacterium and its typical susceptibility profile will aid clinical decision-making.

  15. Infections Caused by Actinomyces neuii: A Case Series and Review of an Unusual Bacterium.

    Science.gov (United States)

    Zelyas, Nathan; Gee, Susan; Nilsson, Barb; Bennett, Tracy; Rennie, Robert

    2016-01-01

    Background. Actinomyces neuii is a Gram-positive bacillus rarely implicated in human infections. However, its occurrence is being increasingly recognized with the use of improved identification systems. Objective. To analyse A. neuii infections in Alberta, Canada, and review the literature regarding this unusual pathogen. Methods. Cases of A. neuii were identified in 2013-2014 in Alberta. Samples were cultured aerobically and anaerobically. A predominant catalase positive Gram-positive coryneform bacillus with no branching was isolated in each case. Testing was initially done with API-CORYNE® (bioMérieux) and isolates were sent to the Provincial Laboratory for Public Health for further testing. Isolates' identities were confirmed by matrix-assisted laser desorption ionization time-of-flight mass spectrometry microbial identification system (MALDI-TOF MS MIS; bioMérieux) and/or DNA sequencing. Results. Six cases of A. neuii infection were identified. All patients had soft tissue infections; typically, incision and drainage were done followed by a course of antibiotics. Agents used included cephalexin, ertapenem, ciprofloxacin, and clindamycin. All had favourable outcomes. Conclusions. While A. neuii is infrequently recognized, it can cause a diverse array of infections. Increased use of MALDI-TOF MS MIS is leading to increased detection; thus, understanding the pathogenicity of this bacterium and its typical susceptibility profile will aid clinical decision-making. PMID:27366175

  16. Encapsulated in silica: genome, proteome and physiology of the thermophilic bacterium Anoxybacillus flavithermus

    Energy Technology Data Exchange (ETDEWEB)

    Saw, Jimmy H [Los Alamos National Laboratory; Mountain, Bruce W [NEW ZEALAND; Feng, Lu [NANKAI UNIV; Omelchenko, Marina V [NCBI/NLM/NIH; Hou, Shaobin [UNIV OF HAWAII; Saito, Jennifer A [UNIV OF HAWAII; Stott, Matthew B [NEW ZEALAND; Li, Dan [NANKAI UNIV; Zhao, Guang [NANKAI UNIV; Wu, Junli [NANKAI UNIV; Galperin, Michael Y [NCBI/NLM/NIH; Koonin, Eugene V [NCBI/NLM/NIH; Makarova, Kira S [NCBI/NLM/NIH; Wolf, Yuri I [NCBI/NLM/NIH; Rigden, Daniel J [UNIV OF LIVERPOOL; Dunfield, Peter F [UNIV OF CALGARY; Wang, Lei [NANKAI UNIV; Alam, Maqsudul [UNIV OF HAWAII

    2008-01-01

    Gram-positive bacteria of the genus Anoxybacillus have been found in diverse thermophilic habitats, such as geothermal hot springs and manure, and in processed foods such as gelatin and milk powder. Anoxybacillus flavithermus is a facultatively anaerobic bacterium found in super-saturated silica solutions and in opaline silica sinter. The ability of A. flavithermus to grow in super-saturated silica solutions makes it an ideal subject to study the processes of sinter formation, which might be similar to the biomineralization processes that occurred at the dawn of life. We report here the complete genome sequence of A. flavithermus strain WK1, isolated from the waste water drain at the Wairakei geothermal power station in New Zealand. It consists of a single chromosome of 2,846,746 base pairs and is predicted to encode 2,863 proteins. In silico genome analysis identified several enzymes that could be involved in silica adaptation and biofilm formation, and their predicted functions were experimentally validated in vitro. Proteomic analysis confirmed the regulation of biofilm-related proteins and crucial enzymes for the synthesis of long-chain polyamines as constituents of silica nanospheres. Microbial fossils preserved in silica and silica sinters are excellent objects for studying ancient life, a new paleobiological frontier. An integrated analysis of the A. flavithermus genome and proteome provides the first glimpse of metabolic adaptation during silicification and sinter formation. Comparative genome analysis suggests an extensive gene loss in the Anoxybacillus/Geobacillus branch after its divergence from other bacilli.

  17. Comparative Studies of Alternative Anaerobic Digestion Technologies

    OpenAIRE

    Inman, David C.

    2004-01-01

    Washington D.C. Water and Sewage Authority is planning to construct a new anaerobic digestion facility at its Blue Plains WWTP by 2008. The research conducted in this study is to aid the designers of this facility by evaluating alternative digestion technologies. Alternative anaerobic digestion technologies include thermophilic, acid/gas phased, and temperature phased digestion. In order to evaluate the relative merits of each, a year long study evaluated the performance of bench scale dig...

  18. Anaerobic Digestion of Paper Mill Wastewater

    OpenAIRE

    Shreeshivadasan Chelliapan; Siti Baizura Mahat; Md. Fadjil Md. Din; A. Yuzir; Othman, N.

    2012-01-01

    In general, paper mill wastewater contains complex organic substances which could not be treated completely using conventional treatment processes, e.g. aerobic processes. As a result, anaerobic technology is a promising alternative for paper mill wastewater treatment due to its ability to degrade hard organic compounds. In the present study, treatment of paper mill wastewater using a stage anaerobic reactor was investigated. The more specific objectives of this study were to confirm whether ...

  19. Psychrophilic anaerobic treatment of low strength wastewaters.

    OpenAIRE

    Rebac, S.

    1998-01-01

    The main objective of this thesis was to design a high-rate anaerobic system for the treatment low strength wastewaters under psychrophilic conditions.Psychrophilic (3 to 20 °C) anaerobic treatment of low strength synthetic and malting wastewater was investigated using a single and two stage expanded granular sludge bed (EGSB) reactor system. The chemical oxygen demand (COD) removal efficiencies found in the experiments with synthetic wastewater exceeded 90 % in the single stage reactor at im...

  20. EFFECT OF MUSIC ON ANAEROBIC EXERCISE PERFORMANCE

    OpenAIRE

    Atan, T.

    2013-01-01

    For years, mostly the effects of music on cardiorespiratory exercise performance have been studied, but a few studies have examined the effect of music on anaerobic exercise. The purpose of this study was to assess the effect of listening to music and its rhythm on anaerobic exercise: on power output, heart rate and the concentration of blood lactate. 28 male subjects were required to visit the laboratory on 6 occasions, each separated by 48 hours. Firstly, each subject performed the Running-...

  1. Energetics and kinetics of anaerobic aromatic and fatty acid degradation. Progress report, November 1992--November 1993

    Energy Technology Data Exchange (ETDEWEB)

    McInerney, M.J.

    1993-11-12

    The kinetics of benzoate degradation by the anaerobic syntrophic bacterium, Syntrophus buswellii, in coculture with different sulfate reducers was studied with sulfate or nitrate as the electron acceptor. A threshold value for benzoate degradation dependent on the acetate concentration was observed with sulfate, but not nitrate, as the electron acceptor. No threshold was observed in tricultures containing an acetate-using sulfate reducer. The addition of the acetate-using sulfate reducer to cocultures that had degraded benzoate to its threshold value resulted in further degradation of benzoate to levels below the analytical detection limit (ca. 200 nM). These data are consistent with a thermodynamic explanation for the threshold, and exclude the possibility that the threshold was the result of the inhibitory action of the undissociated form of acetate.

  2. SLEEP DEPRIVATION INDUCED ANXIETY AND ANAEROBIC PERFORMANCE

    Directory of Open Access Journals (Sweden)

    Selma Arzu Vardar

    2007-12-01

    Full Text Available The aim of this study was to investigate the effects of sleep deprivation induced anxiety on anaerobic performance. Thirteen volunteer male physical education students completed the Turkish version of State Anxiety Inventory and performed Wingate anaerobic test for three times: (1 following a full-night of habitual sleep (baseline measurements, (2 following 30 hours of sleep deprivation, and (3 following partial-night sleep deprivation. Baseline measurements were performed the day before total sleep deprivation. Measurements following partial sleep deprivation were made 2 weeks later than total sleep deprivation measurements. State anxiety was measured prior to each Wingate test. The mean state anxiety following total sleep deprivation was higher than the baseline measurement (44.9 ± 12.9 vs. 27.6 ± 4.2, respectively, p = 0.02 whereas anaerobic performance parameters remained unchanged. Neither anaerobic parameters nor state anxiety levels were affected by one night partial sleep deprivation. Our results suggest that 30 hours continuous wakefulness may increase anxiety level without impairing anaerobic performance, whereas one night of partial sleep deprivation was ineffective on both state anxiety and anaerobic performance

  3. Ability of a haloalkaliphilic bacterium isolated from Soap Lake, Washington to generate electricity at pH 11.0 and 7% salinity.

    Science.gov (United States)

    Paul, Varun G; Minteer, Shelley D; Treu, Becky L; Mormile, Melanie R

    2014-01-01

    A variety of anaerobic bacteria have been shown to transfer electrons obtained from organic compound oxidation to the surface of electrodes in microbial fuel cells (MFCs) to produce current. Initial enrichments for iron (III) reducing bacteria were set up with sediments from the haloalkaline environment of Soap Lake, Washington, in batch cultures and subsequent transfers resulted in a culture that grew optimally at 7.0% salinity and pH 11.0. The culture was used to inoculate the anode chamber of a MFC with formate as the electron source. Current densities up to 12.5 mA/m2 were achieved by this bacterium. Cyclic voltammetry experiments demonstrated that an electron mediator, methylene blue, was required to transfer electrons to the anode. Scanning electron microscopic imaging of the electrode surface did not reveal heavy colonization of bacteria, providing evidence that the bacterium may be using an indirect mode of electron transfer to generate current. Molecular characterization of the 16S rRNA gene and restriction fragment length profiles (RFLP) analysis showed that the MFC enriched for a single bacterial species with a 99% similarity to the 16S rRNA gene of Halanaerobium hydrogeniformans. Though modest, electricity production was achieved by a haloalkaliphilic bacterium at pH 11.0 and 7.0% salinity. PMID:24645484

  4. Reductive dissolution of Pu(IV) by Clostridium sp. under anaerobic conditions.

    Science.gov (United States)

    Francis, Arokiasamy J; Dodge, Cleveland J; Gillow, Jeffrey B

    2008-04-01

    An anaerobic, gram positive, spore-forming bacterium Clostridium sp., common in soils and wastes, capable of reduction of Fe(III) to Fe(II), Mn(IV) to Mn(II), Tc(VII) to Tc(IV), and U(VI) to U(IV), reduced Pu(IV) to Pu(III). Addition of 242Pu (IV)-nitrate to the bacterial growth medium at pH 6.4 resulted in the precipitation of Pu as amorphous Pu(OH)4 due to hydrolysis and polymerization reactions. The Pu (1 x 10(-5) M) had no effect upon growth of the bacterium as evidenced by glucose consumption; carbon dioxide and hydrogen production; a decrease in pH of the medium from 6.4 to 3.0 due to production of acetic and butyric acids from glucose fermentation; and a change in the Eh of the culture medium from +50 to -180 mV. Commensurate with bacterial growth, Pu was rapidly solubilized as evidenced by an increase in Pu concentration in solution which passed through a 0.03 microm filtration. Selective solvent extraction of the culture by thenoyltrifluoroacetone (TTA) indicated the presence of a reduced Pu species in the soluble fraction. X-ray absorption near edge spectroscopic (XANES) analysis of Pu in the culture sample at the Pu LIII absorption edge (18.054 keV) showed a shift of -3 eV compared to a Pu(IV) standard indicating reduction of Pu(IV) to Pu(III). These results suggestthat, although Pu generally exists as insoluble Pu(IV) in the environment, under appropriate conditions, anaerobic microbial activity could affect the long-term stability and mobility of Pu by its reductive dissolution.

  5. Anaerobic digestion of cellulosic wastes

    International Nuclear Information System (INIS)

    Anaerobic digestion is a potentially attractive technology for volume reduction of cellulosic wastes. A substantial fraction of the waste is converted to off-gas and a relatively small volume of biologically stabilized sludge is produced. Process development work is underway using a 75-L digester to verify rates and conversions obtained at the bench scale, to develop start-up and operating procedures, and to generate effluent for characterization and disposal studies. Three runs using batch and batch-fed conditions have been made lasting 36, 90, and over 200 days. Solids solubilization and gas production rates and total solids destruction have met or exceeded the target values of 0.6 g cellulose per L of reactor per day, 0.5 L off-gas per L of reactor per day, and 80% destruction of solids, respectively. Successful start-up procedures have been developed, and preliminary effluent characterization and disposal studies have been done. A simple dynamic process model has been constructed to aid in further process development and for use in process monitoring and control of a large-scale digester. 7 references, 5 figures, 1 table

  6. Anaerobic digestion of cellulosic wastes

    International Nuclear Information System (INIS)

    Anaerobic digestion is a potentially attractive technology for volume reduction of low-level radioactive cellulosic wastes. A substantial fraction of the waste is converted to off-gas and a relatively small volume of biologically stabilized sludge is produced. Process development work has been completed using a 75-L digester to verify rates and conversions obtained at the bench scale. Start-up and operating procedures have been developed, and effluent was generated for characterization and disposal studies. Three runs using batch and fed-batch conditions were made lasting 36, 90, and 423 d. Solids solubilization rates and gas production rates averaged approximately 1.8 g cellulose per L of reactor per d and 1.2 L of off-gas per L reactor per d. Greater than 80% destruction of the volatile suspended solids was obtained. A simple dynamic process model was constructed to aid in process design and for use in process monitoring and control of a large-scale digester

  7. Tellurite-, tellurate-, and selenite-based anaerobic respiration by strain CM-3 isolated from gold mine tailings.

    Science.gov (United States)

    Maltman, Chris; Piercey-Normore, Michele D; Yurkov, Vladimir

    2015-09-01

    The newly discovered strain CM-3, a Gram-negative, rod-shaped bacterium from gold mine tailings of the Central Mine in Nopiming Provincial Park, Canada, is capable of dissimilatory anaerobic reduction of tellurite, tellurate, and selenite. CM-3 possesses very high level resistance to these oxides, both aerobically and anaerobically. During aerobic growth, tellurite and tellurate resistance was up to 1500 and 1000 µg/ml, respectively. In the presence of selenite, growth occurred at the highest concentration tested, 7000 µg/ml. Under anaerobic conditions, resistance was decreased to 800 µg/ml for the Te oxides; however, much like under aerobic conditions, growth with selenite still took place at 7000 µg/ml. In the absence of oxygen, CM-3 couples oxide reduction to an increase in biomass. Following an initial drop in viable cells, due to switching from aerobic to anaerobic conditions, there was an increase in CFU/ml greater than one order of magnitude in the presence of tellurite (6.6 × 10(3)-8.6 × 10(4) CFU/ml), tellurate (4.6 × 10(3)-1.4 × 10(5) CFU/ml), and selenite (2.7 × 10(5)-5.6 × 10(6) CFU/ml). A control culture without metalloid oxides showed a steady decrease in CFU/ml with no recovery. ATP production was also increased in the presence of each oxide, further indicating anaerobic respiration. Partial 16S rRNA gene sequencing revealed a 99.0 % similarity of CM-3 to Pseudomonas reactans. PMID:26254805

  8. Application of dynamic membranes in anaerobic membranes in anaerobic membrane bioreactor systems

    NARCIS (Netherlands)

    Erşahin, M.E.

    2015-01-01

    Anaerobic membrane bioreactors (AnMBRs) physically ensure biomass retention by the application of a membrane filtration process. With growing application experiences from aerobic membrane bioreactors (MBRs), the combination of membrane and anaerobic processes has received much attention and become m

  9. Biochemical characterization of a bifunctional acetaldehyde-alcohol dehydrogenase purified from a facultative anaerobic bacterium Citrobacter sp. S-77.

    Science.gov (United States)

    Tsuji, Kohsei; Yoon, Ki-Seok; Ogo, Seiji

    2016-03-01

    Acetaldehyde-alcohol dehydrogenase (ADHE) is a bifunctional enzyme consisting of two domains of an N-terminal acetaldehyde dehydrogenase (ALDH) and a C-terminal alcohol dehydrogenase (ADH). The enzyme is known to be important in the cellular alcohol metabolism. However, the role of coenzyme A-acylating ADHE responsible for ethanol production from acetyl-CoA remains uncertain. Here, we present the purification and biochemical characterization of an ADHE from Citrobacter sp. S-77 (ADHE(S77)). Interestingly, the ADHE(S77) was unable to be solubilized from membrane with detergents either 1% Triton X-100 or 1% Sulfobetaine 3-12. However, the enzyme was easily dissociated from membrane by high-salt buffers containing either 1.0 M NaCl or (NH(4))(2)SO(4) without detergents. The molecular weight of a native protein was estimated as approximately 400 kDa, consisting of four identical subunits of 96.3 kDa. Based on the specific activity and kinetic analysis, the ADHES77 tended to have catalytic reaction towards acetaldehyde elimination rather than acetaldehyde formation. Our experimental observation suggests that the ADHES77 may play a pivotal role in modulating intracellular acetaldehyde concentration.

  10. Cloning of a novel phytase from an anaerobic rumen bacterium, Mitsuokella jalaludinii, and its expression in Escherichia coli

    Institute of Scientific and Technical Information of China (English)

    TAN Wan-qin; Phang Chiun Yee; Sieo Chin Chin; Yiap Beow Chin; Clemente Michael Wong Vui Ling; Norhani Abdullah; Son Radu; Ho Yin Wan

    2015-01-01

    The ful length phytase gene of Mitsuokel a jalaludini was successful y cloned and was found to be 1 047 bp in length, with 348 amino acids, and was designated as PHY7 phytase gene. A comparison of the sequence of PHY7 phytase gene of M. jalaludini with various microbial phytase gene sequences showed that it was not similar to those from other bacteria except Selenomonas ruminatium, thus suggesting that they may both express a new class of phytase. The PHY7 phytase gene was subsequently subcloned into bacterial expression vector, pET32a, for expression in Escherichia coli strain Ro-setta-gami. Expression of the recombinant phytase gene was optimised and characterised. The recombinant phytase was estimated to be approximately 55 kDa by SDS-PAGE analysis. The recombinant phytase exhibited optimum activity at 55°C, pH 4.5 and showed good pH stability from pH 3.5 to 5.5 (>78%relative activity). Metal ions such as Ca2+, Mg2+, and K+were found to exert signiifcant stimulatory effect on the recombinant phytase activity while Cu2+, Fe3+, and Zn2+greatly inhibited the enzyme activity. The recombinant phytase showed moderate resistance to trypsin proteolysis, but susceptible to pepsin proteolysis. The results of the study showed that several characteristics of recombinant phytase were slightly different from the native enzyme. Unfavourable characteristics such as reduced pH stability and metal ion effects should be taken into consideration during feed enzyme formulation.

  11. Cloning of a novel phytase from an anaerobic rumen bacterium, Mitsuokella jalaludinii, and its expression in Escherichia coli

    Institute of Scientific and Technical Information of China (English)

    TAN Wan-qin[1; Phang Chiun Yee[1; Sieo Chin Chin[1,2; Yiap Beow Chin[3; Clemente Michael Wong VuiLing[4; Norhani Abdullah[1,5,6; Son Radu[7; Ho Yin Wan[1

    2015-01-01

    The full length phytase gene of Mitsuokellajalaludiniiwas successfully cloned and was found to be 1 047 bp in length, with 348 amino acids, and was designated as PHY7 phytase gene. A comparison of the sequence of PHY7 phytase gene of M. jalaludinii with various microbial phytase gene sequences showed that it was not similar to those from other bacteria except Selenomonas ruminafium, thus suggesting that they may both express a new class of phytase. The PHY7 phytase gene was subsequently subcloned into bacterial expression vector, pET32a, for expression in Escherichia coil strain Ro- setta-gami. Expression of the recombinant phytase gene was optimised and characterised. The recombinant phytase was estimated to be approximately 55 kDa by SDS-PAGE analysis. The recombinant phytase exhibited optimum activity at 55~C, pH 4.5 and showed good pH stability from pH 3.5 to 5.5 (>78% relative activity). Metal ions such as Caz+, Mg2+, and K+ were found to exert significant stimulatory effect on the recombinant phytase activity while Cu2+, Fe3+, and Zn2+ greatly inhibited the enzyme activity. The recombinant phytase showed moderate resistance to trypsin proteolysis, but susceptible to pepsin proteolysis. The results of the study showed that several characteristics of recombinant phytase were slightly different from the native enzyme. Unfavourable characteristics such as reduced pH stability and metal ion effects should be taken into consideration during feed enzyme formulation.

  12. FERMENTATION OF INULIN BY CLOSTRIDIUM-THERMOSUCCINOGENES SP-NOV, A THERMOPHILIC ANAEROBIC BACTERIUM ISOLATED FROM VARIOUS HABITATS

    NARCIS (Netherlands)

    DRENT, WJ; LAHPOR, GA; WIEGANT, WM; GOTTSCHAL, JC

    1991-01-01

    Four closely related strains of thermophilic bacteria were isolated via enrichment in batch and continuous culture with inulin as the sole source of carbon and energy by using inoculations from various sources. These new strains were isolated from beet pulp from a sugar refinery, soil around a Jerus

  13. Hydrogen Production by the Thermophilic Bacterium Thermotoga neapolitana

    Directory of Open Access Journals (Sweden)

    Nirakar Pradhan

    2015-06-01

    Full Text Available As the only fuel that is not chemically bound to carbon, hydrogen has gained interest as an energy carrier to face the current environmental issues of greenhouse gas emissions and to substitute the depleting non-renewable reserves. In the last years, there has been a significant increase in the number of publications about the bacterium Thermotoga neapolitana that is responsible for production yields of H2 that are among the highest achievements reported in the literature. Here we present an extensive overview of the most recent studies on this hyperthermophilic bacterium together with a critical discussion of the potential of fermentative production by this bacterium. The review article is organized into sections focused on biochemical, microbiological and technical issues, including the effect of substrate, reactor type, gas sparging, temperature, pH, hydraulic retention time and organic loading parameters on rate and yield of gas production.

  14. The effect of outside conditions on anaerobic ammonia oxidation reaction

    Institute of Scientific and Technical Information of China (English)

    YANG Min; WANG Shu-bo

    2016-01-01

    Organic carbon, inorganic carbon, temperature, pH and ORP are all to have a certain influence on the anaerobic ammonia oxidation reaction. We can draw some conclusions on the optimum conditions of anaerobic ammonia oxidation reaction. The optimum temperature of the anaerobic ammonia oxidation reaction is 30-35℃. And the optimum pH of the anaerobic ammonia reaction is 7.5-8.3. The presence of organic matters can affect the anaerobic ammonia reaction, and different organic matters have different influence on it. The concentration of the inorganic carbon also exist great influence on the reaction. High inorganic carbon concentration also can inhibit anaerobic ammonia oxidation reaction.

  15. Anaerobic hydrocarbon and fatty acid metabolism by syntrophic bacteria and their impact on carbon steel corrosion

    Directory of Open Access Journals (Sweden)

    Christopher Neil Lyles

    2014-04-01

    Full Text Available The microbial metabolism of hydrocarbons is increasingly associated with the corrosion of carbon steel in sulfate-rich marine waters. However, how such transformations influence metal biocorrosion in the absence of an electron acceptor is not fully recognized. We grew a marine alkane-utilizing, sulfate-reducing bacterium, Desulfoglaeba alkanexedens, with either sulfate or Methanospirillum hungatei as electron acceptors, and tested the ability of the cultures to catalyze metal corrosion. Axenically, D. alkanexedens had a higher instantaneous corrosion rate and produced more pits in carbon steel coupons than when the same organism was grown in syntrophic co-culture with the methanogen. Since anaerobic hydrocarbon biodegradation pathways converge on fatty acid intermediates, the corrosive ability of a known fatty acid-oxidizing syntrophic bacterium, Syntrophus aciditrophicus was compared when grown in pure culture or in co-culture with a H2-utilizing sulfate-reducing bacterium (Desulfovibrio sp., strain G11 or a methanogen (M. hungatei. The instantaneous corrosion rates in the cultures were not substantially different, but the syntrophic, sulfate-reducing co-culture produced more pits in coupons than other combinations of microorganisms. Lactate-grown cultures of strain G11 had higher instantaneous corrosion rates and coupon pitting compared to the same organism cultured with hydrogen as an electron donor. Thus, if sulfate is available as an electron acceptor, the same microbial assemblages produce sulfide and low molecular weight organic acids that exacerbated biocorrosion. Despite these trends, a surprisingly high degree of variation was encountered with the corrosion assessments. Differences in biomass, initial substrate concentration, rates of microbial activity or the degree of end product formation did not account for the variations. We are forced to ascribe such differences to the metallurgical properties of the coupons.

  16. Anaerobic hydrocarbon and fatty acid metabolism by syntrophic bacteria and their impact on carbon steel corrosion.

    Science.gov (United States)

    Lyles, Christopher N; Le, Huynh M; Beasley, William Howard; McInerney, Michael J; Suflita, Joseph M

    2014-01-01

    The microbial metabolism of hydrocarbons is increasingly associated with the corrosion of carbon steel in sulfate-rich marine waters. However, how such transformations influence metal biocorrosion in the absence of an electron acceptor is not fully recognized. We grew a marine alkane-utilizing, sulfate-reducing bacterium, Desulfoglaeba alkanexedens, with either sulfate or Methanospirillum hungatei as electron acceptors, and tested the ability of the cultures to catalyze metal corrosion. Axenically, D. alkanexedens had a higher instantaneous corrosion rate and produced more pits in carbon steel coupons than when the same organism was grown in syntrophic co-culture with the methanogen. Since anaerobic hydrocarbon biodegradation pathways converge on fatty acid intermediates, the corrosive ability of a known fatty acid-oxidizing syntrophic bacterium, Syntrophus aciditrophicus was compared when grown in pure culture or in co-culture with a H2-utilizing sulfate-reducing bacterium (Desulfovibrio sp., strain G11) or a methanogen (M. hungatei). The instantaneous corrosion rates in the cultures were not substantially different, but the syntrophic, sulfate-reducing co-culture produced more pits in coupons than other combinations of microorganisms. Lactate-grown cultures of strain G11 had higher instantaneous corrosion rates and coupon pitting compared to the same organism cultured with hydrogen as an electron donor. Thus, if sulfate is available as an electron acceptor, the same microbial assemblages produce sulfide and low molecular weight organic acids that exacerbated biocorrosion. Despite these trends, a surprisingly high degree of variation was encountered with the corrosion assessments. Differences in biomass, initial substrate concentration, rates of microbial activity or the degree of end product formation did not account for the variations. We are forced to ascribe such differences to the metallurgical properties of the coupons.

  17. ANAEROBIC BIOLOGICAL TREATMENT OF PRODUCED WATER

    Energy Technology Data Exchange (ETDEWEB)

    John R. Gallagher

    2001-07-31

    During the production of oil and gas, large amounts of water are brought to the surface and must be disposed of in an environmentally sensitive manner. This is an especially difficult problem in offshore production facilities where space is a major constraint. The chief regulatory criterion for produced water is oil and grease. Most facilities have little trouble meeting this criterion using conventional oil-water separation technologies. However, some operations have significant amounts of naphthenic acids in the water that behave as oil and grease but are not well removed by conventional technologies. Aerobic biological treatment of naphthenic acids in simulated-produced water has been demonstrated by others; however, the system was easily overloaded by the large amounts of low-molecular-weight organic acids often found in produced waters. The objective of this research was to determine the ability of an anaerobic biological system to treat these organic acids in a simulated produced water and to examine the potential for biodegradation of the naphthenic acids in the anaerobic environment. A small fixed-film anaerobic biological reactor was constructed and adapted to treat a simulated produced water. The bioreactor was tubular, with a low-density porous glass packing material. The inocula to the reactor was sediment from a produced-water holding pond from a municipal anaerobic digester and two salt-loving methanogenic bacteria. During start-up, the feed to the reactor contained glucose as well as typical produced-water components. When glucose was used, rapid gas production was observed. However, when glucose was eliminated and the major organic component was acetate, little gas was generated. Methane production from acetate may have been inhibited by the high salt concentrations, by sulfide, or because of the lack, despite seeding, of microbes capable of converting acetate to methane. Toluene, a minor component of the produced water (0.1 g/L) was removed in the

  18. Bacterial vaginosis with special reference to anaerobes

    Directory of Open Access Journals (Sweden)

    Sumati A

    2009-01-01

    Full Text Available Aims: This study was undertaken to assess the prevalence of bacterial vaginosis (BV and to estimate the prevalence of anaerobic organisms in vaginal discharge of women suffering from bacterial vaginosis. Settings and Design: Patients attending the Obstetrics and Gynecology Department of a Medical College Hospital. A one year cross-sectional study. Methods and Materials: High vaginal swabs taken from 174 female patients complaining of abnormal vaginal discharge. BV was diagnosed by clinical composite criteria and by gram stain. Anaerobes were isolated and identified from the discharge. Statistical Analysis Used: Chi square test, with level of significance set at a value of P< 0.05. Results: BV was diagnosed in 68.39% of the cases by using clinical composite criteria and in 58.4% of the cases by gram stain. Anaerobic culture isolation of vaginal swabs revealed that out of 174 cases 143 (82.65% were culture positive for anaerobes. Bacteroides were significantly raised in BV as compared with non bacterial vaginosis (NBV; < 0.05%. Conclusions: Anaerobic bacteria are important pathogens in the causation of bacterial vaginosis along with other aerobic organisms. Bacteroides and peptostreptococci are significantly raised in BV.

  19. Microbial reduction of sulfur dioxide with anaerobically digested municipal sewage biosolids as electron donors.

    Science.gov (United States)

    Selvaraj, P T; Sublette, K L

    1995-01-01

    A concentrated stream of sulfur dioxide (SO2) is produced by regeneration of the sorbent in certain new regenerable processes for the desulfurization of flue gas. We have previously proposed that this SO2 can be converted to elemental sulfur for disposal or byproduct recovery using a microbial/Claus process. In this process, two-thirds of the SO2-reducing gas stream would be contacted with a mixed culture containing sulfate-reducing bacteria (SRB), where SO2 would act as an electron acceptor with reduction to hydrogen sulfide (H2S). This H2S could then be recombined with the remaining SO2 and sent to a Claus unit to produce elemental sulfur. The sulfate-reducing bacterium, Desulfovibrio desulfuricans, has been immobilized by coculture with flocforming heterotrophs from an anaerobic digester, resulting in a SO2-reducing floc that may be collected from the effluent of a continuous reactor for recycle by gravity sedimentation. The carbon and energy source for these cultures was anaerobically digested municipal sewage solids. The maximum specific activity for SO2 reduction in these cultures, in terms of dry weight of D. desulfuricans biomass, was 9.1 mmol of SO2/h.g. The stoichiometry with respect to the electron donor was 15.5 mg of soluble COD/mmol of SO2 reduced.

  20. Treatment of phenolics, aromatic hydrocarbons, and cyanide-bearing wastewater in individual and combined anaerobic, aerobic, and anoxic bioreactors.

    Science.gov (United States)

    Sharma, Naresh K; Philip, Ligy

    2015-01-01

    Studies were conducted on a mixture of pollutants commonly found in coke oven wastewater (CWW) to evaluate the biodegradation of various pollutants under anaerobic, aerobic, and anoxic conditions. The removal of the pollutants was monitored during individual bioreactor operation and using a combination of bioreactors operating in anaerobic-aerobic-anoxic sequence. While studying the performance of individual reactors, it was observed that cyanide removal (83.3 %) was predominant in the aerobic bioreactor, while much of the chemical oxygen demand (COD) (69 %) was consumed in the anoxic bioreactor. With the addition of cyanide, the COD removal efficiency was affected in all the bioreactors, and several intermediates were detected. While treating synthetic CWW using the combined bioreactor system, the overall COD removal efficiency was 86.79 % at an OLR of 2.4 g COD/L/day and an HRT of 96 h. The removal efficiency of 3,5-xylenol and cyanide, with inlet concentration of 150 and 10 mg/L, was found to be 91.8 and 93.6 % respectively. It was found that the impact of xylenol on the performance of the bioreactors was less than cyanide toxicity. Molecular analysis using T-RFLP revealed the dominance of strictly aerobic, mesophilic proteobacterium, Bosea minatitlanensis, in the aerobic bioreactor. The anoxic bioreactor was dominant with Rhodococcus pyridinivorans, known for its remarkable aromatic decomposing activity, while an unclassified Myxococcales bacterium was identified as the predominant bacterial species in the anaerobic bioreactor.

  1. [Anaerobic-aerobic infection in acute appendicitis].

    Science.gov (United States)

    Mamchich, V I; Ulitovskiĭ, I V; Savich, E I; Znamenskiĭ, V A; Beliaeva, O A

    1998-01-01

    362 patients with acute appendicitis (AA) were examined. For microbiological diagnosis of aerobic and anaerobic nonclostridial microflora we used complex accelerated methods (including evaluation of gram-negative microorganisms in comparison with tinctorial-fermentative method of differential staining according to oxygen sensitivity of catalasopositive together with aerobic and cathalasonegative anaerobic microorganisms) as well as complete bacteriologic examination with determination of sensitivity of the above microorganism to antimicrobial remedies. High rate of aerobic-anaerobic microbial associations and substantial identity of microflora from appendicis and exudate from abdominal cavity was revealed, which evidenced the leading role of endogenous microorganisms in etiology and pathogenesis of AA and peritonitis i. e. autoinfection. In patients with destructive forms of AA, complicated by peritonitis it is recommended to use the accelerated method of examination of pathologic material as well as the complete scheme of examination with the identification of the isolated microorganisms and the correction of antibiotic treatment. PMID:9511291

  2. Anaerobic fermentation of beef cattle manure

    Science.gov (United States)

    Hashimoto, A. G.; Chen, Y. R.; Varel, V. H.

    1981-01-01

    The conversion of livestock manure and crop residues into methane and a high protein feed ingredient by thermophilic anaerobic fermentation is summarized. The major biological and operational factors involved in methanogenesis are discussed, and a kinetic model that describes the fermentation process is presented. Substrate biodegradability, fermentation temperature, and influent substrate concentration to have significant effects on CH4 production rate. Assessment of the energy requirements for anaerobic fermentation systems showed that the major energy requirement for a thermophilic system was for maintaining the fermenter temperature. The next major energy consumption was due to the mixing of the influent slurry and fermenter liquor. An approach to optimizing anaerobic fermenter s by selecting design criteria that maximize the net energy production per unit cost is presented.

  3. Biochemistry and physiology of anaerobic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-05-18

    We welcome you to The Power of Anaerobes. This conference serves two purposes. One is to celebrate the life of Harry D. Peck, Jr.,who was born May 18, 1927 and would have celebrated his 73rd birthday at this conference. He died November 20, 1998. The second is to gather investigators to exchange views within the realm of anaerobic microbiology, an area in which tremendous progress has been seen during recent years. It is sufficient to mention discoveries of a new form of life (the archaea), hyper or extreme thermophiles, thermophilic alkaliphiles and anaerobic fungi. With these discoveries has come a new realization about physiological and metabolic properties of microorganisms, and this in turn has demonstrated their importance for the development, maintenance and sustenance of life on Earth.

  4. Biochar from anaerobically digested sugarcane bagasse.

    Science.gov (United States)

    Inyang, Mandu; Gao, Bin; Pullammanappallil, Pratap; Ding, Wenchuan; Zimmerman, Andrew R

    2010-11-01

    This study was designed to investigate the effect of anaerobic digestion on biochar produced from sugarcane bagasse. Sugarcane bagasse was anaerobically digested to produce methane. The digested residue and fresh bagasse was pyrolyzed separately into biochar at 600 degrees C in nitrogen environment. The digested bagasse biochar (DBC) and undigested bagasse biochar (BC) were characterized to determine their physicochemical properties. Although biochar was produced from the digested residue (18% by weight) and the raw bagasse (23%) at a similar rate, there were many physiochemical differences between them. Compared to BC, DBC had higher pH, surface area, cation exchange capacity (CEC), anion exchange capacity (AEC), hydrophobicity and more negative surface charge, all properties that are generally desirable for soil amelioration, contaminant remediation or wastewater treatment. Thus, these results suggest that the pyrolysis of anaerobic digestion residues to produce biochar may be an economically and environmentally beneficial use of agricultural wastes. PMID:20634061

  5. Metabolic interactions between methanogenic consortia and anaerobic respiring bacteria

    DEFF Research Database (Denmark)

    Stams, A.J.; Oude Elferink, S.J.; Westermann, Peter

    2003-01-01

    Most types of anaerobic respiration are able to outcompete methanogenic consortia for common substrates if the respective electron acceptors are present in sufficient amounts. Furthermore, several products or intermediate compounds formed by anaerobic respiring bacteria are toxic to methanogenic...

  6. ANAEROBIC AND AEROBIC TREATMENT OF CHLORINATED ALIPHATIC COMPOUNDS

    Science.gov (United States)

    Biological degradation of 12 chlorinated aliphatic compounds (CACs) was assessed in bench-top reactors and in serum bottle tests. Three continuously mixed daily batch-fed reactor systems were evaluated: anaerobic, aerobic, and sequential-anaerobic-aerobic (sequential). Glucose,...

  7. The effect of tannic compounds on anaerobic wastewater treatment.

    NARCIS (Netherlands)

    Field, J.A.

    1989-01-01

    Anaerobic wastewater treatment is an alternative to the conventional aerobic treatment processes for the removal of easily biodegradable organic matter in medium to high strength industrial wastestreams. Anaerobic treatment has several advantages, however one important disadvantage is the high sensi

  8. Succession of lignocellulolytic bacterial consortia bred anaerobically from lake sediment

    NARCIS (Netherlands)

    Korenblum, Elisa; Jiménez Avella, Diego; van Elsas, Jan

    2016-01-01

    Anaerobic bacteria degrade lignocellulose in various anoxic and organically rich environments, often in a syntrophic process. Anaerobic enrichments of bacterial communities on a recalcitrant lignocellulose source were studied combining polymerase chain reaction–denaturing gradient gel electrophoresi

  9. Rnf Genes in Purple Sulfur Bacterium Allochromatium vinosum

    OpenAIRE

    DİNÇTÜRK, H. Benan; DEMİR, Volkan

    2006-01-01

    Allochromatium vinosum is a photosynthetic, diazotrophic purple sulfur bacterium that oxidizes reduced sulfur compounds hydrogen sulfide, elemental sulfur and thiosulfide. In this article, we report the presence of rnf genes in Allochromatium vinosum, some of which have been reported to take part in nitrogen fixation in some species.

  10. Draft Genome Sequence of Oral Bacterium Streptococcus mutans JH1140

    OpenAIRE

    Escano, Jerome; Deng, Peng; Lu, Shi-En; Smith, Lief

    2016-01-01

    Streptococcus mutans JH1140 is an oral bacterium known to produce the bacteriocin mutacin 1140, and the strain has been genetically engineered to combat dental caries. Here, we report the 2.0-Mb draft genome of S. mutans JH1140. This genome provides new insights into the strain’s superior colonization properties and its utility in replacement therapy.

  11. Genome of a mosquito-killing bacterium decoded

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ Researchers with the CAS Wuhan Institute of Virology (WHIOV) recently completed the genome sequencing of a mosquitocidal bacterium Bacillus shaericus C3-41. The feat, first of its kind in China, is expected to further promote the bio-control studies of mosquitoes.

  12. Main Factors Effecting Anaerobic Ammonium Oxidation

    Institute of Scientific and Technical Information of China (English)

    YANG Xiao-fei

    2014-01-01

    Anaerobic Ammonium Oxidation (ANAMMOX) drew more attentions because of its denitrification in wastewater with low carbon resource. The external conditions of ANAMMOX are relatively harsh,however this reaction does not require the participation of oxygen and organics. So the research and technology development of ANAMMOX has the significance of sustainable development.In this paper, the main influencing factors of ANAMMOX were summarized,Combined with recent research status of ANAMMOX technology, the development trend of the anaerobic ammonium oxidation technology was prospected.

  13. The Pasteur effect in facultative anaerobic metazoa.

    Science.gov (United States)

    Schmidt, H; Kamp, G

    1996-05-15

    The existence and the regulatory mechanisms of the Pasteur effect in facultative anaerobic metazoa are discussed. There are three reasons for the controversy surrounding this phenomenon. 1) The different definitions of the Pasteur effect, 2) the antagonistic effect of metabolic depression and its species specific response to hypoxia, as well as 3) the laboratory-specific differences in the experimental procedures for analyzing the Pasteur effect and its regulation. This review aims to clarify the confusion about the existence of the Pasteur effect in facultative anaerobic metazoa and to offer possible molecular mechanisms.

  14. Startup and stabilization of anaerobic membrane bioreactors at ambient temperature

    OpenAIRE

    Benito Peña, Carlos

    2015-01-01

    There has been an increasing interest in wastewater treatment in last decades to reduce human footprint. Primarily, anaerobic technology focused on treatment and stabilization of sludge, but now the tendency is to give it a major role in low cost treatment of high/low strength wastewaters, since anaerobic digestion offers energy generation through gas production. Anaerobic membrane bioreactors (AnMBR) combine anaerobic digestion with membrane filtration. They are becoming a feasible opti...

  15. The Financial Feasibility of Anaerobic Digestion for Ontario's Livestock Industries

    OpenAIRE

    Weersink, Alfons; Mallon, Shawn

    2007-01-01

    This report is an investigation of the financial feasibility of farm based anaerobic digestion investments under Ontario's Standard Offer Contract electricity prices. Using Ontario Ministry of Agriculture, Food and Rural Affairs (OMAFRA) Agricultural Anaerobic Digestion Calculation Spreadsheet (AADCS) anaerobic digestion inputs, outputs, cost and revenues were estimated and used to conduct a financial analysis on the feasibility of four sized farm base anaerobic digestion investments. The res...

  16. The effect of tannic compounds on anaerobic wastewater treatment.

    OpenAIRE

    Field, J. A.

    1989-01-01

    Anaerobic wastewater treatment is an alternative to the conventional aerobic treatment processes for the removal of easily biodegradable organic matter in medium to high strength industrial wastestreams. Anaerobic treatment has several advantages, however one important disadvantage is the high sensitivity of the anaerobic bacteria (ie. methanogenic bacteria) to toxic compounds. The anaerobic technologies were initially developed for the treatment of non-toxic organic wastewaters. As the techn...

  17. Ardenticatena maritima gen. nov., sp. nov., a ferric iron- and nitrate-reducing bacterium of the phylum 'Chloroflexi' isolated from an iron-rich coastal hydrothermal field, and description of Ardenticatenia classis nov

    DEFF Research Database (Denmark)

    Kawaichi, Satoshi; Ito, Norihiro; Kamikawa, Ryoma;

    2013-01-01

    A novel thermophilic, chemoheterotrophic, Gram-negative-staining, multicellular filamentous bacterium, designated strain 110ST, was isolated from an iron-rich coastal hydrothermal field in Japan. The isolate is facultatively aerobic and chemoheterotrophic. Phylogenetic analysis using 16S rRNA gene...... sequences nested strain 110ST in a novel class-level clone cluster of the phylum 'Chloroflexi'. The isolate grows by dissimilatory iron- and nitrate-reduction under anaerobic conditions, which is the first report of these abilities in the phylum 'Chloroflexi'. The organism is capable of growth with oxygen...

  18. Shotgun Genome Sequence of the Large Purple Photosynthetic Bacterium Rhodospirillum photometricum DSM122

    OpenAIRE

    Duquesne, K.; Sturgis, James N.

    2012-01-01

    Here, we present the shotgun genome sequence of the purple photosynthetic bacterium Rhodospirillum photometricum DSM122. The photosynthetic apparatus of this bacterium has been particularly well studied by microscopy. The knowledge of the genome of this oversize bacterium will allow us to compare it with the other purple bacterial organisms to follow the evolution of the photosynthetic apparatus.

  19. Treatment of domestic sewage in a two-step system anaerobic filter/anaerobic hybrid reactor at low temperature

    NARCIS (Netherlands)

    Elmitwalli, T.A.; Zeeman, G.; Oahn, K.L.T.; Lettinga, G.

    2002-01-01

    The treatment of domestic sewage at low temperature of 13 degrees Celsius was investigated in a two-step system consisting of an anaerobic filter (AF) + an anaerobic hybrid (AH) reactor operated at different hydraulic retention times (HRTs)

  20. Anaerobic Digestion. Student Manual. Biological Treatment Process Control.

    Science.gov (United States)

    Carnegie, John W., Ed.

    This student manual contains the textual material for a four-lesson unit on anaerobic digestion control. Areas addressed include: (1) anaerobic sludge digestion (considering the nature of raw sludge, purposes of anaerobic digestion, the results of digestion, types of equipment, and other topics); (2) digester process control (considering feeding…

  1. Techniques for controlling variability in gram staining of obligate anaerobes.

    OpenAIRE

    Johnson, M. J.; Thatcher, E; Cox, M E

    1995-01-01

    Identification of anaerobes recovered from clinical samples is complicated by the fact that certain gram-positive anaerobes routinely stain gram negative; Peptostreptococcus asaccharolyticus, Eubacterium plautii, Clostridium ramosum, Clostridium symbiosum, and Clostridium clostridiiforme are among the nonconformists with regard to conventional Gram-staining procedures. Accurate Gram staining of American Type Culture Collection strains of these anaerobic bacteria is possible by implementing fi...

  2. The Influence of Hydration on Anaerobic Performance: A Review

    Science.gov (United States)

    Kraft, Justin A.; Green, James M.; Bishop, Phillip A.; Richardson, Mark T.; Neggers, Yasmin H.; Leeper, James D.

    2012-01-01

    This review examines the influence of dehydration on muscular strength and endurance and on single and repeated anaerobic sprint bouts. Describing hydration effects on anaerobic performance is difficult because various exercise modes are dominated by anaerobic energy pathways, but still contain inherent physiological differences. The critical…

  3. Changing anaerobic spectrum in suppurative lung disease: a case report.

    Science.gov (United States)

    Beena, V K; Kumari, G R; Rao, P V; Murty, M V; Shivananda, P G

    1996-01-01

    A spectrum of three different anaerobes were isolated from a debilitated patient with suppurative lung disease, within a two-year period. Repeated isolation from three consecutive samples and symptomatic relief with metronidazole provide clinical evidence of anaerobic lung infection. This case emphasizes the importance of anaerobic culture in cases of protracted pulmonary suppurative disease. PMID:8822645

  4. Environmental impacts of anaerobic digestion and the use of anaerobic residues as soil amendment

    Energy Technology Data Exchange (ETDEWEB)

    Mosey, F.E. [VFA Services Ltd., Herts (United Kingdom)

    1996-01-01

    This paper defines the environmental role of anaerobic digestion within the overall objective of recovering energy from renewable biomass resources. Examples and opportunities for incorporating anaerobic digestion into biomass-to-energy schemes are discussed, together with environmental aspects of anaerobic digestion plants. These include visual, public amenity, pathogens and public health, odor control, and gaseous emissions. Digestate disposal and the benefits of restrictions on recycling organic wastes and biomass residues back to the land are discussed, particularly as they relate to American and European codes of practice and environmental legislation. The paper concludes that anaerobic digestion, if performed in purpose-designed reactors that efficiently recover and use biogas, is an environmentally benign process that can enhance energy recovery and aid the beneficial land use of plant residues in many biomass-to-energy schemes.

  5. A simple and sensitive quality control method of the anaerobic atmosphere for identification and antimicrobial susceptibility testing of anaerobic bacteria

    DEFF Research Database (Denmark)

    Justesen, Tage; Justesen, Ulrik Stenz

    2013-01-01

    The maintenance of a strict anaerobic atmosphere is essential for the culture of strict anaerobic bacteria. We describe a simple and sensitive quality control method of the anaerobic atmosphere, based on the measurement of the zone diameter around a 5-μg metronidazole disk when testing an...

  6. Anaerobic effluent disinfection using ozone: Byproducts formation

    NARCIS (Netherlands)

    Silva, G.H.R.; Daniel, L.A.; Bruning, H.; Rulkens, W.H.

    2010-01-01

    This research was aimed at studying oxidation processes, coliform inactivation effectiveness and disinfection byproducts (DBPs) associated with the disinfection of anaerobic sanitary wastewater effluent with ozone applied at doses of 5.0, 8.0 and 10.0mg O(3)L(-1) for contact times of 5, 10 and 15 mi

  7. Sulfate-reducing bacteria in anaerobic bioreactors.

    NARCIS (Netherlands)

    Oude Elferink, S.J.W.H.

    1998-01-01

    The treatment of industrial wastewaters containing high amounts of easily degradable organic compounds in anaerobic bioreactors is a well-established process. Similarly, wastewaters which in addition to organic compounds also contain sulfate can be treated in this way. For a long time, the occurrenc

  8. Anaerobic work capacity in elite wheelchair athletes

    NARCIS (Netherlands)

    van der Woude, L H; Bakker, W H; Elkhuizen, J W; Veeger, DirkJan (H. E. J.); Gwinn, T

    1997-01-01

    To study the anaerobic work capacity in wheelchair athletes, 67 elite wheelchair athletes (50 male) were studied in a 30-second sprint test on a computer-controlled wheelchair ergometer during the World Championships and Games for the Disabled in Assen (1990). The experimental set-up (ergometer, pro

  9. Anaerobic Pre-treatment of Strong Sewage

    NARCIS (Netherlands)

    Halalsheh, M.M.

    2002-01-01

    The main objective of this research was to assess the feasibility of applying low cost anaerobic technology for the treatment of relatively high strength sewage of Jordan using two-stage and one-stage UASB reactors operated at ambient temperatures. The wastewater produced in Jordan is characterised

  10. Anaerobic Digestion in a Flooded Densified Leachbed

    Science.gov (United States)

    Chynoweth, David P.; Teixeira, Arthur A.; Owens, John M.; Haley, Patrick J.

    2009-01-01

    A document discusses the adaptation of a patented biomass-digesting process, denoted sequential batch anaerobic composting (SEBAC), to recycling of wastes aboard a spacecraft. In SEBAC, high-solids-content biomass wastes are converted into methane, carbon dioxide, and compost.

  11. Comparative activity of ciprofloxacin against anaerobic bacteria.

    OpenAIRE

    Sutter, V L; Kwok, Y Y; Bulkacz, J

    1985-01-01

    The in vitro activity of ciprofloxacin was assessed against 362 strains of anaerobic bacteria and compared with that of cefoxitin, clindamycin, metronidazole, and mezlocillin. Only 31% of the strains tested were susceptible to ciprofloxacin. The other agents were active against most of the strains tested.

  12. Essential metal depletion in an anaerobic reactor.

    NARCIS (Netherlands)

    Osuna, M.B.; Iza, J.M.; Zandvoort, M.H.; Lens, P.N.L.

    2003-01-01

    The effect of the absence of trace elements on the conversion of a mixture of volatile fatty acids by a distillery anaerobic granular sludge was investigated. Two UASB reactors were operated under identical operational conditions except for the influent trace metal concentrations, during 140 days. E

  13. Anaerobic Digestion: Mass Balances and Products

    DEFF Research Database (Denmark)

    Møller, Jacob; Christensen, Thomas Højlund; Jansen, Jes la Cour

    2011-01-01

    While the basic processes involved in anaerobic digestion of waste are described in Chapter 9.4 and the main digestion technologies are presented in Chapter 9.5, this chapter focuses on mass balances, gas production and energy aspects, environmental emissions and unit process inventories...

  14. The fate of methanol in anaerobic bioreactors.

    NARCIS (Netherlands)

    Florencio, L.

    1994-01-01

    Methanol is an important component of certain industrial wastewaters. In anaerobic environments, methanol can be utilized by methanogens and acetogens. In wastewater treatment plants, the conversion of methanol into methane is preferred because this conversion is responsible for chemical oxygen dema

  15. Enhanced anaerobic biological treatment of phenolic wastewaters

    Energy Technology Data Exchange (ETDEWEB)

    Kindzierski, W.B.

    1989-01-01

    The combined treatment requirements for a high strength phenolic wastewater were examined in batch and semicontinuous anaerobic methanogenic bioassays. Solvent extraction pretreatment and in-situ addition of activated carbon during anaerobic treatment were effective in removing phenol from a coal liquefaction wastewater from the H-coal process. The selective pH adjustment of high strength phenolic wastewater followed by diisopropyl ether extraction reduced the phenolic concentration to non-inhibitory levels, and removed non-phenolic inhibitory compounds. The weakly acid nature of phenol and substituted phenols allows for their selective removal by solvent extraction. Anaerobic bacteria were able to degrade phenol in the solvent extracted wastwater, however, the bacteria exhibited instability under semicontinuous feeding conditions. The addition of activated carbon to the stressed phenol-degrading cultures improved their ability to remove phenol from solution. Further investigation into the role activated carbon performed during anaerobic phenol treatment demonstrated its importance as a biological support, in addition to providing adsorptive capacity for organic (including inhibitory) compounds. The similar study of other support materials (ion exchange resins) which did not possess an adsorptive capacity for organic compounds supported these findings. Excellent agreement was demonstrated among physical evaluation methods, performance bioassays, radiolabelled cell adsorption studies, and scanning electron microscopy observations in judging the value of the materials as biological supports.

  16. Anaerobic digestion in sustainable biomass chains

    NARCIS (Netherlands)

    Pabon Pereira, C.P.

    2009-01-01

    This thesis evaluates the potential contribution of anaerobic digestion (AD) to the sustainability of biomass chains. Results provide insights in the technological potential to recover energy and valuable by-products from energy crops and residues, and evaluate biomass cascades involving AD technolo

  17. Anaerobic membrane bioreactors: Are membranes really necessary?

    NARCIS (Netherlands)

    Davila, M.; Kassab, G.; Klapwijk, A.; Lier, van J.B.

    2008-01-01

    Membranes themselves represent a significant cost for the full scale application of anaerobic membrane bioreactors (AnMBR). The possibility of operating an AnMBR with a self-forming dynamic membrane generated by the substances present in the reactor liquor would translate into an important saving. A

  18. Anaerobic microbial LCFA degradation in bioreactors

    NARCIS (Netherlands)

    Sousa, D.Z.; Pereira, M.A.; Alves, J.I.; Smidt, H.; Stams, A.J.M.; Alves, M.M.

    2008-01-01

    This paper reviews recent results obtained on long-chain fatty acids (LCFA) anaerobic degradation. Two LCFA were used as model substrates: oleate, a mono-unsaturated LCFA, and palmitate, a saturated LCFA, both abundant in LCFA-rich wastewaters. 16S rRNA gene analysis of sludge samples submitted to c

  19. Anaerobic hydrolysis during digestion of complex substrates

    NARCIS (Netherlands)

    Sanders, W.T.M.

    2001-01-01

    Complex waste(water) such as, raw sewage, dairy wastewater, slaughterhouse wastewater, fish processing wastewater, primary sludge and the organic fraction of municipal solid waste have been proven to be degradable under anaerobic conditions. However, during the digestion process the conversion of th

  20. Anaerobic Toxicity of Cationic Silver Nanoparticles

    Science.gov (United States)

    The microbial toxicity of silver nanoparticles (AgNPs) stabilized with different capping agents was compared to that of Ag+ under anaerobic conditions. Three AgNPs were investigated: (1) negatively charged citrate-coated AgNPs (citrate-AgNPs), (2) minimally charged p...

  1. Early Microbial Evolution: The Age of Anaerobes.

    Science.gov (United States)

    Martin, William F; Sousa, Filipa L

    2016-02-01

    In this article, the term "early microbial evolution" refers to the phase of biological history from the emergence of life to the diversification of the first microbial lineages. In the modern era (since we knew about archaea), three debates have emerged on the subject that deserve discussion: (1) thermophilic origins versus mesophilic origins, (2) autotrophic origins versus heterotrophic origins, and (3) how do eukaryotes figure into early evolution. Here, we revisit those debates from the standpoint of newer data. We also consider the perhaps more pressing issue that molecular phylogenies need to recover anaerobic lineages at the base of prokaryotic trees, because O2 is a product of biological evolution; hence, the first microbes had to be anaerobes. If molecular phylogenies do not recover anaerobes basal, something is wrong. Among the anaerobes, hydrogen-dependent autotrophs--acetogens and methanogens--look like good candidates for the ancestral state of physiology in the bacteria and archaea, respectively. New trees tend to indicate that eukaryote cytosolic ribosomes branch within their archaeal homologs, not as sisters to them and, furthermore tend to root archaea within the methanogens. These are major changes in the tree of life, and open up new avenues of thought. Geochemical methane synthesis occurs as a spontaneous, abiotic exergonic reaction at hydrothermal vents. The overall similarity between that reaction and biological methanogenesis fits well with the concept of a methanogenic root for archaea and an autotrophic origin of microbial physiology. PMID:26684184

  2. Biodegradability of leathers through anaerobic pathway.

    Science.gov (United States)

    Dhayalan, K; Fathima, N Nishad; Gnanamani, A; Rao, J Raghava; Nair, B Unni; Ramasami, T

    2007-01-01

    Leather processing generates huge amounts of both solid and liquid wastes. The management of solid wastes, especially tanned leather waste, is a challenging problem faced by tanners. Hence, studies on biodegradability of leather become imperative. In this present work, biodegradability of untanned, chrome tanned and vegetable tanned leather under anaerobic conditions has been addressed. Two different sources of anaerobes have been used for this purpose. The effect of detanning as a pretreatment method before subjecting the leather to biodegradation has also been studied. It has been found that vegetable tanned leather leads to more gas production than chrome tanned leather. Mixed anaerobic isolates when employed as an inoculum are able to degrade the soluble organics of vegetable tanned material and thus exhibit an increased level of gas production during the initial days, compared to the results of the treatments that received the anaerobic sludge. With chrome tanned materials, there was not much change in the volume of the gas produced from the two different sources. It has been found that detanning tends to improve the biodegradability of both types of leathers. PMID:16740383

  3. An anaerobic mitochondrion that produces hydrogen

    NARCIS (Netherlands)

    Boxma, B.; Graaf, de R.M.; Staay, van der G.W.M.; Alen, T.A.; Richard, G.; Gabalon, T.; Hoek, van A.H.A.M.; Moon - van der Staay, S.Y.; Koopman, W.J.H.; Hellemond, van J.J.; Tielens, A.G.M.; Friedrich, T.; Veenhuis, M.; Huynen, M.A.; Hackstein, J.H.P.

    2005-01-01

    Hydrogenosomes are organelles that produce ATP and hydrogen(1), and are found in various unrelated eukaryotes, such as anaerobic flagellates, chytridiomycete fungi and ciliates(2). Although all of these organelles generate hydrogen, the hydrogenosomes from these organisms are structurally and metabo

  4. Pectinase Activity of Anaerobic and Facultatively Anaerobic Bacteria Associated with Soft Rot of Yam (Diascorea rotundata)

    OpenAIRE

    Obi, Samuel K. C.

    1981-01-01

    Anaerobic and facultatively anaerobic bacteria associated with soft rot of yam (Diascorea rotundata) were isolated by the looping-out method and found to consist of Clostridium (three isolates), Corynebacterium (three isolates), Vibrio (one isolate), and Bacillus lentus (one isolate). Enzyme assay for hydrolase, lyase, and pectinesterase activities by the cup-plate method showed that except for Vibrio sp., B. lentus, and two isolates of Corynebacterium no pectinase activity could be detected ...

  5. Tindallia texcoconensis sp. nov., a new haloalkaliphilic bacterium isolated from lake Texcoco, Mexico.

    Science.gov (United States)

    Alazard, Didier; Badillo, Claudia; Fardeau, Marie-Laure; Cayol, Jean-Luc; Thomas, Pierre; Roldan, Teresa; Tholozan, Jean-Luc; Ollivier, Bernard

    2007-01-01

    A new alkaliphilic and moderately halophilic, strictly anaerobic, fermentative bacterium (strain IMP-300(T)) was isolated from a groundwater sample in the zone of the former soda lake Texcoco in Mexico. Strain IMP-300(T) was Gram-positive, non-sporulated, motile and rod-shaped. It grew within a pH range from 7.5 to 10.5, and an optimum at 9.5. The organism was obligately dependent on the presence of sodium salts. Growth showed an optimum at 35 degrees C with absence of growth above 45 degrees C. It fermented peptone and a few amino acids, preferentially arginine and ornithine, with production of acetate, propionate, and ammonium. Its fatty acid pattern was mainly composed of straight chain saturated, unsaturated, and cyclopropane fatty acids. The G + C content of genomic DNA was 40.0 mol%. Analysis of the 16S rRNA gene sequence indicated that the new isolate belongs to the genus Tindallia, in the low G + C Gram-positive phylum. Phylogenetically, strain IMP-300(T) has Tindallia californiensis, as closest relative with a 97.5% similarity level between their 16S rDNA gene sequences, but the DNA-DNA re-association value between the two DNAs was only 42.2%. On the basis of differences in genotypic, phenotypic, and phylogenetic characteristics, strain IMP-300(T) is proposed as a new species of the genus Tindallia, T. texcoconensis sp. nov. (type strain IMP-300(T ) = DSM 18041(T) = JCM 13990(T)).

  6. Lactobacillus formosensis sp. nov., a lactic acid bacterium isolated from fermented soybean meal.

    Science.gov (United States)

    Chang, Chi-huan; Chen, Yi-sheng; Lee, Tzu-tai; Chang, Yu-chung; Yu, Bi

    2015-01-01

    A Gram-reaction-positive, catalase-negative, facultatively anaerobic, rod-shaped lactic acid bacterium, designated strain S215(T), was isolated from fermented soybean meal. The organism produced d-lactic acid from glucose without gas formation. 16S rRNA gene sequencing results showed that strain S215(T) had 98.74-99.60 % sequence similarity to the type strains of three species of the genus Lactobacillus (Lactobacillus farciminis BCRC 14043(T), Lactobacillus futsaii BCRC 80278(T) and Lactobacillus crustorum JCM 15951(T)). A comparison of two housekeeping genes, rpoA and pheS, revealed that strain S215(T) was well separated from the reference strains of species of the genus Lactobacillus. DNA-DNA hybridization results indicated that strain S215(T) had DNA related to the three type strains of species of the genus Lactobacillus (33-66 % relatedness). The DNA G+C content of strain S215(T) was 36.2 mol%. The cell walls contained peptidoglycan of the d-meso-diaminopimelic acid type and the major fatty acids were C18 : 1ω9c, C16 : 0 and C19 : 0 cyclo ω10c/C19 : 1ω6c. Phenotypic and genotypic features demonstrated that the isolate represents a novel species of the genus Lactobacillus, for which the name Lactobacillus formosensis sp. nov. is proposed. The type strain is S215(T) ( = NBRC 109509(T) = BCRC 80582(T)).

  7. Continuous hydrogen production during fermentation of alpha-cellulose by the thermophillic bacterium Clostridium thermocellum.

    Science.gov (United States)

    Magnusson, Lauren; Cicek, Nazim; Sparling, Richard; Levin, David

    2009-02-15

    Continuous hydrogen (H2) production during fermentation of alpha-cellulose was established using the thermophillic, anaerobic bacterium Clostridium thermocellum ATCC 27405. The objectives of this work were to characterize growth of C. thermocellum, quantify H2 production and determine soluble end-product synthesis patterns during fermentation of a cellulosic substrate under continuous culture conditions. A 5 L working volume fermentor was established and growth experiments were maintained for over 3,000 h. Substrate concentrations were varied from 1 to 4 g/L and the feed was introduced with continuous nitrogen gas sparging to prevent clogging of the feed-line. The pH and temperature of the reactor were maintained at 7.0 and 600 degrees C, respectively, throughout the study. At concentrations above 4 g/L, the delivery of alpha-cellulose was impaired due to feed-line clogging and it became difficult to maintain a homogenous suspension. The highest total gas (H2 plus CO2) production rate, 56.6 mL L(-1) h(-1), was observed at a dilution rate of 0.042 h(-1) and substrate concentration of 4 g/L. Under these conditions, the H2 production rate was 5.06 mmol h(-1). Acetate and ethanol were the major soluble end-products, while lactate and formate were greatly reduced compared to production in batch cultures. Concentrations of all metabolites increased with increasing substrate concentration, with the exception of lactate. Despite a number of short-term electrical and mechanical failures during the testing period, the system recovered quickly, exhibiting substantial robustness. A carbon balance was completed to ensure that all end-products were accounted for, with final results indicating near 100% carbon recovery. This study shows that long-term, stable H2 production can be achieved during direct fermentation of an insoluble cellulosic substrate under continuous culture conditions.

  8. High-level production of the industrial product lycopene by the photosynthetic bacterium Rhodospirillum rubrum.

    Science.gov (United States)

    Wang, Guo-Shu; Grammel, Hartmut; Abou-Aisha, Khaled; Sägesser, Rudolf; Ghosh, Robin

    2012-10-01

    The biosynthesis of the major carotenoid spirilloxanthin by the purple nonsulfur bacterium Rhodospirillum rubrum is thought to occur via a linear pathway proceeding through phytoene and, later, lycopene as intermediates. This assumption is based solely on early chemical evidence (B. H. Davies, Biochem. J. 116:93-99, 1970). In most purple bacteria, the desaturation of phytoene, catalyzed by the enzyme phytoene desaturase (CrtI), leads to neurosporene, involving only three dehydrogenation steps and not four as in the case of lycopene. We show here that the chromosomal insertion of a kanamycin resistance cassette into the crtC-crtD region of the partial carotenoid gene cluster, whose gene products are responsible for the downstream processing of lycopene, leads to the accumulation of the latter as the major carotenoid. We provide spectroscopic and biochemical evidence that in vivo, lycopene is incorporated into the light-harvesting complex 1 as efficiently as the methoxylated carotenoids spirilloxanthin (in the wild type) and 3,4,3',4'-tetrahydrospirilloxanthin (in a crtD mutant), both under semiaerobic, chemoheterotrophic, and photosynthetic, anaerobic conditions. Quantitative growth experiments conducted in dark, semiaerobic conditions, using a growth medium for high cell density and high intracellular membrane levels, which are suitable for the conventional industrial production in the absence of light, yielded lycopene at up to 2 mg/g (dry weight) of cells or up to 15 mg/liter of culture. These values are comparable to those of many previously described Escherichia coli strains engineered for lycopene production. This study provides the first genetic proof that the R. rubrum CrtI produces lycopene exclusively as an end product.

  9. Clostridium tepidiprofundi sp. nov., a moderately thermophilic bacterium from a deep-sea hydrothermal vent.

    Science.gov (United States)

    Slobodkina, G B; Kolganova, T V; Tourova, T P; Kostrikina, N A; Jeanthon, C; Bonch-Osmolovskaya, E A; Slobodkin, A I

    2008-04-01

    A moderately thermophilic, anaerobic bacterium (strain SG 508T) was isolated from a hydrothermal vent chimney located at 1 degrees N on the East Pacific Rise at a depth of 2650 m. Cells of strain SG 508T were straight to slightly curved rods, 0.4-0.6 microm in diameter and 2.0-3.0 microm in length. Spore formation was observed only below pH 5.5. The temperature range for growth was 22-60 degrees C, with optimum growth at 50 degrees C. The pH range for growth was 4.0-8.5, with optimum growth at pH 6.0-6.8. Growth of strain SG 508T was observed at NaCl concentrations ranging from 1.0 to 6.0 % (w/v), with optimum growth at 2.5 % (w/v). Substrates utilized by strain SG 508T included casein, peptone, tryptone, yeast extract, beef extract, starch, maltose and glucose. The products of glucose fermentation were ethanol, acetate, H2, formate and CO2. Strain SG 508T was able to reduce elemental sulfur to hydrogen sulfide. The DNA G+C content of strain SG 508T was 30.9 mol%. 16S rRNA gene sequence analysis revealed that the isolated organism belonged to cluster I of the genus Clostridium. On the basis of its physiological properties and data from phylogenetic analyses, strain SG 508T is considered to represent a novel species of the genus Clostridium, for which the name Clostridium tepidiprofundi sp. nov. is proposed. The type strain is SG 508T (=DSM 19306T =VKM B-2459T).

  10. Bacillus thermotolerans sp. nov., a thermophilic bacterium capable of reducing humus.

    Science.gov (United States)

    Yang, Guiqin; Zhou, Xuemei; Zhou, Shungui; Yang, Dehui; Wang, Yueqiang; Wang, Dingmei

    2013-10-01

    A novel thermotolerant bacterium, designated SgZ-8(T), was isolated from a compost sample. Cells were non-motile, endospore-forming, Gram-staining positive, oxidase-negative and catalase-positive. The isolate was able to grow at 20-65 °C (optimum 50 °C) and pH 6.0-9.0 (optimum 6.5-7.0), and tolerate up to 9.0 % NaCl (w/v) under aerobic conditions. Anaerobic growth occurred with anthraquinone-2,6-disulphonate (AQDS), fumarate and NO3(-) as electron acceptors. Phylogenetic analysis based on the16S rRNA and gyrB genes grouped strain SgZ-8(T) into the genus Bacillus, with the highest similarity to Bacillus badius JCM 12228(T) (96.2 % for 16S rRNA gene sequence and 83.5 % for gyrB gene sequence) among all recognized species in the genus Bacillus. The G+C content of the genomic DNA was 49.3 mol%. The major isoprenoid quinone was menaquinone 7 (MK-7) and the polar lipids consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and an unidentified phospholipid. The major cellular fatty acid was iso-C16 : 0. On the basis of its phenotypic and phylogenetic properties, chemotaxonomic analysis and the results of physiological and biochemical tests, strain SgZ-8(T) ( = CCTCC AB 2012108(T) = KACC 16706(T)) was designated the type strain of a novel species of the genus Bacillus, for which the name Bacillus thermotolerans sp. nov. is proposed.

  11. ISOLATION OF ANAEROBES IN DEEP SEATED PRESSURE ULCERS USING A NOVEL INNOVATIVE TECHNIQUE OF ANAEROBE ISOLATION

    Directory of Open Access Journals (Sweden)

    Lalbiaktluangi

    2015-12-01

    Full Text Available BACKGROUND Isolation of an anaerobe is usually neglected in hospitals with limited resources due to the expensive and complicated technique of anaerobic isolation methods, which is difficult to arrange in such resource poor settings. Conventionally adopted anaerobic culture methods such as Anaerobic jar, Gas-Pak, Anoxomat or Automated glove-box systems are extremely costly and cumbersome for single unit testing, but not suitable for small scale laboratories. However, anaerobic bacteria are not to be overlooked as they have made a comeback in clinical settings and are even showing resistance to Metronidazole, once thought to be the gold standard bullet against anaerobes. Deep seated pressure ulcers are usually the site where anaerobe causes an infection in synergy with aerobes. AIMS AND OBJECTIVES Isolation of anaerobes in deep seated pressure ulcers using a novel innovative technique and to study their antibiogram profile. MATERIALS AND METHODS Swabs taken from depth of deep seated pressure ulcers were immediately inoculated in Brucella blood agar at bedside and placed in polycarbonate airtight jar for anaerobic incubation using a novel innovative Modified Candle Jar technique. In this technique five grams of grease-free grade zero steel wool were dipped in 50ml freshly prepared acidified copper sulphate solution until the copper colour appeared. Excess solution was drained and the steel wool was moulded into a loose pad to fit on an open Petri plate placed on top of the inoculated Brucella blood agar plates. A white-wax candle was placed at the centre of this plate. A small test tube containing mixture of 0.5g sodium-bicarbonate and 0.5g magnesium carbonate was kept ready to be placed inside the jar, just after placing the inoculated plate and incubated for 48 hours. RESULTS Peptostreptococcus anaerobius and Bacteroides fragilis were successfully isolated from deep seated pressure ulcers by this method. Antibiogram studies were done using the

  12. Rock Phosphate Solubilization Mechanisms of One Fungus and One Bacterium

    Institute of Scientific and Technical Information of China (English)

    LIN Qi-mei; ZHAO Xiao-rong; ZHAO Zi-juan; LI Bao-guo

    2002-01-01

    Many microorganisms can dissolve the insoluble phosphates like apatite. However, the mechanisms are still not clear. This study was an attempt to investigate the mechanisms of rock phosphate solubilization by an Aspergillus 2TCiF2 and an Arthrobacter1TCRi7. The results indicated that the fungus produced a large amount of organic acids, mainly oxalic acid. The total quantity of the organic acids produced by the fungus was 550 times higher than that by the bacterium. Different organic acids had completely different capacities to solubilize the rock. Oxalic acid and citric acid had stronger capacity to dissolve the rock than malic acid, tartaric acid, lactic acid, acetic acid, malonic acid and succinic acid. The fungus solubilized the rock through excreting both proton and organic acids. The rock solubilization of the bacterium depended on only proton.

  13. A Streamlined Strategy for Biohydrogen Production with an Alkaliphilic Bacterium

    Energy Technology Data Exchange (ETDEWEB)

    Elias, Dwayne A [ORNL; Wall, Judy D. [University of Missouri; Mormile, Dr. Melanie R. [Missouri University of Science and Technology; Begemann, Matthew B [University of Wisconsin, Madison

    2012-01-01

    Biofuels are anticipated to enable a shift from fossil fuels for renewable transportation and manufacturing fuels, with biohydrogen considered attractive since it could offer the largest reduction of global carbon budgets. Currently, biohydrogen production remains inefficient and heavily fossil fuel-dependent. However, bacteria using alkali-treated biomass could streamline biofuel production while reducing costs and fossil fuel needs. An alkaliphilic bacterium, Halanaerobium strain sapolanicus, is described that is capable of biohydrogen production at levels rivaling neutrophilic strains, but at pH 11 and hypersaline conditions. H. sapolanicus ferments a variety of 5- and 6- carbon sugars derived from hemicellulose and cellulose including cellobiose, and forms the end products hydrogen and acetate. Further, it can also produce biohydrogen from switchgrass and straw pretreated at temperatures far lower than any previously reported and in solutions compatible with growth. Hence, this bacterium can potentially increase the efficiency and efficacy of biohydrogen production from renewable biomass resources.

  14. Carboxydothermus pertinax sp. nov., a thermophilic, hydrogenogenic, Fe(III)-reducing, sulfur-reducing carboxydotrophic bacterium from an acidic hot spring

    DEFF Research Database (Denmark)

    Yoneda, Yasuko; Yoshida, Takashi; Kawaichi, Satoshi;

    2012-01-01

    growth on CO, H(2) and CO(2) were produced. Growth occurred on molecular hydrogen as an energy source and carbon dioxide as a sole carbon source. Growth was observed on various organic compounds under an N(2) atmosphere with the reduction of ferric iron. The temperature range for carboxydotrophic growth......A novel anaerobic, Fe(III)-reducing, hydrogenogenic, carboxydotrophic bacterium, designated strain Ug1(T), was isolated from a volcanic acidic hot spring in southern Kyushu Island, Japan. Cells of the isolate were rod-shaped (1.0-3.0 µm long) and motile due to peritrichous flagella. Strain Ug1(T...... oxidation. On the basis of phylogenetic analysis and unique physiological features, the isolate represents a novel species of the genus Carboxydothermus for which the name Carboxydothermus pertinax sp. nov. is proposed; the type strain of the novel species is Ug1(T) (=DSM 23698(T)=NBRC 107576(T))....

  15. A physical map of the hyperthermophilic bacterium Aquifex pyrophilus chromosome.

    OpenAIRE

    Shao, Z; Mages, W; Schmitt, R.

    1994-01-01

    A genomic map of the hyperthermophilic hydrogen-oxidizing bacterium Aquifex pyrophilus was established with NotI (GC/GGCCGC), SpeI (A/CTAGT), and XbaI (T/CTAGA). Linking clones and cross-hybridization of restriction fragments revealed a single circular chromosome of 1.6 Mbp. A single flagellin gene and six rRNA gene units were located on this map by Southern hybridization.

  16. Isolation of a Bacterium Capable of Degrading Peanut Hull Lignin

    OpenAIRE

    Kerr, Thomas J.; Kerr, Robert D.; Benner, Ronald

    1983-01-01

    Thirty-seven bacterial strains capable of degrading peanut hull lignin were isolated by using four types of lignin preparations and hot-water-extracted peanut hulls. One of the isolates, tentatively identified as Arthrobacter sp., was capable of utilizing all four lignin preparations as well as extracted peanut hulls as a sole source of carbon. The bacterium was also capable of degrading specifically labeled [14C]lignin-labeled lignocellulose and [14C]cellulose-labeled lignocellulose from the...

  17. A deep-sea bacterium with unique nitrifying property

    Digital Repository Service at National Institute of Oceanography (India)

    Ram, A.; LokaBharathi, P.A.; Nair, S.; Chandramohan, D.

    cember 2000 A deep - sea bacterium with unique n i trifying property A. S. Pradeep Ram, P. A. Loka Bharathi*, Shanta Nair and D. Chandramohan Department of Microbiology, National Institute of Oceanography, Dona Paula, Goa 403 004..., nitrite oxidizers have been shown to augment chemolithotrophic lifestyle with heterotrophic me tab o lism of simple carbon substrate 17 . Retaining both the traits enables them to exploit unique niches several centimetres bsf, where carbon or energy...

  18. An on-bacterium flow cytometric immunoassay for protein quantification.

    Science.gov (United States)

    Lan, Wen-Jun; Lan, Wei; Wang, Hai-Yan; Yan, Lei; Wang, Zhe-Li

    2013-09-01

    The polystyrene bead-based flow cytometric immunoassay has been widely reported. However, the preparation of functional polystyrene bead is still inconvenient. This study describes a simple and easy on-bacterium flow cytometric immunoassay for protein quantification, in which Staphylococcus aureus (SAC) is used as an antibody-antigen carrier to replace the polystyrene bead. The SAC beads were prepared by carboxyfluorescein diacetate succinimidyl ester (CFSE) labeling, paraformaldehyde fixation and antibody binding. Carcinoembryonic antigen (CEA) and cytokeratin-19 fragment (CYFRA 21-1) proteins were used as models in the test system. Using prepared SAC beads, biotinylated proteins, and streptavidin-phycoerythrin (SA-PE), the on-bacterium flow cytometric immunoassay was validated by quantifying CEA and CYFRA 21-1 in sample. Obtained data demonstrated a concordant result between the logarithm of the protein concentration and the logarithm of the PE mean fluorescence intensity (MFI). The limit of detection (LOD) in this immunoassay was at least 0.25 ng/ml. Precision and accuracy assessments appeared that either the relative standard deviation (R.S.D.) or the relative error (R.E.) was CYFRA 21-1. In conclusion, the on-bacterium flow cytometric immunoassay may be of use in the quantification of serum protein. PMID:23739299

  19. Salt-inducible promoter derivable from a lactic acid bacterium, and its use in a lactic acid bacterium for production of a desired protein

    NARCIS (Netherlands)

    Sanders, Jan Willem; Kok, Jan; Venema, Gerard; Ledeboer, Adrianus Marinus

    1998-01-01

    The invention provides a salt-inducible promoter present in SEQ ID NO: 10 and derivable from a lactic acid bacterium in isolation from the coding sequence normally controlled by said promoter in a wild-type lactic acid bacterium, with modifications and important parts thereof. Also provided are a re

  20. In situ detection of anaerobic alkane metabolites in subsurface environments

    Directory of Open Access Journals (Sweden)

    Lisa eGieg

    2013-06-01

    Full Text Available Alkanes comprise a substantial fraction of crude oil and refined fuels. As such, they are prevalent within deep subsurface fossil fuel deposits and in shallow subsurface environments such as aquifers that are contaminated with hydrocarbons. These environments are typically anaerobic, and host diverse microbial communities that can potentially use alkanes as substrates. Anaerobic alkane biodegradation has been reported to occur under nitrate-reducing, sulfate-reducing, and methanogenic conditions. Elucidating the pathways of anaerobic alkane metabolism has been of interest in order to understand how microbes can be used to remediate contaminated sites. Alkane activation primarily occurs by addition to fumarate, yielding alkylsuccinates, unique anaerobic metabolites that can be used to indicate in situ anaerobic alkane metabolism. These metabolites have been detected in hydrocarbon-contaminated shallow aquifers, offering strong evidence for intrinsic anaerobic bioremediation. Recently, studies have also revealed that alkylsuccinates are present in oil and coal seam production waters, indicating that anaerobic microbial communities can utilize alkanes in these deeper subsurface environments. In many crude oil reservoirs, the in situ anaerobic metabolism of hydrocarbons such as alkanes may be contibuting to modern-day detrimental effects such as oilfield souring, or may lead to more benefical technologies such as enhanced energy recovery from mature oilfields. In this review, we briefly describe the key metabolic pathways for anaerobic alkane (including n-alkanes, isoalkanes, and cyclic alkanes metabolism and highlight several field reports wherein alkylsuccinates have provided evidence for anaerobic in situ alkane metabolism in shallow and deep subsurface environments.

  1. Atrazine removal in Danish anaerobic aquifers

    DEFF Research Database (Denmark)

    Pedersen, Philip Grinder; Arildskov, N.P.; Albrechtsen, Hans-Jørgen

    2002-01-01

    The pesticide atrazine (6-chloro-N-2-ethyl-N-4-isopropyl-1,3,5-triazine -2,4-diamine) was removed from the water phase in anaerobic laboratory batch incubations with sediment and groundwater from a number of Danish anaerobic aquifers, but not in incubations from aerobic aquifers. The removal...... process was abiotic since atrazine was also removed from microbially inhibited autoclaved and chloroform amended controls, although in controls amended with mercury, atrazine removal was slowed down. (ring-U-C-14)- atrazine amended samples showed no mineralization to (CO2)-C-14 or transformation...... to soluble degradation products, indicating that a slow sorption process was responsible for the atrazine removal. Approximately 20% of the applied C-14-atrazine was present in a non-extractable residual sediment bound fraction, indicating the slow sorption process to be in part irreversible...

  2. Cultivation of anaerobic and facultatively anaerobic bacteria from spacecraft-associated clean rooms.

    Science.gov (United States)

    Stieglmeier, Michaela; Wirth, Reinhard; Kminek, Gerhard; Moissl-Eichinger, Christine

    2009-06-01

    In the course of this biodiversity study, the cultivable microbial community of European spacecraft-associated clean rooms and the Herschel Space Observatory located therein were analyzed during routine assembly operations. Here, we focused on microorganisms capable of growing without oxygen. Anaerobes play a significant role in planetary protection considerations since extraterrestrial environments like Mars probably do not provide enough oxygen for fully aerobic microbial growth. A broad assortment of anaerobic media was used in our cultivation strategies, which focused on microorganisms with special metabolic skills. The majority of the isolated strains grew on anaerobic, complex, nutrient-rich media. Autotrophic microorganisms or microbes capable of fixing nitrogen were also cultivated. A broad range of facultatively anaerobic bacteria was detected during this study and also, for the first time, some strictly anaerobic bacteria (Clostridium and Propionibacterium) were isolated from spacecraft-associated clean rooms. The multiassay cultivation approach was the basis for the detection of several bacteria that had not been cultivated from these special environments before and also led to the discovery of two novel microbial species of Pseudomonas and Paenibacillus.

  3. Anaerobic treatment of wastewater containing methanol in upflow anaerobic sludge bed (UASB) reactor

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The direct conversion of methanol into methane is the main process in anaerobic treatment of methanol containing wastewater.However,acetic acid can also be produced from methanol theoretically,which may probably result in an abrupt pH drop and deteriorate the anaerobic process.Therefore,it is interesting to know what would really happen in an anaerobic reactor treating methanol wastewater.In this study,an up-flow anaerobic sludge bed (UASB) reactor treating methanol wastewater was operated.The chemical oxygen demand (COD),acetic acid and pH of the effluent were monitored at different loadings and influent alkalinity.The results showed that the anaerobic reactor could be operated steadily at as low as 119 mg/L of influent alkalinity and high organic loading rate with no obvious pH drops.Volatile fatty acids accumulation was not observed even at strong shock loadings.The microorganisms in the sludge at the end of the test became homogeneous in morphology,which were mainly spherical or spheroidal in shape.

  4. Running-based Anaerobic Sprint Test as a Procedure to Evaluate Anaerobic Power.

    Science.gov (United States)

    Andrade, V L; Zagatto, A M; Kalva-Filho, C A; Mendes, O C; Gobatto, C A; Campos, E Z; Papoti, M

    2015-12-01

    The aim of this study was to evaluate the use of the running anaerobic sprint test (RAST) as a predictor of anaerobic capacity, compare it to the maximal accumulated oxygen deficit (MAOD) and to compare the RAST's parameters with the parameters of 30-s all-out tethered running on a treadmill. 39 (17.0±1.4 years) soccer players participated in this study. The participants underwent an incremental test, 10 submaximal efforts [50-95% of velocity correspondent to VO(2MAX) (vVO(2MAX))] and one supramaximal effort at 110% of vVO(2MAX) for the determination of MAOD. Furthermore, the athletes performed the RAST. In the second stage the 30-s all-out tethered running was performed on a treadmill (30-s all-out), and compared with RAST. No significant correlation was observed between MAOD and RAST parameters. However, significant correlations were found between the power of the fifth effort (P5) of RAST with peak and mean power of 30-s all-out (r=0.73 and 0.50; p<0.05, respectively). In conclusion, the parameters from RAST do not have an association with MAOD, suggesting that this method should not be used to evaluate anaerobic capacity. Although the correlations between RAST parameters with 30-s all-out do reinforce the RAST as an evaluation method of anaerobic metabolism, such as anaerobic power. PMID:26422055

  5. Deep Conversion of Carbon Monoxide to Hydrogen and Formation of Acetate by the Anaerobic Thermophile Carboxydothermus hydrogenoformans

    Directory of Open Access Journals (Sweden)

    Anne M. Henstra

    2011-01-01

    Full Text Available Carboxydothermus hydrogenoformans is a thermophilic strictly anaerobic bacterium that catalyses the water gas shift reaction, the conversion of carbon monoxide with water to molecular hydrogen and carbon dioxide. The thermodynamically favorable growth temperature, compared to existing industrial catalytic processes, makes this organism an interesting alternative for production of cheap hydrogen gas suitable to fuel CO-sensitive fuel cells in a future hydrogen economy, provided sufficiently low levels of CO are reached. Here we study CO conversion and final CO levels in cultures of C. hydrogenoformans grown in batch cultures that were started with a 100% CO gas phase with and without removal of formed CO2. Final CO levels were 117 ppm without CO2 removal and below 2 ppm with CO2 removal. The Gibbs free energy change calculated with measured end concentrations and the detection of acetate suggest that C. hydrogenoformans shifted from a hydrogenogenic to an acetogenic metabolism.

  6. Anaerobic digestion of food and vegetable waste

    OpenAIRE

    Jiang, Ying

    2012-01-01

    Food and vegetable wastes contribute a large percentage of the organic fraction of municipal solid waste (OFMSW), and anaerobic digestion potentially offers an ideal method for their management. Their chemical composition can, however, lead to unstable operation and in extreme cases complete process failure has been reported with this type of substrate. Semi-continuous trials on vegetable waste were carried out in laboratory-scale digesters with daily feed additions at different organic loadi...

  7. Anaerobic co-digestion of organic wastes

    OpenAIRE

    L. Neves

    2009-01-01

    Tese de doutoramento em Engenharia Química e Biológica Anaerobic digestion is an already established process but the increasing need of bio‐waste recovery has determined the emergence of new substrates, revamping the research in this field. Contrary to some other European countries, in Portugal this technology is still scarcely in use. Nonetheless, the current legislation endorses this application as a waste management and as an energy recovery process. The rapid growth of the ...

  8. Anaerobic microbial LCFA degradation in bioreactors

    OpenAIRE

    Sousa, D.Z.; Pereira, M.A.; Alves, J.I.; Smidt, Hauke; Stams, A.J.M.; Alves, M. M.

    2008-01-01

    This paper reviews recent results obtained on long-chain fatty acids (LCFA) anaerobic degradation. Two LCFA were used as model substrates: oleate, a mono-unsaturated LCFA, and palmitate, a saturated LCFA, both abundant in LCFA-rich wastewaters. 16S rRNA gene analysis of sludge samples submitted to continuous oleate- and palmitate-feeding followed by batch degradation of the accumulated LCFA demonstrated that bacterial communities were dominated by members of the Clostridiaceae and Sy...

  9. Anaerobic membrane bioreactors: Are membranes really necessary?

    OpenAIRE

    Davila, M.; Kassab, G.; Klapwijk, A.; Van, Lier, G

    2008-01-01

    Membranes themselves represent a significant cost for the full scale application of anaerobic membrane bioreactors (AnMBR). The possibility of operating an AnMBR with a self-forming dynamic membrane generated by the substances present in the reactor liquor would translate into an important saving. A self-forming dynamic membrane only requires a support material over which a cake layer is formed, which determines the rejection properties of the system. The present research studies the applicat...

  10. Anaerobic digestion in sustainable biomass chains

    OpenAIRE

    Pabon Pereira, C.P.

    2009-01-01

    This thesis evaluates the potential contribution of anaerobic digestion (AD) to the sustainability of biomass chains. Results provide insights in the technological potential to recover energy and valuable by-products from energy crops and residues, and evaluate biomass cascades involving AD technology for their feasibility and desirability. Embedding AD in biomass chains addresses current constraints towards increased use of biomass for energy production considering land competition and envir...

  11. Evaluation of the anaerobe effort capacity

    OpenAIRE

    Anca M. Ionescu

    2008-01-01

    This article aims at presenting the main methods by which can be evaluated the effort anaerobe capacity, as well as their rolein conducting the physical training, depending on the performance level, sportsman’s preparation level, training stage, age andsex; depending on the above-mentioned criteria, are recommended certain tests, related mainly to the specificity (intensity,duration) of the practiced effort. Also, the concomitant appreciation of the aerobe capacity can direct us in evaluation...

  12. On the kinetics of anaerobic power

    Directory of Open Access Journals (Sweden)

    Moxnes John F

    2012-07-01

    Full Text Available Abstract Background This study investigated two different mathematical models for the kinetics of anaerobic power. Model 1 assumes that the work power is linear with the work rate, while Model 2 assumes a linear relationship between the alactic anaerobic power and the rate of change of the aerobic power. In order to test these models, a cross country skier ran with poles on a treadmill at different exercise intensities. The aerobic power, based on the measured oxygen uptake, was used as input to the models, whereas the simulated blood lactate concentration was compared with experimental results. Thereafter, the metabolic rate from phosphocreatine break down was calculated theoretically. Finally, the models were used to compare phosphocreatine break down during continuous and interval exercises. Results Good similarity was found between experimental and simulated blood lactate concentration during steady state exercise intensities. The measured blood lactate concentrations were lower than simulated for intensities above the lactate threshold, but higher than simulated during recovery after high intensity exercise when the simulated lactate concentration was averaged over the whole lactate space. This fit was improved when the simulated lactate concentration was separated into two compartments; muscles + internal organs and blood. Model 2 gave a better behavior of alactic energy than Model 1 when compared against invasive measurements presented in the literature. During continuous exercise, Model 2 showed that the alactic energy storage decreased with time, whereas Model 1 showed a minimum value when steady state aerobic conditions were achieved. During interval exercise the two models showed similar patterns of alactic energy. Conclusions The current study provides useful insight on the kinetics of anaerobic power. Overall, our data indicate that blood lactate levels can be accurately modeled during steady state, and suggests a linear

  13. Anaerobic degradation of linear alkylbenzene sulfonate

    DEFF Research Database (Denmark)

    Mogensen, Anders Skibsted; Haagensen, Frank; Ahring, Birgitte Kiær

    2003-01-01

    Linear alkylbenzene sulfonate (LAS) found in wastewater is removed in the wastewater treatment facilities by sorption and aerobic biodegradation. The anaerobic digestion of sewage sludge has not been shown to contribute to the removal. The concentration of LAS based on dry matter typically increa...... under thermophilic conditions was 37% with LAS as sole carbon source. Benzaldehyde was produced in the UASB reactor during LAS transformation....

  14. Some unique features of alkaliphilic anaerobes

    Science.gov (United States)

    Roof, Erin; Pikuta, Elena; Otto, Christopher; Williams, George; Hoover, Richard

    2013-09-01

    This article explores two topics involving the examination of four strains of alkaliphilic anaerobes. The first topic was dedicated to detection of the ability of microorganisms to metabolize alternative chirality substrates. Two saccharolytic anaerobic bacteria were chosen for the first experiment: Anaerovirgula multivorans strain SCAT, which is gram positive and spore-forming; and Spirochaeta dissipatitropha, strain ASpC2T, which is gram negative. It was found that both checked sugarlytics were able to use L-ribose and L-arabinose, as growth substrates. The second part was concerned of study a chemolithotrophy in two halo-alkaliphilic sulfate reducing bacteria: Desulfonatornum thiodismutans strain MLF1T and Desulfonatronum lacustre strain Z-7951T. The experiments with lithotrophs had demonstrated that strain MLF1T was capable to grow without any organic source of carbon, while strain Z-7951T had required at least 2 mM sodium acetate for growth. Anaerobic technique was used for preparation of the growth media and maintenance of these bacterial cultures. Standard methods for Gram, spore, and flagella staining were applied for characterization of cytomorphology. In this article, the results of the experiments performed on cytological, physiological, and biochemical levels are presented and discussed.

  15. Alternating Current Influences Anaerobic Electroactive Biofilm Activity.

    Science.gov (United States)

    Wang, Xin; Zhou, Lean; Lu, Lu; Lobo, Fernanda Leite; Li, Nan; Wang, Heming; Park, Jaedo; Ren, Zhiyong Jason

    2016-09-01

    Alternating current (AC) is known to inactivate microbial growth in suspension, but how AC influences anaerobic biofilm activities has not been systematically investigated. Using a Geobacter dominated anaerobic biofilm growing on the electrodes of microbial electrochemical reactors, we found that high frequency AC ranging from 1 MHz to 1 kHz (amplitude of 5 V, 30 min) showed only temporary inhibition to the biofilm activity. However, lower frequency (100 Hz, 1.2 or 5 V) treatment led to 47 ± 19% permanent decrease in limiting current on the same biofilm, which is attributed to the action of electrohydrodynamic force that caused biofilm damage and loss of intercellular electron transfer network. Confocal microscopy images show such inactivation mainly occurred at the interface between the biofilm and the electrode. Reducing the frequency further to 1 Hz led to water electrolysis, which generated gas bubbles that flushed all attached cells out of the electrode. These findings provide new references on understanding and regulating biofilm growth, which has broader implications in biofouling control, anaerobic waste treatment, energy and product recovery, and general understanding of microbial ecology and physiology. PMID:27485403

  16. Microbial Aspects of Anaerobic BTEX Degradation

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Combined with conventional methods, developments in both geochemical (delineation of redox processes) and molecular microbial methods (analysis of 16S rDNA genes and functional genes) have allowed us to study in details microorganisms and genes involved in the anaerobic degradation of benzene, toluene, ethylbenzene and xylene (BTEX) under specific redox conditions. This review summarizes recent research in this field. The potential for anaerobic BTEX degradation is widely spread. Specific groups of microorganisms appear to be involved in degradation under different redox conditions. Members of the Azoarcus/Thauera cluster perform BTEX degradation under denitrifying conditions, Geobacteraceae under Fe (III) reducing conditions and Desulfobacteriaceae under sulfate reducing conditions. The information so far obtained on biochemistry and molecular genetics of BTEX degradation indicates that each BTEX compound is funneled into the central benzyol-CoA pathway by a different peripheral pathway. The peripheral pathways of per BTEX compound show similarities among different physiological groups of microorganisms. We also describe how knowledge obtained on the microbial aspects of BTEX degradation can be used to enhance and monitor anaerobic BTEX degradation.

  17. Vinasses treatment in anaerobic fludized bed reactor.

    Directory of Open Access Journals (Sweden)

    Francisco J. C. Terán

    2009-03-01

    Full Text Available The agricultural use of vinasse produced by the sugar industry has gone through many changes over the years. Coupled with concern over the increased agronomic efficiency and optimizing the management of the use of such waste, you can highlight the major global ecological awareness, developed after 90s. This study aims at the construction and operation of a reactor anaerobic cracker (RALF on pilot scale to verify the burden of chemical demand of oxygen (DQO of vinasse, under mesophilic. The stillage used for feeding the reactor was from a sugar cane processing plant, located in the city of Regente Feijó, São Paulo State. The inoculum was anaerobic sludge from a reactor and upward flow anaerobic sludge blanket (UASB treating wastewater from a factory of soda. The concentrations of vinasse to be treated ranged 17,239 mg DQO L-1 up to 28,174 mg DQO L-1. The effluent pH was maintained between 6.4 and 8.6 during the research. The productivity of biogas in the reactor has not achieved the expected rates, reaching only 46 mL day-1. Maximum efficiency attained during operation was 51.1 %, corresponding to a 14-day operation time, vinasses organic loading of 19.5 kg DQO m-3 dia-1 and to an hydraulic detention time of one day.

  18. Bioaugmentation of biogas production by a hydrogen-producing bacterium.

    Science.gov (United States)

    Ács, Norbert; Bagi, Zoltán; Rákhely, Gábor; Minárovics, János; Nagy, Katalin; Kovács, Kornél L

    2015-06-01

    The rate-limiting nature of the hydrogen concentration prevailing in the anaerobic digester has been recognized, but the associated alterations in the microbial community are unknown. In response to the addition of Enterobacter cloacae cells in laboratory anaerobic digesters, the level of biogas production was augmented. Terminal restriction fragment length polymorphism (T-RFLP) and real-time polymerase chain reaction (Real-Time PCR) were used to study the survival of mesophilic hydrogen-producing bacteria and the effects of their presence on the composition of the other members of the bacterial community. E. cloacae proved to maintain a stable cell number and to influence the microbial composition of the system. Bioaugmentation by a single strain added to the natural biogas-producing microbial community was demonstrated. The community underwent pronounced changes as a result of the relatively slight initial shift in the microbiological system, responding sensitively to the alterations in local hydrogen concentration.

  19. 微生物制剂在污水处理中的应用研究%Research on Microorganism Bacterium Agent Application in the Sewage Treatment

    Institute of Scientific and Technical Information of China (English)

    陈曦

    2012-01-01

      Microorganism Bacterium Agent composed of the ammonia oxidation bacteria and nitrifying bacteria was added in sludge anaerobic digestion solution in this paper, which could degrade high levels of ammonia nitrogen, nitrite and nitrate accumulation was determined by pH of sludge anaerobic digestion solution, when pH was less than 6 nitrifying activity was basicly inhibited,when pH was 8~9 , shortcut nitrification. can achieve.%  本文采用由氨氧化细菌和硝化细菌组成的微生物制剂投加到污泥厌氧消化液中,可降解较高浓度的氨氮,亚硝酸盐和硝酸盐的积累受污泥厌氧消化液 pH 的影响,pH 低于6时硝化活性基本受抑制,pH 在8~9之间可实现短程硝化。

  20. Thiocyanate hydrolase, the primary enzyme initiating thiocyanate degradation in the novel obligately chemolithoautotrophic halophilic sulfur-oxidizing bacterium Thiohalophilus thiocyanoxidans.

    Science.gov (United States)

    Bezsudnova, Ekaterina Yu; Sorokin, Dimitry Yu; Tikhonova, Tamara V; Popov, Vladimir O

    2007-12-01

    Thiohalophilus thiocyanoxidans is a first halophilic sulfur-oxidizing chemolithoautotrophic bacterium capable of growth with thiocyanate as an electron donor at salinity up to 4 M NaCl. The cells, grown with thiocyanate, but not with thiosulfate, contained an enzyme complex hydrolyzing thiocyanate to sulfide and ammonia under anaerobic conditions with carbonyl sulfide as an intermediate. Despite the fact of utilization of the , high cyanase activity was also detected in thiocyanate-induced cells. Three-stage column chromotography resulted in a highly purified thiocyanate-hydrolyzing protein with an apparent molecular mass of 140 kDa that consists of three subunits with masses 17, 19 and 29 kDa. The enzyme is a Co,Fe-containing protein resembling on its function and subunit composition the enzyme thiocyanate hydrolase from the Betaproteobacterium Thiobacillus thioparus. Cyanase, copurified with thiocyanate hydrolase, is a bisubstrate multisubunit enzyme with an apparent subunit molecular mass of 14 kDa. A possible role of cyanase in thiocyanate degradation by T. thiocyanoxidans is discussed.

  1. Production and consumption of hydrogen in hot spring microbial mats dominated by a filamentous anoxygenic photosynthetic bacterium.

    Science.gov (United States)

    Otaki, Hiroyo; Everroad, R Craig; Matsuura, Katsumi; Haruta, Shin

    2012-01-01

    Microbial mats containing the filamentous anoxygenic photosynthetic bacterium Chloroflexus aggregans develop at Nakabusa hot spring in Japan. Under anaerobic conditions in these mats, interspecies interaction between sulfate-reducing bacteria as sulfide producers and C. aggregans as a sulfide consumer has been proposed to constitute a sulfur cycle; however, the electron donor utilized for microbial sulfide production at Nakabusa remains to be identified. In order to determine this electron donor and its source, ex situ experimental incubation of mats was explored. In the presence of molybdate, which inhibits biological sulfate reduction, hydrogen gas was released from mat samples, indicating that this hydrogen is normally consumed as an electron donor by sulfate-reducing bacteria. Hydrogen production decreased under illumination, indicating that C. aggregans also functions as a hydrogen consumer. Small amounts of hydrogen may have also been consumed for sulfur reduction. Clone library analysis of 16S rRNA genes amplified from the mats indicated the existence of several species of hydrogen-producing fermentative bacteria. Among them, the most dominant fermenter, Fervidobacterium sp., was successfully isolated. This isolate produced hydrogen through the fermentation of organic carbon. Dispersion of microbial cells in the mats resulted in hydrogen production without the addition of molybdate, suggesting that simultaneous production and consumption of hydrogen in the mats requires dense packing of cells. We propose a cyclic electron flow within the microbial mats, i.e., electron flow occurs through three elements: S (elemental sulfur, sulfide, sulfate), C (carbon dioxide, organic carbon) and H (di-hydrogen, protons).

  2. Two-phase anaerobic digestion of coffee wet wastewater: Effect of recycle on anaerobic process performance

    OpenAIRE

    Yans Guardia Puebla; Suyén Rodríguez Pérez; Yennys Cuscó Varona; Janet Jiménez Hernández; Víctor Sánchez Girón

    2014-01-01

    The present work shows the results of the two-phase anaerobic digestion assessment for the treatment of coffee wet wastewater. The effect of recycle on the anaerobic digestion process was studied. Twooverall organic loading rate (OLR) values of 4,2 and 5,7 kgCOD·m -3 ·d -1 , with same overall hydraulic retention time (HRT) of 21,5 h was evaluated.In a two-phase system wereapplied two recycle rate of 0,4 and 1,0, of the effluent of an UASB-UAF methanogenic hybrid reactor towards an UASB acidog...

  3. Bacterial ecology of abattoir wastewater treated by an anaerobic digestor

    OpenAIRE

    Linda Jabari; Hana Gannoun; Eltaief Khelifi; Jean-Luc Cayol; Jean-Jacques Godon; Moktar Hamdi; Marie-Laure Fardeau

    2016-01-01

    Abstract Wastewater from an anaerobic treatment plant at a slaughterhouse was analysed to determine the bacterial biodiversity present. Molecular analysis of the anaerobic sludge obtained from the treatment plant showed significant diversity, as 27 different phyla were identified. Firmicutes, Proteobacteria, Bacteroidetes, Thermotogae, Euryarchaeota (methanogens), and msbl6 (candidate division) were the dominant phyla of the anaerobic treatment plant and represented 21.7%, 18.5%, 11.5%, 9.4%,...

  4. The anaerobic corrosion of carbon steel in concrete

    International Nuclear Information System (INIS)

    This is the final report of a 2 year programme aimed at (1) determining the rate of anaerobic corrosion of steel in concrete, (2) investigating the nature of the corrosion products formed on carbon steel embedded in cementitious material under anaerobic conditions and (3) evaluating the effect of hydrogen over-pressures on the rate of anaerobic corrosion. All experiments have been carried out at temperatures in the range 20-300C, ie ambient conditions. 4 refs.; 19 figs.; 6 tabs

  5. Control of calcium carbonate precipitation in anaerobic reactors.

    OpenAIRE

    Langerak, van, B.

    1998-01-01

    Anaerobic treatment of waste waters with a high calcium content may lead to excessive precipitation of calcium carbonate. So far, no proper methods were available to predict or reduce the extent of precipitation in an anaerobic treatment system. Moreover, it also was not clear to what extent precipitation in an anaerobic reactor can be tolerated because adequate knowledge on the structure and quality of methanogenic sludges with high calcium carbonate content was lacking. In this thesis, the ...

  6. APPLICATION OF ANAEROBIC BIOTECHNOLOGY FOR PHARMACEUTICAL WASTEWATER TREATMENT

    OpenAIRE

    Shreeshivadasan Chelliapan and Paul J. Sallis

    2011-01-01

    The wastewater generated from pharmaceutical industry generally contain high organic load and the treatment is primarily carried out using two major types of biological methods; aerobic and anaerobic. However, due to high strength, it is infeasible to treat some pharmaceutical wastewater using aerobic biological processes. As an alternative, an anaerobic process is preferred to remove high strength organic matter. Anaerobic wastewater treatment is considered as the most cost effective solutio...

  7. Research Progress and Perspectives of Nitrogen Fixing Bacterium, Gluconacetobacter diazotrophicus, in Monocot Plants

    Directory of Open Access Journals (Sweden)

    N. Eskin

    2014-01-01

    Full Text Available Gluconacetobacter diazotrophicus is a nitrogen fixing bacterium originally found in monocotyledon sugarcane plants in which the bacterium actively fixes atmosphere nitrogen and provides significant amounts of nitrogen to plants. This bacterium mainly colonizes intercellular spaces within the roots and stems of plants and does not require the formation of the complex root organ like nodule. The bacterium is less plant/crop specific and indeed G. diazotrophicus has been found in a number of unrelated plant species. Importantly, as the bacterium was of monocot plant origin, there exists a possibility that the nitrogen fixation feature of the bacterium may be used in many other monocot crops. This paper reviews and updates the research progress of G. diazotrophicus for the past 25 years but focuses on the recent research development.

  8. Fast Neutron Irradiation of the Highly Radioresistant Bacterium Deinococcus Radiodurans

    Science.gov (United States)

    Case, Diane Louise

    Fast neutron dose survival curves were generated for the bacterium Deinococcus radiodurans, which is renowned for its unusually high resistance to gamma, x-ray, and ultraviolet radiation, but for which fast neutron response was unknown. The fast neutrons were produced by the University of Massachusetts Lowell 5.5-MV, type CN Van de Graaff accelerator through the ^7Li(p,n)^7 Be reaction by bombarding a thick metallic lithium target with a 4-MeV proton beam. The bacteria were uniformly distributed on 150-mm agar plates and were exposed to the fast neutron beam under conditions of charged particle equilibrium. The plates were subdivided into concentric rings of increasing diameter from the center to the periphery of the plate, within which the average neutron dose was calculated as the product of the precisely known neutron fluence at the average radius of the ring and the neutron energy dependent kerma factor. The neutron fluence and dose ranged from approximately 3 times 1013 n cm^ {-2} to 1 times 1012 n cm^ {-2}, and 200 kilorad to 5 kilorad, respectively, from the center to the periphery of the plate. Percent survival for Deinococcus radiodurans as a function of fast neutron dose was derived from the ability of the irradiated cells to produce visible colonies within each ring compared to that of a nonirradiated control population. The bacterium Escherichia coli B/r (CSH) was irradiated under identical conditions for comparative purposes. The survival response of Deinococcus radiodurans as a result of cumulative fast neutron exposures was also investigated. The quantification of the ability of Deinococcus radiodurans to survive cellular insult from secondary charged particles, which are produced by fast neutron interactions in biological materials, will provide valuable information about damage and repair mechanisms under extreme cellular stress, and may provide new insight into the origin of this bacterium's unprecedented radiation resistance.

  9. Anaerobic Metabolism and Bioremediation of Explosives-Contaminated Soil

    Science.gov (United States)

    Boopathy, Raj

    Nitroaromatic compounds pollute soil, water, and food via use of pesticides, plastics, pharmaceuticals, landfill dumping of industrial wastes, and the military use of explosives. Biotransformation of trinitrotoluene and other nitroaromatics by aerobic bacteria in the laboratory has been frequently reported, but the anaerobic bacterial metabolism of nitroaromatics has not been studied as extensively perhaps due to the difficulty in working with anaerobic cultures and the slow growth of anaerobes. Sulfate-reducing and methanogenic bacteria can metabolize nitroaromatic compounds under anaerobic conditions if appropriate electron donors and electron acceptors are present in the environment.

  10. Phosphate enhances levan production in the endophytic bacterium Gluconacetobacter diazotrophicus Pal5

    OpenAIRE

    Idogawa, Nao; Amamoto, Ryuta; Murata, Kousaku; Kawai, Shigeyuki

    2014-01-01

    Gluconacetobacter diazotrophicus is a gram-negative and endophytic nitrogen-fixing bacterium that has several beneficial effects in host plants; thus, utilization of this bacterium as a biofertilizer in agriculture may be possible. G. diazotrophicus synthesizes levan, a D-fructofuranosyl polymer with β-(2→6) linkages, as an exopolysaccharide and the synthesized levan improves the stress tolerance of the bacterium. In this study, we found that phosphate enhances levan production by G. diazotro...

  11. A Plant Growth-Promoting Bacterium That Decreases Nickel Toxicity in Seedlings

    OpenAIRE

    Burd, Genrich I.; Dixon, D. George; Glick, Bernard R.

    1998-01-01

    A plant growth-promoting bacterium, Kluyvera ascorbata SUD165, that contained high levels of heavy metals was isolated from soil collected near Sudbury, Ontario, Canada. The bacterium was resistant to the toxic effects of Ni2+, Pb2+, Zn2+, and CrO4−, produced a siderophore(s), and displayed 1-aminocyclopropane-1-carboxylic acid deaminase activity. Canola seeds inoculated with this bacterium and then grown under gnotobiotic conditions in the presence of high concentrations of nickel chloride w...

  12. Anaerobic oxidation of Hg(0) and methylmercury formation by Desulfovibrio desulfuricans ND132

    Science.gov (United States)

    Colombo, Matthew J.; Ha, Juyoung; Reinfelder, John R.; Barkay, Tamar; Yee, Nathan

    2013-07-01

    The transformation of inorganic mercury (Hg) to methylmercury (MeHg) plays a key role in determining the amount of Hg that is bioaccumulated in aquatic food chains. An accurate knowledge of Hg methylation mechanisms is required to predict the conditions that promote MeHg production in aquatic environments. In this study, we conducted experiments to examine the oxidation and methylation of dissolved elemental mercury [Hg(0)] by the anaerobic bacterium Desulfovibrio desulfuricans ND132. Anoxic cultures of D. desulfuricans ND132 were exposed to Hg(0) in the dark, and samples were collected and analyzed for the loss of Hg(0), formation of non-purgeable Hg, and formation of MeHg over time. We found that D. desulfuricans ND132 rapidly transformed dissolved gaseous mercury into non-purgeable Hg, with bacterial cultures producing approximately 40 μg/L of non-purgeable Hg within 30 min, and as much as 800 μg/L of non-purgeable Hg after 36 h. Derivatization of the non-purgeable Hg in the cell suspensions to diethylmercury and analysis of Hg(0)-reacted D. desulfuricans ND132 cells using X-ray absorption near edge structure (XANES) spectroscopy demonstrated that cell-associated Hg was dominantly in the oxidized Hg(II) form. Spectral comparisons and linear combination fitting of the XANES spectra indicated that the oxidized Hg(II) was covalently bonded to cellular thiol functional groups. MeHg analyses revealed that D. desulfuricans ND132 produced up to 118 μg/L of methylmercury after 36 h of incubation. We found that a significant fraction of the methylated Hg was exported out of the cell and released into the culture medium. The results of this work demonstrate a previously unrecognized pathway in the mercury cycle, whereby anaerobic bacteria produce MeHg when provided with dissolved Hg(0) as their sole Hg source.

  13. Magnetic guidance of the magnetotactic bacterium Magnetospirillum gryphiswaldense.

    Science.gov (United States)

    Loehr, Johannes; Pfeiffer, Daniel; Schüler, Dirk; Fischer, Thomas M

    2016-04-21

    Magnetospirillum gryphiswaldense is a magnetotactic bacterium with a permanent magnetic moment capable of swimming using two bipolarly located flagella. In their natural environment these bacteria swim along the field lines of the homogeneous geomagnetic field in a typical run and reversal pattern and thereby create non-differentiable trajectories with sharp edges. In the current work we nevertheless achieve stable guidance along curved lines of mechanical instability by using a heterogeneous magnetic field of a garnet film. The successful guidance of the bacteria depends on the right balance between motility and the magnetic moment of the magnetosome chain. PMID:26972517

  14. Factors Affecting Zebra Mussel Kill by the Bacterium Pseudomonas fluorescens

    Energy Technology Data Exchange (ETDEWEB)

    Daniel P. Molloy

    2004-02-24

    The specific purpose of this research project was to identify factors that affect zebra mussel kill by the bacterium Pseudomonas fluorescens. Test results obtained during this three-year project identified the following key variables as affecting mussel kill: treatment concentration, treatment duration, mussel siphoning activity, dissolved oxygen concentration, water temperature, and naturally suspended particle load. Using this latter information, the project culminated in a series of pipe tests which achieved high mussel kill inside power plants under once-through conditions using service water in artificial pipes.

  15. POTENTIAL APPLICATION OF AN AEROBIC DENITRIFYING BACTERIUM AS BIOAGENTS FOR WASTEWATER TREATMENT%利用需氧反硝化细菌处理废水的潜在应用价值

    Institute of Scientific and Technical Information of China (English)

    LI Ping; LIU De-Li; ZHENG Yong-Liang; JIANG Yue; ZHANG Shan; CHEN Shu-Li

    2006-01-01

    A bacterium strain HS-03 was isolated from the activated sludge plant in a suburb of Wuhan city, China which has been found to be capable of aerobic denitrification. The effect of different inoculated amounts of pre-cultured media was analyzed. The denitrifying rates of this strain under aerobic and micro-anaerobic conditions were compared. The result indicated that the rate was almost not affected by the presence of oxygen. 10m M nitrate was removed more than 90% in 36 hours by this bacterium in the specific medium. During the denitrifying process, nitrite was always kept at very low level. The denitrification potential of this bacterium was evaluated to treat artificial wastewater under fully aerobic conditions. Main biochemical and physiological features of this strain were characterized. The 16S rDNA sequence was compared with the published data in GenBank by using BLAST. The BLAST level of similarity to Pseudomonas stutzeri was 99.1%. These results of phenotype and genotype proved that the strain HS03 was a new strain belonging to the species of P. stutzeri.

  16. Acid resistance of methanogenic bacteria in a two-stage anaerobic process treating high concentration methanol Wastewater

    Institute of Scientific and Technical Information of China (English)

    ZHOU Xuefei; REN Nanqi

    2007-01-01

    In this study,the two-stage upflow anaerobic sludge blanket(UASB)system and batch experiments were employed to evaluate the performance of anaerobic digestion for the treatment of high concentration methanol wastewater.The acid resistance of granular sludge and methanogenic bacteria and their metabolizing activity were investigated.The results show that the pH of the first UASB changed from 4.9 to 5.8 and 5.5 to 6.2 for the second reactor.Apparently,these were not the advisable pH levels that common metha nogenic bacteria could accept.The methanogenic bacteria of the system,viz.Methanosarcina barkeri,had some acid resistance and could still degrade methanol at pH 5.0.If the methanogenic bacteria were trained further,their acid resistance would be improved somewhat.Granular sludge of the system could protect the methanogenic bacteria within its body against the impact of the acidic environment and make them degrade methanol at pH 4.5.The performance of granular sludge was attributed to its structure,bacteria species,and the distribution of bacterium inside the granule.

  17. Application of Anaerobic Digestion Model No. 1 for simulating anaerobic mesophilic sludge digestion

    Energy Technology Data Exchange (ETDEWEB)

    Mendes, Carlos, E-mail: carllosmendez@gmail.com; Esquerre, Karla, E-mail: karlaesquerre@ufba.br; Matos Queiroz, Luciano, E-mail: lmqueiroz@ufba.br

    2015-01-15

    Highlights: • The behavior of a anaerobic reactor was evaluated through modeling. • Parametric sensitivity analysis was used to select most sensitive of the ADM1. • The results indicate that the ADM1 was able to predict the experimental results. • Organic load rate above of 35 kg/m{sup 3} day affects the performance of the process. - Abstract: Improving anaerobic digestion of sewage sludge by monitoring common indicators such as volatile fatty acids (VFAs), gas composition and pH is a suitable solution for better sludge management. Modeling is an important tool to assess and to predict process performance. The present study focuses on the application of the Anaerobic Digestion Model No. 1 (ADM1) to simulate the dynamic behavior of a reactor fed with sewage sludge under mesophilic conditions. Parametric sensitivity analysis is used to select the most sensitive ADM1 parameters for estimation using a numerical procedure while other parameters are applied without any modification to the original values presented in the ADM1 report. The results indicate that the ADM1 model after parameter estimation was able to predict the experimental results of effluent acetate, propionate, composites and biogas flows and pH with reasonable accuracy. The simulation of the effect of organic shock loading clearly showed that an organic shock loading rate above of 35 kg/m{sup 3} day affects the performance of the reactor. The results demonstrate that simulations can be helpful to support decisions on predicting the anaerobic digestion process of sewage sludge.

  18. [Distribution and removal of anaerobic antibiotic resistant bacteria during mesophilic anaerobic digestion of sewage sludge].

    Science.gov (United States)

    Tong, Juan; Wang, Yuan-Yue; Wei Yuan, Song

    2014-10-01

    Sewage sludge is one of the major sources that releasing antibiotic resistant bacteria (ARB) and antibiotic resistant genes (ARG) into the environment since it contains large amount of ARB, but there is little information about the fate of the anaerobic ARB in the anaerobic digestion of sewage sludge. Therefore, the distribution, removal and seasonal changes of tetracycline and β-lactam antibiotics resistant bacteria in the mesophilic egg-shaped digesters of a municipal wastewater treatment plant were investigated for one year in this study. Results showed that there were higher amounts of ARB and higher resistance rate of β-lactam antibiotics than that of tetracycline antibiotics in the sewage sludge. All ARB could be significantly reduced during the mesophilic anaerobic digestion process by 1.48-1.64 log unit (P < 0.05). Notably, the ampicillin and cephalothin resistance rates were significantly increased after anaerobic digestion by 12.0% and 14.3%, respectively (P < 0.05). The distribution of ARB in the sewage sludge had seasonal change characteristics. Except for chlorotetracycline resistant bacteria, there were more ARB in the sewage sludge in cold season than in warm season (P < 0.05). PMID:25693388

  19. A bio-electrochemical system for removing inhibitors of anaerobic digestion processes from anaerobic reactors

    DEFF Research Database (Denmark)

    2014-01-01

    reactor to recover ammonia from anaerobic digestion reactor, and thereby alleviate or counteract ammonia inhibition and enhance the conversion of ammonia-rich wastes to biogas. The invention may further reduce overall cost, giving synergistic advantages for both ammonia recycling and biogas plants...

  20. Oxygen tolerance capacity of upflow anaerobic solid-state (UASS) with anaerobic filter (AF) system.

    Science.gov (United States)

    Meng, Yao; Jost, Carsten; Mumme, Jan; Wang, Kaijun; Linke, Bernd

    2016-07-01

    In order to investigate the oxygen tolerance capacity of upflow anaerobic solid-state (UASS) with anaerobic filter (AF) system, the effect of microaeration on thermophilic anaerobic digestion of maize straw was investigated under batch conditions and in the UASS with AF system. Aeration intensities of 0-431mL O2/gvs were conducted as pretreatment under batch conditions. Aeration pretreatment obviously enhanced anaerobic digestion and an aeration intensity of 431mL O2/gvs increased the methane yield by 82.2%. Aeration intensities of 0-355mL O2/gvs were conducted in the process liquor circulation of the UASS with AF system. Dissolved oxygen (DO) of UASS and AF reactors kept around 1.39±0.27 and 0.99±0.38mg/L, respectively. pH was relatively stable around 7.11±0.04. Volatile fatty acids and soluble chemical oxygen demand concentration in UASS reactor were higher than those in AF reactor. Methane yield of the whole system was almost stable at 85±7mL/gvs as aeration intensity increased step by step. The UASS with AF system showed good oxygen tolerance capacity. PMID:27372134

  1. Two-phase anaerobic digestion of coffee wet wastewater: Effect of recycle on anaerobic process performance

    Directory of Open Access Journals (Sweden)

    Yans Guardia Puebla

    2014-01-01

    Full Text Available The present work shows the results of the two-phase anaerobic digestion assessment for the treatment of coffee wet wastewater. The effect of recycle on the anaerobic digestion process was studied. Twooverall organic loading rate (OLR values of 4,2 and 5,7 kgCOD·m -3 ·d -1 , with same overall hydraulic retention time (HRT of 21,5 h was evaluated.In a two-phase system wereapplied two recycle rate of 0,4 and 1,0, of the effluent of an UASB-UAF methanogenic hybrid reactor towards an UASB acidogenic reactor. In the anaerobic system with a recycle rate of 1,0 the total chemical oxygen demand (COD removal was 90%. The introduction of the recycle decreased the concentration of total volatile fatty acids (VFA, but it did not affect their composition, suggesting that the degradation pattern did not change. The presence of the acidogenic reactor in the two-phase system improved the stability of the anaerobic digestion process and increased the efficiency of methanogenic digester.

  2. Horse manure as feedstock for anaerobic digestion.

    Science.gov (United States)

    Hadin, Sa; Eriksson, Ola

    2016-10-01

    Horse keeping is of great economic, social and environmental benefit for society, but causes environmental impacts throughout the whole chain from feed production to manure treatment. According to national statistics, the number of horses in Sweden is continually increasing and is currently approximately 360,000. This in turn leads to increasing amounts of horse manure that have to be managed and treated. Current practices could cause local and global environmental impacts due to poor performance or lack of proper management. Horse manure with its content of nutrients and organic material can however contribute to fertilisation of arable land and recovery of renewable energy following anaerobic digestion. At present anaerobic digestion of horse manure is not a common treatment. In this paper the potential for producing biogas and biofertiliser from horse manure is analysed based on a thorough literature review in combination with mathematical modelling and simulations. Anaerobic digestion was chosen as it has a high degree of resource conservation, both in terms of energy (biogas) and nutrients (digestate). Important factors regarding manure characteristics and operating factors in the biogas plant are identified. Two crucial factors are the type and amount of bedding material used, which has strong implications for feedstock characteristics, and the type of digestion method applied (dry or wet process). Straw and waste paper are identified as the best materials in an energy point of view. While the specific methane yield decreases with a high amount of bedding, the bedding material still makes a positive contribution to the energy balance. Thermophilic digestion increases the methane generation rate and yield, compared with mesophilic digestion, but the total effect is negligible.

  3. Horse manure as feedstock for anaerobic digestion.

    Science.gov (United States)

    Hadin, Sa; Eriksson, Ola

    2016-10-01

    Horse keeping is of great economic, social and environmental benefit for society, but causes environmental impacts throughout the whole chain from feed production to manure treatment. According to national statistics, the number of horses in Sweden is continually increasing and is currently approximately 360,000. This in turn leads to increasing amounts of horse manure that have to be managed and treated. Current practices could cause local and global environmental impacts due to poor performance or lack of proper management. Horse manure with its content of nutrients and organic material can however contribute to fertilisation of arable land and recovery of renewable energy following anaerobic digestion. At present anaerobic digestion of horse manure is not a common treatment. In this paper the potential for producing biogas and biofertiliser from horse manure is analysed based on a thorough literature review in combination with mathematical modelling and simulations. Anaerobic digestion was chosen as it has a high degree of resource conservation, both in terms of energy (biogas) and nutrients (digestate). Important factors regarding manure characteristics and operating factors in the biogas plant are identified. Two crucial factors are the type and amount of bedding material used, which has strong implications for feedstock characteristics, and the type of digestion method applied (dry or wet process). Straw and waste paper are identified as the best materials in an energy point of view. While the specific methane yield decreases with a high amount of bedding, the bedding material still makes a positive contribution to the energy balance. Thermophilic digestion increases the methane generation rate and yield, compared with mesophilic digestion, but the total effect is negligible. PMID:27396682

  4. Screening, identification and desilication of a silicate bacterium

    Institute of Scientific and Technical Information of China (English)

    ZHOU Hong-bo; ZENG Xiao-xi; LIU Fei-fei; QIU Guan-zhou; HU Yue-hua

    2006-01-01

    The strain Lv1-2 isolated from the Henan bauxite was characterized by morphological observation, biochemical and physiological identification, and 16S rDNA sequence analysis. The influences of temperature, initial pH value, the volume of medium, shaking speed and illite concentration on the desilicating ability of the strain Lv1-2 were investigated. The results show that the bacterium is a Gram-negative rod-shaped bacterium with oval endspores and thick capsule, but without flagellum. The biochemical and physiological tests indicate that the strain Lv1-2 is similar to Bacillus mucilaginosus. In GenBank the 16S rDNA sequence similarity of the strain Lv1-2 and the B. mucilaginosus YNUCC0001 (AY571332) is more than 99 %. Based on the above results, the strain Lv1-2 is identified as B. mucilaginosus. The optimum conditions for the strain Lv1-2 to remove silicon from illite are as follows: temperature is 30℃ ;initial pH value is 7.5; medium volume in 200 mL bottle is 60 mL; shaking speed of rotary shaker is 220 r/m; illite concentration is 1%.

  5. Biological Control of Meloidogyne hapla Using an Antagonistic Bacterium

    Directory of Open Access Journals (Sweden)

    Jiyeong Park

    2014-09-01

    Full Text Available We examined the efficacy of a bacterium for biocontrol of the root-knot nematode (RKN Meloidogyne hapla in carrot (Daucus carota subsp. sativus and tomato (Solanum lycopersicum. Among 542 bacterial isolates from various soils and plants, the highest nematode mortality was observed for treatments with isolate C1-7, which was identified as Bacillus cereus based on cultural and morphological characteristics, the Biolog program, and 16S rRNA sequencing analyses. The population density and the nematicidal activity of B. cereus C1-7 remained high until the end of culture in brain heart infusion broth, suggesting that it may have sustainable biocontrol potential. In pot experiments, the biocontrol efficacy of B. cereus C1-7 was high, showing complete inhibition of root gall or egg mass formation by RKN in carrot and tomato plants, and subsequently reducing RKN damage and suppressing nematode population growth, respectively. Light microscopy of RKN-infected carrot root tissues treated with C1-7 showed reduced formation of gall cells and fully developed giant cells, while extensive gall cells and fully mature giant cells with prominent cell wall ingrowths formed in the untreated control plants infected with RKNs. These histopathological characteristics may be the result of residual or systemic biocontrol activity of the bacterium, which may coincide with the biocontrol efficacies of nematodes in pots. These results suggest that B. cereus C1-7 can be used as a biocontrol agent for M. hapla.

  6. Polysaccharide degradation systems of the saprophytic bacterium Cellvibrio japonicus.

    Science.gov (United States)

    Gardner, Jeffrey G

    2016-07-01

    Study of recalcitrant polysaccharide degradation by bacterial systems is critical for understanding biological processes such as global carbon cycling, nutritional contributions of the human gut microbiome, and the production of renewable fuels and chemicals. One bacterium that has a robust ability to degrade polysaccharides is the Gram-negative saprophyte Cellvibrio japonicus. A bacterium with a circuitous history, C. japonicus underwent several taxonomy changes from an initially described Pseudomonas sp. Most of the enzymes described in the pre-genomics era have also been renamed. This review aims to consolidate the biochemical, structural, and genetic data published on C. japonicus and its remarkable ability to degrade cellulose, xylan, and pectin substrates. Initially, C. japonicus carbohydrate-active enzymes were studied biochemically and structurally for their novel polysaccharide binding and degradation characteristics, while more recent systems biology approaches have begun to unravel the complex regulation required for lignocellulose degradation in an environmental context. Also included is a discussion for the future of C. japonicus as a model system, with emphasis on current areas unexplored in terms of polysaccharide degradation and emerging directions for C. japonicus in both environmental and biotechnological applications. PMID:27263016

  7. Anaerobic wastewater treatment of concentrated sewage using a two-stage upflow anaerobic sludge blanket- anaerobic filter system.

    Science.gov (United States)

    Halalsheh, Maha M; Abu Rumman, Zainab M; Field, Jim A

    2010-01-01

    A two-stage pilot-scale upflow anaerobic sludge blanket - anaerobic filter (UASB-AF) reactors system treating concentrated domestic sewage was operated at 23 degrees C and at hydraulic retention times (HRT) of 15 and 4 h, respectively. Excess sludge from the downstream AF stage was returned to the upstream UASB reactor. The aim was to obtain higher sludge retention time (SRT) in the UASB reactor for better methanization of suspended COD. The UASB-AF system removed 55% and 65% of the total COD (COD(tot)) and suspended COD (COD(ss)), respectively. The calculated SRT in the UASB reactor ranged from 20-35 days. The AF reactor removed the washed out sludge from the first stage reactor with average COD(ss) removal efficiency of 55%. The volatile fatty acids concentration in the effluent of the AF was 39 mg COD/L compared with 78 mg COD/L measured for the influent. The slightly higher COD(tot) removal efficiency obtained in this study compared with a single stage UASB reactor was achieved at 17% reduction in the total volume. PMID:20390881

  8. Anaerobic xylose fermentation by Spathaspora passalidarum

    DEFF Research Database (Denmark)

    Hou, Xiaoru

    2012-01-01

    A cost-effective conversion of lignocellulosic biomass into bioethanol requires that the xylose released from the hemicellulose fraction (20–40% of biomass) can be fermented. Baker’s yeast, Saccharomyces cerevisiae, efficiently ferments glucose but it lacks the ability to ferment xylose. Xylose......-fermenting yeast such as Pichia stipitis requires accurately controlled microaerophilic conditions during the xylose fermentation, rendering the process technically difficult and expensive. In this study, it is demonstrated that under anaerobic conditions Spathaspora passalidarum showed high ethanol production...

  9. Improvement of anaerobic digestion of sludge

    Energy Technology Data Exchange (ETDEWEB)

    Dohanyos, Michael; Zabranska, Jana; Kutil, Josef; Jenicek, Pavel

    2003-07-01

    Anaerobic digestion improvement can be accomplished by different methods. Besides optimization of process conditions is frequently used pretreatment of input sludge and increase of process temperature. Thermophilic process brings a higher solids reduction and biogas production, the high resistance to foaming, no problems with odour, the higher effect of destroying pathogens and the improvement of the energy balance of the whole treatment plant. Disintegration of excess activated sludge in lysate centrifuge was proved in full-scale conditions causing increase of biogas production. The rapid thermal conditioning of digested sludge is acceptable method of particulate matter disintegration and solubilization. (author)

  10. The anaerobic digestion of sugar beet pulp

    OpenAIRE

    Suhartini, Sri

    2014-01-01

    World-wide there are substantial quantities of sugar beet pulp, which arises as a residue after the processing of whole beet to extract sugar for refining as a foodstuff or for use in fermentation, in particular for the production of ethanol for the biofuel market. In both cases the resulting pulp residue is still rich in pentose sugars and fibre, and the research considered anaerobic digestion (AD) as a potential technology for the conversion of this material into renewable energy in the for...

  11. Anaerobic Pre-treatment of Strong Sewage

    OpenAIRE

    Halalsheh, M.M.

    2002-01-01

    The main objective of this research was to assess the feasibility of applying low cost anaerobic technology for the treatment of relatively high strength sewage of Jordan using two-stage and one-stage UASB reactors operated at ambient temperatures. The wastewater produced in Jordan is characterised by a high concentration of COD tot with averages higher than 1200 mg/l and with a large fraction in the suspended form (65-70%). The average wastewater temperature fluctuates between 18 and 25 oC f...

  12. Monitoring and control of anaerobic reactors

    DEFF Research Database (Denmark)

    Pind, Peter Frode; Angelidaki, Irini; Ahring, Birgitte Kiær;

    2003-01-01

    measurements are reviewed in detail. In the sequel, possible manipulated variables, such as the hydraulic retention time, the organic loading rate, the sludge retention time, temperature, pH and alkalinity are evaluated with respect to the two main reactor types: high-rate and low-rate. Finally, the different......The current status in monitoring and control of anaerobic reactors is reviewed. The influence of reactor design and waste composition on the possible monitoring and control schemes is examined. After defining the overall control structure, and possible control objectives, the possible process...

  13. Microbial ecology overview during anaerobic codigestion of dairy wastewater and cattle manure and use in agriculture of obtained bio-fertilisers.

    Science.gov (United States)

    Toumi, Jihen; Miladi, Baligh; Farhat, Amel; Nouira, Said; Hamdi, Moktar; Gtari, Maher; Bouallagui, Hassib

    2015-12-01

    The anaerobic co-digestion of dairy wastewater (DW) and cattle manure (CM) was examined and associated with microbial community's structures using Denaturing Gradient Gel Electrophoresis (DGGE). The highest volatile solids (VS) reduction yield of 88.6% and biogas production of 0.87 L/g VS removed were obtained for the C/N ratio of 24.7 at hydraulic retention time (HRT) of 20 days. The bacterial DGGE profile showed significant abundance of Uncultured Bacteroidetes, Firmicutes and Synergistetes bacterium. The Syntrophomonas strains were discovered in dependent association to H2-using bacteria such as Methanospirillum sp., Methanosphaera sp. and Methanobacterium formicicum. These syntrophic associations are essential in anaerobic digesters allow them to keep low hydrogen partial pressure. However, high concentrations of VFA produced from dairy wastes acidification allow the growth of Methanosarcina species. The application of the stabilised anaerobic effluent on the agriculture soil showed significant beneficial effects on the forage corn and tomato plants growth and crops. PMID:26386416

  14. Differential production of slime under aerobic and anaerobic conditions.

    OpenAIRE

    Barker, L P; Simpson, W A; Christensen, G D

    1990-01-01

    A series of 37 clinical isolates of coagulase-negative staphylococci previously identified as negative for slime production by the tube test were reexamined by the tissue culture plate test under aerobic and anaerobic conditions. None of the strains produced slime under anaerobic conditions; however, five strains (13%) produced slime under aerobic conditions.

  15. TEST RESULTS FOR FUEL CELL OPERATION ON ANAEROBIC DIGESTER GAS

    Science.gov (United States)

    EPA, in conjunction with ONSI Corp., embarked on a project to define, design, test, and assess a fuel cell energy recovery system for application at anaerobic digester waste water (sewage) treatment plants. Anaerobic digester gas (ADG) is produced at these plants during the proce...

  16. Anaerobic infections in the head and neck region.

    Science.gov (United States)

    Tabaqchali, S

    1988-01-01

    Anaerobic bacteria form the predominant flora of the oral cavity, outnumbering facultative organisms by 10-1,000: 1. The type of anaerobic bacteria and their concentration depend on the anatomical site and the degree of anaerobiosis in the different sites in the mouth. Three groups of anaerobic bacteria inhabit the oral cavity; the strict anaerobes, the moderate anaerobes, and the microaerophilic group of organisms. The majority of anaerobic bacterial infections occurring in the region of the mouth, head and neck are caused by the commensal flora. These infections include dental and periodontal disease where the predominant organisms are Bacteroides species, Veillonella, Bifidobacteria, Peptococcus, Peptostreptococcus and Propionibacterium species. More recently, Bacteroides endontalis has been isolated from a periapical abscess of endodontal origin and B. gingivalis, B. intermedius, Haemophilus actinomycetemcomitans and Wollinella species in chronic periodontal disease. Treponema species and other strict anaerobes are seen in smears of severe periodontal disease and acute necrotising gingivitis, but have not yet been isolated in pure culture. Until such time, their role in disease remains uncertain. Fusobacterium nucleatum is specially associated with severe orofacial infections which may extend into the mediastinum. Other anaerobic infections include chronic otitis media, chronic sinusitis and mastoiditis, and brain abscess. Treatment of these conditions should include the use of beta-lactamase resistant antimicrobials, such as clindamycin or one of the nitroimidazoles with penicillin.

  17. A fuzzy logic approach to control anaerobic digestion

    NARCIS (Netherlands)

    Domnanovich, A.M.; Strik, D.P.B.T.B.; Pfeiffer, B.; Karlovits, M.; Zani, L.; Braun, R.; Holubar, P.

    2003-01-01

    One of the goals of the EU-Project AMONCO (Advanced Prediction, Monitoring and Controlling of Anaerobic Digestion Process Behaviour towards Biogas Usage in Fuel Cells) is to create a control tool for the anaerobic digestion process, which predicts the volumetric organic loading rate (Bv) for the nex

  18. Solids removal in upflow anaerobic reactors, a review

    NARCIS (Netherlands)

    Mahmoud, N.; Zeeman, G.; Gijzen, H.J.; Lettinga, G.

    2003-01-01

    This desk study deals with the mechanisms and parameters affecting particles separation from wastewater in mainly upflow anaerobic reactors. Despite the fact that the functioning of upflow anaerobic sludge blanket (UASB) systems depends on both physical parameters and biological processes, the physi

  19. Anaerobic digestion: biodegradability and biogas production of model wastes

    OpenAIRE

    Lausund, Erlend

    2014-01-01

    Anaerobic digestion is a desirable treatment practice in terms of minimizing volume, treating of pollutants and biogas production. In this thesis model wastes have been investigated with respect to biogas and methane production in order to find out what wastes are suitable for anaerobic digestion, and discussing ways to further the research to optimize the production of renewable energy.

  20. Control of calcium carbonate precipitation in anaerobic reactors.

    NARCIS (Netherlands)

    Langerak, van E.P.A.

    1998-01-01

    Anaerobic treatment of waste waters with a high calcium content may lead to excessive precipitation of calcium carbonate. So far, no proper methods were available to predict or reduce the extent of precipitation in an anaerobic treatment system. Moreover, it also was not clear to what extent precipi

  1. Anaerobic catabolism of aromatic compounds: a genetic and genomic view.

    Science.gov (United States)

    Carmona, Manuel; Zamarro, María Teresa; Blázquez, Blas; Durante-Rodríguez, Gonzalo; Juárez, Javier F; Valderrama, J Andrés; Barragán, María J L; García, José Luis; Díaz, Eduardo

    2009-03-01

    Aromatic compounds belong to one of the most widely distributed classes of organic compounds in nature, and a significant number of xenobiotics belong to this family of compounds. Since many habitats containing large amounts of aromatic compounds are often anoxic, the anaerobic catabolism of aromatic compounds by microorganisms becomes crucial in biogeochemical cycles and in the sustainable development of the biosphere. The mineralization of aromatic compounds by facultative or obligate anaerobic bacteria can be coupled to anaerobic respiration with a variety of electron acceptors as well as to fermentation and anoxygenic photosynthesis. Since the redox potential of the electron-accepting system dictates the degradative strategy, there is wide biochemical diversity among anaerobic aromatic degraders. However, the genetic determinants of all these processes and the mechanisms involved in their regulation are much less studied. This review focuses on the recent findings that standard molecular biology approaches together with new high-throughput technologies (e.g., genome sequencing, transcriptomics, proteomics, and metagenomics) have provided regarding the genetics, regulation, ecophysiology, and evolution of anaerobic aromatic degradation pathways. These studies revealed that the anaerobic catabolism of aromatic compounds is more diverse and widespread than previously thought, and the complex metabolic and stress programs associated with the use of aromatic compounds under anaerobic conditions are starting to be unraveled. Anaerobic biotransformation processes based on unprecedented enzymes and pathways with novel metabolic capabilities, as well as the design of novel regulatory circuits and catabolic networks of great biotechnological potential in synthetic biology, are now feasible to approach.

  2. Molecular AND logic gate based on bacterial anaerobic respiration.

    Science.gov (United States)

    Arugula, Mary Anitha; Shroff, Namita; Katz, Evgeny; He, Zhen

    2012-10-21

    Enzyme coding genes that integrate information for anaerobic respiration in Shewanella oneidensis MR-1 were used as input for constructing an AND logic gate. The absence of one or both genes inhibited electrochemically-controlled anaerobic respiration, while wild type bacteria were capable of accepting electrons from an electrode for DMSO reduction.

  3. Thermophillic Sidestream Anaerobic Membrane Bioreactors: The Shear Rate Dilemma

    NARCIS (Netherlands)

    Jeison, D.A.; Telkamp, P.; Lier, van J.B.

    2009-01-01

    Anaerobic biomass retention under thermophilic conditions has proven difficult. Membrane filtration can be used as alternative way to achieve high sludge concentrations. This research studied the feasibility of anaerobic membrane bioreactors (AnMBRs) under thermophilic conditions. A sidestream MBR w

  4. Methanol conversion in high-rate anaerobic reactors

    NARCIS (Netherlands)

    Weijma, J.; Stams, A.J.M.

    2001-01-01

    An overview on methanol conversion in high-rate anaerobic reactors is presented, with the focus on technological as well as microbiological aspects. The simple C1-compound methanol can be degraded anaerobically in a complex way, in which methanogens, sulfate reducing bacteria and homoacetogens inter

  5. Genetic manipulation of carotenoid biosynthesis in the green sulfur bacterium Chlorobium tepidum.

    Science.gov (United States)

    Frigaard, Niels-Ulrik; Maresca, Julia A; Yunker, Colleen E; Jones, A Daniel; Bryant, Donald A

    2004-08-01

    The green sulfur bacterium Chlorobium tepidum is a strict anaerobe and an obligate photoautotroph. On the basis of sequence similarity with known enzymes or sequence motifs, nine open reading frames encoding putative enzymes of carotenoid biosynthesis were identified in the genome sequence of C. tepidum, and all nine genes were inactivated. Analysis of the carotenoid composition in the resulting mutants allowed the genes encoding the following six enzymes to be identified: phytoene synthase (crtB/CT1386), phytoene desaturase (crtP/CT0807), zeta-carotene desaturase (crtQ/CT1414), gamma-carotene desaturase (crtU/CT0323), carotenoid 1',2'-hydratase (crtC/CT0301), and carotenoid cis-trans isomerase (crtH/CT0649). Three mutants (CT0180, CT1357, and CT1416 mutants) did not exhibit a discernible phenotype. The carotenoid biosynthetic pathway in C. tepidum is similar to that in cyanobacteria and plants by converting phytoene into lycopene using two plant-like desaturases (CrtP and CrtQ) and a plant-like cis-trans isomerase (CrtH) and thus differs from the pathway known in all other bacteria. In contrast to the situation in cyanobacteria and plants, the construction of a crtB mutant completely lacking carotenoids demonstrates that carotenoids are not essential for photosynthetic growth of green sulfur bacteria. However, the bacteriochlorophyll a contents of mutants lacking colored carotenoids (crtB, crtP, and crtQ mutants) were decreased from that of the wild type, and these mutants exhibited a significant growth rate defect under all light intensities tested. Therefore, colored carotenoids may have both structural and photoprotection roles in green sulfur bacteria. The ability to manipulate the carotenoid composition so dramatically in C. tepidum offers excellent possibilities for studying the roles of carotenoids in the light-harvesting chlorosome antenna and iron-sulfur-type (photosystem I-like) reaction center. The phylogeny of carotenogenic enzymes in green sulfur

  6. Desulfurella amilsii sp. nov., a novel acidotolerant sulfur-respiring bacterium isolated from acidic river sediments.

    Science.gov (United States)

    Florentino, Anna P; Brienza, Claudio; Stams, Alfons J M; Sánchez-Andrea, Irene

    2016-03-01

    A novel acidotolerant and moderately thermophilic sulfur-reducing bacterium was isolated from sediments of the Tinto River (Spain), an extremely acidic environment. Strain TR1T stained Gram-negative, and was obligately anaerobic, non-spore-forming and motile. Cells were short rods (1.5-2 × 0.5-0.7 μm), appearing singly or in pairs. Strain TR1T was catalase-negative and slightly oxidase-positive. Urease activity and indole formation were absent, but gelatin hydrolysis was present. Growth was observed at 20-52 °C with an optimum close to 50 °C, and a pH range of 3-7 with optimum between pH 6 and 6.5. Yeast extract was essential for growth, but extra vitamins were not required. In the presence of sulfur, strain TR1T grew with acetate, formate, lactate, pyruvate, stearate, arginine and H2/CO2. All substrates were completely oxidized and H2S and CO2 were the only metabolic products detected. Besides elemental sulfur, thiosulfate was used as an electron acceptor. The isolate also grew by disproportionation of elemental sulfur. The predominant cellular fatty acids were saturated components: C16 : 0, anteiso-C17 : 0 and C18 : 0. The only quinone component detected was menaquinone MK-7(H2). The G+C content of the genomic DNA was 34 mol%. The isolate is affiliated to the genus Desulfurella of the class Deltaproteobacteria, sharing 97 % 16S rRNA gene sequence similarity with the four species described in the genus Desulfurella. Considering the distinct physiological and phylogenetic characteristics, strain TR1T represents a novel species within the genus Desulfurella, for which the name Desulfurella amilsii sp. nov. is proposed. The type strain is TR1T ( = DSM 29984T = JCM 30680T). PMID:26704766

  7. Thauera humireducens sp. nov., a humus-reducing bacterium isolated from a microbial fuel cell.

    Science.gov (United States)

    Yang, Gui-Qin; Zhang, Jun; Kwon, Soon-Wo; Zhou, Shun-Gui; Han, Lu-Chao; Chen, Ming; Ma, Chen; Zhuang, Li

    2013-03-01

    A Gram-negative, rod-shaped, non-spore-forming bacterium, designated SgZ-1(T), was isolated from the anode biofilm of a microbial fuel cell. The strain had the ability to grow under anaerobic condition via the oxidation of various organic compounds coupled to the reduction of anthraquione-2,6-disulfonate (AQDS) to anthrahydroquinone-2,6-disulfonate (AHQDS). Growth occurred in TSB in the presence of 0-5.5 % (w/v) NaCl (optimum 0-1 %), at 10-45 °C (optimum 25-37 °C) and at pH 6.0-10.0 (optimum 8.0-8.5). Based on 16S rRNA gene sequence similarity, strain SgZ-1(T) belonged to the genus Thauera. The highest level of 16S rRNA gene sequences similarity (96.7 %) was found to be with Thauera aminoaromatica S2(T) and Thauera selenatis AX(T), and lower values were obtained when compared with other recognized Thauera species. Chemotaxonomic analysis revealed that strain SgZ-1(T) contained Q-8 as the predominant quinone, and putrescine and 2-hydroxyputrescine as the major polyamines. The major cellular fatty acids (>5 %) were C16 : 1ω6c and/or C16 : 1ω7c (44.6 %), C16 : 0 (18.8 %), and C18 : 1ω6c and/or C18 : 1ω7c (12.7 %). Based on its phenotypic and phylogenetic properties, chemotaxonomic analysis and the results of physiological and biochemical tests, strain SgZ-1(T) ( = KACC 16524(T) = CCTCC M 2011497(T)) was designated the type strain of a novel species of the genus Thauera, for which the name Thauera humireducens sp. nov. was proposed.

  8. Anaerobic digestion of pot-ale

    Energy Technology Data Exchange (ETDEWEB)

    Mosey, F.E.

    1990-12-01

    In the production of whisky, the fermented wash is distilled twice and each bushel of grain yields about 15.5 gallons of pot-ale, 6.0 gallons of spent lees and 2.7 gallons of proof spirit. Disposal of pot-ale, the strong residue from the first distillation, containing all the non-volatile and unfermented components of the wash, will always be difficult. Anaerobic digestion provides a possible option. By destroying most of the biodegradable solids and converting them to biogas, it provides an intermediate effluent which conventional treatment technology can purify to river discharge standards. Pilot-scale trials confirm that pot-ale can be treated by anaerobic digestion. The most severe problems are the high purification efficiencies required to achieve UK river discharge standards and the quality and settling properties of the biological sludges produced. To achieved these standards, the design and operation of the entire treatment chain is dominated by the need to capture and concentrate suspended solids (SS) produced by the biological fermentations. Overall performance targets are 99.95% removal of biological oxygen demand (BOD), 99% removal of ammonia and a surplus sludge production of less than 20% of the incoming flow. (author).

  9. The anaerobic digestion of solid organic waste.

    Science.gov (United States)

    Khalid, Azeem; Arshad, Muhammad; Anjum, Muzammil; Mahmood, Tariq; Dawson, Lorna

    2011-08-01

    The accumulation of solid organic waste is thought to be reaching critical levels in almost all regions of the world. These organic wastes require to be managed in a sustainable way to avoid depletion of natural resources, minimize risk to human health, reduce environmental burdens and maintain an overall balance in the ecosystem. A number of methods are currently applied to the treatment and management of solid organic waste. This review focuses on the process of anaerobic digestion which is considered to be one of the most viable options for recycling the organic fraction of solid waste. This manuscript provides a broad overview of the digestibility and energy production (biogas) yield of a range of substrates and the digester configurations that achieve these yields. The involvement of a diverse array of microorganisms and effects of co-substrates and environmental factors on the efficiency of the process has been comprehensively addressed. The recent literature indicates that anaerobic digestion could be an appealing option for converting raw solid organic wastes into useful products such as biogas and other energy-rich compounds, which may play a critical role in meeting the world's ever-increasing energy requirements in the future. PMID:21530224

  10. Anaerobic microbial degradation of organochlorine insecticides Aldrin

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, T.C.; Yen, J.H.; Wang, Y.S. [National Taiwan Univ. (Taiwan)

    2004-09-15

    Aldrin (1,2,3,4,10,10-hexachloro-1,4,4a,5,8,8a-hexahydro-1,4-endo-exo-5,8-dimethanonnaphthalene), a cyclodiene organochlorine insecticide, was banned by nations and classified as B2 carcinogen by United States Environmental Protection Agency (EPA). Because of its chemical stability and lipophilicity, aldrin is regarded as a persistent and recalcitrant compound. Aldrin is easily adsorbed to soil and sediment after spreading to the environments, furthermore, it may be accumulated in animal's tissue or milk and then cause adverse effects by food-chain. The dissipation process of aldrin in environments has continuously been paid much attention by researchers. In general, the dissipation of aldrin has been thought as relating to three mechanisms: photo-degradation, chemical hydrolysis, and microbial degradation. And it has been well known that microbial degradation is the most important agent for breakdown of organochlorine pesticides. There has been shown that aldrin could be transformed to its metabolites, such as dieldrin or photo-dieldrin, by microorganisms under aerobic conditions, however, limited information has been shown under anaerobic conditions. For this reason, the degradation potential of aldrin by anaerobic microorganisms obtained from indigenous river sediment was evaluated, and the effect of environmental factors such as temperatures and nutrients on the aldrin degradation was also investigated in this study.

  11. Correlation of anaerobic ammonium oxidation and denitrification

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The feasibility of the nitrous organic wastewater treated was studied in seven anaerobic sequencing batch reactors(ASBRs)(0 #-6 #) which had been run under stable anaerobic ammonium oxidation (Anammox). By means of monitoring and data analysis of COD, NH4+-N, NO2--N, NO3--N and pH, and of microbial test, the results revealed that the optimal Anammox performance was achieved from 2# reactor in which COD/NH4+-N was 1.65, Anammox bacteria and denitrification bacteria could coexist, and Anammox reaction and denitrification reaction could occur simultaneously in the reactors. The ratio of NH4+-N consumed: NO2--N consumed: NO3--N produced was 1:1.38:0.19 in 0# reactor which was not added glucose in the wastewater. When different ratio of COD and NH4+-N was fed for the reactors, the ratio of NO2--N consumed: NH4+-N consumed was in the range of 1.51-2.29 and the ratio of NO3-N produced: NH4+-N consumed in the range of 0-0.05.

  12. Comparative economic analysis: Anaerobic digester case study

    International Nuclear Information System (INIS)

    An economic guide is developed to assess the value of anaerobic digesters used on dairy farms. Two varieties of anaerobic digesters, a conventional mixed-tank mesophilic and an innovative earthen psychrophilic, are comparatively evaluated using a cost-effectiveness index. The two case study examples are also evaluated using three other investment merit statistics: simple payback period, net present value, and internal rate of return. Life-cycle savings are estimated for both varieties, with sensitivities considered for investment risk. The conclusion is that an earthen psychrophilic digester can have a significant economic advantage over a mixed-tank mesophilic digester because of lower capital cost and reduced operation and maintenance expenses. Because of this economic advantage, additional projects are being conducted in North Carolina to increase the rate of biogas utilization. The initial step includes using biogas for milk cooling at the dairy farm where the existing psychrophilic digester is located. Further, a new project is being initiated for electricity production with thermal reclaim at a swine operation

  13. Anaerobic performances of sedentary and trained subjects.

    Science.gov (United States)

    Serresse, O; Ama, P F; Simoneau, J A; Lortie, G; Bouchard, C; Boulay, M R

    1989-03-01

    The objective of this report was to compare the performance of sedentary individuals, physical education students, and athletes of various disciplines in 10 s and 90 s maximal cycle ergometer tests. The 10 s power was the highest power output in one second from the 10 s test, while capacities were defined as the total work output during the best 10 s trial and the 90 s test. ANOVA and Duncan multiple range test indicated that the mean values of the 10 S power and capacity and the 90 S capacity tests were significantly higher in sprinter than in sedentary groups. Sprinters performed significantly better than marathon runners only in the 10 s capacity and power. Bodybuilders and sedentary subjects had similar results in the 90 s capacity test. Mean performance values per kilogram of body weight in sedentary females reached about 60% of sedentary males while marathon runners, physical education students and sprinter females reached about 80% of the male performances for the three indicators. When expressed per kilogram of fat-free mass, females reached a higher proportion of the male values for all performances. These results indicate that: a) there are differences for the power and capacity measured in predominantly anaerobic tests between athletes from different disciplines and sedentary individuals, and b) gender differences exist for these anaerobic performance indicators, but they appear attenuated in trained subjects.

  14. Performance of sulfate-dependent anaerobic ammo-nium oxidation

    Institute of Scientific and Technical Information of China (English)

    ZHANG Lei; ZHENG Ping; HE YuHui; JIN RenCun

    2009-01-01

    The performance of sulfate-dependent anaerobic ammonium oxidation was studied. The results showed that both SO42- and NH4+ were chemically stable under anaerobic conditions. They did not react with each other in the absence of biological catalyst (sludge). The anaerobic digested sludge cultivated in an anaerobic reactor for three years took on the ability of oxidizing ammonium with sulfate anaero-bically. The average reduction of sulfate and ammonium was 71.67 mg.L-1 and 56.82 mg.L-1 at high concentrations.The reaction between SO42- and NH4+ was difficult, though feasible, due to its low standard Gibbs free energy change. The experiment demonstrated that high substrate concentrations and low oxidation-reduction potential (ORP) may be favourable for the biological reaction.

  15. Effect of substrate loading on hydrogen production during anaerobic fermentation by Clostridium thermocellum 27405.

    Science.gov (United States)

    Islam, Rumana; Cicek, Nazim; Sparling, Richard; Levin, David

    2006-09-01

    We have investigated hydrogen (H2) production by the cellulose-degrading anaerobic bacterium, Clostridium thermocellum. In the following experiments, batch-fermentations were carried out with cellobiose at three different substrate concentrations to observe the effects of carbon-limited or carbon-excess conditions on the carbon flow, H2-production, and synthesis of other fermentation end products, such as ethanol and organic acids. Rates of cell growth were unaffected by different substrate concentrations. H2, carbon dioxide (CO2), acetate, and ethanol were the main products of fermentation. Other significant end products detected were formate and lactate. In cultures where cell growth was severely limited due to low initial substrate concentrations, hydrogen yields of 1 mol H2/mol of glucose were obtained. In the cultures where growth ceased due to carbon depletion, lactate and formate represented a small fraction of the total end products produced, which consisted mainly of H2, CO2, acetate, and ethanol throughout growth. In cultures with high initial substrate concentrations, cellobiose consumption was incomplete and cell growth was limited by factors other than carbon availability. H2-production continued even in stationary phase and H2/CO2 ratios were consistently greater than 1 with a maximum of 1.2 at the stationary phase. A maximum specific H2 production rate of 14.6 mmol g dry cell(-1) h(-1) was observed. As cells entered stationary phase, extracellular pyruvate production was observed in high substrate concentration cultures and lactate became a major end product.

  16. Enzymes of anaerobic ethylbenzene and p-ethylphenol catabolism in 'Aromatoleum aromaticum': differentiation and differential induction.

    Science.gov (United States)

    Muhr, Enrico; Schühle, Karola; Clermont, Lina; Sünwoldt, Katharina; Kleinsorge, Daniel; Seyhan, Deniz; Kahnt, Jörg; Schall, Iris; Cordero, Paul R; Schmitt, Georg; Heider, Johann

    2015-11-01

    The denitrifying bacterium 'Aromatoleum aromaticum' strain EbN1 is one of the best characterized bacteria regarding anaerobic ethylbenzene degradation. EbN1 also degrades various other aromatic and phenolic compounds in the absence of oxygen, one of them being p-ethylphenol. Despite having similar chemical structures, ethylbenzene and p-ethylphenol have been proposed to be metabolized by completely separate pathways. In this study, we established and applied biochemical and molecular biological methods to show the (almost) exclusive presence and specificity of enzymes involved in the respective degradation pathways by recording enzyme activities, complemented by heme staining, immuno- and biotin-blotting analyses. These combined results substantiated the predicted p-ethylphenol degradation pathway. The identified enzymes include a heme c-containing p-ethylphenol-hydroxylase, both an (R)- and an (S)-specific alcohol dehydrogenase as well as a novel biotin-dependent carboxylase. We also establish an activity assay for benzoylacetate-CoA ligases likely being involved in both metabolic pathways.

  17. Energetics and kinetics of anaerobic aromatic and fatty acid degradation. Progress report, March 1992--June 1995

    Energy Technology Data Exchange (ETDEWEB)

    McInerney M.J.

    1995-06-23

    Factors affecting the rate and extent of benzoate degradation by anaerobic syntrophic consortia were studied. Cocultures of a syntrophic benzoate degrader, strain SB, with a hydrogen/formate-using sulfate reducer degraded benzoate to a threshold that depended on the amount of substrate and acetate present. The benzoate threshold was not a function of the inhibition of benzoate degradation capacity by acetate or the toxicity of the undissociated form of acetate. Rather, a critical or minimal Gibb`s free energy value may exist where thermodynamic constraints preclude further benzoate degradation. A sensitive assay to detect low formate concentrations was developed to measure the formate levels when the benzoate threshold was reached. We showed that increased acetate concentrations, even when hydrogen and formate levels are low, affects the extent of benzoate degradation, implicating the importance of interspecies acetate transfer. In addition to benzoate, various saturated and unsaturated fatty acids, 2-methylbutyrate, and methyl esters of fatty acids supported growth in coculture with a hydrogen-using partner. SB is the only syntrophic bacterium known to use both benzoate and fatty acids. Phylogenetic analysis showed that SB clustered with sulfate reducers in the delta subclass of the Proteobacteria. SB grew well in coculture with Desulfoarculus baarsii, a sulfate reducer that uses formate but not hydrogen. This unequivocally shows that SB can grow by interspecies formate transfer.

  18. Comprehensive analysis of aerobic and anaerobic bacteria found on dental bib clips.

    Science.gov (United States)

    Alt-Holland, Addy; Murphy, Christina M; Powers, Anne; Kublin, Claire L; Jeong, Youjin Natalie; DiMattia, Michelle; Pham, Linh; Park, Angel; Finkelman, Matthew; Lombard, Maureen; Hanley, James B; Paster, Bruce J; Kugel, Gerard

    2013-04-01

    Multiple-use dental bib clips are considered to present relatively low risks for transmitting infections and, thus, are thought to only require disinfection between patient visits. This study was designed to: 1) determine the presence and composition of bacterial contaminants on reusable rubber-faced metal bib clips after dental treatment at the hygiene clinic at Tufts University School of Dental Medicine and 2) evaluate the effectiveness of the disinfection for this clip type. Aerobic and anaerobic bacterial contaminant loads on the surfaces of the clips were investigated immediately after hygiene treatments were rendered and again after clips were disinfected. The species and strains of bacterial isolates were identified using 16S rDNA sequencing and Human Oral Microbe Identification Microarray analyses. The results demonstrated that although the use of disinfection proved to be significantly effective, some clips retained at least one bacterium on their surfaces after disinfection. Although the bacterial species present on disinfected clips were typical skin or environmental isolates, some were oral in origin. In the study's settings, bacterial presence on the clips did not indicate an infectious disease problem. The different bacterial loads on clips suggest that cross-contamination risks may not be the same for all clinics, and that this difference may be related to the type of treatments and services performed.

  19. Treatment of common warts with the immune stimulant Propionium bacterium parvum Tratamento das verrugas vulgares com o imunoestimulante Propionium bacterium parvum

    OpenAIRE

    Nilton Nasser

    2012-01-01

    BACKGROUND: Warts are epithelial proliferations in the skin and mucous membrane caused by various types of HPV. They can decrease spontaneously or increase in size and number according to the patient's immune status. The Propionium bacterium parvum is a strong immune stimulant and immune modulator and has important effects in the immune system and it is able to produce antibodies in the skin. OBJECTIVE: To show the efficacy of the Propionium bacterium parvum in saline solution in the treatmen...

  20. Draft Genome Sequence of Ensifer adhaerens M78, a Mineral-Weathering Bacterium Isolated from Soil.

    Science.gov (United States)

    Wang, Yuanli; Chen, Wei; He, Linyan; Wang, Qi; Sheng, Xia-Fang

    2016-01-01

    Ensifer adhaerens M78, a bacterium isolated from soil, can weather potash feldspar and release Fe, Si, and Al from rock under nutrient-poor conditions. Here, we report the draft genome sequence of strain M78, which may facilitate a better understanding of the molecular mechanism involved in mineral weathering by the bacterium. PMID:27609930

  1. Draft Genome Sequence of Ensifer adhaerens M78, a Mineral-Weathering Bacterium Isolated from Soil.

    Science.gov (United States)

    Wang, Yuanli; Chen, Wei; He, Linyan; Wang, Qi; Sheng, Xia-Fang

    2016-01-01

    Ensifer adhaerens M78, a bacterium isolated from soil, can weather potash feldspar and release Fe, Si, and Al from rock under nutrient-poor conditions. Here, we report the draft genome sequence of strain M78, which may facilitate a better understanding of the molecular mechanism involved in mineral weathering by the bacterium.

  2. Dense populations of a giant sulfur bacterium in Namibian shelf sediments

    DEFF Research Database (Denmark)

    Schulz, HN; Brinkhoff, T.; Ferdelman, TG;

    1999-01-01

    A previously unknown giant sulfur bacterium is abundant in sediments underlying the oxygen minimum zone of the Benguela Current upwelling system. The bacterium has a spherical cell that exceeds by up to 100-fold the biovolume of the largest known prokaryotes. On the basis of 16S ribosomal DNA...

  3. Burkholderia phytofirmans sp. nov., a novel plant-associated bacterium with plant-beneficial properties

    NARCIS (Netherlands)

    Sessitsch, A; Coenye, T; Sturz, AV; Vandamme, P; Barka, EA; Salles, JF; Van Elsas, JD; Faure, D; Reiter, B; Glick, BR; Wang-Pruski, G; Nowak, J

    2005-01-01

    A Gram-negative, non-sporulating, rod-shaped, motile bacterium, with a single polar flagellum, designated strain PsJNT, was isolated from surface-sterilized onion roots. This isolate proved to be a highly effective plant-beneficial bacterium, and was able to establish rhizosphere and endophytic popu

  4. APPLICATION OF ANAEROBIC BIOTECHNOLOGY FOR PHARMACEUTICAL WASTEWATER TREATMENT

    Directory of Open Access Journals (Sweden)

    Shreeshivadasan Chelliapan and Paul J. Sallis

    2011-01-01

    Full Text Available The wastewater generated from pharmaceutical industry generally contain high organic load and the treatment is primarily carried out using two major types of biological methods; aerobic and anaerobic. However, due to high strength, it is infeasible to treat some pharmaceutical wastewater using aerobic biological processes. As an alternative, an anaerobic process is preferred to remove high strength organic matter. Anaerobic wastewater treatment is considered as the most cost effective solution for organically polluted industrial waste streams. In particular the development of high rate systems, in which hydraulic retention times (HRT are uncoupled from solids retention times (SRT, has led to a worldwide acceptance of anaerobic wastewater treatment. In this paper, literature on anaerobic digestion, anaerobic reactor technology and existing anaerobic treatment of pharmaceutical wastewater are presented. In addition, fate of pharmaceuticals in the environment was also discussed in brief. A case study of a laboratory investigation into the treatment of pharmaceutical wastewater containing the antibiotic Tylosin in an anaerobic reactor was also given. Specifically, it was determined whether the anaerobic reactor could be used as a pre-treatment system at an existing pharmaceutical production plant. The performance of the reactor treating real pharmaceutical wastewater at various organic loading rate (OLR was investigated and showed efficient substrate removal at low OLRs (0.43 – 1.86 kg COD.m-3.d-1 by promoting efficient chemical oxygen demand (COD reduction (70 – 75%. Under these conditions, an average of 95% Tylosin reduction was achieved in the UASR. However, increasing the OLRs to 3.73 kg COD.m-3.d-1 by reducing the hydraulic retention time (HRT (4 – 2 d reduced the COD removal efficiency (45%. Changes in the organic loading affected the treatment performance of the anaerobic reactor, and at high OLRs, it was not able to withstand the short

  5. Validity of the Pediatric Running-Based Anaerobic Sprint Test to Determine Anaerobic Performance in Healthy Children

    NARCIS (Netherlands)

    Bongers, Bart C.; Werkman, Maarten S.; Blokland, Donna; Eijsermans, Maria J. C.; van der Torre, Patrick; Bartels, Bart; Verschuren, Olaf; Takken, Tim

    2015-01-01

    Purpose: To determine criterion validity of the pediatric running-based anaerobic sprint test (RAST) as a nonsophisticated field test for evaluating anaerobic performance in healthy children and adolescents. Methods: Data from 65. healthy children (28 boys and 37 girls between 6 and 18 years of age,

  6. Algicidal lactones from the marine Roseobacter clade bacterium Ruegeria pomeroyi

    Directory of Open Access Journals (Sweden)

    Ramona Riclea

    2012-06-01

    Full Text Available Volatiles released by the marine Roseobacter clade bacterium Rugeria pomeroyi were collected by use of a closed-loop stripping headspace apparatus (CLSA and analysed by GC–MS. Several lactones were found for which structural proposals were derived from their mass spectra and unambiguously verified by the synthesis of reference compounds. An enantioselective synthesis of two exemplary lactones was performed to establish the enantiomeric compositions of the natural products by enantioselective GC–MS analyses. The lactones were subjected to biotests to investigate their activity against several bacteria, fungi, and algae. A specific algicidal activity was observed that may be important in the interaction between the bacteria and their algal hosts in fading algal blooms.

  7. A bacterium that degrades and assimilates poly(ethylene terephthalate).

    Science.gov (United States)

    Yoshida, Shosuke; Hiraga, Kazumi; Takehana, Toshihiko; Taniguchi, Ikuo; Yamaji, Hironao; Maeda, Yasuhito; Toyohara, Kiyotsuna; Miyamoto, Kenji; Kimura, Yoshiharu; Oda, Kohei

    2016-03-11

    Poly(ethylene terephthalate) (PET) is used extensively worldwide in plastic products, and its accumulation in the environment has become a global concern. Because the ability to enzymatically degrade PET has been thought to be limited to a few fungal species, biodegradation is not yet a viable remediation or recycling strategy. By screening natural microbial communities exposed to PET in the environment, we isolated a novel bacterium, Ideonella sakaiensis 201-F6, that is able to use PET as its major energy and carbon source. When grown on PET, this strain produces two enzymes capable of hydrolyzing PET and the reaction intermediate, mono(2-hydroxyethyl) terephthalic acid. Both enzymes are required to enzymatically convert PET efficiently into its two environmentally benign monomers, terephthalic acid and ethylene glycol.

  8. Characterisation of an unusual bacterium isolated from genital ulcers.

    Science.gov (United States)

    Ursi, J P; van Dyck, E; Ballard, R C; Jacob, W; Piot, P; Meheus, A Z

    1982-02-01

    The preliminary characterisation of an unusual gram-negative bacillus isolated from genital ulcers in Swaziland is reported. Like Haemophilus ducreyi, it is an oxidase positive, nitrate-reductase-positive gram-negative rod that forms streptobacillary chains in some circumstances; it was therefore called the "ducreyi-like bacterium" (DLB). Distinguishing features of DLB are production of alpha-haemolysis on horse-blood agar, stimulation of growth by a microaerophilic atmosphere and by a factor produced by Staphylococcus aureus, a strongly positive porphyrin test, and a remarkable ability to undergo autolysis. DLB had a guanine + cytosine value of c. 50 mole% but it cannot be classified, even at the genus level, until more taxonomic data are obtained.

  9. A bacterium that degrades and assimilates poly(ethylene terephthalate).

    Science.gov (United States)

    Yoshida, Shosuke; Hiraga, Kazumi; Takehana, Toshihiko; Taniguchi, Ikuo; Yamaji, Hironao; Maeda, Yasuhito; Toyohara, Kiyotsuna; Miyamoto, Kenji; Kimura, Yoshiharu; Oda, Kohei

    2016-03-11

    Poly(ethylene terephthalate) (PET) is used extensively worldwide in plastic products, and its accumulation in the environment has become a global concern. Because the ability to enzymatically degrade PET has been thought to be limited to a few fungal species, biodegradation is not yet a viable remediation or recycling strategy. By screening natural microbial communities exposed to PET in the environment, we isolated a novel bacterium, Ideonella sakaiensis 201-F6, that is able to use PET as its major energy and carbon source. When grown on PET, this strain produces two enzymes capable of hydrolyzing PET and the reaction intermediate, mono(2-hydroxyethyl) terephthalic acid. Both enzymes are required to enzymatically convert PET efficiently into its two environmentally benign monomers, terephthalic acid and ethylene glycol. PMID:26965627

  10. Trace metal speciation and bioavailability in anaerobic digestion: A review.

    Science.gov (United States)

    Thanh, Pham Minh; Ketheesan, Balachandran; Yan, Zhou; Stuckey, David

    2016-01-01

    Trace metals are essential for the growth of anaerobic microorganisms, however, in practice they are often added to anaerobic digesters in excessive amounts, which can lead to inhibition. The concept of bioavailability of metals in anaerobic digestion has been poorly understood in the past, and a lack of deep understanding of the relationship between trace metal speciation and bioavailability can result in ineffective metal dosing strategies for anaerobic digesters. Sequential extraction schemes are useful for fractionating trace metals into their different forms, and metal sulfides can serve as a store and source for trace metals during anaerobic digestion, while natural/synthetic chelating agents (soluble microbial products-SMPs, extracellular polysaccharides-EPS, and EDTA/NTA) are capable of controlling trace metal bioavailability. Nevertheless, more work is needed to: investigate the speciation and bioavailability of Ca, Mg, Mn, W, and Se; compare the bioavailability of different forms of trace metals e.g. carbonates, sulfides, phosphates to different anaerobic trophic groups; determine what factors influence metal sulfide dissolution; investigate whether chelating agents can increase trace metal bioavailability; develop and adapt specialized analytical techniques, and; determine how trace metal dynamics change in an anaerobic membrane bioreactor (AnMBR). PMID:26707985

  11. [Antimicrobial susceptibility testing of anaerobic bacteria].

    Science.gov (United States)

    García-Sánchez, José E; García-Sánchez, Enrique; García-García, María Inmaculada

    2014-02-01

    The anaerobic bacteria resistance to antibiotics is increasing, and even has appeared against the most active of those, like metronidazol and carbapenems. This fact forces to make and periodical sensibility tests -at least in the most aggressive and virulent species, in cases that they are isolated from life locations and in the absence of therapeutic response- to check the local sensibility and to establish suitable empiric therapies, all based on multicentric studies carried out in order to this or well to check the activity of new antibiotics. For the laboratory routine, the easiest sensibility method is the E-test/MIC evaluator. Another alternative is microdilution, that's only normalized for Bacteroides. There are preliminary facts that allow the use of disc diffusion method in some species of Bacteroides and Clostridium. For the temporal and multicentric studies, the procedure is dilution in agar plate, the reference method.

  12. Anaerobic digestion of slaughterhouse by-products

    DEFF Research Database (Denmark)

    Hejnfelt, Anette; Angelidaki, Irini

    2009-01-01

    hydrolysis (NaOH) had no effect on achieved methane yields. Mesophilic digestion was more stable than thermophilic digestion, and higher methane yield was noticed at high waste concentrations. The lower yield at thermophilic temperature and high waste concentration was due to ammonia inhibition. Co......Anaerobic digestion of animal by-products was investigated in batch and semi-continuously fed, reactor experiments at 55 degrees C and for some experiments also at 37 degrees C. Separate or mixed by-products from pigs were tested. The methane potential measured by batch assays for meat- and bone...... giving the best results. High concentrations of long-chain fatty acids and ammonia in the by-products were found to inhibit the biogas process at concentrations higher than 5 g lipids dm(-3) and 7 gN dm(-3) respectively. Pretreatment (pasteurization: 70 degrees C, sterilization: 133 degrees C, and alkali...

  13. Monitoring and control of anaerobic reactors

    DEFF Research Database (Denmark)

    Pind, Peter Frode; Angelidaki, Irini; Ahring, Birgitte Kiær;

    2003-01-01

    The current status in monitoring and control of anaerobic reactors is reviewed. The influence of reactor design and waste composition on the possible monitoring and control schemes is examined. After defining the overall control structure, and possible control objectives, the possible process...... measurements are reviewed in detail. In the sequel, possible manipulated variables, such as the hydraulic retention time, the organic loading rate, the sludge retention time, temperature, pH and alkalinity are evaluated with respect to the two main reactor types: high-rate and low-rate. Finally, the different...... control approaches that have been used are comprehensively described. These include simple and adaptive controllers, as well as more recent developments such as fuzzy controllers, knowledge-based controllers and controllers based on neural networks....

  14. Kinetics of biogas production in Anaerobic Filters.

    Science.gov (United States)

    Krümpel, Johannes; Schäufele, Friedrich; Schneider, Johannes; Jungbluth, Thomas; Zielonka, Simon; Lemmer, Andreas

    2016-01-01

    This study investigates methane production kinetics from individual volatile fatty acids (VFA) in an Upflow Anaerobic Filter (AF). 1gCOD in the form of acetic (HAc), propionic (HPr) or butyric acid (HBu) was injected into the AF while operating at an organic loading rate (OLRCOD) of 3.5gL(-1)d(-1). A new method is introduced to separate gas production of the baseload from the product formation of VFA degradation after the injection. The lag phase, fractional rate of gas production and half-life has been determined for the methane production of the three VFAs. The half-lives were in the order HAcgas production from the C3 acid than from the C4 acid. The results can be used for prediction models for on-demand biogas production, a vital approach that provides the transforming energy market with balancing power. PMID:26492176

  15. Hydrogen production from glucose by anaerobes.

    Science.gov (United States)

    Ogino, Hiroyasu; Miura, Takashi; Ishimi, Kosaku; Seki, Minoru; Yoshida, Hiroyuki

    2005-01-01

    Various anaerobes were cultivated in media containing glucose. When 100 mL of thioglycollate medium containing 2.0% (w/v) glucose was used, Clostridium butyricum ATCC 859, NBRC 3315, and NBRC 13949 evolved 227-243 mL of biogas containing about 180 mL of hydrogen in 1 day. Although some strains had some resistance against oxygen, C. butyricum ATCC 859 and 860 did not have it. C. butyricum NBRC 3315 and Enterobacter aerogenes NBRC 13534 produced hydrogen in the presence of glucose or pyruvic acid, and E. aerogenes NBRC 13534 produced hydrogen by not only glucose and pyruvic acid but also dextrin, sucrose, maltose, galactose, fructose, mannose, and mannitol. When a medium containing 0.5% (w/v) yeast extract and 2.0% (w/v) glucose was used, E. aerogenes NBRC 13534 evolved more biogas and hydrogen than C. butyricum NBRC 3315 in the absence of reducing agent.

  16. CFD simulation of mixing in anaerobic digesters.

    Science.gov (United States)

    Terashima, Mitsuharu; Goel, Rajeev; Komatsu, Kazuya; Yasui, Hidenari; Takahashi, Hiroshi; Li, Y Y; Noike, Tatsuya

    2009-04-01

    A three-dimensional CFD model incorporating the rheological properties of sludge was developed and applied to quantify mixing in a full-scale anaerobic digester. The results of the model were found to be in good agreement with experimental tracer response curve. In order to predict the dynamics of mixing, a new parameter, UI (uniformity index) was defined. The visual patterns of tracer mixing in simulation were well reflected in the dynamic variation in the value of UI. The developed model and methods were applied to determine the required time for complete mixing in a full-scale digester at different solid concentrations. This information on mixing time is considered to be useful in optimizing the feeding cycles for better digester performance. PMID:19081247

  17. Photochemistry of hypocrellin derivatives under anaerobic conditions

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    To improve the red absorption and solubility of hypocrellin, we have synthesized a series of hypocrellin B derivatives. The photochemistry of these new compounds in anaerobic media has been investigated by using electronic paramagnetic resonance (EPR) and spectrophotometric methods. The semiquinone anion radicals can be produced by self-electron transfer on irradiation, with the formation efficiency and EPR hyperfine structures of the semiquinone anion radicals dependent on the structures of the derivatives. When an electron donor is present, the electron transfer from electron donor to hypocrellin B derivatives enhanced the production of the corresponding semiquinone anion radical; in addition, the semiquinone anion radical and hydroquinone can be detected spectrophotometrically. Structural modifications exert little effect on the absorption position of semiquinone anion radical and hydroquinone, but influence their formation efficiency significantly.

  18. Determining anaerobic degradation kinetics from batch tests.

    Science.gov (United States)

    Moreda, Iván López

    2016-01-01

    Data obtained from a biomethane potential (BMP) test were used in order to obtain the parameters of a kinetic model of solid wastes anaerobic degradation. The proposed model considers a hydrolysis step with a first order kinetic, a Monod kinetic for the soluble organic substrate degradation and a first order decay of microorganisms. The instantaneous release of methane was assumed. The parameters of the model are determined following a direct search optimization procedure. A 'multiple-shooting' technique was used as a first step of the optimization process. The confidence interval of the parameters was determined by using Monte Carlo simulations. Also, the distribution functions of the parameters were determined. Only the hydrolysis first order constant shows a normal distribution. PMID:27191569

  19. Degradation of methyl bromide in anaerobic sediments

    Science.gov (United States)

    Oremland, R.S.; Miller, L.G.; Strohmaler, F.E.

    1994-01-01

    Methyl bromide (MeBr) was anaerobically degraded in saltmarsh sediments after reaction with sulfide. The product of this nucleophilic substitution reaction was methanethiol, which underwent further chemical and bacterial reactions to form dimethyl sulfide. These two gases appeared transiently during sediment incubations because they were metabolized by methanogenic and sulfate-reducing bacteria. A second, less significant reaction of MeBr was the exchange with chloride, forming methyl chloride, which was also susceptible to attack by sulfide. Incubation of 14C-labeled methyl iodide as an analogue of MeBr resulted in the formation of 14CH4 and 14CO2 and also indicated that sulfate-reducing bacteria as well as methanogens metabolized the methylated sulfur intermediates. These results suggest that exposed sediments with abundant free sulfide, such as coastal salt-marshes, may constitute a sink for atmospheric MeBr.

  20. Instrumentation and Control in Anaerobic Digestion

    DEFF Research Database (Denmark)

    Anaerobic digestion is a multistep process, and is most applied to solids destruction and wastewater treatment for energy production. Despite wide application, and long-term industrial proof of application, some industries are still reluctant to apply this technology. One of the classical reasons...... has been lack of process control handles, instruments, and developed control algorithms. This has improved dramatically in the past 10 years, and all of these areas have now been addressed. The main gap in instrumentation technology has been a rapid intermediate sensor to detect overload conditions....... There are now a number of sensors that can measure total or individual organic acids, and some are in commercial production. Control has also been widely applied, with a wide variety of controllers, for direct beneficial results, and one application has been shown in this paper. Available control handles...

  1. Characterization of Spartina alterniflora as feedstock for anaerobic digestion

    International Nuclear Information System (INIS)

    Smooth cordgrass (Spartina alterniflora), a saltmarsh plant with high production, was characterized for its potential for use as feedstock for anaerobic digestion processes. The anaerobic digestibility and biogas yield of S. alterniflora were evaluated by anaerobic batch digestion experiments performed at 35 ± 1 C at initial volatile solids (VS) of 6%. The nutrient content analysis indicated that S. alterniflora contained the required nutrition for anaerobic microorganisms, but its high C/N of 58.8, high K and Na contents of 8.1, 22.7 g kg-1, respectively, may be disadvantageous to its anaerobic digestion. The cumulative biogas yield was determined to be 358 L kg-1 VS and the biodegradation efficiency was 45% after 60 days of digestion. The methane content of biogas increased from 53% on day 3 to around 62% after 13 days of digestion. The changes of volatile fatty acids (VFAs) indicated that the acidification of S. alterniflora was propionate-type fermentation with proportion of acetate and propionate ranging from 54.8% to 98.4%, and the hydrolysis of lignocellulose was the rate-limiting step for its anaerobic digestion. The analysis of cations suggested that K+ and Mg2+, with the maximum concentration of 1.35 and 0.43 g L-1 in fermentation liquor, respectively, could be inhibitory to the anaerobic digestion of S. alterniflora. It is concluded that S. alterniflora can be transformed into clean energy by anaerobic digestion and the high contents of K, Na, Ca and Mg may be the inhibitory factors when S. alterniflora is digested by continuous or semi-continuous anaerobic process. (author)

  2. Novel characteristics of a carbohydrate-binding module 20 from hyperthermophilic bacterium.

    Science.gov (United States)

    Oh, Il-Nam; Jane, Jay-Lin; Wang, Kan; Park, Jong-Tae; Park, Kwan-Hwa

    2015-03-01

    In this study, a gene fragment coding carbohydrate-binding module 20 (CBM20) in the amylopullulanase (APU) gene was cloned from the hyperthermophilic bacteria Thermoanaerobacter pseudoethanolicus 39E and expressed in Escherichia coli. The protein, hereafter Tp39E, possesses very low sequence similarity with the CBM20s previously reported and has no starch binding site 2. Tp39E did not demonstrate thermal denaturation at 50 °C; however, thermal unfolding of the protein was observed at 59.5 °C. A binding assay with Tp39E was conducted using various soluble and insoluble substrates, and starch was the best binding polysaccharide. Intriguingly, Tp39E bound, to a lesser extent, to soluble and insoluble xylan as well. The dissociation constant (K d) and the maximum specific binding (B max) of Tp39E to corn starch granules were 0.537 μM and 5.79 μM/g, respectively, at pH 5.5 and 20 °C. 99APU1357 with a Tp39E domain exhibited 2.2-fold greater activity than a CBM20-truncation mutant when starch granules were the substrate. Tp39E was an independently thermostable CBM and had a considerable effect on APU activity in the hydrolysis of insoluble substrates. PMID:25575613

  3. Electron beam/biological processing of anaerobic and aerobic sludge

    Science.gov (United States)

    Čuba, V.; Pospíšil, M.; Múčka, V.; Jeníček, P.; Dohányos, M.; Zábranská, J.

    2003-01-01

    Besides common chemical and biological methods, the radiation technology is a promising way of sludge treatment. The paper describes possibilities of combined accelerated electrons/biological processing of both anaerobic and aerobic sludge. Besides one-shot experiments, experimental reactors for the simulation of anaerobic processes have been used. Main effort has been aimed to decrease organic compounds concentration and overall volume of solids, to improve some physico-chemical parameters of sludge, to validate hygienisation effects of the ionising radiation, and in the case of anaerobic sludge, to increase the volume of the produced biogas. Positive effects of the electron beam processing have been observed on all previously named parameters.

  4. Electron beam/biological processing of anaerobic and aerobic sludge

    International Nuclear Information System (INIS)

    Besides common chemical and biological methods, the radiation technology is a promising way of sludge treatment. The paper describes possibilities of combined accelerated electrons/biological processing of both anaerobic and aerobic sludge. Besides one-shot experiments, experimental reactors for the simulation of anaerobic processes have been used. Main effort has been aimed to decrease organic compounds concentration and overall volume of solids, to improve some physico-chemical parameters of sludge, to validate hygienisation effects of the ionising radiation, and in the case of anaerobic sludge, to increase the volume of the produced biogas. Positive effects of the electron beam processing have been observed on all previously named parameters. (author)

  5. Combined Anaerobic-Aerobic Bacterial Degradation of Dyes

    OpenAIRE

    R. Wilfred Sugumar; Sandhya Sadanandan

    2010-01-01

    Wastewaters from the dye baths of a non-formal textile-dyeing unit containing C.I. Acid Orange 7 and C.I. Reactive Red 2 were subjected to degradation in a sequential anaerobic-aerobic treatment process based on mixed culture of bacteria. The technical samples of the dyestuffs and the dye bath wastes were treated in an anaerobic reactor, using an adapted mixed culture of anaerobic microorganisms. The dyestuffs were biotransformed into colourless substituted amine metabolites in the reactor. T...

  6. Methane and hydrogen production by human intestinal anaerobic bacteria.

    Science.gov (United States)

    McKay, L F; Holbrook, W P; Eastwood, M A

    1982-06-01

    The gas above liquid cultures of a variety of human intestinal anaerobic bacteria was sampled and analysed by headspace gas chromatography. Hydrogen production was greatest with strains of the genus Clostridium, intermediate with anaerobic cocci and least with Bacteroides sp. Very few strains produced methane although small amounts were detected with one strain of B. thetaiotaomicron, C. perfringens and C. histolyticum. There may be a relationship between these anaerobic bacteria and several gastrointestinal disorders in which there is a build up of hydrogen or methane in the intestines.

  7. ANAEROBIC MEMBRANE BIOREACTORS FOR DOMESTIC WASTEWATER TREATMENT. PRELIMINARY STUDY

    Directory of Open Access Journals (Sweden)

    Luisa Vera

    2014-12-01

    Full Text Available The operation of submerged anaerobic membrane bioreactors (SAnMBRs for domestic wastewaters treatment was studied in laboratory scale, with the objective to define sustainable filtration conditions of the suspensions along the process. During continuous experiments, the organic matter degradation by anaerobic way showed an average DQOT removal of 85% and 93%. Indeed, the degradation generated biogas after 12 days of operation and its relative methane composition was of 60% after 25 days of operation. Additionally, the comparison between membrane bioreactors (MBRs performance in aerobic and anaerobic conditions in filterability terms, reported that both systems behave similarly once reached the stationary state.

  8. Combined electrical-alkali pretreatment to increase the anaerobic hydrolysis rate of waste activated sludge during anaerobic digestion

    International Nuclear Information System (INIS)

    Highlights: • Combined electrical-alkali pretreatment for improving sludge anaerobic digestion was proposed. • Combined process enhanced the cell lysis, biopolymers releases, and thus sludge disintegration. • Increased solubilization of sludge increased the anaerobic hydrolysis rate. • Increased solubilization does not always induce an improved anaerobic digestion efficiency. - Abstract: Pretreatment can be used prior to anaerobic digestion to improve the efficiency of waste activated sludge (WAS) digestion. In this study, electrolysis and a commonly used pretreatment method of alkaline (NaOH) solubilization were integrated as a pretreatment method for promoting WAS anaerobic digestion. Pretreatment effectiveness of combined process were investigated in terms of disintegration degree (DDSCOD), suspended solids (TSS and VSS) removals, the releases of protein (PN) and polysaccharide (PS), and subsequent anaerobic digestion as well as dewaterability after digestion. Electrolysis was able to crack the microbial cells trapped in sludge gels and release the biopolymers (PN and PS) due to the cooperation of alkaline solubilization, enhancing the sludge floc disintegration/solubilization, which was confirmed by scanning electron microscopy (SEM) analysis. Biochemical methane potential (BMP) assays showed the highest methane yield was achieved with 5 V plus pH 9.2 pretreatment with up to 20.3% improvement over the non-pretreated sludge after 42 days of mesophilic operation. In contrast, no discernible improvements on anaerobic degradability were observed for the rest of pretreated sludges, probably due to the overmuch leakage of refractory soluble organics, partial chemical mineralization of solubilized compounds and sodium inhibition. The statistical analysis further indicated that increased solubilization induced by electrical-alkali pretreatment increased the first-order anaerobic hydrolysis rate (khyd), but had no, or very slight enhancement on WAS ultimate

  9. Adaptation of the Biolog Phenotype MicroArrayTM Technology to Profile the Obligate Anaerobe Geobacter metallireducens

    Energy Technology Data Exchange (ETDEWEB)

    Joyner, Dominique; Fortney, Julian; Chakraborty, Romy; Hazen, Terry

    2010-05-17

    The Biolog OmniLog? Phenotype MicroArray (PM) plate technology was successfully adapted to generate a select phenotypic profile of the strict anaerobe Geobacter metallireducens (G.m.). The profile generated for G.m. provides insight into the chemical sensitivity of the organism as well as some of its metabolic capabilities when grown with a basal medium containing acetate and Fe(III). The PM technology was developed for aerobic organisms. The reduction of a tetrazolium dye by the test organism represents metabolic activity on the array which is detected and measured by the OmniLog(R) system. We have previously adapted the technology for the anaerobic sulfate reducing bacterium Desulfovibrio vulgaris. In this work, we have taken the technology a step further by adapting it for the iron reducing obligate anaerobe Geobacter metallireducens. In an osmotic stress microarray it was determined that the organism has higher sensitivity to impermeable solutes 3-6percent KCl and 2-5percent NaNO3 that result in osmotic stress by osmosis to the cell than to permeable non-ionic solutes represented by 5-20percent ethylene glycol and 2-3percent urea. The osmotic stress microarray also includes an array of osmoprotectants and precursor molecules that were screened to identify substrates that would provide osmotic protection to NaCl stress. None of the substrates tested conferred resistance to elevated concentrations of salt. Verification studies in which G.m. was grown in defined medium amended with 100mM NaCl (MIC) and the common osmoprotectants betaine, glycine and proline supported the PM findings. Further verification was done by analysis of transcriptomic profiles of G.m. grown under 100mM NaCl stress that revealed up-regulation of genes related to degradation rather than accumulation of the above-mentioned osmoprotectants. The phenotypic profile, supported by additional analysis indicates that the accumulation of these osmoprotectants as a response to salt stress does not

  10. Abundance and diversity of dockerin-containing proteins in the fiber-degrading rumen bacterium, Ruminococcus flavefaciens FD-1.

    Directory of Open Access Journals (Sweden)

    Marco T Rincon

    Full Text Available BACKGROUND: The cellulosome is a multi-enzyme machine, which plays a key role in the breakdown of plant cell walls in many anaerobic cellulose-degrading microorganisms. Ruminococcus flavefaciens FD-1, a major fiber-degrading bacterium present in the gut of herbivores, has the most intricate cellulosomal organization thus far described. Cellulosome complexes are assembled through high-affinity cohesin-dockerin interactions. More than two-hundred dockerin-containing proteins have been identified in the R. flavefaciens genome, yet the reason for the expansion of these crucial cellulosomal components is yet unknown. METHODOLOGY/PRINCIPAL FINDINGS: We have explored the full spectrum of 222 dockerin-containing proteins potentially involved in the assembly of cellulosome-like complexes of R. flavefaciens. Bioinformatic analysis of the various dockerin modules showed distinctive conservation patterns within their two Ca(2+-binding repeats and their flanking regions. Thus, we established the conceptual framework for six major groups of dockerin types, according to their unique sequence features. Within this framework, the modular architecture of the parent proteins, some of which are multi-functional proteins, was evaluated together with their gene expression levels. Specific dockerin types were found to be associated with selected groups of functional components, such as carbohydrate-binding modules, numerous peptidases, and/or carbohydrate-active enzymes. In addition, members of other dockerin groups were linked to structural proteins, e.g., cohesin-containing proteins, belonging to the scaffoldins. CONCLUSIONS/SIGNIFICANCE: This report profiles the abundance and sequence diversity of the R. flavefaciens FD-1 dockerins, and provides the molecular basis for future understanding of the potential for a wide array of cohesin-dockerin specificities. Conserved differences between dockerins may be reflected in their stability, function or expression within

  11. Characterization and Potential Applications of a Selenium Nanoparticle Producing and Nitrate Reducing Bacterium Bacillus oryziterrae sp. nov.

    Science.gov (United States)

    Bao, Peng; Xiao, Ke-Qing; Wang, Hui-Jiao; Xu, Hao; Xu, Peng-Peng; Jia, Yan; Häggblom, Max M.; Zhu, Yong-Guan

    2016-09-01

    A novel nitrate- and selenite reducing bacterium strain ZYKT was isolated from a rice paddy soil in Dehong, Yunnan, China. Strain ZYKT is a facultative anaerobe and grows in up to 150, 000 ppm O2. The comparative genomics analysis of strain ZYKT implies that it shares more orthologues with B. subtilis subsp. subtilis NCIB 3610T (ANIm values, 85.4–86.7%) than with B. azotoformans NBRC 15712T (ANIm values, 84.4–84.7%), although B. azotoformans NBRC 15712T (96.3% 16S rRNA gene sequence similarity) is the closest Bacillus species according to 16S rRNA gene comparison. The major cellular fatty acids of strain ZYKT were iso-C14:0 (17.8%), iso-C15:0 (17.8%), and C16:0 (32.0%). The polar lipid profile consisted of phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol and an unidentified aminophospholipid. Based on physiological, biochemical and genotypic properties, the strain was considered to represent a novel species of the genus Bacillus, for which the name Bacillus oryziterrae sp. nov. is proposed. The type strain is ZYKT (=DSM 26460T =CGMCC 1.5179T). Strain ZYKT can reduce nitrate to nitrite and ammonium and possesses metabolic genes for nitrate reduction including nar, nap and nrf. Biogenic selenium nanoparticles of strain ZYKT show a narrow size distribution and agree with the gaussian distribution. These selenium nanoparticles show significant dose-dependent inhibition of the lung cancer cell line H157, which suggests potential for application in cancer therapy.

  12. Vibrio oceanisediminis sp. nov., a nitrogen-fixing bacterium isolated from an artificial oil-spill marine sediment.

    Science.gov (United States)

    Kang, Sang Rim; Srinivasan, Sathiyaraj; Lee, Sang-Seob

    2015-10-01

    A Gram-staining-negative, halophilic, facultatively anaerobic, motile, rod-shaped and nitrogen-fixing bacterium, designated strain S37T, was isolated from an artificial oil-spill sediment sample from the coast of Taean, South Korea. Cells grew at 10-37 °C and pH 5.0-9.0, with optimal growth at 28 °C and pH 6.0-8.0. Growth was observed with 1-9 % (w/v) NaCl in marine broth, with optimal growth with 3-5 % NaCl, but no growth was observed in the absence of NaCl. According to the results of 16S rRNA gene sequence analysis, strain S37T represents a member of the genus Vibrio of the class Gammaproteobacteria and forms a clade with Vibrio plantisponsor MSSRF60T (97.38 %), Vibrio diazotrophicus ATCC 33466T (97.31 %), Vibrio aestuarianus ATCC 35048T (97.07 %) Vibrio areninigrae J74T (96.76 %) and Vibrio hispanicus LMG 13240T (96.76 %). The major fatty acids were C16 : 0, C16 : 1ω7c/C16 : 1ω6c and C18 : 1ω7c/C18 : 1ω6c. The DNA G+C content was 41.9 %. The DNA-DNA hybridization analysis results showed a 30.2 % association value with the closely related type strain V. plantisponsor DSM 21026T. On the basis of phenotypic and chemotaxonomic characteristics, strain S37T represents a novel species of the genus Vibrio, for which the name Vibrio oceanisediminis sp. nov., is proposed with the type strain S37T ( = KEMB 2255-005T = JCM 30409T).

  13. Brevibacillus nitrificans sp. nov., a nitrifying bacterium isolated from a microbiological agent for enhancing microbial digestion in sewage treatment tanks.

    Science.gov (United States)

    Takebe, Fumihiko; Hirota, Kikue; Nodasaka, Yoshinobu; Yumoto, Isao

    2012-09-01

    A heterotrophic nitrifying bacterium, designated strain DA2(T), was isolated from a microbiological agent for enhancing microbial digestion in sewage treatment tanks. Cells of strain DA2(T) were Gram-positive, facultatively anaerobic, sporulating rods that were motile by means of peritrichous flagella; they were able to grow at pH 5-8. The major isoprenoid quinone of strain DA2(T) was menaquinone-7 (MK-7) and its cellular fatty acid profile consisted mainly of iso-C(15 : 0) (18.6 %) and anteiso-C(15 : 0) (69.1 %). The DNA G+C content was 54.1 mol%. 16S rRNA gene sequence phylogeny suggested that strain DA2(T) is a member of the genus Brevibacillus, with highest sequence similarities (in parentheses) to the type strains of Brevibacillus choshinensis (99.7 %), B. formosus (99.4 %), B. brevis (99.4 %), B. agri (99.0 %), B. reuszeri (98.8 %), B. parabrevis (98.7 %), B. centrosporus (98.6 %), B. limnophilus (97.4 %), B. panacihumi (97.3 %) and B. invocatus (97.3 %). DNA-DNA hybridization showed less than 60 % relatedness between strain DA2(T) and type strains of the most closely related species given above. Given the significant differences in phenotypic and chemotaxonomic characteristics, and phylogenetic analysis based on the 16S rRNA sequence and DNA-DNA relatedness data, the isolate merits classification as a novel species, for which the name Brevibacillus nitrificans is proposed; the type strain of this species is DA2(T) (= JCM 15774(T) = NCIMB 14531(T)).

  14. Sequential anaerobic-adsorption treatment of chemical industry wastewater.

    Science.gov (United States)

    Daga, Kailash; Pallavi, V; Patel, Dharmendra

    2011-10-01

    Treatment technologies needed to reduce the pollutant load of chemical industry effluent have been found to involve exorbitantly high costs. The present investigation aimed to treat the wastewater from chemical industry by cost effective sequential anaerobic-adsorption treatment. Wastewaters from chemical industry that are rich in biodegradable organics are tested for anaerobic treatability. The efficiency of anaerobic reactor is relatively lower 79.3%, and therefore post treatment of effluent was done by adsorption using Poly vinyl alcohol coated Datura stramonium (PVAC-DS) as an adsorbent. An overall COD removal of 93.8 % was achieved after sequential Anaerobic-Adsorption treatment, which lead to a better final effluent and a more economical treatment system.

  15. Performance of sulfate-dependent anaerobic ammonium oxidation

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The performance of sulfate-dependent anaerobic ammonium oxidation was studied.The results showed that both SO42-and NH4+ were chemically stable under anaerobic conditions.They did not react with each other in the absence of biological catalyst(sludge).The anaerobic digested sludge cultivated in an anaerobic reactor for three years took on the ability of oxidizing ammonium with sulfate anaero-bically.The average reduction of sulfate and ammonium was 71.67 mg.L-1 and 56.82 mg.L-1 at high concentrations.The reaction between SO42-and NH4+ was difficult,though feasible,due to its low standard Gibbs free energy change.The experiment demonstrated that high substrate concentrations and low oxidation-reduction potential(ORP) may be favourable for the biological reaction.

  16. Thermophilic anaerobic digestion for waste and wastewater treatment.

    NARCIS (Netherlands)

    Wiegant, W.M.

    1986-01-01

    This thesis deals with thermophilic anaerobic waste and wastewater treatment. A literature survey is presented, in which the thermophilic treatment processes are evaluated with respect to the loading rates and treatment efficiencies, and some relevant theoretical considerations concerning thermophil

  17. Nitrification and denitrification gene abundances in swine wastewater anaerobic lagoons

    Science.gov (United States)

    Although anaerobic lagoons are used globally for livestock waste treatment, their detailed microbial cycling of nitrogen is only beginning to become understood. Within this cycling, nitrification can be performed by organisms which produce the enzyme ammonia monooxygenase (AMO). For denitrification,...

  18. HIGH-RATE ANAEROBIC TREATMENT OF ALCOHOLIC WASTEWATERS

    Directory of Open Access Journals (Sweden)

    Florencio L.

    1997-01-01

    Full Text Available Modern high-rate anaerobic wastewater treatment processes are rapidly becoming popular for industrial wastewater treatment. However, until recently stable process conditions could not be guaranteed for alcoholic wastewaters containing higher concentrations of methanol. Although methanol can be directly converted into methane by methanogens, under specific conditions it can also be converted into acetate and butyrate by acetogens. The accumulation of volatile fatty acids can lead to reactor instability in a weakly buffered reactor. Since this process was insufficiently understood, the application of high-rate anaerobic reactors was highly questionable. This research investigated the environmental factors that are of importance in the predominance of methylotrophic methanogens over acetogens in a natural mixed culture during anaerobic wastewater treatment in upflow anaerobic sludge bed reactors. Technological and microbiological aspects were investigated. Additionally, the route by which methanol is converted into methane is also presented

  19. Characteristics, Process Parameters, and Inner Components of Anaerobic Bioreactors

    Science.gov (United States)

    Abdelgadir, Awad; Chen, Xiaoguang; Liu, Jianshe; Xie, Xuehui; Zhang, Jian; Zhang, Kai; Wang, Heng; Liu, Na

    2014-01-01

    The anaerobic bioreactor applies the principles of biotechnology and microbiology, and nowadays it has been used widely in the wastewater treatment plants due to their high efficiency, low energy use, and green energy generation. Advantages and disadvantages of anaerobic process were shown, and three main characteristics of anaerobic bioreactor (AB), namely, inhomogeneous system, time instability, and space instability were also discussed in this work. For high efficiency of wastewater treatment, the process parameters of anaerobic digestion, such as temperature, pH, Hydraulic retention time (HRT), Organic Loading Rate (OLR), and sludge retention time (SRT) were introduced to take into account the optimum conditions for living, growth, and multiplication of bacteria. The inner components, which can improve SRT, and even enhance mass transfer, were also explained and have been divided into transverse inner components, longitudinal inner components, and biofilm-packing material. At last, the newly developed special inner components were discussed and found more efficient and productive. PMID:24672798

  20. Decolourisation of textile wastewater in a submerged anaerobic membrane bioreactor.

    Science.gov (United States)

    Spagni, Alessandro; Casu, Stefania; Grilli, Selene

    2012-08-01

    Azo dye decolourisation can be easily achieved by biological reduction under anaerobic conditions. The aim of this study was to evaluate the applicability of submerged anaerobic membrane bioreactors (SAMBRs) for the decolourisation of dyeing wastewater containing azo dyes. The reactive orange 16 was used as model of an azo dye. The results demonstrated that very high decolourisation (higher than 99%) can be achieved by SAMBRs. Although decolourisation was not significantly influenced by the azo dye concentrations up to 3.2 g L(-1), methane production was greatly inhibited (up to 80-85%). Since volatile fatty acids accumulated in the treatment system with the azo dye concentration increase, methanogenes seem to be the most sensitive microbial populations of the anaerobic ecological community. The results demonstrated that anaerobic process combined with membrane filtration can deal with highly concentrated wastewaters that result from stream separation of industrial discharges.

  1. Characterization of bacteriophages virulent for Clostridium perfringens and identification of phage lytic enzymes as alternatives to antibiotics for potential control of the bacterium.

    Science.gov (United States)

    Seal, Bruce S

    2013-02-01

    There has been a resurgent interest in the use of bacteriophages or their gene products to control bacterial pathogens as alternatives to currently used antibiotics. Clostridium perfringens is a gram-positive, spore-forming anaerobic bacterium that plays a significant role in human foodborne disease as well as non-foodborne human, animal, and avian diseases. Countries that have complied with the ban on antimicrobial growth promoters in feeds have reported increased incidences of C. perfringens-associated diseases in poultry. To address these issues, new antimicrobial agents, putative lysins encoded by the genomes of bacteriophages, are being identified in our laboratory. Poultry intestinal material, soil, sewage, and poultry processing drainage water were screened for virulent bacteriophages that could lyse C. perfringens and produce clear plaques in spot assays. Bacteriophages were isolated that had long noncontractile tails, members of the family Siphoviridae, and with short noncontractile tails, members of the family Podoviridae. Several bacteriophage genes were identified that encoded N-acetylmuramoyl-l-alanine amidases, lysozyme-endopeptidases, and a zinc carboxypeptidase domain that has not been previously reported in viral genomes. Putative phage lysin genes (ply) were cloned and expressed in Escherichia coli. The recombinant lysins were amidases capable of lysing both parental phage host strains of C. perfringens as well as other strains of the bacterium in spot and turbidity reduction assays, but did not lyse any clostridia beyond the species. Consequently, bacteriophage gene products could eventually be used to target bacterial pathogens, such as C. perfringens via a species-specific strategy, to control animal and human diseases without having deleterious effects on beneficial probiotic bacteria. PMID:23300321

  2. Production of bioethanol

    DEFF Research Database (Denmark)

    Tranekjær, Michael; Sommer, Peter; Ahring, Birgitte Kiær;

    1998-01-01

    (Bjerre et al., 1996; McGinnis et al., 1983; Schmidt & thomsen, 1997) and steam explosion (puls et al., 1985; Saddler et al., 1993) are among the most promising. However, fermentation of the pretreated hydrolysates with the anaerobic thermophilic bacterium Thermoanaerobacter mathranii strain A3M1, adapted......Efficient conversion of lignocellulosic materials to ethanol requires pretreatment and hydrolysis prior to the ethanolic fermentation. This pretreatment renders the biomass more susceptible to the subsequent hydrolysis. Of the wide variety of pretreatment methods presently available, wet oxidation...... investigations of the structure of the hemicellulose fraction prior to pretreatment, prior to hydrolysis, prior to fermentation, and after fermentation. Various techniques, such as gas chromatography / mass spectrometry (GC/MS), size-exclusion chromatography (SEC), and nuclear magnetic resonance spectrometry...

  3. Contribution of anaerobic energy expenditure to whole body thermogenesis

    Directory of Open Access Journals (Sweden)

    Scott Christopher B

    2005-06-01

    Full Text Available Abstract Heat production serves as the standard measurement for the determination of energy expenditure and efficiency in animals. Estimations of metabolic heat production have traditionally focused on gas exchange (oxygen uptake and carbon dioxide production although direct heat measurements may include an anaerobic component particularly when carbohydrate is oxidized. Stoichiometric interpretations of the ratio of carbon dioxide production to oxygen uptake suggest that both anaerobic and aerobic heat production and, by inference, all energy expenditure – can be accounted for with a measurement of oxygen uptake as 21.1 kJ per liter of oxygen. This manuscript incorporates contemporary bioenergetic interpretations of anaerobic and aerobic ATP turnover to promote the independence of these disparate types of metabolic energy transfer: each has different reactants and products, uses dissimilar enzymes, involves different types of biochemical reactions, takes place in separate cellular compartments, exploits different types of gradients and ultimately each operates with distinct efficiency. The 21.1 kJ per liter of oxygen for carbohydrate oxidation includes a small anaerobic heat component as part of anaerobic energy transfer. Faster rates of ATP turnover that exceed mitochondrial respiration and that are supported by rapid glycolytic phosphorylation with lactate production result in heat production that is independent of oxygen uptake. Simultaneous direct and indirect calorimetry has revealed that this anaerobic heat does not disappear when lactate is later oxidized and so oxygen uptake does not adequately measure anaerobic efficiency or energy expenditure (as was suggested by the "oxygen debt" hypothesis. An estimate of anaerobic energy transfer supplements the measurement of oxygen uptake and may improve the interpretation of whole-body energy expenditure.

  4. Modeling for Anaerobic Fixed-Bed Biofilm Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Liu, B. Y. M.; Pfeffer, J. T.

    1989-06-01

    The specific objectives of this research were: 1. to develop an equilibrium model for chemical aspects of anaerobic reactors; 2. to modify the equilibrium model for non-equilibrium conditions; 3. to incorporate the existing biofilm models into the models above to study the biological and chemical behavior of the fixed-film anaerobic reactors; 4. to experimentally verify the validity of these models; 5. to investigate the biomass-holding ability of difference packing materials for establishing reactor design criteria.

  5. Contribution of anaerobic energy expenditure to whole body thermogenesis

    OpenAIRE

    Scott, Christopher B

    2005-01-01

    Heat production serves as the standard measurement for the determination of energy expenditure and efficiency in animals. Estimations of metabolic heat production have traditionally focused on gas exchange (oxygen uptake and carbon dioxide production) although direct heat measurements may include an anaerobic component particularly when carbohydrate is oxidized. Stoichiometric interpretations of the ratio of carbon dioxide production to oxygen uptake suggest that both anaerobic and aerobic he...

  6. Anaerobic digestion of organic solid waste for energy production

    OpenAIRE

    Nayono, Satoto Endar

    2009-01-01

    This study was carried out in order to evaluate the performance of anaerobic reactors treating OFMSW (organic fraction of municipal solid waste), especially in terms of its energy recovery, either by investigating the maximum organic loading rate or by co-digestion with other types of wastes for energy recovery. In order to reach the research purpose, several experiments such as characteristics examination of different organic solid wastes, which are potential substrates for anaerobic digestion.

  7. Yield and Quality of Biogas from Anaerobic Fermentation of Grass

    OpenAIRE

    Poláček, Jan

    2014-01-01

    Biogas is generally considered as a renewable source of energy. In fact, however, it is biodegradable organic material, that makes this source of energy renewable. Biogas is, then, the final product of anaerobic fermentation of these materials. Because energetically the most valuable component of biogas is methane (CH4) its relative volume stands as the measure of biogas quality. The process of anaerobic fermentation was characterized in the first part of this thesis. Organic materials ar...

  8. Fermentation and Anaerobic Respiration by Rhodospirillum rubrum and Rhodopseudomonas capsulata

    OpenAIRE

    Schultz, J E; Weaver, P. F.

    1982-01-01

    Rhodospirillum rubrum and Rhodopseudomonas capsulata were able to grow anaerobically in the dark either by a strict mixed-acid fermentation of sugars or, in the presence of an appropriate electron acceptor, by an energy-linked anaerobic respiration. Both species fermented fructose without the addition of accessory oxidants, but required the initial presence of bicarbonate before fermentative growth could begin. Major products of R. rubrum fermentation were succinate, acetate, propionate, form...

  9. Pretreatment of citrus peel press liquor before anaerobic digestion

    Energy Technology Data Exchange (ETDEWEB)

    Lane, A.G.

    1983-02-01

    Centrifugation and aeration were unsuitable pretreatments before anaerobic digestion of press liquors from citrus peel. Non-aerated fermentation without pH control resulted in conversion of sugars to acids and ethyl alcohol with reduction in pH to 2.8 - 3.5. These acidified liquors had a pleasant smell, were stable on storage and were satisfactory feedstock for anaerobic digestion. (Refs. 7).

  10. Contribution of anaerobic energy expenditure to whole body thermogenesis

    OpenAIRE

    Scott Christopher B

    2005-01-01

    Abstract Heat production serves as the standard measurement for the determination of energy expenditure and efficiency in animals. Estimations of metabolic heat production have traditionally focused on gas exchange (oxygen uptake and carbon dioxide production) although direct heat measurements may include an anaerobic component particularly when carbohydrate is oxidized. Stoichiometric interpretations of the ratio of carbon dioxide production to oxygen uptake suggest that both anaerobic and a...

  11. Application of natural zeolites in anaerobic digestion processes: A review

    OpenAIRE

    Montalvo, Silvio; Borja Padilla, Rafael; Sánchez, Enrique; Milán, Zhenia; Cortés, Isel; Rubia, M. Ángeles de la

    2012-01-01

    This paper reviews the most relevant uses and applications of zeolites in anaerobic digestion processes. The feasibility of using natural zeolites as support media for the immobilization of microorganisms in different high-rate reactor configurations (fixed bed, fluidized bed, etc.) is also reviewed. Zeolite, with its favorable characteristics for microorganism adhesion, has also been widely used as an ion exchanger for the removal of ammonium in anaerobic digestion due to the presence of Na ...

  12. Design considerations and operational performance of Anaerobic Digester: A Review

    OpenAIRE

    Muzaffar Ahmad Mir; Athar Hussain; Chanchal Verma

    2016-01-01

    Due to the decline in fossil fuel reservoirs, the researchers emphasized more on the production of biogas from organic waste. Producing the renewable energy from biodegradable waste helps to overcome the energy crisis and solid waste management, done by anaerobic digestion. Anaerobic digestion is controlled breakdown of organic matter into methane gas (60%), carbon dioxide (40%), trace components along with digested used as soil conditioner. However there is vast dearth of literature regardin...

  13. The Role of Benzoate in Anaerobic Degradation of Terephthalate

    OpenAIRE

    Kleerebezem, Robbert; Pol, Look W. Hulshoff; Lettinga, Gatze

    1999-01-01

    The effects of acetate, benzoate, and periods without substrate on the anaerobic degradation of terephthalate (1,4-benzene-dicarboxylate) by a syntrophic methanogenic culture were studied. The culture had been enriched on terephthalate and was capable of benzoate degradation without a lag phase. When incubated with a mixture of benzoate and terephthalate, subsequent degradation with preference for benzoate was observed. Both benzoate and acetate inhibited the anaerobic degradation of terephth...

  14. Olive mill wastewater anaerobically digested : phenolic compounds with antiradical activity

    OpenAIRE

    La Cara, Francesco; Ionata, Elena; Del Monaco, Giovanni; Marcolongo, Loredana; Gonçalves, Marta R.; Marques, I. P.

    2012-01-01

    The recovery of phenolic compounds, present in the olive fruits and its by-products, has been intensively studied by the antioxidant properties. Olive mill wastewater (OMW) is a phenolic-rich industrial effluent that can be advantageously valorized by the anaerobic digestion to the methane and agricultural fertilizer productions. The objective of this work was to evaluate the antiradical activity of OMW after anaerobic digestion in order to maximize the valorization of this type o...

  15. Anaerobic-Aerobic Process for Microbial Degradation of Tetrabromobisphenol A

    OpenAIRE

    Ronen, Zeev; Abeliovich, Aharon

    2000-01-01

    Tetrabromobisphenol A (TBBPA) is a flame retardant that is used as an additive during manufacturing of plastic polymers and electronic circuit boards. Little is known about the fate of this compound in the environment. In the current study we investigated biodegradation of TBBPA, as well as 2,4,6-tribromophenol (TBP), in slurry of anaerobic sediment from a wet ephemeral desert stream bed contaminated with chemical industry waste. Anaerobic incubation of the sediment with TBBPA and peptone-try...

  16. SISTEM PENGENDALIAN TEMPERATUR PADA DINDING BIOREAKTOR ANAEROB SECARA REAL TIME

    OpenAIRE

    Ika Nurina Rachmawati; Rony Dwi Noriyati; Totok Soehartanto

    2013-01-01

    Temperatur merupakan salah satu faktor yang mempengaruhi proses anaerob pada bioreaktor. Dimana pertumbuhan mikroorganisme dipengaruhi oleh perubahan suhu. Maka dari itu akan dilakukan pengendalian temperatur secara real-time pada dinding tabung bioreaktor anaerob. Pengendalian temperatur berguna untuk menjaga suhu permukaan bioreaktor saat terjadi perubahan cuaca dari luar. Sebab jika temperatur dinding dijaga pada suhu 35 0C maka temperatur dalam tabung bioreaktor akan berada pada range ope...

  17. Treatment of common warts with the immune stimulant Propionium bacterium parvum Tratamento das verrugas vulgares com o imunoestimulante Propionium bacterium parvum

    Directory of Open Access Journals (Sweden)

    Nilton Nasser

    2012-08-01

    Full Text Available BACKGROUND: Warts are epithelial proliferations in the skin and mucous membrane caused by various types of HPV. They can decrease spontaneously or increase in size and number according to the patient's immune status. The Propionium bacterium parvum is a strong immune stimulant and immune modulator and has important effects in the immune system and it is able to produce antibodies in the skin. OBJECTIVE: To show the efficacy of the Propionium bacterium parvum in saline solution in the treatment of skin warts. METHODS: A randomized double-blind study. Twenty patients with multiple warts were divided into two groups: one received 0,1ml intradermal injection of placebo solution in just one of the warts and the other received 0,1 ml of saline solution of Propionium bacterium parvum, one dose a month, for 3 to 5 months. RESULTS: Among the 20 patients who participated in the study, ten received the placebo and ten received the saline solution with Propionium bacterium parvum. In 9 patients treated with the Propionium bacterium parvum solution the warts disappeared without scars and in 1 patient it decreased in size. In 9 patients who received the placebo no change to the warts was observed and in 1 it decreased in size. CONCLUSIONS: The immune modulator and immune stimulant Propionium bacterium parvum produced antibodies in the skin which destroyed the warts without scars, with statistically significant results (PFUNDAMENTOS: Verrugas são proliferações epiteliais na pele e mucosas causadas por diversos tipos de HPV. Elas podem involuir espontaneameme ou aumentar em número e tamanho de acordo com estado imunitário do paciente. O Propionium bacterium parvum é urn potente imunoestimulador e imunomodulador e tem efeitos importantes no sistema imune e é capaz de produzir anticorpos na pele. OBJETIVO: Mostrar a eficácia do Propionium bacterium parvum diluído em solução salina no tratamento de verrugas cutâneas. MÊTODOS: Estudo duplo

  18. Microbial community structure in a thermophilic aerobic digester used as a sludge pretreatment process for the mesophilic anaerobic digestion and the enhancement of methane production.

    Science.gov (United States)

    Jang, Hyun Min; Park, Sang Kyu; Ha, Jeong Hyub; Park, Jong Moon

    2013-10-01

    An effective two-stage sewage sludge digestion process, consisting of thermophilic aerobic digestion (TAD) followed by mesophilic anaerobic digestion (MAD), was developed for efficient sludge reduction and methane production. Using TAD as a biological pretreatment, the total volatile suspended solid reduction (VSSR) and methane production rate (MPR) in the MAD reactor were significantly improved. According to denaturing gradient gel electrophoresis (DGGE) analysis, the results indicated that the dominant bacteria species such as Ureibacillus thermophiles and Bacterium thermus in TAD were major routes for enhancing soluble organic matter. TAD pretreatment using a relatively short SRT of 1 day showed highly increased soluble organic products and positively affected an increment of bacteria populations which performed interrelated microbial metabolisms with methanogenic species in the MAD; consequently, a quantitative real-time PCR indicated greatly increased Methanosarcinales (acetate-utilizing methanogens) in the MAD, resulting in enhanced methane production.

  19. Study of anaerobic ammonium oxidation bacterial community in the aged refuse bioreactor with 16S rRNA gene library technique.

    Science.gov (United States)

    Wang, Chao; Xie, Bing; Han, Lu; Xu, Xiaofan

    2013-10-01

    In order to investigate the anaerobic ammonium-oxidation (Anammox) nitrogen removal pathway of the aged refuse bioreactor treating landfill leachate, a lab-scale bioreactor was established and run for 35 weeks, the performance of the bioreactor and its bacterial community structure of Planctomycetes were analyzed. The results showed that the average TN removal rate of landfill leachate could be reached to 89%. 16S rRNA gene library of Planctomycetes revealed that Anammox sequences accounted for 28.3% of the total Planctomycetes sequences in the bioreactor, and previously recognized Anammox bacterium Candidatus Kuenenia stuttgartiensis was the only detected Anammox species in the reactor. It was also found that Anammox bacteria distributed at different sites of the bioreactor while mostly concentrated in the middle and low-middle part. Results above confirmed that Anammox process could happen in aged refuse bioreactor treating landfill leachate and provided an alternative nitrogen removal pathway in practical landfills.

  20. Microbial community structure in a thermophilic aerobic digester used as a sludge pretreatment process for the mesophilic anaerobic digestion and the enhancement of methane production.

    Science.gov (United States)

    Jang, Hyun Min; Park, Sang Kyu; Ha, Jeong Hyub; Park, Jong Moon

    2013-10-01

    An effective two-stage sewage sludge digestion process, consisting of thermophilic aerobic digestion (TAD) followed by mesophilic anaerobic digestion (MAD), was developed for efficient sludge reduction and methane production. Using TAD as a biological pretreatment, the total volatile suspended solid reduction (VSSR) and methane production rate (MPR) in the MAD reactor were significantly improved. According to denaturing gradient gel electrophoresis (DGGE) analysis, the results indicated that the dominant bacteria species such as Ureibacillus thermophiles and Bacterium thermus in TAD were major routes for enhancing soluble organic matter. TAD pretreatment using a relatively short SRT of 1 day showed highly increased soluble organic products and positively affected an increment of bacteria populations which performed interrelated microbial metabolisms with methanogenic species in the MAD; consequently, a quantitative real-time PCR indicated greatly increased Methanosarcinales (acetate-utilizing methanogens) in the MAD, resulting in enhanced methane production. PMID:23419990

  1. Identification of a conserved protein involved in anaerobic unsaturated fatty acid synthesis in Neiserria gonorrhoeae: implications for facultative and obligate anaerobes that lack FabA

    OpenAIRE

    Isabella, Vincent M.; Clark, Virginia L.

    2011-01-01

    Transcriptome analysis of the facultative anaerobe, Neisseria gonorrhoeae, revealed that many genes of unknown function were induced under anaerobic conditions. Mutation of one such gene, NGO1024, encoding a protein belonging to the 2-nitropropane dioxygenase-like superfamiliy of proteins, was found to result in an inability of gonococci to grow anaerobically. Anaerobic growth of an NG1024 mutant was restored upon supplementation with unsaturated fatty acids (UFA), but not with the saturated ...

  2. Characterizing the anaerobic response of Chlamydomonas reinhardtii by quantitative proteomics.

    Science.gov (United States)

    Terashima, Mia; Specht, Michael; Naumann, Bianca; Hippler, Michael

    2010-07-01

    The versatile metabolism of the green alga Chlamydomonas reinhardtii is reflected in its complex response to anaerobic conditions. The anaerobic response is also remarkable in the context of renewable energy because C. reinhardtii is able to produce hydrogen under anaerobic conditions. To identify proteins involved during anaerobic acclimation as well as to localize proteins and pathways to the powerhouses of the cell, chloroplasts and mitochondria from C. reinhardtii in aerobic and anaerobic (induced by 8 h of argon bubbling) conditions were isolated and analyzed using comparative proteomics. A total of 2315 proteins were identified. Further analysis based on spectral counting clearly localized 606 of these proteins to the chloroplast, including many proteins of the fermentative metabolism. Comparative quantitative analyses were performed with the chloroplast-localized proteins using stable isotopic labeling of amino acids ([(13)C(6)]arginine/[(12)C(6)]arginine in an arginine auxotrophic strain). The quantitative data confirmed proteins previously characterized as induced at the transcript level as well as identified several new proteins of unknown function induced under anaerobic conditions. These proteins of unknown function provide new candidates for further investigation, which could bring insights for the engineering of hydrogen-producing alga strains. PMID:20190198

  3. Anaerobic bioventing of unsaturated zone contaminated with DDT and DNT.

    Science.gov (United States)

    Shah, J K; Sayles, G D; Suidan, M T; Mihopoulos, P; Kaskassian, S

    2001-01-01

    Initial degradation of highly chlorinated compounds and nitroaromatic compounds found in munition waste streams is accelerated under anaerobic conditions followed by aerobic treatment of the degradation products. The establishment of anaerobic environment in a vadose zone can be accomplished by feeding appropriate anaerobic gas mixture, i.e., "anaerobic bioventing". The gas mixture contains an electron donor for the reduction of these compounds. Lab scale study was conducted to evaluate potential of anaerobic bioventing for the treatment of an unsaturated zone contaminated with 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (DDT) and 2,4-dinitrotoluene (DNT). Hydrogen was used as the electron donor. Using the soil columns innoculate with anaerobic microorganisms, it was observed that by feeding a gas mixture of 1% hydrogen, 1% carbon dioxide and nitrogen, methanogenic conditions were established and DDT was reductively dechlorinated. 1,1-dichloro-2,2-bis(p-chlorophenyl)ethane (DDD) accumulated as the intermediate product. The half life of DDT was calculated to be 8.5 months. DNT completely disappeared after six months of operation and no intermediates could be detected.

  4. Diversity of anaerobic microbes in spacecraft assembly clean rooms.

    Science.gov (United States)

    Probst, Alexander; Vaishampayan, Parag; Osman, Shariff; Moissl-Eichinger, Christine; Andersen, Gary L; Venkateswaran, Kasthuri

    2010-05-01

    Although the cultivable and noncultivable microbial diversity of spacecraft assembly clean rooms has been previously documented using conventional and state-of-the-art molecular techniques, the occurrence of obligate anaerobes within these clean rooms is still uncertain. Therefore, anaerobic bacterial communities of three clean-room facilities were analyzed during assembly of the Mars Science Laboratory rover. Anaerobic bacteria were cultured on several media, and DNA was extracted from suitable anaerobic enrichments and examined with conventional 16S rRNA gene clone library, as well as high-density phylogenetic 16S rRNA gene microarray (PhyloChip) technologies. The culture-dependent analyses predominantly showed the presence of clostridial and propionibacterial strains. The 16S rRNA gene sequences retrieved from clone libraries revealed distinct microbial populations associated with each clean-room facility, clustered exclusively within gram-positive organisms. PhyloChip analysis detected a greater microbial diversity, spanning many phyla of bacteria, and provided a deeper insight into the microbial community structure of the clean-room facilities. This study presents an integrated approach for assessing the anaerobic microbial population within clean-room facilities, using both molecular and cultivation-based analyses. The results reveal that highly diverse anaerobic bacterial populations persist in the clean rooms even after the imposition of rigorous maintenance programs and will pose a challenge to planetary protection implementation activities.

  5. [Anaerobic digestion of animal manure contaminated by tetracyclines].

    Science.gov (United States)

    Tong, Zi-Lin; Liu, Yuan-Lu; Hu, Zhen-Hu; Yuan, Shou-Jun

    2012-03-01

    Anaerobic digestion of pig manure spiked with tetracycline (TC) and chlortetracycline (CTC) and the degradation of the two antibiotics during the anaerobic digestion at 35 degrees C were investigated. The results indicate that propionate was the main volatile fatty acid produced during the anaerobic digestion followed by acetate. Compared with the CTC addition, TC + CTC addition showed obvious inhibitory effect on the hydrolysis and acidification of easily digestible organic components of pig manure. The cumulative methane production of TC, CTC, TC + CTC and CK2 during anaerobic digestion was 386.4 mL, 406.0 mL, 412.1 mL and 464.6 mL, respectively. Degradation of TC and CTC followed the first-order kinetic equation. The half-life of TC and CTC was 14-18 days and 10 days, respectively. After the treatment of 45-day anaerobic digestion, the degradation efficiency of TC was 88.6%-91.6% with 97.7%-98.2% of CTC. Therefore, anaerobic digestion shows the benefit on the management of animal manures contaminated by tetracyclines. PMID:22624404

  6. Tracing the run-flip motion of an individual bacterium

    Science.gov (United States)

    Liu, Bin; Morse, Michael; Tang, Jay; Powers, Thomas; Breuer, Kenneth S.

    2012-11-01

    We have developed a digital 3D tracking microscope in which the microscope stage follows the motion of an individual motile microorganism so that the target remains focused at the center of the view-field. The tracking mechanism is achieved by a high-speed feedback control through real-time image analysis and the trace of the microorganism is recorded with submicron accuracy. We apply this tracking microscope to a study of the motion of an individual Caulobacter crescentus, a bacterium that moves up to 100 microns (or 50 body lengths) per second and reverses its direction of motion occasionally by switching the rotation direction of its single helical flagellum. By tracking the motion of a single cell over many seconds, we show how a flip event occurs with submicron resolution and how the speed of a single cell varies over time and with the rotational rate of the flagellum. We also present statistics for the run-reverse dynamics of an ensemble of cells.

  7. Bioconversion of methane to lactate by an obligate methanotrophic bacterium

    Science.gov (United States)

    Henard, Calvin A.; Smith, Holly; Dowe, Nancy; Kalyuzhnaya, Marina G.; Pienkos, Philip T.; Guarnieri, Michael T.

    2016-01-01

    Methane is the second most abundant greenhouse gas (GHG), with nearly 60% of emissions derived from anthropogenic sources. Microbial conversion of methane to fuels and value-added chemicals offers a means to reduce GHG emissions, while also valorizing this otherwise squandered high-volume, high-energy gas. However, to date, advances in methane biocatalysis have been constrained by the low-productivity and limited genetic tractability of natural methane-consuming microbes. Here, leveraging recent identification of a novel, tractable methanotrophic bacterium, Methylomicrobium buryatense, we demonstrate microbial biocatalysis of methane to lactate, an industrial platform chemical. Heterologous overexpression of a Lactobacillus helveticus L-lactate dehydrogenase in M. buryatense resulted in an initial titer of 0.06 g lactate/L from methane. Cultivation in a 5 L continuously stirred tank bioreactor enabled production of 0.8 g lactate/L, representing a 13-fold improvement compared to the initial titer. The yields (0.05 g lactate/g methane) and productivity (0.008 g lactate/L/h) indicate the need and opportunity for future strain improvement. Additionally, real-time analysis of methane utilization implicated gas-to-liquid transfer and/or microbial methane consumption as process limitations. This work opens the door to develop an array of methanotrophic bacterial strain-engineering strategies currently employed for biocatalytic sugar upgrading to “green” chemicals and fuels. PMID:26902345

  8. Denitrification characteristics of a marine origin psychrophilic aerobic denitrifying bacterium.

    Science.gov (United States)

    Zheng, Haiyan; Liu, Ying; Sun, Guangdong; Gao, Xiyan; Zhang, Qingling; Liu, Zhipei

    2011-01-01

    A psychrophilic aerobic denitrifying bacterium, strain S1-1, was isolated from a biological aerated filter conducted for treatment of recirculating water in a marine aquaculture system. Strain S1-1 was preliminarily identified as Psychrobacter sp. based on the analysis of its 16S rRNA gene sequence, which showed 100% sequence similarity to that of Psychrobacter sp. TSBY-70. Strain S1-1 grew well either in high nitrate or high nitrite conditions with a removal of 100% nitrate or 63.50% nitrite, and the total nitrogen removal rates could reach to 46.48% and 31.89%, respectively. The results indicated that nitrate was mainly reduced in its logarithmic growth phase with a very low level accumulation of nitrite, suggesting that the aerobic denitrification process of strain S1-1 occurred mainly in this phase. The GC-MS results showed that N2O was formed as the major intermediate during the aerobic denitrifying process of strain S1-1. Finally, factors affecting the growth of strain S1-1 and its aerobic denitrifying ability were also investigated. Results showed that the optimum aerobic denitrification conditions for strain S1-1 were sodium succinate as carbon source, C/N ratio15, salinity 10 g/L NaCl, incubation temperature 20 degrees C and initial pH 6.5. PMID:22432315

  9. Denitrification characteristics of a marine origin psychrophilic aerobic denitrifying bacterium

    Institute of Scientific and Technical Information of China (English)

    Haiyan Zheng; Ying Liu; Guangdong Sun; Xiyan Gao; Qingling Zhang; Zhipei Liu

    2011-01-01

    A psychrophilic aerobic denitrifying bacterium,strain S1-1,was isolated from a biological aerated filter conducted for treatment of recirculating water in a marine aquaculture system.Strain S1-1 was preliminarily identified as Psychrobacter sp.based on the analysis of its 16S rRNA gene sequence,which showed 100% sequence similarity to that of Psychrobacter sp.TSBY-70.Strain S 1-1 grew well either in high nitrate or high nitrite conditions with a removal of 100% nitrate or 63.50% nitrite,and the total nitrogen removal rates could reach to 46.48% and 31.89%,respectively.The results indicated that nitrate was mainly reduced in its logarithmic growth phase with a very low leve 1 accumulation of nitrite,suggesting that the aerobic denitrification process of strain S l-1 occurred mainly in this phase.The GC-MS results showed that N2O was formed as the major intermediate during the aerobic denitrifying process of strain S1-1.Finally,factors affecting the growth of strain Sl-1 and its aerobic denitrifying ability were also investigated.Results showed that the optimum aerobic denitrification conditions for strain S1-1 were sodium succinate as carbon source,C/N ratio15,salinity 10 g/L NaCl,incubation temperature 20℃ and initial pH 6.5.

  10. Bioconversion of methane to lactate by an obligate methanotrophic bacterium.

    Science.gov (United States)

    Henard, Calvin A; Smith, Holly; Dowe, Nancy; Kalyuzhnaya, Marina G; Pienkos, Philip T; Guarnieri, Michael T

    2016-01-01

    Methane is the second most abundant greenhouse gas (GHG), with nearly 60% of emissions derived from anthropogenic sources. Microbial conversion of methane to fuels and value-added chemicals offers a means to reduce GHG emissions, while also valorizing this otherwise squandered high-volume, high-energy gas. However, to date, advances in methane biocatalysis have been constrained by the low-productivity and limited genetic tractability of natural methane-consuming microbes. Here, leveraging recent identification of a novel, tractable methanotrophic bacterium, Methylomicrobium buryatense, we demonstrate microbial biocatalysis of methane to lactate, an industrial platform chemical. Heterologous overexpression of a Lactobacillus helveticus L-lactate dehydrogenase in M. buryatense resulted in an initial titer of 0.06 g lactate/L from methane. Cultivation in a 5 L continuously stirred tank bioreactor enabled production of 0.8 g lactate/L, representing a 13-fold improvement compared to the initial titer. The yields (0.05 g lactate/g methane) and productivity (0.008 g lactate/L/h) indicate the need and opportunity for future strain improvement. Additionally, real-time analysis of methane utilization implicated gas-to-liquid transfer and/or microbial methane consumption as process limitations. This work opens the door to develop an array of methanotrophic bacterial strain-engineering strategies currently employed for biocatalytic sugar upgrading to "green" chemicals and fuels. PMID:26902345

  11. Pandoraea sp. RB-44, A Novel Quorum Sensing Soil Bacterium

    Directory of Open Access Journals (Sweden)

    Robson Ee Han-Jen

    2013-10-01

    Full Text Available Proteobacteria are known to communicate via signaling molecules and this process is known as quorum sensing. The most commonly studied quorum sensing molecules are N-acylhomoserine lactones (AHLs that consists of a homoserine lactone moiety and an N-acyl side chain with various chain lengths and degrees of saturation at the C-3 position. We have isolated a bacterium, RB-44, from a site which was formally a landfill dumping ground. Using matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF mass spectrometry analysis, this isolate was identified as a Pandoraea sp.which was then screened for AHL production using biosensors which indicated its quorum sensing properties. To identify the AHL profile of Pandoraea sp. RB-44, we used high resolution tandem mass spectrometry confirming that this isolate produced N-octanoylhomoserine lactone (C8-HSL. To the best of our knowledge, this is the first report that showed quorum sensing activity exhibited by Pandoraea sp. Our data add Pandoraea sp. to the growing number of bacteria that possess QS systems.

  12. Complete genome sequence of the termite hindgut bacterium Spirochaeta coccoides type strain (SPN1T), reclassification in the genus Sphaerochaeta as Sphaerochaeta coccoides comb. nov. and emendations of the family Spirochaetaceae and the genus Sphaerochaeta

    Energy Technology Data Exchange (ETDEWEB)

    Abt, Birte; Han, Cliff; Scheuner, Carmen; Lu, Megan; Lapidus, Alla; Nolan, Matt; Lucas, Susan; Hammon, Nancy; Deshpande, Shweta; Cheng, Jan-Fang; Tapia, Roxane; Goodwin, Lynne; Pitluck, Sam; Liolios, Konstantinos; Pagani, Ioanna; Ivanova, Natalia; Mavromatis, Konstantinos; Mikhailova, Natalia; Huntemann, Marcel; Pati, Amrita; Chen, Amy; Palaniappan, Krishna; Land, Miriam; Hauser, Loren; Brambilla, Evelyne-Marie; Rohde, Manfred; Spring, Stefan; Gronow, Sabine; Goker, Markus; Woyke, Tanja; Bristow, James; Eisen, Jonathan A.; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C.; Klenk, Hans-Peter; Detter, John C.

    2012-05-25

    Spirochaeta coccoides Dröge et al. 2006 is a member of the genus Spirochaeta Ehrenberg 1835, one of the oldest named genera within the Bacteria. S. coccoides is an obligately anaerobic, Gram-negative, non-motile, spherical bacterium that was isolated from the hindgut contents of the termite Neotermes castaneus. The species is of interest because it may play an important role in the digestion of breakdown products from cellulose and hemicellulose in the termite gut. Here we provide a taxonomic re-evaluation for strain SPN1T, and based on physiological and genomic characteristics, we propose its reclassification as a novel species in the genus Sphaerochaeta, a recently published sister group of the Spirochaeta. The 2,227,296 bp long genome of strain SPN1T with its 1,866 protein-coding and 58 RNA genes is a part of the GenomicEncyclopedia of Bacteria and Archaea project.

  13. Application of Anaerobic Digestion Model No. 1 for describing anaerobic digestion of grass, maize, green weed silage, and industrial glycerine.

    Science.gov (United States)

    Biernacki, Piotr; Steinigeweg, Sven; Borchert, Axel; Uhlenhut, Frank

    2013-01-01

    Anaerobic digestion of organic waste plays an important role for the development of sustainable energy supply based on renewable resources. For further process optimization of anaerobic digestion, biogas production with the commonly used substrates, grass, maize, and green weed silage, together with industrial glycerine, were analyzed by the Weender analysis/van Soest method, and a simulation study was performed, based on the International Water Association's (IWA) Anaerobic Digestion Model No. 1 (ADM1). The simplex algorithm was applied to optimize kinetic constants for disintegration and hydrolysis steps for all examined substrates. Consequently, new parameters were determined for each evaluated substrate, tested against experimental cumulative biogas production results, and assessed against ADM1 default values for disintegration and hydrolysis kinetic constants, where the ADM1 values for mesophilic high rate and ADM1 values for solids were used. Results of the optimization lead to a precise prediction of the kinetics of anaerobic degradation of complex substrates.

  14. Anaerobic metabolism in the N-limited green alga Selenastrum minutum. 3. Alanine is the product of anaerobic ammonium assimilation

    International Nuclear Information System (INIS)

    The authors have determined the flow of 15N into free amino acids of the N-limited green alga Selenastrum minutum (Naeg.) Collins after addition of 15NH4+ to aerobic or anaerobic cells. Under aerobic conditions, only a small proportion of the N assimilated was retained in the free amino acid pool. However, under anaerobic conditions almost all assimilated NH4+ accumulates in alanine. This is a unique feature of anaerobic NH4+ assimilation. The pathway of carbon flow to alanine results in the production of ATP and reductant which matches exactly the requirements of NH4+ assimilation. Alanine synthesis is therefore an excellent strategy to maintain energy and redox balance during anaerobic NH4+ assimilation

  15. ANAMMOX process start up and stabilization with an anaerobic seed in Anaerobic Membrane Bioreactor (AnMBR).

    Science.gov (United States)

    Suneethi, S; Joseph, Kurian

    2011-10-01

    ANaerobic AMMonium OXidation (ANAMMOX) process, an advanced biological nitrogen removal alternative to traditional nitrification--denitrification removes ammonia using nitrite as the electron acceptor without oxygen. The feasibility of enriching anammox bacteria from anaerobic seed culture to start up an Anaerobic Membrane Bioreactor (AnMBR) for N-removal is reported in this paper. The Anammox activity was established in the AnMBR with anaerobic digester seed culture from a Sewage Treatment Plant in batch mode with recirculation followed by semi continuous process and continuous modes of operation. The AnMBR performance under varying Nitrogen Loading Rates (NLR) and HRTs is reported for a year, in terms of nitrogen transformations to ammoniacal nitrogen, nitrite and nitrate along with hydrazine and hydroxylamine. Interestingly ANAMMOX process was evident from simultaneous Amm-N and nitrite reduction, consistent nitrate production, hydrazine and hydroxylamine presence, notable organic load reduction and bicarbonate consumption. PMID:21775136

  16. Molecular evolution of the nif gene cluster carrying nifI1 and nifI2 genes in the Gram-positive phototrophic bacterium Heliobacterium chlorum.

    Science.gov (United States)

    Enkh-Amgalan, Jigjiddorj; Kawasaki, Hiroko; Seki, Tatsuji

    2006-01-01

    A major nif cluster was detected in the strictly anaerobic, Gram-positive phototrophic bacterium Heliobacterium chlorum. The cluster consisted of 11 genes arranged within a 10 kb region in the order nifI1, nifI2, nifH, nifD, nifK, nifE, nifN, nifX, fdx, nifB and nifV. The phylogenetic position of Hbt. chlorum was the same in the NifH, NifD, NifK, NifE and NifN trees; Hbt. chlorum formed a cluster with Desulfitobacterium hafniense, the closest neighbour of heliobacteria based on the 16S rRNA phylogeny, and two species of the genus Geobacter belonging to the Deltaproteobacteria. Two nifI genes, known to occur in the nif clusters of methanogenic archaea between nifH and nifD, were found upstream of the nifH gene of Hbt. chlorum. The organization of the nif operon and the phylogeny of individual and concatenated gene products showed that the Hbt. chlorum nif operon carrying nifI genes upstream of the nifH gene was an intermediate between the nif operon with nifI downstream of nifH (group II and III of the nitrogenase classification) and the nif operon lacking nifI (group I). Thus, the phylogenetic position of Hbt. chlorum nitrogenase may reflect an evolutionary stage of a divergence of the two nitrogenase groups, with group I consisting of the aerobic diazotrophs and group II consisting of strictly anaerobic prokaryotes.

  17. Carbohydrate utilization patterns for the extremely thermophilic bacterium Caldicellulosiruptor saccharolyticus reveal broad growth substrate preferences

    NARCIS (Netherlands)

    Vanfossen, A.L.; Verhaart, M.R.A.; Kengen, S.W.M.; Kelly, R.M.

    2009-01-01

    Co-utilization of hexoses and pentoses derived from lignocellulose is an attractive trait in microorganisms considered for consolidated biomass processing to biofuels. This issue was examined for the H2-producing, extremely thermophilic bacterium Caldicellulosiruptor saccharolyticus growing on indiv

  18. SIMULTANEOUS PHOTOTROPHIC AND CHEMOTROPIC GROWTH IN THE PURPLE SULFUR BACTERIUM THIOCAPSA-ROSEOPERSICINA M1

    NARCIS (Netherlands)

    SCHAUB, BEM; VANGEMERDEN, H

    1994-01-01

    The anoxygenic phototrophic purple sulfur bacterium Thiocapsa roseopersicina was grown in illuminated continuous cultures with thiosulfate as growth limiting substrate. Aeration resulted in completely colorless cells growing chemotrophically, whereafter the conditions were changed to a 23 h oxic/1 h

  19. Turnover of dimethylsulfoniopropionate (DMSP) by the purple sulfur bacterium Thiocapsa roseopersicina M11 : Ecological implications

    NARCIS (Netherlands)

    Jonkers, HM; van Gemerden, H

    1998-01-01

    The use of dimethylsulfoniopropionate (DMSP) by the anoxygenic phototrophic purple sulfur bacterium Thiocapsa roseopersicina M11 under different environmental conditions was studied. Under anoxic/light conditions DMSP cleavage occurred both at low and intermediate salinities but at different growth

  20. Anaerobic Biodegradation of Tetrachloroethylene with Acetic Acid as Cometabolism Substrate under Anaerobic Condition

    Institute of Scientific and Technical Information of China (English)

    LI Ye; LIU Fei; CHEN Honghan; SHI Jinhua; WANG Yufan

    2008-01-01

    A series of batch-type experiments with acetate acid as the primary substrate wereperformed using enrichment cultures developed from the anaerobic sludge to investigate the effect ofacetate acid on tetrachloroethylene (PCE) biodegradation. Experimental results indicated that acetateacid was an efficient electron donor in affecting the biotransformability of PCE. Trichloroethylene(TCE) was the primary dehalogenation product, and small amounts of dichloroethylenes (DCEs) werealso detected. No significant further DCEs degradation was detected. PCE degradation rate in theexperiment was 36.6 times faster than background rate in natural groundwater.