WorldWideScience

Sample records for anaerobic bacteria adapted

  1. Anaerobic bacteria

    Science.gov (United States)

    Brook I, Goldstein EJ. Diseases caused by non-spore forming anaerobic bacteria. In: Goldman L, Schafer AI, eds. Goldman's Cecil Medicine . 25th ed. Philadelphia, PA: Elsevier Saunders; 2015:chap 297. Stedman's Online ...

  2. Parotitis due to anaerobic bacteria.

    Science.gov (United States)

    Matlow, A; Korentager, R; Keystone, E; Bohnen, J

    1988-01-01

    Although Staphylococcus aureus remains the pathogen most commonly implicated in acute suppurative parotitis, the pathogenic role of gram-negative facultative anaerobic bacteria and strict anaerobic organisms in this disease is becoming increasingly recognized. This report describes a case of parotitis due to Bacteroides disiens in an elderly woman with Sjögren's syndrome. Literature reports on seven additional cases of suppurative parotitis due to anaerobic bacteria are reviewed. Initial therapy of acute suppurative parotitis should include coverage for S. aureus and, in a very ill patient, coverage of gram-negative facultative organisms with antibiotics such as cloxacillin and an aminoglycoside. A failure to respond clinically to such a regimen or isolation of anaerobic bacteria should lead to the consideration of the addition of clindamycin or penicillin. PMID:3287567

  3. Molecular genetic studies on obligate anaerobic bacteria

    International Nuclear Information System (INIS)

    Molecular genetic studies on obligate anaerobic bacteria have lagged behind similar studies in aerobes. However, the current interest in biotechnology, the involvement of anaerobes in disease and the emergence of antibioticresistant strains have focused attention on the genetics of anaerobes. This article reviews molecular genetic studies in Bacteroides spp., Clostridium spp. and methanogens. Certain genetic systems in some anaerobes differ from those in aerobes and illustrate the genetic diversity among bacteria

  4. In vitro susceptibility testing of anaerobic bacteria.

    Science.gov (United States)

    Washington, J A

    1979-01-01

    In vitro susceptibility testing of anaerobic bacteria should be limited to isolates from persistent or recurrent infections that have been treated adequately and appropriately with antimicrobial agents and, in reference centers, to collections of isolates in order to monitor alterations in susceptibility of species to various antimicrobial agents. An agar dilution reference method is being evaluated currently; however, practicality limits sporadic testing of single isolates to disk elution or broth dilution techniques. No single disk diffusion method has yet been found to be acceptable for testing anaerobic bacteria, and the results obtained with standardized procedures for aerobic and facultatively anaerobic bacteria are not applicable to anaerobic bacteria. PMID:288163

  5. Comparative activity of ciprofloxacin against anaerobic bacteria.

    OpenAIRE

    Sutter, V L; Kwok, Y Y; Bulkacz, J

    1985-01-01

    The in vitro activity of ciprofloxacin was assessed against 362 strains of anaerobic bacteria and compared with that of cefoxitin, clindamycin, metronidazole, and mezlocillin. Only 31% of the strains tested were susceptible to ciprofloxacin. The other agents were active against most of the strains tested.

  6. Metabolic interactions between methanogenic consortia and anaerobic respiring bacteria

    DEFF Research Database (Denmark)

    Stams, A.J.; Oude Elferink, S.J.; Westermann, Peter

    2003-01-01

    Most types of anaerobic respiration are able to outcompete methanogenic consortia for common substrates if the respective electron acceptors are present in sufficient amounts. Furthermore, several products or intermediate compounds formed by anaerobic respiring bacteria are toxic to methanogenic...... consortia. Despite the potentially adverse effects, only few inorganic electron acceptors potentially utilizable for anaerobic respiration have been investigated with respect to negative interactions in anaerobic digesters. In this chapter we review competitive and inhibitory interactions between anaerobic...... respiring populations and methanogenic consortia in bioreactors. Due to the few studies in anaerobic digesters, many of our discussions are based upon studies of defined cultures or natural ecosystems...

  7. [Antimicrobial susceptibility testing of anaerobic bacteria].

    Science.gov (United States)

    García-Sánchez, José E; García-Sánchez, Enrique; García-García, María Inmaculada

    2014-02-01

    The anaerobic bacteria resistance to antibiotics is increasing, and even has appeared against the most active of those, like metronidazol and carbapenems. This fact forces to make and periodical sensibility tests -at least in the most aggressive and virulent species, in cases that they are isolated from life locations and in the absence of therapeutic response- to check the local sensibility and to establish suitable empiric therapies, all based on multicentric studies carried out in order to this or well to check the activity of new antibiotics. For the laboratory routine, the easiest sensibility method is the E-test/MIC evaluator. Another alternative is microdilution, that's only normalized for Bacteroides. There are preliminary facts that allow the use of disc diffusion method in some species of Bacteroides and Clostridium. For the temporal and multicentric studies, the procedure is dilution in agar plate, the reference method. PMID:24630580

  8. [Sensitivity of anaerobic bacteria to therapeutic agents (Zurich 1984)].

    Science.gov (United States)

    Wüst, J; Hardegger, U

    1985-12-28

    There are several reports in the literature on resistance of anaerobic bacteria against antimicrobial agents. Therefore, 231 anaerobic strains of various bacterial genera, isolated from clinical specimens during fall 1984, were tested for susceptibility to antimicrobial agents active against anaerobic bacteria. Whereas 23% of the Bacteroides species not belonging to the B. fragilis group were resistant to penicillin, the anaerobic bacteria were still susceptible to chloramphenicol, clindamycin and the nitroimidazoles. The resistance rate against the various new beta-lactam antibiotics was comparable to results of other studies. Due to the increasing resistance it is recommended that the susceptibility of clinically important anaerobes be tested by appropriate techniques. The agar diffusion test must not be used due to unreliable results. Instead, the minimal inhibitory concentration should be determined or the "broth-disk" test performed. PMID:4089587

  9. The Role of Anaerobic Bacteria in Cystic Fibrosis Lung Disease.

    OpenAIRE

    Murray, Michelle

    2014-01-01

    Recurrent bacterial infections in Cystic Fibrosis (CF) are the primary cause for morbidity and mortality in CF. Advancements in second generation sequencing and evolution of the lung microbiome has prompted greater interest in other bacteria present in the lung. Anaerobic bacteria have been one of the most common bacteria found on molecular sequencing, their cause and role is as of yet unknown. In our project, we recruited 450 patients prospectively and followed them at both stable and exacer...

  10. The aerobic activity of metronidazole against anaerobic bacteria.

    Science.gov (United States)

    Dione, Niokhor; Khelaifia, Saber; Lagier, Jean-Christophe; Raoult, Didier

    2015-05-01

    Recently, the aerobic growth of strictly anaerobic bacteria was demonstrated using antioxidants. Metronidazole is frequently used to treat infections caused by anaerobic bacteria; however, to date its antibacterial activity was only tested in anaerobic conditions. Here we aerobically tested using antioxidants the in vitro activities of metronidazole, gentamicin, doxycycline and imipenem against 10 common anaerobic and aerobic bacteria. In vitro susceptibility testing was performed by the disk diffusion method, and minimum inhibitory concentrations (MICs) were determined by Etest. Aerobic culture of the bacteria was performed at 37°C using Schaedler agar medium supplemented with 1mg/mL ascorbic acid and 0.1mg/mL glutathione; the pH was adjusted to 7.2 by 10M KOH. Growth of anaerobic bacteria cultured aerobically using antioxidants was inhibited by metronidazole after 72h of incubation at 37°C, with a mean inhibition diameter of 37.76mm and an MIC of 1μg/mL; however, strains remained non-sensitive to gentamicin. No growth inhibition of aerobic bacteria was observed after 24h of incubation at 37°C with metronidazole; however, inhibition was observed with doxycycline and imipenem used as controls. These results indicate that bacterial sensitivity to metronidazole is not related to the oxygen tension but is a result of the sensitivity of the micro-organism. In future, both culture and antibiotic susceptibility testing of strictly anaerobic bacteria will be performed in an aerobic atmosphere using antioxidants in clinical microbiology laboratories. PMID:25813393

  11. Biochemistry and physiology of anaerobic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-05-18

    We welcome you to The Power of Anaerobes. This conference serves two purposes. One is to celebrate the life of Harry D. Peck, Jr.,who was born May 18, 1927 and would have celebrated his 73rd birthday at this conference. He died November 20, 1998. The second is to gather investigators to exchange views within the realm of anaerobic microbiology, an area in which tremendous progress has been seen during recent years. It is sufficient to mention discoveries of a new form of life (the archaea), hyper or extreme thermophiles, thermophilic alkaliphiles and anaerobic fungi. With these discoveries has come a new realization about physiological and metabolic properties of microorganisms, and this in turn has demonstrated their importance for the development, maintenance and sustenance of life on Earth.

  12. Susceptibility of anaerobic bacteria to carbenicillin.

    Science.gov (United States)

    Blazevic, D J; Matsen, J M

    1974-05-01

    One hundred and seventy-one strains of anaerobes were tested for susceptibility to carbenicillin by using agar dilution, broth dilution, and two disk diffusion methods. The minimal inhibitory concentration (MIC) for 67% of 51 strains of Bacteroides fragilis, 7 of 9 strains of Bacteroides melaninogenicus, and all of 8 strains of Eubacterium was 100 mug or less per ml. The MICs of the remaining anaerobes were 50 mug or less per ml. The broth dilution results were felt to be the most accurate of the four methods utilized. PMID:4462461

  13. Sulfate-reducing bacteria in anaerobic bioreactors.

    NARCIS (Netherlands)

    Oude Elferink, S.J.W.H.

    1998-01-01

    The treatment of industrial wastewaters containing high amounts of easily degradable organic compounds in anaerobic bioreactors is a well-established process. Similarly, wastewaters which in addition to organic compounds also contain sulfate can be treated in this way. For a long time, the occurrenc

  14. Pectinase Activity of Anaerobic and Facultatively Anaerobic Bacteria Associated with Soft Rot of Yam (Diascorea rotundata)

    OpenAIRE

    Obi, Samuel K. C.

    1981-01-01

    Anaerobic and facultatively anaerobic bacteria associated with soft rot of yam (Diascorea rotundata) were isolated by the looping-out method and found to consist of Clostridium (three isolates), Corynebacterium (three isolates), Vibrio (one isolate), and Bacillus lentus (one isolate). Enzyme assay for hydrolase, lyase, and pectinesterase activities by the cup-plate method showed that except for Vibrio sp., B. lentus, and two isolates of Corynebacterium no pectinase activity could be detected ...

  15. Sulfate-reducing bacteria in anaerobic bioreactors.

    OpenAIRE

    Oude Elferink, S.J.W.H.

    1998-01-01

    The treatment of industrial wastewaters containing high amounts of easily degradable organic compounds in anaerobic bioreactors is a well-established process. Similarly, wastewaters which in addition to organic compounds also contain sulfate can be treated in this way. For a long time, the occurrence of sulfate reduction was considered to be undesired. However, there are some recent developments in which sulfate reduction is optimized for the removal of sulfur compounds from waste streams. In...

  16. A simple and sensitive quality control method of the anaerobic atmosphere for identification and antimicrobial susceptibility testing of anaerobic bacteria

    DEFF Research Database (Denmark)

    Justesen, Tage; Justesen, Ulrik Stenz

    2013-01-01

    The maintenance of a strict anaerobic atmosphere is essential for the culture of strict anaerobic bacteria. We describe a simple and sensitive quality control method of the anaerobic atmosphere, based on the measurement of the zone diameter around a 5-μg metronidazole disk when testing an...

  17. Interaction of neptunium with humic acid and anaerobic bacteria

    International Nuclear Information System (INIS)

    Humic acid and bacteria play an important role in the migration of radionuclides in groundwaters. The interaction of neptunium with humic acid and anaerobic bacteria has been investigated by liquid/liquid and solid/liquid extraction systems. For liquid/liquid extraction, the apparent complex formation constant, βα was obtained from the distribution between two phases of neptunium. For solid/liquid extraction, the ratio of sorption to bacteria, Kd, was measured. Kd of humic acid can be evaluated from βα. The large value of βα and Kd means strong interaction of neptunium with organisms. In order to examine the effect of the nature of organism on interaction, the interaction with humic acid was compared to that with non-sterilized or sterilized mixed anaerobic bacteria. The value of βα of humate depended on neptunium ion concentration as well as pH, which showed the effect of polyelectrolyte properties and heterogeneous composition of humic acid. The comparison of interaction with humic acid and bacteria indicated that the Kd value of humic acid was larger than that of bacteria and more strongly depend on pH. (author)

  18. [Anaerobic bacteria 150 years after their discovery by Pasteur].

    Science.gov (United States)

    García-Sánchez, José Elías; García-Sánchez, Enrique; Martín-Del-Rey, Ángel; García-Merino, Enrique

    2015-02-01

    In 2011 we celebrated the 150th anniversary of the discovery of anaerobic bacteria by Louis Pasteur. The interest of the biomedical community on such bacteria is still maintained, and is particularly focused on Clostridium difficile. In the past few years important advances in taxonomy have been made due to the genetic, technological and computing developments. Thus, a significant number of new species related to human infections have been characterised, and some already known have been reclassified. At pathogenic level some specimens of anaerobic microflora, that had not been isolated from human infections, have been now isolated in some clinical conditions. There was emergence (or re-emergence) of some species and clinical conditions. Certain anaerobic bacteria have been associated with established infectious syndromes. The virulence of certain strains has increased, and some hypotheses on their participation in certain diseases have been given. In terms of diagnosis, the routine use of MALDI-TOF has led to a shortening of time and a cost reduction in the identification, with an improvement directly related to the improvement of data bases. The application of real-time PCR has been another major progress, and the sequencing of 16srRNA gene and others is currently a reality for several laboratories. Anaerobes have increased their resistance to antimicrobial agents, and the emergence of resistance to carbapenems and metronidazole, and multi-resistance is a current reality. In this situation, linezolid could be an effective alternative for Bacteroides. Fidaxomicin is the only anti-anaerobic agent introduced in the recent years, specifically for the diarrhoea caused by C.difficile. Moreover, some mathematical models have also been proposed in relation with this species. PMID:23648369

  19. [Distribution and removal of anaerobic antibiotic resistant bacteria during mesophilic anaerobic digestion of sewage sludge].

    Science.gov (United States)

    Tong, Juan; Wang, Yuan-Yue; Wei Yuan, Song

    2014-10-01

    Sewage sludge is one of the major sources that releasing antibiotic resistant bacteria (ARB) and antibiotic resistant genes (ARG) into the environment since it contains large amount of ARB, but there is little information about the fate of the anaerobic ARB in the anaerobic digestion of sewage sludge. Therefore, the distribution, removal and seasonal changes of tetracycline and β-lactam antibiotics resistant bacteria in the mesophilic egg-shaped digesters of a municipal wastewater treatment plant were investigated for one year in this study. Results showed that there were higher amounts of ARB and higher resistance rate of β-lactam antibiotics than that of tetracycline antibiotics in the sewage sludge. All ARB could be significantly reduced during the mesophilic anaerobic digestion process by 1.48-1.64 log unit (P < 0.05). Notably, the ampicillin and cephalothin resistance rates were significantly increased after anaerobic digestion by 12.0% and 14.3%, respectively (P < 0.05). The distribution of ARB in the sewage sludge had seasonal change characteristics. Except for chlorotetracycline resistant bacteria, there were more ARB in the sewage sludge in cold season than in warm season (P < 0.05). PMID:25693388

  20. Enrichment culture of marine anaerobic ammonium oxidation (anammox) bacteria

    Institute of Scientific and Technical Information of China (English)

    GUAN Yong-jie

    2016-01-01

    The present study investigates the enrichment of anaerobic ammonium oxidation (anammox) bacteria in the marine environment using sediment samples obtained from the East China Sea and discusses the nitrogen removal efficiency of marine anammox bioreactor. Enrichment of anammox bacteria with simultaneous removal of nitrite and ammonium ions was observed in the Anaerobic Sequencing Batch Reactor under a total nitrogen loading rate of 0.37kg-N m-3day-1. In this study, The nitrogen removal efficiency was up to 80% and the molar-reaction ratio of ammonium, nitrite and nitrate was 1.0:1.22:0.22 which was a little different from a previously reported ratio of 1.0:1.32:0.26 in a freshwater system.

  1. Anaerobic bacteria colonizing the lower airways in lung cancer patients

    Directory of Open Access Journals (Sweden)

    Anna Malm

    2011-07-01

    Full Text Available Anaerobes comprise most of the endogenous oropharyngeal microflora, and can cause infections of airways in lung cancer patients who are at high risk for respiratory tract infections. The aim of this study was to determine the frequency and species diversity of anaerobes in specimens from the lower airways of lung cancer patients. Sensitivity of the isolates to conventional antimicrobial agents used in anaerobe therapy was assessed. Respiratory secretions obtained by bronchoscopy from 30 lung cancer patients were cultured onto Wilkins- -Chalgren agar in anaerobic conditions at 37°C for 72–96 hours. The isolates were identified using microtest Api 20A. The minimal inhibitory concentrations for penicillin G, amoxicillin/clavulanate, piperacillin/tazobactam, cefoxitin, imipenem, clindamycin, and metronidazole were determined by E-test. A total of 47 isolates of anaerobic bacteria were detected in 22 (73.3% specimens. More than one species of anaerobe was found in 16 (53.3% samples. The most frequently isolated were Actinomyces spp. and Peptostreptococcus spp., followed by Eubacterium lentum, Veillonella parvula, Prevotella spp., Bacteroides spp., Lactobacillus jensenii. Among antibiotics used in the study amoxicillin/clavulanate and imipenem were the most active in vitro (0% and 2% resistant strains, respectively. The highest resistance rate was found for penicillin G and metronidazole (36% and 38% resistant strains, respectively. The results obtained confirm the need to conduct analyses of anaerobic microflora colonizing the lower respiratory tract in patients with lung cancer to monitor potential etiologic factors of airways infections, as well as to propose efficient, empirical therapy. (Folia Histochemica et Cytobiologica 2011; Vol. 49, No. 2, pp. 263–266

  2. Aerobic and Anaerobic Starvation Metabolism in Methanotrophic Bacteria

    OpenAIRE

    Roslev, P.; King, G. M.

    1995-01-01

    The capacity for anaerobic metabolism of endogenous and selected exogenous substrates in carbon- and energy-starved methanotrophic bacteria was examined. The methanotrophic isolate strain WP 12 survived extended starvation under anoxic conditions while metabolizing 10-fold less endogenous substrate than did parallel cultures starved under oxic conditions. During aerobic starvation, the cell biomass decreased by 25% and protein and lipids were the preferred endogenous substrates. Aerobic prote...

  3. Xylitol Production From D-Xylose by Facultative Anaerobic Bacteria

    OpenAIRE

    Rangaswamy, Sendil

    2003-01-01

    Seventeen species of facultative anaerobic bacteria belonging to three genera (Serratia, Cellulomonas, and Corynebacterium) were screened for the production of xylitol; a sugar alcohol used as a sweetener in the pharmaceutical and food industries. A chromogenic assay of both solid and liquid cultures showed that 10 of the 17 species screened could grow on D-xylose and produce detectable quantities of xylitol during 24-96 h of fermentation. The ten bacterial species were studied for the effe...

  4. Anaerobic Ammonium-Oxidizing Bacteria: Unique Microorganisms with Exceptional Properties

    OpenAIRE

    Niftrik, L.A.M.P. van; Jetten, M.S.M.

    2012-01-01

    Summary: Anaerobic ammonium-oxidizing (anammox) bacteria defy many microbiological concepts and share numerous properties with both eukaryotes and archaea. Among their most intriguing characteristics are their compartmentalized cell plan and archaeon-like cell wall. Here we review our current knowledge about anammox cell biology. The anammox cell is divided into three separate compartments by bilayer membranes. The anammox cell consists of (from outside to inside) the cell wall, paryphoplasm,...

  5. Disk susceptibility testing of slow-growing anaerobic bacteria.

    Science.gov (United States)

    Kwok, Y Y; Tally, F P; Sutter, V L; Finegold, S M

    1975-01-01

    The susceptibility of 55 strains of slow-growing anaerobes to eight clinically useful or potentially useful antibiotics was determined by agar dilution and disk diffusion tests. Strains of the genera Peptococcus, Peptostreptococcus, Megasphaera, Veillonella, Eubacterium, Bifidobacterium, Clostridium, and Fusobacterium were included. All strains were susceptible to chloramphenicol, but varied in their susceptibility to penicillin, lincomycin, clindamycin, tetracyclines, and vancomycin. Correlation between minimal inhibitory concentration and inhibition zone diameters was generally good. Prediction of susceptibility based on zone diameter measurements appeared satisfactory. Although routine susceptibility testing of anaerobic bacteria is not recommended, there are circumstances where such testing is relevant to the clinical situation. For those laboratories ill-equipped to do dilution tests, a disk diffusion test would give relatively accurate preliminary information. Quantitative susceptibility tests could then be done by a reference laboratory. PMID:1137353

  6. Activation of Acetone and Other Simple Ketones in Anaerobic Bacteria.

    Science.gov (United States)

    Heider, Johann; Schühle, Karola; Frey, Jasmin; Schink, Bernhard

    2016-01-01

    Acetone and other ketones are activated for subsequent degradation through carboxylation by many nitrate-reducing, phototrophic, and obligately aerobic bacteria. Acetone carboxylation leads to acetoacetate, which is subsequently activated to a thioester and degraded via thiolysis. Two different types of acetone carboxylases have been described, which require either 2 or 4 ATP equivalents as an energy supply for the carboxylation reaction. Both enzymes appear to combine acetone enolphosphate with carbonic phosphate to form acetoacetate. A similar but more complex enzyme is known to carboxylate the aromatic ketone acetophenone, a metabolic intermediate in anaerobic ethylbenzene metabolism in denitrifying bacteria, with simultaneous hydrolysis of 2 ATP to 2 ADP. Obligately anaerobic sulfate-reducing bacteria activate acetone to a four-carbon compound as well, but via a different process than bicarbonate- or CO2-dependent carboxylation. The present evidence indicates that either carbon monoxide or a formyl residue is used as a cosubstrate, and that the overall ATP expenditure of this pathway is substantially lower than in the known acetone carboxylase reactions. PMID:26958851

  7. Iron biomineralization by anaerobic neutrophilic iron-oxidizing bacteria

    Science.gov (United States)

    Miot, Jennyfer; Benzerara, Karim; Morin, Guillaume; Kappler, Andreas; Bernard, Sylvain; Obst, Martin; Férard, Céline; Skouri-Panet, Fériel; Guigner, Jean-Michel; Posth, Nicole; Galvez, Matthieu; Brown, Gordon E., Jr.; Guyot, François

    2009-02-01

    Minerals formed by bio-oxidation of ferrous iron (Fe(II)) at neutral pH, their association with bacterial ultrastructures as well as their impact on the metabolism of iron-oxidizing bacteria remain poorly understood. Here, we investigated iron biomineralization by the anaerobic nitrate-dependent iron-oxidizing bacterium Acidovorax sp. strain BoFeN1 in the presence of dissolved Fe(II) using electron microscopy and Scanning Transmission X-ray Microscopy (STXM). All detected minerals consisted mainly of amorphous iron phosphates, but based on their morphology and localization, three types of precipitates could be discriminated: (1) mineralized filaments at distance from the cells, (2) globules of 100 ± 25 nm in diameter, at the cell surface and (3) a 40-nm thick mineralized layer within the periplasm. All of those phases were shown to be intimately associated with organic molecules. Periplasmic encrustation was accompanied by an accumulation of protein moieties. In the same way, exopolysaccharides were associated with the extracellular mineralized filaments. The evolution of cell encrustation was followed by TEM over the time course of a culture: cell encrustation proceeded progressively, with rapid precipitation in the periplasm (in a few tens of minutes), followed by the formation of surface-bound globules. Moreover, we frequently observed an asymmetric mineral thickening at the cell poles. In parallel, the evolution of iron oxidation was quantified by STXM: iron both contained in the bacteria and in the extracellular precipitates reached complete oxidation within 6 days. While a progressive oxidation of Fe in the bacteria and in the medium could be observed, spatial redox (oxido-reduction state) heterogeneities were detected at the cell poles and in the extracellular precipitates after 1 day. All these findings provide new information to further the understanding of molecular processes involved in iron biomineralization by anaerobic iron-oxidizing bacteria and

  8. Lack of activity of sulfamethoxazole and trimethoprim against anaerobic bacteria.

    Science.gov (United States)

    Rosenblatt, J E; Stewart, P R

    1974-07-01

    The activity of sulfamethoxazole (SMX), trimethoprim (TMP), and the combination of the two was determined against a variety of anaerobic bacteria. Brucella agar was somewhat inhibitory for SMX and TMP but activity was good and equivalent in Diagnostic Sensitivity Test Agar (Oxoid) and Mueller-Hinton agar and the latter was selected for use in these studies. Agar dilution susceptibility tests showed that 95 of 98 anaerobic isolates were resistant to >/=100 mug of SMX per ml and 85 were resistant to >/=6.25 mug of TMP per ml. "Checkerboard" agar dilution studies of combined activity showed that 66 of 72 isolates were resistant to >/= (100 mug of SMX per ml + 6.25 mug of TMP per ml) and only six isolates were susceptible to the synergistic activity of the combination. The majority of 32 isolates tested by the disk diffusion method were also resistant to SMX and TMP individually and to the combination 25-mug disk. Correlation between agar dilution minimal inhibitory concentration and disk zone size results was in general good for individual agents. Four Bacteroides fragilis isolates were inhibited by the combination 25-mug disk but were resistant to SMX + TMP by agar dilution "checkerboard." This discrepancy may have been due to different incubation periods since disk results also showed resistance when read after 48 h (as is done with agar dilution) rather than the standard 24 h for disk tests. These studies suggest that SMX and TMP, either individually or in combination, are not active against the great majority of anaerobic bacteria. PMID:15828176

  9. Effects of gamma ray and electron-beam irradiations on survival of anaerobic and facultatively anaerobic bacteria

    International Nuclear Information System (INIS)

    An extension of the approval for food irradiation is desired due to the increase in the incidence of food poisoning in the world. One anaerobic (Clostridium perfringens) and four facultatively anaerobic (Bacillus cereus, Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella Enteritidis) bacteria irradiated with gamma ray or electron beam (E-beam) were tested in terms of survival on agar under packaging atmosphere. Using pouch pack, effects of two irradiations on survival of anaerobic and facultatively anaerobic bacteria were evaluated comparatively. E-beam irradiation was more effective than gamma ray irradiation in decreasing the lethal dose 10% (D10) value of B. cereus at 4 deg C, slightly more effective in that of E. coli O157, and similarly effective in that of the other three bacteria at 4 deg C. The gamma irradiation of the bacteria without incubation at 4 deg C before irradiation was more effective than that of the bacteria with incubation overnight at 4 deg C before irradiation in decreasing the D10 values of these bacteria (B. cereus, E. coli O157, and L. monocytogenes). Furthermore, ground beef patties inoculated with bacteria were irradiated with 1 kGy by E-beam (5 MeV) at 4 deg C. The inoculated bacteria in the 1-9 mm beef patties were killed by 1 kGy E-beam irradiation and some bacteria in more than 9 mm beef patties were not killed by the irradiation. (author)

  10. Real-Time Molecular Monitoring of Chemical Environment in ObligateAnaerobes during Oxygen Adaptive Response

    Energy Technology Data Exchange (ETDEWEB)

    Holman, Hoi-Ying N.; Wozei, Eleanor; Lin, Zhang; Comolli, Luis R.; Ball, David. A.; Borglin, Sharon; Fields, Matthew W.; Hazen, Terry C.; Downing, Kenneth H.

    2009-02-25

    Determining the transient chemical properties of the intracellular environment canelucidate the paths through which a biological system adapts to changes in its environment, for example, the mechanisms which enable some obligate anaerobic bacteria to survive a sudden exposure to oxygen. Here we used high-resolution Fourier Transform Infrared (FTIR) spectromicroscopy to continuously follow cellular chemistry within living obligate anaerobes by monitoring hydrogen bonding in their cellular water. We observed a sequence of wellorchestrated molecular events that correspond to changes in cellular processes in those cells that survive, but only accumulation of radicals in those that do not. We thereby can interpret the adaptive response in terms of transient intracellular chemistry and link it to oxygen stress and survival. This ability to monitor chemical changes at the molecular level can yield important insights into a wide range of adaptive responses.

  11. Anaerobic Biodegradation of Pristane by Nitrate Reducing Bacteria

    Science.gov (United States)

    Dawson, K. S.; Freeman, K. H.; Macalady, J. L.

    2007-12-01

    In recent sediments, microbial biodegradation provides a control on the long-term preservation of organic matter, through the preferential loss of certain biomolecules and the alteration and concentration of other more recalcitrant molecules. Biodegradation of hydrocarbons derived from membrane lipids, has been demonstrated by both aerobic and strictly anaerobic culturing experiments. The isoprenoid pristane, once considered stable under anaerobic conditions, is in fact degraded by a denitrifying microcosm (BREGNARD et al., 1997) and a methanogenic, sulphate-reducing enrichment culture (GROSSI, 2000). We recently demonstrated pristane biodegradation and accompanying loss of nitrate by an activated sludge isolate. The measured nitrate consumption accounts for a 7.1 +/- 0.4 mg loss of pristane, 4.74% of the initial substrate, in 181 days, assuming pristane conversion to CO2. We have characterized the microorganisms active in the biodegradation process, through the creation of a 16S rDNA clone library, as well as fluorescence in situ hybridization (FISH). Experiments are in progress to enrich cultures of sulfate reducing bacteria that utilize pristane as a sole carbon source and to characterize reaction mechanisms in pristane-oxidizing pathways.

  12. Technique for preparation of anaerobic microbes: Rodshaped cellulolytic bacteria

    Directory of Open Access Journals (Sweden)

    Amlius Thalib

    2001-10-01

    Full Text Available Preparation of anaerobic-rod cellulolytic bacteria with coating technique has been conducted. Steps of the processes involved were cultivation, coating, evaporation, and drying. Coating agent used was Gum Arabic, and drying techniquesconducted were freeze drying and sun drying. pH of culture media was firstly optimized to obtain the maximal population ofbacteria. Both coated and uncoated preparates were subjected to drying. Morphological and Gram type identifications showed that uncoated preparate dried with freeze drying is not contaminated (ie. all bacteria are rod shape with Gram-negative type while the one dried with sun drying is not morphologically pure (ie. containing of both rod and coccus shapes with Gram negative and positive. The coated preparates dried by both freeze and sun drying, were not contaminated (ie. all are rods with Gram-negative. The coating and drying processes decreased viability of preparates significantly. However, the decreasing of viability of coated preparate are lower than uncoated preparate (ie. 89 vs. 97%. Total count of bacteria in sun-drying coated preparate are higher (P<0.05 than the uncoated preparate (ie. 3.38 x 1010 vs. 1.97 x 1010 colony/g DM. Activity of sun-drying coated preparate to digest elephant grass and rice straw was higher (P<0.01 than the sun-drying uncoated preparate with the in vitro DMD values were 42.7 vs. 35.5% for elephant grass substrate and 29.3 vs. 24.6% for rice straw substrate. Therefore, it is concluded that coating technique has a positive effects on the preparation of rumen bacteria.

  13. Antibiotic Susceptibility Pattern of Aerobic and Anaerobic Bacteria Isolated From Surgical Site Infection of Hospitalized Patients

    Science.gov (United States)

    Akhi, Mohammad Taghi; Ghotaslou, Reza; Beheshtirouy, Samad; Asgharzadeh, Mohammad; Pirzadeh, Tahereh; Asghari, Babak; Alizadeh, Naser; Toloue Ostadgavahi, Ali; Sorayaei Somesaraei, Vida; Memar, Mohammad Yousef

    2015-01-01

    Background: Surgical Site Infections (SSIs) are infections of incision or deep tissue at operation sites. These infections prolong hospitalization, delay wound healing, and increase the overall cost and morbidity. Objectives: This study aimed to investigate anaerobic and aerobic bacteria prevalence in surgical site infections and determinate antibiotic susceptibility pattern in these isolates. Materials and Methods: One hundred SSIs specimens were obtained by needle aspiration from purulent material in depth of infected site. These specimens were cultured and incubated in both aerobic and anaerobic condition. For detection of antibiotic susceptibility pattern in aerobic and anaerobic bacteria, we used disk diffusion, agar dilution, and E-test methods. Results: A total of 194 bacterial strains were isolated from 100 samples of surgical sites. Predominant aerobic and facultative anaerobic bacteria isolated from these specimens were the members of Enterobacteriaceae family (66, 34.03%) followed by Pseudomonas aeruginosa (26, 13.4%), Staphylococcus aureus (24, 12.37%), Acinetobacter spp. (18, 9.28%), Enterococcus spp. (16, 8.24%), coagulase negative Staphylococcus spp. (14, 7.22%) and nonhemolytic streptococci (2, 1.03%). Bacteroides fragilis (26, 13.4%), and Clostridium perfringens (2, 1.03%) were isolated as anaerobic bacteria. The most resistant bacteria among anaerobic isolates were B. fragilis. All Gram-positive isolates were susceptible to vancomycin and linezolid while most of Enterobacteriaceae showed sensitivity to imipenem. Conclusions: Most SSIs specimens were polymicrobial and predominant anaerobic isolate was B. fragilis. Isolated aerobic and anaerobic strains showed high level of resistance to antibiotics. PMID:26421133

  14. Regularities of polymer substances transformation into methane by thermophilic anaerobic bacteria

    OpenAIRE

    V. І. Karpenko; L. S. Yastremska; І. G. Burun; Y. V. Lembey; O. S. Tatarchenko

    2006-01-01

    The paper shows the regularities of polymer substances transformation into methane by extracted thermophilic anaerobic bacteria. The sequence of substrate use by the methane generating bacteria corresponds to the energy efficiency of the methane genesis reactions as in the first place hydrogen is used and then acetate is. Combined cultivation of extracted different anaerobic cultures gives the opportunity to increase ethanol and hydrogen yield as well as the effectiveness of methane formation.

  15. Nitrogen removal by autotrophic ammonium oxidizing bacteria enrichment under anaerobic conditions

    OpenAIRE

    Pongsak (Lek) Noophan; Chalermraj Wantawin; Siriporn Sripiboon; Sanya Sirivitayapakorn

    2008-01-01

    Sludge from an anoxic tank at the centralized wastewater treatment plant, Nong Khaem, Bangkok, Thailand, was inoculatedin an anaerobic sequencing batch reactor (ASBR). The optimal compositions and operating conditions of the stock of autotrophic ammonium oxidizing bacteria medium were determined. The process of oxidizing ammonium with bacteria under anaerobic conditions is often referred to as the Anammox process (NO2- to N2 gas, using NH4+ as the electron donor and NO2- as the electron accep...

  16. Nitrogen removal by autotrophic ammonium oxidizing bacteria enrichment under anaerobic conditions

    Directory of Open Access Journals (Sweden)

    Pongsak (Lek Noophan

    2008-07-01

    Full Text Available Sludge from an anoxic tank at the centralized wastewater treatment plant, Nong Khaem, Bangkok, Thailand, was inoculatedin an anaerobic sequencing batch reactor (ASBR. The optimal compositions and operating conditions of the stock of autotrophic ammonium oxidizing bacteria medium were determined. The process of oxidizing ammonium with bacteria under anaerobic conditions is often referred to as the Anammox process (NO2- to N2 gas, using NH4+ as the electron donor and NO2- as the electron acceptor. The startup period for the anammox culture took more than three months. With ammoniumand nitrite concentration ratios of 1:1.38 and 1:1.6, the nitrogen conversion rate zero order. Fluorescent in situ hybridization(FISH was used to identify specific autotrophic ammonium oxidizing bacteria (Nitrosomonas spp., Candidatus Brocadia anammoxidans, and Candidatus Kuenenia stuttgartiensis. Results from this work demonstrated a shift in the species of ammonium oxidizing bacteria from Nitrosomonas spp. to Candidati Brocadia anammoxidans and Kuenenia stuttgartiensis, with increased ammonium concentrations from 3 mM to 15 mM. Under NH4+:NO2- ratios of 1:1.38 and 1:1.6 the ammoniumoxidizing bacteria were able to remove both ammonium and nitrite simultaneously. The specific nitrogen removal rate of theanammox bacteria (Candidati Brocadia anammoxidans and Kuenenia stuttgartiensis was significantly higher than that of anaerobic ammonium oxidizing bacteria (Nitrosomonas spp.. Anaerobic ammonium oxidizing bacteria (Candidati Brocadia anammoxidans and Kuenenia stuttgartiensis are strict anaerobes.

  17. Metabolism of Hydrocarbons in n-Alkane-Utilizing Anaerobic Bacteria.

    Science.gov (United States)

    Wilkes, Heinz; Buckel, Wolfgang; Golding, Bernard T; Rabus, Ralf

    2016-01-01

    The glycyl radical enzyme-catalyzed addition of n-alkanes to fumarate creates a C-C-bond between two concomitantly formed stereogenic carbon centers. The configurations of the two diastereoisomers of the product resulting from n-hexane activation by the n-alkane-utilizing denitrifying bacterium strain HxN1, i.e. (1-methylpentyl)succinate, were assigned as (2S,1'R) and (2R,1'R). Experiments with stereospecifically deuterated n-(2,5-2H2)hexanes revealed that exclusively the pro-S hydrogen atom is abstracted from C2 of the n-alkane by the enzyme and later transferred back to C3 of the alkylsuccinate formed. These results indicate that the alkylsuccinate-forming reaction proceeds with an inversion of configuration at the carbon atom (C2) of the n-alkane forming the new C-C-bond, and thus stereochemically resembles a SN2-type reaction. Therefore, the reaction may occur in a concerted manner, which may avoid the highly energetic hex-2-yl radical as an intermediate. The reaction is associated with a significant primary kinetic isotope effect (kH/kD ≥3) for hydrogen, indicating that the homolytic C-H-bond cleavage is involved in the first irreversible step of the reaction mechanism. The (1-methylalkyl)succinate synthases of n-alkane-utilizing anaerobic bacteria apparently have very broad substrate ranges enabling them to activate not only aliphatic but also alkyl-aromatic hydrocarbons. Thus, two denitrifiers and one sulfate reducer were shown to convert the nongrowth substrate toluene to benzylsuccinate and further to the dead-end product benzoyl-CoA. For this purpose, however, the modified β-oxidation pathway known from alkylbenzene-utilizing bacteria was not employed, but rather the pathway used for n-alkane degradation involving CoA ligation, carbon skeleton rearrangement and decarboxylation. Furthermore, various n-alkane- and alkylbenzene-utilizing denitrifiers and sulfate reducers were found to be capable of forming benzyl alcohols from diverse alkylbenzenes

  18. Characterization and Adaptation of Anaerobic Sludge Microbial Communities Exposed to Tetrabromobisphenol A

    Science.gov (United States)

    Lefevre, Emilie; Cooper, Ellen; Stapleton, Heather M.

    2016-01-01

    The increasing occurrence of tetrabromobisphenol A (TBBPA) in the environment is raising questions about its potential ecological and human health impacts. TBBPA is microbially transformed under anaerobic conditions to bisphenol A (BPA). However, little is known about which taxa degrade TBBPA and the adaptation of microbial communities exposed to TBBPA. The objectives of this study were to characterize the effect of TBBPA on microbial community structure during the start-up phase of a bench-scale anaerobic sludge reactor, and identify taxa that may be associated with TBBPA degradation. TBBPA degradation was monitored using LC/MS-MS, and the microbial community was characterized using Ion Torrent sequencing and qPCR. TBBPA was nearly completely transformed to BPA via reductive debromination in 55 days. Anaerobic reactor performance was not negatively affected by the presence of TBBPA and the bulk of the microbial community did not experience significant shifts. Several taxa showed a positive response to TBBPA, suggesting they may be associated with TBBPA degradation. Some of these taxa had been previously identified as dehalogenating bacteria including Dehalococcoides, Desulfovibrio, Propionibacterium, and Methylosinus species, but most had not previously been identified as having dehalogenating capacities. This study is the first to provide in-depth information on the microbial dynamics of anaerobic microbial communities exposed to TBBPA. PMID:27463972

  19. Adapting Dynamic Mathematical Models to a Pilot Anaerobic Digestion Reactor

    Directory of Open Access Journals (Sweden)

    F. Haugen, R. Bakke, and B. Lie

    2013-04-01

    Full Text Available A dynamic model has been adapted to a pilot anaerobic reactor fed diarymanure. Both steady-state data from online sensors and laboratory analysis anddynamic operational data from online sensors are used in the model adaptation.The model is based on material balances, and comprises four state variables,namely biodegradable volatile solids, volatile fatty acids, acid generatingmicrobes (acidogens, and methane generating microbes (methanogens. The modelcan predict the methane gas flow produced in the reactor. The model may beused for optimal reactor design and operation, state-estimation and control.Also, a dynamic model for the reactor temperature based on energy balance ofthe liquid in the reactor is adapted. This model may be used for optimizationand control when energy and economy are taken into account.

  20. Modified broth-disk method for testing the antibiotic susceptibility of anaerobic bacteria.

    Science.gov (United States)

    Wilkins, T D; Thiel, T

    1973-03-01

    The most commonly used method for testing the antibiotic susceptibility of aerobic and facultative bacteria is the disk diffusion method. However, some anaerobic bacteria do not grow well enough in anaerobic jars for performance of disk diffusion tests. A modification of the broth-disk method of Schneierson allowed us to determine antibiotic susceptibility in a completely anaerobic environment. Commercial antibiotic disks were added anaerobically to tubes of prereduced brain heart infusion broth to achieve a concentration of each antibiotic approximating that attainable in blood. The tubes were then inoculated and incubated for 18 h. Resistance or susceptibility to each antibiotic was determined according to the amount of growth in each tube as compared with a control culture without the antibiotic. There was good correlation between results obtained by this broth-disk method and minimal inhibitory concentrations. PMID:4790595

  1. Anaerobic bacteria: evaluation of disc susceptibility to four cephalosporins.

    Science.gov (United States)

    Dubois, J; Pechère, J C

    1978-01-01

    The disc diffusion technique was evaluated with 178 strains of anaerobes and four cephalosporins (cephalothin, cefamandole, cefazolin and cefoxitin). Good correlation in results was found in comparison with the agar dilution technique (p less than 0.001) with the exception of cefamandole and cefazolin against anaerobic cocci (p greater than 0.05). Choosing a breakpoint of 8 microgram/ml for distinguishing susceptible and resistant strains, we determined corresponding incubation, the rate of error is less than 1% for false susceptible and less than 5% for false resistant. However, some strains of anaerobic cocci required a 48 hour incubation period for allowing visible growth. Moreover, a great deal (60.5%) of overlapping zone diameters made interpretation of disc diffusion test difficult among Bacteroides fragilis strains classed as susceptible, intermediate and resistant occuring with cefoxitin. The results have shown that the cephalothin disk will not accurately predict susceptibility of B. fragilis to cefoxitin. PMID:730395

  2. New techniques for growing anaerobic bacteria: experiments with Clostridium butyricum and Clostridium acetobutylicum

    International Nuclear Information System (INIS)

    Stable membrane fragments derived from Escherichia coli produce and maintain strict anaerobic conditions when added to liquid or solid bacteriological media. Techniques for growing Clostridium butyricum and Clostridium acetobutylicum in membrane-containing media are described. Liquid cultures initiated by very small inocula can be grown in direct contact with air. In solid media, colonies develop rapidly from individual cells even without incubation in anaerobic jars or similar devices. Observations on growth rates, spontaneous mutations, radiation, and oxygen sensitivity of anaerobic bacteria have been made using these new techniques

  3. New techniques for growing anaerobic bacteria: Experiments with Clostridium butyricum and Clostridium acetobutylicum

    International Nuclear Information System (INIS)

    Stable membrane fragments derived from Escherichia coli produce and maintain strict anaerobic conditions when added to liquid or solid bacteriological media. Techniques for growing Clostridium butyricum and Clostridium acetobutylicum in membrane containing media are described. Liquid cultures initiated by very small inocula can be grown in direct contact with air. In solid media, colonies develop rapidly from individual cells even without incubation in anaerobic jars or similar devices. Observations on growth rates, spontaneous mutations, radiation and oxygen sensitivity of anaerobic bacteria have been made using these new techniques

  4. Anaerobic ammonium oxidation by anammox bacteria in the Black Sea RID B-8834-2011

    DEFF Research Database (Denmark)

    Kuypers, MMM; Sliekers, AO; Lavik, G.; Schmid, M.; Jørgensen, BB; Kuenen, JG; Damste, JSS; Strous, M.; Jetten, MSM

    2003-01-01

    ). Here we provide evidence for bacteria that anaerobically oxidize ammonium with nitrite to N(2) in the world's largest anoxic basin, the Black Sea. Phylogenetic analysis of 16S ribosomal RNA gene sequences shows that these bacteria are related to members of the order Planctomycetales performing the...... anammox (anaerobic ammonium oxidation) process in ammonium-removing bioreactors(3). Nutrient profiles, fluorescently labelled RNA probes, (15)N tracer experiments and the distribution of specific 'ladderane' membrane lipids(4) indicate that ammonium diffusing upwards from the anoxic deep water is consumed...

  5. Conversion of hemicellulose and D-xylose into ethanol by the use of thermophilic anaerobic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Sommer, Peter

    1998-02-01

    Ethanol is a CO{sub 2} neutral liquid fuel that can substitute the use of fossil fuels in the transportation sector, thereby reducing the CO{sub 2} emission to the atmoshpere. CO{sub 2} emission is suspected to contribute significantly to the so-called greenhouse effect, the global heating. Substrates for production of ethanol must be cheap and plentiful. This can be met by the use of lignocellulosic biomass such as willow, wheat straw, hardwood and softwood. However, the complexity of these polymeric substrates and the presence of several types of carbohydrates (glucose, xylose, mannose, galactose, arabinose) require additional treatment to release the useful carbohydrates and ferment the major carbohydrates fractions. The costs related to the ethanol-production must be kept at a minimum to be price competitive compared to gasoline. Therefore all of the carbohydrates present in lignocellulose need to be converted into ethanol. Glucose can be fermented to ethanol by yeast strains such as Saccharomyces cerevisiae, which, however, is unable to ferment the other major carbohydrate fraction, D-xylose. The need for a microorganism able to ferment D-xylose is therefore apparent. Thermophilic anaerobic ethanol producing bacteria can therefore be considered for fermentation of D-xylose. Screening of 130 thermophilic anaerobic bacterial strains, from hot-springs, mesophilic and thermophilic biogas plants, paper pulp industries and brewery waste, were examined for production of ethanol from D-xylose and wet-oxidized hemicellulose hydrolysate. Several strains were isolated and one particular strain was selected for best performance during the screening test. This strain was characterized as a new species, Thermoanaerobacter mathranii. However, the ethanol yield on wet-oxidized hemicellulose hydrolysate was not satisfactory. The bacterium was adapted by isolation of mutant strains, now resistant to the inhibitory compounds present in the hydrolysate. Growth and ethanol yield

  6. Degradation of BTEX by anaerobic bacteria: physiology and application

    OpenAIRE

    Weelink, S.A.B.; Eekert, van, M.H.A.; Stams, A.J.M.

    2010-01-01

    Pollution of the environment with aromatic hydrocarbons, such as benzene, toluene, ethylbenzene and xylene (so-called BTEX) is often observed. The cleanup of these toxic compounds has gained much attention in the last decades. In situ bioremediation of aromatic hydrocarbons contaminated soils and groundwater by naturally occurring microorganisms or microorganisms that are introduced is possible. Anaerobic bioremediation is an attractive technology as these compounds are often present in the a...

  7. Distribution of Digoxin-reducing, Oxalate-degrading, and Total Anaerobic Bacteria in the Human Colon

    OpenAIRE

    Weaver, G A; Krause, J A; Allison, M J; Lindenbaum, J.

    2011-01-01

    Samples of the mucosal surface of the caecum and sigmoid colon were obtained from 33 colonoscopy subjects for microbiol studies using a microbiology brush system. Faecal samples and caecal lumen aspirates were also obtained. Estimated numbers of digoxin-reducing, oxalate-degrading and total anaerobic bacteria from the caecal brush samples correlated significantly with the respective concentrations of these organisms from the sigmoid area. The concentrations of oxalate-degrading bacteria and t...

  8. Denitrification as an adaptive trait in soil and groundwater bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Bergwall, C.

    1997-09-01

    The focus of this thesis is on selection and adaptation processes in bacteria with emphasis on denitrifying bacteria in groundwater. Other nitrogen transformation processes such as dissimilatory nitrate reduction to ammonium (nitrate ammonification) and nitrification of forest soil bacteria are briefly discussed. Microcosms with sterile sediment and groundwater were inoculated with single denitrifying strains isolated from three groundwater aquifers, two of which are agricultural aquifers (in situ NO{sub 3}{sup -}-N was 24.1 and 35.2 mg1{sup -1}) and the third which is a pristine lake water infiltration aquifer (in situ NO{sub 3}{sup -}-N was 6.3 mg1{sup -1}). The average denitrification activity for strains from the nitrate contaminated sites were twice as high as the activity of the strains from the pristine site. Denitrification were carbon limited and glucose amendment increased the denitrification activity about a 2-fold for all strains. The strain specific differences in denitrification rates increased to a 2.5-fold after carbon addition indicating that the differences in reduction rates cannot be explained by different carbon utilisation rates but rather reflect innate differences in the reductases of the strains. A preliminary identification of the molecular target for adaptation was performed with artificial electron donors and electron acceptors for all enzymatic steps in the denitrification pathway. Nitrous oxide reductase activity was significantly higher in denitrifiers from the nitrate contaminated sites. This suggests that nos genes may be the molecular target, possibly by mutation or gene duplication for adaptation to high nitrate concentrations. Two anaerobic denitrifiers from each of the contaminated sites were capable of aerobic denitrification indicating that high nitrate concentrations may select for strains that denitrifies in the presence of both oxygen and nitrate. Microcosm experiments with fertilized coniferous forest soil showed that the

  9. Anaerobic carboxydotrophic bacteria in geothermal springs identified using stable isotope probing

    Directory of Open Access Journals (Sweden)

    Allyson Lee Brady

    2015-09-01

    Full Text Available Carbon monoxide (CO is a potential energy and carbon source for thermophilic bacteria in geothermal environments. Geothermal sites ranging in temperature from 45–65°C were investigated for the presence and activity of anaerobic CO-oxidizing bacteria. Anaerobic CO oxidation potentials were measured at up to 48.9 µmoles CO day-1 g (wet weight-1 within 5 selected sites. Active anaerobic carboxydotrophic bacteria were identified using 13CO DNA stable isotope probing (SIP combined with pyrosequencing of 16S rRNA genes amplified from labeled DNA. Bacterial communities identified in heavy DNA fractions were predominated by Firmicutes, which comprised up to 95% of all sequences in 13CO incubations. The predominant bacteria that assimilated 13C derived from CO were closely related (>98% to genera of known carboxydotrophs including Thermincola, Desulfotomaculum, Thermolithobacter and Carboxydocella, although a few species with lower similarity to known bacteria were also found that may represent previously unconfirmed CO-oxidizers. While the distribution was variable, many of the same OTUs were identified across sample sites from different temperature regimes. These results show that bacteria capable of using CO as a carbon source are common in geothermal springs, and that thermophilic carboxydotrophs are probably already quite well known from cultivation studies.

  10. Isolation of aerobic and anaerobic bacteria from suspected enterotoxaemia cases in lambs

    Directory of Open Access Journals (Sweden)

    N. S. Mechael

    2012-01-01

    Full Text Available Ninety cases of clinically diagnosed enterotoxemia infection in lambs at AL-Hamdaniya region where studied for isolation of aerobic and anaerobic bacterial causes, faecal samples were collected from all suspected cases during January- June 2008, the results show that 41.6% of the isolates were Cl. perfringens as pure single isolates, while mixed infection of Cl. perfringens with each of Enterococci and staphylococcus in percentage of 26.04%, 20.83% respectively, also mixed infection of Cl. septicum with each of Staphylococcus and E.coli were isolated at the percentage of 5.2%, 6.25% respectively. Highest bacterial isolation was from the faecal samples collected during April. McIntosh jar method show isolation of pure culture of anaerobic bacteria (Cl. perfringens, while Candle jar method show detection of 56 isolates in mixed cultures of aerobic and anaerobic bacteria.

  11. Adaptation of anaerobically grown Thauera aromatica, Geobacter sulfurreducens and Desulfococcus multivorans to organic solvents on the level of membrane fatty acid composition.

    Science.gov (United States)

    Duldhardt, Ilka; Gaebel, Julia; Chrzanowski, Lukasz; Nijenhuis, Ivonne; Härtig, Claus; Schauer, Frieder; Heipieper, Hermann J

    2010-03-01

    The effect of different solvents and pollutants on the cellular fatty acid composition of three bacterial strains: Thauera aromatica, Geobacter sulfurreducens and Desulfococcus multivorans, representatives of diverse predominant anaerobic metabolisms was investigated. As the prevailing adaptive mechanism in cells of T. aromatica and G. sulfurreducens whose cellular fatty acids patterns were dominated by palmitic acid (C16:0) and palmitoleic acid (C16:1cis), the cells reacted by an increase in the degree of saturation of their membrane fatty acids when grown in the presence of sublethal concentrations of the chemicals. Next to palmitic acid C16:0, the fatty acid pattern of D. multivorans was dominated by anteiso-branched fatty acids which are characteristic for several sulfate-reducing bacteria. The cells responded to the solvents with an increase in the ratio of straight-chain saturated (C14:0, C16:0, C18:0) to anteiso-branched fatty acids (C15:0anteiso, C17:0anteiso, C17:1anteisoΔ9cis). The results show that anaerobic bacteria react with similar mechanisms like aerobic bacteria in order to adapt their membrane to toxic organic solvents. The observed adaptive modifications on the level of membrane fatty acid composition can only be carried out with de novo synthesis of the fatty acids which is strictly related to cell growth. As the growth rates of anaerobic bacteria are generally much lower than in the so far investigated aerobic bacteria, this adaptive response needs more time in anaerobic bacteria. This might be one explanation for the previously observed higher sensitivity of anaerobic bacteria when compared with aerobic ones. PMID:21255320

  12. Prevalence of Anaerobic and Aerobic Bacteria in Early Onset Neonatal Sepsis

    Directory of Open Access Journals (Sweden)

    F Nili

    2008-09-01

    Full Text Available "nBackground: To determine prospectively the prevalence of anaerobic and aerobic infection in early onset (during 72 hours of age neonatal sepsis, in Tehran Vali-e-Asr Hospital."nMethods: Among all the live birth, neonates suspecting of having septicemia were investigated for isolation of micro­organisms. Culture bottle containing enriched tryptic soy broth was used for standard blood culture system to detect aerobes and an ANAEROBIC/F bottle was inoculated using BACTEC 9120 continuous monitoring blood culture system to deter­mine the growth of anaerobic bacteria. Among 1724 live births, 402 consecutive neonates suspecting of having septicemia were investigated for isolation of micro organism."nResults: A total of 27 episodes of early onset neonatal sepsis occurred with an incidence of 15.66 (11.6 aerobe + 4.0 anaer­obe per 1000 live births. Aerobic bacteria were the major etiological agents, accounting for 20 cases. 7 (26% cases had posi­tive blood cultures with anaerobic bacteria. Propionibacterium and Peptostreptococccus (amongst anaerobic and coagu­lase-negative staphylococci and staphylococcus aureus (amongst aerobic were the most commonly isolated organisms. Compari­son of clinical findings and demographic characteristics between aerobic and anaerobic infection did not have a signifi­cant statistical difference."nConclusion: Our impression is that while anaerobic bacteremia in the newborn infants can occasionally cause severe morbid­ity and mortality, majority of cases experience a self limited illness with transient bacteremia.

  13. Underground Corrosion by Microorganisms Part II : Role of Anaerobic Sulphate Reducing Bacteria-Desulfotomaculum SP

    OpenAIRE

    H. M. Dayal; K. C. Tiwari; Kamlesh Mehta; Chandrashekhar,

    1988-01-01

    During the course of studies on the corrosion causing soil microflora from different geoclimatic regions of India, several strains of anaerobic sulphate reducing bacteria belonging to genus Desulfotomaculum were isolated and characterised. Their corrosive action on mild steel, galvanised iron and structural aluminium, the three main metals of construction of underground structures, have been studied under laboratory conditions.

  14. Underground Corrosion by Microorganisms Part II : Role of Anaerobic Sulphate Reducing Bacteria-Desulfotomaculum SP

    Directory of Open Access Journals (Sweden)

    H. M. Dayal

    1988-04-01

    Full Text Available During the course of studies on the corrosion causing soil microflora from different geoclimatic regions of India, several strains of anaerobic sulphate reducing bacteria belonging to genus Desulfotomaculum were isolated and characterised. Their corrosive action on mild steel, galvanised iron and structural aluminium, the three main metals of construction of underground structures, have been studied under laboratory conditions.

  15. Evaluation of Port-A-Cul transport system for protection of anaerobic bacteria.

    Science.gov (United States)

    Mena, E; Thompson, F S; Armfield, A Y; Dowell, V R; Reinhardt, D J

    1978-07-01

    The protection of anaerobes in Port-A-Cul (PAC) transport system (Bioquest, Div. of Becton, Dickinson &Co., Cockeysville, Md.) tubes and vials was studied. Ten species of obligately anaerobic bacteria commonly isolated from clinical specimens were used to prepare simulated swab and fluid specimens in high and low concentrations. Samples in PAC tubes and vials were held for 2, 24, and 48 h at ambient temperature and in a refrigerator. In addition, samples of the simulated specimens were exposed to controlled anaerobic and aerobic conditions in vented tubes and vials, with and without PAC medium, at ambient and refrigerator temperatures. Viable bacterial colony counts from specimens in PAC tubes and vials used as recommended by the manufacturer were consistently greater than those from specimens exposed to the different controlled conditions. The protection in PAC was about equal for specimens with either high or low concentrations of bacteria. Protection of the anaerobes in PAC was more obvious with swab than with fluid specimens. Quantitative recovery of anaerobes from refrigerated PAC samples, with few exceptions, was comparable to that from PAC samples held at ambient temperature. PMID:353071

  16. Binary Interactions of Antagonistic Bacteria with Candida albicans Under Aerobic and Anaerobic Conditions.

    Science.gov (United States)

    Benadé, Eliska; Stone, Wendy; Mouton, Marnel; Postma, Ferdinand; Wilsenach, Jac; Botha, Alfred

    2016-04-01

    We used both aerobic and anaerobic liquid co-cultures, prepared with Luria Bertani broth, to study the effect of bacteria on the survival of Candida albicans in the external environment, away from an animal host. The bacteria were represented by Aeromonas hydrophila, Bacillus cereus, Bacillus subtilis, Clostridium, Enterobacter, Klebsiella pneumoniae, Kluyvera ascorbata and Serratia marcescens. Under aerobic conditions, the yeast's growth was inhibited in the presence of bacterial growth; however, under anaerobic conditions, yeast and bacterial growth in co-cultures was similar to that observed for pure cultures. Subsequent assays revealed that the majority of bacterial strains aerobically produced extracellular hydrolytic enzymes capable of yeast cell wall hydrolysis, including chitinases and mannan-degrading enzymes. In contrast, except for the A. hydrophila strain, these enzymes were not detected in anaerobic bacterial cultures, nor was the antimicrobial compound prodigiosin found in anaerobic cultures of S. marcescens. When we suspended C. albicans cells in crude extracellular enzyme preparations from K. pneumoniae and S. marcescens, we detected no negative effect on yeast viability. However, we found that these preparations enhance the toxicity of prodigiosin towards the yeast, especially in combination with mannan-degrading enzymes. Analyses of the chitin and mannan content of yeast cell walls revealed that less chitin was produced under anaerobic than aerobic conditions; however, the levels of mannan, known for its low permeability, remained the same. The latter phenomenon, as well as reduced production of the bacterial enzymes and prodigiosin, may contribute to anaerobic growth and survival of C. albicans in the presence of bacteria. PMID:26566932

  17. Bacteremia due to anaerobic bacteria: epidemiology in a northern Bari Hospital, Italy

    Directory of Open Access Journals (Sweden)

    Maria Antonietta Distasi

    2015-06-01

    Full Text Available Background. Anaerobic bacteria are part of the commensal bacterial flora of skin and mucosae. Iatrogenic and pathological conditions altering this commensal relationship cause life-threatening diseases. Materials and Methods. We analysed the blood cultures sent to the microbiology of our hospital between 2008 and the first quarter of 2013 to measure the frequency of bacteraemia caused by anaerobia. We examined 3138 vials of blood cultures for anaerobia, inoculated following in-house standard procedures. The colonies grown in absence of air were subjected to biochemical analysis. The MICs of metronidazole for 23 of the 26 organisms was tested. Results. Twelve bacteria of the Bacteroides genus were identified, 9 Propionibacterium acnes, 1 Peptosctreptococcus micros, 1 Lactobacillus acidophilus, 1 Clostridium perfringens, 1 Prevotella oralis, 1 Eubacterium lentum. Conclusions. The analysis of the results suggests that the incidence of cultures positive to anaerobia was constant across the years. We note that advanced age, altered mucocutaneous tropism, alterations to the oral and intestinal bacterial flora intensify the risk of anaerobial pathogenicity. The analysis of the metronidazole-determined MIC suggests that the intestinal anaerobic flora responds well to therapy and prophylaxis with Metronidazole, while the anaerobic bacteria residing on skin and other mucosae are resistant. It is however hard to determine the clinical impact of anaerobic bacteremiae and their effect on the outcome of the patient, due to the scarcity of available clinical data.

  18. Aerobic and anaerobic spore-forming bacteria in Sardinian honey.

    OpenAIRE

    Farris, Giovanni Antonio; Fatichenti, Fabrizio; Deiana, Pietrino; Agostini, Franco

    1986-01-01

    Apart from an ubiquitous microflora, this investigation into 52 samples of honey revealed some undesirable spore-forming bacteria, Bacillus alvei and B. larvae which are bee pathogens. Bacillus cereus can cause spoilage and food poisoning. It is, therefore, considered essential that every country includes microbiological standards in its Food Safety Regulations for honey, so that the consumer is guaranteed as to the wholesomeness as well as the quality of the product.

  19. ADAPTATIONS OF INDIGENOUS BACTERIA TO FUEL CONTAMINATION IN KARST AQUIFERS IN SOUTH-CENTRAL KENTUCKY

    Science.gov (United States)

    Byl, Thomas D.; Metge, David W.; Daniel T. Agymang; Bradley, Michael W.; Hileman, Gregg; Harvey, Ronald W.

    2014-01-01

    The karst aquifer systems in southern Kentucky can be dynamic and quick to change. Microorganisms that live in these unpredictable aquifers are constantly faced with environmental changes. Their survival depends upon adaptations to changes in water chemistry, taking advantage of positive stimuli and avoiding negative environmental conditions. The U.S. Geological Survey conducted a study in 2001 to determine the capability of bacteria to adapt in two distinct regions of water quality in a karst aquifer, an area of clean, oxygenated groundwater and an area where the groundwater was oxygen depleted and contaminated by jet fuel. Water samples containing bacteria were collected from one clean well and two jet fuel contaminated wells in a conduit-dominated karst aquifer. Bacterial concentrations, enumerated through direct count, ranged from 500,000 to 2.7 million bacteria per mL in the clean portion of the aquifer, and 200,000 to 3.2 million bacteria per mL in the contaminated portion of the aquifer over a twelve month period. Bacteria from the clean well ranged in size from 0.2 to 2.5 mm, whereas bacteria from one fuel-contaminated well were generally larger, ranging in size from 0.2 to 3.9 mm. Also, bacteria collected from the clean well had a higher density and, consequently, were more inclined to sink than bacteria collected from contaminated wells. Bacteria collected from the clean portion of the karst aquifer were predominantly (,95%) Gram-negative and more likely to have flagella present than bacteria collected from the contaminated wells, which included a substantial fraction (,30%) of Gram-positive varieties. The ability of the bacteria from the clean portion of the karst aquifer to biodegrade benzene and toluene was studied under aerobic and anaerobic conditions in laboratory microcosms. The rate of fuel biodegradation in laboratory studies was approximately 50 times faster under aerobic conditions as compared to anaerobic, sulfur-reducing conditions. The

  20. In vitro activity of ceftriaxone combined with tazobactam against anaerobic bacteria.

    Science.gov (United States)

    Wüst, J; Hardegger, U

    1994-02-01

    The in vitro activity of ceftriaxone combined with tazobactam against 190 strains of anaerobic bacteria was compared with that of amoxicillin with clavulanic acid, ampicillin with sulbactam, piperacillin alone and with tazobactam, cefoxitin, and imipenem, i.e. beta-lactam antibiotics established in the treatment of anaerobic infections. All anaerobes tested were susceptible to ceftriaxone when tazobactam was added at fixed ratios (ceftriaxone to tazobactam) of 2:1 and 8:1 and at constant concentrations of 2,4 and 8 mg/l, respectively. When 4 mg/l tazobactam was added, the MICs of ceftriaxone for 83 of 94 strains of the Bacteroides fragilis group were reduced by a factor of 8 to 512; for eight strains, this reduction was two to fourfold. Only the MICs of ceftriaxone for three Bacteroides fragilis strains were not influenced. PMID:8013494

  1. Anaerobic Ammonium-Oxidizing (Anammox) Bacteria and Associated Activity in Fixed-Film Biofilters of a Marine Recirculating Aquaculture System†

    OpenAIRE

    Tal, Yossi; Joy E M Watts; Schreier, Harold J.

    2006-01-01

    Microbial communities in the biological filter and waste sludge compartments of a marine recirculating aquaculture system were examined to determine the presence and activity of anaerobic ammonium-oxidizing (anammox) bacteria. Community DNA was extracted from aerobic and anaerobic fixed-film biofilters and the anaerobic sludge waste collection tank and was analyzed by amplifying 16S rRNA genes by PCR using anammox-selective and universal GC-clamped primers. Separation of amplified PCR product...

  2. Adaptations to training at the individual anaerobic threshold.

    Science.gov (United States)

    Keith, S P; Jacobs, I; McLellan, T M

    1992-01-01

    The individual anaerobic threshold (Th(an)) is the highest metabolic rate at which blood lactate concentrations can be maintained at a steady-state during prolonged exercise. The purpose of this study was to test the hypothesis that training at the Th(an) would cause a greater change in indicators of training adaptation than would training "around" the Th(an). Three groups of subjects were evaluated before, and again after 4 and 8 weeks of training: a control group, a group which trained continuously for 30 min at the Th(an) intensity (SS), and a group (NSS) which divided the 30 min of training into 7.5-min blocks at intensities which alternated between being below the Th(an) [Th(an) -30% of the difference between Th(an) and maximal oxygen consumption (VO2max)] and above the Th(an) (Th(an) +30% of the difference between Th(an) and VO2max). The VO2max increased significantly from 4.06 to 4.27 l.min-1 in SS and from 3.89 to 4.06 l.min-1 in NSS. The power output (W) at Th(an) increased from 70.5 to 79.8% VO2max in SS and from 71.1 to 80.7% VO2max in NSS. The magnitude of change in VO2max, W at Th(an), % VO2max at Th(an) and in exercise time to exhaustion at the pretraining Th(an) was similar in both trained groups. Vastus lateralis citrate synthase and 3-hydroxyacyl-CoA-dehydrogenase activities increased to the same extent in both trained groups. While all of these training-induced adaptations were statistically significant (P < 0.05), there were no significant changes in any of these variables for the control subjects.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1425631

  3. Diversity and Ubiquity of Bacteria Capable of Utilizing Humic Substances as Electron Donors for Anaerobic Respiration

    OpenAIRE

    Coates, John D.; Cole, Kimberly A.; Chakraborty, Romy; O'Connor, Susan M.; Achenbach, Laurie A.

    2002-01-01

    Previous studies have demonstrated that reduced humic substances (HS) can be reoxidized by anaerobic bacteria such as Geobacter, Geothrix, and Wolinella species with a suitable electron acceptor; however, little is known of the importance of this metabolism in the environment. Recently we investigated this metabolism in a diversity of environments including marine and aquatic sediments, forest soils, and drainage ditch soils. Most-probable-number enumeration studies were performed using 2,6-a...

  4. A single-cell view on the ecophysiology of anaerobic phototrophic bacteria

    DEFF Research Database (Denmark)

    Musat, Niculina; Halm, Hannah; Winterholler, Bärbel;

    2008-01-01

    -SIMS), and show that it allows simultaneous phylogenetic identification and quantitation of metabolic activities of single microbial cells in the environment. Using HISH-SIMS, individual cells of the anaerobic, phototropic bacteria Chromatium okenii, Lamprocystis purpurea, and Chlorobium clathratiforme...... a significant role in the nitrogen and carbon cycles in the environment. By introducing this quantification method for the ecophysiological roles of individual cells, our study opens a variety of possibilities of research in environmental microbiology, especially by increasing the ability to examine...

  5. Extracellular enzyme activity in anaerobic bacterial cultures: evidence of pullulanase activity among mesophilic marine bacteria.

    OpenAIRE

    C. Arnosti; Repeta, D. J.

    1994-01-01

    The extracellular enzymatic activity of a mixed culture of anaerobic marine bacteria enriched on pullulan [alpha(1,6)-linked maltotriose units] was directly assessed with a combination of gel permeation chromatography (GPC) and nuclear magnetic resonance spectroscopy (NMR). Hydrolysis products of pullulan were separated by GPC into three fractions with molecular weights of > or = 10,000, approximately 5,000, and < or = 1,200. NMR spectra of these fractions demonstrated that pullulan was rapid...

  6. TELLURITE RESISTANCE AND REDUCTION DURING AEROBIC AND ANAEROBIC GROWTH OF BACTERIA ISOLATED FROM SARCHESHME COPPER MINE

    OpenAIRE

    A. Akhavan Sepahei ، V. Rashetnia

    2009-01-01

    Tellurium compounds can be found in high concentrations in land and water near sites of waste discharge of industrial manufacturing processes and anodic sludge of copper mine. Potassium tellurite (K2TeO3) is toxic to many microorganisms at concentrations >1mg/mL. In this research, some species of facultative anaerobic bacteria (Bacillus sp.) were isolated from Sarcheshme copper mine(Kerman, Iran) which demonstrated high-level-resistance to tellurite and accumulation of metallic tellurium crys...

  7. STUDY OF RELATIONSHIP BETWEEN DEPTH OF PERIODONTAL POCKETS, ANAEROBIC BACTERIA AND INFLAMMATORY CELLS IN PERIODONTITIS

    OpenAIRE

    P. Owlia; Salari MH.; H Saderi; Z. Kadkhoda

    2000-01-01

    In this study 100 cases of advanced periodontitis were compared with a control group of 100 persons. The parameters were the depth of the periodontal pockets, radiographic images, presence of inflammatory cells and different types of anaerobic bacteria in the pockets. The depth of pocket was measured by a sterile probe and the presence of inflammatory cells was determined through sterile curettage. The smears were stained by Gimsa and Gram methods. For the purpose of microbiological studies, ...

  8. A modified bioautographic method for antibacterial component screening against anaerobic and microaerophilic bacteria.

    Science.gov (United States)

    Kovács, Judit K; Horváth, Györgyi; Kerényi, Monika; Kocsis, Béla; Emődy, Levente; Schneider, György

    2016-04-01

    Direct bioautography is a useful method to identify antimicrobial compounds with potential therapeutic importance. Because of technical limitations till now, it has been applied only for aerobic bacteria. In this work we present the modification of the original method by which antimicrobial screening of bacteria requiring modified atmosphere became feasible by direct bioautography. Here we demonstrate its applicability by testing three anaerobic Clostridium perfringens and three microaerophilic Campylobacter jejuni strains against two essential oils, clove and thyme. Antimicrobial component profiles of clove and thyme essential oils against these two medically important pathogenic bacteria were compared and significant differences were revealed in their inhibition capacities. Linalool, a component of thyme essential oil exerted a more expressed antibacterial activity against C. perfringens than against C. jejuni. Our results demonstrate that direct bioautography is not only suitable for testing aerobic bacteria, but by applying the presently described modified version it can also contribute to the quest to find novel antimicrobial agents against multidrug resistant anaerobic and microaerophilic bacteria. PMID:26853123

  9. Radionuclide sorption to a mixture of anaerobic bacteria in the repository environment

    International Nuclear Information System (INIS)

    The sorption of the radionuclides, Pu, Np, Pa, Sr and Cs, to a mixture of anaerobic bacteria activated under specific conditions of temperature, pH and depleted nutrients after a long dormant period has been investigated. For Pu, after 4 hours at neutral pH, the distribution coefficient (Kd) between bacteria and aqueous phase at 308 and 278K was around 103-4 (ml g-1). Over 5 days, however, the Kd at 308K increased to over 105. Sterilized (dead) and dormant anaerobic bacteria adsorbed Pu to the same extent. Kd for Np at 308K after 5 days had a low value around 102. After 10 days, however, Kd was >100-fold higher. On the other hand, Kd for Np at 278K remained low, without any significant increase over time. The interaction between Pa and bacteria was found to be stronger than that for Np, with Kd for Pa about 100 times higher. For Sr and Ca, significant Kd change was not seen through 120 d. The value for Sr is a few times larger than that for Cs due to the different electrostatic interaction with the bacteria based on the charge of ion. (author)

  10. [Utility of MALDI-TOF MS for the identification of anaerobic bacteria].

    Science.gov (United States)

    Zárate, Mariela S; Romano, Vanesa; Nievas, Jimena; Smayevsky, Jorgelina

    2014-01-01

    The analysis by MALDI-TOF MS (Matrix-assited laser desorption/ionization time-of-flight mass spectrometry) has become a reference method for the identification of microorganisms in Clinical Microbiology. However, data on some groups of microorganisms are still controversial. The aim of this study is to determine the utility of MALDI-TOF MS for the identification of clinical isolates of anaerobic bacteria. One-hundred and six anaerobic bacteria isolates were analyzed by MALDI-TOF MS and by conventional biochemical tests. In those cases where identification by conventional methodology was not applicable or in the face of discordance between sequencing methodologies, 16 S rRNA gene sequence analysis was performed. The conventional method and MALDI-TOF MS agreed at genus and species level by 95.3 %. Concordance in gram-negative bacilli was 91.4% and 100% among gram-positive bacilli; there was also concordance both in the 8 isolates studied in gram-positive cocci and in the single gram-negative cocci included. The data obtained in this study demonstrate that MALDI-TOF MS offers the possibility of adequate identification of anaerobic bacteria. PMID:25011591

  11. Effect of radiation dose on the recovery of aerobic and anaerobic bacteria from mice

    International Nuclear Information System (INIS)

    The presence of aerobic and anaerobic bacteria in the blood, spleen, and liver was investigated in mice that were exposed to 7, 8, 9 or 10 Gy 60Co radiation. Microorganisms were detected more often in animals exposed to higher doses of radiation. The number of mice that were culture positive and the number of isolates in one site increased with increasing dose. Bacteria were recovered in mice killed at various times after radiation, in 3 of 100 mice exposed to 7 Gy, in 13 of 100 irradiated with 8 Gy, in 23 of 90 exposed to 9 Gy, and in 34 of 87 irradiated with 10 Gy. The predominant organisms recovered were Escherichia coli, anerobic Gram-positive cocci, Proteus mirabilis, Staphylococcus aureus, and Bacteroides spp. Escherichia coli and anaerobes were more often isolated in animals exposed to 10 Gy, while S. aureus was more often recovered in those irradiated with 9 Gy. These data demonstrate a relationship between the dose of radiation and the rate of infection due to enteric aerobic and anaerobic bacteria

  12. Effect of radiation dose on the recovery of aerobic and anaerobic bacteria from mice

    Energy Technology Data Exchange (ETDEWEB)

    Brook, I.; Walker, R.I.; MacVittie, T.J.

    1986-01-01

    The presence of aerobic and anaerobic bacteria in the blood, spleen, and liver was investigated in mice that were exposed to 7, 8, 9, or 10 Gy /sup 60/Co radiation. Microorganisms were detected more often in animals exposed to higher doses of radiation. The number of mice that were culture positive and the number of isolates in one site increased with increasing dose. Bacteria were recovered in mice killed at various times after radiation, in 3 of 100 mice exposed to 7 Gy, in 13 of 100 irradiated with 8 Gy, in 23 of 90 exposed to 9 Gy, and in 34 of 87 irradiated with 10 Gy. The predominant organisms recovered were Escherichia coli, anerobic Gram-positive cocci, Proteus mirabilis, Staphylococcus aureus, and Bacteroides spp. Escherichia coli and anaerobes were more often isolated in animals exposed to 10 Gy, while S. aureus was more often recovered in those irradiated with 9 Gy. These data demonstrate a relationship between the dose of radiation and the rate of infection due to entire aerobic and anaerobic bacteria. Reprints.

  13. Anaerobic Respiration on Tellurate and Other Metalloids in Bacteria from Hydrothermal Vent Fields in the Eastern Pacific Ocean

    OpenAIRE

    Csotonyi, Julius T.; Stackebrandt, Erko; Yurkov, Vladimir

    2006-01-01

    This paper reports the discovery of anaerobic respiration on tellurate by bacteria isolated from deep ocean (1,543 to 1,791 m) hydrothermal vent worms. The first evidence for selenite- and vanadate-respiring bacteria from deep ocean hydrothermal vents is also presented. Enumeration of the anaerobic metal(loid)-resistant microbial community associated with hydrothermal vent animals indicates that a greater proportion of the bacterial community associated with certain vent fauna resists and red...

  14. Fermentative hydrogen production from anaerobic bacteria using a membrane bioreactor

    International Nuclear Information System (INIS)

    Continuous H2 production from glucose was studied at short hydraulic retention times (HRT) of 4.69 - 0.79 h using a membrane bioreactor (MBR) with a hollow-fiber filtration unit and mixed cells as inoculum. The reactor was inoculated with sewage sludge, which were heat-treated at 90 C for harvesting spore-forming, H2-producing bacteria, and fed with synthetic wastewater containing 1% (w/v) glucose. With decreasing HRT, volumetric H2 production rate increased but the H2 production yield to glucose decreased gradually. The H2 content in biogas was maintained at 50 - 70% (v/v) and no appreciable CH4 was detected during the operation. The maximal volumetric H2 production rate and H2 yield to glucose were 1714 mmol H2/L.d and 1.1 mol H2/mol glucose, respectively. These results indicate that the MBR should be considered as one of the most promising systems for fermentative H2 production. (authors)

  15. Enrichment of denitrifying methanotrophic bacteria for application after direct low-temperature anaerobic sewage treatment

    Energy Technology Data Exchange (ETDEWEB)

    Kampman, Christel, E-mail: christel.kampman@wur.nl [Sub-department of Environmental Technology, Wageningen University, P.O. Box 17, 6700 AA, Wageningen (Netherlands); Hendrickx, Tim L.G. [Sub-department of Environmental Technology, Wageningen University, P.O. Box 17, 6700 AA, Wageningen (Netherlands); Luesken, Francisca A.; Alen, Theo A. van; Op den Camp, Huub J.M.; Jetten, Mike S.M. [Department of Microbiology, Institute for Water and Wetland Research, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen (Netherlands); Zeeman, Grietje; Buisman, Cees J.N.; Temmink, Hardy [Sub-department of Environmental Technology, Wageningen University, P.O. Box 17, 6700 AA, Wageningen (Netherlands)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer A new concept for low-temperature anaerobic sewage treatment is proposed. Black-Right-Pointing-Pointer In this concept, denitrification and methane oxidation are performed by Methylomirabilis oxyfera. Black-Right-Pointing-Pointer The bacteria were enriched from fresh water sediment using sequencing fed-batch reactors. Black-Right-Pointing-Pointer The volumetric consumption rate has to be increased by an order of magnitude for practical application. Black-Right-Pointing-Pointer Further research should focus on systems with improved biomass retention. - Abstract: Despite many advantages of anaerobic sewage treatment over conventional activated sludge treatment, it has not yet been applied in temperate zones. This is especially because effluent from low-temperature anaerobic treatment contains nitrogen and dissolved methane. The presence of nitrogen and methane offers the opportunity to develop a reactor in which methane is used as electron donor for denitrification. Such a reactor could be used in a new concept for low-temperature anaerobic sewage treatment, consisting of a UASB-digester system, a reactor for denitrification coupled to anaerobic methane oxidation, and a nitritation reactor. In the present study denitrifying methanotrophic bacteria similar to 'Candidatus Methylomirabilis oxyfera' were enriched. Maximum volumetric nitrite consumption rates were 33.5 mg NO{sub 2}{sup -}-N/L d (using synthetic medium) and 37.8 mg NO{sub 2}{sup -}-N/L d (using medium containing effluent from a sewage treatment plant), which are similar to the maximum rate reported so far. Though the goal was to increase the rates, in both reactors, after reaching these maximum rates, volumetric nitrite consumption rates decreased in time. Results indicate biomass washout may have significantly decelerated enrichment. Therefore, to obtain higher volumetric consumption rates, further research should focus on systems with complete biomass

  16. Enrichment of denitrifying methanotrophic bacteria for application after direct low-temperature anaerobic sewage treatment

    International Nuclear Information System (INIS)

    Highlights: ► A new concept for low-temperature anaerobic sewage treatment is proposed. ► In this concept, denitrification and methane oxidation are performed by Methylomirabilis oxyfera. ► The bacteria were enriched from fresh water sediment using sequencing fed-batch reactors. ► The volumetric consumption rate has to be increased by an order of magnitude for practical application. ► Further research should focus on systems with improved biomass retention. - Abstract: Despite many advantages of anaerobic sewage treatment over conventional activated sludge treatment, it has not yet been applied in temperate zones. This is especially because effluent from low-temperature anaerobic treatment contains nitrogen and dissolved methane. The presence of nitrogen and methane offers the opportunity to develop a reactor in which methane is used as electron donor for denitrification. Such a reactor could be used in a new concept for low-temperature anaerobic sewage treatment, consisting of a UASB-digester system, a reactor for denitrification coupled to anaerobic methane oxidation, and a nitritation reactor. In the present study denitrifying methanotrophic bacteria similar to ‘Candidatus Methylomirabilis oxyfera’ were enriched. Maximum volumetric nitrite consumption rates were 33.5 mg NO2−-N/L d (using synthetic medium) and 37.8 mg NO2−-N/L d (using medium containing effluent from a sewage treatment plant), which are similar to the maximum rate reported so far. Though the goal was to increase the rates, in both reactors, after reaching these maximum rates, volumetric nitrite consumption rates decreased in time. Results indicate biomass washout may have significantly decelerated enrichment. Therefore, to obtain higher volumetric consumption rates, further research should focus on systems with complete biomass retention.

  17. Differential Susceptibility of Bacteria to Mouse Paneth Cell a-Defensins under Anaerobic Conditions

    Directory of Open Access Journals (Sweden)

    Jennifer R. Mastroianni

    2014-10-01

    Full Text Available Small intestinal Paneth cells secrete a-defensin peptides, termed cryptdins (Crps in mice, into the intestinal lumen, where they confer immunity to oral infections and define the composition of the ileal microbiota. In these studies, facultative bacteria maintained under aerobic or anaerobic conditions displayed differential sensitivities to mouse a-defensins under in vitro assay conditions. Regardless of oxygenation, Crps 2 and 3 had robust and similar bactericidal activities against S. typhimurium and S. flexneri, but Crp4 activity against S. flexneri was attenuated in the absence of oxygen. Anaerobic bacteria varied in their susceptibility to Crps 2-4, with Crp4 showing less activity than Crps 2 and 3 against Enterococcus faecalis, and Bacteroides fragilis in anaerobic assays, but Fusobacterium necrophorum was killed only by Crp4 and not by Crps 2 and 3. The influence of anaerobiosis in modulating Crp bactericidal activities in vitro suggests that a-defensin effects on the enteric microbiota may be subject to regulation by local oxygen tension.

  18. Anaerobic metabolism of nitroaromatic compounds by sulfate-reducing and methanogenic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Boopathy, R. [Argonne National Lab., IL (United States); Kulpa, C.F. [Notre Dame Univ., IN (United States). Dept. of Biological Sciences

    1994-06-01

    Ecological observations suggest that sulfate-reducing and methanogenic bacteria might metabolize nitroaromatic compounds under anaerobic conditions if appropriate electron donors and electron acceptors are present in the environment, but this ability had not been demonstrated until recently. Most studies on the microbial metabolism of nitroaromatic compounds used aerobic microorganisms. In most cases no mineralization of nitroaromatics occurs, and only superficial modifications of the structures are reported. However, under anaerobic sulfate-reducing conditions, the nitroaromatic compounds reportedly undergo a series of reductions with the formation of amino compounds. For example, trinitrotoluene under sulfate-reducing conditions is reduced to triaminotoluene by the enzyme nitrite reductase, which is commonly found in many Desulfovibrio spp. The removal of ammonia from triaminotoluene is achieved by reductive deamination catalyzed by the enzyme reductive deaminase, with the production of ammonia and toluene. Some sulfate reducers can metabolize toluene to CO{sub 2}. Similar metabolic processes could be applied to other nitroaromatic compounds like nitrobenzene, nitrobenzoic acids, nitrophenols, and aniline. Many methanogenic bacteria can reduce nitroaromatic compounds to amino compounds. In this paper we review the anaerobic metabolic processes of nitroaromatic compounds under sulfate-reducing And methanogenic conditions.

  19. Anaerobic metabolism of nitroaromatic compounds by sulfate-reducing and methanogenic bacteria

    International Nuclear Information System (INIS)

    Ecological observations suggest that sulfate-reducing and methanogenic bacteria might metabolize nitroaromatic compounds under anaerobic conditions if appropriate electron donors and electron acceptors are present in the environment, but this ability had not been demonstrated until recently. Most studies on the microbial metabolism of nitroaromatic compounds used aerobic microorganisms. In most cases no mineralization of nitroaromatics occurs, and only superficial modifications of the structures are reported. However, under anaerobic sulfate-reducing conditions, the nitroaromatic compounds reportedly undergo a series of reductions with the formation of amino compounds. For example, trinitrotoluene under sulfate-reducing conditions is reduced to triaminotoluene by the enzyme nitrite reductase, which is commonly found in many Desulfovibrio spp. The removal of ammonia from triaminotoluene is achieved by reductive deamination catalyzed by the enzyme reductive deaminase, with the production of ammonia and toluene. Some sulfate reducers can metabolize toluene to CO2. Similar metabolic processes could be applied to other nitroaromatic compounds like nitrobenzene, nitrobenzoic acids, nitrophenols, and aniline. Many methanogenic bacteria can reduce nitroaromatic compounds to amino compounds. In this paper we review the anaerobic metabolic processes of nitroaromatic compounds under sulfate-reducing And methanogenic conditions

  20. Anaerobic degradation of naphthalene by the mixed bacteria under nitrate reducing conditions

    International Nuclear Information System (INIS)

    Mixed bacteria were enriched from soil samples contaminated with polycyclic aromatic hydrocarbons (PAHs). The anaerobic degradation characteristics by the enriched bacteria with different initial naphthalene concentrations were investigated under nitrate reducing conditions. The results showed that the mixed bacteria could degrade nearly all the naphthalene over the incubations of 25 days when the initial naphthalene concentration was below 30 mg/L. The degradation rates of naphthalene increased with increasing initial concentrations. A high naphthalene concentration of 30 mg/L did not inhibit neither on the bacterial growth nor on the naphthalene degradation ability. The accumulation of nitrite was occurred during the reduction of nitrate, and a nitrite concentration of 50 mg/L had no inhibition effect on the degradation of naphthalene. The calculation of electron balances revealed that most of the naphthalene was oxidized whereas a small proportion was used for cell synthesis.

  1. Significance of anaerobes and oral bacteria in community-acquired pneumonia.

    Directory of Open Access Journals (Sweden)

    Kei Yamasaki

    Full Text Available BACKGROUND: Molecular biological modalities with better detection rates have been applied to identify the bacteria causing infectious diseases. Approximately 10-48% of bacterial pathogens causing community-acquired pneumonia are not identified using conventional cultivation methods. This study evaluated the bacteriological causes of community-acquired pneumonia using a cultivation-independent clone library analysis of the 16S ribosomal RNA gene of bronchoalveolar lavage specimens, and compared the results with those of conventional cultivation methods. METHODS: Patients with community-acquired pneumonia were enrolled based on their clinical and radiological findings. Bronchoalveolar lavage specimens were collected from pulmonary pathological lesions using bronchoscopy and evaluated by both a culture-independent molecular method and conventional cultivation methods. For the culture-independent molecular method, approximately 600 base pairs of 16S ribosomal RNA genes were amplified using polymerase chain reaction with universal primers, followed by the construction of clone libraries. The nucleotide sequences of 96 clones randomly chosen for each specimen were determined, and bacterial homology was searched. Conventional cultivation methods, including anaerobic cultures, were also performed using the same specimens. RESULTS: In addition to known common pathogens of community-acquired pneumonia [Streptococcus pneumoniae (18.8%, Haemophilus influenzae (18.8%, Mycoplasma pneumoniae (17.2%], molecular analysis of specimens from 64 patients with community-acquired pneumonia showed relatively higher rates of anaerobes (15.6% and oral bacteria (15.6% than previous reports. CONCLUSION: Our findings suggest that anaerobes and oral bacteria are more frequently detected in patients with community-acquired pneumonia than previously believed. It is possible that these bacteria may play more important roles in community-acquired pneumonia.

  2. Hypermutation and stress adaptation in bacteria

    Indian Academy of Sciences (India)

    R. Jayaraman

    2011-08-01

    Hypermutability is a phenotype characterized by a moderate to high elevation of spontaneous mutation rates and could result from DNA replication errors, defects in error correction mechanisms and many other causes. The elevated mutation rates are helpful to organisms to adapt to sudden and unforeseen threats to survival. At the same time hypermutability also leads to the generation of many deleterious mutations which offset its adaptive value and therefore disadvantageous. Nevertheless, it is very common in nature, especially among clinical isolates of pathogens. Hypermutability is inherited by indirect (second order) selection along with the beneficial mutations generated. At large population sizes and high mutation rates many cells in the population could concurrently acquire beneficial mutations of varying adaptive (fitness) values. These lineages compete with the ancestral cells and also among themselves for fixation. The one with the ‘fittest’ mutation gets fixed ultimately while the others are lost. This has been called ‘clonal interference’ which puts a speed limit on adaptation. The original clonal interference hypothesis has been modified recently. Nonheritable (transient) hypermtability conferring significant adaptive benefits also occur during stress response although its molecular basis remains controversial. The adaptive benefits of heritable hypermutability are discussed with emphasis on host–pathogen interactions.

  3. Growth of silicone-immobilized bacteria on polycarbonate membrane filters, a technique to study microcolony formation under anaerobic conditions

    DEFF Research Database (Denmark)

    Højberg, Ole; Binnerup, S. J.; Sørensen, Jan

    1997-01-01

    A technique was developed to study microcolony formation by silicone- immobilized bacteria on polycarbonate membrane filters under anaerobic conditions. A sudden shift to anaerobiosis was obtained by submerging the filters in medium which was depleted for oxygen by a pure culture of bacteria. The...

  4. Activity of difloxacin (A-56619) and A-56620 against clinical anaerobic bacteria in vitro.

    OpenAIRE

    Bansal, M B; Thadepalli, H

    1987-01-01

    We determined the MICs of difloxacin (A-56619) and A-56620 against anaerobic bacteria and assessed the effects of alterations in pH, size of inoculum, addition of human serum, and repeated exposure to subinhibitory levels of antibiotics. We tested for synergism of these drugs with cefoxitin against Bacteroides spp. We found that difloxacin and A-56620 were as active as ciprofloxacin, inhibiting about 90% of B. fragilis (4 micrograms/ml) and other Bacteroides spp. (8 micrograms/ml), A-56620 be...

  5. A characterization of anaerobic colonization and associated mucosal adaptations in the undiseased ileal pouch.

    LENUS (Irish Health Repository)

    Smith, F M

    2012-02-03

    INTRODUCTION: The resolution of pouchitis with metronidazole points to an anaerobic aetiology. Pouchitis is mainly seen in patients with ulcerative colitis pouches (UCP). We have recently found that sulphate reducing bacteria (SRB), a species of strict anaerobe, colonize UCP exclusively. Herein, we aimed to correlate levels of different bacterial species (including SRB) with mucosal inflammation and morphology. METHODS: Following ethical approval, fresh faecal samples and mucosal biopsies were taken from 9 patients with UCP and 5 patients with familial adenomatous polyposis pouches (FAPP). For the purposes of comparison, faecal samples and mucosal biopsies were also taken from the stomas of 7 of the 9 patients with UC (UCS). Colonization by four types of strict anaerobes (SRB, Clostridium perfringens, Bifidobacteria and Bacteroides) as well as by three types of facultative anaerobes (Enterococci, Coliforms and Lactobacilli) was evaluated. Inflammatory scores and mucosal morphology were assessed histologically in a blinded fashion by a pathologist. RESULTS: In general, strict anaerobes predominated over facultative in the UCP (P = 0.041). SRB were present in UCP exclusively. Even after exclusion of SRB from total bacterial counts, strict anaerobes still predominated. In the UCS, facultative anaerobes predominated. Strict and facultative anaerobes were present at similar levels in the FAPP. Enterococci were present at significantly reduced levels in the UCP when compared with the UCS (P = 0.031). When levels of SRB and other anaerobic species were individually correlated with mucosal inflammation and morphology, no trends were observed. CONCLUSION: We have previously identified that SRB exclusively colonize UCP. In addition we have now identified a novel increase in the strict\\/facultative anaerobic ratio within the UCP compared to UCS. These stark differences in bacterial colonization, however, appear to have limited impact on mucosal inflammation or morphology.

  6. Hydrogenosomes : convergent adaptations of mitochondria to anaerobic environments

    NARCIS (Netherlands)

    Hackstein, JHP; Akhmanova, A; Voncken, F; van Hoek, A; van Alen, T; Boxma, B; Moon-van der Staay, SY; van der Staay, G; Leunissen, J; Huynen, M; Rosenberg, J; Veenhuis, M; Hackstein, Johannes H.P.; Moon-van der Staay, Seung Yeo

    2001-01-01

    Hydrogenosomes are membrane-bound organelles that compartmentalise the Final steps of energy metabo I is in in a number of anaerobic eukaryotes. They produce hydrogen and ATP. Here we will review the data, which are relevant for the questions: how did the hydrogenosomes originate, and what was their

  7. Effects of Endogenous Substrates on Adaptation of Anaerobic Microbial Communities to 3-Chlorobenzoate

    OpenAIRE

    Becker, Jennifer G.; Berardesco, Gina; Rittmann, Bruce E.; Stahl, David A

    2006-01-01

    Lengthy adaptation periods in laboratory studies evaluating the potential for contaminant biodegradation in natural or engineered environments may indicate that the native microbial communities are not metabolizing the contaminants in situ. In this study, we characterized the adaptation period preceding the biodegradation of 3-chlorobenzoate in anaerobic communities derived from lake sediment and wastewater sludge digesters. The importance of alternative mechanisms of adaptation of the anaero...

  8. Anaerobic ammonium-oxidizing bacteria gain antibiotic resistance during long-term acclimatization.

    Science.gov (United States)

    Zhang, Zheng-Zhe; Zhang, Qian-Qian; Guo, Qiong; Chen, Qian-Qian; Jiang, Xiao-Yan; Jin, Ren-Cun

    2015-09-01

    Three broad-spectrum antibiotics, amoxicillin (AMX), florfenicol (FF) and sulfamethazine (SMZ), that inhibit bacteria via different target sites, were selected to evaluate the acute toxicity and long-term effects on anaerobic ammonium oxidation (anammox) granules. The specific anammox activity (SAA) levels reduced by approximately half within the first 3 days in the presence of antibiotics but no nitrite accumulation was observed in continuous-flow experiments. However, the SAA levels and heme c content gradually recovered as the antibiotic concentrations increased. Extracellular polymeric substances (EPS) analysis suggested that anaerobic ammonium-oxidizing bacteria gradually developed a better survival strategy during long-term acclimatization, which reduced the antibiotic stress via increased EPS secretion that provided a protective 'cocoon.' In terms of nitrogen removal efficiency, anammox granules could resist 60 mg-AMX L(-1), 10 mg-FF L(-1) and 100 mg-SMZ L(-1). This study supported the feasibility of using anammox granules to treat antibiotic-containing wastewater. PMID:26111629

  9. Phenols in anaerobic digestion processes and inhibition of ammonia oxidising bacteria (AOB) in soil

    International Nuclear Information System (INIS)

    This study focuses on the presence of phenols in digestate from seven Swedish large-scale anaerobic digestion processes and their impact on the activity of ammonia oxidising bacteria (AOB) in soil. In addition, the importance of feedstock composition and phenol degradation capacity for the occurrence of phenols in the digestate was investigated in the same processes. The results revealed that the content of phenols in the digestate was related to the inhibition of the activity of AOB in soil (EC5 = 26 μg phenols g-1 d.w. soil). In addition, five pure phenols (phenol, o-, p-, m-cresol and 4-ethylphenol) inhibited the AOB to a similar extent (EC5 = 43-110 μg g-1 d.w. soil). The phenol content in the digestate was mainly dependent on the composition of the feedstock, but also to some extent by the degradation capacity in the anaerobic digestion process. Swine manure in the feedstock resulted in digestate containing higher amounts of phenols than digestate from reactors with less or no swine manure in the feedstock. The degradation capacity of phenol and p-cresol was studied in diluted small-scale batch cultures and revealed that anaerobic digestion at mesophilic temperatures generally exhibited a higher degradation capacity compared to digestion at thermophilic temperature. Although phenol, p-cresol and 4-ethylphenol were quickly degraded in soil, the phenols added with the digestate constitute an environmental risk according to the guideline values for contaminated soils set by the Swedish Environmental Protection Agency. In conclusion, the management of anaerobic digestion processes is of decisive importance for the production of digestate with low amounts of phenols, and thereby little risks for negative effects of the phenols on the soil ecosystem

  10. Ultraviolet irradiation of bacteria under anaerobic conditions: implications for Prephanerozoic evolution

    International Nuclear Information System (INIS)

    The history of the rise of atmospheric oxygen and subsequent time of development of an ultraviolet light screening ozone layer has far reaching consequences in interpreting Prephanerozoic (4.5 to 0.6 billion years ago) evolution and ecology. A special anaerobic glove box was constructed to study the relative sensitivities of different groups of bacteria to uv light under varying conditions. Although there is no concensus concerning the oxygen concentration in the early atmosphere, total anoxic conditions were assumed in these studies. The flux of the uv radiation at 253.7 nm within the chamber is slightly higher than calculated from estimates of the present solar luminosity constant at this wavelength. Strict anaerobes, possibly direct decendants from early reducing conditions on Earth (e.g. Clostridium), facultative anaerobes (e.g. Escherichia, Enterobacter), and aerobes (e.g. Pseudomonas) were irradiated and examined for survival as a function of uv dosage. In these studies, photoreactivation, the amelioration of uv damage by visible light, was demonstrated for the first time to exist in an obligate anaerobe. The number of cells in unprotected cultures, exposed to 20 minutes of uv radiation is generally reduced by 99.9%. However, several mechanisms of protection were found: (1) photoreactivation, (2) absorption of uv by nitrates in aqueous irradiation media, (3) intertwiningof growing filaments into cohesive structures called mats, e.g. the matting habit, (4) dark enzymatic repair of photodamage; and (5) inherent radiation resistance. These experimental results coupled with a literature review of uv effects strongly suggests that the Berkner-Marshall hypothesis is no longer tenable

  11. Conversion of hemicelluloses and D-xylose into ethanol by the use of thermophilic anaerobic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-05-01

    Ethanol is a CO{sub 2} neutral liquid fuel that can substitute the use of fossil fuels in the transportation sector, thereby reducing the CO{sub 2} emission to the atmosphere. CO{sub 2} emission is suspected to contribute significantly to the so-called greenhouse effect, the global heating. Substrates for production of ethanol must be cheap and plentiful. This can be met by the use of lignocellulosic biomass such as willow, wheat straw, hardwood and softwood. However, the complexity of these polymeric substrates and the presence of several types of carbohydrates (glucose, xylose, mannose, galactose, arabinose) require additional treatment to release the useful carbohydrates and ferment the major carbohydrates fractions. The costs related to the ethanol-production must be kept at a minimum to be price competitive compared to gasoline. Therefore all of the carbohydrates present in lignocellulose need to be converted into ethanol. Glucose can be fermented to ethanol by yeast strains such as Saccharomyces cerevisiae, which, however, is unable to ferment the other major carbohydrate fraction, D-xylose. Thermophilic anaerobic ethanol producing bacteria can be used for fermentation of the hemicelluloses fraction of lignocellulosic biomass. However, physiological studies of thermophilic anaerobic bacteria have shown that the ethanol yield decreases at increasing substrate concentration. The biochemical limitations causing this phenomenon are not known in detail. Physiological and biochemical studies of a newly characterized thermophilic anaerobic ethanol producing bacterium, Thermoanaerobacter mathranii, was performed. This study included extraction of intracellular metabolites and enzymes of the pentose phosphate pathway and glycolysis. These studies revealed several bottlenecks in the D-xylose metabolism. This knowledge makes way for physiological and genetic engineering of this strain to improve the ethanol yield and productivity at high concentration of D-xylose. (au)

  12. Anaerobic Oxidation of Methane Coupled to Nitrite Reduction by Halophilic Marine NC10 Bacteria.

    Science.gov (United States)

    He, Zhanfei; Geng, Sha; Cai, Chaoyang; Liu, Shuai; Liu, Yan; Pan, Yawei; Lou, Liping; Zheng, Ping; Xu, Xinhua; Hu, Baolan

    2015-08-15

    Anaerobic oxidation of methane (AOM) coupled to nitrite reduction is a novel AOM process that is mediated by denitrifying methanotrophs. To date, enrichments of these denitrifying methanotrophs have been confined to freshwater systems; however, the recent findings of 16S rRNA and pmoA gene sequences in marine sediments suggest a possible occurrence of AOM coupled to nitrite reduction in marine systems. In this research, a marine denitrifying methanotrophic culture was obtained after 20 months of enrichment. Activity testing and quantitative PCR (qPCR) analysis were then conducted and showed that the methane oxidation activity and the number of NC10 bacteria increased correlatively during the enrichment period. 16S rRNA gene sequencing indicated that only bacteria in group A of the NC10 phylum were enriched and responsible for the resulting methane oxidation activity, although a diverse community of NC10 bacteria was harbored in the inoculum. Fluorescence in situ hybridization showed that NC10 bacteria were dominant in the enrichment culture after 20 months. The effect of salinity on the marine denitrifying methanotrophic culture was investigated, and the apparent optimal salinity was 20.5‰, which suggested that halophilic bacterial AOM coupled to nitrite reduction was obtained. Moreover, the apparent substrate affinity coefficients of the halophilic denitrifying methanotrophs were determined to be 9.8 ± 2.2 μM for methane and 8.7 ± 1.5 μM for nitrite. PMID:26048927

  13. Plutonium Oxidation State Distribution under Aerobic and Anaerobic Subsurface Conditions for Metal-Reducing Bacteria

    Science.gov (United States)

    Reed, D. T.; Swanson, J.; Khaing, H.; Deo, R.; Rittmann, B.

    2009-12-01

    The fate and potential mobility of plutonium in the subsurface is receiving increased attention as the DOE looks to cleanup the many legacy nuclear waste sites and associated subsurface contamination. Plutonium is the near-surface contaminant of concern at several DOE sites and continues to be the contaminant of concern for the permanent disposal of nuclear waste. The mobility of plutonium is highly dependent on its redox distribution at its contamination source and along its potential migration pathways. This redox distribution is often controlled, especially in the near-surface where organic/inorganic contaminants often coexist, by the direct and indirect effects of microbial activity. The redox distribution of plutonium in the presence of facultative metal reducing bacteria (specifically Shewanella and Geobacter species) was established in a concurrent experimental and modeling study under aerobic and anaerobic conditions. Pu(VI), although relatively soluble under oxidizing conditions at near-neutral pH, does not persist under a wide range of the oxic and anoxic conditions investigated in microbiologically active systems. Pu(V) complexes, which exhibit high chemical toxicity towards microorganisms, are relatively stable under oxic conditions but are reduced by metal reducing bacteria under anaerobic conditions. These facultative metal-reducing bacteria led to the rapid reduction of higher valent plutonium to form Pu(III/IV) species depending on nature of the starting plutonium species and chelating agents present in solution. Redox cycling of these lower oxidation states is likely a critical step in the formation of pseudo colloids that may lead to long-range subsurface transport. The CCBATCH biogeochemical model is used to explain the redox mechanisms and final speciation of the plutonium oxidation state distributions observed. These results for microbiologically active systems are interpreted in the context of their importance in defining the overall migration

  14. In vitro activity of pipecolic acid amide of clindamycin (U-57930E) on anaerobic bacteria compared with those of clindamycin, cefoxitin, and chloramphenicol.

    OpenAIRE

    Dhawan, V K; Bansal, M B; Thadepalli, H

    1982-01-01

    In vitro activity of pipecolic acid amide of clindamycin (U-57930E) against 265 isolates of anaerobic bacteria, including 66 strains of Bacteroides fragilis, was compared with those of clindamycin, chloramphenicol, and cefoxitin. At therapeutically achievable concentrations, the activities of all four antibiotics against anaerobic bacteria were similar.

  15. TELLURITE RESISTANCE AND REDUCTION DURING AEROBIC AND ANAEROBIC GROWTH OF BACTERIA ISOLATED FROM SARCHESHME COPPER MINE

    Directory of Open Access Journals (Sweden)

    A. Akhavan Sepahei ، V. Rashetnia

    2009-10-01

    Full Text Available Tellurium compounds can be found in high concentrations in land and water near sites of waste discharge of industrial manufacturing processes and anodic sludge of copper mine. Potassium tellurite (K2TeO3 is toxic to many microorganisms at concentrations >1mg/mL. In this research, some species of facultative anaerobic bacteria (Bacillus sp. were isolated from Sarcheshme copper mine(Kerman, Iran which demonstrated high-level-resistance to tellurite and accumulation of metallic tellurium crystals. High-level-resistance was observed for Bacilli and cocci grown with certain organic carbon sources, implying that tellurite reduction is not essential to confer tellurite resistance. Level of adsorption was determined by inductively coupled plasma and spectrophotometer (Diethyldithiocarbamate method. The level of tellurite concentration in the bacteria cell and the formation of tellurium nanocrystals were illuminated by transmission electron microscope and scanning electron microscope. The Te(0 crystals occur internally and each microorganism forms a distinctly different structure (for example Bacillus selenitreducens make tellurium nano rod. In this study it was found that microorganism can grow 3.in 1500mg/L-2000mg/L and higher tellurite concentrations. The use of microorganisms to generate Te nanomaterials may be an alternative for bench-scale syntheses. Additionally, they may also generate products with unique properties unattainable by conventional physical/chemical methods. This study is important because native bacteria from Sarcheshme (Kerman, Iran that may show high-level-resistance to tellurite, were isolated.

  16. Anaerobic respiration on tellurate and other metalloids in bacteria from hydrothermal vent fields in the eastern Pacific Ocean.

    Science.gov (United States)

    Csotonyi, Julius T; Stackebrandt, Erko; Yurkov, Vladimir

    2006-07-01

    This paper reports the discovery of anaerobic respiration on tellurate by bacteria isolated from deep ocean (1,543 to 1,791 m) hydrothermal vent worms. The first evidence for selenite- and vanadate-respiring bacteria from deep ocean hydrothermal vents is also presented. Enumeration of the anaerobic metal(loid)-resistant microbial community associated with hydrothermal vent animals indicates that a greater proportion of the bacterial community associated with certain vent fauna resists and reduces metal(loid)s anaerobically than aerobically, suggesting that anaerobic metal(loid) respiration might be an important process in bacteria that are symbiotic with vent fauna. Isolates from Axial Volcano and Explorer Ridge were tested for their ability to reduce tellurate, selenite, metavanadate, or orthovanadate in the absence of alternate electron acceptors. In the presence of metal(loid)s, strains showed an ability to grow and produce ATP, whereas in the absence of metal(loid)s, no growth or ATP production was observed. The protonophore carbonyl cyanide m-chlorophenylhydrazone depressed metal(loid) reduction. Anaerobic tellurate respiration will be a significant component in describing biogeochemical cycling of Te at hydrothermal vents. PMID:16820492

  17. Susceptibility of anaerobic bacteria to metronidazole, ornidazole, and tinidazole and routine susceptibility testing by standardized methods.

    Science.gov (United States)

    Wust, J

    1977-04-01

    A total of 114 strains of anaerobic bacteria were examined for their susceptibility to metronidazole, ornidazole, and tinidazole by measuring the minimum inhibitory concentration (MIC) and minimum bactericidal concentration in different media. All strains, with the exception of the isolates of Propionibacterium acnes, were inhibited by 3.1 mug each and killed by 6.3 mug each of all three nitroimidazole compounds per ml. No significant differences in MIC values were found among metronidazole, ornidazole, and tinidazole. Only minor differences were detected by comparing MIC values obtained in brain heart infusion agar with and without sheep blood, brucella agar, and Mueller-Hinton agar (both containing blood). When the strains were tested by the modified broth-disk method proposed by the Anaerobe Laboratory of the Virginia Polytechnic Institute (VPI), there was good correlation with the MIC values (97.4% agreement for metronidazole and 94.7% for ornidazole and tinidazole). For routine testing, use of a 30-mug-class disk of either nitroimidazole derivative is proposed for the broth-disk method, resulting in a final concentration of 6 mug/ml in the test tubes, a concentration easily attainable in body fluids. In contrast to the broth-disk method, there was very poor correlation between inhibition zone diameters by the standardized VPI agar diffusion test and MIC values. PMID:856015

  18. Potential for using thermophilic anaerobic bacteria for bioethanol production from hemicellulose

    DEFF Research Database (Denmark)

    Sommer, P.; Georgieva, Tania I.; Ahring, Birgitte Kiær

    2004-01-01

    A limited number of bacteria, yeast and fungi can convert hemicellulose or its monomers (xylose, arabinose, mannose and galactose) into ethanol with a satisfactory yield and productivity. In the present study we tested a number of thermophilic enrichment cultures, and new isolates of thermophilic...... anaerobic bacterial strains growing optimally at 70-80degreesC for their ethanol production from D-Xylose. The new isolates came from different natural and man-made systems such as hot springs, paper pulp mills and brewery waste water. The test was composed of three different steps; (i) test for conversion...... Of D-Xylose into ethanol; (ii) test for viability and ethanol production in pretreated wheat straw hemicellulose hydrolysate; (iii) test for tolerance against high D-xylose concentrations. A total of 86 enrichment cultures and 58 pure cultures were tested and five candidates were selected which...

  19. Susceptibility of anaerobic bacteria to sulfamethoxazole/trimethoprim and routine susceptibility testing.

    Science.gov (United States)

    Wüst, J; Wilkins, T D

    1978-09-01

    The minimal inhibitory concentrations (MICs) of sulfamethoxazole and trimethoprim against 144 strains of obligately anaerobic bacteria were determined on Diagnostic Sensitivity Test agar (Oxoid) or in prereduced Diagnostic Sensitivity Test broth, both supplemented with sodium pyruvate (1 mg/ml), hemin (5 mug/ml), and vitamin K(1) (1 mug/ml). Fifty-eight percent of the strains were susceptible to sulfamethoxazole alone (MIC disk test proposed by Wilkins and Thiel, modified by using prereduced Diagnostic Sensitivity Test broth instead of brain heart infusion broth and by using a smaller inoculum, there was over 90% correlation with the MICs. Poor results were found when the broth-disk tests were performed in brain heart infusion broth. There was very poor correlation between inhibition zone diameters by an agar diffusion method and MICs. PMID:708016

  20. 16S rRNA gene sequencing in routine identification of anaerobic bacteria isolated from blood cultures

    DEFF Research Database (Denmark)

    Justesen, Ulrik Stenz; Skov, Marianne Nielsine; Knudsen, Elisa;

    2010-01-01

    A comparison between conventional identification and 16S rRNA gene sequencing of anaerobic bacteria isolated from blood cultures in a routine setting was performed (n = 127). With sequencing, 89% were identified to the species level, versus 52% with conventional identification. The times for...... identification were 1.5 days and 2.8 days, respectively....

  1. Evaluating primers for profiling anaerobic ammonia oxidizing bacteria within freshwater environments.

    Directory of Open Access Journals (Sweden)

    Puntipar Sonthiphand

    Full Text Available Anaerobic ammonia oxidizing (anammox bacteria play an important role in transforming ammonium to nitrogen gas and contribute to fixed nitrogen losses in freshwater environments. Understanding the diversity and abundance of anammox bacteria requires reliable molecular tools, and these are not yet well established for these important Planctomycetes. To help validate PCR primers for the detection of anammox bacteria within freshwater ecosystems, we analyzed representative positive controls and selected samples from Grand River and groundwater sites, both from Ontario, Canada. The objectives of this study were to identify a suitable anammox denaturing gradient gel electrophoresis (DGGE fingerprint method by using GC-clamp modifications to existing primers, and to verify the specificity of anammox-specific primers used for DGGE, cloning and qPCR methods. Six primer combinations were tested from four published primer sets (i.e. A438f/A684r, Amx368f/Amx820r, An7f/An1388r, and Pla46/1392r for both direct and nested PCR amplifications. All PCR products were run subsequently on DGGE gels to compare the resulting patterns. Two anammox-specific primer combinations were also used to generate clone libraries and quantify anammox bacterial 16S rRNA genes with qPCR. The primer set A438f/A684r was highly specific to anammox bacteria, provided reliable DGGE fingerprints and generated a high proportion of anammox-related clones. A second primer set (Amx368f/Amx820r was anammox specific, based on clone library analysis, but PCR products from different candidate species of anammox bacteria resolved poorly using DGGE analysis. Both DGGE and cloning results revealed that Ca. Brocadia and an uncharacterized anammox bacterial cluster represented the majority of anammox bacteria found in Grand River sediment and groundwater samples, respectively. Together, our results demonstrate that although Amx368f/Amx820r was useful for anammox-specific qPCR and clone library

  2. Anaerobic ammonium oxidation by Nitrosomonas spp. and anammox bacteria in a sequencing batch reactor.

    Science.gov (United States)

    Lek Noophan, Pongsak; Sripiboon, Siriporn; Damrongsri, Mongkol; Munakata-Marr, Junko

    2009-02-01

    A sequencing batch reactor (SBR) was inoculated with mixed nitrifying bacteria from an anoxic tank at the conventional activated sludge wastewater treatment plant in Nongkhaem, Bangkok, Thailand. This enriched nitrifying culture was maintained under anaerobic conditions using ammonium (NH(4)(+)) as an electron donor and nitrite (NO(2)(-)) as an electron acceptor. Autotrophic ammonium oxidizing bacteria survived under these conditions. The enrichment period for anammox culture was over 100 days. Both ammonium and nitrite conversion rates were proportional to the biomass of ammonium oxidizing bacteria; rates were 0.08 g N/gV SS/d and 0.05 g N/g VSS/d for ammonium and nitrite, respectively, in a culture maintained for 3 months at 42 mg N/L ammonium. The nitrogen transformation rate at a ratio of NH(4)(+)-N to NO(2)(-)-N of 1:1.38 was faster, and effluent nitrogen levels were lower, than at ratios of 1:0.671, 1:2.18, and 1:3.05. Fluorescent in situ hybridization (FISH) was used to identify specific autotrophic ammonium oxidizing bacteria (Nitrosomonas spp., Candidatus Brocadia anammoxidans, and Candidatus Kuenenia stuttgartiensis). The ammonium oxidizing culture maintained at 42 mg N/L ammonium was enriched for Nitrosomonas spp. (30%) over Candidati B. anammoxidans and K. stuttgartiensis (2.1%) while the culture maintained at 210 mg N/L ammonium was dominated by Candidati B. anammoxidans and K. stuttgartiensis (85.6%). The specific nitrogen removal rate of anammox bacteria (0.6 g N/g anammox VSS/d) was significantly higher than that of ammonium oxidizing bacteria (0.4 g N/g Nitrosomonas VSS/d). Anammox bacteria removed up to 979 mg N/L/d of total nitrogen (ammonium:nitrite concentrations, 397:582 mg N/L). These results suggest significant promise of this approach for application to wastewater with high nitrogen but low carbon content, such as that found in Bangkok. PMID:18423965

  3. Distribution and activity of anaerobic ammonium-oxidising bacteria in natural freshwater wetland soils.

    Science.gov (United States)

    Shen, Li-dong; Wu, Hong-sheng; Gao, Zhi-qiu; Cheng, Hai-xiang; Li, Ji; Liu, Xu; Ren, Qian-qi

    2016-04-01

    Anaerobic ammonium oxidation (anammox) process plays a significant role in the marine nitrogen cycle. However, the quantitative importance of this process in nitrogen removal in wetland systems, particularly in natural freshwater wetlands, is still not determined. In the present study, we provided the evidence of the distribution and activity of anammox bacteria in a natural freshwater wetland, located in southeastern China, by using (15)N stable isotope measurements, quantitative PCR assays and 16S rRNA gene clone library analysis. The potential anammox rates measured in this wetland system ranged between 2.5 and 25.5 nmol N2 g(-1) soil day(-1), and up to 20% soil dinitrogen gas production could be attributed to the anammox process. Phylogenetic analysis of 16S rRNA genes showed that anammox bacteria related to Candidatus Brocadia, Candidatus Kuenenia, Candidatus Anammoxoglobus and two novel anammox clusters coexisted in the collected soil cores, with Candidatus Brocadia and Candidatus Kuenenia being the dominant anammox genera. Quantitative PCR of hydrazine synthase genes showed that the abundance of anammox bacteria varied from 2.3 × 10(5) to 2.2 × 10(6) copies g(-1) soil in the examined soil cores. Correlation analyses suggested that the soil ammonium concentration had significant influence on the activity of anammox bacteria. On the basis of (15)N tracing technology, it is estimated that a total loss of 31.1 g N m(-2) per year could be linked the anammox process in the examined wetland. PMID:26621804

  4. Electricity generation by anaerobic bacteria and anoxic sediments from hypersaline soda lakes

    Science.gov (United States)

    Miller, L.G.; Oremland, R.S.

    2008-01-01

    Anaerobic bacteria and anoxic sediments from soda lakes produced electricity in microbial fuel cells (MFCs). No electricity was generated in the absence of bacterial metabolism. Arsenate respiring bacteria isolated from moderately hypersaline Mono Lake (Bacillus selenitireducens), and salt-saturated Searles Lake, CA (strain SLAS-1) oxidized lactate using arsenate as the electron acceptor. However, these cultures grew equally well without added arsenate using the MFC anode as their electron acceptor, and in the process oxidized lactate more efficiently. The decrease in electricity generation by consumption of added alternative electron acceptors (i.e. arsenate) which competed with the anode for available electrons proved to be a useful indicator of microbial activity and hence life in the fuel cells. Shaken sediment slurries from these two lakes also generated electricity, with or without added lactate. Hydrogen added to sediment slurries was consumed but did not stimulate electricity production. Finally, electricity was generated in statically incubated "intact" sediment cores from these lakes. More power was produced in sediment from Mono Lake than from Searles Lake, however microbial fuel cells could detect low levels of metabolism operating under moderate and extreme conditions of salt stress. ?? 2008 US Government.

  5. Effect of ph and temperature on the sorption of Np and Pa to mixed anaerobic bacteria

    International Nuclear Information System (INIS)

    While considering the geological disposal of radioactive wastes, the behaviour of the radionuclide Np and its daughter element Pa was investigated in the presence of a mixture of anaerobic bacteria (MAB). Originally, MAB were used for the treatment of pulp and paper wastewater. The interaction between radionuclides and bacteria was evaluated by determining distribution coefficients (Kd) over 10 days and at 5 deg. C and 35 deg. C. Kd for Np at 35 deg. C after 5 days had a low value around 10-2. After 10 days, however, Kd was >100-fold higher. On the other hand, Kd at 5 deg. C was low (10-2) throughout, without any significant increase over time. The interaction between Pa and MAB was found to be stronger than that for Np, with Kd for Pa about 100 times higher. The Kd was controlled by some basic factors; the activity of MAB, the complexing capacity of MAB, and the chemical conditions in the solution such as pH and Eh

  6. Environmental evaluation of coexistence of denitrifying anaerobic methane-oxidizing archaea and bacteria in a paddy field.

    Science.gov (United States)

    Ding, Jing; Fu, Liang; Ding, Zhao-Wei; Lu, Yong-Ze; Cheng, Shuk H; Zeng, Raymond J

    2016-01-01

    The nitrate-dependent denitrifying anaerobic methane oxidation (DAMO) process, which is metabolized together by anaerobic methanotrophic archaea and NC10 phylum bacteria, is expected to be important for the global carbon and nitrogen cycles. However, there are little studies about the existence of this process and the functional microbes in environments. Therefore, the coexistence of DAMO archaea and bacteria in a paddy field was evaluated in this study. Next-generation sequencing showed that the two orders, Methanosarcinales and Nitrospirales, to which DAMO archaea and DAMO bacteria belong, were detected in the four soil samples. Then the in vitro experiments demonstrated both of nitrite- and nitrate-dependent DAMO activities, which confirmed the coexistence of DAMO archaea and DAMO bacteria. It was the first report about the coexistence of DAMO archaea and bacteria in a paddy field. Furthermore, anammox bacteria were detected in two of the four samples. The in vitro experiments did not show anammox activity in the initial period but showed low anammox activity after 20 days' enrichment. These results implicated that anammox bacteria may coexist with DAMO microorganisms in this field, but at a very low percentage. PMID:26394860

  7. Experimental modelling of Calcium carbonate precipitation in the presence of phototrophic anaerobic bacteria Rhodovulum sp.

    Science.gov (United States)

    Bundeleva, Irina; Shirokova, Liudmila; Benezeth, Pascale; Pokrovsky, Oleg; Kompantseva, Elena

    2010-05-01

    -potential of the cells. To characterise the link between the rate of bacterial growth (biomass production) and the rate of CaCO3 precipitation, batch kinetic experiments were performed. These experiments were carried out in closed (anaerobic) bottles with initial concentration of calcium from 1 to 20 mM and from 5 to 20 mM bicarbonate. The biomass of cells, pH, [Ca2+] and [Alk] were measured as a function of time. Blank experiments (without cell or autoclaved cells) were always carried out. We found that the optimal conditions for both CaCO3 precipitation and biomass increase for the culture Rhodovulum sp. A-20s, is calcium concentration of 3 mM, whatever the concentration of bicarbonate (5, 10, 15 mM). Note also that for calcium concentration higher than 3 mM, the biomass production decreases. In the case of strictly anaerobic Rhodovulum sp. S-1765 bacteria, the optimal conditions for calcium carbonate precipitation is observed for the bicarbonate concentration of 10 mM, whatever the calcium concentration (3, 5, 10 mM). Overall, the present study allows quantitative modeling of bacterially-induced CaCO3 precipitation. It helps to distinguish between the effect of cell surface functional groups, surface electrical charge, soluble organic matter and metabolic change of solution pH on the rate and nature of precipitating calcium carbonate solid phase.

  8. [A comparative study of various evaluation methods of the antibiotic sensitivity of strict anaerobic bacteria of the subgingival flora].

    Science.gov (United States)

    Kamagate, A; Kone, D; Coulibaly, N T; Brou, E; Sixou, M

    2001-09-01

    The study on the sensitiveness of slow-growing anaerobes bacteria to antibiotics is delicate when you consider the technical motives that make it difficult to transpose the standard methods frequently used in microbiological laboratories. The three main methods used to determine susceptibility to antibiotics are: disk-diffusion test, antibiotics containing microdilution plates and ATB ANA (bioMérieux). The aim of this study is to compare the effectiveness of each of these methods on severe anaerobes bacteria isolated in sub-gingival flora of patients suffering from developing periodontitis (rapidly progressive periodontitis, refractory periodontitis, active stage of adult chronic periodontitis). The observed bacteria are: Porphyromonas gingivalis, Prevotella intermedia, Fusobacterium nucleatum, Campylobacter rectus, Peptostreptococcus micros. Antibiotics used are: ampicilline, amoxicilline, tetracycline, erythromycine, metronidazole. The comparison of the minimal inhibitory concentrations (M.I.C) of each of these methods has permitted to show a strict correlation in the results observed with these three methods, if only the growth of the severe anaerobes bacteria on agar medium does not exceed 72 hours. PMID:11808376

  9. Use of genetically modified bacteria to modulate adaptive immunity.

    Science.gov (United States)

    Bueno, Susan M; González, Pablo A; Kalergis, Alexis M

    2009-06-01

    Infectious diseases caused by virulent bacteria are a significant cause of morbidity and mortality worldwide, especially in developing countries. However, attenuated strains derived from pathogenic bacteria, such as Salmonella, are highly immunogenic and can be used as vaccines to promote immunity against parental pathogenic bacteria strains. Further, they can be genetically manipulated to either express foreign antigens or deliver exogenous DNA, in order to induce immunity against other pathogens or antigens. Contrarily, specific structural modifications in attenuated Salmonella have allowed the generation of strains that can be well tolerated by the immune system and reduce inflammatory responses. It is thought that those strains could be considered as vectors to promote specific immune tolerance for certain auto-antigens or allergens and reduce unwanted or self-reactive immune responses. In addition, some structural features of Salmonella can contribute to defining the nature and type of polarization of the adaptive immune response induced after immunization, which can be considered as a tool to modulate antigen-specific immunity. In this article we discuss recent advances in the understanding of immune system modulation by molecular components of bacteria and their exploitation for the rational induction of pathogen immunity or antigen-specific tolerance. PMID:19519362

  10. Acid resistance of methanogenic bacteria in a two-stage anaerobic process treating high concentration methanol Wastewater

    Institute of Scientific and Technical Information of China (English)

    ZHOU Xuefei; REN Nanqi

    2007-01-01

    In this study,the two-stage upflow anaerobic sludge blanket(UASB)system and batch experiments were employed to evaluate the performance of anaerobic digestion for the treatment of high concentration methanol wastewater.The acid resistance of granular sludge and methanogenic bacteria and their metabolizing activity were investigated.The results show that the pH of the first UASB changed from 4.9 to 5.8 and 5.5 to 6.2 for the second reactor.Apparently,these were not the advisable pH levels that common metha nogenic bacteria could accept.The methanogenic bacteria of the system,viz.Methanosarcina barkeri,had some acid resistance and could still degrade methanol at pH 5.0.If the methanogenic bacteria were trained further,their acid resistance would be improved somewhat.Granular sludge of the system could protect the methanogenic bacteria within its body against the impact of the acidic environment and make them degrade methanol at pH 4.5.The performance of granular sludge was attributed to its structure,bacteria species,and the distribution of bacterium inside the granule.

  11. The versatility and adaptation of bacteria from the genus Stenotrophomonas

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, R.P.; van der Lelie, D.; Monchy, S.; Cardinale, M.; Taghavi, S.; Crossman, L.; Avison, M. B.; Berg, G.; Dow, J. M.

    2009-07-01

    The genus Stenotrophomonas comprises at least eight species. These bacteria are found throughout the environment, particularly in close association with plants. Strains of the most predominant species, Stenotrophomonas maltophilia, have an extraordinary range of activities that include beneficial effects for plant growth and health, the breakdown of natural and man-made pollutants that are central to bioremediation and phytoremediation strategies and the production of biomolecules of economic value, as well as detrimental effects, such as multidrug resistance, in human pathogenic strains. Here, we discuss the versatility of the bacteria in the genus Stenotrophomonas and the insight that comparative genomic analysis of clinical and endophytic isolates of S. maltophilia has brought to our understanding of the adaptation of this genus to various niches.

  12. Anaerobic ammonium-oxidizing (anammox) bacteria and associated activity in fixed-film biofilters of a marine recirculating aquaculture system.

    Science.gov (United States)

    Tal, Yossi; Watts, Joy E M; Schreier, Harold J

    2006-04-01

    Microbial communities in the biological filter and waste sludge compartments of a marine recirculating aquaculture system were examined to determine the presence and activity of anaerobic ammonium-oxidizing (anammox) bacteria. Community DNA was extracted from aerobic and anaerobic fixed-film biofilters and the anaerobic sludge waste collection tank and was analyzed by amplifying 16S rRNA genes by PCR using anammox-selective and universal GC-clamped primers. Separation of amplified PCR products by denaturing gradient gel electrophoresis and sequencing of the different phylotypes revealed a diverse biofilter microbial community. While Planctomycetales were found in all three communities, the anaerobic denitrifying biofilters contained one clone that exhibited high levels of sequence similarity to known anammox bacteria. Fluorescence in situ hybridization studies using an anammox-specific probe confirmed the presence of anammox Planctomycetales in the microbial biofilm from the denitrifying biofilters, and anammox activity was observed in these biofilters, as detected by the ability to simultaneously consume ammonia and nitrite. To our knowledge, this is the first identification of anammox-related sequences in a marine recirculating aquaculture filtration system, and our findings provide a foundation for incorporating this important pathway for complete nitrogen removal in such systems. PMID:16597996

  13. Stability of SM-7338, a new carbapenem in mediums recommended for the susceptibility testing of anaerobic bacteria and gonococci.

    Science.gov (United States)

    Jones, R N; Gardiner, R V

    1989-01-01

    The stability of SM-7338 was compared to that of imipenem in media used for susceptibility testing anaerobic bacteria and Neisseria gonorrhoeae. SM-7338 was more stable in all media than imipenem. For tests with anaerobic bacteria, the broth-disk elution (in thioglycolate) and other methods recommended by the National Committee for Clinical Laboratory Standards can be accurately used for SM-7338. However, the cysteine content of IsoVitaleX (25.9 g/L) supplement inactivates SM-7338 (20-fold reduction) in gonococcal susceptibility test systems with GC agar base. A cysteine-free supplement would be advised for tests with the carbapenems and clavulanic acid. The SM-7338 disk diffusion test (10 micrograms) results were not significantly influenced by the inactivating substances in the media. PMID:2507217

  14. Domestic wastewater treatment with purple phototrophic bacteria using a novel continuous photo anaerobic membrane bioreactor.

    Science.gov (United States)

    Hülsen, Tim; Barry, Edward M; Lu, Yang; Puyol, Daniel; Keller, Jürg; Batstone, Damien J

    2016-09-01

    A key future challenge of domestic wastewater treatment is nutrient recovery while still achieving acceptable discharge limits. Nutrient partitioning using purple phototrophic bacteria (PPB) has the potential to biologically concentrate nutrients through growth. This study evaluates the use of PPB in a continuous photo-anaerobic membrane bioreactor (PAnMBR) for simultaneous organics and nutrient removal from domestic wastewater. This process could continuously treat domestic wastewater to discharge limits (60% of PPB, though the PPB community was highly variable. The outcomes from the current work demonstrate the potential of PPB for continuous domestic (and possibly industrial) wastewater treatment and nutrient recovery. Technical challenges include the in situ COD supply in a continuous reactor system, as well as efficient light delivery. Addition of external (agricultural or fossil) derived organics is not financially nor environmentally justified, and carbon needs to be sourced internally from the biomass itself to enable this technology. Reduced energy consumption for lighting is technically feasible, and needs to be addressed as a key objective in scaleup. PMID:27232993

  15. Characterization of the biochemical-pathway of uranium (VI) reduction in facultative anaerobic bacteria.

    Science.gov (United States)

    Mtimunye, Phalazane J; Chirwa, Evans M N

    2014-10-01

    Cultures of U(VI) reducing bacteria sourced from abandoned uranium mine tailing dam were evaluated for their ability to reduce U(VI) to U(IV). The species in the cultures reduced U(VI) in solutions with initial U(VI) concentration up to 400mgL(-)(1) under a near neutral pH of 6.5. The electron flow pathway and fate of reduced species was also analysed in the individual species in order to evaluate the potential for control and optimisation of the reduction potential at the biochemical level. The results showed that U(VI) reduction in live cells was completely blocked by the NADH-dehydrogenase inhibitor, rotenone (C23H22O6), and thioredoxin inhibitor, cadmium chloride (CdCl2), showing that U(VI) reduction involves the electron flow through NADH-dehydrogenase, a primary electron donor to the electron transport respiratory (ETR) system. Mass balance analysis of uranium species aided by visual and electron microscopy suggest that most U(VI) reduction occurred on the cell surface of the isolated species. This finding indicates the possibility of easy uranium recovery for beneficial use through biological remediation. Should the U(VI) be reduced inside the cell, recovery would require complete disruption of the cells and therefore would be difficult. The study contributes new knowledge on the underlying mechanisms in the U(VI) reduction in facultative anaerobes. PMID:25065785

  16. Antimicrobial activity of some Pacific Northwest woods against anaerobic bacteria and yeast.

    Science.gov (United States)

    Johnston, W H; Karchesy, J J; Constantine, G H; Craig, A M

    2001-11-01

    Extracts of woods commonly used for animal bedding were tested for antimicrobial activity. Essential oils from Alaska cedar (Chamaecyparis nootkatensis), western juniper (Juniperus occidentalis) and old growth Douglas fir (Pseudotsuga menziesii) as well as methanol extracts of wood from these trees plus western red cedar (Thuja plicata) and ponderosa pine (Pinus ponderosa) were tested for antimicrobial activity against anaerobic bacteria and yeast. The test microbes included Fusobacterium necrophorum, Clostridium perfringens, Actinomyces bovis and Candida albicans which are common to foot diseases and other infections in animals. The essential oils and methanol extracts were tested using a standardized broth assay. Only extracts of Alaska cedar and western juniper showed significant antimicrobial activity against each of the microbes tested. The essential oil of Douglas fir did show antimicrobial activity against A. bovis at the concentrations tested. The methanol extracts of the heartwood of Douglas fir and the sapwood of ponderosa pine showed no antimicrobial activity. The major chemical components of western juniper (cedrol and alpha- and beta-cedrene) and Alaska cedar (nootkatin) were also tested. In western juniper, alpha- and beta-cedrene were found to be active components. Nootkatin showed activity only against C. albicans. The inhibitory activity in Alaska cedar oil was high enough to justify further efforts to define the other chemical components responsible for the antimicrobial activity. PMID:11746838

  17. Optimization of biohydrogen production from beer lees using anaerobic mixed bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Maojin; Yuan, Zhuliang; Zhi, Xiaohua; Shen, Jianquan [Beijing National Laboratory for Molecular Sciences (BNLMS), Laboratory of New Materials, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing 100190 (China)

    2009-10-15

    Beer lees are the main by-product of the brewing industry. Biohydrogen production from beer lees using anaerobic mixed bacteria was investigated in this study, and the effects of acidic pretreatment, initial pH value and ferrous iron concentration on hydrogen production were studied at 35 C in batch experiments. The hydrogen yield was significantly enhanced by optimizing environmental factors such as hydrochloric acid (HCl) pretreatment of substrate, initial pH value and ferrous iron concentration. The optimal environmental factors of substrate pretreated with 2% HCl, pH = 7.0 and 113.67 mg/l Fe{sup 2+} were observed. A maximum cumulative hydrogen yield of 53.03 ml/g-dry beer lees was achieved, which was approximately 17-fold greater than that in raw beer lees. In addition, the degradation efficiency of the total reducing sugar, and the contents of hemicellulose, cellulose, lignin and metabolites are presented, which showed a strong dependence on the environmental factors. (author)

  18. Distribution of secretory inhibitor of platelet microbiddal protein among anaerobic bacteria isolated from stool of children with diarrhea

    Institute of Scientific and Technical Information of China (English)

    Iuri B Ivanov; Viktor A Gritsenko

    2008-01-01

    AIM: To study the secretory inhibitor of platelet microbicidal protein (SIPHP) phenotypes of faecal anaerobic isolates from patients with diarrhea.METHODS: Faecal isolates of anaerobic bacteria(B.fragiliS,n=42; B.longum,n=70;A.israelii,n=21;E.lentum,n=12) from children with diarrhea were tested.SlPHP production was tested by inhibition of platelet microbicidal protein (PHP) bioactivity against B.subtilis and was expressed as percentage of inhibition of PMP bactericidal activity.RESULTS: Among anaerobic isolates 80% of B.Iongum strains,85.7% of A.israelii strains,50%of E.lentum strains and 92.86% of B.fragilis strains were SIPMP-positive.The isolated anaerobic organisms demonstrated SIPHP production at a mean level of 13.8%±0.7%,14.7%±1.8%,3.9%±0.9% (P<0.05) and 26.8%±7.5% (P<0.05) for bifidobacteria,A.israelii,E.lentum and B.fragilis,respectively.CONCLUSION: Data from the present study may have significant implications in understanding the pathogenesis of microecological disorders in the intestine,as well as for future improvement in the prevention and therapy of anaerobe-associated infections.

  19. Stoke's and anti-Stoke's characteristics of anaerobic and aerobic bacterias at excitation of fluorescence by low-intensity red light: I. Research of anaerobic bacterias

    Science.gov (United States)

    Masychev, Victor I.; Alexandrov, Michail T.

    2000-04-01

    Biopsy or photo dynamic therapy of tumors are usually investigated by fluorescent diagnostics methods. Information on modified method of fluorescence diagnostics of inflammatory diseases is represented in this research. Anaerobic micro organisms are often the cause of these pathological processes. These micro organisms also accompany disbiotic processes in intestines.

  20. Growth and Population Dynamics of Anaerobic Methane-Oxidizing Archaea and Sulfate-Reducing Bacteria in a Continuous-Flow Bioreactor

    OpenAIRE

    Peter R. Girguis; Cozen, Aaron E.; DeLong, Edward F

    2005-01-01

    The consumption of methane in anoxic marine sediments is a biogeochemical phenomenon mediated by two archaeal groups (ANME-1 and ANME-2) that exist syntrophically with sulfate-reducing bacteria. These anaerobic methanotrophs have yet to be recovered in pure culture, and key aspects of their ecology and physiology remain poorly understood. To characterize the growth and physiology of these anaerobic methanotrophs and the syntrophic sulfate-reducing bacteria, we incubated marine sediments using...

  1. Diversity and ubiquity of bacteria capable of utilizing humic substances as electron donors for anaerobic respiration.

    Science.gov (United States)

    Coates, John D; Cole, Kimberly A; Chakraborty, Romy; O'Connor, Susan M; Achenbach, Laurie A

    2002-05-01

    Previous studies have demonstrated that reduced humic substances (HS) can be reoxidized by anaerobic bacteria such as Geobacter, Geothrix, and Wolinella species with a suitable electron acceptor; however, little is known of the importance of this metabolism in the environment. Recently we investigated this metabolism in a diversity of environments including marine and aquatic sediments, forest soils, and drainage ditch soils. Most-probable-number enumeration studies were performed using 2,6-anthrahydroquinone disulfonate (AHDS), an analog for reduced HS, as the electron donor with nitrate as the electron acceptor. Anaerobic organisms capable of utilizing reduced HS as an electron donor were found in all environments tested and ranged from a low of 2.31 x 10(1) in aquifer sediments to a high of 9.33 x 10(6) in lake sediments. As part of this study we isolated six novel organisms capable of anaerobic AHDS oxidation. All of the isolates coupled the oxidation of AHDS to the reduction of nitrate with acetate (0.1 mM) as the carbon source. In the absence of cells, no AHDS oxidation was apparent, and in the absence of AHDS, no cell density increase was observed. Generally, nitrate was reduced to N(2). Analysis of the AHDS and its oxidized form, 2,6-anthraquinone disulfonate (AQDS), in the medium during growth revealed that the anthraquinone was not being biodegraded as a carbon source and was simply being oxidized as an energy source. Determination of the AHDS oxidized and nitrate reduced accounted for 109% of the theoretical electron transfer. In addition to AHDS, all of these isolates could also couple the oxidation of reduced humic substances to the reduction of nitrate. No HS oxidation occurred in the absence of cells and in the absence of a suitable electron acceptor, demonstrating that these organisms were capable of utilizing natural HS as an energy source and that AHDS serves as a suitable analog for studying this metabolism. Alternative electron donors included

  2. [Antimicrobial susceptibility of clinical isolates of aerobic Gram-positive cocci and anaerobic bacteria in 2006].

    Science.gov (United States)

    Yamaguchi, Takahiro; Yoshida, Isamu; Itoh, Yoshihisa; Tachibana, Mineji; Takahashi, Choichiro; Kaku, Mitsuo; Kanemitsu, Keiji; Okada, Masahiko; Horikawa, Yoshinori; Shiotani, Joji; Kino, Hiroyoshi; Ono, Yuka; Baba, Hisashi; Matsuo, Shuji; Asari, Seishi; Toyokawa, Masahiro; Matsuoka, Kimiko; Kusano, Nobuchika; Nose, Motoko; Murase, Mitsuharu; Miyamoto, Hitoshi; Saikawa, Tetsunori; Hiramatsu, Kazufumi; Kohno, Shigeru; Yanagihara, Katsunori; Yamane, Nobuhisa; Nakasone, Isamu; Maki, Hideki; Yamano, Yoshinori

    2010-12-01

    The activity of antibacterial agents against aerobic Gram-positive cocci (26 species, 1022 strains) and anaerobic bacteria (23 species, 184 strains) isolated from clinical specimens in 2006 at 16 clinical facilities in Japan were studied using either broth microdilution or agar dilution method. The ratio of methicillin-resistant strains among Staphylococcus aureus and Staphylococcus epidermidis was 53.0% and 65.8%, suggesting that resistant strains were isolated at high frequency. Vancomycin (VCM) and quinupristin/dalfopristin (QPR/DPR) had good antibacterial activity against methicillin-resistant S. aureus and methicillin-resistant S. epidermidis, with MIC90s of < or = 2 micrcog/mL. The ratio of penicillin (PC) intermediate and resistant strains classified by mutations of PC-binding proteins among Streptococcus pneumoniae was 87.6%. Ceftriaxone, cefpirome, cefepime, carbapenem antibiotics, VCM, teicoplanin, linezolid(LZD) and QPR/DPR had MIC90s of < or = 1 microg/mL against PC-intermediate and resistant S. pneumoniae strains. Against all strains of Enterococcus faecalis and Enterococcus faecium, the MICs of VCM and TEIC were under 2 microg/mL, and no resistant strain was detected, suggesting that these agents had excellent activities against these species. 10.9% of E. faecalis strains or 3.5% of E. faecium strains showed intermediate or resistant to LZD. 24.4% of E. faecium strains showed intermediate or resistant to QPR/DPR. Against all strains of Clostridium difficile, the MIC of VCM were under 1 microg/mL, suggesting that VCM had excellent activity against C. difficile. Carbapenems showed good activity against Peptococcaceae, Bacteroides spp., and Prevotella spp. However since several strains of Bacteroides fragilis showed resistant to carbapenems and the susceptibility of this species should be well-focused in the future. PMID:21425596

  3. [Antimicrobial susceptibility of clinical isolates of aerobic gram-positive cocci and anaerobic bacteria in 2008].

    Science.gov (United States)

    Yoshida, Isamu; Yamaguchi, Takahiro; Kudo, Reiko; Fuji, Rieko; Takahashi, Choichiro; Oota, Reiko; Kaku, Mitsuo; Kunishima, Hiroyuki; Okada, Masahiko; Horikawa, Yoshinori; Shiotani, Joji; Kino, Hiroyoshi; Ono, Yuka; Fujita, Shinichi; Matsuo, Shuji; Kono, Hisashi; Asari, Seishi; Toyokawa, Masahiro; Kusano, Nobuchika; Nose, Motoko; Horii, Toshinobu; Tanimoto, Ayako; Miyamoto, Hitoshi; Saikawa, Tetsunori; Hiramatsu, Kazufumi; Kohno, Shigeru; Yanagihara, Katsunori; Yamane, Nobuhisa; Nakasone, Isamu; Maki, Hideki; Yamano, Yoshinori

    2012-02-01

    The activity of antibacterial agents against aerobic Gram-positive cocci (25 genus or species, 1029 strains) and anaerobic bacteria (21 genus or species, 187 strains) isolated from clinical specimens in 2008 at 16 clinical facilities in Japan were studied using either broth microdilution or agar dilution method. The ratio of methicillin-resistant strains among Staphylococcus aureus and Staphylococcus epidermidis was 59.6% and 81.2%, suggesting that resistant strains were isolated at high frequency. Vancomycin (VCM), linezolid (LZD) and quinupristin/dalfopristin (QPR/DPR) had good antibacterial activity against methicillin-resistant S. aureus and methicillin-resistant S. epidermidis, with MIC90s of < or = 2 microg/mL. The ratio of penicillin (PC) intermediate and resistant strains classified by mutations of PC-binding proteins among Streptococcus pneumoniae was 92.0% that was highest among our previous reports. Cefpirome, carbapenems, VCM, teicoplanin (TEIC), LZD and QPR/DPR had MIC90s of < or = 1 microg/mL against PC-intermediate and resistant S. pneumoniae strains. Against all strains of Enterococcus faecalis and Enterococcus faecium, the MICs of VCM and TEIC were under 2 microg/mL, and no resistant strain was detected, suggesting that these agents had excellent activities against these species. 15.9% of E. faecalis strains and 1.2% of E. faecium strains showed intermediate to LZD. 17.1% of E. faecium strains showed intermediate or resistant to QPR/DPR. Against all strains of Clostridium difficile, the MIC of VCM was under 1 microg/mL, suggesting that VCM had excellent activity. Carbapenems showed good activity against Clostridiales, Bacteroides spp., and Prevotella spp., but one strain of Bacteroides fragilis showed resistant to carbapenems. And so, the susceptibility of this species should be well-focused in the future at detecting continuously. PMID:22808693

  4. [First Argentine consensus guidelines for in vitro antimicrobial susceptibility testing of clinically relevant anaerobic bacteria in humans/ Anaerobic Subcommittee of the Asociación Argentina de Microbiología].

    Science.gov (United States)

    Legaria, María C; Bianchini, Hebe M; Castello, Liliana; Carloni, Graciela; Di Martino, Ana; Fernández Canigia, Liliana; Litterio, Mirta; Rollet, Raquel; Rossetti, Adelaida; Predari, Silvia C

    2011-01-01

    Through time, anaerobic bacteria have shown good susceptibility to clinically useful antianaerobic agents. Nevertheless, the antimicrobial resistance profile of most of the anaerobic species related to severe infections in humans has been modified in the last years and different kinds of resistance to the most active agents have emerged, making their effectiveness less predictable. With the aim of finding an answer and for the purpose of facilitating the detection of anaerobic antimicrobial resistance, the Anaerobic Subcommittee of the Asociación Argentina de Microbiología developed the First Argentine consensus guidelines for in vitro antimicrobial susceptibility testing of clinically relevant anaerobic bacteria in humans. This document resulted from the compatibilization of the Clinical and Laboratory Standards Institute recommendations, the international literature and the work and experience of the Subcommittee. The Consensus document provides a brief taxonomy review, and exposes why and when anaerobic antimicrobial susceptibility tests should be conducted, and which antimicrobial agents can be used according to the species involved. The recommendations on how to perform, read and interpret in vitro anaerobic antimicrobial susceptibility tests with each method are exposed. Finally, the antibiotic susceptibility profile, the classification of antibiotics according to their in vitro activities, the natural and acquired mechanisms of resistance, the emerging resistance and the regional antibiotic resistance profile of clinically relevant anaerobic species are shown. PMID:21491069

  5. Exogenous nitrate attenuates nitrite toxicity to anaerobic ammonium oxidizing (anammox) bacteria.

    Science.gov (United States)

    Li, Guangbin; Vilcherrez, David; Carvajal-Arroyo, Jose Maria; Sierra-Alvarez, Reyes; Field, Jim A

    2016-02-01

    Anaerobic ammonium oxidizing bacteria (anammox) can be severely inhibited by one of its main substrates, nitrite (NO2(-)). At present, there is limited information on the processes by which anammox bacteria are able to tolerate toxic NO2(-). Intracellular consumption or electrochemically driven (transmembrane proton motive force) NO2(-) export are considered the main mechanisms of NO2(-) detoxification. In this work, we evaluated the potential of exogenous nitrate (NO3(-)) on relieving NO2(-) toxicity, putatively facilitated by NarK, a NO3(-)/NO2(-) transporter encoded in the anammox genome. The relative contribution of NO3(-) to NO2(-) detoxification was found to be pH dependent. Exposure of anammox cells to NO2(-) in absence of their electron donating substrate, ammonium (NH4(+)), causes NO2(-) stress. At pH 6.7 and 7.0, the activity of NO2(-) stressed cells was respectively 0 and 27% of the non-stressed control activity (NO2(-) and NH4(+) fed simultaneously). Exogenous NO3(-) addition caused the recovery to 42% and 80% of the control activity at pH 6.7 and 7.0, respectively. The recovery of the activity of NO2(-) stressed cells improved with increasing NO3(-) concentration, the maximum recovery being achieved at 0.85 mM. The NO3(-) pre-incubation time is less significant at pH 7.0 than at pH 6.7 due to a more severe NO2(-) toxicity at lower pH. Additionally, NO3(-) caused almost complete attenuation of NO2(-) toxicity in cells exposed to the proton gradient disruptor carbonyl cyanide m-chlorophenyl hydrazone at pH 7.5, providing evidence that the NO3(-) attenuation is independent of the proton motive force. The absence of a measurable NO3(-) consumption (or NO3(-) dependent N2 production) during the batch tests leaves NO3(-) dependent active transport of NO2(-) as the only plausible explanation for the relief of NO2(-) inhibition. We suggest that anammox cells can use a secondary transport system facilitated by exogenous NO3(-) to alleviate NO2(-) toxicity. PMID

  6. Multilaboratory evaluation of an agar diffusion disk susceptibility test for rapidly growing anaerobic bacteria.

    Science.gov (United States)

    Barry, A L; Fuchs, P C; Gerlach, E H; Allen, S D; Acar, J F; Aldridge, K E; Bourgault, A M; Grimm, H; Hall, G S; Heizmann, W

    1990-01-01

    A multilaboratory collaborative study was undertaken to determine whether the anaerobic disk diffusion test of Horn et al. could be performed reproducibly and accurately. Tests with nine different antimicrobial disks were evaluated. Reproducibility of the agar diffusion disk method was similar to that of the reference agar dilution test procedure. The anaerobic disk diffusion procedure was found to be a potentially useful method for testing some antimicrobial agents against rapidly growing anaerobes belonging to the Bacteroides fragilis group. These promising results warrant further investigations and validations. PMID:2406872

  7. Degradation Action of the Anaerobic Bacteria and Oxygen to the Polymer

    Institute of Scientific and Technical Information of China (English)

    LU Xiang-Guo; ZHANG Ke

    2008-01-01

    Oxygen could prohibit anaerobic bacterium in the produced water and degrade the polymer molecular chains.Aiming at problems making up aerobic polymer solution by the produced water in Daqing Oil Field, some evaluations were done on the viscosity characteristics of polymer solution and bactericide in anaerobic and aerobic environments. Reasonable aerobic concentration of the produced water was obtained. The experimental results indicate that the viscosity of polymer solution confected by the produced water in the aerobic environment is higher than that of the polymer solution confected by the produced water in the anaerobic environment, and the reasonable ments, but the sterilization effect is better in the aerobic environment.

  8. Monitoring Methanotrophic Bacteria in Hybrid Anaerobic-Aerobic Reactors with PCR and a Catabolic Gene Probe

    OpenAIRE

    Miguez, Carlos B; Shen, Chun F; Bourque, Denis; Guiot, Serge R; Groleau, Denis

    1999-01-01

    We attempted to mimic in small upflow anaerobic sludge bed (UASB) bioreactors the metabolic association found in nature between methanogens and methanotrophs. UASB bioreactors were inoculated with pure cultures of methanotrophs, and the bioreactors were operated by using continuous low-level oxygenation in order to favor growth and/or survival of methanotrophs. Unlike the reactors in other similar studies, the hybrid anaerobic-aerobic bioreactors which we used were operated synchronously, not...

  9. Diversity and enrichment of nitrite-dependent anaerobic methane oxidizing bacteria from wastewater sludge

    OpenAIRE

    Luesken, Francisca A.; van Alen, Theo A.; van der Biezen, Erwin; Frijters, Carla; Toonen, Ger; Kampman, Christel; Hendrickx, Tim L. G.; Zeeman, Grietje; Temmink, Hardy; Strous, Marc; Op den Camp, Huub J. M.; Jetten, Mike S. M.

    2011-01-01

    Recently discovered microorganisms affiliated to the bacterial phylum NC10, named “Candidatus Methylomirabilis oxyfera”, perform nitrite-dependent anaerobic methane oxidation. These microorganisms could be important players in a novel way of anaerobic wastewater treatment where ammonium and residual dissolved methane might be removed at the expense of nitrate or nitrite. To find suitable inocula for reactor startup, ten selected wastewater treatment plants (WWTPs) located in The Netherlands w...

  10. Effect of adaptation and pulp density on bioleaching of mine waste using indigenous acidophilic bacteria

    Science.gov (United States)

    Cho, K.; Kim, B.; Lee, D.; Choi, N.; Park, C.

    2011-12-01

    Adaptation to environment is a natural phenomena that takes place in many animals, plants and microorganisms. These adapted organisms achieve stronger applicability than unadapted organisms after habitation in a specific environment for a long time. In the biohydrometallurgical industry, adaptation to special environment conditions by selective culturing is the most popular method for improving bioleaching activity of strains-although that is time consuming. This study investigated the influence of the bioleaching efficiency of mine waste under batch experimental conditions (adaptation and pulp density) using the indigenous acidophilic bacteria collected from acid mine drainage in Go-seong and Yeon-hwa, Korea. We conducted the batch experiments at the influences of parameters, such as the adaptation of bacteria and pulp density of the mine waste. In the adaptation case, the value of pH in 1'st adaptation bacteria sample exhibited lower than in 2'nd adaptation bacteria sample. And the content of both Cu and Zn at 1'st adaptation bacteria sample appeared lower than at 2'nd adaptation bacteria sample. In the SEM analysis, the rod-shaped bacteria with 1μm in length were observed on the filter paper (pore size - 0.45μm). The results of pulp density experiments revealed that the content of both Cu and Zn increased with increasing pulp density, since the increment of pulp density resulted in the enhancement of bioleaching capacity.

  11. The antimicrobial action of low molecular weight chitosan and chitooligosaccharides on growth of anaerobic bacteria isolated from human feces

    Czech Academy of Sciences Publication Activity Database

    Šimůnek, Jiří; Koppová, Ingrid; Tishchenko, Galina

    Aberdeen : Rowett Institute-INRA, 2010. s. 103-103. [7th joint symposium of Rowett-INRA:Gut Microbiology: new insight into gut microbial ecosystems. 23.06.2010-25.06.2010, Aberdeen] R&D Projects: GA ČR(CZ) GA525/08/0803 Institutional research plan: CEZ:AV0Z50450515; CEZ:AV0Z40500505 Keywords : chitosan * anaerobic bacteria * human faces Subject RIV: EB - Genetics ; Molecular Biology http://www.rowett.ac.uk/Rowett-INRA2010/scientific-prog.html

  12. Adaptation and tolerance of bacteria against acetic acid.

    Science.gov (United States)

    Trček, Janja; Mira, Nuno Pereira; Jarboe, Laura R

    2015-08-01

    Acetic acid is a weak organic acid exerting a toxic effect to most microorganisms at concentrations as low as 0.5 wt%. This toxic effect results mostly from acetic acid dissociation inside microbial cells, causing a decrease of intracellular pH and metabolic disturbance by the anion, among other deleterious effects. These microbial inhibition mechanisms enable acetic acid to be used as a preservative, although its usefulness is limited by the emergence of highly tolerant spoilage strains. Several biotechnological processes are also inhibited by the accumulation of acetic acid in the growth medium including production of bioethanol from lignocellulosics, wine making, and microbe-based production of acetic acid itself. To design better preservation strategies based on acetic acid and to improve the robustness of industrial biotechnological processes limited by this acid's toxicity, it is essential to deepen the understanding of the underlying toxicity mechanisms. In this sense, adaptive responses that improve tolerance to acetic acid have been well studied in Escherichia coli and Saccharomyces cerevisiae. Strains highly tolerant to acetic acid, either isolated from natural environments or specifically engineered for this effect, represent a unique reservoir of information that could increase our understanding of acetic acid tolerance and contribute to the design of additional tolerance mechanisms. In this article, the mechanisms underlying the acetic acid tolerance exhibited by several bacterial strains are reviewed, with emphasis on the knowledge gathered in acetic acid bacteria and E. coli. A comparison of how these bacterial adaptive responses to acetic acid stress fit to those described in the yeast Saccharomyces cerevisiae is also performed. A systematic comparison of the similarities and dissimilarities of the ways by which different microbial systems surpass the deleterious effects of acetic acid toxicity has not been performed so far, although such exchange

  13. Adaptive resistance to antibiotics in bacteria: a systems biology perspective.

    Science.gov (United States)

    Sandoval-Motta, Santiago; Aldana, Maximino

    2016-05-01

    Despite all the major breakthroughs in antibiotic development and treatment procedures, there is still no long-term solution to the bacterial antibiotic resistance problem. Among all the known types of resistance, adaptive resistance (AdR) is particularly inconvenient. This phenotype is known to emerge as a consequence of concentration gradients, as well as contact with subinhibitory concentrations of antibiotics, both known to occur in human patients and livestock. Moreover, AdR has been repeatedly correlated with the appearance of multidrug resistance, although the biological processes behind its emergence and evolution are not well understood. Epigenetic inheritance, population structure and heterogeneity, high mutation rates, gene amplification, efflux pumps, and biofilm formation have all been reported as possible explanations for its development. Nonetheless, these concepts taken independently have not been sufficient to prevent AdR's fast emergence or to predict its low stability. New strains of resistant pathogens continue to appear, and none of the new approaches used to kill them (mixed antibiotics, sequential treatments, and efflux inhibitors) are completely efficient. With the advent of systems biology and its toolsets, integrative models that combine experimentally known features with computational simulations have significantly improved our understanding of the emergence and evolution of the adaptive-resistant phenotype. Apart from outlining these findings, we propose that one of the main cornerstones of AdR in bacteria, is the conjunction of two types of mechanisms: one rapidly responding to transient environmental challenges but not very efficient, and another much more effective and specific, but developing on longer time scales. WIREs Syst Biol Med 2016, 8:253-267. doi: 10.1002/wsbm.1335 For further resources related to this article, please visit the WIREs website. PMID:27103502

  14. Reduction and Immobilization of Radionuclides and Toxic Metal Ions Using Combined Zero Valent Iron and Anaerobic Bacteria

    International Nuclear Information System (INIS)

    The use of zero valent iron, permeable reactive barriers (PRBs) for groundwater remediation continues to increase. AN exciting variation of this technology involves introducing anaerobic bacteria into these barriers so that both biological and abiotic pollutant removal processes are functional. This work evaluated the hypothesis that a system combining a mixed culture of sulfate reducing bacteria (SRB) with zero valent iron would have a greater cr(VI) removal efficiency and a greater total Cr(VI) removal capacity than a zero valent iron system without the microorganisms. Hence, the overall goal of this research was to compare the performance of these types of systems with regard to their Cr(VI) removal efficiency and total Cr(VI) removal capacity. Both batch and continuous flow reactor systems were evaluated

  15. Reduction and Immobilization of Radionuclides and Toxic Metal Ions Using Combined Zero Valent Iron and Anaerobic Bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Lenly J. Weathers; Lynn E. Katz

    2002-05-29

    The use of zero valent iron, permeable reactive barriers (PRBs) for groundwater remediation continues to increase. AN exciting variation of this technology involves introducing anaerobic bacteria into these barriers so that both biological and abiotic pollutant removal processes are functional. This work evaluated the hypothesis that a system combining a mixed culture of sulfate reducing bacteria (SRB) with zero valent iron would have a greater cr(VI) removal efficiency and a greater total Cr(VI) removal capacity than a zero valent iron system without the microorganisms. Hence, the overall goal of this research was to compare the performance of these types of systems with regard to their Cr(VI) removal efficiency and total Cr(VI) removal capacity. Both batch and continuous flow reactor systems were evaluated.

  16. Isolation and identification of bacteria responsible for simultaneous anaerobic ammonium and sulfate removal

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Sulfate-dependent anaerobic ammonium oxidation is a novel biological reaction,in which ammonium is oxidized with sulfate as the electron acceptor under anoxic conditions.Ammonium and sulfate are cosmopolitan chemical species which are an integral part of the global nitrogen and sulfur cycles.A detailed exploration of sulfate-dependent anaerobic ammonium oxidation is quite practical.In this work,a bacterial strain named ASR has been isolated from an anaerobic ammonia and sulfate removing reactor working under steady-state.On the basis of electron microscopy,physiological tests and 16S rDNA phylogenetic sequence analysis,the strain ASR is found to be related to Bacillus benzoevorans.According to the biological carbon source utilization test,the strain ASR could use many carbon sources.Its optimum pH value and temperature were 8.5 and 30 °C,respectively.The test proves that the strain ASR is able to use sulfate to oxidize ammonia anaerobically.The maximum ammonia and sulfate removal rates were 44.4% and 40.0%,respectively.The present study provided biological evidence for the confirmation and development of sulfate-dependent anaerobic ammonium oxidation and brought new insights into the global nitrogen and sulfur cycles.

  17. Anaerobic Decomposition of Switchgrass by Tropical Soil-Derived Feedstock-Adapted Consortia

    OpenAIRE

    DeAngelis, Kristen M.; Fortney, Julian L.; Borglin, Sharon; Silver, Whendee L.; Simmons, Blake A.; Hazen, Terry C.

    2012-01-01

    ABSTRACT Tropical forest soils decompose litter rapidly with frequent episodes of anoxic conditions, making it likely that bacteria using alternate terminal electron acceptors (TEAs) play a large role in decomposition. This makes these soils useful templates for improving biofuel production. To investigate how TEAs affect decomposition, we cultivated feedstock-adapted consortia (FACs) derived from two tropical forest soils collected from the ends of a rainfall gradient: organic matter-rich tr...

  18. Metagenomes of tropical soil-derived anaerobic switchgrass-adapted consortia with and without iron

    OpenAIRE

    DeAngelis, Kristen M.; D’Haeseleer, Patrik; Chivian, Dylan; Simmons, Blake; Arkin, Adam P.; Mavromatis, Konstantinos; Malfatti, Stephanie; Tringe, Susannah; Hazen, Terry C.

    2013-01-01

    Tropical forest soils decompose litter rapidly with frequent episodes of anoxia, making it likely that bacteria using alternate terminal electron acceptors (TEAs) such as iron play a large role in supporting decomposition under these conditions. The prevalence of many types of metabolism in litter deconstruction makes these soils useful templates for improving biofuel production. To investigate how iron availability affects decomposition, we cultivated feedstock-adapted consortia (FACs) deriv...

  19. Anaerobic nitrite-dependent methane-oxidizing bacteria - novel participants in methane cycling of drained peatlands ecosystems

    Science.gov (United States)

    Kravchenko, Irina; Sukhacheva, Marina; Menko, Ekaterina; Sirin, Andrey

    2014-05-01

    Northern peatlands are one of the key sources of atmospheric methane. Process-based studies of methane dynamic are based on the hypothesis of the balance between microbial methane production and oxidation, but this doesn't explain all variations in and constraints on peatland CH4 emissions. One of the reasons for this discrepancy could be anaerobic methane oxidation (AOM) - the process which is still poorly studied and remained controversial. Very little is known about AOM in peatlands, where it could work as an important 'internal' sink for CH4. This lack of knowledge primarily originated from researchers who generally consider AOM quantitatively insignificant or even non-existent in northern peatland ecosystems. But not far ago, Smemo and Yavitt (2007) presented evidence for AOM in freshwater peatlands used indirect techniques including isotope dilution assays and selective methanogenic inhibitors. Nitrite-dependent anaerobic methane oxidation NC10 group bacteria (n-damo) were detected in a minerotrophic peatland in the Netherlands that is infiltrated by nitrate-rich ground water (Zhu et al., 2012). Present study represents the first, to our knowledge, characterization of AOM in human disturbed peatlands, including hydrological elements of artificial drainage network. The experiments were conducted with samples of peat from drained peatlands, as well as of water and bottom sediments of ditches from drained Dubnensky mire massif, Moscow region (Chistotin et al., 2006; Sirin et al., 2012). This is the key testing area of our research group in European part of Russia for the long-term greenhouse gases fluxes measurements supported by testing physicochemical parameters, intensity and genomic diversity of CH4-cycling microbial communities. Only in sediments of drainage ditches the transition anaerobic zone was found, where methane and nitrate occurred, suggested the possible ecological niche for n-damo bacteria. The NC10 group methanotrophs were analyzed by PCR

  20. Immobilization of anaerobic thermophilic bacteria for the production of cell-free thermostable. alpha. -amylases and pullulanases

    Energy Technology Data Exchange (ETDEWEB)

    Klingeberg, M. (Goettingen Univ. (Germany, F.R.). Inst. fuer Mikrobiologie); Vorlop, K.D. (Technische Univ. Braunschweig (Germany, F.R.). Inst. fuer Technische Chemie); Antranikian, G. (Technische Univ. Hamburg-Harburg, Hamburg (Germany, F. R.). Arbeitsbereich Biotechnologie 1)

    1990-08-01

    For the production of cell-free thermostable {alpha}-amylases and pullulanases various anaerobic thermophilic bacteria that belong to the genera Clostridium and Thermoanaerobacter were immobilized in calcium alginate gel beads. The entrapment of bacteria was performed in full was well as in hollow spheres. An optimal limited medium, which avoided bacterial outgrowth, was developed for the cultivation of immobilized organisms at 60deg C using 0.4% starch as substrate. Compared to non-immobilized cells these techniques allowed a significant increase (up to 5.6-fold) in the specific activities of the extracellular enzymes formed. An increase in the productivity of extracellular enzymes was observed after immobilization of bacteria in full spheres. In the case of C. thermosaccharolyticum, for instance, the productivity was raised from 90 units (U)/10{sup 12} cells up to 700 U/10{sup 12} cells. Electrophoretic analysis of the secreted proteins showed that in all cases most of the amylolytic enzymes formed were released into the culture medium. Proteins that had a molecular mass of less than 450 000 daltons could easily diffuse through the gel matrix. Cultivation of immobilized bacteria in semi-continuous and fed-batch cultures was also accompanied by an elevation in the concentration of cell-free enzymes. (orig.).

  1. A genomic view of methane oxidation by aerobic bacteria and anaerobic archaea

    OpenAIRE

    Chistoserdova, Ludmila; Vorholt, Julia A.; Lidstrom, Mary E.

    2005-01-01

    Recent sequencing of the genome and proteomic analysis of a model aerobic methanotrophic bacterium, Methylococcus capsulatus (Bath) has revealed a highly versatile metabolic potential. In parallel, environmental genomics has provided glimpses into anaerobic methane oxidation by certain archaea, further supporting the hypothesis of reverse methanogenesis.

  2. [Sensitivity of clinical strains of facultatively anaerobic bacteria to antimicrobial drugs].

    Science.gov (United States)

    Bazhenov, L G; Iskhakova, Kh I

    1988-02-01

    Six hundred and sixty five samples of clinical materials from patients with various pyoinflammatory diseases were tested for obligatory anaerobes. Anaerobes were detected in 148 samples which amounted to 22.3 per cent of the total number of the samples and to 33.2 per cent of the samples with microbial growth. A total of 171 strains of obligatory anaerobes were isolated. Among them 58.5, 24.5, 16.4 and 0.6 per cent were nonsporulating gramnegative bacilli, grampositive cocci, grampositive bacilli and gramnegative cocci respectively. Sensitivity of the isolated anaerobes was tested with the disk diffusion method. The most active drugs against the tested strains were: nitroxoline, rifampicin, metronidasole, erythromycin, carbenicillin and cefotaxim (4.2, 4.5, 9.3, 10.6, 11.5 and 11.7 per cent of the resistant strains respectively). Gentamicin, polymyxin M, novobiocin and cefazoline were the least active drugs (94.6, 78.9, 65.4 and 50.0 per cent of the resistant strains respectively). Metronidasole, levomycetin, nitroxolin, rifampicin and furazolidone showed the highest activity against bacteroids of the fragilis group (0, 0, 0, 8 and 12.5 per cent of the resistant strains respectively) while gentamicin, polymyxin M, cefazolin, oxacillin, novobiocin and penicillin showed the lowest activity (100, 100, 100, 100, 87.0 and 66.7 per cent of the resistant strains respectively). PMID:3377601

  3. Inhibition of Salmonella Typhimurium by Anaerobic Cecal Bacteria in Media Supplemented with Lactate and Succinate

    Science.gov (United States)

    The ability of anaerobic cecal microflora of broilers to inhibit growth of Salmonella Typhimurium in media supplemented with lactate and succinate was examined. Cecal cultures were prepared by collecting ceca of processed broilers from a commercial processing facility, inoculating broth media with 1...

  4. Species identification of clinical isolates of anaerobic bacteria: a comparison of two matrix-assisted laser desorption ionization-time of flight mass spectrometry systems

    DEFF Research Database (Denmark)

    Justesen, Ulrik Stenz; Holm, Anette; Knudsen, Elisa;

    2011-01-01

    We compared two matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) systems (Shimadzu/SARAMIS and Bruker) on a collection of consecutive clinically important anaerobic bacteria (n = 290). The Bruker system had more correct identifications to the species level...... (67.2% versus 49.0%), but also more incorrect identifications (7.9% versus 1.4%). The system databases need to be optimized to increase identification levels. However, MALDI-TOF MS in its present version seems to be a fast and inexpensive method for identification of most clinically important...... anaerobic bacteria....

  5. Changes in the size and composition of intracellular pools of nonesterified coenzyme A and coenzyme A thioesters in aerobic and facultatively anaerobic bacteria.

    OpenAIRE

    Chohnan, S; FURUKAWA, H.; Fujio, T; Nishihara, H.; Takamura, Y

    1997-01-01

    Intracellular levels of three coenzyme A (CoA) molecular species, i.e., nonesterified CoA (CoASH), acetyl-CoA, and malonyl-CoA, in a variety of aerobic and facultatively anaerobic bacteria were analyzed by the acyl-CoA cycling method developed by us. It was demonstrated that there was an intrinsic difference between aerobes and facultative anaerobes in the changes in the size and composition of CoA pools. The CoA pools in the aerobic bacteria hardly changed and were significantly smaller than...

  6. Detection, phylogeny and population dynamics of syntrophic propionate-oxidizing bacteria in anaerobic granular sludge.

    OpenAIRE

    Harmsen, H. J. M.

    1996-01-01

    The research described this thesis concerns the diversity and phylogeny of syntrophic propionate-oxidizing bacteria and their ecology in granular sludge, from which they were obtained. 16S rRNA was used as a molecular marker to study both the phylogeny and the ecology of these bacteria. Sequence analysis of the 16S rRNA gave information on the phylogeny of the syntrophic bacteria, while specific oligonucleotide probes based on these sequences enabled quantification and detection of these bact...

  7. Exploring Anaerobic Bacteria for Industrial Biotechnology - Diversity Studies, Screening and Biorefinery Applications

    OpenAIRE

    Aragão Börner, Rosa

    2013-01-01

    Depletion of easily accessible fossil energy resources, threat of climate change and political priority to achieve energy self-sufficiency and sustainable solutions prioritize a conscious and smart use of renewable resources to generate a bio-based economy. Bio-based compounds can replace chemicals and fuels that are now mainly produced from crude oil. Efficient processes for the conversion of plant biomass into compounds of interest to the biorefinery industry occur naturally in anaerobic en...

  8. Isolation of aerobic and anaerobic bacteria from suspected enterotoxaemia cases in lambs

    OpenAIRE

    N. S. Mechael

    2012-01-01

    Ninety cases of clinically diagnosed enterotoxemia infection in lambs at AL-Hamdaniya region where studied for isolation of aerobic and anaerobic bacterial causes, faecal samples were collected from all suspected cases during January- June 2008, the results show that 41.6% of the isolates were Cl. perfringens as pure single isolates, while mixed infection of Cl. perfringens with each of Enterococci and staphylococcus in percentage of 26.04%, 20.83% respectively, also mixed infection of Cl. se...

  9. Pretreatment of wheat straw and conversion of xylose and xylan to ethanol by thermophilic anaerobic bacteria

    DEFF Research Database (Denmark)

    Ahring, Birgitte Kiær; Jensen, K.; Nielsen, P.;

    1996-01-01

    Wheat straw was pretreated by wet oxidation (oxygen pressure, alkaline conditions, elevated temperature) or hydrothermal processing (without oxygen) in order to solubilize the hemicellulose, facilitating bio-conversion. The effect of oxygen pressure and sodium carbonate addition on hemicellulose...... solubilization was investigated. The two process parameters had little effect on the solubilization of hemicellulose. However alkaline conditions affected the furfural formation whereas oxygen had no effect. After pretreatment, the filtrate was used as a fermentation medium for thermophilic anaerobic bacterin...

  10. Bioaugmentation of anaerobic sludge digestion with iron-reducing bacteria: process and microbial responses to variations in hydraulic retention time.

    Science.gov (United States)

    Baek, Gahyun; Kim, Jaai; Shin, Seung Gu; Lee, Changsoo

    2016-01-01

    Although anaerobic digestion (AD) is a widely used option to manage waste activated sludge (WAS), there are some drawbacks related to its slow reaction rate and low energy productivity. This study examined an anaerobic WAS digester, augmented with an iron-reducing microbial consortium, relative to changes in microbial community structure and process performance at decreasing hydraulic retention times (HRTs) of 20 to 10 days. The enhanced methanation performance (approximately 40 % increase in methane yield) by the bioaugmentation was sustained until the HRT was decreased to 12.5 days, under Fe(3+)-rich conditions (ferric oxyhydroxide, 20 mM Fe). Enhanced iron-reducing activity was evidenced by the increased Fe(2+) to total Fe ratio maintained above 50 % during the stable operational phases. A further decrease in HRT to 10 days resulted in a significant performance deterioration, along with a drop in the Fe(2+) to total Fe ratio to <35 %, after four turnovers of operation. Prevailing existence of putative iron-reducing bacteria (IRBs) was identified by denaturing gradient gel electrophoresis (DGGE), with Spirochaetaceae- and Thauera-related organisms being dominant members, and clear dominance shifts among them with respect to decrease in HRT were observed. Lowering HRT led to evident shifts in bacterial community structure likely associated with washout of IRBs, leading to decreases in iron respiration activity and AD performance at a lower HRT. The bacterial community structure shifted dynamically over phases, and the community transitions correlated well with the changes in process performance. Overall, the combined biostimulation and bioaugmentation investigated in this study proved effective for enhanced methane recovery from anaerobic WAS digestion, which suggests an interesting potential for high-rate AD. PMID:26428233

  11. Synthesis and Antimicrobial Evaluation of Amixicile-Based Inhibitors of the Pyruvate-Ferredoxin Oxidoreductases of Anaerobic Bacteria and Epsilonproteobacteria.

    Science.gov (United States)

    Kennedy, Andrew J; Bruce, Alexandra M; Gineste, Catherine; Ballard, T Eric; Olekhnovich, Igor N; Macdonald, Timothy L; Hoffman, Paul S

    2016-07-01

    Amixicile is a promising derivative of nitazoxanide (an antiparasitic therapeutic) developed to treat systemic infections caused by anaerobic bacteria, anaerobic parasites, and members of the Epsilonproteobacteria (Campylobacter and Helicobacter). Amixicile selectively inhibits pyruvate-ferredoxin oxidoreductase (PFOR) and related enzymes by inhibiting the function of the vitamin B1 cofactor (thiamine pyrophosphate) by a novel mechanism. Here, we interrogate the amixicile scaffold, guided by docking simulations, direct PFOR inhibition assays, and MIC tests against Clostridium difficile, Campylobacter jejuni, and Helicobacter pylori Docking simulations revealed that the nitro group present in nitazoxanide interacts with the protonated N4'-aminopyrimidine of thiamine pyrophosphate (TPP). The ortho-propylamine on the benzene ring formed an electrostatic interaction with an aspartic acid moiety (B456) of PFOR that correlated with improved PFOR-inhibitory activity and potency by MIC tests. Aryl substitution with electron-withdrawing groups and substitutions of the propylamine with other alkyl amines or nitrogen-containing heterocycles both improved PFOR inhibition and, in many cases, biological activity against C. difficile Docking simulation results correlate well with mechanistic enzymology and nuclear magnetic resonance (NMR) studies that show members of this class of antimicrobials to be specific inhibitors of vitamin B1 function by proton abstraction, which is both novel and likely to limit mutation-based drug resistance. PMID:27090174

  12. Organic carbon recovery and photosynthetic bacteria population in an anaerobic membrane photo-bioreactor treating food processing wastewater.

    Science.gov (United States)

    Chitapornpan, S; Chiemchaisri, C; Chiemchaisri, W; Honda, R; Yamamoto, K

    2013-08-01

    Purple non-sulfur bacteria (PNSB) were cultivated by food industry wastewater in the anaerobic membrane photo-bioreactor. Organic removal and biomass production and characteristics were accomplished via an explicit examination of the long term performance of the photo-bioreactor fed with real wastewater. With the support of infra-red light transmitting filter, PNSB could survive and maintain in the system even under the continual fluctuations of influent wastewater characteristics. The average BOD and COD removal efficiencies were found at the moderate range of 51% and 58%, respectively. Observed photosynthetic biomass yield was 0.6g dried solid/g BOD with crude protein content of 0.41 g/g dried solid. Denaturing gradient gel electrophoretic analysis (DGGE) and 16S rDNA sequencing revealed the presence of Rhodopseudomonas palustris and significant changes in the photosynthetic bacterial community within the system. PMID:23489563

  13. Fate of antibiotic resistance bacteria and genes during enhanced anaerobic digestion of sewage sludge by microwave pretreatment.

    Science.gov (United States)

    Tong, Juan; Liu, Jibao; Zheng, Xiang; Zhang, Junya; Ni, Xiaotang; Chen, Meixue; Wei, Yuansong

    2016-10-01

    The fate of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) were investigated during the sludge anaerobic digestion (AD) with microwave-acid (MW-H), microwave (MW) and microwave-H2O2-alkaline (MW-H2O2) pretreatments. Results showed that combined MW pretreatment especially for the MW-H pretreatment could efficiently reduce the ARB concentration, and most ARG concentrations tended to attenuate during the pretreatment. The subsequent AD showed evident removal of the ARB, but most ARGs were enriched after AD. Only the concentration of tetX kept continuous declination during the whole sludge treatment. The total ARGs concentration showed significant correlation with 16S rRNA during the pretreatment and AD. Compared with unpretreated sludge, the AD of MW and MW-H2O2 pretreated sludge presented slightly better ARB and ARGs reduction efficiency. PMID:26970692

  14. Bacteria are different: Observations, interpretations, speculations, and opinions about the mechanisms of adaptive evolution in prokaryotes

    OpenAIRE

    Levin, Bruce R.; Bergstrom, Carl T.

    2000-01-01

    To some extent, the genetic theory of adaptive evolution in bacteria is a simple extension of that developed for sexually reproducing eukaryotes. In other, fundamental ways, the process of adaptive evolution in bacteria is quantitatively and qualitatively different from that of organisms for which recombination is an integral part of the reproduction process. In this speculative and opinionated discussion, we explore these differences. In particular, we consider (i...

  15. In Vitro Activities of Cefminox against Anaerobic Bacteria Compared with Those of Nine Other Compounds

    OpenAIRE

    Hoellman, Dianne B.; Spangler, Sheila K.; Jacobs, Michael R.; Appelbaum, Peter C.

    1998-01-01

    The agar dilution MIC method was used to test the activity of cefminox, a β-lactamase-stable cephamycin, compared with those of cefoxitin, cefotetan, moxalactam, ceftizoxime, cefotiam, cefamandole, cefoperazone, clindamycin, and metronidazole against 357 anaerobes. Overall, cefminox was the most active β-lactam, with an MIC at which 50% of isolates are inhibited (MIC50) of 1.0 μg/ml and an MIC90 of 16.0 μg/ml. Other β-lactams were less active, with respective MIC50s and MIC90s of 2.0 and 64.0...

  16. Effect of the growth of anaerobic bacteria on the surface pH of solid media.

    OpenAIRE

    Watt, B; Brown, F V

    1985-01-01

    Changes in surface pH occurring after varying periods of anaerobic incubation were measured for a total of 23 test solid media. There was little change in the surface pH of uninoculated plates, but plates inoculated with Bacteriodes fragilis showed a striking fall in pH, to pH 5 in the case of some of the test media. The problems of controlling the surface pH of solid media are discussed and possible methods of control are considered.

  17. Microbiological studies of an anaerobic baffled reactor: microbial community characterisation and deactivation of health-related indicator bacteria.

    Science.gov (United States)

    Lalbahadur, T; Pillay, S; Rodda, N; Smith, M; Buckley, C; Holder, F; Bux, F; Foxon, K

    2005-01-01

    This WRC funded project has studied the appropriateness of the ABR (anaerobic baffled reactor) for on-site primary sanitation in low-income communities. A 3,000 L pilot reactor was located at the Kingsburgh wastewater treatment plant south of Durban, South Africa. Feed to the reactor was raw domestic wastewater containing a significant proportion of particulate organic matter. The compartments of the ABR were routinely monitored for pH, COD, and gas production, among other physical-chemical determinants. The microbial population in each compartment was analysed by fluorescent in situ hybridisation, using general oligonucleotide probes for eubacteria and archeae and a suite of 10 genera or family specific probes. Scanning electron microscopy was conducted on the sludge fraction of each compartment. Mixed fractions from each compartment were also analysed for health-related indicator bacteria (total coliforms and E. coli). Results indicated that methanogenesis was not occurring to the expected extent in the latter compartments, and that this was probably due to a hydraulic load limitation. This contrasted with earlier studies on industrial effluent, for which the organic load was exclusively in soluble form. Inactivation of health-related indicator bacteria was less than 1 log, indicating the need for an additional post-treatment of the effluent to protect community health. PMID:16104417

  18. Nitrate-dependent anaerobic ferrous oxidation (NAFO) by denitrifying bacteria: a perspective autotrophic nitrogen pollution control technology.

    Science.gov (United States)

    Zhang, Meng; Zheng, Ping; Wang, Ru; Li, Wei; Lu, Huifeng; Zhang, Jiqiang

    2014-12-01

    The nitrate-dependent anaerobic ferrous oxidation (NAFO) is an important discovery in the fields of microbiology and geology, which is a valuable biological reaction since it can convert nitrate into nitrogen gas, removing nitrogen from wastewater. The research on NAFO can promote the development of novel autotrophic biotechnologies for nitrogen pollution control and get a deep insight into the biogeochemical cycles. In this work, batch experiments were conducted with denitrifying bacteria as biocatalyst to investigate the performance of nitrogen removal by NAFO. The results showed that the denitrifying bacteria were capable of chemolithotrophic denitrification with ferrous salt as electron donor, namely NAFO. And the maximum nitrate conversion rates (qmax) reached 57.89 mg (g VSS d)−1, which was the rate-limiting step in NAFO. Fe/N ratio, temperature and initial pH had significant influences on nitrogen removal by NAFO process, and their optimal values were 2.0 °C, 30.15 °C and 8.0 °C, respectively. PMID:25461924

  19. Mono- and dialkyl glycerol ether lipids in anaerobic bacteria: biosynthetic insights from the mesophilic sulfate reducer Desulfatibacillum alkenivorans PF2803T.

    Science.gov (United States)

    Grossi, Vincent; Mollex, Damien; Vinçon-Laugier, Arnauld; Hakil, Florence; Pacton, Muriel; Cravo-Laureau, Cristiana

    2015-05-01

    Bacterial glycerol ether lipids (alkylglycerols) have received increasing attention during the last decades, notably due to their potential role in cell resistance or adaptation to adverse environmental conditions. Major uncertainties remain, however, regarding the origin, biosynthesis, and modes of formation of these uncommon bacterial lipids. We report here the preponderance of monoalkyl- and dialkylglycerols (1-O-alkyl-, 2-O-alkyl-, and 1,2-O-dialkylglycerols) among the hydrolyzed lipids of the marine mesophilic sulfate-reducing proteobacterium Desulfatibacillum alkenivorans PF2803T grown on n-alkenes (pentadec-1-ene or hexadec-1-ene) as the sole carbon and energy source. Alkylglycerols account for one-third to two-thirds of the total cellular lipids (alkylglycerols plus acylglycerols), depending on the growth substrate, with dialkylglycerols contributing to one-fifth to two-fifths of the total ether lipids. The carbon chain distribution of the lipids of D. alkenivorans also depends on that of the substrate, but the chain length and methyl-branching patterns of fatty acids and monoalkyl- and dialkylglycerols are systematically congruent, supporting the idea of a biosynthetic link between the three classes of compounds. Vinyl ethers (1-alken-1'-yl-glycerols, known as plasmalogens) are not detected among the lipids of strain PF2803T. Cultures grown on different (per)deuterated n-alkene, n-alkanol, and n-fatty acid substrates further demonstrate that saturated alkylglycerols are not formed via the reduction of hypothetic alken-1'-yl intermediates. Our results support an unprecedented biosynthetic pathway to monoalkyl/monoacyl- and dialkylglycerols in anaerobic bacteria and suggest that n-alkyl compounds present in the environment can serve as the substrates for supplying the building blocks of ether phospholipids of heterotrophic bacteria. PMID:25724965

  20. Survival of Antibiotic Resistant Bacteria and Horizontal Gene Transfer Control Antibiotic Resistance Gene Content in Anaerobic Digesters

    Science.gov (United States)

    Miller, Jennifer H.; Novak, John T.; Knocke, William R.; Pruden, Amy

    2016-01-01

    Understanding fate of antibiotic resistant bacteria (ARB) vs. their antibiotic resistance genes (ARGs) during wastewater sludge treatment is critical in order to reduce the spread of antibiotic resistance through process optimization. Here, we spiked high concentrations of tetracycline-resistant bacteria, isolated from mesophilic (Iso M1-1—a Pseudomonas sp.) and thermophilic (Iso T10—a Bacillus sp.) anaerobic digested sludge, into batch digesters and monitored their fate by plate counts and quantitative polymerase chain reaction (QPCR) of their corresponding tetracycline ARGs. In batch studies, spiked ARB plate counts returned to baseline (thermophilic) or 1-log above baseline (mesophilic) while levels of the ARG present in the spiked isolate [tet(G)] remained high in mesophilic batch reactors. To compare results under semi-continuous flow conditions with natural influent variation, tet(O), tet(W), and sul1 ARGs, along with the intI1 integrase gene, were monitored over a 9-month period in the raw feed sludge and effluent sludge of lab-scale thermophilic and mesophilic anaerobic digesters. sul1 and intI1 in mesophilic and thermophilic digesters correlated positively (Spearman rho = 0.457–0.829, P < 0.05) with the raw feed sludge. There was no correlation in tet(O) or tet(W) ratios in raw sludge and mesophilic digested sludge or thermophilic digested sludge (Spearman rho = 0.130–0.486, P = 0.075–0.612). However, in the thermophilic digester, the tet(O) and tet(W) ratios remained consistently low over the entire monitoring period. We conclude that the influent sludge microbial composition can influence the ARG content of a digester, apparently as a result of differential survival or death of ARBs or horizontal gene transfer of genes between raw sludge ARBs and the digester microbial community. Notably, mesophilic digestion was more susceptible to ARG intrusion than thermophilic digestion, which may be attributed to a higher rate of ARB survival and

  1. Survival of Antibiotic Resistant Bacteria and Horizontal Gene Transfer Control Antibiotic Resistance Gene Content in Anaerobic Digesters.

    Science.gov (United States)

    Miller, Jennifer H; Novak, John T; Knocke, William R; Pruden, Amy

    2016-01-01

    Understanding fate of antibiotic resistant bacteria (ARB) vs. their antibiotic resistance genes (ARGs) during wastewater sludge treatment is critical in order to reduce the spread of antibiotic resistance through process optimization. Here, we spiked high concentrations of tetracycline-resistant bacteria, isolated from mesophilic (Iso M1-1-a Pseudomonas sp.) and thermophilic (Iso T10-a Bacillus sp.) anaerobic digested sludge, into batch digesters and monitored their fate by plate counts and quantitative polymerase chain reaction (QPCR) of their corresponding tetracycline ARGs. In batch studies, spiked ARB plate counts returned to baseline (thermophilic) or 1-log above baseline (mesophilic) while levels of the ARG present in the spiked isolate [tet(G)] remained high in mesophilic batch reactors. To compare results under semi-continuous flow conditions with natural influent variation, tet(O), tet(W), and sul1 ARGs, along with the intI1 integrase gene, were monitored over a 9-month period in the raw feed sludge and effluent sludge of lab-scale thermophilic and mesophilic anaerobic digesters. sul1 and intI1 in mesophilic and thermophilic digesters correlated positively (Spearman rho = 0.457-0.829, P < 0.05) with the raw feed sludge. There was no correlation in tet(O) or tet(W) ratios in raw sludge and mesophilic digested sludge or thermophilic digested sludge (Spearman rho = 0.130-0.486, P = 0.075-0.612). However, in the thermophilic digester, the tet(O) and tet(W) ratios remained consistently low over the entire monitoring period. We conclude that the influent sludge microbial composition can influence the ARG content of a digester, apparently as a result of differential survival or death of ARBs or horizontal gene transfer of genes between raw sludge ARBs and the digester microbial community. Notably, mesophilic digestion was more susceptible to ARG intrusion than thermophilic digestion, which may be attributed to a higher rate of ARB survival and/or horizontal gene

  2. An antibacterial assay of aqueous extract of garlic against anaerobic/microaerophilic and aerobic bacteria

    OpenAIRE

    Elsom, Giles K.; Hide, Denis; Salmon, David M.

    2011-01-01

    Both the minimum inhibitory and minimum bactericidal concentration (expressed in terms of thiosulphinate concentration) of an aqueous extract of garlic was determined against nine species of bacteria. Helicobacter pylori proved to be extremely sensitive to garlic extract, whilst Bacteroides fragilis, Clostridium perfringens, Enterobacter cloacae, Escherichia coli, Pseudomonas aeruginosa, Salmonella typhimurium and Staphylococcus aureus all were moderately sensitive to the garlic extract treat...

  3. Community composition and activity of anaerobic ammonium oxidation bacteria in the rhizosphere of salt-marsh grass Spartina alterniflora.

    Science.gov (United States)

    Zheng, Yanling; Hou, Lijun; Liu, Min; Yin, Guoyu; Gao, Juan; Jiang, Xiaofen; Lin, Xianbiao; Li, Xiaofei; Yu, Chendi; Wang, Rong

    2016-09-01

    Anaerobic ammonium oxidation (anammox) as an important nitrogen removal pathway has been investigated in intertidal marshes. However, the rhizosphere-driven anammox process in these ecosystems is largely overlooked so far. In this study, the community dynamics and activities of anammox bacteria in the rhizosphere and non-rhizosphere sediments of salt-marsh grass Spartina alterniflora (a widely distributed plant in estuaries and intertidal ecosystems) were investigated using clone library analysis, quantitative PCR assay, and isotope-tracing technique. Phylogenetic analysis showed that anammox bacterial diversity was higher in the non-rhizosphere sediments (Scalindua and Kuenenia) compared with the rhizosphere zone (only Scalindua genus). Higher abundance of anammox bacteria was detected in the rhizosphere (6.46 × 10(6)-1.56 × 10(7) copies g(-1)), which was about 1.5-fold higher in comparison with that in the non-rhizosphere zone (4.22 × 10(6)-1.12 × 10(7) copies g(-1)). Nitrogen isotope-tracing experiments indicated that the anammox process in the rhizosphere contributed to 12-14 % N2 generation with rates of 0.43-1.58 nmol N g(-1) h(-1), while anammox activity in the non-rhizosphere zone contributed to only 4-7 % N2 production with significantly lower activities (0.28-0.83 nmol N g(-1) h(-1)). Overall, we propose that the rhizosphere microenvironment in intertidal marshes might provide a favorable niche for anammox bacteria and thus plays an important role in nitrogen cycling. PMID:27225476

  4. In vitro activities of cefminox against anaerobic bacteria compared with those of nine other compounds.

    Science.gov (United States)

    Hoellman, D B; Spangler, S K; Jacobs, M R; Appelbaum, P C

    1998-03-01

    The agar dilution MIC method was used to test the activity of cefminox, a beta-lactamase-stable cephamycin, compared with those of cefoxitin, cefotetan, moxalactam, ceftizoxime, cefotiam, cefamandole, cefoperazone, clindamycin, and metronidazole against 357 anaerobes. Overall, cefminox was the most active beta-lactam, with an MIC at which 50% of isolates are inhibited (MIC50) of 1.0 microg/ml and an MIC90 of 16.0 microg/ml. Other beta-lactams were less active, with respective MIC50s and MIC90s of 2.0 and 64.0 microg/ml for cefoxitin, 2.0 and 128.0 microg/ml for cefotetan, 2.0 and 64.0 microg/ml for moxalactam, 4.0 and > 128.0 microg/ml for ceftizoxime, 16.0 and > 128.0 microg/ml for cefotiam, 8.0 and >128.0 microg/ml for cefamandole, and 4.0 and 128.0 microg/ml for cefoperazone. The clindamycin MIC50 and MIC90 were 0.5 and 8.0 microg/ml, respectively, and the metronidazole MIC50 and MIC90 were 1.0 and 4.0 microg/ml, respectively. Cefminox was especially active against Bacteroides fragilis (MIC90, 2.0 microg/ml), Bacteroides thetaiotaomicron (MIC90, 4.0 microg/ml), fusobacteria (MIC90, 1.0 microg/ml), peptostreptococci (MIC90, 2.0 microg/ml), and clostridia, including Clostridium difficile (MIC90, 2.0 microg/ml). Time-kill studies performed with six representative anaerobic species revealed that at the MIC all compounds except ceftizoxime were bactericidal (99.9% killing) against all strains after 48 h. At 24 h, only cefminox and cefoxitin at 4x the MIC and cefoperazone at 8x the MIC were bactericidal against all strains. After 12 h, at the MIC all compounds except moxalactam, ceftizoxime, cefotiam, cefamandole, clindamycin, and metronidazole gave 90% killing of all strains. After 3 h, cefminox at 2 x the MIC produced the most rapid effect, with 90% killing of all strains. PMID:9517922

  5. Treatment of agro-industrial wastewater using microalgae-bacteria consortium combined with anaerobic digestion of the produced biomass.

    Science.gov (United States)

    Hernández, D; Riaño, B; Coca, M; García-González, M C

    2013-05-01

    Two combined processes were studied in order to produce second generation biofuels: microalgae biomass production and its further use to produce biogas. Two 5 L photobioreactors for treating wastewater from a potato processing industry (from now on RPP) and from a treated liquid fraction of pig manure (from now on RTE) were inoculated with Chlorella sorokiniana and aerobic bacteria at 24±2.7 °C and 6000 lux for 12 h per day of light supply. The maximum biomass growth was obtained for RTE wastewater, with 26.30 mg dry weight L(-1) d(-1). Regarding macromolecular composition of collected biomass, lipid concentration reached 30.20% in RPP and 4.30% in RTE. Anaerobic digestion results showed that methane yield was highly influenced by substrate/inoculum ratio and by lipids concentration of the biomass, with a maximum methane yield of 518 mL CH4 g COD(-1)added using biomass with a lipid content of 30% and a substrate/inoculum ratio of 0.5. PMID:23069610

  6. Anaerobic thermophilic bacteria isolated from a Venezuelan oil field and its potential use in microbial improved oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Trebbau, G.; Fernandez, B.; Marin, A. [INTEVEP S.A., Caracas (Venezuela)

    1995-12-31

    The objective of this work is to determine the ability of indigenous bacteria from a Venezuelan oil field to grow under reservoir conditions inside a porous media, and to produce metabolites capable of recovering residual crude oil. For this purpose, samples of formation waters from a central-eastern Venezuelan oil reservoir were enriched with different carbon sources and a mineral basal media. Formation water was used as a source of trace metals. The enrichments obtained were incubated at reservoir temperature (71{degrees}C), reservoir pressure (1,200 psi), and under anaerobic conditions for both outside and inside porous media (Berea core). Growth and metabolic activity was followed outside porous media by measuring absorbance at 660 nm, increases in pressure, and decreases in pH. Inside porous media bacterial activity was determined by visual examination of the produced waters (gas bubbles and bacterial cells). All the carbohydrates tested outside porous media showed good growth at reservoir conditions. The pH was lowered, gases such as CO{sub 2} and CH{sub 4} were identified by GC. Surface tension was lowered in some enrichments by 30% when compared to controls. Growth was decreased inside porous media, but gases were produced and helped displace oil. In addition, 10% residual oil was recovered from the Berea core. Mathematical modeling was applied to the laboratory coreflood experiment to evaluate the reproducibility of the results obtained.

  7. Vertical profiles of community abundance and diversity of anaerobic methanotrophic archaea (ANME) and bacteria in a simple waste landfill in north China.

    Science.gov (United States)

    Dong, Jun; Ding, Linjie; Wang, Xu; Chi, Zifang; Lei, Jiansen

    2015-03-01

    Anaerobic methane oxidation (AMO) is considered to be an important sink of CH4 in habitats as marine sediments. But, few studies focused on AMO in landfills which may be an important sink of CH4 derived from waste fermentation. To show evidence of AMO and to uncover function anaerobic methanotroph (ANME) community in landfill, different age waste samples were collected in Jinqianpu landfill located in north China. Through high-throughput sequencing, Methanomicrobiales and Methanosarcinales archaea associated with ANME and reverse methanogenic archaea of Methanosarcina and Methanobacterium were detected. Sulfate-reducing bacteria (SRB) (Desulfobulbus and Desulfococcus) which could couple with ANME-conducting AMO were also found. But, the community structure of ANME had no significant difference with depths. From the results of investigation, we can come to a conclusion that sulfate-dependent anaerobic methane oxidation (SR-DAMO) would be the dominant AMO process in the landfill, while iron-dependent anaerobic methane oxidation (M/IR-DAMO) process was weak though concentration of ferric iron was large in the landfill. Denitrification-dependent anaerobic methane oxidation (NR-DAMO) was negative because of lack of nitrate and relevant function microorganisms in the landfill. Results also indicate that CH4 mitigation would have higher potential by increasing electron acceptor contents and promoting the growth of relevant function microorganisms. PMID:25561057

  8. Study of the In Vitro Activities of Rifaximin and Comparator Agents against 536 Anaerobic Intestinal Bacteria from the Perspective of Potential Utility in Pathology Involving Bowel Flora▿

    OpenAIRE

    Finegold, S M; Molitoris, D.; Väisänen, M.-L.

    2008-01-01

    Rifaximin, ampicillin-sulbactam, neomycin, nitazoxanide, teicoplanin, and vancomycin were tested against 536 strains of anaerobic bacteria. The overall MIC of rifaximin at which 50% of strains were inhibited was 0.25 μg/ml. Ninety percent of the strains tested were inhibited by 256 μg/ml of rifaximin or less, an activity equivalent to those of teicoplanin and vancomycin but less than those of nitazoxanide and ampicillin-sulbactam.

  9. In vitro activity of cefmetazole, cefotetan, amoxicillin-clavulanic acid, and other antimicrobial agents against anaerobic bacteria from endometrial cultures of women with pelvic infections.

    OpenAIRE

    Ohm-Smith, M J; Sweet, R. L.

    1987-01-01

    The MICs of the new antimicrobial agents cefmetazole, cefotetan, and amoxicillin-clauvulanic acid were compared with the MICs of other antimicrobial agents against anaerobic bacteria from endometrial cultures from women with pelvic inflammatory disease or endometritis. The activity of cefmetazole was similar to that of cefoxitin and generally greater than that of cefotetan. Amoxicillin-clavulanic acid was generally more active than all cephamycins tested.

  10. Study of the In Vitro Activities of Rifaximin and Comparator Agents against 536 Anaerobic Intestinal Bacteria from the Perspective of Potential Utility in Pathology Involving Bowel Flora▿

    Science.gov (United States)

    Finegold, S. M.; Molitoris, D.; Väisänen, M.-L.

    2009-01-01

    Rifaximin, ampicillin-sulbactam, neomycin, nitazoxanide, teicoplanin, and vancomycin were tested against 536 strains of anaerobic bacteria. The overall MIC of rifaximin at which 50% of strains were inhibited was 0.25 μg/ml. Ninety percent of the strains tested were inhibited by 256 μg/ml of rifaximin or less, an activity equivalent to those of teicoplanin and vancomycin but less than those of nitazoxanide and ampicillin-sulbactam. PMID:18955526

  11. Fermentation of Rice Straw Uses Mix Inoculum of Anaerobe Facultative Bacteria Isolate from Buffalo Rumen

    International Nuclear Information System (INIS)

    Rice straw quality could be increased as feed by fermentation which has been mixed with bacteria inoculum from buffalo rumen. This experiment used rice straw from Atomita 4, four treatments and one control, i.e. A (rice straw, molasses 5 %, urea 5 %, and inoculum 10 %), B (rice straw, molasses 5 %, and urea 5 %), C (rice straw, molasses 5 %, and inoculum 10 %), D (rice straw and molasses 5 %), and K (control) have been used in this experiment. The parameters were digestibility of dry matter and organic matter, VFA, ammonia and in vitro gas production. The result, showed that the highest gas production, dry matter and organic matter digestibility occurred on A i.e. 17.48 ml/200 mg, 57.78%, and 52.39 %. The highest ammonia occurred on D (32.99 mg/100 ml) and the highest VFA occurred on C (12.36 mmol/100 ml). The concentration of ammonia and VFA of A significant to treatment of D and C). It may be concluded that the A treatment is the best and have potency to be develop. (author)

  12. Use of anaerobic green fluorescent protein versus green fluorescent protein as reporter in lactic acid bacteria.

    Science.gov (United States)

    Landete, José M; Langa, Susana; Revilla, Concepción; Margolles, Abelardo; Medina, Margarita; Arqués, Juan L

    2015-08-01

    Lactic acid bacteria (LAB) are commonly used in the production of fermented and probiotic foods. Development of molecular tools to discriminate the strains of interest from the endogenous microbiota in complex environments like food or gut is of high interest. Green fluorescent protein (GFP)-like chromophores strictly requires molecular oxygen for maturation of fluorescence, which restrict the study of microorganisms in low-oxygen environments. In this work, we have developed a noninvasive cyan-green fluorescent based reporter system for real-time tracking of LAB that is functional under anoxic conditions. The evoglow-Pp1 was cloned downstream from the promoters D-alanyl-D-alanine carboxypeptidase and elongation factor Tu of Lactobacillus reuteri CECT925 using pNZ8048 and downstream of the lactococcal P1 promoter using pT1NX. The classical gfp was also cloned in pT1NX. These recombinant expression vectors were electroporated into Lactococccus, Lactobacillus, and Enterococcus strains with biotechnological and/or probiotic interests to assess and compare their functionality under different conditions of oxygen and pH. The expression was analyzed by imaging and fluorometric methods as well as by flow cytometry. We demonstrate that reporter systems pNZ:TuR-aFP and pT1-aFP are two versatile molecular markers for monitoring LAB in food and fecal environments without the potential problems caused by oxygen and pH limitations, which could be exploited for in vivo studies. Production of the fluorescent protein did not disturb any important physiological properties of the parental strains, such as growth rate, reuterin, or bacteriocin production. PMID:26129953

  13. Anaerobic BTEX degradation in oil sands tailings ponds: Impact of labile organic carbon and sulfate-reducing bacteria.

    Science.gov (United States)

    Stasik, Sebastian; Wick, Lukas Y; Wendt-Potthoff, Katrin

    2015-11-01

    The extraction of bitumen from oil sands in Alberta (Canada) produces volumes of tailings that are pumped into large anaerobic settling-basins. Beside bitumen, tailings comprise fractions of benzene, toluene, ethylbenzene and xylenes (BTEX) that derive from the application of industrial solvents. Due to their toxicity and volatility, BTEX pose a strong concern for gas- and water-phase environments in the vicinity of the ponds. The examination of two pond profiles showed that concentrations of indigenous BTEX decreased with depth, pointing at BTEX transformation in situ. With depth, the relative contribution of ethylbenzene and xylenes to total BTEX significantly decreased, while benzene increased relatively from 44% to 69%, indicating preferential hydrocarbon degradation. To predict BTEX turnover and residence time, we determined BTEX degradation rates in tailings of different depths in a 180-days microcosm study. In addition, we evaluated the impact of labile organic substrates (e.g. acetate) generally considered to stimulate hydrocarbon degradation and the contribution of sulfate-reducing bacteria (SRB) to BTEX turnover. In all depths, BTEX concentrations significantly decreased due to microbial activity, with degradation rates ranging between 4 and 9 μg kg(-1) d(-1). BTEX biodegradation decreased linearly in correlation with initial concentrations, suggesting a concentration-dependent BTEX transformation. SRB were not significantly involved in BTEX consumption, indicating the importance of methanogenic degradation. BTEX removal decreased to 70-90% in presence of organic substrates presumptively due to an accumulation of acetate that lowered BTEX turnover due to product inhibition. In those assays SRB slightly stimulated BTEX transformation by reducing inhibitory acetate levels. PMID:26066083

  14. Smart swarms of bacteria-inspired agents with performance adaptable interactions.

    Directory of Open Access Journals (Sweden)

    Adi Shklarsh

    2011-09-01

    Full Text Available Collective navigation and swarming have been studied in animal groups, such as fish schools, bird flocks, bacteria, and slime molds. Computer modeling has shown that collective behavior of simple agents can result from simple interactions between the agents, which include short range repulsion, intermediate range alignment, and long range attraction. Here we study collective navigation of bacteria-inspired smart agents in complex terrains, with adaptive interactions that depend on performance. More specifically, each agent adjusts its interactions with the other agents according to its local environment--by decreasing the peers' influence while navigating in a beneficial direction, and increasing it otherwise. We show that inclusion of such performance dependent adaptable interactions significantly improves the collective swarming performance, leading to highly efficient navigation, especially in complex terrains. Notably, to afford such adaptable interactions, each modeled agent requires only simple computational capabilities with short-term memory, which can easily be implemented in simple swarming robots.

  15. Adaptation of the Biolog Phenotype MicroArrayTM Technology to Profile the Obligate Anaerobe Geobacter metallireducens

    Energy Technology Data Exchange (ETDEWEB)

    Joyner, Dominique; Fortney, Julian; Chakraborty, Romy; Hazen, Terry

    2010-05-17

    The Biolog OmniLog? Phenotype MicroArray (PM) plate technology was successfully adapted to generate a select phenotypic profile of the strict anaerobe Geobacter metallireducens (G.m.). The profile generated for G.m. provides insight into the chemical sensitivity of the organism as well as some of its metabolic capabilities when grown with a basal medium containing acetate and Fe(III). The PM technology was developed for aerobic organisms. The reduction of a tetrazolium dye by the test organism represents metabolic activity on the array which is detected and measured by the OmniLog(R) system. We have previously adapted the technology for the anaerobic sulfate reducing bacterium Desulfovibrio vulgaris. In this work, we have taken the technology a step further by adapting it for the iron reducing obligate anaerobe Geobacter metallireducens. In an osmotic stress microarray it was determined that the organism has higher sensitivity to impermeable solutes 3-6percent KCl and 2-5percent NaNO3 that result in osmotic stress by osmosis to the cell than to permeable non-ionic solutes represented by 5-20percent ethylene glycol and 2-3percent urea. The osmotic stress microarray also includes an array of osmoprotectants and precursor molecules that were screened to identify substrates that would provide osmotic protection to NaCl stress. None of the substrates tested conferred resistance to elevated concentrations of salt. Verification studies in which G.m. was grown in defined medium amended with 100mM NaCl (MIC) and the common osmoprotectants betaine, glycine and proline supported the PM findings. Further verification was done by analysis of transcriptomic profiles of G.m. grown under 100mM NaCl stress that revealed up-regulation of genes related to degradation rather than accumulation of the above-mentioned osmoprotectants. The phenotypic profile, supported by additional analysis indicates that the accumulation of these osmoprotectants as a response to salt stress does not

  16. Anti-biofilm activities from marine cold adapted bacteria against staphylococci and Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Rosanna ePapa

    2015-12-01

    Full Text Available Microbial biofilms have great negative impacts on the world’s economy and pose serious problems to industry, public health and medicine. The interest in the development of new approaches for the prevention and treatment of bacterial adhesion and biofilm formation has increased. Since, bacterial pathogens living in biofilm induce persistent chronic infections due to the resistance to antibiotics and host immune system. A viable approach should target adhesive properties without affecting bacterial vitality in order to avoid the appearance of resistant mutants. Many bacteria secrete anti-biofilm molecules that function in regulating biofilm architecture or mediating the release of cells from it during the dispersal stage of biofilm life cycle. Cold-adapted marine bacteria represent an untapped reservoir of biodiversity able to synthesize a broad range of bioactive compounds, including anti-biofilm molecules.The anti-biofilm activity of cell-free supernatants derived from sessile and planktonic cultures of cold-adapted bacteria belonging to Pseudoalteromonas, Psychrobacter and Psychromonas species were tested against Staphylococcus aureus, Staphylococcus epidermidis and Pseudomonas aeruginosa strains. Reported results demonstrate that we have selected supernatants, from cold-adapted marine bacteria, containing non-biocidal agents able to destabilize biofilm matrix of all tested pathogens without killing cells. A preliminary physico-chemical characterization of supernatants was also performed, and these analyses highlighted the presence of molecules of different nature that act by inhibiting biofilm formation. Some of them are also able to impair the initial attachment of the bacterial cells to the surface, thus likely containing molecules acting as anti-biofilm surfactant molecules.The described ability of cold-adapted bacteria to produce effective anti-biofilm molecules paves the way to further characterization of the most promising molecules

  17. Acetic acid bacteria genomes reveal functional traits for adaptation to life in insect guts

    OpenAIRE

    B. Chouaia; Gaiarsa, S.; Crotti, E.; Comandatore, F.; Degli Esposti, M.; I. RICCI; Alma, A.; Favia, G.; Bandi, C.; D. Daffonchio

    2014-01-01

    Acetic acid bacteria (AAB) live in sugar rich environments, including food matrices, plant tissues, and the gut of sugar-feeding insects. By comparing the newly sequenced genomes of Asaia platycodi and Saccharibacter sp., symbionts of Anopheles stephensi and Apis mellifera, respectively, with those of 14 other AAB, we provide a genomic view of the evolutionary pattern of this bacterial group and clues on traits that explain the success of AAB as insect symbionts. A specific pre-adaptive trait...

  18. Remediation effects of adapted bacteria cultures on water quality: an example of petrochemical industry

    OpenAIRE

    Altuğ, Nilay Barlas Turan and Gülşen

    2011-01-01

    Abstract In this study, it was aimed to make an efficient wastewater treatment by using adapted bacteria cultures to support and strengthen the biomass in aeration basin of the wastewater treatment plant, when the treatment processes are not sufficient in biological wastewater plants (BWWTP) for industrial wastewater which contains toxic and recalcitrant organic chemicals. For this purpose, petrochemical industry was chosen for field of study. The physical, chemical (flow rate, dissolved oxyg...

  19. Combined Anaerobic-Aerobic Bacterial Degradation of Dyes

    OpenAIRE

    R. Wilfred Sugumar; Sandhya Sadanandan

    2010-01-01

    Wastewaters from the dye baths of a non-formal textile-dyeing unit containing C.I. Acid Orange 7 and C.I. Reactive Red 2 were subjected to degradation in a sequential anaerobic-aerobic treatment process based on mixed culture of bacteria. The technical samples of the dyestuffs and the dye bath wastes were treated in an anaerobic reactor, using an adapted mixed culture of anaerobic microorganisms. The dyestuffs were biotransformed into colourless substituted amine metabolites in the reactor. T...

  20. Adaption of microbial community during the start-up stage of a thermophilic anaerobic digester treating food waste.

    Science.gov (United States)

    Wu, Bo; Wang, Xing; Deng, Ya-Yue; He, Xiao-Lan; Li, Zheng-Wei; Li, Qiang; Qin, Han; Chen, Jing-Tao; He, Ming-Xiong; Zhang, Min; Hu, Guo-Quan; Yin, Xiao-Bo

    2016-10-01

    A successful start-up enables acceleration of anaerobic digestion (AD) into steady state. The microbial community influences the AD performance during the start-up. To investigate how microbial communities changed during the start-up, microbial dynamics was analyzed via high-throughput sequencing in this study. The results confirmed that the AD was started up within 25 d. Thermophilic methanogens and bacterial members functioning in hydrolysis, acidogenesis, and syntrophic oxidation became predominant during the start-up stage, reflecting a quick adaption of microorganisms to operating conditions. Such predominance also indicated the great contribution of these members to the fast start-up of AD. Redundancy analysis confirmed that the bacterial abundance significantly correlated with AD conditions. The stable ratio of hydrogenotrophic methanogens to aceticlastic methanogens is also important to maintain the stability of the AD process. This work will be helpful to understand the contribution of microbial community to the start-up of AD. PMID:27251412

  1. Comparison of two transport systems available in Japan (TERUMO kenkiporter II and BBL Port-A-Cul) for maintenance of aerobic and anaerobic bacteria.

    Science.gov (United States)

    Fujimoto, Daichi; Takegawa, Hiroshi; Doi, Asako; Sakizono, Kenji; Kotani, Yoko; Miki, Kanji; Naito, Takuya; Niki, Marie; Miyamoto, Junko; Tamai, Koji; Nagata, Kazuma; Nakagawa, Atsushi; Tachikawa, Ryo; Otsuka, Kojiro; Katakami, Nobuyuki; Tomii, Keisuke

    2014-01-01

    The kenkiporter II (KP II) transport system is commonly used in many hospitals in Japan for transporting bacterial specimens to microbiology laboratories. Recently, the BBL Port-A-Cul (PAC) fluid vial became available. However, no reports thus far have compared the effectiveness of these two transport systems. We chose 4 aerobic and facultative anaerobic bacteria as well as 8 anaerobic organisms, and prepared three strains of each bacterium in culture media for placement into PAC and KP II containers. We compared the effectiveness of each transport system for preserving each organism at 6, 24, and 48 h after inoculation at room temperature. Thirty-six strains out of 12 bacteria were used in this study. The PAC system yielded better recovery in quantity of organisms than the KP II system at 6, 24 and 48 h. More strains were significantly recovered with the PAC system than with the KP II at 24 h (36/36 vs. 23/36, P vs. 12/36, P < 0.001). The PAC system was better in the recovery of viable organisms counted at 24 and 48 h after inoculation compared with the KP II system. The PAC system may be recommended for the transfer of bacterial specimens in clinical settings. PMID:24462420

  2. Light-dependent hydrogen production by C. reinhardi. [anaerobically adapted green algae

    Science.gov (United States)

    Lien, S.; Mcbride, C.; Togasaki, R.; San Pietro, A.

    1979-01-01

    The activity of hydrogenase in nonsynchronous, photoheterotrophically grown cells of C. reinhardi is a function of culture age. Rapidly growing cultures (exponential phase) exhibit lower hydrogenase activity than early stationary phase cultures. During prolonged dark anaerobic incubation the hydrogenase activity attains a maximal value in two to five hours. The activity declines rapidly after three to four hours of anaerobic incubation unless the pH of the suspending medium is maintained above 6.0. In C. reinhardi the source of electrons for hydrogen photoproduction appears to be derived mainly from water oxidation. However, when the water-splitting complex of photosystem II is impaired by a mutational block, the organism can utilize intracellular organic reductants as substrate for H2 production in a light-dependent reaction involving both PSII and PSI. When photosynthetic electron transport is uncoupled from phosphorylation, a rate of 174 micromoles of hydrogen evolved per mg cells per hour is observed. This rate of hydrogen photoproduction corresponds to 76% of the reductant generating capacity of PSII under steady-state photosynthesis.

  3. Characterization of specific membrane fatty acids as chemotaxonomic markers for sulfate-reducing bacteria involved in anaerobic oxidation of methane

    DEFF Research Database (Denmark)

    Elvert, M.; Boetius, A.; Knittel, K.; Jørgensen, BB

    2003-01-01

    Membrane fatty acids were extracted from a sediment core above marine gas hydrates at Hydrate Ridge, NE Pacific. Anaerobic sediments from this environment are characterized by high sulfate reduction rates driven by the anaerobic oxidation of methane (AOM). The assimilation of methane carbon into...... bacterial biomass is indicated by carbon isotope values of specific fatty acids as low as -103parts per thousand. Specific fatty acids released from bacterial membranes include C(16:1omega5c) , C(17:1omega6c) , and cyC(17:0omega5,6) , all of which have been fully characterized by mass spectrometry. These...

  4. Multi-omics analysis of niche specificity provides new insights into ecological adaptation in bacteria.

    Science.gov (United States)

    Zhu, Bo; Ibrahim, Muhammad; Cui, Zhouqi; Xie, Guanlin; Jin, Gulei; Kube, Michael; Li, Bin; Zhou, Xueping

    2016-08-01

    Different lifestyles, ranging from a saprophyte to a pathogen, have been reported in bacteria of one species. Here, we performed genome-wide survey of the ecological adaptation in four Burkholderia seminalis strains, distinguished by their origin as part of the saprophytic microbial community of soil or water but also including human and plant pathogens. The results indicated that each strain is separated from the others by increased fitness in medium simulating its original niche corresponding to the difference between strains in metabolic capacities. Furthermore, strain-specific metabolism and niche survival was generally linked with genomic variants and niche-dependent differential expression of the corresponding genes. In particular, the importance of iron, trehalose and d-arabitol utilization was highlighted by the involvement of DNA-methylation and horizontal gene transfer in niche-adapted regulation of the corresponding operons based on the integrated analysis of our multi-omics data. Overall, our results provided insights of niche-specific adaptation in bacteria. PMID:26859773

  5. The alkaloid gramine in the anaerobic digestion process-inhibition and adaptation of the methanogenic community.

    Science.gov (United States)

    Popp, Denny; Harms, Hauke; Sträuber, Heike

    2016-08-01

    As many plant secondary metabolites have antimicrobial activity, microorganisms of the anaerobic digestion process might be affected when plant material rich in these compounds is digested. Hitherto, the effects of plant secondary metabolites on the anaerobic digestion process are poorly investigated. In this study, the alkaloid gramine, a constituent of reed canary grass, was added daily to a continuous co-digestion of grass silage and cow manure. A transient decrease of the methane yield by 17 % and a subsequent recovery was observed, but no effect on other process parameters. When gramine was infrequently spiked in higher amounts, the observed inhibitory effect was even more pronounced including a 53 % decrease of the methane yield and an increase of acetic acid concentrations up to 96 mM. However, the process recovered and the process parameters were finally at initial values (methane yield around 255 LN CH4 per gram volatile solids of substrate and acetic acid concentration lower than 2 mM). The bacterial communities of the reactors remained stable upon gramine addition. In contrast, the methanogenic community changed from a well-balanced mixture of five phylotypes towards a strong dominance of Methanosarcina (more than two thirds of the methanogenic community) while Methanosaeta disappeared. Batch inhibition assays revealed that acetic acid was only converted to methane via acetoclastic methanogenesis which was more strongly affected by gramine than hydrogenotrophic methanogenesis and acetogenesis. Hence, when acetoclastic methanogenesis is the dominant pathway, a shift of the methanogenic community is necessary to digest gramine-rich plant material. PMID:27138201

  6. Evaluation by electron microscopy and anaerobic culture of types of rumen bacteria associated with digestion of forage cell walls.

    OpenAIRE

    Akin, D E

    1980-01-01

    Different morphological types of rumen bacteria which degraded cell walls of forage grasses with various in vitro digestibilities were evaluated with electron microscopy. The majority of these bacteria (i.e., about 70% or more) consisted of two distinct types: (i) encapsulated cocci and (ii) irregularly shaped bacteria, resembling major fiber digesters found in the rumen. Each type was capable of degrading structurally intact cell walls. Differences (P less than or equal to 0.02) in the perce...

  7. Decreased anaerobic performance and hormone adaptation after expedition to Peak Lenin

    Institute of Scientific and Technical Information of China (English)

    CHEN Kung-tung; CHEN Yu-yawn; WU Huey-june; CHANG Chen-kang; LEE Wen-tsung; LU Yen-yuan; LIU Chiey-chung; YANG Rong-sen; LIN Jung-charng

    2008-01-01

    Background The change of anaerobic exercise abilities during and after a high-altitude expedition or hypoxic exposure is not well studied.To evaluate the effects of an extreme-altitude expedition on anaerobic performance,the 10-second supramaximal test and endocrine hormones were evaluated before and after an expedition to Peak Lenin.Methods Four subjects (3 male and 1 female,age (30.5+16.5) years) were recruited into the study.Three sets of tests were performed,including a basic test at sea level and 20 days before first arrival at the base camp (3600 m),a middle test done at day after returning from the summit to the base camp and the post test at the 10th day after return to the sea level.Both the supramaximal test,performed by a cycle ergometer,and body composition,performed by bioelectrical impedance analysis,were completed before the basic test and post test.The endocrine hormones including cortisol,growth hormone,testosterone,noradrenaline,adrenaline,dopamine,glucagon and β-endorphin were measured at all tests.Results Comparing the conditions before and after the expedition,the body measurement parameters were decreased after the expedition,i.e.,body weight (-4.22%,P <0.05),fat-free mass (-2.09%,P <0.01 ) and body fat (-8.95%,P=0.172).The peak power relative/body weight ratio (PP/BW) was similar ((9.70+1.97) vs (9.11+1.80) W/kg,P=0.093),while mean power/body weight ratio (MP/BW) was reduced significantly after the expedition ((9.14+1.77) vs (8.33+1.74) W/kg,P <0.05).Peak power/fat-free mass (PP/FFM),mean power/fat-free mass (MP/FFM) and fatigue index (FI) were significantly lower after the expedition (PP/FFM:(11.95+1.71) vs (10.99+1.59) W/kg,P <0.05;MP/FFM:(11.26+1.50) vs (10.04+1.55) W/kg,P<0.O05;FI (85.55±4.17)% vs (77.25±4.40)%,P<0.05).Hormone assays showed a significant increase of noradrenaline (basic vs middle,P<0.05) as well as decrease of adrenaline (P<0.05).Meanwhile,a trend towards an increase in dopamine (basic vs middle) and a

  8. Whole genome sequencing of bacteria in cystic fibrosis as a model for bacterial genome adaptation and evolution.

    Science.gov (United States)

    Sharma, Poonam; Gupta, Sushim Kumar; Rolain, Jean-Marc

    2014-03-01

    Cystic fibrosis (CF) airways harbor a wide variety of new and/or emerging multidrug resistant bacteria which impose a heavy burden on patients. These bacteria live in close proximity with one another, which increases the frequency of lateral gene transfer. The exchange and movement of mobile genetic elements and genomic islands facilitate the spread of genes between genetically diverse bacteria, which seem to be advantageous to the bacterium as it allows adaptation to the new niches of the CF lungs. Niche adaptation is one of the major evolutionary forces shaping bacterial genome composition and in CF the chronic strains adapt and become less virulent. The purpose of this review is to shed light on CF bacterial genome alterations. Next-generation sequencing technology is an exciting tool that may help us to decipher the genome architecture and the evolution of bacteria colonizing CF lungs. PMID:24502835

  9. Aerobe and anaerobe facultative Gram-negative bacteria rod-shaped in the ruminal fluid of dairy cattle fed with different diets containing tropical forages

    Directory of Open Access Journals (Sweden)

    CES Freitas

    2014-01-01

    Full Text Available The aim of this work was to analyse the population of aerobe and anaerobe facultative Gram-negative rod-shaped in the ruminal fluid of dairy cattle and calves fed with different sources of tropical forage. Samples of ruminal fluid were collected from 30 cows fed with sorghum silage, 32 cows fed with Brachiaria brizantha pasture, 12 calves fed with sorghum silage, and 11 calves fed with sugarcane. Fifteen ml of ruminal fluid were collected by sterile catheter and syringe puncture to the rumen. After serial decimal dilutions, samples were inoculated in plates containing MacConkey agar and incubated at 37 °C for 72 h. Calves fed with sorghum silage showed higher detection rate and larger population of these bacteria (8.4 X 10(6 colony forming units CFU/ml when compared with adult cows fed with the same forage (1.4 X 10(5 CFU/ml. The most frequent genera identified in all groups were Enterobacter, Klebsiella, and Proteus. The most frequently identified bacteria in pasture-fed cows was Enterobacter spp., while Klebsiella spp. was the most frequently identified bacteria in cows fed with sorghum silage. Enterobacter spp. and Proteus spp. were more frequently observed in isolates from calves (P < 0.01. Future studies should clarify the differences between these populations.

  10. Differences in cold adaptation of .i.Bacillus subtilis./i. under anaerobic and aerobic conditions

    Czech Academy of Sciences Publication Activity Database

    Beranová, J.; Mansilla, M.C.; de Mendoza, D.; Elhottová, Dana; Konopásek, I.

    2010-01-01

    Roč. 192, č. 16 (2010), s. 4164-4171. ISSN 0021-9193 R&D Projects: GA MŠk LC06066 Institutional research plan: CEZ:AV0Z60660521 Keywords : cold adaptation * Bacillus subtilis * anaerobiosis Subject RIV: EE - Microbiology, Virology Impact factor: 3.726, year: 2010

  11. SAR11 bacteria linked to ocean anoxia and nitrogen loss

    DEFF Research Database (Denmark)

    Tsementzi, Despina; Wu, Jieying; Deutsch, Samuel;

    2016-01-01

    Bacteria of the SAR11 clade constitute up to one half of all microbial cells in the oxygen-rich surface ocean. SAR11 bacteria are also abundant in oxygen minimum zones (OMZs), where oxygen falls below detection and anaerobic microbes have vital roles in converting bioavailable nitrogen to N2 gas....... Anaerobic metabolism has not yet been observed in SAR11, and it remains unknown how these bacteria contribute to OMZ biogeochemical cycling. Here, genomic analysis of single cells from the world’s largest OMZ revealed previously uncharacterized SAR11 lineages with adaptations for life without oxygen...

  12. [Strict anaerobic bacteria: comparative study of various beta-lactam antibiotics in combination with tazobactam or sulbactam].

    Science.gov (United States)

    Dubreuil, L; Sedallian, A

    1991-05-01

    The minimal inhibitory concentrations of piperacillin (PIP) or cefotaxime (CTX) alone or in combination with tazobactam (TAZ) were determined against 168 anaerobes. All the strains were inhibited by PIP + TAZ, but certain strains resistant to CTX + TAZ were found among B. fragilis, Eubacterium and Peptostreptococcus. The second investigations included 30 strains of Bacteroides fragilis. Concentrations of 2, 4 and 8 mg/l of TAZ and sulbactam (SUL) were combined with piperacillin or cefotaxime. The two beta-lactamase-inhibitors had similar activities when used at 2 or 4 mg/l, but at 8 mg/l TAZ was more active than SUL. All B. fragilis strains were inhibited by PIP + TAZ or PIP + SUL, whereas resistance was observed with CTX + SUL or CTX + TAZ. On the same strains the activities of 6 beta-lactams (PIP, mezlocillin, ticarcillin (TIC), CTX, ceftriaxone and ceftazidime) were determined in combination with either SUL 4 mg/l or TAZ 8 mg/l. Only PIP or TIC + SUL or TAZ were able to inhibit at least 90% of tested strains. No resistance could be detected with PIP + TAZ combination. As conclusion, the two inhibitors when combined with PIP or TIC offered greater activity against both Gram positive or negative anaerobes and PIP + TAZ remained the more potent combination. PMID:1652729

  13. Adaptation of anaerobically grown Thauera aromatica, Geobacter sulfurreducens and Desulfococcus multivorans to organic solvents on the level of membrane fatty acid composition

    OpenAIRE

    Duldhardt, Ilka; Gaebel, Julia; Chrzanowski, Lukasz; Nijenhuis, Ivonne; Härtig, Claus; Schauer, Frieder; Heipieper, Hermann J.

    2010-01-01

    Summary The effect of different solvents and pollutants on the cellular fatty acid composition of three bacterial strains: Thauera aromatica, Geobacter sulfurreducens and Desulfococcus multivorans, representatives of diverse predominant anaerobic metabolisms was investigated. As the prevailing adaptive mechanism in cells of T. aromatica and G. sulfurreducens whose cellular fatty acids patterns were dominated by palmitic acid (C16:0) and palmitoleic acid (C16:1cis), the cells reacted by an inc...

  14. Physical Model of the Immune Response of Bacteria Against Bacteriophage Through the Adaptive CRISPR-Cas Immune System

    OpenAIRE

    Han, Pu; Niestemski, Liang Ren; Barrick, Jeffrey E.; Deem, Michael W.

    2014-01-01

    Bacteria and archaea have evolved an adaptive, heritable immune system that recognizes and protects against viruses or plasmids. This system, known as the CRISPR-Cas system, allows the host to recognize and incorporate short foreign DNA or RNA sequences, called ‘spacers’ into its CRISPR system. Spacers in the CRISPR system provide a record of the history of bacteria and phage coevolution. We use a physical model to study the dynamics of this coevolution as it evolves stochastically over time....

  15. Constraints on mechanisms and rates of anaerobic oxidation of methane by microbial consortia: process-based modeling of ANME-2 archaea and sulfate reducing bacteria interactions

    Directory of Open Access Journals (Sweden)

    B. Orcutt

    2008-11-01

    Full Text Available Anaerobic oxidation of methane (AOM is the main process responsible for the removal of methane generated in Earth's marine subsurface environments. However, the biochemical mechanism of AOM remains elusive. By explicitly resolving the observed spatial arrangement of methanotrophic archaea and sulfate reducing bacteria found in consortia mediating AOM, potential intermediates involved in the electron transfer between the methane oxidizing and sulfate reducing partners were investigated via a consortium-scale reaction transport model that integrates the effect of diffusional transport with thermodynamic and kinetic controls on microbial activity. Model simulations were used to assess the impact of poorly constrained microbial characteristics such as minimum energy requirements to sustain metabolism and cell specific rates. The role of environmental conditions such as the influence of methane levels on the feasibility of H2, formate and acetate as intermediate species, and the impact of the abundance of intermediate species on pathway reversal were examined. The results show that higher production rates of intermediates via AOM lead to increased diffusive fluxes from the methane oxidizing archaea to sulfate reducing bacteria, but the build-up of the exchangeable species can cause the energy yield of AOM to drop below that required for ATP production. Comparison to data from laboratory experiments shows that under the experimental conditions of Nauhaus et al. (2007, none of the potential intermediates considered here is able to support metabolic activity matching the measured rates.

  16. Molecular Fingerprint and Dominant Environmental Factors of Nitrite-Dependent Anaerobic Methane-Oxidizing Bacteria in Sediments from the Yellow River Estuary, China

    Science.gov (United States)

    Yan, Pengze; Li, Mingcong; Wei, Guangshan; Li, Han; Gao, Zheng

    2015-01-01

    Nitrite-dependent anaerobic methane oxidation (n-damo) is performed by “Candidatus Methylomirabilis oxyfera” (M. oxyfera), which connects the carbon and nitrogen global nutrient cycles. In the present study, M. oxyfera-like bacteria sequences were successfully recovered from Yellow River Estuary sediments using specific primers for 16S rRNA and pmoA genes. A M. oxyfera-like sequences analysis based on the 16S rRNA gene revealed greater diversity compared with the pmoA gene; the 16S rRNA gene sequences retrieved from the Yellow River Estuary sediments belong to groups A as well as B and were mainly found in freshwater habitats. Quantitative PCR showed that 16S rRNA gene abundance varied from 9.28±0.11×103 to 2.10±0.13×105 copies g-1 (dry weight), and the pmoA gene abundance ranged from 8.63±0.50×103 to 1.83±0.18×105 copies g-1 (dry weight). A correlation analysis showed that the total organic carbon (TOC) and ammonium (NH4+) as well as the ratio of total phosphorus to total nitrogen (TP/TN) influenced the M. oxyfera-like bacteria distribution in the Yellow River Estuary sediments. These findings will aid in understanding the n-damo bacterial distribution pattern as well as their correlation with surrounding environmental factors in temperate estuarine ecosystems. PMID:26368535

  17. Diverse anaerobic Cr(VI) tolerant bacteria from Cr(VI)-contaminated 100H site at Hanford

    Science.gov (United States)

    Chakraborty, R.; Phan, R.; Lam, S.; Leung, C.; Brodie, E. L.; Hazen, T. C.

    2007-12-01

    Hexavalent Chromium [Cr(VI)] is a widespread contaminant found in soil, sediment, and ground water. Cr(VI) is more soluble, toxic, carcinogenic, and mutagenic compared to its reduced form Cr(III). In order to stimulate microbially mediated reduction of Cr(VI), a poly-lactate compound HRC was injected into the chromium contaminated aquifers at site 100H at Hanford. Based on the results of the bacterial community composition using high-density DNA microarray analysis of 16S rRNA gene products, we recently investigated the diversity of the dominant anaerobic culturable microbial population present at this site and their role in Cr(VI) reduction. Positive enrichments set up at 30°C using specific defined anaerobic media resulted in the isolation of an iron reducing isolate strain HAF, a sulfate reducing isolate strain HBLS and a nitrate reducing isolate, strain HLN among several others. Preliminary 16S rDNA sequence analysis identifies strain HAF as Geobacter metallireducens, strain HLN as Pseudomonas stutzeri and strain HBLS as a member of Desulfovibrio species. Strain HAF isolated with acetate as the electron donor utilized propionate, glycerol and pyruvate as alternative carbon sources, and reduced metals like Mn(IV) and Cr(VI). Growth was optimal at 37°C, pH of 6.5 and 0% salinity. Strain HLN isolated with lactate as electron donor utilized acetate, glycerol and pyruvate as alternative carbon sources, and reduced metals like Mn(IV) and Cr(VI). Optimal growth was observed at 37°C, at a pH of 7.5 and 0.3% salinity. Anaerobic active washed cell suspension of strain HLN reduced almost 95 micromolar Cr(VI) within 4 hours relative to controls. Further, with 100 micromolar Cr(VI) as the sole electron acceptor, cells of strain HLN grew to cell numbers of 4.05X 107/ml over a period of 24hrs after an initial lag, demonstrating direct enzymatic Cr(VI) reduction by this species. 10mM lactate served as the sole electron donor. These results demonstrate that Cr

  18. The antimicrobial action of low molecular weight chitosan and chitooligosaccharides on anaerobic bacteria isolated from human faeces

    Czech Academy of Sciences Publication Activity Database

    Šimůnek, Jiří; Koppová, Ingrid; Tishchenko, Galina

    Venice : Universita Politechnica, 2009. s. 142-143. [EUCHIS 2009. 23.05.2009-26.05.2009, San Servolo Island] R&D Projects: GA ČR(CZ) GA525/08/0803 Institutional research plan: CEZ:AV0Z50450515; CEZ:AV0Z40500505 Keywords : chitosan * anaerbic bacteria * human faeces Subject RIV: EB - Genetics ; Molecular Biology

  19. Anaerobes beyond anaerobic digestion

    OpenAIRE

    Sousa, D. Z.; Pereira, M A; Alves, M.M.

    2009-01-01

    Anaerobic microorganisms are widespread in nature. Sediments, gastrointestinal tracks, volcanic vents, geothermal sources are examples of habitats where anaerobic metabolism prevail, in some cases at extreme temperature, pH and pressure conditions. In such microbial ecosystems waste of some is food for others in a true integrated structure. Anaerobic microorganisms are able to use a wide variety of organic and inorganic compounds. Recalcitrant compounds, such as hydrocarbons, a...

  20. [Comparative study, using 3 methods, of the sensitivity to metronidazole and ornidazole of anaerobic or related bacteria].

    Science.gov (United States)

    Gallusser, A

    1983-01-01

    A comparative study of the sensitivity to metronidazole and ornidazole of 127 anaerobic or microaerophilic strains isolated from various clinical samples showed that the activity of both products was similar: the distribution of sensitive and resistant strains was identical. However, the in vitro activity level of metronidazole was slightly higher. This difference, though statistically significant, had no incidence on therapeutic indications. The determination of sensitivity towards the two nitroimidazoles was carried out by three methods: broth dilution and agar diffusion for metronidazole; and broth dilution and disk-broth for ornidazole. Two of these methods, broth dilution and disk-broth, gave concordant results. Conversely, the limits of the agar diffusion technique were shown to be related to independent biological factors such as bacterial motility and slow growth rate. The poor accuracy of this method limits its use in detecting total resistance. PMID:6651124

  1. Formation of tellurium nanocrystals during anaerobic growth of bacteria that use Te oxyanions as respiratory electron acceptors

    Science.gov (United States)

    Baesman, S.M.; Bullen, T.D.; Dewald, J.; Zhang, Dongxiao; Curran, S.; Islam, F.S.; Beveridge, T.J.; Oremland, R.S.

    2007-01-01

    Certain toxic elements support the metabolism of diverse prokaryotes by serving as respiratory electron acceptors for growth. Here, we demonstrate that two anaerobes previously shown to be capable of respiring oxyanions of selenium also achieve growth by reduction of either tellurate [Te(VI)] or tellurite [Te(IV)] to elemental tellurium [Te(0)]. This reduction achieves a sizeable stable-Te-isotopic fractionation (isotopic enrichment factor [??] = -0.4 to -1.0 per ml per atomic mass unit) and results in the formation of unique crystalline Te(0) nanoarchitectures as end products. The Te(0) crystals occur internally within but mainly externally from the cells, and each microorganism forms a distinctly different structure. Those formed by Bacillus selenitireducens initially are nanorods (???10-nm diameter by 200-nm length), which cluster together, forming larger (???1,000-nm) rosettes composed of numerous individual shards (???100-nm width by 1,000-nm length). In contrast, Sulfurospirillium barnesii forms extremely small, irregularly shaped nanospheres (diameter electron diffraction indicate that both biominerals are composed entirely of Te and are crystalline, while Raman spectroscopy confirms that they are in the elemental state. These Te biominerals have specific spectral signatures (UV-visible light, Raman) that also provide clues to their internal structures. The use of microorganisms to generate Te nanomaterials may be an alternative for bench-scale syntheses. Additionally, they may also generate products with unique properties unattainable by conventional physical/chemical methods. Copyright ?? 2007, American Society for Microbiology. All Rights Reserved.

  2. Long-chain fatty acids inhibition and adaptation process in anaerobic thermophilic digestion: Batch tests, microbial community structure and mathematical modelling

    DEFF Research Database (Denmark)

    Paltsi, Jordi; Illa, J.; Prenafeta-Boldu, F.X.;

    2010-01-01

    . Population profiles of eubacterial and archaeal 16S rDNA genes revealed that no significant shift on microbial community composition took place upon biomass exposure to LCFA. DNA sequencing of predominant DGGE bands showed close phylogenetic affinity to ribotypes characteristic from specific beta......Biomass samples taken during the continuous operation of thermophilic anaerobic digestors fed with manure and exposed to successive inhibitory pulses of long-chain fatty acids (LCFA) were characterized in terms of specific metabolic activities and 16S rDNA DGGE profiling of the microbial community...... structure. Improvement of hydrogenotrophic and acidogenic (beta-oxidation) activity rates was detected upon successive LCFA pulses, while different inhibition effects over specific anaerobic trophic groups were observed. Bioreactor recovery capacity and biomass adaptation to LCFA inhibition were verified...

  3. Physical model of the immune response of bacteria against bacteriophage through the adaptive CRISPR-Cas immune system

    International Nuclear Information System (INIS)

    Bacteria and archaea have evolved an adaptive, heritable immune system that recognizes and protects against viruses or plasmids. This system, known as the CRISPR-Cas system, allows the host to recognize and incorporate short foreign DNA or RNA sequences, called ‘spacers’ into its CRISPR system. Spacers in the CRISPR system provide a record of the history of bacteria and phage coevolution. We use a physical model to study the dynamics of this coevolution as it evolves stochastically over time. We focus on the impact of mutation and recombination on bacteria and phage evolution and evasion. We discuss the effect of different spacer deletion mechanisms on the coevolutionary dynamics. We make predictions about bacteria and phage population growth, spacer diversity within the CRISPR locus, and spacer protection against the phage population. (paper)

  4. Physical model of the immune response of bacteria against bacteriophage through the adaptive CRISPR-Cas immune system

    Science.gov (United States)

    Han, Pu; Niestemski, Liang Ren; Barrick, Jeffrey E.; Deem, Michael W.

    2013-04-01

    Bacteria and archaea have evolved an adaptive, heritable immune system that recognizes and protects against viruses or plasmids. This system, known as the CRISPR-Cas system, allows the host to recognize and incorporate short foreign DNA or RNA sequences, called ‘spacers’ into its CRISPR system. Spacers in the CRISPR system provide a record of the history of bacteria and phage coevolution. We use a physical model to study the dynamics of this coevolution as it evolves stochastically over time. We focus on the impact of mutation and recombination on bacteria and phage evolution and evasion. We discuss the effect of different spacer deletion mechanisms on the coevolutionary dynamics. We make predictions about bacteria and phage population growth, spacer diversity within the CRISPR locus, and spacer protection against the phage population.

  5. Fate of parasites and pathogenic bacteria in an anaerobic hybrid reactor followed by downflow hanging sponge system treating domestic wastewater.

    Science.gov (United States)

    Tawfik, A; El-Zamel, T; Herrawy, A; El-Taweel, G

    2015-08-01

    Treatment of domestic wastewater in a pilot-scale upflow anaerobic hybrid (AH) reactor (0.9 m(3)) in combination with downflow hanging sponge (DHS) system (1.3 m(3)) was investigated. The combined system was operated at a hydraulic retention time (HRT) of 6.0 h for AH and 3.2 h for DHS system. The total process achieved a substantial reduction of COD(total) resulting in an average effluent concentration of only 39 ± 12 mg/l. Moreover, 90 ± 7% of ammonia was eliminated in the DHS system. Nitrate and nitrite data revealed that 49 ± 3.2% of the ammonia removal occurred through nitrification process. The removal efficiency of total coliform (TC), fecal coliform (FC), and fecal streptococci (FS) was relatively low in the AH reactor. The major portion of TC, FC, and FS was removed in the DHS system resulting to an average count of 1.7 × 10(5) ± 1.1 × 10(2)/100 ml for TC, 7.1 × 10(4) ± 1.2 × 10(2)/100 ml for FC, and 7.5 × 10(4) ± 1.3 × 10(2)/100 ml for FS in the final effluent. Likely, the combined system was very efficient for the removal of protozoological species such as sarcodins (Entamoeba cysts), flagellates (Giardia cysts), and ciliates (Balantidium cysts). This was not the case for coccidia (Cryptosporidium oocysts), where 36.4 and 27.3% were detected in the effluent of AH and DHS system, respectively. Only 10% of intestinal nematode and cestode ova were recorded in the effluent of AH reactor and were completely removed in the DHS system. PMID:25893628

  6. Formation of tellurium nanocrystals during anaerobic growth of bacteria that use Te oxyanions as respiratory electron acceptors.

    Science.gov (United States)

    Baesman, Shaun M; Bullen, Thomas D; Dewald, James; Zhang, Donghui; Curran, Seamus; Islam, Farhana S; Beveridge, Terry J; Oremland, Ronald S

    2007-04-01

    Certain toxic elements support the metabolism of diverse prokaryotes by serving as respiratory electron acceptors for growth. Here, we demonstrate that two anaerobes previously shown to be capable of respiring oxyanions of selenium also achieve growth by reduction of either tellurate [Te(VI)] or tellurite [Te(IV)] to elemental tellurium [Te(0)]. This reduction achieves a sizeable stable-Te-isotopic fractionation (isotopic enrichment factor [epsilon] = -0.4 to -1.0 per ml per atomic mass unit) and results in the formation of unique crystalline Te(0) nanoarchitectures as end products. The Te(0) crystals occur internally within but mainly externally from the cells, and each microorganism forms a distinctly different structure. Those formed by Bacillus selenitireducens initially are nanorods ( approximately 10-nm diameter by 200-nm length), which cluster together, forming larger ( approximately 1,000-nm) rosettes composed of numerous individual shards ( approximately 100-nm width by 1,000-nm length). In contrast, Sulfurospirillum barnesii forms extremely small, irregularly shaped nanospheres (diameter < 50 nm) that coalesce into larger composite aggregates. Energy-dispersive X-ray spectroscopy and selected area electron diffraction indicate that both biominerals are composed entirely of Te and are crystalline, while Raman spectroscopy confirms that they are in the elemental state. These Te biominerals have specific spectral signatures (UV-visible light, Raman) that also provide clues to their internal structures. The use of microorganisms to generate Te nanomaterials may be an alternative for bench-scale syntheses. Additionally, they may also generate products with unique properties unattainable by conventional physical/chemical methods. PMID:17277198

  7. Adopting Bacteria in Order to Adapt to Water—How Reed Beetles Colonized the Wetlands (Coleoptera, Chrysomelidae, Donaciinae

    Directory of Open Access Journals (Sweden)

    Birgit Kleinschmidt

    2011-12-01

    Full Text Available The present paper reviews the biology of reed beetles (Donaciinae, presents experimental data on the role of specific symbiotic bacteria, and describes a molecular method for the detection of those bacteria. Reed beetles are herbivores living on wetland plants, each species being mono- or oligo-phagous. They lay their eggs on the host plant and the larvae live underwater in the sediment attached to its roots. The larvae pupate there in a water-tight cocoon, which they build using a secretion that is produced by symbiotic bacteria. The bacteria are located in four blind sacs at the foregut of the larvae; in (female adults they colonize two out of the six Malpighian tubules. Tetracycline treatment of larvae reduced their pupation rate, although the bacteria could not be fully eliminated. When the small amount of bacterial mass attached to eggs was experimentally removed before hatching, symbiont free larvae resulted, showing the external transmission of the bacteria to the offspring. Specific primers were designed to detect the bacteria, and to confirm their absence in manipulated larvae. The pupation underwater enabled the reed beetles to permanently colonize the wetlands and to diversify in this habitat underexploited by herbivorous insects (adaptive radiation.

  8. Constraints on mechanisms and rates of anaerobic oxidation of methane by microbial consortia: process-based modeling of ANME-2 archaea and sulfate reducing bacteria interactions

    Directory of Open Access Journals (Sweden)

    B. Orcutt

    2008-05-01

    Full Text Available Anaerobic oxidation of methane (AOM is the main process responsible for the removal of methane generated in Earth's marine subsurface environments. However, the biochemical mechanism of AOM remains elusive. By explicitly resolving the observed spatial arrangement of methanotrophic archaea and sulfate reducing bacteria found in consortia mediating AOM, potential intermediates involved in the electron transfer between the methane oxidizing and sulfate reducing partners were investigated via a consortium-scale reaction transport model that integrates the effect of diffusional transport with thermodynamic and kinetic controls on microbial activity. Model simulations were used to assess the impact of poorly constrained microbial characteristics such as minimum energy requirements to sustain metabolism, substrate affinity and cell specific rates. The role of environmental conditions such as the influence of methane levels on the feasibility of H2, formate and acetate as intermediate species, and the impact of the abundance of intermediate species on pathway reversal was examined. The results show that higher production rates of intermediates via AOM lead to increased diffusive fluxes from the methane oxidizing archaea to sulfate reducing bacteria, but the build-up of the exchangeable species causes the energy yield of AOM to drop below that required for ATP production. Comparison to data from laboratory experiments shows that under the experimental conditions of Nauhaus et al. (2007, neither hydrogen nor formate is exchanged fast enough between the consortia partners to achieve measured rates of metabolic activity, but that acetate exchange might support rates that approach those observed.

  9. One carbon metabolism in anaerobic bacteria: Regulation of carbon and electron flow during organic acid production: Progress report, February 1, 1987-February 1, 1988

    International Nuclear Information System (INIS)

    These studies concern the fundamental biochemical mechanisms that control carbon and electron flow in anaerobic bacteria that conserve energy when coupling hydrogen consumption to the production of acetic, propionic, or butyric acids. Two acidogens, Propionispira arboris and Butyribacterium methylotrophicum were chosen as model systems to understand the function of oxidoreductases and electron carriers in the regulation of hydrogen metabolism and single carbon metabolism. In P. arboris, H2 consumption was linked to the inhibition of CO2 production and an increase in the propionate/acetate rate; whereas, H2 consumption was linked to a stimulation of CO2 consumption and an increase in the butyrate/acetate ratio in B. methylotrophicum. We report studies on the enzymes involved in the regulation of singe carbon metabolism, the enzyme activities and pathways responsible for conversion of multicarbon components to acetate and propionate or butyrate, and how low pH inhibits H2 and acetic acid production in Sarcina ventriculi as a consequence of hydrogenase regulation. 9 refs

  10. Distribution of tetracycline resistance genes in anaerobic treatment of waste sludge: The role of pH in regulating tetracycline resistant bacteria and horizontal gene transfer.

    Science.gov (United States)

    Huang, Haining; Chen, Yinguang; Zheng, Xiong; Su, Yinglong; Wan, Rui; Yang, Shouye

    2016-10-01

    Although pH value has been widely regarded as an important factor that affects resource recovery of waste sludge, the potential influence of diverse pHs on the distribution of tetracycline resistance genes (TRGs) during sludge anaerobic treatment is largely unknown. Here we reported that in the range of pH 4-10, 0.58-1.18 log unit increase of target TRGs was observed at pH 4, compared with that at pH 7, while 0.70-1.31 log unit further removal were obtained at pH 10. Mechanism study revealed that varied pHs not only altered the community structures of tetracycline resistant bacteria (TRB), but also changed their relative abundances, benefitting the propagation (acidic pHs) or attenuation (alkaline pHs) of TRB. Further investigation indicated that the amount and gene-possessing abilities of key genetic vectors for horizontal TRGs transfer were greatly promoted at acidic pHs but restricted under alkaline conditions. PMID:27485281

  11. Abundance of general aerobic heterotrophic bacteria in the Bering Sea and Chukchi Sea and their adaptation to temperature

    Institute of Scientific and Technical Information of China (English)

    陈皓文; 高爱国; 孙海青; 矫玉田

    2004-01-01

    The abundance of general aerobic heterotrophic bacteria(GAB) from the water and sediment in the Bering Sea and the Chukchi Sea was determined by using petri dish cultivation and counting method. The abundance of GAB among the different sea areas, sampling sites, layers of sediments surveyed and adaptability to differential temperatures was studied. The result obtained showed that: the occurrence percentage of GAB in the surface water was higher than that in sediment, but the abundance was only 0.17% of sediment. The occurrence percentage of GAB in surficial layer of sediment was higher than that in the other layers. The occurrence percentage of GAB in surficial layer of sediment was higher than that in the other layers. The occurrence percentage, abundance and its variation of GAB in the Bering Sea were higher than that in the Chukchi Sea respectively. The average value of the abundance of GAB in sediment showed a trend: roughly higher in the lower latitudinal area than higher latitude. The results from temperature test mean that: the majority of bacteria tested were cold -adapted ones, minority might be mesophilic bacteria. The results indicated that, Arctic ocean bacteria had a stronger adaptability to environmental temperature.

  12. Extracellular enzymatic activities of cold-adapted bacteria from polar oceans and effect of temperature and salinity on cell growth

    Institute of Scientific and Technical Information of China (English)

    Zeng Yinxin; Yu Yong; Chen Bo; Li Huirong

    2004-01-01

    The potential of 324 bacteria isolated from different habitats in polar oceans to produce a variety of extracellular enzymatic activities at low temperature was investigated. By plate assay, lipase, protease, amylase, gelatinase, agarase, chitinase or cellulase were detected. Lipases were generally present by bacteria living in polar oceans. Protease-producing bacteria held the second highest proportion in culturable isolates. Strains producing amylase kept a relative stable proportion of around 30% in different polar marine habitats. All 50 Arctic sea-ice bacteria producing proteases were cold-adapted strains, however, only 20% were psychrophilic. 98% of them could grow at 3% NaCl, and 56% could grow without NaCl. On the other hand, 98% of these sea-ice bacteria produced extracellular proteases with optimum temperature at or higher than 35℃, well above the upper temperature limit of cell growth. Extracellular enzymes including amylase, agarase, cellulase and lipase released by bacteria from seawater or sediment in polar oceans, most expressed maximum activities between 25 and 35℃. Among extracellular enzymes released by bacterial strain BSw20308, protease expressed maximum activity at 40℃, higher than 35℃ of polysaccharide hydrolases and 25℃ of lipase.

  13. Metabolic characteristics of anaerobic ammonium oxidizing bacteria with organic matters%有机物作用的厌氧氨氧化菌代谢特性研究进展

    Institute of Scientific and Technical Information of China (English)

    孙佳晶; 张蕾; 张超; 陈晓波

    2012-01-01

    厌氧氨氧化(Anammox)工艺是近年来废水生物脱氮领域的新技术,非常适合于处理含有机物的废水。本文介绍了厌氧氨氧化工艺的特点,详细介绍了有机物对厌氧氨氧化菌的抑制和促进机制。有机物对厌氧氨氧化菌的抑制主要来自两个方面:一是有机物促进异养菌反硝化菌的大量繁殖形成基质竞争抑制;二是废水中的醇类、抗生素等有毒有害有机物会对厌氧氨氧化菌产生毒性抑制。有机物对厌氧氨氧化菌代谢的促进作用也有两种:一是特定的有机物可作为能源被厌氧氨氧化菌利用,促进厌氧氨氧化菌的代谢;二是通过控制废水处理系统中的碳氮比,使厌氧氨氧化菌和反硝化菌在废水处理系统中协同互生。最后指出开发有毒有机废水预处理、驯化厌氧氨氧化污泥、菌种流加等是解决问题的途径。%Anaerobic ammonium oxidation(Anammox),a new biological nitrogen removal process in wastewater treatment,is very suitable for the treatment of wastewater containing organic matters.This paper introduces the characteristics of anaerobic ammonium oxidation process,especially the inhibitive and stimulative mechanisms of organic matters to the bacteria.Two mechanisms are attributed to organic matters induced inhibition,one is heterotrophic denitrifying bacteria promoted by organic matters can compete with anammox bacteria for substrates;the other one is that alcohols,antibiotics and other toxic organics in wastewater leads to toxic inhibition to anaerobic ammonium oxidation bacteria.The stimulation of organic matters to anaerobic ammonium oxidation bacteria also can be explained in two aspects:one is that certain organic matters can be used by anaerobic ammonium oxidation bacteria as energy source,and thus enhance their metabolism;the other is anaerobic ammonium oxidation bacteria and denitrifying bacteria can form symbiote with proper C:N ratio.The pretreatment of

  14. How Magnetotactic Bacteria Respond to Radiation Induced Stress and Damage: Comparative Genomics Evidences for Evolutionary Adaptation

    Science.gov (United States)

    Wang, Y.; Pan, Y.

    2015-12-01

    Solar radiation and galactic cosmic radiation is believed to be major restriction factors influencing survival and evolution of life. On planet earth, geomagnetic field along with atmosphere protect living beings from the harmful radiation. During a geomagnetic reversal or excursion, however, the efflux of charged particles on earth surface would increase as the shielding effect of magnetic field decrease. The stratospheric ozone can also be partially stripped away by solar wind when the strength of the field is weak, leading to an increasing ultraviolet radiation penetration to the earth surface. However, studies on the mechanism of radiation induced stress and damage are focused only on bacteria that have no response to magnetic field. This study was motivated by the need to fill the gap upon knowledge of that on magnetic field sensitive microorganism. Magnetotactic bacteria (MTB) are a group of microbes that are able to synthesis intracellular nano-sized magnetic particles (named magnetosomes). These chain-arranged magnetosomes help MTB sense and swim along the magnetic field to find their optimal living environment efficiently. In this paper, in silico prediction of stress and damage repair genes in response to different radiation were carried out on the complete genome of four nonmagnetotactic and four magnetotactic spirilla. In silico analyses of the genomes of magnetic field sensitive and non-sensitive spirilla revealed: 1) all strains contain genes for regulate responses superoxide and peroxide stress, DNA pyrimidine dimer and string breaks; 2) non-magnetotactic spirilla have more genes dealing with oxidative stress, while magnetotactic spirilla may benefit from magnetotaxis by swimming into oxic-anoxic zone away from oxidative stress and direct radiation damage; yet, the lipid hydroperoxide peroxidase gene in MTB may be responsible for possible ROS generated by the membrane enveloped magnetite magnetosome; 3) magnetotactic spirilla possess SOS rec

  15. Harboring oil-degrading bacteria: a potential mechanism of adaptation and survival in corals inhabiting oil-contaminated reefs.

    Science.gov (United States)

    Al-Dahash, Lulwa M; Mahmoud, Huda M

    2013-07-30

    Certain coral reef systems north of the Arabian Gulf are characterized by corals with a unique ability to thrive and flourish despite the presence of crude oil continuously seeping from natural cracks in the seabed. Harboring oil-degrading bacteria as a part of the holobiont has been investigated as a potential mechanism of adaptation and survival for corals in such systems. The use of conventional and molecular techniques verified a predominance of bacteria affiliated with Gammaproteobacteria, Actinobacteria and Firmicutes in the mucus and tissues of Acropora clathrata and Porites compressa. These bacteria were capable of degrading a wide range of aliphatic (C9-C28) aromatic hydrocarbons (Phenanthrene, Biphenyl, Naphthalene) and crude oil. In addition, microcosms supplied with coral samples and various concentrations of crude oil shifted their bacterial population toward the more advantageous types of oil degraders as oil concentrations increased. PMID:23014479

  16. Techniques for anaerobic susceptibility testing.

    Science.gov (United States)

    Thornsberry, C

    1977-03-01

    Minimal inhibitory concentrations (MICs) of antimicrobial agents for anaerobic bacteria can be determined by agar dilution and broth dilution (including microdilution) techniques. If MICs are not determined routinely, the disk broth or category methods are recommended for routine use. The Bauer-Kirby disk diffusion method and its interpretative standards should not be used for anaerobes. PMID:850089

  17. Cas9–crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria

    OpenAIRE

    Gasiunas, Giedrius; Barrangou, Rodolphe; Horvath, Philippe; Siksnys, Virginijus

    2012-01-01

    Clustered, regularly interspaced, short palindromic repeats (CRISPR)/CRISPR-associated (Cas) systems provide adaptive immunity against viruses and plasmids in bacteria and archaea. The silencing of invading nucleic acids is executed by ribonucleoprotein complexes preloaded with small, interfering CRISPR RNAs (crRNAs) that act as guides for targeting and degradation of foreign nucleic acid. Here, we demonstrate that the Cas9–crRNA complex of the Streptococcus thermophilus CRISPR3/Cas system in...

  18. Functional Adaptation of a Plant Receptor- Kinase Paved the Way for the Evolution of Intracellular Root Symbioses with Bacteria

    OpenAIRE

    Markmann, Katharina; Giczey, Gábor; Parniske, Martin

    2008-01-01

    Author Summary As an adaptation to nutrient limitations in terrestrial ecosystems, most plants form Arbuscular Mycorrhiza (AM), which is a symbiotic relationship between phosphate-delivering fungi and plant roots that dates back to the earliest land plants. More recently, a small group including the legumes and close relatives has evolved the ability to accommodate nitrogen-fixing bacteria intracellularly. The resulting symbiosis is manifested by the formation of specialized root organs, the ...

  19. Ultraviolet Radiation Sensitivity in Cave Bacteria: Evidence of Adaptation to the Subsurface?

    OpenAIRE

    Snider Jessica R.; Goin Caitlin; Miller Robert V.; Boston Penelope J.; Northup Diana E.

    2009-01-01

    We hypothesize that a reduced capacity to withstand or repair cellular damage from ultraviolet radiation may be present in caveadaptedmicroorganisms that never experience such conditions. However, a small number of previous studies have shown that somesubsurface bacteria do not show greater sensitivity to ultraviolet radiation (UVR) than surface bacteria. To estimate UVR sensitivity incave bacteria, bacterial isolates were collected from Carlsbad Cavern, New Mexico, U.S.A., and percent surviv...

  20. Denitrification by extremely halophilic bacteria

    Science.gov (United States)

    Hochstein, L. I.; Tomlinson, G. A.

    1985-01-01

    Extremely halophilic bacteria were isolated from widely separated sites by anaerobic enrichment in the presence of nitrate. The anaerobic growth of several of these isolates was accompanied by the production of nitrite, nitrous oxide, and dinitrogen. These results are a direct confirmation of the existence of extremely halophilic denitrifying bacteria, and suggest that such bacteria may be common inhabitants of hypersaline environments.

  1. Adaptation of Bacteria of Anaerobic Digestion to Higher Salinity for the Application to Microbial Enhanced Oil Recovery

    DEFF Research Database (Denmark)

    Rudyk, Svetlana Nikolayevna; Ivanova, Yanina; Spirov, Pavel;

    digestion can be an attractive candidate for MEOR implementation due to their ability to withstand high temperature and salinity, and produce gas in a large volume. Economical comparison between MEOR and foam injection revealed that MEOR is a cheaper and more sustainable method....

  2. Phylogeography, Salinity Adaptations and Metabolic Potential of the Candidate Division KB1 Bacteria Based on a Partial Single Cell Genome.

    Science.gov (United States)

    Nigro, Lisa M; Hyde, Andrew S; MacGregor, Barbara J; Teske, Andreas

    2016-01-01

    Deep-sea hypersaline anoxic basins and other hypersaline environments contain abundant and diverse microbial life that has adapted to these extreme conditions. The bacterial Candidate Division KB1 represents one of several uncultured groups that have been consistently observed in hypersaline microbial diversity studies. Here we report the phylogeography of KB1, its phylogenetic relationships to Candidate Division OP1 Bacteria, and its potential metabolic and osmotic stress adaptations based on a partial single cell amplified genome of KB1 from Orca Basin, the largest hypersaline seafloor brine basin in the Gulf of Mexico. Our results are consistent with the hypothesis - previously developed based on (14)C incorporation experiments with mixed-species enrichments from Mediterranean seafloor brines - that KB1 has adapted its proteins to elevated intracellular salinity, but at the same time KB1 apparently imports glycine betaine; this compatible solute is potentially not limited to osmoregulation but could also serve as a carbon and energy source. PMID:27597842

  3. ANAEROBIC BIOLOGICAL TREATMENT OF PRODUCED WATER

    Energy Technology Data Exchange (ETDEWEB)

    John R. Gallagher

    2001-07-31

    During the production of oil and gas, large amounts of water are brought to the surface and must be disposed of in an environmentally sensitive manner. This is an especially difficult problem in offshore production facilities where space is a major constraint. The chief regulatory criterion for produced water is oil and grease. Most facilities have little trouble meeting this criterion using conventional oil-water separation technologies. However, some operations have significant amounts of naphthenic acids in the water that behave as oil and grease but are not well removed by conventional technologies. Aerobic biological treatment of naphthenic acids in simulated-produced water has been demonstrated by others; however, the system was easily overloaded by the large amounts of low-molecular-weight organic acids often found in produced waters. The objective of this research was to determine the ability of an anaerobic biological system to treat these organic acids in a simulated produced water and to examine the potential for biodegradation of the naphthenic acids in the anaerobic environment. A small fixed-film anaerobic biological reactor was constructed and adapted to treat a simulated produced water. The bioreactor was tubular, with a low-density porous glass packing material. The inocula to the reactor was sediment from a produced-water holding pond from a municipal anaerobic digester and two salt-loving methanogenic bacteria. During start-up, the feed to the reactor contained glucose as well as typical produced-water components. When glucose was used, rapid gas production was observed. However, when glucose was eliminated and the major organic component was acetate, little gas was generated. Methane production from acetate may have been inhibited by the high salt concentrations, by sulfide, or because of the lack, despite seeding, of microbes capable of converting acetate to methane. Toluene, a minor component of the produced water (0.1 g/L) was removed in the

  4. ANAEROBIC BIOLOGICAL TREATMENT OF PRODUCED WATER; TOPICAL

    International Nuclear Information System (INIS)

    During the production of oil and gas, large amounts of water are brought to the surface and must be disposed of in an environmentally sensitive manner. This is an especially difficult problem in offshore production facilities where space is a major constraint. The chief regulatory criterion for produced water is oil and grease. Most facilities have little trouble meeting this criterion using conventional oil-water separation technologies. However, some operations have significant amounts of naphthenic acids in the water that behave as oil and grease but are not well removed by conventional technologies. Aerobic biological treatment of naphthenic acids in simulated-produced water has been demonstrated by others; however, the system was easily overloaded by the large amounts of low-molecular-weight organic acids often found in produced waters. The objective of this research was to determine the ability of an anaerobic biological system to treat these organic acids in a simulated produced water and to examine the potential for biodegradation of the naphthenic acids in the anaerobic environment. A small fixed-film anaerobic biological reactor was constructed and adapted to treat a simulated produced water. The bioreactor was tubular, with a low-density porous glass packing material. The inocula to the reactor was sediment from a produced-water holding pond from a municipal anaerobic digester and two salt-loving methanogenic bacteria. During start-up, the feed to the reactor contained glucose as well as typical produced-water components. When glucose was used, rapid gas production was observed. However, when glucose was eliminated and the major organic component was acetate, little gas was generated. Methane production from acetate may have been inhibited by the high salt concentrations, by sulfide, or because of the lack, despite seeding, of microbes capable of converting acetate to methane. Toluene, a minor component of the produced water (0.1 g/L) was removed in the

  5. CHARACTERISTICS OF BACTERIA ADAPTED TO LOW NUTRIENT CONDITIONS IN LAKE ONTARIO

    Science.gov (United States)

    The fate of organic pollutants in aquatic ecosystems depends, in part, on metabolic activities of the indigenous microflora. Knowledge is therefore needed for the growth characteristics of aquatic bacteria in low nutrient conditions typical of many aquatic environments. The autho...

  6. Use of potassium depletion to assess adaptation of ruminal bacteria to ionophores.

    OpenAIRE

    R.P. Lana; Russell, J B

    1996-01-01

    When mixed ruminal bacteria from cattle fed timothy hay were suspended in a medium containing a low concentration of potassium, monensin and lasalocid catalyzed a rapid depletion of potassium from cells. The ionophore-mediated potassium depletion was concentration dependent, and it was possible to describe the relationship with saturation constants. Mixed ruminal bacteria never lost more than 50% of their potassium (Kmax = 46%), and the concentrations of monensin and lasalocid needed to cause...

  7. Rapid Evolution of Culture-Impaired Bacteria During Adaptation to Biofilm Growth

    OpenAIRE

    Jon Penterman; Dao Nguyen; Erin Anderson; Benjamin J. Staudinger; Everett P. Greenberg; Joseph S. Lam; Pradeep K. Singh

    2014-01-01

    Biofilm growth increases the fitness of bacteria in harsh conditions. However, bacteria from clinical and environmental biofilms can exhibit impaired growth in culture, even when the species involved are readily culturable and permissive conditions are used. Here, we show that culture-impaired variants of Pseudomonas aeruginosa arise rapidly and become abundant in laboratory biofilms. The culture-impaired phenotype is caused by mutations that alter the outer-membrane lipopolysaccharide struct...

  8. Dual-Track Clearance of Circulating Bacteria Balances Rapid Restoration of Blood Sterility with Induction of Adaptive Immunity.

    Science.gov (United States)

    Broadley, Steven P; Plaumann, Ann; Coletti, Raffaele; Lehmann, Christin; Wanisch, Andreas; Seidlmeier, Amelie; Esser, Knud; Luo, Shanshan; Rämer, Patrick C; Massberg, Steffen; Busch, Dirk H; van Lookeren Campagne, Menno; Verschoor, Admar

    2016-07-13

    Efficient clearance of bacteremia prevents life-threatening disease. Platelet binding to intravascular bacteria, a process involving platelet glycoprotein GPIb and bacterial opsonization with activated complement C3, influences blood clearance and anti-infective immunity. Using intravital microscopy of the bloodstream of mice infected with Listeria monocytogenes, we show that bacterial clearance is not a uniform process but a "dual-track" mechanism consisting of parallel "fast" and "slow" pathways. "Slow clearance" is regulated by time-dependent bacterial opsonization, stochastic platelet binding, and capture of bacteria-platelet-complexes via the complement receptor of the immunoglobulin superfamily, CRIg. The mechanism spares some bacteria from "fast clearance" and rapid destruction in the liver via Kupffer cell scavenger receptors, keeping them available for adaptive immunity induction by splenic CD8α(+) dendritic cells. We consistently find "fast" and "slow" clearance patterns for a broad panel of other Gram+ and Gram- bacteria. Thus, dual-track clearance balances rapid restoration of blood sterility with induction of specific antibacterial immunity. PMID:27345696

  9. Anaerobic, solvent-producing bacteria

    OpenAIRE

    Montoya Castaño, Dolly

    2005-01-01

    This work’s main goal was to study strategies for the molecular and enzymatic characterisation of new solvent-producing mesophylic Clostridium isolates from Colombia and ascertain their solvent producing biotechnological potential by using a cheap agro-industrial waste as carbon source. Molecular characterisation of the native strains using 16S rRNA, PFGE and DNA- DNA hybridisation shown that the native strains are closely related to each other and not belong to Clostridium butyricum and sugg...

  10. Reductive dehalogenation by anaerobic bacteria.

    OpenAIRE

    Holliger, C.

    1992-01-01

    The understanding of the fate of synthetic halogenated hydrocarbons became a matter of major interest over the last two decades. Halogenated compounds may threaten ecosystems due to their biocide properties. The degradability of halocompounds determines whether they will accumulate in a certain environment or whether they will be transformed to harmless products. A whole range of anthropogenic organohalogen compounds was detected in soils, sediments, surface and subsurface waters, and the atm...

  11. Anaerobic thermophiles.

    Science.gov (United States)

    Canganella, Francesco; Wiegel, Juergen

    2014-01-01

    The term "extremophile" was introduced to describe any organism capable of living and growing under extreme conditions. With the further development of studies on microbial ecology and taxonomy, a variety of "extreme" environments have been found and an increasing number of extremophiles are being described. Extremophiles have also been investigated as far as regarding the search for life on other planets and even evaluating the hypothesis that life on Earth originally came from space. The first extreme environments to be largely investigated were those characterized by elevated temperatures. The naturally "hot environments" on Earth range from solar heated surface soils and water with temperatures up to 65 °C, subterranean sites such as oil reserves and terrestrial geothermal with temperatures ranging from slightly above ambient to above 100 °C, to submarine hydrothermal systems with temperatures exceeding 300 °C. There are also human-made environments with elevated temperatures such as compost piles, slag heaps, industrial processes and water heaters. Thermophilic anaerobic microorganisms have been known for a long time, but scientists have often resisted the belief that some organisms do not only survive at high temperatures, but actually thrive under those hot conditions. They are perhaps one of the most interesting varieties of extremophilic organisms. These microorganisms can thrive at temperatures over 50 °C and, based on their optimal temperature, anaerobic thermophiles can be subdivided into three main groups: thermophiles with an optimal temperature between 50 °C and 64 °C and a maximum at 70 °C, extreme thermophiles with an optimal temperature between 65 °C and 80 °C, and finally hyperthermophiles with an optimal temperature above 80 °C and a maximum above 90 °C. The finding of novel extremely thermophilic and hyperthermophilic anaerobic bacteria in recent years, and the fact that a large fraction of them belong to the Archaea has definitely

  12. Anaerobic Thermophiles

    Directory of Open Access Journals (Sweden)

    Francesco Canganella

    2014-02-01

    Full Text Available The term “extremophile” was introduced to describe any organism capable of living and growing under extreme conditions. With the further development of studies on microbial ecology and taxonomy, a variety of “extreme” environments have been found and an increasing number of extremophiles are being described. Extremophiles have also been investigated as far as regarding the search for life on other planets and even evaluating the hypothesis that life on Earth originally came from space. The first extreme environments to be largely investigated were those characterized by elevated temperatures. The naturally “hot environments” on Earth range from solar heated surface soils and water with temperatures up to 65 °C, subterranean sites such as oil reserves and terrestrial geothermal with temperatures ranging from slightly above ambient to above 100 °C, to submarine hydrothermal systems with temperatures exceeding 300 °C. There are also human-made environments with elevated temperatures such as compost piles, slag heaps, industrial processes and water heaters. Thermophilic anaerobic microorganisms have been known for a long time, but scientists have often resisted the belief that some organisms do not only survive at high temperatures, but actually thrive under those hot conditions. They are perhaps one of the most interesting varieties of extremophilic organisms. These microorganisms can thrive at temperatures over 50 °C and, based on their optimal temperature, anaerobic thermophiles can be subdivided into three main groups: thermophiles with an optimal temperature between 50 °C and 64 °C and a maximum at 70 °C, extreme thermophiles with an optimal temperature between 65 °C and 80 °C, and finally hyperthermophiles with an optimal temperature above 80 °C and a maximum above 90 °C. The finding of novel extremely thermophilic and hyperthermophilic anaerobic bacteria in recent years, and the fact that a large fraction of them belong

  13. Succession of lignocellulolytic bacterial consortia bred anaerobically from lake sediment

    NARCIS (Netherlands)

    Korenblum, Elisa; Jiménez Avella, Diego; van Elsas, Jan

    2016-01-01

    Anaerobic bacteria degrade lignocellulose in various anoxic and organically rich environments, often in a syntrophic process. Anaerobic enrichments of bacterial communities on a recalcitrant lignocellulose source were studied combining polymerase chain reaction–denaturing gradient gel electrophoresi

  14. New perspectives in anaerobic digestion

    DEFF Research Database (Denmark)

    van Lier, J.B.; Tilche, A.; Ahring, Birgitte Kiær;

    2001-01-01

    requirements. In fact, most advances were achieved during the last three decades, when high-rate reactor systems were developed and a profound insight was obtained in the microbiology of the anaerobic communities. This insight led to a better understanding of anaerobic treatment and, subsequently, to a broader......The IWA specialised group on anaerobic digestion (AD) is one of the oldest working groups of the former IAWQ organisation. Despite the fact that anaerobic technology dates back more than 100 years, the technology is still under development, adapting novel treatment systems to the modern...

  15. Effect of carbon dioxide and bicarbonate as inorganic carbon sources on growth and adaptation of autohydrogenotrophic denitrifying bacteria

    International Nuclear Information System (INIS)

    Acclimation of autohydrogenotrophic denitrifying bacteria using inorganic carbon source (CO2 and bicarbonate) and hydrogen gas as electron donor was performed in this study. In this regard, activated sludge was used as the seed source and sequencing batch reactor (SBR) technique was applied for accomplishing the acclimatization. Three distinct strategies in feeding of carbon sources were applied: (I) continuous sparging of CO2, (II) bicarbonate plus continuous sparging of CO2, and (III) only bicarbonate. The pH-reducing nature of CO2 showed an unfavorable impact on denitrification rate; however bicarbonate resulted in a buffered environment in the mixed liquor and provided a suitable mean to maintain the pH in the desirable range of 7-8.2. As a result, bicarbonate as the only carbon source showed a faster adaptation, while carbon dioxide as the only carbon source as well as a complementary carbon source added to bicarbonate resulted in longer acclimation period. Adapted hydrogenotrophic denitrifying bacteria, using bicarbonate and hydrogen gas in the aforementioned pH range, caused denitrification at a rate of 13.33 mg NO3--N/g MLVSS/h for degrading 20 and 30 mg NO3--N/L and 9.09 mg NO3--N/g MLVSS/h for degrading 50 mg NO3--N/L

  16. The effect of tannic compounds on anaerobic wastewater treatment.

    OpenAIRE

    Field, J. A.

    1989-01-01

    Anaerobic wastewater treatment is an alternative to the conventional aerobic treatment processes for the removal of easily biodegradable organic matter in medium to high strength industrial wastestreams. Anaerobic treatment has several advantages, however one important disadvantage is the high sensitivity of the anaerobic bacteria (ie. methanogenic bacteria) to toxic compounds. The anaerobic technologies were initially developed for the treatment of non-toxic organic wastewaters. As the techn...

  17. Screening of aspartate dehydrogenase of bacteria

    OpenAIRE

    Fukuda, Shoko; Okamura, Tokumitsu; Yasumasa, Izumi; Takeno, Tomomi; Ohsugi, Masahiro

    2001-01-01

    Fifty-two strains of bacteria cultured under aerobic conditions and 12 strains of bacteria cultured under anaerobic conditions demonstrated high activity staining of aspartate dehydrogenase with NAD^+. Four strains of bacteria cultured under aerobic conditions and 7 strains of bacteria cultured under anaerobic conditions demonstrated high activity staining of aspartate dehydrogenase with NADP^+. Seven strains of bacteria cultured under aerobic conditions and 4 strains of bacteria cultured und...

  18. Insights into bacterial protection and survival. A study of three enzymes from cold-adapted bacteria

    OpenAIRE

    Grgic, Miriam

    2015-01-01

    Paper II of this thesis is not available in Munin.Properties and distribution of a metallo-β-lactamase (ALI-1) from the fish pathogen Aliivibrio salmonicida LFI1238. Kristiansen Anders; Grgic Miriam; Altermark Bjørn; Leiros Ingar. Available in Journal of Antimicrobial Chemotherapy, 2014, vol. 70, issue 3 Bacteria are the most abundant organisms and can be found in different habitats, from polar regions, deserts and volcanoes, deep ocean trenches to the upper atmosphere. In all these envir...

  19. CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea

    OpenAIRE

    Marraffini, Luciano A.; Sontheimer, Erik J.

    2010-01-01

    Sequence-directed genetic interference pathways control gene expression and preserve genome integrity in all kingdoms of life. The importance of such pathways is highlighted by the extensive study of RNA interference (RNAi) and related processes in eukaryotes. In many bacteria and most archaea, clustered, regularly interspaced short palindromic repeats (CRISPRs) are involved in a more recently discovered interference pathway that protects cells from bacteriophages and conjugative plasmids. CR...

  20. RISK FACTORS IN NEONATAL ANAEROBIC INFECTIONS

    Directory of Open Access Journals (Sweden)

    M. S. Tabib

    2008-06-01

    Full Text Available Anaerobic bacteria are well known causes of sepsis in adults but there are few studies regarding their role in neonatal sepsis. In an attempt to define the incidence of neonatal anaerobic infections a prospective study was performed during one year period. A total number of 400 neonates under sepsis study were entered this investigation. Anaerobic as well as aerobic cultures were sent. The patients were subjected to comparison in two groups: anaerobic culture positive and anaerobic culture negative and this comparison were analyzed statistically. There were 7 neonates with positive anaerobic culture and 35 neonates with positive aerobic culture. A significant statistical relationship was found between anaerobic infections and abdominal distention and pneumonia. It is recommended for those neonates with abdominal distention and pneumonia refractory to antibiotic treatment to be started on antibiotics with anaerobic coverage.

  1. How do Bacteria Adapt to the Red Sea? Cultivation and Genomic and Physiological Characterization of Oligotrophic Bacteria of the PS1, OM43, and SAR11 Clades

    KAUST Repository

    Jimenez Infante, Francy M.

    2015-05-01

    Given the high salinity, prevailing annual high temperatures, and ultra-oligotrophic conditions in the Red Sea isolation and characterization of important microbial groups thriving in this environment is important in understanding the ecological significance and metabolic capabilities of these communities. By using a high-­throughput cultivation technique in natural seawater amended with minute amounts of nutrients, members of the rare biosphere (PS1), methylotrophic Betaproteobacteria (OM43), and the ubiquitous and abundant SAR11 group (Pelagibacterales), were isolated in pure culture. Phylogenetic analyses of Red Sea isolates along with comparative genomics with close representatives from disparate provinces revealed ecotypes and genomic differentiation among the groups. Firstly, the PS1 alphaproteobacterial clade was found to be present in very low abundance in several metagenomic datasets form divergent environments. While strain RS24 (Red Sea) harbored genomic islands involved in polymer degradation, IMCC14465 (East (Japan) Sea) contained unique genes for degradation of aromatic compounds. Secondly, methylotrophic OM43 bacteria from the Red Sea (F5, G12 and H7) showed higher similarities with KB13 isolate from Hawaii, forming a ‘H-­RS’ (Hawaii-­Red Sea) cluster separate from HTCC2181 (Oregon isolate). HTCC2181 members were shown to prevail in cold, productive coastal environments and had an nqrA-­F system for energy generation by sodium motive force. On the contrary, H-­RS cluster members may be better adapted to warm and oligotrophic environments, and seem to generate energy by using a proton-­translocating NADH:Quinone oxidoreductase (complex I; nuoA-­N subunits). Moreover, F5, G12, and H7 had unique proteins related to resistance to UV, temperature and salinity, in addition to a heavy metal ‘resistance island’ as adaptive traits to cope with the environmental conditions in the Red Sea. Finally, description of the Red Sea Pelagibacterales

  2. Control of growth and adaptation to nutritional shifts for bacteria exposed to amino acid-limiting environments

    Science.gov (United States)

    Mateescu, Eduard M.; Hwa, Terence

    2007-03-01

    In order to grow at the highest rate sustainable by the environment, bacteria turn on different metabolic pathways and utilize a myriad of adaptive strategies. The macromolecular composition (RNA, DNA, protein) and overall cell size (mass) can be very different in different environments. Surprisingly however, these differences appear to depend only on the growth rate and not on the growth medium itself. As the nutritional environment changes in time, the cells quickly adapt their composition to the one corresponding to the new conditions. Here, we propose a phenomenological model of growth and adaptation control for the bacterial cell, based on a simplified formulation of the central dogma and a simplified implementation of the stringent response. The core model contains no free parameters and provides a simple intuitive understanding of cell growth control. The results generated by the model, physiological state of the cell as well as the characteristics of the transition between optimized states of growth, are in qualitative and semi-quantitative agreement (i.e. within a factor of 2) with the experimental observations.

  3. The anaerobic digestion process

    Energy Technology Data Exchange (ETDEWEB)

    Rivard, C.J. [National Renewable Energy Lab., Golden, CO (United States); Boone, D.R. [Oregon Graduate Inst., Portland, OR (United States)

    1996-01-01

    The microbial process of converting organic matter into methane and carbon dioxide is so complex that anaerobic digesters have long been treated as {open_quotes}black boxes.{close_quotes} Research into this process during the past few decades has gradually unraveled this complexity, but many questions remain. The major biochemical reactions for forming methane by methanogens are largely understood, and evolutionary studies indicate that these microbes are as different from bacteria as they are from plants and animals. In anaerobic digesters, methanogens are at the terminus of a metabolic web, in which the reactions of myriads of other microbes produce a very limited range of compounds - mainly acetate, hydrogen, and formate - on which the methanogens grow and from which they form methane. {open_quotes}Interspecies hydrogen-transfer{close_quotes} and {open_quotes}interspecies formate-transfer{close_quotes} are major mechanisms by which methanogens obtain their substrates and by which volatile fatty acids are degraded. Present understanding of these reactions and other complex interactions among the bacteria involved in anaerobic digestion is only now to the point where anaerobic digesters need no longer be treated as black boxes.

  4. Predominance of anaerobic bacterial community over aerobic community contribute to intensify ‘oxygen minimum zone’ in the eastern Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Gonsalves, M.J.B.D.; Paropkari, A.L.; Fernandes, C.E.G.; LokaBharathi, P.A.; KrishnaKumari, L.; Fernando, V.; Nampoothiri, G.

    show that OMZ from these ‘oligotrophic’ regions is dominated by anaerobic bacteria. We believe that these bacteria contribute to intensify the OMZ in the EAS. Further, a higher abundance of viable anaerobic bacteria (TVC sub (anaero)) and other...

  5. Comparison of nitroethane, 2-nitro-1-propanol, lauric acid, Lauricidin and the Hawaiian marine algae, Chaetoceros, for potential broad-spectrum control of anaerobically grown lactic acid bacteria

    Science.gov (United States)

    The gastrointestinal tract of bovines often contains bacteria that contribute to disorders of the rumen and may also contain foodborne or opportunistic human pathogens as well as bacteria capable of causing mastitis in cows. Thus, there is a need to develop broad-spectrum therapies that are effecti...

  6. Metabolic adaptation and trophic strategies of soil bacteria - C1- metabolism and sulfur chemolithotrophy in Starkeya novella

    Directory of Open Access Journals (Sweden)

    UlrikeKappler

    2013-10-01

    Full Text Available The highly diverse and metabolically versatile microbial communities found in soil environments are major contributors to the global carbon, nitrogen and sulfur cycles. We have used a combination of genome –based pathway analysis with proteomics and gene expression studies to investigate metabolic adaptation in a representative of these bacteria, Starkeya novella, which was originally isolated from agricultural soil. This bacterium was the first facultative sulfur chemolithoautotroph that was isolated and it is also able to grow with methanol and on over 39 substrates as a heterotroph. However, using glucose, fructose, methanol, thiosulfate as well as combinations of the carbon compounds with thiosulfate as growth substrates we have demonstrated here that contrary to the previous classification, S. novella is not a facultative sulfur chemolitho- and methylotroph, as the enzyme systems required for these two growth modes as always expressed at high levels. This is typical for key metabolic pathways. In addition enzymes for various pathways of carbon dioxide fixation were always expressed at high levels, even during heterotrophic growth on glucose or fructose, which suggests a role for these pathways beyond the generation of reduced carbon units for cell growth, possibly in redox balancing of metabolism. Our results then indicate that S. novella, a representative of the Xanthobacteraceae family of methylotrophic soil and freshwater dwelling bacteria, employs a mixotrophic growth strategy under all conditions tested here. As a result the contribution of this bacterium to either carbon sequestration or the release of climate active substances could vary very quickly, which has direct implications for the modelling of such processes if mixotrophy proves to be the main growth strategy for large populations of soil bacteria.

  7. Comparative in vitro activity of ceftaroline, ceftaroline-avibactam, and other antimicrobial agents against aerobic and anaerobic bacteria cultured from infected diabetic foot wounds.

    Science.gov (United States)

    Goldstein, Ellie J C; Citron, Diane M; Merriam, C Vreni; Tyrrell, Kerin L

    2013-07-01

    Foot infections are the most common infectious complication of diabetes. Moderate to severe diabetic foot infections (DFI) are typically polymicrobial with both aerobic and anaerobic organisms. The role of MRSA in these wounds has become an increasing concern. To determine if the addition of avibactam, a novel non-beta-lactam beta-lactamase inhibitor, to ceftaroline would be more active than ceftaroline alone, we tested 316 aerobic pathogens and 154 anaerobic recovered from patients with moderate to severe DFI, and compared ceftaroline with and without avibactam to other agents. Testing on aerobes was done by broth microdilution and by agar dilution for anaerobes, according to CLSI M11-A8, and M7-A8 standards. Ceftaroline-avibactam MIC90 for all Staphylococcus spp. including MRSA was 0.5 μg/mL, and for enterococci was 1 μg/mL. The MIC90s for enteric Gram-negative rods was 0.125 μg/mL. The addition of avibactam to ceftaroline reduced the ceftaroline MICs for 2 strains of resistant Enterobacter spp. and for 1 strain of Morganella. Against anaerobic Gram-positive cocci ceftaroline-avibactam had an MIC90 0.125 μg/mL and for clostridia 1 μg/mL. Avibactam improved ceftaroline's MIC90s for Bacteroides fragilis from >32 to 2 μg/mL and for Prevotella spp. from >32 to 1 μg/mL. Ceftaroline alone demonstrates excellent in vitro activity against most of the aerobes found in moderate to severe DFI. The addition of avibactam provides an increased spectrum of activity including the beta-lactamase producing Prevotella, Bacteroides fragilis and ceftaroline resistant gram-negative enteric organisms. PMID:23623385

  8. In vitro anaerobic incubation of Salmonella enterica serotype Typhimurium and laying hen cecal bacteria in poultry feed substrates and a fructooligosaccharide prebiotic.

    Science.gov (United States)

    Donalson, L M; Kim, Woo-Kyun; Chalova, V I; Herrera, P; Woodward, C L; McReynolds, J L; Kubena, L F; Nisbet, D J; Ricke, S C

    2007-01-01

    The objective of this study was to investigate the effect of combining a prebiotic with poultry feeds on the growth of Salmonella enterica serotype Typhimurium (ST) in an in vitro cecal fermentation system. Cecal contents from three laying hens were pooled and diluted to a 1:3000 concentration in an anaerobic dilution solution. The cecal dilution was added to sterile test tubes filled with alfalfa and layer ration with and without fructooligosaccharide (FOS). Two controls containing cecal dilutions and anaerobic dilution solution were used. The samples were processed in the anaerobic hood and incubated at 37 degrees C. Samples were inoculated with Salmonella at 0 and 24h after in vitro cecal fermentation and plated at 0 and 24h after inoculation with ST. Plates were incubated for 24h and colony forming units (CFU) enumerated. The samples immediately inoculated with ST without prior cecal fermentation did not significantly lower ST counts 24h later. However, samples pre-incubated for 24h with cecal microflora prior to ST inoculation exhibited reduced ST CFU by approximately 2 logarithms, with the most dramatic decreases seen in alfalfa and layer ration combined with FOS. The addition of FOS to feed substrate diets in combination with cecal contents acted in a synergistic manner to decrease ST growth only after ST was introduced to 24h cecal incubations. PMID:17588782

  9. The Evolution of Two-Component Systems in Bacteria RevealsDifferent Strategies for Niche Adaptation

    Energy Technology Data Exchange (ETDEWEB)

    Alm, Eric; Huang, Katherine; Arkin, Adam

    2006-09-13

    Two-component systems including histidine protein kinasesrepresent the primary signal transduction paradigm in prokaryoticorganisms. To understand how these systems adapt to allow organisms todetect niche-specific signals, we analyzed the phylogenetic distributionof nearly 5000 histidine protein kinases from 207 sequenced prokaryoticgenomes. We found that many genomes carry a large repertoire of recentlyevolved signaling genes, which may reflect selective pressure to adapt tonew environmental conditions. Both lineage-specific gene family expansionand horizontal gene transfer play major roles in the introduction of newhistidine kinases into genomes; however, there are differences in howthese two evolutionary forces act. Genes imported via horizontal transferare more likely to retain their original functionality as inferred from asimilar complement of signaling domains, while gene family expansionaccompanied by domain shuffling appears to be a major source of novelgenetic diversity. Family expansion is the dominantsource of newhistidine kinase genes in the genomes most enriched in signalingproteins, and detailed analysis reveals that divergence in domainstructure and changes in expression patterns are hallmarks of recentexpansions. Finally, while these two modes of gene acquisition arewidespread across bacterial taxa, there are clear species-specificpreferences for which mode is used.

  10. Regulation of acid adaptation in Lactic acid bacteria%乳酸菌的适酸性调节

    Institute of Scientific and Technical Information of China (English)

    乔磊; 崔艳华; 曲晓军

    2011-01-01

    The understanding of acid adaptation mechanisms of LAB will benefit screening the acid-tolerance bacteria, the optimization of procedures in the ferment progress and optimization of culture. This will greatly improve the quality of fermented foods. The acid adaptation mechanisms were discussed, including proton pump, the production of alkali, the changes of membrane, protection or repair of macro-molecules and the regulation of acid tolerance.%探讨了乳酸菌适酸机制有助于抗酸菌株的筛选、发酵过程中工序的优化以及培养基的优化等,进而大大提升发酵产品品质.对质子泵、产碱、细胞膜变化、大分子保护修复以及耐酸调节在内的适酸性调节机制进行了一一阐述.

  11. Ammonia-oxidizing archaea have better adaptability in oxygenated/hypoxic alternant conditions compared to ammonia-oxidizing bacteria.

    Science.gov (United States)

    Liu, Shuai; Hu, Baolan; He, Zhanfei; Zhang, Bin; Tian, Guangming; Zheng, Ping; Fang, Fang

    2015-10-01

    Ammonia oxidation is performed by both ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB). Few studies compared the adaptability of AOA and AOB for oxygenated/hypoxic alternant conditions in water-level-fluctuating zones. Here, using qPCR and 454 high-throughput sequencing of functional amoA genes of AOA and AOB, we examined the changes of abundances, diversities, and community structures of AOA and AOB in periodically flooded soils compared to the non-flooded soils in Three Gorges Reservoir. The increased AOA operational taxonomic unit (OTU) numbers and the higher ratios of abundance (AOA:AOB) in the periodically flooded soils suggested AOA have better adaptability for oxygenated/hypoxic alternant conditions in the water-level-fluctuating zones in the Three Gorges Reservoir and probably responsible for the ammonia oxidation there. Canonical correspondence analysis (CCA) showed that oxidation-reduction potential (ORP) had the most significant effect on the community distribution of AOA (p amoA gene abundances (AOA:AOB) (p < 0.05). ORP was also significantly positively correlated with AOB abundance (p < 0.05). PMID:26099334

  12. Anaerobic biological treatment

    International Nuclear Information System (INIS)

    The Enso-Fenox process has been very successfully used to remove chlorinated phenolic compounds from pulp bleaching effluents. It is a two-stage anaerobic/aerobic process consisting of a nonmethanogenic anaerobic fluidized bed followed by a trickling filter. Studies have been conducted on reductive dechlorination of chlorinated aromatic compounds under anaerobic conditions with chlorinated phenols as the sole carbon and energy source. Approximately 40% of the added chlorophenols was converted to CH4 and CO2. Substrate loading rates were 20 mg/L/d at hydraulic detention times of 2-4 days with 90% substrate conversion efficiency. Reductive dechlorination of mono, di-, tri-, and pentachlorophenols has been demonstrated in anaerobic sewage sludge. The following constituents were tested in the laboratory at their approximate concentrations in coal conversion wastewater (CCWW) and were anaerobically degraded in serum bottles: 1,000 mg/L phenol; 500 mg/L resorcinol; 1,000 mg/L benzoic acid; 500 mg/L p-cresol; 200 mg/L pyridine; 2,000 mg/L benzoic acid; 250 mg/L 40 methylcatechol; 500 mg/L 4-ethylpyridine; and 2,000 mg/L hexanoic acid. A petrochemical may initially exhibit toxicity to an unacclimated population of methane-fermenting bacteria, but with acclimation the toxicity may be greatly reduced or disappear. In addition, the microorganisms may develop the capacity to actually degrade compounds which showed initial toxicity. Since biomass digestion requires a complete consortium of bacteria, it is relevant to study the effect of a given process as well as to individual steps within the process. A toxicant can inhibit the rate-limiting step and/or change the step that is rate-limiting. Both manifestations of toxicity can severely affect the overall process

  13. Anaerobic Infections in Children with Neurological Impairments.

    Science.gov (United States)

    Brook, Itzhak

    1995-01-01

    Children with neurological impairments are prone to develop serious infection with anaerobic bacteria. The most common anaerobic infections are decubitus ulcers; gastrostomy site wound infections; pulmonary infections (aspiration pneumonia, lung abscesses, and tracheitis); and chronic suppurative otitis media. The unique microbiology of each of…

  14. Diversity, cold active enzymes and adaptation strategies of bacteria inhabiting glacier cryoconite holes of High Arctic.

    Science.gov (United States)

    Singh, Purnima; Singh, Shiv M; Dhakephalkar, Prashant

    2014-03-01

    Cryoconite holes have biogeochemical, ecological and biotechnological importance. This communication presents results on culturable psychrophilic bacterial diversity from cryoconite holes at Midre Lovénbreen (ML), Austre Brøggerbreen (AB), and Vestre Brøggerbreen (VB) glaciers. The culturable bacterial count ranged from 2.7 × 10(3) to 8.8 × 10(4) CFUs/g while the total bacterial numbers ranged from 5.07 × 10(5) to 1.50 × 10(6) cells at the three glaciers. A total of 35 morphologically distinct bacterial isolates were isolated. Based on 16S rRNA gene sequence data, the identified species belonged to eight genera namely Pseudomonas, Polaromonas, Micrococcus, Subtercola, Agreia, Leifsonia, Cryobacterium and Flavobacterium. The isolates varied in their growth temperature, NaCl tolerance, growth pH, enzyme activities, carbon utilization and antibiotic sensitivity tests. Fatty acid profiles indicate the predominance of branched fatty acids in the isolates. To the best of our knowledge, this is the first record of culturable bacterial communities and their characterization from glacier cryoconites from High Arctic. High amylase and protease activities expressed by Micrococcus sp. MLB-41 and amylase, protease and lipase activities expressed by Cryobacterium sp. MLB-32 provide a clue to the potential applications of these organisms. These cold-adapted enzymes may provide an opportunity for the prospect of biotechnology in Arctic. PMID:24346230

  15. Metabolic adaptation of microbial communities to ammonium stress in a high solid anaerobic digester with dewatered sludge.

    Science.gov (United States)

    Dai, Xiaohu; Yan, Han; Li, Ning; He, Jin; Ding, Yueling; Dai, Lingling; Dong, Bin

    2016-01-01

    A high solid digester with dewatered sludge was operated for 110 days to ascertain the interactions between bacterial and archaeal communities under ammonium stress, as well as the corresponding changes in bio-degradation mechanisms. The volatile solids reduction (95% confidence intervals in mean) changed from 31.6 ± 0.9% in the stable period (day 40-55) to 21.3 ± 1.5% in the last period (day 71-110) when ammonium concentration was elevated to be within 5,000-6,000 mgN/L. Biogas yield dropped accordingly from 11.9 ± 0.3 to 10.4 ± 0.2 L/d and carbon dioxide increased simultaneously from 35.2% to 44.8%. Anaerobranca better adapted to the ammonium stress, while the initially dominant protein-degrading microbes-Tepidimicrobium and Proteiniborus were suppressed, probably responsible for the increase of protein content in digestate. Meanwhile, Methanosarcina, as the dominant Archaea, was resistant to ammonium stress with the constant relative abundance of more than 92% during the whole operation. Nonmetric Multidimensional Scaling (NMDS) analysis was thus conducted which indicated that the gradually increased TAN dictated the bacterial clusters. The dominant Methanosarcina and the increased carbon dioxide content under ammonium stress suggested that, rather than the commonly acknowledged syntrophic acetate oxidation (SAO) with hydrogenotrophic methanogenesis, only SAO pathway was enhanced during the initial 'ammonium inhibition'. PMID:27312792

  16. Rumen bacteria

    International Nuclear Information System (INIS)

    The rumen is the most extensively studied gut community and is characterized by its high population density, wide diversity and complexity of interactions. This complex, mixed microbial culture is comprised of prokaryote organisms including methane-producing archaebacteria, eukaryote organisms, such as ciliate and flagellate protozoa, anaerobic phycomycete fungi and bacteriophage. Bacteria are predominant (up to 1011 viable cells per g comprising 200 species) but a variety of ciliate protozoa occur widely (104-106/g distributed over 25 genera). The anaerobic fungi are also widely distributed (zoospore population densities of 102-104/g distributed over 5 genera). The occurrence of bacteriophage is well documented (107-109 particles/g). This section focuses primarily on the widely used methods for the cultivation and the enumeration of rumen microbes, especially bacteria, which grow under anaerobic conditions. Methods that can be used to measure hydrolytic enzymes (cellulases, xylanases, amylases and proteinases) are also described, along with cell harvesting and fractionation procedures. Brief reference is also made to fungi and protozoa, but detailed explanations for culturing and enumerating these microbes is presented in Chapters 2.4 and 2.5

  17. Anaerobic Treatment of Methanolic Wastes

    NARCIS (Netherlands)

    Lettinga, G.; Geest, van der A.Th.; Hobma, S.W.; Laan, van der J.B.R.

    1979-01-01

    Although it is well known that methanol can be fermented directly by a specific species of methane bacteria, viz. Methanosarcina barkeri, until now little information was available about the effect of important environmental factors on the anaerobic fermentation of methanol. As methanol can be the m

  18. Evaluation of surface contamination of bacteria in various dental clinics with special reference to obligate and facultative anaerobic spore bearing bacilli

    Directory of Open Access Journals (Sweden)

    Kannan I, Jessica Yolanda Jeevitha, Sambandam Cecilia, Jayalakshmi M, Premavathy RK and Shantha S

    2014-07-01

    Full Text Available Introduction: The occupational health and safety is an important prerequisite in dental clinic setup for well being of both the doctor and patient. Both the patient and dentist are always at the risk of infections. Aim and objectives: There is no proper literature on the survey of bacterial spores, especially of Clostridium species in dental clinics. Hence an attempt has been made in the present pilot study to evaluate the surface contamination with special reference to bacterial spores. Materials and methods: Various dental clinics from Chennai city, India were selected for the present study. Samples were collected from two clinics each from endodontic, prosthodontic, orthodontic, and periodontic. In each clinic important places were selected for sampling. The samples were collected in the form of swabs. The swabs thus obtained were inoculated into Robertson Cooked Meat Medium and was incubated in anaerobic condition at 370C for 7 days. Each day the tubes were examined for turbidity and colour change and were noted. At the end of 7th day the smear was prepared from each tube and gram staining was performed. The gram stained slides were examined microscopically for the presence of spore bearing bacilli especially with special reference to terminal spore bearing bacilli. Results and conclusion: From the present study it is clear that the dental clinics invariably posses a lot of aerobic and anaerobic spores irrespective of stringent disinfection procedures. Hence it is mandatory for the dental clinics to undergo periodical microbiological surveillance and to take proper steps in the control of bacterial spores.

  19. Cultivable Anaerobic Microbiota of Infected Root Canals

    Directory of Open Access Journals (Sweden)

    Takuichi Sato

    2012-01-01

    Full Text Available Objective. Periapical periodontitis is an infectious and inflammatory disease of the periapical tissues caused by oral bacteria invading the root canal. In the present study, profiling of the microbiota in infected root canals was performed using anaerobic culture and molecular biological techniques for bacterial identification. Methods. Informed consent was obtained from all subjects (age ranges, 34–71 years. Nine infected root canals with periapical lesions from 7 subjects were included. Samples from infected root canals were collected, followed by anaerobic culture on CDC blood agar plates. After 7 days, colony forming units (CFU were counted and isolated bacteria were identified by 16S rRNA gene sequencing. Results. The mean bacterial count (CFU in root canals was (0.5±1.1×106 (range 8.0×101–3.1×106, and anaerobic bacteria were predominant (89.8%. The predominant isolates were Olsenella (25.4%, Mogibacterium (17.7%, Pseudoramibacter (17.7%, Propionibacterium (11.9% and Parvimonas (5.9%. Conclusion. The combination of anaerobic culture and molecular biological techniques makes it possible to analyze rapidly the microbiota in infected root canals. The overwhelming majority of the isolates from infected root canals were found to be anaerobic bacteria, suggesting that the environment in root canals is anaerobic and therefore support the growth of anaerobes.

  20. COMPLEX EFFECTS OF SALMOZAN MEDICINE AND PROBIOТIC BACTERIA OF LACTOBACILLUS GENUS ON NATURAL RESISTANCE AND ADAPTIVE IMMUNIТY OF EXPERIMENTAL ANIМALS

    OpenAIRE

    Т. N. Nikolaeva; Е. А. Grigorjeva; Kozlov, V. V.; А. V. Pronin

    2014-01-01

    Results of study of immunoprotective properties of medicine Salmozan and its combined effect with probiotic bacteria of genus Lactobacillus оп natural resistance and parameters of adaptive immunity of experimental animals аге presented. Salmozan stimulates production of IL-1α, IL-12, TNFα in peritoneal macrophages, production of MIF in реуеr patch and spleen cells and, thus, activates Th1 cells and cytotoxic T cells. Bacteria of Lactobacillus genus enhance modulating effects of Salmozan оn ce...

  1. Anaerobic Nitrogen Fixers on Mars

    Science.gov (United States)

    Lewis, B. G.

    2000-07-01

    The conversion of atmospheric nitrogen gas to the protein of living systems is an amazing process of nature. The first step in the process is biological nitrogen fixation, the transformation of N2 to NH3. The phenomenon is crucial for feeding the billions of our species on Earth. On Mars, the same process may allow us to discover how life can adapt to a hostile environment, and render it habitable. Hostile environments also exist on Earth. For example, nothing grows in coal refuse piles due to the oxidation of pyrite and marcasite to sulfuric acid. Yet, when the acidity is neutralized, alfalfa and soybean plants develop root nodules typical of symbiotic nitrogen fixation with Rhizobium species possibly living in the pyritic material. When split open, these nodules exhibited the pinkish color of leghemoglobin, a protein in the nodule protecting the active nitrogen-fixing enzyme nitrogenase against the toxic effects of oxygen. Although we have not yet obtained direct evidence of nitrogenase activity in these nodules (reduction of acetylene to ethylene, for example), these findings suggested the possibility that nitrogen fixation was taking place in this hostile, non-soil material. This immediately raises the possibility that freeliving anaerobic bacteria which fix atmospheric nitrogen on Earth, could do the same on Mars.

  2. Anaerobe Tolerance to Oxygen and the Potentials of Anaerobic and Aerobic Cocultures for Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    M.T. Kato

    1997-12-01

    Full Text Available The anaerobic treatment processes are considered to be well-established methods for the elimination of easily biodegradable organic matter from wastewaters. Some difficulties concerning certain wastewaters are related to the possible presence of dissolved oxygen. The common belief is that anaerobes are oxygen intolerant. Therefore, the common practice is to use sequencing anaerobic and aerobic steps in separate tanks. Enhanced treatment by polishing off the residual biodegradable oxygen demand from effluents of anaerobic reactors, or the biodegradation of recalcitrant wastewater pollutants, usually requires sequenced anaerobic and aerobic bacteria activities. However, the combined activity of both bacteria can also be obtained in a single reactor. Previous experiments with either pure or mixed cultures showed that anaerobes can tolerate oxygen to a certain extent. The oxygen toxicity to methanogens in anaerobic sludges was quantified in batch experiments, as well as in anaerobic reactors. The results showed that methanogens have a high tolerance to oxygen. In practice, it was confirmed that dissolved oxygen does not constitute any detrimental effect on reactor treatment performance. This means that the coexistence of anaerobic and aerobic bacteria in one single reactor is feasible and increases the potentials of new applications in wastewater treatment

  3. 血清IgG抗体含量与口腔厌氧菌致牙髓感染的关系%Relationship between contents of serum IgG antibody and pulp infections caused by oral anaerobic bacteria

    Institute of Scientific and Technical Information of China (English)

    吕朋君; 马珅; 刘晓斌

    2015-01-01

    OBJECTIVE To observe the relationship between the level of serum IgG antibody and the pulp infections caused by oral anaerobic bacteria by referring to the characteristics of specific response between antigen and anti‐body so as to reduce the infection rate .METHODS The patients with pulp diseases who were treated in the hospi‐tal from Jan 2013 to Jan 2014 were enrolled in the study and divided into the group B ,C ,and D ,with 10 cases in each ;meanwhile 10 healthy subjects were chosen as the group A .The IgG antibody contents in the 10 internation‐al standard anaerobic bacteria strains isolated from the serum of the patients with infections and the healthy sub‐jects were determined by using ELISA method ,the relationship between the pulp infections and the oral anaerobic bacteria was specifically analyzed ,and the statistical analysis of data was performed with the use of SPSS 17 .0 software .RESULTS The average level of serum antibody in Prevotella intermedia was significantly lower in the group A than in the group B ,C ,and D (P<0 .05) .As compared with the group A ,the OD values of other three groups were more than 2 .1 ,and all were positive .There was significant difference in the average level of serum antibody in Porphyromonas gingivalis among the healthy subjects ,the patients with pulp infections ,and the pa‐tients with pulp‐periodontal diseases (P<0 .05) ,as compared with the patients with periodontal disease ,howev‐er ,the difference was not significant .There was no significant difference in the OD value of serum antibody in the anaerobic bacteria among the four groups .CONCLUSION The ELISA ,as is applied for the analysis of the anaero‐bic bacteria causing the pulp infections ,may contribute to considerably higher isolation rate and accuracy than the traditional microbial culture ,and it can be used as a conventional method for the detection of pathogenic bacteria causing pulp infections .%目的:利用抗原与抗体特异反应的

  4. Anaerobic Metabolism and Bioremediation of Explosives-Contaminated Soil

    Science.gov (United States)

    Boopathy, Raj

    Nitroaromatic compounds pollute soil, water, and food via use of pesticides, plastics, pharmaceuticals, landfill dumping of industrial wastes, and the military use of explosives. Biotransformation of trinitrotoluene and other nitroaromatics by aerobic bacteria in the laboratory has been frequently reported, but the anaerobic bacterial metabolism of nitroaromatics has not been studied as extensively perhaps due to the difficulty in working with anaerobic cultures and the slow growth of anaerobes. Sulfate-reducing and methanogenic bacteria can metabolize nitroaromatic compounds under anaerobic conditions if appropriate electron donors and electron acceptors are present in the environment.

  5. Anaerobic workout

    OpenAIRE

    McAdam, Ewan J.

    2010-01-01

    Anaerobic technology cannot directly replace current wastewater treatment processes exclusively. The UASB reactor configuration removes slightly less organic carbon by comparison as the process relies on lamella separation for passive clarification rather than using fine pores like anMBR. By contrast, whilst anMBR can operate as a single unit process for organic carbon removal, the membrane surface has to be cleaned using gas sparging to limit surface deposition, which requires extra energy. ...

  6. Isolation and Identification of Cold—adapted Bacteria in Cold Storage%冷库中低温细菌的分离及鉴定

    Institute of Scientific and Technical Information of China (English)

    邹昊

    2012-01-01

    This paper firstly selects 5 cold-adapted microorganisms from the samples in cold storage,and then identifies them according to their morphological and physiological characteristics,two of which 16S rDNA-sequencing are made and identified by means of BLAST matching.The biochemical identification results show that all the isolated low-temperature bacteria are gram-negative bacteria;3 col-adapted bacteria identified by 16S rDNA are stains of Pseudomonas spp.%从来自冷库中的样品中共筛选分离出5株低温细菌。对分离的低温细菌进行了分类鉴定,主要进行了生理、生化特性分析,对其中的2株细菌作了16S rDNA测序并通过BLAST比对进行了鉴定。生化鉴定结果表明:所有分离到的低温细菌均为革兰氏阴性菌。经16S rDNA鉴定的3株低温细菌全部为假单孢菌属的菌株。

  7. Probiogenomics as a tool to obtain genetic insights into adaptation of probiotic bacteria to the human gut

    OpenAIRE

    Ventura, Marco; Turroni, Francesca; van Sinderen, Douwe

    2012-01-01

    Bifidobacteria and lactobacilli are widely exploited as health-promoting bacteria in many functional foods. However, the molecular mechanisms as to how these bacteria positively impact on host health are far from completely understood. For this reason these microorganisms represent a growing area of interest with respect to their genomics, molecular biology and genetics. Recent genome sequencing of a large number of strains of bifidobacteria and lactobacilli has allowed access to the complete...

  8. Adaptation of Oil Palm Seedlings Inoculated with Arbuscular Mycorrhizal Fungi and Mycorrhizal Endosymbiotic Bacteria Bacillus subtilis B10 towards Biotic Stress of Pathogen Ganoderma boninense Pat

    Directory of Open Access Journals (Sweden)

    YENNI BAKHTIAR

    2012-12-01

    Full Text Available The effects of mycorrhizal endosymbiotic bacteria Bacillus subtilis B10 and composite of arbuscular mycorrhizal fungal spores in green house experiment were examined in order to evaluate their effectiveness and compatibility with oil palm seedlings in the presence of a fungal pathogen Ganoderma boninense, the most serious pathogen in oil palm (Elaeis guineensis Jacq in Indonesia. A three factors experiment were conducted, with mycorrhizal inoculation (M0 and M1, bacterial B. subtilis B10 inoculation (B0 and B1, and G. boninense inoculation (G0 and G1 as the first, second, and third factors, respectively. The results showed that disease severity index, plant height, root dry-weight, and phosphorus uptake were affected by co-inoculation of mycorrhizal endosymbiotic bacteria B. subtilis B10 and composite of arbuscular mycorrhizal fungi. Co-inoculation of mycorrhizal endosymbiotic bacteria B. subtilis B10 and arbuscular mycorrhizal fungi did not only reduce the percentage of basal stem rot incidence, but also significantly increased plant height and phosphorus uptake by oil palm seedlings. Our results suggest that in oil palm seedlings mycorrhizal endosymbiotic bacteria B. subtilis B10 worked synergistically with arbuscular mycorrhizal fungi in increasing plant adaptation toward biotic stress of pathogen G. boninese and could be promising biocontrol agents.

  9. The physicochemical characteristics and anaerobic degradability of desiccated coconut industry waste water.

    Science.gov (United States)

    Chanakya, H N; Khuntia, Himanshu Kumar; Mukherjee, Niranjan; Aniruddha, R; Mudakavi, J R; Thimmaraju, Preeti

    2015-12-01

    Desiccated coconut industries (DCI) create various intermediates from fresh coconut kernel for cosmetic, pharmaceutical and food industries. The mechanized and non-mechanized DCI process between 10,000 and 100,000 nuts/day to discharge 6-150 m(3) of malodorous waste water leading to a discharge of 264-6642 kg chemical oxygen demand (COD) daily. In these units, three main types of waste water streams are coconut kernel water, kernel wash water and virgin oil waste water. The effluent streams contain lipids (1-55 g/l), suspended solids (6-80 g/l) and volatile fatty acids (VFA) at concentrations that are inhibitory to anaerobic bacteria. Coconut water contributes to 20-50% of the total volume and 50-60% of the total organic loads and causes higher inhibition of anaerobic bacteria with an initial lag phase of 30 days. The lagooning method of treatment widely adopted failed to appreciably treat the waste water and often led to the accumulation of volatile fatty acids (propionic acid) along with long-chain unsaturated free fatty acids. Biogas generation during biological methane potential (BMP) assay required a 15-day adaptation time, and gas production occurred at low concentrations of coconut water while the other two streams did not appear to be inhibitory. The anaerobic bacteria can mineralize coconut lipids at concentrations of 175 mg/l; however; they are severely inhibited at a lipid level of ≥350 mg/g bacterial inoculum. The modified Gompertz model showed a good fit with the BMP data with a simple sigmoid pattern. However, it failed to fit experimental BMP data either possessing a longer lag phase and/or diauxic biogas production suggesting inhibition of anaerobic bacteria. PMID:26612563

  10. COMPLEX EFFECTS OF SALMOZAN MEDICINE AND PROBIOТIC BACTERIA OF LACTOBACILLUS GENUS ON NATURAL RESISTANCE AND ADAPTIVE IMMUNIТY OF EXPERIMENTAL ANIМALS

    Directory of Open Access Journals (Sweden)

    Т. N. Nikolaeva

    2010-01-01

    Full Text Available Results of study of immunoprotective properties of medicine Salmozan and its combined effect with probiotic bacteria of genus Lactobacillus оп natural resistance and parameters of adaptive immunity of experimental animals аге presented. Salmozan stimulates production of IL-1α, IL-12, TNFα in peritoneal macrophages, production of MIF in реуеr patch and spleen cells and, thus, activates Th1 cells and cytotoxic T cells. Bacteria of Lactobacillus genus enhance modulating effects of Salmozan оn cellular immune reactions. Results of the experiments carried out provide the basis for conclusion abont stimulation of anti-infection and anticancer immunity bу Salmozan which саn bе used fог immunoprophylaxis and соrrеction of cellular immune reactions bу means of probiotic therapy.

  11. Adapt

    Science.gov (United States)

    Bargatze, L. F.

    2015-12-01

    Active Data Archive Product Tracking (ADAPT) is a collection of software routines that permits one to generate XML metadata files to describe and register data products in support of the NASA Heliophysics Virtual Observatory VxO effort. ADAPT is also a philosophy. The ADAPT concept is to use any and all available metadata associated with scientific data to produce XML metadata descriptions in a consistent, uniform, and organized fashion to provide blanket access to the full complement of data stored on a targeted data server. In this poster, we present an application of ADAPT to describe all of the data products that are stored by using the Common Data File (CDF) format served out by the CDAWEB and SPDF data servers hosted at the NASA Goddard Space Flight Center. These data servers are the primary repositories for NASA Heliophysics data. For this purpose, the ADAPT routines have been used to generate data resource descriptions by using an XML schema named Space Physics Archive, Search, and Extract (SPASE). SPASE is the designated standard for documenting Heliophysics data products, as adopted by the Heliophysics Data and Model Consortium. The set of SPASE XML resource descriptions produced by ADAPT includes high-level descriptions of numerical data products, display data products, or catalogs and also includes low-level "Granule" descriptions. A SPASE Granule is effectively a universal access metadata resource; a Granule associates an individual data file (e.g. a CDF file) with a "parent" high-level data resource description, assigns a resource identifier to the file, and lists the corresponding assess URL(s). The CDAWEB and SPDF file systems were queried to provide the input required by the ADAPT software to create an initial set of SPASE metadata resource descriptions. Then, the CDAWEB and SPDF data repositories were queried subsequently on a nightly basis and the CDF file lists were checked for any changes such as the occurrence of new, modified, or deleted

  12. Comparison of biogas sludge and raw crop material as source of hydrolytic cultures for anaerobic digestion.

    Science.gov (United States)

    Weiß, Stefan; Somitsch, Walter; Klymiuk, Ingeborg; Trajanoski, Slave; Guebitz, Georg M

    2016-05-01

    Mixed fermentative/hydrolytic bacteria were enriched on lignocellulose substrates in minimal medium under semi-anaerobic mesophilic conditions in the presence or absence of natural zeolite as growth supporter to ultimately bioaugment non-adapted sludge and thereby enhance the overall anaerobic digestion (AD) of recalcitrant plant material. Desired enzyme activities, i.e. xylanases and cellulase were monitored during subsequent cultivation cycles. Furthermore, enriched microbial communities were characterized by 16S rRNA-based 454-Pyrosequencing, revealing Firmicutes, Bacteriodetes, Proteobacteria and Spirochaetes to be the predominant bacterial groups in cultures derived from anaerobic sludge and raw crop material, i.e. maple green cut and wheat straw as well. Enriched populations relevant for biopolymer hydrolysis were then compared in biological methane potential tests to demonstrate positive effects on the biogasification of renewable plant substrate material. A significant impact on methane productivity was observed with adapted mixed cultures when used in combination with clinoptilolite to augment and supplement non-adapted bioreactor sludge. PMID:26894564

  13. 舟山群岛海域沉积物厌氧氨氧化细菌多样性%Diversity of anaerobic ammonium oxidizing bacteria in marine sediments from the Zhoushan Islands

    Institute of Scientific and Technical Information of China (English)

    张东声; 刘镇盛; 张海峰; 王小谷; 王春生

    2015-01-01

    Anaerobic ammonium oxidation ( anammox) is an important process regulating the balance of marine nitrogen and ecosystem health, particularly under anoxic conditions. The Zhoushan Islands are located east of the Changjiang river estuary, and collect a high load of anthropogenic nitrogen, which leads to severe eutrophication and seasonal hypoxia. Therefore, bacteria that mediate the anammox process are of major interest in this area. Although the importance of anammox-mediating bacteria is known, few studies on these bacteria have been conducted in the East China Sea. To the best of our knowledge, this study is the first to report the diversity, community composition, and distribution of anammox bacteria in the Zhoushan Islands. Field surveys were conducted in June 2012; triplicate surface sediment samples were collected at each site and stored in sterile plastic bags at-80℃ for subsequent DNA extraction and molecular analysis. Total genomic DNA was extracted using the Fast DNA SPIN Kit for soil. Environmental DNA extracted from sediment samples was used as the template for PCR amplification of anammox 16S rRNA genes using primers Amx368f—Amx820r. The purified fragments were cloned and sequenced for phylogenetic and statistical analyses. In total, 297 sequences belonging to 16 operational taxonomic units ( OTUs) were obtained from five 16S rRNA gene libraries. The biodiversity of anammox bacteria was examined using rarefaction analysis of the 16S rRNA genes, the Chao1 estimator, and Shannon index calculations. EZ3-1, EZ3-3, and EZ1-5 exhibited higher diversity than EZ1-3 and EZ3-5. A significant positive correlation between Shannon index and organic carbon content indicate that sediment organic carbon content plays an important role in modulating anammox bacterial diversity in the Zhoushan Island area. Weighted UniFrac PCoA analysis of the 16S rRNA genes demonstrated spatial heterogeneity in the community composition of anammox bacteria; the anammox bacteria in

  14. Methanol conversion in high-rate anaerobic reactors

    NARCIS (Netherlands)

    Weijma, J.; Stams, A.J.M.

    2001-01-01

    An overview on methanol conversion in high-rate anaerobic reactors is presented, with the focus on technological as well as microbiological aspects. The simple C1-compound methanol can be degraded anaerobically in a complex way, in which methanogens, sulfate reducing bacteria and homoacetogens inter

  15. Electron transport chains of lactic acid bacteria

    OpenAIRE

    Brooijmans, R.J.W.

    2008-01-01

    Lactic acid bacteria are generally considered facultative anaerobic obligate fermentative bacteria. They are unable to synthesize heme. Some lactic acid bacteria are unable to form menaquinone as well. Both these components are cofactors of respiratory (electron transport) chains of prokaryotic bacteria. Lactococcus lactis, and several other lactic acid bacteria, however respond to the addition of heme in aerobic growth conditions. This response includes increased biomass and robustness. In t...

  16. Effect of rumen bacteria from sheep adapted to a tanninferous diet on in vitro fermentation parameters of pistachio hulls using bovine inoculum.

    Science.gov (United States)

    Babaei, Y; Rouzbehan, Y; Alipour, D

    2015-01-01

    Sheep adapted to consume tannins rich feeds such as oak leaf (OL) appear to develop defensive mechanisms by their ruminal bacteria against these polyphenols. The capabilities of ruminal isolated tannins resistant bacteria from these animals to ferment a tanniniferous feed (i.e., pistachio hulls, (PH) which were incubated with rumen fluid from Holstein dairy cows was assessed. Six g positive cocci were isolated from the rumen of sheep and the 16s rRNA gene sequences showed them to be closely related to Streptococcus gallolyticus. In three runs of in vitro gas production (GP), the effect of two of the isolates incubated with buffered-ruminal fluid of Holstein cow and PH was evaluated. The GP was recorded from 1 to 96 h of incubation. Incubating either of the isolates with PH caused a significantly higher in vitro gas production, estimated parameters, in vitro organic matter disappearance, metabolisable energy and volatile fatty acids than those without any isolate. The improvement in the ruminal parameters when either of the isolates was used suggested the possible presence of isolated tannins-resistant bacteria (Streptococcus gallolyticus sp.), however, in vivo studies must be conducted to confirm the in vitro results. PMID:27175203

  17. Heavy metal pollution exerts reduction/adaptation in the diversity and enzyme expression profile of heterotrophic bacteria in Cochin estuary, India

    Energy Technology Data Exchange (ETDEWEB)

    Jose, Jiya; Giridhar, Rajesh; Anas, Abdulaziz [National Institute of Oceanography (CSIR), Regional Centre, PB 1913, Cochin, Kerala 682018 (India); Loka Bharathi, P.A. [National Institute of Oceanography (CSIR), Dona Paula, Goa 403004 (India); Nair, Shanta, E-mail: shanta@nio.org [National Institute of Oceanography (CSIR), Dona Paula, Goa 403004 (India)

    2011-10-15

    Over the past three decades heavy metal pollution has increased substantially in Cochin estuary, south west coast of India. Here we studied the distribution, diversity and enzyme expression profile of culturable microbial population along a pollution gradient. The distribution of resistance against 5 mM concentration of Zn, Co, Ni and Cu was observed among 90-100% of bacterial isolates retrieved from highly polluted Eloor, whereas it was less than 40% in Vypin and Munambam. Similarly, there was a difference in the distribution and diversity of bacterial phyla with predominance of Proteobacteria in Eloor and Firmicutes in Munambam and Vypin. We observed that 75-100% of the organisms retrieved from Eloor had low levels of expression for hydrolytic enzyme. In conclusion, the heavy metal pollution in Cochin estuary brought in reduction/adaptation in the distribution, diversity and enzyme expression profile of bacteria, which may impart adverse impacts on ecosystem functioning. - Highlights: > Substantial proliferation of heavy metal pollution in Cochin estuary. > 90-100% of bacteria were resistant against heavy metals. > Proteobacteria dominated in the hot spot sites. > Low Enzyme expression profile among microorganisms in hot spot sites. - Heavy metal pollution exerts pressure on the diversity and enzyme expression profile of estuarine bacteria.

  18. Heavy metal pollution exerts reduction/adaptation in the diversity and enzyme expression profile of heterotrophic bacteria in Cochin estuary, India

    International Nuclear Information System (INIS)

    Over the past three decades heavy metal pollution has increased substantially in Cochin estuary, south west coast of India. Here we studied the distribution, diversity and enzyme expression profile of culturable microbial population along a pollution gradient. The distribution of resistance against 5 mM concentration of Zn, Co, Ni and Cu was observed among 90-100% of bacterial isolates retrieved from highly polluted Eloor, whereas it was less than 40% in Vypin and Munambam. Similarly, there was a difference in the distribution and diversity of bacterial phyla with predominance of Proteobacteria in Eloor and Firmicutes in Munambam and Vypin. We observed that 75-100% of the organisms retrieved from Eloor had low levels of expression for hydrolytic enzyme. In conclusion, the heavy metal pollution in Cochin estuary brought in reduction/adaptation in the distribution, diversity and enzyme expression profile of bacteria, which may impart adverse impacts on ecosystem functioning. - Highlights: → Substantial proliferation of heavy metal pollution in Cochin estuary. → 90-100% of bacteria were resistant against heavy metals. → Proteobacteria dominated in the hot spot sites. → Low Enzyme expression profile among microorganisms in hot spot sites. - Heavy metal pollution exerts pressure on the diversity and enzyme expression profile of estuarine bacteria.

  19. High ethanol tolerance of the thermophilic anaerobic ethanol producer Thermoanaerobacter BG1L1

    DEFF Research Database (Denmark)

    Georgieva, Tania I.; Mikkelsen, Marie Just; Ahring, Birgitte Kiær

    2007-01-01

    The low ethanol tolerance of thermophilic anaerobic bacteria, generally less than 2% (v/v) ethanol, is one of the main limiting factors for their potential use for second generation fuel ethanol production. In this work, the tolerance of thermophilic anaerobic bacterium Thermoanaerobacter BG 1L1 to...... exogenously added ethanol was studied in a continuous immobilized reactor system at a growth temperature of 70 degrees C. Ethanol tolerance was evaluated based on inhibition of fermentative performance e.g.. inhibition of substrate conversion. At the highest ethanol concentration tested (8.3% v/v), the strain...... was able to convert 42% of the xylose initially present, indicating that this ethanol concentration is not the upper limit tolerated by the strain. Long-term strain adaptation to high ethanol concentrations (6 - 8.3%) resulted in an improvement of xylose conversion by 25% at an ethanol concentration...

  20. Host-Bacteria Crosstalk at the Dentogingival Junction

    Directory of Open Access Journals (Sweden)

    M. T. Pöllänen

    2012-01-01

    Full Text Available The dentogingival junction is of crucial importance in periodontal host defense both structurally and functionally. Oral bacteria exert a constant challenge to the host cells and tissues at the dentogingival junction. The host response is set up to eliminate the pathogens by the innate and adaptive defense mechanisms. In health, the commensal bacteria and the host defense mechanisms are in a dynamic steady state. During periodontal disease progression, the dental bacterial plaque, junctional epithelium (JE, inflammatory cells, connective tissue, and bone all go through a series of changes. The tissue homeostasis is turned into tissue destruction and progression of periodontitis. The classical study of Slots showed that in the bacterial plaque, the most remarkable change is the shift from gram-positive aerobic and facultatively anaerobic flora to a predominantly gram-negative and anaerobic flora. This has been later confirmed by several other studies. Furthermore, not only the shift of the bacterial flora to a more pathogenic one, but also bacterial growth as a biofilm on the tooth surface, allows the bacteria to communicate with each other and exert their virulence aimed at favoring their growth. This paper focuses on host-bacteria crosstalk at the dentogingival junction and the models studying it in vitro.

  1. Diversification and niche adaptations of Nitrospina-like bacteria in the polyextreme interfaces of Red Sea brines

    KAUST Repository

    Ngugi, David Kamanda

    2015-12-11

    Nitrite-oxidizing bacteria (NOB) of the genus Nitrospina have exclusively been found in marine environments. In the brine–seawater interface layer of Atlantis II Deep (Red Sea), Nitrospina-like bacteria constitute up to one-third of the bacterial 16S ribosomal RNA (rRNA) gene sequences. This is much higher compared with that reported in other marine habitats (~10% of all bacteria), and was unexpected because no NOB culture has been observed to grow above 4.0% salinity, presumably due to the low net energy gained from their metabolism that is insufficient for both growth and osmoregulation. Using phylogenetics, single-cell genomics and metagenomic fragment recruitment approaches, we document here that these Nitrospina-like bacteria, designated as Candidatus Nitromaritima RS, are not only highly diverged from the type species Nitrospina gracilis (pairwise genome identity of 69%) but are also ubiquitous in the deeper, highly saline interface layers (up to 11.2% salinity) with temperatures of up to 52 °C. Comparative pan-genome analyses revealed that less than half of the predicted proteome of Ca. Nitromaritima RS is shared with N. gracilis. Interestingly, the capacity for nitrite oxidation is also conserved in both genomes. Although both lack acidic proteomes synonymous with extreme halophiles, the pangenome of Ca. Nitromaritima RS specifically encodes enzymes with osmoregulatory and thermoprotective roles (i.e., ectoine/hydroxyectoine biosynthesis) and of thermodynamic importance (i.e., nitrate and nitrite reductases). Ca. Nitromaritima RS also possesses many hallmark traits of microaerophiles and high-affinity NOB. The abundance of the uncultured Ca. Nitromaritima lineage in marine oxyclines suggests their unrecognized ecological significance in deoxygenated areas of the global ocean.

  2. Diversification and niche adaptations of Nitrospina-like bacteria in the polyextreme interfaces of Red Sea brines.

    Science.gov (United States)

    Ngugi, David Kamanda; Blom, Jochen; Stepanauskas, Ramunas; Stingl, Ulrich

    2016-06-01

    Nitrite-oxidizing bacteria (NOB) of the genus Nitrospina have exclusively been found in marine environments. In the brine-seawater interface layer of Atlantis II Deep (Red Sea), Nitrospina-like bacteria constitute up to one-third of the bacterial 16S ribosomal RNA (rRNA) gene sequences. This is much higher compared with that reported in other marine habitats (~10% of all bacteria), and was unexpected because no NOB culture has been observed to grow above 4.0% salinity, presumably due to the low net energy gained from their metabolism that is insufficient for both growth and osmoregulation. Using phylogenetics, single-cell genomics and metagenomic fragment recruitment approaches, we document here that these Nitrospina-like bacteria, designated as Candidatus Nitromaritima RS, are not only highly diverged from the type species Nitrospina gracilis (pairwise genome identity of 69%) but are also ubiquitous in the deeper, highly saline interface layers (up to 11.2% salinity) with temperatures of up to 52 °C. Comparative pan-genome analyses revealed that less than half of the predicted proteome of Ca. Nitromaritima RS is shared with N. gracilis. Interestingly, the capacity for nitrite oxidation is also conserved in both genomes. Although both lack acidic proteomes synonymous with extreme halophiles, the pangenome of Ca. Nitromaritima RS specifically encodes enzymes with osmoregulatory and thermoprotective roles (i.e., ectoine/hydroxyectoine biosynthesis) and of thermodynamic importance (i.e., nitrate and nitrite reductases). Ca. Nitromaritima RS also possesses many hallmark traits of microaerophiles and high-affinity NOB. The abundance of the uncultured Ca. Nitromaritima lineage in marine oxyclines suggests their unrecognized ecological significance in deoxygenated areas of the global ocean. PMID:26657763

  3. Immune tolerance to an intestine-adapted bacteria, Chryseobacterium sp., injected into the hemocoel of Protaetia brevitarsis seulensis

    Science.gov (United States)

    Lee, Jiae; Hwang, Sejung; Cho, Saeyoull

    2016-01-01

    To explore the interaction of gut microbes and the host immune system, bacteria were isolated from the gut of Protaetia brevitarsis seulensis larvae. Chryseobacterium sp., Bacillus subtilis, Arthrobacter arilaitensis, Bacillus amyloliquefaciens, Bacillus megaterium, and Lysinibacillus xylanilyticus were cultured in vitro, identified, and injected in the hemocoel of P. brevitarsis seulensis larvae, respectively. There were no significant changes in phagocytosis-associated lysosomal formation or pathogen-related autophagosome in immune cells (granulocytes) from Chryseobacterium sp.-challenged larvae. Next, we examined changes in the transcription of innate immune genes such as peptidoglycan recognition proteins and antimicrobial peptides following infection with Chryseobacterium sp. PGRP-1 and -2 transcripts, which may be associated with melanization generated by prophenoloxidase (PPO), were either highly or moderately expressed at 24 h post-infection with Chryseobacterium sp. However, PGRP-SC2 transcripts, which code for bactericidal amidases, were expressed at low levels. With respect to antimicrobial peptides, only coleoptericin was moderately expressed in Chryseobacterium sp.-challenged larvae, suggesting maintenance of an optimum number of Chryseobacterium sp. All examined genes were expressed at significantly higher levels in larvae challenged with a pathogenic bacterium. Our data demonstrated that gut-inhabiting bacteria, the Chryseobacterium sp., induced a weaker immune response than other pathogenic bacteria, E. coli K12. PMID:27530146

  4. Bacteria and lignin degradation

    Institute of Scientific and Technical Information of China (English)

    Jing LI; Hongli YUAN; Jinshui YANG

    2009-01-01

    Lignin is both the most abundant aromatic (phenolic) polymer and the second most abundant raw material.It is degraded and modified by bacteria in the natural world,and bacteria seem to play a leading role in decomposing lignin in aquatic ecosystems.Lignin-degrading bacteria approach the polymer by mechanisms such as tunneling,erosion,and cavitation.With the advantages of immense environmental adaptability and biochemical versatility,bacteria deserve to be studied for their ligninolytic potential.

  5. Production of Value-added Products by Lactic Acid Bacteria

    Science.gov (United States)

    Lactic acid bacteria (LAB) are a group of facultative anaerobic, catalase negative, nonmotile and nonsporeforming–Gram positive bacteria. Most LAB utilize high energy C sources including monomer sugars to produce energy to maintain cellular structure and function. This anaerobic fermentation proce...

  6. Evidence for PAH Removal Coupled to the First Steps of Anaerobic Digestion in Sewage Sludge

    OpenAIRE

    Glenda Cea-Barcia; Hélène Carrère; Jean Philippe Steyer; Dominique Patureau

    2013-01-01

    Anaerobic degradation of polycyclic aromatic hydrocarbons has been brought to the fore, but information on removal kinetics and anaerobic degrading bacteria is still lacking. In order to explore the organic micropollutants removal kinetics under anaerobic conditions in regard to the methane production kinetics, the removal rate of 12 polycyclic aromatic hydrocarbons was measured in two anaerobic batch reactors series fed with a highly loaded secondary sludge as growth substrate. The results u...

  7. The molecular biological characterization of a strain of biohydrogen-producing anaerobe in Clostridium Genus

    Institute of Scientific and Technical Information of China (English)

    LI Yong-feng; REN Nan-qi; ZHENG Guo-xiang; LIU Min; HU Li-jie; CHEN Ying; WANG Xiang-jing

    2005-01-01

    The anaerobic process of biohydrogen production was developed recently. The isolation and identification of biohydrogen producing anaerobic bacteria with high evolution rate and yield is an important foundation of the fermented biohydrogen production process through which anaerobic bacteria digest organic wastewater. By considering physiological and biochemical traits, morphological characteristics and a 16S rDNA sequence, the isolated Rennanqilyf33 is shown to be a new species.

  8. New Understanding on Metabolism of Anaerobic Ammonium Oxidation Bacteria Based on Metagenomics Technology%基于宏基因组技术获得的对厌氧氨氧化菌代谢的新理解

    Institute of Scientific and Technical Information of China (English)

    丁爽; 郑平; 陆慧锋; 唐崇俭

    2012-01-01

    厌氧氨氧化菌(Anaerobic ammonium oxidation bacteria,AAOB)是化能自养菌,由于其生理代谢的奇异性、细胞结构的特殊性以及对氮素循环的重要性,已成为环境工程、微生物以及海洋生物学等领域的研究热点.然而.AAOB未能实现纯培养的现状已成为AAOB代谢途径研究的巨大障碍近年来兴起的宏基因组技术(Metagenomics)为AAOB代谢途径的研究提供了新手段.采用宏基因组技术,可直接研究微生物群体中某特定微生物基因组的结构与功能,摆脱了传统微生物学研究对纯培养的依赖,使未培养微生物的认识和开发成为可能本文首先简述获取AAOB宏基因组信息的过程,然后通过比较由传统代谢研究方法和宏基因组技术获得的AAOB代谢途径的研究成果,论述基于宏基因组技术获得的对AAOB代谢的新理解,得出以下结果和结论:1)AAOB的碳素固定途径为乙酰辅酶A途径,碳素固定的还原力来自NADH或者QH2;2)AAOB氮素转化的重要中问产物是NO,而非NH2OH,并提出了以NO为核心的AAOB代谢的改进模型;3)AAOB的ATP合成途径为氧化磷酸化,推测的电子传递途径为N2H4-QH2-细胞色素bc1 复合体;细胞色素bc1复合体再将电子用于NO2还原和N2H4合成AAOB的宏基因组技术使AAOB代谢途径的研究更具方向性.随着分子生物学理论和技术的不断发展,宏基因组学的升级技术(如宏转录组学、宏蛋白质组学)将为AAOB代谢途径的研究提供新的方法与平台.%Anaerobic ammonium oxidation bacteria (AAOB) belong to chemolitho-autotrophs. AAOB have become one of the research hotspots in the field of environmental engineering, microbiology and oceanography because of their specificities in metabolism, cell structure and nitrogen cycle. However, AAOB can not been cultivated in pure culture, which has become a great obstacle to study their metabolic pathways in further. Nowadays, fast-developing metagenomics provides

  9. Anaerobic Digestion: Process

    DEFF Research Database (Denmark)

    Angelidaki, Irini; Batstone, Damien J.

    2011-01-01

    Organic waste may degrade anaerobically in nature as well as in engineered systems. The latter is called anaerobic digestion or biogasification. Anaerobic digestion produces two main outputs: An energy-rich gas called biogas and an effluent. The effluent, which may be a solid as well as liquid with...... very little dry matter may also be called a digest. The digest should not be termed compost unless it specifically has been composted in an aerated step. This chapter describes the basic processes of anaerobic digestion. Chapter 9.5 describes the anaerobic treatment technologies, and Chapter 9.......6 addresses the mass balances and environmental aspects of anaerobic digestion....

  10. Succession of microbial community and enhanced mechanism of a ZVI-based anaerobic granular sludge process treating chloronitrobenzenes wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Liang, E-mail: felix79cn@hotmail.com [Department of Environmental Engineering, Zhejiang University, Hangzhou 310058 (China); Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou 310058 (China); Jin, Jie [Department of Environmental Engineering, Zhejiang University, Hangzhou 310058 (China); Lin, Haizhuan [Department of Environmental Engineering, Zhejiang University, Hangzhou 310058 (China); Wenzhou Environmental Protection Design Scientific Institute, Wenzhou 325000 (China); Gao, Kaituo [Department of Environmental Engineering, Zhejiang University, Hangzhou 310058 (China); Xu, Xiangyang, E-mail: xuxy@zju.edu.cn [Department of Environmental Engineering, Zhejiang University, Hangzhou 310058 (China); Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou 310058 (China)

    2015-03-21

    Highlights: • The combined ZVI–UASB process was established for the degradation of chloronitrobenzenes. • There were the better shock resistance and buffering capacity for anaerobic acidification in the combined process. • Novel ZVI-based anaerobic granular sludge (ZVI–AGS) was successfully developed. • Adaptive shift of microbial community was significant in ZVI-based anaerobic granular sludge system. - Abstract: The combined zero-valent iron (ZVI) and upflow anaerobic sludge blanket (UASB) process is established for the treatment of chloronitrobenzenes (ClNBs) wastewater, and the succession of microbial community and its enhanced mechanism are investigated in the study. Results showed that compared with the control UASB (R1), the stable COD removal, ClNBs transformation, and dechlorination occurred in the combined system (R2) when operated at influent COD and 3,4-Dichloronitrobenzene (3,4-DClNB) loading rates of 4200–7700 g m{sup −3} d{sup −1} and 6.0–70.0 g m{sup −3} d{sup −1}, and R2 had the better shock resistance and buffering capacity for the anaerobic acidification. The dechlorination for the intermediate products of p-chloroanaline (p-ClAn) to analine (AN) occurred in R2 reactor after 45 days, whereas it did not occur in R1 after a long-term operation. The novel ZVI-based anaerobic granular sludge (ZVI–AGS) was successfully developed in the combined system, and higher microbial activities including ClNB transformation and H{sub 2}/CH{sub 4} production were achieved simultaneously. The dominant bacteria were closely related to the groups of Megasphaera, Chloroflexi, and Clostridium, and the majority of archaea were correlated with the groups of Methanosarcinalesarchaeon, Methanosaetaconcilii, and Methanothrixsoehngenii, which are capable of reductively dechlorinating PCB, HCB, and TCE in anaerobic niche and EPS secretion.

  11. Succession of microbial community and enhanced mechanism of a ZVI-based anaerobic granular sludge process treating chloronitrobenzenes wastewater

    International Nuclear Information System (INIS)

    Highlights: • The combined ZVI–UASB process was established for the degradation of chloronitrobenzenes. • There were the better shock resistance and buffering capacity for anaerobic acidification in the combined process. • Novel ZVI-based anaerobic granular sludge (ZVI–AGS) was successfully developed. • Adaptive shift of microbial community was significant in ZVI-based anaerobic granular sludge system. - Abstract: The combined zero-valent iron (ZVI) and upflow anaerobic sludge blanket (UASB) process is established for the treatment of chloronitrobenzenes (ClNBs) wastewater, and the succession of microbial community and its enhanced mechanism are investigated in the study. Results showed that compared with the control UASB (R1), the stable COD removal, ClNBs transformation, and dechlorination occurred in the combined system (R2) when operated at influent COD and 3,4-Dichloronitrobenzene (3,4-DClNB) loading rates of 4200–7700 g m−3 d−1 and 6.0–70.0 g m−3 d−1, and R2 had the better shock resistance and buffering capacity for the anaerobic acidification. The dechlorination for the intermediate products of p-chloroanaline (p-ClAn) to analine (AN) occurred in R2 reactor after 45 days, whereas it did not occur in R1 after a long-term operation. The novel ZVI-based anaerobic granular sludge (ZVI–AGS) was successfully developed in the combined system, and higher microbial activities including ClNB transformation and H2/CH4 production were achieved simultaneously. The dominant bacteria were closely related to the groups of Megasphaera, Chloroflexi, and Clostridium, and the majority of archaea were correlated with the groups of Methanosarcinalesarchaeon, Methanosaetaconcilii, and Methanothrixsoehngenii, which are capable of reductively dechlorinating PCB, HCB, and TCE in anaerobic niche and EPS secretion

  12. Diversity and role of plasmids in adaptation of bacteria inhabiting the Lubin copper mine in Poland, an environment rich in heavy metals

    Directory of Open Access Journals (Sweden)

    Lukasz eDziewit

    2015-03-01

    Full Text Available The Lubin underground mine, is one of three mining divisions in the Lubin-Glogow Copper District in Lower Silesia province (Poland. It is the source of polymetallic ore that is rich in copper, silver and several heavy metals. Black shale is also significantly enriched in fossil organic matter in the form of long-chain hydrocarbons, polycyclic aromatic hydrocarbons, organic acids, esters, thiophenes and metalloporphyrins. Biological analyses have revealed that this environment is inhabited by extremophilic bacteria and fungi. Kupfershiefer black shale and samples of water, bottom and mineral sediments from the underground (below 600 m Lubin mine were taken and twenty bacterial strains were isolated and characterized. All exhibited multi-resistant and hypertolerant phenotypes to heavy metals. We analyzed the plasmidome of these strains in order to evaluate the diversity and role of mobile DNA in adaptation to the harsh conditions of the mine environment. Experimental and bioinformatic analyses of 11 extrachromosomal replicons were performed. Three plasmids, including a broad-host-range replicon containing a Tn3 family transposon, carried genes conferring resistance to arsenic, cadmium, cobalt, mercury and zinc. Functional analysis revealed that the resistance modules exhibit host specificity, i.e. they may increase or decrease tolerance to toxic ions depending on the host strain. The other identified replicons showed diverse features. Among them we identified a catabolic plasmid encoding enzymes involved in the utilization of histidine and vanillate, a putative plasmid-like prophage carrying genes responsible for NAD biosynthesis, and two repABC-type plasmids containing virulence-associated genes. These findings provide an unique molecular insight into the pool of extrachromosomal replicons and highlight their role in the biology and adaptation of extremophilic bacteria inhabiting terrestrial deep subsurface.

  13. Diversity and role of plasmids in adaptation of bacteria inhabiting the Lubin copper mine in Poland, an environment rich in heavy metals.

    Science.gov (United States)

    Dziewit, Lukasz; Pyzik, Adam; Szuplewska, Magdalena; Matlakowska, Renata; Mielnicki, Sebastian; Wibberg, Daniel; Schlüter, Andreas; Pühler, Alfred; Bartosik, Dariusz

    2015-01-01

    The Lubin underground mine, is one of three mining divisions in the Lubin-Glogow Copper District in Lower Silesia province (Poland). It is the source of polymetallic ore that is rich in copper, silver and several heavy metals. Black shale is also significantly enriched in fossil organic matter in the form of long-chain hydrocarbons, polycyclic aromatic hydrocarbons, organic acids, esters, thiophenes and metalloporphyrins. Biological analyses have revealed that this environment is inhabited by extremophilic bacteria and fungi. Kupfershiefer black shale and samples of water, bottom and mineral sediments from the underground (below 600 m) Lubin mine were taken and 20 bacterial strains were isolated and characterized. All exhibited multi-resistant and hypertolerant phenotypes to heavy metals. We analyzed the plasmidome of these strains in order to evaluate the diversity and role of mobile DNA in adaptation to the harsh conditions of the mine environment. Experimental and bioinformatic analyses of 11 extrachromosomal replicons were performed. Three plasmids, including a broad-host-range replicon containing a Tn3 family transposon, carried genes conferring resistance to arsenic, cadmium, cobalt, mercury and zinc. Functional analysis revealed that the resistance modules exhibit host specificity, i.e., they may increase or decrease tolerance to toxic ions depending on the host strain. The other identified replicons showed diverse features. Among them we identified a catabolic plasmid encoding enzymes involved in the utilization of histidine and vanillate, a putative plasmid-like prophage carrying genes responsible for NAD biosynthesis, and two repABC-type plasmids containing virulence-associated genes. These findings provide an unique molecular insight into the pool of extrachromosomal replicons and highlight their role in the biology and adaptation of extremophilic bacteria inhabiting terrestrial deep subsurface. PMID:26074880

  14. How to make a living from anaerobic ammonium oxidation

    NARCIS (Netherlands)

    Kartal, B.; De Almeida, N.M.; Maalcke, W.J.; Op den Camp, H.J.M.; Jetten, M.S.M.; Keltjens, J.T.

    2013-01-01

    Anaerobic ammonium-oxidizing (anammox) bacteria primarily grow by the oxidation of ammonium coupled to nitrite reduction, using CO2 as the sole carbon source. Although they were neglected for a long time, anammox bacteria are encountered in an enormous species (micro)diversity in virtually any anoxi

  15. Anaerobic Digestion in a Flooded Densified Leachbed

    Science.gov (United States)

    Chynoweth, David P.; Teixeira, Arthur A.; Owens, John M.; Haley, Patrick J.

    2009-01-01

    A document discusses the adaptation of a patented biomass-digesting process, denoted sequential batch anaerobic composting (SEBAC), to recycling of wastes aboard a spacecraft. In SEBAC, high-solids-content biomass wastes are converted into methane, carbon dioxide, and compost.

  16. What are the differences between aerobic and anaerobic toxic effects of sulfonamides on Escherichia coli?

    Science.gov (United States)

    Qin, Mengnan; Lin, Zhifen; Wang, Dali; Long, Xi; Zheng, Min; Qiu, Yanling

    2016-01-01

    Bacteria in the environment face the threat of antibiotics. However, most studies investigating the toxicity and toxicity mechanisms of antibiotics have been conducted on microorganisms in aerobic conditions, while studies examining the anaerobic toxicity and toxicity mechanisms of antibiotics are still limited. In this study, we determined the aerobic and anaerobic toxicities of sulfonamides (SAs) on Escherichia coli. Next, a comparison of the aerobic and anaerobic toxicities indicated that the SAs could be divided into three groups: Group I: log(1/EC50-anaerobic)>log(1/EC50-aerobic) (EC50-anaerobic/EC50-aerobic, the median effective concentration under anaerobic/aerobic conditions), Group II: log(1/EC50-anaerobic)≈log(1/EC50-aerobic), and Group III: log(1/EC50-anaerobic)reference for the risk assessment of chemicals in the environment. PMID:26748048

  17. Evaluation of a metronidazole disk test for the presumptive identification of anaerobes.

    Science.gov (United States)

    Senne, J E; McCarthy, L R

    1982-07-01

    A total of 632 bacterial strains recovered under anaerobic conditions from clinical specimens were tested from their susceptibility to metronidazole by a disk diffusion test using 5 micrograms metronidazole disks. Three-hundred-fifty-five of the 632 bacterial strains exhibited susceptibility the metronidazole, and each was determined to be an obligate anaerobe. The remaining 277 isolates showed resistance to the 5 micrograms disk. Of these resistant strains, 257 were determined to be facultative anaerobes, while 20 (18 Propionibacterium acnes, one Peptostreptococcus sp., and one Peptococcus magnus) were identified as obligate anaerobes. Potential use of this disk diffusion test for identifying the anaerobic status of bacteria is discussed. PMID:7124785

  18. Chlorella pyrenoidosa cultivation using anaerobic digested starch processing wastewater in an airlift circulation photobioreactor.

    Science.gov (United States)

    Tan, Xiaobo; Chu, Huaqiang; Zhang, Yalei; Yang, Libin; Zhao, Fangchao; Zhou, Xuefei

    2014-10-01

    To explore the integration of microalgae cultivation and anaerobic processing for wastewater treatment, we utilized an airlift circulation photobioreactor and a dynamic membrane reactor for microalgae cultivation in combination with an upflow anaerobic sludge bed (UASB) reactor for starch processing wastewater (SPW) treatment. Chlorella pyrenoidosa completely adapted to the digested SPW without any chemical additives, and it grew normally under a wide temperature range in different seasons. C. pyrenoidosa was always the dominant microorganism in the photobioreactors although bacteria and some wild type microalgae were observed. Optimal biomass growth and pollutants removal was achieved at temperatures between 35 and 38°C in summer, removing 65.99% of COD, 83.06% of TN, 96.97% of TP and a biomass productivity of 0.37gL(-1)d(-1). Temperature fluctuation significantly influenced lipid contents and FAMEs compositions in biomass. The results demonstrate the successful integration of microalgae biomass production and anaerobic processing for wastewater treatment. PMID:25164347

  19. Evaluation of Fastidious Anaerobe Broth as a blood culture medium.

    OpenAIRE

    Ganguli, L. A.; Turton, L J; Tillotson, G S

    1982-01-01

    Three commercial blood culture media were compared with a freshly prepared cooked meat medium in tests to stimulate the recovery of small inocula of anaerobic and aerobic bacteria in routine blood cultures. The cooked meat medium gave the most reliable recovery and supported continued viability, whilst Fastidious Anaerobe Broth (LAB M) was a good alternative. Results with Southern Group thioglycollate and Difco Thiol were less satisfactory as delays in recovery and loss of viability occurred ...

  20. Research in anti- anaerobe mechanism of nanometer materials%纳米材料抗厌氧菌机制研究

    Institute of Scientific and Technical Information of China (English)

    熊德鑫; 梁明

    2003-01-01

    AIM:To investigate the antimicrobial spectrum of nanometer materials to 33 strains of ordinary anaerobic pathogenic bacteria isolated from 11 genera. METHODS:The anti anaerobic effects of nanometer materials were examined and measured by test tube dilution method.RESULTS:In most tubes, there were no bacteria growth in nanometer suspension.CONCLUSION: there is a wide antimicrobial spectrum of nanometer materials and it can effectively inhibit the growth of the anaerobic bacteria.

  1. Enzymes involved in the anaerobic oxidation of n-alkanes: from methane to long-chain paraffins

    OpenAIRE

    Amy V. Callaghan

    2013-01-01

    Anaerobic microorganisms play key roles in the biogeochemical cycling of methane and non-methane alkanes. To date, there appear to be at least three proposed mechanisms of anaerobic methane oxidation (AOM). The first pathway is mediated by consortia of archaeal anaerobic methane oxidizers and sulfate-reducing bacteria via ‘reverse methanogenesis’ and is catalyzed by a homologue of methyl-coenzyme M reductase. The second pathway is also mediated by anaerobic methane oxidizers and sulfate-red...

  2. Gender comparisons in anaerobic power and anaerobic capacity tests.

    OpenAIRE

    Maud, P. J.; Shultz, B B

    1986-01-01

    The purpose of the study was to compare anaerobic power and anaerobic capacity test scores between young active men and women. Three performance measures of anaerobic power and two of anaerobic capacity were administered to a sample comprising 52 male and 50 female college students (means age = 21.4 yrs). Results indicated significant differences between men and women in body height, weight and per cent fat, in fat free mass (FFM), anaerobic power, and anaerobic capacity when recorded as gros...

  3. Anaerobic ammonium oxidation by marine and freshwater planctomycete-like bacteria RID B-8834-2011 RID B-5428-2008 RID C-3269-2011 RID D-1875-2009

    DEFF Research Database (Denmark)

    Jetten, MSM; Sliekers, O.; Kuypers, M.; Dalsgaard, T.; Niftrik, L. van; Cirpus, I.; Pas-Schoonen, K. van de; Lavik, G.; Thamdrup, B.; Paslier, D. Le; Camp, HJM Op den; Hulth, S.; Nielsen, LP; Abma, W.; Third, K.; Engstrom, P.; Kuenen, JG; Jørgensen, BB; Canfield, DE; Damste, JSS; Revsbech, NP; Fuerst, J.; Weissenbach, J.; Wagner, M.; Schmidt, I.; Schmid, M.; Strous, M.

    2003-01-01

    Recently, two fresh water species, 'Candidatus Brocadia anammoxidans' and 'Candidatus Kuenenia stuttgartiensis', and one marine species, 'Candidatus Scalindua sorokinii', of planctomycete anammox bacteria have been identified. 'Candidatus Scalindua sorokinii' was discovered in the Black Sea, and...

  4. Effect of methanogenic substrates on anaerobic oxidation of methane and sulfate reduction by an anaerobic methanotrophic enrichment

    OpenAIRE

    Meulepas, R.J.W.; Jagersma, C.G.; Khadem, A.F.; Buisman, C.J.N.; Stams, A.J.M.; Lens, P. N. L.

    2010-01-01

    Anaerobic oxidation of methane (AOM) coupled to sulfate reduction (SR) is assumed to be a syntrophic process, in which methanotrophic archaea produce an interspecies electron carrier (IEC), which is subsequently utilized by sulfate-reducing bacteria. In this paper, six methanogenic substrates are tested as candidate-IECs by assessing their effect on AOM and SR by an anaerobic methanotrophic enrichment. The presence of acetate, formate or hydrogen enhanced SR, but did not inhibit AOM, nor did ...

  5. Clostridium difficile: the anaerobe that made the grade.

    Science.gov (United States)

    Brazier, Jon S

    2012-04-01

    Unlike other anaerobic bacteria of clinical importance, Clostridium difficile has managed to enter into the realm of public awareness. Following the trail blazed by methicillin-resistant Staphylococcus aureus (MRSA), C. difficile has made the transition from being an obscure anaerobic bacterium, mainly of interest to specialist anaerobic microbiologists, to that of an infamous "superbug" responsible for outbreaks of hospital-acquired infection that commonly result in serious disease and death. This report picks out key moments, particularly in the UK, which tracked the rise in both the public and political awareness of this organism. PMID:22293217

  6. Perspectives for anaerobic digestion

    DEFF Research Database (Denmark)

    Ahring, Birgitte Kiær

    2003-01-01

    to the soil. Anaerobic digestion (AD) is one way of achieving this goal and it will furthermore, reduce energy consumption or may even be net energy producing. This chapter aims at provide a basic understanding of the world in which anaerobic digestion is operating today. The newest process developments...

  7. Anaerobic sludge granulation

    NARCIS (Netherlands)

    Hulshoff Pol, L.W.; Castro Lopes, de S.I.; Lettinga, G.; Lens, P.N.L.

    2004-01-01

    This paper reviews different theories on anaerobic sludge granulation in UASB-reactors that have been proposed during the past two decades
    This paper reviews different theories on anaerobic sludge granulation in UASB-reactors that have been proposed during the past two decades. The initial stage

  8. Molecular characterization and fermentative hydrogen production of a wild anaerobe in clostridium genus

    Institute of Scientific and Technical Information of China (English)

    LI Yongfeng; REN Nanqi; YANG Chuanping; LI Jianzheng; LI Peng

    2007-01-01

    Anaerobic process of biohydrogen production is developed in this paper.The isolation and identification of high efficient biohydrogen production anaerobic bacteria are the important foundations for the fermented biohydrogen production process by anaerobic digesting organic wastewater.Taking the physiological and biochemical traits,the morphological characteristics and 16S rDNA sequence into consideration,the isolate Rennanqilyf33 is a new species.

  9. EVALUATION OF A TWO-STAGE TREATMENT OF DOMESTIC SEWAGE WITH ANAEROBIC-AEROBIC MICROBIAL FILM

    OpenAIRE

    A.Mesdaghinia

    1986-01-01

    The objective of this research was to study the feasibility of a two stage continuous system employing anaerobic-aerobic microbial film for domestic wastewater treatment and the effect of iron on the behavior of sulfate reducing bacteria in anaerobic metabolism. A bench scale system with an anaerobic filter followed by aerobic fixed units used plastic media and was operated in up flow manner with hydraulic detention times of 6 hours, whereas the aerobic unit utilized diffused aeration. Raw do...

  10. Review of the Literature on the Economics of Central Anaerobic Digesters

    OpenAIRE

    Bachewe, Fantu; Lazarus, William F.; Goodrich, Philip; Drewitz, Matt; Balk, Becky

    2008-01-01

    Minnesota can improve the utilization of manure and organic wastes via the production of biogas that can be used to produce heat and electricity. Denmark serves as a role model for Minnesota in the number of central anaerobic digesters that it supports. During anaerobic digestion methane is produced when naturally occurring anaerobic bacteria decompose organic matter in the absence of oxygen. This process produces what is called biogas, which usually is a mixture of 55 – 65 percent methane pl...

  11. Anaerobic Treatment of Palm Oil Mill Effluent in Pilot-Scale Anaerobic EGSB Reactor.

    Science.gov (United States)

    Wang, Jin; Mahmood, Qaisar; Qiu, Jiang-Ping; Li, Yin-Sheng; Chang, Yoon-Seong; Li, Xu-Dong

    2015-01-01

    Large volumes of untreated palm oil mill effluent (POME) pose threat to aquatic environment due to the presence of very high organic content. The present investigation involved two pilot-scale anaerobic expanded granular sludge bed (EGSB) reactors, continuously operated for 1 year to treat POME. Setting HRT at 9.8 d, the anaerobic EGSB reactors reduced COD from 71179 mg/L to 12341 mg/L and recycled half of sludge by a dissolved air flotation (DAF). The average effluent COD was 3587 mg/L with the consistent COD removal efficiency of 94.89%. Adding cationic polymer (PAM) dose of 30 mg/L to DAF unit and recycling its half of sludge caused granulation of anaerobic sludge. Bacilli and small coccid bacteria were the dominant microbial species of the reactor. The reactor produced 27.65 m(3) of biogas per m(3) of POME which was utilized for electricity generation. PMID:26167485

  12. Overview of the anaerobic toxicity caused by organic forest industry wastewater pollutants.

    NARCIS (Netherlands)

    Sierra-Alvarez, R.; Field, J.A.; Kortekaas, S.; Lettinga, G.

    1994-01-01

    Numerous types of organic environmental pollutants are encountered in forest industry effluents which potentially could inhibit consortia of anaerobic bacteria. The purpose of this study was to collect anaerobic bioassay data from the literature to better estimate the impact of these pollutants on a

  13. Highly enriched Betaproteobacteria growing anaerobically with p-xylene and nitrate

    DEFF Research Database (Denmark)

    Rotaru, Amelia-Elena; Probian, Christina; Wilkes, Heinz;

    2010-01-01

    The identity of the microorganisms capable of anaerobic p-xylene degradation under denitrifying conditions is hitherto unknown. Here, we report highly enriched cultures of freshwater denitrifying bacteria that grow anaerobically with p-xylene as the sole organic carbon source and electron donor. ...

  14. Anaerobic incubation of membrane filter cultures for improved detection of fecal coliforms from recreational waters.

    OpenAIRE

    Doyle, J D; Tunnicliff, B; Brickler, S K; Kramer, R E; Sinclair, N. A.

    1984-01-01

    Anaerobic incubation of membrane filter cultures significantly enhanced detection of fecal coliforms in surface-water samples from recreational beaches. In contrast to standard aerobic incubation, anaerobic incubation suppressed overgrowth of masking, noncoliform bacteria but did not increase the frequency of fecal coliform recovery.

  15. Anaerobic Digestion and its Applications

    Science.gov (United States)

    Anaerobic digestion is a natural biological process. The initials "AD" may refer to the process of anaerobic digestion, or the built systems of anaerobic digesters. While there are many kinds of digesters, the biology is basically the same for all. Anaerobic digesters are built...

  16. Azoarcus sp. CIB, an Anaerobic Biodegrader of Aromatic Compounds Shows an Endophytic Lifestyle

    OpenAIRE

    Fernández, Helga; Prandoni, Nicolás; Fernández-Pascual, Mercedes; Fajardo, Susana; Morcillo, César; Díaz, Eduardo; Carmona, Manuel

    2014-01-01

    Background Endophytic bacteria that have plant growth promoting traits are of great interest in green biotechnology. The previous thought that the Azoarcus genus comprises bacteria that fit into one of two major eco-physiological groups, either free-living anaerobic biodegraders of aromatic compounds or obligate endophytes unable to degrade aromatics under anaerobic conditions, is revisited here. Methodology/Principal Findings Light, confocal and electron microscopy reveal that Azoarcus sp. C...

  17. An investigation of inhibition effect of metronidazole before and after using advanced oxidation process (UV254/H2O2 on specific methanogenic activity of anaerobic biomass

    Directory of Open Access Journals (Sweden)

    S. A. Mirzaee

    2014-07-01

    Conclusion: Different concentrations of metronidazole had an inhibition effect on anaerobic digestions and therefore the efficient pretreatment method is needed to reduce this inhibition effect. The UV254/H2O2 process is an effective method for degradation and conversion of metronidazole to more biodegradable compounds for anaerobic bacteria consumption and, in turn, to increase biogasproduction in anaerobic digestions.

  18. Reconstructing the mosaic glycolytic pathway of the anaerobic eukaryote Monocercomonoides.

    Science.gov (United States)

    Liapounova, Natalia A; Hampl, Vladimir; Gordon, Paul M K; Sensen, Christoph W; Gedamu, Lashitew; Dacks, Joel B

    2006-12-01

    All eukaryotes carry out glycolysis, interestingly, not all using the same enzymes. Anaerobic eukaryotes face the challenge of fewer molecules of ATP extracted per molecule of glucose due to their lack of a complete tricarboxylic acid cycle. This may have pressured anaerobic eukaryotes to acquire the more ATP-efficient alternative glycolytic enzymes, such as pyrophosphate-fructose 6-phosphate phosphotransferase and pyruvate orthophosphate dikinase, through lateral gene transfers from bacteria and other eukaryotes. Most studies of these enzymes in eukaryotes involve pathogenic anaerobes; Monocercomonoides, an oxymonad belonging to the eukaryotic supergroup Excavata, is a nonpathogenic anaerobe representing an evolutionarily and ecologically distinct sampling of an anaerobic glycolytic pathway. We sequenced cDNA encoding glycolytic enzymes from a previously established cDNA library of Monocercomonoides and analyzed the relationships of these enzymes to those from other organisms spanning the major groups of Eukaryota, Bacteria, and Archaea. We established that, firstly, Monocercomonoides possesses alternative versions of glycolytic enzymes: fructose-6-phosphate phosphotransferase, both pyruvate kinase and pyruvate orthophosphate dikinase, cofactor-independent phosphoglycerate mutase, and fructose-bisphosphate aldolase (class II, type B). Secondly, we found evidence for the monophyly of oxymonads, kinetoplastids, diplomonads, and parabasalids, the major representatives of the Excavata. We also found several prokaryote-to-eukaryote as well as eukaryote-to-eukaryote lateral gene transfers involving glycolytic enzymes from anaerobic eukaryotes, further suggesting that lateral gene transfer was an important factor in the evolution of this pathway for denizens of this environment. PMID:17071828

  19. Enumeration of Organohalide Respirers in Municipal Wastewater Anaerobic Digesters

    OpenAIRE

    Bryan J.K. Smith; Boothe, Melissa A; Brice A. Fiddler; Tania M. Lozano; Russel K. Rahi; Krzmarzick, Mark J

    2015-01-01

    Organohalide contaminants such as triclosan and triclocarban have been well documented in municipal wastewater treatment plants (WWTPs), but the degradation of these contaminants is not well understood. One possible removal mechanism is organohalide respiration by which bacteria reduce the halogenated compound. The purpose of this study was to determine the abundance of organohalide-respiring bacteria in eight WWTP anaerobic digesters. The obligate organohalide respiring Dehalococcoides mccar...

  20. ISOLATION OF ANAEROBES IN DEEP SEATED PRESSURE ULCERS USING A NOVEL INNOVATIVE TECHNIQUE OF ANAEROBE ISOLATION

    Directory of Open Access Journals (Sweden)

    Lalbiaktluangi

    2015-12-01

    Full Text Available BACKGROUND Isolation of an anaerobe is usually neglected in hospitals with limited resources due to the expensive and complicated technique of anaerobic isolation methods, which is difficult to arrange in such resource poor settings. Conventionally adopted anaerobic culture methods such as Anaerobic jar, Gas-Pak, Anoxomat or Automated glove-box systems are extremely costly and cumbersome for single unit testing, but not suitable for small scale laboratories. However, anaerobic bacteria are not to be overlooked as they have made a comeback in clinical settings and are even showing resistance to Metronidazole, once thought to be the gold standard bullet against anaerobes. Deep seated pressure ulcers are usually the site where anaerobe causes an infection in synergy with aerobes. AIMS AND OBJECTIVES Isolation of anaerobes in deep seated pressure ulcers using a novel innovative technique and to study their antibiogram profile. MATERIALS AND METHODS Swabs taken from depth of deep seated pressure ulcers were immediately inoculated in Brucella blood agar at bedside and placed in polycarbonate airtight jar for anaerobic incubation using a novel innovative Modified Candle Jar technique. In this technique five grams of grease-free grade zero steel wool were dipped in 50ml freshly prepared acidified copper sulphate solution until the copper colour appeared. Excess solution was drained and the steel wool was moulded into a loose pad to fit on an open Petri plate placed on top of the inoculated Brucella blood agar plates. A white-wax candle was placed at the centre of this plate. A small test tube containing mixture of 0.5g sodium-bicarbonate and 0.5g magnesium carbonate was kept ready to be placed inside the jar, just after placing the inoculated plate and incubated for 48 hours. RESULTS Peptostreptococcus anaerobius and Bacteroides fragilis were successfully isolated from deep seated pressure ulcers by this method. Antibiogram studies were done using the

  1. Characteristics, Process Parameters, and Inner Components of Anaerobic Bioreactors

    Directory of Open Access Journals (Sweden)

    Awad Abdelgadir

    2014-01-01

    Full Text Available The anaerobic bioreactor applies the principles of biotechnology and microbiology, and nowadays it has been used widely in the wastewater treatment plants due to their high efficiency, low energy use, and green energy generation. Advantages and disadvantages of anaerobic process were shown, and three main characteristics of anaerobic bioreactor (AB, namely, inhomogeneous system, time instability, and space instability were also discussed in this work. For high efficiency of wastewater treatment, the process parameters of anaerobic digestion, such as temperature, pH, Hydraulic retention time (HRT, Organic Loading Rate (OLR, and sludge retention time (SRT were introduced to take into account the optimum conditions for living, growth, and multiplication of bacteria. The inner components, which can improve SRT, and even enhance mass transfer, were also explained and have been divided into transverse inner components, longitudinal inner components, and biofilm-packing material. At last, the newly developed special inner components were discussed and found more efficient and productive.

  2. Monitoring and control of anaerobic reactors

    DEFF Research Database (Denmark)

    Pind, Peter Frode; Angelidaki, Irini; Ahring, Birgitte Kiær; Stamatelatou, K.; Lyberatos, G.

    2003-01-01

    The current status in monitoring and control of anaerobic reactors is reviewed. The influence of reactor design and waste composition on the possible monitoring and control schemes is examined. After defining the overall control structure, and possible control objectives, the possible process...... control approaches that have been used are comprehensively described. These include simple and adaptive controllers, as well as more recent developments such as fuzzy controllers, knowledge-based controllers and controllers based on neural networks....

  3. Monitoring and control of anaerobic reactors

    DEFF Research Database (Denmark)

    Pind, Peter Frode; Angelidaki, Irini; Ahring, Birgitte Kiær; Stamatelatou, K.; Lyberatos, G.

    The current status in monitoring and control of anaerobic reactors is reviewed. The influence of reactor design and waste composition on the possible monitoring and control schemes is examined. After defining the overall control structure, and possible control objectives, the possible process...... control approaches that have been used are comprehensively described. These include simple and adaptive controllers, as well as more recent developments such as fuzzy controllers, knowledge-based controllers and controllers based on neural networks....

  4. Status on Science and Application of Thermophilic Anaerobic Digestion

    DEFF Research Database (Denmark)

    Ahring, Birgitte Kiær

    1994-01-01

    Thermophilic anaerobic processes are often regarded as less stable than mesophilic processes. In the paper this postulate is examined and disproved based on real operational data from of full-scale mesophilic and thermophilic biogas plants. The start-up produce for the thermophilic plants was...... for thermophilic digestion along with the implications for the methanogenic bacteria active at these temperatures....

  5. ANAMMOX process start up and stabilization with an anaerobic seed in Anaerobic Membrane Bioreactor (AnMBR).

    Science.gov (United States)

    Suneethi, S; Joseph, Kurian

    2011-10-01

    ANaerobic AMMonium OXidation (ANAMMOX) process, an advanced biological nitrogen removal alternative to traditional nitrification--denitrification removes ammonia using nitrite as the electron acceptor without oxygen. The feasibility of enriching anammox bacteria from anaerobic seed culture to start up an Anaerobic Membrane Bioreactor (AnMBR) for N-removal is reported in this paper. The Anammox activity was established in the AnMBR with anaerobic digester seed culture from a Sewage Treatment Plant in batch mode with recirculation followed by semi continuous process and continuous modes of operation. The AnMBR performance under varying Nitrogen Loading Rates (NLR) and HRTs is reported for a year, in terms of nitrogen transformations to ammoniacal nitrogen, nitrite and nitrate along with hydrazine and hydroxylamine. Interestingly ANAMMOX process was evident from simultaneous Amm-N and nitrite reduction, consistent nitrate production, hydrazine and hydroxylamine presence, notable organic load reduction and bicarbonate consumption. PMID:21775136

  6. Metabolic versatility of toluene-degrading, iron-reducing bacteria in tidal flat sediment, characterized by stable isotope probing-based metagenomic analysis.

    Science.gov (United States)

    Kim, So-Jeong; Park, Soo-Je; Cha, In-Tae; Min, Deullae; Kim, Jin-Seog; Chung, Won-Hyung; Chae, Jong-Chan; Jeon, Che Ok; Rhee, Sung-Keun

    2014-01-01

    DNA stable isotope probing and metagenomic sequencing were used to assess the metabolic potential of iron-reducing bacteria involved in anaerobic aromatic hydrocarbon degradation in oil spill-affected tidal flats. In a microcosm experiment, (13) C-toluene was degraded with the simultaneous reduction of Fe(III)-NTA, which was also verified by quasi-stoichiometric (13) C-CO2 release. The metabolic potential of the dominant member affiliated with the genus Desulfuromonas in the heavy DNA fraction was inferred using assembled scaffolds (designated TF genome, 4.40 Mbp with 58.8 GC mol%), which were obtained by Illumina sequencing. The gene clusters with peripheral pathways for toluene and benzoate conversion possessed the features of strict and facultative anaerobes. In addition to the class II-type benzoyl-CoA reductase (Bam) of strict anaerobes, the class I-type (Bcr) of facultative anaerobes was encoded. Genes related to the utilization of various anaerobic electron acceptors, including iron, nitrate (to ammonia), sulfur and fumarate, were identified. Furthermore, genes encoding terminal oxidases (caa3 , cbb3 and bd) and a diverse array of genes for oxidative stress responses were detected in the TF genome. This metabolic versatility may be an adaptation to the fluctuating availability of electron acceptors and donors in tidal flats. PMID:24118987

  7. Investigations on the inactivation of selected bacteria and viruses during mesophilic and thermophilic anaerobic alkaline cofermentation of biological waste materials, food residues and other animal residues; Seuchenhygienische Untersuchungen zur Inaktivierung ausgewaehlter Bakterien und Viren bei der mesophilen und thermophilen anaeroben alkalischen Faulung von Bio- und Kuechenabfaellen sowie anderen Rest- und Abfallstoffen tierischer Herkunft

    Energy Technology Data Exchange (ETDEWEB)

    Hoferer, M. [Hohenheim Univ., Stuttgart (Germany). Inst. fuer Umwelt- und Tierhygiene sowie Tiermedizin mit Tierklinik

    2001-07-01

    The purpose of this study is to investigate the inactivation kinetics of a number of different bacteria (Salmonella Senftenberg, Escherichia coli O157, Enterococcus faecium) and viruses (Bovine Enterovirus (ECBO), Equine Rhinovirus (ERV), Poliovirus, Bovine Parvovirus (BPV)) during the process of anaerobic cofermentation. Experiments were conducted in a semi-technical biogas plant at the University of Hohenheim. The fermenter was fed with a mixture of slurry from pigs or cattle (75%) and leftovers (25%) and was run under mesophilic (30 C + 35 C) as well as under thermophilic temperature conditions (50 C + 55 C). Volume and filter-sandwich germ-carriers were specifically developed and/or optimised for these analyses. Parallel to the experiments at the University of Hohenheim and under almost identical process conditions, various viruses (African Swine Fever Virus, Pseudorabies Virus, Classical Swine Fever Virus, Foot and Mouth Disease Virus, Swine Vesicular Disease Virus) were examined at the Federal Research Centre for Virus Diseases of Animals in Tuebingen. The results obtained at each research institution are directly compared. (orig.)

  8. Trace metal speciation and bioavailability in anaerobic digestion: A review.

    Science.gov (United States)

    Thanh, Pham Minh; Ketheesan, Balachandran; Yan, Zhou; Stuckey, David

    2016-01-01

    Trace metals are essential for the growth of anaerobic microorganisms, however, in practice they are often added to anaerobic digesters in excessive amounts, which can lead to inhibition. The concept of bioavailability of metals in anaerobic digestion has been poorly understood in the past, and a lack of deep understanding of the relationship between trace metal speciation and bioavailability can result in ineffective metal dosing strategies for anaerobic digesters. Sequential extraction schemes are useful for fractionating trace metals into their different forms, and metal sulfides can serve as a store and source for trace metals during anaerobic digestion, while natural/synthetic chelating agents (soluble microbial products-SMPs, extracellular polysaccharides-EPS, and EDTA/NTA) are capable of controlling trace metal bioavailability. Nevertheless, more work is needed to: investigate the speciation and bioavailability of Ca, Mg, Mn, W, and Se; compare the bioavailability of different forms of trace metals e.g. carbonates, sulfides, phosphates to different anaerobic trophic groups; determine what factors influence metal sulfide dissolution; investigate whether chelating agents can increase trace metal bioavailability; develop and adapt specialized analytical techniques, and; determine how trace metal dynamics change in an anaerobic membrane bioreactor (AnMBR). PMID:26707985

  9. Potential Application of Anaerobic Extremophiles for Hydrogen Production

    Science.gov (United States)

    Pikuta, Elena V.; Hoover, Richard B.

    2004-01-01

    During substrate fermentation many anaerobes produce the hydrogen as a waste product, which often regulates the growth of the cultures as an inhibitor. In nature the hydrogen is usually removed from the ecosystem due to its physical properties or by consumption of hydrogen by secondary anaerobes, which sometimes behave as competitors for electron donors as is seen in the classical example in anaerobic microbial communities via the interaction between methanogens and sulfate- or sulfur- reducers. It was demonstrated previously on mixed cultures of anaerobes at neutral pH that bacterial hydrogen production could provide an alternative energy source. But at neutral pH the original cultures can easily be contaminated by methanogens, a most unpleasant side effect of these conditions is the development of pathogenic bacteria. In both cases the rate of hydrogen production was dramatically decreased since some part of the hydrogen was transformed to methane, and the cultivation of human pathogens on a global scale is very dangerous. In our laboratory, experiments with obligately alkaliphilic bacteria that excrete hydrogen as the end metabolic product were performed at different temperature regimes. Mesophilic and moderately thermophilic bacterial cultures have been studied and compared for the most effective hydrogen production. For high-mineralized media with pH 9.5-10.0 not many methanogens are known to exist. Furthermore, the development of pathogenic contaminant microorganisms is virtually impossible: carbonate-saturated solutions are used as antiseptics in medicine. Therefore the cultivation of alkaliphilic hydrogen producing bacteria could be considered as most safe process for global Scale industry in future. Here we present experimental data on the rates of hydrogen productivity for mesophilic, alkaliphilic, obligately anaerobic bacterium Spirocheta americana ASpG1 and moderately thermophilic, alkaliphilic, facultative anaerobe Anoxybacillus pushchinoensis K1 and

  10. FNR-mediated regulation of bioluminescence and anaerobic respiration in the light-organ symbiont Vibrio fischeri

    OpenAIRE

    Septer, Alecia N.; Bose, Jeffrey L.; Dunn, Anne K.; Stabb, Eric V.

    2010-01-01

    Vibrio fischeri induces both anaerobic respiration and bioluminescence during symbiotic infection. In many bacteria, the oxygen-sensitive regulator FNR activates anaerobic respiration, and a preliminary study using the light-generating lux genes from V. fischeri MJ1 cloned in Escherichia coli suggested that FNR stimulates bioluminescence. To test for FNR-mediated regulation of bioluminescence and anaerobic respiration in V. fischeri, we generated fnr mutants of V. fischeri strains MJ1 and ES1...

  11. Aerobic and Anaerobic Bacteriology of Hidradenitis Suppurativa: A Study of 22 Cases

    Science.gov (United States)

    Katoulis, Alexandros C.; Koumaki, Dimitra; Liakou, Aikaterini I.; Vrioni, Georgia; Koumaki, Vasiliki; Kontogiorgi, Dimitra; Tzima, Korina; Tsakris, Athanasios; Rigopoulos, Dimitris

    2015-01-01

    Introduction Hidradenitis suppurativa (HS) is a chronic inflammatory skin disease of unclear etiology. The role of bacteria in the pathogenesis of disease remains controversial. Materials and Methods Specimens were obtained from 22 HS patients by direct percutaneous needle aspiration. The collected material was cultured in aerobic and anaerobic conditions, and sensitivity tests were performed. Results Of the 22 patients, 32% were culture negative and 68% were culture positive. A total of 16 isolates was obtained, 14 aerobic and 2 anaerobic. Aerobic bacteria were present in 86% of the specimens, whereas only anaerobic bacteria were isolated in 7%. The predominant aerobic species were Proteus mirabilis, Staphylococcus haemolyticus and Staphylococcus lugdunensis. The isolated anaerobic bacteria were Dermacoccus nishinomiyaensis and Propionibacterium granulosum. Conclusion A variety of aerobic and anaerobic bacteria was isolated from the HS lesions of our patients. In contrast to previous studies, fewer patients were found to be culture positive, and Staphylococcus aureus was isolated in only 1 of them. More studies are necessary to elucidate the controversial role of bacteria in the pathogenesis of HS. PMID:27170935

  12. Anaerobic biotransformation of estrogens

    Energy Technology Data Exchange (ETDEWEB)

    Czajka, Cynthia P. [Department of Microbiology, University of Manitoba, Winnipeg, MB, R3T 2N2 (Canada); Londry, Kathleen L. [Department of Microbiology, University of Manitoba, Winnipeg, MB, R3T 2N2 (Canada)]. E-mail: londryk@cc.umanitoba.ca

    2006-08-31

    Estrogens are important environmental contaminants that disrupt endocrine systems and feminize male fish. We investigated the potential for anaerobic biodegradation of the estrogens 17-{alpha}-ethynylestradiol (EE2) and 17-{beta}-estradiol (E2) in order to understand their fate in aquatic and terrestrial environments. Cultures were established using lake water and sediment under methanogenic, sulfate-, iron-, and nitrate-reducing conditions. Anaerobic degradation of EE2 (added at 5 mg/L) was not observed in multiple trials over long incubation periods (over three years). E2 (added at 5 mg/L) was transformed to estrone (E1) under all four anaerobic conditions (99-176 {mu}g L{sup -1} day{sup -1}), but the extent of conversion was different for each electron acceptor. The oxidation of E2 to E1 was not inhibited by E1. Under some conditions, reversible inter-conversion of E2 and E1 was observed, and the final steady state concentration of E2 depended on the electron-accepting condition but was independent of the total amount of estrogens added. In addition, racemization occurred and E1 was also transformed to 17-{alpha}-estradiol under all but nitrate-reducing conditions. Although E2 could be readily transformed to E1 and in many cases 17-{alpha}-estradiol under anaerobic conditions, the complete degradation of estrogens under these conditions was minimal, suggesting that they would accumulate in anoxic environments.

  13. Physiologically anaerobic microorganisms of the deep subsurface

    International Nuclear Information System (INIS)

    Anaerobic bacteria were isolated from deep subsurface sediment samples taken at study sites in Idaho (INEL) and Washington (HR) by culturing on dilute and concentrated medium. Morphologically distinct colonies were purified, and their responses to 21 selected physiological tests were determined. Although the number of isolates was small (18 INEL, 27 HR) some general patterns could be determined. Most strains could utilize all the carbon sources, however the glycerol and melizitose utilization was positive for 50% or less of the HR isolates. Catalase activity (27.78% at INEL, 74.07% at HR) and tryptophan metabolism (11.12% at INEL, 40.74% at HR) were significantly different between the two study sites. MPN and viable counts indicate that sediments near the water table yield the greatest numbers of anaerobes. Deeper sediments also appear to be more selective with the greatest number of viable counts on low-nutrient mediums. Likewise, only strictly obligate anaerobes were found in the deepest sediment samples. Selective media indicated the presence of methanogens, acetogens, and sulfate reducers at only the HR site

  14. Adaptation mechanisms of bacteria during the degradation of polychlorinated biphenyls in the presence of natural and synthetic terpenes as potential degradation inducers

    Energy Technology Data Exchange (ETDEWEB)

    Zoradova-Murinova, Slavomira; Dudasova, Hana; Lukacova, Lucia; Certik, Milan; Dercova, Katarina [Slovak Univ. of Technology, Bratislava (Slovakia). Inst. of Biotechnology and Food Science; Silharova, Katarina; Vrana, Branislav [Water Research Institute, Bratislava (Slovakia)

    2012-06-15

    In this study, we examined the effect of polychlorinated biphenyls (PCBs) in the presence of natural and synthetic terpenes and biphenyl on biomass production, lipid accumulation, and membrane adaptation mechanisms of two PCB-degrading bacterial strains Pseudomonas stutzeri and Burkholderia xenovorans LB400. According to the results obtained, it could be concluded that natural terpenes, mainly those contained in ivy leaves and pine needles, decreased adaptation responses induced by PCBs in these strains. The adaptation processes under investigation included growth inhibition, lipid accumulation, composition of fatty acids, cis/trans isomerization, and membrane saturation. Growth inhibition effect decreased upon addition of these natural compounds to the medium. The amount of unsaturated fatty acids that can lead to elevated membrane fluidity increased in both strains after the addition of the two natural terpene sources. The cells adaptation changes were more prominent in the presence of carvone, limonene, and biphenyl than in the presence of natural terpenes, as indicated by growth inhibition, lipid accumulation, and cis/trans isomerization. Addition of biphenyl and carvone simultaneously with PCBs increased the trans/cis ratio of fatty acids in membrane fractions probably as a result of fluidizing effects of PCBs. This stimulation is more pronounced in the presence of PCBs as a sole carbon source. This suggests that PCBs alone have a stronger effect on bacterial membrane adaptation mechanisms than when added together with biphenyl or natural or synthetic terpenes. (orig.)

  15. Methanotrophic bacteria.

    OpenAIRE

    Hanson, R S; Hanson, T. E.

    1996-01-01

    Methane-utilizing bacteria (methanotrophs) are a diverse group of gram-negative bacteria that are related to other members of the Proteobacteria. These bacteria are classified into three groups based on the pathways used for assimilation of formaldehyde, the major source of cell carbon, and other physiological and morphological features. The type I and type X methanotrophs are found within the gamma subdivision of the Proteobacteria and employ the ribulose monophosphate pathway for formaldehy...

  16. Correlation of anaerobic ammonium oxidation and denitrification

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The feasibility of the nitrous organic wastewater treated was studied in seven anaerobic sequencing batch reactors(ASBRs)(0 #-6 #) which had been run under stable anaerobic ammonium oxidation (Anammox). By means of monitoring and data analysis of COD, NH4+-N, NO2--N, NO3--N and pH, and of microbial test, the results revealed that the optimal Anammox performance was achieved from 2# reactor in which COD/NH4+-N was 1.65, Anammox bacteria and denitrification bacteria could coexist, and Anammox reaction and denitrification reaction could occur simultaneously in the reactors. The ratio of NH4+-N consumed: NO2--N consumed: NO3--N produced was 1:1.38:0.19 in 0# reactor which was not added glucose in the wastewater. When different ratio of COD and NH4+-N was fed for the reactors, the ratio of NO2--N consumed: NH4+-N consumed was in the range of 1.51-2.29 and the ratio of NO3-N produced: NH4+-N consumed in the range of 0-0.05.

  17. [Changes in sensitivity of clinical strains of bacteria to dioxidine from 1984 to 1988].

    Science.gov (United States)

    Bol'shakov, L V

    1990-09-01

    Dioxidine sensitivity of 7291 strains of aerobic bacteria and 163 strains of anaerobic bacteria was assayed with the disk diffusion method. The sensitivity of the aerobes was studied in the time course from 1984 to 1988. It was shown that during the 5-year period, the sensitivity of gram-positive bacteria to dioxidine gradually decreased. At the same time no increase in resistance of gram-negative organisms to dioxidine was observed. A high dioxidine sensitivity of obligate anaerobes, i.e. Clostridium spp., Bacteroides spp., Fusobacterium spp., anaerobic cocci and others was demonstrated. PMID:2275583

  18. Intercellular wiring enables electron transfer between methanotrophic archaea and bacteria.

    Science.gov (United States)

    Wegener, Gunter; Krukenberg, Viola; Riedel, Dietmar; Tegetmeyer, Halina E; Boetius, Antje

    2015-10-22

    The anaerobic oxidation of methane (AOM) with sulfate controls the emission of the greenhouse gas methane from the ocean floor. In marine sediments, AOM is performed by dual-species consortia of anaerobic methanotrophic archaea (ANME) and sulfate-reducing bacteria (SRB) inhabiting the methane-sulfate transition zone. The biochemical pathways and biological adaptations enabling this globally relevant process are not fully understood. Here we study the syntrophic interaction in thermophilic AOM (TAOM) between ANME-1 archaea and their consortium partner SRB HotSeep-1 (ref. 6) at 60 °C to test the hypothesis of a direct interspecies exchange of electrons. The activity of TAOM consortia was compared to the first ANME-free culture of an AOM partner bacterium that grows using hydrogen as the sole electron donor. The thermophilic ANME-1 do not produce sufficient hydrogen to sustain the observed growth of the HotSeep-1 partner. Enhancing the growth of the HotSeep-1 partner by hydrogen addition represses methane oxidation and the metabolic activity of ANME-1. Further supporting the hypothesis of direct electron transfer between the partners, we observe that under TAOM conditions, both ANME and the HotSeep-1 bacteria overexpress genes for extracellular cytochrome production and form cell-to-cell connections that resemble the nanowire structures responsible for interspecies electron transfer between syntrophic consortia of Geobacter. HotSeep-1 highly expresses genes for pili production only during consortial growth using methane, and the nanowire-like structures are absent in HotSeep-1 cells isolated with hydrogen. These observations suggest that direct electron transfer is a principal mechanism in TAOM, which may also explain the enigmatic functioning and specificity of other methanotrophic ANME-SRB consortia. PMID:26490622

  19. Clindamycin and gentamicin for aerobic and anaerobic sepsis.

    Science.gov (United States)

    Fass, R J; Ruiz, D E; Gardner, W G; Rotilie, C A

    1977-01-01

    Thirty-eight adult patients with serious pleuropulmonary, soft-tissue, bone, and intra-abdominal infections caused by combinations of aerobic, facultative, and anaerobic bacteria were treated with parenterally given clindamycin phosphate and gentamicin sulfate and surgery when appropriate. Nine had associated bacteremia. In 29, infections failed to respond to other therapeutic regimens, which included penicillins, cephalosporins, aminoglycosides, and chloramphenicol. Results with clindamycin and gentamicin were excellent and were attributed primarily to the activity of clindamycin against anaerobes, particularly Bacteroides fragilis. Serum concentrations of clindamycin surpassed by manyfold the minimal inhibitory concentrations (MICs) for anaerobes. Serum concentrations of gentamicin did not consistently surpass the MICs for Enterobacteriaceae and Pseudomonas aeruginosa, although those organisms were consistently gentamicinsusceptible by disk diffusion susceptibility tests. Persistent colonization with Enterobacteriaceae, P aeruginosa, enterococci, or Candida were common, and occasionally they were significant in prolonging the clinical courses of patients with extensive infections. PMID:318824

  20. Structure and activity of lacustrine sediment bacteria involved in nutrient and iron cycles

    DEFF Research Database (Denmark)

    da Silva Martins, Gilberto Jorge; Terada, Akihiko; Ribeiro, Daniel C; Corral, Anuska M; Brito, António G; Smets, Barth F.; Nogueira, Regina

    2011-01-01

    lakes with distinct trophic states (Verde, Azul, Furnas and Fogo). Inferred from quantitative PCR, bacteria performing anaerobic ammonia oxidation were the most abundant in the eutrophic lakes Verde, Azul and Furnas (4.5-16.6%), followed by nitrifying bacteria (0.8-13.0%), denitrifying bacteria (DNB) (0...

  1. Influence of gamma irradiation on the metabolic activity of sulfate-reducing bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Agaev, N.M.; Guseinov, M.M.; Smorodin, A.E.

    1985-09-01

    When water is pumped into oil-bearing seams to increase oil production, the microorganisms in the injected water fall into favorable ecological conditions and, quickly adapting, form a biocenosis and begin to actively develop. Among the anaerobic microorganisms, the most hazardous from the corrosion viewpoint are the sulfate-reducing bacteria (SRB), which are the main producers of hydrogen sulfide as the product of anaerobic respiration. This paper reports on the effect of gamma rays on the metabolic study of SRB Desulfovibrio desulfuricans in the nutrient medium Postgate B. The radioactive source used is a /sup 60/CoK-125 unit with a power of 700 rad/sec. The required dose of gamma rays was calculated from the exposure times of samples with the test medium in the radiation zone o the isotope /sup 60/Co. The criterion characterizing the effectiveness of suppression of development of the bacteria is the concentration of biogenic hydrogen sulfide produced, as determined by iodometric titration.

  2. Anaerobic azo dye reduction

    OpenAIRE

    Zee, van der, KG Kristoffer

    2002-01-01

    Azo dyes, aromatic moieties linked together by azo (-N=N-) chromophores, represent the largest class of dyes used in textile-processing and other industries. The release of these compounds into the environment is undesirable, not only because of their colour, but also because many azo dyes and their breakdown products are toxic and/or mutagenic to life. To remove azo dyes from wastewater, a biological treatment strategy based on anaerobic reduction of the azo dyes, followed by aerobic transfo...

  3. Comparative investigation on microbial community and electricity generation in aerobic and anaerobic enriched MFCs.

    Science.gov (United States)

    Quan, Xiang-chun; Quan, Yan-ping; Tao, Kun; Jiang, Xiao-man

    2013-01-01

    This study compared the difference in microbial community and power generation capacity of air-cathode MFCs enriched under anode aerobic and anaerobic conditions. Results showed that MFCs successfully started with continuous air inputting to anode chamber. The aerobic enriched MFC produced comparable and even more electricity with the fuels of acetate, glucose and ethanol compared to the anaerobic MFC when returning to anaerobic condition. The two MFCs showed a slightly different microbial community for anode biofilms (a similarity of 77%), but a highly similar microbial community (a similarity of 97%) for anolyte microbes. The anode biofilm of aerobic enriched MFC showed the presence of some specific bacteria closely related to Clostridium sticklandii, Leucobacter komagatae and Microbacterium laevaniformans. The anaerobic enriched MFC found the presence of a large number of yeast Trichosporon sp. This research demonstrates that it is possible to enrich oxygen-tolerant anode respiring bacteria through purposely aeration in anode chamber. PMID:23196248

  4. Evidence for PAH Removal Coupled to the First Steps of Anaerobic Digestion in Sewage Sludge

    Directory of Open Access Journals (Sweden)

    Glenda Cea-Barcia

    2013-01-01

    Full Text Available Anaerobic degradation of polycyclic aromatic hydrocarbons has been brought to the fore, but information on removal kinetics and anaerobic degrading bacteria is still lacking. In order to explore the organic micropollutants removal kinetics under anaerobic conditions in regard to the methane production kinetics, the removal rate of 12 polycyclic aromatic hydrocarbons was measured in two anaerobic batch reactors series fed with a highly loaded secondary sludge as growth substrate. The results underscore that organic micropollutants removal is coupled to the initial stages of anaerobic digestion (acidogenesis and acetogenesis. In addition, the organic micropollutants kinetics suggest that the main removal mechanisms of these hydrophobic compounds are biodegradation and/or sequestration depending on the compounds.

  5. The influence of biofilm formation by Gardnerella vaginalis and other anaerobes on bacterial vaginosis

    OpenAIRE

    Machado, António; Cerca, Nuno

    2015-01-01

    Bacterial vaginosis (BV) is the worldwide leading vaginal disorder in women of reproductive age. BV is characterized by the replacement of beneficial lactobacilli and the augmentation of anaerobic bacteria. Gardnerella vaginalis is a predominant bacterial species, however, BV is also associated with other numerous anaerobes, such as Atopobium vaginae, Mobiluncus mulieris, Prevotella bivia, Fusobacterium nucleatum and Peptoniphilus sp.. Currently, the role of G. vaginalis in the etiology of BV...

  6. Metabolic Capabilities of Microorganisms Involved in and Associated with the Anaerobic Oxidation of Methane

    OpenAIRE

    Wegener, Gunter; Krukenberg, Viola; Ruff, S. Emil; Kellermann, Matthias Y.; Knittel, Katrin

    2016-01-01

    In marine sediments the anaerobic oxidation of methane with sulfate as electron acceptor (AOM) is responsible for the removal of a major part of the greenhouse gas methane. AOM is performed by consortia of anaerobic methane-oxidizing archaea (ANME) and their specific partner bacteria. The physiology of these organisms is poorly understood, which is due to their slow growth with doubling times in the order of months and the phylogenetic diversity in natural and in vitro AOM enrichments. Here w...

  7. Anaerobic Cultures from Preserved Tissues of Baby Mammoth

    Science.gov (United States)

    Pikuta, Elena V.; Hoover, Richard B.; Fisher, Daniel

    2011-01-01

    Microbiological analysis of several cold-preserved tissue samples from the Siberian baby mammoth known as Lyuba revealed a number of culturable bacterial strains that were grown on anaerobic media at 4 C. Lactic acid produced by LAB (lactic acid bacteria) group, usually by members of the genera Carnobacterium and Lactosphera, appears to be a wonderful preservative that prevents other bacteria from over-dominating a system. Permafrost and lactic acid preserved the body of this one-month old baby mammoth and kept it in exceptionally good condition, resulting in this mammoth being the most complete such specimen ever recovered. The diversity of novel anaerobic isolates was expressed on morphological, physiological and phylogenetic levels. Here we discuss the specifics of the isolation of new strains, differentiation from trivial contamination, and preliminary results for the characterization of cultures.

  8. Anaerobic cultures from preserved tissues of baby mammoth

    Science.gov (United States)

    Pikuta, Elena V.; Fisher, Daniel; Hoover, Richard B.

    2011-10-01

    Microbiological analysis of several cold-preserved tissue samples from the Siberian baby mammoth known as Lyuba revealed a number of culturable bacterial strains that were grown on anaerobic media at 3 oC. Lactic acid produced by LAB (lactic acid bacteria) group, usually by members of the genera Carnobacterium and Lactosphera, appears to be a wonderful preservative that keeps other bacteria from colonizing a system. Permafrost and lactic acid preserved the body of this one month-old baby mammoth and kept it in exceptionally good condition, resulting in this mammoth being the most complete sample of the species ever recovered. The diversity of novel psychrophilic anaerobic isolates was expressed on morphological, physiological and phylogenetic levels. Here, we discuss the specifics of the isolation of new psychrophilic strains, differentiation from trivial contamination, and preliminary results for characterization of the cultures.

  9. Isolation and Identification of Psychrotrophic Bacteria in Normal Temperature Soils and Their Properties of Cold-Adapted Enzymes Production%常温土壤中耐冷茵的分离、鉴定及产酶分析

    Institute of Scientific and Technical Information of China (English)

    易浪波; 舒琅; 唐云涛; 朱越; 杜次; 彭清忠

    2012-01-01

    Objective: To screen cold-adapted microorganisms from normal temperature soils,and identify the isolated strains preliminarily and assay their cold-active enzyme production. Methods: Cold-adapted microorganisms were isolated from normal temperature soils at the campus of Jishou university by enrichment culture at 2℃. The isolated strains were identified by bacterial morphological,physiological and biochemical characteristics,and using phylogenetic relationships based on 16S rRNA gene sequences. The cold-adapted enzyme production of these bacteria was analyzed by substrate hydrolysis experiments. Results: Six strains of psychrotrophic bacteria,named afterJSBP-1~JSBP-6,were isolated from the normal temperature soil samples,and identified as Pseudomonas sp.,Jan-thinobacterium sp. And Arthrobacter sp. Respectively by morphological,physiological and biochemical characteristics,and the phylogenetic analysis of 16S rRNA gene. JSBP-1 had the capability of producing more cold-adapted protease,JSBP-2 and JSBP-6 had the capability of producing more cold-adapted amylase at 5℃ and \\5℃ respectively,and JSBP-5 could produce more cold-active lipase only at 5℃. Conclusion: There are a certain amount of cold-adapted microorganisms in normal temperature soils,of which Pseudomonas sp. Is one of predominant populations. These microorganisms are potential resources of producing cold-adapted enzymes.%目的:从常温土壤中筛选冷适应微生物,并进行初步鉴定和产低温酶分析.方法:采集吉首大学校园内土壤样品,通过低温富集培养筛选冷适应微生物;通过形态观察、生理生化特性检测和基于16S rRNA基因序列的系统发育分析,对分离的菌株进行初步鉴定;利用平板筛选法检测其产低温酶特性.结果:分离获得6株耐冷细菌JSBP-1~JSBP-6,初步鉴定其分属假单胞菌属(Pseudomonas)、紫色杆菌属(Janthinobacterium)和节杆菌属(Arthrobacter);在5℃和15C培养条件下,菌株JSBP-1

  10. Comparison of Two Methods for Enumeration of Anaerobe Numbers on Forages and Evaluation of Ethylene Oxide Treatment for Forage Sterilization †

    OpenAIRE

    Shockey, W. L.; Dehority, B. A.

    1989-01-01

    Experiments were conducted to (i) compare most-probable-number (MPN) procedures with roll tube procedures for enumeration of forage anaerobic bacteria and (ii) evaluate the efficacy of using ethylene oxide to sterilize wet herbage. Alfalfa, corn, and alfalfa-orchardgrass silages and alfalfa and orchardgrass herbages were analyzed for total anaerobic bacteria (medium pH, 6.8) and acid-tolerant anaerobic bacteria (medium pH, 4.5) by both roll tube and MPN procedures. No difference was found bet...

  11. Molecular characterization of anaerobic dehalogenation by Desulfitobacterium dehalogenans

    OpenAIRE

    Smidt, H.

    2001-01-01

    Haloorganics such as chlorophenols and chlorinated ethenes are among the most abundant pollutants in soil, sediments and groundwater, mainly caused by past and present industrial and agricultural activities. Due to bioaccumulation and toxicity, these compounds threaten the integrity of the environment, and human and animal health. A recently discovered, phylogenetically diverse, group of anaerobic so-called halorespiring bacteria is able to couple the reductive dehalogenation of various haloo...

  12. Nitrogen loss by anaerobic oxidation of ammonium in rice rhizosphere

    OpenAIRE

    Nie, San'an; Li, Hu; Yang, Xiaoru; Zhang, Zhaoji; Weng, Bosen; Huang, Fuyi; Zhu, Gui-Bing; Zhu, Yong-Guan

    2015-01-01

    Anaerobic oxidation of ammonium (anammox) is recognized as an important process for nitrogen (N) cycling, yet its role in agricultural ecosystems, which are intensively fertilized, remains unclear. In this study, we investigated the presence, activity, functional gene abundance and role of anammox bacteria in rhizosphere and non-rhizosphere paddy soils using catalyzed reporter deposition–fluorescence in situ hybridization, isotope-tracing technique, quantitative PCR assay and 16S rRNA gene cl...

  13. Development of microorganisms in the chernozem under aerobic and anaerobic conditions

    Science.gov (United States)

    Polyanskaya, L. M.; Gorbacheva, M. A.; Milanovskii, E. Yu.; Zvyagintsev, D. G.

    2010-03-01

    A microbial succession was studied under aerobic and anaerobic conditions by means of experiments with microcosms in different horizons of a chernozem. It was revealed that, under aerobic conditions, all the microorganisms grow irrespective of the soil horizon; fungi and bacteria grow at the first succession stages, and actinomycetes grow at the last stages. It was shown that, in the case of a simulated anaerobiosis commonly used to study anaerobic populations of bacteria, the mycelium of micromycetes grows in the upper part of the chernozem’s A horizon. Under anaerobic conditions, the peak of the mycelium development is shifted from the 3rd to 7th days (typical for aerobic conditions) to the 7th to 15th days of incubation. The level of mycelium length’s stabilization under aerobic and anaerobic conditions also differs: it is higher or lower than the initial one, respectively. Under anaerobic conditions, the growth of fungal mycelium, bacteria, and actinomycetes in the lower part of the A horizon and in the B horizon is extremely weak. There was not any observed growth of actinomycetes in all the chernozem’s horizons under anaerobic conditions.

  14. Big bacteria

    DEFF Research Database (Denmark)

    Schulz, HN; Jørgensen, BB

    2001-01-01

    A small number of prokaryotic species have a unique physiology or ecology related to their development of unusually large size. The biomass of bacteria varies over more than 10 orders of magnitude, from the 0.2 mum wide nanobacteria to the largest cells of the colorless sulfur bacteria......, Thiomargarita namibiensis, with a diameter of 750 mum. All bacteria, including those that swim around in the environment, obtain their food molecules by molecular diffusion. Only the fastest and largest swimmers known, Thiovulum majus, are able to significantly increase their food supply by motility and by...... actively creating an advective flow through the entire population. Diffusion limitation generally restricts the maximal size of prokaryotic cells and provides a selective advantage for mum-sized cells at the normally low substrate concentrations in the environment. The largest heterotrophic bacteria, the...

  15. Viable Bacteria Associated with Red Blood Cells and Plasma in Freshly Drawn Blood Donations

    DEFF Research Database (Denmark)

    Damgaard, Christian; Magnussen, Karin; Enevold, Christian;

    2015-01-01

    10-6, respectively). Propionibacterium acnes was found in 23% of the donations, and Staphylococcus epidermidis in 38%. The majority of bacteria identified in the present study were either facultative anaerobic (59.5%) or anaerobic (27.8%) species, which are not likely to be detected during current...

  16. Anaerobic Mercury Methylation and Demethylation by Geobacter bemidjiensis Bem.

    Science.gov (United States)

    Lu, Xia; Liu, Yurong; Johs, Alexander; Zhao, Linduo; Wang, Tieshan; Yang, Ziming; Lin, Hui; Elias, Dwayne A; Pierce, Eric M; Liang, Liyuan; Barkay, Tamar; Gu, Baohua

    2016-04-19

    Microbial methylation and demethylation are two competing processes controlling the net production and bioaccumulation of neurotoxic methylmercury (MeHg) in natural ecosystems. Although mercury (Hg) methylation by anaerobic microorganisms and demethylation by aerobic Hg-resistant bacteria have both been extensively studied, little attention has been given to MeHg degradation by anaerobic bacteria, particularly the iron-reducing bacterium Geobacter bemidjiensis Bem. Here we report, for the first time, that the strain G. bemidjiensis Bem can mediate a suite of Hg transformations, including Hg(II) reduction, Hg(0) oxidation, MeHg production and degradation under anoxic conditions. Results suggest that G. bemidjiensis utilizes a reductive demethylation pathway to degrade MeHg, with elemental Hg(0) as the major reaction product, possibly due to the presence of genes encoding homologues of an organomercurial lyase (MerB) and a mercuric reductase (MerA). In addition, the cells can strongly sorb Hg(II) and MeHg, reduce or oxidize Hg, resulting in both time and concentration-dependent Hg species transformations. Moderate concentrations (10-500 μM) of Hg-binding ligands such as cysteine enhance Hg(II) methylation but inhibit MeHg degradation. These findings indicate a cycle of Hg methylation and demethylation among anaerobic bacteria, thereby influencing net MeHg production in anoxic water and sediments. PMID:27019098

  17. Effect of tourmaline on denitrification characteristics of hydrogenotrophic bacteria.

    Science.gov (United States)

    Wang, Wei; Jiang, Hongyan; Zhu, Guangquan; Song, Xueying; Liu, Xingyu; Qiao, Ya

    2016-03-01

    To improve the denitrification characteristics of anaerobic denitrifying bacteria and obviate the disadvantage of use of explosive hydrogen gas, tourmaline, a polar mineral, was added to the hydrogenotrophic denitrification system in this study. Microbial reduction of nitrate in the presence of tourmaline was evaluated to assess the promotion effect of tourmaline on nitrate biodegradation. The experiment results demonstrated that tourmaline speeded up the cultivation process of bacteria from 65 to 36 days. After domestication of the bacteria, nitrate (50 mg NO3 (-)-N L(-1)) was completely removed within 3 days in the combined tourmaline-bacteria system, and the generated nitrite was also removed within 8 days. The reduction rate in this system is higher relative to that in the bacteria system alone. Efficient removal of nitrate by tourmaline-supported anaerobic bacteria (without external hydrogen input) indicated that tourmaline might act as the sole hydrogen donor to sustain autotrophic denitrification. Besides the production of hydrogen, the promoted activity of anaerobic denitrifying bacteria might be caused by the change of water properties, e.g., the pH of aqueous solutions was altered to about 8.0 and the oxidation-reduction potential decreased by 62 % in the tourmaline system. The distinctive effects of tourmaline on bacteria were related to its electric properties. PMID:26545889

  18. Anaerobic wastewater treatment using anaerobic baffled bioreactor: a review

    Science.gov (United States)

    Hassan, Siti; Dahlan, Irvan

    2013-09-01

    Anaerobic wastewater treatment is receiving renewed interest because it offers a means to treat wastewater with lower energy investment. Because the microorganisms involved grow more slowly, such systems require clever design so that the microbes have sufficient time with the substrate to complete treatment without requiring enormous reactor volumes. The anaerobic baffled reactor has inherent advantages over single compartment reactors due to its circulation pattern that approaches a plug flow reactor. The physical configuration of the anaerobic baffled reactor enables significant modifications to be made; resulting in a reactor which is proficient of treating complex wastewaters which presently require only one unit, ultimately significant reducing capital costs. This paper also concerns about mechanism, kinetic and hydrodynamic studies of anaerobic digestion for future application of the anaerobic baffled reactor for wastewater treatment.

  19. Anaerobic Treatment of Palm Oil Mill Effluent in Pilot-Scale Anaerobic EGSB Reactor

    Directory of Open Access Journals (Sweden)

    Jin Wang

    2015-01-01

    Full Text Available Large volumes of untreated palm oil mill effluent (POME pose threat to aquatic environment due to the presence of very high organic content. The present investigation involved two pilot-scale anaerobic expanded granular sludge bed (EGSB reactors, continuously operated for 1 year to treat POME. Setting HRT at 9.8 d, the anaerobic EGSB reactors reduced COD from 71179 mg/L to 12341 mg/L and recycled half of sludge by a dissolved air flotation (DAF. The average effluent COD was 3587 mg/L with the consistent COD removal efficiency of 94.89%. Adding cationic polymer (PAM dose of 30 mg/L to DAF unit and recycling its half of sludge caused granulation of anaerobic sludge. Bacilli and small coccid bacteria were the dominant microbial species of the reactor. The reactor produced 27.65 m3 of biogas per m3 of POME which was utilized for electricity generation.

  20. [Detection of anaerobic processes and microorganisms in immobilized activated sludge of a wastewater treatment plant with intense aeration].

    Science.gov (United States)

    Litti, Iu V; Nekrasova, V K; Kulikov, N I; Siman'kova, M V; Nozhevnikova, A N

    2013-01-01

    Attached activated sludge from the Krasnaya Polyana (Sochi) wastewater treatment plant was studied after the reconstruction by increased aeration and water recycle, as well as by the installation of a bristle carrier for activated sludge immobilization. The activated sludge biofilms developing under conditions of intense aeration were shown to contain both aerobic and anaerobic microorganisms. Activity of a strictly anaerobic methanogenic community was revealed, which degraded organic compounds to methane, further oxidized by aerobic methanotrophs. Volatile fatty acids, the intermediates of anaerobic degradation of complex organic compounds, were used by both aerobic and anaerobic microorganisms. Anaerobic oxidation of ammonium with nitrite (anammox) and the presence of obligate anammox bacteria were revealed in attached activated sludge biofilms. Simultaneous aerobic and anaerobic degradation of organic contaminants by attached activated sludge provides for high rates of water treatment, stability of the activated sludge under variable environmental conditions, and decreased excess sludge formation. PMID:25509405

  1. Microbial Diversity and Characteristics in Anaerobic Environments in KURT Groundwater

    International Nuclear Information System (INIS)

    The Underground Research Tunnel (URT) located in Korea Atomic Energy Research Institute (KAERI), Daejeon, South Korea was recently constructed as an experimental site to study radionuclide transport, biogeochemistry, radionuclide-mineral interactions for the geological disposal of high level nuclear waste. Groundwater sampled from URT was used to examine microbial diversity and to enrich metal reducing bacteria for studying microbe-metal interactions. Genomic analysis indicated that the groundwater contained diverse microorganisms such as metal reducers, metal oxidizers, anaerobic denitrifying bacteria, and bacteria for reductive dechlorination. Metal-reducing bacteria enriched from the groundwater was used to study metal reduction and biomineralization. The metal-reducing bacteria enriched with acetate or lactate as the electron donors showed the bacteria reduced Fe(III)-citrate, Fe(III) oxyhydroxide, Mn(IV) oxide, and Cr(VI) as the electron acceptors. Preliminary study indicated that the enriched bacteria were able to use glucose, lactate, acetate, and hydrogen as electron donors while reducing Fe(III)-citrate or Fe(III) oxyhydroxide as the electron acceptor. The bacteria exhibited diverse mineral precipitation capabilities including the formation of magnetite, siderite, and rhodochrosite. The results indicated that Fe(III)- and metal-reducing communities are present in URT at the KAERI

  2. Bacteria and the mucus blanket in experimental small bowel bacterial overgrowth.

    OpenAIRE

    Sherman, P; Fleming, N; Forstner, J.; Roomi, N.; Forstner, G

    1987-01-01

    Self-filling blind loops were created experimentally in jejunal segments of specific pathogen-free male Wistar rats, and the loop contents and mucosa were examined over an 8-week period for evaluation of the interaction between mucus and luminal bacteria. Corresponding jejunal segments from rats that did not undergo surgery were used as controls. Proliferation of anaerobic bacteria developed in the test animals by the first week after surgery. Despite anaerobic bacterial proliferation, no adh...

  3. Anaerobic Digestion of Piggery Waste

    NARCIS (Netherlands)

    Velsen, van A.F.M.

    1981-01-01

    Anaerobic digestion is a biological process by which organic matter is converted to methane and carbon dioxide by microbes in the absence of air (oxygen). In nature, anaerobic conversions occur at all places where organic material accumulates and the supply of oxygen is deficient, e.g. in marshes an

  4. Economic viability of anaerobic digestion

    Energy Technology Data Exchange (ETDEWEB)

    Wellinger, A. [INFOENERGIE, Ettenhausen (Switzerland)

    1996-01-01

    The industrial application of anaerobic digestion is a relatively new, yet proven waste treatment technology. Anaerobic digestion reduces and upgrades organic waste, and is a good way to control air pollution as it reduces methane and nitrous gas emissions. For environmental and energy considerations, anaerobic digestion is a nearly perfect waste treatment process. However, its economic viability is still in question. A number of parameters - type of waste (solid or liquid), digester system, facility size, product quality and end use, environmental requirements, cost of alternative treatments (including labor), and interest rates - define the investment and operating costs of an anaerobic digestion facility. Therefore, identical facilities that treat the same amount and type of waste may, depending on location, legislation, and end product characteristics, reveal radically different costs. A good approach for evaluating the economics of anaerobic digestion is to compare it to treatment techniques such as aeration or conventional sewage treatment (for industrial wastewater), or composting and incineration (for solid organic waste). For example, the cost (per ton of waste) of in-vessel composting with biofilters is somewhat higher than that of anaerobic digestion, but the investment costs 1 1/2 to 2 times more than either composting or anaerobic digestion. Two distinct advantages of anaerobic digestion are: (1) it requires less land than either composting or incinerating, which translates into lower costs and milder environmental and community impacts (especially in densely populated areas); and (2) it produces net energy, which can be used to operate the facility or sold to nearby industries.

  5. Contribution to the study of the role of sulfate-reducing bacteria in bio-corrosion phenomenon

    International Nuclear Information System (INIS)

    By their metabolic activities of hydrogen consumption and of sulfides production, the sulfate-reducing bacteria are the main bacteria responsible of the metallic corrosion phenomena in the absence of oxygen. A physiological and enzymatic study of some Desulfovibrio has contributed to the understanding of the role of these bacteria in the anaerobic bio-corrosion phenomena. Desulfovibrio (D.) vulgaris in organic medium, after having oxidized the lactate, consumes the hydrogen formed by the electrochemical reaction of iron dissolution. The Desulfovibrio can be responsible either of a corrosion by a direct contact with the metal in using the H2 layer formed at its surface, (bacteria are then adsorbed at the surface because of an iron sulfide crystalline lattice), or of a distant corrosion in consuming the dissolved or gaseous hydrogen. As their hydrogenases can be stable in time independently of the cellular structure (D. vulparis) and active at high temperatures (to 70 C - 75 C) (D. baculatus), these bacteria can act in conditions incompatible with the viability of cells but compatible with the enzymatic expression. A study in terms of temperature has shown that inside the mesophilic group of the Desulfovibrio, the behaviour towards this parameter is specific to each bacteria, that accounts for the permanent presence of the representatives of this population in sites where the temperature variations are important. A change of some degrees Celsius can induce modifications in the yields of bacteria growth and by a consequence in variations in the corrosion intensity. Moreover, sulfate D. multispirans can reduce with specific velocities of different growth, the nitrate, the nitrite and the fumarate. Some sulfato-reducing could then adapt themselves to the variations of concentrations in electron acceptors and metabolize the oxidized substances used as biocides too. The choice of an electron acceptor rather than another do not depend uniquely of the specificity of the

  6. EVALUATION OF A TWO-STAGE TREATMENT OF DOMESTIC SEWAGE WITH ANAEROBIC-AEROBIC MICROBIAL FILM

    Directory of Open Access Journals (Sweden)

    A.Mesdaghinia

    1986-08-01

    Full Text Available The objective of this research was to study the feasibility of a two stage continuous system employing anaerobic-aerobic microbial film for domestic wastewater treatment and the effect of iron on the behavior of sulfate reducing bacteria in anaerobic metabolism. A bench scale system with an anaerobic filter followed by aerobic fixed units used plastic media and was operated in up flow manner with hydraulic detention times of 6 hours, whereas the aerobic unit utilized diffused aeration. Raw domestic sewage was fed to the anaerobic unit, and the aerobic unit was fed with the anaerobic unit was fed with the anaerobic effluent. Although, the anaerobic filter did not show a considerable organic removal with domestic sex age it was improved when glucose was added to the influent to increase influent soluble COD. When glucose was added the anaerobic filter removed about 290 mg/1 of influent soluble COD. The aerobic unit produced an excellent effluent with COD, BOD5 and TSS concentrations of 37 mg/1, 9 mg/1 and 10 mg/l respectively. Overall, the system removed 95 percent of influent COD, 97 percent of influent BOD5 and 96 percent of influent TSS.

  7. Degradation of BTEX by anaerobic bacteria: physiology and application

    NARCIS (Netherlands)

    Weelink, S.A.B.; Eekert, van M.H.A.; Stams, A.J.M.

    2010-01-01

    Pollution of the environment with aromatic hydrocarbons, such as benzene, toluene, ethylbenzene and xylene (so-called BTEX) is often observed. The cleanup of these toxic compounds has gained much attention in the last decades. In situ bioremediation of aromatic hydrocarbons contaminated soils and gr

  8. Degradation of benzene and other aromatic hydrocarbons by anaerobic bacteria

    OpenAIRE

    Weelink, S.A.B.

    2008-01-01

    Accidental spills, industrial discharges and gasoline leakage from underground storage tanks have resulted in serious pollution of the environment with monoaromatic hydrocarbons, such as benzene, toluene, ethylbenzene and xylene (so-called BTEX). High concentrations of BTEX have been detected in soils, sediments and groundwater. The mobility and toxicity of the BTEX compounds are of major concern. In situ bioremediation of BTEX by using naturally occurring microorganisms or introduced microor...

  9. Degradation of benzene and other aromatic hydrocarbons by anaerobic bacteria

    NARCIS (Netherlands)

    Weelink, S.A.B.

    2008-01-01

    Accidental spills, industrial discharges and gasoline leakage from underground storage tanks have resulted in serious pollution of the environment with monoaromatic hydrocarbons, such as benzene, toluene, ethylbenzene and xylene (so-called BTEX). High concentrations of BTEX have been detected in soi

  10. Production of Bioethanol From Lignocellulosic Biomass Using Thermophilic Anaerobic Bacteria

    DEFF Research Database (Denmark)

    Georgieva, Tania I.

    2006-01-01

    xylose conversion, effective glucose/xylose co-fermentation, and ethanol productivity of 1 g/l/h required for an economically viable bioethanol process. Furthermore, the fermentation of two undetoxified feed streams of industrial interest (acid hydrolyzed corn stover and wet-exploded wheat straw...... hydrolysates indicate the great potential of the tested strain as a realistic candidate for industrial scale bioethanol production from lignocellulose. The study shows that the use of fluidized bed reactor technology might be a viable approach in a commercial lignocellulose-based bioethanol process using......Bioethanol (ethanol produced from biomass) as a motor fuel is an attractive renewable fully sustainable energy sources as a means of lowering dependence on fossil fuels and air pollution towards greenhouse gasses, particularly CO2. Bioethanol, unlike gasoline, is an oxygenated fuel, which burns...

  11. Anaerobic fungal populations

    International Nuclear Information System (INIS)

    The development of molecular techniques has greatly broadened our view of microbial diversity and enabled a more complete detection and description of microbial communities. The application of these techniques provides a simple means of following community changes, for example, Ishii et al. described transient and more stable inhabitants in another dynamic microbial system, compost. Our present knowledge of anaerobic gut fungal population diversity within the gastrointestinal tract is based upon isolation, cultivation and observations in vivo. It is likely that there are many species yet to be described, some of which may be non-culturable. We have observed a distinct difference in the ease of cultivation between the different genera, for example, Caecomyes isolates are especially difficult to isolate and maintain in vitro, a feature that is likely to result in the under representation of this genera in culture-based enumerations. The anaerobic gut fungi are the only known obligately anaerobic fungi. For the majority of their life cycles, they are found tightly associated with solid digesta in the rumen and/or hindgut. They produce potent fibrolytic enzymes and grow invasively on and into the plant material they are digesting making them important contributors to fibre digestion. This close association with intestinal digesta has made it difficult to accurately determine the amount of fungal biomass present in the rumen, with Orpin suggesting 8% contribution to the total microbial biomass, whereas Rezaeian et al. more recently gave a value of approximately 20%. It is clear that the rumen microbial complement is affected by dietary changes, and that the fungi are more important in digestion in the rumens of animals fed with high-fibre diets. It seems likely that the gut fungi play an important role within the rumen as primary colonizers of plant fibre, and so we are particularly interested in being able to measure the appearance and diversity of fungi on the plant

  12. Anaerobic Co-Digestion of the Microalgae Scenedesmus Sp.

    Energy Technology Data Exchange (ETDEWEB)

    Ramos-Suarez, J. L.; Carreras, N.

    2011-06-07

    Microalgae biomass has been widely studied for biogas production over the last years and results show that anaerobic digestion is often limited by the low C/N ratio of this type of biomass. Therefore, codigestion with substrates of high C/N ratio is necessary. The objectives of this study are to set up an experimental method that ease reproducibility and control of anaerobic digestion processes in laboratory conditions and to determine the biodegradability and biogas production potential of the co-digestion process of microalgae Scenedesmus sp. and energy crop Opuntia ficus indica (L.) Miller. Results obtained showed that higher C/N ratios are preferred in order to maximize methane production. Highest methane yield obtained was 0.252m3CH4/Kg VS and degradability expressed as percentage COD reduced is around 30% for the ideal mixture found, made up of 75% O. ficus-indica and 25% Scenedesmus sp. in VS basis. A laboratory setup using MicroOxymax respirometer, after its adaptation to work under anaerobic conditions, can be used for the monitoring of anaerobic digestion processes. Scenedesmus sp. as sole substrate for anaerobic digestion does not give good results due to low C/N ratio. However, when codigesting it with O. ficus-indica methane production is satisfactory. Best mixture was made up of 75% O. ficus-indica and 25% Scenedesmus sp. in VS basis. (Author)

  13. Metabolic Flexibility of Sulfate-Reducing Bacteria

    OpenAIRE

    Plugge, Caroline M.; Zhang, Weiwen; Scholten, Johannes C. M.; Stams, Alfons J. M.

    2011-01-01

    Dissimilatory sulfate-reducing prokaryotes (SRB) are a very diverse group of anaerobic bacteria that are omnipresent in nature and play an imperative role in the global cycling of carbon and sulfur. In anoxic marine sediments sulfate reduction accounts for up to 50% of the entire organic mineralization in coastal and shelf ecosystems where sulfate diffuses several meters deep into the sediment. As a consequence, SRB would be expected in the sulfate-containing upper sediment layers, whereas me...

  14. Inactivation of Mg Chelatase during Transition from Anaerobic to Aerobic Growth in Rhodobacter capsulatus

    OpenAIRE

    Willows, Robert D; Lake, Vanessa; Roberts, Thomas Hugh; Beale, Samuel I.

    2003-01-01

    The facultative photosynthetic bacterium Rhodobacter capsulatus can adapt from an anaerobic photosynthetic mode of growth to aerobic heterotrophic metabolism. As this adaptation occurs, the cells must rapidly halt bacteriochlorophyll synthesis to prevent phototoxic tetrapyrroles from accumulating, while still allowing heme synthesis to continue. A likely control point is Mg chelatase, the enzyme that diverts protoporphyrin IX from heme biosynthesis toward the bacteriochlorophyll biosynthetic ...

  15. Interactions between Periodontal Bacteria and Human Oral Epithelial Cells: Fusobacterium nucleatum Adheres to and Invades Epithelial Cells

    OpenAIRE

    Han, Yiping W.; Shi, Wenyuan; HUANG, GEORGE T.-J.; Kinder Haake, Susan; Park, No-Hee; Kuramitsu, Howard; Genco, Robert J.

    2000-01-01

    Bacteria are causative agents of periodontal diseases. Interactions between oral bacteria and gingival epithelial cells are essential aspects of periodontal infections. Using an in vitro tissue culture model, a selected group of gram-negative anaerobic bacteria frequently associated with periodontal diseases, including Bacteroides forsythus, Campylobacter curvus, Eikenella corrodens, Fusobacterium nucleatum, Porphyromonas gingivalis, and Prevotella intermedia, were examined for their ability ...

  16. Biotransformation of nonylphenol ethoxylates during sewage treatment under anaerobic and aerobic conditions

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Biotransformation of nonylphenol ethoxylates (NPEOs) during continuous anaerobic sewage treatment was compared with the aerobic treatment of sewage spiked with 23 μmol/L technical NPEOs over a period of 90 d. Immediate degradation of NPEOs was observed under both anaerobic and aerobic conditions, indicating that the enzymes and bacteria required for NPEO degradation existed abundantly in both aerobic and anaerobic sludge. Both treatments achieved high removal (>92%) of the spiked NPEO9 mixture.Liquid chromatography-mass spectrometry (LC-MS) analysis showed that short-chain NPEOs (NPEO1-NPEO3) accumulated in anaerobic (2.01-2.56 μmol/L) and aerobic (1.62-2.03 μmol/L) effluents, with nonylphenol (NP) (0.24-0.31 μmol/L) as another group of metabolites in the anaerobic effluent, and nonylphenoxy carboxylates (NPECs) (2.79-3.30 μmol/L) in the aerobic effluent. Significant accumulation of NP in the anaerobic sludge and NPEO1-3 in the sludge of two reactors was observed. These results indicated that it was difficult to control these harmful metabolites in the conventional treatment processes. Denaturing gradient gel electrophoresis profiles of sludge samples support the speculation that the NPEO degradation bacteria might be the dominant indigenous species.

  17. Porphyromonas pogonae sp. nov., an anaerobic but low concentration oxygen adapted coccobacillus isolated from lizards (Pogona vitticeps) or human clinical specimens, and emended description of the genus Porphyromonas Shah and Collins 1988.

    Science.gov (United States)

    Kawamura, Yoshiaki; Kuwabara, Saki; Kania, Stephen A; Kato, Hisayuki; Hamagishi, Manami; Fujiwara, Nagatoshi; Sato, Takuichi; Tomida, Junko; Tanaka, Kaori; Bemis, David A

    2015-03-01

    During the process of identifying a Gram-negative coccobacillus isolated from a human clinical specimen, we found that the isolate's 16S rRNA gene had very close sequence identity with that of a variant Porphyromonas isolated from polymicrobial infections in the central bearded dragon, a species of lizard [2]. The 16S rRNA gene sequences of the human isolate and of six isolates from lizards were nearly identical (99.9-100%). Phylogenetic analysis placed all of these isolates in a single phylogenetic cluster well separated from other species in the genus Porphyromonas. The closest species was Porphyromonas catoniae with 90.7-90.9% sequence identity, although there was less than 6% DNA similarity between the P. catoniae type strain and our representative isolates from lizards (PAGU 1787(T)) and human (PAGU 1776). These isolates could grow under anaerobic or microaerobic conditions (6% O2 atmosphere). The isolates were positive for catalase and very strong β-hemolytic activity, but did not show black or brown pigmentation. Biochemically, the isolates could be differentiated from closely related species by pyroglutamic acid arylamidase and glycine arylamidase activity, and some others. The fermentation products mainly included succinic acid and propionic acid. The major fatty acids detected in cells of the isolates were iso-C15:0, anteiso-C15:0, and 3OH-iso-C17:0. The G+C content was 43.0 ± 0.62 mol%. The species name Porphyromonas pogonae sp. nov. is proposed for these isolates with the type strain of PAGU 1787(T) (=MI 10-1288(T)=JCM 19732(T)=ATCC BAA-2643(T)). PMID:25481042

  18. Dynamic characteristics of Paracoccus denitrificans in alternate aerobic-anaerobic continuous cultivations

    Energy Technology Data Exchange (ETDEWEB)

    Waki, T.; Kawato, Y.; Shimatani, Y.; Ichikawa, K.

    1980-06-01

    The alternate aerobic-anaerobic continuous culture system was used to analyze the adaptation phenomena of Paracoccus denitrificans quantitatively, which will be observed in a single sludge nitrification-denitrification system. After the initial rapid reduction of nitrate in the anaerobic period, a rather high rate of nitrate reduction was maintained. The lag of adaptation to each condition was short and this was explained by the presence of large amounts of the cytochromes and enzymes required for both aerobic and nitrate/nitrite respirations. When the alternation cycle of aerobic and anaerobic conditions was short, the nitrate concentration was lower than that in anaerobic continuous cultures at the same dilution rate. The apparent specific rate of nitrate reduction was almost the same as that in anaerobic continuous cultures when the alternation cycle was short. On the other hand, the nitrite accumulated at high concentrations and the apparent specific rate of nitrite reduction was very low. The actual reduction rate of nitrate in the anaerobic periods was found to be unaffected by the length of the aerobic periods, however, the actual reduction rate of nitrite was highly affected by the aerobic periods. By considering the initial rapid reduction of nitrate in the alternate aerobic-anaerobic system, it was suggested that the higher recycling ratio which corresponds to the shorter alternation cycle, was effective in increasing the efficiency of nitrogen removal in the single sludge nitrification-denitrification system.

  19. Enhanced biogas yield from energy crops with rumen anaerobic fungi

    Energy Technology Data Exchange (ETDEWEB)

    Prochazka, Jindrich; Zabranska, Jana; Dohanyos, Michal [Department of Water Technology and Environmental Engineering, Faculty of Environmental Technology, Institute of Chemical Technology in Prague, Prague (Czech Republic); Mrazek, Jakub; Strosova, Lenka; Fliegerova, Katerina [Laboratory of Anaerobic Microbiology, Institute of Animal Physiology and Genetics, CAS, v.v.i., Prague (Czech Republic)

    2012-06-15

    Anaerobic fungi (AF) are able to degrade crop substrates with higher efficiency than commonly used anaerobic bacteria. The aim of this study was to investigate ways of use of rumen AF to improve biogas production from energy crops under laboratory conditions. In this study, strains of AF isolated from feces or rumen fluid of cows and deer were tested for their ability to integrate into the anaerobic bacterial ecosystem used for biogas production, in order to improve degradation of substrate polysaccharides and consequently the biogas yield. Batch culture, fed batch culture, and semicontinuous experiments have been performed using anaerobic sludge from pig slurry fermentation and different kinds of substrates (celluloses, maize, and grass silage) inoculated by different genera of AF. All experiments showed a positive effect of AF on the biogas yield and quality. AF improved the biogas production by 4-22%, depending on the substrate and AF species used. However, all the cultivation experiments indicated that rumen fungi do not show long-term survival in fermenters with digestate from pig slurry. The best results were achieved during fed batch experiment with fungal culture Anaeromyces (KF8), in which biogas production was enhanced during the whole experimental period of 140 days. This result has not been achieved in semicontinuous experiment, where increment in biogas production in fungal enriched reactor was only 4% after 42 days. (copyright 2012 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Assessment of hydrogen metabolism in commercial anaerobic digesters.

    Science.gov (United States)

    Kern, Tobias; Theiss, Juliane; Röske, Kerstin; Rother, Michael

    2016-05-01

    Degradation of biomass in the absence of exogenous electron acceptors via anaerobic digestion involves a syntrophic association of a plethora of anaerobic microorganisms. The commercial application of this process is the large-scale production of biogas from renewable feedstock as an alternative to fossil fuels. After hydrolysis of polymers, monomers are fermented to short-chain fatty acids and alcohols, which are further oxidized to acetate. Carbon dioxide, molecular hydrogen (H2), and acetate generated during the process are converted to methane by methanogenic archaea. Since many of the metabolic pathways as well as the syntrophic interactions and dependencies during anaerobic digestion involve formation, utilization, or transfer of H2, its metabolism and the methanogenic population were assessed in various samples from three commercial biogas plants. Addition of H2 significantly increased the rate of methane formation, which suggested that hydrogenotrophic methanogenesis is not a rate-limiting step during biogas formation. Methanoculleus and Methanosarcina appeared to numerically dominate the archaeal population of the three digesters, but their proportion and the Bacteria-to-Archaea ratio did not correlate with the methane productivity. Instead, hydrogenase activity in cell-free extracts from digester sludge correlated with methane productivity in a positive fashion. Since most microorganisms involved in biogas formation contain this activity, it approximates the overall anaerobic metabolic activity and may, thus, be suitable for monitoring biogas reactor performance. PMID:26995607

  1. Upflow anaerobic sludge blanket reactor--a review.

    Science.gov (United States)

    Bal, A S; Dhagat, N N

    2001-04-01

    inorganic matter in the absence of molecular oxygen. Complex polymeric materials such as polysaccharides, proteins, and lipids (fat and grease) are first hydrolyzed to soluble products by extracellular enzymes, secreted by microorganisms, so as to facilitate their transport or diffusion across the cell membrane. These relatively simple, soluble compounds are fermented or anaerobically oxidized, further to short-chain fatty acids, alcohols, carbon dioxide, hydrogen, and ammonia. The short-chain fatty acids (other than acetate) are converted to acetate, hydrogen gas, and carbon dioxide. Methanogenesis finally occurs from the reduction of carbon dioxide and acetate by hydrogen. The initial stage of anaerobic degradation, i.e. acid fermentation is essentially a constant BOD stage because the organic molecules are only rearranged. The first stage does not stabilize the organics in the waste. However this step is essential for the initiation of second stage methane fermentation as it converts the organic material to a form, usable by the methane producing bacteria. The second reaction is initiated when anaerobic methane forming bacteria act upon the short chain organic acids produced in the 1st stage. Here these acids undergo methane fermentation with carbon dioxide acting as hydrogen acceptor and getting reduced to methane. The methane formed, being insoluble in water, escapes from the system and can be tapped and used as an energy source. The production and subsequent escape of methane causes the stabilization of the organic material. The methane-producing bacteria consist of several different groups. Each group has the ability to ferment only specific compounds. Therefore, the bacterial consortia in a methane producing system should include a number of different groups. When the rate of bacterial growth is considered, then the retention time of the solids becomes important parameter. The acid fermentation stage is faster as compared to the methane fermentation stage. This

  2. Effects of Oxytetracycline on Methane Production and the Microbial Communities During Anaerobic Digestion of Cow Manure

    Institute of Scientific and Technical Information of China (English)

    KE Xin; WANG Chun-yong; LI Run-dong; ZHANG Yun

    2014-01-01

    The effects of different concentrations of oxytetracycline (OTC) on the dynamics of bacterial and archaeal communities during the mesophilic anaerobic digestion (37°C) of cow manure were investigated. Before anaerobic digestion, OTC was added to digesters at concentrations of 20, 50, and 80 mg L-1, respectively. Compared with no-antibiotic control, all methane productions underwent different levels of inhibition at different concentrations of OTC. Changes in the bacterial and archaeal communities were discussed by using PCR-denaturing gradient gel electrophoresis (DGGE). Results showed that OTC affected the richness and diversity of bacterial and archaeal communities. The bacterial genus Flavobacterium and an uncultured bacterium (JN256083.1) were detected throughout the entire process of anaerobic digestion and seemed to be the functional bacteria. Methanobrevibacter boviskoreani and an uncultured archaeon (FJ230982.1) dominated the archaeal communities during anaerobic digestion. These microorganisms may have high resistance to OTC and may play vital roles in methane production.

  3. Anaerobic biofilm reactors for dark fermentative hydrogen production from wastewater: A review.

    Science.gov (United States)

    Barca, Cristian; Soric, Audrey; Ranava, David; Giudici-Orticoni, Marie-Thérèse; Ferrasse, Jean-Henry

    2015-06-01

    Dark fermentation is a bioprocess driven by anaerobic bacteria that can produce hydrogen (H2) from organic waste and wastewater. This review analyses a relevant number of recent studies that have investigated dark fermentative H2 production from wastewater using two different types of anaerobic biofilm reactors: anaerobic packed bed reactor (APBR) and anaerobic fluidized bed reactor (AFBR). The effect of various parameters, including temperature, pH, carrier material, inoculum pretreatment, hydraulic retention time, substrate type and concentration, on reactor performances was investigated by a critical discussion of the results published in the literature. Also, this review presents an in-depth study on the influence of the main operating parameters on the metabolic pathways. The aim of this review is to provide to researchers and practitioners in the field of H2 production key elements for the best operation of the reactors. Finally, some perspectives and technical challenges to improve H2 production were proposed. PMID:25746594

  4. Anaerobic degradation of landfill leachate using an upflow anaerobic fixed-bed reactor with microbial sulfate reduction

    International Nuclear Information System (INIS)

    This study evaluated the anaerobic degradation of landfill leachate and sulfate reduction as a function of COD/(SO42-) ratio in an upflow anaerobic fixed-bed reactor. The reactor, which was inoculated with a mixed consortium, was operated under a constant hydraulic retention time (HRT) of 5 days. We investigated the effect of COD/(SO42-) ratio variation on the sulfate reduction efficiency, hydrogen sulfide production, chemical oxygen demand (COD) removal, conductivity, and pH variation. The best reactor performance, with significant sulfate reduction efficiency and COD removal efficiency of 91% and 87%, respectively, was reached under a COD/(SO42-) ratio of 1.17. Under these conditions, microscopic analysis showed the abundance of vibrios and rod-shaped bacterial cells. Two anaerobic bacteria were isolated from the reactor sludge. Phylogenetic studies performed on these strains identified strain A1 as affiliated to Clostridium genus and strain H1 as a new species of sulfate-reducing bacteria affiliated to the Desulfovibrio genus. The closest phylogenetic relative of strain H1 was Desulfovibrio desulfuricans, at 96% similarity for partial 16S RNA gene sequence data. Physiological and metabolic characterization was performed for this strain.

  5. Nitrifying and denitrifying bacteria in aerobic granules formed in sequencing batch airlift reactors

    Institute of Scientific and Technical Information of China (English)

    WANG Fang; YANG Fenglin; QI Aijiu

    2007-01-01

    The purpose of this study was to investigate nitrifying bacteria and denitrifying bacteria isolated from aerobic granules.Aerobic granules were formed in an internal-circulate sequencing batch airlift reactor(SBAR)and biodegradation of NH3 -N was analyzed in the reactor.Bacteria were isolated and determined from aerobic granules using selected media.The growth properties and morphology of bacteria colonies were observed by controlling aerobic or anaerobic conditions in the culture medium.It was found that bacteria in aerobic granules were diverse and some of them were facultative aerobes.The diversity of bacteria in aerobic granules was a premise of simultaneous nitrification and denitrification.

  6. Anaerobic degradation kinetics of a cholesteryl ester.

    Science.gov (United States)

    Gutiérrez, S; Viñas, M

    2003-01-01

    The most important components of wool scouring effluent grease are esters of sterols. Cholesteryl palmitate (CP) is the main ester in this grease. In this paper, the influence of the ester concentration in the anaerobic digestion and the relative rate of the different degradation steps, are studied. The experiment was carried out to measure methane production in the anaerobic degradation of acetate, palmitic acid (PA) and CP. A first-order kinetic model was assumed for hydrolysis and Monod models were assumed for both the methanogenic and acetogenic steps. Maximum hydrolysis rate was found to be around 20 times faster than the maximum methanogenic reaction rate during the experience. The lanolin emulsion drop size effect was also evaluated employing fine and coarse stock lanolin emulsions and no adapted sludge. Concentrations of 13.7 to 4.6 gCOD x l(-1) were employed. In a previous study, the effect of palmitic acid emulsion size was found important when similar sludge was tested. When esters are degraded, a significant effect of drop size on the degradation rate was not found. The difference between CP and PA emulsions behavior could be due to the fact that cholesterol produced during the ester degradation has a protective effect on the sludge. PMID:14640211

  7. The valuation of malnutrition in the mono-digestion of maize silage by anaerobic batch tests.

    Science.gov (United States)

    Hinken, L; Urban, I; Haun, E; Urban, I; Weichgrebe, D; Rosenwinkel, K-H

    2008-01-01

    Anaerobic digestion is a technology which is used to produce methane from organic solids and energy crops. Especially in recent years, the fermentation of energy crops has become more and more important because of increasing costs for energy and special benefits for renewable energy sources in Germany. Anaerobic bacteria require macro and micro nutrients to grow. Absence of these elements can inhibit the anaerobic process significantly. In particular mono-substrates like maize or certain industrial wastewater often cannot provide all required nutrients. For this reason this research investigates the influence of substrate and trace elements on anaerobic digestion in detail. Different agricultural anaerobic biomasses are analysed with special regard to their trace element content. Based on these results, the influence of three trace elements (iron, cobalt, and nickel) on anaerobic digestion was studied in anaerobic batch tests at different sludge loading rates and for different substrates (maize and acetate). Biogas production was found to be 35% for maize silage and up to 70% higher for acetate with trace element dosage than in the reference reactor. PMID:18957759

  8. Effect of metalloporphyrins on red autofluorescence from oral bacteria

    NARCIS (Netherlands)

    C.M.C. Volgenant; M.H. van der Veen; J.J. de Soet; J.M. ten Cate

    2013-01-01

    The aim of this study was to assess the red autofluorescence from bacterial species related to dental caries and periodontitis in the presence of different nutrients in the growth medium. Bacteria were grown anaerobically on tryptic soy agar (TSA) supplemented with nutrients, including magnesium-por

  9. Cellulolytic bacteria in human gut and irritable bowel syndrome

    Czech Academy of Sciences Publication Activity Database

    Kopečný, Jan; Šimůnek, Jiří

    2002-01-01

    Roč. 71, - (2002), s. 421-427. ISSN 0001-7213 R&D Projects: GA AV ČR KSK5020115; GA ČR GA525/02/0402; GA AV ČR KSK5052113 Keywords : anaerobic bacteria * colon * fibrolytic Subject RIV: ED - Physiology Impact factor: 0.370, year: 2002

  10. Does nuclear tissue infected with bacteria following disc herniations lead to Modic changes in the adjacent vertebrae?

    DEFF Research Database (Denmark)

    Albert, H. B.; Lambert, Peter; Rollason, Jess;

    2013-01-01

    the presence of low virulent anaerobic microorganisms, predominantly Propionibacterium acnes, in 7-53 % of patients. At the time of a herniation these low virulent anaerobic bacteria may enter the disc and give rise to an insidious infection. Local inflammation in the adjacent bone may be a secondary...

  11. Microbiology and physiology of anaerobic fermentations of cellulose. Progress report

    International Nuclear Information System (INIS)

    Investigations into the biochemistry and physiology of the four major groups of microorganisms (primary, ancillary, secondary and methane bacteria) involved in the anaerobic conversion of cellulose to methane and carbon dioxide are presented. The investigations of the ancillary bacteria emphasize the isolation of new strains and increasing ethanol production with T. ethanolicus. These studies involve genetic modifications, enzymological studies on the regulation of appropriate enzymes and a study of the effect of inorganic pyrophosphate on growth and fermentation patterns. The acetogenic bacteria forming acetate from carbon dioxide were studied from the aspects of the enzymology of acetate from the standpoint from one carbon compound, bioenergetics emphasizing hydrogen metabolism and energy coupling H2 cycling and the structure and function of electron transfer components. Research on secondary bacteria emphasizes the sulfate reducing bacteria from the aspects of H2 cycling, specificities of electron transfer proteins and enzymes, the mechanism of bisulfite reductase and the enzymology and physiology of new genera of sulfate reducing bacteria. The biochemistry and physiology of both H2-utilizing and acetate utilizing methanogenic are reported. The studies with H2-utilizing methanogens stress the hydrogenase and the effect of inorganic pyrophosphate on growth. The research on the acetate-utilizing methanogens involve the bioenergetics of sulfite reduction and the mechanism of acetate formation induced by pyrophosphate. 143 refs., 15 figs., 10 tabs

  12. Anaerobic treatment of sulfate-containing wastewater from distilleries

    International Nuclear Information System (INIS)

    Bioprocess evaluation of a staged arrangement of a Pulse Driven Loop Reaktor (PDLR) and a Pulsed Anaerobic Filter (PAF) using highly polluted cherry slops as industrial wastewater shows a COD removal efficiency of 80-90% at loading rates of 8-4 kg COD/(M3.d). Contamination of cherry slops by sulfate (2 g/l) and copper (150-200 mg/l) reduces COD degradation to 40-50 percent. A pulsed anaerobic baffled reactor was envisaged as a corrective tool to improve mineralisation in the presence of sulfate-rich substrates by confining sulfate reducing bacteria to the first 4 chambers of the reactor. Phasing slightly improves COD degradation yield, but is not sufficient for stable process performance. Consequently, the use of lactic acid in stead of sulfuric acid in cherry-fermentation was suggested as a preventive method to avoid sulphide-induced digester failure. (orig.)

  13. [Reductive Dechlorination of Trichloroethylene by Benzoate-Enriched Anaerobic Cultures].

    Science.gov (United States)

    Li, Jiang-wei; Yang, Xiao-yong; Hu, An-yi; Yu, Chang-ping

    2015-10-01

    Gas chromatography was used to monitor the reductive dechlorination of trichloroethylene (TCE) by anaerobic enrichment cultures with benzoate as the sole carbon source. The 454 pyrosequencing technique was used to investigate the microbial community and the real-time quantitative PCR was used to quantify the gene copies of Dehalococcoides spp. (DHC). The results showed that TCE was dechlorinated to vinyl chloride along with the formation of methane in 94 days. The anaerobic enrichment cultures exhibited a high diversity, which were classified into 16 phyla, 33 classes, 52 orders, 88 families and 129 genera, while 51.2% of them belonged to unclassified group, which inferred that there were a large portion of bacteria with unknown functional in this system. Degradation of TCE was accomplished by reductive dechlorinating and other functional populations, and the DHC which carried tceA gene could be the dominant reductive dechlorinating populations in the system. PMID:26841609

  14. Anaerobic Metabolism: Linkages to Trace Gases and Aerobic Processes

    Science.gov (United States)

    Megonigal, J. P.; Hines, M. E.; Visscher, P. T.

    2003-12-01

    's surface area, they have a profound influence on the biogeochemistry of the planet. This is evident from the observation that the O2 and CH4 content of Earth's atmosphere are in extreme disequilibrium (Sagan et al., 1993). The combination of high aerobic primary production and anoxic sediments provided the large deposits of fossil fuels that have become vital and contentious sources of energy for modern industrialized societies. Anaerobic metabolism is responsible for the abundance of N2 in the atmosphere; otherwise N2-fixing bacteria would have consumed most of the N2 pool long ago (Schlesinger, 1997). Anaerobic microorganisms are common symbionts of termites, cattle, and many other animals, where they aid digestion. Nutrient and pollutant chemistry are strongly modified by the reduced conditions that prevail in wetland and aquatic ecosystems.This review of anaerobic metabolism emphasizes aerobic oxidation, because the two processes cannot be separated in a complete treatment of the topic. It is process oriented and highlights the fascinating microorganisms that mediate anaerobic biogeochemistry. We begin this review with a brief discussion of CO2 assimilation by autotrophs, the source of most of the reducing power on Earth, and then consider the biological processes that harness this potential energy. Energy liberation begins with the decomposition of organic macromolecules to relatively simple compounds, which are simplified further by fermentation. Methanogenesis is considered next because CH4 is a product of acetate fermentation, and thus completes the catabolism of organic matter, particularly in the absence of inorganic electron acceptors. Finally, the organisms that use nitrogen, manganese, iron, and sulfur for terminal electron acceptors are considered in order of decreasing free-energy yield of the reactions.

  15. Pyruvate Oxidoreductases Involved in Glycolytic Anaerobic Metabolism of Polychaetes from the Continental Shelf off Central-South Chile

    Science.gov (United States)

    González, R. R.; Quiñones, R. A.

    2000-10-01

    The presence of low oxygen conditions in extensive areas of the continental shelf off central-south Chile has important effects on the biochemical adaptations of the organisms living in this ecosystem. Polychaetes assemblages cohabit on the shelf with an extensively distributed prokaryotic community made up of giant filamentous sulfur bacteria (mainly Thioploca sp.). The aim of this research was to characterize the pyruvate oxidoreductases enzymes involved in the biochemical adaptation of these benthic polychaetes. Nine polychaete species ( Paraprionospio pinnata, Nephtys ferruginea, Glycera americana, Haploscoloplos sp., Lumbrineris composita, Sigambra bassi, Aricidea pigmentata , Cossura chilensis, and Pectinaria chilensis) were assayed for lactic dehydrogenase (LDH), octopine dehydrogenase (OPDH), strombine dehydrogenase (STRDH) and alanopine dehydrogenase (ALPDH). Each species had a characteristic number of the pyruvate oxidoreductases assayed ranging from 4 in Paraprionospio pinnata to 1 in Pectinaria chilensis . The pyruvate saturation curves obtained for the enzymes from all species analysed, except L. composita, suggest that NADH can be oxidized at different rates depending on the amino acid used in the reaction with pyruvate. Our results indicate that organisms having more that one pyruvate oxidoreductase present a greater metabolic capacity to cope with functional and environmental hypoxia because these enzymes would better regulate the pyruvate consumption rate during the transition period. Thus, the dominance of Paraprionospio pinnata in the study area and its worldwide distribution is consistent with its higher number of pyruvate oxidoreductases with different pyruvate consumption rates involved in anaerobic metabolism. Finally, a positive allometric relationship was found between body size and the specific activity of ALPDH, STRDH, and maximum pyruvate oxidoreductase specific activity. This latter result suggests a positive scaling of the specific

  16. A Nitrospira metagenome illuminates the physiology and evolution of globally important nitrite-oxidizing bacteria.

    Science.gov (United States)

    Lücker, Sebastian; Wagner, Michael; Maixner, Frank; Pelletier, Eric; Koch, Hanna; Vacherie, Benoit; Rattei, Thomas; Damsté, Jaap S Sinninghe; Spieck, Eva; Le Paslier, Denis; Daims, Holger

    2010-07-27

    Nitrospira are barely studied and mostly uncultured nitrite-oxidizing bacteria, which are, according to molecular data, among the most diverse and widespread nitrifiers in natural ecosystems and biological wastewater treatment. Here, environmental genomics was used to reconstruct the complete genome of "Candidatus Nitrospira defluvii" from an activated sludge enrichment culture. On the basis of this first-deciphered Nitrospira genome and of experimental data, we show that Ca. N. defluvii differs dramatically from other known nitrite oxidizers in the key enzyme nitrite oxidoreductase (NXR), in the composition of the respiratory chain, and in the pathway used for autotrophic carbon fixation, suggesting multiple independent evolution of chemolithoautotrophic nitrite oxidation. Adaptations of Ca. N. defluvii to substrate-limited conditions include an unusual periplasmic NXR, which is constitutively expressed, and pathways for the transport, oxidation, and assimilation of simple organic compounds that allow a mixotrophic lifestyle. The reverse tricarboxylic acid cycle as the pathway for CO2 fixation and the lack of most classical defense mechanisms against oxidative stress suggest that Nitrospira evolved from microaerophilic or even anaerobic ancestors. Unexpectedly, comparative genomic analyses indicate functionally significant lateral gene-transfer events between the genus Nitrospira and anaerobic ammonium-oxidizing planctomycetes, which share highly similar forms of NXR and other proteins reflecting that two key processes of the nitrogen cycle are evolutionarily connected. PMID:20624973

  17. Truce with oxygen - A naerobiosis outcompete aerobiosis in the Antarctic lacustrine bacteria

    Digital Repository Service at National Institute of Oceanography (India)

    LokaBharathi, P.A.; Nair, S.; DeSouza, M.J.B.D.; Chandramohan, D.

    The total number of bacteria counted directly by epifluorescent microscopy showed that they ranged from 10 sup(8)-10 sup(-1) in Antarctic lake water samples. The percentages of retrievable viable counts (RVC) of anaerobic bacteria (AnB) was greater...

  18. Monitoring and control of anaerobic reactors

    DEFF Research Database (Denmark)

    Pind, Peter Frode; Angelidaki, Irini; Ahring, Birgitte Kiær;

    2003-01-01

    The current status in monitoring and control of anaerobic reactors is reviewed. The influence of reactor design and waste composition on the possible monitoring and control schemes is examined. After defining the overall control structure, and possible control objectives, the possible process...... measurements are reviewed in detail. In the sequel, possible manipulated variables, such as the hydraulic retention time, the organic loading rate, the sludge retention time, temperature, pH and alkalinity are evaluated with respect to the two main reactor types: high-rate and low-rate. Finally, the different...... control approaches that have been used are comprehensively described. These include simple and adaptive controllers, as well as more recent developments such as fuzzy controllers, knowledge-based controllers and controllers based on neural networks....

  19. Microbial aggregates in anaerobic wastewater treatment.

    Science.gov (United States)

    Kosaric, N; Blaszczyk, R

    1990-01-01

    The phenomenon aggregation of anaerobic bacteria gives an opportunity to speed up the digestion rate during methanogenesis. The aggregates are mainly composed of methanogenic bacteria which convert acetate and H2/CO2 into methane. Other bacteria are also included in the aggregates but their concentration is rather small. The aggregates may also be formed during acetogenesis or even hydrolysis but such aggregates are not stable and disrupt quickly when not fed. A two stage process seems to be suitable when high concentrated solid waste must be treated. Special conditions are necessary to promote aggregate formation from methanogenic bacteria but aggregates once formed are stable without feeding even for a few years. The structure, texture and activity of bacterial aggregates depend on several parameters: (1)--temperature and pH, (2)--wastewater composition and (3)--hydrodynamic conditions within the reactor. The common influence of all these parameters is still rather unknown but some recommendations may be given. Temperature and pH should be maintained in the range which is optimal for methanogenic bacteria e.g. a temperature between 32 and 50 degrees C and a value pH between 6.5 and 7.5. Wastewaters should contain soluble wastes and the specific loading rate should be around one kgCOD(kgVSS)-1 d-1. The concentration of the elements influences aggregate composition and probably structure and texture. At high calcium concentration a change in the colour of the granules has been observed. Research is necessary to investigate the influence of other elements and organic toxicants on maintenance of the aggregates. Hydrodynamic conditions seem to influence the stability of the granules over long time periods. At low liquid stream rates, aggregates may starve and lysis within the aggregates is possible which results in hollowing of aggregates and their floating. At high liquid stream rates the aggregates may be disrupted and washed out of the reactor as a flocculent

  20. Microbial degradation of 4-monobrominated diphenyl ether with anaerobic sludge

    International Nuclear Information System (INIS)

    Highlights: ► BDE-3 was degraded with two anaerobes in different rates. ► Glucose addition augment the debromination efficiencies. ► Hydrogen gas was detected and relative microbes were identified. ► Extra-carbon source enhanced degradation partial due to H2-generation bacteria. - Abstract: Polybrominated diphenyl ethers (PBDEs) are widely used flame retardant additives for many plastic and electronic products. Owing to their ubiquitous distribution in the environment, multiple toxicity to humans, and increasing accumulation in the environment, the fate of PBDEs is of serious concern for public safety. In this study, the degradation of 4-monobrominated diphenyl ether (BDE-3) in anaerobic sludge and the effect of carbon source addition were investigated. BDE-3 can be degraded by two different anaerobic sludge samples. The by-products, diphenyl ether (DE) and bromide ions, were monitored, indicating the reaction of debromination within these anaerobic samples. Co-metabolism with glucose facilitated BDE-3 biodegradation in terms of kinetics and efficiency in the Jhongsing sludge. Through the pattern of amplified 16S rRNA gene fragments in denatured gradient gel electrophoresis (DGGE), the composition of the microbial community was analyzed. Most of the predominant microbes were novel species. The fragments enriched in BDE-3-degrading anaerobic sludge samples are presumably Clostridium sp. This enrichment coincides with the H2 gas generation and the facilitation of debromination during the degradation process. Findings of this study provide better understanding of the biodegradation of brominated DEs and can facilitate the prediction of the fate of PBDEs in the environment.

  1. Adaptation of lactic acid bacteria to butanol

    Science.gov (United States)

    Butanol can be produced biologically through fermentation of various substrates by Gram-positive Clostridium species. However, to profitably produce butanol at industrial scales, new microbial biocatalysts with increased tolerance to butanol are needed. In this study we report the isolation and se...

  2. Metabolism in bacteria at low temperature: A recent report

    Indian Academy of Sciences (India)

    Dipanwita Sengupta; Madhab K Chattopadhyay

    2013-06-01

    The adaptability of bacteria to extreme cold environments has been demonstrated from time to time by various investigators. Metabolic activity of bacteria at subzero temperatures is also evidenced. Recent studies indicate that bacteria continue both catabolic and anabolic activities at subzero temperatures. Implications of these findings are discussed.

  3. Anaerobic digestion of solid material

    DEFF Research Database (Denmark)

    Vavilin, V.A.; Lokshina, L.Y.; Flotats, X.;

    2007-01-01

    A new multidimensional (3 and 2D) anaerobic digestion model for cylindrical reactor with non-uniform influent concentration distributions was developed to study the way in which mixing intensity affects the efficiency of continuous-flow anaerobic digestion. Batch experiments reported and simulated...... improve the continuous flow reactor performance at the relatively low influent methanogenic biomass concentration. In the continuously stirred tank reactor (CSTR) there are two steady states with and without methane production at slightly different values of initial methanogenic biomass concentration....... In the system, the threshold methanogenic biomass concentration existed because of inhibition by high VFA concentration. High methanogenic biomass concentration is required for efficient anaerobic digestion of MSW in order to avoid possible inhibition due to high VFA build-up. Thus, CSTR configuration might...

  4. A marine microbial consortium apparently mediating anaerobic oxidation of methane

    DEFF Research Database (Denmark)

    Boetius, A.; Ravenschlag, K.; Schubert, CJ;

    2000-01-01

    A large fraction of globally produced methane is converted to CO2 by anaerobic oxidation in marine sediments(1). Strong geochemical evidence for net methane consumption in anoxic sediments is based on methane profiles(2), radiotracer experiments(3) and stable carbon isotope data(4). But the elusive...... evidence for a structured consortium of archaea and sulphate-reducing bacteria, which we identified by fluorescence in situ hybridization using specific 16S rRNA-targeted oligonucleotide probes. In this example of a structured archaeal-bacterial symbiosis, the archaea grow in dense aggregates of about 100...

  5. Anaerobic electrochemical membrane bioreactor and process for wastewater treatment

    KAUST Repository

    Amy, Gary

    2015-07-09

    An anaerobic electrochemical membrane bioreactor (AnEMBR) can include a vessel into which wastewater can be introduced, an anode electrode in the vessel suitable for supporting electrochemically active microorganisms (EAB, also can be referred to as anode reducing bacteria, exoelectrogens, or electricigens) that oxidize organic compounds in the wastewater, and a cathode membrane electrode in the vessel, which is configured to pass a treated liquid through the membrane while retaining the electrochemically active microorganisms and the hydrogenotrophic methanogens (for example, the key functional microbial communities, including EAB, methanogens and possible synergistic fermenters) in the vessel. The cathode membrane electrode can be suitable for catalyzing the hydrogen evolution reaction to generate hydro en.

  6. Bioreporter bacteria for landmine detection

    Energy Technology Data Exchange (ETDEWEB)

    Burlage, R.S. [Oak Ridge National Lab., TN (United States); Youngblood, T. [Frisby Technologies, Aiken, SC (United States); Lamothe, D. [American Technologies, Inc., Huntsville, AL (United States). Ordnance/Explosives Environmental Services Div.

    1998-04-01

    Landmines (and other UXO) gradually leak explosive chemicals into the soil at significant concentrations. Bacteria, which have adapted to scavenge low concentrations of nutrients, can detect these explosive chemicals. Uptake of these chemicals results in the triggering of specific bacterial genes. The authors have created genetically recombinant bioreporter bacteria that detect small concentrations of energetic chemicals. These bacteria are genetically engineered to produce a bioluminescent signal when they contact specific explosives. A gene for a brightly fluorescent compound can be substituted for increased sensitivity. By finding the fluorescent bacteria, you find the landmine. Detection might be accomplished using stand-off illumination of the minefield and GPS technology, which would result in greatly reduced risk to the deminers. Bioreporter technology has been proven at the laboratory scale, and will be tested under field conditions in the near future. They have created a bacterial strain that detects sub-micromolar concentrations of o- and p-nitrotoluene. Related bacterial strains were produced using standard laboratory protocols, and bioreporters of dinitrotoluene and trinitrotoluene were produced, screening for activity with the explosive compounds. Response time is dependent on the growth rate of the bacteria. Although frill signal production may require several hours, the bacteria can be applied over vast areas and scanned quickly, producing an equivalent detection speed that is very fast. This technology may be applicable to other needs, such as locating buried explosives at military and ordnance/explosive manufacturing facilities.

  7. Modelling of two-stage anaerobic digestion using the IWA Anaerobic Digestion Model No. 1 (ADM1).

    Science.gov (United States)

    Blumensaat, F; Keller, J

    2005-01-01

    The aim of the study presented was to implement a process model to simulate the dynamic behaviour of a pilot-scale process for anaerobic two-stage digestion of sewage sludge. The model implemented was initiated to support experimental investigations of the anaerobic two-stage digestion process. The model concept implemented in the simulation software package MATLAB/Simulink is a derivative of the IWA Anaerobic Digestion Model No.1 (ADM1) that has been developed by the IWA task group for mathematical modelling of anaerobic processes. In the present study the original model concept has been adapted and applied to replicate a two-stage digestion process. Testing procedures, including balance checks and 'benchmarking' tests were carried out to verify the accuracy of the implementation. These combined measures ensured a faultless model implementation without numerical inconsistencies. Parameters for both, the thermophilic and the mesophilic process stage, have been estimated successfully using data from lab-scale experiments described in literature. Due to the high number of parameters in the structured model, it was necessary to develop a customised procedure that limited the range of parameters to be estimated. The accuracy of the optimised parameter sets has been assessed against experimental data from pilot-scale experiments. Under these conditions, the model predicted reasonably well the dynamic behaviour of a two-stage digestion process in pilot scale. PMID:15607176

  8. Anaerobic Digestion of Piggery Waste

    OpenAIRE

    Velsen, van, L.S.

    1981-01-01

    Anaerobic digestion is a biological process by which organic matter is converted to methane and carbon dioxide by microbes in the absence of air (oxygen). In nature, anaerobic conversions occur at all places where organic material accumulates and the supply of oxygen is deficient, e.g. in marshes and lake sediments. Microbial formation of methane also plays a role in the ruminant digestion.In digestion units, the external conditions acting upon the process can be regulated to speed it up as c...

  9. Anaerobic membrane bioreactors for municipal wastewater treatment

    OpenAIRE

    Fawehinmi, Folasade

    2006-01-01

    Anaerobic treatment has historically been considered unsuitable for the treatment of domestic wastewaters. The work presented in this thesis focuses on the incorporation of membranes into the anaerobic bioreactor to uncouple solid retention time and hydraulic retention time. This in turn prevents biomass washout and allows sufficient acclimatisation periods for anaerobes. However, the exposure of membranes to anaerobic biomass comes with its own inherent problems namely fouling. Fouling w...

  10. Viscosity evolution of anaerobic granular sludge

    NARCIS (Netherlands)

    Pevere, A.; Guibaud, G.; Hullebusch, van E.D.; Lens, P.N.L.; Baudu, M.

    2006-01-01

    The evolution of the apparent viscosity at steady shear rate of sieved anaerobic granular sludge (20¿315 ¿m diameter) sampled from different full-scale anaerobic reactors was recorded using rotation tests. The ¿limit viscosity¿ of sieved anaerobic granular sludge was determined from the apparent vis

  11. Kinetics and modeling of anaerobic digestion process

    DEFF Research Database (Denmark)

    Gavala, Hariklia N.; Angelidaki, Irini; Ahring, Birgitte Kiær

    2003-01-01

    Anaerobic digestion modeling started in the early 1970s when the need for design and efficient operation of anaerobic systems became evident. At that time not only was the knowledge about the complex process of anaerobic digestion inadequate but also there were computational limitations. Thus...

  12. Antimicrobial resistance characteristics and fitness of Gram negative faecal bacteria from volunteers treated with minocycline or amoxicillin.

    Directory of Open Access Journals (Sweden)

    Miranda eKirchner

    2014-12-01

    Full Text Available A yearlong study was performed to examine the effect of antibiotic administration on the bacterial gut flora. Gram-negative facultative anaerobic bacteria were recovered from the faeces of healthy adult volunteers administered amoxicillin, minocycline or placebo, and changes determined in antimicrobial resistance (AMR gene carriage. Seventy percent of the 1039 facultative anaerobic isolates recovered were identified by MALDI-TOF as Escherichia coli. A microarray used to determine virulence and resistance gene carriage demonstrated that AMR genes were widespread in all administration groups, with the most common resistance genes being blaTEM, dfr, strB, tet(A and tet(B. Following amoxicillin administration, an increase in the proportion of amoxicillin resistant E. coli and a three-fold increase in the levels of blaTEM gene carriage was observed, an effect not observed in the other two treatment groups. Detection of virulence genes, including stx1A, indicated not all E. coli were innocuous commensals. Approximately 150 E. coli collected from 6 participants were selected for pulse field gel electrophoresis (PFGE, and a subset used for characterisation of plasmids and Phenotypic Microarrays (PM. PFGE indicated some E. coli clones had persisted in volunteers for up to 1 year, while others were transient. Although there were no unique characteristics associated with plasmids from persistent or transient isolates, PM assays showed transient isolates had greater adaptability to a range of antiseptic biocides and tetracycline; characteristics which were lost in some, but not all persistent isolates. This study indicates healthy individuals carry bacteria harbouring resistance to a variety of antibiotics and biocides in their intestinal tract. Antibiotic administration can have a temporary effect of selecting bacteria, showing co-resistance to multiple antibiotics, some of which can persist within the gut for up to 1 year.

  13. Anaerobic digestion of olive oil mill effluents together with swine manure in UASB reactors

    DEFF Research Database (Denmark)

    Angelidaki, Irini; Ahring, Birgitte Kiær; Deng, H.;

    2002-01-01

    . Using upflow anaerobic sludge blanket (UASB) reactors, it was shown that codigestion of OME with swine manure (up to 50% OME) was successful with a COD reduction up to 75%. The process was adapted for degradation of OME with stepwise increase of the OME load to the UASB reactor. The results showed...... that the high content of ammonia in swine manure, together with content of other nutrients, make it possible to degrade OME without addition of external alkalinity and without addition of external nitrogen source. Anaerobic treatment of OME in UASB reactors resulted in reduction of simple phenolic compounds......Combined anaerobic digestion of olive oil mill effluent (OME) with swine manure, was investigated. In batch experiments was shown that for anaerobic degradation of OME alone nitrogen addition was needed. A COD:N ratio in the range of 65:1 to 126:1 was necessary for the optimal degradation process...

  14. Methanethiol Removal from Biogas by Biological Conversion in an Anaerobic Biotrickling Filter

    Institute of Scientific and Technical Information of China (English)

    王佳佳; 张卫江; 徐姣

    2015-01-01

    In this study, methanethiol(MT)-degradation bacteria were cultivated by using MT, methanol and trimethylamine as carbon sources under anaerobic conditions. It was found that the batch bacteria used MT and metha-nol as carbon sources grew faster than those used trimethylamine. The enriched bacteria used MT and methanol as the carbon sources were respectively inoculated in different biotrickling filters. The biological conversion performance of MT under anaerobic conditions was investigated in biotrickling filters. The results showed that the performance of the biotrickling filter inoculated with the bacteria enriched using MT was better than that inoculated with the bacteria en-riched using methanol. When the inlet concentration of MT was 0.005vol%(50,ppm), the empty bed residence time was 50 s, pH value was 8.0, and the flow rate of the nutrient solution was 10 L/h, the removal efficiency of MT reached 95.3%. Adding methanol stimulated the growth of the biomass and the degradation of MT, but caused that some bacteria only degrading methanol outcompeted the bacteria only degrading MT. The concentration of sodium bicarbonate in the nutrient solution needed to be controlled lower than 30 g/L, otherwise, it would be harmful to the degradation of MT.

  15. Quantitative real-time PCR analyses of sulfate-reducing bacteria in swine manure and the inhibitory effects of condensed tannins

    Science.gov (United States)

    Odorous chemicals produced by anaerobic bacteria in stored swine manure are a nuisance and potential health hazard. One of the more odorous compounds is hydrogen sulfide (H2S), produced primarily by sulfate-reducing bacteria (SRB). However, little is known about these bacteria in stored swine manu...

  16. Anaerobically functioning mitochondria: evolutionary perspective on modulation of energy metabolism in Mytilus edulis

    Directory of Open Access Journals (Sweden)

    GB Stefano

    2015-01-01

    Full Text Available The mitochondrion represents a compelling biological model of complex organelle development driven by evolutionary modification of permanently enslaved primordial purple non-sulphur bacteria. As an evolutionary modification, the dynamic nature of the mitochondrion has been observed to exhibit biochemical and functional variation, including the capacity for energy production driven by anaerobic respiratory mechanisms. In invertebrates, mitochondrial anaerobic respiration allows the organism to survive at a lower energy state while yielding more ATP than can be achieved by glycolysis alone. Furthermore, a preferred physiological state of lower energy production operationally yields diminished free radical generation, thereby offering a protective existential advantage. It has been established that energy production by the blue mussel, Mytilus edulis, is functionally dependent on anaerobic respiratory mechanisms within the mitochondrion. Importantly, under hypoxic conditions metabolic pathways in M. edulis have been demonstrated to synthesize and utilize amino acid adducts termed opines as chemically defined energy reserves. In addition to the utilization of opines as anaerobic metabolic intermediates by invertebrate organisms, opines were also discovered and characterized as metabolic intermediates in plant parasites, specifically crown gall tumors. A careful review of the biomedical literature indicates mechanistic similarities between anaerobically functioning mitochondria in M. edulis and crown gall tissues and metabolic processes in human tumors. The anaerobically functioning mitochondrion in M. edulis tissues is a potentially valuable high resolution model system for development of novel anticancer therapeutic agents.

  17. Distribution characteristics of marine bacteria in the China seas

    Directory of Open Access Journals (Sweden)

    Cong MA

    2012-09-01

    Full Text Available Objective To investigate the main species of marine bacteria and their distribution characteristics in China seas. Methods Seawater samples were obtained from sea water about one meter below the sea level along the navigation course, and then the bacteria therein were enriched, cultured, identified and tested for drug sensitivity. Results A total of 528 seawater samples were collected from four seas of China, and 759 marine bacteria in 145 species were isolated. The isolates were mainly Vibro, Enterobacteriaceae, Nonfermenter, Fungi, Pasteurella, Gram positive cocci, Eikenella corrodens and Anaerobic bacteria. Vibrio accounted for 52.9% of the 759 strains of marine bacteria, among which Vibrio alginolyticus, Vibrio fluvialis and Vibrio parahaemolyticus accounted for 75%. There was no significant difference in the quantity of Vibrio alginolyticus, Escherichia coli and Vibrio parahaemolyticus between the 4 sea areas (P=0.071. Chi-square test showed that significant differences existed in the distribution of seven species of marine bacteria among the 4 China seas (P=0.0004. The Gram-positive cocci were isolated more often in Bohai than from other seas; Eikenella corrodens were detected mostly in Yellow Sea; Vibrio were the predominant bacteria in East China sea, up to 70.8%; more Fungi were found in South China sea. The main features of specific bacteria isolated from the four sea areas was higher number of species with less quantity. From North to South, Enterococcus faecalis, Flavobacterium, Vibrio carchariae and C. famata were found to constitute the highest number. Conclusions In China seas, Vibrios are the dominant bacteria, and the numbers of Anaerobic bacteria and Gram-positive cocci are extremely low. There is a significant difference in the distribution of marine bacteria among 4 China seas.

  18. Batch culture enrichment of ANAMMOX populations from anaerobic and aerobic seed cultures.

    Science.gov (United States)

    Suneethi, S; Joseph, Kurian

    2011-01-01

    Discharge of nitrate and ammonia rich wastewaters into the natural waters encourage eutrophication, and contribute to aquatic toxicity. Anaerobic ammonium oxidation process (ANAMMOX) is a novel biological nitrogen removal alternative to nitrification-denitrification, that removes ammonia using nitrite as the electron acceptor. The feasibility of enriching the ANAMMOX bacteria from the anaerobic digester sludge of a biomethanation plant treating vegetable waste and aerobic sludge from an activated sludge process treating domestic sewage is reported in this paper. ANAMMOX bacterial activity was monitored and established in terms of nitrogen transformations to ammonia, nitrite and nitrate along with formation of hydrazine and hydroxylamine. PMID:20729077

  19. Anaerobic digestion for simultaneous sewage sludge treatment and CO biomethanation: process performance and microbial ecology

    DEFF Research Database (Denmark)

    Luo, Gang; Wang, Wen; Angelidaki, Irini

    2013-01-01

    in an anaerobic reactor was presented. Batch experiments showed that CO was inhibitory to methanogens, but not to bacteria, at CO partial pressure between 0.25 and 1 atm under thermophilic conditions. During anaerobic digestion of sewage sludge supplemented with CO added through a hollow fiber...... membrane (HFM) module in continuous thermophilic reactors, CO did not inhibit the process even at a pressure as high as 1.58 atm inside the HFM, due to the low dissolved CO concentration in the liquid. Complete consumption of CO was achieved with CO gas retention time of 0.2 d. Results from high...

  20. Oxygen Effects in Anaerobic Digestion

    Directory of Open Access Journals (Sweden)

    Deshai Botheju

    2009-10-01

    Full Text Available Interaction of free oxygen in bio-gasification is a sparsely studied area, apart from the common argument of oxygen being toxic and inhibitory for anaerobic micro-cultures. Some studies have, however, revealed increased solubilisation of organic matter in the presence of some free oxygen in anaerobic digestion. This article analyses these counterbalancing phenomena with a mathematical modelling approach using the widely accepted biochemical model ADM 1. Aerobic oxidation of soluble carbon and inhibition of obligatory anaerobic organisms are modelled using standard saturation type kinetics. Biomass dependent first order hydrolysis kinetics is used to relate the increased hydrolysis rate with oxygen induced increase in biomass growth. The amended model, ADM 1-Ox (oxygen, has 25 state variables and 22 biochemical processes, presented in matrix form. The computer aided simulation tool AQUASIM 2.1 is used to simulate the developed model. Simulation predictions are evaluated against experimental data obtained using a laboratory batch test array comprising miniature anaerobic bio-reactors of 100 ml total volume each, operated under different initial air headspaces giving rise to the different oxygen loading conditions. The reactors were initially fed with a glucose solution and incubated at 35 Celsius, for 563 hours. Under the oxygen load conditions of 22, 44 and 88 mg/L, the ADM1-Ox model simulations predicted the experimental methane potentials quite adequately. Both the experimental data and the simulations suggest a linear reduction of methane potential with respect to the increase in oxygen load within this range.

  1. Mechanism of uranium (VI) removal by two anaerobic bacterial communities

    Energy Technology Data Exchange (ETDEWEB)

    Martins, Monica [Centro de Ciencias do Mar, Universidade do Algarve, FCT-DQF (edificio 8), Campus de Gambelas, 8005-139 Faro (Portugal); Faleiro, Maria Leonor [IBB - Centro de Biomedicina Molecular e Estrutural, Universidade do Algarve, FCT, Campus de Gambelas, 8005-139 Faro (Portugal); Costa, Ana M. Rosa da [Centro de Investigacao em Quimica do Algarve, Universidade do Algarve, FCT, DQF, Campus de Gambelas, 8005-139 Faro (Portugal); Chaves, Sandra; Tenreiro, Rogerio [Universidade de Lisboa, Faculdade de Ciencias, Centro de Biodiversidade, Genomica Integrativa e Funcional (BioFIG), Campus de FCUL, Campo Grande, 1749-016 Lisboa (Portugal); Matos, Antonio Pedro [Servico de Anatomia Patologica, Hospital Curry Cabral, Lisboa (Portugal); Costa, Maria Clara, E-mail: mcorada@ualg.pt [Centro de Ciencias do Mar, Universidade do Algarve, FCT-DQF (edificio 8), Campus de Gambelas, 8005-139 Faro (Portugal)

    2010-12-15

    The mechanism of uranium (VI) removal by two anaerobic bacterial consortia, recovered from an uncontaminated site (consortium A) and other from an uranium mine (consortium U), was investigated. The highest efficiency of U (VI) removal by both consortia (97%) occurred at room temperature and at pH 7.2. Furthermore, it was found that U (VI) removal by consortium A occurred by enzymatic reduction and bioaccumulation, while the enzymatic process was the only mechanism involved in metal removal by consortium U. FTIR analysis suggested that after U (VI) reduction, U (IV) could be bound to carboxyl, phosphate and amide groups of bacterial cells. Phylogenetic analysis of 16S rRNA showed that community A was mainly composed by bacteria closely related to Sporotalea genus and Rhodocyclaceae family, while community U was mainly composed by bacteria related to Clostridium genus and Rhodocyclaceae family.

  2. Mechanism of uranium (VI) removal by two anaerobic bacterial communities

    International Nuclear Information System (INIS)

    The mechanism of uranium (VI) removal by two anaerobic bacterial consortia, recovered from an uncontaminated site (consortium A) and other from an uranium mine (consortium U), was investigated. The highest efficiency of U (VI) removal by both consortia (97%) occurred at room temperature and at pH 7.2. Furthermore, it was found that U (VI) removal by consortium A occurred by enzymatic reduction and bioaccumulation, while the enzymatic process was the only mechanism involved in metal removal by consortium U. FTIR analysis suggested that after U (VI) reduction, U (IV) could be bound to carboxyl, phosphate and amide groups of bacterial cells. Phylogenetic analysis of 16S rRNA showed that community A was mainly composed by bacteria closely related to Sporotalea genus and Rhodocyclaceae family, while community U was mainly composed by bacteria related to Clostridium genus and Rhodocyclaceae family.

  3. Anaerobic ammonia oxidation in a fertilized paddy soil

    DEFF Research Database (Denmark)

    Zhu, Guibing; Wang, Shanyun; Wang, Yu;

    2011-01-01

    anammox 16S rRNA genes retrieved from the deeper soil were affiliated to ‘Brocadia’. The retrieval of mainly bacterial amoA sequences in the upper part of the paddy soil indicated that nitrifying bacteria may be the major source of nitrite for anammox bacteria in the cultivated horizon. In the deeper...... oxygen-limited parts, only archaeal amoA sequences were found, indicating that archaea may produce nitrite in this part of the soil. It is estimated that a total loss of 76 g N m−2 per year is linked to anammox in the paddy field.......Evidence for anaerobic ammonium oxidation in a paddy field was obtained in Southern China using an isotope-pairing technique, quantitative PCR assays and 16S rRNA gene clone libraries, along with nutrient profiles of soil cores. A paddy field with a high load of slurry manure as fertilizer was...

  4. Relating BTEX degradation to the biogeochemistry of an anaerobic aquifer

    International Nuclear Information System (INIS)

    Trends in chemical and microbiological parameters in a petroleum hydrocarbon plume within anaerobic groundwater have been studied. Previously, microbial degradation of the hydrocarbon compounds had been substantiated by the use of deuterated hydrocarbons to determine natural (intrinsic) degradation rates within the contaminant plume. Here, sulfate concentration decreases, Eh decreases, and hydrogen sulfide and bicarbonate concentration increases are shown to be associated with the contaminant plume. These trends indicate microbial degradation of the benzene, toluene, ethylbenzene, and xylene (BTEX) compounds by sulfate-reducing bacteria. Stoichiometry indicates that other consortia of bacteria play a role in the degradation of the hydrocarbons. Total microbial cell numbers were higher within the plume than in the uncontaminated groundwater. There is, however, no direct correlation between total microbial cell numbers, and BTEX, sulfate, bicarbonate, and hydrogen sulfide concentrations within the plume

  5. Ammonia effect on hydrogenotrophic methanogens and syntrophic acetate oxidizing bacteria

    DEFF Research Database (Denmark)

    Wang, Han; Fotidis, Ioannis; Angelidaki, Irini

    2015-01-01

    Ammonia-rich substrates can cause inhibition on anaerobic digestion process. Syntrophic acetate oxidizing bacteria (SAOB) and hydrogenotrophic methanogens are important for the ammonia inhibitory mechanism on anaerobic digestion. The roles and interactions of SAOB and hydrogenotrophic methanogens...... to ammonia inhibition effect are still unclear. The aim of the current study was to determine the ammonia toxicity levels of various pure strains of SAOB and hydrogenotrophic methanogens. Moreover, ammonia toxicity on the syntrophic cultivated strains of SAOB and hydrogenotrophic methanogens was...... tested. Thus, four hydrogenotrophic methanogens (i.e. Methanoculleus bourgensis, Methanobacterium congolense, Methanoculleus thermophilus and Methanothermobacter thermautotrophicus), two SAOB (i.e. Tepidanaerobacter acetatoxydans and Thermacetogenium phaeum) and their syntrophic cultivation, were...

  6. Aerobic and anaerobic growth of Paracoccus denitrificans on methanol.

    Science.gov (United States)

    Bamforth, C W; Quayle, J R

    1978-10-01

    1. The dye-linked methanol dehydrogenase from Paracoccus denitrificans grown aerobically on methanol has been purified and its properties compared with similar enzymes from other bacteria. It was shown to be specific and to have high affinity for primary alcohols and formaldehyde as substrate, ammonia was the best activator and the enzyme could be linked to reduction of phenazine methosulphate. 2. Paracoccus denitrificans could be grown anaerobically on methanol, using nitrate or nitrite as electron acceptor. The methanol dehydrogenase synthesized under these conditions could not be differentiated from the aerobically-synthesized enzyme. 3. Activities of methanol dehydrogenase, formaldehyde dehydrogenase, formate dehydrogenase, nitrate reductase and nitrite reductase were measured under aerobic and anaerobic growth conditions. 4. Difference spectra of reduced and oxidized cytochromes in membrane and supernatant fractions of methanol-grown P. denitrificans were measured. 5. From the results of the spectral and enzymatic analyses it has been suggested that anaerobic growth on methanol/nitrate is made possible by reduction of nitrate to nitrite using electrons derived from the pyridine nucleotide-linked dehydrogenations of formaldehyde and formate, the nitrite so produced then functioning as electron acceptor for methanol dehydrogenase via cytochrome c and nitrite reductase. PMID:718372

  7. Ultrasonic waste activated sludge disintegration for improving anaerobic stabilization.

    Science.gov (United States)

    Tiehm, A; Nickel, K; Zellhorn, M; Neis, U

    2001-06-01

    The pretreatment of waste activated sludge by ultrasonic disintegration was studied in order to improve the anaerobic sludge stabilization. The ultrasound frequency was varied within a range from 41 to 3217 kHz. The impact of different ultrasound intensities and treatment times was examined. Sludge disintegration was most significant at low frequencies. Low-frequency ultrasound creates large cavitation bubbles which upon collapse initiate powerful jet streams exerting strong shear forces in the liquid. The decreasing sludge disintegration efficiency observed at higher frequencies was attributed to smaller cavitation bubbles which do not allow the initiation of such strong shear forces. Short sonication times resulted in sludge floc deagglomeration without the destruction of bacteria cells. Longer sonication brought about the break-up of cell walls, the sludge solids were distintegrated and dissolved organic compounds were released. The anaerobic digestion of waste activated sludge following ultrasonic pretreatment causing microbial cell lysis was significantly improved. There was an increase in the volatile solids degradation as well as an increase in the biogas production. The increase in digestion efficiency was proportional to the degree of sludge disintegration. To a lesser degree the deagglomeration of sludge flocs also augmented the anaerobic volatile solids degradation. PMID:11337847

  8. Anaerobic oxidation of cholesterol by a denitrifying enrichment.

    Science.gov (United States)

    Barrandeguy, E; Tarlera, S

    2001-01-01

    Sterols (e.g. cholesterol) present in wool scouring effluent represent the most recalcitrant fraction in anaerobic treatment. This study was conducted to examine the feasibility of removal of this organic load through a denitrifying post-treatment stage. A stable cholesterol-denitrifying enrichment (CHOL-1) was obtained from sludge of a bench-scale upflow sludge bed (USB) denitrifying reactor integrated to a carbon and nitrogen removal system for sanitary landfill leachate. According to the amounts of cholesterol degraded and of nitrite and nitrogen gas formed, the capacity for complete cholesterol oxidation under anaerobic conditions by CHOL-1 can be assumed. Nitrite accumulation observed at a low C/N ratio outlines the importance of determining the optimal C/N ratio for adequate denitrifying reactor performance. The enrichment was partly identified with molecular analysis of cloned 16S rDNA sequences revealing the presence of two groups of bacteria belonging to the beta subclass of the Proteobacteria. According to analysis of sequences, it can be inferred that a yet uncultivated new bacterium is the one responsible for cholesterol oxidation. Results of this study suggest that sludge from a denitrifying reactor treating leachate is potentially useful in a combined anaerobic-anoxic system for degradation of cholesterol that remains after methanogenic treatment. PMID:11575077

  9. Microbial community analysis of ambient temperature anaerobic digesters

    Energy Technology Data Exchange (ETDEWEB)

    Ciotola, R. [Ohio State Univ., Columbus, OH (United States). Dept. of Food, Agriculture and Biological Engineering

    2010-07-01

    This paper reported on a study in which designs for Chinese and Indian fixed-dome anaerobic digesters were modified in an effort to produce smaller and more affordable digesters. While these types of systems are common in tropical regions of developing countries, they have not been used in colder climates because of the low biogas yield during the winter months. Although there is evidence that sufficient biogas production can be maintained in colder temperatures through design and operational changes, there is a lack of knowledge about the seasonal changes in the composition of the microbial communities in ambient temperature digesters. More knowledge is needed to design and operate systems for maximum biogas yield in temperate climates. The purpose of this study was to cultivate a microbial community that maximizes biogas production at psychrophilic temperatures. The study was conducted on a 300 gallon experimental anaerobic digester on the campus of Ohio State University. Culture-independent methods were used on weekly samples collected from the digester in order to examine microbial community response to changes in ambient temperature. Microbial community profiles were established using universal bacterial and archaeal primers that targeted the 16S rRNA gene. In addition to the methanogenic archaea, this analysis also targeted some of the other numerically and functionally important microbial taxa in anaerobic digesters, such as hydrolytic, fermentative, acetogenic and sulfate reducing bacteria. According to preliminary results, the composition of the microbial community shifts with changes in seasonal temperature.

  10. Transcriptome changes associated with anaerobic growth in Yersinia intermedia (ATCC29909.

    Directory of Open Access Journals (Sweden)

    Lavanya Babujee

    Full Text Available BACKGROUND: The yersiniae (Enterobacteriaceae occupy a variety of niches, including some in human and flea hosts. Metabolic adaptations of the yersiniae, which contribute to their success in these specialized environments, remain largely unknown. We report results of an investigation of the transcriptome under aerobic and anaerobic conditions for Y. intermedia, a non-pathogenic member of the genus that has been used as a research surrogate for Y. pestis. Y. intermedia shares characteristics of pathogenic yersiniae, but is not known to cause disease in humans. Oxygen restriction is an important environmental stimulus experienced by many bacteria during their life-cycles and greatly influences their survival in specific environments. How oxygen availability affects physiology in the yersiniae is of importance in their life cycles but has not been extensively characterized. METHODOLOGY/PRINCIPAL FINDINGS: Tiled oligonucleotide arrays based on a draft genome sequence of Y. intermedia were used in transcript profiling experiments to identify genes that change expression in response to oxygen availability during growth in minimal media with glucose. The expression of more than 400 genes, constituting about 10% of the genome, was significantly altered due to oxygen-limitation in early log phase under these conditions. Broad functional categorization indicated that, in addition to genes involved in central metabolism, genes involved in adaptation to stress and genes likely involved with host interactions were affected by oxygen-availability. Notable among these, were genes encoding functions for motility, chemotaxis and biosynthesis of cobalamin, which were up-regulated and those for iron/heme utilization, methionine metabolism and urease, which were down-regulated. CONCLUSIONS/SIGNIFICANCE: This is the first transcriptome analysis of a non-pathogenic Yersinia spp. and one of few elucidating the global response to oxygen limitation for any of the

  11. Modelling of Two-Stage Anaerobic Treating Wastewater from a Molasses-Based Ethanol Distillery with the IWA Anaerobic Digestion Model No.1

    Directory of Open Access Journals (Sweden)

    Kittikhun Taruyanon

    2010-03-01

    Full Text Available This paper presents the application of ADM1 model to simulate the dynamic behaviour of a two-stage anaerobic treatment process treating the wastewater generated from the ethanol distillery process. The laboratory-scale process comprised an anaerobic continuous stirred tank reactor (CSTR and an upflow anaerobic sludge blanket (UASB connecting in series, was used to treat wastewater from the ethanol distillery process. The CSTR and UASB hydraulic retention times (HRT were 12 and 70 hours, respectively. The model was developed based on ADM1 basic structure and implemented with the simulation software AQUASIM. The simulated results were compared with measured data obtained from using the laboratory-scale two-stage anaerobic treatment process to treat wastewater. The sensitivity analysis identified maximum specific uptake rate (km and half-saturation constant (Ks of acetate degrader and sulfate reducing bacteria as the kinetic parameters which highly affected the process behaviour, which were further estimated. The study concluded that the model could predict the dynamic behaviour of a two-stage anaerobic treatment process treating the ethanol distillery process wastewater with varying strength of influents with reasonable accuracy.

  12. Anaerobic Biotransformation and Mobility of Pu and of Pu-EDTA

    International Nuclear Information System (INIS)

    The enhanced mobility of radionuclides by co-disposed chelating agent, ethylenediaminetetraacetate (EDTA), is likely to occur only under anaerobic conditions. Our extensive effort to enrich and isolate anaerobic EDTA-degrading bacteria has failed. Others has tried and also failed. To explain the lack of anaerobic biodegradation of EDTA, we proposed that EDTA has to be transported into the cells for metabolism. A failure of uptake may contribute to the lack of EDTA degradation under anaerobic conditions. We demonstrated that an aerobic EDTA-degrading bacterium strain BNC1 uses an ABC-type transporter system to uptake EDTA. The system has a periplasmic binding protein that bind EDTA and then interacts with membrane proteins to transport EDTA into the cell at the expense of ATP. The bind protein EppA binds only free EDTA with a Kd of 25 nM. The low Kd value indicates high affinity. However, the Kd value of Ni-EDTA is 2.4 x 10-10 nM, indicating much stronger stability. Since Ni and other trace metals are essential for anaerobic respiration, we conclude that the added EDTA sequestrates all trace metals and making anaerobic respiration impossible. Thus, the data explain the lack of anaerobic enrichment cultures for EDTA degradation. Although we did not obtain an EDTA degrading culture under anaerobic conditions, our finding may promote the use of certain metals that forms more stable metal-EDTA complexes than Pu(III)-EDTA to prevent the enhanced mobility. Further, our data explain why EDTA is the most dominant organic pollutant in surface waters, due to the lack of degradation of certain metal-EDTA complexes.

  13. Effect of incubation conditions on anaerobic susceptibility testing results.

    OpenAIRE

    Murray, P R; Niles, A C

    1982-01-01

    We determined the effect of performing antimicrobial susceptibility tests in five different anaerobic incubation systems: GasPak jar, large GasPak jar, evacuated-gassed anaerobic jar, anaerobic chamber, and Bio-Bag. Growth of the anaerobes was equivalent in all five incubation systems. The results of testing 38 anaerobes against 11 antimicrobial agents were comparable for the anaerobic jars and anaerobic chamber. However, discordant results were observed for metronidazole and cefamandole test...

  14. Back To Bacteria.

    Science.gov (United States)

    Flannery, Maura C.

    1997-01-01

    Explores new research about bacteria. Discusses bacterial genomes, archaea, unusual environments, evolution, pathogens, bacterial movement, biofilms, bacteria in the body, and a bacterial obsession. Contains 29 references. (JRH)

  15. Model-Based Feasibility Assessment of Membrane Biofilm Reactor to Achieve Simultaneous Ammonium, Dissolved Methane, and Sulfide Removal from Anaerobic Digestion Liquor.

    Science.gov (United States)

    Chen, Xueming; Liu, Yiwen; Peng, Lai; Yuan, Zhiguo; Ni, Bing-Jie

    2016-01-01

    In this study, the membrane biofilm reactor (MBfR) is proposed to achieve simultaneous removal of ammonium, dissolved methane, and sulfide from main-stream and side-stream anaerobic digestion liquors. To avoid dissolved methane stripping, oxygen is introduced through gas-permeable membranes, which also from the substratum for the growth of a biofilm likely comprising ammonium oxidizing bacteria (AOB), anaerobic ammonium oxidation (Anammox) bacteria, denitrifying anaerobic methane oxidation (DAMO) microorganisms, aerobic methane oxidizing bacteria (MOB), and sulfur oxidizing bacteria (SOB). A mathematical model is developed and applied to assess the feasibility of such a system and the associated microbial community structure under different operational conditions. The simulation studies demonstrate the feasibility of achieving high-level (>97.0%), simultaneous removal of ammonium, dissolved methane, and sulfide in the MBfRs from both main-stream and side-stream anaerobic digestion liquors through adjusting the influent surface loading (or hydraulic retention time (HRT)) and the oxygen surface loading. The optimal HRT was found to be inversely proportional to the corresponding oxygen surface loading. Under the optimal operational conditions, AOB, DAMO bacteria, MOB, and SOB dominate the biofilm of the main-stream MBfR, while AOB, Anammox bacteria, DAMO bacteria, and SOB coexist in the side-stream MBfR to remove ammonium, dissolved methane, and sulfide simultaneously. PMID:27112502

  16. Model-Based Feasibility Assessment of Membrane Biofilm Reactor to Achieve Simultaneous Ammonium, Dissolved Methane, and Sulfide Removal from Anaerobic Digestion Liquor

    Science.gov (United States)

    Chen, Xueming; Liu, Yiwen; Peng, Lai; Yuan, Zhiguo; Ni, Bing-Jie

    2016-04-01

    In this study, the membrane biofilm reactor (MBfR) is proposed to achieve simultaneous removal of ammonium, dissolved methane, and sulfide from main-stream and side-stream anaerobic digestion liquors. To avoid dissolved methane stripping, oxygen is introduced through gas-permeable membranes, which also from the substratum for the growth of a biofilm likely comprising ammonium oxidizing bacteria (AOB), anaerobic ammonium oxidation (Anammox) bacteria, denitrifying anaerobic methane oxidation (DAMO) microorganisms, aerobic methane oxidizing bacteria (MOB), and sulfur oxidizing bacteria (SOB). A mathematical model is developed and applied to assess the feasibility of such a system and the associated microbial community structure under different operational conditions. The simulation studies demonstrate the feasibility of achieving high-level (>97.0%), simultaneous removal of ammonium, dissolved methane, and sulfide in the MBfRs from both main-stream and side-stream anaerobic digestion liquors through adjusting the influent surface loading (or hydraulic retention time (HRT)) and the oxygen surface loading. The optimal HRT was found to be inversely proportional to the corresponding oxygen surface loading. Under the optimal operational conditions, AOB, DAMO bacteria, MOB, and SOB dominate the biofilm of the main-stream MBfR, while AOB, Anammox bacteria, DAMO bacteria, and SOB coexist in the side-stream MBfR to remove ammonium, dissolved methane, and sulfide simultaneously.

  17. Model-Based Feasibility Assessment of Membrane Biofilm Reactor to Achieve Simultaneous Ammonium, Dissolved Methane, and Sulfide Removal from Anaerobic Digestion Liquor

    Science.gov (United States)

    Chen, Xueming; Liu, Yiwen; Peng, Lai; Yuan, Zhiguo; Ni, Bing-Jie

    2016-01-01

    In this study, the membrane biofilm reactor (MBfR) is proposed to achieve simultaneous removal of ammonium, dissolved methane, and sulfide from main-stream and side-stream anaerobic digestion liquors. To avoid dissolved methane stripping, oxygen is introduced through gas-permeable membranes, which also from the substratum for the growth of a biofilm likely comprising ammonium oxidizing bacteria (AOB), anaerobic ammonium oxidation (Anammox) bacteria, denitrifying anaerobic methane oxidation (DAMO) microorganisms, aerobic methane oxidizing bacteria (MOB), and sulfur oxidizing bacteria (SOB). A mathematical model is developed and applied to assess the feasibility of such a system and the associated microbial community structure under different operational conditions. The simulation studies demonstrate the feasibility of achieving high-level (>97.0%), simultaneous removal of ammonium, dissolved methane, and sulfide in the MBfRs from both main-stream and side-stream anaerobic digestion liquors through adjusting the influent surface loading (or hydraulic retention time (HRT)) and the oxygen surface loading. The optimal HRT was found to be inversely proportional to the corresponding oxygen surface loading. Under the optimal operational conditions, AOB, DAMO bacteria, MOB, and SOB dominate the biofilm of the main-stream MBfR, while AOB, Anammox bacteria, DAMO bacteria, and SOB coexist in the side-stream MBfR to remove ammonium, dissolved methane, and sulfide simultaneously. PMID:27112502

  18. Succession of lignocellulolytic bacterial consortia bred anaerobically from lake sediment.

    Science.gov (United States)

    Korenblum, Elisa; Jiménez, Diego Javier; van Elsas, Jan Dirk

    2016-03-01

    Anaerobic bacteria degrade lignocellulose in various anoxic and organically rich environments, often in a syntrophic process. Anaerobic enrichments of bacterial communities on a recalcitrant lignocellulose source were studied combining polymerase chain reaction-denaturing gradient gel electrophoresis, amplicon sequencing of the 16S rRNA gene and culturing. Three consortia were constructed using the microbiota of lake sediment as the starting inoculum and untreated switchgrass (Panicum virgatum) (acid or heat) or treated (with either acid or heat) as the sole source of carbonaceous compounds. Additionally, nitrate was used in order to limit sulfate reduction and methanogenesis. Bacterial growth took place, as evidenced from 3 to 4 log unit increases in the 16S rRNA gene copy numbers as well as direct cell counts through three transfers on cleaned and reused substrate placed in fresh mineral medium. After 2 days, Aeromonas bestiarum-like organisms dominated the enrichments, irrespective of the substrate type. One month later, each substrate revealed major enrichments of organisms affiliated with different species of Clostridium. Moreover, only the heat-treated substrate selected Dysgonomonas capnocytophagoides-affiliated bacteria (Bacteroidetes). Towards the end of the experiment, members of the Proteobacteria (Aeromonas, Rhizobium and/or Serratia) became dominant in all three types of substrates. A total of 160 strains was isolated from the enrichments. Most of the strains tested (78%) were able to grow anaerobically on carboxymethyl cellulose and xylan. The final consortia yield attractive biological tools for the depolymerization of recalcitrant lignocellulosic materials and are proposed for the production of precursors of biofuels. PMID:26875750

  19. Anaerobic Oxidation of Methane at a Marine Methane Seep in a Forearc Sediment Basin off Sumatra, Indian Ocean.

    Science.gov (United States)

    Siegert, Michael; Krüger, Martin; Teichert, Barbara; Wiedicke, Michael; Schippers, Axel

    2011-01-01

    A cold methane seep was discovered in a forearc sediment basin off the island Sumatra, exhibiting a methane-seep adapted microbial community. A defined seep center of activity, like in mud volcanoes, was not discovered. The seep area was rather characterized by a patchy distribution of active spots. The relevance of anaerobic oxidation of methane (AOM) was reflected by (13)C-depleted isotopic signatures of dissolved inorganic carbon. The anaerobic conversion of methane to CO(2) was confirmed in a (13)C-labeling experiment. Methane fueled a vital microbial community with cell numbers of up to 4 × 10(9) cells cm(-3) sediment. The microbial community was analyzed by total cell counting, catalyzed reporter deposition-fluorescence in situ hybridization (CARD-FISH), quantitative real-time PCR (qPCR), and denaturing gradient gel electrophoresis (DGGE). CARD-FISH cell counts and qPCR measurements showed the presence of Bacteria and Archaea, but only small numbers of Eukarya. The archaeal community comprised largely members of ANME-1 and ANME-2. Furthermore, members of the Crenarchaeota were frequently detected in the DGGE analysis. Three major bacterial phylogenetic groups (δ-Proteobacteria, candidate division OP9, and Anaerolineaceae) were abundant across the study area. Several of these sequences were closely related to the genus Desulfococcus of the family Desulfobacteraceae, which is in good agreement with previously described AOM sites. In conclusion, the majority of the microbial community at the seep consisted of AOM-related microorganisms, while the relevance of higher hydrocarbons as microbial substrates was negligible. PMID:22207865

  20. Anaerobic Oxidation of Methane at a Marine Methane Seep in a Forearc Sediment Basin off Sumatra, Indian Ocean

    OpenAIRE

    Siegert, Michael; Krüger, Martin; Teichert, Barbara; Wiedicke, Michael; Schippers, Axel

    2011-01-01

    A cold methane seep was discovered in a forearc sediment basin off the island Sumatra, exhibiting a methane-seep adapted microbial community. A defined seep center of activity, like in mud volcanoes, was not discovered. The seep area was rather characterized by a patchy distribution of active spots. The relevance of anaerobic oxidation of methane (AOM) was reflected by 13C-depleted isotopic signatures of dissolved inorganic carbon. The anaerobic conversion of methane to CO2 was confirmed in a...

  1. Anaerobic digestion of solid material

    DEFF Research Database (Denmark)

    Vavilin, V.A.; Lokshina, L.Y.; Flotats, X.; Angelidaki, Irini

    2007-01-01

    A new multidimensional (3 and 2D) anaerobic digestion model for cylindrical reactor with non-uniform influent concentration distributions was developed to study the way in which mixing intensity affects the efficiency of continuous-flow anaerobic digestion. Batch experiments reported and simulated...... improve the continuous flow reactor performance at the relatively low influent methanogenic biomass concentration. In the continuously stirred tank reactor (CSTR) there are two steady states with and without methane production at slightly different values of initial methanogenic biomass concentration. In...... failure. According to the distributed models a plug-flow reactor with non-uniform influent concentration distributions where methanogenic and hydrolytic microorganisms are separated has significant methane production and solids removal at the relatively low influent methanogenic biomass concentration...

  2. Anaerobic procedures of wastewater treatment

    OpenAIRE

    Zupančič, Tadeja

    2013-01-01

    Highly polluted wastewater is formed in dairies, pig farms and slaughterhouses. Before released into watercourses, wastewater should be properly processed with different treatment procedures in wastewater treatment plants. The thesis deals with the descriptions of mechanical, physical and chemical, and biological wastewater treatment procedures and the description of the factors which affect the reactions in wastewater treatment plants. I give special emphasis on anaerobic wastewater treatmen...

  3. Anaerobic digestion of aliphatic polyesters.

    Science.gov (United States)

    Šmejkalová, Pavla; Kužníková, Veronika; Merna, Jan; Hermanová, Soňa

    2016-01-01

    Anaerobic processes for the treatment of plastic materials waste represent versatile and effective approach in environmental protection and solid waste management. In this work, anaerobic biodegradability of model aliphatic polyesters, poly(L-lactic acid) (PLA), and poly(ɛ-caprolactone) (PCL), in the form of powder and melt-pressed films with varying molar mass, was studied. Biogas production was explored in batch laboratory trials at 55 ± 1°C under a nitrogen atmosphere. The inoculum used was thermophilic digested sludge (total solids concentration of 2.9%) from operating digesters at the Central Waste Water Treatment Plant in Prague, Czech Republic. Methanogenic biodegradation of PCLs typically yielded from 54 to 60% of the theoretical biogas yield. The biodegradability of PLAs achieved from 56 to 84% of the theoretical value. High biogas yield (up to 677 mL/g TS) with high methane content (more than 60%), comparable with conventionally processed materials, confirmed the potential of polyester samples for anaerobic treatment in the case of their exploitation in agriculture or as a packaging material in the food industry. PMID:27191559

  4. Start-up phase of an anaerobic full-scale farm reactor - Appearance of mesophilic anaerobic conditions and establishment of the methanogenic microbial community.

    Science.gov (United States)

    Goux, Xavier; Calusinska, Magdalena; Fossépré, Marie; Benizri, Emile; Delfosse, Philippe

    2016-07-01

    The goal of this study was to investigate how the microbial community structure establishes during the start-up phase of a full-scale farm anaerobic reactor inoculated with stale and cold cattle slurry. The 16S/18S high-throughput amplicon sequencing results showed an increase of the bacterial, archaeal and eukaryotic diversity, evenness and richness during the settlement of the mesophilic anaerobic conditions. When a steady performing digestion process was reached, the microbial diversity, evenness and richness decreased, indicating the establishment of a few dominant microbial populations, best adapted to biogas production. Interestingly, among the environmental parameters, the temperature, alkalinity, free-NH3, total solids and O2 content were found to be the main drivers of microbial dynamics. Interactions between eukaryotes, characterized by a high number of unknown organisms, and the bacterial and archaeal communities were also evidenced, suggesting that eukaryotes might play important roles in the anaerobic digestion process. PMID:27099947

  5. Relationships between anaerobic consortia and removal efficiencies in an UASB reactor degrading 2,4 dichlorophenol (DCP).

    Science.gov (United States)

    Sponza, Delia Teresa; Cigal, Canan

    2008-04-01

    To gain more insight into the interactions between anaerobic bacteria and reactor performances (chemical oxygen demand-COD, 2,4 dichlorophenol-2,4 DCP removals, volatile fatty acid-VFA, and methane gas productions) and how they depended on operational conditions the microbial variations in the anaerobic granular sludge from an upflow anaerobic sludge blanket (UASB) reactor treating 2,4 DCP was studied. The study was composed of two parts. In the first part, the numbers of methanogens and acedogens in the anaerobic granular sludge were counted at different COD removal efficiencies. The relationships between the numbers of methanogens, the methane gas production and VFA production were investigated. The COD removal efficiencies increased to 74% from 30% while the number of total acedogens decreased to 10 from 30 cfu ml(-1). The number of total methanogens and acedogens varied between 11 x 10(3) and 10 x 10(9)MPN g(-1) and 10 and 30 cfu ml(-1) as the 2,4 DCP removal efficiencies were obtained between 60% and 99%, respectively. It was seen that, as the number of total acedogens decreased, the COD removal efficiencies increased. However, the number of total methanogens increased as the COD removal efficiencies increased. Correlations between the bacterial number and with the removal efficiencies obtained in different operational conditions were investigated. From the results presented in this paper a high correlation between the number of bacteria, COD removals, methane gas percentage, 2,4 DCP removals and VFA was observed. In the second part, methanogen bacteria in the anaerobic granular sludge were identified. Microbial observations and biochemical tests were applied to identify the anaerobic microorganisms from the anaerobic granular sludge. In the reactor treating 2,4 DCP, Methanobacterium bryantii, Methanobacterium formicicum, Methanobrevibacter smithii, Methanococcus voltae, Methanosarcina mazei, Methanosarcina acetivorans, Methanogenium bourgense and

  6. Transient characteristics of Paracoccus denitrificans with changes between aerobic and anaerobic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Waki, T.; Murayama, K.; Kawato, Y.; Ichikawa, K.

    1980-06-01

    The growth characteristics of Paracoccus denitrificans in both aerobic and anaerobic conditions and in the transient phase from aerobic to anaerobic conditions and vice versa were studied in batch and continuous cultures. The growth yield coefficients for glucose and the maximum specific growth rate were 0.59 (g cell/g glucose) and 0.49 (1/hr), and 0.41 (g cell/g glucose) and 0.23 (1/hr) in aerobic and anaerobic conditions, respectively. The nitrate reductase activities in an anaerobic continuous culture were almost constant irrespective of the growth rate and the enzymes were considered to be present in excess. Most of the nitrate reductase activity observed under aerobic conditions using the medium without ammonium chloride was due to the assimilative nitrate reductase. On the transition from anaerobic to aerobic conditions, the nitrate reductase activity was inhibited by the oxygen and the reduction of nitrate was stopped. When the conditions were changed from aerobic to anaerobic the glucose consumption and the growth stopped for a few hours and the nitrate reductase activity started to increase, however, the initial rapid reduction of nitrate and the accumulation of nitrite were observed. The nitrite reductase activity started to increase after the nitrite accumulated to a high concentration. The high efficiency of nitrogen removal in the single sludge nitrification-denitrification system was considered to be attributed to the initial rapid reduction of nirate during the transient phase in spite of the long adaptation lag for denitrification.

  7. Molecular ecology of anaerobic reactor systems

    DEFF Research Database (Denmark)

    Hofman-Bang, H. Jacob Peider; Zheng, D.; Westermann, Peter; Ahring, Birgitte Kiær; Raskin, L.

    2003-01-01

    Anaerobic reactor systems are essential for the treatment of solid and liquid wastes and constitute a core facility in many waste treatment plants. Although much is known about the basic metabolism in different types of anaerobic reactors, little is known about the microbes responsible for these ...... specific nucleic acid probes are discussed and exemplified by studies of anaerobic granular sludge, biofilm and digester systems...... malfunctions of anaerobic digesters occasionally experienced, leading to sub-optimal methane production and wastewater treatment. Using a variety of molecular techniques, we are able to determine which microorganisms are active, where they are active, and when they are active, but we still need to determine...... abundance of each microbe in anaerobic reactor systems by rRNA probing. This chapter focuses on various molecular techniques employed and problems encountered when elucidating the microbial ecology of anaerobic reactor systems. Methods such as quantitative dot blot/fluorescence in-situ probing using various...

  8. Anaerobic degradation of alkylated benzenes in denitrifying laboratory aquifer columns

    International Nuclear Information System (INIS)

    Toluene and m-xylene were rapidly mineralized in an anaerobic laboratory aquifer column operated under continuous-flow conditions with nitrate as an electron acceptor. The oxidation of toluene and m-xylene was coupled with the reduction of nitrate, and mineralization was confirmed by trapping 14CO2 evolved from 14C-ring-labeled substrates. Substrate degradation also took place when nitrous oxide replaced nitrate as an electron acceptor, but decomposition was inhibited in the presence of molecular oxygen or after the substitution of nitrate by nitrite. The m-xylene-adapted microorganisms in the aquifer column degraded toluene, benzaldehyde, benzoate, m-toluylaldehyde, m-toluate, m-cresol, p-cresol, and p-hydroxybenzoate but were unable to metabolize benzene, naphthalene, methylcyclohexane, and 1,3-dimethylcyclohexane. Isotope-dilution experiments suggested benzoate as an intermediate formed during anaerobic toluene metabolism. The finding that the highly water-soluble nitrous oxide served as electron acceptor for the anaerobic mineralization of some aromatic hydrocarbons may offer attractive options for the in situ restoration of polluted aquifers

  9. Azoarcus sp. CIB, an anaerobic biodegrader of aromatic compounds shows an endophytic lifestyle.

    Directory of Open Access Journals (Sweden)

    Helga Fernández

    Full Text Available BACKGROUND: Endophytic bacteria that have plant growth promoting traits are of great interest in green biotechnology. The previous thought that the Azoarcus genus comprises bacteria that fit into one of two major eco-physiological groups, either free-living anaerobic biodegraders of aromatic compounds or obligate endophytes unable to degrade aromatics under anaerobic conditions, is revisited here. METHODOLOGY/PRINCIPAL FINDINGS: Light, confocal and electron microscopy reveal that Azoarcus sp. CIB, a facultative anaerobe β-proteobacterium able to degrade aromatic hydrocarbons under anoxic conditions, is also able to colonize the intercellular spaces of the rice roots. In addition, the strain CIB displays plant growth promoting traits such nitrogen fixation, uptake of insoluble phosphorus and production of indoleacetic acid. Therefore, this work demonstrates by the first time that a free-living bacterium able to degrade aromatic compounds under aerobic and anoxic conditions can share also an endophytic lifestyle. The phylogenetic analyses based on the 16S rDNA and nifH genes confirmed that obligate endophytes of the Azoarcus genus and facultative endophytes, such as Azoarcus sp. CIB, locate into different evolutionary branches. CONCLUSIONS/SIGNIFICANCE: This is the first report of a bacterium, Azoarcus sp. CIB, able to degrade anaerobically a significant number of aromatic compounds, some of them of great environmental concern, and to colonize the rice as a facultative endophyte. Thus, Azoarcus sp. CIB becomes a suitable candidate for a more sustainable agricultural practice and phytoremediation technology.

  10. Effect of thermal hydrolysis and ultrasounds pretreatments on foaming in anaerobic digesters.

    Science.gov (United States)

    Alfaro, N; Cano, R; Fdz-Polanco, F

    2014-10-01

    Foam appears regularly in anaerobic digesters producing operational and safety problems. In this research, based on the operational observation at semi-industrial pilot scale where sludge pretreatment mitigated foaming in anaerobic digesters, this study aimed at evaluating any potential relationship between foaming tools applied to activated sludge at lab-scale (foam potential, foam stability and Microthrix parvicella abundance) and the experimental behavior observed in pilot scale and full-scale anaerobic digesters. The potential of thermal hydrolysis and ultrasounds for reducing foaming capacity was also evaluated. Filamentous bacteria abundance was directly linked to foaming capacity in anaerobic processes. A maximum reduction of M.parvicella abundance (from 5 to 2) was reached using thermal hydrolysis with steam explosion at 170°C and ultrasounds at 66.7kWh/m(3), showing both good anti-foaming properties. On the other hand, foam potential and stability determinations showed a lack of consistency with the bacteria abundance results and experimental evidences. PMID:25168914

  11. Effects of anaerobic/aerobic incubation and storage temperature on preservation and deodorization of kitchen garbage.

    Science.gov (United States)

    Wang, Qunhui; Narita, Jun-ya; Xie, Weimin; Ohsumi, Yukihide; Kusano, Kohji; Shirai, Yoshihito; Ogawa, Hiroaki I

    2002-09-01

    To develop a garbage recycling system for the purpose of the production of lactic acid (LA) to use as raw material for producing biodegradable plastics, the preservation and deodorization of garbage during storage are very important. Anaerobic incubation (i.e., storage) was prove to be more suitable than aerobic incubation during the garbage storage in terms of concentration of LA and soluble sugar, pH value, viable bacteria counts and offensive odour substances. This difference is due to a fact that the growth of putrefactive bacteria such as coliforms and Clostridium spp. appeared to be inhibited by anaerobic fermentation during the storage, because the fermentation caused a drop of garbage pH and generated inhibitory substances, i.e., bacteriocins. Under anaerobic condition, LA concentration in the stored garbage was found to be higher in the order: 37 > 25 > 50 > 5 degrees C, and the concentration of sugar accumulated during the 50 degrees C-storage was the highest. Among the conditions employed, the optimum condition for the storage of kitchen garbage was anaerobic at 5 degrees C. PMID:12118696

  12. Mechanism of anaerobic (microbial) corrosion. Technical summary report No. 1, 1 Jun-31 Dec 82

    Energy Technology Data Exchange (ETDEWEB)

    Iverson, W.P.; Olson, G.J.

    1982-12-01

    This report in the form of three papers describes research into the role of bacteria in anaerobic corrosion processes. During the year we have given more evidence for a novel mechanism of anaerobic corrosion in which a volatile, highly reactive phosporous compound is produced as a result of the activities of sulfate-reducing bacteria (Desulfovibio desuluricans). The corrosion product is an amorphous type of iron phosphide which can be detected by the formation of phosphine upon its acidification. Phosphine (in addition to H2S) has been detected from all the cases of suspected anaerobic corrosion (including tubercles from the inside of water pipes) examined so far. In examining the headspace over growing cultures of Desulfovibio to detect this volatile phosphorus containing compound, using a gas chromatograph (GC) with a flame photometric detector (FPD) specific for phosphorus and sulfur, two sulfur compounds, in addition to H2S, were detected and identified. These compounds, methylmercaptan, and dimethyldisulfide, were found to be relatively non-corrosive to iron under anaerobic conditions. No volatile phosphorus compounds were detected.

  13. Bacterial community composition and abundance in leachate of semi-aerobic and anaerobic landfills

    Institute of Scientific and Technical Information of China (English)

    Wei Zhang; Bo Yue; Qi Wang; Zechun Huang; Qifei Huang; Zengqiang Zhang

    2011-01-01

    The abundance and phylogenetic composition of bacterial community in leachate of semi-aerobic and anaerobic landfill were compared through real-time polymerase chain reaction and denaturing gradient gel electrophoresis.In semi-aerobic landfill scenario,the bacterial 16S rRNA copy numbers in leachate had no significant reduction from initial stage to stable period.In the scenario of anaerobic landfill,the largest bacterial 16S rRNA gene copy number was found in leachate at initial stage,but it reduced significantly at stable period.Moreover,methane-oxidizing bacteria population in stable period was lower than that in initial period in both two landfill processes.However,semi-aerobic landfill leachate had more methanotrophic bacteria populations than that in the anaerobic one.Furthermore,according to the sequences and phylogenetic analysis,obvious difference could be detected in bacterial community composition in different scenarios.Proteobacteria and bacteroidetes took up a dominantly higher proportion in semi-aerobic landfill leachate.To summarize up,different landfill methods and its landfill ages had crucial impacts on bacterial abundance and composition in leachate of semi-aerobic and anaerobic landfills.

  14. In Vitro Activities of Daptomycin, Vancomycin, Quinupristin- Dalfopristin, Linezolid, and Five Other Antimicrobials against 307 Gram-Positive Anaerobic and 31 Corynebacterium Clinical Isolates

    OpenAIRE

    Goldstein, Ellie J. C.; Citron, Diane M.; Merriam, C. Vreni; Warren, Yumi A.; Tyrrell, Kerrin L.; Fernandez, Helen T.

    2003-01-01

    The activities of daptomycin, a cyclic lipopeptide, and eight other agents were determined against 338 strains of gram-positive anaerobic bacteria and corynebacteria by the NCCLS reference agar dilution method with supplemented brucella agar for the anaerobes and Mueller-Hinton agar for the corynebacteria. The daptomycin MICs determined on Ca2+-supplemented (50 mg/liter) brucella agar plates were one- to fourfold lower than those determined in unsupplemented media. Daptomycin was highly activ...

  15. Medium factors on anaerobic production of rhamnolipids by Pseudomonas aeruginosa SG and a simplifying medium for in situ microbial enhanced oil recovery applications.

    Science.gov (United States)

    Zhao, Feng; Zhou, Jidong; Han, Siqin; Ma, Fang; Zhang, Ying; Zhang, Jie

    2016-04-01

    Aerobic production of rhamnolipid by Pseudomonas aeruginosa was extensively studied. But effect of medium composition on anaerobic production of rhamnolipid by P. aeruginosa was unknown. A simplifying medium facilitating anaerobic production of rhamnolipid is urgently needed for in situ microbial enhanced oil recovery (MEOR). Medium factors affecting anaerobic production of rhamnolipid were investigated using P. aeruginosa SG (Genbank accession number KJ995745). Medium composition for anaerobic production of rhamnolipid by P. aeruginosa is different from that for aerobic production of rhamnolipid. Both hydrophobic substrate and organic nitrogen inhibited rhamnolipid production under anaerobic conditions. Glycerol and nitrate were the best carbon and nitrogen source. The commonly used N limitation under aerobic conditions was not conducive to rhamnolipid production under anaerobic conditions because the initial cell growth demanded enough nitrate for anaerobic respiration. But rhamnolipid was also fast accumulated under nitrogen starvation conditions. Sufficient phosphate was needed for anaerobic production of rhamnolipid. SO4(2-) and Mg(2+) are required for anaerobic production of rhamnolipid. Results will contribute to isolation bacteria strains which can anaerobically produce rhamnolipid and medium optimization for anaerobic production of rhamnolipid. Based on medium optimization by response surface methodology and ions composition of reservoir formation water, a simplifying medium containing 70.3 g/l glycerol, 5.25 g/l NaNO3, 5.49 g/l KH2PO4, 6.9 g/l K2HPO4·3H2O and 0.40 g/l MgSO4 was designed. Using the simplifying medium, 630 mg/l of rhamnolipid was produced by SG, and the anaerobic culture emulsified crude oil to EI24 = 82.5 %. The simplifying medium was promising for in situ MEOR applications. PMID:26925616

  16. Integrated anaerobic-aerobic fixed-film reactor for slaughterhouse wastewater treatment.

    Science.gov (United States)

    Del Pozo, R; Diez, V

    2005-03-01

    An integrated anaerobic-aerobic fixed-film pilot-scale reactor with arranged media was fed during 166 days with slaughterhouse wastewater. Operation temperature was 25 degrees C and the anaerobic-aerobic volume ratio was decreased from 4:1 to 3:2 and finally to 2:3. Overall organic matter removal efficiencies of 93% were achieved for an average organic loading rate of 0.77 kg COD/m3 d, and nitrogen removal efficiencies of 67% were achieved for nitrogen loading rates of 0.084 kg N/m3 d. The high internal recirculation associated to the air-lift effect linked to the aeration of a part of the reactor section caused high mixing between the anaerobic and aerobic zones, so that most organic matter was removed aerobically. The nitrification process achieved an efficiency of 91% for nitrogen loads of 0.15 kg N/m3 d when the anaerobic-aerobic volume ratio was 2:3 and was limited by dissolved oxygen concentration below 3 mg/l. The influence of the heterotrophic biomass growing in the outer biofilm was checked. Denitrification only implied the 12-34% of the total nitrogen removal and was limited by dissolved oxygen concentration in the anaerobic zone above 0.5 mg/l caused by the mixing regime. Most removed nitrogen was employed in synthesis of heterotrophic bacteria. PMID:15766966

  17. Enhancing anaerobic digestion of waste activated sludge by pretreatment: effect of volatile to total solids.

    Science.gov (United States)

    Wang, Xiao; Duan, Xu; Chen, Jianguang; Fang, Kuo; Feng, Leiyu; Yan, Yuanyuan; Zhou, Qi

    2016-06-01

    In this study the effect of volatile to total solids (VS/TS) on anaerobic digestion of waste activated sludge (WAS) pretreated by alkaline, thermal and thermal-alkaline strategies was studied. Experimental results showed that the production of methane from sludge was increased with VS/TS. When anaerobic digesters were fed with sludge pretreated by the thermal-alkaline method, the average methane yield was improved from 2.8 L/d at VS/TS 0.35 to 4.7 L/d at VS/TS 0.56. Also, the efficiency of VS reduction during sludge anaerobic digestion varied between 18.9% and 45.6%, and increased gradually with VS/TS. Mechanism investigation of VS/TS on WAS anaerobic digestion suggested that the general activities of anaerobic microorganisms, activities of key enzymes related to sludge hydrolysis, acidification and methanogenesis, and the ratio of Archaea to Bacteria were all increased with VS/TS, showing good agreement with methane production. PMID:26698921

  18. Anaerobic sequencing batch reactor in pilot scale for treatment of tofu industry wastewater

    Science.gov (United States)

    Rahayu, Suparni Setyowati; Purwanto, Budiyono

    2015-12-01

    The small industry of tofu production process releases the waste water without being processed first, and the wastewater is directly discharged into water. In this study, Anaerobic Sequencing Batch Reactor in Pilot Scale for Treatment of Tofu Industry was developed through an anaerobic process to produce biogas as one kind of environmentally friendly renewable energy which can be developed into the countryside. The purpose of this study was to examine the fundamental characteristics of organic matter elimination of industrial wastewater with small tofu effective method and utilize anaerobic active sludge with Anaerobic Sequencing Bath Reactor (ASBR) to get rural biogas as an energy source. The first factor is the amount of the active sludge concentration which functions as the decomposers of organic matter and controlling selectivity allowance to degrade organic matter. The second factor is that HRT is the average period required substrate to react with the bacteria in the Anaerobic Sequencing Bath Reactor (ASBR).The results of processing the waste of tofu production industry using ASBR reactor with active sludge additions as starter generates cumulative volume of 5814.4 mL at HRT 5 days so that in this study it is obtained the conversion 0.16 L of CH4/g COD and produce biogas containing of CH4: 81.23% and CO2: 16.12%. The wastewater treatment of tofu production using ASBR reactor is able to produce renewable energy that has economic value as well as environmentally friendly by nature.

  19. Degradation of TCE using sequential anaerobic biofilm and aerobic immobilized bed reactor

    Science.gov (United States)

    Chapatwala, Kirit D.; Babu, G. R. V.; Baresi, Larry; Trunzo, Richard M.

    1995-01-01

    Bacteria capable of degrading trichloroethylene (TCE) were isolated from contaminated wastewaters and soil sites. The aerobic cultures were identified as Pseudomonas aeruginosa (four species) and Pseudomonas fluorescens. The optimal conditions for the growth of aerobic cultures were determined. The minimal inhibitory concentration values of TCE for Pseudomonas sps. were also determined. The aerobic cells were immobilized in calcium alginate in the form of beads. Degradation of TCE by the anaerobic and dichloroethylene (DCE) by aerobic cultures was studied using dual reactors - anaerobic biofilm and aerobic immobilized bed reactor. The minimal mineral salt (MMS) medium saturated with TCE was pumped at the rate of 1 ml per hour into the anaerobic reactor. The MMS medium saturated with DCE and supplemented with xylenes and toluene (3 ppm each) was pumped at the rate of 1 ml per hour into the fluidized air-uplift-type reactor containing the immobilized aerobic cells. The concentrations of TCE and DCE and the metabolites formed during their degradation by the anaerobic and aerobic cultures were monitored by GC. The preliminary study suggests that the anaerobic and aerobic cultures of our isolates can degrade TCE and DCE.

  20. Anaerobic sequencing batch reactor in pilot scale for treatment of tofu industry wastewater

    International Nuclear Information System (INIS)

    The small industry of tofu production process releases the waste water without being processed first, and the wastewater is directly discharged into water. In this study, Anaerobic Sequencing Batch Reactor in Pilot Scale for Treatment of Tofu Industry was developed through an anaerobic process to produce biogas as one kind of environmentally friendly renewable energy which can be developed into the countryside. The purpose of this study was to examine the fundamental characteristics of organic matter elimination of industrial wastewater with small tofu effective method and utilize anaerobic active sludge with Anaerobic Sequencing Bath Reactor (ASBR) to get rural biogas as an energy source. The first factor is the amount of the active sludge concentration which functions as the decomposers of organic matter and controlling selectivity allowance to degrade organic matter. The second factor is that HRT is the average period required substrate to react with the bacteria in the Anaerobic Sequencing Bath Reactor (ASBR).The results of processing the waste of tofu production industry using ASBR reactor with active sludge additions as starter generates cumulative volume of 5814.4 mL at HRT 5 days so that in this study it is obtained the conversion 0.16 L of CH4/g COD and produce biogas containing of CH4: 81.23% and CO2: 16.12%. The wastewater treatment of tofu production using ASBR reactor is able to produce renewable energy that has economic value as well as environmentally friendly by nature

  1. Anaerobic sequencing batch reactor in pilot scale for treatment of tofu industry wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Rahayu, Suparni Setyowati, E-mail: suparnirahayu@yahoo.co.id [Doctoral Program in Environmental Science, University of Diponegoro, Semarang (Indonesia); Department of Mechanical Engineering, State Polytechnic of Semarang, Semarang Indonesia (Indonesia); Purwanto,, E-mail: p.purwanto@che.undip.ac.id; Budiyono, E-mail: budiyono@live.undip.ac.id [Doctoral Program in Environmental Science, University of Diponegoro, Semarang (Indonesia); Department of Chemical Engineering, Faculty of Engineering, Diponegoro University, Semarang Indonesia (Indonesia)

    2015-12-29

    The small industry of tofu production process releases the waste water without being processed first, and the wastewater is directly discharged into water. In this study, Anaerobic Sequencing Batch Reactor in Pilot Scale for Treatment of Tofu Industry was developed through an anaerobic process to produce biogas as one kind of environmentally friendly renewable energy which can be developed into the countryside. The purpose of this study was to examine the fundamental characteristics of organic matter elimination of industrial wastewater with small tofu effective method and utilize anaerobic active sludge with Anaerobic Sequencing Bath Reactor (ASBR) to get rural biogas as an energy source. The first factor is the amount of the active sludge concentration which functions as the decomposers of organic matter and controlling selectivity allowance to degrade organic matter. The second factor is that HRT is the average period required substrate to react with the bacteria in the Anaerobic Sequencing Bath Reactor (ASBR).The results of processing the waste of tofu production industry using ASBR reactor with active sludge additions as starter generates cumulative volume of 5814.4 mL at HRT 5 days so that in this study it is obtained the conversion 0.16 L of CH{sub 4}/g COD and produce biogas containing of CH{sub 4}: 81.23% and CO{sub 2}: 16.12%. The wastewater treatment of tofu production using ASBR reactor is able to produce renewable energy that has economic value as well as environmentally friendly by nature.

  2. The anaerobic degradation of gaseous, nonmethane alkanes — From in situ processes to microorganisms

    OpenAIRE

    Florin Musat

    2015-01-01

    The short chain, gaseous alkanes ethane, propane, n- and iso-butane are released in significant amounts into the atmosphere, where they contribute to tropospheric chemistry and ozone formation. Biodegradation of gaseous alkanes by aerobic microorganisms, mostly bacteria and fungi isolated from terrestrial environments, has been known for several decades. The first indications for short chain alkane anaerobic degradation were provided by geochemical studies of deep-sea environments around hydr...

  3. Autotrophy as a predominant mode of carbon fixation in anaerobic methane-oxidizing microbial communities

    OpenAIRE

    Kellermann, M. Y.; Wegener, G.; Elvert, M; Yoshinaga, M. Y.; Lin, Y.-S.; Holler, T.; Mollar, X. P.; Knittel, K; Hinrichs, K.-U.

    2012-01-01

    The methane-rich, hydrothermally heated sediments of the Guaymas Basin are inhabited by thermophilic microorganisms, including anaerobic methane-oxidizing archaea (mainly ANME-1) and sulfate-reducing bacteria (e.g., HotSeep-1 cluster). We studied the microbial carbon flow in ANME-1/ HotSeep-1 enrichments in stable-isotope–probing experiments with and without methane. The relative incorporation of 13C from either dissolved inorganic carbon or methane into lipids revealed that methane-oxidizing...

  4. Microbial communities involved in anaerobic degradation of unsaturated or saturated long chain fatty acids

    OpenAIRE

    Sousa, D.Z.; Pereira, M.A.; Stams, A.J.M.; Alves, M. M.; Smidt, H.

    2007-01-01

    Anaerobic long-chain fatty acid (LCFA)-degrading bacteria were identified by combining selective enrichment studies with molecular approaches. Two distinct enrichment cultures growing on unsaturated and saturated LCFAs were obtained by successive transfers in medium containing oleate and palmitate, respectively, as the sole carbon and energy sources. Changes in the microbial composition during enrichment were analyzed by denaturing gradient gel electrophoresis (DGGE) profiling of PCR...

  5. Studies of the Extracellular Glycocalyx of the Anaerobic Cellulolytic Bacterium Ruminococcus albus 7▿

    OpenAIRE

    Weimer, Paul J.; Price, Neil P. J.; Kroukamp, Otini; Joubert, Lydia-Marie; Wolfaardt, Gideon M.; Van Zyl, Willem H

    2006-01-01

    Anaerobic cellulolytic bacteria are thought to adhere to cellulose via several mechanisms, including production of a glycocalyx containing extracellular polymeric substances (EPS). As the compositions and structures of these glycocalyces have not been elucidated, variable-pressure scanning electron microscopy (VP-SEM) and chemical analysis were used to characterize the glycocalyx of the ruminal bacterium Ruminococcus albus strain 7. VP-SEM revealed that growth of this strain was accompanied b...

  6. Studies on the pathogenicity of anaerobes, especially Prevotella bivia, in a rat pyometra model.

    OpenAIRE

    Mikamo, H; Kawazoe, K.; Izumi, K.; Watanabe, K.; Ueno, K.; Tamaya, T

    1998-01-01

    OBJECTIVE: Prevotella bivia is one of the anaerobic bacteria that resides in the flora of the female genital tract. We studied the pathogenicity of P. bivia in a rat pyometra model. METHODS: The experimental animal (rat) model of pyometra was developed to investigate the pathogenicity of P. bivia in a rat pyometra model. RESULTS: In the groups inoculated with aerobes alone, the infection rate was 10% (1/10) in the Staphylococcus aureus- or Staphylococcus agalactiae-inoculated group and 20% (2...

  7. Studies on the Pathogenicity of Anaerobes, Especially Prevotella bivia, in a Rat Pyometra Model

    OpenAIRE

    Mikamo, H; Kawazoe, K.; Izumi, K.; Watanabe, K.; Ueno, K.; Tamaya, T

    1998-01-01

    Objective: Prevotella bivia is one of the anaerobic bacteria that resides in the flora of the female genital tract. We studied the pathogenicity of P. bivia in a rat pyometra model.Methods: The experimental animial (rat) model of pyometra was developed to investigate the pathogenicity of P. bivia in a rat pyometra model.Results: In the groups inoculated with aerobes alone, the infection rate was 10% (1/10) in the Staphylococcus aureus- or Staphylococcus agalactiae -inoculated group and 20% (2...

  8. XoxF-Type Methanol Dehydrogenase from the Anaerobic Methanotroph “Candidatus Methylomirabilis oxyfera”

    OpenAIRE

    Wu, Ming L.; Wessels, Hans J. C. T.; Pol, Arjan; Op den Camp, Huub J. M.; Mike S.M. Jetten; van Niftrik, Laura; Keltjens, Jan T.

    2014-01-01

    “Candidatus Methylomirabilis oxyfera” is a newly discovered anaerobic methanotroph that, surprisingly, oxidizes methane through an aerobic methane oxidation pathway. The second step in this aerobic pathway is the oxidation of methanol. In Gram-negative bacteria, the reaction is catalyzed by pyrroloquinoline quinone (PQQ)-dependent methanol dehydrogenase (MDH). The genome of “Ca. Methylomirabilis oxyfera” putatively encodes three different MDHs that are localized in one large gene cluster: one...

  9. Removal and Degradation Pathways of Sulfamethoxazole Present in Synthetic Municipal Wastewater via an Anaerobic Membrane Bioreactor

    KAUST Repository

    Sanchez Huerta, Claudia

    2016-05-01

    The current global water crisis in addition to continues contamination of natural water bodies with harmful organic micropollutants (OMPs) have driven the development of new water treatment technologies that allow the efficient removal of such compounds. Among a long list of OMPs, antibiotics are considered as top priority pollutants to be treated due to their great resistance to biological treatments and their potential to develop bacterial resistance. Different approaches, such as membrane-based and advance oxidation processes have been proposed to alleviate or minimize antibiotics discharge into aquatic environments. However most of these processes are costly and generate either matrices with high concentration of OMPs or intermediate products with potentially greater toxicity or persistence. Therefore, this thesis proposes the study of an anaerobic membrane bioreactor (AnMBR) for the treatment of synthetic municipal wastewater containing sulfamethoxazole (SMX), a world widely used antibiotic. Besides the general evaluation of AnMBR performance in the COD removal and biogas production, this research mainly focuses on the SMX removal and its degradation pathway. Thus 5 SMX quantification was performed through solid phase extraction-liquid chromatography/mass spectrometry and the identification of its transformation products (TPs) was assessed by gas chromatography/mass spectrometry technique. The results achieved showed that, working under optimal conditions (35°C, pH 7 and ORP around -380 to -420 mV) and after a biomass adaptation period (maintaining 0.85 VSS/TSS ratio), the AnMBR process provided over 95% COD removal and 95-98% SMX removal, while allowing stable biogas composition and methane production (≈130 mL CH4/g CODremoved). Kinetic analysis through a batch test showed that after 24 h of biological reaction, AnMBR process achieved around 94% SMX removal, indicating a first order kinetic reaction with K= 0.119, which highlights the high degradation

  10. Toxicity Evaluation of Pig Slurry Using Luminescent Bacteria and Zebrafish

    OpenAIRE

    Wenyan Chen; Qiang Cai; Yuan Zhao; Guojuan Zheng; Yuting Liang

    2014-01-01

    Biogas slurry has become a serious pollution problem and anaerobic digestion is widely applied to pig manure treatment for environmental protection and energy recovery. To evaluate environmental risk of the emission of biogas slurry, luminescent bacteria (Vibrio fischeri), larvae and embryos of zebrafish (Danio rerio) were used to detect the acute and development toxicity of digested and post-treated slurry. Then the ability of treatment process was evaluated. The results showed that digested...

  11. Environental assessment of methane oxidizers nitrite driven bacteria

    OpenAIRE

    VAELLO LÓPEZ, MARIA TERESA

    2013-01-01

    The nitrite-dependent anaerobic methane oxidation (N-DAMO) bacteria has been discovered in the last decade and there is little known about its environmental distribution and contribution to the oxidation of methane (CH4). Because CH4 is of environmental concern due to its contribution to global warming, it has become very important to look for ways to reduce it. The purpose of this thesis is the acquisition of established molecular tools and their application in microbial ecology investiga...

  12. Antibiogram pattern of bacteria causing endometritis in cows

    OpenAIRE

    S. Udhayavel; S. Malmarugan; Palanisamy, K; Johnson Rajeswar

    2013-01-01

    Aim : To find out the organisms causing endometritis in cattle and to determine their in vitro sensitivity to various antibiotics Materials and methods: Thirty uterine secretion samples, 9 from Holstein Friesian and 21 from Jersey cows were collected in and around Namakkal district of Tamil Nadu from clinical cases of endometritis. The bacteria isolated both aerobically and anaerobically from endometritis showed the characteristic colony, were gram stained and confirmed by standard biochemica...

  13. Increase of the efficiency of anaerobic digestion by various pre-treatment processes of sewage sludge

    OpenAIRE

    Łukasz Krawczyk; Małgorzata Budych; Łukasz Chrzanowski; Agnieszka Drożdżyńska; Roman Marecik; Agnieszka Piotrowska-Cyplik; Artur Szwengiel; Katarzyna Czaczyk; Paweł Cyplik

    2011-01-01

    The aim of this paper is to demonstrate the effects of pre-treatment increase of the efficiency of anaerobic digestion on waste activated sludge. There were four methods for pre-treatment of the waste activated sludge: A – thermally treated at 121°C for 30 min, homogenized and hydrolysed by Bacillus subtilis bacteria, B – thermally treated at 121°C for 30 min and homogenized, C – thermally treated at 121°C for 30 min and hydrolysed by B. subtilis bacteria, D &nda...

  14. Performance of mesophilic anaerobic granules for removal of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) from aqueous solution

    International Nuclear Information System (INIS)

    The performance of mesophilic anaerobic granules to degrade octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) was investigated under various conditions. The results of batch experiments showed that anaerobic granules were capable of removing HMX from aqueous solution with high efficiency. Both biotic and abiotic mechanisms contributed to the removal of HMX by anaerobic granules under mesophilic conditions. Adsorption appeared to play a significant role in the abiotic process. Furthermore, HMX could be biodegraded by anaerobic granules as the sole substrate. After 16 days of incubation, 99.04% and 96.42% of total HMX could be removed by 1 g VSS/L acclimated and unacclimated granules, respectively. Vancomycin, an inhibitor of acetogenic bacteria, caused a significant inhibition of HMX biotransformation, while 2-bromoethanesulfonic acid, an inhibitor of methanogenic bacteria, only resulted in a slight decrease of metabolic activity. The presence of the glucose, as a suitable electron donor and carbon source, was found to enhance the degradation of HMX by anaerobic granules. Our study showed that sulfate had little adverse effects on biotransformation of HMX by anaerobic granules. However, nitrate had significant inhibitory effect on the extent of HMX removal especially in the initial period. This study offered good prospects of using high-rate anaerobic technology in the treatment of munition wastewater.

  15. Responses of Iron-Reducing Bacteria to Salinity and Organic Matter Amendment in Paddy Soils of Thailand

    Institute of Scientific and Technical Information of China (English)

    A.J.BONGOUA-DEVISME; C.MUSTIN; J.BERTHELIN

    2012-01-01

    In paddy soils of Thailand,the addition of organic matter (OM) is used to efficiently limit the effect of salinity on rice culture and production.OM used as an amendment and fertilizer promotes the reduced condition and increases iron solubilization without provoking ferrous toxicity.In this study,the intricate biogeochemical role of iron-reducing bacteria (IRB) involved in the quality of water and soil of paddy fields,particularly when the paddy fields were subject to salinity and organic matter addition,were studied in paddy fields of Thailand.The results demonstrated that the addition of OM increased the proliferation of cultivable IRB and their specific activity.Cultivable IRB communities decreased in the presence of salt.The presence of salt modified the structnre of the bacterial populations by favoring the development of alkaline and moderately halophilic bacteria (Virgibacillus spp.,Oceanobacillus spp.,and Paenibacillus spp.).The paddy soils studied contained very diversified (halosensitive,halotolerant,and halophilic) IRB populations that could be adapted to a variety of salinity conditions (0-90 g L 1 NaCl) using different organic substrates (glucose,acetate,and soil organic matter) to maintain significant activities under extreme conditions of salinity.The rhizosphere of rice stimulated IRB community growth without organic matter,whereas organic matter addition limited the rhizosphere effect on IRB cultivable number in saline condition.The interactive action of salinity and organic amendment had a negative impact on the rhizosphere effect.The presence of specific iron-reducing populations (fermentative,iron-respiring,anaerobic,and facultative anaerobic),having different behaviors under salt and redox stresses,appeared to be a key factor that contributed to the control or enhancement of the quality of water and soil in paddy fields.

  16. Towards a Mechanistic Understanding of Anaerobic Nitrate Dependent Iron Oxidation: Balancing Electron Uptake and Detoxification

    Directory of Open Access Journals (Sweden)

    JohnDCoates

    2012-02-01

    Full Text Available The anaerobic oxidation of Fe(II by subsurface microorganisms is an important part of biogeochemical cycling in the environment, but the biochemical mechanisms used to couple iron oxidation to nitrate respiration are not well understood. Based on our own work and the evidence available in the literature, we propose a mechanistic model for anaerobic nitrate dependent iron oxidation. We suggest that anaerobic iron oxidizing microorganisms likely exist along a continuum including: 1 bacteria that inadvertently oxidize Fe(II by abiotic or biotic reactions with enzymes or chemical intermediates in their metabolic pathways (e.g. denitrification and suffer from toxicity or energetic penalty, 2 Fe(II tolerant bacteria that gain little or no growth benefit from iron oxidation but can manage the toxic reactions, and 3 bacteria that efficiently accept electrons from Fe(II to gain a growth advantage while preventing or mitigating the toxic reactions. Predictions of the proposed model are highlighted and experimental approaches are discussed.

  17. Development of Electroactive and Anaerobic Ammonium-Oxidizing (Anammox Biofilms from Digestate in Microbial Fuel Cells

    Directory of Open Access Journals (Sweden)

    Enea Gino Di Domenico

    2015-01-01

    Full Text Available Microbial Fuel cells (MFCs have been proposed for nutrient removal and energy recovery from different wastes. In this study the anaerobic digestate was used to feed H-type MFC reactors, one with a graphite anode preconditioned with Geobacter sulfurreducens and the other with an unconditioned graphite anode. The data demonstrate that the digestate acts as a carbon source, and even in the absence of anode preconditioning, electroactive bacteria colonise the anodic chamber, producing a maximum power density of 172.2 mW/m2. The carbon content was also reduced by up to 60%, while anaerobic ammonium oxidation (anammox bacteria, which were found in the anodic compartment of the reactors, contributed to nitrogen removal from the digestate. Overall, these results demonstrate that MFCs can be used to recover anammox bacteria from natural sources, and it may represent a promising bioremediation unit in anaerobic digestor plants for the simultaneous nitrogen removal and electricity generation using digestate as substrate.

  18. In vitro effect of intracanal medicaments on strict anaerobes by means of the broth dilution method

    Directory of Open Access Journals (Sweden)

    ROSA Odila Pereira da Silva

    2002-01-01

    Full Text Available The determination of bacterial susceptibility to intracanal medicaments is a necessity. Nevertheless, few studies utilize the proper methodology to carry out that evaluation with anaerobes. In this study, the steps of a broth dilution method, carried out in microplates (microdilution and tubes (macrodilution, to test the effect of traditional intracanal medicaments on anaerobic bacteria are described. The results are presented as values of minimal inhibitory and bactericidal concentrations (MIC and MBC. Standardized inocula of the anaerobic bacteria Prevotella nigrescens (ATCC 33563, Fusobacterium nucleatum (ATCC 25586 and Clostridium perfringens (ATCC 13124, in reinforced Clostridium medium (RCM and supplemented Brucella broth, were submitted to different concentrations of calcium hydroxide, chlorhexidine digluconate, camphorated paramonochlorophenol and formocresol solutions. The drugs were diluted in the same culture broths, in microplates and tubes, and were then incubated in anaerobiosis jars at 37ºC for 48 or 96 hours. The determination of MICs was carried out through visual and spectrophotometric readings, and the determination of MBCs, through the plating of aliquots on RCM-blood agar. For that kind of study, the macromethod with spectrophotometric reading should be the natural choice. MICs and MBCs obtained with the macromethod were compatible with the known clinical performance of the studied medications, and the values varied according to the bacteria and culture media employed. RCM was the most effective medium and C. perfringens, the most resistant microorganism.

  19. Anaerobic Capacities of Leaf Litter

    OpenAIRE

    Kusel, K.; Drake, H L

    1996-01-01

    Leaf litter displayed a capacity to spontaneously form organic acids, alcohols, phenolic compounds, H(inf2), and CO(inf2) when incubated anaerobically at 20(deg)C either as buffered suspensions or in a moistened condition in microcosms. Acetate was the predominant organic product formed regardless of the degree of litter decomposition. Initial rates of acetate formation in litter suspensions and microcosms approximated 2.6 and 0.53 (mu)mol of acetate per g (dry weight) of litter per h, respec...

  20. Anaerobic digestion of coffee waste

    OpenAIRE

    L. Neves; Ribeiro, R.; Oliveira, Rosário; Alves, M. M.

    2005-01-01

    The anaerobic co-digestion of five different by-products from instant coffee substitutes production was studied in mesophilic conditions. The co-substrate was the excess of sewage sludge from the wastewater treatment plant located in the same coffee factory. Four of the tested wastes produced methane in the range of 0.24-0.28 m³CH4(STP)/kgVSinitial . Reduction of 50-73% in total solids and 75-80% in volatile solids were obtained and the hydrolysis rate constants were in the ran...

  1. Selection and production of bacteria which detoxify mimosine: Leucaena leaves may be used as ruminant feed

    International Nuclear Information System (INIS)

    Mimosaceae are shrubs or trees, which grow abundantly in tropical regions. Their leaves contain high value protein which cannot be used as feed due to the toxic substance mimosine and its metabolites in the digestive tract These alkaloids cause diseases in ruminants, mainly loss of hair/wool, and may lead to death in higher concentration. This is the reason why the nutritive value cannot be exploited reasonably in animal production. Experience has shown that there are some geographical regions where animals do not suffer by mimosine. It was found that they harbour ruminal bacteria, which degrade mimosine to non-toxic metabolites. In cooperation with other microbes in the digestive tract, the full dietetic value of Leucaena may be exploited. To date several bacteria were isolated and may be used as feed additive, e.g., S. jonesii. However, their production and storage is expensive and complicated. A practical method is to orally inoculate animals and use their rumen fluid directly as feed additive. This rumen culture or cultured anaerobic bacteria in the laboratory may suffer during transport and storage; hence, they need a cold chain until the target animal. Our institute has an outstanding experience to produce bacterial veterinary vaccines, probiotics, and biological fertilizers in tropical countries. Continuous culture in a bioreactor is the base for the success. It was the idea to use this technology for selection and production of mimosine degrading bacteria. The presentation will give a short theoretical background of - bacterial fermenter production - continuous culture - isolation of specific bacteria under selective environmental conditions - mass production in a bioreactor to be used in tropical areas - purification and concentration of the bacterial crop by rinsing and hollow fibre cross flow ultra filtration - stabilisation of the product in alginate beads - microbiota in the digestive tract. The practical work started with ruminal content of German

  2. Bacteria isolated from amoebae/bacteria consortium

    Science.gov (United States)

    Tyndall, Richard L.

    1995-01-01

    New protozoan derived microbial consortia and method for their isolation are provided. Consortia and bacteria isolated therefrom are useful for treating wastes such as trichloroethylene and trinitrotoluene. Consortia, bacteria isolated therefrom, and dispersants isolated therefrom are useful for dispersing hydrocarbons such as oil, creosote, wax, and grease.

  3. Off the hook - how bacteria survive protozoan grazing

    DEFF Research Database (Denmark)

    Matz, Carsten; Kjelleberg, S.

    2005-01-01

    Bacterial growth and survival in numerous environments are constrained by the action of bacteria-consuming protozoa. Recent findings suggest that bacterial adaptations against protozoan predation might have a significant role in bacterial persistence and diversification. We argue that selective...

  4. Biomethanation of Syngas Using Anaerobic Sludge: Shift in the Catabolic Routes with the CO Partial Pressure Increase

    Science.gov (United States)

    Sancho Navarro, Silvia; Cimpoia, Ruxandra; Bruant, Guillaume; Guiot, Serge R.

    2016-01-01

    Syngas generated by thermal gasification of biomass or coal can be steam reformed and purified into methane, which could be used locally for energy needs, or re-injected in the natural gas grid. As an alternative to chemical catalysis, the main components of the syngas (CO, CO2, and H2) can be used as substrates by a wide range of microorganisms, to be converted into gas biofuels, including methane. This study evaluates the carboxydotrophic (CO-consuming) methanogenic potential present in an anaerobic sludge from an upflow anaerobic sludge bed (UASB) reactor treating waste water, and elucidates the CO conversion routes to methane at 35 ± 3°C. Kinetic activity tests under CO at partial pressures (pCO) varying from 0.1 to 1.5 atm (0.09–1.31 mmol/L in the liquid phase) showed a significant carboxydotrophic activity potential for growing conditions on CO alone. A maximum methanogenic activity of 1 mmol CH4 per g of volatile suspended solid and per day was achieved at 0.2 atm of CO (0.17 mmol/L), and then the rate decreased with the amount of CO supplied. The intermediary metabolites such as acetate, H2, and propionate started to accumulate at higher CO concentrations. Inhibition experiments with 2-bromoethanesulfonic acid (BES), fluoroacetate, and vancomycin showed that in a mixed culture CO was converted mainly to acetate by acetogenic bacteria, which was further transformed to methane by acetoclastic methanogens, while direct methanogenic CO conversion was negligible. Methanogenesis was totally blocked at high pCO in the bottles (≥1 atm). However it was possible to achieve higher methanogenic potential under a 100% CO atmosphere after acclimation of the sludge to CO. This adaptation to high CO concentrations led to a shift in the archaeal population, then dominated by hydrogen-utilizing methanogens, which were able to take over acetoclastic methanogens, while syntrophic acetate oxidizing (SAO) bacteria oxidized acetate into CO2 and H2. The disaggregation of the

  5. Biomethanation of Syngas Using Anaerobic Sludge: Shift in the Catabolic Routes with the CO Partial Pressure Increase.

    Science.gov (United States)

    Sancho Navarro, Silvia; Cimpoia, Ruxandra; Bruant, Guillaume; Guiot, Serge R

    2016-01-01

    Syngas generated by thermal gasification of biomass or coal can be steam reformed and purified into methane, which could be used locally for energy needs, or re-injected in the natural gas grid. As an alternative to chemical catalysis, the main components of the syngas (CO, CO2, and H2) can be used as substrates by a wide range of microorganisms, to be converted into gas biofuels, including methane. This study evaluates the carboxydotrophic (CO-consuming) methanogenic potential present in an anaerobic sludge from an upflow anaerobic sludge bed (UASB) reactor treating waste water, and elucidates the CO conversion routes to methane at 35 ± 3°C. Kinetic activity tests under CO at partial pressures (pCO) varying from 0.1 to 1.5 atm (0.09-1.31 mmol/L in the liquid phase) showed a significant carboxydotrophic activity potential for growing conditions on CO alone. A maximum methanogenic activity of 1 mmol CH4 per g of volatile suspended solid and per day was achieved at 0.2 atm of CO (0.17 mmol/L), and then the rate decreased with the amount of CO supplied. The intermediary metabolites such as acetate, H2, and propionate started to accumulate at higher CO concentrations. Inhibition experiments with 2-bromoethanesulfonic acid (BES), fluoroacetate, and vancomycin showed that in a mixed culture CO was converted mainly to acetate by acetogenic bacteria, which was further transformed to methane by acetoclastic methanogens, while direct methanogenic CO conversion was negligible. Methanogenesis was totally blocked at high pCO in the bottles (≥1 atm). However it was possible to achieve higher methanogenic potential under a 100% CO atmosphere after acclimation of the sludge to CO. This adaptation to high CO concentrations led to a shift in the archaeal population, then dominated by hydrogen-utilizing methanogens, which were able to take over acetoclastic methanogens, while syntrophic acetate oxidizing (SAO) bacteria oxidized acetate into CO2 and H2. The disaggregation of the

  6. Arsenic biotransformation and release by bacteria indigenous to arsenic contaminated groundwater.

    Science.gov (United States)

    Paul, Dhiraj; Kazy, Sufia K; Banerjee, Tirtha Das; Gupta, Ashok K; Pal, Taraknath; Sar, Pinaki

    2015-01-01

    Arsenic (As) biotransformation and release by indigenous bacteria from As rich groundwater was investigated. Metabolic landscape of 173 bacterial isolates indicated broad catabolic repertoire including abundance of As(5+) reductase activity and abilities in utilizing wide ranges of organic and inorganic respiratory substrates. Abundance of As homeostasis genes and utilization of hydrocarbon as carbon/electron donor and As(5+) as electron acceptor were noted within the isolates. Sediment microcosm study (for 300 days) showed a pivotal role of metal reducing facultative anaerobic bacteria in toxic As(3+) release in aqueous phase. Inhabitant bacteria catalyze As transformation and facilitate its release through a cascade of reactions including mineral bioweathering and As(5+) and/or Fe(3+) reduction activities. Compared to anaerobic incubation with As(5+) reducing strains, oxic state and/or incubation with As(3+) oxidizing bacteria resulted in reduced As release, thus indicating a strong role of such condition or biocatalytic mechanism in controlling in situ As contamination. PMID:25782634

  7. Potential effects of bacteria on radionuclide transport from a Swedish high level nuclear waste repository

    International Nuclear Information System (INIS)

    Microorganisms can influence radionuclide migration if their concentration are high in comparison with other organic particles. Data on the numbers of microorganisms in undisturbed ground-water have been collected. The average number of cells in the samples from 17 levels in 5 boreholes was 3.0 x 105 cells ml-1. A biofilm experiment indicated an active microbial rock surface population. Radiographic uptake experiments suggest inactive bulk water populations. The bulk water microbial cells in deep ground water might then be inactive cells detached from active biofilms. Enrichment cultures for anaerobic bacteria demonstrated the presence of anaerobic bacteria capable of growth on C-1 compounds with hydrogen and carbon dioxide, presumably methanogenic bacteria. Further, growth in enrichment cultures with sulphate as electron-acceptor and lactate as carbon source proved dissimilatory sulphate reducing bacteria to be present. (author)

  8. Taxonomic composition and physiological and biochemical properties of bacteria in the digestive tracts of earthworms

    Science.gov (United States)

    Byzov, B. A.; Tikhonov, V. V.; Nechitailo, T. Yu.; Demin, V. V.; Zvyagintsev, D. G.

    2015-03-01

    Several hundred bacterial strains belonging to different taxa were isolated and identified from the digestive tracts of soil and compost earthworms. Some physiological and biochemical properties of the bacteria were characterized. The majority of intestinal bacteria in the earthworms were found to be facultative anaerobes. The intestinal isolates as compared to the soil ones had elevated activity of proteases and dehydrogenases. In addition, bacteria associated with earthworms' intestines are capable of growth on humic acids as a sole carbon source. Humic acid stimulated the growth of the intestinal bacteria to a greater extent than those of the soil ones. In the digestive tracts, polyphenol oxidase activity was found. Along with the data on the taxonomic separation of the intestinal bacteria, the features described testified to the presence of a group of bacteria in the earthworms intestines that is functionally characteristic and is different from the soil bacteria.

  9. Anaerobic granular sludge and biofilm reactors

    DEFF Research Database (Denmark)

    Skiadas, Ioannis V.; Gavala, Hariklia N.; Schmidt, Jens Ejbye; Ahring, Birgitte Kiær

    2003-01-01

    role of the anaerobic digestion in the wastewater treatment plants from a pre-treatment method to the main biological treatment method. The application of staged high-rate anaerobic digesters has shown the larger potential among the recent developments in this direction. The most common high...

  10. Instrumentation in anaerobic treatment - research and practice

    NARCIS (Netherlands)

    Spanjers, H.; Lier, van J.B.

    2006-01-01

    High rate anaerobic treatment reactors are able to uncouple solids and liquid retention time, resulting in high biomass concentrations. Principal advantages of anaerobic treatment include: energy efficiency, low biomass yield, low nutrient requirement and high volumetric organic loadings. In order t

  11. Atrazine removal in Danish anaerobic aquifers

    DEFF Research Database (Denmark)

    Pedersen, Philip Grinder; Arildskov, N.P.; Albrechtsen, Hans-Jørgen

    2002-01-01

    The pesticide atrazine (6-chloro-N-2-ethyl-N-4-isopropyl-1,3,5-triazine -2,4-diamine) was removed from the water phase in anaerobic laboratory batch incubations with sediment and groundwater from a number of Danish anaerobic aquifers, but not in incubations from aerobic aquifers. The removal...

  12. Anaerobic degradation of linear alkylbenzene sulfonate

    DEFF Research Database (Denmark)

    Mogensen, Anders Skibsted; Haagensen, Frank; Ahring, Birgitte Kiær

    2003-01-01

    increases during anaerobic stabilization due to transformation of easily degradable organic matter. Hence, LAS is regarded as resistant to biodegradation under anaerobic conditions. We present data from a lab-scale semi-continuously stirred tank reactor (CSTR) spiked with linear dodecylbenzene sulfonate (C...

  13. Enzymes involved in the anaerobic oxidation of n-alkanes: from methane to long-chain paraffins

    Directory of Open Access Journals (Sweden)

    Amy V. Callaghan

    2013-05-01

    Full Text Available Anaerobic microorganisms play key roles in the biogeochemical cycling of methane and non-methane alkanes. To date, there appear to be at least three proposed mechanisms of anaerobic methane oxidation (AOM. The first pathway is mediated by consortia of archaeal anaerobic methane oxidizers and sulfate-reducing bacteria via ‘reverse methanogenesis’ and is catalyzed by a homologue of methyl-coenzyme M reductase. The second pathway is also mediated by anaerobic methane oxidizers and sulfate-reducing bacteria, wherein the archaeal members catalyze both methane oxidation and sulfate reduction and zero-valent sulfur is a key intermediate. The third AOM mechanism is a nitrite-dependent, intra-aerobic pathway described for the denitrifying bacterium, ‘Candidatus Methylomirabilis oxyfera.’ It is hypothesized that AOM proceeds via reduction of nitrite to nitric oxide, followed by the conversion of two nitric oxide molecules to dinitrogen and molecular oxygen. The latter can be used to functionalize the methane via a particulate methane monooxygenase. With respect to non-methane alkanes, there also appears to be novel mechanisms of activation. The most well-described pathway is the addition of non-methane alkanes across the double bond of fumarate to form alkyl-substituted succinates via the putative glycyl radical enzyme, alkylsuccinate synthase (also known as methylalkylsuccinate synthase. Other proposed mechanisms include anaerobic hydroxylation via ethylbenzene dehydrogenase-like enzymes and an ‘intra-aerobic’ denitrification pathway similar to that described for ‘M. oxyfera.’

  14. Prospects of Anaerobic Digestion Technology in China

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    As the world's largest developing country, China must face the problem of managing municipal solid waste, and the challenge of organic waste disposal is even more serious. Considering the characteristics of traditional waste disposal technologies and the subsequent secondary pollution, anaerobic digestion has various advantages such as reduction in the land needed for disposal and preservation of environmental quality. In light of the energy crisis, this paper focuses on the potential production of biogas from biowaste through anaerobic digestion processes, the problems incurred by the waste collection system, and the efficiency of the anaerobic digestion process. Use of biogas in a combined heat and power cogeneration system is also discussed. Finally, the advantages of anaerobic digestion technology for the Chinese market are summarized. The anaerobic digestion is suggested to be a promising treating technology for the organic wastes in China.

  15. Anaerobic biorefinery: Current status, challenges, and opportunities.

    Science.gov (United States)

    Sawatdeenarunat, Chayanon; Nguyen, Duc; Surendra, K C; Shrestha, Shilva; Rajendran, Karthik; Oechsner, Hans; Xie, Li; Khanal, Samir Kumar

    2016-09-01

    Anaerobic digestion (AD) has been in use for many decades. To date, it has been primarily aimed at treating organic wastes, mainly manures and wastewater sludge, and industrial wastewaters. However, with the current advancements, a more open mind is required to look beyond these somewhat restricted original applications of AD. Biorefineries are such concepts, where multiple products including chemicals, fuels, polymers etc. are produced from organic feedstocks. The anaerobic biorefinery concept is now gaining increased attention, utilizing AD as the final disposal step. This review aims at evaluating the potential significance of anaerobic biorefineries, including types of feedstocks, uses for the produced energy, as well as sustainable applications of the generated residual digestate. A comprehensive analysis of various types of anaerobic biorefineries has been developed, including both large-scale and household level applications. Finally, future directives are highlighted showing how anaerobic biorefinery concept could impact the bioeconomy in the near future. PMID:27005786

  16. Anaerobic granular sludge and biofilm reactors

    DEFF Research Database (Denmark)

    Skiadas, Ioannis V.; Gavala, Hariklia N.; Schmidt, Jens Ejbye;

    2003-01-01

    The long retention time of the active biomass in the high-rate anaerobic digesters is the key factor for the successful application of the high rate anaerobic wastewater treatment. The long solids retention time is achieved due to the specific reactor configuration and it is enhanced...... by the immobilization of the biomass, which forms static biofilms, particle-supported biofilms, or granules depending on the reactor's operational conditions. The advantages of the high-rate anaerobic digestion over the conventional aerobic wastewater treatment methods has created a clear trend for the change...... of the role of the anaerobic digestion in the wastewater treatment plants from a pre-treatment method to the main biological treatment method. The application of staged high-rate anaerobic digesters has shown the larger potential among the recent developments in this direction. The most common high...

  17. Molecular ecology of anaerobic reactor systems

    DEFF Research Database (Denmark)

    Hofman-Bang, H. Jacob Peider; Zheng, D.; Westermann, Peter;

    2003-01-01

    Anaerobic reactor systems are essential for the treatment of solid and liquid wastes and constitute a core facility in many waste treatment plants. Although much is known about the basic metabolism in different types of anaerobic reactors, little is known about the microbes responsible...... to the abundance of each microbe in anaerobic reactor systems by rRNA probing. This chapter focuses on various molecular techniques employed and problems encountered when elucidating the microbial ecology of anaerobic reactor systems. Methods such as quantitative dot blot/fluorescence in-situ probing using various...... and malfunctions of anaerobic digesters occasionally experienced, leading to sub-optimal methane production and wastewater treatment. Using a variety of molecular techniques, we are able to determine which microorganisms are active, where they are active, and when they are active, but we still need to determine...

  18. Bleach vs. Bacteria

    Science.gov (United States)

    ... Articles | Inside Life Science Home Page Bleach vs. Bacteria By Sharon Reynolds Posted April 2, 2014 Your ... hypochlorous acid to help kill invading microbes, including bacteria. Researchers funded by the National Institutes of Health ...

  19. Molecular and microscopic identification of sulfate-reducing bacteria in multispecies biofilms.

    OpenAIRE

    Amann, R I; Stromley, J; R. Devereux; KEY, R.; Stahl, D A

    1992-01-01

    The population architecture of sulfidogenic biofilms established in anaerobic fixed-bed bioreactors was characterized by selective polymerase chain reaction amplification and fluorescence microscopy. A region of the 16S rRNA common to resident sulfate-reducing bacteria was selectively amplified by the polymerase chain reaction. Sequences of amplification products, with reference to a collection of 16S rRNA sequences representing most characterized sulfate-reducing bacteria, were used to desig...

  20. Occurrence and activity of anammox bacteria in surface sediments of the southern North Sea

    OpenAIRE

    Bale, N.; de Villanueva, L.; Fan, H.; Hopmans, E. C.; Schouten, S.; Sinninghe Damsté, J. S.; Stal, L.J.

    2014-01-01

    We investigated the occurrence and activity of anaerobic ammonia oxidation (anammox) bacteria in sandy and muddy sand sediments of the southern North Sea. The presence of anammox bacteria was established through the detection of specific phosphocholine-monoether ladderane lipids, 16S rRNA gene, and hydrazine synthase (hzsA) genes. Anammox activity was measured in intact sediment cores (in situ rate) and in sediment slurries (potential rate) as the rate of N2 evolution from 15N-labeled substra...