WorldWideScience

Sample records for anaerobic arsenite oxidation

  1. Thioarsenate Formation Coupled with Anaerobic Arsenite Oxidation by a Sulfate-Reducing Bacterium Isolated from a Hot Spring

    Directory of Open Access Journals (Sweden)

    Geng Wu

    2017-07-01

    Full Text Available Thioarsenates are common arsenic species in sulfidic geothermal waters, yet little is known about their biogeochemical traits. In the present study, a novel sulfate-reducing bacterial strain Desulfotomaculum TC-1 was isolated from a sulfidic hot spring in Tengchong geothermal area, Yunnan Province, China. The arxA gene, encoding anaerobic arsenite oxidase, was successfully amplified from the genome of strain TC-1, indicating it has a potential ability to oxidize arsenite under anaerobic condition. In anaerobic arsenite oxidation experiments inoculated with strain TC-1, a small amount of arsenate was detected in the beginning but became undetectable over longer time. Thioarsenates (AsO4-xSx2- with x = 1–4 formed with mono-, di- and tri-thioarsenates being dominant forms. Tetrathioarsenate was only detectable at the end of the experiment. These results suggest that thermophilic microbes might be involved in the formation of thioarsenates and provide a possible explanation for the widespread distribution of thioarsenates in terrestrial geothermal environments.

  2. Long Term Performance of an Arsenite-Oxidizing-Chlorate-Reducing Microbial Consortium in an Upflow Anaerobic Sludge Bed (UASB) Bioreactor

    Science.gov (United States)

    Sun, Wenjie; Sierra-Alvarez, Reyes; Field, Jim A.

    2011-01-01

    A chlorate (ClO3−) reducing microbial consortium oxidized arsenite (As(III)) to arsenate (As(V)) in an upflow anaerobic sludge-bed bioreactor over 550 d operation. As(III) was converted with high conversion efficiencies (>98%) at volumetric loadings ranging from 0.45 to 1.92 mmol As/(Lreactor d). The oxidation of As(III) was linked to the complete reduction of ClO3− to Cl− and H2O, as demonstrated by a molar ratio of approximately 3.0 mol As(III) oxidized per mole of Cl− formed and by the greatly lowered ClO3−-reducing capacity without As(III) feeding. An autotrophic enrichment culture was established from the bioreactor biofilm. A 16S rRNA gene clone library indicated that the culture was dominated by Dechloromonas, and Stenotrophomonas as well as genera within the family Comamonadaceae. The results indicate that the oxidation of As(III) to less mobile As(V) utilizing ClO3− as a terminal electron acceptor provides a sustainable bioremediation strategy for arsenic contamination in anaerobic environments. PMID:21333531

  3. Isolation and characterization of arsenite oxidizing Pseudomonas ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-03-08

    Mar 8, 2010 ... Isolation of arsenite-oxidizing bacteria from arsenic-enriched sediments from Camarones River, Northern Chile. Bull. Environ. Contam. Toxicol. 82: 593-596. Zhitkovitch A, Costa M (1992). A simple sensitivity assay to detect DNA- protein crosslinks in intact cells and in vivo. Carcinogenesis, 13: 1485-1489.

  4. Anaerobic arsenite oxidation with an electrode serving as the sole electron acceptor: A novel approach to the bioremediation of arsenic-polluted groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Pous, Narcis [Laboratory of Chemical and Environmental Engineering (LEQUiA), Institute of the Environment, University of Girona, C/Maria Aurèlia Capmany, 69 E-17071 Girona (Spain); Casentini, Barbara; Rossetti, Simona; Fazi, Stefano [Water Research Institute (IRSA-CNR), National Research Council, Via Salaria Km 29.300, 00015 Monterotondo (Italy); Puig, Sebastià [Laboratory of Chemical and Environmental Engineering (LEQUiA), Institute of the Environment, University of Girona, C/Maria Aurèlia Capmany, 69 E-17071 Girona (Spain); Aulenta, Federico, E-mail: aulenta@irsa.cnr.it [Water Research Institute (IRSA-CNR), National Research Council, Via Salaria Km 29.300, 00015 Monterotondo (Italy)

    2015-02-11

    Highlights: • As(III) was oxidized to As(V) in a bioelectrochemical system. • A polarized graphite electrode served as electron acceptor. • Gammaproteobacteria were the dominating organisms at the electrode. - Abstract: Arsenic contamination of soil and groundwater is a serious problem worldwide. Here we show that anaerobic oxidation of As(III) to As(V), a form which is more extensively and stably adsorbed onto metal-oxides, can be achieved by using a polarized (+497 mV vs. SHE) graphite anode serving as terminal electron acceptor in the microbial metabolism. The characterization of the microbial populations at the electrode, by using in situ detection methods, revealed the predominance of gammaproteobacteria. In principle, the proposed bioelectrochemical oxidation process would make it possible to provide As(III)-oxidizing microorganisms with a virtually unlimited, low-cost and low-maintenance electron acceptor as well as with a physical support for microbial attachment.

  5. Photoinduced Oxidation of Arsenite to Arsenate on Ferrihydrite

    Energy Technology Data Exchange (ETDEWEB)

    N Bhandari; R Reeder; D Strongin

    2011-12-31

    The photochemistry of an aqueous suspension of the iron oxyhydroxide, ferrihydrite, in the presence of arsenite has been investigated using attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), X-ray absorption near edge structure (XANES), and solution phase analysis. Both ATR-FTIR and XANES show that the exposure of ferrihydrite to arsenite in the dark leads to no change in the As oxidation state, but the exposure of this arsenite-bearing surface, which is in contact with pH 5 water, to light leads to the conversion of the majority of the adsorbed arsenite to the As(V) bearing species, arsenate. Analysis of the solution phase shows that ferrous iron is released into solution during the oxidation of arsenite. The photochemical reaction, however, shows the characteristics of a self-terminating reaction in that there is a significant suppression of this redox chemistry before 10% of the total iron making up the ferrihydrite partitions into solution as ferrous iron. The self-terminating behavior exhibited by this photochemical arsenite/ferrihydrite system is likely due to the passivation of the ferrihydrite surface by the strongly bound arsenate product.

  6. Arsenite-oxidizing and arsenate-reducing bacteria associated with arsenic-rich groundwater in Taiwan

    Science.gov (United States)

    Liao, Vivian Hsiu-Chuan; Chu, Yu-Ju; Su, Yu-Chen; Hsiao, Sung-Yun; Wei, Chia-Cheng; Liu, Chen-Wuing; Liao, Chung-Min; Shen, Wei-Chiang; Chang, Fi-John

    2011-04-01

    Drinking highly arsenic-contaminated groundwater is a likely cause of blackfoot disease in Taiwan, but microorganisms that potentially control arsenic mobility in the subsurface remain unstudied. The objective of this study was to investigate the relevant arsenite-oxidizing and arsenate-reducing microbial community that exists in highly arsenic-contaminated groundwater in Taiwan. We cultured and identified arsenic-transforming bacteria, analyzed arsenic resistance and transformation, and determined the presence of genetic markers for arsenic transformation. In total, 11 arsenic-transforming bacterial strains with different colony morphologies and varying arsenic transformation abilities were isolated, including 10 facultative anaerobic arsenate-reducing bacteria and one strictly aerobic arsenite-oxidizing bacterium. All of the isolates exhibited high levels of arsenic resistance with minimum inhibitory concentrations of arsenic ranging from 2 to 200 mM. Strain AR-11 was able to rapidly oxidize arsenite to arsenate at concentrations relevant to environmental groundwater samples without the addition of any electron donors or acceptors. We provide evidence that arsenic-reduction activity may be conferred by the ars operon(s) that were not amplified by the designed primers currently in use. The 16S rRNA sequence analysis grouped the isolates into the following genera: Pseudomonas, Bacillus, Psychrobacter, Vibrio, Citrobacter, Enterobacter, and Bosea. Among these genera, we present the first report of the genus Psychrobacter being involved in arsenic reduction. Our results further support the hypothesis that bacteria capable of either oxidizing arsenite or reducing arsenate coexist and are ubiquitous in arsenic-contaminated groundwater.

  7. Endoplasmic reticulum stress is involved in arsenite-induced oxidative injury in rat brain

    International Nuclear Information System (INIS)

    Lin, Anya M.Y.; Chao, P.L.; Fang, S.F.; Chi, C.W.; Yang, C.H.

    2007-01-01

    The mechanism underlying sodium arsenite (arsenite)-induced neurotoxicity was investigated in rat brain. Arsenite was locally infused in the substantia nigra (SN) of anesthetized rat. Seven days after infusion, lipid peroxidation in the infused SN was elevated and dopamine level in the ipsilateral striatum was reduced in a concentration-dependent manner (0.3-5 nmol). Furthermore, local infusion of arsenite (5 nmol) decreased GSH content and increased expression of heat shock protein 70 and heme oxygenase-1 in the infused SN. Aggregation of α-synuclein, a putative pathological protein involved in several CNS neurodegenerative diseases, was elevated in the arsenite-infused SN. From the breakdown pattern of α-spectrin, both necrosis and apoptosis were involved in the arsenite-induced neurotoxicity. Pyknotic nuclei, cellular shrinkage and cytoplasmic disintegration, indicating necrosis, and TUNEL-positive cells and DNA ladder, indicating apoptosis was observed in the arsenite-infused SN. Arsenite-induced apoptosis was mediated via two different organelle pathways, mitochondria and endoplasmic reticulum (ER). For mitochondrial activation, cytosolic cytochrome c and caspase-3 levels were elevated in the arsenite-infused SN. In ER pathway, arsenite increased activating transcription factor-4, X-box binding protein 1, C/EBP homologues protein (CHOP) and cytosolic immunoglobulin binding protein levels. Moreover, arsenite reduced procaspase 12 levels, an ER-specific enzyme in the infused SN. Taken together, our study suggests that arsenite is capable of inducing oxidative injury in CNS. In addition to mitochondria, ER stress was involved in the arsenite-induced apoptosis. Arsenite-induced neurotoxicity clinically implies a pathophysiological role of arsenite in CNS neurodegeneration

  8. Ecology and molecular genetics of anoxygenic photosynthetic arsenite oxidation by arxA

    OpenAIRE

    Hernandez-Maldonado, Jaime

    2017-01-01

    Thesis statement:Anoxygenic photosynthetic arsenite oxidation encoded by arxA is a bacterial arsenic metabolism that contributes to the biogeochemical cycle of arsenic in extreme environments.Abstract:This dissertation provides molecular genetics and environmental insight into the poorly-understood phenomenon of a photosynthetic microbial metabolism fueled by arsenic. The hypothesis is that arxA is critical for photosynthetic arsenite oxidation and actively found in the environment, which ha...

  9. Arsenite oxidizing multiple metal resistant bacteria isolated from industrial effluent: their potential use in wastewater treatment.

    Science.gov (United States)

    Naureen, Ayesha; Rehman, Abdul

    2016-08-01

    Arsenite oxidizing bacteria, isolated from industrial wastewater, showed high resistance against arsenite (40 mM) and other heavy metals (10 mM Pb; 8 mM Cd; 6 mM Cr; 10 mM Cu and 26.6 mM As(5+)). Bacterial isolates were characterized, on the basis of morphological, biochemical and 16S rRNA ribotyping, as Bacillus cereus (1.1S) and Acinetobacter junii (1.3S). The optimum temperature and pH for the growth of both strains were found to be 37 °C and 7. Both the strains showed maximum growth after 24 h of incubation. The predominant form of arsenite oxidase was extracellular in B. cereus while in A. junii both types of activities, intracellular and extracellular, were found. The extracellular aresenite oxidase activity was found to be 730 and 750 µM/m for B. cereus and A. junii, respectively. The arsenite oxidase from both bacterial strains showed maximum activity at 37 °C, pH 7 and enhanced in the presence of Zn(2+). The presence of two protein bands with molecular weight of approximately 70 and 14 kDa in the presence of arsenic points out a possible role in arsenite oxidation. Arsenite oxidation potential of B. cereus and A. junii was determined up to 92 and 88 % in industrial wastewater after 6 days of incubation. The bacterial treated wastewater improved the growth of Vigna radiata as compared to the untreated wastewater. It indicates that these bacterial strains may find some potential applications in wastewater treatment systems to transform toxic arsenite into less toxic form, arsenate.

  10. Bioaccumulation and oxidative stress in Daphnia magna exposed to arsenite and arsenate.

    Science.gov (United States)

    Fan, Wenhong; Ren, Jinqian; Li, Xiaomin; Wei, Chaoyang; Xue, Feng; Zhang, Nan

    2015-11-01

    Arsenic pollution and its toxicity to aquatic organisms have attracted worldwide attention. The bioavailability and toxicity of arsenic are highly related to its speciation. The present study investigated the differences in bioaccumulation and oxidative stress responses in an aquatic organism, Daphnia magna, induced by 2 inorganic arsenic species (As(III) and As(V)). The bioaccumulation of arsenic, Na(+) /K(+) -adenosine triphosphatase (ATPase) activity, reactive oxygen species (ROS) content, total superoxide dismutase (SOD) activity, total antioxidative capability, and malondialdehyde content in D. magna were determined after exposure to 500 µg/L of arsenite and arsenate for 48 h. The results showed that the oxidative stress and antioxidative process in D. magna exposed to arsenite and arsenate could be divided into 3 phases, which were antioxidative response, oxidation inhibition, and antioxidative recovery. In addition, differences in bioaccumulation, Na(+) /K(+) -ATPase activity, and total SOD activity were also found in D. magna exposed to As(III) and As(V). These differences might have been the result of the high affinity of As(III) with sulfhydryl groups in enzymes and the structural similarity of As(V) to phosphate. Therefore, arsenate could be taken up by organisms through phosphate transporters, could substitute for phosphate in biochemical reactions, and could lead to a change in the bioaccumulation of arsenic and activity of enzymes. These characteristics were the possible reasons for the different toxicity mechanisms in the oxidative stress process of arsenite and arsenate. © 2015 SETAC.

  11. Functional genes and thermophilic microorganisms responsible for arsenite oxidation from the shallow sediment of an untraversed hot spring outlet.

    Science.gov (United States)

    Yang, Ye; Mu, Yao; Zeng, Xian-Chun; Wu, Weiwei; Yuan, Jie; Liu, Yichen; Guoji, E; Luo, Feng; Chen, Xiaoming; Li, Hao; Wang, Jianing

    2017-05-01

    Hot Springs have unique geochemical features. Microorganisms-mediated arsenite oxidation is one of the major biogeochemical processes occurred in some hot springs. This study aimed to understand the diversities of genes and microorganisms involved in arsenite oxidation from the outlet of an untraversed hot spring located at an altitude of 4226 m. Microcosm assay indicated that the microbial community from the hot spring was able to efficiently oxidize As(III) using glucose, lactic acid, yeast extract or sodium bicarbonate as the sole carbon source. The microbial community contained 7 phyla of microorganisms, of which Proteobacteria and Firmicutes are largely dominant; this composition is unique and differs significantly from those of other described hot springs. Twenty one novel arsenite oxidase genes were identified from the samples, which are affiliated with the arsenite oxidase families of α-Proteobacteria, β-Proteobacteria or Archaea; this highlights the high diversity of the arsenite-oxidizing microorganisms from the hot spring. A cultivable arsenite-oxidizer Chelatococcu sp. GHS311 was also isolated from the sample using enrichment technique. It can completely convert 75.0 mg/L As(III) into As(V) in 18 days at 45 °C. The arsenite oxidase of GHS311 shares the maximal sequence identity (84.7%) to that of Hydrogenophaga sp. CL3, a non-thermotolerant bacterium. At the temperature lower than 30 °C or higher than 65 °C, the growth of this strain was completely inhibited. These data help us to better understand the diversity and functional features of the thermophilic arsenite-oxidizing microorganisms from hot springs.

  12. Zinc adsorption effects on arsenite oxidation kinetics at the birnessite-water interface

    Science.gov (United States)

    Power, L.E.; Arai, Y.; Sparks, D.L.

    2005-01-01

    Arsenite is more toxic and mobile than As(V) in soil and sediment environments, and thus it is advantageous to explore factors that enhance oxidation of As(III) to As(V). Previous studies showed that manganese oxides, such as birnessite (??-MnO2), directly oxidized As(III). However, these studies did not explore the role that cation adsorption has on As(III) oxidation. Accordingly, the effects of adsorbed and nonadsorbed Zn on arsenite (As(III)) oxidation kinetics at the birnessite-water interface were investigated using batch adsorption experiments (0.1 g L-1; pH 4.5 and 6.0; I = 0.01 M NaCl). Divalent Zn adsorption on synthetic ??-MnO 2 in the absence of As(III) increased with increasing pH and caused positive shifts in electrophoretic mobility values at pH 4-6, indirectly suggesting inner-sphere Zn adsorption mechanisms. Arsenite was readily oxidized on birnessite in the absence of Zn. The initial As(III) oxidation rate constant decreased with increasing pH from 4.5 to 6.0 and initial As(III) concentrations from 100 to 300 ??M. Similar pH and initial As(III) concentration effects were observed in systems when Zn was present (i.e., presorbed Zn prior to As(III) addition and simultaneously added Zn-As(III) systems), but As(III) oxidation reactions were suppressed compared to the respective control systems. The suppression was more pronounced when Zn was presorbed on the ??-MnO 2 surfaces as opposed to added simultaneously with As(III). This study provides further understanding of As(III) oxidation reactions on manganese oxide surfaces under environmentally applicable conditions where metals compete for reactive sites.

  13. Arsenite and ferrous iron oxidation linked to chemolithotrophic denitrification for the immobilization of arsenic in anoxic environments

    Science.gov (United States)

    Sun, W.; Sierra-Alvarez, R.; Milner, L.; Oremland, R.; Field, J.A.

    2009-01-01

    The objective of this study was to explore a bioremediation strategy based on injecting NO3- to support the anoxic oxidation of ferrous iron (Fe(II)) and arsenite (As(III)) in the subsurface as a means to immobilize As in the form of arsenate (As(V)) adsorbed onto biogenic ferric (Fe(III)) (hydr)oxides. Continuous flows and filled columns were used to simulate a natural anaerobic groundwater and sediment system with co-occurring As(III) and Fe(II) in the presence (column SF1) or absence (column SF2) of nitrate, respectively. During operation for 250 days, the average influent arsenic concentration of 567 ??g L-1 was reduced to 10.6 (??9.6) ??g L-1 in the effluent of column SF1. The cumulative removal of Fe(II) and As(III) in SF1 was 6.5 to 10-fold higher than that in SF2. Extraction and measurement of the mass of iron and arsenic immobilized on the sand packing of the columns were close to the iron and arsenic removed from the aqueous phase during column operation. The dominant speciation of the immobilized iron and arsenic was Fe(III) and As(V) in SF1, compared with Fe(II) and As(III) in SF2. The speciation was confirmed by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The results indicate that microbial oxidation of As(III) and Fe(II) linked to denitrification resulted in the enhanced immobilization of aqueous arsenic in anaerobic environments by forming Fe(III) (hydr)oxide coated sands with adsorbed As(V). ?? 2009 American Chemical Society.

  14. Arsenite induced oxidative damage in mouse liver is associated with increased cytokeratin 18 expression

    Energy Technology Data Exchange (ETDEWEB)

    Gonsebatt, M.E. [UNAM, Ciudad Universitaria, Dept. Medicina Genomica y Toxicologia Ambiental, Instituto de Investigaciones Biomedicas, Mexico (Mexico); Razo, L.M. del; Sanchez-Pena, L.C. [Seccion de Toxicologia, CINVESTAV, Mexico (Mexico); Cerbon, M.A. [Facultad de Quimica, UNAM, Departamento de Biologia, Mexico (Mexico); Zuniga, O.; Ramirez, P. [Facultad de Estudios Superiores Cuautitlan, UNAM, Laboratorio de Toxicologia Celular, Coordinacion General de Estudios de Posgrado e Investigacion, Cuautitlan Izcalli, Estado de Mexico (Mexico)

    2007-09-15

    Cytokeratins (CK) constitute a family of cytoskeletal intermediate filament proteins that are typically expressed in epithelial cells. An abnormal structure and function are effects that are clearly related to liver diseases as non-alcoholic steatohepatitis, cirrhosis and hepatocellular carcinoma. We have previously observed that sodium arsenite (SA) induced the synthesis of CK18 protein and promotes a dose-related disruption of cytoplasmic CK18 filaments in a human hepatic cell line. Both abnormal gene expression and disturbance of structural organization are toxic effects that are likely to cause liver disease by interfering with normal hepatocyte function. To investigate if a disruption in the CK18 expression pattern is associated with arsenite liver damage, we investigated CK18 mRNA and protein levels in liver slices treated with low levels of SA. Organotypic cultures were incubated with 0.01, 1 and 10 {mu}M of SA in the absence and presence of N-acetyl cysteine (NAC). Cell viability and inorganic arsenic metabolism were determined. Increased expression of CK18 was observed after exposure to SA. The addition of NAC impeded the oxidative effects of SA exposure, decreasing the production of thiobarbituric acid-reactive substances and significantly diminishing the up regulation of CK18 mRNA and protein. Liver arsenic levels correlated with increased levels of mRNA. Mice treated with intragastric single doses of 2.5 and 5 mg/kg of SA showed an increased expression of CK18. Results suggest that CK18 expression may be a sensible early biomarker of oxidative stress and damage induced by arsenite in vitro and in vivo. Then, during SA exposure, altered CK expression may compromise liver function. (orig.)

  15. Inhibition experiments on anaerobic methane oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Alperin, M.J.; Reeburgh, W.S.

    1985-10-01

    Anaerobic methane oxidation is a general process important in controlling fluxes of methane from anoxic marine sediments. The responsible organism has not been isolated, and little is known about the electron acceptors and substrates involved in the process. Laboratory evidence indicates that sulfate reducers and methanogens are able to oxidize small quantities of methane. Field evidence suggests anaerobic methane oxidation may be linked to sulfate reduction. Experiments with specific inhibitors for sulfate reduction (molybdate), methanogenesis (2-bromoethanesulfonic acid), and acetate utilization (fluoroacetate) were performed on marine sediments from the zone of methane oxidation to determine whether sulfate-reducing bacteria or methanogenic bacteria are responsible for methane oxidation. The inhibition experiment results suggest that methane oxidation in anoxic marine sediments is not directly mediated by sulfate-reducing bacteria or methanogenic bacteria. Our results are consistent with two possibilities: anaerobic methane oxidation may be mediated by an unknown organism or a consortium involving an unknown methane oxidizer and sulfate-reducing bacteria.

  16. Rethinking anaerobic As(III) oxidation in filters: Effect of indigenous nitrate respirers.

    Science.gov (United States)

    Cui, Jinli; Du, Jingjing; Tian, Haixia; Chan, Tingshan; Jing, Chuanyong

    2018-04-01

    Microorganisms play a key role in the redox transformation of arsenic (As) in aquifers. In this study, the impact of indigenous bacteria, especially the prevailing nitrate respirers, on arsenite (As(III)) oxidation was explored during groundwater filtration using granular TiO 2 and subsequent spent TiO 2 anaerobic landfill. X-ray absorption near edge structure spectroscopy analysis showed As(III) oxidation (46% in 10 days) in the presence of nitrate in the simulated anaerobic landfills. Meanwhile, iron (Fe) species on the spent TiO 2 were dominated by amorphous ferric arsenate, ferrihydrite and goethite. The Fe phase showed no change during the anaerobic landfill incubation. Batch incubation experiments implied that the indigenous bacteria completely oxidized As(III) to arsenate (As(V)) in 10 days using nitrate as the terminal electron acceptor under anaerobic conditions. The bacterial community analysis indicated that various kinds of microbial species exist in groundwater matrix. Phylogenetic tree analysis revealed that Proteobacteria was the dominant phylum, with Hydrogenophaga (34%), Limnohabitans (16%), and Simplicispira (7%) as the major bacterial genera. The nitrate respirers especially from the Hydrogenophaga genus anaerobically oxidized As(III) using nitrate as an electron acceptor instead of oxygen. Our study implied that microbes can facilitate the groundwater As oxidation using nitrate on the adsorptive media. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Flexible biological arsenite oxidation utilizing NOxand O2as alternative electron acceptors.

    Science.gov (United States)

    Wang, Jie; Wan, Junfeng; Wu, Zihao; Li, Hongli; Li, Haisong; Dagot, Christophe; Wang, Yan

    2017-07-01

    The feasibility of flexible microbial arsenite (As III ) oxidation coupled with the reduction of different electron acceptors was investigated. The results indicated the acclimated microorganisms could oxidize As III with oxygen, nitrate and nitrite as the alternative electron acceptors. A series of batch tests were conducted to measure the kinetic parameters of As III oxidation and to evaluate the effects of environmental conditions including pH and temperature on the activity of biological As III oxidation dependent on different electron acceptors. Kinetic results showed that oxygen-dependent As III oxidation had the highest oxidation rate (0.59 mg As g -1  VSS min -1 ), followed by nitrate- (0.40 mg As g -1  VSS min -1 ) and nitrite-dependent As III oxidation (0.32 mg As g -1  VSS min -1 ). The kinetic data of aerobic As III oxidation were fitted well with the Monod kinetic model, while the Haldane substrate inhibition model was better applicable to describe the inhibition of anoxic As III oxidation. Both aerobic and anoxic As III oxidation performed the optimal activity at the near neutral pH. Besides, the optimal temperature for oxygen-, nitrate- and nitrite-dependent As III oxidation was 30 ± 1 °C, 40 ± 1 °C and 20 ± 1 °C, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Enhanced oxidation of arsenite to arsenate using tunable K+ concentration in the OMS-2 tunnel.

    Science.gov (United States)

    Hou, Jingtao; Sha, Zhenjie; Hartley, William; Tan, Wenfeng; Wang, Mingxia; Xiong, Juan; Li, Yuanzhi; Ke, Yujie; Long, Yi; Xue, Shengguo

    2018-03-29

    Cryptomelane-type octahedral molecular sieve manganese oxide (OMS-2) possesses high redox potential and has attracted much interest in its application for oxidation arsenite (As(III)) species of arsenic to arsenate (As(V)) to decrease arsenic toxicity and promote total arsenic removal. However, coexisting ions such as As(V) and phosphate are ubiquitous and readily bond to manganese oxide surface, consequently passivating surface active sites of manganese oxide and reducing As(III) oxidation. In this study, we present a novel strategy to significantly promote As(III) oxidation activity of OMS-2 by tuning K + concentration in the tunnel. Batch experimental results reveal that increasing K + concentration in the tunnel of OMS-2 not only considerably improved As(III) oxidation kinetics rate from 0.027 to 0.102 min -1 , but also reduced adverse effect of competitive ion on As(III) oxidation. The origin of K + concentration effect on As(III) oxidation was investigated through As(V) and phosphate adsorption kinetics, detection of Mn 2+ release in solution, surface charge characteristics, and density functional theory (DFT) calculations. Experimental results and theoretical calculations confirm that by increasing K + concentration in the OMS-2 tunnel not only does it improve arsenic adsorption on K + doped OMS-2, but also accelerates two electrons transfers from As(III) to each bonded Mn atom on OMS-2 surface, thus considerably improving As(III) oxidation kinetics rate, which is responsible for counteracting the adverse adsorption effects by coexisting ions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Anaerobic ammonium oxidation in an estuarine sediment

    NARCIS (Netherlands)

    Risgaard-Petersen, N.; Meyer, R.L.; Schmid, M.C.; Jetten, M.S.M.; Enrich-Prast, A.; Rysgaard, S.; Revsbech, N.P.

    2004-01-01

    The occurrence and significance of the anammox (anaerobic ammonium oxidation) process relative to denitrification was studied in photosynthetically active sediment from 2 shallow-water estuaries: Randers Fjord and Norsminde Fjord, Denmark. Anammox accounted for 5 to 24 % of N-2 production in Randers

  20. Anaerobic ammonium oxidation in an estuarine sediment

    NARCIS (Netherlands)

    Risgaard-Petersen, N.; Meyer, R.L.; Schmid, M.; Jetten, M.S.M.; Enrich-Prast, A.; Rysgaard, S.; Revsbech, N.P.

    2004-01-01

    The occurrence and significance of the anammox (anaerobic ammonium oxidation) process relative to denitrification was studied in photosynthetically active sediment from 2 shallow-water estuaries: Randers Fjord and Norsminde Fjord, Denmark. Anammox accounted for 5 to 24% of N2 production in Randers

  1. Anaerobic Benzene Oxidation by Geobacter Species

    Science.gov (United States)

    Bain, Timothy S.; Nevin, Kelly P.; Barlett, Melissa A.; Lovley, Derek R.

    2012-01-01

    The abundance of Geobacter species in contaminated aquifers in which benzene is anaerobically degraded has led to the suggestion that some Geobacter species might be capable of anaerobic benzene degradation, but this has never been documented. A strain of Geobacter, designated strain Ben, was isolated from sediments from the Fe(III)-reducing zone of a petroleum-contaminated aquifer in which there was significant capacity for anaerobic benzene oxidation. Strain Ben grew in a medium with benzene as the sole electron donor and Fe(III) oxide as the sole electron acceptor. Furthermore, additional evaluation of Geobacter metallireducens demonstrated that it could also grow in benzene-Fe(III) medium. In both strain Ben and G. metallireducens the stoichiometry of benzene metabolism and Fe(III) reduction was consistent with the oxidation of benzene to carbon dioxide with Fe(III) serving as the sole electron acceptor. With benzene as the electron donor, and Fe(III) oxide (strain Ben) or Fe(III) citrate (G. metallireducens) as the electron acceptor, the cell yields of strain Ben and G. metallireducens were 3.2 × 109 and 8.4 × 109 cells/mmol of Fe(III) reduced, respectively. Strain Ben also oxidized benzene with anthraquinone-2,6-disulfonate (AQDS) as the sole electron acceptor with cell yields of 5.9 × 109 cells/mmol of AQDS reduced. Strain Ben serves as model organism for the study of anaerobic benzene metabolism in petroleum-contaminated aquifers, and G. metallireducens is the first anaerobic benzene-degrading organism that can be genetically manipulated. PMID:23001648

  2. Novel KMnO4-modified iron oxide for effective arsenite removal

    International Nuclear Information System (INIS)

    Huang, Yao-Hui; Shih, Yu-Jen; Cheng, Fu-Ji

    2011-01-01

    Highlights: ► We employ the MnBT-4 adsorbent for As (III)/(V) removal in solution. ► The waste iron oxide BT-4 acts as the support to immobilize Mn using FBR reactor. ► MnBT-4 has higher arsenite adsorption as compared with BT4. ► Easy solid–liquid separation and cost effective are the merits of applying MnBT-4. - Abstract: This work demonstrates the synthesis of a novel KMnO 4 -modified form of iron oxide, MnBT-4, using a fluidized bed reactor (FBR) for the adsorptive removal of arsenic (III)/(V). Characterization by XRD, BET, and SEM indicated that the BT-4 support was poorly crystallized goethite (α-FeOOH) with a specific surface area of 229 m 2 g −1 . In FBR experiments of synthesizing MnBT-4, the Fe and Mn salts were found to have an optimal dosage ratio of less than 4, which maximized the KMnO 4 immobilization efficiency. The immobilized Mn compounds on MnBT-4 underwent an additional oxidation step of As (III), promoting arsenic adsorption. When applied MnBT-4 for As (III) removal from solution, the sorption isotherm was accurately fitted with Langmuir and Freundlich models, while the maximum adsorption capacity of 27.4 mg g −1 exceeded those of other adsorbents in the literature. Batch experimental results revealed that both raw BT-4 and MnBT-4 could take up a large amount of As (V). However, the MnBT-4 provided a substantially higher As (III) removal efficiency than BT-4.

  3. Roles of oxidative stress and the ERK1/2, PTEN and p70S6K signaling pathways in arsenite-induced autophagy.

    Science.gov (United States)

    Huang, Ya-Chun; Yu, Hsin-Su; Chai, Chee-Yin

    2015-12-15

    Studies show that arsenite induces oxidative stress and modifies cellular function via phosphorylation of proteins and inhibition of DNA repair enzymes. Autophagy, which has multiple physiological and pathological roles in cellular function, is initiated by oxidative stress and is regulated by the signaling pathways of phosphatidylinositol 3-phosphate kinase (PI3K)/mammalian target of rapamycin (mTOR)/p70S6 kinase (p70S6K) and extracellular signaling-regulated protein kinase 1/2 (ERK1/2) that play important roles in oncogenesis. However, the effects of arsenite-induced oxidative stress on autophagy and on expression of related proteins are not fully understood. This study found that cells treated with sodium arsenite had reduced 8-oxoguanine DNA glycosylase 1 (OGG1) and increased 8-hydroxy-2'-deoxyguanosine (8-OHdG) and activating transcription factor (ATF) 3 in SV-40 immortalized human uroepithelial (SV-HUC-1) cells. Arsenite also increased the number of autophagosomes and increased levels of the autophagy markers Beclin-1 and microtubule-associated protein 1 light chain 3B. Reactive oxygen species scavenger decreased arsenite-induced autophagy in SV-HUC-1 cells. Our previous work showed that arsenite induced phosphorylation of the ERK1/2 signaling pathway. The current study further showed that arsenite decreased phosphatase and tensin homologue (PTEN) levels and increased phospho-p70S6 kinase (p-p70S6K) in SV-HUC-1 cells. However, both kinase inhibitor U0126 and the DNA (cytosine-5-)-methyltransferase 1 (DNMT1) inhibitor 5-aza-deoxycytidine abolished the effect of arsenite on expressions of PTEN and p-p70S6K. These results show that autophagy induced by arsenite exposure is mediated by oxidative stress, which regulates activation of the PTEN, p70S6K and ERK1/2 signaling pathways. Thus, this study clarifies the role of autophagy in arsenite-induced urothelial carcinogenesis. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. Anaerobic ammonium oxidation in an estuarine sediment

    OpenAIRE

    Risgaard-Petersen, N.; Meyer, R.L.; Schmid, M.C.; Jetten, M.S.M.; Enrich-Prast, A.; Rysgaard, S.; Revsbech, N.P.

    2004-01-01

    The occurrence and significance of the anammox (anaerobic ammonium oxidation) process relative to denitrification was studied in photosynthetically active sediment from 2 shallow-water estuaries: Randers Fjord and Norsminde Fjord, Denmark. Anammox accounted for 5 to 24 % of N-2 production in Randers Fjord sediment, whereas no indication was seen of the process in sediment from Norsminde Fjord, It is suggested that the presence of anammox in Randers Fjord and its absence from Norsminde Fjord i...

  5. Anaerobic Oxidation of Hydrocarbon Contaminants in Marine and Estuarine Sediments

    National Research Council Canada - National Science Library

    Lovley, Derek

    1999-01-01

    .... Pristine harbor sediments did not have a significant potential for anaerobic PAH oxidation, but could be adapted for PAH oxidation by exposure to PAhs or inoculation with PAH-oxidizing microrganisms...

  6. Effects of cultivation conditions on the uptake of arsenite and arsenic chemical species accumulated by Pteris vittata in hydroponics.

    Science.gov (United States)

    Hatayama, Masayoshi; Sato, Takahiko; Shinoda, Kozo; Inoue, Chihiro

    2011-03-01

    The physiological responses of the arsenic-hyperaccumulator, Pteris vittata, such as arsenic uptake and chemical transformation in the fern, have been investigated. However, a few questions remain regarding arsenic treatment in hydroponics. Incubation conditions such as aeration, arsenic concentration, and incubation period might affect those responses of P. vittata in hydroponics. Arsenite uptake was low under anaerobic conditions, as previously reported. However, in an arsenite uptake experiment, phosphorous (P) starvation-dependent uptake of arsenate was observed under aerobic conditions. Time course-dependent analysis of arsenite oxidation showed that arsenite was gradually oxidized to arsenate during incubation. Arsenite oxidation was not observed in any of the control conditions, such as exposure to a nutrient solution or to culture medium only, or with the use of dried root; arsenite oxidation was only observed when live root was used. This result suggests that sufficient aeration allows the rhizosphere system to oxidize arsenite and enables the fern to efficiently take up arsenite as arsenate. X-ray absorption near edge structure (XANES) analyses showed that long-duration exposure to arsenic using a hydroponic system led to the accumulation of arsenate as the dominant species in the root tips, but not in the whole roots, partly because up-regulation of arsenate uptake by P starvation of the fern was caused and retained by long-time incubation. Analysis of concentration-dependent arsenate uptake by P. vittata showed that the uptake switched from a high-affinity transport system to a low-affinity system at high arsenate concentrations, which partially explains the increased arsenate abundance in the whole root. Copyright © 2010 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  7. [Achievement of Sulfate-Reducing Anaerobic Ammonium Oxidation Reactor Started with Nitrate-Reducting Anaerobic Ammonium Oxidation].

    Science.gov (United States)

    Liu, Zheng-chuan; Yuan, Lin-jiang; Zhou, Guo-biao; Li, Jing

    2015-09-01

    The transformation of nitrite-reducing anaerobic ammonium oxidation to sulfate-reducing anaerobic ammonium oxidation in an UASB was performed and the changes in microbial community were studied. The result showed that the sulfate reducing anaerobic ammonium oxidation process was successfully accomplished after 177 days' operation. The removal rate of ammonium nitrogen and sulfate were up to 58. 9% and 15. 7%, the removing load of ammonium nitrogen and sulfate were 74. 3 mg.(L.d)-1 and 77. 5 mg.(L.d)-1 while concentration of ammonium nitrogen and sulfate of influent were 130 mg.(L.d)-1 and 500 mg.(L.d)-1, respectively. The lost nitrogen and sulphur was around 2 in molar ratio. The pH value of the effluent was lower than that of the influent. Instead of Candidatus brocadia in nitrite reducing anaerobic ammonium oxidation granular sludge, Bacillus benzoevorans became the dominant species in sulfate reducing anaerobic ammonium oxidation sludge. The dominant bacterium in the two kinds of anaerobic ammonium oxidation process is different. Our results imply that the two anaerobic ammonium oxidation processes are carried out by different kind of bacterium.

  8. Involvement of the Acr3 and DctA anti-porters in arsenite oxidation in Agrobacterium tumefaciens 5A.

    Science.gov (United States)

    Kang, Yoon-Suk; Shi, Zunji; Bothner, Brian; Wang, Gejiao; McDermott, Timothy R

    2015-06-01

    Microbial arsenite (AsIII) oxidation forms a critical piece of the arsenic cycle in nature, though our understanding of how and why microorganisms oxidize AsIII remains rudimentary. Our model organism Agrobacterium tumefaciens 5A contains two distinct ars operons (ars1 and ars2) that are similar in their coding region content. The ars1 operon is located nearby the aio operon that is essential for AsIII oxidation. The AsIII/H(+) anti-porters encoded by acr3-1 and acr3-2 are required for maximal AsIII and antimonite (SbIII) resistance, but acr3-1 (negatively regulated by ArsR-1) appears more active in this regard and also required for AsIII oxidation and expression of aioBA. A malate-phosphate anti-porter DctA is regulated by RpoN and AsIII, and is required for normal growth with malate as a sole carbon source. Qualitatively, a ΔdctA mutant was normal for AsIII oxidation and AsIII/SbIII resistance at metalloid concentrations inhibitory to the Δacr3-1 mutant; however, aioBA induction kinetics was significantly phase-shift delayed. Acr3 involvement in AsIII/SbIII resistance is reasonably well understood, but the role of Acr3 and DctA anti-porters in AsIII oxidation and its regulation is unexpected, and suggests that controlled AsIII trafficking across the cytoplasmic membrane is important to a process understood to occur in the periplasm. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  9. Anaerobic sulfide-oxidation in marine colorless sulfur-oxidizing bacteria

    Digital Repository Service at National Institute of Oceanography (India)

    LokaBharathi, P.A.; Nair, S.; Chandramohan, D.

    Colorless sulfur-oxidizing bacteria are ubiquitous in Indian waters and have the ability to oxidize sulfide under anaerobic conditions. These bacteria can not only mediate the sulfur cycle oxidatively but also the nitrogen cycle reductively without...

  10. Mouse arsenic (+3 oxidation state) methyltransferase genotype affects metabolism and tissue dosimetry of arsenicals after arsenite administration in drinking water.

    Science.gov (United States)

    Chen, Baowei; Arnold, Lora L; Cohen, Samuel M; Thomas, David J; Le, X Chris

    2011-12-01

    Arsenic (+3 oxidation state) methyltransferase (As3mt) catalyzes methylation of inorganic arsenic (iAs) producing a number of methylated arsenic metabolites. Although methylation has been commonly considered a pathway for detoxification of arsenic, some highly reactive methylated arsenicals may contribute to toxicity associated with exposure to inorganic arsenic. Here, adult female wild-type (WT) C57BL/6 mice and female As3mt knockout (KO) mice received drinking water that contained 1, 10, or 25 ppm (mg/l) of arsenite for 33 days and blood, liver, kidney, and lung were taken for arsenic speciation. Genotype markedly affected concentrations of arsenicals in tissues. Summed concentrations of arsenicals in plasma were higher in WT than in KO mice; in red blood cells, summed concentrations of arsenicals were higher in KO than in WT mice. In liver, kidney, and lung, summed concentrations of arsenicals were greater in KO than in WT mice. Although capacity for arsenic methylation is much reduced in KO mice, some mono-, di-, and tri-methylated arsenicals were found in tissues of KO mice, likely reflecting the activity of other tissue methyltransferases or preabsorptive metabolism by the microbiota of the gastrointestinal tract. These results show that the genotype for arsenic methylation determines the phenotypes of arsenic retention and distribution and affects the dose- and organ-dependent toxicity associated with exposure to inorganic arsenic.

  11. Physiological and genomic insights into the lifestyle of arsenite-oxidizing Herminiimonas arsenitoxidans

    Czech Academy of Sciences Publication Activity Database

    Koh, H.W.; Hur, M.; Kang, M.S.; Ku, Y.B.; Ghai, Rohit; Park, S.J.

    2017-01-01

    Roč. 7, Nov (2017), č. článku 15007. ISSN 2045-2322 R&D Projects: GA ČR GA17-04828S Institutional support: RVO:60077344 Keywords : sp-nov. * escherichia-coli * oxidative stress * molecular characterization * drinking-water Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology Impact factor: 4.259, year: 2016

  12. Anaerobic ammonia oxidation in a fertilized paddy soil

    DEFF Research Database (Denmark)

    Zhu, Guibing; Wang, Shanyun; Wang, Yu

    2011-01-01

    Evidence for anaerobic ammonium oxidation in a paddy field was obtained in Southern China using an isotope-pairing technique, quantitative PCR assays and 16S rRNA gene clone libraries, along with nutrient profiles of soil cores. A paddy field with a high load of slurry manure as fertilizer was se...

  13. Cell biology of anaerobic ammonium-oxidizing bacteria

    NARCIS (Netherlands)

    Niftrik, L.A.M.P. van

    2008-01-01

    Anammox bacteria perform anaerobic ammonium oxidation to dinitrogen gas and belong to the phylum Planctomycetes. Whereas most Prokaryotes consist of one compartment, the cytoplasm bounded by the cytoplasmic membrane and cell wall, the species within this phylum are compartmentalized by intracellular

  14. Anaerobic oxidation of methane in coastal sediment from Guishan ...

    Indian Academy of Sciences (India)

    Pearl River Estuary),. South China Sea, were ... profiles of the pore-water support the existence of anaerobic oxidation of methane (AOM), which is mainly controlled by the ...... area; Environmental Microbiology 4 296–305. Niewöhner C, Hensen C, ...

  15. Enhancement of arsenite removal using manganese oxide coupled with iron (III) trimesic

    Science.gov (United States)

    Phanthasri, Jakkapop; Khamdahsag, Pummarin; Jutaporn, Panitan; Sorachoti, Kwannapat; Wantala, Kitirote; Tanboonchuy, Visanu

    2018-01-01

    A simultaneous removal of As(III) was investigated on a mixture of manganese oxide based octahedral molecular sieves (K-OMS2) and iron-benzenetricarboxylate (Fe-BTC). As(III) removal was stimulated by an oxidation cooperated with adsorption process. K-OMS2 and Fe-BTC were separately synthesized and characterized by X-ray diffraction (XRD), Transmission Electron Microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). K-OMS2 showed characters of pure cryptomelane phase, nanorod structure, and a mixed-valent manganese framework with the coexistence of Mn(IV) and Mn(III). As(III) was successfully oxidized to As(V) by K-OMS2 in a temperature range of 303-333 K. An intermediate adsorption of As(V) was carried out with Fe-BTC in the same batch. A maximum adsorption capacity, described by Langmuir isotherm model, was observed at 76.34 mg/g. With an As(III) initial concentration of 5 mg/L, when K-OMS2 and Fe-BTC were simultaneously introduced into the solution, the As(III) removal process was completed within 60 min. Thus, it shortened the process time compared to the case where K-OMS2 was added first, followed by the addition of Fe-BTC.

  16. Arsenite oxidation-enhanced photocatalytic degradation of phenolic pollutants on platinized TiO2.

    Science.gov (United States)

    Kim, Jaesung; Kim, Jungwon

    2014-11-18

    The effect of As(III) on the photocatalytic degradation of phenolic pollutants such as 4-chlorophenol (4-CP) and bisphenol A (BPA) in a suspension of platinized TiO2 (Pt/TiO2) was investigated. In the presence of As(III), the photocatalytic degradation of 4-CP and BPA was significantly enhanced, and the simultaneous oxidation of As(III) to As(V) was also achieved. This positive effect of As(III) on the degradation of phenolic pollutants is attributed to the adsorption of As(V) (generated from As(III) oxidation) on the surface of Pt/TiO2, which facilitates the production of free OH radicals ((•)OHf) that are more reactive than surface-bound OH radicals ((•)OHs) toward phenolic pollutants. The generation of (•)OHf was indirectly verified by using coumarin as an OH radical trapper and comparing the yields of coumarin--OH adduct (i.e., 7-hydroxycoumarin) formed in the absence and presence of As(V). In repeated cycles of 4-CP degradation, the degradation efficiency of 4-CP gradually decreased in the absence of As(III), whereas it was mostly maintained in the presence of As(III), which was either initially present or repeatedly injected at the beginning of each cycle. The positive effect of As(III) on 4-CP degradation was observed over a wide range of As(III) concentrations (up to mM levels) with Pt/TiO2. However, a high concentration of As(III) (hundreds of μM) inhibited the degradation of 4-CP with bare TiO2. Therefore, Pt/TiO2 can be proposed as a practical photocatalyst for the simultaneous oxidation of phenolic pollutants and As(III) in industrial wastewaters.

  17. Oxidation of arsenite by molecular oxygen in strong alkaline solution under γ-radiation

    International Nuclear Information System (INIS)

    Burkitbaev, M.M.

    1996-01-01

    The kinetics and mechanism of radiation-stimulated process in 1 mole/1 l of potassium hydroxide have been studied. Radiation chemical yield of (G(As)(Y)) oxygenation grows directly proportionally to oxygen concentration and inversely proportionally to dose rate in proportion 1/2. Mechanism of oxidation, including two chain cycles (long chain cycle - with participation of O - ; O 2 - ; O 3 - radicals and short chain one -with participation of arsenic contenting radicals: As(IV), As(IV)O, As(IV)O 2 ) is proposed. (author)

  18. Transition metal ions and selenite modulate the methylation of arsenite by the recombinant human arsenic (+3 oxidation state) methyltransferase (hAS3MT).

    Science.gov (United States)

    Song, Xiaoli; Geng, Zhirong; Li, Chengying; Hu, Xin; Wang, Zhilin

    2010-05-01

    This report demonstrates that transition metal ions and selenite affect the arsenite methylation by the recombinant human arsenic (+3 oxidation state) methyltransferase (hAS3MT) in vitro. Co(2+), Mn(2+), and Zn(2+) inhibited the arsenite methylation by hAS3MT in a concentration-dependent manner and the kinetics indicated Co(2+) and Mn(2+) to be mixed (competitive and non-competitive) inhibitors while Zn(2+) to be a competitive inhibitor. However, only a high concentration of Fe(2+) could restrain the methylation. UV-visible, CD and fluorescence spectroscopy were used to study the interactions between the metal ions above and hAS3MT. Further studies showed that neither superoxide anion nor hydrogen peroxide was involved in the transition metal ion or selenite inhibition of hAS3MT activity. The inhibition of arsenite methylating activity of hAS3MT by selenite was reversed by 2mM DTT (dithiothreitol) but neither by cysteine nor by beta-mercaptoethanol. Whereas, besides DTT, cysteine can also prevent the inhibition of hAS3MT activity by Co(2+), Mn(2+), and Zn(2+). Free Cys residues were involved in the interactions of transition metal ions or selenite with hAS3MT. It is proposed that the inhibitory effect of the ions (Co(2+), Mn(2+), and Zn(2+)) or selenite on hAS3MT activity might be via the interactions of them with free Cys residues in hAS3MT to form inactive protein adducts.

  19. Anaerobic ammonium oxidation mediated by Mn-oxides: from sediment to strain level.

    Science.gov (United States)

    Javanaud, Cedric; Michotey, Valerie; Guasco, Sophie; Garcia, Nicole; Anschutz, Pierre; Canton, Mathieu; Bonin, Patricia

    2011-11-01

    Nitrite and (29)N(2) productions in slurry incubations of anaerobically sediment after (15)NO(3) or (15)NH(4) labelling in the presence of Mn-oxides suggested that anaerobic Mn-oxides mediated nitrification coupled with denitrification in muddy intertidal sediments of Arcachon Bay (SW Atlantic French coast). From this sediment, bacterial strains were isolated and physiologically characterized in terms of Mn-oxides and nitrate reduction as well as potential anaerobic nitrification. One of the isolated strain, identified as Marinobacter daepoensis strain M4AY14, was a denitrifier. Nitrous oxide production by this strain was demonstrated in the absence of nitrate and with Mn-oxides and NH(4) amendment, giving indirect proof of anaerobic nitrate or nitrite production. Anaerobic Mn-oxide-mediated nitrification was confirmed by (29)N(2) production in the presence of (15)NO(3) and (14)NH(4) under denitrifying conditions. Anaerobic nitrification by M4AY14 seemed to occur only in the absence of nitrate, or at nitrate levels lower than that of Mn-oxides. Most of the other isolates were affiliated with the Shewanella genus and were able to use both nitrate and Mn-oxides as electron acceptors. When both electron acceptors were present, whatever their concentrations, nitrate and Mn-oxide reduction co-occurred. These data indicate that bacterial Mn-oxide reduction could be an important process in marine sediments with low oxygen concentrations, and demonstrate for the first time the role of bacteria in anaerobic Mn-mediated nitrification. Copyright © 2011 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  20. Antibiotics with anaerobic ammonium oxidation in urban wastewater treatment

    Science.gov (United States)

    Zhou, Ruipeng; Yang, Yuanming

    2017-05-01

    Biofilter process is based on biological oxidation process on the introduction of fast water filter design ideas generated by an integrated filtration, adsorption and biological role of aerobic wastewater treatment process various purification processes. By engineering example, we show that the process is an ideal sewage and industrial wastewater treatment process of low concentration. Anaerobic ammonia oxidation process because of its advantage of the high efficiency and low consumption, wastewater biological denitrification field has broad application prospects. The process in practical wastewater treatment at home and abroad has become a hot spot. In this paper, anammox bacteria habitats and species diversity, and anaerobic ammonium oxidation process in the form of diversity, and one and split the process operating conditions are compared, focusing on a review of the anammox process technology various types of wastewater laboratory research and engineering applications, including general water quality and pressure filtrate sludge digestion, landfill leachate, aquaculture wastewater, monosodium glutamate wastewater, wastewater, sewage, fecal sewage, waste water salinity wastewater characteristics, research progress and application of the obstacles. Finally, we summarize the anaerobic ammonium oxidation process potential problems during the processing of the actual waste water, and proposed future research focus on in-depth study of water quality anammox obstacle factor and its regulatory policy, and vigorously develop on this basis, and combined process optimization.

  1. Diversity Profile of Microbes Associated with Anaerobic Sulfur Oxidation in an Upflow Anaerobic Sludge Blanket Reactor Treating Municipal Sewage

    Science.gov (United States)

    Aida, Azrina A.; Kuroda, Kyohei; Yamamoto, Masamitsu; Nakamura, Akinobu; Hatamoto, Masashi; Yamaguchi, Takashi

    2015-01-01

    We herein analyzed the diversity of microbes involved in anaerobic sulfur oxidation in an upflow anaerobic sludge blanket (UASB) reactor used for treating municipal sewage under low-temperature conditions. Anaerobic sulfur oxidation occurred in the absence of oxygen, with nitrite and nitrate as electron acceptors; however, reactor performance parameters demonstrated that anaerobic conditions were maintained. In order to gain insights into the underlying basis of anaerobic sulfur oxidation, the microbial diversity that exists in the UASB sludge was analyzed comprehensively to determine their identities and contribution to sulfur oxidation. Sludge samples were collected from the UASB reactor over a period of 2 years and used for bacterial 16S rRNA gene-based terminal restriction fragment length polymorphism (T-RFLP) and next-generation sequencing analyses. T-RFLP and sequencing results both showed that microbial community patterns changed markedly from day 537 onwards. Bacteria belonging to the genus Desulforhabdus within the phylum Proteobacteria and uncultured bacteria within the phylum Fusobacteria were the main groups observed during the period of anaerobic sulfur oxidation. Their abundance correlated with temperature, suggesting that these bacterial groups played roles in anaerobic sulfur oxidation in UASB reactors. PMID:25817585

  2. A marine microbial consortium apparently mediating anaerobic oxidation of methane

    DEFF Research Database (Denmark)

    Boetius, A.; Ravenschlag, K.; Schubert, CJ

    2000-01-01

    microorganisms mediating this reaction have not yet been isolated, and the pathway of anaerobic oxidation of methane is insufficiently understood. Recent data suggest that certain archaea reverse the process of methanogenesis by interaction with sulphate-reducing bacteria(5-7). Here we provide microscopic...... evidence for a structured consortium of archaea and sulphate-reducing bacteria, which we identified by fluorescence in situ hybridization using specific 16S rRNA-targeted oligonucleotide probes. In this example of a structured archaeal-bacterial symbiosis, the archaea grow in dense aggregates of about 100...... cells and are surrounded by sulphate-reducing bacteria. These aggregates were abundant in gas-hydrate-rich sediments with extremely high rates of methane-based sulphate reduction, and apparently mediate anaerobic oxidation of methane....

  3. Life in an arsenic-containing gold mine: genome and physiology of the autotrophic arsenite-oxidizing bacterium rhizobium sp. NT-26.

    Science.gov (United States)

    Andres, Jérémy; Arsène-Ploetze, Florence; Barbe, Valérie; Brochier-Armanet, Céline; Cleiss-Arnold, Jessica; Coppée, Jean-Yves; Dillies, Marie-Agnès; Geist, Lucie; Joublin, Aurélie; Koechler, Sandrine; Lassalle, Florent; Marchal, Marie; Médigue, Claudine; Muller, Daniel; Nesme, Xavier; Plewniak, Frédéric; Proux, Caroline; Ramírez-Bahena, Martha Helena; Schenowitz, Chantal; Sismeiro, Odile; Vallenet, David; Santini, Joanne M; Bertin, Philippe N

    2013-01-01

    Arsenic is widespread in the environment and its presence is a result of natural or anthropogenic activities. Microbes have developed different mechanisms to deal with toxic compounds such as arsenic and this is to resist or metabolize the compound. Here, we present the first reference set of genomic, transcriptomic and proteomic data of an Alphaproteobacterium isolated from an arsenic-containing goldmine: Rhizobium sp. NT-26. Although phylogenetically related to the plant-associated bacteria, this organism has lost the major colonizing capabilities needed for symbiosis with legumes. In contrast, the genome of Rhizobium sp. NT-26 comprises a megaplasmid containing the various genes, which enable it to metabolize arsenite. Remarkably, although the genes required for arsenite oxidation and flagellar motility/biofilm formation are carried by the megaplasmid and the chromosome, respectively, a coordinate regulation of these two mechanisms was observed. Taken together, these processes illustrate the impact environmental pressure can have on the evolution of bacterial genomes, improving the fitness of bacterial strains by the acquisition of novel functions.

  4. Anabaena sp. mediated bio-oxidation of arsenite to arsenate in synthetic arsenic (III) solution: Process optimization by response surface methodology.

    Science.gov (United States)

    Jana, Animesh; Bhattacharya, Priyankari; Swarnakar, Snehasikta; Majumdar, Swachchha; Ghosh, Sourja

    2015-11-01

    Blue green algae Anabaena sp. was cultivated in synthetic arsenite solution to investigate its bio-oxidation potential for arsenic species. Response surface methodology (RSM) was employed based on a 3-level full factorial design considering four factors, viz. initial arsenic (III) concentration, algal dose, temperature and time. Bio-oxidation (%) of arsenic (III) was considered as response for the design. The study revealed that about 100% conversion of As (III) to As (V) was obtained for initial As (III) concentration of 2.5-7.5 mg/L at 30 °C for 72 h of exposure using 3 g/L of algal dose signifying a unique bio-oxidation potential of Anabaena sp. The dissolved CO2 (DCO2) and oxygen (DO) concentration in solution was monitored during the process and based on the data, a probable mechanism was proposed wherein algal cell acts like a catalytic membrane surface and expedites the bio-oxidation process. Bioaccumulation of arsenic, as well as, surface adsorption on algal cell was found considerably low. Lipid content of algal biomass grown in arsenite solution was found slightly lower than that of algae grown in synthetic media. Toxicity effects on algal cells due to arsenic exposure were evaluated in terms of comet assay and chlorophyll a content which indicated DNA damage to some extent along with very little decrease in chlorophyll a content. In summary, the present study explored the potential application of Anabaena sp. as an ecofriendly and sustainable option for detoxification of arsenic contaminated natural water with value-added product generation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Effect of Zingiber Officinale (Ginger) on Sodium Arsenite- Induced ...

    African Journals Online (AJOL)

    Arsenite is a major environmental chemical and a known reproductive toxicant via the depression of spermatogenesis and androgenesis in males. The possibility of sodium arsenite reproductive toxicity been caused by autooxidation was investigated in this study taking advantage of the anti-oxidant properties of ginger and ...

  6. Iron biomineralization by anaerobic neutrophilic iron-oxidizing bacteria

    DEFF Research Database (Denmark)

    Miot, Jennyfer; Benzerara, Karim; Morin, Guillaume

    2009-01-01

    precipitation in the periplasm (in a few tens of minutes), followed by the formation of surface-bound globules. Moreover, we frequently observed an asymmetric mineral thickening at the cell poles. In parallel, the evolution of iron oxidation was quantified by STXM: iron both contained in the bacteria......Minerals formed by bio-oxidation of ferrous iron (Fe(II)) at neutral pH, their association with bacterial ultrastructures as well as their impact on the metabolism of iron-oxidizing bacteria remain poorly understood. Here, we investigated iron biomineralization by the anaerobic nitrate......-dependent iron-oxidizing bacterium Acidovorax sp. strain BoFeN1 in the presence of dissolved Fe(II) using electron microscopy and Scanning Transmission X-ray Microscopy (STXM). All detected minerals consisted mainly of amorphous iron phosphates, but based on their morphology and localization, three types...

  7. Oxidation and methylation of dissolved elemental mercury by anaerobic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Haiyan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Chinese Academy of Sciences (CAS), Beijing (China); Lin, Hui [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Zheng, Wang [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Tomanicek, Stephen J [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Johs, Alexander [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Feng, Xinbin [Chinese Academy of Sciences (CAS), Beijing (China); Elias, Dwayne A [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Liang, Liyuan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gu, Baohua [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2013-08-04

    Methylmercury is a neurotoxin that poses significant health risks to humans. Some anaerobic sulphate- and iron-reducing bacteria can methylate oxidized forms of mercury, generating methylmercury1-4. One strain of sulphate-reducing bacteria (Desulfovibrio desulfuricans ND132) can also methylate elemental mercury5. The prevalence of this trait among different bacterial strains and species remains unclear, however. Here, we compare the ability of two strains of the sulphate-reducing bacterium Desulfovibrio and one strain of the iron-reducing bacterium Geobacter to oxidise and methylate elemental mercury in a series of laboratory incubations. Experiments were carried out under dark, anaerobic conditions, in the presence of environmentally-relevant concentrations of elemental mercury. We report differences in the ability of these organisms to oxidise and methylate elemental mercury. In line with recent findings5, we show that Desulfovibrio desulfuricans ND132 can both oxidise and methylate elemental mercury. However, the rate of methylation of elemental mercury is only about one third the rate of methylation of oxidized mercury. We also show that Desulfovibrio alaskensis G20 can oxidise, but not methylate, elemental mercury. Geobacter sulfurreducens PCA is able to oxidise and methylate elemental mercury in the presence of cysteine. We suggest that the activity of methylating and non-methylating bacteria may together enhance the formation of methylmercury in anaerobic environments.

  8. Proteomics and genetic analyses reveal the effects of arsenite oxidation on metabolic pathways and the roles of AioR in Agrobacterium tumefaciens GW4.

    Science.gov (United States)

    Shi, Kaixiang; Wang, Qian; Fan, Xia; Wang, Gejiao

    2018-04-01

    A heterotrophic arsenite [As(III)]-oxidizing bacterium Agrobacterium tumefaciens GW4 isolated from As(III)-rich groundwater sediment showed high As(III) resistance and could oxidize As(III) to As(V). The As(III) oxidation could generate energy and enhance growth, and AioR was the regulator for As(III) oxidase. To determine the related metabolic pathways mediated by As(III) oxidation and whether AioR regulated other cellular responses to As(III), isobaric tags for relative and absolute quantitation (iTRAQ) was performed in four treatments, GW4 (+AsIII)/GW4 (-AsIII), GW4-ΔaioR (+AsIII)/GW4-ΔaioR (-AsIII), GW4-ΔaioR (-AsIII)/GW4 (-AsIII) and GW4-ΔaioR (+AsIII)/GW4 (+AsIII). A total of 41, 71, 82 and 168 differentially expressed proteins were identified, respectively. Using electrophoretic mobility shift assay (EMSA) and qRT-PCR, 12 genes/operons were found to interact with AioR. These results indicate that As(III) oxidation alters several cellular processes related to arsenite, such as As resistance (ars operon), phosphate (Pi) metabolism (pst/pho system), TCA cycle, cell wall/membrane, amino acid metabolism and motility/chemotaxis. In the wild type with As(III), TCA cycle flow is perturbed, and As(III) oxidation and fermentation are the main energy resources. However, when strain GW4-ΔaioR lost the ability of As(III) oxidation, the TCA cycle is the main way to generate energy. A regulatory cellular network controlled by AioR is constructed and shows that AioR is the main regulator for As(III) oxidation, besides, several other functions related to As(III) are regulated by AioR in parallel. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Anaerobic ammonium oxidation by anammox bacteria in the Black Sea

    Science.gov (United States)

    Kuypers, Marcel M. M.; Sliekers, A. Olav; Lavik, Gaute; Schmid, Markus; Jørgensen, Bo Barker; Kuenen, J. Gijs; Sinninghe Damsté, Jaap S.; Strous, Marc; Jetten, Mike S. M.

    2003-04-01

    The availability of fixed inorganic nitrogen (nitrate, nitrite and ammonium) limits primary productivity in many oceanic regions. The conversion of nitrate to N2 by heterotrophic bacteria (denitrification) is believed to be the only important sink for fixed inorganic nitrogen in the ocean. Here we provide evidence for bacteria that anaerobically oxidize ammonium with nitrite to N2 in the world's largest anoxic basin, the Black Sea. Phylogenetic analysis of 16S ribosomal RNA gene sequences shows that these bacteria are related to members of the order Planctomycetales performing the anammox (anaerobic ammonium oxidation) process in ammonium-removing bioreactors. Nutrient profiles, fluorescently labelled RNA probes, 15N tracer experiments and the distribution of specific `ladderane' membrane lipids indicate that ammonium diffusing upwards from the anoxic deep water is consumed by anammox bacteria below the oxic zone. This is the first time that anammox bacteria have been identified and directly linked to the removal of fixed inorganic nitrogen in the environment. The widespread occurrence of ammonium consumption in suboxic marine settings indicates that anammox might be important in the oceanic nitrogen cycle.

  10. Trace methane oxidation and the methane dependency of sulfate reduction in anaerobic granular sludge

    NARCIS (Netherlands)

    Meulepas, R.J.W.; Jagersma, C.G.; Zhang, Y.; Petrillo, M.; Cai, H.; Buisman, C.J.N.; Stams, A.J.M.; Lens, P.N.L.

    2010-01-01

    This study investigates the oxidation of labeled methane (CH(4)) and the CH(4) dependence of sulfate reduction in three types of anaerobic granular sludge. In all samples, (13)C-labeled CH(4) was anaerobically oxidized to (13)C-labeled CO(2), while net endogenous CH(4) production was observed.

  11. Nitrogen source effects on the denitrifying anaerobic methane oxidation culture and anaerobic ammonium oxidation bacteria enrichment process.

    Science.gov (United States)

    Fu, Liang; Ding, Jing; Lu, Yong-Ze; Ding, Zhao-Wei; Zeng, Raymond J

    2017-05-01

    The co-culture system of denitrifying anaerobic methane oxidation (DAMO) and anaerobic ammonium oxidation (Anammox) has a potential application in wastewater treatment plant. This study explored the effects of permutation and combination of nitrate, nitrite, and ammonium on the culture enrichment from freshwater sediments. The co-existence of NO 3 - , NO 2 - , and NH 4 + shortened the enrichment time from 75 to 30 days and achieved a total nitrogen removal rate of 106.5 mg/L/day on day 132. Even though ammonium addition led to Anammox bacteria increase and a higher nitrogen removal rate, DAMO bacteria still dominated in different reactors with the highest proportion of 64.7% and the maximum abundance was 3.07 ± 0.25 × 10 8 copies/L (increased by five orders of magnitude) in the nitrite reactor. DAMO bacteria showed greater diversity in the nitrate reactor, and one was similar to M. oxyfera; DAMO bacteria in the nitrite reactor were relatively unified and similar to M. sinica. Interestingly, no DAMO archaea were found in the nitrate reactor. This study will improve the understanding of the impact of nitrogen source on DAMO and Anammox co-culture enrichment.

  12. N-acetylcysteine and meso-2,3 dimercaptosuccinic acid alleviate oxidative stress and hepatic dysfunction induced by sodium arsenite in male rats

    Directory of Open Access Journals (Sweden)

    Abu El-Saad AM

    2016-10-01

    Full Text Available Ahmed M Abu El-Saad,1,4 Mohammed A Al-Kahtani,2 Ashraf M Abdel-Moneim3,4 1Department of Biology, Faculty of Medicine, Dammam University, Dammam, Saudi Arabia; 2Department of Biology, Faculty of Science, King Khalid University, Abha, Saudi Arabia; 3Department of Biological Sciences, Faculty of Science, King Faisal University, Al-Ahsa, Saudi Arabia; 4Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt Abstract: Environmental exposure to arsenic represents a serious challenge to humans and other animals. The aim of the present study was to test the protective effect of antioxidant N-acetylcysteine (NAC either individually or in combination with a chelating agent, meso-2,3-dimercaptosuccinic acid (DMSA, against sodium arsenite oral toxicity in male rats. Five groups were used: control; arsenic group (orally administrated in a concentration of 2 mg/kg body weight [b.w.]; the other three groups were orally administrated sodium arsenite in a concentration of 2 mg/kg b.w. followed by either NAC (10 mg/kg b.w., intraperitoneally [i.p.], DMSA (50 mg/kg b.w., i.p. or NAC plus DMSA. Arsenic toxicity caused significant rise in serum aspartate aminotransferase, alanine aminotransferase and total bilirubin, and a significant decrease in total protein (TP and albumin levels after 3 weeks of experimental period. In addition, arsenic-treated rats showed significantly higher arsenic content in liver and significant rise in hepatic malondialdehyde level. By contrast, sharp decreases in glutathione content and catalase and glutathione reductase activities were discernible. NAC and/or DMSA counteracted most of these physiologic and biochemical defects. NAC monotherapy was more effective than DMSA in increasing TP, while DMSA was more effective in decreasing alanine aminotransferase. The combined treatment was superior over monotherapies in recovery of TP and glutathione. Biochemical data were well supported by histopathological and

  13. Engineering application of anaerobic ammonium oxidation process in wastewater treatment.

    Science.gov (United States)

    Mao, Nianjia; Ren, Hongqiang; Geng, Jinju; Ding, Lili; Xu, Ke

    2017-08-01

    Anaerobic ammonium oxidation (Anammox), a promising biological nitrogen removal process, has been verified as an efficient, sustainable and cost-effective alternative to conventional nitrification and denitrification processes. To date, more than 110 full-scale anammox plants have been installed and are in operation, treating industrial NH 4 + -rich wastewater worldwide, and anammox-based technologies are flourishing. This review the current state of the art for engineering applications of the anammox process, including various anammox-based technologies, reactor selection and attempts to apply it at different wastewater plants. Process control and implementation for stable performance are discussed as well as some remaining issues concerning engineering application are exposed, including the start-up period, process disturbances, greenhouse gas emissions and especially mainstream anammox applications. Finally, further development of the anammox engineering application is proposed in this review.

  14. Electrodes as Terminal Electron Acceptors in Anaerobic Ammonium Oxidation

    Science.gov (United States)

    Ruiz-Urigüen, M.; Jaffe, P. R.

    2017-12-01

    Anaerobic ammonium (NH4+) oxidation under iron (Fe) reducing conditions is a microbial- mediated process known as Feammox. This is a novel pathway in the nitrogen cycle, and a key process for alleviating NH4+ accumulation in anoxic soils, wetlands, and wastewater. Acidimicrobiaceae-bacterium A6, phylum Actinobacteria, are one type of autotrophic bacteria linked to this process. The Feammox-bacteria obtain their energy by oxidizing NH4+ and transferring the electrons to a terminal electron acceptor (TEA). Under environmental conditions, iron oxides are the TEAs. However, in this study we show that electrodes in Microbial Electrolysis Cells (MECs) or electrodes set in the field can be used as TEAs by Feammox-bacteria. The potential difference between electrodes is the driving force for electron transfer, making the reaction energetically feasible. Our results show that MECs containing Feammox cultures can remove NH4+ up to 3.5 mg/L in less than 4 hours, compared to an average of 9 mg/L in 2 weeks when cultured under traditional conditions. Concomitantly, MECs produce an average current of 30.5 A/m3 whilst dead bacteria produced low (application of Feammox-bacteria.

  15. The Experiment Study of Anaerobic Ammonia Oxidation Start-up by Using the Upflow Double Layer Anaerobic Filter

    Directory of Open Access Journals (Sweden)

    YAO Li

    2018-02-01

    Full Text Available Anammox is an efficient nitrogen removal process, but it is difficult to start-up and operate, and ananammox reactor is the efficient way to resolve this problem. The start-up of anammox reactor by upflow anaerobic filter was studied. Denitrifying sludge, anaerobic sludge, and mixed sludge was inoculated on the packing materials, respectively and an autotrophic denitrification condition was provided by the simulated wastewater influent. Along with the gradual increase of matrix concentration and hydraulic load, the microflora was converted to the anaerobic ammonium oxidation(anammoxreaction. The results showed that the anammox reaction could be started by all the three sludge, and the time of start-up of denitrifying sludge, anaerobic sludge, mixed sludge was 42, 54 days and 45 days, respectively. The best result was that inoculated with denitrifying sludge with 82.2% of the total nitrogen removal rate, which started-up quickly and nitrogen was removed efficiently. Double packing effectively improved the stability of anammox process in the reactor, in which the suitable influent concentration loading for the anammox bacteria was 270 mg·L-1 and 360 mg·L-1 for ammonia nitrogen and nitrite nitrogen, respectively, and the COD concentration could not be more than 150 mg· L-1. Furthermore, there was a coexist-effect for anaerobic ammonia oxidation and methanation in this reactor system.

  16. Biogeography of anaerobic ammonia-oxidizing (anammox bacteria

    Directory of Open Access Journals (Sweden)

    Puntipar eSonthiphand

    2014-08-01

    Full Text Available Anaerobic ammonia-oxidizing (anammox bacteria are able to oxidize ammonia and reduce nitrite to produce N2 gas. After being discovered in a wastewater treatment plant (WWTP, anammox bacteria were subsequently characterized in natural environments, including marine, estuary, freshwater, and terrestrial habitats. Anammox bacteria play an important role in removing fixed N from both engineered and natural ecosystems, but broad scale anammox bacterial distributions, based on available data, have not yet been summarized. The objectives of this study were to explore global distributions and diversity of anammox bacteria and to identify factors that influence their biogeography. Over 6,000 anammox 16S rRNA gene sequences from the public database were analyzed in this current study. Data ordinations indicated that salinity was an important factor governing anammox bacterial distributions, with distinct populations inhabiting natural and engineered ecosystems. Gene phylogenies and rarefaction analysis demonstrated that freshwater environments and the marine water column harbored the highest and the lowest diversity of anammox bacteria, respectively. A co-occurrence network analysis indicated that Ca. Scalindua strongly correlated with other Ca. Scalindua taxa, whereas Ca. Brocadia co-occurred with taxa from both known and unknown anammox genera. Our survey provides a better understanding of ecological factors affecting anammox bacterial distributions and provides a comprehensive baseline for understanding the relationships among anammox communities in global environments.

  17. Inactivation of ANAMMOX communities under concurrent operation of anaerobic ammonium oxidation (ANAMMOX) and denitrification

    DEFF Research Database (Denmark)

    Chamchoi, N.; Nitisoravut, S.; Schmidt, Jens Ejbye

    2008-01-01

    A concurrent operation of anaerobic ammonium oxidation (ANAMMOX) and denitrification was investigated in a well known UASB reactor seeding with both ANAMMOX and anaerobic granular sludges. ANAMMOX activity was confirmed by hydroxylamine test and the hybridization of biomass using the gene probes...

  18. Ultrastructure and viral metagenome of bacteriophages from an anaerobic methane oxidizing methylomirabilis bioreactor enrichment culture

    NARCIS (Netherlands)

    Gambelli, Lavinia; Cremers, Geert; Mesman, Rob; Guerrero, Simon; Dutilh, Bas E.; Jetten, Mike S M; den Camp, Huub J M Op; van Niftrik, Laura

    2016-01-01

    With its capacity for anaerobic methane oxidation and denitrification, the bacterium Methylomirabilis oxyfera plays an important role in natural ecosystems. Its unique physiology can be exploited for more sustainable wastewater treatment technologies. However, operational stability of full-scale

  19. Ultrastructure and Viral Metagenome of Bacteriophages from an Anaerobic Methane Oxidizing Methylomirabilis Bioreactor Enrichment Culture

    NARCIS (Netherlands)

    Gambelli, L.; Cremers, G.; Mesman, R.; Guerrero, S.; Dutilh, B.E.; Jetten, M.S.; Camp, H.J. Op den; Niftrik, L. van

    2016-01-01

    With its capacity for anaerobic methane oxidation and denitrification, the bacterium Methylomirabilis oxyfera plays an important role in natural ecosystems. Its unique physiology can be exploited for more sustainable wastewater treatment technologies. However, operational stability of full-scale

  20. The Geologic Signature of Anaerobic Oxidation of Methane (Invited)

    Science.gov (United States)

    Ussler, W.; Paull, C. K.

    2010-12-01

    Anaerobic oxidation of methane (AOM) is an enormous sink in anoxic marine sediments for methane produced in situ or ascending through the sediment column towards the seafloor. Existing estimates indicate that between 75 and 382 Tg of sedimentary methane are oxidized each year before reaching the sediment-water interface making AOM a diagenetic process of global significance. This methane is derived from a variety of sources including microbial production, thermocatalytic cracking of complex organic matter, decomposing gas hydrates, and possibly abiogenic processes. Stables isotopes of membrane lipid biomarkers and authigenic carbonates associated with zones of AOM, fluorescence in situ hybridization, and anaerobic methane incubations have substantiated the role Archaea and sulfate-reducing bacteria have in driving AOM. The products of AOM are dissolved inorganic carbon (predominantly HCO3-) and bisulfide (HS-). Stable isotope measurements of authigenic carbonates associated with zones of AOM are consistent with the diagenetic carbon being primarily methane derived. These methane-derived carbonates occur in a variety of forms including sedimentary nodules and thin lenses within and below zones of contemporary AOM; outcrops of slabs, ledges, and jagged authigenic carbonates exhumed on the seafloor; and authigenic carbonate mounds associated with near-subsurface methane gas accumulations. Examples of exhumed authigenic carbonates include rugged outcrops along the Guaymas Transform in the Gulf of California, extensive slabs and ledges in the Eel River Basin, and mounds in various stages of development near Bullseye Vent, off Vancouver Island and in the Santa Monica Basin. It is clear from basic microbial biogeochemistry and the occurrences of massive authigenic carbonate which span a large range in size that DIC produced by AOM is preserved as authigenic carbonate within the seafloor and not on the seafloor. These exhumed authigenic carbonate provide a glimpse of how

  1. Anaerobic Ammonium-Oxidizing Bacteria in Cow Manure Composting.

    Science.gov (United States)

    Wang, Tingting; Cheng, Lijun; Zhang, Wenhao; Xu, Xiuhong; Meng, Qingxin; Sun, Xuewei; Liu, Huajing; Li, Hongtao; Sun, Yu

    2017-07-28

    Composting is widely used to transform waste into valuable agricultural organic fertilizer. Anaerobic ammonium-oxidizing (anammox) bacteria play an important role in the global nitrogen cycle, but their role in composting remains poorly understood. In the present study, the community structure, diversity, and abundance of anammox bacteria were analyzed using cloning and sequencing methods by targeting the 16S rRNA gene and the hydrazine oxidase gene ( hzo ) in samples isolated from compost produced from cow manure and rice straw. A total of 25 operational taxonomic units were classified based on 16S rRNA gene clone libraries, and 14 operational taxonomic units were classified based on hzo gene clone libraries. The phylogenetic tree analysis of the 16S rRNA gene and deduced HZO protein sequences from the corresponding encoding genes indicated that the majority of the obtained clones were related to the known anammox bacteria Candidatus "Brocadia," Candidatus "Kuenenia," and Candidatus "Scalindua." The abundances of anammox bacteria were determined by quantitative PCR, and between 2.13 × 10 5 and 1.15 × 10 6 16S rRNA gene copies per gram of compost were found. This study provides the first demonstration of the existence of anammox bacteria with limited diversity in cow manure composting.

  2. Kinetic study on anaerobic oxidation of methane coupled to denitrification.

    Science.gov (United States)

    Yu, Hou; Kashima, Hiroyuki; Regan, John M; Hussain, Abid; Elbeshbishy, Elsayed; Lee, Hyung-Sool

    2017-09-01

    Monod kinetic parameters provide information required for kinetic analysis of anaerobic oxidation of methane coupled to denitrification (AOM-D). This information is critical for engineering AOM-D processes in wastewater treatment facilities. We first experimentally determined Monod kinetic parameters for an AOM-D enriched culture and obtained the following values: maximum specific growth rate (μ max ) 0.121/d, maximum substrate-utilization rate (q max ) 28.8mmol CH 4 /g cells-d, half maximum-rate substrate concentration (K s ) 83μΜ CH 4 , growth yield (Y) 4.76gcells/mol CH 4 , decay coefficient (b) 0.031/d, and threshold substrate concentration (S min ) 28.8μM CH 4 . Clone library analysis of 16S rRNA and mcrA gene fragments suggested that AOM-D reactions might have occurred via the syntrophic interaction between denitrifying bacteria (e.g., Ignavibacterium, Acidovorax, and Pseudomonas spp.) and hydrogenotrophic methanogens (Methanobacterium spp.), supporting reverse methanogenesis-dependent AOM-D in our culture. High μ max and q max , and low K s for the AOM-D enrichment imply that AOM-D could play a significant role in mitigating atmospheric methane efflux. In addition, these high kinetic features suggest that engineered AOM-D systems may provide a sustainable alternative to nitrogen removal in wastewater treatment. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Thermophilic anaerobic oxidation of methane by marine microbial consortia.

    Science.gov (United States)

    Holler, Thomas; Widdel, Friedrich; Knittel, Katrin; Amann, Rudolf; Kellermann, Matthias Y; Hinrichs, Kai-Uwe; Teske, Andreas; Boetius, Antje; Wegener, Gunter

    2011-12-01

    The anaerobic oxidation of methane (AOM) with sulfate controls the emission of the greenhouse gas methane from the ocean floor. AOM is performed by microbial consortia of archaea (ANME) associated with partners related to sulfate-reducing bacteria. In vitro enrichments of AOM were so far only successful at temperatures ≤25 °C; however, energy gain for growth by AOM with sulfate is in principle also possible at higher temperatures. Sequences of 16S rRNA genes and core lipids characteristic for ANME as well as hints of in situ AOM activity were indeed reported for geothermally heated marine environments, yet no direct evidence for thermophilic growth of marine ANME consortia was obtained to date. To study possible thermophilic AOM, we investigated hydrothermally influenced sediment from the Guaymas Basin. In vitro incubations showed activity of sulfate-dependent methane oxidation between 5 and 70 °C with an apparent optimum between 45 and 60 °C. AOM was absent at temperatures ≥75 °C. Long-term enrichment of AOM was fastest at 50 °C, yielding a 13-fold increase of methane-dependent sulfate reduction within 250 days, equivalent to an apparent doubling time of 68 days. The enrichments were dominated by novel ANME-1 consortia, mostly associated with bacterial partners of the deltaproteobacterial HotSeep-1 cluster, a deeply branching phylogenetic group previously found in a butane-amended 60 °C-enrichment culture of Guaymas sediments. The closest relatives (Desulfurella spp.; Hippea maritima) are moderately thermophilic sulfur reducers. Results indicate that AOM and ANME archaea could be of biogeochemical relevance not only in cold to moderate but also in hot marine habitats.

  4. A microbial consortium couples anaerobic methane oxidation to denitrification

    NARCIS (Netherlands)

    Raghoebarsing, A.A.; Pol, A.; Pas-Schoonen, K.T. van de; Smolders, A.J.P.; Ettwig, K.F.; Rijpstra, W.I.C.; Schouten, S.; Sinninghe Damsté, J.S.; Camp, H.J.M. op den; Jetten, M.S.M.; Strous, M.

    2006-01-01

    Modern agriculture has accelerated biological methane and nitrogen cycling on a global scale. Freshwater sediments often receive increased downward fluxes of nitrate from agricultural runoff and upward fluxes of methane generated by anaerobic decomposition. In theory, prokaryotes should be

  5. Removal of Arsenite from Water by Ce-Al-Fe Trimetal Oxide Adsorbent: Kinetics, Isotherms, and Thermodynamics

    Directory of Open Access Journals (Sweden)

    Cuizhen Sun

    2016-01-01

    Full Text Available Ce-Al-Fe trimetal oxide adsorbent was prepared. The morphology characteristics of the new adsorbent were analysed by the transmission electron microscope (SEM method. The SEM results implied its ability in the adsorption of As (III. To verify the analyses, bench-scale experiments were performed for the removal of As (III from water. In the experiments of adsorption, As (III adsorption capacity of the trimetal oxide adsorbent was presented significantly higher than activated aluminium oxide and activated carbon. As (III adsorption kinetics resembled pseudo-second-order adsorption mode. When initial As (III concentration was 3, 8, and 10 mg·L−1, the maximum adsorption capacity achieved was 1.48, 3.73, and 5.12 mg·g−1, respectively. In addition, the experimental adsorption data were described well by the Freundlich adsorption isotherm model at 20, 30, and 40°C. The enthalpy change (ΔS, the standard free energy (ΔG, and entropy change (ΔH indicated that the nature of As (III adsorption was exothermic and spontaneous with increasing randomness on the interface of solid and liquid. And the adsorption mechanism can be interpreted as chemisorption with As (III multilayer coverage formation on the adsorbent surface.

  6. Antioxidant Potential of Spirulina platensis Mitigates Oxidative Stress and Reprotoxicity Induced by Sodium Arsenite in Male Rats.

    Science.gov (United States)

    Bashandy, Samir A E; El Awdan, Sally A; Ebaid, Hossam; Alhazza, Ibrahim M

    2016-01-01

    The present study aimed to examine the protective role of Spirulina platensis (S. platensis) against arsenic-induced testicular oxidative damage in rats. Arsenic (in the form of NaAsO2 at a dose of 6.3 mg/kg body weight for 8 weeks) caused a significant accumulation of arsenic in testicular tissues as well as a decrease in the levels of testicular superoxide dismutase (SOD), catalase (CAT), reduced glutathione, and zinc. Moreover, it significantly decreased plasma testosterone, luteinizing hormone (LH), triiodothyronine (T3), and thyroxine (T4) levels and reduced sperm motility and sperm count. Arsenic (AS) led to a significant increase in testicular malondialdehyde (MDA), tumour necrosis factor alpha (TNF-α), nitric oxide (NO), and sperm abnormalities. S. platensis at a dose of 300 mg/kg was found to attenuate As-induced oxidative stress, testicular damage, and sperm abnormalities by its potent antioxidant activity. S. platensis may represent a potential therapeutic option to protect the testicular tissue from arsenic intoxication.

  7. Adsorption of arsenite and selenite using an inorganic ion exchanger based on Fe–Mn hydrous oxide

    KAUST Repository

    Szlachta, Małgorzata

    2012-01-01

    The adsorption behaviour and mechanism of As(III) and Se(IV) oxyanion uptake using a mixed inorganic adsorbent were studied. The novel adsorbent, based on Fe(III)-Mn(III) hydrous oxides and manganese(II) carbonate, was synthesised using a hydrothermal precipitation approach in the presence of urea. The inorganic ion exchanger exhibited a high selectivity and adsorptive capacity towards As(III) (up to 47.6mg/g) and Se(IV) (up to 29.0mg/g), even at low equilibrium concentration. Although pH effects were typical for anionic species (i.e., the adsorption decreased upon pH increase), Se(IV) was more sensitive to pH changes than As(III). The rates of adsorption of both oxyanions were high. Fourier transform infrared (FTIR) and X-ray photoelectron spectroscopy (XPS) studies showed that the ion exchange adsorption of both anions took place via OH - groups, mainly from Fe(III) but also Mn(III) hydrous oxides. MnCO 3 did not contribute directly to As(III) and Se(IV) removal. A higher adsorptive capacity of the developed material towards As(III) was partly due to partial As(III) oxidation during adsorption. © 2011 Elsevier Inc.

  8. Anaerobic Benzene Oxidation via Phenol in Geobacter metallireducens

    Science.gov (United States)

    Tremblay, Pier-Luc; Chaurasia, Akhilesh Kumar; Smith, Jessica A.; Bain, Timothy S.; Lovley, Derek R.

    2013-01-01

    Anaerobic activation of benzene is expected to represent a novel biochemistry of environmental significance. Therefore, benzene metabolism was investigated in Geobacter metallireducens, the only genetically tractable organism known to anaerobically degrade benzene. Trace amounts (benzene to carbon dioxide with the reduction of Fe(III). Phenol was not detected in cell-free controls or in Fe(II)- and benzene-containing cultures of Geobacter sulfurreducens, a Geobacter species that cannot metabolize benzene. The phenol produced in G. metallireducens cultures was labeled with 18O during growth in H218O, as expected for anaerobic conversion of benzene to phenol. Analysis of whole-genome gene expression patterns indicated that genes for phenol metabolism were upregulated during growth on benzene but that genes for benzoate or toluene metabolism were not, further suggesting that phenol was an intermediate in benzene metabolism. Deletion of the genes for PpsA or PpcB, subunits of two enzymes specifically required for the metabolism of phenol, removed the capacity for benzene metabolism. These results demonstrate that benzene hydroxylation to phenol is an alternative to carboxylation for anaerobic benzene activation and suggest that this may be an important metabolic route for benzene removal in petroleum-contaminated groundwaters, in which Geobacter species are considered to play an important role in anaerobic benzene degradation. PMID:24096430

  9. Nitrogen loss from soil through anaerobic ammonium oxidation coupled to iron reduction

    Science.gov (United States)

    Yang, Wendy H.; Weber, Karrie A.; Silver, Whendee L.

    2012-08-01

    The oxidation of ammonium is a key step in the nitrogen cycle, regulating the production of nitrate, nitrous oxide and dinitrogen. In marine and freshwater ecosystems, anaerobic ammonium oxidation coupled to nitrite reduction, termed anammox, accounts for up to 67% of dinitrogen production. Dinitrogen production through anaerobic ammonium oxidation has not been observed in terrestrial ecosystems, but the anaerobic oxidation of ammonium to nitrite has been observed in wetland soils under iron-reducing conditions. Here, we incubate tropical upland soil slurries with isotopically labelled ammonium and iron(III) to assess the potential for anaerobic ammonium oxidation coupled to iron(III) reduction, otherwise known as Feammox, in these soils. We show that Feammox can produce dinitrogen, nitrite or nitrate in tropical upland soils. Direct dinitrogen production was the dominant Feammox pathway, short-circuiting the nitrogen cycle and resulting in ecosystem nitrogen losses. Rates were comparable to aerobic nitrification and to denitrification, the latter being the only other process known to produce dinitrogen in terrestrial ecosystems. We suggest that Feammox could fuel nitrogen losses in ecosystems rich in poorly crystalline iron minerals, with low or fluctuating redox conditions.

  10. Trace methane oxidation and the methane dependency of sulfate reduction in anaerobic granular sludge

    KAUST Repository

    Meulepas, Roel J.W.

    2010-05-01

    This study investigates the oxidation of labeled methane (CH4) and the CH4 dependence of sulfate reduction in three types of anaerobic granular sludge. In all samples, 13C-labeled CH4 was anaerobically oxidized to 13C-labeled CO2, while net endogenous CH4 production was observed. Labeled-CH4 oxidation rates followed CH4 production rates, and the presence of sulfate hampered both labeled-CH4 oxidation and methanogenesis. Labeled-CH4 oxidation was therefore linked to methanogenesis. This process is referred to as trace CH4 oxidation and has been demonstrated in methanogenic pure cultures. This study shows that the ratio between labeled-CH4 oxidation and methanogenesis is positively affected by the CH4 partial pressure and that this ratio is in methanogenic granular sludge more than 40 times higher than that in pure cultures of methanogens. The CH4 partial pressure also positively affected sulfate reduction and negatively affected methanogenesis: a repression of methanogenesis at elevated CH4 partial pressures confers an advantage to sulfate reducers that compete with methanogens for common substrates, formed from endogenous material. The oxidation of labeled CH 4 and the CH4 dependence of sulfate reduction are thus not necessarily evidence of anaerobic oxidation of CH4 coupled to sulfate reduction. © 2010 Federation of European Microbiological Societies.

  11. Anaerobic oxidation of methane above gas hydrates at Hydrate Ridge, NE Pacific Ocean

    DEFF Research Database (Denmark)

    Treude, T.; Boetius, A.; Knittel, K.

    2003-01-01

    At Hydrate Ridge (HR), Cascadia convergent margin, surface sediments contain massive gas hydrates formed from methane that ascends together with fluids along faults from deeper reservoirs. Anaerobic oxidation of methane (AOM), mediated by a microbial consortium of archaea and sulfate-reducing bac......At Hydrate Ridge (HR), Cascadia convergent margin, surface sediments contain massive gas hydrates formed from methane that ascends together with fluids along faults from deeper reservoirs. Anaerobic oxidation of methane (AOM), mediated by a microbial consortium of archaea and sulfate...... oxidation was extremely low (2.1 mmol m(-2) d(-1)) and was probably due to aerobic oxidation of methane. SR was fueled largely by methane at flow-impacted sites, but exceeded AOM in some cases, most likely due to sediment heterogeneity. At the Acharax field, SR was decoupled from methane oxidation...

  12. [Geochemical characteristics of the carbonate constructions formed during microbial oxidation of methane under anaerobic conditions].

    Science.gov (United States)

    Lein, A Iu; Ivanov, M V; Pimenov, N V; Gulin, M B

    2002-01-01

    The aragonite constructions of the Black Sea are formed in a stable anaerobic zone and are a perfect object to study the natural mechanism of anaerobic methane oxidation. The most probable pathway of methane oxidation is its methanogen-mediated reaction with bicarbonates, dissolved in seawater, with the formation of water and acetate, which is then consumed by other components of the anaerobic community. Comparison of the delta 13C values of carbonate minerals and organic matter once more demonstrated that the formation of the organic matter of biomass is accompanied by intense fractionation of carbon isotopes, as a result of which the total organic matter of biomass acquires an extremely light isotopic composition, characterized by delta 13C values as low as -83.8@1000.

  13. Anaerobic oxidation of methane in grassland soils used for cattle husbandry

    Czech Academy of Sciences Publication Activity Database

    Bannert, A.; Bogen, C.; Esperschütz, J.; Koubová, Anna; Buegger, F.; Fischer, D.; Radl, V.; Fuss, R.; Chroňáková, Alica; Elhottová, Dana; Šimek, Miloslav; Schloter, M.

    2012-01-01

    Roč. 9, č. 10 (2012), s. 3891-3899 ISSN 1726-4170 R&D Projects: GA ČR GA526/09/1570 Institutional support: RVO:60077344 Keywords : anaerobic oxidation of methane * grassland soils * cattle husbandry Subject RIV: EH - Ecology, Behaviour Impact factor: 3.754, year: 2012

  14. Structural identification of ladderane and other membrane lipids of planctomycetes capable of anaerobic ammonium oxidation (anammox)

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Rijpstra, W.I.C.; Geenevasen, J.A.J.; Strous, M.; Jetten, M.S.M.

    2005-01-01

    The membrane lipid composition of planctomycetes capable of the anaerobic oxidation of ammonium (anammox), i.e. Candidatus ‘Brocadia anammoxidans’ and Candidatus ‘Kuenenia stuttgartiensis’, was shown to be composed mainly of so-called ladderane lipids. These lipids are comprised of three to five

  15. Present and past contribution of anaerobic ammonium oxidation to nitrogen cycling as revealed by ladderane lipids

    NARCIS (Netherlands)

    Jaeschke, A.

    2009-01-01

    Anammox, the anaerobic oxidation of ammonium to dinitrogen gas with nitrite as the electron acceptor, constitutes a novel route to convert biologically available (fixed) nitrogen to gaseous N2. This process is mediated by specific bacteria belonging to the Planctomycetes that were initially

  16. Present and past contribution of anaerobic ammonium oxidation to nitrogen cycling as revealed by ladderane lipids

    NARCIS (Netherlands)

    Jaeschke, Andrea

    2009-01-01

    Abstract Anammox, the anaerobic oxidation of ammonium to dinitrogen gas with nitrite as the electron acceptor, constitutes a novel route to convert biologically available (fixed) nitrogen to gaseous N2. This process is mediated by specific bacteria belonging to the Planctomycetes that were initially

  17. Anaerobic oxidation of methane in an iron-rich Danish freshwater lake sediment

    DEFF Research Database (Denmark)

    Nordi, Katrin á; Thamdrup, Bo; Schubert, Carsten J.

    2013-01-01

    Freshwater systems are identified as one of the main natural methane sources, but little is known about the importance of anaerobic oxidation of methane (AOM) in these systems. We investigated AOM in a lake sediment characterized by a high reactive iron content, normal sulfate concentrations in t...

  18. Biogeochemical evidence that thermophilic Archaea mediate the anaerobic oxidation of methane

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Schouten, S.; Wakeham, S.G.; Hopmans, E.C.

    2003-01-01

    Distributions and isotopic analyses of lipids from sediment cores at a hydrothermally active site in the Guaymas Basin with a steep sedimentary temperature gradient revealed the presence of archaea that oxidize methane anaerobically. The presence of strongly 13C-depleted lipids at greater depths in

  19. Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments: a modeling perspective

    NARCIS (Netherlands)

    Regnier, P.; Dale, A.W.; Arndt, S.; LaRowe, D.E.; Mogollon, J.M.; Van Cappellen, P.

    2011-01-01

    Recent developments in the quantitativemodeling of methane dynamics and anaerobic oxidation of methane (AOM) in marine sediments are critically reviewed. The first part of the review begins with a comparison of alternative kinetic models for AOM. The roles of bioenergetic limitations, intermediate

  20. Fe(II) oxidation kinetics and Fe hydroxyphosphate precipitation upon aeration of anaerobic (ground)water

    NARCIS (Netherlands)

    van der Grift, B.|info:eu-repo/dai/nl/373433484; Griffioen, J.|info:eu-repo/dai/nl/091129265; Behrends, T.|info:eu-repo/dai/nl/30484358X; Wassen, M.J.|info:eu-repo/dai/nl/07165710X; Schot, P.P.|info:eu-repo/dai/nl/08071563X; Osté, Leonard

    2015-01-01

    Exfiltration of anaerobic Fe-rich groundwater into surface water plays an important role in controlling the transport of phosphate (P) from agricultural areas to the sea. Previous laboratory and field studies showed that Fe(II) oxidation upon aeration leads to effective immobilization of dissolved P

  1. Microbial Selenate Reduction Driven by a Denitrifying Anaerobic Methane Oxidation Biofilm.

    Science.gov (United States)

    Luo, Jing-Huan; Chen, Hui; Hu, Shihu; Cai, Chen; Yuan, Zhiguo; Guo, Jianhua

    2018-04-03

    Anaerobic oxidation of methane (AOM) plays a crucial role in controlling the flux of methane from anoxic environments. Sulfate-, nitrite-, nitrate-, and iron-dependent methane oxidation processes have been considered to be responsible for the AOM activities in anoxic niches. We report that nitrate-reducing AOM microorganisms, enriched in a membrane biofilm bioreactor, are able to couple selenate reduction to AOM. According to ion chromatography, X-ray photoelectron spectroscopy, and long-term bioreactor performance, we reveal that soluble selenate was reduced to nanoparticle elemental selenium. High-throughput 16S rRNA gene sequencing indicates that Candidatus Methanoperedens and Candidatus Methylomirabilis remained the only known methane-oxidizing microorganisms after nitrate was switched to selenate, suggesting that these organisms could couple anaerobic methane oxidation to selenate reduction. Our findings suggest a possible link between the biogeochemical selenium and methane cycles.

  2. Effects of arsenite and UVA-1 radiation on calcineurin signaling

    Energy Technology Data Exchange (ETDEWEB)

    Musson, Ruben E.A., E-mail: rm@ream.nl [Department of Clinical Chemistry, Leiden University Medical Center (Netherlands); Department of Toxicogenetics, Leiden University Medical Center (Netherlands); Mullenders, Leon H.F. [Department of Toxicogenetics, Leiden University Medical Center (Netherlands); Smit, Nico P.M. [Department of Clinical Chemistry, Leiden University Medical Center (Netherlands)

    2012-07-01

    Calcineurin is a Ca{sup 2+}-dependent serine/threonine phosphatase and the target of the immunosuppressive drugs cyclosporin and tacrolimus, which are used in transplant recipients to prevent rejection. Unfortunately, the therapeutic use of this drugs is complicated by a high incidence of skin malignancy, which has set off a number of studies into the role of calcineurin signaling in skin, particularly with respect to cell cycle control and DNA repair. Both UVA1 radiation and arsenic species are known to promote skin cancer development via production of reactive oxygen species. In light of the well-documented sensitivity of calcineurin to oxidative stress, we examined and compared the effects of UVA1 and arsenite on calcineurin signaling. In this paper, we show that physiologically relevant doses of UVA1 radiation and low micromolar concentrations of arsenite strongly inhibit calcineurin phosphatase activity in Jurkat and skin cells and decrease NFAT nuclear translocation in Jurkat cells. The effects on calcineurin signaling could be partly prevented by inhibition of NADPH oxidase in Jurkat cells or increased dismutation of superoxide in Jurkat and skin cells. In addition, both UVA1 and arsenite decreased NF-{kappa}B activity, although at lower concentrations, arsenite enhanced NF-{kappa}B activity. These data indicate that UVA1 and arsenite affect a signal transduction route of growingly acknowledged importance in skin and that calcineurin may serve as a potential link between ROS exposure and impaired tumor suppression.

  3. The inhibitory effects of free ammonia on ammonia oxidizing bacteria and nitrite oxidizing bacteria under anaerobic condition.

    Science.gov (United States)

    Qian, Wenting; Peng, Yongzhen; Li, Xiyao; Zhang, Qiong; Ma, Bin

    2017-11-01

    The free ammonia (FA) inhibition on ammonia oxidizing bacteria (AOB) and nitrite oxidizing bacteria (NOB) under anaerobic condition was investigated in this study. The results indicated that NOB was more sensitive to the FA anaerobic treatment than AOB. The FA anaerobic inhibition on nitrifier gradually heightened with the increase of FA concentration. Accompanied with FA concentration increase from 0 to 16.82mgNH 3 -N·L -1 (the highest concentration adopted in this study), the activity of AOB reduced by 15.9%, while NOB decreased by 29.2%. After FA anaerobic treatment, nitrite was accumulated during nitrification. However, the nitrite accumulation disappeared on the sixth cycle of activity recovery tests with excessive aeration. Based on this result, a novel strategy for achieving nitritation is proposed, which involves recirculating a portion of the activated sludge through a side-line sludge treatment unit, where the sludge is subjected to treatment with FA under anaerobic condition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. One-step synthesis of sea urchin-like alpha-MnO2 using KIO4 as the oxidant and its oxidation of arsenite

    NARCIS (Netherlands)

    Wang, M.X.; Tan, W.F.; Feng, X.H.; Koopal, L.K.; Liu, M.M.; Liu, F.

    2012-01-01

    Among several types of manganese oxides alpha-MnO2 is the most active due to its good catalytic, adsorption and ion exchange properties. Sea urchin-like alpha-MnO2 particles were synthesized by a one-step chemistry route at room temperature using MnSO4 in combination with KIO4 as oxidant. The

  5. Isotope effects associated with the anaerobic oxidation of sulfide by the purple photosynthetic bacterium, Chromatium vinosum

    International Nuclear Information System (INIS)

    Fry, B.; Gest, H.; Hayes, J.M.

    1984-01-01

    Small inverse isotope effects of 1-3 per thousand were consistently observed for the oxidation of sulfide to elemental sulfur during anaerobic photometabolism by Chromatium vinosum. The inverse fractionation can be accounted for by an equilibrium isotope effect between H 2 S and HS - , and may indicate that C. vinosum (and other photosynthetic bacteria) utilizes H 2 S rather than HS - as the substrate during sulfide oxidation. (Auth.)

  6. Advances in methods for detection of anaerobic ammonium oxidizing (anammox) bacteria

    OpenAIRE

    Li, Meng; Gu, Ji-Dong

    2011-01-01

    Anaerobic ammonium oxidation (anammox), the biochemical process oxidizing ammonium into dinitrogen gas using nitrite as an electron acceptor, has only been recognized for its significant role in the global nitrogen cycle not long ago, and its ubiquitous distribution in a wide range of environments has changed our knowledge about the contributors to the global nitrogen cycle. Currently, several groups of methods are used in detection of anammox bacteria based on their physiological and biochem...

  7. Effect of methanogenic substrates on anaerobic oxidation of methane and sulfate reduction by an anaerobic methanotrophic enrichment.

    KAUST Repository

    Meulepas, Roel J W

    2010-05-06

    Anaerobic oxidation of methane (AOM) coupled to sulfate reduction (SR) is assumed to be a syntrophic process, in which methanotrophic archaea produce an interspecies electron carrier (IEC), which is subsequently utilized by sulfate-reducing bacteria. In this paper, six methanogenic substrates are tested as candidate-IECs by assessing their effect on AOM and SR by an anaerobic methanotrophic enrichment. The presence of acetate, formate or hydrogen enhanced SR, but did not inhibit AOM, nor did these substrates trigger methanogenesis. Carbon monoxide also enhanced SR but slightly inhibited AOM. Methanol did not enhance SR nor did it inhibit AOM, and methanethiol inhibited both SR and AOM completely. Subsequently, it was calculated at which candidate-IEC concentrations no more Gibbs free energy can be conserved from their production from methane at the applied conditions. These concentrations were at least 1,000 times lower can the final candidate-IEC concentration in the bulk liquid. Therefore, the tested candidate-IECs could not have been produced from methane during the incubations. Hence, acetate, formate, methanol, carbon monoxide, and hydrogen can be excluded as sole IEC in AOM coupled to SR. Methanethiol did inhibit AOM and can therefore not be excluded as IEC by this study.

  8. Optimization of process performance in a granule-based anaerobic ammonium oxidation (anammox) upflow anaerobic sludge blanket (UASB) reactor.

    Science.gov (United States)

    Xing, Bao-Shan; Guo, Qiong; Zhang, Zheng-Zhe; Zhang, Jue; Wang, Hui-Zhong; Jin, Ren-Cun

    2014-10-01

    In this study, the individual and interactive effects of influent substrate concentration (TNinf), hydraulic retention time (HRT) and upflow velocity (Vup) on the performance of anaerobic ammonium oxidation (anammox) in a granule-based upflow anaerobic sludge blanket (UASB) reactor were investigated by employing response surface methodology (RSM) with a central composite design. The purpose of this work was to identify the optimal combination of TNinf, HRT and Vup with respect to the nitrogen removal efficiency (NRE) and nitrogen removal rate (NRR). The reduced cubic models developed for the responses indicated that the optimal conditions corresponded to a TNinf content of 644-728mgNL(-1), an HRT of 0.90-1.25h, and a Vup of 0.60-1.79mh(-1). The results of confirmation trials were similar to the predictions of the developed models. These results provide useful information for improving the nitrogen removal performance of the anammox process in a UASB reactor. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Microbial reefs in the Black Sea fueled by anaerobic oxidation of methane.

    Science.gov (United States)

    Michaelis, Walter; Seifert, Richard; Nauhaus, Katja; Treude, Tina; Thiel, Volker; Blumenberg, Martin; Knittel, Katrin; Gieseke, Armin; Peterknecht, Katharina; Pape, Thomas; Boetius, Antje; Amann, Rudolf; Jørgensen, Bo Barker; Widdel, Friedrich; Peckmann, Jörn; Pimenov, Nikolai V; Gulin, Maksim B

    2002-08-09

    Massive microbial mats covering up to 4-meter-high carbonate buildups prosper at methane seeps in anoxic waters of the northwestern Black Sea shelf. Strong 13C depletions indicate an incorporation of methane carbon into carbonates, bulk biomass, and specific lipids. The mats mainly consist of densely aggregated archaea (phylogenetic ANME-1 cluster) and sulfate-reducing bacteria (Desulfosarcina/Desulfococcus group). If incubated in vitro, these mats perform anaerobic oxidation of methane coupled to sulfate reduction. Obviously, anaerobic microbial consortia can generate both carbonate precipitation and substantial biomass accumulation, which has implications for our understanding of carbon cycling during earlier periods of Earth's history.

  10. Microbial Reefs in the Black Sea Fueled by Anaerobic Oxidation of Methane

    Science.gov (United States)

    Michaelis, Walter; Seifert, Richard; Nauhaus, Katja; Treude, Tina; Thiel, Volker; Blumenberg, Martin; Knittel, Katrin; Gieseke, Armin; Peterknecht, Katharina; Pape, Thomas; Boetius, Antje; Amann, Rudolf; Jørgensen, Bo Barker; Widdel, Friedrich; Peckmann, Jörn; Pimenov, Nikolai V.; Gulin, Maksim B.

    2002-08-01

    Massive microbial mats covering up to 4-meter-high carbonate buildups prosper at methane seeps in anoxic waters of the northwestern Black Sea shelf. Strong 13C depletions indicate an incorporation of methane carbon into carbonates, bulk biomass, and specific lipids. The mats mainly consist of densely aggregated archaea (phylogenetic ANME-1 cluster) and sulfate-reducing bacteria (Desulfosarcina/Desulfococcus group). If incubated in vitro, these mats perform anaerobic oxidation of methane coupled to sulfate reduction. Obviously, anaerobic microbial consortia can generate both carbonate precipitation and substantial biomass accumulation, which has implications for our understanding of carbon cycling during earlier periods of Earth's history.

  11. Anaerobic methane oxidation coupled to denitrification is the dominant methane sink in a deep lake

    DEFF Research Database (Denmark)

    Deutzmann, Joerg S.; Stief, Peter; Brandes, Josephin

    2014-01-01

    Anaerobic methane oxidation coupled to denitrification, also known as “nitrate/nitrite-dependent anaerobic methane oxidation” (n-damo), was discovered in 2006. Since then, only a few studies have identified this process and the associated microorganisms in natural environments. In aquatic sediments......, the close proximity of oxygen- and nitrate-consumption zones can mask n-damo as aerobic methane oxidation. We therefore investigated the vertical distribution and the abundance of denitrifying methanotrophs related to Candidatus Methylomirabilis oxyfera with cultivation-independent molecular techniques...... in the sediments of Lake Constance. Additionally, the vertical distribution of methane oxidation and nitrate consumption zones was inferred from high-resolution microsensor profiles in undisturbed sediment cores. M. oxyfera-like bacteria were virtually absent at shallow-water sites (littoral sediment) and were...

  12. Anaerobic Oxidation of Benzene by the Hyperthermophilic Archaeon Ferroglobus placidus▿†

    Science.gov (United States)

    Holmes, Dawn E.; Risso, Carla; Smith, Jessica A.; Lovley, Derek R.

    2011-01-01

    Anaerobic benzene oxidation coupled to the reduction of Fe(III) was studied in Ferroglobus placidus in order to learn more about how such a stable molecule could be metabolized under strict anaerobic conditions. F. placidus conserved energy to support growth at 85°C in a medium with benzene provided as the sole electron donor and Fe(III) as the sole electron acceptor. The stoichiometry of benzene loss and Fe(III) reduction, as well as the conversion of [14C]benzene to [14C]carbon dioxide, was consistent with complete oxidation of benzene to carbon dioxide with electron transfer to Fe(III). Benzoate, but not phenol or toluene, accumulated at low levels during benzene metabolism, and [14C]benzoate was produced from [14C]benzene. Analysis of gene transcript levels revealed increased expression of genes encoding enzymes for anaerobic benzoate degradation during growth on benzene versus growth on acetate, but genes involved in phenol degradation were not upregulated during growth on benzene. A gene for a putative carboxylase that was more highly expressed in benzene- than in benzoate-grown cells was identified. These results suggest that benzene is carboxylated to benzoate and that phenol is not an important intermediate in the benzene metabolism of F. placidus. This is the first demonstration of a microorganism in pure culture that can grow on benzene under strict anaerobic conditions and for which there is strong evidence for degradation of benzene via clearly defined anaerobic metabolic pathways. Thus, F. placidus provides a much-needed pure culture model for further studies on the anaerobic activation of benzene in microorganisms. PMID:21742914

  13. Sulfate reduction and anaerobic methane oxidation in Black Sea sediments

    DEFF Research Database (Denmark)

    Jørgensen, BB; Weber, A.; Zopfi, J.

    2001-01-01

    Beyond the shelf break at ca. 150 m water depth, sulfate reduction is the only important process of organic matter oxidation in Black Sea sediments from the surface down to the sulfate-methane transition at 2-4 m depth. Sulfate reduction rates were measured experimentally with (SO42-)-S-35...... the process was very sluggish with turnover times of methane within the sulfate-methane transition zone of 20 yr or more. (C) 2001 Elsevier Science Ltd. All rights reserved.Beyond the shelf break at ca. 150 m water depth, sulfate reduction is the only important process of organic matter oxidation in Black Sea...... oxidation accounted for 7-11% of the total sulfate reduction in slope and deep-sea sediments. Although this methane-driven sulfate reduction shaped the entire sulfate gradient, it was only equivalent to the sulfate reduction in the uppermost 1.5 cm of surface sediment. Methane oxidation was complete, yet...

  14. Differential sensitivities of cellular XPA and PARP-1 to arsenite inhibition and zinc rescue.

    Science.gov (United States)

    Ding, Xiaofeng; Zhou, Xixi; Cooper, Karen L; Huestis, Juliana; Hudson, Laurie G; Liu, Ke Jian

    2017-09-15

    Arsenite directly binds to the zinc finger domains of the DNA repair protein poly (ADP ribose) polymerase (PARP)-1, and inhibits PARP-1 activity in the base excision repair (BER) pathway. PARP inhibition by arsenite enhances ultraviolet radiation (UVR)-induced DNA damage in keratinocytes, and the increase in DNA damage is reduced by zinc supplementation. However, little is known about the effects of arsenite and zinc on the zinc finger nucleotide excision repair (NER) protein xeroderma pigmentosum group A (XPA). In this study, we investigated the difference in response to arsenite exposure between XPA and PARP-1, and the differential effectiveness of zinc supplementation in restoring protein DNA binding and DNA damage repair. Arsenite targeted both XPA and PARP-1 in human keratinocytes, resulting in zinc loss from each protein and a pronounced decrease in XPA and PARP-1 binding to chromatin as demonstrated by Chip-on-Western assays. Zinc effectively restored DNA binding of PARP-1 and XPA to chromatin when zinc concentrations were equal to those of arsenite. In contrast, zinc was more effective in rescuing arsenite-augmented direct UVR-induced DNA damage than oxidative DNA damage. Taken together, our findings indicate that arsenite interferes with PARP-1 and XPA binding to chromatin, and that zinc supplementation fully restores DNA binding activity to both proteins in the cellular context. Interestingly, rescue of arsenite-inhibited DNA damage repair by supplemental zinc was more sensitive for DNA damage repaired by the XPA-associated NER pathway than for the PARP-1-dependent BER pathway. This study expands our understanding of arsenite's role in DNA repair inhibition and co-carcinogenesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Microbial Oxidation of Iron Sulfides in Anaerobic Environments

    DEFF Research Database (Denmark)

    Vaclavkova, Sarka

    Abstract (shortened): Iron sulfides (FeSx), representing 0.04-10 % of Danish dry soil weight, oxidize in a presence of oxygen, releasing sulfuric acid and free iron. Environmental impact of FeSx oxidation is commonly seen on agricultural sites cultivated by drainage as acid sulfate soil formation...... presented in this PhD study may be important for the future planning of agricultural NO3--buffer zones and may be used as an input into the reactive transport models, predicting the behavior of NO3- in the aquatic environments...

  16. Anaerobic ammonium oxidation by anammox bacteria in the Black Sea RID B-8834-2011

    DEFF Research Database (Denmark)

    Kuypers, MMM; Sliekers, AO; Lavik, G.

    2003-01-01

    ). Here we provide evidence for bacteria that anaerobically oxidize ammonium with nitrite to N(2) in the world's largest anoxic basin, the Black Sea. Phylogenetic analysis of 16S ribosomal RNA gene sequences shows that these bacteria are related to members of the order Planctomycetales performing...... the anammox (anaerobic ammonium oxidation) process in ammonium-removing bioreactors(3). Nutrient profiles, fluorescently labelled RNA probes, (15)N tracer experiments and the distribution of specific 'ladderane' membrane lipids(4) indicate that ammonium diffusing upwards from the anoxic deep water is consumed...... by anammox bacteria below the oxic zone. This is the first time that anammox bacteria have been identified and directly linked to the removal of fixed inorganic nitrogen in the environment. The widespread occurrence of ammonium consumption in suboxic marine settings(5-7) indicates that anammox might...

  17. Anaerobic oxidation of methane coupled to thiosulfate reduction in a biotrickling filter.

    Science.gov (United States)

    Cassarini, Chiara; Rene, Eldon R; Bhattarai, Susma; Esposito, Giovanni; Lens, Piet N L

    2017-09-01

    Microorganisms from an anaerobic methane oxidizing sediment were enriched with methane gas as the substrate in a biotrickling filter (BTF) using thiosulfate as electron acceptor for 213days. Thiosulfate disproportionation to sulfate and sulfide were the dominating sulfur conversion process in the BTF and the sulfide production rate was 0.5mmoll -1 day -1 . A specific group of sulfate reducing bacteria (SRB), belonging to the Desulforsarcina/Desulfococcus group, was enriched in the BTF. The BTF biomass showed maximum sulfate reduction rate (0.38mmoll -1 day -1 ) with methane as sole electron donor, measured in the absence of thiosulfate in the BTF. Therefore, a BTF fed with thiosulfate as electron acceptor can be used to enrich SRB of the DSS group and activate the inoculum for anaerobic oxidation of methane coupled to sulfate reduction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Co-occurrence of nitrite-dependent anaerobic methane oxidizing and anaerobic ammonia oxidizing bacteria in two Qinghai-Tibetan saline lakes

    Science.gov (United States)

    Yang, Jian; Jiang, Hongchen; Wu, Geng; Hou, Weiguo; Sun, Yongjuan; Lai, Zhongping; Dong, Hailiang

    2012-12-01

    Nitrite-dependent anaerobic methane-oxidizing (n-damo) bacteria and anaerobic ammonia oxidizing (anammox) bacteria are two groups of microorganisms involved in global carbon and nitrogen cycling. In order to test whether the n-damo and anammox bacteria co-occur in natural saline environments, the DNA and cDNA samples obtained from the surficial sediments of two saline lakes (with salinity of 32 and 84 g/L, respectively) on the Tibetan Plateau were PCR-amplified with the use of anammox- and n-damo-specific primer sets, followed by clone library construction and phylogenetic analysis. DNA and cDNA-based clones affiliated with n-damo and anammox bacteria were successfully retrieved from the two samples, indicating that these two groups of bacteria can co-occur in natural saline environments with salinity as high as 84 g/L. Our finding has great implications for our understanding of the global carbon and nitrogen cycle in nature.

  19. Multiple controls affect arsenite oxidase gene expression in Herminiimonas arsenicoxydans

    Directory of Open Access Journals (Sweden)

    Coppée Jean-Yves

    2010-02-01

    Full Text Available Abstract Background Both the speciation and toxicity of arsenic are affected by bacterial transformations, i.e. oxidation, reduction or methylation. These transformations have a major impact on environmental contamination and more particularly on arsenic contamination of drinking water. Herminiimonas arsenicoxydans has been isolated from an arsenic- contaminated environment and has developed various mechanisms for coping with arsenic, including the oxidation of As(III to As(V as a detoxification mechanism. Results In the present study, a differential transcriptome analysis was used to identify genes, including arsenite oxidase encoding genes, involved in the response of H. arsenicoxydans to As(III. To get insight into the molecular mechanisms of this enzyme activity, a Tn5 transposon mutagenesis was performed. Transposon insertions resulting in a lack of arsenite oxidase activity disrupted aoxR and aoxS genes, showing that the aox operon transcription is regulated by the AoxRS two-component system. Remarkably, transposon insertions were also identified in rpoN coding for the alternative N sigma factor (σ54 of RNA polymerase and in dnaJ coding for the Hsp70 co-chaperone. Western blotting with anti-AoxB antibodies and quantitative RT-PCR experiments allowed us to demonstrate that the rpoN and dnaJ gene products are involved in the control of arsenite oxidase gene expression. Finally, the transcriptional start site of the aoxAB operon was determined using rapid amplification of cDNA ends (RACE and a putative -12/-24 σ54-dependent promoter motif was identified upstream of aoxAB coding sequences. Conclusion These results reveal the existence of novel molecular regulatory processes governing arsenite oxidase expression in H. arsenicoxydans. These data are summarized in a model that functionally integrates arsenite oxidation in the adaptive response to As(III in this microorganism.

  20. Rapid anaerobic benzene oxidation with a variety of chelated Fe(III) forms

    Science.gov (United States)

    Lovley, D.R.; Woodward, J.C.; Chapelle, F.H.

    1996-01-01

    Fe(III) chelated to such compounds as EDTA, N-methyliminodiacetie acid, ethanol diglycine, humic acids, and phosphates stimulated benzene oxidation coupled to Fe(III) reduction in anaerobic sediments from a petroleum- contaminated aquifer as effectively as or more effectively than nitrilotriacetic acid did in a previously demonstrated stimulation experiment. These results indicate that many forms of chelated Fe(III) might be applicable to aquifer remediation.

  1. Present and past contribution of anaerobic ammonium oxidation to nitrogen cycling as revealed by ladderane lipids

    OpenAIRE

    Jaeschke, Andrea

    2009-01-01

    Abstract Anammox, the anaerobic oxidation of ammonium to dinitrogen gas with nitrite as the electron acceptor, constitutes a novel route to convert biologically available (fixed) nitrogen to gaseous N2. This process is mediated by specific bacteria belonging to the Planctomycetes that were initially discovered in waste water systems. Within the nine years after their discovery, anammox bacteria have been identified as key players in the global nitrogen cycle. They have been found in different...

  2. Stable carbon isotopic fractionations associated with inorganic carbon fixation by anaerobic ammonium-oxidizing bacteria.

    Science.gov (United States)

    Schouten, Stefan; Strous, Marc; Kuypers, Marcel M M; Rijpstra, W Irene C; Baas, Marianne; Schubert, Carsten J; Jetten, Mike S M; Sinninghe Damsté, Jaap S

    2004-06-01

    Isotopic analyses of Candidatus "Brocadia anammoxidans," a chemolithoautotrophic bacterium that anaerobically oxidizes ammonium (anammox), show that it strongly fractionates against (13)C; i.e., lipids are depleted by up to 47 per thousand versus CO(2). Similar results were obtained for the anammox bacterium Candidatus "Scalindua sorokinii," which thrives in the anoxic water column of the Black Sea, suggesting that different anammox bacteria use identical carbon fixation pathways, which may be either the Calvin cycle or the acetyl coenzyme A pathway.

  3. Importance and controls of anaerobic ammonium oxidation influenced by riverbed geology

    OpenAIRE

    Lansdown, K.; McKew, B. A.; Whitby, C.; Heppell, C. M.; Dumbrell, A. J.; Binley, Andrew Mark; Olde, L.; Trimmer, Mark

    2016-01-01

    Rivers are an important global sink for excess bioavailable nitrogen: they convert approximately 40% of terrestrial N-runoff per year (~47 Tg) to biologically unavailable N2 gas and return it to the atmosphere.1 Currently, riverine N2 production is conceptualised and modelled as denitrification.2-4 The contribution of anaerobic ammonium oxidation (or anammox), an alternate pathway of N2 production important in marine environments, is not well understood.5,6 Here we use in situ and laboratory ...

  4. Thermal wet oxidation improves anaerobic biodegradability of raw and digested biowaste

    DEFF Research Database (Denmark)

    Lissens, G.; Thomsen, Anne Belinda; De Baere, L.

    2004-01-01

    yield and digestion kinetics and permitted lignin utilization during a subsequent second digestion. The increase of the specific methane yield for the full-scale biogas plant by applying thermal wet oxidation was 35-40%, showing that there is still a considerable amount of methane that can be harvested...... profits. The objective of this research was to enhance the anaerobic biodegradability and methane yields from different biowastes (food waste, yard waste, and digested biowaste already treated in a full-scale biogas plant (DRANCO, Belgium)) by assessing thermal wet oxidation. The biodegradability...

  5. Trace metal pyritization variability in response to mangrove soil aerobic and anaerobic oxidation processes.

    Science.gov (United States)

    Machado, W; Borrelli, N L; Ferreira, T O; Marques, A G B; Osterrieth, M; Guizan, C

    2014-02-15

    The degree of iron pyritization (DOP) and degree of trace metal pyritization (DTMP) were evaluated in mangrove soil profiles from an estuarine area located in Rio de Janeiro (SE Brazil). The soil pH was negatively correlated with redox potential (Eh) and positively correlated with DOP and DTMP of some elements (Mn, Cu and Pb), suggesting that pyrite oxidation generated acidity and can affect the importance of pyrite as a trace metal-binding phase, mainly in response to spatial variability in tidal flooding. Besides these aerobic oxidation effects, results from a sequential extraction analyses of reactive phases evidenced that Mn oxidized phase consumption in reaction with pyrite can be also important to determine the pyritization of trace elements. Cumulative effects of these aerobic and anaerobic oxidation processes were evidenced as factors affecting the capacity of mangrove soils to act as a sink for trace metals through pyritization processes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Enzymes involved in the anaerobic oxidation of n-alkanes: from methane to long-chain paraffins

    Directory of Open Access Journals (Sweden)

    Amy V. Callaghan

    2013-05-01

    Full Text Available Anaerobic microorganisms play key roles in the biogeochemical cycling of methane and non-methane alkanes. To date, there appear to be at least three proposed mechanisms of anaerobic methane oxidation (AOM. The first pathway is mediated by consortia of archaeal anaerobic methane oxidizers and sulfate-reducing bacteria via ‘reverse methanogenesis’ and is catalyzed by a homologue of methyl-coenzyme M reductase. The second pathway is also mediated by anaerobic methane oxidizers and sulfate-reducing bacteria, wherein the archaeal members catalyze both methane oxidation and sulfate reduction and zero-valent sulfur is a key intermediate. The third AOM mechanism is a nitrite-dependent, intra-aerobic pathway described for the denitrifying bacterium, ‘Candidatus Methylomirabilis oxyfera.’ It is hypothesized that AOM proceeds via reduction of nitrite to nitric oxide, followed by the conversion of two nitric oxide molecules to dinitrogen and molecular oxygen. The latter can be used to functionalize the methane via a particulate methane monooxygenase. With respect to non-methane alkanes, there also appears to be novel mechanisms of activation. The most well-described pathway is the addition of non-methane alkanes across the double bond of fumarate to form alkyl-substituted succinates via the putative glycyl radical enzyme, alkylsuccinate synthase (also known as methylalkylsuccinate synthase. Other proposed mechanisms include anaerobic hydroxylation via ethylbenzene dehydrogenase-like enzymes and an ‘intra-aerobic’ denitrification pathway similar to that described for ‘M. oxyfera.’

  7. Illumina sequencing-based analysis of a microbial community enriched under anaerobic methane oxidation condition coupled to denitrification revealed coexistence of aerobic and anaerobic methanotrophs.

    Science.gov (United States)

    Siniscalchi, Luciene Alves Batista; Leite, Laura Rabelo; Oliveira, Guilherme; Chernicharo, Carlos Augusto Lemos; de Araújo, Juliana Calabria

    2017-07-01

    Methane is produced in anaerobic environments, such as reactors used to treat wastewaters, and can be consumed by methanotrophs. The composition and structure of a microbial community enriched from anaerobic sewage sludge under methane-oxidation condition coupled to denitrification were investigated. Denaturing gradient gel electrophoresis (DGGE) analysis retrieved sequences of Methylocaldum and Chloroflexi. Deep sequencing analysis revealed a complex community that changed over time and was affected by methane concentration. Methylocaldum (8.2%), Methylosinus (2.3%), Methylomonas (0.02%), Methylacidiphilales (0.45%), Nitrospirales (0.18%), and Methanosarcinales (0.3%) were detected. Despite denitrifying conditions provided, Nitrospirales and Methanosarcinales, known to perform anaerobic methane oxidation coupled to denitrification (DAMO) process, were in very low abundance. Results demonstrated that aerobic and anaerobic methanotrophs coexisted in the reactor together with heterotrophic microorganisms, suggesting that a diverse microbial community was important to sustain methanotrophic activity. The methanogenic sludge was a good inoculum to enrich methanotrophs, and cultivation conditions play a selective role in determining community composition.

  8. Hepatoprotective Role of Hydrangea macrophylla against Sodium Arsenite-Induced Mitochondrial-Dependent Oxidative Stress via the Inhibition of MAPK/Caspase-3 Pathways

    Directory of Open Access Journals (Sweden)

    Md Rashedunnabi Akanda

    2017-07-01

    Full Text Available Sodium arsenite (NaAsO2 has been recognized as a worldwide health concern. Hydrangea macrophylla (HM is used as traditional Chinese medicine possessing antioxidant activities. The study was performed to investigate the therapeutic role and underlying molecular mechanism of HM on NaAsO2-induced toxicity in human liver cancer (HepG2 cells and liver in mice. The hepatoprotective role of HM in HepG2 cells was assessed by using 3-(4,5-dimethylthiazol-2-Yl-2,5-diphenyltetrazolium bromide (MTT, reactive oxygen species (ROS, and lactate dehydrogenase (LDH assays. Histopathology, lipid peroxidation, serum biochemistry, quantitative real-time polymerase chain reaction (qPCR and Western blot analyses were performed to determine the protective role of HM against NaAsO2 intoxication in liver tissue. In this study, we found that co-treatment with HM significantly attenuated the NaAsO2-induced cell viability loss, intracellular ROS, and LDH release in HepG2 cells in a dose-dependent manner. Hepatic histopathology, lipid peroxidation, and the serum biochemical parameters alanine aminotransferase (ALT and aspartate aminotransferase (AST were notably improved by HM. HM effectively downregulated the both gene and protein expression level of the mitogen-activated protein kinase (MAPK cascade. Moreover, HM well-regulated the Bcl-2-associated X protein (Bax/B-cell lymphoma-2 (Bcl-2 ratio, remarkably suppressed the release of cytochrome c, and blocked the expression of the post-apoptotic transcription factor caspase-3. Therefore, our study provides new insights into the hepatoprotective role of HM through its reduction in apoptosis, which likely involves in the modulation of MAPK/caspase-3 signaling pathways.

  9. Anaerobic methane oxidation in low-organic content methane seep sediments

    Science.gov (United States)

    Pohlman, John W.; Riedel, Michael; Bauer, James E.; Canuel, Elizabeth A.; Paull, Charles K.; Lapham, Laura; Grabowski, Kenneth S.; Coffin, Richard B.; Spence, George D.

    2013-01-01

    Sulfate-dependent anaerobic oxidation of methane (AOM) is the key sedimentary microbial process limiting methane emissions from marine sediments and methane seeps. In this study, we investigate how the presence of low-organic content sediment influences the capacity and efficiency of AOM at Bullseye vent, a gas hydrate-bearing cold seep offshore of Vancouver Island, Canada. The upper 8 m of sediment contains 14C. A fossil origin for the DIC precludes remineralization of non-fossil OM present within the sulfate zone as a significant contributor to pore water DIC, suggesting that nearly all sulfate is available for anaerobic oxidation of fossil seep methane. Methane flux from the SMT to the sediment water interface in a diffusion-dominated flux region of Bullseye vent was, on average, 96% less than at an OM-rich seep in the Gulf of Mexico with a similar methane flux regime. Evidence for enhanced methane oxidation capacity within OM-poor sediments has implications for assessing how climate-sensitive reservoirs of sedimentary methane (e.g., gas hydrate) will respond to ocean warming, particularly along glacially-influenced mid and high latitude continental margins.

  10. Treatment of slaughter wastewater by coagulation sedimentation-anaerobic biological filter and biological contact oxidation process

    Science.gov (United States)

    Sun, M.; Yu, P. F.; Fu, J. X.; Ji, X. Q.; Jiang, T.

    2017-08-01

    The optimal process parameters and conditions for the treatment of slaughterhouse wastewater by coagulation sedimentation-AF - biological contact oxidation process were studied to solve the problem of high concentration organic wastewater treatment in the production of small and medium sized slaughter plants. The suitable water temperature and the optimum reaction time are determined by the experiment of precipitation to study the effect of filtration rate and reflux ratio on COD and SS in anaerobic biological filter and the effect of biofilm thickness and gas water ratio on NH3-N and COD in biological contact oxidation tank, and results show that the optimum temperature is 16-24°C, reaction time is 20 min in coagulating sedimentation, the optimum filtration rate is 0.6 m/h, and the optimum reflux ratio is 300% in anaerobic biological filter reactor. The most suitable biological film thickness range of 1.8-2.2 mm and the most suitable gas water ratio is 12:1-14:1 in biological contact oxidation pool. In the coupling process of continuous operation for 80 days, the average effluent’s mass concentrations of COD, TP and TN were 15.57 mg/L, 40 mg/L and 0.63 mg/L, the average removal rates were 98.93%, 86.10%, 88.95%, respectively. The coupling process has stable operation effect and good effluent quality, and is suitable for the industrial application.

  11. Diversity of aerobic and anaerobic ammonia-oxidizing bacteria in marine sponges.

    Science.gov (United States)

    Mohamed, Naglaa M; Saito, Keiko; Tal, Yossi; Hill, Russell T

    2010-01-01

    Aerobic ammonia-oxidizing bacteria (AAOB) are known to have an important function in the marine nitrogen cycle. Anaerobic ammonium oxidation (anammox) carried out by some members of Planctomycetales is also an important process in marine ecosystems. Ammonia-monooxygenase gene (amoA) fragments were amplified to investigate the potential for nitrification and the diversity of the AAOB in two marine sponges Ircinia strobilina and Mycale laxissima. All of the AmoA sequences obtained from the two sponges clustered with the AmoA sequences of the Betaproteobacteria Nitrosospira spp. To investigate the anaerobic ammonia-oxidizing bacteria (AnAOB) in sponges, 16S rRNA gene fragments of Planctomycetales and anammox bacteria were also amplified with specific primers, and clone libraries were constructed. The Planctomycetales diversity detected in the two sponges was different. The Planctomycetales community in M. laxissima was affiliated with Pirellula, Planctomyces and anammox bacteria, while all of the I. strobilina Planctomycetales clones were solely affiliated with the candidate phylum 'Poribacteria'. Interestingly, sequences related to anammox genera were recovered only from M. laxissima. This is the first report of anammox bacteria in marine sponges. It is intriguing to find AAOB and AnAOB in M. laxissima, but the nature of their interaction with the sponge host and with each other remains unclear. This work further supports the potential of sponge-associated microorganisms for nitrification and sheds light on anammox as a new aspect of the nitrogen cycle in marine sponges.

  12. Development of Electroactive and Anaerobic Ammonium-Oxidizing (Anammox Biofilms from Digestate in Microbial Fuel Cells

    Directory of Open Access Journals (Sweden)

    Enea Gino Di Domenico

    2015-01-01

    Full Text Available Microbial Fuel cells (MFCs have been proposed for nutrient removal and energy recovery from different wastes. In this study the anaerobic digestate was used to feed H-type MFC reactors, one with a graphite anode preconditioned with Geobacter sulfurreducens and the other with an unconditioned graphite anode. The data demonstrate that the digestate acts as a carbon source, and even in the absence of anode preconditioning, electroactive bacteria colonise the anodic chamber, producing a maximum power density of 172.2 mW/m2. The carbon content was also reduced by up to 60%, while anaerobic ammonium oxidation (anammox bacteria, which were found in the anodic compartment of the reactors, contributed to nitrogen removal from the digestate. Overall, these results demonstrate that MFCs can be used to recover anammox bacteria from natural sources, and it may represent a promising bioremediation unit in anaerobic digestor plants for the simultaneous nitrogen removal and electricity generation using digestate as substrate.

  13. Bioenergetic Analysis of the Anaerobic Oxidation of Methane in Diverse Biogeochemical Environments

    Science.gov (United States)

    Larowe, D.; Dale, A.; Regnier, P.

    2006-12-01

    The microorganisms responsible for the oxidation of methane in anoxic marine sediments constitute the largest sink of methane on Earth. It is generally accepted that the mechanism by which this process occurs involves a consortium of microbes that couple the reduction of sulfate to the oxidation of methane. However, whether this process occurs directly or through one of several reactive intermediate species such as hydrogen, acetate, and/or formate is a matter of debate. To better understand the biogeochemistry of the anaerobic oxidation of methane (AOM), we have calculated and compared the energetics of a number of candidate reactions that could supply AOM-microbial communities with enough energy to synthesize ATP in different environments. We present the results of thermodynamic computations quantifying the oxidation of methane to CO2 and H2, and, alternatively, to a variety of carbon species with intermediate nominal oxidation states. The potential role that these species have in the reduction of sulfate in three distinct organic-rich, anoxic sediment types is then investigated: 1) a shallow, coastal lagoon (Cape Lookout Bight, North Carolina, USA), 2) deep Black Sea sediments, and 3) a hydrothermal environment (Guaymas Basin, Gulf of California, Mexico). Furthermore, we compare the energetics of these reactions to the energy required to synthesize ATP from ADP and phosphate in situ. The results of these calculations can be used to better understand the temperature, pressure, and bulk compositional constraints on organisms responsible for oxidizing methane in anoxic environments.

  14. Anaerobic oxidation of short-chain alkanes in hydrothermal sediments: potential influences on sulfur cycling and microbial diversity

    Directory of Open Access Journals (Sweden)

    Melissa M Adams

    2013-05-01

    Full Text Available Short-chain alkanes play a substantial role in carbon and sulfur cycling at hydrocarbon-rich environments globally, yet few studies have examined the metabolism of ethane (C2, propane (C3, and butane (C4 in anoxic sediments in contrast to methane (C1. In hydrothermal vent systems, short-chain alkanes are formed over relatively short geological time scales via thermogenic processes and often exist at high concentrations. The sediment-covered hydrothermal vent systems at Middle Valley (MV, Juan de Fuca Ridge are an ideal site for investigating the anaerobic oxidation of C1-C4 alkanes, given the elevated temperatures and dissolved hydrocarbon species characteristic of these metalliferous sediments. We examined whether MV microbial communities oxidized C1-C4 alkanes under mesophilic to thermophilic sulfate-reducing conditions. Here we present data from discrete temperature (25, 55, and 75 °C anaerobic batch reactor incubations of MV sediments supplemented with individual alkanes. Co-registered alkane consumption and sulfate reduction (SR measurements provide clear evidence for C1-C4 alkane oxidation linked to SR over time and across temperatures. In these anaerobic batch reactor sediments, 16S ribosomal RNA pyrosequencing revealed that Deltaproteobacteria, particularly a novel sulfate-reducing lineage, were the likely phylotypes mediating the oxidation of C2-C4 alkanes. Maximum C1-C4 alkane oxidation rates occurred at 55 °C, which reflects the mid-core sediment temperature profile and corroborates previous studies of rate maxima for the anaerobic oxidation of methane (AOM. Of the alkanes investigated, C3 was oxidized at the highest rate over time, then C4, C2, and C1, respectively. The implications of these results are discussed with respect to the potential competition between the anaerobic oxidation of C2-C4 alkanes with AOM for available oxidants and the influence on the fate of C1 derived from these hydrothermal systems.

  15. Anaerobic ammonium-oxidizing bacteria gain antibiotic resistance during long-term acclimatization.

    Science.gov (United States)

    Zhang, Zheng-Zhe; Zhang, Qian-Qian; Guo, Qiong; Chen, Qian-Qian; Jiang, Xiao-Yan; Jin, Ren-Cun

    2015-09-01

    Three broad-spectrum antibiotics, amoxicillin (AMX), florfenicol (FF) and sulfamethazine (SMZ), that inhibit bacteria via different target sites, were selected to evaluate the acute toxicity and long-term effects on anaerobic ammonium oxidation (anammox) granules. The specific anammox activity (SAA) levels reduced by approximately half within the first 3 days in the presence of antibiotics but no nitrite accumulation was observed in continuous-flow experiments. However, the SAA levels and heme c content gradually recovered as the antibiotic concentrations increased. Extracellular polymeric substances (EPS) analysis suggested that anaerobic ammonium-oxidizing bacteria gradually developed a better survival strategy during long-term acclimatization, which reduced the antibiotic stress via increased EPS secretion that provided a protective 'cocoon.' In terms of nitrogen removal efficiency, anammox granules could resist 60 mg-AMX L(-1), 10 mg-FF L(-1) and 100 mg-SMZ L(-1). This study supported the feasibility of using anammox granules to treat antibiotic-containing wastewater. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Potential roles of anaerobic ammonium and methane oxidation in the nitrogen cycle of wetland ecosystems.

    Science.gov (United States)

    Zhu, Guibing; Jetten, Mike S M; Kuschk, Peter; Ettwig, Katharina F; Yin, Chengqing

    2010-04-01

    Anaerobic ammonium oxidation (anammox) and anaerobic methane oxidation (ANME coupled to denitrification) with nitrite as electron acceptor are two of the most recent discoveries in the microbial nitrogen cycle. Currently the anammox process has been relatively well investigated in a number of natural and man-made ecosystems, while ANME coupled to denitrification has only been observed in a limited number of freshwater ecosystems. The ubiquitous presence of anammox bacteria in marine ecosystems has changed our knowledge of the global nitrogen cycle. Up to 50% of N(2) production in marine sediments and oxygen-depleted zones may be attributed to anammox bacteria. However, there are only few indications of anammox in natural and constructed freshwater wetlands. In this paper, the potential role of anammox and denitrifying methanotrophic bacteria in natural and artificial wetlands is discussed in relation to global warming. The focus of the review is to explore and analyze if suitable environmental conditions exist for anammox and denitrifying methanotrophic bacteria in nitrogen-rich freshwater wetlands.

  17. Silymarin protects plasma membrane and acrosome integrity in sperm treated with sodium arsenite

    Directory of Open Access Journals (Sweden)

    Farzaneh Eskandari

    2016-01-01

    Full Text Available Background: Exposure to arsenic is associated with impairment of male reproductive function by inducing oxidative stress. Silymarin with an antioxidant property scavenges free radicals. Objective: The aim of this study was to investigate if silymarin can prevent the adverse effects of sodium arsenite on ram sperm plasma membrane and acrosome integrity. Materials and Methods: Ram epidydimal spermatozoa were divided into five groups: spermatozoa at 0 hr, spermatozoa at 180 min (control, spermatozoa treated with silymarin (20 μM + sodium arsenite (10 μM for 180 min, spermatozoa treated with sodium arsenite (10 μM for 180 min and spermatozoa treated with silymarin (20 μM for 180 min. Double staining of Hoechst and propidium iodide was performed to evaluate sperm plasma membrane integrity, whereas comassie brilliant blue staining was used to assess acrosome integrity. Results: Plasma membrane (p< 0.001 and acrosome integrity (p< 0.05 of the spermatozoa were significantly reduced in sodium arsenite group compared to the control. In silymarin + sodium arsenite group, silymarin was able to significantly (p< 0.001 ameliorate the adverse effects of sodium arsenite on these sperm parameters compared to sodium arsenite group. The incubation of sperm for 180 min (control group showed a significant (p< 0.001 decrease in acrosome integrity compared to the spermatozoa at 0 hour. The application of silymarin alone for 180 min could also significantly (p< 0.05 increase sperm acrosome integrity compared to the control. Conclusion: Silymarin as a potent antioxidant could compensate the adverse effects of sodium arsenite on the ram sperm plasma membrane and acrosome integrity.

  18. Anaerobic methane oxidation coupled to denitrification is the dominant methane sink in a deep lake

    Science.gov (United States)

    Deutzmann, Joerg S.; Stief, Peter; Brandes, Josephin; Schink, Bernhard

    2014-01-01

    Anaerobic methane oxidation coupled to denitrification, also known as “nitrate/nitrite-dependent anaerobic methane oxidation” (n-damo), was discovered in 2006. Since then, only a few studies have identified this process and the associated microorganisms in natural environments. In aquatic sediments, the close proximity of oxygen- and nitrate-consumption zones can mask n-damo as aerobic methane oxidation. We therefore investigated the vertical distribution and the abundance of denitrifying methanotrophs related to Candidatus Methylomirabilis oxyfera with cultivation-independent molecular techniques in the sediments of Lake Constance. Additionally, the vertical distribution of methane oxidation and nitrate consumption zones was inferred from high-resolution microsensor profiles in undisturbed sediment cores. M. oxyfera-like bacteria were virtually absent at shallow-water sites (littoral sediment) and were very abundant at deep-water sites (profundal sediment). In profundal sediment, the vertical distribution of M. oxyfera-like bacteria showed a distinct peak in anoxic layers that coincided with the zone of methane oxidation and nitrate consumption, a strong indication for n-damo carried out by M. oxyfera-like bacteria. Both potential n-damo rates calculated from cell densities (660–4,890 µmol CH4⋅m−2⋅d−1) and actual rates calculated from microsensor profiles (31–437 µmol CH4⋅m−2⋅d−1) were sufficiently high to prevent methane release from profundal sediment solely by this process. Additionally, when nitrate was added to sediment cores exposed to anoxic conditions, the n-damo zone reestablished well below the sediment surface, completely preventing methane release from the sediment. We conclude that the previously overlooked n-damo process can be the major methane sink in stable freshwater environments if nitrate is available in anoxic zones. PMID:25472842

  19. Identification and Heterologous Expression of Genes Involved in Anaerobic Dissimilatory Phosphite Oxidation by Desulfotignum phosphitoxidans▿

    Science.gov (United States)

    Simeonova, Diliana Dancheva; Wilson, Marlena Marie; Metcalf, William W.; Schink, Bernhard

    2010-01-01

    Desulfotignum phosphitoxidans is a strictly anaerobic, Gram-negative bacterium that utilizes phosphite as the sole electron source for homoacetogenic CO2 reduction or sulfate reduction. A genomic library of D. phosphitoxidans, constructed using the fosmid vector pJK050, was screened for clones harboring the genes involved in phosphite oxidation via PCR using primers developed based on the amino acid sequences of phosphite-induced proteins. Sequence analysis of two positive clones revealed a putative operon of seven genes predicted to be involved in phosphite oxidation. Four of these genes (ptxD-ptdFCG) were cloned and heterologously expressed in Desulfotignum balticum, a related strain that cannot use phosphite as either an electron donor or as a phosphorus source. The ptxD-ptdFCG gene cluster was sufficient to confer phosphite uptake and oxidation ability to the D. balticum host strain but did not allow use of phosphite as an electron donor for chemolithotrophic growth. Phosphite oxidation activity was measured in cell extracts of D. balticum transconjugants, suggesting that all genes required for phosphite oxidation were cloned. Genes of the phosphite gene cluster were assigned putative functions on the basis of sequence analysis and enzyme assays. PMID:20622064

  20. Identification and heterologous expression of genes involved in anaerobic dissimilatory phosphite oxidation by Desulfotignum phosphitoxidans.

    Science.gov (United States)

    Simeonova, Diliana Dancheva; Wilson, Marlena Marie; Metcalf, William W; Schink, Bernhard

    2010-10-01

    Desulfotignum phosphitoxidans is a strictly anaerobic, Gram-negative bacterium that utilizes phosphite as the sole electron source for homoacetogenic CO2 reduction or sulfate reduction. A genomic library of D. phosphitoxidans, constructed using the fosmid vector pJK050, was screened for clones harboring the genes involved in phosphite oxidation via PCR using primers developed based on the amino acid sequences of phosphite-induced proteins. Sequence analysis of two positive clones revealed a putative operon of seven genes predicted to be involved in phosphite oxidation. Four of these genes (ptxD-ptdFCG) were cloned and heterologously expressed in Desulfotignum balticum, a related strain that cannot use phosphite as either an electron donor or as a phosphorus source. The ptxD-ptdFCG gene cluster was sufficient to confer phosphite uptake and oxidation ability to the D. balticum host strain but did not allow use of phosphite as an electron donor for chemolithotrophic growth. Phosphite oxidation activity was measured in cell extracts of D. balticum transconjugants, suggesting that all genes required for phosphite oxidation were cloned. Genes of the phosphite gene cluster were assigned putative functions on the basis of sequence analysis and enzyme assays.

  1. Final Report: Molecular mechanisms and kinetics of microbial anaerobic nitrate-dependent U(IV) and Fe(II) oxidation

    Energy Technology Data Exchange (ETDEWEB)

    O' Day, Peggy A. [Univ. of California, Merced, CA (United States); Asta, Maria P. [Univ. of California, Merced, CA (United States); Kanematsu, Masakazu [Univ. of California, Merced, CA (United States); Beller, Harry [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Zhou, Peng [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Steefel, Carl [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-02-27

    In this project, we combined molecular genetic, spectroscopic, and microscopic techniques with kinetic and reactive transport studies to describe and quantify biotic and abiotic mechanisms underlying anaerobic, nitrate-dependent U(IV) and Fe(II) oxidation, which influences the long-term efficacy of in situ reductive immobilization of uranium at DOE sites. In these studies, Thiobacillus denitrificans, an autotrophic bacterium that catalyzes anaerobic U(IV) and Fe(II) oxidation, was used to examine coupled oxidation-reduction processes under either biotic (enzymatic) or abiotic conditions in batch and column experiments with biogenically produced UIVO2(s). Synthesis and quantitative analysis of coupled chemical and transport processes were done with the reactive transport modeling code Crunchflow. Research focused on identifying the primary redox proteins that catalyze metal oxidation, environmental factors that influence protein expression, and molecular-scale geochemical factors that control the rates of biotic and abiotic oxidation.

  2. Sorption of Arsenite onto Mackinawite Coated Sand

    Science.gov (United States)

    Gallegos, T. J.; Hayes, K. F.; Abriola, L. M.

    2004-05-01

    Arsenic contamination of groundwater is a widespread problem affecting aquifers in the United States as well as abroad. Recent strengthening of the US EPA MCL for arsenic has prompted the need for technology capable of removing both arsenite and arsenate from solution. Arsenite, the more toxic form of arsenic, is more difficult to remove from anoxic zones in the subsurface. Studies by others have demonstrated the affinity of some types of iron sulfides for arsenite, such as troilite, pyrite, amorphous iron sulfide and mackinawite. However, these studies have not provided a comprehensive investigation of the macroscopic behavior of arsenite in the presence of crystalline mackinawite in a form that can be readily applied to real-world treatment technologies. This study examines the behavior of arsenite in the presence of mackinawite coated sand. PH edge results demonstrate that arsenite sorption onto mackinawite coated sand increases with increasing pH, reaching maximum removal at pH 10. Arsenite removal, albeit slight, occurring below pH 5 is independent of pH indicative of a different removal mechanism. Isotherm studies show that at low concentrations, removal is Langmuirian in nature. Arsenite sorption abruptly converts to linear behavior at high concentrations, possibly attributed to the saturation of the monolayer. Ionic strength effects were assessed by comparing pH edge data developed for three different concentrations of NaCl background electrolyte solution. Increases in ionic strength enhance the removal of arsenite from solution, suggesting possible inner-sphere surface complexation removal mechanisms. Information gathered in this study can be used to further develop surface complexation models to describe and predict reactivity of arsenite in the presence of mackinawite coated sands in anoxic regions. Mackinawite coated sands investigated here may provide a feasible reactive medium for implementation in above-ground sorption reactors or subsurface

  3. Transport, fate, and long-term impacts of metal oxide nanoparticles on the stability of an anaerobic methanogenic system with anaerobic granular sludge.

    Science.gov (United States)

    Li, Huiting; Cui, Fuyi; Liu, Zhiquan; Li, Dapeng

    2017-06-01

    The fate and long-term effect of different metal oxide (TiO 2 , CuO and ZnO) nanoparticles (NPs) on anaerobic granular sludge (AGS) was evaluated in an anaerobic methanogenic system. Operation stability and structural characteristics of the granules were compared, the metabolism changes in the microbial community were quantified, and NPs fate were investigated. CuO NPs had greatest toxic effect on AGS after extended exposure, whereas ZnO NPs benefited methanogenesis temporarily (no more than 5d). The inhibition on AGS caused by NPs varied due to the unique structure of AGS and different toxic mechanism. Structural changes of AGS provided new evidence that tested NPs have different toxicity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Electron acceptors for anaerobic oxidation of methane drive microbial community structure and diversity in mud volcanoes.

    Science.gov (United States)

    Ren, Ge; Ma, Anzhou; Zhang, Yanfen; Deng, Ye; Zheng, Guodong; Zhuang, Xuliang; Zhuang, Guoqiang; Fortin, Danielle

    2018-04-06

    Mud volcanoes (MVs) emit globally significant quantities of methane into the atmosphere, however, methane cycling in such environments is not yet fully understood, as the roles of microbes and their associated biogeochemical processes have been largely overlooked. Here, we used data from high-throughput sequencing of microbial 16S rRNA gene amplicons from six MVs in the Junggar Basin in northwest China to quantify patterns of diversity and characterize the community structure of archaea and bacteria. We found anaerobic methanotrophs and diverse sulfate- and iron-reducing microbes in all of the samples, and the diversity of both archaeal and bacterial communities was strongly linked to the concentrations of sulfate, iron, and nitrate, which could act as electron acceptors in anaerobic oxidation of methane (AOM). The impacts of sulfate/iron/nitrate on AOM in the MVs were verified by microcosm experiments. Further, two representative MVs were selected to explore the microbial interactions based on phylogenetic molecular ecological networks. The sites showed distinct network structures, key species and microbial interactions, with more complex and numerous linkages between methane-cycling microbes and their partners being observed in the iron/sulfate-rich MV. These findings suggest that electron acceptors are important factors driving the structure of microbial communities in these methane-rich environments. This article is protected by copyright. All rights reserved. © 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.

  5. Ultrastructure and viral metagenome of bacteriophages from an anaerobic methane oxidizing Methylomirabilis bioreactor enrichment culture

    Directory of Open Access Journals (Sweden)

    Lavinia Gambelli

    2016-11-01

    Full Text Available With its capacity for anaerobic methane oxidation and denitrification, the bacterium Methylomirabilis oxyfera plays an important role in natural ecosystems. Its unique physiology can be exploited for more sustainable wastewater treatment technologies. However, operational stability of full-scale bioreactors can experience setbacks due to, for example, bacteriophage blooms. By shaping microbial communities through mortality, horizontal gene transfer and metabolic reprogramming, bacteriophages are important players in most ecosystems. Here, we analysed an infected Methylomirabilis sp. bioreactor enrichment culture using (advanced electron microscopy, viral metagenomics and bioinformatics. Electron micrographs revealed four different viral morphotypes, one of which was observed to infect Methylomirabilis cells. The infected cells contained densely packed ~55 nm icosahedral bacteriophage particles with a putative internal membrane. Various stages of virion assembly were observed. Moreover, during the bacteriophage replication, the host cytoplasmic membrane appeared extremely patchy, which suggests that the bacteriophages may use host bacterial lipids to build their own putative internal membrane. The viral metagenome contained 1.87 million base pairs of assembled viral sequences, from which five putative complete viral genomes were assembled and manually annotated. Using bioinformatics analyses, we could not identify which viral genome belonged to the Methylomirabilis- infecting bacteriophage, in part because the obtained viral genome sequences were novel and unique to this reactor system. Taken together these results show that new bacteriophages can be detected in anaerobic cultivation systems and that the effect of bacteriophages on the microbial community in these systems is a topic for further study.

  6. Are there multiple mechanisms of anaerobic sulfur oxidation with ferric iron in Acidithiobacillus ferrooxidans?

    Science.gov (United States)

    Kucera, Jiri; Pakostova, Eva; Lochman, Jan; Janiczek, Oldrich; Mandl, Martin

    2016-06-01

    To clarify the pathway of anaerobic sulfur oxidation coupled with dissimilatory ferric iron reduction in Acidithiobacillus ferrooxidans strain CCM 4253 cells, we monitored their energy metabolism gene transcript profiles. Several genes encoding electron transporters involved in aerobic iron and sulfur respiration were induced during anaerobic growth of ferrous iron-grown cells. Most sulfur metabolism genes were either expressed at the basal level or their expression declined. However, transcript levels of genes assumed to be responsible for processing of elemental sulfur and other sulfur intermediates were elevated at the beginning of the growth period. In contrast, genes with predicted functions in formation of hydrogen sulfide and sulfate were significantly repressed. The main proposed mechanism involves: outer membrane protein Cyc2 (assumed to function as a terminal ferric iron reductase); periplasmic electron shuttle rusticyanin; c4-type cytochrome CycA1; the inner membrane cytochrome bc1 complex I; and the quinone pool providing connection to the sulfur metabolism machinery, consisting of heterodisulfide reductase, thiosulfate:quinone oxidoreductase and tetrathionate hydrolase. However, an alternative mechanism seems to involve a high potential iron-sulfur protein Hip, c4-type cytochrome CycA2 and inner membrane cytochrome bc1 complex II. Our results conflict with findings regarding the type strain, indicating strain- or phenotype-dependent pathway variation. Copyright © 2016 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  7. Candidatus "Scalindua brodaea", spec. nov., Candidatus "Scalindua wagneri", spec. nov., two new species of anaerobic ammonium oxidizing bacteria

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Schmid, M.; Walsh, K.; Webb, R.; Rijpstra, W.I.C.; Pas-Schoonen, K. van de; Verbruggen, M.J.; Hill, T.; Moffett, B.; Fuerst, J.; Schouten, S.; Harris, James; Shaw, P.; Jetten, M.S.M.; Strous, M.

    2003-01-01

    Anaerobic ammonium oxidation (anammox) is both a promising process in wastewater treatment and a long overlooked microbial physiology that can contribute significantly to biological nitrogen cycling in the world's oceans. Anammox is mediated by a monophyletic group of bacteria that branches deeply

  8. More evidence that anaerobic oxidation of methane is prevalent in soils: Is it time to upgrade our biogeochemical models?

    Czech Academy of Sciences Publication Activity Database

    Gauthier, M.; Bradley, R.L.; Šimek, Miloslav

    2015-01-01

    Roč. 80, January (2015), s. 167-174 ISSN 0038-0717 R&D Projects: GA ČR GA526/09/1570 Institutional support: RVO:60077344 Keywords : anaerobic oxidation of methane * isotope dilution * peatland soil * shoreline soil * acid sulfate soil * alternative electron acceptors Subject RIV: EH - Ecology, Behaviour Impact factor: 4.152, year: 2015

  9. Sulfidogenic biotreatment of synthetic acid mine drainage and sulfide oxidation in anaerobic baffled reactor.

    Science.gov (United States)

    Bekmezci, Ozan K; Ucar, Deniz; Kaksonen, Anna H; Sahinkaya, Erkan

    2011-05-30

    The treatment of synthetic acid mine drainage (AMD) water (pH 3.0-6.5) containing sulfate (3.0-3.5 g L(-1)) and various metals (Co, Cu, Fe, Mn, Ni, and Zn) was studied in an ethanol-fed sulfate-reducing 4-compartment anaerobic baffled reactor (ABR) at 32°C. The reactor was operated for 160 days at different chemical oxygen demand (COD)/sulfate ratios, hydraulic retention times (HRT), pH, and metal concentrations to study the robustness of the process. The last compartment of the reactor was aerated at different rates to study the bio-oxidation of sulfide to elemental sulfur. The highest sulfate reduction efficiency (88%) was obtained with a feed sulfate concentration of 3.5 g L(-1), COD/sulfate mass ratio of 0.737, feed pH of 3.0 and HRT of 2 days without aeration in the 4th compartment. The corresponding COD removal efficiency was about 92%. The alkalinity produced in the sulfidogenic ethanol oxidation neutralized the acidic mine water from pH 3.0-4.5 to pH 7.0-8.0. Effluent soluble and total heavy metal concentrations were substantially reduced with removal efficiencies generally higher than 99%, except for Mn (25-77%). Limited aeration in the 4th compartment of ABR promoted incomplete oxidation of sulfide to elemental sulfur rather than complete oxidation to sulfate. Depending on the aeration rate and HRT, 32-74% of produced sulfide was oxidized to elemental sulfur. This study demonstrates that by optimizing operating conditions, sulfate reduction, metal removal, alkalinity generation, and excess sulfide oxidation can be achieved in a single ABR treating AMD. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Quantification of the methane concentration using anaerobic oxidation of methane coupled to extracellular electron transfer.

    Science.gov (United States)

    Gao, Yaohuan; Ryu, Hodon; Rittmann, Bruce E; Hussain, Abid; Lee, Hyung-Sool

    2017-10-01

    A biofilm anode acclimated with growth media containing acetate, then acetate+methane, and finally methane alone produced electrical current in a microbial electrochemical cell (MxC) fed with methane as the sole electron donor. Geobacter was the dominant genus for the bacterial domain (93%) in the biofilm anode, while methanogens (Methanocorpusculum labreanum and Methanosaeta concilii) accounted for 82% of the total archaeal clones in the biofilm. Fluorescence in situ hybridization (FISH) imaging clearly showed a biofilm of mixed bacteria and archaea, suggesting a syntrophic interaction between them for performing anaerobic oxidation of methane (AOM) in the biofilm anode. Measured cumulative coulombs were linearly correlated to the methane-gas concentration in the range of 10-99.97% (R 2 ≥0.99) when the measurement was sustained for at least 50min Thus, cumulative coulombs over 50min could be used to quantify the methane concentration in gas samples. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. The role of paraffin oil on the interaction between denitrifying anaerobic methane oxidation and Anammox processes.

    Science.gov (United States)

    Fu, Liang; Ding, Zhao-Wei; Ding, Jing; Zhang, Fang; Zeng, Raymond J

    2015-10-01

    Methane is sparingly soluble in water, resulting in a slow reaction rate in the denitrifying anaerobic methane oxidation (DAMO) process. The slow rate limits the feasibility of research to examine the interaction between the DAMO and the anaerobic ammonium oxidation (Anammox) process. In this study, optimized 5 % (v/v) paraffin oil was added as a second liquid phase to improve methane solubility in a reactor containing DAMO and Anammox microbes. After just addition, methane solubility was found to increase by 25 % and DAMO activity was enhanced. After a 100-day cultivation, the paraffin reactor showed almost two times higher consumption rates of NO3 (-) (0.2268 mmol/day) and NH4 (+) (0.1403 mmol/day), compared to the control reactor without paraffin oil. The microbes tended to distribute in the oil-water interface. The quantitative (q) PCR result showed the abundance of gene copies of DAMO archaea, DAMO bacteria, and Anammox bacteria in the paraffin reactor were higher than those in the control reactor after 1 month. Fluorescence in situ hybridization revealed that the percentages of the three microbes were 55.5 and 77.6 % in the control and paraffin reactors after 100 days, respectively. A simple model of mass balance was developed to describe the interactions between DAMO and Anammox microbes and validate the activity results. A mechanism was proposed to describe the possible way that paraffin oil enhanced DAMO activity. It is quite clear that paraffin oil enhances not only DAMO activity but also Anammox activity via the interaction between them; both NO3 (-) and NH4 (+) consumption rates were about two times those of the control.

  12. Arsenic Transformation in Swine Wastewater with Low-Arsenic Content during Anaerobic Digestion

    Directory of Open Access Journals (Sweden)

    Weiwei Zhai

    2017-10-01

    Full Text Available In this study, the raw wastewater (RW, and effluents from the acidogenic phase (AP and methanogenic phase (MP in a swine wastewater treatment plant were collected to investigate the occurrence and transformation of arsenic (As, as well as the abundance of As metabolism genes during the anaerobic digestion (AD process. The results showed that total concentrations of As generally decreased by 33–71% after AD. Further analysis showed that the As species of the dissolved fractions were present mainly as dimethylarsinic acid (DMA, with arsenite (As(III and arsenate (As(V as the minor species. Moreover, real-time PCR (qPCR results showed that As metabolism genes (arsC, arsenate reduction gene; aioA, arsenite oxidation gene and arsM, arsenite methylation gene were highly abundant, with arsM being predominant among the metabolism genes. This study provides reliable evidence on As biotransformation in swine wastewater treatment process, suggesting that AD could be a valuable treatment to mitigate the risk of As in wastewater.

  13. Anaerobic Methane Oxidation Driven by Microbial Reduction of Natural Organic Matter in a Tropical Wetland.

    Science.gov (United States)

    Valenzuela, Edgardo I; Prieto-Davó, Alejandra; López-Lozano, Nguyen E; Hernández-Eligio, Alberto; Vega-Alvarado, Leticia; Juárez, Katy; García-González, Ana Sarahí; López, Mercedes G; Cervantes, Francisco J

    2017-06-01

    Wetlands constitute the main natural source of methane on Earth due to their high content of natural organic matter (NOM), but key drivers, such as electron acceptors, supporting methanotrophic activities in these habitats are poorly understood. We performed anoxic incubations using freshly collected sediment, along with water samples harvested from a tropical wetland, amended with 13 C-methane (0.67 atm) to test the capacity of its microbial community to perform anaerobic oxidation of methane (AOM) linked to the reduction of the humic fraction of its NOM. Collected evidence demonstrates that electron-accepting functional groups (e.g., quinones) present in NOM fueled AOM by serving as a terminal electron acceptor. Indeed, while sulfate reduction was the predominant process, accounting for up to 42.5% of the AOM activities, the microbial reduction of NOM concomitantly occurred. Furthermore, enrichment of wetland sediment with external NOM provided a complementary electron-accepting capacity, of which reduction accounted for ∼100 nmol 13 CH 4 oxidized · cm -3 · day -1 Spectroscopic evidence showed that quinone moieties were heterogeneously distributed in the wetland sediment, and their reduction occurred during the course of AOM. Moreover, an enrichment derived from wetland sediments performing AOM linked to NOM reduction stoichiometrically oxidized methane coupled to the reduction of the humic analogue anthraquinone-2,6-disulfonate. Microbial populations potentially involved in AOM coupled to microbial reduction of NOM were dominated by divergent biota from putative AOM-associated archaea. We estimate that this microbial process potentially contributes to the suppression of up to 114 teragrams (Tg) of CH 4 · year -1 in coastal wetlands and more than 1,300 Tg · year -1 , considering the global wetland area. IMPORTANCE The identification of key processes governing methane emissions from natural systems is of major importance considering the global warming

  14. Formation of single domain magnetite by green rust oxidation promoted by microbial anaerobic nitrate-dependent iron oxidation

    Science.gov (United States)

    Miot, Jennyfer; Li, Jinhua; Benzerara, Karim; Sougrati, Moulay Tahar; Ona-Nguema, Georges; Bernard, Sylvain; Jumas, Jean-Claude; Guyot, François

    2014-08-01

    Biomineralization of magnetite is a central geomicrobiological process that might have played a primordial role over Earth’s history, possibly leaving traces of life in the geological record or controlling trace metal(loid)s and organic pollutants mobility in modern environments. Magnetite biomineralization has been attributed to two main microbial pathways to date (namely magnetotactic bacteria and dissimilatory iron-reducing bacteria). Here, we uncover a new route of magnetite biomineralization involving the anaerobic nitrate-reducing iron(II) oxidizing bacterium Acidovorax sp. strain BoFeN1. Using transmission electron microscopy, scanning transmission X-ray microscopy, transmission Mössbauer spectroscopy and rock magnetic analyses, this strain is shown to promote the transformation of hydroxychloride green rust in equilibrium with dissolved Fe(II) to (1) periplasmic lepidocrocite (γ-FeOOH) and (2) extracellular magnetite, thus leading to strong redox heterogeneities at the nanometer scale. On the one hand, lepidocrocite was associated with protein moieties and exhibited an anisotropic texture, with the elongated axis parallel to the cell wall. On the other hand, magnetite crystals exhibited grain sizes and magnetic properties consistent with stable single domain particles. By comparison, abiotic controls led to a very slow (4 months vs. 2 days in BoFeN1 cultures) and incomplete oxidation of hydroxychloride green rust towards magnetite. As this abiotic magnetite exhibited the same size and magnetic properties (stable single domain particles) as magnetite produced in BoFeN1 cultures, only the co-occurrence of textured Fe(III)-oxides and magnetite, associated with the persistence of organic carbon molecules, might constitute valuable biosignatures to be looked for in the geological record. Our results furthermore contribute to a more complex picture of Fe redox cycling in the environment, providing an additional process of Fe(II)-bearing phase

  15. Hydroxylamine-dependent Anaerobic Ammonium Oxidation (Anammox) by “ Candidatus Brocadia sinica”

    KAUST Repository

    Oshiki, Mamoru

    2016-04-26

    Although metabolic pathways and associated enzymes of anaerobic ammonium oxidation (anammox) of “Ca. Kuenenia stuttgartiensis” have been studied, those of other anammox bacteria are still poorly understood. NO2- reduction to NO is considered to be the first step in the anammox metabolism of “Ca. K. stuttgartiensis”, however, “Ca. Brocadia” lacks the genes that encode canonical NO-forming nitrite reductases (NirS or NirK) in its genome, which is different from “Ca. K. stuttgartiensis”. Here, we studied the anammox metabolism of “Ca. Brocadia sinica”. 15N-tracer experiments demonstrated that “Ca. B. sinica” cells could reduce NO2- to NH2OH, instead of NO, with as yet unidentified nitrite reductase(s). Furthermore, N2H4 synthesis, downstream reaction of NO2- reduction, was investigated using a purified “Ca. B. sinica” hydrazine synthase (Hzs) and intact cells. Both the “Ca. B. sinica” Hzs and cells utilized NH2OH and NH4+, but not NO and NH4+, for N2H4 synthesis and further oxidized N2H4 to N2 gas. Taken together, the metabolic pathway of “Ca. B. sinica” is NH2OH-dependent and different from the one of “Ca. K. stuttgartiensis”, indicating metabolic diversity of anammox bacteria. This article is protected by copyright. All rights reserved.

  16. Nitrogen loss from anaerobic ammonium oxidation coupled to Iron(III) reduction in a riparian zone.

    Science.gov (United States)

    Ding, Bangjing; Li, Zhengkui; Qin, Yunbin

    2017-12-01

    Anaerobic ammonium oxidation coupled to iron(III) reduction (termed Feammox) is a recently discovered pathway of nitrogen cycling. However, little is known about the pathways of N transformation via Feammox process in riparian zones. In this study, evidence for Feammox in riparian zones with or without vegetation cover was demonstrated using isotope tracing technique and high-throughput sequencing technology. The results showed that Feammox could occur in riparian zones, and demonstrated that N 2 directly from Feammox was dominant Feammox pathway. The Feammox rates in vegetated soil samples was 0.32-0.37 mg N kg -1 d -1 , which is higher than that in un-vegetated soil samples (0.20 mg N kg -1 d -1 ). Moreover, the growth of vegetation led to a 4.99-6.41% increase in the abundance of iron reducing bacteria (Anaeromyxobacter, Pseudomonas and Geobacter) and iron reducing bacteria play an essential role in Feammox process. An estimated loss of 23.7-43.9 kg N ha -1 year -1 was associated with Feammox in the examined riparian zone. Overall, the co-occurrence of ammonium oxidation and iron reduction suggest that Feammox can play an essential role in the pathway of nitrogen removal in riparian zones. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Post-treatment of anaerobic reactor effluent using coagulation/oxidation followed by double filtration.

    Science.gov (United States)

    Cavallini, Grasiele Soares; de Sousa Vidal, Carlos Magno; de Souza, Jeanette Beber; de Campos, Sandro Xavier

    2016-04-01

    This study evaluates the efficacy of a sanitary sewage treatment system, proposing post-treatment of the effluent generated by the upflow anaerobic sludge blanket UASB reactor, through a Fenton coagulation/oxidation ((ferric chloride (FC) or ferrous sulfate (FS) and peracetic acid (PAA)), followed by a double filtration system, composed of a gravel ascending drainage filter and a sand descending filter. Following the assessment of treatability, the system efficiency was evaluated using physicochemical and microbiological parameters. In all treatments performed in the pilot unit, total suspended solids (TSS) were completely removed, leading to a decrease in turbidity greater than 90% and close to 100% removal of total phosphorous. In the FC and PAA combination, the effluent was oxygenated prior to filtration, enabling a more significant removal of biochemical oxygen demand (BOD), which characterizes aerobic degradation even in a quick sand filter. The treatments carried out in the presence of the PAA oxidizing agent showed a more significant bleaching of the effluent. Concerning the microbiological parameters, the simultaneous use of PAA and FC contributed to the partial inactivation of the assessed microorganisms. A 65% recovery of the effluent was obtained with the proposed treatment system, considering the volume employed in filter backwashing.

  18. Molecular characterization of the pSinB plasmid of the arsenite oxidizing, metallotolerant Sinorhizobium sp. M14 - insight into the heavy metal resistome of sinorhizobial extrachromosomal replicons.

    Science.gov (United States)

    Romaniuk, Krzysztof; Dziewit, Lukasz; Decewicz, Przemyslaw; Mielnicki, Sebastian; Radlinska, Monika; Drewniak, Lukasz

    2017-01-01

    Sinorhizobium sp. M14 is an As(III)-oxidizing, psychrotolerant strain, capable of growth in the presence of extremely high concentrations of arsenic and many other heavy metals. Metallotolerant abilities of the M14 strain depend upon the presence of two extrachromosomal replicons: pSinA (∼ 109 kb) and pSinB (∼ 300 kb). The latter was subjected to complex analysis. The performed analysis demonstrated that the plasmid pSinB is a narrow-host-range repABC-type replicon, which is fully stabilized by the phd-vapC-like toxin-antitoxin stabilizing system. In silico analysis showed that among the phenotypic gene clusters of the plasmid pSinB, eight modules are potentially involved in heavy metals resistance (HMR). These modules carry genes encoding efflux pumps, permeases, transporters and copper oxidases, which provide resistance to arsenic, cadmium, cobalt, copper, iron, mercury, nickel, silver and zinc. The functional analysis revealed that the HMR modules are active and have an effect on the minimal inhibitory concentration (MIC) values observed for the heterological host cells. The phenotype was manifested by an increase or decrease of the MICs of heavy metals and it was strain specific. The analysis of distribution of the heavy metal resistance genes, i.e. resistome, in Sinorhizobium spp. plasmids, revealed that the HMR modules are common in these replicons. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Genome-enabled studies of anaerobic, nitrate-dependent iron oxidation in the chemolithoautotrophic bacterium Thiobacillus denitrificans

    Directory of Open Access Journals (Sweden)

    Harry R Beller

    2013-08-01

    Full Text Available Thiobacillus denitrificans is a chemolithoautotrophic bacterium capable of anaerobic, nitrate-dependent U(IV and Fe(II oxidation, both of which can strongly influence the long-term efficacy of in situ reductive immobilization of uranium in contaminated aquifers. We previously identified two c-type cytochromes involved in nitrate-dependent U(IV oxidation in T. denitrificans and hypothesized that c-type cytochromes would also catalyze Fe(II oxidation, as they have been found to play this role in anaerobic phototrophic Fe(II-oxidizing bacteria. Here we report on efforts to identify genes associated with nitrate-dependent Fe(II oxidation, namely (a whole-genome transcriptional studies [using FeCO3, Fe2+, and U(IV oxides as electron donors under denitrifying conditions], (b Fe(II oxidation assays performed with knockout mutants targeting primarily highly expressed or upregulated c-type cytochromes, and (c random transposon-mutagenesis studies with screening for Fe(II oxidation. Assays of mutants for 26 target genes, most of which were c-type cytochromes, indicated that none of the mutants tested were significantly defective in nitrate-dependent Fe(II oxidation. The non-defective mutants included the c1-cytochrome subunit of the cytochrome bc1 complex (complex III, which has relevance to a previously proposed role for this complex in nitrate-dependent Fe(II oxidation and to current concepts of reverse electron transfer. A transposon mutant with a disrupted gene associated with NADH:ubiquinone oxidoreductase (complex I was ~35% defective relative to the wild-type strain; this strain was similarly defective in nitrate reduction with thiosulfate as the electron donor. Overall, our results indicate that nitrate-dependent Fe(II oxidation in T. denitrificans is not catalyzed by the same c-type cytochromes involved in U(IV oxidation, nor have other c-type cytochromes yet been implicated in the process.

  20. Increased expression of the oxidative pentose phosphate pathway and gluconeogenesis in anaerobically growing xylose-utilizing Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Hahn-Hägerdal Bärbel

    2009-09-01

    Full Text Available Abstract Background Fermentation of xylose to ethanol has been achieved in S. cerevisiae by genetic engineering. Xylose utilization is however slow compared to glucose, and during anaerobic conditions addition of glucose has been necessary for cellular growth. In the current study, the xylose-utilizing strain TMB 3415 was employed to investigate differences between anaerobic utilization of glucose and xylose. This strain carried a xylose reductase (XYL1 K270R engineered for increased NADH utilization and was capable of sustained anaerobic growth on xylose as sole carbon source. Metabolic and transcriptional characterization could thus for the first time be performed without addition of a co-substrate or oxygen. Results Analysis of metabolic fluxes showed that although the specific ethanol productivity was an order of magnitude lower on xylose than on glucose, product yields were similar for the two substrates. In addition, transcription analysis identified clear regulatory differences between glucose and xylose. Respiro-fermentative metabolism on glucose during aerobic conditions caused repression of cellular respiration, while metabolism on xylose under the same conditions was fully respiratory. During anaerobic conditions, xylose repressed respiratory pathways, although notably more weakly than glucose. It was also observed that anaerobic xylose growth caused up-regulation of the oxidative pentose phosphate pathway and gluconeogenesis, which may be driven by an increased demand for NADPH during anaerobic xylose catabolism. Conclusion Co-factor imbalance in the initial twp steps of xylose utilization may reduce ethanol productivity by increasing the need for NADP+ reduction and consequently increase reverse flux in glycolysis.

  1. Characterization of Microbes Capable of Using Vinyl Chloride and Ethene as Sole Carbon and Energy Sources by Anaerobic Oxidation

    Science.gov (United States)

    2013-09-01

    12.2 mg COD/mg COD. Two types of phosphate-buffered fermentative media were used, as previously described by Hata et al. (2003, 2004). Glucose was...1985. Biotransformation of tetrachloroethylene to trichloroethylene, dichloroethylene, vinyl chloride, and carbon dioxide under methanogenic...FINAL REPORT Characterization of Microbes Capable of Using Vinyl Chloride and Ethene as Sole Carbon and Energy Sources by Anaerobic Oxidation

  2. Current advances in molecular methods for detection of nitrite-dependent anaerobic methane oxidizing bacteria in natural environments

    OpenAIRE

    Chen, Jing; Dick, Richard; Lin, Jih-Gaw; Gu, Ji-Dong

    2016-01-01

    Nitrite-dependent anaerobic methane oxidation (n-damo) process uniquely links microbial nitrogen and carbon cycles. Research on n-damo bacteria progresses quickly with experimental evidences through enrichment cultures. Polymerase chain reaction (PCR)-based methods for detecting them in various natural ecosystems and engineered systems play a very important role in the discovery of their distribution, abundance, and biodiversity in the ecosystems. Important characteristics of n-damo enrichmen...

  3. Anaerobic methane oxidation rates at the sulfate-methane transition in marine sediments from Kattegat and Skagerrak (Denmark)

    International Nuclear Information System (INIS)

    Iversen, N.; Jorgensen, B.B.

    1985-01-01

    Concomitant radiotracer measurements were made of in situ rates of sulfate reduction and anaerobic methane oxidation in 2-3-m-long sediment cores. Methane accumulated to high concentrations (> 1 mM CH 4 ) only below the sulfate zone, at 1 m or deeper in the sediment. Sulfate reduction showed a broad maximum below the sediment surface and a smaller, narrow maximum at the sulfate-methane transition. Methane oxidation was low (0.002-0.1 nmol CH 4 cm -3 d -1 ) throughout the sulfate zone and showed a sharp maximum at the sulfate-methane transition, coinciding with the sulfate reduction maximum. Total anaerobic methane oxidation at two stations was 0.83 and 1.16 mmol CH 4 m -2 d -1 , of which 96% was confined to the sulfate-methane transition. All the methane that was calculated to diffuse up into the sulfate-methane transition was oxidized in this zone. The methane oxidation was equivalent to 10% of the electron donor requirement for the total measured sulfate reduction. A third station showed high sulfate concentrations at all depths sampled and the total methane oxidation was only 0.013 mmol m -2 d -1 . From direct measurements of rates, concentration gradients, and diffusion coefficients, simple calculations were made of sulfate and methane fluxes and of methane production rates

  4. Enhanced reductive dechlorination of DDT in an anaerobic system of dissimilatory iron-reducing bacteria and iron oxide

    International Nuclear Information System (INIS)

    Li, F.B.; Li, X.M.; Zhou, S.G.; Zhuang, L.; Cao, F.; Huang, D.Y.; Xu, W.; Liu, T.X.; Feng, C.H.

    2010-01-01

    The transformation of DDT was studied in an anaerobic system of dissimilatory iron-reducing bacteria (Shewanella decolorationis S12) and iron oxide (α-FeOOH). The results showed that S. decolorationis could reduce DDT into DDD, and DDT transformation rate was accelerated by the presence of α-FeOOH. DDD was observed as the primary transformation product, which was demonstrated to be transformed in the abiotic system of Fe 2+ + α-FeOOH and the system of DIRB + α-FeOOH. The intermediates of DDMS and DBP were detected after 9 months, likely suggesting that reductive dechlorination was the main dechlorination pathway of DDT in the iron-reducing system. The enhanced reductive dechlorination of DDT was mainly due to biogenic Fe(II) sorbed on the surface of α-FeOOH, which can serve as a mediator for the transformation of DDT. This study demonstrated the important role of DIRB and iron oxide on DDT and DDD transformation under anaerobic iron-reducing environments. - This is the first case reporting the reductive dechlorination of DDT in an anaerobic system of dissimilatory iron-reducing bacteria and iron oxide.

  5. Importance and controls of anaerobic ammonium oxidation influenced by riverbed geology

    Science.gov (United States)

    Lansdown, K.; McKew, B. A.; Whitby, C.; Heppell, C. M.; Dumbrell, A. J.; Binley, A.; Olde, L.; Trimmer, M.

    2016-05-01

    Rivers are an important global sink for excess bioavailable nitrogen: they convert approximately 40% of terrestrial N runoff per year (~47 Tg) to biologically unavailable N2 gas and return it to the atmosphere. At present, riverine N2 production is conceptualized and modelled as denitrification. Anaerobic ammonium oxidation, known as anammox, is an alternative pathway of N2 production important in marine environments, but its contribution to riverine N2 production is not well understood. Here we use in situ and laboratory measurements of anammox activity using 15N tracers and molecular analyses of microbial communities to evaluate anammox in clay-, sand- and chalk-dominated river beds in the Hampshire Avon catchment, UK during summer 2013. Abundance of the hzo gene, which encodes an enzyme central to anammox metabolism, varied across the contrasting geologies. Anammox rates were similar across geologies but contributed different proportions of N2 production because of variation in denitrification rates. In spite of requiring anoxic conditions, anammox, most likely coupled to partial nitrification, contributed up to 58% of in situ N2 production in oxic, permeable riverbeds. In contrast, denitrification dominated in low-permeability clay-bed rivers, where anammox contributes roughly 7% to the production of N2 gas. We conclude that anammox can represent an important nitrogen loss pathway in permeable river sediments.

  6. The potential for biologically catalyzed anaerobic methane oxidation on ancient Mars.

    Science.gov (United States)

    Marlow, Jeffrey J; Larowe, Douglas E; Ehlmann, Bethany L; Amend, Jan P; Orphan, Victoria J

    2014-04-01

    This study examines the potential for the biologically mediated anaerobic oxidation of methane (AOM) coupled to sulfate reduction on ancient Mars. Seven distinct fluids representative of putative martian groundwater were used to calculate Gibbs energy values in the presence of dissolved methane under a range of atmospheric CO2 partial pressures. In all scenarios, AOM is exergonic, ranging from -31 to -135 kJ/mol CH4. A reaction transport model was constructed to examine how environmentally relevant parameters such as advection velocity, reactant concentrations, and biomass production rate affect the spatial and temporal dependences of AOM reaction rates. Two geologically supported models for ancient martian AOM are presented: a sulfate-rich groundwater with methane produced from serpentinization by-products, and acid-sulfate fluids with methane from basalt alteration. The simulations presented in this study indicate that AOM could have been a feasible metabolism on ancient Mars, and fossil or isotopic evidence of this metabolic pathway may persist beneath the surface and in surface exposures of eroded ancient terrains.

  7. Nitrogen removal performance of anaerobic ammonia oxidation (ANAMMOX) in presence of organic matter.

    Science.gov (United States)

    Zhu, Weiqiang; Zhang, Peiyu; Yu, Deshuang; Dong, Huiyu; Li, Jin

    2017-06-01

    A sequencing batch reactor (SBR) was used to test the nitrogen removal performance of anaerobic ammonium oxidation (ANAMMOX) in presence of organic matter. Mesophilic operation (30 ± 0.5 °C) was performed with influent pH 7.5. The results showed, independent of organic matter species, ANAMMOX reaction was promoted when COD was lower than 80 mg/L. However, specific ANAMMOX activity decreased with increasing organic matter content. Ammonium removal efficiency decreased to 80% when COD of sodium succinate, sodium potassium tartrate, peptone and lactose were 192.5, 210, 225 and 325 mg/L, respectively. The stoichiometry ratio resulting from different OM differed largely and R 1 could be as an indicator for OM inhibition. When COD concentration was 240 mg/L, the loss of SAA resulting from lactose, peptone, sodium potassium tartrate and sodium succinate were 28, 36, 50 and 55%, respectively. Sodium succinate had the highest inhibitory effect on SAA. When ANAMMOX process was used to treat wastewater containing OM, the modified Logistic model could be employed to predict the NRE max .

  8. Fuzzy-logic modeling of Fenton's oxidation of anaerobically pretreated poultry manure wastewater.

    Science.gov (United States)

    Yetilmezsoy, Kaan

    2012-07-01

    A multiple inputs and multiple outputs (MIMO) fuzzy-logic-based model was proposed to estimate color and chemical oxygen demand (COD) removal efficiencies in the post-treatment of anaerobically pretreated poultry manure wastewater effluent using Fenton's oxidation process. Three main input variables including initial pH, Fe+2, and H2O2 dosages were fuzzified in a new numerical modeling scheme by the use of an artificial intelligence-based approach. Trapezoidal membership functions with eight levels were conducted for the fuzzy subsets, and a Mamdani-type fuzzy inference system was used to implement a total of 70 rules in the IF-THEN format. The product (prod) and the center of gravity (centroid) methods were applied as the inference operator and defuzzification methods, respectively. Fuzzy-logic predicted results were compared with the outputs of two first-order polynomial regression models derived in the scope of this study. Estimated results were also compared to the multiple regression approach by means of various descriptive statistical indicators, such as root mean-squared error, index of agreement, fractional variance, proportion of systematic error, etc. Results of the statistical analysis clearly revealed that, compared to conventional regression models, the proposed MIMO fuzzy-logic model produced very smaller deviations and demonstrated a superior predictive performance on forecasting of color and COD removal efficiencies with satisfactory determination coefficients over 0.98. Due to high capability of the fuzzy-logic methodology in capturing the non-linear interactions, it was demonstrated that a complex dynamic system, such as Fenton's oxidation, could be easily modeled.

  9. Clostridium acetireducens sp nov, a novel amino acid-oxidizing, acetate-reducing anaerobic bacterium

    NARCIS (Netherlands)

    Orlygsson, J; Krooneman, J; Collins, Matthew D.; Pascual, C; Gottschall, JC

    Strain 30A(T) (T = type strain), which was isolated from an anaerobic bioreactor fed on waste from a potato starch factory in De Krim, The Netherlands, is a nonmotile, gram-positive, anaerobic, rod-shaped organism that is able to degrade various amino acids, including alanine, leucine, isoleucine,

  10. Arsenite toxicity and uptake rate of rice (Oryza sativa L.) in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, Holger, E-mail: hoffmann@bgt.uni-hannover.de [Institute of Plant Nutrition, Leibniz University of Hannover, Herrenhaeuser Strasse 2, D-30419 Hannover (Germany); Schenk, Manfred K., E-mail: schenk@pflern.uni-hannover.de [Institute of Plant Nutrition, Leibniz University of Hannover, Herrenhaeuser Strasse 2, D-30419 Hannover (Germany)

    2011-10-15

    Toxicity threshold of arsenite on intact rice seedlings was determined and arsenite uptake characteristics were investigated using non-toxic concentrations of arsenite. The arsenite toxicity threshold was 2.4 {mu}M arsenite which reduced growth by 10% (EC{sub 10}). The two highest arsenite levels induced wilting of seedlings and reduced both, transpiration rate and net photosynthetic rate. Arsenic content in plant tissue increased up to 10.7 {mu}M arsenite and then declined with increasing arsenite concentration in the treatment solution. The contents of Si, P, K, and of micronutrients Cu, Fe, Mn and Zn in shoot d.m. were reduced by arsenite levels {>=} 5.3 {mu}M. In the non-toxic range, arsenite uptake rate was linearly related to arsenite concentration. High arsenite levels reduced growth without being taken up which might be due to increasing binding of arsenite to proteins at the outer side of the plasmalemma. - Highlights: > Arsenite toxicity and uptake rate were investigated with intact rice plants. > Arsenite toxicity threshold was 2.4 {mu}M arsenite. > Uptake rate was linearly related to arsenite concentration in the non-toxic range. > Arsenite concentrations above 10.6 {mu}M decreased arsenic content in plant matter. > Arsenite impaired uptake of arsenite, water and Si, P, K, Cu, Fe, Mn and Zn. - Uptake of arsenite, water, and nutrients by rice seedlings was impaired by arsenite concentrations higher than the toxicity threshold of 2.4 {mu}M.

  11. Isolation and characterization of arsenite oxidizing Pseudomonas ...

    African Journals Online (AJOL)

    A bacterium, Pseudomonas lubricans, isolated from heavy metal laden industrial wastewater, has been shown to tolerate multiple heavy metals suggesting its importance in bioremediation of industrial effluents. P. lubricans tolerated As(III) up to 3 mg ml-1, Cu2+ up to 0.7 mg ml-1, Hg2+ up to 0.4 mg ml-1, Ni2+ up to 0.4 mg ...

  12. Macroscopic biofilms in fracture-dominated sediment that anaerobically oxidize methane

    Science.gov (United States)

    Briggs, B.R.; Pohlman, J.W.; Torres, M.; Riedel, M.; Brodie, E.L.; Colwell, F.S.

    2011-01-01

    Methane release from seafloor sediments is moderated, in part, by the anaerobic oxidation of methane (AOM) performed by consortia of archaea and bacteria. These consortia occur as isolated cells and aggregates within the sulfate-methane transition (SMT) of diffusion and seep-dominant environments. Here we report on a new SMT setting where the AOM consortium occurs as macroscopic pink to orange biofilms within subseafloor fractures. Biofilm samples recovered from the Indian and northeast Pacific Oceans had a cellular abundance of 10 7 to 10 8 cells cm -3. This cell density is 2 to 3 orders of magnitude greater than that in the surrounding sediments. Sequencing of bacterial 16S rRNA genes indicated that the bacterial component is dominated by Deltaproteobacteria, candidate division WS3, and Chloroflexi, representing 46%, 15%, and 10% of clones, respectively. In addition, major archaeal taxa found in the biofilm were related to the ANME-1 clade, Thermoplasmatales, and Desulfurococcales, representing 73%, 11%, and 10% of archaeal clones, respectively. The sequences of all major taxa were similar to sequences previously reported from cold seep environments. PhyloChip microarray analysis detected all bacterial phyla identified by the clone library plus an additional 44 phyla. However, sequencing detected more archaea than the PhyloChip within the phyla of Methanosarcinales and Desulfurococcales. The stable carbon isotope composition of the biofilm from the SMT (-35 to-43%) suggests that the production of the biofilm is associated with AOM. These biofilms are a novel, but apparently widespread, aggregation of cells represented by the ANME-1 clade that occur in methane-rich marine sediments. ?? 2011, American Society for Microbiology.

  13. Enrichment and physiological characterization of an anaerobic ammonium-oxidizing bacterium ‘ Candidatus Brocadia sapporoensis’

    KAUST Repository

    Narita, Yuko

    2017-08-18

    Anaerobic ammonium-oxidation (anammox) is recognized as an important microbial process in the global nitrogen cycle and wastewater treatment. In this study, we successfully enriched a novel anammox bacterium affiliated with the genus ‘Candidatus Brocadia’ with high purity (>90%) in a membrane bioreactor (MBR). The enriched bacterium was distantly related to the hitherto characterized ‘Ca. Brocadia fulgida’ and ‘Ca. Brocadia sinica’ with 96% and 93% of 16S ribosomal RNA gene sequence identity, respectively. The bacterium exhibited the common structural features of anammox bacteria and the production of hydrazine in the presence of hydroxylamine under anoxic conditions. The temperature range of anammox activity was 20 − 45°C with a maximum activity at 37°C. The maximum specific growth rate (μmax) was determined to be 0.0082h−1 at 37°C, corresponding to a doubling time of 3.5 days. The half-saturation constant (KS) for nitrite was 5±2.5μM. The anammox activity was inhibited by nitrite with 11.6mM representing the 50% inhibitory concentration (IC50) but no significant inhibition was observed in the presence of formate and acetate. The major respiratory quinone was identified to be menaquinone-7 (MK-7). Comparative genome analysis revealed that the anammox bacterium enriched in present study shared nearly half of genes with ‘Ca. Brocadia sinica’ and ‘Ca. Brocadia fulgida’. The bacterium enriched in this study showed all known physiological characteristics of anammox bacteria and can be distinguished from the close relatives by its rRNA gene sequences. Therefore, we proposed the name ‘Ca. Brocadia sapporoensis’ sp. nov.

  14. Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments: A modeling perspective

    Science.gov (United States)

    Regnier, P.; Dale, A. W.; Arndt, S.; LaRowe, D. E.; Mogollón, J.; Van Cappellen, P.

    2011-05-01

    Recent developments in the quantitative modeling of methane dynamics and anaerobic oxidation of methane (AOM) in marine sediments are critically reviewed. The first part of the review begins with a comparison of alternative kinetic models for AOM. The roles of bioenergetic limitations, intermediate compounds and biomass growth are highlighted. Next, the key transport mechanisms in multi-phase sedimentary environments affecting AOM and methane fluxes are briefly treated, while attention is also given to additional controls on methane and sulfate turnover, including organic matter mineralization, sulfur cycling and methane phase transitions. In the second part of the review, the structure, forcing functions and parameterization of published models of AOM in sediments are analyzed. The six-orders-of-magnitude range in rate constants reported for the widely used bimolecular rate law for AOM emphasizes the limited transferability of this simple kinetic model and, hence, the need for more comprehensive descriptions of the AOM reaction system. The derivation and implementation of more complete reaction models, however, are limited by the availability of observational data. In this context, we attempt to rank the relative benefits of potential experimental measurements that should help to better constrain AOM models. The last part of the review presents a compilation of reported depth-integrated AOM rates (ΣAOM). These rates reveal the extreme variability of ΣAOM in marine sediments. The model results are further used to derive quantitative relationships between ΣAOM and the magnitude of externally impressed fluid flow, as well as between ΣAOM and the depth of the sulfate-methane transition zone (SMTZ). This review contributes to an improved understanding of the global significance of the AOM process, and helps identify outstanding questions and future directions in the modeling of methane cycling and AOM in marine sediments.

  15. Role of oxidants in enhancing dewaterability of anaerobically digested sludge through Fe (II) activated oxidation processes: hydrogen peroxide versus persulfate

    Science.gov (United States)

    Song, Kang; Zhou, Xu; Liu, Yiqi; Gong, Yanyan; Zhou, Beibei; Wang, Dongbo; Wang, Qilin

    2016-01-01

    Improving dewaterability of sludge is important for the disposal of sludge in wastewater treatment plants (WWTPs). This study, for the first time, investigated the Fe(II) activated oxidization processes in improving anaerobically digested sludge (ADS) dewaterability. The combination of Fe(II) (0–100 mg/g total solids (TS)) and persulfate (0–1,000 mg/g TS) under neutral pH as well as the combination of Fe(II) (0–100 mg/g TS) and hydrogen peroxide (HP) (0–1,000 mg/g TS) under pH 3.0 were used to examine and compare their effect on the ADS dewaterability enhancement. The highest ADS dewaterability enhancement was attained at 25 mg Fe(II)/g TS and 50 mg HP/g TS, when the CST (CST: the capillary suction time, a sludge dewaterability indicator) was reduced by 95%. In contrast, the highest CST reduction in Fe(II)-persulfate conditioning was 90%, which was obtained at 50 mg Fe(II)/g TS and 250 mg persulfate/g TS. The results showed that Fe(II)-HP conditioning was comparable with Fe(II)-persulfate conditioning in terms of highest CST reduction. Economic analysis suggested that the Fe(II)-HP conditioning was more promising for improving ADS dewaterability compared with Fe(II)-persulfate conditioning, with the saving being up to $65,000 per year in a WWTP with a population equivalent of 100,000. PMID:27109500

  16. Archaeal and anaerobic methane oxidizer communities in the Sonora Margin cold seeps, Guaymas Basin (Gulf of California).

    Science.gov (United States)

    Vigneron, Adrien; Cruaud, Perrine; Pignet, Patricia; Caprais, Jean-Claude; Cambon-Bonavita, Marie-Anne; Godfroy, Anne; Toffin, Laurent

    2013-08-01

    Cold seeps, located along the Sonora Margin transform fault in the Guaymas Basin, were extensively explored during the 'BIG' cruise in June 2010. They present a seafloor mosaic pattern consisting of different faunal assemblages and microbial mats. To investigate this mostly unknown cold and hydrocarbon-rich environment, geochemical and microbiological surveys of the sediments underlying two microbial mats and a surrounding macrofaunal habitat were analyzed in detail. The geochemical measurements suggest biogenic methane production and local advective sulfate-rich fluxes in the sediments. The distributions of archaeal communities, particularly those involved in the methane cycle, were investigated at different depths (surface to 18 cm below the sea floor (cmbsf)) using complementary molecular approaches, such as Automated method of Ribosomal Intergenic Spacer Analysis (ARISA), 16S rRNA libraries, fluorescence in situ hybridization and quantitative polymerase chain reaction with new specific primer sets targeting methanogenic and anaerobic methanotrophic lineages. Molecular results indicate that metabolically active archaeal communities were dominated by known clades of anaerobic methane oxidizers (archaeal anaerobic methanotroph (ANME)-1, -2 and -3), including a novel 'ANME-2c Sonora' lineage. ANME-2c were found to be dominant, metabolically active and physically associated with syntrophic Bacteria in sulfate-rich shallow sediment layers. In contrast, ANME-1 were more prevalent in the deepest sediment samples and presented a versatile behavior in terms of syntrophic association, depending on the sulfate concentration. ANME-3 were concentrated in small aggregates without bacterial partners in a restricted sediment horizon below the first centimetres. These niche specificities and syntrophic behaviors, depending on biological surface assemblages and environmental availability of electron donors, acceptors and carbon substrates, suggest that ANME could support

  17. The Effect of Vitamin E on the In Vitro Differentiation of Adult Rat Bone Marrow Mesenchymal Stem Cells to Osteoblast During Sodium Arsenite Exposure

    Directory of Open Access Journals (Sweden)

    M. Soleimani Mehranjani

    2016-01-01

    Full Text Available Introduction & Objective: Sodium arsenite disturbs the differentiation of adult rat bone marrow mesenchymal stem cells (rMSCs to Osteoblast through oxidative stress. We aimed to investigate the preventive effect of vitamin E, a strong antioxidant, in sodium arsenite toxicity on rMSCs differentiation to osteoblast. Materials & Methods: rMSCs were cultured in Dulbecco’s Modified Eagles Medium containing 15% Fetal Bovine Serum and divided into: control, sodium arsenite (20 nM, vitamin E (50 µM and sodium arsenite + vitamin E for 21 days in the osteogenic media containing 10% of fetal bovine serum. Cell viability, bone matrix mineralization, intercellular and extracellular calcium, alkaline phosphatase activity, DNA damage and cell morphological changes were evaluated. Data were analyzed using one-way ANOVA and Tukey's test and means were considered significantly different at P<0.05. Results: Cell viability, bone matrix mineralization, calcium deposition, alkaline phosphatase activity and nuclei diameter decreased significantly in the sodium arsenite group. The mentioned parameters increased significantly in cells treated with sodium arsenite + vitamin E to the control level (P<0.05. Cytoplasmic extensions were also observed in the vitamin E group. Conclusions: Vitamin E reduces sodium arsenite toxicity, increasing osteogenic differentiation in rMSCs. Sci J Hamadan Univ Med Sci . 2016; 22 (4 :276-285

  18. Growth of anaerobic methane-oxidizing archaea and sulfate-reducing bacteria in a high-pressure membrane capsule bioreactor.

    Science.gov (United States)

    Timmers, Peer H A; Gieteling, Jarno; Widjaja-Greefkes, H C Aura; Plugge, Caroline M; Stams, Alfons J M; Lens, Piet N L; Meulepas, Roel J W

    2015-02-01

    Communities of anaerobic methane-oxidizing archaea (ANME) and sulfate-reducing bacteria (SRB) grow slowly, which limits the ability to perform physiological studies. High methane partial pressure was previously successfully applied to stimulate growth, but it is not clear how different ANME subtypes and associated SRB are affected by it. Here, we report on the growth of ANME-SRB in a membrane capsule bioreactor inoculated with Eckernförde Bay sediment that combines high-pressure incubation (10.1 MPa methane) and thorough mixing (100 rpm) with complete cell retention by a 0.2-m-pore-size membrane. The results were compared to previously obtained data from an ambient-pressure (0.101 MPa methane) bioreactor inoculated with the same sediment. The rates of oxidation of labeled methane were not higher at 10.1 MPa, likely because measurements were done at ambient pressure. The subtype ANME-2a/b was abundant in both reactors, but subtype ANME-2c was enriched only at 10.1 MPa. SRB at 10.1 MPa mainly belonged to the SEEP-SRB2 and Eel-1 groups and the Desulfuromonadales and not to the typically found SEEP-SRB1 group. The increase of ANME-2a/b occurred in parallel with the increase of SEEP-SRB2, which was previously found to be associated only with ANME-2c. Our results imply that the syntrophic association is flexible and that methane pressure and sulfide concentration influence the growth of different ANME-SRB consortia. We also studied the effect of elevated methane pressure on methane production and oxidation by a mixture of methanogenic and sulfate-reducing sludge. Here, methane oxidation rates decreased and were not coupled to sulfide production, indicating trace methane oxidation during net methanogenesis and not anaerobic methane oxidation, even at a high methane partial pressure.

  19. Diversity and abundance of aerobic and anaerobic methane oxidizers at the Haakon Mosby Mud Volcano, Barents Sea.

    Science.gov (United States)

    Lösekann, Tina; Knittel, Katrin; Nadalig, Thierry; Fuchs, Bernhard; Niemann, Helge; Boetius, Antje; Amann, Rudolf

    2007-05-01

    Submarine mud volcanoes are formed by expulsions of mud, fluids, and gases from deeply buried subsurface sources. They are highly reduced benthic habitats and often associated with intensive methane seepage. In this study, the microbial diversity and community structure in methane-rich sediments of the Haakon Mosby Mud Volcano (HMMV) were investigated by comparative sequence analysis of 16S rRNA genes and fluorescence in situ hybridization. In the active volcano center, which has a diameter of about 500 m, the main methane-consuming process was bacterial aerobic oxidation. In this zone, aerobic methanotrophs belonging to three bacterial clades closely affiliated with Methylobacter and Methylophaga species accounted for 56%+/-8% of total cells. In sediments below Beggiatoa mats encircling the center of the HMMV, methanotrophic archaea of the ANME-3 clade dominated the zone of anaerobic methane oxidation. ANME-3 archaea form cell aggregates mostly associated with sulfate-reducing bacteria of the Desulfobulbus (DBB) branch. These ANME-3/DBB aggregates were highly abundant and accounted for up to 94%+/-2% of total microbial biomass at 2 to 3 cm below the surface. ANME-3/DBB aggregates could be further enriched by flow cytometry to identify their phylogenetic relationships. At the outer rim of the mud volcano, the seafloor was colonized by tubeworms (Siboglinidae, formerly known as Pogonophora). Here, both aerobic and anaerobic methane oxidizers were found, however, in lower abundances. The level of microbial diversity at this site was higher than that at the central and Beggiatoa species-covered part of the HMMV. Analysis of methyl-coenzyme M-reductase alpha subunit (mcrA) genes showed a strong dominance of a novel lineage, mcrA group f, which could be assigned to ANME-3 archaea. Our results further support the hypothesis of Niemann et al. (54), that high methane availability and different fluid flow regimens at the HMMV provide distinct niches for aerobic and

  20. Diversity and Abundance of Aerobic and Anaerobic Methane Oxidizers at the Haakon Mosby Mud Volcano, Barents Sea▿

    Science.gov (United States)

    Lösekann, Tina; Knittel, Katrin; Nadalig, Thierry; Fuchs, Bernhard; Niemann, Helge; Boetius, Antje; Amann, Rudolf

    2007-01-01

    Submarine mud volcanoes are formed by expulsions of mud, fluids, and gases from deeply buried subsurface sources. They are highly reduced benthic habitats and often associated with intensive methane seepage. In this study, the microbial diversity and community structure in methane-rich sediments of the Haakon Mosby Mud Volcano (HMMV) were investigated by comparative sequence analysis of 16S rRNA genes and fluorescence in situ hybridization. In the active volcano center, which has a diameter of about 500 m, the main methane-consuming process was bacterial aerobic oxidation. In this zone, aerobic methanotrophs belonging to three bacterial clades closely affiliated with Methylobacter and Methylophaga species accounted for 56% ± 8% of total cells. In sediments below Beggiatoa mats encircling the center of the HMMV, methanotrophic archaea of the ANME-3 clade dominated the zone of anaerobic methane oxidation. ANME-3 archaea form cell aggregates mostly associated with sulfate-reducing bacteria of the Desulfobulbus (DBB) branch. These ANME-3/DBB aggregates were highly abundant and accounted for up to 94% ± 2% of total microbial biomass at 2 to 3 cm below the surface. ANME-3/DBB aggregates could be further enriched by flow cytometry to identify their phylogenetic relationships. At the outer rim of the mud volcano, the seafloor was colonized by tubeworms (Siboglinidae, formerly known as Pogonophora). Here, both aerobic and anaerobic methane oxidizers were found, however, in lower abundances. The level of microbial diversity at this site was higher than that at the central and Beggiatoa species-covered part of the HMMV. Analysis of methyl-coenzyme M-reductase alpha subunit (mcrA) genes showed a strong dominance of a novel lineage, mcrA group f, which could be assigned to ANME-3 archaea. Our results further support the hypothesis of Niemann et al. (54), that high methane availability and different fluid flow regimens at the HMMV provide distinct niches for aerobic and

  1. Anaerobic oxidation of methane (AOM) in marine sediments from the Skagerrak (Denmark): II. Reaction-transport modeling

    DEFF Research Database (Denmark)

    Dale, A.W.; Regnier, P.; Knab, N.J.

    2008-01-01

    A steady-state reaction-transport model is applied to sediments retrieved by gravity core from two stations (S10 and S13) in the Skagerrak to determine the main kinetic and thermodynamic controls on anaerobic oxidation of methane (AOM). The model considers an extended biomass-implicit reaction...... methane diffuses up from the SMTZ to the top of the core without being consumed. The tailing is due to bioenergetic limitation of AOM in the sulfate reduction zone, because the methane concentration is too low to engender favorable thermodynamic drive. AOM is also bioenergetically inhibited below the SMTZ...

  2. Arsenic, Anaerobes, and Astrobiology

    Science.gov (United States)

    Stolz, J. F.; Oremland, R. S.; Switzer Blum, J.; Hoeft, S. E.; Baesman, S. M.; Bennett, S.; Miller, L. G.; Kulp, T. R.; Saltikov, C.

    2013-12-01

    Arsenic is an element best known for its highly poisonous nature, so it is not something one would associate with being a well-spring for life. Yet discoveries made over the past two decades have delineated that not only are some microbes resistant to arsenic, but that this element's primary redox states can be exploited to conserve energy and support prokaryotic growth ('arsenotrophy') in the absence of oxygen. Hence, arsenite [As(III)] can serve as an electron donor for chemo- or photo-autotrophy while arsenate [As(V)] will serve as an electron acceptor for chemo-heterotrophs and chemo-autotrophs. The phylogenetic diversity of these microbes is broad, encompassing many individual species from diverse taxonomic groups in the Domain Bacteria, with fewer representatives in the Domain Archaea. Speculation with regard to the evolutionary origins of the key functional genes in anaerobic arsenic transformations (arrA and arxA) and aerobic oxidation (aioB) has led to a disputation as to which gene and function is the most ancient and whether arsenic metabolism extended back into the Archaean. Regardless of its origin, robust arsenic metabolism has been documented in extreme environments that are rich in their arsenic content, such as hot springs and especially hypersaline soda lakes associated with volcanic regions. Searles Lake, CA is an extreme, salt-saturated end member where vigorous arsenic metabolism occurs, but there is no detectable sulfate-reduction or methanogenesis. The latter processes are too weak bio-energetically to survive as compared with arsenotrophy, and are also highly sensitive to the abundance of borate ions present in these locales. These observations have implications with respect to the search for microbial life elsewhere in the Solar System where volcanic-like processes have been operative. Hence, because of the likelihood of encountering dense brines in the regolith of Mars (formed by evapo-concentration) or beneath the ice layers of Europa

  3. Adaptation of anaerobic cultures of E scherichia coli  K‐12 in response to environmental trimethylamine‐N‐oxide

    Science.gov (United States)

    Denby, Katie J.; Rolfe, Matthew D.; Crick, Ellen; Sanguinetti, Guido; Poole, Robert K.

    2015-01-01

    Summary Systematic analyses of transcriptional and metabolic changes occurring when E scherichia coli  K‐12 switches from fermentative growth to anaerobic respiratory growth with trimethylamine‐N‐oxide (TMAO) as the terminal electron acceptor revealed: (i) the induction of torCAD, but not genes encoding alternative TMAO reductases; (ii) transient expression of frmRAB, encoding formaldehyde dehydrogenase; and (iii) downregulation of copper resistance genes. Simultaneous inference of 167 transcription factor (TF) activities implied that transcriptional re‐programming was mediated by 20 TFs, including the transient inactivation of the two‐component system ArcBA; a prediction validated by direct measurement of phosphorylated ArcA. Induction of frmRAB, detection of dimethylamine in culture medium and formaldehyde production when cell‐free extracts were incubated with TMAO suggested the presence of TMAO demethylase activity. Accordingly, the viability of an frmRAB mutant was compromised upon exposure to TMAO. Downregulation of genes involved in copper resistance could be accounted for by TMAO inhibition of Cu(II) reduction. The simplest interpretation of the data is that during adaptation to the presence of environmental TMAO, anaerobic fermentative cultures of E . coli respond by activating the TorTSR regulatory system with consequent induction of TMAO reductase activity, resulting in net oxidation of menaquinone and inhibition of Cu(II) reduction, responses that are sensed by ArcBA and CusRS respectively. PMID:25471524

  4. Influence of calcium and phosphate on pH dependency of arsenite and arsenate adsorption to goethite

    NARCIS (Netherlands)

    Deng, Yingxuan; Li, Yongtao; Li, Xiaojing; Sun, Yang; Ma, Jie; Lei, Mei; Weng, Liping

    2018-01-01

    In the environment, simultaneous presence of arsenic (As) of different oxidation states is common, which hampers our understanding of As behavior. In the current study, the pH dependency of arsenite (As(III)) and arsenate (As(V)) adsorption to goethite under the influence of calcium (Ca2+) (as a

  5. Catalase (KatA) plays a role in protection against anaerobic nitric oxide in Pseudomonas aeruginosa.

    Science.gov (United States)

    Su, Shengchang; Panmanee, Warunya; Wilson, Jeffrey J; Mahtani, Harry K; Li, Qian; Vanderwielen, Bradley D; Makris, Thomas M; Rogers, Melanie; McDaniel, Cameron; Lipscomb, John D; Irvin, Randall T; Schurr, Michael J; Lancaster, Jack R; Kovall, Rhett A; Hassett, Daniel J

    2014-01-01

    Pseudomonas aeruginosa (PA) is a common bacterial pathogen, responsible for a high incidence of nosocomial and respiratory infections. KatA is the major catalase of PA that detoxifies hydrogen peroxide (H2O2), a reactive oxygen intermediate generated during aerobic respiration. Paradoxically, PA displays elevated KatA activity under anaerobic growth conditions where the substrate of KatA, H2O2, is not produced. The aim of the present study is to elucidate the mechanism underlying this phenomenon and define the role of KatA in PA during anaerobiosis using genetic, biochemical and biophysical approaches. We demonstrated that anaerobic wild-type PAO1 cells yielded higher levels of katA transcription and expression than aerobic cells, whereas a nitrite reductase mutant ΔnirS produced ∼50% the KatA activity of PAO1, suggesting that a basal NO level was required for the increased KatA activity. We also found that transcription of the katA gene was controlled, in part, by the master anaerobic regulator, ANR. A ΔkatA mutant and a mucoid mucA22 ΔkatA bacteria demonstrated increased sensitivity to acidified nitrite (an NO generator) in anaerobic planktonic and biofilm cultures. EPR spectra of anaerobic bacteria showed that levels of dinitrosyl iron complexes (DNIC), indicators of NO stress, were increased significantly in the ΔkatA mutant, and dramatically in a ΔnorCB mutant compared to basal levels of DNIC in PAO1 and ΔnirS mutant. Expression of KatA dramatically reduced the DNIC levels in ΔnorCB mutant. We further revealed direct NO-KatA interactions in vitro using EPR, optical spectroscopy and X-ray crystallography. KatA has a 5-coordinate high spin ferric heme that binds NO without prior reduction of the heme iron (Kd ∼6 μM). Collectively, we conclude that KatA is expressed to protect PA against NO generated during anaerobic respiration. We proposed that such protective effects of KatA may involve buffering of free NO when potentially toxic concentrations of

  6. Catalase (KatA) Plays a Role in Protection against Anaerobic Nitric Oxide in Pseudomonas aeruginosa

    Science.gov (United States)

    Su, Shengchang; Panmanee, Warunya; Wilson, Jeffrey J.; Mahtani, Harry K.; Li, Qian; VanderWielen, Bradley D.; Makris, Thomas M.; Rogers, Melanie; McDaniel, Cameron; Lipscomb, John D.; Irvin, Randall T.; Schurr, Michael J.; Lancaster, Jack R.; Kovall, Rhett A.; Hassett, Daniel J.

    2014-01-01

    Pseudomonas aeruginosa (PA) is a common bacterial pathogen, responsible for a high incidence of nosocomial and respiratory infections. KatA is the major catalase of PA that detoxifies hydrogen peroxide (H2O2), a reactive oxygen intermediate generated during aerobic respiration. Paradoxically, PA displays elevated KatA activity under anaerobic growth conditions where the substrate of KatA, H2O2, is not produced. The aim of the present study is to elucidate the mechanism underlying this phenomenon and define the role of KatA in PA during anaerobiosis using genetic, biochemical and biophysical approaches. We demonstrated that anaerobic wild-type PAO1 cells yielded higher levels of katA transcription and expression than aerobic cells, whereas a nitrite reductase mutant ΔnirS produced ∼50% the KatA activity of PAO1, suggesting that a basal NO level was required for the increased KatA activity. We also found that transcription of the katA gene was controlled, in part, by the master anaerobic regulator, ANR. A ΔkatA mutant and a mucoid mucA22 ΔkatA bacteria demonstrated increased sensitivity to acidified nitrite (an NO generator) in anaerobic planktonic and biofilm cultures. EPR spectra of anaerobic bacteria showed that levels of dinitrosyl iron complexes (DNIC), indicators of NO stress, were increased significantly in the ΔkatA mutant, and dramatically in a ΔnorCB mutant compared to basal levels of DNIC in PAO1 and ΔnirS mutant. Expression of KatA dramatically reduced the DNIC levels in ΔnorCB mutant. We further revealed direct NO-KatA interactions in vitro using EPR, optical spectroscopy and X-ray crystallography. KatA has a 5-coordinate high spin ferric heme that binds NO without prior reduction of the heme iron (K d ∼6 μM). Collectively, we conclude that KatA is expressed to protect PA against NO generated during anaerobic respiration. We proposed that such protective effects of KatA may involve buffering of free NO when potentially toxic concentrations of

  7. Catalase (KatA plays a role in protection against anaerobic nitric oxide in Pseudomonas aeruginosa.

    Directory of Open Access Journals (Sweden)

    Shengchang Su

    Full Text Available Pseudomonas aeruginosa (PA is a common bacterial pathogen, responsible for a high incidence of nosocomial and respiratory infections. KatA is the major catalase of PA that detoxifies hydrogen peroxide (H2O2, a reactive oxygen intermediate generated during aerobic respiration. Paradoxically, PA displays elevated KatA activity under anaerobic growth conditions where the substrate of KatA, H2O2, is not produced. The aim of the present study is to elucidate the mechanism underlying this phenomenon and define the role of KatA in PA during anaerobiosis using genetic, biochemical and biophysical approaches. We demonstrated that anaerobic wild-type PAO1 cells yielded higher levels of katA transcription and expression than aerobic cells, whereas a nitrite reductase mutant ΔnirS produced ∼50% the KatA activity of PAO1, suggesting that a basal NO level was required for the increased KatA activity. We also found that transcription of the katA gene was controlled, in part, by the master anaerobic regulator, ANR. A ΔkatA mutant and a mucoid mucA22 ΔkatA bacteria demonstrated increased sensitivity to acidified nitrite (an NO generator in anaerobic planktonic and biofilm cultures. EPR spectra of anaerobic bacteria showed that levels of dinitrosyl iron complexes (DNIC, indicators of NO stress, were increased significantly in the ΔkatA mutant, and dramatically in a ΔnorCB mutant compared to basal levels of DNIC in PAO1 and ΔnirS mutant. Expression of KatA dramatically reduced the DNIC levels in ΔnorCB mutant. We further revealed direct NO-KatA interactions in vitro using EPR, optical spectroscopy and X-ray crystallography. KatA has a 5-coordinate high spin ferric heme that binds NO without prior reduction of the heme iron (Kd ∼6 μM. Collectively, we conclude that KatA is expressed to protect PA against NO generated during anaerobic respiration. We proposed that such protective effects of KatA may involve buffering of free NO when potentially toxic

  8. Anaerobic nitrite-dependent methane-oxidizing bacteria - novel participants in methane cycling of drained peatlands ecosystems

    Science.gov (United States)

    Kravchenko, Irina; Sukhacheva, Marina; Menko, Ekaterina; Sirin, Andrey

    2014-05-01

    Northern peatlands are one of the key sources of atmospheric methane. Process-based studies of methane dynamic are based on the hypothesis of the balance between microbial methane production and oxidation, but this doesn't explain all variations in and constraints on peatland CH4 emissions. One of the reasons for this discrepancy could be anaerobic methane oxidation (AOM) - the process which is still poorly studied and remained controversial. Very little is known about AOM in peatlands, where it could work as an important 'internal' sink for CH4. This lack of knowledge primarily originated from researchers who generally consider AOM quantitatively insignificant or even non-existent in northern peatland ecosystems. But not far ago, Smemo and Yavitt (2007) presented evidence for AOM in freshwater peatlands used indirect techniques including isotope dilution assays and selective methanogenic inhibitors. Nitrite-dependent anaerobic methane oxidation NC10 group bacteria (n-damo) were detected in a minerotrophic peatland in the Netherlands that is infiltrated by nitrate-rich ground water (Zhu et al., 2012). Present study represents the first, to our knowledge, characterization of AOM in human disturbed peatlands, including hydrological elements of artificial drainage network. The experiments were conducted with samples of peat from drained peatlands, as well as of water and bottom sediments of ditches from drained Dubnensky mire massif, Moscow region (Chistotin et al., 2006; Sirin et al., 2012). This is the key testing area of our research group in European part of Russia for the long-term greenhouse gases fluxes measurements supported by testing physicochemical parameters, intensity and genomic diversity of CH4-cycling microbial communities. Only in sediments of drainage ditches the transition anaerobic zone was found, where methane and nitrate occurred, suggested the possible ecological niche for n-damo bacteria. The NC10 group methanotrophs were analyzed by PCR

  9. Reduction of greenhouse gases emissions during anoxic wastewater treatment by strengthening nitrite-dependent anaerobic methane oxidation process.

    Science.gov (United States)

    Ma, Ru; Hu, Zhen; Zhang, Jian; Ma, Hao; Jiang, Liping; Ru, Dongyun

    2017-07-01

    Nitrite-dependent anaerobic methane oxidation (n-damo) is a recently discovered process performed by NC10 phylum, which plays an important role in greenhouse gases (GHG) reduction. In this study, co-existence of n-damo bacteria and methanogens was successfully achieved by using upflow anaerobic sludge blanket (UASB) reactor. Reactor with inorganic carbon source (CO 2 /H 2 ) showed the highest abundance of n-damo bacteria and the highest n-damo potential activity, resulted in its highest nitrogen removal rate. Significant reduction in GHG was obtained after introduction of n-damo process, especially for N 2 O. Furthermore, GHG emissions decreased with the increase of n-damo bacteria abundance. Community structure analysis found carbon source could influence the diversity of n-damo bacteria indirectly. And phylogenetic analysis showed that all the obtained sequences were assigned to group B, mainly due to in situ production and consumption of CH 4 . Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Environmental evaluation of coexistence of denitrifying anaerobic methane-oxidizing archaea and bacteria in a paddy field.

    Science.gov (United States)

    Ding, Jing; Fu, Liang; Ding, Zhao-Wei; Lu, Yong-Ze; Cheng, Shuk H; Zeng, Raymond J

    2016-01-01

    The nitrate-dependent denitrifying anaerobic methane oxidation (DAMO) process, which is metabolized together by anaerobic methanotrophic archaea and NC10 phylum bacteria, is expected to be important for the global carbon and nitrogen cycles. However, there are little studies about the existence of this process and the functional microbes in environments. Therefore, the coexistence of DAMO archaea and bacteria in a paddy field was evaluated in this study. Next-generation sequencing showed that the two orders, Methanosarcinales and Nitrospirales, to which DAMO archaea and DAMO bacteria belong, were detected in the four soil samples. Then the in vitro experiments demonstrated both of nitrite- and nitrate-dependent DAMO activities, which confirmed the coexistence of DAMO archaea and DAMO bacteria. It was the first report about the coexistence of DAMO archaea and bacteria in a paddy field. Furthermore, anammox bacteria were detected in two of the four samples. The in vitro experiments did not show anammox activity in the initial period but showed low anammox activity after 20 days' enrichment. These results implicated that anammox bacteria may coexist with DAMO microorganisms in this field, but at a very low percentage.

  11. Comparative proteomic analysis of sulfur-oxidizing Acidithiobacillus ferrooxidans CCM 4253 cultures having lost the ability to couple anaerobic elemental sulfur oxidation with ferric iron reduction.

    Science.gov (United States)

    Kucera, Jiri; Sedo, Ondrej; Potesil, David; Janiczek, Oldrich; Zdrahal, Zbynek; Mandl, Martin

    2016-09-01

    In extremely acidic environments, ferric iron can be a thermodynamically favorable electron acceptor during elemental sulfur oxidation by some Acidithiobacillus spp. under anoxic conditions. Quantitative 2D-PAGE proteomic analysis of a resting cell suspension of a sulfur-grown Acidithiobacillus ferrooxidans CCM 4253 subculture that had lost its iron-reducing activity revealed 147 protein spots that were downregulated relative to an iron-reducing resting cell suspension of the antecedent sulfur-oxidizing culture and 111 that were upregulated. Tandem mass spectrometric analysis of strongly downregulated spots identified several physiologically important proteins that apparently play roles in ferrous iron oxidation, including the outer membrane cytochrome Cyc2 and rusticyanin. Other strongly repressed proteins were associated with sulfur metabolism, including heterodisulfide reductase, thiosulfate:quinone oxidoreductase and sulfide:quinone reductase. Transcript-level analyses revealed additional downregulation of other respiratory genes. Components of the iron-oxidizing system thus apparently play central roles in anaerobic sulfur oxidation coupled with ferric iron reduction in the studied microbial strain. Copyright © 2016 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  12. Toxicity of sodium arsenite in the gill of an economically important mollusc of India.

    Science.gov (United States)

    Chakraborty, Sudipta; Ray, Mitali; Ray, Sajal

    2010-07-01

    Toxicity of arsenic was investigated in the gill of Lamellidens marginalis by exposing the animals to sublethal concentrations of sodium arsenite for a maximum period of 30 days in controlled laboratory conditions. Arsenite exposure inhibited the activities of acid phosphatase (ACP), alkaline phosphatase (ALP), glutamate oxaloacetate transaminase (GOT), glutamate pyruvate transaminase (GPT) and acetylcholinesterase (AChE) in a dose and time dependent manner. Depletion in cytotoxic molecule like nitric oxide (NO) and suppression of phenoloxidase (PO) activity suggests an immune compromise in the animal. Inhibition in the activities of glutathione-s-transferase (GST) and catalase (CAT) in the species indicate impairment of its vital detoxification process and elevated oxidative stress respectively. Histopathology of the gill indicates arsenite induced damage of the organ leading to its possible dysfunction. The toxic exposure ravaged the structure and impaired the functions of the gill of the animal which might restrict its proper gaseous exchange, filter feeding and elicitation of immune responses against pathogens. 2010 Elsevier Ltd. All rights reserved.

  13. Determination of ultratrace dissolved arsenite in water - selective coprecipitation in the field combined with HGAFS and ICP-MS measurement in the laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Elteren, J.T. van [Interfaculty Reactor Institute, Delft Univ. of Technology (Netherlands); Slejkovec, Z. [Institut Jozef Stefan, Ljubljana (Slovenia); Svetina, M.; Glinsek, A. [ERICo Velenje, Environmental Research and Industrial Corp., Velenje (Slovenia)

    2001-06-01

    Because stabilization of arsenite in water samples during transit and storage is troublesome, this work deals with a method to prevent this by on-site selective coprecipitation of arsenite with dibenzyldithiocarbamate and recovery of the coprecipitate by filtration through a 0.45-{mu}m membrane filter. In the laboratory arsenic on the filter is quantitatively released by oxidation of arsenite to arsenate with H{sub 2}O{sub 2} (6%) in alkaline medium (8 mmol L{sup -1} NaOH) at elevated temperature (85 C) for 30 min followed by ultratrace determination by routine HGAFS and ICP-MS. It is shown that arsenate contamination of the coprecipitate is so low that arsenate concentrations three orders of magnitude higher than the arsenite concentration do not interfere; this is essential, because arsenate is usually the dominant arsenic species in water. Because significant preconcentration can be achieved in the solution obtained from the leached filter (normally a factor 20 but easily increased to 100) very low detection limits can be obtained (only limited by the purity of the materials and the cleanliness of working); a realistic limit of determination is 0.01 {mu}g L{sup -1} arsenite. The procedure was used for the determination of arsenite in two ground waters from an ash depository site in the Salek valley (Slovenia). The matrix contained some elements at very high levels but this did not impair the efficiency of arsenite coprecipitation. The results obtained by use of HGAFS and ICP-MS were not significantly different at the 5% level for sub-{mu}g L{sup -1} arsenite concentrations. (orig.)

  14. Biotechnological aspects of anaerobic oxidation of methane coupled to sulfate reduction

    NARCIS (Netherlands)

    Meulepas, R.J.W.

    2009-01-01

    Sulfate reduction (SR) can be used for the removal and recovery of metals and oxidized sulfur compounds from waste streams. Sulfate-reducing bacteria reduce oxidized sulfur compounds to sulfide. Subsequently, sulfide can precipitate dissolved metals or can be oxidized to elemental sulfur. Both metal

  15. Anaerobic Respiration Using a Complete Oxidative TCA Cycle Drives Multicellular Swarming in Proteus mirabilis

    Science.gov (United States)

    Alteri, Christopher J.; Himpsl, Stephanie D.; Engstrom, Michael D.; Mobley, Harry L. T.

    2012-01-01

    ABSTRACT Proteus mirabilis rapidly migrates across surfaces using a periodic developmental process of differentiation alternating between short swimmer cells and elongated hyperflagellated swarmer cells. To undergo this vigorous flagellum-mediated motility, bacteria must generate a substantial proton gradient across their cytoplasmic membranes by using available energy pathways. We sought to identify the link between energy pathways and swarming differentiation by examining the behavior of defined central metabolism mutants. Mutations in the tricarboxylic acid (TCA) cycle (fumC and sdhB mutants) caused altered patterns of swarming periodicity, suggesting an aerobic pathway. Surprisingly, the wild-type strain swarmed on agar containing sodium azide, which poisons aerobic respiration; the fumC TCA cycle mutant, however, was unable to swarm on azide. To identify other contributing energy pathways, we screened transposon mutants for loss of swarming on sodium azide and found insertions in the following genes that involved fumarate metabolism or respiration: hybB, encoding hydrogenase; fumC, encoding fumarase; argH, encoding argininosuccinate lyase (generates fumarate); and a quinone hydroxylase gene. These findings validated the screen and suggested involvement of anaerobic electron transport chain components. Abnormal swarming periodicity of fumC and sdhB mutants was associated with the excretion of reduced acidic fermentation end products. Bacteria lacking SdhB were rescued to wild-type pH and periodicity by providing fumarate, independent of carbon source but dependent on oxygen, while fumC mutants were rescued by glycerol, independent of fumarate only under anaerobic conditions. These findings link multicellular swarming patterns with fumarate metabolism and membrane electron transport using a previously unappreciated configuration of both aerobic and anaerobic respiratory chain components. PMID:23111869

  16. Activity, Microenvironments, and Community Structure of Aerobic and Anaerobic Ammonium Oxidizing Prokaryotes in Estuarine Sediment (Randers Fjord, DK)

    DEFF Research Database (Denmark)

    Schramm, Andreas; Revsbech, Niels Peter; Dalsgaard, Tage

    2006-01-01

    stations where it accounted for 5-16% of the total N2 production and 0.1-0.25% of the total prokaryotic population. These numbers result in cell-specific anammox rates of about 6 fmol N day-1, comparable to literature values. Anammox cells occurred mainly in clusters and were related to the candidate genus......ACTIVITY, MICROENVIRONMENTS, AND COMMUNITY STRUCTURE OF AEROBIC AND ANAEROBIC AMMONIUM OXIDIZING PROKARYOTES IN ESTUARINE SEDIMENT (RANDERS FJORD, DK) A. Schramm 1, N.P. Revsbech 1, T. Dalsgaard 2, E. Piña-Ochoa 3, J. de la Torré 4, D.A. Stahl 4, N. Risgaard-Petersen 2 1 Department of Biological...

  17. Candidatus "Scalindua brodae", sp. nov., Candidatus "Scalindua wagneri", sp. nov., two new species of anaerobic ammonium oxidizing bacteria.

    Science.gov (United States)

    Schmid, Markus; Walsh, Kerry; Webb, Rick; Rijpstra, W Irene C; van de Pas-Schoonen, Katinka; Verbruggen, Mark Jan; Hill, Thomas; Moffett, Bruce; Fuerst, John; Schouten, Stefan; Damsté, Jaap S Sinninghe; Harris, James; Shaw, Phil; Jetten, Mike; Strous, Marc

    2003-11-01

    Anaerobic ammonium oxidation (anammox) is both a promising process in wastewater treatment and a long overlooked microbial physiology that can contribute significantly to biological nitrogen cycling in the world's oceans. Anammox is mediated by a monophyletic group of bacteria that branches deeply in the Planctomycetales. Here we describe a new genus and species of anaerobic ammonium oxidizing planctomycetes, discovered in a wastewater treatment plant (wwtp) treating landfill leachate in Pitsea, UK. The biomass from this wwtp showed high anammox activity (5.0 +/- 0.5 nmol/mg protein/min) and produced hydrazine from hydroxylamine, one of the unique features of anammox bacteria. Eight new planctomycete 16S rRNA gene sequences were present in the 16S rRNA gene clone library generated from the biomass. Four of these were affiliated to known anammox 16S rRNA gene sequences, but branched much closer to the root of the planctomycete line of descent. Fluorescence in situ hybridization (FISH) with oligonucleotide probes specific for these new sequences showed that two species (belonging to the same genus) together made up > 99% of the planctomycete population which constituted 20% of the total microbial community. The identification of these organisms as typical anammox bacteria was confirmed with electron microscopy and lipid analysis. The new species, provisionally named Candidatus "Scalindua brodae" and "Scalindua wagneri" considerably extend the biodiversity of the anammox lineage on the 16S rRNA gene level, but otherwise resemble known anammox bacteria. Simultaneously, another new species of the same genus, Candidatus "Scalindua sorokinii", was detected in the water column of the Black Sea, making this genus the most widespread of all anammox bacteria described so far.

  18. Molecular isotopic evidence for anaerobic oxidation of methane in deep-sea hydrothermal vent environment in Okinawa Trough

    Science.gov (United States)

    Uchida, M.; Takai, K.; Inagaki, F.

    2003-04-01

    Large amount of methane in anoxic marine sediments as well as cold seeps and hydrothermal vents is recycled through for an anoxic oxidation of methane processes. Now that combined results of field and laboratory studies revealed that microbiological activity associated with syntrophic consortium of archaea performing reversed methanogenesis and sulfate-reducing bacteria is significant roles in methane recycling, anaerobic oxidation of methane (AOM). In this study, we examined the diversity of archaeal and bacterial assemblages of AOM using compound-specific stable carbon isotopic and phylogenetic analyses. "Iheya North" in Okinawa Trough is sediment-rich, back arc type hydrothermal system (27^o47'N, 126^o53'E). Sediment samples were collected from three sites where are "bubbling sites", yellow-colored microbial mats are formed with continuous bubbling from the seafloor bottom, vent mussel's colonies site together with slowly venting and simmering, and control site off 100 m distance from thermal vent. This subsea floor structure has important effect in the microbial ecosystem and interaction between their activity and geochemical processes in the subseafloor habitats. Culture-independent, molecular biological analysis clearly indicated the presence of thermophilic methanogens in deeper area having higher temperatures and potential activity of AMOs consortium in the shallower area. AMO is composed with sulfate-reducing bacterial components (Desulfosarcina spp.) and anoxic methane oxidizing archaea (ANME-2). These results were consistent with the results of compound-specific carbon analysis of archaeal biomarkers. They showed extremely depleted 13C contents (-80 ppm ˜ -100 ppm), which also appeared to be capable of directly oxidizing methane.

  19. Denitrification of groundwater using a sulfur-oxidizing autotrophic denitrifying anaerobic fluidized-bed MBR: performance and bacterial community structure.

    Science.gov (United States)

    Zhang, Lili; Zhang, Chao; Hu, Chengzhi; Liu, Huijuan; Qu, Jiuhui

    2015-03-01

    This paper investigates a novel sulfur-oxidizing autotrophic denitrifying anaerobic fluidized bed membrane bioreactor (AnFB-MBR) that has the potential to overcome the limitations of conventional sulfur-oxidizing autotrophic denitrification systems. The AnFB-MBR produced consistent high-quality product water when fed by a synthetic groundwater with NO3 (-)-N ranging 25-80 mg/L and operated at hydraulic retention times of 0.5-5.0 h. A nitrate removal rate of up to 4.0 g NO3 (-)-N/Lreactord was attained by the bioreactor, which exceeded any reported removal capacity. The flux of AnFB-MBR was maintained in the range of 1.5-15 L m(-2) h(-1). Successful membrane cleaning was practiced with cleaning cycles of 35-81 days, which had no obvious effect on the AnFB-MBR performance. The (15) N-tracer analyses elucidated that nitrogen was converted into (15) N2-N and (15) N-biomass accounting for 88.1-93.1 % and 6.4-11.6 % of the total nitrogen produced, respectively. Only 0.3-0.5 % of removed nitrogen was in form of (15)N2O-N in sulfur-oxidizing autotrophic denitrification process, reducing potential risks of a significant amount of N2O emissions. The sulfur-oxidizing autotrophic denitrifying bacterial consortium was composed mainly of bacteria from Proteobacteria, Chlorobi, and Chloroflexi phyla, with genera Thiobacillus, Sulfurimonas, and Ignavibacteriales dominating the consortium. The pyrosequencing assays also suggested that the stable microbial communities corresponded to the elevated performance of the AnFB-MBR. Overall, this research described relatively high nitrate removal, acceptable flux, indicating future potential for the technology in practice.

  20. Protective effect of dietary phytochemicals against arsenite induced genotoxicity in mammalian V79 cells.

    Science.gov (United States)

    Roy, Madhumita; Sinha, Dona; Mukherjee, Sutapa; Paul, Susmita; Bhattacharya, R K

    2008-10-01

    Chronic arsenic exposure causes skin diseases, gastrointestinal and neurological disorders, diabetes and cancer in various organs. Oxidative stress associated with arsenic exposure cause genetic instabilities and may initiate carcinogenesis. Phytochemicals present in vegetables, fruits, spices, tea, and medicinal plants, have shown to suppress experimental carcinogenesis in various organs. The aim of the present study was to elucidate the protective effect of some of the phytochemicals against the arsenite induced DNA damage in normal mammalian V79 cells. Comet assay was used for assessment of DNA damage and 2', 7'-dichlorofluorescein dihydroacetate for estimation of ROS generated by arsenite. The effect of the phytochemicals was observed during simultaneous treatment with arsenic, before arsenite exposure and during repair experiments. Of all the phytochemicals tested against arsenic, curcumin gave better protection during simultaneous treatment and resveratrol during pre treatment, which was evident both from comet assay and ROS generation experiments. During pre treatment a longer duration of treatment with lower dose of phytochemicals proved fruitful in reducing the genotoxicity. During repair experiments the phytochemicals enhanced recovery of DNA damage and ellagic acid gave promising results. The results indicated that natural phytochemicals may have the efficacy in reducing arsenic induced genotoxicity, in scavenging ROS and in enhancing the process of DNA repair in V79 cells.

  1. Characteristics of aerobic and anaerobic ammonium-oxidizing bacteria in the hyporheic zone of a contaminated river.

    Science.gov (United States)

    Wang, Ziyuan; Qi, Yun; Wang, Jun; Pei, Yuansheng

    2012-09-01

    Both β-proteobacterial aerobic ammonium-oxidizing bacteria (AOB) and anaerobic ammonium-oxidizing (ANAMMOX) bacteria were investigated in the hyporheic zone of a contaminated river in China containing high ammonium levels and low chemical oxygen demand. Fluorescence in-situ hybridization (FISH), denaturing gradient gel electrophoresis (DGGE) and cloning-sequencing were employed in this study. FISH analysis illustrated that AOB (average population of 3.5 %) coexisted with ANAMMOX bacteria (0.7 %). The DGGE profile revealed a high abundance and diversity of bacteria at the water-air-soil interface rather than at the water-soil interface. The redundancy analysis correlated analysis showed that the diversity of ANAMMOX bacteria was positively related to the redox potential. The newly detected sequences of ANAMMOX organisms principally belonged to the genus Candidatus "Brocadia", while most ammonia monooxygenase subunit-A gene amoA sequences were affiliated with Nitrosospira and Nitrosomonas. These results suggest that the water-air-soil interface performs an important function in the nitrogen removal process and that the bioresources of AOB and ANAMMOX bacteria can potentially be utilized for the eutrophication of rivers.

  2. Arsenite suppression of BMP signaling in human keratinocytes

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, Marjorie A.; Qin, Qin [Department of Environmental Toxicology, University of California, Davis, CA 95616-8588 (United States); Hu, Qin; Zhao, Bin [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Rice, Robert H., E-mail: rhrice@ucdavis.edu [Department of Environmental Toxicology, University of California, Davis, CA 95616-8588 (United States)

    2013-06-15

    Arsenic, a human skin carcinogen, suppresses differentiation of cultured keratinocytes. Exploring the mechanism of this suppression revealed that BMP-6 greatly increased levels of mRNA for keratins 1 and 10, two of the earliest differentiation markers expressed, a process prevented by co-treatment with arsenite. BMP also stimulated, and arsenite suppressed, mRNA for FOXN1, an important transcription factor driving early keratinocyte differentiation. Keratin mRNAs increased slowly after BMP-6 addition, suggesting they are indirect transcriptional targets. Inhibition of Notch1 activation blocked BMP induction of keratins 1 and 10, while FOXN1 induction was largely unaffected. Supporting a requirement for Notch1 signaling in keratin induction, BMP increased levels of activated Notch1, which was blocked by arsenite. BMP also greatly decreased active ERK, while co-treatment with arsenite maintained active ERK. Inhibition of ERK signaling mimicked BMP by inducing keratin and FOXN1 mRNAs and by increasing active Notch1, effects blocked by arsenite. Of 6 dual-specificity phosphatases (DUSPs) targeting ERK, two were induced by BMP unless prevented by simultaneous exposure to arsenite and EGF. Knockdown of DUSP2 or DUSP14 using shRNAs greatly reduced FOXN1 and keratins 1 and 10 mRNA levels and their induction by BMP. Knockdown also decreased activated Notch1, keratin 1 and keratin 10 protein levels, both in the presence and absence of BMP. Thus, one of the earliest effects of BMP is induction of DUSPs, which increases FOXN1 transcription factor and activates Notch1, both required for keratin gene expression. Arsenite prevents this cascade by maintaining ERK signaling, at least in part by suppressing DUSP expression. - Highlights: • BMP induces FOXN1 transcription. • BMP induces DUSP2 and DUSP14, suppressing ERK activation. • Arsenite suppresses levels of phosphorylated Smad1/5 and FOXN1 and DUSP mRNA. • These actions rationalize arsenite suppression of keratinocyte

  3. An ArsR/SmtB family member is involved in the regulation by arsenic of the arsenite oxidase operon in Thiomonas arsenitoxydans.

    Science.gov (United States)

    Moinier, Danielle; Slyemi, Djamila; Byrne, Deborah; Lignon, Sabrina; Lebrun, Régine; Talla, Emmanuel; Bonnefoy, Violaine

    2014-10-01

    The genetic organization of the aioBA operon, encoding the arsenite oxidase of the moderately acidophilic and facultative chemoautotrophic bacterium Thiomonas arsenitoxydans, is different from that of the aioBA operon in the other arsenite oxidizers, in that it encodes AioF, a metalloprotein belonging to the ArsR/SmtB family. AioF is stabilized by arsenite, arsenate, or antimonite but not molybdate. Arsenic is tightly attached to AioF, likely by cysteine residues. When loaded with arsenite or arsenate, AioF is able to bind specifically to the regulatory region of the aio operon at two distinct positions. In Thiomonas arsenitoxydans, the promoters of aioX and aioB are convergent, suggesting that transcriptional interference occurs. These results indicate that the regulation of the aioBA operon is more complex in Thiomonas arsenitoxydans than in the other aioBA containing arsenite oxidizers and that the arsenic binding protein AioF is involved in this regulation. On the basis of these data, a model to explain the tight control of aioBA expression by arsenic in Thiomonas arsenitoxydans is proposed. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  4. Detection of active, potentially acetate-oxidizing syntrophs in an anaerobic digester by flux measurement and formyltetrahydrofolate synthetase (FTHFS) expression profiling.

    Science.gov (United States)

    Hori, Tomoyuki; Sasaki, Daisuke; Haruta, Shin; Shigematsu, Toru; Ueno, Yoshiyuki; Ishii, Masaharu; Igarashi, Yasuo

    2011-07-01

    Syntrophic oxidation of acetate, so-called reversed reductive acetogenesis, is one of the most important degradation steps in anaerobic digesters. However, little is known about the genetic diversity of the micro-organisms involved. Here we investigated the activity and composition of potentially acetate-oxidizing syntrophs using a combinatorial approach of flux measurement and transcriptional profiling of the formyltetrahydrofolate synthetase (FTHFS) gene, an ecological biomarker for reductive acetogenesis. During the operation of a thermophilic anaerobic digester, volatile fatty acids were mostly depleted, suggesting a high turnover rate for dissolved H(2), and hydrogenotrophic methanogens were the dominant archaeal members. Batch cultivation of the digester microbiota with (13)C-labelled acetate indicated that syntrophic oxidation accounted for 13.1-21.3 % of methane production from acetate. FTHFS genes were transcribed in the absence of carbon monoxide, methoxylated compounds and inorganic electron acceptors other than CO(2), which is implicated in the activity of reversed reductive acetogenesis; however, expression itself does not distinguish whether biosynthesis or biodegradation is functioning. The mRNA- and DNA-based terminal RFLP and clone library analyses indicated that, out of nine FTHFS phylotypes detected, the FTHFS genes from the novel phylotypes I-IV in addition to the known syntroph Thermacetogenium phaeum (i.e. phylotype V) were specifically expressed. These transcripts arose from phylogenetically presumed homoacetogens. The results of this study demonstrate that hitherto unidentified phylotypes of homoacetogens are responsible for syntrophic acetate oxidation in an anaerobic digester.

  5. Anaerobic ammonium oxidation in traditional municipal wastewater treatment plants with low-strength ammonium loading: Widespread but overlooked.

    Science.gov (United States)

    Wang, Shanyun; Peng, Yongzhen; Ma, Bin; Wang, Shuying; Zhu, Guibing

    2015-11-01

    Occurrence of anaerobic ammonium oxidation (anammox) in marine and freshwater systems has greatly changed our understanding of global nitrogen (N) cycle and promoted the investigation of the role and ecological features of anammox in anthropogenic ecosystems. This study focused on the spatio-temporal abundance, activity, and biodiversity of anammox bacteria in full-scale municipal wastewater treatment plants (WWTPs) via traditional nitrification/denitrification route with low-strength ammonium loading. The anammox bacteria were detected in all the treatment units at the five WWTPs tested, even in aerobic zones (dissolved oxygen >2 mg L(-1)) with abundance of 10(5)-10(7) hydrazine synthase (hzs) gene copies g(-1). The (15)N-isotope tracing technology revealed that the anammox rates in WWTPs ranged from 0.08 to 0.36 μmol N g(-1) h(-1) in winter and 0.12-1.20 μmol N g(-1) h(-1) in summer with contributions of 2.05-6.86% and 1.71-7.26% to N2 production, respectively. The diversity of anammox bacteria in WWTPs was distributed over only two genera, Brocadia and Kuenenia. Additionally, the exploration of potential interspecies relationships indicated that ammonia oxidation bacteria (AOB) was the major nitrite-substrate producer for anammox during nitrification, while Nitrospira, a nitrite oxidation bacteria (NOB), was the potential major competitor for nitrite. These results suggested the contribution of N-removal by the widespread of anammox has been overlooked in traditional municipal WWTPs, and the ecological habitats of anammox bacteria in anthropogenic ecosystems are much more abundant than previously assumed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Highly Sensitive Detection of Arsenite Based on Its Affinity toward Ruthenium Nanoparticles Decorated on Glassy Carbon Electrode.

    Science.gov (United States)

    Gupta, Ruma; Gamare, Jayashree S; Pandey, Ashok K; Tyagi, Deepak; Kamat, Jayshree V

    2016-02-16

    Metallic ruthenium nanoparticles (Ru NPs) are formed on the glassy carbon electrode (GC) at electrodeposition potential of -0.75 V, as observed from X-ray photoelectron spectroscopy. Thus formed Ru NPs have the arsenite selective surface and conducting core that is ideally suited for designing a highly sensitive and reproducible response generating matrix for the arsenite detection at an ultratrace concentration in aqueous matrices. Contrary to this, arsenate ions sorb via chemical interactions on the ruthenium oxide (RuO2 and RuO3) NPs formed at -0.25 V, but not on the Ru NPs. For exploring a possibility of the quantification of arsenite in the ultratrace concentration range, the Ru NPs have been deposited on the GC by a potentiostatic pulse method of electrodeposition at optimized -0.75 V for 1000 s. Arsenite preconcentrates onto the Ru surface just by dipping the RuNPs/GC into the arsenite solution as it interacts chemically with Ru NPs. Electrochemical impedance spectroscopy of As(III) loaded RuNPs/GC shows a linear increase in the charge transfer resistance with an increase in As(III) conc. Using a differential pulse voltammetric technique, arsenite is oxidized to arsenate leading to its quantitative determination without any interference of Cu(2+) ions that are normally encountered in the water systems. Thus, the use of RuNPs/GC eliminates the need for a preconcentration step in stripping voltammetry, which requires optimization of the parameters like preconcentration potential, time, stirring, inferences, and so on. The RuNPs/GC based differential pulse voltammetric (DPV) technique can determine the concentration of arsenite in a few min with a detection limit of 0.1 ppb and 5.4% reproducibility. The sensitivity of 2.38 nA ppb(-1) obtained in the present work for As(III) quantification is considerably better than that reported in the literature, with a similar detection limit and mild conditions (pH = 2). The RuNPs/GC based DPV has been evaluated for its

  7. Application of anaerobic ammonium-oxidizing consortium to achieve completely autotrophic ammonium and sulfate removal.

    Science.gov (United States)

    Liu, Sitong; Yang, Fenglin; Gong, Zheng; Meng, Fangang; Chen, Huihui; Xue, Yuan; Furukawa, Kenji

    2008-10-01

    The simultaneous ammonium and sulfate removal was detected in an anammox reactor, consisted of ammonium oxidization with sulfate deoxidization, and subsequently traditional anammox process, in via of middle medium nitrite with solid sulfur and N2 as the terminal products. The pure anammox bacteria offered a great biotechnological potential for the completely autotrophic reaction indicated by batch tests. Denaturing gradient gel electrophoresis (DGGE) analysis further revealed that a new organism belonging to Planctomycetales was strongly enriched in the defined niche: the redox of ammonium and sulfate. The new species "Anammoxoglobussulfate" was so considered as holding a critical role in the ammonium oxidization with sulfate deoxidization to nitrite. Afterwards, the Planctomyces existing in the bacteria community performed the anammox process together to achieve the complete nitrogen and sulfate removal. The potential use of sulfate as electron acceptor for ammonium oxidizing widens the usage of anammox bacteria.

  8. Anaerobic Nitroxide-Catalyzed Oxidation of Alcohols Using the NO+/NO center dot Redox Pair

    Czech Academy of Sciences Publication Activity Database

    Holan, Martin; Jahn, Ullrich

    2014-01-01

    Roč. 16, č. 1 (2014), s. 58-61 ISSN 1523-7060 R&D Projects: GA ČR GA13-40188S Institutional support: RVO:61388963 Keywords : oxidation * nitroxides * aldehydes * alcohols * ketones * alkyl nitrites Subject RIV: CC - Organic Chemistry Impact factor: 6.364, year: 2014

  9. Environmental control on anaerobic oxidation of methane in the gassy sediments of Eckernforde Bay (German Baltic)

    DEFF Research Database (Denmark)

    Treude, T.; Kruger, M.; Boetius, A.

    2005-01-01

    and March. Field rates of AOM and sulfate reduction (SR) were measured with radiotracer methods. Additional parameters were determined that potentially influence AOM, i.e., temperature, salinity, methane, sulfate, and chlorophyll a. Methanogenesis as well as potential rates of AOM and aerobic oxidation...

  10. A Year in the Life: Annual Patterns of CO2 and CH4 from a Northern Finland Peatland, Including Anaerobic Methane Oxidation and Summer Ebullition Rates

    Science.gov (United States)

    Miller, K.; Lipson, D.; Biasi, C.; Dorodnikov, M.; Männistö, M.; Lai, C. T.

    2014-12-01

    The major ecological controls on methane (CH4) and carbon dioxide (CO2) fluxes in northern wetland systems are well known, yet estimates of source/sink magnitudes are often incongruous with measured rates. This mismatch persists because holistic flux datasets are rare, preventing 'whole picture' determinations of flux controls. To combat this, we measured net CO2 and CH4 fluxes from September 2012-2013 within a peatland in northern Lapland, Finland. In addition, we performed in situ manipulations and in vitro soil incubations to quantify anaerobic methane oxidation and methanogenic rates as they related to alternative electron acceptor availability. Average annual fluxes varied substantially between different depressions within the wetland, a pattern that persisted through all seasons. Season was a strong predictor of both CO2 and CH4 flux rates, yet CH4 rates were not related to melt-season 10cm or 30cm soil temperatures, and only poorly predicted with air temperatures. We found evidence for both autumnal and spring thaw CH4 bursts, collectively accounting for 26% of annual CH4 flux, although the autumnal burst was more than 5 fold larger than the spring burst. CH4 ebullition measured throughout the growing season augmented the CH4 source load by a factor of 1.5, and was linked with fine-scale spatial heterogeneity within the wetland. Surprisingly, CH4 flux rates were insensitive to Fe(III) and humic acid soil amendments, both of which amplified CO2 fluxes. Using in vitro incubations, we determined anaerobic methane oxidation and methanogenesis rates. Measured anaerobic oxidation rates showed potential consumption of between 6-39% of the methane produced, contributing approximately 1% of total carbon dioxide flux. Treatments of nitrate, sulfate and ferric iron showed that nitrate suppressed methanogenesis, but were not associated with anaerobic oxidation rates.

  11. Genomic Analysis of Anaerobic Respiration in the Archaeon Halobacterium sp. Strain NRC-1: Dimethyl Sulfoxide and Trimethylamine N-Oxide as Terminal Electron Acceptors†

    OpenAIRE

    Müller, Jochen A.; DasSarma, Shiladitya

    2005-01-01

    We have investigated anaerobic respiration of the archaeal model organism Halobacterium sp. strain NRC-1 by using phenotypic and genetic analysis, bioinformatics, and transcriptome analysis. NRC-1 was found to grow on either dimethyl sulfoxide (DMSO) or trimethylamine N-oxide (TMAO) as the sole terminal electron acceptor, with a doubling time of 1 day. An operon, dmsREABCD, encoding a putative regulatory protein, DmsR, a molybdopterin oxidoreductase of the DMSO reductase family (DmsEABC), and...

  12. Embryonic exposure to sodium arsenite perturbs vascular development in zebrafish.

    Science.gov (United States)

    McCollum, Catherine W; Hans, Charu; Shah, Shishir; Merchant, Fatima A; Gustafsson, Jan-Åke; Bondesson, Maria

    2014-07-01

    Exposure to arsenic in its inorganic form, arsenite, causes adverse effects to many different organs and tissues. Here, we have investigated arsenite-induced adverse effects on vascular tissues in the model organism zebrafish, Danio rerio. Zebrafish embryos were exposed to arsenite at different exposure windows and the susceptibility to vascular tissue damage was recorded at 72hours post fertilization (hpf). Intersegmental vessel sprouting and growth was most perturbed by exposure to arsenite during the 24-48hpf window, while disruption in the condensation of the caudal vein plexus was more often observed at the 48-72hpf exposure window, reflecting when these structures develop during normal embryogenesis. The vascular growth rate was decreased by arsenite exposure, and deviated from that of control embryos at around 24-26.5hpf. We further mapped changes in expression of key regulators of angiogenesis and vasculogenesis. Downregulation of vascular endothelial growth factor receptor 1/fms-related tyrosine kinase 1 (vegfr1/flt1) expression was evident already at 24hpf, coinciding with the decreased vascular growth rate. At later time points, matrix metalloproteinase 9 (mmp9) expression was upregulated, suggesting that arsenite affects the composition of the extracellular matrix. In total, the expression of eight key factors involved in different aspects of vascularization was significantly altered by arsenic exposure. In conclusion, our results show that arsenite is a potent vascular disruptor in the developing zebrafish embryo, a finding that calls for an evaluation of arsenite as a developmental vascular toxicant in mammalian model systems. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Enrichment of sulfate reducing anaerobic methane oxidizing community dominated by ANME-1 from Ginsburg Mud Volcano (Gulf of Cadiz) sediment in a biotrickling filter.

    Science.gov (United States)

    Bhattarai, Susma; Cassarini, Chiara; Rene, Eldon R; Zhang, Yu; Esposito, Giovanni; Lens, Piet N L

    2018-07-01

    This study was performed to enrich anaerobic methane-oxidizing archaea (ANME) present in sediment from the Ginsburg Mud Volcano (Gulf of Cadiz) in a polyurethane foam packed biotrickling filter (BTF). The BTF was operated at 20 (±2) °C, ambient pressure with continuous supply of methane for 248 days. Sulfate reduction with simultaneous sulfide production (accumulating ∼7 mM) after 200 days of BTF operation evidenced anaerobic oxidation of methane (AOM) coupled to sulfate reduction. High-throughput sequence analysis of 16S rRNA genes showed that after 248 days of BTF operation, the ANME clades enriched to more than 50% of the archaeal sequences, including ANME-1b (40.3%) and ANME-2 (10.0%). Enrichment of the AOM community was beneficial to Desulfobacteraceae, which increased from 0.2% to 1.8%. Both the inoculum and the BTF enrichment contained large populations of anaerobic sulfur oxidizing bacteria, suggesting extensive sulfur cycling in the BTF. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Evidence for nitrite-dependent anaerobic methane oxidation as a previously overlooked microbial methane sink in wetlands

    Science.gov (United States)

    Hu, Bao-lan; Shen, Li-dong; Lian, Xu; Zhu, Qun; Liu, Shuai; Huang, Qian; He, Zhan-fei; Geng, Sha; Cheng, Dong-qing; Lou, Li-ping; Xu, Xiang-yang; Zheng, Ping; He, Yun-feng

    2014-01-01

    The process of nitrite-dependent anaerobic methane oxidation (n-damo) was recently discovered and shown to be mediated by “Candidatus Methylomirabilis oxyfera” (M. oxyfera). Here, evidence for n-damo in three different freshwater wetlands located in southeastern China was obtained using stable isotope measurements, quantitative PCR assays, and 16S rRNA and particulate methane monooxygenase gene clone library analyses. Stable isotope experiments confirmed the occurrence of n-damo in the examined wetlands, and the potential n-damo rates ranged from 0.31 to 5.43 nmol CO2 per gram of dry soil per day at different depths of soil cores. A combined analysis of 16S rRNA and particulate methane monooxygenase genes demonstrated that M. oxyfera-like bacteria were mainly present in the deep soil with a maximum abundance of 3.2 × 107 gene copies per gram of dry soil. It is estimated that ∼0.51 g of CH4 m−2 per year could be linked to the n-damo process in the examined wetlands based on the measured potential n-damo rates. This study presents previously unidentified confirmation that the n-damo process is a previously overlooked microbial methane sink in wetlands, and n-damo has the potential to be a globally important methane sink due to increasing nitrogen pollution. PMID:24616523

  15. Optimization of three FISH procedures for in situ detection of anaerobic ammonium oxidizing bacteria in biological wastewater treatment.

    Science.gov (United States)

    Pavlekovic, Marko; Schmid, Markus C; Schmider-Poignee, Nadja; Spring, Stefan; Pilhofer, Martin; Gaul, Tobias; Fiandaca, Mark; Löffler, Frank E; Jetten, Mike; Schleifer, K-H; Lee, Natuschka M

    2009-08-01

    Fluorescence in situ hybridization (FISH) using fluorochrome-labeled DNA oligonucleotide probes has been successfully applied for in situ detection of anaerobic ammonium oxidizing (anammox) bacteria. However, application of the standard FISH protocols to visualize anammox bacteria in biofilms from a laboratory-scale wastewater reactor produced only weak signals. Increased signal intensity was achieved either by modifying the standard FISH protocol, using peptide nucleic acid probes (PNA FISH), or applying horse radish peroxidase- (HRP-) labeled probes and subsequent catalyzed reporter deposition (CARD-FISH). A comparative analysis using anammox biofilm samples and suspended anammox biomass from different laboratory wastewater bioreactors revealed that the modified standard FISH protocol and the PNA FISH probes produced equally strong fluorescence signals on suspended biomass, but only weak signals were obtained with the biofilm samples. The probe signal intensities in the biofilm samples could be enhanced by enzymatic pre-treatment of fixed cells, and by increasing the hybridization time of the PNA FISH protocol. CARD-FISH always produced up to four-fold stronger fluorescent signals but unspecific fluorescence signals, likely caused by endogenous peroxidases as reported in several previous studies, compromised the results. Interference of the development of fluorescence intensity with endogenous peroxidases was also observed in cells of aerobic ammonium oxidizers like Nitrosomonas europea, and sulfate-reducers like Desulfobacter postgatei. Interestingly, no interference was observed with other peroxidase-positive microorganisms, suggesting that CARD-FISH is not only compromised by the mere presence of peroxidases. Pre-treatment of cells to inactivate peroxidase with HCl or autoclavation/pasteurization failed to inactive peroxidases, but H(2)O(2) significantly reduced endogenous peroxidase activity. However, for optimal inactivation, different H(2)O(2

  16. Sulfate-reducing anaerobic ammonium oxidation as a potential treatment method for high nitrogen-content wastewater.

    Science.gov (United States)

    Rikmann, Ergo; Zekker, Ivar; Tomingas, Martin; Tenno, Taavo; Menert, Anne; Loorits, Liis; Tenno, Toomas

    2012-07-01

    After sulfate-reducing ammonium oxidation (SRAO) was first assumed in 2001, several works have been published describing this process in laboratory-scale bioreactors or occurring in the nature. In this paper, the SRAO process was performed using reject water as a substrate for microorganisms and a source of NH(4) (+), with SO(4) (2-) being added as an electron acceptor. At a moderate temperature of 20°C in a moving bed biofilm reactor (MBBR) sulfate reduction along with ammonium oxidation were established. In an upflow anaerobic sludge blanket reactor (UASBR) the SRAO process took place at 36°C. Average volumetric TN removal rates of 0.03 kg-N/m³/day in the MBBR and 0.04 kg-N/m³/day in the UASBR were achieved, with long-term moderate average removal efficiencies, respectively. Uncultured bacteria clone P4 and uncultured planctomycete clone Amx-PAn30 were detected from the biofilm of the MBBR, from sludge of the UASBR uncultured Verrucomicrobiales bacterium clone De2102 and Uncultured bacterium clone ATB-KS-1929 were found also. The stoichiometrical ratio of NH(4) (+) removal was significantly higher than could be expected from the extent of SO(4) (2-) reduction. This phenomenon can primarily be attributed to complex interactions between nitrogen and sulfur compounds and organic matter present in the wastewater. The high NH(4) (+) removal ratio can be attributed to sulfur-utilizing denitrification/denitritation providing the evidence that SRAO is occurring independently and is not a result of sulfate reduction and anammox. HCO(3) (-) concentrations exceeding 1,000 mg/l were found to have an inhibiting effect on the SRAO process. Small amounts of hydrazine were naturally present in the reaction medium, indicating occurrence of the anammox process. Injections of anammox intermediates, hydrazine and hydroxylamine, had a positive effect on SRAO process performance, particularly in the case of the UASBR.

  17. Metabolic response of Agrobacterium tumefaciens 5A to arsenite.

    Science.gov (United States)

    Tokmina-Lukaszewska, Monika; Shi, Zunji; Tripet, Brian; McDermott, Timothy R; Copié, Valérie; Bothner, Brian; Wang, Gejiao

    2017-02-01

    Wide-spread abundance in soil and water, coupled with high toxicity have put arsenic at the top of the list of environmental contaminants. Early studies demonstrated that both concentration and the valence state of inorganic arsenic (arsenite, As(III) vs. arsenate As(V)) can be modulated by microbes. Using genetics, transcriptomic and proteomic techniques, microbe-arsenic detoxification, respiratory As(V) reduction and As(III) oxidation have since been examined. The effect of arsenic exposure on whole-cell intracellular microbial metabolism, however, has not been extensively studied. We combined LC-MS and 1 H NMR to quantify metabolic changes in Agrobacterium tumefaciens (strain 5A) upon exposure to sub-lethal concentrations of As(III). Metabolomics analysis reveals global differences in metabolite concentrations between control and As(III) exposure groups, with significant perturbations to intermediates shuttling into and cycling within the TCA cycle. These data are most consistent with the disruption of two key TCA cycle enzymes, pyruvate dehydrogenase and α-ketoglutarate dehydrogenase. Glycolysis also appeared altered following As(III) stress, with carbon accumulating as complex saccharides. These observations suggest that an important consequence of As(III) contamination in nature will be to alter microbial carbon metabolism at the microbial community level and thus has the potential to foundationally impact all biogeochemical cycles in the environment. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  18. Ethanol production from maize silage as lignocellulosic biomass in anaerobically digested and wet-oxidized manure

    DEFF Research Database (Denmark)

    Oleskowicz-Popiel, Piotr; Lisiecki, P.; Holm-Nielsen, J.B.

    2008-01-01

    was investigated using 2 1 bioreactors. Wet oxidation performed for 20 min at 121 degrees C was found as the most suitable pretreatment conditions for AD manure. High ammonia concentration and significant amount of macro- and micro-nutrients in the AD manure had a positive influence on the ethanol fermentation....... No extra nitrogen source was needed in the fermentation broth. It was shown that the AD manure could successfully substitute process water in SSF of pretreated lignocellulosic fibres. Theoretical ethanol yields of 82% were achieved, giving 30.8 kg ethanol per 100 kg dry mass of maize silage. (C) 2007...

  19. Comment on "Selective anaerobic oxidation of methane enables direct synthesis of methanol".

    Science.gov (United States)

    Periana, Roy A

    2017-10-13

    Sushkevich et al (Reports, 5 May 2017, p. 523) report on the use of water to oxidize methane to methanol. This seems problematic because the reaction of CH 4 and water to generate methanol and H 2 is highly unfavorable at any temperature (Δ G of reaction ≈ +28 kcal/mol at 200°C, equilibrium constant K ≈ 10 -13 ). Consequently, even if the reaction is separated into two steps, it seems inconceivable to carry out such a net reaction in a practical manner. Copyright © 2017, American Association for the Advancement of Science.

  20. Nitrate reduction, nitrous oxide formation, and anaerobic ammonia oxidation to nitrite in the gut of soil-feeding termites (Cubitermes and Ophiotermes spp.).

    Science.gov (United States)

    Ngugi, David Kamanda; Brune, Andreas

    2012-04-01

    Soil-feeding termites play important roles in the dynamics of carbon and nitrogen in tropical soils. Through the mineralization of nitrogenous humus components, their intestinal tracts accumulate enormous amounts of ammonia, and nitrate and nitrite concentrations are several orders of magnitude above those in the ingested soil. Here, we studied the metabolism of nitrate in the different gut compartments of two Cubitermes and one Ophiotermes species using (15)N isotope tracer analysis. Living termites emitted N(2) at rates ranging from 3.8 to 6.8 nmol h(-1) (g fresh wt.)(-1). However, in homogenates of individual gut sections, denitrification was restricted to the posterior hindgut, whereas nitrate ammonification occurred in all gut compartments and was the prevailing process in the anterior gut. Potential rates of nitrate ammonification for the entire intestinal tract were tenfold higher than those of denitrification, implying that ammonification is the major sink for ingested nitrate in the intestinal tract of soil-feeding termites. Because nitrate is efficiently reduced already in the anterior gut, reductive processes in the posterior gut compartments must be fuelled by an endogenous source of oxidized nitrogen species. Quite unexpectedly, we observed an anaerobic oxidation of (15)N-labelled ammonia to nitrite, especially in the P4 section, which is presumably driven by ferric iron; nitrification and anammox activities were not detected. Two of the termite species also emitted substantial amounts of N(2) O, ranging from 0.4 to 3.9 nmol h(-1) (g fresh wt.)(-1), providing direct evidence that soil-feeding termites are a hitherto unrecognized source of this greenhouse gas in tropical soils. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.

  1. Nitrate reduction, nitrous oxide formation, and anaerobic ammonia oxidation to nitrite in the gut of soil-feeding termites (Cubitermes and Ophiotermes spp.)

    KAUST Repository

    Ngugi, David

    2011-11-28

    Soil-feeding termites play important roles in the dynamics of carbon and nitrogen in tropical soils. Through the mineralization of nitrogenous humus components, their intestinal tracts accumulate enormous amounts of ammonia, and nitrate and nitrite concentrations are several orders of magnitude above those in the ingested soil. Here, we studied the metabolism of nitrate in the different gut compartments of two Cubitermes and one Ophiotermes species using 15N isotope tracer analysis. Living termites emitted N 2 at rates ranging from 3.8 to 6.8nmolh -1 (g fresh wt.) -1. However, in homogenates of individual gut sections, denitrification was restricted to the posterior hindgut, whereas nitrate ammonification occurred in all gut compartments and was the prevailing process in the anterior gut. Potential rates of nitrate ammonification for the entire intestinal tract were tenfold higher than those of denitrification, implying that ammonification is the major sink for ingested nitrate in the intestinal tract of soil-feeding termites. Because nitrate is efficiently reduced already in the anterior gut, reductive processes in the posterior gut compartments must be fuelled by an endogenous source of oxidized nitrogen species. Quite unexpectedly, we observed an anaerobic oxidation of 15N-labelled ammonia to nitrite, especially in the P4 section, which is presumably driven by ferric iron; nitrification and anammox activities were not detected. Two of the termite species also emitted substantial amounts of N 2O, ranging from 0.4 to 3.9nmolh -1 (g fresh wt.) -1, providing direct evidence that soil-feeding termites are a hitherto unrecognized source of this greenhouse gas in tropical soils. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.

  2. ARSENATE AND ARSENITE SORPTION AND ARSENITE OXIDATION BY IRON (II, III) HYDROXYCARBONATE GREEN RUST

    Science.gov (United States)

    Iron (II, III) hydroxycarbonate green rust is a major corrosion product of zerovalent iron that is being used in permeable reactive barriers to remediate groundwater arsenic contamination. To optimize the design of iron barriers, it is important to evaluate the influence of geoch...

  3. Evidence that arsenite acts as a cocarcinogen in skin cancer

    International Nuclear Information System (INIS)

    Rossman, Toby G.; Uddin, Ahmed N.; Burns, Fredric J.

    2004-01-01

    Inorganic arsenic (arsenite and arsenate) in drinking water has been associated with skin cancers in several countries such as Taiwan, Chile, Argentina, Bangladesh, and Mexico. This association has not been established in the United States. In addition, inorganic arsenic alone in drinking water does not cause skin cancers in animals. We recently showed that concentrations as low as 1.25 mg/l sodium arsenite were able to enhance the tumorigenicity of solar UV irradiation in mice. The tumors were almost all squamous cell carcinomas (SCCs). These data suggest that arsenic in drinking water may need a carcinogenic partner, such as sunlight, in the induction of skin cancers. Arsenite may enhance tumorigenicity via effects on DNA repair and DNA damage-induced cell cycle effects, leading to genomic instability. Others have found that dimethlyarsinic acid (DMA), a metabolite of arsenite, can induce bladder cancers at high concentrations in drinking water. In those experiments, skin cancers were not produced. Taken together, these data suggest that arsenite (or possibly an earlier metabolite), and not DMA, is responsible for the skin cancers, but a second genotoxic agent may be a requirement. The differences between the US and the other arsenic-exposed populations with regard to skin cancers might be explained by the lower levels of arsenic in the US, less sun exposure, better nutrition, or perhaps genetic susceptibility differences

  4. Response of anaerobic granular sludge to iron oxide nanoparticles and multi-wall carbon nanotubes during beet sugar industrial wastewater treatment.

    Science.gov (United States)

    Ambuchi, John J; Zhang, Zhaohan; Shan, Lili; Liang, Dandan; Zhang, Peng; Feng, Yujie

    2017-06-15

    The accelerated use of iron oxide nanoparticles (IONPs) and multi-wall carbon nanotubes (MWCNTs) in the consumer and industrial sectors has triggered the need to understand their potential environmental impact. The response of anaerobic granular sludge (AGS) to IONPs and MWCNTs during the anaerobic digestion of beet sugar industrial wastewater (BSIW) was investigated in this study. The IONPs increased the biogas and subsequent CH 4 production rates in comparison with MWCNTs and the control samples. This might be due to the utilization of IONPs and MWCNTs as conduits for electron transfer toward methanogens. The MWCNTs majorly enriched the bacterial growth, while IONP enrichment mostly benefitted the archaea population. Furthermore, scanning electron microscopy and confocal laser scanning microscopy revealed that AGS produced extracellular polymeric substances, which interacted with the IONPs and MWCNTs. This provided cell protection and prevented the nanoparticles from piercing through the membranes and thus cytotoxicity. The results provide useful information and insights on the adjustment of anaerobic microorganisms to the natural complex environment based on nanoparticles infiltration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. A long-term cultivation of an anaerobic methane-oxidizing microbial community from deep-sea methane-seep sediment using a continuous-flow bioreactor.

    Directory of Open Access Journals (Sweden)

    Masataka Aoki

    Full Text Available Anaerobic oxidation of methane (AOM in marine sediments is an important global methane sink, but the physiological characteristics of AOM-associated microorganisms remain poorly understood. Here we report the cultivation of an AOM microbial community from deep-sea methane-seep sediment using a continuous-flow bioreactor with polyurethane sponges, called the down-flow hanging sponge (DHS bioreactor. We anaerobically incubated deep-sea methane-seep sediment collected from the Nankai Trough, Japan, for 2,013 days in the bioreactor at 10°C. Following incubation, an active AOM activity was confirmed by a tracer experiment using 13C-labeled methane. Phylogenetic analyses demonstrated that phylogenetically diverse Archaea and Bacteria grew in the bioreactor. After 2,013 days of incubation, the predominant archaeal components were anaerobic methanotroph (ANME-2a, Deep-Sea Archaeal Group, and Marine Benthic Group-D, and Gammaproteobacteria was the dominant bacterial lineage. Fluorescence in situ hybridization analysis showed that ANME-1 and -2a, and most ANME-2c cells occurred without close physical interaction with potential bacterial partners. Our data demonstrate that the DHS bioreactor system is a useful system for cultivating fastidious methane-seep-associated sedimentary microorganisms.

  6. MRI-monitored intra-tumoral injection of iron-oxide labeled Clostridium novyi-NT anaerobes in pancreatic carcinoma mouse model.

    Directory of Open Access Journals (Sweden)

    Linfeng Zheng

    Full Text Available To validate the feasibility of labeling Clostridium novyi-NT (C.novyi-NT anaerobes with iron-oxide nanoparticles for magnetic resonance imaging (MRI and demonstrate the potential to use MRI to visualize intra-tumoral delivery of these iron-oxide labeled C.novyi-NT during percutaneous injection procedures.All studies were approved by IACUC. C.novyi-NT were labeled with hybrid iron-oxide Texas red nanoparticles. Growth of labeled and control samples were evaluated with optical density. Labeling was confirmed with confocal fluorescence and transmission electron microscopy (TEM. MRI were performed using a 7 Tesla scanner with T2*-weighted (T2*W sequence. Contrast-to-noise ratio (CNR measurements were performed for phantoms and signal-to-noise ratio (SNR measurements performed in C57BL/6 mice (n = 12 with Panc02 xenografts before and after percutaneous injection of iron-oxide labeled C.novyi-NT. MRI was repeated 3 and 7 days post-injection. Hematoxylin-eosin (HE, Prussian blue and Gram staining of tumor specimens were performed for confirmation of intra-tumoral delivery.Iron-oxide labeling had no influence upon C.novyi-NT growth. The signal intensity (SI within T2*W images was significantly decreased for iron-oxide labeled C.novyi-NT phantoms compared to unlabeled controls. Under confocal fluorescence microscopy, the iron-oxide labeled C.novyi-NT exhibited a uniform red fluorescence consistent with observed regions of DAPI staining and overall labeling efficiency was 100% (all DAPI stained C.novyi-NT exhibited red fluorescence. Within TEM images, a large number iron granules were observed within the iron-oxide labeled C.novyi-NT; these were not observed within unlabeled controls. Intra-procedural MRI measurements permitted in vivo visualization of the intra-tumoral distribution of iron-oxide labeled C.novyi-NT following percutaneous injection (depicted as punctate regions of SI reductions within T2*-weighted images; tumor SNR decreased

  7. Biotransformation of arsenite and bacterial aox activity in drinking water produced from surface water of floating houses: Arsenic contamination in Cambodia.

    Science.gov (United States)

    Chang, Jin-Soo

    2015-11-01

    The potential arsenite bioteansformation activity of arsenic was investigated by examining bacterial arsenic arsenite-oxidizing gene such as aoxS, aoxR, aoxA, aoxB, aoxC, and aoxD in high arsenic-contaminated drinking water produced from the surface water of floating houses. There is a biogeochemical cycle of activity involving arsenite oxidase aox system and the ars (arsenic resistance system) gene operon and aoxR leader gene activity in Alcaligenes faecalis SRR-11 and aoxS leader gene activity in Achromobacter xylosoxidans TSL-66. Batch experiments showed that SRR-11 and TSL-66 completely oxidized 1 mM of As (III) to As (V) within 35-40 h. The leaders of aoxS and aoxR are important for gene activity, and their effects in arsenic bioremediation and mobility in natural water has a significant ecological role because it allows arsenite oxidase in bacteria to control the biogeochemical cycle of arsenic-contaminated drinking water produced from surface water of floating houses. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Arsenite tolerance and biotransformation potential in estuarine bacteria

    Digital Repository Service at National Institute of Oceanography (India)

    Nagvenkar, G.S.; Ramaiah, N.

    species by marine algae. Est Coast Mar Sci 10: 555–567 Sawkar K, Pvethamony Babu MT, Dias C, Mesquita A, Fernandes B, Moses S, Padmavati M, Naik S (2003) Measuring, modeling and grading the health of water bodies. Coastal tourism, environment... (Pseudomonas sp) and ES8 (Flavimonas sp) in nutrient broth (NB) without arsenite (open squares) and in NB amended with 200ppm arsenite (triangles) Fig 2b Nagvenkar and Ramaiah EW7 0 0.05 0.1 0.15 3 12273651608199120135 A b s o r b an ce at 6 6 0...

  9. The respiratory arsenite oxidase: structure and the role of residues surrounding the rieske cluster.

    Directory of Open Access Journals (Sweden)

    Thomas P Warelow

    Full Text Available The arsenite oxidase (Aio from the facultative autotrophic Alphaproteobacterium Rhizobium sp. NT-26 is a bioenergetic enzyme involved in the oxidation of arsenite to arsenate. The enzyme from the distantly related heterotroph, Alcaligenes faecalis, which is thought to oxidise arsenite for detoxification, consists of a large α subunit (AioA with bis-molybdopterin guanine dinucleotide at its active site and a 3Fe-4S cluster, and a small β subunit (AioB which contains a Rieske 2Fe-2S cluster. The successful heterologous expression of the NT-26 Aio in Escherichia coli has resulted in the solution of its crystal structure. The NT-26 Aio, a heterotetramer, shares high overall similarity to the heterodimeric arsenite oxidase from A. faecalis but there are striking differences in the structure surrounding the Rieske 2Fe-2S cluster which we demonstrate explains the difference in the observed redox potentials (+225 mV vs. +130/160 mV, respectively. A combination of site-directed mutagenesis and electron paramagnetic resonance was used to explore the differences observed in the structure and redox properties of the Rieske cluster. In the NT-26 AioB the substitution of a serine (S126 in NT-26 for a threonine as in the A. faecalis AioB explains a -20 mV decrease in redox potential. The disulphide bridge in the A. faecalis AioB which is conserved in other betaproteobacterial AioB subunits and the Rieske subunit of the cytochrome bc 1 complex is absent in the NT-26 AioB subunit. The introduction of a disulphide bridge had no effect on Aio activity or protein stability but resulted in a decrease in the redox potential of the cluster. These results are in conflict with previous data on the betaproteobacterial AioB subunit and the Rieske of the bc 1 complex where removal of the disulphide bridge had no effect on the redox potential of the former but a decrease in cluster stability was observed in the latter.

  10. Start-up of simultaneous removal of ammonium and sulfate from an anaerobic ammonium oxidation (anammox) process in an anaerobic up-flow bioreactor

    International Nuclear Information System (INIS)

    Yang Zhiquan; Zhou Shaoqi; Sun Yanbo

    2009-01-01

    A laboratory testing of simultaneous removal of ammonium and sulfate (SRAS) was studied from an anammox process in an anaerobic bioreactor filled with granular activated carbon. Two different phases of experiment were investigated to start up the SRAS process, and final batch tests were performed to analyze the SRAS process. The experiment included an anammox process and an SRAS process. During the anammox process, the highest removal efficiency of ammonium and nitrite was up to 97 and 98%, respectively. After 160 days in the stationary phase of anammox process, the ratio of ammonium to nitrite consumption was approximately 1:1.15, which is much higher than 1:1.32 in the traditional anammox process. The extra electron acceptor, such as sulfate, was thought to react with ammonium by bacteria. Synthetic wastewater containing ammonium chlorine and sodium sulfate was used as the feed for the bioreactor in the second phase of experiment. During the SRAS process, the influent concentrations of ammonium and sulfate were controlled to be 50-60 and 210-240 mg L -1 respectively. After start-up and acclimatization of this process for 60 days, the average effluent concentrations of ammonium and sulfate were 30 and 160 mg L -1 , respectively. The simultaneous ammonium and sulfate removal was detected in the reactor. In order to further validate the biochemical interaction between ammonium and sulfate, batch tests was carried out. Abiotic tests were carried out to demonstrate that the pure chemical action between ammonium and sulfate without microorganism was not possible. Biotic assays with different ammonium and sulfate concentrations were further investigated that high concentrations of ammonium and sulfate could promote simultaneous removal of ammonium and sulfate. And elemental sulfur and nitrogen gas as the products measured in the SRAS process helped to demonstrate the occurrence of new interaction between nitrogen and sulfur. The new process of SRAS in the inorganic

  11. Start-up of simultaneous removal of ammonium and sulfate from an anaerobic ammonium oxidation (anammox) process in an anaerobic up-flow bioreactor.

    Science.gov (United States)

    Yang, Zhiquan; Zhou, Shaoqi; Sun, Yanbo

    2009-09-30

    A laboratory testing of simultaneous removal of ammonium and sulfate (SRAS) was studied from an anammox process in an anaerobic bioreactor filled with granular activated carbon. Two different phases of experiment were investigated to start up the SRAS process, and final batch tests were performed to analyze the SRAS process. The experiment included an anammox process and an SRAS process. During the anammox process, the highest removal efficiency of ammonium and nitrite was up to 97 and 98%, respectively. After 160 days in the stationary phase of anammox process, the ratio of ammonium to nitrite consumption was approximately 1:1.15, which is much higher than 1:1.32 in the traditional anammox process. The extra electron acceptor, such as sulfate, was thought to react with ammonium by bacteria. Synthetic wastewater containing ammonium chlorine and sodium sulfate was used as the feed for the bioreactor in the second phase of experiment. During the SRAS process, the influent concentrations of ammonium and sulfate were controlled to be 50-60 and 210-240 mg L(-1) respectively. After start-up and acclimatization of this process for 60 days, the average effluent concentrations of ammonium and sulfate were 30 and 160 mg L(-1), respectively. The simultaneous ammonium and sulfate removal was detected in the reactor. In order to further validate the biochemical interaction between ammonium and sulfate, batch tests was carried out. Abiotic tests were carried out to demonstrate that the pure chemical action between ammonium and sulfate without microorganism was not possible. Biotic assays with different ammonium and sulfate concentrations were further investigated that high concentrations of ammonium and sulfate could promote simultaneous removal of ammonium and sulfate. And elemental sulfur and nitrogen gas as the products measured in the SRAS process helped to demonstrate the occurrence of new interaction between nitrogen and sulfur. The new process of SRAS in the inorganic

  12. Massive nitrogen loss from the Benguela upwelling system through anaerobic ammonium oxidation RID B-8834-2011

    DEFF Research Database (Denmark)

    Kuypers, MMM; Lavik, G.; Woebken, D.

    2005-01-01

    In many oceanic regions, growth of phytoplankton is nitrogen-limited because fixation of N-2 cannot make up for the removal of fixed inorganic nitrogen (NH4+, NO2-, and NO3-) by anaerobic microbial processes. Globally, 30-50% of the total nitrogen loss occurs in oxygen-minimum zones (OMZs) and is...

  13. In Vitro Protective Potentials of Annona muricata Leaf Extracts Against Sodium Arsenite-induced Toxicity.

    Science.gov (United States)

    George, Vazhappilly Cijo; Kumar, Devanga Ragupathi Naveen; Suresh, Palamadai Krishnan; Kumar, Rangasamy Ashok

    2015-01-01

    Sodium arsenite (NaAsO2) is a metalloid which is present widely in the environment and its chronic exposure can contribute to the induction of oxidative stress, resulting in disturbances in various metabolic functions including liver cell death. Hence, there is a need to develop drugs from natural sources, which can reduce arsenic toxicity. While there have been reports regarding the antioxidant and protective potentials of Annona muricataleaf extracts, our study is the first ofits kind to extend these findings by specifically evaluating its ability to render protection against sodium arsenite (NaAsO2) induced toxicity (10 μM) in WRL-68 (human hepatic cells) and human erythrocytes by employing XTT and haemolysis inhibition assays respectively. The methanolic extract exhibited higher activity than the aqueous extract in both assays. The results showed a dose-dependent decrease in arsenic toxicity in both WRL-68 cells and erythrocytes, suggesting the protective nature of Annona muricatato mitigate arsenic toxicity. Hence the bioactive extracts can further be scrutinized for the identification and characterization of their principal contributors.

  14. The content of trace element iron is a key factor for competition between anaerobic ammonium oxidation and methane-dependent denitrification processes.

    Science.gov (United States)

    Lu, Yong-Ze; Fu, Liang; Li, Na; Ding, Jing; Bai, Ya-Nan; Samaras, Petros; Zeng, Raymond Jianxiong

    2018-05-01

    Coupling of anaerobic ammonium oxidation (Anammox) with denitrifying anaerobic methane oxidation (DAMO) is a sustainable pathway for nitrogen removal and reducing methane emissions from wastewater treatment processes. However, studies on the competitive relation between Anammox bacteria and DAMO bacteria are limited. Here, we investigated the effects of variations in the contents of trace element iron on Anammox and DAMO microorganisms. The short-term results indicated that optimal concentrations of iron, which obviously stimulated the activity of Amammox bacteria, DAMO bacteria and DAMO archaea, were 80, 20, and 80 μM, respectively. The activity of Amammox bacteria increased more significant than DAMO bacteria with increasing contents of trace element iron. After long-term incubation with high content of trace element iron of 160 μM in the medium, Candidatus Brocadia (Amammox bacteria) outcompeted Candidatus Methylomirabilis oxyfera (DAMO bacteria), and ANME-2d (DAMO archaea) remarkably increased in number and dominated the co-culture systems (64.5%). Meanwhile, with further addition of iron, the removal rate of ammonium and nitrate increased by 13.6 and 9.2 times, respectively, when compared with that noted in the control. As far as we know, this study is the first to explore the important role of trace element iron contents in the competition between Anammox bacteria and DAMO bacteria and further enrichment of DAMO archaea by regulating the contents of trace element iron. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Inhibition of mitotic-specific histone phophorylation by sodium arsenite

    Energy Technology Data Exchange (ETDEWEB)

    Cobo, J.M. [Universidad de Alcala de Henares, Madrid (Spain); Valdez, J.G.; Gurley, L.R. [Los Alamos National Lab., NM (United States)

    1994-10-01

    Synchronized cultures of Chinese hamster cells (line CHO) were used to measure the effects of 10{mu}M sodium arsenite on histone phosphorylation. This treatment caused cell proliferation to be temporarily arrested, after which the cells spontaneously resumed cell proliferation in a radiomimetric manner. Immediately following treatment, it was found that sodium arsenite affected only mitotic-specific HI and H3 phosphorylations. Neither interphase, nor mitotic, H2A and H4 phosphorylations were affected, nor was interphase HI Phosphorylation affected. The phosphorylation of HI was inhibited only in mitosis, reducing HI phosphorylation to 38.1% of control levels, which was the level of interphase HI phosphorylation. The phosphorylation of both H3 variants was inhibited in mitosis, the less hydrophobic H3 to 19% and the more hydrophobic H3 to 24% of control levels. These results suggest that sodium arsenite may inhibite cell proliferation by interfering with the cyclin B/p34{sup cdc2} histone kinase activity which is thought to play a key role in regulating the cell cycle. It has been proposed by our laboratory that HI and H3 phosphorylations play a role in restructuring interphase chromatin into metaphase chromosomes. Interference of this process by sodium arsenite may lead to structurally damaged chromosomes resulting in the increased cancer risks known to be produced by arsenic exposure from the environment.

  16. Interaction and enhancement of the toxic effects of sodium arsenite ...

    African Journals Online (AJOL)

    LA) in wistar rats. Sodium arsenite (2.5mg/kg bd.wt) and lead acetate (14mg/kg bd.wt) were fed to rats by gavage for fourteen consecutive days alone or simultaneously. Control rats were fed with distilled water. Clastogenic effects were ...

  17. Sodium arsenite-induced reproductive toxicities in male Wistar rats ...

    African Journals Online (AJOL)

    The cytotoxic potentials of arsenicals are well documented. Efforts at the mitigation of such effects are ongoing. In the present study, the effects of ethanol leaf extract of Tridax procumbens (ELETP); a notable medicinal plant, on the reproductive toxicities of sodium arsenite were investigated. Thirty-two male wistar rats ...

  18. Sorption and desorption of arsenate and arsenite on calcite

    DEFF Research Database (Denmark)

    Sø, Helle Ugilt; Postma, Diederik Jan; Jakobsen, Rasmus

    2008-01-01

    The adsorption and desorption of arsenate (As(V)) and arsenite (As(111)) oil calcite was investigated in a series of batch experiments in calcite-equilibrated solutions. The solutions covered a broad range of pH, alkalinity, calcium concentration and ionic strength. The initial arsenic...

  19. Improving anaerobic digestion of pig manure by adding in the same reactor a stabilizing agent formulated with low-grade magnesium oxide

    International Nuclear Information System (INIS)

    Romero-Güiza, M.S.; Astals, S.; Chimenos, J.M.; Martínez, M.; Mata-Alvarez, J.

    2014-01-01

    Struvite precipitation and pig manure anaerobic digestion were coupled in the same reactor in order to mitigate the inhibitory effect of free ammonia and avoid precipitator costs. The stabilizing agent used to facilitate struvite precipitation was formulated with low-grade magnesium oxide by-product; an approach that would notably reduce struvite processing costs. The interaction between pig manure and stabilizing agent was analyzed in batch experiments, on a wide range of stabilizing agent additions from 5 to 100 kg m −3 . The monitoring of the pH and ammonia removal during 24 h showed the high capacity of the stabilizing agent to remove ammonia; removal efficiencies above 80% were obtained from 40 kg m −3 . However, a long-term anaerobic digester operation was required to assess the feasibility of the process and to ensure that the stabilizing agent does not introduce any harmful compound for the anaerobic biomass. In this vein, the addition of 5 and 30 kg m −3 of the stabilizing agent in a pig manure continuous digester resulted in a 25% (0.17 m 3  kg −1 ) and a 40% (0.19 m 3  kg −1 ) increase in methane production per mass of volatile solid, respectively, when compared with the reference digester (0.13 m 3  kg −1 ). Moreover, the stability of the process during four hydraulic retention times guarantees that the stabilizing agent did not exert a negative effect on the consortium of microorganisms. Finally, scanning electron microscopy and X-ray diffraction analysis confirmed the presence of struvite as well as two precipitation mechanisms, struvite precipitation on the stabilizing agent surface and in the bulk solution. - Highlights: • Anaerobic digestion and struvite precipitation were satisfactorily coupled. • The stabilizing agent showed high ammonia removals efficiencies. • The stabilizing agent improved the methane production of a pig manure digester. • The stabilizing agent does not introduce harmful compound for the

  20. A mass balance model to estimate the rate of composting, methane oxidation and anaerobic digestion in soil covers and shallow waste layers.

    Science.gov (United States)

    Rafiee, Reza; Obersky, Lizanne; Xie, Sihuang; Clarke, William P

    2017-05-01

    Although CH 4 oxidation in landfill soil covers is widely studied, the extent of composting and CH 4 oxidation in underlying waste layers has been speculated but not measured. The objective of this study was to develop and validate a mass balance model to estimate the simultaneous rates of anaerobic digestion (r AD ), CH 4 oxidation (r OX ) and composting (r COM ) in environments where O 2 penetration is variable and zones of aerobic and anaerobic activity are intermingled. The modelled domain could include, as an example, a soil cover and the underlying shallow waste to a nominated depth. The proposed model was demonstrated on a blend of biogas from three separate known sources of gas representing the three reaction processes: (i) a bottle of laboratory grade 50:50% CH 4 :CO 2 gas representing anaerobic digestion biogas; (ii) an aerated 250mL bottle containing food waste that represented composting activity; and (iii) an aerated 250mL bottle containing non-degradable graphite granules inoculated with methanotrophs and incubated with CH 4 and O 2 to represent methanotrophic activity. CO 2 , CH 4 , O 2 and the stable isotope 13 C-CO 2 were chosen as the components for the mass balance model. The three reaction rates, r (=r AD , r OX , r COM ) were calculated as fitting parameters to the overdetermined set of 4mass balance equations with the net flux of these components from the bottles q (= [Formula: see text] , [Formula: see text] , [Formula: see text] and [Formula: see text] ) as inputs to the model. The coefficient of determination (r 2 ) for observed versus modelled values of r were 1.00, 0.97, 0.98 when the stoichiometry of each reaction was based on gas yields measured in the individual bottles and q was calculated by summing yields from the three bottles. r 2 deteriorated to 0.95, 0.96, 0.87 when using an average stoichiometry from 11 incubations of each of the composting and methane oxidation processes. The significant deterioration in the estimation of r

  1. Combining in situ chemical oxidation, stabilization, and anaerobic bioremediation in a single application to reduce contaminant mass and leachability in soil

    Energy Technology Data Exchange (ETDEWEB)

    Cassidy, Daniel P., E-mail: daniel.cassidy@wmich.edu [Department of Geosciences, Western Michigan University, Kalamazoo, MI 49008 (United States); Srivastava, Vipul J., E-mail: vipul.srivastava@ch2m.com [CH2M HILL, 125S Wacker, Ste 3000, Chicago, IL 60606 (United States); Dombrowski, Frank J., E-mail: frank.dombrowski@we-energies.com [We Energies, 333W Everett St., A231, Milwaukee, WI 53203 (United States); Lingle, James W., E-mail: jlingle@epri.com [Electric Power Research Institute (EPRI), 4927W Willow Road, Brown Deer, WI 53223 (United States)

    2015-10-30

    Highlights: • Portland cement and lime activated persulfate by increasing pH and temperature. • Chemical oxidation achieved BTEX and PAH removal ranging from 55% to 75%. • Activating persulfate with ISS amendments reduced leachability more than NaOH. • Native sulfate-reducing bacteria degraded PAHs within weeks after ISCO finished. • ISCO, ISS, and anaerobic bioremediation were combined in a single application. - Abstract: Laboratory batch reactors were maintained for 32 weeks to test the potential for an in situ remedy that combines chemical oxidation, stabilization, and anaerobic bioremediation in a single application to treat soil from a manufactured gas plant, contaminated with polycyclic aromatic hydrocarbons (PAH) and benzene, toluene, ethylbenzene, and xylenes (BTEX). Portland cement and slaked lime were used to activate the persulfate and to stabilize/encapsulate the contaminants that were not chemically oxidized. Native sulfate-reducing bacteria degraded residual contaminants using the sulfate left after persulfate activation. The ability of the combined remedy to reduce contaminant mass and leachability was compared with NaOH-activated persulfate, stabilization, and sulfate-reducing bioremediation as stand-alone technologies. The stabilization amendments increased pH and temperature sufficiently to activate the persulfate within 1 week. Activation with both stabilization amendments and NaOH removed between 55% and 70% of PAH and BTEX. However, combined persulfate and stabilization significantly reduced the leachability of residual BTEX and PAH compared with NaOH activation. Sulfide, 2-naphthoic acid, and the abundance of subunit A of the dissimilatory sulfite reductase gene (dsrA) were used to monitor native sulfate-reducing bacteria, which were negatively impacted by activated persulfate, but recovered completely within weeks.

  2. Oxidation reduction potential as a parameter to regulate micro-oxygen injection into anaerobic digester for reducing hydrogen sulphide concentration in biogas.

    Science.gov (United States)

    Nghiem, Long D; Manassa, Patrick; Dawson, Marcia; Fitzgerald, Shona K

    2014-12-01

    This study aims to evaluate the use of oxidation reduction potential (ORP) to regulate the injection of a small amount of oxygen into an anaerobic digester for reducing H2S concentration in biogas. The results confirm that micro-oxygen injection can be effective for controlling H2S formation during anaerobic digestion without disturbing the performance of the digester. Biogas production, composition, and the removal of volatile solids (VS) and chemical oxygen demand (COD) were monitored to assessment the digester's performance. Six days after the start of the micro-oxygen injection, the ORP values increased to between -320 and -270 mV, from the natural baseline value of -485 mV. Over the same period the H2S concentration in the biogas decreased from over 6000 ppm to just 30 ppm. No discernible changes in the VS and COD removal rates, pH and alkalinity of the digestate or in the biogas production or composition were observed. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  3. Heme oxygenase is the major 32-kDa stress protein induced in human skin fibroblasts by UVA radiation, hydrogen peroxide, and sodium arsenite

    International Nuclear Information System (INIS)

    Keyse, S.M.; Tyrrell, R.M.

    1989-01-01

    We have shown that UVA (320-380 nm) radiation, hydrogen peroxide, and sodium arsenite induce a stress protein of approximately 32 kDa in human skin fibroblasts. The synthesis and cloning of cDNA from arsenite-induced mRNA populations have now allowed us to unequivocally identify the 32-kDa protein as heme oxygenase. By mRNA analysis we have shown that the heme oxygenase gene is also induced in cultured human skin fibroblasts by UVA radiation, hydrogen peroxide, cadmium chloride, iodoacetamide, and menadione. The known antioxidant properties of heme catabolites taken together with the observation of a high level of induction of the enzyme in cells from an organ not involved in hemoglobin breakdown strongly supports the proposal that the induction of heme oxygenase may be a general response to oxidant stress and constitutes an important cellular defense mechanism against oxidative damage

  4. Role of glutathione in tolerance to arsenite in Salvinia molesta, an aquatic fern

    Directory of Open Access Journals (Sweden)

    Adinan Alves da Silva

    2017-09-01

    Full Text Available ABSTRACT In many plant species, tolerance to toxic metals is highly dependent on glutathione, an essential metabolite for cellular detoxification. We evaluated the responses of glutathione metabolism to arsenite (AsIII in Salvinia molesta, an aquatic fern that has unexplored phytoremediation potential. Plants were exposed to different AsIII concentrations in nutrient solution for 24 h. AsIII caused cell membrane damage to submerged leaves, indicating oxidative stress. There was an increase in the glutathione content and ϒ-glutamylcysteine synthetase enzyme activity in the submerged and floating leaves. The glutathione peroxidase and glutathione sulfotransferase enzymes also showed increased activity in both plant parts, whereas glutathione reductase only showed increased activity in the submerged leaves. These findings suggest an important role for glutathione in the protection of S. molesta against the toxic effects of AsIII, with more effective tolerance responses in the floating leaves.

  5. Regulation of apoptosis in human melanoma and neuroblastoma cells by statins, sodium arsenite and TRAIL: a role of combined treatment versus monotherapy

    Science.gov (United States)

    Ivanov, Vladimir N.; Hei, Tom K.

    2015-01-01

    Treatment of melanoma cells by sodium arsenite or statins (simvastatin and lovastatin) dramatically modified activities of the main cell signaling pathways resulting in the induction of heme oxygenase-1 (HO-1) and in a downregulation of cyclooxygenase-2 (COX-2) protein levels. Through heme degradation and the production of carbon monoxide and biliverdin, HO-1 plays a protective role in different scenario of oxidative stress followed by mitochondrial apoptosis. Both sodium arsenite and statins could be efficient inducers of apoptosis in some melanoma cell lines, but often exhibited only modest proapoptotic activity in others, due to numerous protective mechanisms. We demonstrated in the present study that treatment by sodium arsenite or statins with an additional inhibition of HO-1 expression (or activation) caused a substantial upregulation of apoptosis in melanoma cells. Sodium arsenite- or statin-induced apoptosis was independent of BRAF status (wild type versus V600E) in melanoma lines. Monotreatment required high doses of statins (20–40 μM) for effective induction of apoptosis. As an alternative approach, pretreatment of melanoma cells with statin at decreased doses (5–20 μM) dramatically enhanced TRAIL-induced apoptosis, due to suppression of the NF-κB and STAT3-transcriptional targets (including COX-2) and downregulation of cFLIP-L (a caspase-8 inhibitor) protein levels. Furthermore, combined treatment with sodium arsenite and TRAIL or simvastatin and TRAIL efficiently induced apoptotic commitment in human neuroblastoma cells. In summary, our findings on enhancing effects of combined treatment of cancer cells using statin and TRAIL provide the rationale for further preclinical evaluation. PMID:21910007

  6. Influence of substrates on nitrogen removal performance and microbiology of anaerobic ammonium oxidation by operating two UASB reactors fed with different substrate levels

    International Nuclear Information System (INIS)

    Tang Chongjian; Zheng Ping; Hu Baolan; Chen Jianwei; Wang Caihua

    2010-01-01

    Both ammonium and nitrite act as substrates as well as potential inhibitors of anoxic ammonium-oxidizing (Anammox) bacteria. To satisfy demand of substrates for Anammox bacteria and to prevent substrate inhibition simultaneously; two strategies, namely high or low substrate concentration, were carefully compared in the operation of two Anammox upflow anaerobic sludge blanket (UASB) reactors fed with different substrate concentrations. The reactor working at relatively low influent substrate concentration (NO 2 - N, 240 mg-N L -1 ) was shown to avoid the inhibition caused by nitrite and free ammonia. Using the strategy of low substrate concentration, a record super high volumetric nitrogen removal rate of 45.24 kg-N m -3 day -1 was noted after the operation of 230 days. To our knowledge, such a high value has not been reported previously. The evidence from transmission electron microscopy (TEM) showed that the morphology and ultrastructure of the Anammox cells in both the reactor enrichments was different.

  7. The genotoxicity of sodium arsenite in human lymphocyte culture

    International Nuclear Information System (INIS)

    Elhabit, O.H.M.

    1995-01-01

    Sodium arsenite was tested for its clastogenic effect alone and in combination with x-irradiation on whole blood culture and on isolated lymphocyte culture. The results showed a significant difference in the yield of aberrations induced with respect to the culture time 48 hr whole blood culture showed significant increase in gaps and breaks whereas isolated lymphocytes culture showed significant inhibition of cell cycle and 75% of the lymphocytes were in first cell cycle at 72 hr. Arsenite showed co-mutagenicity with different doses of x-ray delivered immediately or few hours after treatment of the culture with SA. The results suggest that SA also is mutagenic at the dose level used and provide support for the indispensability of whole blood culture for evaluation of the in vivo effect any suspected mutagen. Using isolated lymphocytes appear to have problems leading to extensive cell cycle delay

  8. Simultaneous anaerobic oxidation/partial nitrification-denitrification for cost-effective and efficient removal of organic carbon and nitrogen from highly polluted streams.

    Science.gov (United States)

    Hosseinlou, Daniel; Sartaj, Majid; Delatolla, Robert

    2018-02-15

    Laboratory bench-scale anoxic/aerobic reactors with complete mix and continuous flow conditions were operated with high-strength synthetic wastewater to achieve simultaneous COD and nitrogen removal. High concentrations of organic carbon and nitrogen can be found in slaughterhouse, dairy, and food processing wastewaters, and also in some landfill leachates. Therefore, the goal of this study is to find a simple, efficient, reliable, cost-effective, and general solution for organic carbon and ammonia removal from streams with high influent concentrations of more than 5000 mg/L COD and 250 mg/L NH 3 -N. The highest COD (97%) and NH 3 -N (91%) removal efficiencies were obtained with initial COD and ammonia concentrations of 5211 mg/L and 262.8 mg/L NH 3 -N with volumetric loading rates of 11.26 kg COD/m 3  d and 0.57 kg NH 3 -N/m 3  d for COD and ammonia, respectively. Anaerobic oxidation is the main COD removal pathway in a simultaneous anaerobic oxidation/partial nitrification-denitrification (SAO/PND) system, and nitrogen removal significantly occurs via bacterial assimilation and partial nitrification-denitrification pathways. There are several advantages for this proposed SAO/PND system from a practical point of view, such as feasibility of simultaneous COD and nitrogen removal in a single reactor; simple operation; flexibility and practicality of this system as a general solution and cost effectiveness.

  9. Nitrous oxide production pathways in a partial nitritation-anammox reactor: Isotopic evidence for nitrous oxide production associated anaerobic ammonium oxidation?

    Science.gov (United States)

    Wunderlin, P.; Harris, E. J.; Joss, A.; Emmenegger, L.; Kipf, M.; Mohn, J.; Siegrist, H.

    2014-12-01

    Nitrous oxide (N2O) is a strong greenhouse gas and a major sink for stratospheric ozone. In biological wastewater treatment N2O can be produced via several pathways. This study investigates the dynamics of N2O emissions from a nitritation-anammox reactor, and links its interpretation to the nitrogen and oxygen isotopic signature of the emitted N2O. A 400-litre single-stage nitritation-anammox reactor was operated and continuously fed with digester liquid. The isotopic composition of N2O emissions was monitored online with quantum cascade laser absorption spectroscopy (QCLAS; Aerodyne Research, Inc.; Waechter et al., 2008). Dissolved ammonium and nitrate were monitored online (ISEmax, Endress + Hauser), while nitrite was measured with test strips (Nitrite-test 0-24mgN/l, Merck). Table 1. Summary of experiments conducted to understand N2O emissions Experimental conditions O2[mgO2/L] NO2-[mgN/L] NH4+[mgN/L] N2O/NH4+[%] Normal operation in the reactor. Our data reveal that N2O emissions increased when reactor operation was not ideal, for example when dissolved oxygen was too high (Table 1). SP measurements confirmed that these N2O peaks were due to enhanced nitrifier denitrification, generally related to nitrite build-up in the reactor (Figure 1; Table 1). Overall, process control via online N2O monitoring was confirmed to be an ideal method to detect imbalances in reactor operation and regulate aeration, to ensure optimal reactor conditions and minimise N2O emissions. ReferencesWaechter H. et al. (2008) Optics Express, 16: 9239-9244. Wunderlin, P et al. (2013) Environmental Science & Technology 47: 1339-1348.

  10. Constraints on mechanisms and rates of anaerobic oxidation of methane by microbial consortia: process-based modeling of ANME-2 archaea and sulfate reducing bacteria interactions

    Directory of Open Access Journals (Sweden)

    B. Orcutt

    2008-11-01

    Full Text Available Anaerobic oxidation of methane (AOM is the main process responsible for the removal of methane generated in Earth's marine subsurface environments. However, the biochemical mechanism of AOM remains elusive. By explicitly resolving the observed spatial arrangement of methanotrophic archaea and sulfate reducing bacteria found in consortia mediating AOM, potential intermediates involved in the electron transfer between the methane oxidizing and sulfate reducing partners were investigated via a consortium-scale reaction transport model that integrates the effect of diffusional transport with thermodynamic and kinetic controls on microbial activity. Model simulations were used to assess the impact of poorly constrained microbial characteristics such as minimum energy requirements to sustain metabolism and cell specific rates. The role of environmental conditions such as the influence of methane levels on the feasibility of H2, formate and acetate as intermediate species, and the impact of the abundance of intermediate species on pathway reversal were examined. The results show that higher production rates of intermediates via AOM lead to increased diffusive fluxes from the methane oxidizing archaea to sulfate reducing bacteria, but the build-up of the exchangeable species can cause the energy yield of AOM to drop below that required for ATP production. Comparison to data from laboratory experiments shows that under the experimental conditions of Nauhaus et al. (2007, none of the potential intermediates considered here is able to support metabolic activity matching the measured rates.

  11. Effect of freshwater mussels on the vertical distribution of anaerobic ammonia oxidizers and other nitrogen-transforming microorganisms in upper Mississippi river sediment

    Directory of Open Access Journals (Sweden)

    Ellen M. Black

    2017-07-01

    Full Text Available Targeted qPCR and non-targeted amplicon sequencing of 16S rRNA genes within sediment layers identified the anaerobic ammonium oxidation (anammox niche and characterized microbial community changes attributable to freshwater mussels. Anammox bacteria were normally distributed (Shapiro-Wilk normality test, W-statistic =0.954, p = 0.773 between 1 and 15 cm depth and were increased by a factor of 2.2 (p < 0.001 at 3 cm below the water-sediment interface when mussels were present. Amplicon sequencing of sediment at depths relevant to mussel burrowing (3 and 5 cm showed that mussel presence reduced observed species richness (p = 0.005, Chao1 diversity (p = 0.005, and Shannon diversity (p < 0.001, with more pronounced decreases at 5 cm depth. A non-metric, multidimensional scaling model showed that intersample microbial species diversity varied as a function of mussel presence, indicating that sediment below mussels harbored distinct microbial communities. Mussel presence corresponded with a 4-fold decrease in a majority of operational taxonomic units (OTUs classified in the phyla Gemmatimonadetes, Actinobacteria, Acidobacteria, Plantomycetes, Chloroflexi, Firmicutes, Crenarcheota, and Verrucomicrobia. 38 OTUs in the phylum Nitrospirae were differentially abundant (p < 0.001 with mussels, resulting in an overall increase from 25% to 35%. Nitrogen (N-cycle OTUs significantly impacted by mussels belonged to anammmox genus Candidatus Brocadia, ammonium oxidizing bacteria family Nitrosomonadaceae, ammonium oxidizing archaea genus Candidatus Nitrososphaera, nitrite oxidizing bacteria in genus Nitrospira, and nitrate- and nitrite-dependent anaerobic methane oxidizing organisms in the archaeal family “ANME-2d” and bacterial phylum “NC10”, respectively. Nitrosomonadaceae (0.9-fold (p < 0.001 increased with mussels, while NC10 (2.1-fold (p < 0.001, ANME-2d (1.8-fold (p < 0.001, and Candidatus Nitrososphaera (1.5-fold (p < 0

  12. Reduction of arsenite-enhanced ultraviolet radiation-induced DNA damage by supplemental zinc

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, Karen L.; King, Brenee S.; Sandoval, Monica M.; Liu, Ke Jian; Hudson, Laurie G., E-mail: lhudson@salud.unm.edu

    2013-06-01

    Arsenic is a recognized human carcinogen and there is evidence that arsenic augments the carcinogenicity of DNA damaging agents such as ultraviolet radiation (UVR) thereby acting as a co-carcinogen. Inhibition of DNA repair is one proposed mechanism to account for the co-carcinogenic actions of arsenic. We and others find that arsenite interferes with the function of certain zinc finger DNA repair proteins. Furthermore, we reported that zinc reverses the effects of arsenite in cultured cells and a DNA repair target protein, poly (ADP-ribose) polymerase-1. In order to determine whether zinc ameliorates the effects of arsenite on UVR-induced DNA damage in human keratinocytes and in an in vivo model, normal human epidermal keratinocytes and SKH-1 hairless mice were exposed to arsenite, zinc or both before solar-simulated (ss) UVR exposure. Poly (ADP-ribose) polymerase activity, DNA damage and mutation frequencies at the Hprt locus were measured in each treatment group in normal human keratinocytes. DNA damage was assessed in vivo by immunohistochemical staining of skin sections isolated from SKH-1 hairless mice. Cell-based findings demonstrate that ssUVR-induced DNA damage and mutagenesis are enhanced by arsenite, and supplemental zinc partially reverses the arsenite effect. In vivo studies confirm that zinc supplementation decreases arsenite-enhanced DNA damage in response to ssUVR exposure. From these data we can conclude that zinc offsets the impact of arsenic on ssUVR-stimulated DNA damage in cells and in vivo suggesting that zinc supplementation may provide a strategy to improve DNA repair capacity in arsenic exposed human populations. - Highlights: • Low levels of arsenite enhance UV-induced DNA damage in human keratinocytes. • UV-initiated HPRT mutation frequency is enhanced by arsenite. • Zinc supplementation offsets DNA damage and mutation frequency enhanced by arsenite. • Zinc-dependent reduction of arsenite enhanced DNA damage is confirmed in vivo.

  13. Arsenite stimulates glutathione export and glycolytic flux in viable primary rat brain astrocytes.

    Science.gov (United States)

    Tadepalle, Nimesha; Koehler, Yvonne; Brandmann, Maria; Meyer, Nils; Dringen, Ralf

    2014-10-01

    Intoxication with inorganic arsenicals leads to neuropathies and impaired cognitive functions. However, little is known so far on the cellular targets that are involved in the adverse effects of arsenite to brain cells. To test whether arsenite may affect neural glucose and glutathione (GSH) metabolism, primary astrocyte cultures from rat brain were used as a model system. Exposure of cultured astrocytes to arsenite in concentrations of up to 0.3mM did not compromise cell viability during incubations for up to 6h, while 1mM arsenite damaged the cells already within 2h after application. Determination of cellular arsenic contents of astrocytes that had been incubated for 2h with arsenite revealed an almost linear concentration-dependent increase in the specific cellular arsenic content. Exposure of astrocytes to arsenite stimulated the export of GSH and accelerated the cellular glucose consumption and lactate production in a time- and concentration-dependent manner. Half-maximal stimulation of GSH export and glycolytic flux were observed for arsenite in concentrations of 0.1mM and 0.3mM, respectively. The arsenite-induced stimulation of both processes was abolished upon removal of extracellular arsenite. The strong stimulation of GSH export by arsenite was prevented by MK571, an inhibitor of the multidrug resistance protein 1, suggesting that this transporter mediates the accelerated GSH export. In addition, presence of MK571 significantly increased the specific cellular arsenic content, suggesting that Mrp1 may also be involved in arsenic export from astrocytes. The data observed suggest that alterations in glucose and GSH metabolism may contribute to the reported adverse neural consequences of intoxication with arsenite. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Anaerobic biotransformation of estrogens

    International Nuclear Information System (INIS)

    Czajka, Cynthia P.; Londry, Kathleen L.

    2006-01-01

    Estrogens are important environmental contaminants that disrupt endocrine systems and feminize male fish. We investigated the potential for anaerobic biodegradation of the estrogens 17-α-ethynylestradiol (EE2) and 17-β-estradiol (E2) in order to understand their fate in aquatic and terrestrial environments. Cultures were established using lake water and sediment under methanogenic, sulfate-, iron-, and nitrate-reducing conditions. Anaerobic degradation of EE2 (added at 5 mg/L) was not observed in multiple trials over long incubation periods (over three years). E2 (added at 5 mg/L) was transformed to estrone (E1) under all four anaerobic conditions (99-176 μg L -1 day -1 ), but the extent of conversion was different for each electron acceptor. The oxidation of E2 to E1 was not inhibited by E1. Under some conditions, reversible inter-conversion of E2 and E1 was observed, and the final steady state concentration of E2 depended on the electron-accepting condition but was independent of the total amount of estrogens added. In addition, racemization occurred and E1 was also transformed to 17-α-estradiol under all but nitrate-reducing conditions. Although E2 could be readily transformed to E1 and in many cases 17-α-estradiol under anaerobic conditions, the complete degradation of estrogens under these conditions was minimal, suggesting that they would accumulate in anoxic environments

  15. Anaerobic biotransformation of estrogens

    Energy Technology Data Exchange (ETDEWEB)

    Czajka, Cynthia P. [Department of Microbiology, University of Manitoba, Winnipeg, MB, R3T 2N2 (Canada); Londry, Kathleen L. [Department of Microbiology, University of Manitoba, Winnipeg, MB, R3T 2N2 (Canada)]. E-mail: londryk@cc.umanitoba.ca

    2006-08-31

    Estrogens are important environmental contaminants that disrupt endocrine systems and feminize male fish. We investigated the potential for anaerobic biodegradation of the estrogens 17-{alpha}-ethynylestradiol (EE2) and 17-{beta}-estradiol (E2) in order to understand their fate in aquatic and terrestrial environments. Cultures were established using lake water and sediment under methanogenic, sulfate-, iron-, and nitrate-reducing conditions. Anaerobic degradation of EE2 (added at 5 mg/L) was not observed in multiple trials over long incubation periods (over three years). E2 (added at 5 mg/L) was transformed to estrone (E1) under all four anaerobic conditions (99-176 {mu}g L{sup -1} day{sup -1}), but the extent of conversion was different for each electron acceptor. The oxidation of E2 to E1 was not inhibited by E1. Under some conditions, reversible inter-conversion of E2 and E1 was observed, and the final steady state concentration of E2 depended on the electron-accepting condition but was independent of the total amount of estrogens added. In addition, racemization occurred and E1 was also transformed to 17-{alpha}-estradiol under all but nitrate-reducing conditions. Although E2 could be readily transformed to E1 and in many cases 17-{alpha}-estradiol under anaerobic conditions, the complete degradation of estrogens under these conditions was minimal, suggesting that they would accumulate in anoxic environments.

  16. Combining in situ chemical oxidation, stabilization, and anaerobic bioremediation in a single application to reduce contaminant mass and leachability in soil.

    Science.gov (United States)

    Cassidy, Daniel P; Srivastava, Vipul J; Dombrowski, Frank J; Lingle, James W

    2015-10-30

    Laboratory batch reactors were maintained for 32 weeks to test the potential for an in situ remedy that combines chemical oxidation, stabilization, and anaerobic bioremediation in a single application to treat soil from a manufactured gas plant, contaminated with polycyclic aromatic hydrocarbons (PAH) and benzene, toluene, ethylbenzene, and xylenes (BTEX). Portland cement and slaked lime were used to activate the persulfate and to stabilize/encapsulate the contaminants that were not chemically oxidized. Native sulfate-reducing bacteria degraded residual contaminants using the sulfate left after persulfate activation. The ability of the combined remedy to reduce contaminant mass and leachability was compared with NaOH-activated persulfate, stabilization, and sulfate-reducing bioremediation as stand-alone technologies. The stabilization amendments increased pH and temperature sufficiently to activate the persulfate within 1 week. Activation with both stabilization amendments and NaOH removed between 55% and 70% of PAH and BTEX. However, combined persulfate and stabilization significantly reduced the leachability of residual BTEX and PAH compared with NaOH activation. Sulfide, 2-naphthoic acid, and the abundance of subunit A of the dissimilatory sulfite reductase gene (dsrA) were used to monitor native sulfate-reducing bacteria, which were negatively impacted by activated persulfate, but recovered completely within weeks. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Treatment of high salt oxidized modified starch waste water using micro-electrolysis, two-phase anaerobic aerobic and electrolysis for reuse

    Science.gov (United States)

    Yi, Xuenong; Wang, Yulin

    2017-06-01

    A combined process of micro-electrolysis, two-phase anaerobic, aerobic and electrolysis was investigated for the treatment of oxidized modified starch wastewater (OMSW). Optimum ranges for important operating variables were experimentally determined and the treated water was tested for reuse in the production process of corn starch. The optimum hydraulic retention time (HRT) of micro-electrolysis, methanation reactor, aerobic process and electrolysis process were 5, 24, 12 and 3 h, respectively. The addition of iron-carbon fillers to the acidification reactor was 200 mg/L while the best current density of electrolysis was 300 A/m2. The biodegradability was improved from 0.12 to 0.34 by micro-electrolysis. The whole treatment was found to be effective with removal of 96 % of the chemical oxygen demand (COD), 0.71 L/day of methane energy recovery. In addition, active chlorine production (15,720 mg/L) was obtained by electrolysis. The advantage of this hybrid process is that, through appropriate control of reaction conditions, effect from high concentration of salt on the treatment was avoided. Moreover, the process also produced the material needed in the production of oxidized starch while remaining emission-free and solved the problem of high process cost.

  18. Energy upcycle in anaerobic treatment: Ammonium, methane, and carbon dioxide reformation through a hybrid electrodeionization–solid oxide fuel cell system

    International Nuclear Information System (INIS)

    Xu, Linji; Dong, Feifei; Zhuang, Huichuan; He, Wei; Ni, Meng; Feng, Shien-Ping; Lee, Po-Heng

    2017-01-01

    Highlights: • EDI-SOFC integrated with AD is introduced for energy extraction from C and N pollutants. • NH 4 + dissociation to NH 3 and H 2 in EDI avoids C deposition in SOFC. • EDI exhibits nutrient and heavy metal recovery. • SOFCs display its adaptability with NH 3 , H 2 , and biogas. • Energy balance ratio boosts from 1.11 to 1.75 by EDI-SOFC in a HK landfill plant. - Abstract: To create possibilities for a more sustainable wastewater management, a novel system consisting of electrodeionization (EDI) and solid oxide fuel cells (SOFCs) is proposed in this study. This system is integrated with anaerobic digestion/landfills to capture energy from carbonaceous and nitrogenous pollutants. Both EDI and SOFCs showed good performances. EDI removed 95% and 76% ammonium-nitrogen (NH 4 + -N) from diluted (0.025 M) to concentrated (0.5 M) synthetic ammonium wastewaters, respectively, accompanied by hydrogen production. SOFCs converted the recovered fuels, biogas mixtures of methane and carbon dioxide, to electricity. Under the optimal conditions of EDI (3.0 V applied voltage and 7.5 mm internal electrode distance (IED), and SOFCs (750 °C operating temperature), the system achieved 60% higher net energy output as compared to conventional systems. The estimated energy benefit of this proposed system showed that the net energy balance ratio is enhanced from 1.11 (existing system) to 1.75 (this study) for a local Hong Kong active landfill facility with 10.0 g L −1 chemical oxygen demand (COD) and 0.21 M NH 4 + -N. Additionally, an average of 80% inorganic ions (heavy metals and nutrient elements) can be removed from the raw landfill leachate by EDI cell. The results are successful demonstrations of the upgrades of anaerobic processes for energy extraction from wastewater streams.

  19. X-ray Crystal Structure of Arsenite-Inhibited Xanthine Oxidase:[mu]-Sulfido,[mu]-Oxo Double Bridge between Molybdenum and Arsenic in the Active Site

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Hongnan; Hall, James; Hille, Russ (UCR)

    2012-10-23

    Xanthine oxidoreductase is a molybdenum-containing enzyme that catalyzes the hydroxylation reaction of sp{sup 2}-hybridized carbon centers of a variety of substrates, including purines, aldehydes, and other heterocyclic compounds. The complex of arsenite-inhibited xanthine oxidase has been characterized previously by UV-vis, electron paramagnetic resonance, and X-ray absorption spectroscopy (XAS), and the catalytically essential sulfido ligand of the square-pyrimidal molybdenum center has been suggested to be involved in arsenite binding through either a {mu}-sulfido,{mu}-oxo double bridge or a single {mu}-sulfido bridge. However, this is contrary to the crystallographically observed single {mu}-oxo bridge between molybdenum and arsenic in the desulfo form of aldehyde oxidoreductase from Desulfovibrio gigas (an enzyme closely related to xanthine oxidase), whose molybdenum center has an oxo ligand replacing the catalytically essential sulfur, as seen in the functional form of xanthine oxidase. Here we use X-ray crystallography to characterize the molybdenum center of arsenite-inhibited xanthine oxidase and solve the structures of the oxidized and reduced inhibition complexes at 1.82 and 2.11 {angstrom} resolution, respectively. We observe {mu}-sulfido,{mu}-oxo double bridges between molybdenum and arsenic in the active sites of both complexes. Arsenic is four-coordinate with a distorted trigonal-pyramidal geometry in the oxidized complex and three-coordinate with a distorted trigonal-planar geometry in the reduced complex. The doubly bridged binding mode is in agreement with previous XAS data indicating that the catalytically essential sulfur is also essential for the high affinity of reduced xanthine oxidoreductase for arsenite.

  20. Enhancement of Bacterial Transport in Aerobic and Anaerobic Environments: Assessing the Effect of Metal Oxide Chemical Heterogeneities

    International Nuclear Information System (INIS)

    T.C. Onstott

    2005-01-01

    The goal of our research was to understand the fundamental processes that control microbial transport in physically and chemically heterogeneous aquifers and from this enhanced understanding determine the requirements for successful, field-scale delivery of microorganisms to metal contaminated subsurface sites. Our specific research goals were to determine; (1) the circumstances under which the preferential adsorption of bacteria to Fe, Mn, and Al oxyhydroxides influences field-scale bacterial transport, (2) the extent to which the adhesion properties of bacterial cells affect field-scale bacterial transport, (3) whether microbial Fe(III) reduction can enhance field-scale transport of Fe reducing bacteria (IRB) and other microorganisms and (4) the effect of field-scale physical and chemical heterogeneity on all three processes. Some of the spin-offs from this basic research that can improve biostimulation and bioaugmentation remediation efforts at contaminated DOE sites have included; (1) new bacterial tracking tools for viable bacteria; (2) an integrated protocol which combines subsurface characterization, laboratory-scale experimentation, and scale-up techniques to accurately predict field-scale bacterial transport; and (3) innovative and inexpensive field equipment and methods that can be employed to enhance Fe(III) reduction and microbial transport and to target microbial deposition under both aerobic and anaerobic conditions

  1. Interactions of arsenate and arsenite with nanoparticles of zerovalent iron under anaerobic conditions (California)

    Science.gov (United States)

    Arsenic is a known carcinogen for humans. Even low levels of exposure for an extended period of time can cause cancer and sores internally and externally. Arsenic is found in wells and groundwater all over the world, and it is a huge health risk in many countries today. Previous...

  2. Anaerobic oxidation of methane at a marine methane seep in a forearc sediment basin off Sumatra, Indian Ocean

    Directory of Open Access Journals (Sweden)

    Michael eSiegert

    2011-12-01

    Full Text Available A cold methane-seep was discovered in a forearc sediment basin off the island Sumatra, exhibiting a methane-seep adapted microbial community. A defined seep centre of activity, like in mud volcanoes, was not discovered. The seep area was rather characterized by a patchy distribution of active spots. The relevance of AOM was reflected by 13C depleted isotopic signatures of dissolved inorganic carbon (DIC. The anaerobic conversion of methane to CO2 was confirmed in a 13C-labelling experiment. Methane fuelled a vital microbial and invertebrate community which was reflected in cell numbers of up to 4 x 109 cells cm 3 sediment and 13C depleted guts of crabs populating the seep area. The microbial community was analysed by total cell counting, catalyzed reporter deposition – fluorescence in situ hybridisation (CARD-FISH, quantitative real-time PCR (qPCR and denaturing gradient gel electrophoresis (DGGE. CARD-FISH cell counts and qPCR measurements showed the presence of Bacteria and Archaea, but only small numbers of Eukarya. The archaeal community comprised largely members of ANME-1 and ANME-2. Furthermore, members of the Crenarchaeota were frequently detected in the DGGE analysis. Three major bacterial phylogenetic groups (δ-Proteobacteria, candidate division OP9 and Anaerolineaceae were abundant across the study area. Several of these sequences were closely related to the genus Desulfococcus of the family Desulfobacteraceae, which is in good agreement with previously described AOM sites. In conclusion, the majority of the microbial community at the seep consisted of AOM related microorganisms, while the relevance of higher hydrocarbons as microbial substrates was negligible.

  3. Influence of substrates on nitrogen removal performance and microbiology of anaerobic ammonium oxidation by operating two UASB reactors fed with different substrate levels

    Energy Technology Data Exchange (ETDEWEB)

    Tang Chongjian [Department of Environmental Engineering, Zhejiang University, Hangzhou 310029 (China); Zheng Ping, E-mail: pzheng@zju.edu.cn [Department of Environmental Engineering, Zhejiang University, Hangzhou 310029 (China); Hu Baolan; Chen Jianwei; Wang Caihua [Department of Environmental Engineering, Zhejiang University, Hangzhou 310029 (China)

    2010-09-15

    Both ammonium and nitrite act as substrates as well as potential inhibitors of anoxic ammonium-oxidizing (Anammox) bacteria. To satisfy demand of substrates for Anammox bacteria and to prevent substrate inhibition simultaneously; two strategies, namely high or low substrate concentration, were carefully compared in the operation of two Anammox upflow anaerobic sludge blanket (UASB) reactors fed with different substrate concentrations. The reactor working at relatively low influent substrate concentration (NO{sub 2}{sup -}N, 240 mg-N L{sup -1}) was shown to avoid the inhibition caused by nitrite and free ammonia. Using the strategy of low substrate concentration, a record super high volumetric nitrogen removal rate of 45.24 kg-N m{sup -3} day{sup -1} was noted after the operation of 230 days. To our knowledge, such a high value has not been reported previously. The evidence from transmission electron microscopy (TEM) showed that the morphology and ultrastructure of the Anammox cells in both the reactor enrichments was different.

  4. Graphene oxide as an anaerobic membrane scaffold for the enhancement of B. adolescentis proliferation and antagonistic effects against pathogens E. coli and S. aureus

    Science.gov (United States)

    Chen, Han-qing; Gao, Di; Wang, Bing; Zhao, Rui-fang; Guan, Ming; Zheng, Ling-na; Zhou, Xiao-yan; Chai, Zhi-fang; Feng, Wei-yue

    2014-04-01

    The impact of the gut microbiota on human health is widely perceived as the most exciting advancement in biomedicine. The gut microbiota has been known to play a crucial role in defining states of human health and diseases, and thus becomes a potential new territory for drug targeting. Herein, graphene oxide (GO) interaction with five common human gut bacteria, B. adolescentis, L. acidophilus, E. coli, E. faecalis, and S. aureus, was studied. It was shown that, in bacterial media, GO sheets were able to form effective, anaerobic membrane scaffolds that enhanced the antagonistic activity of B. adolescentis against the pathogens E. coli andS. aureus. Data obtained using bacterial growth measurements, colony counting and 16S rRNA gene sequencing consistently indicated that GO sheets promoted proliferation of gut bacteria, particularly for B. adolescentis. Scanning electron microscopy, atomic force microscopy images, and membrane potential measurements showed that cell membranes maintained their integrity and that no observable variations in cell morphology were induced after interaction with GO sheets, indicating good biocompatibility of GO. These results suggest the possibility of using GO sheets as efficient drug carriers in therapeutic applications to treat diseases related to the gut microbiota.

  5. Distribution and characteristic of nitrite-dependent anaerobic methane oxidation bacteria by comparative analysis of wastewater treatment plants and agriculture fields in northern China

    Directory of Open Access Journals (Sweden)

    Zhen Hu

    2016-12-01

    Full Text Available Nitrite-dependent anaerobic methane oxidation (n-damo is a recently discovered biological process which has been arousing global attention because of its potential in minimizing greenhouse gases emissions. In this study, molecular biological techniques and potential n-damo activity batch experiments were conducted to investigate the presence and diversity of M. oxyfera bacteria in paddy field, corn field, and wastewater treatment plant (WWTP sites in northern China, as well as lab-scale n-damo enrichment culture. N-damo enrichment culture showed the highest abundance of M. oxyfera bacteria, and positive correlation was observed between potential n-damo rate and abundance of M. oxyfera bacteria. Both paddy field and corn field sites were believed to be better inoculum than WWTP for the enrichment of M. oxyfera bacteria due to their higher abundance and the diversity of M. oxyfera bacteria. Comparative analysis revealed that long biomass retention time, low NH ${}_{4}^{+}$ 4 + and high NO ${}_{2}^{-}$ 2 − content were suitable for the growth of M. oxyfera bacteria.

  6. Effects of graphene oxide on the performance, microbial community dynamics and antibiotic resistance genes reduction during anaerobic digestion of swine manure.

    Science.gov (United States)

    Zhang, Junya; Wang, Ziyue; Wang, Yawei; Zhong, Hui; Sui, Qianwen; Zhang, Changping; Wei, Yuansong

    2017-12-01

    The role of graphene oxide (GO) on anaerobic digestion (AD) of swine manure concerning the performance, microbial community and antibiotic resistance genes (ARGs) reduction was investigated. Results showed that methane production was reduced by 13.1%, 10.6%, 2.7% and 17.1% at GO concentration of 5mg/L, 50mg/L, 100mg/L and 500mg/L, respectively, but propionate degradation was enhanced along with GO addition. Both bacterial and archaeal community changed little after GO addition. AD could well reduce ARGs abundance, but it was deteriorated at the GO concentration of 50mg/L and 100mg/L and enhanced at 500mg/L, while no obvious changes at 5mg/L. Network and SEM analysis indicated that changes of each ARG was closely associated with variation of microbial community composition, environmental variables contributed most to the dynamics of ARGs indirectly, GO influenced the ARGs dynamics negatively and (heavy metal resistance genes (MRGs)) influenced the most directly. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Enhancing the Process of Anaerobic Ammonium Oxidation Coupled to Iron Reduction in Constructed Wetland Mesocosms with Supplementation of Ferric Iron Hydroxides

    Science.gov (United States)

    Shuai, W.; Jaffe, P. R.

    2017-12-01

    Effective ammonium (NH4+) removal has been a challenge in wastewater treatment processes. Aeration, which is required for the conventional NH4+ removal approach by ammonium oxidizing bacteria, is an energy intensive process during the operation of wastewater treatment plant. The efficiency of NH4+ oxidation in natural systems is also limited by oxygen transfer in water and sediments. The objective of this study is to enhance NH4+ removal by applying a novel microbial process, anaerobic NH4+ oxidation coupled to iron (Fe) reduction (also known as Feammox), in constructed wetlands (CW). Our studies have shown that an Acidimicrobiaceae bacterium named A6 can carry out the Feammox process using ferric Fe (Fe(III)) minerals like ferrihydrite as their electron acceptor. To investigate the properties of the Feammox process in CW as well as the influence of electrodes, Feammox bacterium A6 was inoculated in planted CW mesocosms with electrodes installed at multiple depths. CW mesocosms were operated using high NH4+ nutrient solution as inflow under high or low sediment Fe(III) level. During the operation, NH4+ and ferrous Fe concentration, pore water pH, voltages between electrodes, oxidation reduction potential and dissolved oxygen were measured. At the end of the experiment, CW sediment samples at different depths were taken, DNAs were extracted and quantitative polymerase chain reaction and pyrosequencing were performed to analyze the microbial communities. The results show that the high Fe level CW mesocosm has much higher NH4+ removal ability than the low Fe level CW mesocosm after Fe-reducing conditions are developed. This indicates the enhanced NH4+ removal can be attributed to elevated Feammox activity in high Fe level CW mesocosm. The microbial community structures are different in high or low Fe level CW mesocosms and on or away from the installed electrodes. The voltages between cathode and anode increased after the injection of A6 enrichment culture in low Fe

  8. Low concentration of arsenite exacerbates UVR-induced DNA strand breaks by inhibiting PARP-1 activity

    International Nuclear Information System (INIS)

    Qin Xujun; Hudson, Laurie G.; Liu Wenlan; Timmins, Graham S.; Liu Kejian

    2008-01-01

    Epidemiological studies have associated arsenic exposure with many types of human cancers. Arsenic has also been shown to act as a co-carcinogen even at low concentrations. However, the precise mechanism of its co-carcinogenic action is unknown. Recent studies indicate that arsenic can interfere with DNA-repair processes. Poly(ADP-ribose) polymerase (PARP)-1 is a zinc-finger DNA-repair protein, which can promptly sense DNA strand breaks and initiate DNA-repair pathways. In the present study, we tested the hypothesis that low concentrations of arsenic could inhibit PAPR-1 activity and so exacerbate levels of ultraviolet radiation (UVR)-induced DNA strand breaks. HaCat cells were treated with arsenite and/or UVR, and then DNA strand breaks were assessed by comet assay. Low concentrations of arsenite (≤ 2 μM) alone did not induce significant DNA strand breaks, but greatly enhanced the DNA strand breaks induced by UVR. Further studies showed that 2 μM arsenite effectively inhibited PARP-1 activity. Zinc supplementation of arsenite-treated cells restored PARP-1 activity and significantly diminished the exacerbating effect of arsenite on UVR-induced DNA strand breaks. Importantly, neither arsenite treatment, nor zinc supplementation changed UVR-triggered reactive oxygen species (ROS) formation, suggesting that their effects upon UVR-induced DNA strand breaks are not through a direct free radical mechanism. Combination treatments of arsenite with PARP-1 inhibitor 3-aminobenzamide or PARP-1 siRNA demonstrate that PARP-1 is the target of arsenite. Together, these findings show that arsenite at low concentration exacerbates UVR-induced DNA strand breaks by inhibiting PARP-1 activity, which may represent an important mechanism underlying the co-carcinogenicity of arsenic

  9. Colloid mobilization and arsenite transport in soil columns: effect of ionic strength.

    Science.gov (United States)

    Zhang, Hua; Selim, H M

    2007-01-01

    Colloid generation and transport in soils is of significance because of suspected colloid-facilitated transport of contaminants to the groundwater. In this study, colloid mobilization and its effect on the transport of arsenite [As(III)] were investigated in Olivier (fine-silty, mixed, active, thermic Aquic Fraglossudalfs) and Windsor (mixed, mesic typic Udipsamments) soil columns. Input solution of 10 mg L(-1) As(III) in 0.01 M NaCl was applied to water-saturated columns, and followed by leaching with deionized water (DIW). Flow interruptions were performed during the As(III) input and DIW leaching phases. Turbidity, electrical conductivity (EC), and pH of column effluents were monitored with time. Total and dissolved concentrations of As, Fe, and Al were analyzed. Effluent results demonstrated that colloid-facilitated transport contributed little to arsenic movement when the solution ionic strength was maintained constant. Mobilization of colloidal amorphous material and enhanced transport of As(III) were observed as a result of changes in ionic strength of the input solution. The peak of colloid generation coincided with peak concentrations of Fe, suggesting mobilization of Fe oxides and facilitated transport of As(III) adsorbed on oxide surfaces. Colloid mobilization was enhanced due to flow interruption in the Olivier column, which suggests slow dissociation of aggregated colloidal particles. Moreover, effluent results indicate significant effect of organic matter in stabilizing aggregates of colloidal particles.

  10. Toxicity assessment of arsenate and arsenite on growth, chlorophyll a fluorescence and antioxidant machinery in Nostoc muscorum.

    Science.gov (United States)

    Patel, Anuradha; Tiwari, Sanjesh; Prasad, Sheo Mohan

    2018-04-06

    The present study deals with impact of varied doses of arsenite (As III ; 50, 100 and 150 µM) and arsenate (As V ; 50, 100 and 150 mM) on growth, photosynthetic pigments, photochemistry of photosystem II, oxidative biomarkers, (O 2 • ¯, H 2 O 2 and MDA equivalents contents) and activity of antioxidant enzymes in diazotrophic cyanobacterium Nostoc muscorum after 48 and 96 h of the treatments. The reduction in growth, pigment contents (Chl a, Phy and Car) and PS II photochemistry was found to increase with enhanced accumulation of test metal in cells, and the damaging effect on photosynthetic pigments showed the order (Phy > chl a> Car). The negative effect on PS II photochemistry was due to significant decrease in the value of JIP kinetics ϕP 0 , F V /F 0 , ϕE 0 ,Ψ 0 and PI ABS except F 0 /F V and significant rise in values of energy flux parameters such as ABS/RC, TR 0 /RC, ET 0 /RC and DI 0 /RC. Both the species of arsenic caused significant rise in oxidative biomarkers as evident by in vitro and in vivo analysis of (O 2 • ¯, H 2 O 2 and MDA equivalents contents) despite of appreciable rise in the activity antioxidative enzymes such as SOD, POD, CAT and GST. The study concludes that in among both forms of arsenic, arsenite effect was more dominant on growth, photosynthetic pigments; oxidative stress biomarkers as evident by weak induction of anti-oxidative defense system to overcome the stress as compared to arsenate. Published by Elsevier Inc.

  11. Do Si/As ratios in growth medium affect arsenic uptake, arsenite efflux and translocation of arsenite in rice (Oryza sativa)?

    Science.gov (United States)

    Zhang, Min; Zhao, Quanli; Xue, Peiying; Zhang, Shijie; Li, Bowen; Liu, Wenju

    2017-10-01

    Silicon (Si) may decrease the uptake and accumulation of arsenic (As) in rice. However, the effects of Si/As ratios in growth medium on arsenic uptake, arsenite efflux to the external medium and translocation of arsenite in rice are currently unclear. Rice seedlings (Oryza sativa L.) were exposed to nutrient solutions with 10 μM arsenite [As(III)] or 10 μM arsenate [As(V)] to explore the influence of different silicic acid concentrations (0, 10, 100, 1000 μM) on arsenic uptake and translocation of arsenite with or without 91 μM phosphate for 24 h. Arsenic speciation was determined in nutrient solutions, roots, and shoots. In the arsenite treatments, different Si/As ratios (1:1, 10:1, 100:1) did not affect As(III) uptake by rice roots, however they did inhibit translocation of As(III) from roots to shoots significantly (P rice roots and shoots. A Si/As ratio of 100:1 reduced As(III) translocation from roots to shoots markedly without phosphate. When phosphate was supplied, As(III) translocation from roots to shoots was significantly inhibited by Si/As ratios of 10:1 and 100:1. The results indicated that in the presence of P, different silicic acid concentrations did not impact arsenite uptake and transport in rice when arsenite was supplied. However, a Si/As ratio of 100:1 inhibited As(V) uptake, as well as As(III) efflux and translocation from roots to shoots when arsenate was supplied. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Anaerobic biodegradability of macropollutants

    DEFF Research Database (Denmark)

    Angelidaki, Irini

    2002-01-01

    A variety of test procedures for determination of anaerobic biodegradability has been reported. This paper reviews the methods developed for determination of anaerobic biodegradability of macro-pollutants. Anaerobic biodegradability of micro-pollutants is not included. Furthermore, factors...

  13. Prophylactic neuroprotective efficiency of co-administration of Ginkgo biloba and Trifolium pretense against sodium arsenite-induced neurotoxicity and dementia in different regions of brain and spinal cord of rats.

    Science.gov (United States)

    Abdou, Heba M; Yousef, Mokhtar I; El Mekkawy, Desouki A; Al-Shami, Ahmed S

    2016-08-01

    The present study was carried out to evaluate the potential protective role of co-administration of Ginkgo biloba, Trifolium pretenseagainst sodium arsenite-induced neurotoxicity in different parts of brain (Cerebral cortex, Hippocampus, striatum and Hind brain) and in the spinal cord of rats. Sodium arsenite caused impairment in the acquisition and learning in all the behavioral tasks and caused significant increase in tumor necrosis factor-α,thiobarbituric acid-reactive substances andlipid profile, while caused significant decrease in glutathione, total thiol content, total antioxidant capacity, acetylcholinesterase, monoamine oxidase and ATPases activities. These results were confirmed by histopathological, fluorescence and scanning electron microscopy examination of different regions of brain. From these results sodium arsenite-induced neurodegenerative disorder in different regions of brain and spinal cord and this could be mediated through modifying the intracellular brain ions homeostasis, cholinergic dysfunction and oxidative damage. The presence of Ginkgo biloba and/orTrifolium pretense with sodium arsenite minimized its neurological damages. It was pronounced that using Ginkgo biloba and Trifolium pretense in combination was more effective as protective agents compared to use eachone of them alone. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Sample pre-treatment to eliminate cationic methylated arsenic for determining arsenite on an anion-exchange column by high performance liquid chromatography-inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Huang, Jen-How; Ilgen, Gunter; Decker, Berryinne

    2008-03-17

    Co-elution of cationic methylated arsenic, e.g. arsenobetaine may interfere with the determination of arsenite on the Hamilton PRP-X100 anion-exchange column using a phosphate buffer isocratically. Therefore, a sample pre-treatment method with self-packed AG MP-50 cation-exchange cartridges was proposed, which enables the arsenite determination in samples containing arsenobetaine on a PRP-X100 column using a phosphate buffer (pH 5.6) isocratically. Methylated arsenic, including dimethylarsinic acid, trimethylarsine oxide, tetramethylarsonium ion, arsenobetaine and arsenocholine, with concentrations below 1000microgAsL(-1), may be completely retained in the AG MP-50 cartridge without any changes of arsenite, arsenate and monomethylarsonic acid speciation. Such retention was independent of the pH and matrix. It is proposed to be based on hydrophobic interaction. With the help of AG MP-50 cartridges, 11 arsenic species were detected in fish (DORM-2), mussels (BCR-477) and red algae (Porphyra tenera) in 10min on the PRP-X100 column using a phosphate buffer isocratically. Arsenite was the only minor species (up to 0.9%) among all water extractable arsenic species in fish, mussel and red algae.

  15. Comparison of four extraction procedures to assess arsenate and arsenite species in contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Giral, Melanie [Department of Civil, Geological and Mining Engineering, Ecole Polytechnique de Montreal, P.O. Box 6079, Station Centre-Ville, Montreal, Quebec H3C 3A7 (Canada); Zagury, Gerald J., E-mail: gerald.zagury@polymtl.c [Department of Civil, Geological and Mining Engineering, Ecole Polytechnique de Montreal, P.O. Box 6079, Station Centre-Ville, Montreal, Quebec H3C 3A7 (Canada); Deschenes, Louise [The Interuniversity Research Centre for the Life Cycle of Products, Processes and Services (CIRAIG), Department of Chemical Engineering, Ecole Polytechnique de Montreal, P.O. Box 6079, Station Centre-Ville, Montreal, Quebec H3C 3A7 (Canada); Blouin, Jean-Pierre [Centre d' expertise en analyse environnementale du Quebec, Ministere de l' Environnement, du Developpement Durable et des Parcs, 850, boulevard Vanier, Laval, Quebec H7C 2M7 (Canada)

    2010-05-15

    Inorganic arsenic in soils poses an important environmental concern. Several studies reported an oxidation of arsenite to arsenate during its extraction from soils. The objectives of this study were to (1) identify, among published procedures, an extraction method which preserves the oxidation state of arsenic and (2) to assess the influence of soil physicochemical properties on the performance of these methods. Four extraction strategies were compared: 1) 10 M HCl, 2) 15% (v/v) H{sub 3}PO{sub 4}, 3) 10 mM phosphate + 0.5% (w/v) NaDDC, and, 4) 1 M H{sub 3}PO{sub 4} + 0.5 M ascorbic acid (C{sub 6}H{sub 8}O{sub 6}). Separation and analysis of As species was performed by HPLC-ICP/MS. Oxidation of As(III) into As(V) during extraction was more important in soils with high content of Mn oxides. Extraction of arsenic from soils with 1 M H{sub 3}PO{sub 4} + 0.5 M C{sub 6}H{sub 8}O{sub 6} under microwaves was the best strategy to extract the majority of As while minimizing conversion of As(III) into As(V). - Extraction of arsenic from soils with 1 M H{sub 3}PO{sub 4} + 0.5 M C{sub 6}H{sub 8}O{sub 6} under microwaves is a suitable method to extract the majority of As while minimizing conversion of As(III) into As(V).

  16. Evidence of Sulfate-Dependent Anaerobic Methane Oxidation within an Area Impacted by Coalbed Methane-Related Gas Migration

    Science.gov (United States)

    Wolfe, A. L.; Wikin, R. T.

    2017-12-01

    We evaluated water quality characteristics in the northern Raton Basin of Colorado and documented the response of the Poison Canyon aquifer system several years after upward migration of methane gas occurred from the deeper Vermejo Formation coalbed production zone. Over a 17-month study period, water samples were obtained from domestic water wells and monitoring wells located within the impacted area, and analyzed for 245 constituents, including organic compounds, nutrients, major and trace elements, dissolved gases, and isotopic tracers for carbon, sulfur, oxygen, and hydrogen. Multiple lines of evidence suggest that sulfate-dependent methane biodegradation, which involves the oxidation of methane (CH4) to carbon dioxide (CO2) using sulfate (SO42-) as the terminal electron acceptor, is occurring: (i) consumption of methane and sulfate and production of sulfide and bicarbonate, (ii) methane loss coupled to production of higher molecular weight (C2+) gaseous hydrocarbons, (iii) patterns of 13C enrichment and depletion in methane and dissolved inorganic carbon, and (iv) a systematic shift in sulfur and oxygen isotope ratios of sulfate, indicative of microbial sulfate reduction. Groundwater-methane attenuation is linked to the production of dissolved sulfide, and elevated dissolved sulfide concentrations represent an undesirable secondary water quality impact. The biogeochemical response of the aquifer system has not mobilized naturally occurring trace metals, including arsenic, chromium, cobalt, nickel, and lead, likely due to the microbial production of hydrogen sulfide, which favors stabilization of metals in aquifer solids.

  17. Development of anaerobic ammonium oxidation (anammox) for biological nitrogen removal in domestic wastewater treatment (Case study: Surabaya City, Indonesia)

    Science.gov (United States)

    Wijaya, I. Made Wahyu; Soedjono, Eddy Setiadi; Fitriani, Nurina

    2017-11-01

    Domestic wastewater effluent is the main contributor to diverse water pollution problems. The contaminants contained in the wastewater lead the low quality of water. The presence of ammonium and nitrate along with phosphorus are potentially cause eutrophication and endanger aquatic life. Excess nutrients, mostly N and P is the main cause of eutrophication which is result in oxygen depletion, biodiversity reduction, fish kills, odor and increased toxicity. Most of the domestic wastewater in Surabaya City still contains nitrogen that exceeded the threshold. The range of ammonium and orthophosphate concentration in the domestic wastewater is between 6.29 mg/L - 38.91 mg/L and 0.44 mg/L - 1.86 mg/L, respectively. An advance biological nitrogen removal process called anammox is a sustainable and cost effective alternative to the basic method of nitrogen removal, such as nitrification and denitrification. Many research have been conducted through anammox and resulted promisingly way to remove nitrogen. In this process, ammonium will be oxidized with nitrite as an electron acceptor to produce nitrogen gas and low nitrate in anoxic condition. Anammox requires less oxygen demand, no needs external carbon source, and low operational cost. Based on its advantages, anammox is possible to apply in domestic wastewater treatment in Surabaya with many further studies.

  18. ARSENITE BINDING TO SYNTHETIC PEPTIDES: THE EFFECT OF INCREASING LENGTH BETWEEN TWO CYSTEINES

    Science.gov (United States)

    Binding of trivalent arsenicals to peptides and proteins can alter peptide/protein structure and enzyme function and thereby contribute to arsenic toxicity and carcinogenicity. We utilized radioactive 73As- labeled arsenite and vacuum filtration methodology to determine the bindi...

  19. Modeling sulfate reduction in methane hydrate-bearing continental margin sediments: Does a sulfate-methane transition require anaerobic oxidation of methane?

    Science.gov (United States)

    Malinverno, A.; Pohlman, J.W.

    2011-01-01

    The sulfate-methane transition (SMT), a biogeochemical zone where sulfate and methane are metabolized, is commonly observed at shallow depths (1-30 mbsf) in methane-bearing marine sediments. Two processes consume sulfate at and above the SMT, anaerobic oxidation of methane (AOM) and organoclastic sulfate reduction (OSR). Differentiating the relative contribution of each process is critical to estimate methane flux into the SMT, which, in turn, is necessary to predict deeper occurrences of gas hydrates in continental margin sediments. To evaluate the relative importance of these two sulfate reduction pathways, we developed a diagenetic model to compute the pore water concentrations of sulfate, methane, and dissolved inorganic carbon (DIC). By separately tracking DIC containing 12C and 13C, the model also computes ??13C-DIC values. The model reproduces common observations from methane-rich sediments: a well-defined SMT with no methane above and no sulfate below and a ??13C-DIC minimum at the SMT. The model also highlights the role of upward diffusing 13C-enriched DIC in contributing to the carbon isotope mass balance of DIC. A combination of OSR and AOM, each consuming similar amounts of sulfate, matches observations from Site U1325 (Integrated Ocean Drilling Program Expedition 311, northern Cascadia margin). Without AOM, methane diffuses above the SMT, which contradicts existing field data. The modeling results are generalized with a dimensional analysis to the range of SMT depths and sedimentation rates typical of continental margins. The modeling shows that AOM must be active to establish an SMT wherein methane is quantitatively consumed and the ??13C-DIC minimum occurs. The presence of an SMT generally requires active AOM. Copyright 2011 by the American Geophysical Union.

  20. Molecular and stable isotopic evidence for the occurrence of nitrite-dependent anaerobic methane-oxidizing bacteria in the mangrove sediment of Zhangjiang Estuary, China.

    Science.gov (United States)

    Zhang, Manping; Luo, Yi; Lin, Li'an; Lin, Xiaolan; Hetharua, Buce; Zhao, Weijun; Zhou, Mengkai; Zhan, Qing; Xu, Hong; Zheng, Tianling; Tian, Yun

    2018-03-01

    Nitrite-dependent anaerobic methane oxidation (n-damo), which is mediated by "Candidatus Methylomirabilis oxyfera-like" bacteria, is unique in linking the carbon and nitrogen cycles. However, the niche and activity of n-damo bacteria in the mangrove ecosystem have not been confirmed. Here, we report the occurrence of the n-damo process in the mangrove wetland of the Zhangjiang Estuary, China. The widespread occurrence of n-damo bacteria in mangrove wetland was confirmed using real-time quantitative polymerase chain reaction (qPCR) assay, which showed that the abundance of Methylomirabilis oxyfera-like bacterial 16S rRNA and pmoA genes ranged from 2.43 × 10 6 to 2.09 × 10 7 and 2.07 × 10 6 to 3.38 × 10 7 copies per gram of dry soil in the examined sediment cores. The highest amount of targeting genes was all detected in the upper layer (0-20 cm). Phylogenetic analyses of n-damo bacterial 16S rRNA and pmoA genes illustrated the depth-specific distribution and high diversity of n-damo bacteria in the mangrove wetland. Stable isotope experiments further confirmed the occurrence of n-damo in the examined mangrove sediments, and the potential n-damo rates ranged from 25.93 to 704.08 nmol CO 2 per gram of dry soil per day at different depths of the sediment cores, with the n-damo being more active in the upper layer of the mangrove sediments. These results illustrate the existence of active M. oxyfera-like bacteria and indicate that the n-damo process is a previously overlooked microbial methane sink in the mangrove wetlands.

  1. Anaerobic Thermophiles

    Directory of Open Access Journals (Sweden)

    Francesco Canganella

    2014-02-01

    Full Text Available The term “extremophile” was introduced to describe any organism capable of living and growing under extreme conditions. With the further development of studies on microbial ecology and taxonomy, a variety of “extreme” environments have been found and an increasing number of extremophiles are being described. Extremophiles have also been investigated as far as regarding the search for life on other planets and even evaluating the hypothesis that life on Earth originally came from space. The first extreme environments to be largely investigated were those characterized by elevated temperatures. The naturally “hot environments” on Earth range from solar heated surface soils and water with temperatures up to 65 °C, subterranean sites such as oil reserves and terrestrial geothermal with temperatures ranging from slightly above ambient to above 100 °C, to submarine hydrothermal systems with temperatures exceeding 300 °C. There are also human-made environments with elevated temperatures such as compost piles, slag heaps, industrial processes and water heaters. Thermophilic anaerobic microorganisms have been known for a long time, but scientists have often resisted the belief that some organisms do not only survive at high temperatures, but actually thrive under those hot conditions. They are perhaps one of the most interesting varieties of extremophilic organisms. These microorganisms can thrive at temperatures over 50 °C and, based on their optimal temperature, anaerobic thermophiles can be subdivided into three main groups: thermophiles with an optimal temperature between 50 °C and 64 °C and a maximum at 70 °C, extreme thermophiles with an optimal temperature between 65 °C and 80 °C, and finally hyperthermophiles with an optimal temperature above 80 °C and a maximum above 90 °C. The finding of novel extremely thermophilic and hyperthermophilic anaerobic bacteria in recent years, and the fact that a large fraction of them belong

  2. Arsenite-induced autophagy is associated with proteotoxicity in human lymphoblastoid cells

    Energy Technology Data Exchange (ETDEWEB)

    Bolt, Alicia M.; Zhao, Fei; Pacheco, Samantha; Klimecki, Walter T., E-mail: klimecki@pharmacy.arizona.edu

    2012-10-15

    Epidemiological studies of arsenic-exposed populations have provided evidence that arsenic exposure in humans is associated with immunosuppression. Previously, we have reported that arsenite-induced toxicity is associated with the induction of autophagy in human lymphoblastoid cell lines (LCL). Autophagy is a cellular process that functions in the degradation of damaged cellular components, including protein aggregates formed by misfolded or damaged proteins. Accumulation of misfolded or damaged proteins in the endoplasmic reticulum (ER) lumen causes ER stress and activates the unfolded protein response (UPR). In an effort to investigate the mechanism of autophagy induction by arsenite in the LCL model, we examined the potential contribution of ER stress and activation of the UPR. LCL exposed to sodium arsenite for 8-days induced expression of UPR-activated genes, including CHOP and GRP78, at the RNA and the protein level. Evidence for activation of the three arms of the UPR was observed. The arsenite-induced activation of the UPR was associated with an accumulation of protein aggregates containing p62 and LC3, proteins with established roles in the sequestration and autophagic clearance of protein aggregates. Taken together, these data provide evidence that arsenite-induced autophagy is associated with the generation of ER stress, activation of the UPR, and formation of protein aggregates that may be targeted to the lysosome for degradation. -- Highlights: ► Arsenite induces endoplasmic reticulum stress and the unfolded protein response. ► Arsenite induces the formation of protein aggregates that contain p62 and LC3-II. ► Time-course data suggests that arsenite-induced autophagy precedes ER stress.

  3. Arsenite-induced autophagy is associated with proteotoxicity in human lymphoblastoid cells

    International Nuclear Information System (INIS)

    Bolt, Alicia M.; Zhao, Fei; Pacheco, Samantha; Klimecki, Walter T.

    2012-01-01

    Epidemiological studies of arsenic-exposed populations have provided evidence that arsenic exposure in humans is associated with immunosuppression. Previously, we have reported that arsenite-induced toxicity is associated with the induction of autophagy in human lymphoblastoid cell lines (LCL). Autophagy is a cellular process that functions in the degradation of damaged cellular components, including protein aggregates formed by misfolded or damaged proteins. Accumulation of misfolded or damaged proteins in the endoplasmic reticulum (ER) lumen causes ER stress and activates the unfolded protein response (UPR). In an effort to investigate the mechanism of autophagy induction by arsenite in the LCL model, we examined the potential contribution of ER stress and activation of the UPR. LCL exposed to sodium arsenite for 8-days induced expression of UPR-activated genes, including CHOP and GRP78, at the RNA and the protein level. Evidence for activation of the three arms of the UPR was observed. The arsenite-induced activation of the UPR was associated with an accumulation of protein aggregates containing p62 and LC3, proteins with established roles in the sequestration and autophagic clearance of protein aggregates. Taken together, these data provide evidence that arsenite-induced autophagy is associated with the generation of ER stress, activation of the UPR, and formation of protein aggregates that may be targeted to the lysosome for degradation. -- Highlights: ► Arsenite induces endoplasmic reticulum stress and the unfolded protein response. ► Arsenite induces the formation of protein aggregates that contain p62 and LC3-II. ► Time-course data suggests that arsenite-induced autophagy precedes ER stress.

  4. Curcumin Inhibits The Adverse Effects of Sodium Arsenite in Mouse Epididymal Sperm

    Science.gov (United States)

    Momeni, Hamid Reza; Eskandari, Najmeh

    2016-01-01

    Background The aim of this study was to investigate the effects of curcumin on epididy- mal sperm parameters in adult male Navel Medical Research Institute (NMRI) mice ex- posed to sodium arsenite. Materials and Methods In this experimental study, we divided the animals into four groups: control, sodium arsenite (5 mg/kg), curcumin (100 mg/kg) and curcumin+sodium arsenite. Exposures were performed by intraperitoneal injections for a 5-week period. After the exposure period, we recorded the animals’ body and left testes weights. The left caudal epididymis was used to count the sperm number and analyze motility, viability, morphological abnormalities, acrosome reaction, DNA integrity, and histone-protamine replacement in the spermatozoa. One-way analysis of variance (ANOVA) followed by the Tukey’s test was used to assess the statistical significance of the data with SPSS 16.0. Pcurcumin+sodium arsenite group, curcumin significantly reversed these adverse effects to the point where they approximated the control. In addition, the application of curcumin alone had no significant difference in these parameters compared to the control and curcumin+sodium arsenite groups. However, we observed no significant differences in the body and the testis weight as well as the DNA integrity and histone-protamine replacement in the spermatozoa of the four groups. Conclusion Curcumin compensated for the toxic effects of sodium arsenite on a number of sperm parameters in adult mice. PMID:27441059

  5. Curcumin Inhibits The Adverse Effects of Sodium Arsenite in Mouse Epididymal Sperm

    Directory of Open Access Journals (Sweden)

    Momeni Hamid Reza

    2016-07-01

    Full Text Available Background The aim of this study was to investigate the effects of curcumin on epididy- mal sperm parameters in adult male Navel Medical Research Institute (NMRI mice ex- posed to sodium arsenite. Materials and Methods In this experimental study, we divided the animals into four groups: control, sodium arsenite (5 mg/kg, curcumin (100 mg/kg and curcumin+sodium arsenite. Exposures were performed by intraperitoneal injections for a 5-week period. After the exposure period, we recorded the animals’ body and left testes weights. The left caudal epididymis was used to count the sperm number and analyze motility, viability, morphological abnormalities, acrosome reaction, DNA integrity, and histone-protamine replacement in the spermatozoa. One-way analysis of variance (ANOVA followed by the Tukey’s test was used to assess the statistical significance of the data with SPSS 16.0. P<0.05 was considered significant. Results Mice exposed to sodium arsenite showed a significant decrease in the num- ber, motility, viability, normal sperm morphology and acrosome integrity of spermato- zoa compared to the control group. In the curcumin+sodium arsenite group, curcumin significantly reversed these adverse effects to the point where they approximated the control. In addition, the application of curcumin alone had no significant difference in these parameters compared to the control and curcumin+sodium arsenite groups. However, we observed no significant differences in the body and the testis weight as well as the DNA integrity and histone-protamine replacement in the spermatozoa of the four groups. Conclusion Curcumin compensated for the toxic effects of sodium arsenite on a number of sperm parameters in adult mice.

  6. Effects of arsenic on modification of promyelocytic leukemia (PML): PML responds to low levels of arsenite.

    Science.gov (United States)

    Hirano, Seishiro; Watanabe, Takayuki; Kobayashi, Yayoi

    2013-12-15

    Inorganic arsenite (iAs(3+)) is a two-edged sword. iAs(3+) is a well-known human carcinogen; nevertheless, it has been used as a therapeutic drug for acute promyelocytic leukemia (APL), which is caused by a fusion protein comprising retinoic acid receptor-α and promyelocytic leukemia (PML). PML, a nuclear transcription factor, has a RING finger domain with densely positioned cysteine residues. To examine PML-modulated cellular responses to iAs(3+), CHO-K1 and HEK293 cells were each used to establish cell lines that expressed ectopic human PML. Overexpression of PML increased susceptibility to iAs(3+) in CHO-K1 cells, but not in HEK293 cells. Exposure of PML-transfected cells to iAs(3+) caused PML to change from a soluble form to less soluble forms, and this modification of PML was observable even with just 0.1 μM iAs(3+) (7.5 ppb). Western blot and immunofluorescent microscopic analyses revealed that the biochemical changes of PML were caused at least in part by conjugation with small ubiquitin-like modifier proteins (SUMOylation). A luciferase reporter gene was used to investigate whether modification of PML was caused by oxidative stress or activation of antioxidant response element (ARE) in CHO-K1 cells. Modification of PML protein occurred faster than activation of the ARE in response to iAs(3+), suggesting that PML was not modified as a consequence of oxidative stress-induced ARE activation. © 2013.

  7. Anaerobic Digestion: Process

    DEFF Research Database (Denmark)

    Angelidaki, Irini; Batstone, Damien J.

    2011-01-01

    Organic waste may degrade anaerobically in nature as well as in engineered systems. The latter is called anaerobic digestion or biogasification. Anaerobic digestion produces two main outputs: An energy-rich gas called biogas and an effluent. The effluent, which may be a solid as well as liquid...... with very little dry matter may also be called a digest. The digest should not be termed compost unless it specifically has been composted in an aerated step. This chapter describes the basic processes of anaerobic digestion. Chapter 9.5 describes the anaerobic treatment technologies, and Chapter 9.......6 addresses the mass balances and environmental aspects of anaerobic digestion....

  8. Enhanced glycolysis, regulated by HIF-1α via MCT-4, promotes inflammation in arsenite-induced carcinogenesis.

    Science.gov (United States)

    Luo, Fei; Zou, Zhonglan; Liu, Xinlu; Ling, Min; Wang, Qingling; Wang, Qi; Lu, Lu; Shi, Le; Liu, Yonglian; Liu, Qizhan; Zhang, Aihua

    2017-06-01

    Arsenite is well established as a human carcinogen, but the molecular mechanisms leading to arsenite-induced carcinogenesis are complex and elusive. Accelerated glycolysis, a common process in tumor cells called the Warburg effect, is associated with various biological phenomena. However, the role of glycolysis induced by arsenite is unknown. We have found that, with chronic exposure to arsenite, L-02 cells undergo a metabolic shift to glycolysis. In liver cells exposed to arsenite, hypoxia inducible factor-1α (HIF-1α) and monocarboxylate transporter-4 (MCT-4) are over-expressed. MCT-4, directly mediated by HIF-1α, maintains a high level of glycolysis, and the enhanced glycolysis promotes pro-inflammatory properties, which are involved in arsenite carcinogenesis. In addition, serum lactate and cytokines are higher in arsenite-exposed human populations, and there is a positive correlation between them. Moreover, there is a positive relationship between lactate and cytokines with arsenic in hair. In sum, these findings indicate that MCT-4, mediated by HIF-1α, enhances the glycolysis induced by arsenite. Lactate, the end product of glycolysis, is released into the extracellular environment. The acidic microenvironment promotes production of pro-inflammatory cytokines, which contribute to arsenite-induced liver carcinogenesis. These results provide a link between the induction of glycolysis and inflammation in liver cells exposed to arsenite, and thus establish a previously unknown mechanism for arsenite-induced hepatotoxicity. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Short-term exposure of arsenite disrupted thyroid endocrine system and altered gene transcription in the HPT axis in zebrafish.

    Science.gov (United States)

    Sun, Hong-Jie; Li, Hong-Bo; Xiang, Ping; Zhang, Xiaowei; Ma, Lena Q

    2015-10-01

    Arsenic (As) pollution in aquatic environment may adversely impact fish health by disrupting their thyroid hormone homeostasis. In this study, we explored the effect of short-term exposure of arsenite (AsIII) on thyroid endocrine system in zebrafish. We measured As concentrations, As speciation, and thyroid hormone thyroxine levels in whole zebrafish, oxidative stress (H2O2) and damage (MDA) in the liver, and gene transcription in hypothalamic-pituitary-thyroid (HPT) axis in the brain and liver tissues of zebrafish after exposing to different AsIII concentrations for 48 h. Result indicated that exposure to AsIII increased inorganic As in zebrafish to 0.46-0.72 mg kg(-1), induced oxidative stress with H2O2 being increased by 1.4-2.5 times and caused oxidative damage with MDA being augmented by 1.6 times. AsIII exposure increased thyroxine levels by 1.3-1.4 times and modulated gene transcription in HPT axis. Our study showed AsIII caused oxidative damage, affected thyroid endocrine system and altered gene transcription in HPT axis in zebrafish. Published by Elsevier Ltd.

  10. Label-free signal-on aptasensor for sensitive electrochemical detection of arsenite.

    Science.gov (United States)

    Cui, Lin; Wu, Jie; Ju, Huangxian

    2016-05-15

    A signal-on aptasensor was fabricated for highly sensitive and selective electrochemical detection of arsenite with a label-free Ars-3 aptamer self-assembled on a screen-printed carbon electrode (SPCE) via Au-S bond. The Ars-3 aptamer could adsorb cationic polydiallyldimethylammonium (PDDA) via electrostatic interaction to repel other cationic species. In the presence of arsenite, the change of Ars-3 conformation due to the formation of Ars-3/arsenite complex led to less adsorption of PDDA, and the complex could adsorb more positively charged [Ru(NH3)6](3+) as an electrochemically active indicator on the aptasensor surface, which produced a sensitive "turn-on" response. The target-induced structure switching could be used for sensitive detection of arsenite with a linear range from 0.2 nM to 100 nM and a detection limit down to 0.15 nM. Benefiting from Ars-3 aptamer, the proposed system exhibited excellent specificity against other heavy metal ions. The SPCE-based aptasensor exhibited the advantages of low cost and simple fabrication, providing potential application of arsenite detection in environment. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Modeling the effect of heat fluxes on ammonia and nitrous oxide emissions from an anaerobic swine waste treatment lagoon using artificial neural network

    Science.gov (United States)

    Understanding factors that affect ammonia and nitrous emissions from anaerobic swine waste treatment lagoons or any animal waste receptacles is a necessary first step in deploying potential remediation options. In this study, we examined the various meteorological factors (i.e., air temperatures, s...

  12. Livestock Anaerobic Digester Database

    Science.gov (United States)

    The Anaerobic Digester Database provides basic information about anaerobic digesters on livestock farms in the United States, organized in Excel spreadsheets. It includes projects that are under construction, operating, or shut down.

  13. Sodium arsenite impairs insulin secretion and transcription in pancreatic β-cells

    International Nuclear Information System (INIS)

    Diaz-Villasenor, Andrea; Sanchez-Soto, M. Carmen; Cebrian, Mariano E.; Ostrosky-Wegman, Patricia; Hiriart, Marcia

    2006-01-01

    Human studies have shown that chronic inorganic arsenic (iAs) exposure is associated with a high prevalence and incidence of type 2 diabetes. However, the mechanism(s) underlying this effect are not well understood, and practically, there is no information available on the effects of arsenic on pancreatic β-cells functions. Thus, since insulin secreted by the pancreas plays a crucial role in maintaining glucose homeostasis, our aim was to determine if sodium arsenite impairs insulin secretion and mRNA expression in single adult rat pancreatic β-cells. Cells were treated with 0.5, 1, 2, 5 and 10 μM sodium arsenite and incubated for 72 and 144 h. The highest dose tested (10 μM) decreased β-cell viability, by 33% and 83%, respectively. Insulin secretion and mRNA expression were evaluated in the presence of 1 and 5 μM sodium arsenite. Basal insulin secretion, in 5.6 mM glucose, was not significantly affected by 1 or 5 μM treatment for 72 h, but basal secretion was reduced when cells were exposed to 5 μM sodium arsenite for 144 h. On the other hand, insulin secretion in response to 15.6 mM glucose decreased with sodium arsenite in a dose-dependent manner in such a way that cells were no longer able to distinguish between different glucose concentrations. We also showed a significant decrease in insulin mRNA expression of cells exposed to 5 μM sodium arsenite during 72 h. Our data suggest that arsenic may contribute to the development of diabetes mellitus by impairing pancreatic β-cell functions, particularly insulin synthesis and secretion

  14. Measuring site occupancy: a new perspective on cysteine oxidation.

    Science.gov (United States)

    Rogowska-Wrzesinska, Adelina; Wojdyla, Katarzyna; Williamson, James; Roepstorff, Peter

    2014-10-01

    Site occupancy is an extremely important aspect of quantification of protein modifications. Knowing the degree of modification of each oxidised cysteine residue is critical to understanding the biological role of these modifications. Yet modification site occupancy is very often overlooked, in part because there are very few analytical tools that allow such measurements. Here we present a new strategy, which provides quantitative analysis of cysteine S-nitrosylation (SNO) and S-sulfenylation (SOH) simultaneously at the resolution of single cysteine and allows for determination of relative oxidation occupancy of the modification site. We show that, on one hand, heavily modified cysteines are not necessarily involved in the response to oxidative stress. On the other hand residues with low modification level can be dramatically affected by mild oxidative imbalance. We make use of high resolution mass spectrometry. The method relies on differential reduction of "total" cysteines, SNO cysteines and SOH cysteines with TCEP, sodium ascorbate and sodium arsenite respectively followed by iodoTMT(TM) alkylation. Enrichment of iodoTMT(TM)-containing peptides is performed using anti-TMT antibody. In vivo model of mild oxidative stress in Escherichia coli is used. To induce endogenous SNO bacteria were grown anaerobically in minimal media supplemented with fumarate or nitrate. Short-term treatment with submilimolar levels of hydrogen peroxide were used to induce SOH. We have quantified 114 SNO/SOH modified peptides corresponding to 90 proteins. Only 6 modified peptides changed significantly under mild oxidative stress. Quantitative information allowed us to determine relative modification site occupancy of each identified modified residue and pin point heavily modified ones. The method proved to be precise and sensitive enough to detect and quantify endogenous levels of oxidative stress on proteome-wide scale and brings a new perspective on the role of the modification site

  15. In vitro effect of sodium arsenite on Echinococcus granulosus protoscoleces.

    Science.gov (United States)

    Xing, Guoqiang; Wang, Bo; Lei, Ying; Liu, Chunli; Wang, Zhuo; Shi, Hongjuan; Yang, Rentan; Qin, Wenjuan; Jiang, Yufeng; Lv, Hailong

    2016-06-01

    Cystic echinococcosis (CE) caused by the metacestodes of Echinococcus granulosus is an important cosmopolitan zoonosis. Surgery is the main treatment option for CE. Meanwhile, chemotherapy is used as an significant adjunct to surgery. However, the benzimidazole carbamate group and the existing scolicidal agents may not be as effective as hoped. In this study, we aimed to explore the in vitro effect of sodium arsenite (NaAsO2) on Echinococcus granulosus protoscoleces, the causative agents of CE. Protoscoleces of E. granulosus were incubated in vitro with 4, 8, 12, 16, and 20μM NaAsO2. Viability and changes in morphology were investigated by 0.1% eosin staining. The ultrastructural alterations were observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Additionally, caspase-3 activity was measured by colorimetric assay. Obvious protoscolicidal effect was seen with NaAsO2 at concentrations of 16μM and 20μM. Protoscolex mortality was 83.24% (16μM) and 100% (20μM) after 6 days post-incubation. SEM showed that the primary site of drug damage was the tegument of the protoscoleces. TEM analysis demonstrated that the internal tissues were severely affected and revealed an increase in the number of lipid droplets and vacuoles after treatment with 16μM NaAsO2. Meanwhile, the caspase-3 activity significantly increased in protoscoleces after 24h of NaAsO2 incubation compared to the untreated controls. Our study demonstrated the clear in vitro scolicidal effect of NaAsO2 against E. granulosus protoscoleces. However, the in vivo efficacy, specific mechanism, and any possible side effects of NaAsO2 remain to be investigated. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. The effects of theaflavin-enriched black tea extract on muscle soreness, oxidative stress, inflammation, and endocrine responses to acute anaerobic interval training: a randomized, double-blind, crossover study

    Directory of Open Access Journals (Sweden)

    Golem Devon L

    2010-02-01

    Full Text Available Abstract Background Muscle soreness and decreased performance often follow a bout of high-intensity exercise. By reducing these effects, an athlete can train more frequently and increase long-term performance. The purpose of this study is to examine whether a high-potency, black tea extract (BTE alters the delayed onset muscle soreness (DOMS, oxidative stress, inflammation, and cortisol (CORT responses to high-intensity anaerobic exercise. Methods College-age males (N = 18 with 1+ yrs of weight training experience completed a double-blind, placebo-controlled, crossover study. Subjects consumed the BTE (1,760 mg BTE·d-1 or placebo (PLA for 9 days. Each subject completed two testing sessions (T1 & T2, which occurred on day 7 of the intervention. T1 & T2 consisted of a 30 s Wingate Test plus eight 10 s intervals. Blood samples were obtained before, 0, 30 & 60 min following the interval sessions and were used to analyze the total to oxidized glutathione ratio (GSH:GSSG, 8-isoprostane (8-iso, CORT, and interleukin 6 (IL-6 secretion. DOMS was recorded at 24 & 48 h post-test using a visual analog scale while BTE or PLA continued to be administered. Significance was set at P . Results Compared to PLA, BTE produced significantly higher average peak power (P = 0.013 and higher average mean power (P = 0.067 across nine WAnT intervals. BTE produced significantly lower DOMS compared to PLA at 24 h post test (P and 48 h post test (P . Compared to PLA, BTE had a slightly higher GSH:GSSG ratio at baseline which became significantly higher at 30 and 60 min post test (P . AUC analysis revealed BTE to elicit significantly lower GSSG secretion (P = 0.009, significantly higher GSH:GSSG ratio (P = 0.001, and lower CORT secretion (P = 0.078 than PLA. AUC analysis did not reveal a significant difference in total IL-6 response (P = 0.145 between conditions. Conclusions Consumption of theaflavin-enriched black tea extract led to improved recovery and a reduction in

  17. Global analysis of protein aggregation in yeast during physiological conditions and arsenite stress

    Directory of Open Access Journals (Sweden)

    Sebastian Ibstedt

    2014-09-01

    Full Text Available Protein aggregation is a widespread phenomenon in cells and associated with pathological conditions. Yet, little is known about the rules that govern protein aggregation in living cells. In this study, we biochemically isolated aggregation-prone proteins and used computational analyses to identify characteristics that are linked to physiological and arsenite-induced aggregation in living yeast cells. High protein abundance, extensive physical interactions, and certain structural properties are positively correlated with an increased aggregation propensity. The aggregated proteins have high translation rates and are substrates of ribosome-associated Hsp70 chaperones, indicating that they are susceptible for aggregation primarily during translation/folding. The aggregation-prone proteins are enriched for multiple chaperone interactions, thus high protein abundance is probably counterbalanced by molecular chaperones to allow soluble expression in vivo. Our data support the notion that arsenite interferes with chaperone activity and indicate that arsenite-aggregated proteins might engage in extensive aberrant protein–protein interactions. Expression of aggregation-prone proteins is down-regulated during arsenite stress, possibly to prevent their toxic accumulation. Several aggregation-prone yeast proteins have human homologues that are implicated in misfolding diseases, suggesting that similar mechanisms may apply in disease- and non-disease settings.

  18. Hydrogen as clean fuel via continuous fermentation by anaerobic ...

    African Journals Online (AJOL)

    free and oxidized to water as a combustion product. Bioconversion of synthesis gas to hydrogen was demonstrated in a continuous fermentation utilizing malate as a carbon source. Rhodospirillum rubrum, an anaerobic photosynthetic bacterium ...

  19. Arsenite enhances tumor necrosis factor-α-induced expression of vascular cell adhesion molecule-1

    International Nuclear Information System (INIS)

    Tsou, T.-C.; Yeh, Szu Ching; Tsai, E.-M.; Tsai, F.-Y.; Chao, H.-R.; Chang, Louis W.

    2005-01-01

    Epidemiological studies demonstrated a high association of vascular diseases with arsenite exposure. We hypothesize that arsenite potentiates the effect of proinflammatory cytokines on vascular endothelial cells, and hence contributes to atherosclerosis. In this study, we investigated the effect of arsenite and its induction of glutathione (GSH) on vascular cell adhesion molecule-1 (VCAM-1) protein expression in human umbilical vein endothelial cells (HUVECs) in response to tumor necrosis factor-α (TNF-α), a typical proinflammatory cytokine. Our study demonstrated that arsenite pretreatment potentiated the TNF-α-induced VCAM-1 expression with up-regulations of both activator protein-1 (AP-1) and nuclear factor-κB (NF-κB). To elucidate the role of GSH in regulation of AP-1, NF-κB, and VCAM-1 expression, we employed L-buthionine (S,R)-sulfoximine (BSO), a specific γ-glutamylcysteine synthetase (γ-GCS) inhibitor, to block intracellular GSH synthesis. Our investigation revealed that, by depleting GSH, arsenite attenuated the TNF-α-induced VCAM-1 expression as well as a potentiation of AP-1 and an attenuation of NF-κB activations by TNF-α. Moreover, we found that depletion of GSH would also attenuate the TNF-α-induced VCAM-1 expression with a down-regulation of the TNF-α-induced NF-κB activation and without significant effect on AP-1. On the other hand, the TNF-α-induced VCAM-1 expression could be completely abolished by inhibition of AP-1 or NF-κB activity, suggesting that activation of both AP-1 and NF-κB was necessary for VCAM-1 expression. In summary, we demonstrate that arsenite enhances the TNF-α-induced VCAM-1 expression in HUVECs via regulation of AP-1 and NF-κB activities in a GSH-sensitive manner. Our present study suggested a potential mechanism for arsenite in the induction of vascular inflammation and vascular diseases via modulating the actions of proinflammatory cytokines

  20. Anaerobe Reinigung von Abwasser

    OpenAIRE

    Sternad, W.; Mohr, M.; Spork, C.; Troesch, W.; Trick, I.; Krischke, W.

    2007-01-01

    WO 2007076953 A1 UPAB: 20070822 NOVELTY - The municipal wastewater purification comprises anaerobic biological purification of the wastewater by using a biomass (15-100 g/l) from psychrophilic microorganisms, concentrating the sludge by separating the wastewater and feeding back the sludge into the anaerobic biological purification. The psychrophilic microorganisms exhibit an optimum temperature of less than 25degreesC. The anaerobic purification takes place as single- or two-step methanizati...

  1. Effects of nickel, chromate, and arsenite on histone 3 lysine methylation

    International Nuclear Information System (INIS)

    Zhou Xue; Li Qin; Arita, Adriana; Sun Hong; Costa, Max

    2009-01-01

    Occupational exposure to nickel (Ni), chromium (Cr), and arsenic (As) containing compounds has been associated with lung cancer and other adverse health effects. Their carcinogenic properties may be attributable in part, to activation and/or repression of gene expression induced by changes in the DNA methylation status and histone tail post-translational modifications. Here we show that individual treatment with nickel, chromate, and arsenite all affect the gene activating mark H3K4 methylation. We found that nickel (1 mM), chromate (10 μM), and arsenite (1 μM) significantly increase tri-methyl H3K4 after 24 h exposure in human lung carcinoma A549 cells. Seven days of exposure to lower levels of nickel (50 and 100 μM), chromate (0.5 and 1 μM) or arsenite (0.1, 0.5 and 1 μM) also increased tri-methylated H3K4 in A549 cells. This mark still remained elevated and inherited through cell division 7 days following removal of 1 μM arsenite. We also demonstrate by dual staining immunofluorescence microscopy that both H3K4 tri-methyl and H3K9 di-methyl marks increase globally after 24 h exposure to each metal treatment in A549 cells. However, the tri-methyl H3K4 and di-methyl H3K9 marks localize in different regions in the nucleus of the cell. Thus, our study provides further evidence that a mechanism(s) of carcinogenicity of nickel, chromate, and arsenite metal compounds may involve alterations of various histone tail modifications that may in turn affect the expression of genes that may cause transformation

  2. [Effects of Total Nitrogen and BOD5/TN on Anaerobic Ammonium Oxidation-Denitrification Synergistic Interaction of Mature Landfill Leachate in Aged Refuse Bioreactor].

    Science.gov (United States)

    Yang, Ying-ying; Chen, Yi; Lj, Ming-jie; Xie, Bing

    2015-04-01

    Mature landfill leachate, featured with high ammonium (NH4+) content and low biodegrade ability (low BOD5/COD ratio), is hard to be treated. This study mainly focused on the effects of influent TN (total nitrogen) loading and BOD5/TN ratios on the nitrogen removal efficiency of landfill leachate by landfill bioreactors. The results showed that when the influent total nitrogen loading was in the range of 15 g x (m3 x d)(-1) to 25 g x (m3 x d)(-1), the TN removal loading could remain stable between 10 g x (m3 x d)(-1) and 12 g x (m3 x d)(-1), while the TN removal efficiency decreased from 67.7% to 60.2% with the increasing loading. Therefore, TN loading shocks would lower the bioreactor's TN removal rate, but would not affect its TN removal loading. When the influent BOD5/TN ratio was increased from 0.3 to 0.4 and the TN loading was controlled at 9 g x (m3 x d)(-1), the TN removal rates were increased from 79.9% to 89.9% and 86.2% in anaerobic and aerobic, respectively. This implied that properly enhancing BOD5/TN ratio could significantly increase the TN removal efficiency of the bioreactor, and the effect was more significant under anaerobic condition. Analysis of nitrogen removal pathways showed that denitrification and anammox could take place synergistically in landfill bioreactor.

  3. Anaerobic sludge granulation

    NARCIS (Netherlands)

    Hulshoff Pol, L.W.; Castro Lopes, de S.I.; Lettinga, G.; Lens, P.N.L.

    2004-01-01

    This paper reviews different theories on anaerobic sludge granulation in UASB-reactors that have been proposed during the past two decades
    This paper reviews different theories on anaerobic sludge granulation in UASB-reactors that have been proposed during the past two decades. The initial

  4. Anaerobic Digestion and its Applications

    Science.gov (United States)

    Anaerobic digestion is a natural biological process. The initials "AD" may refer to the process of anaerobic digestion, or the built systems of anaerobic digesters. While there are many kinds of digesters, the biology is basically the same for all. Anaerobic digesters are built...

  5. ARSENITE-INDUCED AUTOPHAGY IS ASSOCIATED WITH PROTEOTOXICITY IN HUMAN LYMPHOBLASTOID CELLS

    OpenAIRE

    Bolt, Alicia M.; Zhao, Fei; Pacheco, Samantha; Klimecki, Walter T.

    2012-01-01

    Epidemiological studies of arsenic-exposed populations have provided evidence that arsenic exposure in humans is associated with immunosuppression. Previously, we have reported that arsenite-induced toxicity is associated with the induction of autophagy in human lymphoblastoid cell lines (LCL). Autophagy is a cellular process that functions in the degradation of damaged cellular components, including protein aggregates formed by misfolded or damaged proteins. Accumulation of misfolded or dama...

  6. PIXE study on absorption of arsenate and arsenite by arsenic hyperaccumulating fern (Pteris vittata)

    International Nuclear Information System (INIS)

    Yamazaki, H.; Ishii, K.; Matsuyama, S.

    2008-01-01

    Pytoremediation using an arsenic hyperaccumulator, Petris vittata L., has generated an increasing interest worldwide due to both environmentally sound and cost effectiveness. However the mechanism of arsenic accumulation by this fern is not clear at this time. This study examined the uptake of arsenate (As(V)) and arsenite (As(III)) by a hydroponic culture of Pteris vittata using both in-air submilli-PIXE for different parts of the fern and in-air micro-PIXE for the tissue cells. These PIXE analysis systems used 3 MeV proton beams from a 4.5-MV single-ended Dynamitron accelerator at Tohoku University, Japan. The fern took up both arsenate and arsenite from hydroponic solutions which were spiked with 50 mg of arsenic per litter. Final amount of arsenic accumulation in the fern is 1,500 mg per kg (wet weight) of the plant biomass in arsenite treatment and 1,100 mg per kg in arsenate treatment. Arsenic accumulation was not observed at the root parts of the ferns. The in-vivo mapping of elements by submilli-PIXE analyses on the fern laminas showed the arsenic accumulation in the edges of a pinna. The micro-PIXE analyses revealed arsenic maps homogeneously distributed in cells of the lamina, stem and rhizome of the fern. These results indicate that arsenic, both arsenate and arsenite in a contaminated medium are translocated quickly from roots to fronds of Pteris vittata, and distributes homogeneously into tissue cells of the fern laminas. (author)

  7. Production of a bioflocculant from methanol wastewater and its application in arsenite removal.

    Science.gov (United States)

    Cao, Gang; Zhang, Yanbo; Chen, Li; Liu, Jie; Mao, Kewei; Li, Kangju; Zhou, Jiangang

    2015-12-01

    A novel bioflocculant (MBF83) prepared using methanol wastewater as nutrient resource was systematically investigated in the study. The optimal conditions for bioflocculant production were determined to be an inoculum size of 8.6%, initial pH of 7.5, and a methanol concentration of 100.8mgL(-1). An MBF83 of 4.61gL(-1) was achieved as the maximum yield. MBF83 primarily comprised polysaccharide (74.1%) and protein (24.2%). The biopolymer, which was found to be safe in zebrafish in toxicity studies, was characterized using Fourier-transform infrared spectroscopy and elemental analysis. Additionally, conditions for the removal of arsenite by MBF83 were found to be MBF83 at 500mgL(-1), an initial pH of 7.0, and a contact time of 90min. Under the optimal conditions, the removal efficiency of arsenite was 86.1%. Overall, these findings indicate bioflocculation offers an effective alternative method of decreasing arsenite during wastewater treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Immobilization of Ochrobactrum tritici As5 on PTFE thin films for arsenite biofiltration.

    Science.gov (United States)

    Branco, Rita; Sousa, Tânia; Piedade, Ana P; Morais, Paula V

    2016-03-01

    Ochrobactrum tritici SCII24T bacteria is an environmental strain with high capacity to resist to arsenic (As) toxicity, which makes it able to grow in the presence of As(III). The inactivation of the two functional arsenite efflux pumps, ArsB and ACR3_1, resulted in the mutant O. tritici As5 exhibiting a high accumulation of arsenite. This work describes a method for the immobilization of the mutant cells O. tritici As5, on a commercial polymeric net after sputtered modified by the deposition of poly(tetrafluoroethylene) (PTFE) thin films, and demonstrates the capacity of immobilized cells to accumulate arsenic from solutions. Six different set of deposition parameters for PTFE thin films were developed and tested in vitro regarding their ability to immobilize the bacterial cells. The surface that exhibited a mild zeta potential value, hydrophobic characteristics, the lowest surface free energy but with a high polar component and the appropriate ratio of chemical reactive groups allowed cells to proliferate and to grow as a biofilm. These immobilized cells maintained their ability to accumulate the surrounding arsenite, making it a great arsenic biofilter to be used in bioremediation processes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Spatio-temporal detection of the Thiomonas population and the Thiomonas arsenite oxidase involved in natural arsenite attenuation processes in the Carnoulès Acid Mine Drainage

    Directory of Open Access Journals (Sweden)

    Agnès eHovasse

    2016-02-01

    Full Text Available The acid mine drainage (AMD impacted creek of the Carnoulès mine (Southern France is characterized by acid waters with a high heavy metal content. The microbial community inhabiting this AMD was extensively studied using isolation, metagenomic and metaproteomic methods, and the results showed that a natural arsenic (and iron attenuation process involving the arsenite oxidase activity of several Thiomonas strains occurs at this site. A sensitive quantitative Selected Reaction Monitoring (SRM-based proteomic approach was developed for detecting and quantifying the two subunits of the arsenite oxidase and RpoA of two different Thiomonas groups. Using this approach combined with 16S rRNA gene sequence analysis based on pyrosequencing and FISH, it was established here for the first time that these Thiomonas strains are ubiquitously present in minor proportions in this AMD and that they express the key enzymes involved in natural remediation processes at various locations and time points. In addition to these findings, this study also confirms that targeted proteomics applied at the community level can be used to detect weakly abundant proteins in situ.

  10. Membrane controlled anaerobic digestion

    Science.gov (United States)

    Omstead, D. R.

    In response to general shortages of energy, examination of the anaerboic digestion process as a potential source of a combustible, methane-rich fuel has intensified in recent years. It has been suggested that orgaic intermediates (such as fatty acids), produced during digestion, might also be recovered for use as chemical feedstocks. This investigation has been concerned with combining ultrafiltration separation techniques with anaerobic digestion for the development of a process in which the total production of acetic acid (the most valuable intermediate in anaerobic digestion) and methane are optimized. Enrichment cultures, able to utilize glucose as a sole carbon source, were adapted from sewage digesting cultures using conventional techniques. An ultrafiltration system was constructed and coupled to an anaerobic digester culture vessel which contained the glucose enrichment. The membrane controlled anaerobic digester appears to show promise as a means of producing high rates of both methane gas and acetic acid.

  11. Anaerobic Digestion Foaming Causes

    OpenAIRE

    Ganidi, Nafsika

    2008-01-01

    Anaerobic digestion foaming has been encountered in several sewage treatment plants in the UK. Foaming has raised major concerns for the water utilities due to significant impacts on process efficiency and operational costs. Several foaming causes have been suggested over the past few years by researchers. However, the supporting experimental information is limited and in some cases site specific. The present report aimed to provide a better understanding of the anaerobic di...

  12. Members of rice plasma membrane intrinsic proteins subfamily are involved in arsenite permeability and tolerance in plants.

    Science.gov (United States)

    Mosa, Kareem A; Kumar, Kundan; Chhikara, Sudesh; Mcdermott, Joseph; Liu, Zijuan; Musante, Craig; White, Jason C; Dhankher, Om Parkash

    2012-12-01

    Rice accumulates high level of arsenic (As) in its edible parts and thus plays an important role in the transfer of As into the food chain. However, the mechanisms of As uptake and its detoxification in rice are not well understood. Recently, members of the Nodulin 26-like intrinsic protein (NIP) subfamily of plant aquaporins were shown to transport arsenite in rice and Arabidopsis. Here we report that members of the rice plasma membrane intrinsic protein (PIP) subfamily are also involved in As tolerance and transport. Based on the homology search with the mammalian AQP9 and yeast Fps1 arsenite transporters, we identified and cloned five rice PIP gene subfamily members. qRT-PCR analysis of PIPs in rice root and shoot tissues revealed a significant down regulation of transcripts encoding OsPIP1;2, OsPIP1;3, OsPIP2;4, OsPIP2;6, and OsPIP2;7 in response to arsenite treatment. Heterologous expression of OsPIP2;4, OsPIP2;6, and OsPIP2;7 in Xenopus laevis oocytes significantly increased the uptake of arsenite. Overexpression of OsPIP2;4, OsPIP2;6, and OsPIP2;7 in Arabidopsis yielded enhanced arsenite tolerance and higher biomass accumulation. Further, these transgenic plants showed no significant accumulation of As in shoot and root tissues in long term uptake assays. Whereas, short duration exposure to arsenite caused both active influx and efflux of As in the roots. The data suggests a bidirectional arsenite permeability of rice PIPs in plants. These rice PIPs genes will be highly useful for engineering important food and biofuel crops for enhanced crop productivity on contaminated soils without increasing the accumulation of toxic As in the biomass or edible tissues.

  13. From the Cover: Arsenite Uncouples Mitochondrial Respiration and Induces a Warburg-like Effect in Caenorhabditis elegans.

    Science.gov (United States)

    Luz, Anthony L; Godebo, Tewodros R; Bhatt, Dhaval P; Ilkayeva, Olga R; Maurer, Laura L; Hirschey, Matthew D; Meyer, Joel N

    2016-08-01

    Millions of people worldwide are chronically exposed to arsenic through contaminated drinking water. Despite decades of research studying the carcinogenic potential of arsenic, the mechanisms by which arsenic causes cancer and other diseases remain poorly understood. Mitochondria appear to be an important target of arsenic toxicity. The trivalent arsenical, arsenite, can induce mitochondrial reactive oxygen species production, inhibit enzymes involved in energy metabolism, and induce aerobic glycolysis in vitro, suggesting that metabolic dysfunction may be important in arsenic-induced disease. Here, using the model organism Caenorhabditis elegans and a novel metabolic inhibition assay, we report an in vivo induction of aerobic glycolysis following arsenite exposure. Furthermore, arsenite exposure induced severe mitochondrial dysfunction, including altered pyruvate metabolism; reduced steady-state ATP levels, ATP-linked respiration and spare respiratory capacity; and increased proton leak. We also found evidence that induction of autophagy is an important protective response to arsenite exposure. Because these results demonstrate that mitochondria are an important in vivo target of arsenite toxicity, we hypothesized that deficiencies in mitochondrial electron transport chain genes, which cause mitochondrial disease in humans, would sensitize nematodes to arsenite. In agreement with this, nematodes deficient in electron transport chain complexes I, II, and III, but not ATP synthase, were sensitive to arsenite exposure, thus identifying a novel class of gene-environment interactions that warrant further investigation in the human populace. © The Author 2016. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  14. Sodium arsenite down-regulates the expression of X-linked inhibitor of apoptosis protein via translational and post-translational mechanisms in hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Chen, Hong; Hao, Yuqing; Wang, Lijing; Jia, Dongwei; Ruan, Yuanyuan; Gu, Jianxin

    2012-01-01

    Highlights: ► Sodium arsenite down-regulates the protein expression level of XIAP in HCC. ► Sodium arsenite inhibits the de novo XIAP synthesis and its IRES activity. ► Sodium arsenite decreases XIAP stability and promotes its proteasomal degradation. ► Overexpression of XIAP attenuates the pro-apoptotic effect of sodium arsenite. -- Abstract: X-linked inhibitor of apoptosis protein (XIAP) is a member of the inhibitors of apoptosis protein (IAP) family, and has been reported to exhibit elevated expression levels in hepatocellular carcinoma (HCC) and promote cell survival, metastasis and tumor recurrence. Targeting XIAP has proven effective for the inhibition of cancer cell proliferation and restoration of cancer cell chemosensitivity. Arsenic (or sodium arsenite) is a potent anti-tumor agent used to treat patients with acute promyelocytic leukemia (APL). Additionally, arsenic induces cell growth inhibition, cell cycle arrest and apoptosis in human HCC cells. In this study, we identified XIAP as a target for sodium arsenite-induced cytotoxicity in HCC. The exposure of HCC cell lines to sodium arsenite resulted in inhibition of XIAP expression in both a dose- and time-dependent manner. Sodium arsenite blocked the de novo XIAP synthesis and the activity of its internal ribosome entry site (IRES) element. Moreover, treatment with sodium arsenite decreased the protein stability of XIAP and induced its ubiquitin–proteasomal degradation. Overexpression of XIAP attenuated the pro-apoptotic effect of sodium arsenite in HCC. Taken together, our data demonstrate that sodium arsenite suppresses XIAP expression via translational and post-translational mechanisms in HCC.

  15. The accumulations of HIF-1α and HIF-2α by JNK and ERK are involved in biphasic effects induced by different levels of arsenite in human bronchial epithelial cells

    International Nuclear Information System (INIS)

    Xu, Yuan; Li, Yuan; Li, Huiqiao; Pang, Ying; Zhao, Yue; Jiang, Rongrong; Shen, Lu; Zhou, Jianwei; Wang, Xinru; Liu, Qizhan

    2013-01-01

    The biphasic effects of arsenite, in which low levels of arsenite induce cell proliferation and high levels of arsenite induce DNA damage and apoptosis, apparently contribute to arsenite-induced carcinogenesis. However, the mechanisms underlying this phenomenon are not well understood. In this study, we investigated the effects of different levels of arsenite on cell proliferation, DNA damage and apoptosis as well as on signal transduction pathways in human bronchial epithelial (HBE) cells. Our results show that a low level of arsenite activates extracellular signal-regulated kinases (ERK), which probably mediate arsenite-inhibited degradation of ubiquitinated hypoxia-inducible factor-2α (HIF-2α) in HBE cells. ERK inhibition blocks cell proliferation induced by a low level of arsenite, in part via HIF-2α. In contrast, a high level of arsenite activates c-Jun N-terminal kinases (JNK), which provoke a response to suppress ubiquitinated HIF-1α degradation. Down-regulation of HIF-1α by inhibiting JNK, however, increases the DNA damage but decreases the apoptosis induced by a high level of arsenite. Thus, data in the present study suggest that the accumulations of HIF-1α and HIF-2α by JNK and ERK are involved in different levels of arsenite-induced biphasic effects, with low levels of arsenite inducing cell proliferation and high levels of arsenite inducing DNA damage and apoptosis in HBE cells. -- Highlights: ► Biphasic effects induced by different concentrations of arsenite. ► Different regulation of ERK or JNK signal pathway by arsenite. ► Different regulation of HIF1α or HIF 2α by arsenite.

  16. Effect of Sodium Arsenite on the Expression of Antioxidant Genes (SOD2andCAT) in MCF-7 and Jurkat Cell Lines.

    Science.gov (United States)

    Fallahzadeh-Abarghooei, Leila; Samadaei-Ghadikolaie, Maryam; Saadat, Iraj; Saadat, Mostafa

    2017-02-01

    Sodium arsenite (NaAsO2) has potent cytotoxic activity in human cancer cells. Oxidative stress has been suggested as a mechanism for arsenic-induced carcinogenesis. The purpose of the present study was to evaluate the alteration of mRNA levels of catalase ( CAT ) and superoxide dismutase 2 ( SOD2 ) in MCF-7 and Jurkat cells after exposure to NaAsO 2 . Methylthiazol tetrazolium (MTT) viability assay was performed to evaluate cytotoxicity of NaAsO 2 in MCF-7 and Jurkat cells. For evaluating the expression levels of the CAT and SOD2 , we used two concentrations of NaAsO 2 (5 and 15 μM), lower than the concentrations at which 50% of cell viability were lost. The cells were treated with co-treatment of NaAsO 2 (15 μM) and N-acetyl-cysteine (NAC; 5 μM) in the media for 24 h. The control cells were maintained in sodium arsenite free growth medium. The experiments were done triplicate. Using quantitative real-time PCR, the expression levels of CAT and SOD2 were quantified. One sample student's t test was performed for comparisons of mRNA levels between treatment groups and their corresponding untreated control cells. CAT mRNA level decreased significantly in both cell lines following exposure to NaAsO 2 ( P Jurkat cells and increased in MCF-7 cells after treatment with NaAsO 2 ( P <0.05). After cells exposure to NaAsO 2 , CAT mRNA level decreased in both examined cell lines but the alterations of SOD2 mRNA level is cell specific. The NAC modulated the NaAsO 2 associated alterations of CAT and SOD2 mRNA levels, therefore, the NaAsO 2 might act through inducing reactive oxygen species.

  17. Evidence against the nuclear in situ binding of arsenicals-oxidative stress theory of arsenic carcinogenesis

    International Nuclear Information System (INIS)

    Kitchin, Kirk T.; Wallace, Kathleen

    2008-01-01

    A large amount of evidence suggests that arsenicals act via oxidative stress in causing cancer in humans and experimental animals. It is possible that arsenicals could bind in situ close to nuclear DNA followed by Haber-Weiss type oxidative DNA damage. Therefore, we tested this hypothesis by using radioactive 73 As labeled arsenite and vacuum filtration methodology to determine the binding affinity and capacity of 73 As arsenite to calf thymus DNA and Type 2A unfractionated histones, histone H3, H4 and horse spleen ferritin. Arsenicals are known to release redox active Fe from ferritin. At concentrations up to about 1 mM, neither DNA nor any of the three proteins studied, Type II-A histones, histone H3, H4 or ferritin, bound radioactive arsenite in a specific manner. Therefore, it appears highly unlikely that initial in situ binding of trivalent arsenicals, followed by in situ oxidative DNA damage, can account for arsenic's carcinogenicity. This experimental evidence (lack of arsenite binding to DNA, histone Type II-A and histone H3, H4) does not rule out other possible oxidative stress modes of action for arsenic such as (a) diffusion of longer lived oxidative stress molecules, such as H 2 O 2 into the nucleus and ensuing oxidative damage, (b) redox chemistry by unbound arsenicals in the nucleus, or (c) arsenical-induced perturbations in Fe, Cu or other metals which are already known to oxidize DNA in vitro and in vivo

  18. Contribution of anaerobic energy expenditure to whole body thermogenesis

    Directory of Open Access Journals (Sweden)

    Scott Christopher B

    2005-06-01

    Full Text Available Abstract Heat production serves as the standard measurement for the determination of energy expenditure and efficiency in animals. Estimations of metabolic heat production have traditionally focused on gas exchange (oxygen uptake and carbon dioxide production although direct heat measurements may include an anaerobic component particularly when carbohydrate is oxidized. Stoichiometric interpretations of the ratio of carbon dioxide production to oxygen uptake suggest that both anaerobic and aerobic heat production and, by inference, all energy expenditure – can be accounted for with a measurement of oxygen uptake as 21.1 kJ per liter of oxygen. This manuscript incorporates contemporary bioenergetic interpretations of anaerobic and aerobic ATP turnover to promote the independence of these disparate types of metabolic energy transfer: each has different reactants and products, uses dissimilar enzymes, involves different types of biochemical reactions, takes place in separate cellular compartments, exploits different types of gradients and ultimately each operates with distinct efficiency. The 21.1 kJ per liter of oxygen for carbohydrate oxidation includes a small anaerobic heat component as part of anaerobic energy transfer. Faster rates of ATP turnover that exceed mitochondrial respiration and that are supported by rapid glycolytic phosphorylation with lactate production result in heat production that is independent of oxygen uptake. Simultaneous direct and indirect calorimetry has revealed that this anaerobic heat does not disappear when lactate is later oxidized and so oxygen uptake does not adequately measure anaerobic efficiency or energy expenditure (as was suggested by the "oxygen debt" hypothesis. An estimate of anaerobic energy transfer supplements the measurement of oxygen uptake and may improve the interpretation of whole-body energy expenditure.

  19. Anaerobic and aerobic acetylene hydratase

    Indian Academy of Sciences (India)

    Administrator

    Acetaldehyde is the first metabolite produced during acetylene degradation by bacteria either aerobically or anaerobically. Conversion of acetylene into acetaldehyde, ethanol, acetate, and biomass occurs in anaerobic cultures of Palobacter acetylinicus or aerobically with Mycobacterium lacticola, Nocardia rhodochrous, ...

  20. Exocellular electron transfer in anaerobic microbial communities.

    Science.gov (United States)

    Stams, Alfons J M; de Bok, Frank A M; Plugge, Caroline M; van Eekert, Miriam H A; Dolfing, Jan; Schraa, Gosse

    2006-03-01

    Exocellular electron transfer plays an important role in anaerobic microbial communities that degrade organic matter. Interspecies hydrogen transfer between microorganisms is the driving force for complete biodegradation in methanogenic environments. Many organic compounds are degraded by obligatory syntrophic consortia of proton-reducing acetogenic bacteria and hydrogen-consuming methanogenic archaea. Anaerobic microorganisms that use insoluble electron acceptors for growth, such as iron- and manganese-oxide as well as inert graphite electrodes in microbial fuel cells, also transfer electrons exocellularly. Soluble compounds, like humic substances, quinones, phenazines and riboflavin, can function as exocellular electron mediators enhancing this type of anaerobic respiration. However, direct electron transfer by cell-cell contact is important as well. This review addresses the mechanisms of exocellular electron transfer in anaerobic microbial communities. There are fundamental differences but also similarities between electron transfer to another microorganism or to an insoluble electron acceptor. The physical separation of the electron donor and electron acceptor metabolism allows energy conservation in compounds as methane and hydrogen or as electricity. Furthermore, this separation is essential in the donation or acceptance of electrons in some environmental technological processes, e.g. soil remediation, wastewater purification and corrosion.

  1. A “Turn-On” thiol functionalized fluorescent carbon quantum dot based chemosensory system for arsenite detection

    Energy Technology Data Exchange (ETDEWEB)

    Pooja, D., E-mail: poojaiitr@csio.res.in [Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research, New Delhi (India); Central Scientific Instruments Organisation, Sectro-30 C, Chandigarh 160030 (India); Saini, Sonia; Thakur, Anupma; Kumar, Baban; Tyagi, Sachin [Central Scientific Instruments Organisation, Sectro-30 C, Chandigarh 160030 (India); Nayak, Manoj K. [Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research, New Delhi (India); Central Scientific Instruments Organisation, Sectro-30 C, Chandigarh 160030 (India)

    2017-04-15

    Highlights: • Environmental friendly carbon quantum dots grafted with thiol moieties. • The functionalized CQDs demonstrated for optical detection of arsenite in water. • High analytical performance in terms of sensitivity, selectivity and detection limit (0.086 ppb). - Abstract: Carbon quantum dots (CQDs) have emerged out as promising fluorescent probes for hazardous heavy metals detection in recent past. In this study, water soluble CQDs were synthesized by facile microwave pyrolysis of citric acid & cysteamine, and functionalized with ditheritheritol to impart thiol functionalities at surface for selective detection of toxic arsenite in water. Microscopic analysis reveals that the synthesized CQDs are of uniform size (diameter ∼5 nm) and confirmed to have surface −SH groups by FT-IR. The functionalized probe is then demonstrated for arsenite detection in water by “Turn-On” read out mechanism, which reduces the possibility of false positive signals associated with “turn off’ probes reported earlier. The blue luminescent functionalized CQDs exhibit increase in fluorescence intensity on arsenite addition in 5–100 ppb wide detection range. The probe can be used for sensitive detection of arsenite in environmental water to a theoretical detection limit (3s) of 0.086 ppb (R{sup 2} = 0.9547) with good reproducibility at 2.6% relative standard deviation. The presented reliable, sensitive, rapid fCQDs probe demonstrated to exhibit high selectivity towards arsenite and exemplified for real water samples as well. The analytical performance of the presented probe is comparable to existing organic & semiconductor based optical probes.

  2. Arsenite Regulates Prolongation of Glycan Residues of Membrane Glycoprotein: A Pivotal Study via Wax Physisorption Kinetics and FTIR Imaging

    Directory of Open Access Journals (Sweden)

    Chih-Hung Lee

    2016-03-01

    Full Text Available Arsenic exposure results in several human cancers, including those of the skin, lung, and bladder. As skin cancers are the most common form, epidermal keratinocytes (KC are the main target of arsenic exposure. The mechanisms by which arsenic induces carcinogenesis remains unclear, but aberrant cell proliferation and dysregulated energy homeostasis play a significant role. Protein glycosylation is involved in many key physiological processes, including cell proliferation and differentiation. To evaluate whether arsenite exposure affected protein glycosylation, the alteration of chain length of glycan residues in arsenite treated skin cells was estimated. Herein we demonstrated that the protein glycosylation was adenosine triphosphate (ATP-dependent and regulated by arsenite exposure by using Fourier transform infrared (FTIR reflectance spectroscopy, synchrotron-radiation-based FTIR (SR-FTIR microspectroscopy, and wax physisorption kinetics coupled with focal-plane-array-based FTIR (WPK-FPA-FTIR imaging. We were able to estimate the relative length of surface protein-linked glycan residues on arsenite-treated skin cells, including primary KC and two skin cancer cell lines, HSC-1 and HaCaT cells. Differential physisorption of wax adsorbents adhered to long-chain (elongated type and short-chain (regular type glycan residues of glycoprotein of skin cell samples treated with various concentration of arsenite was measured. The physisorption ratio of beeswax remain/n-pentacosane remain for KC cells was increased during arsenite exposure. Interestingly, this increase was reversed after oligomycin (an ATP synthase inhibitor pretreatment, suggesting the chain length of protein-linked glycan residues is likely ATP-dependent. This is the first study to demonstrate the elongation and termination of surface protein-linked glycan residues using WPK-FPA-FTIR imaging in eukaryotes. Herein the result may provide a scientific basis to target surface protein

  3. Syntrophic interactions and mechanisms underpinning anaerobic methane oxidation: targeted metaproteogenomics, single-cell protein detection and quantitative isotope imaging of microbial consortia

    Energy Technology Data Exchange (ETDEWEB)

    Orphan, Victoria Jeanne [California Inst. of Technology (CalTech), Pasadena, CA (United States). Division of Geological and Planetary Sciences

    2014-11-26

    Syntrophy and mutualism play a central role in carbon and nutrient cycling by microorganisms. Yet, our ability to effectively study symbionts in culture has been hindered by the inherent interdependence of syntrophic associations, their dynamic behavior, and their frequent existence at thermodynamic limits. Now solutions to these challenges are emerging in the form of new methodologies. Developing strategies that establish links between the identity of microorganisms and their metabolic potential, as well as techniques that can probe metabolic networks on a scale that captures individual molecule exchange and processing, is at the forefront of microbial ecology. Understanding the interactions between microorganisms on this level, at a resolution previously intractable, will lead to our greater understanding of carbon turnover and microbial community resilience to environmental perturbations. In this project, we studied an enigmatic syntrophic association between uncultured methane-oxidizing archaea and sulfate-reducing bacteria. This environmental archaeal-bacterial partnership represents a globally important sink for methane in anoxic environments. The specific goals of this project were organized into 3 major tasks designed to address questions relating to the ecophysiology of these syntrophic organisms under changing environmental conditions (e.g. different electron acceptors and nutrients), primarily through the development of microanalytical imaging methods which enable the visualization of the spatial distribution of the partners within aggregates, consumption and exchange of isotopically labeled substrates, and expression of targeted proteins identified via metaproteomics. The advanced tool set developed here to collect, correlate, and analyze these high resolution image and isotope-based datasets from methane-oxidizing consortia has the potential to be widely applicable for studying and modeling patterns of activity and interactions across a broad range of

  4. Diversity and abundance of the arsenite oxidase gene aioA in geothermal areas of Tengchong, Yunnan, China.

    Science.gov (United States)

    Jiang, Zhou; Li, Ping; Jiang, Dawei; Wu, Geng; Dong, Hailiang; Wang, Yanhong; Li, Bing; Wang, Yanxin; Guo, Qinghai

    2014-01-01

    A total of 12 samples were collected from the Tengchong geothermal areas of Yunnan, China, with the goal to assess the arsenite (AsIII) oxidation potential of the extant microbial communities as inferred by the abundance and diversity of the AsIII oxidase large subunit gene aioA relative to geochemical context. Arsenic concentrations were higher (on average 251.68 μg/L) in neutral or alkaline springs than in acidic springs (on average 30.88 μg/L). aioA abundance ranged from 1.63 × 10(1) to 7.08 × 10(3) per ng of DNA and positively correlated with sulfide and the ratios of arsenate (AsV):total dissolved arsenic (AsTot). Based on qPCR estimates of bacterial and archaeal 16S rRNA gene abundance, aioA-harboring organisms comprised as much as ~15% of the total community. Phylogenetically, the major aioA sequences (270 total) in the acidic hot springs (pH 3.3-4.4) were affiliated with Aquificales and Rhizobiales, while those in neutral or alkaline springs (pH 6.6-9.1) were inferred to be primarily bacteria related to Thermales and Burkholderiales. Interestingly, aioA abundance at one site greatly exceeded bacterial 16S rRNA gene abundance, suggesting these aioA genes were archaeal even though phylogenetically these aioA sequences were most similar to the Aquificales. In summary, this study described novel aioA sequences in geothermal features geographically far removed from those in the heavily studied Yellowstone geothermal complex.

  5. Modulation of DNA polymerase beta-dependent base excision repair in cultured human cells after low dose exposure to arsenite

    International Nuclear Information System (INIS)

    Sykora, Peter; Snow, Elizabeth T.

    2008-01-01

    Base excision repair (BER) is crucial for development and for the repair of endogenous DNA damage. However, unlike nucleotide excision repair, the regulation of BER is not well understood. Arsenic, a well-established human carcinogen, is known to produce oxidative DNA damage, which is repaired primarily by BER, whilst high doses of arsenic can also inhibit DNA repair. However, the mechanism of repair inhibition by arsenic and the steps inhibited are not well defined. To address this question we have investigated the regulation of DNA polymerase β (Pol β) and AP endonuclease (APE1), in response to low, physiologically relevant doses of arsenic. GM847 lung fibroblasts and HaCaT keratinocytes were exposed to sodium arsenite, As(III), and mRNA, protein levels and BER activity were assessed. Both Pol β and APE1 mRNA exhibited significant dose-dependant down regulation at doses of As(III) above 1 μM. However, at lower doses Pol β mRNA and protein levels, and consequently, BER activity were significantly increased. In contrast, APE1 protein levels were only marginally increased by low doses of As(III) and there was no correlation between APE1 and overall BER activity. Enzyme supplementation of nuclear extracts confirmed that Pol β was rate limiting. These changes in BER correlated with overall protection against sunlight UV-induced toxicity at low doses of As(III) and produced synergistic toxicity at high doses. The results provide evidence that changes in BER due to low doses of arsenic could contribute to a non-linear, threshold dose response for arsenic carcinogenesis

  6. Modulation of DNA polymerase beta-dependent base excision repair in cultured human cells after low dose exposure to arsenite.

    Science.gov (United States)

    Sykora, Peter; Snow, Elizabeth T

    2008-05-01

    Base excision repair (BER) is crucial for development and for the repair of endogenous DNA damage. However, unlike nucleotide excision repair, the regulation of BER is not well understood. Arsenic, a well-established human carcinogen, is known to produce oxidative DNA damage, which is repaired primarily by BER, whilst high doses of arsenic can also inhibit DNA repair. However, the mechanism of repair inhibition by arsenic and the steps inhibited are not well defined. To address this question we have investigated the regulation of DNA polymerase beta (Pol beta) and AP endonuclease (APE1), in response to low, physiologically relevant doses of arsenic. GM847 lung fibroblasts and HaCaT keratinocytes were exposed to sodium arsenite, As(III), and mRNA, protein levels and BER activity were assessed. Both Pol beta and APE1 mRNA exhibited significant dose-dependant down regulation at doses of As(III) above 1 microM. However, at lower doses Pol beta mRNA and protein levels, and consequently, BER activity were significantly increased. In contrast, APE1 protein levels were only marginally increased by low doses of As(III) and there was no correlation between APE1 and overall BER activity. Enzyme supplementation of nuclear extracts confirmed that Pol beta was rate limiting. These changes in BER correlated with overall protection against sunlight UV-induced toxicity at low doses of As(III) and produced synergistic toxicity at high doses. The results provide evidence that changes in BER due to low doses of arsenic could contribute to a non-linear, threshold dose response for arsenic carcinogenesis.

  7. Anaerobic carbon metabolism by the tricarboxylic acid cycle

    International Nuclear Information System (INIS)

    Vanlerberghe, G.C.; Horsey, A.K.; Weger, H.G.; Turpin, D.H.

    1989-01-01

    Nitrogen-limited cells of Selenastrum minutum (Naeg.) Collins are able to assimilate NH 4 + in the dark under anaerobic conditions. Addition of NH 4 + to anaerobic cells results in a threefold increase in tricarboxylic acid cycle (TCAC) CO 2 efflux and an eightfold increase in the rate of anaplerotic carbon fixation via phosphoenspyruvate carboxylase. Both of these observations are consistent with increased TCAC carbon flow to supply intermediates for amino acid biosynthesis. Addition of H 14 CO 3 - to anaerobic cells assimilating NH 4 + results in the incorporation of radiolabel into the α-carboxyl carbon of glutamic acid. Incorporation of radiolabel into glutamic acid is not simply a short-term phenomenon following NH 4 + addition as the specific activity of glutamic acid increases over time. This indicates that this alga is able to maintain partial oxidative TCAC carbon flow while under anoxia to supply αketoglutarate for glutamate production. During dark aerobic NH 4 + assimilation, no radiolabel appears in fumarate or succinate and only a small amount occurs in malate. During anaerobic NH 4 + assimilation, these metabolites contain a large proportion of the total radiolabel and radiolabel accumulates in succinate over time. Also, the ratio of dark carbon fixation to NH 4 + assimilation is much higher under anaerobic than aerobic conditions. These observations suggest the operation of a partial reductive TCAC from oxaloacetic acid to malate, fumarate, and succinate. Such a pathway might contribute to redox balance in an anaerobic cell maintaining partial oxidative TCAC activity

  8. The anaerobic digestion process

    Energy Technology Data Exchange (ETDEWEB)

    Rivard, C.J. [National Renewable Energy Lab., Golden, CO (United States); Boone, D.R. [Oregon Graduate Inst., Portland, OR (United States)

    1996-01-01

    The microbial process of converting organic matter into methane and carbon dioxide is so complex that anaerobic digesters have long been treated as {open_quotes}black boxes.{close_quotes} Research into this process during the past few decades has gradually unraveled this complexity, but many questions remain. The major biochemical reactions for forming methane by methanogens are largely understood, and evolutionary studies indicate that these microbes are as different from bacteria as they are from plants and animals. In anaerobic digesters, methanogens are at the terminus of a metabolic web, in which the reactions of myriads of other microbes produce a very limited range of compounds - mainly acetate, hydrogen, and formate - on which the methanogens grow and from which they form methane. {open_quotes}Interspecies hydrogen-transfer{close_quotes} and {open_quotes}interspecies formate-transfer{close_quotes} are major mechanisms by which methanogens obtain their substrates and by which volatile fatty acids are degraded. Present understanding of these reactions and other complex interactions among the bacteria involved in anaerobic digestion is only now to the point where anaerobic digesters need no longer be treated as black boxes.

  9. Anaerobic biological treatment

    International Nuclear Information System (INIS)

    Speece, R.E.

    1990-01-01

    The Enso-Fenox process has been very successfully used to remove chlorinated phenolic compounds from pulp bleaching effluents. It is a two-stage anaerobic/aerobic process consisting of a nonmethanogenic anaerobic fluidized bed followed by a trickling filter. Studies have been conducted on reductive dechlorination of chlorinated aromatic compounds under anaerobic conditions with chlorinated phenols as the sole carbon and energy source. Approximately 40% of the added chlorophenols was converted to CH 4 and CO 2 . Substrate loading rates were 20 mg/L/d at hydraulic detention times of 2-4 days with 90% substrate conversion efficiency. Reductive dechlorination of mono, di-, tri-, and pentachlorophenols has been demonstrated in anaerobic sewage sludge. The following constituents were tested in the laboratory at their approximate concentrations in coal conversion wastewater (CCWW) and were anaerobically degraded in serum bottles: 1,000 mg/L phenol; 500 mg/L resorcinol; 1,000 mg/L benzoic acid; 500 mg/L p-cresol; 200 mg/L pyridine; 2,000 mg/L benzoic acid; 250 mg/L 40 methylcatechol; 500 mg/L 4-ethylpyridine; and 2,000 mg/L hexanoic acid. A petrochemical may initially exhibit toxicity to an unacclimated population of methane-fermenting bacteria, but with acclimation the toxicity may be greatly reduced or disappear. In addition, the microorganisms may develop the capacity to actually degrade compounds which showed initial toxicity. Since biomass digestion requires a complete consortium of bacteria, it is relevant to study the effect of a given process as well as to individual steps within the process. A toxicant can inhibit the rate-limiting step and/or change the step that is rate-limiting. Both manifestations of toxicity can severely affect the overall process

  10. Microvirga indica sp. nov., an arsenite-oxidizing Alphaproteobacterium, isolated from metal industry waste soil.

    Science.gov (United States)

    Tapase, Savita R; Mawlankar, Rahul B; Sundharam, Shiva S; Krishnamurthi, Srinivasan; Dastager, Syed G; Kodam, Kisan M

    2017-09-01

    A novel Gram-stain-negative bacterium, strain S-MI1bT, belonging to the genus Microvirga was isolated from a metal industry waste soil sample in Pirangut village, Pune District, Maharashtra, India. Cells were non-spore-forming, small rod-shapes, motile and strictly aerobic with light-pink colonies. The strain grew in 0-7.0 % (w/v) NaCl and at 25-45 °C, with optimal growth at 40 °C. The predominant fatty acids detected were summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c) and C19 : 0 cyclo ω8c. The predominant isoprenoid quinone was Q-10. The G+C content was 67.2 mol% and DNA-DNA relatedness values between strain S-MI1bTand Microvirga subterranea DSM 14364T and Microvirgaaerophila 5420S-12T were 53.9 and 54.8 %, respectively. Phylogenetic analysis, based on 16S rRNA gene sequences, indicated that strain S-MI1bT is a member of the genus Microvirga, with greatest sequence similarities of 97.7 and 97.4 % with M. subterranea DSM 14364T and M.aerophila 5420S-12T, respectively. Phylogenetic analysis showed that strain S-MI1bT forms a clade with the type strain of M. subterranea DSM 14364T, and was readily distinguishable from it due to various phenotypic characteristics. The combination of genotypic and phenotypic data suggests that the isolate represents a novel species of the genus Microvirga, for which the name Microvirga indica sp. nov. is proposed. The type strain is S-MI1bT (=NCIM-5595T=KACC 18792T=BCRC 80972T).

  11. Bioprospecting arsenite oxidizing bacteria in the soil of the Comarca Lagunera

    Directory of Open Access Journals (Sweden)

    Edelweiss A. Rangel-Montoya

    2015-01-01

    Full Text Available Resumen El arsénico es uno de los metaloides más tóxicos presente en el ambiente y la exposición prolongada a este metal causa efectos crónicos en la salud. Por ello, la búsqueda de alternativas amigables con el medio ambiente, para el tratamiento de agua y suelos contaminados con arsénico es importante. En este trabajo se aislaron cepas bacterianas de suelos con presencia de arsénico en la Comarca Lagunera, para analizar aquellas con capacidad oxidante de arsenito. Las cepas 04-SP1qa y 14-SP1qh de metabolismo quimiolitoautotrófico y quimioheterotrófico, respectivamente, tuvieron mayor actividad de la enzima arsenito oxidasa. Las condiciones óptimas de crecimiento y la actividad enzimática de dichas cepas se investigaron. La cepa 04-SP1qa presentó actividad enzimática específica de 0.162 μmol·min- 1 ·mg-1, constante de Michaelis-Menten (Km de 3.37 μM y velocidad máxima (Vmax de 5.20 μM·min-1·mg-1 en condiciones óptimas de pH 8.0 y 40 °C. La cepa 14-SP1qh presentó actividad enzimática específica de 0.16 μmol·min-1·mg-1, Km de 3.70 μM y Vmax de 14.39 μM·min-1·mg-1 a pH 7.0 y 40 °C. Los resultados demostraron la presencia de bacterias oxidantes de arsenito con actividad enzimática en suelos de la Comarca Lagunera, identificando potencial para desarrollar nuevas tecnologías de biorremediación de aguas y suelos contaminados con arsénico en la región.

  12. Key geochemical factors regulating Mn(IV)-catalyzed anaerobic nitrification in coastal marine sediments

    Science.gov (United States)

    Lin, Hui; Taillefert, Martial

    2014-05-01

    The reduction of Mn(IV) oxides coupled to the anaerobic oxidation of NH4+ has been proposed for more than a decade to contribute to the fixed nitrogen pool in marine sediments, yet the existence of this process is still under debate. In this study, surface sediments from an intertidal salt marsh were incubated with MnO2 in the presence of elevated concentrations of NH4+ to test the hypothesis that the reduction of Mn(IV) oxides catalyzes anaerobic NH4+ oxidation to NO2- or NO3-. Geochemical factors such as the ratio of Mn(IV) to NH4+, the type of Mn(IV) oxides (amorphous or colloidal MnO2), and the redox potential of the sediment significantly affect the activity of anaerobic nitrification. Incubations show that the net production of NO3- is stimulated under anaerobic conditions with external addition of colloidal but not amorphous MnO2 and is facilitated by the presence of high concentrations of NH4+. Mass balance calculations demonstrate that anaerobic NH4+ oxidation contributes to the net consumption of NH4+, providing another piece of evidence for the occurrence of Mn(IV)-catalyzed anaerobic nitrification in coastal marine sediments. Finally, anaerobic nitrification is stimulated by the amendment of small concentrations of NO3- or the absence of sulfate reduction, suggesting that moderately reducing conditions favor anaerobic NH4+ oxidation. Overall, these findings suggest that Mn(IV)-catalyzed anaerobic nitrification in suboxic sediments with high N/Mn concentration ratios and highly reactive manganese oxides may be an important source of NO2- and NO3- for subsequent marine nitrogen loss via denitrification or anammox.

  13. ANAMMOX process start up and stabilization with an anaerobic seed in Anaerobic Membrane Bioreactor (AnMBR).

    Science.gov (United States)

    Suneethi, S; Joseph, Kurian

    2011-10-01

    ANaerobic AMMonium OXidation (ANAMMOX) process, an advanced biological nitrogen removal alternative to traditional nitrification--denitrification removes ammonia using nitrite as the electron acceptor without oxygen. The feasibility of enriching anammox bacteria from anaerobic seed culture to start up an Anaerobic Membrane Bioreactor (AnMBR) for N-removal is reported in this paper. The Anammox activity was established in the AnMBR with anaerobic digester seed culture from a Sewage Treatment Plant in batch mode with recirculation followed by semi continuous process and continuous modes of operation. The AnMBR performance under varying Nitrogen Loading Rates (NLR) and HRTs is reported for a year, in terms of nitrogen transformations to ammoniacal nitrogen, nitrite and nitrate along with hydrazine and hydroxylamine. Interestingly ANAMMOX process was evident from simultaneous Amm-N and nitrite reduction, consistent nitrate production, hydrazine and hydroxylamine presence, notable organic load reduction and bicarbonate consumption. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Syntrophy of aerobic and anaerobic ammonia oxidisers.

    Science.gov (United States)

    Wett, B; Hell, M; Nyhuis, G; Puempel, T; Takacs, I; Murthy, S

    2010-01-01

    Deammonification is known as an efficient and resource saving sidestream process option to remove the nitrogen load from sludge liquors. The transfer of the intermediate product nitrite between both syntrophic groups of organisms - aerobic and anaerobic ammonia oxidizers (AOB) - appears very sensitive to process conditions such as temperature, dissolved oxygen (DO) and operating nitrite level. Growth kinetics for aerobic and anaerobic AOBs differ by one order of magnitude and require an adequate selection of sludge retention time. This paper provides measurement- and model-based results on how selected sludge wasting impacts population dynamics in a suspended growth deammonification system. Anammox enrichment up to a doubled portion in mixed liquor solids can substantially improve process stability in difficult conditions. A case-study on low temperature operations outlines two possible strategies to balance syntrophic consumption of ammonium and nitrite.

  15. Involvement of c-Met- and phosphatidylinositol 3-kinase dependent pathways in arsenite-induced downregulation of catalase in hepatoma cells.

    Science.gov (United States)

    Kim, Soohee; Lee, Seung Heon; Kang, Sukmo; Lee, Lyon; Park, Jung-Duck; Ryu, Doug-Young

    2011-01-01

    Catalase protects cells from reactive oxygen species-induced damage by catalyzing the breakdown of hydrogen peroxide to oxygen and water. Arsenite decreases catalase activity; it activates phosphatidylinositol 3-kinase (PI3K) and its key downstream effector Akt in a variety of cells. The PI3K pathway is known to inhibit catalase expression. c-Met, an upstream regulator of PI3K and Akt, is also involved in the regulation of catalase expression. To examine the involvement of c-Met and PI3K pathways in the arsenite-induced downregulation of catalase, catalase mRNA and protein expression were analyzed in the human hepatoma cell line HepG2 treated with arsenite and either an inhibitor of c-Met (PHA665752 (PHA)) or of PI3K (LY294002 (LY)). Arsenite treatment markedly activated Akt and decreased the levels of both catalase mRNA and protein. Both PHA and LY attenuated arsenite-induced activation of Akt. PHA and LY treatment also prevented the inhibitory effect of arsenite on catalase protein expression but did not affect the level of catalase mRNA. These findings suggest that arsenite-induced inhibition of catalase expression is regulated at the mRNA and post-transcriptional levels in HepG2 cells, and that the post-transcriptional regulation is mediated via c-Met- and PI3K-dependent mechanisms.

  16. Arsenite binding-induced zinc loss from PARP-1 is equivalent to zinc deficiency in reducing PARP-1 activity, leading to inhibition of DNA repair

    International Nuclear Information System (INIS)

    Sun, Xi; Zhou, Xixi; Du, Libo; Liu, Wenlan; Liu, Yang; Hudson, Laurie G.; Liu, Ke Jian

    2014-01-01

    Inhibition of DNA repair is a recognized mechanism for arsenic enhancement of ultraviolet radiation-induced DNA damage and carcinogenesis. Poly(ADP-ribose) polymerase-1 (PARP-1), a zinc finger DNA repair protein, has been identified as a sensitive molecular target for arsenic. The zinc finger domains of PARP-1 protein function as a critical structure in DNA recognition and binding. Since cellular poly(ADP-ribosyl)ation capacity has been positively correlated with zinc status in cells, we hypothesize that arsenite binding-induced zinc loss from PARP-1 is equivalent to zinc deficiency in reducing PARP-1 activity, leading to inhibition of DNA repair. To test this hypothesis, we compared the effects of arsenite exposure with zinc deficiency, created by using the membrane-permeable zinc chelator TPEN, on 8-OHdG formation, PARP-1 activity and zinc binding to PARP-1 in HaCat cells. Our results show that arsenite exposure and zinc deficiency had similar effects on PARP-1 protein, whereas supplemental zinc reversed these effects. To investigate the molecular mechanism of zinc loss induced by arsenite, ICP-AES, near UV spectroscopy, fluorescence, and circular dichroism spectroscopy were utilized to examine arsenite binding and occupation of a peptide representing the first zinc finger of PARP-1. We found that arsenite binding as well as zinc loss altered the conformation of zinc finger structure which functionally leads to PARP-1 inhibition. These findings suggest that arsenite binding to PARP-1 protein created similar adverse biological effects as zinc deficiency, which establishes the molecular mechanism for zinc supplementation as a potentially effective treatment to reverse the detrimental outcomes of arsenic exposure. - Highlights: • Arsenite binding is equivalent to zinc deficiency in reducing PARP-1 function. • Zinc reverses arsenic inhibition of PARP-1 activity and enhancement of DNA damage. • Arsenite binding and zinc loss alter the conformation of zinc finger

  17. Arsenite binding-induced zinc loss from PARP-1 is equivalent to zinc deficiency in reducing PARP-1 activity, leading to inhibition of DNA repair

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xi; Zhou, Xixi [Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Du, Libo [Center for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Liu, Wenlan [Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Liu, Yang [Center for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Hudson, Laurie G. [Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Liu, Ke Jian, E-mail: kliu@salud.unm.edu [Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States)

    2014-01-15

    Inhibition of DNA repair is a recognized mechanism for arsenic enhancement of ultraviolet radiation-induced DNA damage and carcinogenesis. Poly(ADP-ribose) polymerase-1 (PARP-1), a zinc finger DNA repair protein, has been identified as a sensitive molecular target for arsenic. The zinc finger domains of PARP-1 protein function as a critical structure in DNA recognition and binding. Since cellular poly(ADP-ribosyl)ation capacity has been positively correlated with zinc status in cells, we hypothesize that arsenite binding-induced zinc loss from PARP-1 is equivalent to zinc deficiency in reducing PARP-1 activity, leading to inhibition of DNA repair. To test this hypothesis, we compared the effects of arsenite exposure with zinc deficiency, created by using the membrane-permeable zinc chelator TPEN, on 8-OHdG formation, PARP-1 activity and zinc binding to PARP-1 in HaCat cells. Our results show that arsenite exposure and zinc deficiency had similar effects on PARP-1 protein, whereas supplemental zinc reversed these effects. To investigate the molecular mechanism of zinc loss induced by arsenite, ICP-AES, near UV spectroscopy, fluorescence, and circular dichroism spectroscopy were utilized to examine arsenite binding and occupation of a peptide representing the first zinc finger of PARP-1. We found that arsenite binding as well as zinc loss altered the conformation of zinc finger structure which functionally leads to PARP-1 inhibition. These findings suggest that arsenite binding to PARP-1 protein created similar adverse biological effects as zinc deficiency, which establishes the molecular mechanism for zinc supplementation as a potentially effective treatment to reverse the detrimental outcomes of arsenic exposure. - Highlights: • Arsenite binding is equivalent to zinc deficiency in reducing PARP-1 function. • Zinc reverses arsenic inhibition of PARP-1 activity and enhancement of DNA damage. • Arsenite binding and zinc loss alter the conformation of zinc finger

  18. The inhibition of tissue respiration and alcoholic fermentation at different catabolic levels by ethyl carbamate (urethan) and arsenite

    NARCIS (Netherlands)

    Florijn, E.; Gruber, M.; Leijnse, B.; Huisman, T.H.J.

    1950-01-01

    1. A hypothesis is given concerning the action of urethan and arsenite on malignant growth. Two assumptionsares made:- (a) the enzyme system responsible for energy production in malignant tumours is working at maximal rate, contrary to the corresponding enzyme system in normal tissues. (b) a

  19. Deficiencies in mitochondrial dynamics sensitize Caenorhabditis elegans to arsenite and other mitochondrial toxicants by reducing mitochondrial adaptability.

    Science.gov (United States)

    Luz, Anthony L; Godebo, Tewodros R; Smith, Latasha L; Leuthner, Tess C; Maurer, Laura L; Meyer, Joel N

    2017-07-15

    Mitochondrial fission, fusion, and mitophagy are interlinked processes that regulate mitochondrial shape, number, and size, as well as metabolic activity and stress response. The fundamental importance of these processes is evident in the fact that mutations in fission (DRP1), fusion (MFN2, OPA1), and mitophagy (PINK1, PARK2) genes can cause human disease (collectively >1/10,000). Interestingly, however, the age of onset and severity of clinical manifestations varies greatly between patients with these diseases (even those harboring identical mutations), suggesting a role for environmental factors in the development and progression of certain mitochondrial diseases. Using the model organism Caenorhabditis elegans, we screened ten mitochondrial toxicants (2, 4-dinitrophenol, acetaldehyde, acrolein, aflatoxin B 1 , arsenite, cadmium, cisplatin, doxycycline, paraquat, rotenone) for increased or decreased toxicity in fusion (fzo-1, eat-3)-, fission (drp-1)-, and mitophagy (pdr-1, pink-1)-deficient nematodes using a larval growth assay. In general, fusion-deficient nematodes were the most sensitive to toxicants, including aflatoxin B 1 , arsenite, cisplatin, paraquat, and rotenone. Because arsenite was particularly potent in fission- and fusion-deficient nematodes, and hundreds of millions of people are chronically exposed to arsenic, we investigated the effects of these genetic deficiencies on arsenic toxicity in more depth. We found that deficiencies in fission and fusion sensitized nematodes to arsenite-induced lethality throughout aging. Furthermore, low-dose arsenite, which acted in a "mitohormetic" fashion by increasing mitochondrial function (in particular, basal and maximal oxygen consumption) in wild-type nematodes by a wide range of measures, exacerbated mitochondrial dysfunction in fusion-deficient nematodes. Analysis of multiple mechanistic changes suggested that disruption of pyruvate metabolism and Krebs cycle activity underlie the observed arsenite

  20. Early anaerobic metabolisms

    DEFF Research Database (Denmark)

    Canfield, Donald Eugene; Rosing, Minik T; Bjerrum, Christian

    2006-01-01

    probably driven by the cycling of H2 and Fe2+ through primary production conducted by anoxygenic phototrophs. Interesting and dynamic ecosystems would have also been driven by the microbial cycling of sulphur and nitrogen species, but their activity levels were probably not so great. Despite the diversity......Before the advent of oxygenic photosynthesis, the biosphere was driven by anaerobic metabolisms. We catalogue and quantify the source strengths of the most probable electron donors and electron acceptors that would have been available to fuel early-Earth ecosystems. The most active ecosystems were...... of potential early ecosystems, rates of primary production in the early-Earth anaerobic biosphere were probably well below those rates observed in the marine environment. We shift our attention to the Earth environment at 3.8Gyr ago, where the earliest marine sediments are preserved. We calculate, consistent...

  1. Semen characteristics and sperm morphology of Pistia stratiotes Linn. (Araceae) protected male albino rats (Wistar strain) exposed to sodium arsenite.

    Science.gov (United States)

    Ola-Davies, Olufunke; Ajani, O Samuel

    2016-09-01

    Sodium arsenite has been proven to be abundant in nature and released into the environment through human activities, including agricultural and industrial processes. The objective of our study was to investigate the sperm protective potential of Pistia stratiotes Linn. in arsenic-treated rats. The sperm protective potential of P. stratiotes Linn. (Araceae) was carried out in arsenic-exposed rats using 24 male albino rats (225 to 228 g) aged between 14 and 16 weeks old. They were grouped into 4 (A-D), each group containing 6 rats. Group A animals were orally treated with 100 mg/kg ethanol leaf extract of P. stratiotes Linn. daily for 14 days; group B (sodium arsenite at 2.5 mg/kg body weight; positive control); group C (P. stratiotes extract for 14 days and single dose of sodium arsenite on day 14; group D (0.1 mL propylene glycol; negative control/vehicle). Group B had a significantly lower (p0.05) for semen volume and the sperm count of rats across the groups. Total sperm abnormality was 10.44 and 14.27 % with the sodium arsenite treated group having the highest value when compared with groups A treated with P. stratiotes extract and D treated with propylene, although the differences were not significant (p>0.05). The study concluded that ethanol leaf extract of P. stratiotes has no negative effect on sperm motility, viability and morphology and also protected spermatozoa against arsenic-induced reproductive toxicity in Wistar strain albino rats. Therefore, it may play an important role in the protection of populations with chronic sodium arsenite exposure.

  2. Early anaerobic metabolisms

    Science.gov (United States)

    Canfield, Don E; Rosing, Minik T; Bjerrum, Christian

    2006-01-01

    Before the advent of oxygenic photosynthesis, the biosphere was driven by anaerobic metabolisms. We catalogue and quantify the source strengths of the most probable electron donors and electron acceptors that would have been available to fuel early-Earth ecosystems. The most active ecosystems were probably driven by the cycling of H2 and Fe2+ through primary production conducted by anoxygenic phototrophs. Interesting and dynamic ecosystems would have also been driven by the microbial cycling of sulphur and nitrogen species, but their activity levels were probably not so great. Despite the diversity of potential early ecosystems, rates of primary production in the early-Earth anaerobic biosphere were probably well below those rates observed in the marine environment. We shift our attention to the Earth environment at 3.8 Gyr ago, where the earliest marine sediments are preserved. We calculate, consistent with the carbon isotope record and other considerations of the carbon cycle, that marine rates of primary production at this time were probably an order of magnitude (or more) less than today. We conclude that the flux of reduced species to the Earth surface at this time may have been sufficient to drive anaerobic ecosystems of sufficient activity to be consistent with the carbon isotope record. Conversely, an ecosystem based on oxygenic photosynthesis was also possible with complete removal of the oxygen by reaction with reduced species from the mantle. PMID:17008221

  3. Effectiveness of Iron Filings in Arsenate and Arsenite Removal from Drinking Water

    Directory of Open Access Journals (Sweden)

    AliReza Asgari

    2009-09-01

    Full Text Available Groundwater contamination with arsenic (As has been recognized as a serious problem and there are various reports from different regions, especially from Kurdistan Providence, indicating the presence of As in the from of arsenate and arsenite in water recourses. Removal of these compounds can be accomplished by various methods but they are all expensive. In this study, three concentrations (0.5, 1, and 1 mg/L of iron filings (0.25, 0.5, 1 and 1.5 grams were used as a cheap and available material for adsorption of As and the effects of contact time and pH as well as chloride and sulfate ion concentrations on removal efficiency were determined. Description of adsorption isotherms (Ferundlich and Langmuir was accomplished. Finally, the data obtained were analyzed using the Excel softwere. The results indicate that iron filings show a high capability in adsorbing both arsenate and arsenic compounds from polluted water samples at pH 7 over a short contact time of 30 minutes. In fact, this cheap adsorbent shows good treatment when used at doses as low as 1g/L with no considerable interference by interfering anions (SO42- and Cl-. It appears that the absorbability of both arsenate and arsenite by iron filings can be expressed by Ferundlich isotherm with R2>0.96, whereas arsenate adsorption (with a R2 value of more than 0.96 can be better described by Langmuir isotherm than arsenite (with R2 value of more than 0.91. Results also indicate that the amount of iron added to water is much more than the standard value of 0.3mg/L set for dinking water. Nevertheless, this method has far greater advantages in terms of costs and availability than similar methods. Besides, as removal by this method is efficient without pH modification, iron filing treatment of drinking water may, therefore, be recomnended as a convenient solution to the problem of water resources polluted with As in Iran.

  4. New perspectives in anaerobic digestion

    DEFF Research Database (Denmark)

    van Lier, J.B.; Tilche, A.; Ahring, Birgitte Kiær

    2001-01-01

    The IWA specialised group on anaerobic digestion (AD) is one of the oldest working groups of the former IAWQ organisation. Despite the fact that anaerobic technology dates back more than 100 years, the technology is still under development, adapting novel treatment systems to the modern...... requirements. In fact, most advances were achieved during the last three decades, when high-rate reactor systems were developed and a profound insight was obtained in the microbiology of the anaerobic communities. This insight led to a better understanding of anaerobic treatment and, subsequently, to a broader...

  5. New perspectives in anaerobic digestion

    DEFF Research Database (Denmark)

    van Lier, J.B.; Tilche, A.; Ahring, Birgitte Kiær

    2001-01-01

    The IWA specialised group on anaerobic digestion (AD) is one of the oldest working groups of the former IAWQ organisation. Despite the fact that anaerobic technology dates back more than 100 years, the technology is still under development, adapting novel treatment systems to the modern requireme......The IWA specialised group on anaerobic digestion (AD) is one of the oldest working groups of the former IAWQ organisation. Despite the fact that anaerobic technology dates back more than 100 years, the technology is still under development, adapting novel treatment systems to the modern...

  6. Biogeochemistry of anaerobic crude oil biodegradation

    Science.gov (United States)

    Head, Ian; Gray, Neil; Aitken, Caroline; Sherry, Angela; Jones, Martin; Larter, Stephen

    2010-05-01

    Anaerobic degradation of crude oil and petroleum hydrocarbons is widely recognized as a globally significant process both in the formation of the world's vast heavy oil deposits and for the dissipation of hydrocarbon pollution in anoxic contaminated environments. Comparative analysis of crude oil biodegradation under methanogenic and sulfate-reducing conditions has revealed differences not only in the patterns of compound class removal but also in the microbial communities responsible. Under methanogenic conditions syntrophic associations dominated by bacteria from the Syntropheaceae are prevalent and these are likely key players in the initial anaerobic degradation of crude oil alkanes to intermediates such as hydrogen and acetate. Syntrophic acetate oxidation plays an important role in these systems and often results in methanogenesis dominated by CO2 reduction by members of the Methanomicrobiales. By contrast the bacterial communities from sulfate-reducing crude oil-degrading systems were more diverse and no single taxon dominated the oil-degrading sulfate-reducing systems. All five proteobacterial subdivisions were represented with Delta- and Gammaproteobacteria being detected most consistently. In sediments which were pasteurized hydrocarbon degradation continued at a relatively low rate. Nevertheless, alkylsuccinates characteristic of anaerobic hydrocarbon degradation accumulated to high concentrations. This suggested that the sediments harbour heat resistant, possibly spore-forming alkane degrading sulfate-reducers. This is particularly interesting since it has been proposed recently, that spore-forming sulfate-reducing bacteria found in cold arctic sediments may have originated from seepage of geofluids from deep subsurface hydrocarbon reservoirs.

  7. EFFECTS OF ARSENITE IN TELOMERE AND TELOMERASE IN RELATION TO CELL PROLIFERATION AND APOPTOSIS IN HUMAN KERATINOCYTES AND LEUKEMIA CELLS IN VITRO

    Science.gov (United States)

    Telomeres are critical in maintaining chromosome and genomic stability. Arsenic, a human carcinogen as well as an anticancer agent, is known for its clastogenicity. To better understand molecular mechanisms of arsenic actions, we investigated arsenite effects on telomere and telo...

  8. Correlating EPR and X-ray structural analysis of arsenite-inhibited forms of aldehyde oxidoreductase.

    Science.gov (United States)

    Thapper, Anders; Boer, D R; Brondino, Carlos D; Moura, José J G; Romão, Maria J

    2007-03-01

    Two arsenite-inhibited forms of each of the aldehyde oxidoreductases from Desulfovibrio gigas and Desulfovibrio desulfuricans have been studied by X-ray crystallography and electron paramagnetic resonance (EPR) spectroscopy. The molybdenum site of these enzymes shows a distorted square-pyramidal geometry in which two ligands, a hydroxyl/water molecule (the catalytic labile site) and a sulfido ligand, have been shown to be essential for catalysis. Arsenite addition to active as-prepared enzyme or to a reduced desulfo form yields two different species called A and B, respectively, which show different Mo(V) EPR signals. Both EPR signals show strong hyperfine and quadrupolar couplings with an arsenic nucleus, which suggests that arsenic interacts with molybdenum through an equatorial ligand. X-ray data of single crystals prepared from EPR-active samples show in both inhibited forms that the arsenic atom interacts with the molybdenum ion through an oxygen atom at the catalytic labile site and that the sulfido ligand is no longer present. EPR and X-ray data indicate that the main difference between both species is an equatorial ligand to molybdenum which was determined to be an oxo ligand in species A and a hydroxyl/water ligand in species B. The conclusion that the sulfido ligand is not essential to determine the EPR properties in both Mo-As complexes is achieved through EPR measurements on a substantial number of randomly oriented chemically reduced crystals immediately followed by X-ray studies on one of those crystals. EPR saturation studies show that the electron transfer pathway, which is essential for catalysis, is not modified upon inhibition.

  9. Towards intrinsic MoS{sub 2} devices for high performance arsenite sensing

    Energy Technology Data Exchange (ETDEWEB)

    Li, Peng, E-mail: pengli@mail.tsinghua.edu.cn, E-mail: dzzhang@upc.edu.cn [Department of Precision Instruments, State Key Laboratory of Precision Measurement Technology and Instruments, Tsinghua University, Beijing 100084 (China); Zhang, Dongzhi, E-mail: pengli@mail.tsinghua.edu.cn, E-mail: dzzhang@upc.edu.cn; Sun, Yan' e; Chang, Hongyan; Liu, Jingjing; Yin, Nailiang [College of Information and Control Engineering, China University of Petroleum (East China), Qingdao 266580 (China)

    2016-08-08

    Molybdenum disulphide (MoS{sub 2}) is one of the most attractive two dimensional materials other than graphene, and the exceptional properties make it a promising candidate for bio/chemical sensing. Nevertheless, intrinsic properties and sensing performances of MoS{sub 2} are easily masked by the presence of the Schottky barrier (SB) at source/drain electrodes, and its impact on MoS{sub 2} sensors remains unclear. Here, we systematically investigated the influence of the SB on MoS{sub 2} sensors, revealing the sensing mechanism of intrinsic MoS{sub 2}. By utilizing a small work function metal, Ti, to reduce the SB, excellent electrical properties of this 2D material were yielded with 2–3 times enhanced sensitivity. We experimentally demonstrated that the sensitivity of MoS{sub 2} is superior to that of graphene. Intrinsic MoS{sub 2} was able to realize rapid detection of arsenite down to 0.1 ppb without the influence of large SB, which is two-fold lower than the World Health Organization (WHO) tolerance level and better than the detection limit of recently reported arsenite sensors. Additionally, accurately discriminating target molecules is a great challenge for sensors based on 2D materials. This work demonstrates MoS{sub 2} sensors encapsulated with ionophore film which only allows certain types of molecules to selectively permeate through it. As a result, multiplex ion detection with superb selectivity was realized. Our results show prominent advantages of intrinsic MoS{sub 2} as a sensing material.

  10. Arsenic methylation by an arsenite S-adenosylmethionine methyltransferase from Spirulina platensis.

    Science.gov (United States)

    Guo, Yuqing; Xue, Ximei; Yan, Yu; Zhu, Yongguan; Yang, Guidi; Ye, Jun

    2016-11-01

    Arsenic-contaminated water is a serious hazard for human health. Plankton plays a critical role in the fate and toxicity of arsenic in water by accumulation and biotransformation. Spirulina platensis (S. platensis), a typical plankton, is often used as a supplement or feed for pharmacy and aquiculture, and may introduce arsenic into the food chain, resulting in a risk to human health. However, there are few studies about how S. platensis biotransforms arsenic. In this study, we investigated arsenic biotransformation by S. platensis. When exposed to arsenite (As(III)), S. platensis accumulated arsenic up to 4.1mg/kg dry weight. After exposure to As(III), arsenate (As(V)) was the predominant species making up 64% to 86% of the total arsenic. Monomethylarsenate (MMA(V)) and dimethylarsenate (DMA(V)) were also detected. An arsenite S-adenosylmethionine methyltransferase from S. platensis (SpArsM) was identified and characterized. SpArsM showed low identity with other reported ArsM enzymes. The Escherichia coli AW3110 bearing SparsM gene resulted in As(III) methylation and conferring resistance to As(III). The in vitro assay showed that SpArsM exhibited As(III) methylation activity. DMA(V) and a small amount of MMA(V) were detected in the reaction system within 0.5hr. A truncated SpArsM derivative lacking the last 34 residues still had the ability to methylate As(III). The three single mutants of SpArsM (C59S, C186S, and C238S) abolished the capability of As(III) methylation, suggesting the three cysteine residues are involved in catalysis. We propose that SpArsM is responsible for As methylation and detoxification of As(III) and may contribute to As biogeochemistry. Copyright © 2016. Published by Elsevier B.V.

  11. Molecular basis of arsenite (As+3-induced acute cytotoxicity in human cervical epithelial carcinoma cells

    Directory of Open Access Journals (Sweden)

    Muhammad Nauman Arshad

    2015-04-01

    Full Text Available Background: Rapid industrialization is discharging toxic heavy metals into the environment, disturbing human health in many ways and causing various neurologic, cardiovascular, and dermatologic abnormalities and certain types of cancer. The presence of arsenic in drinking water from different urban and rural areas of the major cities of Pakistan, for example, Lahore, Faisalabad, and Kasur, was found to be beyond the permissible limit of 10 parts per billion set by the World Health Organization. Therefore the present study was initiated to examine the effects of arsenite (As+3 on DNA biosynthesis and cell death. Methods: After performing cytotoxic assays on a human epithelial carcinoma cell line, expression analysis was done by quantitative polymerase chain reaction, western blotting, and flow cytometry. Results: We show that As+3 ions have a dose- and time-dependent cytotoxic effect through the activation of the caspase-dependent apoptotic pathway. In contrast to previous research, the present study was designed to explore the early cytotoxic effects produced in human cells during exposure to heavy dosage of As+3 (7.5 µg/ml. Even treatment for 1 h significantly increased the mRNA levels of p21 and p27 and caspases 3, 7, and 9. It was interesting that there was no change in the expression levels of p53, which plays an important role in G2/M phase cell cycle arrest. Conclusion: Our results indicate that sudden exposure of cells to arsenite (As+3 resulted in cytotoxicity and mitochondrial-mediated apoptosis resulting from up-regulation of caspases.

  12. Opposed arsenite-mediated regulation of p53-survivin is involved in neoplastic transformation, DNA damage, or apoptosis in human keratinocytes

    International Nuclear Information System (INIS)

    Li, Yuan; Jiang, Rongrong; Zhao, Yue; Xu, Yuan; Ling, Min; Pang, Ying; Shen, Lu; Zhou, Yun; Zhang, Jianping; Zhou, Jianwei; Wang, Xinru; Liu, Qizhan

    2012-01-01

    Highlights: ► Different concentrations of arsenite cause biphasic effects in HaCaT cells. ► p53-survivin signal pathway plays a role in arsenite-induced biphasic effects. ► ERKs inactivate p53, but improve survivin expression by NF-κB/mot-2. ► JNKs block survivin expression by preventing p53 from mdm2-mediated degradation. ► ERKs and JNKs play roles in arsenite-induced biphasic effects. -- Abstract: Biphasic dose–response relationship induced by environmental agents is often characterized with the effect of low-dose stimulation and high dose inhibition. Some studies showed that arsenite may induce cell proliferation and apoptosis via biphasic dose–response relationship in human cells; however, mechanisms underlying this phenomenon are not well understood. Our present study shows that, for human keratinocytes (HaCaT) cells, a low concentration of arsenite activates extracellular signal-regulated kinases (ERKs), which leads to up-regulation of nuclear factor κB (NF-κB) binding to DNA and to elevated, NF-κB-dependent expression of mot-2 (a p53 inhibitor) and survivin (an inhibitor of apoptosis). Activation of p53 is blocked, and neoplastic transformation is enhanced. Inhibition of ERKs reduces cell proliferation and neoplastic transformation. In contrast, a high concentration of arsenite activates c-Jun N-terminal kinases (JNKs), positive regulators of p53, by binding to p53 and preventing its murine double minute 2 (mdm2)-mediated degradation. The elevated levels of p53 lead to repair of DNA damage and apoptosis. Inhibition of JNKs increases DNA damage but decreases apoptosis. By identifying a mechanism whereby ERKs and JNKs-mediated regulation of the p53-survivin signal pathway is involved in the biphasic effects of arsenite on human keratinocytes, our data expand understanding of arsenite-induced cell proliferation, neoplastic transformation, DNA damage, and apoptosis.

  13. New perspectives in anaerobic digestion.

    NARCIS (Netherlands)

    Lier, van J.B.; Tilche, A.; Ahring, B.K.; Macarie, H.; Moletta, R.; Dohanyos, M.; Hulshoff Pol, L.W.; Lens, P.N.L.; Verstraete, W.

    2001-01-01

    The IWA specialised group on anaerobic digestion (AD) is one of the oldest working groups of the former IAWQ organisation. Despite the fact that anaerobic technology dates back more than 100 years, the technology is still under development, adapting novel treatment systems to the modern

  14. Anaerobic digestion of piggery waste

    NARCIS (Netherlands)

    Velsen, van A.F.M.

    1981-01-01

    Anaerobic digestion is a biological process by which organic matter is converted to methane and carbon dioxide by microbes in the absence of air (oxygen). In nature, anaerobic conversions occur at all places where organic material accumulates and the supply of oxygen is deficient, e.g. in marshes

  15. Economic viability of anaerobic digestion

    Energy Technology Data Exchange (ETDEWEB)

    Wellinger, A. [INFOENERGIE, Ettenhausen (Switzerland)

    1996-01-01

    The industrial application of anaerobic digestion is a relatively new, yet proven waste treatment technology. Anaerobic digestion reduces and upgrades organic waste, and is a good way to control air pollution as it reduces methane and nitrous gas emissions. For environmental and energy considerations, anaerobic digestion is a nearly perfect waste treatment process. However, its economic viability is still in question. A number of parameters - type of waste (solid or liquid), digester system, facility size, product quality and end use, environmental requirements, cost of alternative treatments (including labor), and interest rates - define the investment and operating costs of an anaerobic digestion facility. Therefore, identical facilities that treat the same amount and type of waste may, depending on location, legislation, and end product characteristics, reveal radically different costs. A good approach for evaluating the economics of anaerobic digestion is to compare it to treatment techniques such as aeration or conventional sewage treatment (for industrial wastewater), or composting and incineration (for solid organic waste). For example, the cost (per ton of waste) of in-vessel composting with biofilters is somewhat higher than that of anaerobic digestion, but the investment costs 1 1/2 to 2 times more than either composting or anaerobic digestion. Two distinct advantages of anaerobic digestion are: (1) it requires less land than either composting or incinerating, which translates into lower costs and milder environmental and community impacts (especially in densely populated areas); and (2) it produces net energy, which can be used to operate the facility or sold to nearby industries.

  16. Development of an efficient process for the treatment of residual sludge discharged from an anaerobic digester in a sewage treatment plant.

    Science.gov (United States)

    Abe, Naoki; Tang, Yue-Qin; Iwamura, Makoto; Ohta, Hiroto; Morimura, Shigeru; Kida, Kenji

    2011-09-01

    In order to reduce the discharge of residual sludge from an anaerobic digester, pre-treatment methods including low-pressure wet-oxidation, Fenton oxidation, alkali treatment, ozone oxidation, mechanical destruction and enzymatic treatment were evaluated and compared. VSS removal efficiencies of greater than 50% were achieved in cases of low-pressure wet-oxidation, Fenton oxidation and alkali treatment. Residual sludge from an anaerobic digester was pre-treated and subjected to thermophilic anaerobic digestion. As a result, the process of low-pressure wet-oxidation followed by anaerobic digestion achieved the highest VSS removal efficiency of 83%. The total efficiency of VSS removal of sewage sludge consisting of primary and surplus sludge would be approximately 92%, assuming that the VSS removal efficiency of sewage sludge is 50% in the anaerobic digester of the sewage treatment plant. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Arsenite evokes IL-6 secretion, autocrine regulation of STAT3 signaling, and miR-21 expression, processes involved in the EMT and malignant transformation of human bronchial epithelial cells

    International Nuclear Information System (INIS)

    Luo, Fei; Xu, Yuan; Ling, Min; Zhao, Yue; Xu, Wenchao; Liang, Xiao; Jiang, Rongrong; Wang, Bairu; Bian, Qian; Liu, Qizhan

    2013-01-01

    Arsenite is an established human carcinogen, and arsenite-induced inflammation contributes to malignant transformation of cells, but the molecular mechanisms by which cancers are produced remain to be established. The present results showed that, evoked by arsenite, secretion of interleukin-6 (IL-6), a pro-inflammatory cytokine, led to the activation of STAT3, a transcription activator, and to increased levels of a microRNA, miR-21. Blocking IL-6 with anti-IL-6 antibody and inhibiting STAT3 activation reduced miR-21 expression. For human bronchial epithelial cells, cultured in the presence of anti-IL-6 antibody for 3 days, the arsenite-induced EMT and malignant transformation were reversed. Thus, IL-6, acting on STAT3 signaling, which up-regulates miR-21in an autocrine manner, contributes to the EMT induced by arsenite. These data define a link from inflammation to EMT in the arsenite-induced malignant transformation of HBE cells. This link, mediated through miRNAs, establishes a mechanism for arsenite-induced lung carcinogenesis. - Highlights: • Arsenite evokes IL-6 secretion. • IL-6 autocrine mediates STAT3 signaling and up-regulates miR-21expression. • Inflammation is involved in arsenite-induced EMT

  18. From the Cover: Arsenite Uncouples Mitochondrial Respiration and Induces a Warburg-like Effect in Caenorhabditis elegans

    OpenAIRE

    Luz, Anthony L.; Godebo, Tewodros R.; Bhatt, Dhaval P.; Ilkayeva, Olga R.; Maurer, Laura L.; Hirschey, Matthew D.; Meyer, Joel N.

    2016-01-01

    Millions of people worldwide are chronically exposed to arsenic through contaminated drinking water. Despite decades of research studying the carcinogenic potential of arsenic, the mechanisms by which arsenic causes cancer and other diseases remain poorly understood. Mitochondria appear to be an important target of arsenic toxicity. The trivalent arsenical, arsenite, can induce mitochondrial reactive oxygen species production, inhibit enzymes involved in energy metabolism, and induce aerobic ...

  19. Energy positive domestic wastewater treatment: the roles of anaerobic and phototrophic technologies.

    Science.gov (United States)

    Shoener, B D; Bradley, I M; Cusick, R D; Guest, J S

    2014-05-01

    The negative energy balance of wastewater treatment could be reversed if anaerobic technologies were implemented for organic carbon oxidation and phototrophic technologies were utilized for nutrient recovery. To characterize the potential for energy positive wastewater treatment by anaerobic and phototrophic biotechnologies we performed a comprehensive literature review and analysis, focusing on energy production (as kJ per capita per day and as kJ m(-3) of wastewater treated), energy consumption, and treatment efficacy. Anaerobic technologies included in this review were the anaerobic baffled reactor (ABR), anaerobic membrane bioreactor (AnMBR), anaerobic fluidized bed reactor (AFB), upflow anaerobic sludge blanket (UASB), anaerobic sequencing batch reactor (ASBR), microbial electrolysis cell (MEC), and microbial fuel cell (MFC). Phototrophic technologies included were the high rate algal pond (HRAP), photobioreactor (PBR), stirred tank reactor, waste stabilization pond (WSP), and algal turf scrubber (ATS). Average energy recovery efficiencies for anaerobic technologies ranged from 1.6% (MFC) to 47.5% (ABR). When including typical percent chemical oxygen demand (COD) removals by each technology, this range would equate to roughly 40-1200 kJ per capita per day or 110-3300 kJ m(-3) of treated wastewater. The average bioenergy feedstock production by phototrophic technologies ranged from 1200-4700 kJ per capita per day or 3400-13 000 kJ m(-3) (exceeding anaerobic technologies and, at times, the energetic content of the influent organic carbon), with usable energy production dependent upon downstream conversion to fuels. Energy consumption analysis showed that energy positive anaerobic wastewater treatment by emerging technologies would require significant reductions of parasitic losses from mechanical mixing and gas sparging. Technology targets and critical barriers for energy-producing technologies are identified, and the role of integrated anaerobic and

  20. Energy positive domestic wastewater treatment: the roles of anaerobic and phototrophic technologies

    KAUST Repository

    Shoener, B. D.

    2014-01-01

    The negative energy balance of wastewater treatment could be reversed if anaerobic technologies were implemented for organic carbon oxidation and phototrophic technologies were utilized for nutrient recovery. To characterize the potential for energy positive wastewater treatment by anaerobic and phototrophic biotechnologies we performed a comprehensive literature review and analysis, focusing on energy production (as kJ per capita per day and as kJ m-3 of wastewater treated), energy consumption, and treatment efficacy. Anaerobic technologies included in this review were the anaerobic baffled reactor (ABR), anaerobic membrane bioreactor (AnMBR), anaerobic fluidized bed reactor (AFB), upflow anaerobic sludge blanket (UASB), anaerobic sequencing batch reactor (ASBR), microbial electrolysis cell (MEC), and microbial fuel cell (MFC). Phototrophic technologies included were the high rate algal pond (HRAP), photobioreactor (PBR), stirred tank reactor, waste stabilization pond (WSP), and algal turf scrubber (ATS). Average energy recovery efficiencies for anaerobic technologies ranged from 1.6% (MFC) to 47.5% (ABR). When including typical percent chemical oxygen demand (COD) removals by each technology, this range would equate to roughly 40-1200 kJ per capita per day or 110-3300 kJ m-3 of treated wastewater. The average bioenergy feedstock production by phototrophic technologies ranged from 1200-4700 kJ per capita per day or 3400-13000 kJ m-3 (exceeding anaerobic technologies and, at times, the energetic content of the influent organic carbon), with usable energy production dependent upon downstream conversion to fuels. Energy consumption analysis showed that energy positive anaerobic wastewater treatment by emerging technologies would require significant reductions of parasitic losses from mechanical mixing and gas sparging. Technology targets and critical barriers for energy-producing technologies are identified, and the role of integrated anaerobic and phototrophic

  1. Anaerobic fungal populations

    International Nuclear Information System (INIS)

    Brookman, J.L.; Nicholson, M.J.

    2005-01-01

    The development of molecular techniques has greatly broadened our view of microbial diversity and enabled a more complete detection and description of microbial communities. The application of these techniques provides a simple means of following community changes, for example, Ishii et al. described transient and more stable inhabitants in another dynamic microbial system, compost. Our present knowledge of anaerobic gut fungal population diversity within the gastrointestinal tract is based upon isolation, cultivation and observations in vivo. It is likely that there are many species yet to be described, some of which may be non-culturable. We have observed a distinct difference in the ease of cultivation between the different genera, for example, Caecomyes isolates are especially difficult to isolate and maintain in vitro, a feature that is likely to result in the under representation of this genera in culture-based enumerations. The anaerobic gut fungi are the only known obligately anaerobic fungi. For the majority of their life cycles, they are found tightly associated with solid digesta in the rumen and/or hindgut. They produce potent fibrolytic enzymes and grow invasively on and into the plant material they are digesting making them important contributors to fibre digestion. This close association with intestinal digesta has made it difficult to accurately determine the amount of fungal biomass present in the rumen, with Orpin suggesting 8% contribution to the total microbial biomass, whereas Rezaeian et al. more recently gave a value of approximately 20%. It is clear that the rumen microbial complement is affected by dietary changes, and that the fungi are more important in digestion in the rumens of animals fed with high-fibre diets. It seems likely that the gut fungi play an important role within the rumen as primary colonizers of plant fibre, and so we are particularly interested in being able to measure the appearance and diversity of fungi on the plant

  2. Evaluation of the toxic effects of arsenite, chromate, cadmium, and copper using a battery of four bioassays

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Kyung-Seok; Lee, Pyeong-Koo [Korea Institute of Geoscience and Mineral Resources (KIGAM), Daejeon (Korea, Republic of). Geologic Environment Div.; Kong, In Chul [Yeungnam Univ., Kyungbuk (Korea, Republic of). Dept. of Environmental Engineering

    2012-09-15

    The sensitivities of four different kinds of bioassays to the toxicities of arsenite, chromate, cadmium, and copper were compared. The different bioassays exhibited different sensitivities, i.e., they responded to different levels of toxicity of each of the different metals. However, with the exception of the {alpha}-glucosidase enzyme activity, arsenite was the most toxic compound towards all the tested organisms, exhibiting the highest toxic effect on the seeds of Lactuca, with an EC{sub 50} value of 0.63 mg/L. The sensitivities of Lactuca and Raphanus were greater than the sensitivities of two other kinds of seeds tested. Therefore, these were the seeds appropriate for use in a seed germination assay. A high revertant mutagenic ratio (5:1) of Salmonella typhimurium was observed with an arsenite concentration of 0.1 {mu}g/plate, indicative of a high possibility of mutagenicity. These different results suggested that a battery of bioassays, rather than one bioassay alone, is needed as a more accurate and better tool for the bioassessment of environmental pollutants. (orig.)

  3. Arsenite-induced stress signaling: Modulation of the phosphoinositide 3′-kinase/Akt/FoxO signaling cascade

    Directory of Open Access Journals (Sweden)

    Ingrit Hamann

    2013-01-01

    Full Text Available FoxO transcription factors and their regulators in the phosphoinositide 3′-kinase (PI3K/Akt signaling pathway play an important role in the control of cellular processes involved in carcinogenesis, such as proliferation and apoptosis. We have previously demonstrated that physiologically relevant heavy metal ions, such as copper or zinc ions, can stimulate this pathway, triggering phosphorylation and nuclear export of FoxO transcription factors. The present study aims at investigating the effect of arsenite on FoxO transcription factors and the role of PI3K/Akt signaling therein. Exposure of HaCaT human keratinocytes to arsenite resulted in a distinct decrease of glutathione levels only at cytotoxic concentrations. In contrast, a strong phosphorylation of FoxO1a/FoxO3a and Akt was observed at subcytotoxic concentrations of arsenite in HaCaT human keratinocytes. A time- and concentration-dependent increase in phosphorylation of FoxO1a and FoxO3a at sites known to be phosphorylated by Akt as well as phosphorylation of Akt at Ser-473 was detected. These phosphorylations were blunted in the presence of wortmannin, pointing to the involvement of PI3K.

  4. Helper T cell subpopulations from women are more susceptible to the toxic effect of sodium arsenite in vitro

    International Nuclear Information System (INIS)

    Vega, Libia; Montes de Oca, Pavel; Saavedra, Rafael; Ostrosky-Wegman, Patricia

    2004-01-01

    Arsenic is known to produce inhibition as well as induction of proliferative responses in animal and human cells depending on the doses. Despite the amount of information on the immunotoxic effects of arsenic exposure in different animal models, little is known in humans. Arsenic susceptibility of lymphocyte subpopulations (T helper (Th), CD4+; T cytotoxic (Tc), CD8+) and whether arsenic effects are gender related are still to be determined. This work evaluated the in vitro toxicity of sodium arsenite on human T lymphocyte subpopulations from men and women. Peripheral blood mononuclear cells (PBMC) obtained from healthy young men and women were treated with sodium arsenite (0.01, 0.1, and 1 μM). We assessed cell viability, cell proliferation, and the proportion of Th and Tc cells after 48 or 72 h of arsenic exposure in resting and phytohemagglutinin M (PHA)-activated PBMC. We observed that sodium arsenite at 1 μM was more toxic for Th than for Tc cells in PBMC from women. Besides, T lymphocytes from women were more affected by the cell proliferation inhibition induced by arsenic, suggesting that women could be more susceptible to the toxic and immunotoxic effects caused by arsenic exposure

  5. Anaerobic granular sludge and biofilm reactors

    DEFF Research Database (Denmark)

    Skiadas, Ioannis V.; Gavala, Hariklia N.; Schmidt, Jens Ejbye

    2003-01-01

    -rate anaerobic treatment systems based on anaerobic granular sludge and biofilm are described in this chapter. Emphasis is given to a) the Up-flow Anaerobic Sludge Blanket (UASB) systems, b) the main characteristics of the anaerobic granular sludge, and c) the factors that control the granulation process...

  6. Characteristics of residues from thermally treated anaerobic sludges

    International Nuclear Information System (INIS)

    Friedman, A.A.; Smith, J.E.; De Santis, J.; Ptak, T.; Ganley, R.C.

    1988-01-01

    Sludge management and disposal are probably the most difficult and expensive operations involved in wastewater treatment today. To minimize final disposal costs many waste treatment facilities practice some form of anaerobic digestion and dewatering to reduce the volume and offensiveness of their by-product sludges. One potential alternative for reducing sludge volumes consists of high temperature, partial oxidation of these previously digested sludges (PDS) and subsequent anaerobic biological conversion of resulting soluble organics to methane. This paper describes solids destruction, residue characteristics and biodegradability factors that should be considered in the design of liquid thermal treatment processes for the management of anaerobic sludges. To date only very limited information is available concerning the suitability of thermally treated PDS to serve as a substrate for the generation of methane. The primary objective of this research was to determine the feasibility of producing methane efficiently from the residual VSS in anaerobically digested sludges. Secondary goals were to establish the ''best'' conditions for thermal treatment for solubilizing PDS, to observe the effect of the soluble products on methanogenesis and to evaluate process sidestreams for dewaterability and anaerobic biodegradability

  7. Isolation and Cultivation of Anaerobes

    DEFF Research Database (Denmark)

    Aragao Börner, Rosa

    2016-01-01

    Anaerobic microorganisms play important roles in different biotechnological processes. Their complex metabolism and special cultivation requirements have led to less isolated representatives in comparison to their aerobic counterparts.In view of that, the isolation and cultivation of anaerobic...... microorganisms is still a promising venture, and conventional methodologies as well as considerations and modifications are presented here. An insight into new methodologies and devices as well as a discussion on future perspectives for the cultivation of anaerobes may open the prospects of the exploitation...... of these microorganisms as a source for biotechnology....

  8. Sodium arsenite-induced inhibition of cell proliferation is related to inhibition of IL-2 mRNA expression in mouse activated T cells

    Energy Technology Data Exchange (ETDEWEB)

    Conde, Patricia; Acosta-Saavedra, Leonor C.; Calderon-Aranda, Emma S. [Centro de Investigacion y de Estudios Avanzados, CINVESTAV, Seccion Toxicologia, P.O. Box 14-740, Mexico, D.F. (Mexico); Goytia-Acevedo, Raquel C. [Universidad Juarez del Estado de Durango, Facultad de Medicina, Gomez Palacio, Durango (Mexico)

    2007-04-15

    A proposed mechanism for the As-induced inhibition of cell proliferation is the inhibition of IL-2 secretion. However, the effects of arsenite on IL-2 mRNA expression or on the ERK pathway in activated-T cells have not yet been described. We examined the effect of arsenite on IL-2 mRNA expression, cell activation and proliferation in PHA-stimulated murine lymphocytes. Arsenite (1 and 10 {mu}M) decreased IL-2 mRNA expression, IL-2 secretion and cell proliferation. Arsenite (10 {mu}M) strongly inhibited ERK-phosphorylation. However, the partial inhibition (50%) of IL-2 mRNA produced by 1 {mu}M, consistent with the effects on IL-2 secretion and cell proliferation, could not be explained by the inhibition of ERK-phosphorylation, which was not affected at this concentration. The inhibition of IL-2 mRNA expression caused by 1 {mu}M could be associated to effects on pathways located downstream or parallel to ERK. Arsenite also decreased early activation (surface CD69{sup +} expression) in both CD4{sup +} and CD8{sup +}, and decreased total CD8{sup +} count without significantly affecting CD4{sup +}, supporting that the cellular immune response mediated by cytotoxic T cells is an arsenic target. Thus, our results suggest that arsenite decreases IL-2 mRNA levels and T-cell activation and proliferation. However, further studies on the effects of arsenite on IL-2 gene transcription and IL-2 mRNA stability are needed. (orig.)

  9. Biphasic effect of arsenite on cell proliferation and apoptosis is associated with the activation of JNK and ERK1/2 in human embryo lung fibroblast cells

    International Nuclear Information System (INIS)

    He Xiaoqing; Chen Rui; Yang Ping; Li Aiping; Zhou Jianwei; Liu Qizhan

    2007-01-01

    Biphasic dose-response relationship induced by environmental agents is often characterized with the effect of low-dose stimulation and high-dose inhibition. Some studies showed that arsenite may induce cell proliferation and apoptosis via biphasic dose-response relationship in human cells; however, mechanisms underlying this phenomenon are not well understood. In the present study, we aimed at investigating the relationship between biphasic effect of arsenite on cell proliferation and apoptosis and activation of JNK and ERK1/2 in human embryo lung fibroblast (HELF) cells. Our results demonstrated that cell proliferation may be stimulated at lower concentrations (0.1 and 0.5 μM) arsenite but inhibited at higher concentrations (5 and 10 μM). When cell apoptosis was used as the endpoint, the concentration-response curves were changed to U-shapes. During stimulation phospho-JNK levels were significantly increased at 3, 6, and 12 h after 0.1 or 0.5 μM arsenite exposure. Phospho-ERK1/2 levels were increased with different concentrations (0.1-10 μM) of arsenite at 6, 12, and 24 h. Blocking of JNK pathway with 20 μM SP600125 or ERK1/2 by 100 μM PD98059 significantly inhibited biphasic effect of arsenite in cells. Data in the present study suggest that activation of JNK and ERK1/2 may be involved in biphasic effect of arsenite when measuring cell proliferation and apoptosis in HELF cells. JNK activation seems to play a more critical role than ERK1/2 activation in the biphasic process

  10. Arsenite activates NFκB through induction of C-reactive protein

    Energy Technology Data Exchange (ETDEWEB)

    Druwe, Ingrid L.; Sollome, James J.; Sanchez-Soria, Pablo; Hardwick, Rhiannon N.; Camenisch, Todd D.; Vaillancourt, Richard R., E-mail: vaillancourt@pharmacy.arizona.edu

    2012-06-15

    C-reactive protein (CRP) is an acute phase protein in humans. Elevated levels of CRP are produced in response to inflammatory cytokines and are associated with atherosclerosis, hypertension, cardiovascular disease and insulin resistance. Exposure to inorganic arsenic, a common environmental toxicant, also produces cardiovascular disorders, namely atherosclerosis and is associated with insulin-resistance. Inorganic arsenic has been shown to contribute to cardiac toxicities through production of reactive oxygen species (ROS) that result in the activation of NFκB. In this study we show that exposure of the hepatic cell line, HepG2, to environmentally relevant levels of arsenite (0.13 to 2 μM) results in elevated CRP expression and secretion. ROS analysis of the samples showed that a minimal amount of ROS are produced by HepG2 cells in response to these concentrations of arsenic. In addition, treatment of FvB mice with 100 ppb sodium arsenite in the drinking water for 6 months starting at weaning age resulted in dramatically higher levels of CRP in both the liver and inner medullary region of the kidney. Further, mouse Inner Medullary Collecting Duct cells (mIMCD-4), a mouse kidney cell line, were stimulated with 10 ng/ml CRP which resulted in activation of NFκB. Pretreatment with 10 nM Y27632, a known Rho-kinase inhibitor, prior to CRP exposure attenuated NFκB activation. These data suggest that arsenic causes the expression and secretion of CRP and that CRP activates NFκB through activation of the Rho-kinase pathway, thereby providing a novel pathway by which arsenic can contribute to metabolic syndrome and cardiovascular disease. -- Highlights: ► Exposure to arsenic can induce the expression and secretion of CRP. ► Mice treated with NaAsO{sub 2} showed higher levels of CRP in both the liver and kidney. ► mIMCD-3 were stimulated with CRP which resulted in activation of NFκB. ► CRP activates NFκB through activation of the Rho-kinase pathway. ► Data

  11. Anaerobic degradation of benzene by enriched consortia with humic acids as terminal electron acceptors

    Energy Technology Data Exchange (ETDEWEB)

    Cervantes, Francisco J., E-mail: fjcervantes@ipicyt.edu.mx [Division de Ciencias Ambientales, Instituto Potosino de Investigacion Cientifica y Tecnologica (IPICyT), Camino a la Presa San Jose 2055, Col. Lomas 4a. Seccion, San Luis Potosi, SLP, 78216 Mexico (Mexico); Mancilla, Ana Rosa; Toro, E. Emilia Rios-del [Division de Ciencias Ambientales, Instituto Potosino de Investigacion Cientifica y Tecnologica (IPICyT), Camino a la Presa San Jose 2055, Col. Lomas 4a. Seccion, San Luis Potosi, SLP, 78216 Mexico (Mexico); Alpuche-Solis, Angel G.; Montoya-Lorenzana, Lilia [Division de Biologia Molecular, Instituto Potosino de Investigacion Cientifica y Tecnologica (IPICyT), Camino a la Presa San Jose 2055, Col. Lomas 4a. Seccion, San Luis Potosi, SLP, 78216 Mexico (Mexico)

    2011-11-15

    Highlights: {yields} Enriched consortia were able to couple the anaerobic degradation of benzene to the reduction of humic acids. {yields} Electron-equivalents derived from anaerobic benzene oxidation were highly recovered as reduced humic acids. {yields} Several species from classes {beta}-, {delta}- and {gamma}-Proteobacteria were enriched during the anaerobic degradation of benzene. - Abstract: The anaerobic degradation of benzene coupled to the reduction of humic acids (HA) was demonstrated in two enriched consortia. Both inocula were able to oxidize benzene under strict anaerobic conditions when the humic model compound, anthraquinone-2,6-disulfonate (AQDS), was supplied as terminal electron acceptor. An enrichment culture originated from a contaminated soil was also able to oxidize benzene linked to the reduction of highly purified soil humic acids (HPSHA). In HPSHA-amended cultures, 9.3 {mu}M of benzene were degraded, which corresponds to 279 {+-} 27 micro-electron equivalents ({mu}Eq) L{sup -1}, linked to the reduction of 619 {+-} 81 {mu}Eq L{sup -1} of HPSHA. Neither anaerobic benzene oxidation nor reduction of HPSHA occurred in sterilized controls. Anaerobic benzene oxidation did not occur in soil incubations lacking HPSHA. Furthermore, negligible reduction of HPSHA occurred in the absence of benzene. The enrichment culture derived from this soil was dominated by two {gamma}-Proteobacteria phylotypes. A benzene-degrading AQDS-reducing enrichment originated from a sediment sample showed the prevalence of different species from classes {beta}-, {delta}- and {gamma}-Proteobacteria. The present study provides clear quantitative demonstration of anaerobic degradation of benzene coupled to the reduction of HA.

  12. Anaerobic degradation of benzene by enriched consortia with humic acids as terminal electron acceptors

    International Nuclear Information System (INIS)

    Cervantes, Francisco J.; Mancilla, Ana Rosa; Toro, E. Emilia Rios-del; Alpuche-Solis, Angel G.; Montoya-Lorenzana, Lilia

    2011-01-01

    Highlights: → Enriched consortia were able to couple the anaerobic degradation of benzene to the reduction of humic acids. → Electron-equivalents derived from anaerobic benzene oxidation were highly recovered as reduced humic acids. → Several species from classes β-, δ- and γ-Proteobacteria were enriched during the anaerobic degradation of benzene. - Abstract: The anaerobic degradation of benzene coupled to the reduction of humic acids (HA) was demonstrated in two enriched consortia. Both inocula were able to oxidize benzene under strict anaerobic conditions when the humic model compound, anthraquinone-2,6-disulfonate (AQDS), was supplied as terminal electron acceptor. An enrichment culture originated from a contaminated soil was also able to oxidize benzene linked to the reduction of highly purified soil humic acids (HPSHA). In HPSHA-amended cultures, 9.3 μM of benzene were degraded, which corresponds to 279 ± 27 micro-electron equivalents (μEq) L -1 , linked to the reduction of 619 ± 81 μEq L -1 of HPSHA. Neither anaerobic benzene oxidation nor reduction of HPSHA occurred in sterilized controls. Anaerobic benzene oxidation did not occur in soil incubations lacking HPSHA. Furthermore, negligible reduction of HPSHA occurred in the absence of benzene. The enrichment culture derived from this soil was dominated by two γ-Proteobacteria phylotypes. A benzene-degrading AQDS-reducing enrichment originated from a sediment sample showed the prevalence of different species from classes β-, δ- and γ-Proteobacteria. The present study provides clear quantitative demonstration of anaerobic degradation of benzene coupled to the reduction of HA.

  13. Implementing Livestock Anaerobic Digestion Projects

    Science.gov (United States)

    Page provides information to help make an informed decision about installing an anaerobic digester. Is it a good match for a farm’s organic waste, project financing, development guidelines and permit requirements?

  14. Anaerobic Metabolism in T4 Acanthamoeba Genotype.

    Science.gov (United States)

    Alves, Daniella de Sousa Mendes Moreira; Alves, Luciano Moreira; da Costa, Tatiane Luiza; de Castro, Ana Maria; Vinaud, Marina Clare

    2017-06-01

    Members of the genus Acanthamoeba are of the most common protozoa that has been isolated from a variety of environment and affect immunocompromised individuals, causing granulomatous amoebic encephalitis and skin lesions. Acanthamoeba, in immunocompetent patients, may cause a keratitis related to corneal microtrauma. These free-living amoebas easily adapt to the host environment and wield metabolic pathways such as the energetic and respiratory ones in order to maintain viability for long periods. The energetic metabolism of cysts and trophozoites remains mostly unknown. There are a few reports on the energetic metabolism of these organisms as they are mitochondriate eukaryotes and some studies under aerobic conditions showing that Acanthamoeba hydrolyzes glucose into pyruvate via glycolysis. The aim of this study was to detect the energetic metabolic pathways with emphasis on anaerobic metabolism in trophozoites of three isolates of Acanthamoeba sp belonging to the T4 genotype. Two samples were collected in the environment and one was a clinical sample. The evaluation of these microorganisms proceeded as follows: rupture of trophozoites (7.5 × 10 3 parasites/ml) and biochemical analysis with high performance liquid chromatography and spectrophotometry. The anaerobic glycolysis was identified through the detection of glucose, pyruvate, and lactate. The protein catabolism was identified through the detection of fumarate, urea, and creatinine. The fatty acid oxidation was identified through the detection of acetate, beta-hydroxybutyrate, and propionate. The detected substances are the result of the consumption of energy reserves such as glycogen and lipids. The anaerobic glycolysis and protein catabolism pathways were observed in all three isolates: one clinical and two environmental. This study represents the first report of energetic pathways used by trophozoites from different isolates of the T4 genotype Acanthamoeba.

  15. Hydrogen production from diluted molasses by anaerobic hydrogen producing bacteria in an anaerobic baffled reactor (ABR)

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jianzheng; Zhu, Gefu; Ren, Nanqi; Bo, Lixin; He, Junguo [Harbin Institute of Technology, Harbin (China). School of Municipal and Environmental Engineering; Li, Baikun [University of Connecticut, Storrs, CT (United States). Department of Civil and Environmental Engineering

    2007-10-15

    Hydrogen production from diluted molasses by anaerobic fermentation bacteria was investigated in a three-compartment anaerobic baffled reactor (ABR) with an effective volume of 27.48 L. After being inoculated with aerobic activated sludge and operated at chemical oxygen demand (COD) of 5000 mg/L and temperature of 35 C for 26 days, the ABR achieved stable ethanol-type fermentation. The liquid fermentation products, including volatile fatty acids (VFAs) and ethanol, stabilized at 1254, 2053, and 2761 mg/L in the three compartments, respectively. Effluent pH, oxidation-reduction potential (ORP), and alkalinity ranged at 4.3-4.4, -241 to -249mV, and 306-334mgCaCO{sub 3}/L, respectively. The hydrogen yield of the ABR was 32.51 L/d at the stable operation status, specific hydrogen production rate of anaerobic activated sludge was 0.13 L/g MLVSS d, and the substrate conversion rate was 0.13 L/g COD. Hydrogen yields, fermentation types, and acclimatization durations varied in each compartment, with the 1st compartment having lowest hydrogen yield but longest acclimatization duration and the 2nd and 3rd compartments having higher hydrogen yields but shorter acclimatization durations. The study found that the individual compartment configuration in the ABR system provided a favorable environment for different types of anaerobic bacteria. Compared with complete stirring tank reactor (CSTR), the ABR system had a better operation stability and microbial activity, which led to higher substrate conversion rate and hydrogen production ability. (author)

  16. Characterization of arsenic resistant and arsenopyrite oxidizing Acidithiobacillus ferrooxidans from Hutti gold leachate and effluents.

    Science.gov (United States)

    Dave, Shailesh R; Gupta, Kajal H; Tipre, Devayani R

    2008-11-01

    Four arsenic resistant ferrous oxidizers were isolated from Hutti Gold Mine Ltd. (HGML) samples. Characterization of these isolates was done using conventional microbiological, biochemical and molecular methods. The ferrous oxidation rates with these isolates were 16, 48, 34 and 34 mg L(-1)h(-1) and 15, 47, 34 and 32 mg L(-1)h(-1) in absence and presence of 20 mM of arsenite (As3+) respectively. Except isolate HGM 8, other three isolates showed 2.9-6.3% inhibition due to the presence of 20 mM arsenite. Isolate HGM 8 was able to grow in presence of 14.7 g L(-1) of arsenite, with 25.77 mg L(-1)h(-1) ferrous oxidation rate. All the four isolates were able to oxidize iron and arsenopyrite from 20 g L(-1) and 40 g L(-1) refractory gold ore and 20 g L(-1) refractory gold concentrate. Once the growth was established pH adjustment was not needed inspite of ferrous oxidation, which could be due to concurrent oxidation of pyrite. Isolate HGM 8 showed the final cell count of as high as 1.12 x 10(8) cells mL(-1) in 40 g L(-1) refractory gold ore. The isolates were grouped into one haplotypes by amplified ribosomal DNA restriction analysis (ARDRA). The phylogenetic position of HGM 8 was determined by 16S rDNA sequencing. It was identified as Acidithiobacillus ferrooxidans and strain name was given as SRHGM 1.

  17. Are elusive anaerobic pathways key methane sinks in eutrophic lakes and reservoirs?

    NARCIS (Netherlands)

    Reed, D.C.; Deemer, B.R.; van Grinsven, S.; Harrison, J.A.

    2017-01-01

    Collectively, freshwaters constitute a significant source of methane to the atmosphere, and both methane production and methane oxidation can strongly influence net emissions. Anaerobic methane oxidation (AOM) is recognized as a strong regulator of marine methane emissions and appreciation of AOM’s

  18. Effects of ferric iron on the anaerobic treatment and microbial biodiversity in a coupled microbial electrolysis cell (MEC)--anaerobic reactor.

    Science.gov (United States)

    Zhang, Jingxin; Zhang, Yaobin; Quan, Xie; Chen, Shuo

    2013-10-01

    Adding Fe(III) into a MEC - anaerobic reactor enhanced the degradation of organic matters. To clarify the respective effects of combining Fe(III) dosage and a MEC and Fe(III) dosage only on strengthening anaerobic digestion, three anaerobic reactors were operated in parallel: a MEC - anaerobic reactor with dosing Fe(OH)3 (R1), an anaerobic reactor with dosing Fe(OH)3 (R2) and a common anaerobic reactor (R3). With increasing influent COD from 1500 to 4000 mg/L, the COD removal in R1 was maintained at 88.3% under a voltage of 0.8 V, which was higher than that in reactor R2 and R3. When the power was cut off, the COD removal in R1 decreased by 5.9%. The addition of Fe(OH)3 enhanced both anaerobic digestion and anodic oxidation, resulting in the effective mineralization of volatile fatty acids (VFAs). The reduced Fe(II) combined with electric field resulted more extracellular polymeric substances (EPS) production. Quantitative real - time PCR showed a higher abundance of bacteria in the anodic biofilm and R1. Pyrosequencing and denaturing gradient gel electrophoresis (DGGE) analysis revealed that the dominant bacteria and archaea communities were richer and more abundant in the anode biofilm and R1. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Microbial stress mediated intercellular nanotubes in an anaerobic microbial consortium digesting cellulose

    OpenAIRE

    John, Martina; Trzcinski, Antoine Prandota; Zhou, Yan; Ng, Wun Jern

    2017-01-01

    The anaerobic digestion process is a multi - step reaction dependent on concerted activities such as exchange of metabolites among physiologically different microbial communities. This study investigated the impact of iron oxide nanoparticles on the anaerobic sludge microbiota. It was shown there were three distinct microbial phases following addition of the nanoparticles: microbial stress and cell death of approximately one log order of magnitude, followed by microbial rewiring, and recovery...

  20. Chronic oxidative stress promotes GADD34-mediated phosphorylation of the TAR DNA-binding protein TDP-43, a modification linked to neurodegeneration.

    Science.gov (United States)

    Goh, Catherine Wenhui; Lee, Irene Chengjie; Sundaram, Jeyapriya Rajameenakshi; George, Simi Elizabeth; Yusoff, Permeen; Brush, Matthew Hayden; Sze, Newman Siu Kwan; Shenolikar, Shirish

    2018-01-05

    Oxidative and endoplasmic reticulum (ER) stresses are hallmarks of the pathophysiology of ALS and other neurodegenerative diseases. In these stresses, different kinases phosphorylate eukaryotic initiation factor eIF2α, enabling the translation of stress response genes; among these is GADD34 , the protein product of which recruits the α-isoform of protein phosphatase 1 catalytic subunit (PP1α) and eIF2α to assemble a phosphatase complex catalyzing eIF2α dephosphorylation and resumption of protein synthesis. Aberrations in this pathway underlie the aforementioned disorders. Previous observations indicating that GADD34 is induced by arsenite, a thiol-directed oxidative stressor, in the absence of eIF2α phosphorylation suggest other roles for GADD34. Here, we report that arsenite-induced oxidative stress differs from thapsigargin- or tunicamycin-induced ER stress in promoting GADD34 transcription and the preferential translation of its mRNA in the absence of eIF2α phosphorylation. Arsenite also stabilized GADD34 protein, slowing its degradation. In response to oxidative stress, but not ER stress, GADD34 recruited TDP-43, and enhanced cytoplasmic distribution and cysteine modifications of TDP-43 promoted its binding to GADD34. Arsenite also recruited a TDP-43 kinase, casein kinase-1ϵ (CK1ϵ), to GADD34. Concomitant with TDP-43 aggregation and proteolysis after prolonged arsenite exposure, GADD34-bound CK1ϵ catalyzed TDP-43 phosphorylations at serines 409/410, which were diminished or absent in GADD34 -/- cells. Our findings highlight that the phosphatase regulator, GADD34, also functions as a kinase scaffold in response to chronic oxidative stress and recruits CK1ϵ and oxidized TDP-43 to facilitate its phosphorylation, as seen in TDP-43 proteinopathies. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Anaerobic ammonia removal in presence of organic matter: A novel route

    International Nuclear Information System (INIS)

    Sabumon, P.C.

    2007-01-01

    This study describes the feasibility of anaerobic ammonia removal process in presence of organic matter. Different sources of biomass collected from diverse eco-systems containing ammonia and organic matter (OM) were screened for potential anaerobic ammonia removal. Sequential batch studies confirmed the possibility of anaerobic ammonia removal in presence of OM, but ammonia was oxidized anoxically to nitrate (at oxidation reduction potential; ORP -248 ± 25 mV) by an unknown mechanism unlike in the reported anammox process. The oxygen required for oxidation of ammonia might have been generated through catalase enzymatic activity of facultative anaerobes in mixed culture. The oxygen generation possibility by catalase enzyme route was demonstrated. Among the inorganic electron acceptors (NO 2 - , NO 3 - and SO 4 2- ) studied, NO 2 - was found to be most effective in total nitrogen removal. Denitrification by the developed culture was much effective and faster compared to ammonia oxidation. The results of this study show that anaerobic ammonia removal is feasible in presence of OM. The novel nitrogen removal route is hypothesized as enzymatic anoxic oxidation of NH 4 + to NO 3 - , followed by denitrification via autotrophic and/or heterotrophic routes. The results of batch study were confirmed in continuous reactor operation

  2. Anaerobic bioleaching of metals from waste activated sludge

    Energy Technology Data Exchange (ETDEWEB)

    Meulepas, Roel J.W., E-mail: roel.meulepas@wetsus.nl [UNESCO-IHE, Westvest 7, 2611 AX Delft (Netherlands); Gonzalez-Gil, Graciela [UNESCO-IHE, Westvest 7, 2611 AX Delft (Netherlands); King Abdullah University of Science and Technology, Water Desalination and Reuse Center, Thuwal 13955-69000 (Saudi Arabia); Teshager, Fitfety Melese; Witharana, Ayoma [UNESCO-IHE, Westvest 7, 2611 AX Delft (Netherlands); Saikaly, Pascal E. [King Abdullah University of Science and Technology, Water Desalination and Reuse Center, Thuwal 13955-69000 (Saudi Arabia); Lens, Piet N.L. [UNESCO-IHE, Westvest 7, 2611 AX Delft (Netherlands)

    2015-05-01

    Heavy metal contamination of anaerobically digested waste activated sludge hampers its reuse as fertilizer or soil conditioner. Conventional methods to leach metals require aeration or the addition of leaching agents. This paper investigates whether metals can be leached from waste activated sludge during the first, acidifying stage of two-stage anaerobic digestion without the supply of leaching agents. These leaching experiments were done with waste activated sludge from the Hoek van Holland municipal wastewater treatment plant (The Netherlands), which contained 342 μg g{sup −1} of copper, 487 μg g{sup −1} of lead, 793 μg g{sup −1} of zinc, 27 μg g{sup −1} of nickel and 2.3 μg g{sup −1} of cadmium. During the anaerobic acidification of 3 g{sub dry} {sub weight} L{sup −1} waste activated sludge, 80–85% of the copper, 66–69% of the lead, 87% of the zinc, 94–99% of the nickel and 73–83% of the cadmium were leached. The first stage of two-stage anaerobic digestion can thus be optimized as an anaerobic bioleaching process and produce a treated sludge (i.e., digestate) that meets the land-use standards in The Netherlands for copper, zinc, nickel and cadmium, but not for lead. - Highlights: • Heavy metals were leached during anaerobic acidification of waste activated sludge. • The process does not require the addition of chelating or oxidizing agents. • The metal leaching efficiencies (66 to 99%) were comparable to chemical leaching. • The produced leachate may be used for metal recovery and biogas production. • The produced digested sludge may be used as soil conditioner.

  3. Adaptation and Antibiotic Tolerance of Anaerobic Burkholderia pseudomallei ▿ †

    Science.gov (United States)

    Hamad, Mohamad A.; Austin, Chad R.; Stewart, Amanda L.; Higgins, Mike; Vázquez-Torres, Andrés; Voskuil, Martin I.

    2011-01-01

    The Gram-negative bacterium Burkholderia pseudomallei is the etiological agent of melioidosis and is remarkably resistant to most classes of antibacterials. Even after months of treatment with antibacterials that are relatively effective in vitro, there is a high rate of treatment failure, indicating that this pathogen alters its patterns of antibacterial susceptibility in response to cues encountered in the host. The pathology of melioidosis indicates that B. pseudomallei encounters host microenvironments that limit aerobic respiration, including the lack of oxygen found in abscesses and in the presence of nitric oxide produced by macrophages. We investigated whether B. pseudomallei could survive in a nonreplicating, oxygen-deprived state and determined if this physiological state was tolerant of conventional antibacterials. B. pseudomallei survived initial anaerobiosis, especially under moderately acidic conditions similar to those found in abscesses. Microarray expression profiling indicated a major shift in the physiological state of hypoxic B. pseudomallei, including induction of a variety of typical anaerobic-environment-responsive genes and genes that appear specific to anaerobic B. pseudomallei. Interestingly, anaerobic B. pseudomallei was unaffected by antibacterials typically used in therapy. However, it was exquisitely sensitive to drugs used against anaerobic pathogens. After several weeks of anaerobic culture, a significant loss of viability was observed. However, a stable subpopulation that maintained complete viability for at least 1 year was established. Thus, during the course of human infection, if a minor subpopulation of bacteria inhabited an oxygen-restricted environment, it might be indifferent to traditional therapy but susceptible to antibiotics frequently used to treat anaerobic infections. PMID:21537012

  4. Prolonged inorganic arsenite exposure suppresses insulin-stimulated AKT S473 phosphorylation and glucose uptake in 3T3-L1 adipocytes: Involvement of the adaptive antioxidant response

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Peng [The Hamner Institutes for Health Sciences, Research Triangle Park, NC 27709 (United States); School of Public Health, China Medical University, Shenyang 110001 (China); Hou, Yongyong; Zhang, Qiang; Woods, Courtney G.; Yarborough, Kathy; Liu, Huiyu [The Hamner Institutes for Health Sciences, Research Triangle Park, NC 27709 (United States); Sun, Guifan [School of Public Health, China Medical University, Shenyang 110001 (China); Andersen, Melvin E. [The Hamner Institutes for Health Sciences, Research Triangle Park, NC 27709 (United States); Pi, Jingbo, E-mail: jpi@thehamner.org [The Hamner Institutes for Health Sciences, Research Triangle Park, NC 27709 (United States)

    2011-04-08

    Highlights: {yields} In 3T3-L1 adipocytes iAs{sup 3+} decreases insulin-stimulated glucose uptake. {yields} iAs{sup 3+} attenuates insulin-induced phosphorylation of AKT S473. {yields} iAs{sup 3+} activates the cellular adaptive oxidative stress response. {yields} iAs{sup 3+} impairs insulin-stimulated ROS signaling. {yields} iAs{sup 3+} decreases expression of adipogenic genes and GLUT4. -- Abstract: There is growing evidence that chronic exposure of humans to inorganic arsenic, a potent environmental oxidative stressor, is associated with the incidence of type 2 diabetes (T2D). One critical feature of T2D is insulin resistance in peripheral tissues, especially in mature adipocytes, the hallmark of which is decreased insulin-stimulated glucose uptake (ISGU). Despite the deleterious effects of reactive oxygen species (ROS), they have been recognized as a second messenger serving an intracellular signaling role for insulin action. Nuclear factor erythroid 2-related factor 2 (NRF2) is a central transcription factor regulating cellular adaptive response to oxidative stress. This study proposes that in response to arsenic exposure, the NRF2-mediated adaptive induction of endogenous antioxidant enzymes blunts insulin-stimulated ROS signaling and thus impairs ISGU. Exposure of differentiated 3T3-L1 cells to low-level (up to 2 {mu}M) inorganic arsenite (iAs{sup 3+}) led to decreased ISGU in a dose- and time-dependent manner. Concomitant to the impairment of ISGU, iAs{sup 3+} exposure significantly attenuated insulin-stimulated intracellular ROS accumulation and AKT S473 phosphorylation, which could be attributed to the activation of NRF2 and induction of a battery of endogenous antioxidant enzymes. In addition, prolonged iAs{sup 3+} exposure of 3T3-L1 adipocytes resulted in significant induction of inflammatory response genes and decreased expression of adipogenic genes and glucose transporter type 4 (GLUT4), suggesting chronic inflammation and reduction in GLUT4

  5. Prolonged inorganic arsenite exposure suppresses insulin-stimulated AKT S473 phosphorylation and glucose uptake in 3T3-L1 adipocytes: Involvement of the adaptive antioxidant response

    International Nuclear Information System (INIS)

    Xue, Peng; Hou, Yongyong; Zhang, Qiang; Woods, Courtney G.; Yarborough, Kathy; Liu, Huiyu; Sun, Guifan; Andersen, Melvin E.; Pi, Jingbo

    2011-01-01

    Highlights: → In 3T3-L1 adipocytes iAs 3+ decreases insulin-stimulated glucose uptake. → iAs 3+ attenuates insulin-induced phosphorylation of AKT S473. → iAs 3+ activates the cellular adaptive oxidative stress response. → iAs 3+ impairs insulin-stimulated ROS signaling. → iAs 3+ decreases expression of adipogenic genes and GLUT4. -- Abstract: There is growing evidence that chronic exposure of humans to inorganic arsenic, a potent environmental oxidative stressor, is associated with the incidence of type 2 diabetes (T2D). One critical feature of T2D is insulin resistance in peripheral tissues, especially in mature adipocytes, the hallmark of which is decreased insulin-stimulated glucose uptake (ISGU). Despite the deleterious effects of reactive oxygen species (ROS), they have been recognized as a second messenger serving an intracellular signaling role for insulin action. Nuclear factor erythroid 2-related factor 2 (NRF2) is a central transcription factor regulating cellular adaptive response to oxidative stress. This study proposes that in response to arsenic exposure, the NRF2-mediated adaptive induction of endogenous antioxidant enzymes blunts insulin-stimulated ROS signaling and thus impairs ISGU. Exposure of differentiated 3T3-L1 cells to low-level (up to 2 μM) inorganic arsenite (iAs 3+ ) led to decreased ISGU in a dose- and time-dependent manner. Concomitant to the impairment of ISGU, iAs 3+ exposure significantly attenuated insulin-stimulated intracellular ROS accumulation and AKT S473 phosphorylation, which could be attributed to the activation of NRF2 and induction of a battery of endogenous antioxidant enzymes. In addition, prolonged iAs 3+ exposure of 3T3-L1 adipocytes resulted in significant induction of inflammatory response genes and decreased expression of adipogenic genes and glucose transporter type 4 (GLUT4), suggesting chronic inflammation and reduction in GLUT4 expression may also be involved in arsenic-induced insulin resistance in

  6. Anaerobic degradation of alkylated benzenes in denitrifying laboratory aquifer columns

    International Nuclear Information System (INIS)

    Kuhn, E.P.; Zeyer, J.; Eicher, P.; Schwarzenbach, R.P.

    1988-01-01

    Toluene and m-xylene were rapidly mineralized in an anaerobic laboratory aquifer column operated under continuous-flow conditions with nitrate as an electron acceptor. The oxidation of toluene and m-xylene was coupled with the reduction of nitrate, and mineralization was confirmed by trapping 14 CO 2 evolved from 14 C-ring-labeled substrates. Substrate degradation also took place when nitrous oxide replaced nitrate as an electron acceptor, but decomposition was inhibited in the presence of molecular oxygen or after the substitution of nitrate by nitrite. The m-xylene-adapted microorganisms in the aquifer column degraded toluene, benzaldehyde, benzoate, m-toluylaldehyde, m-toluate, m-cresol, p-cresol, and p-hydroxybenzoate but were unable to metabolize benzene, naphthalene, methylcyclohexane, and 1,3-dimethylcyclohexane. Isotope-dilution experiments suggested benzoate as an intermediate formed during anaerobic toluene metabolism. The finding that the highly water-soluble nitrous oxide served as electron acceptor for the anaerobic mineralization of some aromatic hydrocarbons may offer attractive options for the in situ restoration of polluted aquifers

  7. Arsenic speciation in arsenic-rich Brazilian soils from gold mining sites under anaerobic incubation

    Science.gov (United States)

    De Mello, J. W. V.; Talbott, J.L.; Scott, J.; Roy, W.R.; Stucki, J.W.

    2007-01-01

    Background. Arsenic speciation in environmental samples is essential for studying toxicity, mobility and bio-transformation of As in aquatic and terrestrial environments. Although the inorganic species As(III) and As(V) have been considered dominant in soils and sediments, organisms are able to metabolize inorganic forms of arsenic into organo-arsenic compounds. Arsenosugars and methylated As compounds can be found in terrestrial organisms, but they generally occur only as minor constituents. We investigated the dynamics of arsenic species under anaerobic conditions in soils surrounding gold mining areas from Minas Gerais State, Brazil to elucidate the arsenic biogeochemical cycle and water contamination mechanisms. Methods. Surface soil samples were collected at those sites, namely Paracatu Formation, Banded Iron Formation and Riacho dos Machados Sequence, and incubated in CaCl2 2.5 mmol L-1 suspensions under anaerobic conditions for 1, 28, 56 and 112 days. After that, suspensions were centrifuged and supernatants analyzed for soluble As species by IC-ICPMS and HPLC-ICPMS. Results. Easily exchangeable As was mainly arsenite, except when reducible manganese was present. Arsenate was mainly responsible for the increase in soluble arsenic due to the reductive dissolution of either iron or manganese in samples from the Paracatu Formation and Riacho dos Machados Sequence. On the other hand, organic species of As dominated in samples from the Banded Iron Formation during anaerobic incubation. Discussion. Results are contrary to the expectation that, in anaerobic environments, As release due to the reductive dissolution of Fe is followed by As(V) reduction to As(III). The occurrence of organo-arsenic species was also found to be significant to the dynamics of soluble arsenic, mainly in soils from the Banded Iron Formation (BIF), under our experimental conditions. Conclusions. In general, As(V) and organic As were the dominant species in solution, which is surprising

  8. Anaerobic benzene degradation by bacteria.

    Science.gov (United States)

    Vogt, Carsten; Kleinsteuber, Sabine; Richnow, Hans-Hermann

    2011-11-01

    Benzene is a widespread and toxic contaminant. The fate of benzene in contaminated aquifers seems to be primarily controlled by the abundance of oxygen: benzene is aerobically degraded at high rates by ubiquitous microorganisms, and the oxygen-dependent pathways for its breakdown were elucidated more than 50 years ago. In contrast, benzene was thought to be persistent under anoxic conditions until 25 years ago. Nevertheless, within the last 15 years, several benzene-degrading cultures have been enriched under varying electron acceptor conditions in laboratories around the world, and organisms involved in anaerobic benzene degradation have been identified, indicating that anaerobic benzene degradation is a relevant environmental process. However, only a few benzene degraders have been isolated in pure culture so far, and they all use nitrate as an electron acceptor. In some highly enriched strictly anaerobic cultures, benzene has been described to be mineralized cooperatively by two or more different organisms. Despite great efforts, the biochemical mechanism by which the aromatic ring of benzene is activated in the absence of oxygen is still not fully elucidated; methylation, hydroxylation and carboxylation are discussed as likely reactions. This review summarizes the current knowledge about the 'key players' of anaerobic benzene degradation under different electron acceptor conditions and the possible pathway(s) of anaerobic benzene degradation. © 2011 The Authors; Journal compilation © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.

  9. Anaerobic benzene degradation by bacteria

    Science.gov (United States)

    Vogt, Carsten; Kleinsteuber, Sabine; Richnow, Hans‐Hermann

    2011-01-01

    Summary Benzene is a widespread and toxic contaminant. The fate of benzene in contaminated aquifers seems to be primarily controlled by the abundance of oxygen: benzene is aerobically degraded at high rates by ubiquitous microorganisms, and the oxygen‐dependent pathways for its breakdown were elucidated more than 50 years ago. In contrast, benzene was thought to be persistent under anoxic conditions until 25 years ago. Nevertheless, within the last 15 years, several benzene‐degrading cultures have been enriched under varying electron acceptor conditions in laboratories around the world, and organisms involved in anaerobic benzene degradation have been identified, indicating that anaerobic benzene degradation is a relevant environmental process. However, only a few benzene degraders have been isolated in pure culture so far, and they all use nitrate as an electron acceptor. In some highly enriched strictly anaerobic cultures, benzene has been described to be mineralized cooperatively by two or more different organisms. Despite great efforts, the biochemical mechanism by which the aromatic ring of benzene is activated in the absence of oxygen is still not fully elucidated; methylation, hydroxylation and carboxylation are discussed as likely reactions. This review summarizes the current knowledge about the ‘key players’ of anaerobic benzene degradation under different electron acceptor conditions and the possible pathway(s) of anaerobic benzene degradation. PMID:21450012

  10. Arsenite induces apoptosis in human mesenchymal stem cells by altering Bcl-2 family proteins and by activating intrinsic pathway

    International Nuclear Information System (INIS)

    Yadav, Santosh; Shi Yongli; Wang Feng; Wang He

    2010-01-01

    Purpose: Environmental exposure to arsenic is an important public health issue. The effects of arsenic on different tissues and organs have been intensively studied. However, the effects of arsenic on bone marrow mesenchymal stem cells (MSCs) have not been reported. This study is designed to investigate the cell death process caused by arsenite and its related underlying mechanisms on MSCs. The rationale is that absorbed arsenic in the blood circulation can reach to the bone marrow and may affect the cell survival of MSCs. Methods: MSCs of passage 1 were purchased from Tulane University, grown till 70% confluency level and plated according to the experimental requirements followed by treatment with arsenite at various concentrations and time points. Arsenite (iAs III ) induced cytotoxic effects were confirmed by cell viability and cell cycle analysis. For the presence of canonic apoptosis markers; DNA damage, exposure of intramembrane phosphotidylserine, protein and m-RNA expression levels were analyzed. Results: iAs III induced growth inhibition, G2-M arrest and apoptotic cell death in MSCs, the apoptosis induced by iAs III in the cultured MSCs was, via altering Bcl-2 family proteins and by involving intrinsic pathway. Conclusion: iAs III can induce apoptosis in bone marrow-derived MSCs via Bcl-2 family proteins, regulating intrinsic apoptotic pathway. Due to the multipotency of MSC, acting as progenitor cells for a variety of connective tissues including bone, adipose, cartilage and muscle, these effects of arsenic may be important in assessing the health risk of the arsenic compounds and understanding the mechanisms of arsenic-induced harmful effects.

  11. Effects of arsenite on cell cycle progression in a human bladder cancer cell line

    International Nuclear Information System (INIS)

    Hernandez-Zavala, A.; Cordova, E.; Razo, L.M. del; Cebrian, M.E.; Garrido, E.

    2005-01-01

    Bladder cancer is one of the most important diseases associated with arsenic (As) exposure in view of its high prevalence and mortality rate. Experimental studies have shown that As exposure induces cell proliferation in the bladder of sodium arsenite (iAsIII) subchronically treated mice. However, there is little available information on its effects on the cell cycle of bladder cells. Thus, our purpose was to evaluate the effects of iAsIII on cell cycle progression and the response of p53 and p21 on the human-derived epithelial bladder cell line HT1197. iAsIII treatment (1-10 μM) for 24 h induced a dose-dependent increase in the proportion of cells in S-phase, which reached 65% at the highest dose. A progressive reduction in cell proliferation was also observed. BrdU was incorporated to cellular DNA in an interrupted form, suggesting an incomplete DNA synthesis. The time-course of iAsIII effects (10 μM) showed an increase in p53 protein content and a transient increase in p21 protein levels accompanying the changes in S-phase. These effects were correlated with iAs concentrations inside the cells, which were not able to metabolize inorganic arsenic. Our findings suggest that p21 was not able to block CDK2-cyclin E complex activity and was therefore unable to arrest cells in G1 allowing their progression into the S-phase. Further studies are needed to ascertain the mechanisms underlying the effects of iAsIII on the G1 to S phase transition in bladder cells

  12. Synergism between arsenite and proteasome inhibitor MG132 over cell death in myeloid leukaemic cells U937 and the induction of low levels of intracellular superoxide anion

    Energy Technology Data Exchange (ETDEWEB)

    Lombardo, Tomás [Laboratorio de Immunotoxicologia (LaITO), IDEHU-CONICET, Hospital de Clínicas, José de San Martín, Universidad de Buenos Aires (UBA), Buenos Aires (Argentina); Cavaliere, Victoria; Costantino, Susana N. [Laboratorio de Inmunología Tumoral (LIT), IDEHU-CONICET, Facultad de Farmacia y Bioquímica, UBA, Buenos Aires (Argentina); Kornblihtt, Laura [Servicio de Hematología, Hospital de Clínicas, José de San Martín (UBA), Buenos Aires (Argentina); Alvarez, Elida M. [Laboratorio de Inmunología Tumoral (LIT), IDEHU-CONICET, Facultad de Farmacia y Bioquímica, UBA, Buenos Aires (Argentina); Blanco, Guillermo A., E-mail: gblanco@ffyb.uba.ar [Laboratorio de Immunotoxicologia (LaITO), IDEHU-CONICET, Hospital de Clínicas, José de San Martín, Universidad de Buenos Aires (UBA), Buenos Aires (Argentina)

    2012-02-01

    Increased oxygen species production has often been cited as a mechanism determining synergism on cell death and growth inhibition effects of arsenic-combined drugs. However the net effect of drug combination may not be easily anticipated solely from available knowledge of drug-induced death mechanisms. We evaluated the combined effect of sodium arsenite with the proteasome inhibitor MG132, and the anti-leukaemic agent CAPE, on growth-inhibition and cell death effect in acute myeloid leukaemic cells U937 and Burkitt's lymphoma-derived Raji cells, by the Chou–Talalay method. In addition we explored the association of cytotoxic effect of drugs with changes in intracellular superoxide anion (O{sub 2}{sup −}) levels. Our results showed that combined arsenite + MG132 produced low levels of O{sub 2}{sup −} at 6 h and 24 h after exposure and were synergic on cell death induction in U937 cells over the whole dose range, although the combination was antagonistic on growth inhibition effect. Exposure to a constant non-cytotoxic dose of 80 μM hydrogen peroxide together with arsenite + MG132 changed synergism on cell death to antagonism at all effect levels while increasing O{sub 2}{sup −} levels. Arsenite + hydrogen peroxide also resulted in antagonism with increased O{sub 2}{sup −} levels in U937 cells. In Raji cells, arsenite + MG132 also produced low levels of O{sub 2}{sup −} at 6 h and 24 h but resulted in antagonism on cell death and growth inhibition. By contrast, the combination arsenite + CAPE showed high levels of O{sub 2}{sup −} production at 6 h and 24 h post exposure but resulted in antagonism over cell death and growth inhibition effects in U937 and Raji cells. We conclude that synergism between arsenite and MG132 in U937 cells is negatively associated to O{sub 2}{sup −} levels at early time points after exposure. -- Highlights: ► Arsenic combined cytotoxic and anti-proliferative effects by Chou–Talalay method. ► Cytotoxic effect

  13. Distinct and diverse anaerobic respiration of methanogenic community in response to MnO2nanoparticles in anaerobic digester sludge.

    Science.gov (United States)

    Tian, Tian; Qiao, Sen; Yu, Cong; Tian, Yihui; Yang, Yue; Zhou, Jiti

    2017-10-15

    Recently, the influence of metal oxide nanoparticles (NPs) on methanogenesis in anaerobic digestion has drawn much attention, however, the changes in NPs and functioning consortia within the methanogenic community are usually not investigated. Therefore, the methanogenesis performance, NPs transformation and methanogenic community development in anaerobic digester sludge under MnO 2 NP supplementation were demonstrated in this study. MnO 2 NPs (400 mg/gVSS) stimulated the methane (CH 4 ) yield by 42% for a final CH 4 proportion of 81.8% of the total gas production. Meanwhile, the coenzyme F 420 and INT-electron transport system activities showed positive correlation with MnO 2 concentration. Microbial Mn reduction and oxidation occurred in conjunction with methanogenesis, resulting in transformation of the shape of the MnO 2 NPs from wire-like to globular particles. Microbial community analysis indicated that the relative abundances of genera Methanobacterium, Methanosaeta, and Methanosarcina were higher in the presence of MnO 2 NPs. Moreover, a new and different crucial synergy within the methanogenic community was formed with low-abundance consortia driving Mn respiration coupled to methanogenesis in anaerobic digestion. To our knowledge, this is the first report on transformation of metal oxides NPs combined with syntrophic community development in studies focusing on methanogenesis in response to NPs. Copyright © 2017. Published by Elsevier Ltd.

  14. Anaerobic digestion of solid material

    DEFF Research Database (Denmark)

    Vavilin, V.A.; Lokshina, L.Y.; Flotats, X.

    2007-01-01

    A new multidimensional (3 and 2D) anaerobic digestion model for cylindrical reactor with non-uniform influent concentration distributions was developed to study the way in which mixing intensity affects the efficiency of continuous-flow anaerobic digestion. Batch experiments reported and simulated....... In the system, the threshold methanogenic biomass concentration existed because of inhibition by high VFA concentration. High methanogenic biomass concentration is required for efficient anaerobic digestion of MSW in order to avoid possible inhibition due to high VFA build-up. Thus, CSTR configuration might...... have unstable dynamics at high organic loading as shown in earlier experiments carried out by Stroot et al. (2001). A gradual increase of organic loading during the start up of a completely mixed digester causing an accumulation of methanogenic biomass is a solution to prevent a probable digester...

  15. Biochar-mediated reductions in greenhouse gas emissions from soil amended with anaerobic digestates

    International Nuclear Information System (INIS)

    Martin, Sarah L.; Clarke, Michèle L.; Othman, Mukhrizah; Ramsden, Stephen J.; West, Helen M.

    2015-01-01

    This investigation examines nitrous oxide (N 2 O) fluxes from soil with simultaneous amendments of anaerobic digestates and biochar. The main source of anthropogenic emissions of N 2 O is agriculture and in particular, manure and slurry application to fields. Anaerobic digestates are increasingly used as a fertiliser and interest is growing in their potential as sources of N 2 O via nitrification and denitrification. Biochar is a stable product of pyrolysis and may affect soil properties such as cation exchange capacity and water holding capacity. Whilst work has been conducted on the effects of biochar amendment on N 2 O emissions in soils fertilised with mineral fertilisers and raw animal manures, little work to date has focused on the effects of biochar on nitrogen transformations within soil amended with anaerobic digestates. The aim of the current investigation was to quantify the effects of biochar application on ammonification, nitrification and N 2 O fluxes within soil amended with three anaerobic digestates derived from different feedstocks. A factorial experiment was undertaken in which a sandy loam soil (Dunnington Heath series) was either left untreated, or amended with three different anaerobic digestates and one of three biochar treatments; 0%, 1% or 3%. Nitrous oxide emissions were greatest from soil amended with anaerobic digestate originating from a maize feedstock. Biochar amendment reduced N 2 O emissions from all treatments, with the greatest effect observed in treatments with maximum emissions. The degree of N 2 O production and efficacy of biochar amelioration of gas emissions is discussed in context of soil microbial biomass and soil available carbon. - Highlights: • Nitrous oxide was emitted from anaerobic digestates applied to soil. • Simultaneous amendment of soil with biochar and anaerobic digestate reduced N 2 O emissions. • Soil nitrate accumulation occurred but was digestate dependent

  16. Oxygen sensitivity of various anaerobic bacteria.

    Science.gov (United States)

    Loesche, W J

    1969-11-01

    Anaerobes differ in their sensitivity to oxygen, as two patterns were recognizable in the organisms included in this study. Strict anaerobes were species incapable of agar surface growth at pO(2) levels greater than 0.5%. Species that were found to be strict anaerobes were Treponema macrodentium, Treponema denticola, Treponema oralis n. sp., Clostridium haemolyticum, Selenomonas ruminatium, Butyrivibrio fibrisolvens, Succinivibrio dextrinosolvens, and Lachnospira multiparus. Moderate anaerobes would include those species capable of growth in the presence of oxygen levels as high as 2 to 8%. The moderate anaerobes could be exposed to room atmosphere for 60 to 90 min without appreciable loss of viability. Species considered as moderate anaerobes were Bacteroides fragilis, B. melaninogenicus, B. oralis, Fusobacteria nucleatum, Clostridium novyi type A, and Peptostreptococcus elsdenii. The recognition of at least two general types of anaerobes would seem to have practical import in regard to the primary isolation of anaerobes from source material.

  17. Instrumentation in anaerobic treatment - research and practice

    NARCIS (Netherlands)

    Spanjers, H.; Lier, van J.B.

    2006-01-01

    High rate anaerobic treatment reactors are able to uncouple solids and liquid retention time, resulting in high biomass concentrations. Principal advantages of anaerobic treatment include: energy efficiency, low biomass yield, low nutrient requirement and high volumetric organic loadings. In order

  18. RISK FACTORS IN NEONATAL ANAEROBIC INFECTIONS

    Directory of Open Access Journals (Sweden)

    M. S. Tabib

    2008-06-01

    Full Text Available Anaerobic bacteria are well known causes of sepsis in adults but there are few studies regarding their role in neonatal sepsis. In an attempt to define the incidence of neonatal anaerobic infections a prospective study was performed during one year period. A total number of 400 neonates under sepsis study were entered this investigation. Anaerobic as well as aerobic cultures were sent. The patients were subjected to comparison in two groups: anaerobic culture positive and anaerobic culture negative and this comparison were analyzed statistically. There were 7 neonates with positive anaerobic culture and 35 neonates with positive aerobic culture. A significant statistical relationship was found between anaerobic infections and abdominal distention and pneumonia. It is recommended for those neonates with abdominal distention and pneumonia refractory to antibiotic treatment to be started on antibiotics with anaerobic coverage.

  19. Anaerobic bacterial meningitis in adults.

    Science.gov (United States)

    Lee, Jun-Jun; Lien, Chia-Yi; Chien, Chun-Chih; Huang, Chi-Ren; Tsai, Nai-Wen; Chang, Chiung-Chih; Lu, Cheng-Hsien; Chang, Wen-Neng

    2018-01-22

    Anaerobic infection is a very uncommon condition in adult bacterial meningitis (ABM), and its clinical characteristics have yet to be clarified. We enrolled 540 patients with culture-proven bacterial meningitis during a study period of 30 years (1986-2015), of whom 13 (2.4%) had anaerobic infections. These 13 patients were eight men and five women, aged 22-77 years. Among them, 53.8% (7/13) had a postneurosurgical state as the preceding event, and 79.6% (10/13) had underlying medical conditions including diabetes mellitus, malignancy, liver cirrhosis, cerebral infarct and alcoholism. Nosocomial and mixed infections were found in 15.5% (2/13) and 46.1% (6/13) of the patients, respectively. A total of 14 anaerobic strains were isolated from cerebrospinal fluid specimens, including nine Gram-negative (G(-)) strains: Fusobacterium nucleatum (3), Prevotella species (3) and Bacteroides fragilis (3), and five Gram-positive (G(+)) strains: Propionibacterium acnes (3) and Peptostreptococcus micros (also known as Parvimonas micra) (2). All of the implicated G(+) anaerobic bacteria were susceptible to penicillin, and no multiple drug-resistant strains were found among the implicated G(-) anaerobic bacteria. Despite treatment, 30.8% (4/13) of the patients died. Of the nine survivors, 22.2% (2/9) had a full recovery, while the other 77.8% (7/9) had varying degrees of neurological deficits. Compared with the good outcome group (n = 6, modified Rankin scale (mRS) scores: 0-2), the poor outcome group (n = 7, mRS scores ≧3) had higher incidence of seizure. These results may offer a preliminary view of the clinical characteristics of anaerobic ABM. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Relating methanogen community structure and anaerobic digester function.

    Science.gov (United States)

    Bocher, B T W; Cherukuri, K; Maki, J S; Johnson, M; Zitomer, D H

    2015-03-01

    Much remains unknown about the relationships between microbial community structure and anaerobic digester function. However, knowledge of links between community structure and function, such as specific methanogenic activity (SMA) and COD removal rate, are valuable to improve anaerobic bioprocesses. In this work, quantitative structure-activity relationships (QSARs) were developed using multiple linear regression (MLR) to predict SMA using methanogen community structure descriptors for 49 cultures. Community descriptors were DGGE demeaned standardized band intensities for amplicons of a methanogen functional gene (mcrA). First, predictive accuracy of MLR QSARs was assessed using cross validation with training (n = 30) and test sets (n = 19) for glucose and propionate SMA data. MLR equations correlating band intensities and SMA demonstrated good predictability for glucose (q(2) = 0.54) and propionate (q(2) = 0.53). Subsequently, data from all 49 cultures were used to develop QSARs to predict SMA values. Higher intensities of two bands were correlated with higher SMA values; high abundance of methanogens associated with these two bands should be encouraged to attain high SMA values. QSARs are helpful tools to identify key microorganisms or to study and improve many bioprocesses. Development of new, more robust QSARs is encouraged for anaerobic digestion or other bioprocesses, including nitrification, nitritation, denitrification, anaerobic ammonium oxidation, and enhanced biological phosphorus removal. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Anaerobic bioprocessing of organic wastes.

    Science.gov (United States)

    Verstraete, W; de Beer, D; Pena, M; Lettinga, G; Lens, P

    1996-05-01

    Anaerobic digestion of dissolved, suspended and solid organics has rapidly evolved in the last decades but nevertheless still faces several scientific unknowns. In this review, some fundamentals of bacterial conversions and adhesion are addressed initially. It is argued in the light of ΔG-values of reactions, and in view of the minimum energy quantum per mol, that anaerobic syntrophs must have special survival strategies in order to support their existence: redistributing the available energy between the partners, reduced end-product fermentation reactions and special cell-to-cell physiological interactions. In terms of kinetics, it appears that both reaction rates and residual substrate thresholds are strongly related to minimum ΔG-values. These new fundamental insights open perspectives for efficient design and operation of anaerobic bioprocesses. Subsequently, an overview is given of the current anaerobic biotechnology. For treating wastewaters, a novel and high performance new system has been introduced during the last decade; the upflow anaerobic sludge blanket system (UASB). This reactor concept requires anaerobic consortia to grow in a dense and eco-physiologically well-organized way. The microbial principles of such granular sludge growth are presented. Using a thermodynamic approach, the formation of different types of aggregates is explained. The application of this bioprocess in worldwide wastewater treatment is indicated. Due to the long retention times of the active biomass, the UASB is also suitable for the development of bacterial consortia capable of degrading xenobiotics. Operating granular sludge reactors at high upflow velocities (5-6 m/h) in expanded granular sludge bed (EGSB) systems enlarges the application field to very low strength wastewaters (chemical oxygen demand system to the thermophilic configuration, as the latter permits higher conversion rates and easier sanitation. Integration of ultrafiltration in anaerobic slurry digestion

  2. Molecular genetic studies on obligate anaerobic bacteria

    International Nuclear Information System (INIS)

    Woods, D.R.

    1982-01-01

    Molecular genetic studies on obligate anaerobic bacteria have lagged behind similar studies in aerobes. However, the current interest in biotechnology, the involvement of anaerobes in disease and the emergence of antibioticresistant strains have focused attention on the genetics of anaerobes. This article reviews molecular genetic studies in Bacteroides spp., Clostridium spp. and methanogens. Certain genetic systems in some anaerobes differ from those in aerobes and illustrate the genetic diversity among bacteria

  3. Viscosity evolution of anaerobic granular sludge

    NARCIS (Netherlands)

    Pevere, A.; Guibaud, G.; Hullebusch, van E.D.; Lens, P.N.L.; Baudu, M.

    2006-01-01

    The evolution of the apparent viscosity at steady shear rate of sieved anaerobic granular sludge (20¿315 ¿m diameter) sampled from different full-scale anaerobic reactors was recorded using rotation tests. The ¿limit viscosity¿ of sieved anaerobic granular sludge was determined from the apparent

  4. Kinetics and modeling of anaerobic digestion process

    DEFF Research Database (Denmark)

    Gavala, Hariklia N.; Angelidaki, Irini; Ahring, Birgitte Kiær

    2003-01-01

    Anaerobic digestion modeling started in the early 1970s when the need for design and efficient operation of anaerobic systems became evident. At that time not only was the knowledge about the complex process of anaerobic digestion inadequate but also there were computational limitations. Thus...

  5. 21 CFR 866.2120 - Anaerobic chamber.

    Science.gov (United States)

    2010-04-01

    ... and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2120 Anaerobic chamber. (a) Identification. An anaerobic chamber is a device intended for medical purposes to maintain an anaerobic (oxygen...

  6. Arsenic-contaminated freshwater: assessing arsenate and arsenite toxicity and low-dose genotoxicity in Gammarus elvirae (Crustacea; Amphipoda).

    Science.gov (United States)

    Ronci, Lucilla; De Matthaeis, Elvira; Chimenti, Claudio; Davolos, Domenico

    2017-07-01

    Arsenic (As) contamination of freshwater is largely due to geogenic processes, but As is also released into the environment because of improper anthropic activities. The European regulatory limits in drinking water are of 10 μg L -1 As. However, knowledge of the genotoxic effects induced by low doses of As in freshwater environments is still scanty. This study was designed to investigate arsenate (As(V)) and arsenite (As(III)) toxicity and low-dose genotoxicity in Gammarus elvirae, which has proved to be a useful organism for genotoxicity assays in freshwater. As(V) and As(III) toxicity was assessed on the basis of the median lethal concentration, LC(50), while estimates of DNA damage were based on the Comet assay. The G. elvirae LC (50-240 h) value we calculated was 1.55 mg L -1 for As(V) and 1.72 mg L -1 for As(III). Arsenic exposure (240 h) at 5, 10, and 50 µg L -1 of As in assays with either arsenate or arsenite-induced DNA damage in hemocytes of G. elvirae in a concentration-dependent manner. Our study provides a basis for future genotoxic research on exposure to freshwater that contains low levels of arsenic.

  7. Anaerobic Treatment of Methanolic Wastes

    NARCIS (Netherlands)

    Lettinga, G.; Geest, van der A.Th.; Hobma, S.W.; Laan, van der J.B.R.

    1979-01-01

    Although it is well known that methanol can be fermented directly by a specific species of methane bacteria, viz. Methanosarcina barkeri, until now little information was available about the effect of important environmental factors on the anaerobic fermentation of methanol. As methanol can be the

  8. Perspectives of Anaerobic Soil Disinfestation

    NARCIS (Netherlands)

    Lamers, J.G.; Runia, W.T.; Molendijk, L.P.G.; Bleeker, P.O.

    2010-01-01

    Biological soil disinfestation is an environmentally friendly method to disinfest soil. From now on we refer to it as anaerobic soil disinfestation (ASD). With ASD a green manure crop (40 t/ha) is homogeneously incorporated into the topsoil (0-30 cm) after which the field is lightly compacted and

  9. Inhibition of Anaerobic Biological Treatment: A Review

    Science.gov (United States)

    Hou, Li; Ji, Dandan; Zang, Lihua

    2018-01-01

    Anaerobic digestion is a method for treating living and industrial wastewater by anaerobic degradation of organic compounds, which can produce biogas (carbon dioxide and methane mixture) and microbial biomass. And biogas as a renewable resource, can replace the use of ore fuel. In the process of anaerobic digestion, the problems of low methane yield and unstable reaction process are often encountered, which limits the widespread use of this technology. Various inhibitors are the main limiting factors for anaerobic digestion. In this paper, the main factors limiting anaerobic digestion are reviewed, and the latest research progress is introduced.

  10. Microbial stress mediated intercellular nanotubes in an anaerobic microbial consortium digesting cellulose.

    Science.gov (United States)

    John, Martina; Trzcinski, Antoine Prandota; Zhou, Yan; Ng, Wun Jern

    2017-12-21

    The anaerobic digestion process is a multi - step reaction dependent on concerted activities such as exchange of metabolites among physiologically different microbial communities. This study investigated the impact of iron oxide nanoparticles on the anaerobic sludge microbiota. It was shown there were three distinct microbial phases following addition of the nanoparticles: microbial stress and cell death of approximately one log order of magnitude, followed by microbial rewiring, and recovery. Furthermore, it was noted that cellular stress led to the establishment of intercellular nanotubes within the microbial biomass. Intercellular nanotube - mediated communication among genetically engineered microorganisms and ad hoc assembled co - cultures have been previously reported. This study presents evidence of intercellular nanotube formation within an environmental sample - i.e., anaerobic sludge microbiota subjected to stress. Our observations suggested a mode of microbial communication in the anaerobic digestion process not previously explored and which may have implications on bioreactor design and microbial functions.

  11. Present-day biogeochemical activities of anaerobic bacteria and their relevance to future exobiological investigations

    Science.gov (United States)

    Oremland, R.S.

    1989-01-01

    If the primordial atmosphere was reducing, then the first microbial ecosystem was probably composed of anaerobic bacteria. However, despite the presence of an oxygen-rich atmosphere, anaerobic habitats are important, commonplace components of the Earth's present biosphere. The geochemical activities displayed by these anaerobes impact the global cycling of certain elements (e.g., C, N, S, Fe, Mn, etc.). Methane provides an obvious example of how human-enhanced activities on a global scale can influence the content of a "radiative" (i.e., infrared absorbing) trace gas in the atmosphere. Methane can be oxidized by anaerobic bacteria, but this does not appear to support their growth. Acetylene, however, does support such growth. This may form the basis for future exobiological investigations of the atmospheres of anoxic, hydrocarbon-rich planets like Jupiter and Saturn, as well as the latter's satellite Titan. ?? 1989.

  12. COMPARATIVE TISSUE DISTRIBUTION AND URINARY EXCRETION OF INORGANIC ARSENIC (IAS) AND ITS METHYLATED METABOLITES IN MICE FOLLOWING ORAL ADMINISTRATION OF ARSENATE (ASV) AND ARSENITE (ASIII)

    Science.gov (United States)

    COMPARATIVE TISSUE DISTRIBUTION AND URINARY EXCRETION OF INORGANIC ARSENIC (iAs) AND ITS METHYLATED METABOLITES IN MICE FOLLOWING ORAL ADMINISTRATION OF ARSENATE (AsV) AND ARSENITE (AsIII). E M Kenyon, L M Del Razo and M F Hughes. U.S. EPA, ORD, NHEERL, ETD, PKB, RTP, NC, USA; ...

  13. Sodium meta-arsenite prevents the development of autoimmune diabetes in NOD mice

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y.S.; Kim, D.; Lee, E.K. [Lee Gil Ya Cancer and Diabetes Institute, Gachon University, 7-45 Songdo-dong, Yeonsu-ku, Incheon 406-840 (Korea, Republic of); Kim, S. [Komipharm International Co. Ltd., 3188, Seongnam-dong, Jungwon-gu, Seongnam-si, Gyeonggi-do 462-827 (Korea, Republic of); Choi, C.S. [Lee Gil Ya Cancer and Diabetes Institute, Gachon University, 7-45 Songdo-dong, Yeonsu-ku, Incheon 406-840 (Korea, Republic of); Endocrinology, Internal Medicine, Gachon University Gil Medical Center, 1198 Guwol-Dong, Namdong-Gu, Incheon 405-760 (Korea, Republic of); Gachon Medical Research Institute, Gil Hospital, 1198 Guwol-Dong, Namdong-Gu, Incheon 405-760 (Korea, Republic of); Jun, H.S., E-mail: hsjun@gachon.ac.kr [Lee Gil Ya Cancer and Diabetes Institute, Gachon University, 7-45 Songdo-dong, Yeonsu-ku, Incheon 406-840 (Korea, Republic of); College of Pharmacy and Gachon Institute of Pharmaceutical Science, Gachon University, 7-45 Songdo-dong, Yeonsu-ku, Incheon 406-840 (Korea, Republic of); Gachon Medical Research Institute, Gil Hospital, 1198 Guwol-Dong, Namdong-Gu, Incheon 405-760 (Korea, Republic of)

    2015-04-15

    Sodium meta-arsenite (SA) is an orally available arsenic compound. We investigated the effects of SA on the development of autoimmune type 1 diabetes. Female non-obese diabetic (NOD) mice were orally intubated with SA (5 mg/kg/day) from 8 weeks of age for 8 weeks. The cumulative incidence of diabetes was monitored until 30 weeks of age, islet histology was examined, and lymphocytes including T cells, B cells, CD4+ IFN-γ+ cells, CD8+ IFN-γ+ cells, CD4+ IL-4+ cells, and regulatory T cells were analyzed. We also investigated the diabetogenic ability of splenocytes using an adoptive transfer model and the effect of SA on the proliferation, activation, and expression of glucose transporter 1 (Glut1) in splenocytes treated with SA in vitro and splenocytes isolated from SA-treated mice. SA treatment decreased the incidence of diabetes and delayed disease onset. SA treatment reduced the infiltration of immunocytes in islets, and splenocytes from SA-treated mice showed a reduced ability to transfer diabetes. The number of total splenocytes and T cells and both the number and the proportion of CD4+ IFN-γ+ and CD8+ IFN-γ+ T cells in the spleen were significantly reduced in SA-treated NOD mice compared with controls. The number, but not the proportion, of regulatory T cells was decreased in SA-treated NOD mice. Treatment with SA either in vitro or in vivo inhibited proliferation of splenocytes. In addition, the expression of Glut1 and phosphorylated ERK1/2 was decreased by SA treatment. These results suggest that SA reduces proliferation and activation of T cells, thus preventing autoimmune diabetes in NOD mice. - Highlights: • SA prevents the development of diabetes and delays the age of onset in NOD mice. • SA decreases the number but not the proportion of T lymphocytes in NOD mice. • SA reduces IFN-γ-producing T lymphocytes in NOD mice. • SA reduces proliferation and activation of T lymphocytes in vitro and in vivo. • SA reduces the expression of glucose

  14. Enhanced arsenite removal from water by Ti(SO4)2 coagulation.

    Science.gov (United States)

    Sun, Yuankui; Zhou, Gongming; Xiong, Xinmei; Guan, Xiaohong; Li, Lina; Bao, Hongliang

    2013-09-01

    Coagulation with the conventional coagulants such as ferric and aluminum salts is not efficient for As(III) removal. In this study Ti(SO4)2 was employed for enhanced As(III) removal and Fe2(SO4)3 was used as a reference. The removal efficiencies of As(III) by Ti(SO4)2 at pH 4.0-9.0 were greater than that by Fe2(SO4)3 by 7.39-32.8% and 3.14-48.1% for coagulants dosed at 8.0 mg/L and 12.0 mg/L, respectively. The advantage of Ti(SO4)2 over Fe2(SO4)3 for As(III) removal was more significant at lower pH, which may be ascribed to the more negatively charged surface of Ti(IV) hydroxides. To reduce As(III) from 0.2 mg/L to 10 μg/L, the necessary dosage of Ti(SO4)2 was only ≈ 50% of that of Fe2(SO4)3. The adsorption capacity of As(III) on Ti(IV) hydroxides formed in-situ was greater than that on Fe(III) hydroxides formed in-situ by ≈ 100 mg/g and several times higher than the adsorption capacities of TiO2 for As(III) reported in the literature. The presence of competing anions, silicate, phosphate and humic acid, did not alter the advantage of Ti(SO4)2 over Fe2(SO4)3 for arsenite removal. Replacing partial Ti(SO4)2 with Fe2(SO4)3 (same dosage) and applying them sequentially could achieve similar As(III) removal efficiency as single Ti(SO4)2, which could thus reduce the chemical cost. The extended X-ray absorption fine structure (EXAFS) spectroscopy indicated that As(III) form bidentate binuclear surface complexes with Ti(IV) hydroxides as evidenced by As(III)-Ti bond distances of 3.33-3.35 Å. This study revealed that Ti(SO4)2 may be an alternative coagulant for efficient As(III) removal. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Sodium meta-arsenite prevents the development of autoimmune diabetes in NOD mice

    International Nuclear Information System (INIS)

    Lee, Y.S.; Kim, D.; Lee, E.K.; Kim, S.; Choi, C.S.; Jun, H.S.

    2015-01-01

    Sodium meta-arsenite (SA) is an orally available arsenic compound. We investigated the effects of SA on the development of autoimmune type 1 diabetes. Female non-obese diabetic (NOD) mice were orally intubated with SA (5 mg/kg/day) from 8 weeks of age for 8 weeks. The cumulative incidence of diabetes was monitored until 30 weeks of age, islet histology was examined, and lymphocytes including T cells, B cells, CD4+ IFN-γ+ cells, CD8+ IFN-γ+ cells, CD4+ IL-4+ cells, and regulatory T cells were analyzed. We also investigated the diabetogenic ability of splenocytes using an adoptive transfer model and the effect of SA on the proliferation, activation, and expression of glucose transporter 1 (Glut1) in splenocytes treated with SA in vitro and splenocytes isolated from SA-treated mice. SA treatment decreased the incidence of diabetes and delayed disease onset. SA treatment reduced the infiltration of immunocytes in islets, and splenocytes from SA-treated mice showed a reduced ability to transfer diabetes. The number of total splenocytes and T cells and both the number and the proportion of CD4+ IFN-γ+ and CD8+ IFN-γ+ T cells in the spleen were significantly reduced in SA-treated NOD mice compared with controls. The number, but not the proportion, of regulatory T cells was decreased in SA-treated NOD mice. Treatment with SA either in vitro or in vivo inhibited proliferation of splenocytes. In addition, the expression of Glut1 and phosphorylated ERK1/2 was decreased by SA treatment. These results suggest that SA reduces proliferation and activation of T cells, thus preventing autoimmune diabetes in NOD mice. - Highlights: • SA prevents the development of diabetes and delays the age of onset in NOD mice. • SA decreases the number but not the proportion of T lymphocytes in NOD mice. • SA reduces IFN-γ-producing T lymphocytes in NOD mice. • SA reduces proliferation and activation of T lymphocytes in vitro and in vivo. • SA reduces the expression of glucose

  16. Anaerobic metabolism of pentachloronitrobenzene (PCNB) in soils

    International Nuclear Information System (INIS)

    Murthy, N.B.K.

    1980-01-01

    A manifold assembly system was used to study the metabolism of 14 C labelled PCNB in flooded and moist anaerobic soils. Soil respiration was generally enhanced by PCNB. More CO 2 was produced in moist anaerobic than in flooded anaerobic soil. Flooding reduced the volatilization of pesticide. The extractable radioactivity from the soil was same (70%) in the treatments. Nevertheless, differences were observed in distribution of PCNB and its degradation products. Pentachloroaniline (PCA) was the principal degradation product. Pentachlorothioanisole (PCTA) was more abundant in moist anaerobic than in flooded anaerobic soil. Pentachlorophenol (PCP) was formed from PCNB in anaerobic soil. Degradation of PCA, PCTA and PCP were further studied in soil and a possible pathway for anaerobic degradation of PCNB was proposed. (author)

  17. Determining anaerobic capacity in sporting activities.

    Science.gov (United States)

    Noordhof, Dionne A; Skiba, Philip F; de Koning, Jos J

    2013-09-01

    Anaerobic capacity/anaerobically attributable power is an important parameter for athletic performance, not only for short high-intensity activities but also for breakaway efforts and end spurts during endurance events. Unlike aerobic capacity, anaerobic capacity cannot be easily quantified. The 3 most commonly used methodologies to quantify anaerobic capacity are the maximal accumulated oxygen deficit method, the critical power concept, and the gross efficiency method. This review describes these methods, evaluates if they result in similar estimates of anaerobic capacity, and highlights how anaerobic capacity is used during sporting activities. All 3 methods have their own strengths and weaknesses and result in more or less similar estimates of anaerobic capacity but cannot be used interchangeably. The method of choice depends on the research question or practical goal.

  18. Anaerobic transformation of carbon monoxide by microbial communities of Kamchatka hot springs.

    Science.gov (United States)

    Kochetkova, Tatiana V; Rusanov, Igor I; Pimenov, Nikolay V; Kolganova, Tatyana V; Lebedinsky, Alexander V; Bonch-Osmolovskaya, Elizaveta A; Sokolova, Tatyana G

    2011-05-01

    Carbon monoxide (CO) is one of the common gaseous compounds found in hot volcanic environments. It is known to serve as the growth substrate for a number of thermophilic prokaryotes, both aerobic and anaerobic. The goal of this work was to study the process of anaerobic transformation of CO by microbial communities inhabiting natural thermal environments: hot springs of Uzon Caldera, Kamchatka. The anaerobic microbial community of Treshchinny Spring (80°C, pH 6.5) was found to exhibit two peaks of affinity for CO (K (S1) = 54 nM and K (S2) = 1 μM). The actual rate of anaerobic CO transformation by the microbial community of this spring, calculated after obtaining the concentration dependence curve and extrapolated to the natural concentration of CO dissolved in the hot spring water (20 nM), was found to be 120 μmol l(-1) of sediment day(-1). In all the hot springs studied, more than 90% of the carbon of (14)CO upon anaerobic incubation was recovered as (14)CO(2). From 1 to 5% of (14)CO was transformed to volatile fatty acids (VFA). The number of microorganisms capable of anaerobic CO oxidation determined by dilution-to-extinction method reached 10(6) cells ml(-1) of sediment. CO-transforming anaerobic thermophilic microorganisms isolated from the springs under study exhibited hydrogenogenic type of CO oxidation and belonged to the bacterial genera Carboxydocella and Dictyoglomus. These data suggest a significant role of hydrogenogenic carboxydotrophic prokaryotes in anaerobic CO transformation in Uzon Caldera hot springs.

  19. Deep sequencing-based analysis of the anaerobic stimulon in Neisseria gonorrhoeae

    Directory of Open Access Journals (Sweden)

    Clark Virginia L

    2011-01-01

    Full Text Available Abstract Background Maintenance of an anaerobic denitrification system in the obligate human pathogen, Neisseria gonorrhoeae, suggests that an anaerobic lifestyle may be important during the course of infection. Furthermore, mounting evidence suggests that reduction of host-produced nitric oxide has several immunomodulary effects on the host. However, at this point there have been no studies analyzing the complete gonococcal transcriptome response to anaerobiosis. Here we performed deep sequencing to compare the gonococcal transcriptomes of aerobically and anaerobically grown cells. Using the information derived from this sequencing, we discuss the implications of the robust transcriptional response to anaerobic growth. Results We determined that 198 chromosomal genes were differentially expressed (~10% of the genome in response to anaerobic conditions. We also observed a large induction of genes encoded within the cryptic plasmid, pJD1. Validation of RNA-seq data using translational-lacZ fusions or RT-PCR demonstrated the RNA-seq results to be very reproducible. Surprisingly, many genes of prophage origin were induced anaerobically, as well as several transcriptional regulators previously unknown to be involved in anaerobic growth. We also confirmed expression and regulation of a small RNA, likely a functional equivalent of fnrS in the Enterobacteriaceae family. We also determined that many genes found to be responsive to anaerobiosis have also been shown to be responsive to iron and/or oxidative stress. Conclusions Gonococci will be subject to many forms of environmental stress, including oxygen-limitation, during the course of infection. Here we determined that the anaerobic stimulon in gonococci was larger than previous studies would suggest. Many new targets for future research have been uncovered, and the results derived from this study may have helped to elucidate factors or mechanisms of virulence that may have otherwise been overlooked.

  20. Anaerobic toxicity of cationic silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Gitipour, Alireza; Thiel, Stephen W. [Biomedical, Chemical, and Environmental Engineering, University of Cincinnati, Cincinnati, OH (United States); Scheckel, Kirk G. [USEPA, Office of Research and Development, Cincinnati, OH (United States); Tolaymat, Thabet, E-mail: tolaymat.thabet@epa.gov [USEPA, Office of Research and Development, Cincinnati, OH (United States)

    2016-07-01

    The microbial toxicity of silver nanoparticles (AgNPs) stabilized with different capping agents was compared to that of Ag{sup +} under anaerobic conditions. Three AgNPs were investigated: (1) negatively charged citrate-coated AgNPs (citrate-AgNPs), (2) minimally charged polyvinylpyrrolidone coated AgNPs (PVP-AgNPs) and (3) positively charged branched polyethyleneimine coated AgNPs (BPEI-AgNPs). The AgNPs investigated in this experiment were similar in size (10–15 nm), spherical in shape, but varied in surface charge which ranged from highly negative to highly positive. While, at AgNPs concentrations lower than 5 mg L{sup −1}, the anaerobic decomposition process was not influenced by the presence of the nanoparticles, there was an observed impact on the diversity of the microbial community. At elevated concentrations (100 mg L{sup −1} as silver), only the cationic BPEI-AgNPs demonstrated toxicity similar in magnitude to that of Ag{sup +}. Both citrate and PVP-AgNPs did not exhibit toxicity at the 100 mg L{sup −1} as measured by biogas evolution. These findings further indicate the varying modes of action for nanoparticle toxicity and represent one of the few studies that evaluate end-of-life management concerns with regards to the increasing use of nanomaterials in our everyday life. These findings also highlight some of the concerns with a one size fits all approach to the evaluation of environmental health and safety concerns associated with the use of nanoparticles. - Highlights: • At concentrations -1 the anaerobic decomposition process was not impacted. • An impact on the microbial community at concentrations -1 were observed. • At high concentrations (100 mg L{sup −1}), the cationic BPEI-AgNPs demonstrated toxicity. • Toxicity was demonstrated without the presence of oxidative dissolution of silver. • A one size fits all approach for the evaluation of NPs may not be accurate.

  1. Sodium arsenite alters cell cycle and MTHFR, MT1/2, and c-Myc protein levels in MCF-7 cells

    International Nuclear Information System (INIS)

    Ruiz-Ramos, Ruben; Lopez-Carrillo, Lizbeth; Albores, Arnulfo; Hernandez-Ramirez, Raul U.; Cebrian, Mariano E.

    2009-01-01

    There is limited available information on the effects of arsenic on enzymes participating in the folate cycle. Therefore, our aim was to evaluate the effects of sodium arsenite on the protein levels of methylenetetrahydrofolate reductase (MTHFR) and dihydrofolate reductase (DHFR) and its further relationship with the expression MT1/2 and c-myc in MCF-7 cells. Arsenite treatment (0-10 μM) for 4 h decreased MTHFR levels in a concentration-dependent fashion without significant effects on DHFR. The effects on MTHFR were observed at arsenite concentrations not significantly affecting cell viability. We also observed an increase in S-phase recruitment at all concentrations probed. Lower concentrations (< 5 μM) induced cell proliferation, showing a high proportion of BrdU-stained cells, indicating a higher DNA synthesis rate. However, higher concentrations (≥ 5 μM) or longer treatment periods induced apoptosis. Arsenite also induced dose-dependent increases in MT1/2 and c-Myc protein levels. The levels of MTHFR were inversely correlated to MT1/2 and c-Myc overexpression and increased S-phase recruitment. Our findings indicate that breast epithelial cells are responsive to arsenite and suggest that exposure may pose a risk for breast cancer. The reductions in MTHFR protein levels contribute to understand the mechanisms underlying the induction of genes influencing growth regulation, such as c-myc and MT1/2. However, further research is needed to ascertain if the effects here reported following short-time and high-dose exposure are relevant for human populations chronically exposed to low arsenic concentrations.

  2. Induction of the mammalian stress response gene GADD153 by oxidative stress: role of AP-1 element.

    Science.gov (United States)

    Guyton, K Z; Xu, Q; Holbrook, N J

    1996-01-01

    GADD153 is a CCAAT/enhancer-binding-protein-related gene that may function to control cellular growth in response to stress signals. In this study, a variety of oxidant treatments were shown to stimulate endogenous GADD153 mRNA expression and to transcriptionally activate a GADD153 promoter-reporter gene construct in transfected HeLa cells. Both commonalities and distinctions in the induction of GADD153 by H2O2 and the thiol-reactive compound arsenite were demonstrated. GADD153 mRNA induction by both H2O2 and arsenite was potentiated by GSH depletion, and completely inhibited by N-acetyl-cysteine. o-Phenanthroline and mannitol blocked GADD153 induction by H2O2, indicating that iron-generated hydroxyl radical mediates this induction. Concordantly, GSH peroxidase overexpression in WI38 cells attenuated GADD153 mRNA induction by H2O2. However, GADD153 induction by arsenite was only modestly reduced in the same cells, suggesting a lesser contribution of peroxides to gene activation by arsenite. We also demonstrated that oxidative stress participates in the induction of GADD153 by UVC (254 nm) irradiation. Finally, both promoter-deletion analysis and point mutation of the AP-1 site in an otherwise intact promoter support a significant role for AP-1 in transcriptional activation of GADD153 by UVC or oxidant treatment. Indeed, exposure of cells to oxidants or UVC stimulated binding of Fos and Jun to the GADD153 AP-1 element. Together, these results demonstrate that both free-radical generation and thiol modification can transcriptionally activate GADD153, and that AP-1 is critical to oxidative regulation of this gene. This study further supports a role for the GADD153 gene product in the cellular response to oxidant injury. PMID:8670069

  3. Glucose and Fat Oxidation: Bomb Calorimeter Be Damned

    Directory of Open Access Journals (Sweden)

    Christopher B. Scott

    2012-01-01

    Full Text Available For both respiration and combustion, the energy loss difference between glucose and fat oxidation often is referenced to the efficiency of the fuel. Yet, the addition of anaerobic metabolism with ATP resynthesis to complete respiratory glucose oxidation further contributes to energy loss in the form of entropy changes that are not measured or quantified by calorimetry; combustion and respiratory fat/lactate oxidation lack this anaerobic component. Indeed, the presence or absence of an anaerobic energy expenditure component needs to be applied to the estimation of energy costs in regard to glucose, lactate, and fuel oxidation, especially when the measurement of oxygen uptake alone may incorrectly define energy expenditure.

  4. Dissimilatory Metal Reduction by the Facultative Anaerobe Pantoea agglomerans SP1

    Science.gov (United States)

    Francis, Chris A.; Obraztsova, Anna Y.; Tebo, Bradley M.

    2000-01-01

    Anaerobic enrichments with acetate as the electron donor and Fe(III) as the terminal electron acceptor were obtained from sediments of Salt Pond, a coastal marine basin near Woods Hole, Mass. A pure culture of a facultatively anaerobic Fe(III) reducer was isolated, and 16S rRNA analysis demonstrated that this organism was most closely related to Pantoea (formerly Enterobacter) agglomerans, a member of the family Enterobacteriaceae within the gamma subdivision of the Proteobacteria. This organism, designated strain SP1, can grow by coupling the oxidation of acetate or H2 to the reduction of a variety of electron acceptors, including Fe(III), Mn(IV), Cr(VI), and the humic substance analog 2,6-anthraquinone disulfonate, but not sulfate. To our knowledge, this is the first mesophilic facultative anaerobe reported to couple acetate oxidation to dissimilatory metal reduction. PMID:10653716

  5. Identification of genes specifically required for the anaerobic metabolism of benzene in Geobacter metallireducens

    DEFF Research Database (Denmark)

    Zhang, Tian; Tremblay, Pier-Luc; Chaurasia, Akhilesh Kumar

    2014-01-01

    Although the biochemical pathways for the anaerobic degradation of many of the hydrocarbon constituents in petroleum reservoirs have been elucidated, the mechanisms for anaerobic activation of benzene, a very stable molecule, are not known. Previous studies have demonstrated that Geobacter...... metallireducens can anaerobically oxidize benzene to carbon dioxide with Fe(III) as the sole electron acceptor and that phenol is an intermediate in benzene oxidation. In an attempt to identify enzymes that might be involved in the conversion of benzene to phenol, whole-genome gene transcript abundance...... was compared in cells metabolizing benzene and cells metabolizing phenol. Eleven genes had significantly higher transcript abundance in benzene-metabolizing cells. Five of these genes had annotations suggesting that they did not encode proteins that could be involved in benzene metabolism and were not further...

  6. Microbial diversity of hydrothermal sediments in the Guaymas Basin: evidence for anaerobic methanotrophic communities.

    Science.gov (United States)

    Teske, Andreas; Hinrichs, Kai-Uwe; Edgcomb, Virginia; de Vera Gomez, Alvin; Kysela, David; Sylva, Sean P; Sogin, Mitchell L; Jannasch, Holger W

    2002-04-01

    Microbial communities in hydrothermally active sediments of the Guaymas Basin (Gulf of California, Mexico) were studied by using 16S rRNA sequencing and carbon isotopic analysis of archaeal and bacterial lipids. The Guaymas sediments harbored uncultured euryarchaeota of two distinct phylogenetic lineages within the anaerobic methane oxidation 1 (ANME-1) group, ANME-1a and ANME-1b, and of the ANME-2c lineage within the Methanosarcinales, both previously assigned to the methanotrophic archaea. The archaeal lipids in the Guaymas Basin sediments included archaeol, diagnostic for nonthermophilic euryarchaeota, and sn-2-hydroxyarchaeol, with the latter compound being particularly abundant in cultured members of the Methanosarcinales. The concentrations of these compounds were among the highest observed so far in studies of methane seep environments. The delta-(13)C values of these lipids (delta-(13)C = -89 to -58 per thousand) indicate an origin from anaerobic methanotrophic archaea. This molecular-isotopic signature was found not only in samples that yielded predominantly ANME-2 clones but also in samples that yielded exclusively ANME-1 clones. ANME-1 archaea therefore remain strong candidates for mediation of the anaerobic oxidation of methane. Based on 16S rRNA data, the Guaymas sediments harbor phylogenetically diverse bacterial populations, which show considerable overlap with bacterial populations of geothermal habitats and natural or anthropogenic hydrocarbon-rich sites. Consistent with earlier observations, our combined evidence from bacterial phylogeny and molecular-isotopic data indicates an important role of some novel deeply branching bacteria in anaerobic methanotrophy. Anaerobic methane oxidation likely represents a significant and widely occurring process in the trophic ecology of methane-rich hydrothermal vents. This study stresses a high diversity among communities capable of anaerobic oxidation of methane.

  7. A possible relationship between bumblefoot responsive to potassium arsenite and micrococci in the blood of three birds of prey.

    Science.gov (United States)

    Tarello, W

    2002-01-01

    Pododermatitis (bumblefoot) is a major health problem of falcons world-wide because healing processes in the talons are difficult and lengthy. A peregrine (Falco peregrinus), a merlin (Falco columbarius) and a saker falcon (Falco cherrug) with bumblefoot at different stages ranging from III to V, were all found to be carriers of micrococcus-like organisms in the blood and two of them were successfully treated with 0.5% potassium arsenite in low dosage given intravenously. A number of considerations are made on the immune dysfunction aspects of bumblefoot in birds of prey and on the emerging role of arsenic-based medicaments in the treatment of animal and human immune dysfunction syndromes.

  8. Application of dynamic membranes in anaerobic membranes in anaerobic membrane bioreactor systems

    NARCIS (Netherlands)

    Erşahin, M.E.

    2015-01-01

    Anaerobic membrane bioreactors (AnMBRs) physically ensure biomass retention by the application of a membrane filtration process. With growing application experiences from aerobic membrane bioreactors (MBRs), the combination of membrane and anaerobic processes has received much attention and become

  9. Upflow anaerobic sludge blanket reactor--a review.

    Science.gov (United States)

    Bal, A S; Dhagat, N N

    2001-04-01

    Biological treatment of wastewater basically reduces the pollutant concentration through microbial coagulation and removal of non-settleable organic colloidal solids. Organic matter is biologically stabilized so that no further oxygen demand is exerted by it. The biological treatment requires contact of the biomass with the substrate. Various advances and improvements in anaerobic reactors to achieve variations in contact time and method of contact have resulted in development of in suspended growth systems, attached growth or fixed film systems or combinations thereof. Although anaerobic systems for waste treatment have been used since late 19th century, they were considered to have limited treatment efficiencies and were too slow to serve the needs of a quickly expanding wastewater volume, especially in industrialized and densely populated areas. At present aerobic treatment is the most commonly used process to reduce the organic pollution level of both domestic and industrial wastewaters. Aerobic techniques, such as activated sludge process, trickling filters, oxidation ponds and aerated lagoons, with more or less intense mixing devices, have been successfully installed for domestic wastewater as well as industrial wastewater treatment. Anaerobic digestion systems have undergone modifications in the last two decades, mainly as a result of the energy crisis. Major developments have been made with regard to anaerobic metabolism, physiological interactions among different microbial species, effects of toxic compounds and biomass accumulation. Recent developments however, have demonstrated that anaerobic processes might be an economically attractive alternative for the treatment of different types of industrial wastewaters and in (semi-) tropical areas also for domestic wastewaters. The anaerobic degradation of complex, particulate organic matter has been described as a multistep process of series and parallel reactions. It involves the decomposition of organic and

  10. A Raman spectroscopic study of arsenite and thioarsenite species in aqueous solution at 25°C

    Directory of Open Access Journals (Sweden)

    Janecky David R

    2002-02-01

    Full Text Available The Raman spectra of thioarsenite and arsenite species in aqueous solution were obtained at room temperature. Solutions at constant ΣAs + ΣS of 0.1 and 0.5 mol kg-1 were prepared with various ΣS/ΣAs ratios (0.1–9.0 and pH values (~7–13.2. Our data suggest that the speciation of As under the conditions investigated is more complicated than previously thought. The Raman measurements offer evidence for at least six separate S-bearing As species whose principal bands are centered near 365, 385, 390, 400, 415 and 420 cm-1. The data suggest that at least two different species may give rise to bands at 385 cm-1, bringing the probable minimum number of species to seven. Several additional species are possible but could not be resolved definitively. In general, the relative proportions of these species are dependent on total As concentration, ΣS/ΣAs ratio and pH. At very low ΣS/ΣAs ratios we also observe Raman bands attributable to the dissociation products of H3AsO3(aq. Although we were unable to assign precise stoichiometries for the various thioarsenite species, we were able to map out general pH and ΣS/ΣAs conditions under which the various thioarsenite and arsenite species are predominant. This study provides a basis for more detailed Raman spectroscopic and other types of investigations of the nature of thioarsenite species.

  11. Potential for anaerobic conversion of xenobiotics

    DEFF Research Database (Denmark)

    Mogensen, Anders Skibsted; Dolfing, J.; Haagensen, Frank

    2003-01-01

    This review covers the latest research on the anaerobic biodegradation of aromatic xenobiotic compounds, with emphasis on surfactants, polycyclic aromatic hydrocarbons, phthalate esters, polychlorinated biphenyls, halogenated phenols, and pesticides. The versatility of anaerobic reactor systems...... regarding the treatment of xenobiotics is shown with the focus on the UASB reactor, but the applicability of other reactor designs for treatment of hazardous waste is also included. Bioaugmentation has proved to be a viable technique to enhance a specific activity in anaerobic reactors and recent research...

  12. Understanding and Predicting Foam in Anaerobic Digester

    OpenAIRE

    I. R. Kanu; T. J. Aspray; A. J. Adeloye

    2015-01-01

    As a result of the ambiguity and complexity surrounding anaerobic digester foaming, efforts have been made by various researchers to understand the process of anaerobic digester foaming so as to proffer a solution that can be universally applied rather than site specific. All attempts ranging from experimental analysis to comparative review of other process has not fully explained the conditions and process of foaming in anaerobic digester. Studying the current available ...

  13. On the active oxygen in bulk MoO3 during the anaerobic dehydrogenation of methanol

    NARCIS (Netherlands)

    O’Brien, M.G.; Beale, A.M.; Jacques, S.D.M.; Buslaps, T.; Honkimaki, V.; Weckhuysen, B.M.

    2009-01-01

    The oxidation of methanol under anaerobic reaction conditions over MoO3 has been studied using an in situ approach, combining ultraviolet−visible (UV−vis), Raman, wide-angle X-ray scattering (WAXS), and online mass spectroscopy (MS) techniques. Comparison of the UV−vis and MS data reveals that

  14. Characterization of Predominant Reductants in an Anaerobic Leachate-Contaminated Aquifer by Nitroaromatic Probe Compounds

    DEFF Research Database (Denmark)

    Rügge, Kirsten; Hofstetter, Thomas B.; Haderlein, Stefan B.

    1998-01-01

    potential reductants (e.g., H(2)S/HS(-), Fe(II)(aq), reduced organic matter, microorganisms), the patterns of relative reactivity of the probe compounds indicated that ferrous iron associated with iron(lll) (hydr)oxide surfaces was the dominant reductant throughout the anaerobic region of the plume. Our...

  15. Avaliação da produção de óxido nítrico em ratos, submetidos aos exercícios aeróbio e anaeróbio Evaluation of the production of nitric oxide in mice, submitted to aerobic and anaerobic exercises

    Directory of Open Access Journals (Sweden)

    Vanessa Guimarães de Freitas Cruvelo D'Ávila

    2008-12-01

    Full Text Available Óxido nítrico (NO exerce influências muito importantes em vários processos fisiológicos. Neste trabalho avaliamos a produção de NO sanguíneo em ratos Wistar, submetidos ao nado aeróbio e anaeróbio agudos. A formação do óxido nítrico foi verificada através da dosagem dos produtos de oxidação estáveis do metabolismo do óxido nítrico (nitratos. Para isso utilizamos o método colorimétrico de Griess. Verificamos a existência de uma diferença significativa (p = 0,000261 na produção de óxido nítrico entre a realização do nado aeróbio e o anaeróbio, na qual o aeróbio mostrou-se mais eficiente na promoção de níveis mais elevados. O exercício aeróbio agudo com duração de no mínimo 10 minutos mostrou-se mais eficaz no quesito produção de NO em relação ao exercício de 5 minutos. A positiva relação observada entre o exercício aeróbio e a formação de NO pode ajudar a explicar os efeitos benéficos do exercício na saúde cardiovascular. Sabemos que a prática de exercício aeróbio e sua duração aumentam a biodisponibilidade de NO, o qual é considerado importante regulador fisiológico da pressão arterial.Nitric Oxide (NO exerts important influences in several physiological processes. In this work we evaluated the production of sanguine NO in Wistar rats, submitted to the acute aerobic and anaerobic exercises. The formation of nitric oxide was verified through the dosage of the end products of oxidation of the metabolism of nitric oxide (nitrates. For this we used the colorimetric Griess method. We verified the existence of a significant difference (p = 0.000261 in the production of NO among the accomplishment of the aerobic swimming and the anaerobic, where the aerobic was shown more efficient in the promotion of higher levels. The acute aerobic exercise with duration of at least 10 minutes was shown more effective in the requirement production of NO in relation to the 5 minutes exercise. The positive

  16. Arsenite and its metabolites, MMAIII and DMAIII, modify CYP3A4, PXR and RXR alpha expression in the small intestine of CYP3A4 transgenic mice

    International Nuclear Information System (INIS)

    Medina-Diaz, I.M.; Estrada-Muniz, E.; Reyes-Hernandez, O.D.; Ramirez, P.; Vega, L.; Elizondo, G.

    2009-01-01

    Arsenic is an environmental pollutant that has been associated with an increased risk for the development of cancer and several other diseases through alterations of cellular homeostasis and hepatic function. Cytochrome P450 (P450) modification may be one of the factors contributing to these disorders. Several reports have established that exposure to arsenite modifies P450 expression by decreasing or increasing mRNA and protein levels. Cytochrome P450 3A4 (CYP3A4), the predominant P450 expressed in the human liver and intestines, which is regulated mainly by the Pregnane X Receptor-Retinoid X Receptor alpha (PXR-RXR alpha) heterodimer, contributes to the metabolism of approximately half the drugs in clinical use today. The present study investigates the effect of sodium arsenite and its metabolites monomethylarsonous acid (MMA III ) and dimethylarsinous acid (DMA III ) on CYP3A4, PXR, and RXR alpha expression in the small intestine of CYP3A4 transgenic mice. Sodium arsenite treatment increases mRNA, protein and CYP3A4 activity in a dose-dependent manner. However, the increase in protein expression was not as marked as compared to the increase in mRNA levels. Arsenite treatment induces the accumulation of Ub-protein conjugates, indicating that the activation of this mechanism may explain the differences observed between the mRNA and protein expression of CYP3A4 induction. Treatment with 0.05 mg/kg of DMA III induces CYP3A4 in a similar way, while treatment with 0.05 mg/kg of MMA III increases mostly mRNA, and to a lesser degree, CYP3A4 activity. Sodium arsenite and both its metabolites increase PXR mRNA, while only DMA III induces RXR alpha expression. Overall, these results suggest that sodium arsenite and its metabolites induce CYP3A4 expression by increasing PXR expression in the small intestine of CYP3A4 transgenic mice.

  17. Physiologically anaerobic microorganisms of the deep subsurface

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, S.E. Jr.; Chung, K.T.

    1991-06-01

    This study seeks to determine numbers, diversity, and morphology of anaerobic microorganisms in 15 samples of subsurface material from the Idaho National Engineering Laboratory, in 18 samples from the Hanford Reservation and in 1 rock sample from the Nevada Test Site; set up long term experiments on the chemical activities of anaerobic microorganisms based on these same samples; work to improve methods for the micro-scale determination of in situ anaerobic microbial activity;and to begin to isolate anaerobes from these samples into axenic culture with identification of the axenic isolates.

  18. Anaerobic Biotransformation and Mobility of Pu and Pu-EDTA

    Energy Technology Data Exchange (ETDEWEB)

    Bolton, H., Jr.; Rai, D.; Xun, L.

    2005-04-18

    The complexation of radionuclides (e.g., plutonium (Pu) and {sup 60}Co) by codisposed ethylenediaminetetraacetate (EDTA) has enhanced their transport in sediments at DOE sites. Our previous NABIR research investigated the aerobic biodegradation and biogeochemistry of Pu(IV)-EDTA. Plutonium(IV) forms stable complexes with EDTA under aerobic conditions and an aerobic EDTA degrading bacterium can degrade EDTA in the presence of Pu and decrease Pu mobility. However, our recent studies indicate that while Pu(IV)-EDTA is stable in simple aqueous systems, it is not stable in the presence of relatively soluble Fe(III) compounds (i.e., Fe(OH){sub 3}(s)--2-line ferrihydrite). Since most DOE sites have Fe(III) containing sediments, Pu(IV) in likely not the mobile form of Pu-EDTA in groundwater. The only other Pu-EDTA complex stable in groundwater relevant to DOE sites would be Pu(III)-EDTA, which only forms under anaerobic conditions. Research is therefore needed in this brand new project to investigate the biotransformation of Pu and Pu-EDTA under anaerobic conditions. The biotransformation of Pu and Pu-EDTA under various anaerobic regimes is poorly understood including the reduction kinetics of Pu(IV) to Pu(III) from soluble (Pu(IV)-EDTA) and insoluble Pu(IV) as PuO2(am) by metal reducing bacteria, the redox conditions required for this reduction, the strength of the Pu(III)-EDTA complex, how the Pu(III)-EDTA complex competes with other dominant anoxic soluble metals (e.g., Fe(II)), and the oxidation kinetics of Pu(III)-EDTA. Finally, the formation of a stable soluble Pu(III)-EDTA complex under anaerobic conditions would require degradation of the EDTA complex to limit Pu(III) transport in geologic environments. Anaerobic EDTA degrading microorganisms have not been isolated. These knowledge gaps preclude the development of a mechanistic understanding of how anaerobic conditions will influence Pu and Pu-EDTA fate and transport to assess, model, and design approaches to stop

  19. Anaerobic Biotransformation and Mobility of Pu and Pu-EDTA

    International Nuclear Information System (INIS)

    Bolton, H. Jr.; Rai, D.; Xun, L.

    2005-01-01

    The complexation of radionuclides (e.g., plutonium (Pu) and 60 Co) by codisposed ethylenediaminetetraacetate (EDTA) has enhanced their transport in sediments at DOE sites. Our previous NABIR research investigated the aerobic biodegradation and biogeochemistry of Pu(IV)-EDTA. Plutonium(IV) forms stable complexes with EDTA under aerobic conditions and an aerobic EDTA degrading bacterium can degrade EDTA in the presence of Pu and decrease Pu mobility. However, our recent studies indicate that while Pu(IV)-EDTA is stable in simple aqueous systems, it is not stable in the presence of relatively soluble Fe(III) compounds (i.e., Fe(OH) 3 (s)--2-line ferrihydrite). Since most DOE sites have Fe(III) containing sediments, Pu(IV) in likely not the mobile form of Pu-EDTA in groundwater. The only other Pu-EDTA complex stable in groundwater relevant to DOE sites would be Pu(III)-EDTA, which only forms under anaerobic conditions. Research is therefore needed in this brand new project to investigate the biotransformation of Pu and Pu-EDTA under anaerobic conditions. The biotransformation of Pu and Pu-EDTA under various anaerobic regimes is poorly understood including the reduction kinetics of Pu(IV) to Pu(III) from soluble (Pu(IV)-EDTA) and insoluble Pu(IV) as PuO2(am) by metal reducing bacteria, the redox conditions required for this reduction, the strength of the Pu(III)-EDTA complex, how the Pu(III)-EDTA complex competes with other dominant anoxic soluble metals (e.g., Fe(II)), and the oxidation kinetics of Pu(III)-EDTA. Finally, the formation of a stable soluble Pu(III)-EDTA complex under anaerobic conditions would require degradation of the EDTA complex to limit Pu(III) transport in geologic environments. Anaerobic EDTA degrading microorganisms have not been isolated. These knowledge gaps preclude the development of a mechanistic understanding of how anaerobic conditions will influence Pu and Pu-EDTA fate and transport to assess, model, and design approaches to stop Pu

  20. Anaerobic electrochemical membrane bioreactor and process for wastewater treatment

    KAUST Repository

    Amy, Gary

    2015-07-09

    An anaerobic electrochemical membrane bioreactor (AnEMBR) can include a vessel into which wastewater can be introduced, an anode electrode in the vessel suitable for supporting electrochemically active microorganisms (EAB, also can be referred to as anode reducing bacteria, exoelectrogens, or electricigens) that oxidize organic compounds in the wastewater, and a cathode membrane electrode in the vessel, which is configured to pass a treated liquid through the membrane while retaining the electrochemically active microorganisms and the hydrogenotrophic methanogens (for example, the key functional microbial communities, including EAB, methanogens and possible synergistic fermenters) in the vessel. The cathode membrane electrode can be suitable for catalyzing the hydrogen evolution reaction to generate hydro en.

  1. Are elusive anaerobic pathways key methane sinks in eutrophic lakes and reservoirs?

    OpenAIRE

    Reed, D.C.; Deemer, B.R.; van Grinsven, S.; Harrison, J.A.

    2017-01-01

    Collectively, freshwaters constitute a significant source of methane to the atmosphere, and both methane production and methane oxidation can strongly influence net emissions. Anaerobic methane oxidation (AOM) is recognized as a strong regulator of marine methane emissions and appreciation of AOM’s importance in freshwater is growing. In spite of this renewed interest, recent work and reactive-transport modeling results we present in this paper point to unresolved pathways for AOM. Comparison...

  2. ANAEROBIC BIODEGRADATION OF A BIODEGRADABLE MATERIAL UNDER ANAEROBIC - THERMOPHILIC DIGESTION

    Directory of Open Access Journals (Sweden)

    RICARDO CAMACHO-MUÑOZ

    2014-12-01

    Full Text Available This paper dertermined the anaerobic biodegradation of a polymer obtained by extrusion process of native cassava starch, polylactic acid and polycaprolactone. Initially a thermophilic - methanogenic inoculum was prepared from urban solid waste. The gas final methane concentration and medium’s pH reached values of 59,6% and 7,89 respectively. The assay assembly was carried out according ASTM D5511 standard. The biodegradation percent of used materials after 15 day of digestion were: 77,49%, 61,27%, 0,31% for cellulose, sample and polyethylene respectively. Due cellulose showed biodegradation levels higher than 70% it’s deduced that the inoculum conditions were appropriate. A biodegradation level of 61,27%, 59,35% of methane concentration in sample’s evolved gas and a medium’s finale pH of 7,71 in sample’s vessels, reveal the extruded polymer´s capacity to be anaerobically degraded under thermophilic- high solid concentration conditions.

  3. Processing anaerobic sludge for extended storage as anaerobic digester inoculum.

    Science.gov (United States)

    Li, Jiajia; Zicari, Steven M; Cui, Zongjun; Zhang, Ruihong

    2014-08-01

    Thermophilic anaerobic sludge was processed to reduce the volume and moisture content in order to reduce costs for storing and transporting the sludge as microbial inoculum for anaerobic digester startup. The moisture content of the sludge was reduced from 98.7% to 82.0% via centrifugation and further to 71.5% via vacuum evaporation. The processed sludge was stored for 2 and 4 months and compared with the fresh sludge for the biogas and methane production using food waste and non-fat dry milk as substrates. It was found that fresh unprocessed sludge had the highest methane yield and the yields of both unprocessed and processed sludges decreased during storage by 1-34%, however processed sludges seemed to regain some activity after 4 months of storage as compared to samples stored for only 2 months. Maximum methane production rates obtained from modified Gompertz model application also increased between the 2-month and 4-month processed samples. Copyright © 2014. Published by Elsevier Ltd.

  4. Anaerobic degradation of linoleic oleic acids

    Energy Technology Data Exchange (ETDEWEB)

    Lalman, J.A.; Bagley, D.M.

    1999-07-01

    The anaerobic degradation of linoleic (C18:2) and oleic (C18:1) acids was examined in batch experiments. By-product distribution depended on both the type of long chain fatty acid added and initial substrate concentration. Major by-products were palmitic (C16), myristic (C14) and acetic acids. Trace quantities of palmitoleic (C16:1) and lauric (C12) acids were observed together with larger amounts of palmitic (C16), myristic (C14) and hexanoic (C6) acids in cultures incubated with 100 mg/L linoleic (C18:2) acid. Bio-hydrogenation of C18 fatty acids was not necessary for the {beta}-oxidation mechanism to proceed. Aceticlastic methanogenic inhibition was observed in cultures inoculated with greater than 50 mg/L linoleic (C18:2) acid. In cultures incubated with greater than 50 mg/L oleic (C18:1) acid, aceticlastic methanogenic inhibition was observed for a short time period.

  5. The transition from late G sub 1 to early S phase is most vulnerable to the coclastogenic effect of ultraviolet radiation plus arsenite

    Energy Technology Data Exchange (ETDEWEB)

    Huang, H.; Huang, C.F. (National Tsing-Hua Univ., Hsinchu (Taiwan). Inst. of Radiation Biology); Huang, J.S. (Tung-Hai Univ., Taichung (Taiwan). Dept. of Biology); Wang, T.C.; Jan, K.Y. (Academia Sinica, Tapei (China). Inst. of Zoology)

    1992-01-01

    It has previously been reported that chromosome aberrations induced by ultraviolet (UV) radiation can be enhanced by treatment with sodium arsenite for 24h post-irradiation. Using synchronized CHO-K1 cells, it has now been established that cells in the transitional stage from late G{sub 1} to early S phase are most vulnerable to the coclastogenic effect of treatment with UV radiation and arsenite. This result cannot be explained by the special vulnerability of cells in the late G{sub 1} to early S transition to UV clastogenicity, as the coclastogenic effects of UV and caffeine or UV and arabinofuranosylcytosine were detected when treating the mid-S but not late-G{sub 1} or G{sub 2} phase cells. (author).

  6. Method for anaerobic fermentation and biogas production

    DEFF Research Database (Denmark)

    2013-01-01

    The present invention relates to a method for biomass processing, anaerobic fermentation of the processed biomass, and the production biogas. In particular, the invention relates to a system and method for generating biogas from anaerobic fermentation of processed organic material that comprises...

  7. Anaerobic exercise - Induced changes in serum mineral ...

    African Journals Online (AJOL)

    Anaerobic exercise, a non 02 – dependent energy metabolism leads to transient metabolic changes, which are corrected gradually by homestatic mechanism. We investigated in eight male subjects, the effects of anaerobic exercise after a day sedentary activity on serum mineral concentration. There was significant ...

  8. Integrated anaerobic and aerobic treatment of sewage

    NARCIS (Netherlands)

    Wang, K.

    1994-01-01

    This thesis describes results of investigations dealing with sequential concept of anaerobic-aerobic treatment of municipal wastewater. The main purposes of the study were 1) to develop a proper anaerobic hydrolytic pretreatment unit, consisting of a Hydrolysis Upflow Sludge Bed (HUSB-)

  9. Anaerobic induction in B. cereus ATCC 14579

    NARCIS (Netherlands)

    Voort, van der M.; Abee, Tjakko

    2008-01-01

    A comparative transcriptome approach was used to assess genes involved in metabolism and pathogenesis that are specifically activated during anaerobic growth of the spore-forming food-borne human pathogen Bacillus cereus ATCC 14579. Growth under anaerobic conditions in Brain Heart Infusion broth

  10. Study of sodium arsenite induced biochemical changes on certain biomolecules of the freshwater catfish Clarias batrachus

    Directory of Open Access Journals (Sweden)

    Randhir Kumar

    2012-01-01

    Full Text Available Toxic impact of sublethal concentration (1 mg/L; 5% of 96h LC50 value of sodium arsenite (NaAsO2 on certain biomolecules (proteins, nucleic acids, lipids, and glycogen of five tissue components (muscles, liver, brain, skin, and gills of the freshwater catfish Clarias batrachus was analysed. The important toxic manifestations include marked decrease in the concentration of proteins (21.72-45.42% in muscles; 3.42-53.94% in liver; 15.39-45.42% in brain; 15.40-4.00% in skin and 11.35-64.13% in gills, DNA (0.55-22.95% in muscles; 8.33-14.06% in liver; 5.30-18.40% in brain; 13.57-52.80% in skin; and 12.38-31.01% in gills, RNA (42.68-76.16% in muscles; 10.68-39.75% in liver; 5.66-29.05% in brain; 7.72-27.93% in skin and 21.47-44.38% in gills and glycogen (24.00-51.72% in muscles; 49.11-72.45% in liver; 11.49-26.03% in brain; 26.13-38.05% in skin and 17.80-37.97% in gills. Excepting liver where the lipid content increases (15.82-24.13%, the fat content also showed depletion in their concentration (10.40-29.83% in muscles; 8.30-34.45% in brain; 8.94-31.47% in skin and 12.75-28.86% in gills, in the rest of the organ systems.Foi analisado o impacto tóxico da concentração subletal (1 mg/L; 5% do valor de LC50 de 96h do arsenito de sódio (NaAsO2 sobre certas biomoléculas (proteinas, ácidos nucleicos, lipídios e glicogênio de cinco tecidos (músculos, fígado, cérebro, pele e brânquias do bagre Clarias batrachus. As manifestações tóxicas importantes incluiram o decréscimo acentuado na concentração de proteinas (21,72-45,42% nos músculos; 3,42-53,94% no fígado; 15,39-45,42% no cérebro; 15,40-4,00% na pele e 11,35-64,13% nas brânquias, DNA (0,55-22,95% nos músculos; 8,33-14,06% no fígado; 5,30-18,40% no cérebro; 13,57-52,80% na pele e 12,38-31,01% nas brânquias, RNA (42,68-76,16% nos músculos; 10,68-39,75% no fígado; 5,66-29,05% no cérebro; 7,72-27,93% na pele e 21,47-44,38% nas brânquias e glicogênio (24,00-51,72% nos músculos; 49

  11. Hydroxylated naphthoquinones as substrates for Escherichia coli anaerobic reductases.

    Science.gov (United States)

    Rothery, R A; Chatterjee, I; Kiema, G; McDermott, M T; Weiner, J H

    1998-01-01

    We have used two hydroxylated naphthoquinol menaquinol analogues, reduced plumbagin (PBH2, 5-hydroxy-2-methyl-1,4-naphthoquinol) and reduced lapachol [LPCH2, 2-hydroxy-3-(3-methyl-2-butenyl)-1, 4-naphthoquinol], as substrates for Escherichia coli anaerobic reductases. These compounds have optical, solubility and redox properties that make them suitable for use in studies of the enzymology of menaquinol oxidation. Oxidized plumbagin and oxidized lapachol have well resolved absorbances at 419 nm (epsilon=3.95 mM-1. cm-1) and 481 nm (epsilon=2.66 mM-1.cm-1) respectively (in Mops/KOH buffer, pH 7.0). PBH2 is a good substrate for nitrate reductase A (Km=282+/-28 microM, kcat=120+/-6 s-1) and fumarate reductase (Km=155+/-24 microM, kcat=30+/-2 s-1), but not for DMSO reductase. LPCH2 is a good substrate for nitrate reductase A (Km=57+/-35 microM, kcat=68+/-13 s-1), fumarate reductase (Km=85+/-27 microM, kcat=74+/-6 s-1) and DMSO reductase (Km=238+/-30 microM, kcat=191+/-21 s-1). The sensitivity of enzymic LPCH2 and PBH2 oxidation to 2-n-heptyl-4-hydroxyquinoline N-oxide inhibition is consistent with their oxidation occurring at sites of physiological quinol binding. PMID:9576848

  12. Anaerobic granular sludge and biofilm reactors

    DEFF Research Database (Denmark)

    Skiadas, Ioannis V.; Gavala, Hariklia N.; Schmidt, Jens Ejbye

    2003-01-01

    The long retention time of the active biomass in the high-rate anaerobic digesters is the key factor for the successful application of the high rate anaerobic wastewater treatment. The long solids retention time is achieved due to the specific reactor configuration and it is enhanced by the immob......The long retention time of the active biomass in the high-rate anaerobic digesters is the key factor for the successful application of the high rate anaerobic wastewater treatment. The long solids retention time is achieved due to the specific reactor configuration and it is enhanced...... by the immobilization of the biomass, which forms static biofilms, particle-supported biofilms, or granules depending on the reactor's operational conditions. The advantages of the high-rate anaerobic digestion over the conventional aerobic wastewater treatment methods has created a clear trend for the change...

  13. Improved Aeration Process - Catalytic Role Of The Iron Oxides In Arsenic Oxidation And Coprecipitation

    DEFF Research Database (Denmark)

    Kowalski, Krysztof; Søgaard, Erik Gydesen

    2013-01-01

    Demands for a better drinking water quality, especially concerning arsenic, a compound with many adverse health effects, put a pressure on the utilities to ensure the best treatment technologies that meet nowadays and possible future quality standards. The aim of this paper is to introduce...... an improved aeration process that can also help in developing better arsenic removal treatment. The results present advantages of arsenic oxidation in an aeration process in the presence of ferrihydrite surface that have been shown to adsorb arsenic simultaneously to its oxidation. The presence...... of precipitated (ferrihydrite surface) and dissolved iron enhanced arsenic oxidation in comparison to solution with absence of precipitated iron in laboratory scale experiments. However, in the pilot scale studies the adsorption of arsenite on ferrihydrite was found to be the main process occurring during...

  14. Anaerobic methanotrophic communities thrive in deep submarine permafrost.

    Science.gov (United States)

    Winkel, Matthias; Mitzscherling, Julia; Overduin, Pier P; Horn, Fabian; Winterfeld, Maria; Rijkers, Ruud; Grigoriev, Mikhail N; Knoblauch, Christian; Mangelsdorf, Kai; Wagner, Dirk; Liebner, Susanne

    2018-01-22

    Thawing submarine permafrost is a source of methane to the subsurface biosphere. Methane oxidation in submarine permafrost sediments has been proposed, but the responsible microorganisms remain uncharacterized. We analyzed archaeal communities and identified distinct anaerobic methanotrophic assemblages of marine and terrestrial origin (ANME-2a/b, ANME-2d) both in frozen and completely thawed submarine permafrost sediments. Besides archaea potentially involved in anaerobic oxidation of methane (AOM) we found a large diversity of archaea mainly belonging to Bathyarchaeota, Thaumarchaeota, and Euryarchaeota. Methane concentrations and δ 13 C-methane signatures distinguish horizons of potential AOM coupled either to sulfate reduction in a sulfate-methane transition zone (SMTZ) or to the reduction of other electron acceptors, such as iron, manganese or nitrate. Analysis of functional marker genes (mcrA) and fluorescence in situ hybridization (FISH) corroborate potential activity of AOM communities in submarine permafrost sediments at low temperatures. Modeled potential AOM consumes 72-100% of submarine permafrost methane and up to 1.2 Tg of carbon per year for the total expected area of submarine permafrost. This is comparable with AOM habitats such as cold seeps. We thus propose that AOM is active where submarine permafrost thaws, which should be included in global methane budgets.

  15. Correlation between microbial community and granule conductivity in anaerobic bioreactors for brewery wastewater treatment

    DEFF Research Database (Denmark)

    Shrestha, Pravin; Malvankar, Nikhil S.; Werner, Jeffrey

    2014-01-01

    Prior investigation of an upflow anaerobic sludge blanket (UASB) reactor treating brewery wastes suggested that direct interspecies electron transfer (DIET) significantly contributed to interspecies electron transfer to methanogens. To investigate DIET in granules further, the electrical conducti......Prior investigation of an upflow anaerobic sludge blanket (UASB) reactor treating brewery wastes suggested that direct interspecies electron transfer (DIET) significantly contributed to interspecies electron transfer to methanogens. To investigate DIET in granules further, the electrical...... conductivity and bacterial community composition of granules in fourteen samples from four different UASB reactors treating brewery wastes were investigated. All of the UASB granules were electrically conductive whereas control granules from ANAMMOX (ANaerobic AMMonium OXidation) reactors and microbial...... granules from an aerobic bioreactor designed for phosphate removal were not. There was a moderate correlation (r = 0.67) between the abundance of Geobacter species in the UASB granules and granule conductivity, suggesting that Geobacter contributed to granule conductivity. These results, coupled...

  16. Ambient temperature SNAD process treating anaerobic digester liquor of swine wastewater.

    Science.gov (United States)

    Daverey, Achlesh; Hung, Nien-Tzu; Dutta, Kasturi; Lin, Jih-Gaw

    2013-08-01

    In present study, effluent from anaerobic digestion of swine wastewater was treated by the simultaneous partial nitrification, anaerobic ammonium oxidation and denitrification (SNAD) process using a lab scale 5L sequencing batch reactor (SBR) under ambient temperature. The fluctuation of anaerobic digester liquor quality (COD, 387 ± 145 mg/L; TKN, 662 ± 190 mg/L; NH₄(+)-N, 519 ± 134 mg/L) and temperature created difficulties to develop a stable SNAD process in the SBR (days 1-285). Fed batch feeding strategy was adopted to have a stable condition in the reactor and overcome the negative effects of organic nitrogen. The average total nitrogen, NH₄(+)-N and COD removal efficiencies in the SBR under steady state conditions (days 485-523) were 80%, 96% and 76%, respectively. The results showed that presence of organic nitrogen, mode of feeding and reactor temperature affects the SNAD process. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. EFFECT OF MUSIC ON ANAEROBIC EXERCISE PERFORMANCE

    Science.gov (United States)

    2013-01-01

    For years, mostly the effects of music on cardiorespiratory exercise performance have been studied, but a few studies have examined the effect of music on anaerobic exercise. The purpose of this study was to assess the effect of listening to music and its rhythm on anaerobic exercise: on power output, heart rate and the concentration of blood lactate. 28 male subjects were required to visit the laboratory on 6 occasions, each separated by 48 hours. Firstly, each subject performed the Running-based Anaerobic Sprint Test (RAST) under 3 conditions on separate days: while listening to “slow rhythm music”, “fast rhythm music” or “no music”. 48 hours after the subjects completed RAST under 3 conditions, Wingate Anaerobic Power (WAN) tests were performed under 3 music conditions. The order of the 3 conditions (slow music, fast music and no music) was selected randomly to prevent an order effect. Results showed no significant differences between 3 conditions in anaerobic power assessments, heart rate or blood lactate (p > 0.05). On the basis of these results it can be said that music cannot improve anaerobic performance. The type of music had no impact on power outputs during RAST and WAN exercise. As a conclusion, listening to music and its rhythm cannot enhance anaerobic performance and cannot change the physiological response to supramaximal exercise. PMID:24744463

  18. EFFECT OF MUSIC ON ANAEROBIC EXERCISE PERFORMANCE

    Directory of Open Access Journals (Sweden)

    Tülin Atan

    2013-01-01

    Full Text Available For years, mostly the effects of music on cardiorespiratory exercise performance have been studied, but a few studies have examined the effect of music on anaerobic exercise. The purpose of this study was to assess the effect of listening to music and its rhythm on anaerobic exercise: on power output, heart rate and the concentration of blood lactate. 28 male subjects were required to visit the laboratory on 6 occasions, each separated by 48 hours. Firstly, each subject performed the Running-based Anaerobic Sprint Test (RAST under 3 conditions on separate days: while listening to “slow rhythm music”, “fast rhythm music” or “no music”. 48 hours after the subjects completed RAST under 3 conditions, Wingate Anaerobic Power (WAN tests were performed under 3 music conditions. The order of the 3 conditions (slow music, fast music and no music was selected randomly to prevent an order effect. Results showed no significant differences between 3 conditions in anaerobic power assessments, heart rate or blood lactate (p>0.05. On the basis of these results it can be said that music cannot improve anaerobic performance. The type of music had no impact on power outputs during RAST and WAN exercise. As a conclusion, listening to music and its rhythm cannot enhance anaerobic performance and cannot change the physiological response to supramaximal exercise.

  19. Molecular ecology of anaerobic reactor systems

    DEFF Research Database (Denmark)

    Hofman-Bang, H. Jacob Peider; Zheng, D.; Westermann, Peter

    2003-01-01

    Anaerobic reactor systems are essential for the treatment of solid and liquid wastes and constitute a core facility in many waste treatment plants. Although much is known about the basic metabolism in different types of anaerobic reactors, little is known about the microbes responsible for these ......Anaerobic reactor systems are essential for the treatment of solid and liquid wastes and constitute a core facility in many waste treatment plants. Although much is known about the basic metabolism in different types of anaerobic reactors, little is known about the microbes responsible...... and malfunctions of anaerobic digesters occasionally experienced, leading to sub-optimal methane production and wastewater treatment. Using a variety of molecular techniques, we are able to determine which microorganisms are active, where they are active, and when they are active, but we still need to determine...... to the abundance of each microbe in anaerobic reactor systems by rRNA probing. This chapter focuses on various molecular techniques employed and problems encountered when elucidating the microbial ecology of anaerobic reactor systems. Methods such as quantitative dot blot/fluorescence in-situ probing using various...

  20. Biological nutrients removal from the supernatant originating from the anaerobic digestion of the organic fraction of municipal solid waste.

    Science.gov (United States)

    Malamis, S; Katsou, E; Di Fabio, S; Bolzonella, D; Fatone, F

    2014-09-01

    This study critically evaluates the biological processes and techniques applied to remove nitrogen and phosphorus from the anaerobic supernatant produced from the treatment of the organic fraction of municipal solid waste (OFMSW) and from its co-digestion with other biodegradable organic waste (BOW) streams. The wide application of anaerobic digestion for the treatment of several organic waste streams results in the production of high quantities of anaerobic effluents. Such effluents are characterized by high nutrient content, because organic and particulate nitrogen and phosphorus are hydrolyzed in the anaerobic digestion process. Consequently, adequate post-treatment is required in order to comply with the existing land application and discharge legislation in the European Union countries. This may include physicochemical and biological processes, with the latter being more advantageous due to their lower cost. Nitrogen removal is accomplished through the conventional nitrification/denitrification, nitritation/denitritation and the complete autotrophic nitrogen removal process; the latter is accomplished by nitritation coupled with the anoxic ammonium oxidation process. As anaerobic digestion effluents are characterized by low COD/TKN ratio, conventional denitrification/nitrification is not an attractive option; short-cut nitrogen removal processes are more promising. Both suspended and attached growth processes have been employed to treat the anaerobic supernatant. Specifically, the sequencing batch reactor, the membrane bioreactor, the conventional activated sludge and the moving bed biofilm reactor processes have been investigated. Physicochemical phosphorus removal via struvite precipitation has been extensively examined. Enhanced biological phosphorus removal from the anaerobic supernatant can take place through the sequencing anaerobic/aerobic process. More recently, denitrifying phosphorus removal via nitrite or nitrate has been explored. The removal of

  1. Optimization of up-flow anaerobic sludge blanket reactor for ...

    African Journals Online (AJOL)

    Optimization of up-flow anaerobic sludge blanket reactor for treatment of composite fermentation and distillation wastewater. ... Keywords: Composite wastewater, up-flow anaerobic sludge blanket (UASB), anaerobic biological treatment, biogas, granulated anaerobic sludge, industrial wastewater. African Journal of ...

  2. A simple anaerobic system for onsite treatment of domestic wastewater

    African Journals Online (AJOL)

    Among several anaerobic treatment processes, high rate anaerobic digesters receive great attention due to its high loading capacity and chemical oxygen demand removal rate. Up-flow anaerobic sludge blanket reactor (UASB) is getting wide acceptance among several anaerobic processes. However, its application is still ...

  3. Cholera Toxin Production Induced upon Anaerobic Respiration is Suppressed by Glucose Fermentation in Vibrio cholerae.

    Science.gov (United States)

    Oh, Young Taek; Lee, Kang-Mu; Bari, Wasimul; Kim, Hwa Young; Kim, Hye Jin; Yoon, Sang Sun

    2016-03-01

    The causative agent of pandemic cholera, Vibrio cholerae, infects the anaerobic environment of the human intestine. Production of cholera toxin (CT), a major virulence factor of V. cholerae, is highly induced during anaerobic respiration with trimethylamine N-oxide (TMAO) as an alternative electron acceptor. However, the molecular mechanism of TMAO-stimulated CT production is not fully understood. Herein, we reveal that CT production during anaerobic TMAO respiration is affected by glucose fermentation. When the seventh pandemic V. cholerae O1 strain N16961 was grown with TMAO and additional glucose, CT production was markedly reduced. Furthermore, an N16961 Δcrp mutant, devoid of cyclic AMP receptor protein (CRP), was defective in CT production during growth by anaerobic TMAO respiration, further suggesting a role of glucose metabolism in regulating TMAO-mediated CT production. TMAO reductase activity was noticeably decreased when grown together with glucose or by mutation of the crp gene. A CRP binding region was identified in the promoter region of the torD gene, which encodes a structural subunit of the TMAO reductase. Gel shift assays further confirmed the binding of purified CRP to the torD promoter sequence. Together, our results suggest that the bacterial ability to respire using TMAO is controlled by CRP, whose activity is dependent on glucose availability. Our results reveal a novel mechanism for the regulation of major virulence factor production by V. cholerae under anaerobic growth conditions.

  4. ISOLATION OF OBLIGATELY ANAEROBIC PSYCHROPHILIC BACTERIA.

    Science.gov (United States)

    SINCLAIR, N A; STOKES, J L

    1964-03-01

    Sinclair, N. A. (Washington State University, Pullman), and J. L. Stokes. Isolation of obligately anaerobic psychrophilic bacteria. J. Bacteriol. 87:562-565. 1964.-A total of 11 strains of strictly anaerobic psychrophilic bacteria have been isolated from soil, mud, and sewage. The organisms grow well at 0 C in liquid and on solid media, and grow only in the complete absence of oxygen. On the basis of shape, sporulation, flagellation, and strictly anaerobic growth, all of the organisms were classified as strains of Clostridium. Some of the biochemical properties of the strains and the effect of temperature on growth are described.

  5. Intraspecific variation in aerobic and anaerobic locomotion

    DEFF Research Database (Denmark)

    Svendsen, Jon Christian; Tirsgård, Bjørn; Cordero, Gerardo A.

    2015-01-01

    Intraspecific variation and trade-off in aerobic and anaerobic traits remain poorly understood in aquatic locomotion. Using gilthead sea bream (Sparus aurata) and Trinidadian guppy (Poecilia reticulata), both axial swimmers, this study tested four hypotheses: (1) gait transition from steady...... to unsteady (i.e., burst-assisted) swimming is associated with anaerobic metabolism evidenced as excess post exercise oxygen consumption (EPOC); (2) variation in swimming performance (critical swimming speed; U crit) correlates with metabolic scope (MS) or anaerobic capacity (i.e., maximum EPOC); (3...

  6. Anaerobic degradation of linear alkylbenzene sulfonate

    DEFF Research Database (Denmark)

    Mogensen, Anders Skibsted; Haagensen, Frank; Ahring, Birgitte Kiær

    2003-01-01

    Linear alkylbenzene sulfonate (LAS) found in wastewater is removed in the wastewater treatment facilities by sorption and aerobic biodegradation. The anaerobic digestion of sewage sludge has not been shown to contribute to the removal. The concentration of LAS based on dry matter typically...... increases during anaerobic stabilization due to transformation of easily degradable organic matter. Hence, LAS is regarded as resistant to biodegradation under anaerobic conditions. We present data from a lab-scale semi-continuously stirred tank reactor (CSTR) spiked with linear dodecylbenzene sulfonate (C...

  7. Accelerated anaerobic hydrolysis rates under a combination of intermittent aeration and anaerobic conditions

    DEFF Research Database (Denmark)

    Jensen, T. R.; Lastra Milone, T.; Petersen, G.

    2017-01-01

    Anaerobic hydrolysis in activated return sludge was investigated in laboratory scale experiments to find if intermittent aeration would accelerate anaerobic hydrolysis rates compared to anaerobic hydrolysis rates under strict anaerobic conditions. The intermittent reactors were set up in a 240 h...... for calculating hydrolysis rates based on soluble COD were compared. Two-way ANOVA with the Bonferroni post-test was performed in order to register any significant difference between reactors with intermittent aeration and strictly anaerobic conditions respectively. The experiment demonstrated a statistically...... significant difference in favor of the reactors with intermittent aeration showing a tendency towards accelerated anaerobic hydrolysis rates due to application of intermittent aeration. The conclusion of the work is thus that intermittent aeration applied in the activated return sludge process (ARP) can...

  8. Bioelectrochemical enhancement of anaerobic methanogenesis for high organic load rate wastewater treatment in a up-flow anaerobic sludge blanket (UASB) reactor.

    Science.gov (United States)

    Zhao, Zhiqiang; Zhang, Yaobin; Chen, Shuo; Quan, Xie; Yu, Qilin

    2014-10-17

    A coupling process of anaerobic methanogenesis and electromethanogenesis was proposed to treat high organic load rate (OLR) wastewater. During the start-up stage, acetate removal efficiency of the electric-biological reactor (R1) reached the maximization about 19 percentage points higher than that of the control anaerobic reactor without electrodes (R2), and CH4 production rate of R1 also increased about 24.9% at the same time, while additional electric input was 1/1.17 of the extra obtained energy from methane. Coulombic efficiency and current recorded showed that anodic oxidation contributed a dominant part in degrading acetate when the metabolism of methanogens was low during the start-up stage. Along with prolonging operating time, aceticlastic methanogenesis gradually replaced anodic oxidation to become the main pathway of degrading acetate. When the methanogens were inhibited under the acidic conditions, anodic oxidation began to become the main pathway of acetate decomposition again, which ensured the reactor to maintain a stable performance. FISH analysis confirmed that the electric field imposed could enrich the H2/H(+)-utilizing methanogens around the cathode to help for reducing the acidity. This study demonstrated that an anaerobic digester with a pair of electrodes inserted to form a coupling system could enhance methanogenesis and reduce adverse impacts.

  9. Prenatal Exposure to Sodium Arsenite Alters Placental Glucose 1, 3, and 4 Transporters in Balb/c Mice

    Science.gov (United States)

    Gutiérrez-Torres, Daniela Sarahí; González-Horta, Carmen; Del Razo, Luz María; Infante-Ramírez, Rocío; Ramos-Martínez, Ernesto; Levario-Carrillo, Margarita; Sánchez-Ramírez, Blanca

    2015-01-01

    Inorganic arsenic (iAs) exposure induces a decrease in glucose type 4 transporter (GLUT4) expression on the adipocyte membrane, which may be related to premature births and low birth weight infants in women exposed to iAs at reproductive age. The aim of this study was to analyze the effect of sodium arsenite (NaAsO2) exposure on GLUT1, GLUT3, and GLUT4 protein expression and on placental morphology. Female Balb/c mice (n = 15) were exposed to 0, 12, and 20 ppm of NaAsO2 in drinking water from 8th to 18th day of gestation. Morphological changes and GLUT1, GLUT3, and GLUT4 expression were evaluated in placentas by immunohistochemical and image analysis and correlated with iAs and arsenical species concentration, which were quantified by atomic absorption spectroscopy. NaAsO2 exposure induced a significant decrease in fetal and placental weight (P < 0.01) and increases in infarctions and vascular congestion. Whereas GLUT1 expression was unchanged in placentas from exposed group, GLUT3 expression was found increased. In contrast, GLUT4 expression was significantly lower (P < 0.05) in placentas from females exposed to 12 ppm. The decrease in placental GLUT4 expression might affect the provision of adequate fetal nutrition and explain the low fetal weight observed in the exposed groups. PMID:26339590

  10. Prenatal Exposure to Sodium Arsenite Alters Placental Glucose 1, 3, and 4 Transporters in Balb/c Mice

    Directory of Open Access Journals (Sweden)

    Daniela Sarahí Gutiérrez-Torres

    2015-01-01

    Full Text Available Inorganic arsenic (iAs exposure induces a decrease in glucose type 4 transporter (GLUT4 expression on the adipocyte membrane, which may be related to premature births and low birth weight infants in women exposed to iAs at reproductive age. The aim of this study was to analyze the effect of sodium arsenite (NaAsO2 exposure on GLUT1, GLUT3, and GLUT4 protein expression and on placental morphology. Female Balb/c mice (n=15 were exposed to 0, 12, and 20 ppm of NaAsO2 in drinking water from 8th to 18th day of gestation. Morphological changes and GLUT1, GLUT3, and GLUT4 expression were evaluated in placentas by immunohistochemical and image analysis and correlated with iAs and arsenical species concentration, which were quantified by atomic absorption spectroscopy. NaAsO2 exposure induced a significant decrease in fetal and placental weight (P<0.01 and increases in infarctions and vascular congestion. Whereas GLUT1 expression was unchanged in placentas from exposed group, GLUT3 expression was found increased. In contrast, GLUT4 expression was significantly lower (P<0.05 in placentas from females exposed to 12 ppm. The decrease in placental GLUT4 expression might affect the provision of adequate fetal nutrition and explain the low fetal weight observed in the exposed groups.

  11. Protective effects of the dietary supplementation of turmeric (Curcuma longa L.) on sodium arsenite-induced biochemical perturbation in mice.

    Science.gov (United States)

    Karim, Md Rezaul; Haque, Abedul; Islam, Khairul; Ali, Nurshad; Salam, Kazi Abdus; Saud, Zahangir Alam; Hossain, Ekhtear; Fajol, Abul; Akhand, Anwarul Azim; Himeno, Seiichiro; Hossain, Khaled

    2010-12-01

    The present study was undertaken to evaluate the protective effect of turmeric powder on arsenic toxicity through mice model. Swiss albino male mice were divided into four groups. The first group was used as control, while groups 2, 3, and 4 were treated with turmeric powder (T, 50 mg/kg body weight/day), sodium arsenite (Sa, 10 mg/kg body weight/day) and turmeric plus Sa (T+Sa), respectively. Results showed that oral administration of Sa reduced the weight gain of the mice compared to the control group and food supplementation of turmeric prevented the reduction of weight gain. Turmeric abrogated the Sa-induced elevation of serum urea, glucose, triglyceride (TG) level and alanine aminotransferase (ALT) activity except the activity of alkaline phosphatase (ALP). Turmeric also prevented the Sa-induced perturbation of serum butyryl cholinesterase activity (BChE). Therefore, ameliorating effect of turmeric on Sa-treated mice suggested the future application of turmeric to reduce or to prevent arsenic toxicity in human.

  12. Anaerobe Tolerance to Oxygen and the Potentials of Anaerobic and Aerobic Cocultures for Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    M.T. Kato

    1997-12-01

    Full Text Available The anaerobic treatment processes are considered to be well-established methods for the elimination of easily biodegradable organic matter from wastewaters. Some difficulties concerning certain wastewaters are related to the possible presence of dissolved oxygen. The common belief is that anaerobes are oxygen intolerant. Therefore, the common practice is to use sequencing anaerobic and aerobic steps in separate tanks. Enhanced treatment by polishing off the residual biodegradable oxygen demand from effluents of anaerobic reactors, or the biodegradation of recalcitrant wastewater pollutants, usually requires sequenced anaerobic and aerobic bacteria activities. However, the combined activity of both bacteria can also be obtained in a single reactor. Previous experiments with either pure or mixed cultures showed that anaerobes can tolerate oxygen to a certain extent. The oxygen toxicity to methanogens in anaerobic sludges was quantified in batch experiments, as well as in anaerobic reactors. The results showed that methanogens have a high tolerance to oxygen. In practice, it was confirmed that dissolved oxygen does not constitute any detrimental effect on reactor treatment performance. This means that the coexistence of anaerobic and aerobic bacteria in one single reactor is feasible and increases the potentials of new applications in wastewater treatment

  13. Influence of carbon monoxide on the colour stability of defrosted yellowfin tuna (Thunnus albacares) muscle stored under aerobic and anaerobic conditions.

    Science.gov (United States)

    Neethling, Nikki E; Hoffman, Louwrens C; Britz, Trevor J; O'Neill, Bernadette

    2015-06-01

    The use of carbon monoxide (CO) and various packaging types has been suggested to improve/stabilise the colour and oxidative processes of red meats, thereby improving the retail value and revenue. The main aim of this study was to investigate the influence of packaging type and CO treatment on the colour and oxidative stability of tuna. The addition of CO significantly increased the redness (a(*) ) of the tuna steaks but the redness was not equally stable for all treatments. The aerobically packaged steaks showed a temporal decrease in redness while the redness of anaerobically packaged steaks remained relatively stable. The addition of CO did not significantly affect (P >0.05) the brownness (b(*) ) (with one exception) and lightness (L(*) ) of the steaks. The anaerobically packaged steaks showed a significant difference (P 0.05) in lipid or protein oxidation were observed between treatments. The aerobically packaged steaks had a significant temporal increase (P <0.05) in lipid oxidation while no such trend was apparent in the anaerobically packaged steaks. Protein oxidation remained relatively stable over time for both aerobically and anaerobically packaged steaks. Storing CO treated tuna steaks in anaerobic packaging can improve the oxidative and colour stability of tuna. Such treatment can reduce spoilage and wastage thereby potentially increasing revenue. © 2014 Society of Chemical Industry.

  14. Exocellular electron transfer in anaerobic microbial communities

    NARCIS (Netherlands)

    Stams, A.J.M.; Bok, de F.A.M.; Plugge, C.M.; Eekert, van M.H.A.; Dolfing, J.; Schraa, G.

    2006-01-01

    Exocellular electron transfer plays an important role in anaerobic microbial communities that degrade organic matter. Interspecies hydrogen transfer between microorganisms is the driving force for complete biodegradation in methanogenic environments. Many organic compounds are degraded by obligatory

  15. Anaerobic Toxicity of Cationic Silver Nanoparticles

    Data.gov (United States)

    U.S. Environmental Protection Agency — Toxicity data for the impact of nano-silver on anaerobic degradation. This dataset is associated with the following publication: Gitipour, A., S. Thiel, K. Scheckel,...

  16. Solar pond for heating anaerobic digesters

    International Nuclear Information System (INIS)

    Song Kehui; Li Shensheng

    1991-10-01

    A theoretical analysis and numerical results calculated for solar pond heating anaerobic digesters in Beijing area in China are presented. The effect of temperature rise is evident and rather steady. 3 refs, 1 fig., 1 tab

  17. Anaerobic microbial associations degrading aminoaromatic acids

    NARCIS (Netherlands)

    Kotova, I.; Savelieva, O.; Dyakonova, A.T.; Sklyar, V.; Kalyushnyi, S.V.; Stams, A.J.M.; Netrusov, A.

    2005-01-01

    Anaerobic microbial associations have been isolated that degrade aminoaromatic acids to methane and carbon dioxide at high rates. Significant differences between the morphological, cytological, and physiological traits of cultures isolated from samples of adapted and unadapted sludge are shown. The

  18. Biogas plasticization coupled anaerobic digestion: the anaerobic pump stoichiometry.

    Science.gov (United States)

    Schimel, Keith A

    2014-02-01

    This paper presents the stoichiometry section of a bioenergetics investigation into the biogas plasticization of wastewater sludge using the Anaerobic Pump (TAP). Three residue samples, an input substrate and two residual products, were collected from two side by side operated AD systems, a conventional continuous flow and stirred reactor, and TAP, and submitted for elemental and calorimetric analyses. The elemental compositions of the residues were fitted to a heterotrophic metabolism model [1] for both systems. To facilitate balanced stoichiometric models, a simple "cell" correction computation separates measured residual composites into "real" residual composition and cell growth (C5H7NO2) components. The elemental data and model results show that the TAP stage II residual composition (C1H0.065O0.0027N0.036) was nearly devoid of hydrogen and oxygen, leaving only fixed carbon and cells grown as the composition of the remaining mass. This quantitative evidence supports prior measurements of very high methane yields from TAP stage II reactor during steady-state experiments [2]. All performance parameters derived from the stoichiometric model(s) showed good agreement with measured steady-state averaged values. These findings are strong evidence that plasticization-disruption (TAP) cycle is the mechanism responsible for the observed increases in methane yield. The accuracy achieved by the stoichiometry models qualifies them for thermodynamic analysis to obtain potentials and bioconversion efficiencies. How applied pressure causes matrix conformation changes triggered by a functional consequence (plasticization and disruption) is this study's essential focus.

  19. EFFECT OF MUSIC ON ANAEROBIC EXERCISE PERFORMANCE

    OpenAIRE

    Atan, T.

    2013-01-01

    For years, mostly the effects of music on cardiorespiratory exercise performance have been studied, but a few studies have examined the effect of music on anaerobic exercise. The purpose of this study was to assess the effect of listening to music and its rhythm on anaerobic exercise: on power output, heart rate and the concentration of blood lactate. 28 male subjects were required to visit the laboratory on 6 occasions, each separated by 48 hours. Firstly, each subject performed the Running-...

  20. Anaerobic critical velocity in four swimming techniques.

    Science.gov (United States)

    Neiva, H P; Fernandes, R J; Vilas-Boas, J P

    2011-03-01

    The aim of this study was to assess critical velocity in order to control and evaluate anaerobic swimming training. 51 highly trained male swimmers performed maximal 15, 25, 37.5 and 50 m in the 4 swimming techniques to determine critical velocity from the distance-time relationship. Anaerobic critical velocity was compared with 100 m swimming performance and corresponding partials. Complementarily, 9 swimmers performed a 6×50 m (4 min interval) training series at front crawl individual anaerobic critical velocity, capillary blood lactate concentrations being assessed after each repetition. The mean±SD values of anaerobic critical velocity and its relationship with the 100 m event were: 1.61±0.07 (r=0.60, p=0.037), 1.53±0.05 (r=0.81, p=0.015), 1.33±0.05 (r=0.83, p=0.002), and 1.75±0.05 (r=0.74, p=0.001), for butterfly, backstroke, breaststroke and front crawl, respectively. However, differences between anaerobic critical velocity and performance were observed (with exception of the second half of the 100 m swimming events in breaststroke and butterfly). Lactate concentration values at the end of the series were 14.52±1.06 mmol.l (-1), which suggests that it was indeed an anaerobic training set. In this sense, anaerobic critical velocity can be used to prescribe anaerobic training intensities. © Georg Thieme Verlag KG Stuttgart · New York.

  1. Covering Materials for Anaerobic Digesters Producing Biogas

    International Nuclear Information System (INIS)

    Itodo, I. N.; Philips, T. K.

    2002-01-01

    The suitability of foam, concrete and clay soil as covering material on anaerobic digesters producing biogas was investigated using four batch-type digesters of 20 litres volume. The methane yield from the digesters was of the order: foam >control> concrete > clay soil. The digester covered with foam had the highest methane yield, best temperature control and most favourable pH conditions. It is most suitable as cover material on anaerobic digesters

  2. SLEEP DEPRIVATION INDUCED ANXIETY AND ANAEROBIC PERFORMANCE

    Directory of Open Access Journals (Sweden)

    Selma Arzu Vardar

    2007-12-01

    Full Text Available The aim of this study was to investigate the effects of sleep deprivation induced anxiety on anaerobic performance. Thirteen volunteer male physical education students completed the Turkish version of State Anxiety Inventory and performed Wingate anaerobic test for three times: (1 following a full-night of habitual sleep (baseline measurements, (2 following 30 hours of sleep deprivation, and (3 following partial-night sleep deprivation. Baseline measurements were performed the day before total sleep deprivation. Measurements following partial sleep deprivation were made 2 weeks later than total sleep deprivation measurements. State anxiety was measured prior to each Wingate test. The mean state anxiety following total sleep deprivation was higher than the baseline measurement (44.9 ± 12.9 vs. 27.6 ± 4.2, respectively, p = 0.02 whereas anaerobic performance parameters remained unchanged. Neither anaerobic parameters nor state anxiety levels were affected by one night partial sleep deprivation. Our results suggest that 30 hours continuous wakefulness may increase anxiety level without impairing anaerobic performance, whereas one night of partial sleep deprivation was ineffective on both state anxiety and anaerobic performance

  3. Survival of Anaerobic Fe2+ Stress Requires the ClpXP Protease.

    Science.gov (United States)

    Bennett, Brittany D; Redford, Kaitlyn E; Gralnick, Jeffrey A

    2018-04-15

    Shewanella oneidensis strain MR-1 is a versatile bacterium capable of respiring extracellular, insoluble ferric oxide minerals under anaerobic conditions. The respiration of iron minerals results in the production of soluble ferrous ions, which at high concentrations are toxic to living organisms. It is not fully understood how Fe 2+ is toxic to cells anaerobically, nor is it fully understood how S. oneidensis is able to resist high levels of Fe 2+ Here we describe the results of a transposon mutant screen and subsequent deletion of the genes clpX and clpP in S. oneidensis , which demonstrate that the protease ClpXP is required for anaerobic Fe 2+ resistance. Many cellular processes are known to be regulated by ClpXP, including entry into stationary phase, envelope stress response, and turnover of stalled ribosomes. However, none of these processes appears to be responsible for mediating anaerobic Fe 2+ resistance in S. oneidensis Protein trapping studies were performed to identify ClpXP targets in S. oneidensis under Fe 2+ stress, implicating a wide variety of protein targets. Escherichia coli strains lacking clpX or clpP also display increased sensitivity to Fe 2+ anaerobically, indicating Fe 2+ resistance may be a conserved role for the ClpXP protease system. Hypotheses regarding the potential role(s) of ClpXP during periods of high Fe 2+ are discussed. We speculate that metal-containing proteins are misfolded under conditions of high Fe 2+ and that the ClpXP protease system is necessary for their turnover. IMPORTANCE Prior to the evolution of cyanobacteria and oxygenic photosynthesis, life arose and flourished in iron-rich oceans. Today, aqueous iron-rich environments are less common, constrained to low-pH conditions and anaerobic systems such as stratified lakes and seas, digestive tracts, subsurface environments, and sediments. The latter two ecosystems often favor dissimilatory metal reduction, a process that produces soluble Fe 2+ from iron oxide minerals

  4. Co-delivery of doxorubicin and arsenite with reduction and pH dual-sensitive vesicle for synergistic cancer therapy

    Science.gov (United States)

    Zhang, Lu; Xiao, Hong; Li, Jingguo; Cheng, Du; Shuai, Xintao

    2016-06-01

    Drug resistance is the underlying cause for therapeutic failure in clinical cancer chemotherapy. A prodrug copolymer mPEG-PAsp(DIP-co-BZA-co-DOX) (PDBD) was synthesized and assembled into a nanoscale vesicle comprising a PEG corona, a reduction and pH dual-sensitive hydrophobic membrane and an aqueous lumen encapsulating doxorubicin hydrochloride (DOX.HCl) and arsenite (As). The dual stimulation-sensitive design of the vesicle gave rise to rapid release of the physically entrapped DOX.HCl and arsenite inside acidic lysosomes, and chemically conjugated DOX inside the cytosol with high glutathione (GSH) concentration. In the optimized concentration range, arsenite previously recognized as a promising anticancer agent from traditional Chinese medicine can down-regulate the expressions of anti-apoptotic and multidrug resistance proteins to sensitize cancer cells to chemotherapy. Consequently, the DOX-As-co-loaded vesicle demonstrated potent anticancer activity. Compared to the only DOX-loaded vesicle, the DOX-As-co-loaded one induced more than twice the apoptotic ratio of MCF-7/ADR breast cancer cells at a low As concentration (0.5 μM), due to the synergistic effects of DOX and As. The drug loading strategy integrating chemical conjugation and physical encapsulation in stimulation-sensitive carriers enabled efficient drug loading in the formulation.Drug resistance is the underlying cause for therapeutic failure in clinical cancer chemotherapy. A prodrug copolymer mPEG-PAsp(DIP-co-BZA-co-DOX) (PDBD) was synthesized and assembled into a nanoscale vesicle comprising a PEG corona, a reduction and pH dual-sensitive hydrophobic membrane and an aqueous lumen encapsulating doxorubicin hydrochloride (DOX.HCl) and arsenite (As). The dual stimulation-sensitive design of the vesicle gave rise to rapid release of the physically entrapped DOX.HCl and arsenite inside acidic lysosomes, and chemically conjugated DOX inside the cytosol with high glutathione (GSH) concentration. In the

  5. Anaerobic digestion of cellulosic wastes

    International Nuclear Information System (INIS)

    Donaldson, T.L.; Lee, D.D.

    1984-01-01

    Anaerobic digestion is a potentially attractive technology for volume reduction of cellulosic wastes. A substantial fraction of the waste is converted to off-gas and a relatively small volume of biologically stabilized sludge is produced. Process development work is underway using a 75-L digester to verify rates and conversions obtained at the bench scale, to develop start-up and operating procedures, and to generate effluent for characterization and disposal studies. Three runs using batch and batch-fed conditions have been made lasting 36, 90, and over 200 days. Solids solubilization and gas production rates and total solids destruction have met or exceeded the target values of 0.6 g cellulose per L of reactor per day, 0.5 L off-gas per L of reactor per day, and 80% destruction of solids, respectively. Successful start-up procedures have been developed, and preliminary effluent characterization and disposal studies have been done. A simple dynamic process model has been constructed to aid in further process development and for use in process monitoring and control of a large-scale digester. 7 references, 5 figures, 1 table

  6. Anaerobic digestion of cellulosic wastes

    International Nuclear Information System (INIS)

    Lee, D.D.; Donaldson, T.L.

    1985-01-01

    Anaerobic digestion is a potentially attractive technology for volume reduction of low-level radioactive cellulosic wastes. A substantial fraction of the waste is converted to off-gas and a relatively small volume of biologically stabilized sludge is produced. Process development work has been completed using a 75-L digester to verify rates and conversions obtained at the bench scale. Start-up and operating procedures have been developed, and effluent was generated for characterization and disposal studies. Three runs using batch and fed-batch conditions were made lasting 36, 90, and 423 d. Solids solubilization rates and gas production rates averaged approximately 1.8 g cellulose per L of reactor per d and 1.2 L of off-gas per L reactor per d. Greater than 80% destruction of the volatile suspended solids was obtained. A simple dynamic process model was constructed to aid in process design and for use in process monitoring and control of a large-scale digester

  7. Anaerobic microbial transformations of radioactive wastes in subsurface environments

    International Nuclear Information System (INIS)

    Francis, A.J.

    1984-01-01

    Radioactive wastes disposed of in subsurface environments contain a variety of radionuclides and organic compounds. Microorganisms play a major role in the transformation of organic and inorganic constituents of the waste and are partly responsible for the problems encountered at the waste disposal sites. These include microbial degradation of waste forms resulting in trench cover subsidence, migration of radionuclides, and production of radioactive gases such as 14 CO 2 , 14 CH 4 , HT, and CH 3 T. Microbial processes involved in solubilization, mobilization, and immobilization of toxic metals under aerobic and anaerobic conditions are reviewed. Complexing agents and several organic acids produced by microbial action affect mobilization of radionuclides and heavy metals from the wastes. Microorganisms play a significant role in the transformation and cycling of tritium in the environment by (i) oxidation of tritium and tritiated methane under aerobic conditions and (ii) production of tritium and tritiated methane from wastes containing tritiated water and organic compounds under anaerobic conditions. 23 references, 2 figures, 2 tables

  8. Fate of neptunium in an anaerobic, methanogenic microcosm.

    Energy Technology Data Exchange (ETDEWEB)

    Banaszak, J. E.

    1998-12-21

    Neptunium is found predominantly as Np(IV) in reducing environments, but Np(V) in aerobic environments. However, currently it is not known how the interplay between biotic and abiotic processes affects Np redox speciation in the environment. In order to evaluate the effect of anaerobic microbial activity on the fate of Np in natural systems, Np(V) was added to a microcosminoculated with anaerobic sediments from a metal-contaminated fresh water lake. The consortium included metal-reducing, sulfate-reducing, and methanogenic microorganisms, and acetate was supplied as the only exogenous substrate. Addition of more than 10{sup {minus}5} M Np did not inhibit methane production. Total Np volubility in the active microcosm, as well as in sterilized control samples, decreased by nearly two orders of magnitude. A combination of analytical techniques, including VIS-NIR absorption spectroscopy and XANES, identified Np(IV) as the oxidation state associated with the sediments. The similar results from the active microcosm and the abiotic controls suggest that microbian y produced Mn(II/HI) and Fe(II) may serve as electron donors for Np reduction.

  9. McrA primers for the detection and quantification of the anaerobic archaeal methanotroph ‘Candidatus Methanoperedens nitroreducens’

    NARCIS (Netherlands)

    Vaksmaa, Annika; Jetten, M.S.M.; Ettwig, Katharina F.; Lüke, Claudia

    2017-01-01

    The nitrogen and methane cycles are important biogeochemical processes. Recently, ‘Candidatus Methanoperedens nitroreducens,’ archaea that catalyze nitrate-dependent anaerobic oxidation of methane (AOM), were enriched, and their genomes were analyzed. Diagnostic molecular tools for the sensitive

  10. Anaerobic growth of Paracoccus denitrificans requires cobalamin : characterization of cobK and cobJ genes

    NARCIS (Netherlands)

    Shearer, N.; Hinsley, A.P.; Van Spanning, R J; Spiro, S.

    1999-01-01

    A pleiotropic mutant of Paracoccus denitrificans, which has a severe defect that affects its anaerobic growth when either nitrate, nitrite, or nitrous oxide is used as the terminal electron acceptor and which is also unable to use ethanolamine as a carbon and energy source for aerobic growth, was

  11. Heterologous Expression of Pteris vittata Arsenite Antiporter PvACR3;1 Reduces Arsenic Accumulation in Plant Shoots.

    Science.gov (United States)

    Chen, Yanshan; Hua, Chen-Yu; Jia, Meng-Ru; Fu, Jing-Wei; Liu, Xue; Han, Yong-He; Liu, Yungen; Rathinasabapathi, Bala; Cao, Yue; Ma, Lena Q

    2017-09-19

    Arsenic (As) is a toxic carcinogen so it is crucial to decrease As accumulation in crops to reduce its risk to human health. Arsenite (AsIII) antiporter ACR3 protein is critical for As metabolism in organisms, but it is lost in flowering plants. Here, a novel ACR3 gene from As-hyperaccumulator Pteris vittata, PvACR3;1, was cloned and expressed in Saccharomyces cerevisiae (yeast), Arabidopsis thaliana (model plant), and Nicotiana tabacum (tobacco). Yeast experiments showed that PvACR3;1 functioned as an AsIII-antiporter to mediate AsIII efflux to an external medium. At 5 μM AsIII, PvACR3;1 transgenic Arabidopsis accumulated 14-29% higher As in the roots and 55-61% lower As in the shoots compared to WT control, showing lower As translocation. Besides, transgenic tobacco under 5 μM AsIII or AsV also showed similar results, indicating that expressing PvACR3;1 gene increased As retention in plant roots. Moreover, observation of PvACR3;1-green fluorescent protein fusions in transgenic Arabidopsis showed that PvACR3;1 protein localized to the vacuolar membrane, indicating that PvACR3;1 mediated AsIII sequestration into vacuoles, consistent with increased root As. In addition, soil experiments showed ∼22% lower As in the shoots of transgenic tobacco than control. Thus, our study provides a potential strategy to limit As accumulation in plant shoots, representing the first report to decrease As translocation by sequestrating AsIII into vacuoles, shedding light on engineering low-As crops to improve food safety.

  12. Synergistic augmentation of ATP-induced interleukin-6 production by arsenite in HaCaT cells.

    Science.gov (United States)

    Sumi, Daigo; Asao, Masashi; Okada, Hideta; Yogi, Kuniko; Miyataka, Hideki; Himeno, Seiichiro

    2016-06-01

    Chronic arsenic exposure causes cutaneous diseases such as hyperkeratosis and skin cancer. However, little information has been available regarding the molecular mechanisms underlying these symptoms. Because extracellular ATP and interleukin-6 (IL-6) are involved in pathological aspects of cutaneous diseases, we examined whether sodium arsenite (As(III)) affects ATP-induced IL-6 production in human epidermal keratinocyte HaCaT cells. The results showed that the addition of As(III) into the medium of HaCaT cells dose dependently increased the production of IL-6 induced by extracellular ATP, although As(III) alone had no effect on IL-6 production. To elucidate the mechanism of the synergistic effect of As(III) on IL-6 production by extracellular ATP, we next examined the phosphorylation of p38, ERK and epidermal growth factor receptor (EGFR), since we found that these signaling molecules were stimulated by exposure to extracellular ATP. The results indicated that ATP-induced phosphorylation of p38, ERK and EGFR was synergistically enhanced by co-exposure to As(III). To clarify the mechanisms underlying the enhanced phosphorylation of p38, ERK and EGFR by As(III), we explored two possible mechanisms: the inhibition of extracellular ATP degradation and the inhibition of protein tyrosine phosphatases (PTPs) activity by As(III). The degradation of extracellular ATP was not changed by As(III), whereas the activity of PTPs was significantly inhibited by As(III). Our results suggest that As(III) augments ATP-induced IL-6 production in HaCaT cells through enhanced phosphorylation of the EGFR and p38/ERK pathways, which is associated with the inhibition of PTPs activity.

  13. Modeling de novo granulation of anaerobic sludge.

    Science.gov (United States)

    Doloman, Anna; Varghese, Honey; Miller, Charles D; Flann, Nicholas S

    2017-07-17

    A unique combination of mechanical, physiochemical and biological forces influences granulation during processes of anaerobic digestion. Understanding this process requires a systems biology approach due to the need to consider not just single-cell metabolic processes, but also the multicellular organization and development of the granule. In this computational experiment, we address the role that physiochemical and biological processes play in granulation and provide a literature-validated working model of anaerobic granule de novo formation. The agent-based model developed in a cDynoMiCs simulation environment successfully demonstrated a de novo granulation in a glucose fed system, with the average specific methanogenic activity of 1.11 ml C H 4 /g biomass and formation of a 0.5 mm mature granule in 33 days. The simulated granules exhibit experimental observations of radial stratification: a central dead core surrounded by methanogens then encased in acidogens. Practical application of the granulation model was assessed on the anaerobic digestion of low-strength wastewater by measuring the changes in methane yield as experimental configuration parameters were systematically searched. In the model, the emergence of multicellular organization of anaerobic granules from randomly mixed population of methanogens and acidogens was observed and validated. The model of anaerobic de novo granulation can be used to predict the morphology of the anaerobic granules in a alternative substrates of interest and to estimate methane potential of the resulting microbial consortia. The study demonstrates a successful integration of a systems biology approach to model multicellular systems with the engineering of an efficient anaerobic digestion system.

  14. Hydrogenase-3 contributes to anaerobic acid resistance of Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Ken Noguchi

    Full Text Available BACKGROUND: Hydrogen production by fermenting bacteria such as Escherichia coli offers a potential source of hydrogen biofuel. Because H(2 production involves consumption of 2H(+, hydrogenase expression is likely to involve pH response and regulation. Hydrogenase consumption of protons in E. coli has been implicated in acid resistance, the ability to survive exposure to acid levels (pH 2-2.5 that are three pH units lower than the pH limit of growth (pH 5-6. Enhanced survival in acid enables a larger infective inoculum to pass through the stomach and colonize the intestine. Most acid resistance mechanisms have been defined using aerobic cultures, but the use of anaerobic cultures will reveal novel acid resistance mechanisms. METHODS AND PRINCIPAL FINDINGS: We analyzed the pH regulation of bacterial hydrogenases in live cultures of E. coli K-12 W3110. During anaerobic growth in the range of pH 5 to 6.5, E. coli expresses three hydrogenase isoenzymes that reversibly oxidize H(2 to 2H(+. Anoxic conditions were used to determine which of the hydrogenase complexes contribute to acid resistance, measured as the survival of cultures grown at pH 5.5 without aeration and exposed for 2 hours at pH 2 or at pH 2.5. Survival of all strains in extreme acid was significantly lower in low oxygen than for aerated cultures. Deletion of hyc (Hyd-3 decreased anoxic acid survival 3-fold at pH 2.5, and 20-fold at pH 2, but had no effect on acid survival with aeration. Deletion of hyb (Hyd-2 did not significantly affect acid survival. The pH-dependence of H(2 production and consumption was tested using a H(2-specific Clark-type electrode. Hyd-3-dependent H(2 production was increased 70-fold from pH 6.5 to 5.5, whereas Hyd-2-dependent H(2 consumption was maximal at alkaline pH. H(2 production, was unaffected by a shift in external or internal pH. H(2 production was associated with hycE expression levels as a function of external pH. CONCLUSIONS: Anaerobic growing

  15. Hydrogenase-3 contributes to anaerobic acid resistance of Escherichia coli.

    Science.gov (United States)

    Noguchi, Ken; Riggins, Daniel P; Eldahan, Khalid C; Kitko, Ryan D; Slonczewski, Joan L

    2010-04-12

    Hydrogen production by fermenting bacteria such as Escherichia coli offers a potential source of hydrogen biofuel. Because H(2) production involves consumption of 2H(+), hydrogenase expression is likely to involve pH response and regulation. Hydrogenase consumption of protons in E. coli has been implicated in acid resistance, the ability to survive exposure to acid levels (pH 2-2.5) that are three pH units lower than the pH limit of growth (pH 5-6). Enhanced survival in acid enables a larger infective inoculum to pass through the stomach and colonize the intestine. Most acid resistance mechanisms have been defined using aerobic cultures, but the use of anaerobic cultures will reveal novel acid resistance mechanisms. We analyzed the pH regulation of bacterial hydrogenases in live cultures of E. coli K-12 W3110. During anaerobic growth in the range of pH 5 to 6.5, E. coli expresses three hydrogenase isoenzymes that reversibly oxidize H(2) to 2H(+). Anoxic conditions were used to determine which of the hydrogenase complexes contribute to acid resistance, measured as the survival of cultures grown at pH 5.5 without aeration and exposed for 2 hours at pH 2 or at pH 2.5. Survival of all strains in extreme acid was significantly lower in low oxygen than for aerated cultures. Deletion of hyc (Hyd-3) decreased anoxic acid survival 3-fold at pH 2.5, and 20-fold at pH 2, but had no effect on acid survival with aeration. Deletion of hyb (Hyd-2) did not significantly affect acid survival. The pH-dependence of H(2) production and consumption was tested using a H(2)-specific Clark-type electrode. Hyd-3-dependent H(2) production was increased 70-fold from pH 6.5 to 5.5, whereas Hyd-2-dependent H(2) consumption was maximal at alkaline pH. H(2) production, was unaffected by a shift in external or internal pH. H(2) production was associated with hycE expression levels as a function of external pH. Anaerobic growing cultures of E. coli generate H(2) via Hyd-3 at low external pH, and

  16. Enrichment of denitrifying methanotrophic bacteria for application after direct low-temperature anaerobic sewage treatment

    International Nuclear Information System (INIS)

    Kampman, Christel; Hendrickx, Tim L.G.; Luesken, Francisca A.; Alen, Theo A. van; Op den Camp, Huub J.M.; Jetten, Mike S.M.; Zeeman, Grietje; Buisman, Cees J.N.; Temmink, Hardy

    2012-01-01

    Highlights: ► A new concept for low-temperature anaerobic sewage treatment is proposed. ► In this concept, denitrification and methane oxidation are performed by Methylomirabilis oxyfera. ► The bacteria were enriched from fresh water sediment using sequencing fed-batch reactors. ► The volumetric consumption rate has to be increased by an order of magnitude for practical application. ► Further research should focus on systems with improved biomass retention. - Abstract: Despite many advantages of anaerobic sewage treatment over conventional activated sludge treatment, it has not yet been applied in temperate zones. This is especially because effluent from low-temperature anaerobic treatment contains nitrogen and dissolved methane. The presence of nitrogen and methane offers the opportunity to develop a reactor in which methane is used as electron donor for denitrification. Such a reactor could be used in a new concept for low-temperature anaerobic sewage treatment, consisting of a UASB-digester system, a reactor for denitrification coupled to anaerobic methane oxidation, and a nitritation reactor. In the present study denitrifying methanotrophic bacteria similar to ‘Candidatus Methylomirabilis oxyfera’ were enriched. Maximum volumetric nitrite consumption rates were 33.5 mg NO 2 − -N/L d (using synthetic medium) and 37.8 mg NO 2 − -N/L d (using medium containing effluent from a sewage treatment plant), which are similar to the maximum rate reported so far. Though the goal was to increase the rates, in both reactors, after reaching these maximum rates, volumetric nitrite consumption rates decreased in time. Results indicate biomass washout may have significantly decelerated enrichment. Therefore, to obtain higher volumetric consumption rates, further research should focus on systems with complete biomass retention.

  17. Enrichment of denitrifying methanotrophic bacteria for application after direct low-temperature anaerobic sewage treatment

    Energy Technology Data Exchange (ETDEWEB)

    Kampman, Christel, E-mail: christel.kampman@wur.nl [Sub-department of Environmental Technology, Wageningen University, P.O. Box 17, 6700 AA, Wageningen (Netherlands); Hendrickx, Tim L.G. [Sub-department of Environmental Technology, Wageningen University, P.O. Box 17, 6700 AA, Wageningen (Netherlands); Luesken, Francisca A.; Alen, Theo A. van; Op den Camp, Huub J.M.; Jetten, Mike S.M. [Department of Microbiology, Institute for Water and Wetland Research, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen (Netherlands); Zeeman, Grietje; Buisman, Cees J.N.; Temmink, Hardy [Sub-department of Environmental Technology, Wageningen University, P.O. Box 17, 6700 AA, Wageningen (Netherlands)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer A new concept for low-temperature anaerobic sewage treatment is proposed. Black-Right-Pointing-Pointer In this concept, denitrification and methane oxidation are performed by Methylomirabilis oxyfera. Black-Right-Pointing-Pointer The bacteria were enriched from fresh water sediment using sequencing fed-batch reactors. Black-Right-Pointing-Pointer The volumetric consumption rate has to be increased by an order of magnitude for practical application. Black-Right-Pointing-Pointer Further research should focus on systems with improved biomass retention. - Abstract: Despite many advantages of anaerobic sewage treatment over conventional activated sludge treatment, it has not yet been applied in temperate zones. This is especially because effluent from low-temperature anaerobic treatment contains nitrogen and dissolved methane. The presence of nitrogen and methane offers the opportunity to develop a reactor in which methane is used as electron donor for denitrification. Such a reactor could be used in a new concept for low-temperature anaerobic sewage treatment, consisting of a UASB-digester system, a reactor for denitrification coupled to anaerobic methane oxidation, and a nitritation reactor. In the present study denitrifying methanotrophic bacteria similar to 'Candidatus Methylomirabilis oxyfera' were enriched. Maximum volumetric nitrite consumption rates were 33.5 mg NO{sub 2}{sup -}-N/L d (using synthetic medium) and 37.8 mg NO{sub 2}{sup -}-N/L d (using medium containing effluent from a sewage treatment plant), which are similar to the maximum rate reported so far. Though the goal was to increase the rates, in both reactors, after reaching these maximum rates, volumetric nitrite consumption rates decreased in time. Results indicate biomass washout may have significantly decelerated enrichment. Therefore, to obtain higher volumetric consumption rates, further research should focus on systems with complete biomass

  18. ANAEROBIC BIOLOGICAL TREATMENT OF PRODUCED WATER

    Energy Technology Data Exchange (ETDEWEB)

    John R. Gallagher

    2001-07-31

    During the production of oil and gas, large amounts of water are brought to the surface and must be disposed of in an environmentally sensitive manner. This is an especially difficult problem in offshore production facilities where space is a major constraint. The chief regulatory criterion for produced water is oil and grease. Most facilities have little trouble meeting this criterion using conventional oil-water separation technologies. However, some operations have significant amounts of naphthenic acids in the water that behave as oil and grease but are not well removed by conventional technologies. Aerobic biological treatment of naphthenic acids in simulated-produced water has been demonstrated by others; however, the system was easily overloaded by the large amounts of low-molecular-weight organic acids often found in produced waters. The objective of this research was to determine the ability of an anaerobic biological system to treat these organic acids in a simulated produced water and to examine the potential for biodegradation of the naphthenic acids in the anaerobic environment. A small fixed-film anaerobic biological reactor was constructed and adapted to treat a simulated produced water. The bioreactor was tubular, with a low-density porous glass packing material. The inocula to the reactor was sediment from a produced-water holding pond from a municipal anaerobic digester and two salt-loving methanogenic bacteria. During start-up, the feed to the reactor contained glucose as well as typical produced-water components. When glucose was used, rapid gas production was observed. However, when glucose was eliminated and the major organic component was acetate, little gas was generated. Methane production from acetate may have been inhibited by the high salt concentrations, by sulfide, or because of the lack, despite seeding, of microbes capable of converting acetate to methane. Toluene, a minor component of the produced water (0.1 g/L) was removed in the