WorldWideScience

Sample records for anaerobic ammonia oxidation

  1. The effect of outside conditions on anaerobic ammonia oxidation reaction

    Institute of Scientific and Technical Information of China (English)

    YANG Min; WANG Shu-bo

    2016-01-01

    Organic carbon, inorganic carbon, temperature, pH and ORP are all to have a certain influence on the anaerobic ammonia oxidation reaction. We can draw some conclusions on the optimum conditions of anaerobic ammonia oxidation reaction. The optimum temperature of the anaerobic ammonia oxidation reaction is 30-35℃. And the optimum pH of the anaerobic ammonia reaction is 7.5-8.3. The presence of organic matters can affect the anaerobic ammonia reaction, and different organic matters have different influence on it. The concentration of the inorganic carbon also exist great influence on the reaction. High inorganic carbon concentration also can inhibit anaerobic ammonia oxidation reaction.

  2. Anaerobic ammonia oxidation in a fertilized paddy soil

    DEFF Research Database (Denmark)

    Zhu, Guibing; Wang, Shanyun; Wang, Yu;

    2011-01-01

    anammox 16S rRNA genes retrieved from the deeper soil were affiliated to ‘Brocadia’. The retrieval of mainly bacterial amoA sequences in the upper part of the paddy soil indicated that nitrifying bacteria may be the major source of nitrite for anammox bacteria in the cultivated horizon. In the deeper...... oxygen-limited parts, only archaeal amoA sequences were found, indicating that archaea may produce nitrite in this part of the soil. It is estimated that a total loss of 76 g N m−2 per year is linked to anammox in the paddy field.......Evidence for anaerobic ammonium oxidation in a paddy field was obtained in Southern China using an isotope-pairing technique, quantitative PCR assays and 16S rRNA gene clone libraries, along with nutrient profiles of soil cores. A paddy field with a high load of slurry manure as fertilizer was...

  3. Nitrogen removal from sludge dewatering effluent through anaerobic ammonia oxidation process

    Institute of Scientific and Technical Information of China (English)

    ZHANG Shao-hui; ZHENG Ping; HUA Yu-mei

    2005-01-01

    Anaerobic ammonia oxidation(Anammox) process is a novel and promising wastewater nitrogen removal process. The feasibility of transition of Anammox from denitrification and the performance of lab-scale Anammox biofilm reactor were investigated with sludge dewatering effluent. The results showed that Anammox process could be successfully started up after cultivation of denitrification biofilm and using it as inoculum. The transition of Anammox from denitrification was accomplished within 85 d. Anammox process was found suitable to remove ammonia from sludge dewatering effluent. The effluent ammonia concentration was detected to be 23.11 mgN/L at HRT of 28 h when influent ammonia concentration was fed 245 mgN/L, which was less than that for the national discharge standard Ⅱ (25 mgN/L) of 243.25 mg NH4+ -N/L and 288.31 mg NO2- -N/L.

  4. Hotspots of anaerobic ammonia oxidation in land - freshwater interfaces

    DEFF Research Database (Denmark)

    Zhu, Guibing; Wang, Shanyun; Wang, Weidong;

    2013-01-01

    sampled fromlake riparian zones in North China. Laboratory incubations in the presence of ammonium or nitrate—at concentrations equivalent to no more than 10% of those detected in situ—yielded some of the highest potential anammox activities reported for natural environments to date. Potential rates of......For decades, the conversion of organic nitrogen to dinitrogen gas by heterotrophic bacteria, termed heterotrophic denitrification, was assumed to be the main pathway of nitrogen loss in natural ecosystems. Recently, however, autotrophic bacteria have been shown to oxidize ammonium in the absence of...... anammox peaked in sediments sampled from the interface between the land and the water, as did the abundance of annamox bacteria. Scaling our findings up to the entire lake system, we estimate that interfacial anammox hotspots account for the loss of 103 gNm-2 yr-1 from this lake region, and around one...

  5. Evaluating primers for profiling anaerobic ammonia oxidizing bacteria within freshwater environments.

    Directory of Open Access Journals (Sweden)

    Puntipar Sonthiphand

    Full Text Available Anaerobic ammonia oxidizing (anammox bacteria play an important role in transforming ammonium to nitrogen gas and contribute to fixed nitrogen losses in freshwater environments. Understanding the diversity and abundance of anammox bacteria requires reliable molecular tools, and these are not yet well established for these important Planctomycetes. To help validate PCR primers for the detection of anammox bacteria within freshwater ecosystems, we analyzed representative positive controls and selected samples from Grand River and groundwater sites, both from Ontario, Canada. The objectives of this study were to identify a suitable anammox denaturing gradient gel electrophoresis (DGGE fingerprint method by using GC-clamp modifications to existing primers, and to verify the specificity of anammox-specific primers used for DGGE, cloning and qPCR methods. Six primer combinations were tested from four published primer sets (i.e. A438f/A684r, Amx368f/Amx820r, An7f/An1388r, and Pla46/1392r for both direct and nested PCR amplifications. All PCR products were run subsequently on DGGE gels to compare the resulting patterns. Two anammox-specific primer combinations were also used to generate clone libraries and quantify anammox bacterial 16S rRNA genes with qPCR. The primer set A438f/A684r was highly specific to anammox bacteria, provided reliable DGGE fingerprints and generated a high proportion of anammox-related clones. A second primer set (Amx368f/Amx820r was anammox specific, based on clone library analysis, but PCR products from different candidate species of anammox bacteria resolved poorly using DGGE analysis. Both DGGE and cloning results revealed that Ca. Brocadia and an uncharacterized anammox bacterial cluster represented the majority of anammox bacteria found in Grand River sediment and groundwater samples, respectively. Together, our results demonstrate that although Amx368f/Amx820r was useful for anammox-specific qPCR and clone library

  6. Enhanced ammonia removal at room temperature by pH controlled partial nitrification and subsequent anaerobic ammonium oxidation.

    Science.gov (United States)

    Durán, U; del Val Río, A; Campos, J L; Mosquera-Corral, A; Méndez, R

    2014-01-01

    The Anammox-based processes are suitable for the treatment of wastewaters characterized by a low carbon to nitrogen (C/N) ratio. The application of the Anammox process requires the availability of an effluent with a NO2- -N/NH4+ -N ratio composition around 1 g g-1, which involves the necessity of a previous step where the partial nitrification is performed. In this step, the inhibition of the nitrite-oxidizing bacteria (NOB) is crucial. In the present work, a combined partial nitrification-ANaerobic AMmonia OXidation (Anammox) two-units system operated at room temperature (20 degreeC) has been tested for the nitrogen removal of pre-treated pig slurry. To achieve the successful partial nitrification and inhibit the NOB activity, different ammonium/inorganic carbon (NH4+/IC) ratios were assayed from 1.19 to 0.82g NH4+-Ng-1 HCO3-C. This procedure provoked a decrease of the pH value to 6.0 to regulate the inhibitory effect over ammonia-oxidizing bacteria caused by free ammonia. Simultaneously, the NOB experienced the inhibitory effect of free nitrous acid which avoided the presence of nitrate in the effluent. The NH4+/IC ratio which allowed the obtaining of the desired effluent composition (50% of both ammonium and nitrite) was 0.82 +/- 0.02 g NH4+-N g-1 HCO3- -C. The Anammox reactor was fed with the effluent of the partial nitrification unit containing a NO2 -N/NH4+ -N ratio of 1 g g-1' where a nitrogen loading rate of 0.1 g N L-1 d-1 was efficiently removed. PMID:24600878

  7. Biological nitrogen removal in one step by nitritation and anaerobic oxidation of ammonia in biofilms; Einstufige biologische Stickstoffelimination durch Nitritation und anaerobe Ammonium-Oxidation im Biofilm

    Energy Technology Data Exchange (ETDEWEB)

    Helmer, C.; Tromm, C.; Hippen, A.; Rosenwinkel, K.H.; Seyfried, C.F.; Kunst, S. [Hannover Univ. (Germany). Inst. fuer Siedlungswasserwirtschaft und Abfalltechnik

    1999-07-01

    For biological treatment of high nitrogenous wastewaters with low C/N ratio autotrophic microorganisms which are able to convert ammonium directly into nitrogen gas are especially interesting. It is exceptionally difficult to verify their presence and importance in mixed populations of full scale wastewater treatment plants. So it could not be clarified finally up to now which basic microbial reactions lead to single stage complete nitrogen removal, here called deammonification, in the nitrification step (biological contactor) of the leachate treatment plant in Mechernich. It succeeded meanwhile to establish the process of deammonification in a continuous flow moving-bed pilot plant. In batch experiments which biomass-covered carriers nitrogen conversions could become investigated at the intact biofilm for the first time. Two autotrophic nitrogen conversion reactions could be proved in the biofilm depending on dissolved oxygen (DO) concentration: A nitritation under aerobic conditions and an anaerobic ammonium oxidation. For the anaerobic ammonium oxidation nitrite was used as electron acceptor with ammonium as electron donor. N{sub 2} was the end product of the reaction. The ratio of ammonium conversion to nitrite conversion was 1:1,37, which was described in the same range for the ANAMMOX-process (1:1,31{+-}0,06). Nitrate could not be used as electron acceptor. Nitrite had to be added to the experiment to obtain oxygen independent oxidation of ammonium. The parts of nitritation and anaerobic ammonium conversion in nitrogen conversion could be controlled by the DO concentration. At a DO concentration of 0.7 mg/l both processes were balanced, so that a direct almost complete elimination of ammonium was possible without any dosage of nitrite. The added ammonium was partially oxidised to nitrite and partially oxidised anaerobically. The aerobic ammonium oxidation to nitrite in the outer oxygen supplied biofilm layers produced the reactant for the anaerobic ammonium

  8. Ammonia stripping, activated carbon adsorption and anaerobic biological oxidation as process combination for the treatment of oil shale wastewater.

    Science.gov (United States)

    Alexandre, Verônica M F; do Nascimento, Felipe V; Cammarota, Magali C

    2016-10-01

    Anaerobic biodegradability of oil shale wastewater was investigated after the following pretreatment sequence: ammonia stripping and activated carbon adsorption. Anaerobic biological treatment of oil shale wastewater is technically feasible after stripping at pH 11 for reducing the N-NH3 concentration, adsorption with 5 g/L of activated carbon in order to reduce recalcitrance and pH adjustment with CO2 so that the sulphate concentration in the medium remains low. After this pretreatment sequence, it was possible to submit the wastewater without dilution to an anaerobic treatment with 62.7% soluble chemical oxygen demand removal and specific methane production of 233.2 mL CH4STP/g CODremoved. PMID:27003628

  9. Catalyst for Ammonia Oxidation

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a bimetallic catalyst for ammonia oxidation, a method for producing a bimetallic catalyst for ammonia oxidation and a method for tuning the catalytic activity of a transition metal. By depositing an overlayer of less catalytic active metal onto a more catalytic...

  10. Nitrate reduction, nitrous oxide formation, and anaerobic ammonia oxidation to nitrite in the gut of soil-feeding termites (Cubitermes and Ophiotermes spp.)

    KAUST Repository

    Ngugi, David

    2011-11-28

    Soil-feeding termites play important roles in the dynamics of carbon and nitrogen in tropical soils. Through the mineralization of nitrogenous humus components, their intestinal tracts accumulate enormous amounts of ammonia, and nitrate and nitrite concentrations are several orders of magnitude above those in the ingested soil. Here, we studied the metabolism of nitrate in the different gut compartments of two Cubitermes and one Ophiotermes species using 15N isotope tracer analysis. Living termites emitted N 2 at rates ranging from 3.8 to 6.8nmolh -1 (g fresh wt.) -1. However, in homogenates of individual gut sections, denitrification was restricted to the posterior hindgut, whereas nitrate ammonification occurred in all gut compartments and was the prevailing process in the anterior gut. Potential rates of nitrate ammonification for the entire intestinal tract were tenfold higher than those of denitrification, implying that ammonification is the major sink for ingested nitrate in the intestinal tract of soil-feeding termites. Because nitrate is efficiently reduced already in the anterior gut, reductive processes in the posterior gut compartments must be fuelled by an endogenous source of oxidized nitrogen species. Quite unexpectedly, we observed an anaerobic oxidation of 15N-labelled ammonia to nitrite, especially in the P4 section, which is presumably driven by ferric iron; nitrification and anammox activities were not detected. Two of the termite species also emitted substantial amounts of N 2O, ranging from 0.4 to 3.9nmolh -1 (g fresh wt.) -1, providing direct evidence that soil-feeding termites are a hitherto unrecognized source of this greenhouse gas in tropical soils. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.

  11. DEAMOX--new biological nitrogen removal process based on anaerobic ammonia oxidation coupled to sulphide-driven conversion of nitrate into nitrite.

    Science.gov (United States)

    Kalyuzhnyi, Sergey; Gladchenko, Marina; Mulder, Arnold; Versprille, Bram

    2006-11-01

    This paper reports about the successful laboratory testing of a new nitrogen removal process called DEAMOX (DEnitrifying AMmonium OXidation) for treatment of typical strong nitrogenous wastewater such as baker's yeast effluent. The concept of this process combines the recently discovered anammox (anaerobic ammonium oxidation) reaction with autotrophic denitrifying conditions using sulphide as an electron donor for the production of nitrite from nitrate within an anaerobic biofilm. To generate sulphide and ammonia, a Upflow Anaerobic Sludge Bed (UASB) reactor was used as a pre-treatment step. The UASB effluent was split and partially fed to a nitrifying reactor (to generate nitrate) and the remaining part was directly fed to the DEAMOX reactor where this stream was mixed with the nitrified effluent. Stable process performance and volumetric nitrogen loading rates of the DEAMOX reactor well above 1000 mgN/l/d with total nitrogen removal efficiencies of around 90% were obtained after long-term (410 days) optimisation of the process. Important prerequisites for this performance are appropriate influent ratios of the key species fed to the DEAMOX reactor, namely influent N-NO(x)/N-NH(4) ratios >1.2 (stoichiometry of the anammox reaction) and influent S-H(2)S/N-NO(3) ratios >0.57 mgS/mgN (stoichiometry of the sulphide-driven denitrification of nitrate to nitrite). The paper further describes some characteristics of the DEAMOX sludge as well as the preliminary results of its microbiological characterisation. PMID:16893559

  12. Anaerobic ammonia removal in presence of organic matter: A novel route

    International Nuclear Information System (INIS)

    This study describes the feasibility of anaerobic ammonia removal process in presence of organic matter. Different sources of biomass collected from diverse eco-systems containing ammonia and organic matter (OM) were screened for potential anaerobic ammonia removal. Sequential batch studies confirmed the possibility of anaerobic ammonia removal in presence of OM, but ammonia was oxidized anoxically to nitrate (at oxidation reduction potential; ORP -248 ± 25 mV) by an unknown mechanism unlike in the reported anammox process. The oxygen required for oxidation of ammonia might have been generated through catalase enzymatic activity of facultative anaerobes in mixed culture. The oxygen generation possibility by catalase enzyme route was demonstrated. Among the inorganic electron acceptors (NO2-, NO3- and SO42-) studied, NO2- was found to be most effective in total nitrogen removal. Denitrification by the developed culture was much effective and faster compared to ammonia oxidation. The results of this study show that anaerobic ammonia removal is feasible in presence of OM. The novel nitrogen removal route is hypothesized as enzymatic anoxic oxidation of NH4+ to NO3-, followed by denitrification via autotrophic and/or heterotrophic routes. The results of batch study were confirmed in continuous reactor operation

  13. Autotrophic ammonia removal from landfill leachate in anaerobic membrane bioreactor.

    Science.gov (United States)

    Suneethi, S; Joseph, Kurian

    2013-01-01

    Anaerobic ammonium oxidation (ANAMMOX) process, an advanced biological nitrogen removal, removes ammonia using nitrite as the electron acceptor without oxygen. In this paper, ANAMMOX process was adopted for removing NH4+-N from landfill leachate having low COD using anaerobic membrane bioreactor (AnMBR). The AnMBR was optimized for nitrogen loading rate (NLR) varying from 0.025 to 5 kg NH4+-N/m3/d with hydraulic retention time (HRT) ranging from 1 to 3d. NH4+-N removal efficacy of 85.13 +/- 9.67% with the mean nitrogen removal rate of 5.54 +/- 0.63 kg NH4+-N/m3/d was achieved with NLR of 6.51 +/- 0.20kg NH4+-N/m3/d at 1.5 d HRT. The nitrogen transformation intermediates in the form of hydrazine (N2H4) and hydroxylamine (NH2OH) were 0.008 +/- 0.005 and 0.006 +/- 0.001 mg/l, respectively, indicating co-existence of aerobic ammonia oxidizers and ANAMMOX. The free ammonia (NH3) and free nitrous acid (HNO2) concentrations were 26.61 +/- 16.54 mg/l and (1.66 +/- 0.95) x 10(-5) mg/l, preventing NO2(-)-N oxidation to NO3(-)-N enabling sustained NH4+-N removal. PMID:24617075

  14. Ammonia effect on hydrogenotrophic methanogens and syntrophic acetate oxidizing bacteria

    DEFF Research Database (Denmark)

    Wang, Han; Fotidis, Ioannis; Angelidaki, Irini

    2015-01-01

    Ammonia-rich substrates can cause inhibition on anaerobic digestion process. Syntrophic acetate oxidizing bacteria (SAOB) and hydrogenotrophic methanogens are important for the ammonia inhibitory mechanism on anaerobic digestion. The roles and interactions of SAOB and hydrogenotrophic methanogens...... to ammonia inhibition effect are still unclear. The aim of the current study was to determine the ammonia toxicity levels of various pure strains of SAOB and hydrogenotrophic methanogens. Moreover, ammonia toxicity on the syntrophic cultivated strains of SAOB and hydrogenotrophic methanogens was...... tested. Thus, four hydrogenotrophic methanogens (i.e. Methanoculleus bourgensis, Methanobacterium congolense, Methanoculleus thermophilus and Methanothermobacter thermautotrophicus), two SAOB (i.e. Tepidanaerobacter acetatoxydans and Thermacetogenium phaeum) and their syntrophic cultivation, were...

  15. Modeling the effect of heat fluxes on ammonia and nitrous oxide emissions from an anaerobic swine waste treatment lagoon using artificial neural network

    Science.gov (United States)

    Understanding factors that affect ammonia and nitrous emissions from anaerobic swine waste treatment lagoons or any animal waste receptacles is a necessary first step in deploying potential remediation options. In this study, we examined the various meteorological factors (i.e., air temperatures, s...

  16. Ammonia and nitrite oxidation in the Eastern Tropical North Pacific

    Science.gov (United States)

    Peng, Xuefeng; Fuchsman, Clara A.; Jayakumar, Amal; Oleynik, Sergey; Martens-Habbena, Willm; Devol, Allan H.; Ward, Bess B.

    2015-12-01

    Nitrification plays a key role in the marine nitrogen (N) cycle, including in oceanic oxygen minimum zones (OMZs), which are hot spots for denitrification and anaerobic ammonia oxidation (anammox). Recent evidence suggests that nitrification links the source (remineralized organic matter) and sink (denitrification and anammox) of fixed N directly in the steep oxycline in the OMZs. We performed shipboard incubations with 15N tracers to characterize the depth distribution of nitrification in the Eastern Tropical North Pacific (ETNP). Additional experiments were conducted to investigate photoinhibition. Allylthiourea (ATU) was used to distinguish the contribution of archaeal and bacterial ammonia oxidation. The abundance of archaeal and β-proteobacterial ammonia monooxygenase gene subunit A (amoA) was determined by quantitative polymerase chain reaction. The rates of ammonia and nitrite oxidation showed distinct subsurface maxima, with the latter slightly deeper than the former. The ammonia oxidation maximum coincided with the primary nitrite concentration maximum, archaeal amoA gene maximum, and the subsurface nitrous oxide maximum. Negligible rates of ammonia oxidation were found at anoxic depths, where high rates of nitrite oxidation were measured. Archaeal amoA gene abundance was generally 1 to 2 orders of magnitude higher than bacterial amoA gene abundance, and inhibition of ammonia-oxidizing bacteria with 10 μM ATU did not affect ammonia oxidation rates, indicating the dominance of archaea in ammonia oxidation. These results depict highly dynamic activities of ammonia and nitrite oxidation in the oxycline of the ETNP OMZ.

  17. Ammonia tolerant enriched methanogenic cultures as bioaugmentation inocula to alleviate ammonia inhibition in continuous anaerobic reactors

    DEFF Research Database (Denmark)

    Fotidis, Ioannis; Wang, Han; Angelidaki, Irini

    methanogens are more robust to ammonia toxicity effect. It has been shown that bioaugmentation of a pure strain of a hydrogenotrophic methanogen (i.e. Methanoculleus bourgensis) in an ammonia inhibited continuous anaerobic reactor can improve methane production more than 30%. Nevertheless, cultivation......Ammonia is the most common inhibitor of anaerobic digestion (AD) process, resulting in suboptimal exploitation of the biogas potential of the feedstocks, causing significant economic losses to the biogas plants. Ammonia is mainly inhibiting the aceticlastic methanogens, while the hydrogenotrophic...... tolerant methanogenic culture as potential bioaugmentation inoculum in a continuous stirred tank reactor (CSTR) operating under “inhibited steady-state”, triggered by high ammonia levels (5 g NH4+-N L-1). The results of the current study established for the first time that bioaugmentation of an enriched...

  18. Submersible microbial desalination cell for simultaneous ammonia recovery and electricity production from anaerobic reactors containing high levels of ammonia

    DEFF Research Database (Denmark)

    Zhang, Yifeng; Angelidaki, Irini

    2015-01-01

    High ammonia concentration in anaerobic reactors can seriously inhibit the anaerobic digestion process. In this study, a submersible microbial desalination cell (SMDC) was developed as an innovative method to lower the ammonia level in a continuous stirred tank reactor (CSTR) by in situ ammonia...

  19. Ammonia-oxidizing archaea have more important role than ammonia-oxidizing bacteria in ammonia oxidation of strongly acidic soils

    OpenAIRE

    Zhang, Li-Mei; Hu, Hang-Wei; Shen, Ju-Pei; He, Ji-Zheng

    2011-01-01

    Increasing evidence demonstrated the involvement of ammonia-oxidizing archaea (AOA) in the global nitrogen cycle, but the relative contributions of AOA and ammonia-oxidizing bacteria (AOB) to ammonia oxidation are still in debate. Previous studies suggest that AOA would be more adapted to ammonia-limited oligotrophic conditions, which seems to be favored by protonation of ammonia, turning into ammonium in low-pH environments. Here, we investigated the autotrophic nitrification activity of AOA...

  20. Inhibiting Wet Oxidation of Ammonia

    Science.gov (United States)

    Onisko, D. B. L.

    1985-01-01

    Simple modification of wet-oxidation process for treating organicwaste reduces loss of fixed nitrogen, potentially valuable byproduct of process. Addition of sufficient sulfuric acid to maintain reaction pH below 3 greatly reduces oxidation of ammonia to free nitrogen. No equipment modification required.

  1. Anaerobic digestion of swine manure: Inhibition by ammonia

    DEFF Research Database (Denmark)

    Hansen, Kaare Hvid; Angelidaki, Irini; Ahring, Birgitte Kiær

    1998-01-01

    A stable anaerobic degradation of swine manure with ammonia concentration of 6 g-N/litre was obtained in continuously stirred tank reactors with a hydraulic retention time of 15 days, at Four different temperatures. Methane yields of 188, 141, 67 and 22 ml-CH4/g-VS were obtained at 37, 45, 55...

  2. Niche specialization of terrestrial archaeal ammonia oxidizers

    OpenAIRE

    Gubry-Rangin, Cécile; Hai, Brigitte; Quince, Christopher; Engel, Marion; Thomson, Bruce C.; James, Phillip; Schloter, Michael; Robert I. Griffiths; Prosser, James I.; Nicol, Graeme W.

    2011-01-01

    Soil pH is a major determinant of microbial ecosystem processes and potentially a major driver of evolution, adaptation, and diversity of ammonia oxidizers, which control soil nitrification. Archaea are major components of soil microbial communities and contribute significantly to ammonia oxidation in some soils. To determine whether pH drives evolutionary adaptation and community structure of soil archaeal ammonia oxidizers, sequences of amoA, a key functional gene of ammonia oxidation, were...

  3. Ammonia effect on hydrogenotrophic methanogens and syntrophic acetate oxidizing bacteria

    DEFF Research Database (Denmark)

    Wang, Han; Fotidis, Ioannis; Angelidaki, Irini

    Substrates that contain high ammonia levels can cause inhibition on anaerobic digestion process and unstable biogas production. The aim of the current study was to assess the effects of different ammonia levels on pure strains of (syntrophic acetate oxidizing) SAO bacteria and hydrogenotrophic...... methanogens. Two pure strains of hydrogenotrophic methanogens (i.e: Methanoculleus bourgensis and Methanoculleus thermophiles) and two pure strains of SAO bacteria (i.e: Tepidanaerobacter acetatoxydans and Thermacetogenium phaeum) were inoculated under four different ammonia (0.26, 3, 5 and 7g NH4+-N/L) and...... free ammonia levels (Mesophilic: 3.31, 38.2, 63.68 and 89.15 g NH3-N/L. Thermophilic: 8.48, 97.82, 163.03 and 228.24 g NH3-N/L). The results indicated that both T. acetatoxydans and T. phaeum were more sensitive to high ammonia levels compared to the hydrogenotrophic methanogens tested. Additionally...

  4. Catalytic ammonia oxidation to nitrogen (I) oxide

    OpenAIRE

    MASALITINA NATALIYA YUREVNA; SAVENKOV ANATOLIY SERGEEVICH

    2015-01-01

    The process of synthesis of nitrous oxide by low-temperature catalytical oxidation of NH has been investigated for organic synthesis. The investigation has been carried out by the stage separation approach with NH oxidation occurring in several reaction zones, which characterized by different catalytic conditions. The selectivity for N₂O was 92–92,5 % at the ammonia conversion of 98–99.5 % in the optimal temperature range.

  5. Autotrophic ammonia oxidation by soil thaumarchaea

    OpenAIRE

    Zhang, Li-Mei; Offre, Pierre R.; He, Ji-Zheng; Verhamme, Daniel T.; Nicol, Graeme W.; Prosser, James I.

    2010-01-01

    Nitrification plays a central role in the global nitrogen cycle and is responsible for significant losses of nitrogen fertilizer, atmospheric pollution by the greenhouse gas nitrous oxide, and nitrate pollution of groundwaters. Ammonia oxidation, the first step in nitrification, was thought to be performed by autotrophic bacteria until the recent discovery of archaeal ammonia oxidizers. Autotrophic archaeal ammonia oxidizers have been cultivated from marine and thermal spring environments, bu...

  6. Anaerobic Removal of Ammonia Nitrogen by an Autotrophic Reactor with Fixed Film Opering in a Sequential Batch

    OpenAIRE

    Murilo C. Lucas; José H. A. Vasconcelos; Francisco Javier Cuba Téran; Carla Eloísa Diniz dos Santos

    2010-01-01

    This study presents results of ammonia nitrogen oxidation in absence of molecular oxygen. They were obtained after the operation of a sequential batch anaerobic reactor with fixed film. After the inoculation with sludge from an anaerobic stabilization pond of a slaughterhouse wastewater treatment plant, the reactor was fed with a synthetic culture media, as described by Martins (2007), in order to establish ideal conditions for growth and development of Anammox culture. The duration of the ba...

  7. Niche segregation of ammonia-oxidizing archaea and anammox bacteria in the Arabian Sea oxygen minimum zone

    NARCIS (Netherlands)

    Pitcher, A.; Villanueva, L.; Hopmans, E.C.; Schouten, S.; Reichart, G.J.; Sinninghe Damsté, J.S.

    2011-01-01

    Ammonia-oxidizing archaea (AOA) and anaerobic ammonia-oxidizing (anammox) bacteria have emerged as significant factors in the marine nitrogen cycle and are responsible for the oxidation of ammonium to nitrite and dinitrogen gas, respectively. Potential for an interaction between these groups exists;

  8. Habitat-associated phylogenetic community patterns of microbial ammonia oxidizers.

    Directory of Open Access Journals (Sweden)

    Antoni Fernàndez-Guerra

    Full Text Available Microorganisms mediating ammonia oxidation play a fundamental role in the connection between biological nitrogen fixation and anaerobic nitrogen losses. Bacteria and Archaea ammonia oxidizers (AOB and AOA, respectively have colonized similar habitats worldwide. Ammonia oxidation is the rate-limiting step in nitrification, and the ammonia monooxygenase (Amo is the key enzyme involved. The molecular ecology of this process has been extensively explored by surveying the gene of the subunit A of the Amo (amoA gene. In the present study, we explored the phylogenetic community ecology of AOB and AOA, analyzing 5776 amoA gene sequences from >300 isolation sources, and clustering habitats by environmental ontologies. As a whole, phylogenetic richness was larger in AOA than in AOB, and sediments contained the highest phylogenetic richness whereas marine plankton the lowest. We also observed that freshwater ammonia oxidizers were phylogenetically richer than their marine counterparts. AOA communities were more dissimilar to each other than those of AOB, and consistent monophyletic lineages were observed for sediments, soils, and marine plankton in AOA but not in AOB. The diversification patterns showed a more constant cladogenesis through time for AOB whereas AOA apparently experienced two fast diversification events separated by a long steady-state episode. The diversification rate (γ statistic for most of the habitats indicated γ(AOA > γ(AOB. Soil and sediment experienced earlier bursts of diversification whereas habitats usually eutrophic and rich in ammonium such as wastewater and sludge showed accelerated diversification rates towards the present. Overall, this work shows for the first time a global picture of the phylogenetic community structure of both AOB and AOA assemblages following the strictest analytical standards, and provides an ecological view on the differential evolutionary paths experienced by widespread ammonia-oxidizing

  9. Effect of ammonia on the anaerobic hydrolysis of cellulose and tributyrin

    NARCIS (Netherlands)

    Vasconcelos Fernandes, T.; Keesman, K.J.; Zeeman, G.; Lier, van J.B.

    2012-01-01

    Ammonia nitrogen is one of the most common inhibitors in the anaerobic digestion of complex wastes containing high concentrations of ammonia like animal manures, blackwater and waste oil from gastronomy. The inhibiting effect of ammonia on methanogenesis has been well established. In contrast, the k

  10. Inhibitory effect of ammonia nitrogen on specific methanogenic activity of anaerobic granular sludge

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A series of batch experiments were conducted in 125 mL serum bottles to assess the toxicity of different concentrations of ammonia nitrogen to the specific methanogenic activity of anaerobic granular sludge from upflow anaerobic sludge bed(UASB) and expanded granular sludge bed(EGSB) reactors. The effects of pH value and temperature on toxicity of ammonia nitrogen to anaerobes were investigated. The results show that the specific methanogenic activity of anaerobic granular sludge suffers inhibition from ammonia nitrogen, the concentrations of ammonia nitrogen that produce 50% inhibition of specific methanogenic activity for sludge from UASB and EGSB reactor are 2.35 and 2.75 g/L, respectively. Hydrogen utilizing methanogens suffers less inhibition from ammonia nitrogen than that of acetate utilizing methanogens. Hydrogen-producing acetogens that utilize propionate and butyrate as substrates suffer serious inhibition from ammonia nitrogen. The toxicity of ammonia nitrogen to anaerobic granular sludge enhances when pH value and temperature increase. Anaerobic granular sludge can bear higher concentrations of ammonia nitrogen after being acclimated by ammonia nitrogen for 7 d.

  11. Distinct Responses in Ammonia-Oxidizing Archaea and Bacteria after Addition of Biosolids to an Agricultural Soil▿

    OpenAIRE

    Kelly, John J.; Policht, Katherine; Grancharova, Tanya; Hundal, Lakhwinder S.

    2011-01-01

    The recently discovered ammonia-oxidizing archaea (AOA) have been suggested as contributors to the first step of nitrification in terrestrial ecosystems, a role that was previously assigned exclusively to ammonia-oxidizing bacteria (AOB). The current study assessed the effects of agricultural management, specifically amendment of soil with biosolids or synthetic fertilizer, on nitrification rates and copy numbers of archaeal and bacterial ammonia monooxygenase (amoA) genes. Anaerobically dige...

  12. Counteracting ammonia inhibition during anaerobic digestion by recovery using submersible microbial desalination cell

    DEFF Research Database (Denmark)

    Zhang, Yifeng; Angelidaki, Irini

    2015-01-01

    Ammonia inhibition is one of the most frequent and serious problems in biogas plants. In this study, a novel hybrid system consisting of a submersible microbial desalination cell (SMDC) and a continuous stirred tank reactor (CSTR) was developed for counteracting ammonia inhibition during anaerobic...... digestion (AD) with simultaneous in situ ammonia recovery and electricity production. The SMDC was powered by acetate in a buffer solution, while synthetic ammonia-rich wastewater was used as the feeding of the CSTR. Under continuous operation, ammonia recovery rate of 86 g-N/m2 /day and current density...

  13. ADM1-based modeling of anaerobic digestion of swine manure fibers pretreated with aqueous ammonia soaking

    DEFF Research Database (Denmark)

    Jurado, Esperanza; Gavala, Hariklia N.; Skiadas, Ioannis

    2012-01-01

    Anaerobic digestion of manure fibers present challenges due to their low biodegradability. Aqueous ammonia soaking (AAS) and subsequent ammonia removal has been tested as a simple and cheap method to disrupt the lignocellulose and increase the methane potential and the biogas productivity of manure...

  14. Enhancing recovery of ammonia from swine manure anaerobic digester effluent using gas-permeable membrane technology

    Science.gov (United States)

    Gas-permeable membrane technology is useful to recover ammonia from manure. In this study, the technology was enhanced using aeration instead of alkali chemicals to increase pH and the ammonia recovery rate. Digested effluents from covered anaerobic swine lagoons containing 1375 to 2089 milligram am...

  15. Innovative bioelectrochemical-anaerobic-digestion integrated system for ammonia recovery and bioenergy production from ammonia-rich residues

    DEFF Research Database (Denmark)

    Zhang, Yifeng; Angelidaki, Irini

    2015-01-01

    Ammonia (NH4+/NH3) inhibition during anaerobic digestion process is one of the most frequent problems existing in biogas plants, resulting in unstable process and reduced biogas production. In this study, we developed a novel hybrid system, consisted of a submersed microbial resource recovery cell...

  16. Pretreatment of anaerobic digestion effluent with ammonia stripping and biogas purification.

    Science.gov (United States)

    Lei, Xiaohui; Sugiura, Norio; Feng, Chuanping; Maekawa, Takaaki

    2007-07-16

    In this study, ammonia stripping was optimized for pretreating anaerobic digestion effluent from an anaerobic digestion plant, and the possibility of using CO(2) stripping and biogas injection for adjusting the pH of the effluent before and after the ammonia stripping process was also investigated. For ammonia stripping, the results showed that an overdose of calcium hydroxide, i.e., 27.5g/L wastewater, achieved higher ammonia, phosphorus, chemical oxygen demand, suspended solids, and turbidity removal efficiency. An air flow rate of 5L/min for 1L of wastewater was thought as suitable for engineering application. The pH of the anaerobic digestion effluent can be increased from about 7 to about 9 by CO(2) stripping, however which is insufficient for ammonia stripping. For 1L of wastewater treated after ammonia stripping, the pH can be neutralized to about 7 from greater than 11 through biogas injection at 1L/min for less than 30min, and continuous injection does not decrease the pH. It was roughly estimated that 43m(3) of biogas (CH(4):CO(2) approximately 60%:40%) produced daily could be purified to CH(4):CO(2) approximately 74%:26% by neutralizing the pH of the 5m(3) anaerobic digestion effluent pretreated by ammonia stripping. PMID:17178436

  17. Decreased competiveness of the foodborne pathogen, Campylobacter jejuni, co-culture with the hyper-ammonia anaerobe, Clostridium aminophilum

    Science.gov (United States)

    Campylobacter spp. are a leading bacterial cause of human foodborne illness. When co-cultured in anaerobic Bolton broth with the hyper-ammonia-producing bacterium, Clostridium aminophilum, ammonia accumulation was greater (P 1...

  18. Ammonia effect on hydrogenotrophic methanogens and syntrophic acetate-oxidizing bacteria.

    Science.gov (United States)

    Wang, Han; Fotidis, Ioannis A; Angelidaki, Irini

    2015-11-01

    Ammonia-rich substrates can cause inhibition on anaerobic digestion process. Syntrophic acetate-oxidizing bacteria (SAOB) and hydrogenotrophic methanogens are important for the ammonia inhibitory mechanism on anaerobic digestion. The roles and interactions of SAOB and hydrogenotrophic methanogens to ammonia inhibition effect are still unclear. The aim of the current study was to determine the ammonia toxicity levels of various pure strains of SAOB and hydrogenotrophic methanogens. Moreover, ammonia toxicity on the syntrophic-cultivated strains of SAOB and hydrogenotrophic methanogens was tested. Thus, four hydrogenotrophic methanogens (i.e. Methanoculleus bourgensis, Methanobacterium congolense, Methanoculleu thermophilus and Methanothermobacter thermautotrophicus), two SAOB (i.e. Tepidanaerobacter acetatoxydans and Thermacetogenium phaeum) and their syntrophic cultivation were assessed under 0.26, 3, 5 and 7 g NH4 (+)-N L(-1). The results showed that some hydrogenotrophic methanogens were equally, or in some cases, more tolerant to high ammonia levels compared to SAOB. Furthermore, a mesophilic hydrogenotrophic methanogen was more sensitive to ammonia toxicity compared to thermophilic methanogens tested in the study, which is contradicting to the general belief that thermophilic methanogens are more vulnerable to high ammonia loads compared to mesophilic. This unexpected finding underlines the fact that the complete knowledge of ammonia inhibition effect on hydrogenotrophic methanogens is still absent. PMID:26490748

  19. Niche segregation of ammonia-oxidizing archaea and anammox bacteria in the Arabian Sea oxygen minimum zone

    OpenAIRE

    Pitcher, A.; Villanueva, L; Hopmans, E.C.; Schouten, S.; G. J. Reichart; Sinninghe Damsté, J.S.

    2011-01-01

    Ammonia-oxidizing archaea (AOA) and anaerobic ammonia-oxidizing (anammox) bacteria have emerged as significant factors in the marine nitrogen cycle and are responsible for the oxidation of ammonium to nitrite and dinitrogen gas, respectively. Potential for an interaction between these groups exists; however, their distributions are rarely determined in tandem. Here we have examined the vertical distribution of AOA and anammox bacteria through the Arabian Sea oxygen minimum zone (OMZ), one of ...

  20. Selective catalytic oxidation of ammonia

    Energy Technology Data Exchange (ETDEWEB)

    Leppaelahti, J.; Koljonen, T. [VTT Energy, Espoo (Finland)

    1996-12-31

    In the combustion of fossil fuels, the principal source of nitrogen oxides is nitrogen bound in the fuel structure. In gasification, a large part of fuel nitrogen forms NH{sub 3}, which may form nitrogen oxides during gas combustion. If NH{sub 3} and other nitrogen species could be removed from hot gas, the NO emission could be considerably reduced. However, relatively little attention has been paid to finding new means of removing nitrogen compounds from the hot gasification gas. The possibility of selectively oxidizing NH{sub 3} to N{sub 2} in the hot gasification has been studied at VTT Energy. The largest NH{sub 3} reductions have been achieved by catalytic oxidation on aluminium oxides. (author) (4 refs.)

  1. Ammonia-methane two-stage anaerobic digestion of dehydrated waste-activated sludge

    OpenAIRE

    Nakashimada, Yutaka; Ohshima, Yasutaka; Minami, Hisao; Yabu, Hironori; Namba,Yuzaburo; Nishio, Naomichi

    2008-01-01

    In repeated batch-wise thermophilic anaerobic digestion of dehydrated waste-activated sludge with 80% (w/w) water content (DWAS), although methane production reached 30 % of total organic carbon in DWAS in the first run of 15d, it gradually decreased and finally stopped in the subsequent runs together with an increase in ammonia concentration. When the loading of DWAS on anaerobic digestion was investigated, methane production at 30d significantly decreased with the increase in the amount of ...

  2. A pH-based control of ammonia in biogas during anaerobic digestion of artificial pig manure and maize silage

    NARCIS (Netherlands)

    Strik, D.P.B.T.B.; Domnanovich, A.M.; Braun, R.; Holubar, P.

    2006-01-01

    The purposes of this study were to prove that ammonia can be present in biogas from anaerobic digestion and to control this ammonia by reducing the reactor pH. Ammonia containing biogas was produced for a period of more than 100 days, with a maximum of 332 ppm. Especially during periods of high free

  3. Effect of digestion time on anaerobic digestion with high ammonia concentration

    Science.gov (United States)

    Oktavitri, Nur Indradewi; Purnobasuki, Hery; Kuncoro, Eko Prasetyo; Purnamasari, Indah; Semma Hadinnata, P.

    2016-03-01

    Anaerobic digestion was developed to treat high concentration organic compound efficiently in certain Digestion Time (DT). High ammonia concentration could influenced removal organic compound in digestion. This bench scale study investigated the effect of digestion time on anaerobic batch reactor with high ammonia concentration. Total Ammonia Nitrogen (TAN) concentration was adjusted 4000 and 5000 mg/1, Digestion time was ranged from 0-26 d, operation temperature was ranged from 28-29°C, inoculum was collected from slaughter house sludge. The degradation of Chemical Oxygen Demand (COD) correlated with digestion time. The concentration of TAN from synthetic wastewater contain 5000 mg/1 of TAN more fluctuated than those use 4000 mg/1 of TAN. However, the biogas production from wastewater contained 4000 mg/1 of TAN gradually increased until 24 d of DT. The reactor contain 5000 mg/1 of TAN only growth until 12 d and steady state at over 12 d of digestion time.

  4. Technical and operational feasibility of psychrophilic anaerobic digestion biotechnology for processing ammonia-rich waste

    International Nuclear Information System (INIS)

    Highlights: • Long-term anaerobic digestion (AD) process at high-ammonia (>5 gN/L) is limited. • PADSBR technology was validated to treat N-rich waste with 8.2 ± 0.3 gNH3-N/L. • Excess ammonia (8.2 gN/L) did not affect the digestion process with no inhibition. • VFA, an indicator for process stability, did not accumulate in PADSBR. • Biomass acclimation in PADSBR ensured a high-stabilization of the AD process. - Abstract: Ammonia nitrogen plays a critical role in the performance and stability of anaerobic digestion (AD) of ammonia rich wastes like animal manure. Nevertheless, inhibition due to high ammonia remains an acute limitation in AD process. A successful long-term operation of AD process at high ammonia (>5 gN/L) is limited. This study focused on validating technical feasibility of psychrophilic AD in sequencing batch reactor (PADSBR) to treat swine manure spiked with NH4Cl up to 8.2 ± 0.3 gN/L, as a representative of N-rich waste. CODt, CODs, VS removals of 86 ± 3, 82 ± 2 and 73 ± 3% were attained at an OLR of 3 gCOD/L.d, respectively. High-ammonia had no effect on methane yields (0.23 ± 0.04 L CH4/gTCODfed) and comparable to that of control reactors, which fed with raw swine manure alone (5.5 gN/L). Longer solids/hydraulic retention times in PADSBRs enhanced biomass acclimation even at high-ammonia. Thus VFA, an indicator for process stability, did not accumulate in PADSBR. Further investigation is essential to establish the maximum concentrations of TKN and free ammonia that the PADSBR can sustain

  5. Molecular Characterization of Soil Ammonia-Oxidizing Bacteria Based on the Genes Encoding Ammonia Monooxygenase

    OpenAIRE

    Alzerreca, Jose Javier

    1999-01-01

    Ammonia-oxidizing bacteria (AOB) are chemolithotrophs that oxidize ammonia/ammonium to nitrite in a two-step process to obtain energy for survival. AOB are difficult to isolate from the environment and iso lated strains may not represent the diversity in soil. A genetic database and molecular tools were developed based on the ammonia monooxygenase (AMO) encoding genes that can be used to assess the diversity of AOB that exist in soil and aquatic environments without the isolation of pure cult...

  6. Enhanced anaerobic treatment of CSTR-digested effluent from chicken manure: The effect of ammonia inhibition.

    Science.gov (United States)

    Liu, Zhan-Guang; Zhou, Xue-Fei; Zhang, Ya-Lei; Zhu, Hong-Guang

    2012-01-01

    The effect of ammonia inhibition was evaluated during the enhanced anaerobic treatment of digested effluent from a 700m(3) chicken-manure continuous stirred tank reactor (CSTR). A 12.3L internal circulation (IC) reactor inoculated with an anaerobic granular sludge and operated at 35±1°C was employed for the investigation. With a corresponding organic loading rate of 1.5-3.5kg-COD/m(3)d over a hydraulic retention time of 1.5d, a maximum volumetric biogas production rate of 1.2m(3)/m(3)d and TCOD (total COD) removal efficiency ranging from 70% to 80% was achieved. However, the continual increase in the influent TAN content led to ammonia inhibition in the methanogenesis system. The SCOD/TAN (soluble COD/total ammonia nitrogen) ratio was presented to be the key controlling factor for the anaerobic treatment of semi-digested chicken manure, and further validation through shock loading and ammonia inhibition experiments was conducted. The threshold value of the SCOD/TAN ratio was determined to be 2.4 (corresponding to a TAN of 1250mg/L) at an influent pH of 8.5-9. PMID:21978423

  7. Enhanced anaerobic treatment of CSTR-digested effluent from chicken manure: The effect of ammonia inhibition

    International Nuclear Information System (INIS)

    Highlights: ► Enhanced anaerobic treatment of CSTR-digested effluent from chicken manure. ► The SCOD/TAN (soluble COD/total ammonia nitrogen) ratio was key controlling factor. ► The threshold of the SCOD/TAN ratio was 2.4 at an influent pH of 8.5–9. - Abstract: The effect of ammonia inhibition was evaluated during the enhanced anaerobic treatment of digested effluent from a 700 m3 chicken-manure continuous stirred tank reactor (CSTR). A 12.3 L internal circulation (IC) reactor inoculated with an anaerobic granular sludge and operated at 35 ± 1 °C was employed for the investigation. With a corresponding organic loading rate of 1.5–3.5 kg-COD/m3 d over a hydraulic retention time of 1.5 d, a maximum volumetric biogas production rate of 1.2 m3/m3 d and TCOD (total COD) removal efficiency ranging from 70% to 80% was achieved. However, the continual increase in the influent TAN content led to ammonia inhibition in the methanogenesis system. The SCOD/TAN (soluble COD/total ammonia nitrogen) ratio was presented to be the key controlling factor for the anaerobic treatment of semi-digested chicken manure, and further validation through shock loading and ammonia inhibition experiments was conducted. The threshold value of the SCOD/TAN ratio was determined to be 2.4 (corresponding to a TAN of 1250 mg/L) at an influent pH of 8.5–9.

  8. Production of oceanic nitrous oxide by ammonia-oxidizing archaea

    Science.gov (United States)

    Löscher, C. R.; Kock, A.; Könneke, M.; LaRoche, J.; Bange, H. W.; Schmitz, R. A.

    2012-07-01

    The recent finding that microbial ammonia oxidation in the ocean is performed by archaea to a greater extent than by bacteria has drastically changed the view on oceanic nitrification. The numerical dominance of archaeal ammonia-oxidizers (AOA) over their bacterial counterparts (AOB) in large parts of the ocean leads to the hypothesis that AOA rather than AOB could be the key organisms for the oceanic production of the strong greenhouse gas nitrous oxide (N2O) that occurs as a by-product of nitrification. Very recently, enrichment cultures of marine ammonia-oxidizing archaea have been reported to produce N2O. Here, we demonstrate that archaeal ammonia monooxygenase genes (amoA) were detectable throughout the water column of the eastern tropical North Atlantic (ETNA) and eastern tropical South Pacific (ETSP) Oceans. Particularly in the ETNA, comparable patterns of abundance and expression of archaeal amoA genes and N2O co-occurred in the oxygen minimum, whereas the abundances of bacterial amoA genes were negligible. Moreover, selective inhibition of archaea in seawater incubations from the ETNA decreased the N2O production significantly. In studies with the only cultivated marine archaeal ammonia-oxidizer Nitrosopumilus maritimus SCM1, we provide the first direct evidence for N2O production in a pure culture of AOA, excluding the involvement of other microorganisms as possibly present in enrichments. N. maritimus showed high N2O production rates under low oxygen concentrations comparable to concentrations existing in the oxycline of the ETNA, whereas the N2O production from two AOB cultures was comparably low under similar conditions. Based on our findings, we hypothesize that the production of N2O in tropical ocean areas results mainly from archaeal nitrification and will be affected by the predicted decrease in dissolved oxygen in the ocean.

  9. QPCR quantification of ammonia oxidizing bacteria: What should the target be?

    OpenAIRE

    Musovic, Sanin; Palomo, Alejandro; Diwan, Vaibhav; Dechesne, Arnaud; Smets, Barth F.

    2014-01-01

    Ammonia oxidizing bacteria (AOB) perform the first step of nitrification, a key step in the Nitrogen cycle in both natural and engineered systems. In addition to their well-known role in wastewater treatment, they are also essential in rapid sand filter at waterworks treating anaerobic groundwater for drinking water production. Being able to quantify precisely the abundance of this functional group is thus important to be able monitor these processes.AOB are moderately diverse Beta-Proteobact...

  10. Enrichment of denitrifying anaerobic methane oxidizing microorganisms.

    Science.gov (United States)

    Hu, Shihu; Zeng, Raymond J; Burow, Luke C; Lant, Paul; Keller, Jurg; Yuan, Zhiguo

    2009-10-01

    The microorganisms responsible for anaerobic oxidation of methane (AOM) coupled to denitrification have not been clearly elucidated. Three recent publications suggested it can be achieved by a denitrifying bacterium with or without the involvement of anaerobic methanotrophic archaea. A key factor limiting the progress in this research field is the shortage of enrichment cultures performing denitrifying anaerobic methane oxidation (DAMO). In this study, DAMO cultures were enriched from mixed inoculum including sediment from a freshwater lake, anaerobic digester sludge and return activated sludge from a sewage treatment plant. Two reactors, operated at 35°C and at 22°C, respectively, showed simultaneous methane oxidation and nitrate reduction after several months of operation. Analysis of 16S rRNA gene clone libraries from the 35°C enrichment showed the presence of an archaeon closely related to other DAMO archaea and a dominated bacterium belonging to the yet uncultivated NC10 phylum. This culture preferred nitrite to nitrate as the electron acceptor. The present study suggests that the archaea are rather methanotrophs than methanogens. The highest denitrification rate achieved was 2.35 mmol NO3 (-) -N gVSS(-1)  day(-1) . The culture enriched at 22°C contained the same NC10 bacterium observed in the culture enriched at 35°C but no archaea. PMID:23765890

  11. Ammonia manipulates the ammonia-oxidizing archaea and bacteria in the coastal sediment-water microcosms.

    Science.gov (United States)

    Zhang, Yan; Chen, Lujun; Dai, Tianjiao; Sun, Renhua; Wen, Donghui

    2015-08-01

    Ammonia was observed as a potential significant factor to manipulate the abundance and activity of ammonia-oxidizing microorganisms (AOMs) in water environments. For the first time, this study confirmed this phenomenon by laboratory cultivation. In a series of estuarine sediment-coastal water microcosms, we investigated the AOM's phylogenetic composition and activity change in response to ammonia concentration. Increase of ammonia concentration promoted bacterial amoA gene abundance in a linear pattern. The ratio of transcribed ammonia-oxidizing bacteria (AOB) amoA gene/ammonia-oxidizing archaea (AOA) amoA gene increased from 0.1 to 43 as NH4 (+)-N increased from less than 0.1 to 12 mg L(-1), and AOA amoA transcription was undetected under 20 mg NH4 (+)-N L(-1). The incubation of stable isotope probing (SIP) microcosms revealed a faster (13)C-NaHCO3 incorporation rate of AOA amoA gene under 0.1 mg NH4 (+)-N L(-1) and a sole (13)C-NaHCO3 utilization of the AOB amoA gene under 20 mg NH4 (+)-N L(-1). Our results indicate that ammonia concentration manipulates the structure of AOM. AOA prefers to live and perform higher amoA transcription activity than AOB in ammonia-limited water environments, and AOB tends to take the first contributor place in ammonia-rich ones. PMID:25797330

  12. Ammonia tolerant enriched methanogenic cultures as bioaugmentation inocula to alleviate ammonia inhibition in continuous anaerobic reactors

    DEFF Research Database (Denmark)

    Fotidis, Ioannis; Wang, Han; Angelidaki, Irini

    tolerant methanogenic culture as potential bioaugmentation inoculum in a continuous stirred tank reactor (CSTR) operating under “inhibited steady-state”, triggered by high ammonia levels (5 g NH4+-N L-1). The results of the current study established for the first time that bioaugmentation of an enriched...

  13. The dominant acetate degradation pathway/methanogenic composition in full-scale anaerobic digesters operating under different ammonia levels

    DEFF Research Database (Denmark)

    Fotidis, Ioannis; Karakashev, Dimitar Borisov; Angelidaki, Irini

    2014-01-01

    Ammonia is a major environmental factor influencing biomethanation in full-scale anaerobic digesters. In this study, the effect of different ammonia levels on methanogenic pathways and methanogenic community composition of full-scale biogas plants was investigated. Eight full-scale digesters...

  14. Production of oceanic nitrous oxide by ammonia-oxidizing archaea

    Directory of Open Access Journals (Sweden)

    C. R. Löscher

    2012-07-01

    Full Text Available The recent finding that microbial ammonia oxidation in the ocean is performed by archaea to a greater extent than by bacteria has drastically changed the view on oceanic nitrification. The numerical dominance of archaeal ammonia-oxidizers (AOA over their bacterial counterparts (AOB in large parts of the ocean leads to the hypothesis that AOA rather than AOB could be the key organisms for the oceanic production of the strong greenhouse gas nitrous oxide (N2O that occurs as a by-product of nitrification. Very recently, enrichment cultures of marine ammonia-oxidizing archaea have been reported to produce N2O.

    Here, we demonstrate that archaeal ammonia monooxygenase genes (amoA were detectable throughout the water column of the eastern tropical North Atlantic (ETNA and eastern tropical South Pacific (ETSP Oceans. Particularly in the ETNA, comparable patterns of abundance and expression of archaeal amoA genes and N2O co-occurred in the oxygen minimum, whereas the abundances of bacterial amoA genes were negligible. Moreover, selective inhibition of archaea in seawater incubations from the ETNA decreased the N2O production significantly. In studies with the only cultivated marine archaeal ammonia-oxidizer Nitrosopumilus maritimus SCM1, we provide the first direct evidence for N2O production in a pure culture of AOA, excluding the involvement of other microorganisms as possibly present in enrichments. N. maritimus showed high N2O production rates under low oxygen concentrations comparable to concentrations existing in the oxycline of the ETNA, whereas the N2O production from two AOB cultures was comparably low under similar conditions. Based on our findings, we hypothesize that the production of N2O in tropical ocean areas results mainly from archaeal nitrification and will be affected by the predicted decrease in dissolved

  15. Production of oceanic nitrous oxide by ammonia-oxidizing archaea

    Directory of Open Access Journals (Sweden)

    C. R. Loescher

    2012-02-01

    Full Text Available The recent finding that microbial ammonia oxidation in the ocean is performed by archaea to a greater extent than by bacteria has drastically changed the view on oceanic nitrification. The numerical dominance of archaeal ammonia-oxidizers (AOA over their bacterial counterparts (AOB in large parts of the ocean leads to the hypothesis that AOA rather than AOB could be the key organisms for the oceanic production of the strong greenhouse gas nitrous oxide (N2O which occurs as a by-product of nitrification. Very recently, enrichment cultures of marine ammonia-oxidizing archaea have been described to produce N2O. Here, we demonstrate that archaeal ammonia monooxygenase genes (amoA were detectable throughout the water column of the Eastern Tropical North Atlantic (ETNA and Eastern Tropical South Pacific Oceans (ETSP. Particularly in the ETNA, maxima in abundance and expression of archaeal amoA genes correlated with the N2O maximum and the oxygen minimum, whereas the abundances of bacterial amoA genes were negligible. Moreover, selective inhibition of archaea in seawater incubations from the ETNA decreased the N2O production significantly. In studies with the only cultivated marine archaeal ammonia-oxidizer Nitrosopumilus maritimus SCM1, we provide the first direct evidence for N2O production in a pure culture of AOA, excluding the involvement of other microorganisms as possibly present in enrichments. N. maritimus showed high N2O production rates under low oxygen concentrations comparable to concentrations existing in the oxycline of the ETNA, whereas the N2O production from two AOB cultures was comparably low under similar conditions. Based on our findings, we hypothesize that the production of N2O in tropical ocean areas results mainly from archaeal nitrification and will be affected by the predicted decrease in dissolved oxygen

  16. Effect of ammonia plasma treatment on graphene oxide LB monolayers

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Gulbagh; Botcha, V. Divakar; Narayanam, Pavan K.; Sutar, D. S.; Talwar, S. S.; Major, S. S. [Department of Physics, Indian Institute of Technology Bombay, Mumbai - 400076 (India); Srinivasa, R. S. [Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai - 400076 (India)

    2013-02-05

    Graphene oxide monolayer sheets were transferred on Si and SiO{sub 2}/Si substrates by Langmuir-Blodgett technique and were exposed to ammonia plasma at room temperature. The monolayer character of both graphene oxide and plasma treated graphene oxide sheets were ascertained by atomic force microscopy. X-ray photoelectron spectroscopy and Raman spectroscopy revealed that ammonia plasma treatment results in enhancement of graphitic carbon content along with the incorporation of nitrogen. The conductivity of graphene oxide monolayers, which was in the range of 10{sup -6}-10{sup -7} S/cm, increased to 10{sup -2}-10{sup -3} S/cm after the ammonia plasma treatment. These results indicate that the graphene oxide was simultaneously reduced and N-doped during ammonia plasma treatment, without affecting the morphological stability of sheets.

  17. Enhancing Biogas Production from Anaerobically Digested Wheat Straw Through Ammonia Pretreatment

    Institute of Scientific and Technical Information of China (English)

    杨懂艳; 庞云芝; 袁海荣; 陈树林; 马晶伟; 郁亮; 李秀金

    2014-01-01

    Aqueous ammonia was used to pretreat wheat straw to improve biodegradability and provide nitrogen source for enhancing biogas production. Three doses of ammonia (2%, 4%, and 6%, dry matter) and three moisture contents (30%, 60%, and 80%, dry matter) were applied to pretreat wheat straw for 7 days. The pretreated wheat straws were anaerobically digested at three loading rates (50, 65, and 80 g·L-1) to produce biogas. The results indi-cated that the wheat straw pretreated with 80%moisture content and 4%ammonia achieved the highest methane yield of 199.7 ml·g-1 (based on per unit volatile solids loaded), with shorter digestion time (T80) of 25 days at the loading rate of 65 g·L-1 compared to untreated one. The main chemical compositions of wheat straw were also ana-lyzed. The cellulose and hemicellulose contents were decomposed by 2%-20%and 26%-42%, respectively, while the lignin content was hardly removed, cold-water and hot-water extracts were increased by 4%-44%, and 12%-52%, respectively, for the ammonia-pretreated wheat straws at different moisture contents. The appropriate C/N ratio and decomposition of original chemical compositions into relatively readily biodegradable substances will improve the biodegradability and biogas yield.

  18. Bioaugmentation of an acetate-oxidising anaerobic consortium in up-flow sludge blanket reactor subjected to high ammonia loads

    DEFF Research Database (Denmark)

    Fotidis, Ioannis; Karakashev, Dimitar Borisov; Angelidaki, Irini

    . in association with Methanoculleus spp. strain MAB1), is an acetate oxidising methanogenic consortium that can produce methane (CH4) at high ammonia levels. In the current study the bioaugmentation of the SAO culture in a mesophilic up-flow anaerobic sludge blanket (UASB) reactor subjected to high ammonia loads......Ammonia is the major inhibitor of anaerobic digestion (AD) process leading to suboptimal utilisation of the biogas potential of the feedstocks and causing economical losses to the biogas plants. However, ammonia is mainly inhibiting the aceticlastic methanogens, while the hydrogenotrophic...... was tested. The co-cultivation in fed-batch of a fast-growing hydrogenotrophic methanogen (i.e. Methanoculleus bourgensis) with the SAO culture was also investigated. Results obtained clearly demonstrated that bioaugmentation of SAO culture in a UASB reactor was not possible most probably due to the slow...

  19. Community analysis of ammonia oxidizer in the oxygen-limited nitritation stage of OLAND system by DGGE of PCR amplified 16S rDNA Fragments and FISH

    Institute of Scientific and Technical Information of China (English)

    ZHANG Dan; ZHANG De-min; LIU Yao-ping; CAO Wen-wei; CHEN Guan-xiong

    2004-01-01

    OLAND(oxygen limited autotrophic nitrification and denitrification) nitrogen removal system was constructed by coupling with oxygen limited nitritation stage and anaerobic ammonium oxidation stage. Ammonia oxidizer, as a kind of key bacteria in N cycle, plays an important role at the oxygen limited nitritation stage of OLAND nitrogen removal system. In this study, specific amplification of 16S rDNA fragment of ammonia oxidizer by nested PCR, separation of mixed PCR samples by denaturing gradient gel electrophoresis(DGGE), and the quantification of ammonia oxidizer by Fluorescence in situ hybridization(FISH) were combined to investigate the shifts of community composition and quantity of ammonia oxidizer of the oxygen limited nitritation stage in OLAND system. It showed that the community composition of ammonia oxidizer changed drastically when dissolved oxygen was decreased gradually, and the dominant ammonia oxidizer of the steady nitrite accumulation stage were completely different from that of the early stage of oxygen limited nitritation identified by DGGE . It was concluded that the Nitrosomonas may be the dominant genus of ammonia oxidizer at the oxygen limited nitritation stage of OLAND system characterized by nested PCR-DGGE and FISH, and the percentage of Nitrosomonas was 72.5% ( 0.8% of ammonia oxidizer at the steady nitrite accumulation stage detected by FISH.

  20. Ammonia-oxidizing Bacteria and Archaea in the Rhizosphere of Freshwater Macrophytes

    DEFF Research Database (Denmark)

    Herrmann, Martina; Schramm, Andreas

    2007-01-01

    rate measurements revealed clear differences in ammonia oxidation rates. The diversity of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) was assessed using the ammonia monooxygenase (amoA) gene as functional marker. Both AOA and AOB could be detected in the rhizosphere of all...

  1. Effect of ammonia on hydrogenotrophic methanogens and syntrophic acetate oxidizing bacteria

    DEFF Research Database (Denmark)

    Wang, Han; Fotidis, Ioannis; Angelidaki, Irini

    2015-01-01

    Substrates that contain high ammonia levels can cause inhibition on anaerobic digestion process and unstable biogas production. The aim of the current study was to assess the effects of different ammonia levels on pure strains of (syntrophic acetate oxidizing) SAO bacteria and hydrogenotrophic...... methanogens. Two pure strains of hydrogenotrophic methanogens (i.e: Methanoculleus bourgensis and Methanoculleus thermophiles) and two pure strains of SAO bacteria (i.e: Tepidanaerobacter acetatoxydans and Thermacetogenium phaeum) were inoculated under four different ammonia (0.26, 3, 5 and 7g NH4+-N/L) and...... free ammonia levels (Mesophilic: 3.31, 38.2, 63.68 and 89.15 g NH3-N/L. Thermophilic: 8.48, 97.82,163.03 and 228.24 g NH3-N/L)(Westerholm, et al., 2011; Satoshi, et al., 2000; Jacob, et al., 1997). The results indicated that both T. acetatoxydans and T. phaeum were more sensitive to high ammonia levels...

  2. Correlation of anaerobic ammonium oxidation and denitrification

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The feasibility of the nitrous organic wastewater treated was studied in seven anaerobic sequencing batch reactors(ASBRs)(0 #-6 #) which had been run under stable anaerobic ammonium oxidation (Anammox). By means of monitoring and data analysis of COD, NH4+-N, NO2--N, NO3--N and pH, and of microbial test, the results revealed that the optimal Anammox performance was achieved from 2# reactor in which COD/NH4+-N was 1.65, Anammox bacteria and denitrification bacteria could coexist, and Anammox reaction and denitrification reaction could occur simultaneously in the reactors. The ratio of NH4+-N consumed: NO2--N consumed: NO3--N produced was 1:1.38:0.19 in 0# reactor which was not added glucose in the wastewater. When different ratio of COD and NH4+-N was fed for the reactors, the ratio of NO2--N consumed: NH4+-N consumed was in the range of 1.51-2.29 and the ratio of NO3-N produced: NH4+-N consumed in the range of 0-0.05.

  3. Global Ecological Pattern of Ammonia-Oxidizing Archaea

    OpenAIRE

    Huiluo Cao; Jean-Christophe Auguet; Ji-Dong Gu

    2013-01-01

    BACKGROUND: The global distribution of ammonia-oxidizing archaea (AOA), which play a pivotal role in the nitrification process, has been confirmed through numerous ecological studies. Though newly available amoA (ammonia monooxygenase subunit A) gene sequences from new environments are accumulating rapidly in public repositories, a lack of information on the ecological and evolutionary factors shaping community assembly of AOA on the global scale is apparent. METHODOLOGY AND RESULTS: We condu...

  4. Phenols in anaerobic digestion processes and inhibition of ammonia oxidising bacteria (AOB) in soil

    International Nuclear Information System (INIS)

    This study focuses on the presence of phenols in digestate from seven Swedish large-scale anaerobic digestion processes and their impact on the activity of ammonia oxidising bacteria (AOB) in soil. In addition, the importance of feedstock composition and phenol degradation capacity for the occurrence of phenols in the digestate was investigated in the same processes. The results revealed that the content of phenols in the digestate was related to the inhibition of the activity of AOB in soil (EC5 = 26 μg phenols g-1 d.w. soil). In addition, five pure phenols (phenol, o-, p-, m-cresol and 4-ethylphenol) inhibited the AOB to a similar extent (EC5 = 43-110 μg g-1 d.w. soil). The phenol content in the digestate was mainly dependent on the composition of the feedstock, but also to some extent by the degradation capacity in the anaerobic digestion process. Swine manure in the feedstock resulted in digestate containing higher amounts of phenols than digestate from reactors with less or no swine manure in the feedstock. The degradation capacity of phenol and p-cresol was studied in diluted small-scale batch cultures and revealed that anaerobic digestion at mesophilic temperatures generally exhibited a higher degradation capacity compared to digestion at thermophilic temperature. Although phenol, p-cresol and 4-ethylphenol were quickly degraded in soil, the phenols added with the digestate constitute an environmental risk according to the guideline values for contaminated soils set by the Swedish Environmental Protection Agency. In conclusion, the management of anaerobic digestion processes is of decisive importance for the production of digestate with low amounts of phenols, and thereby little risks for negative effects of the phenols on the soil ecosystem

  5. Hydrothermal oxidation of ammonia/organic waste mixtures

    International Nuclear Information System (INIS)

    Hydrothermal oxidation is a promising new technology for the treatment of radioactive contaminated hazardous organic wastes. Los Alamos National Laboratory is currently evaluating this technology for the U. S. Department of Energy. In this paper, we present experimental results from the study of the hydrothermal oxidation of an ammonia/alcohol/uranium waste mixture. The use of a co-oxidant system consisting of hydrogen peroxide combined with nitrate is discussed. Experiments demonstrate near complete destruction of ammonia and organic compounds at 500 degrees C, 38 MPa, and 50 seconds reaction time. The ammonia and total organic carbon (TOC) concentrations in a waste simulant is reduced from 8,500 mg/L of ammonia and 12,500 mg/L TOC to 30 mg/L ammonia and less than 10 mg/L TOC. The major reaction products are CO2, N2, and a small amount of N2O. Comparison experiments with nitrate and hydrogen peroxide used individually show the advantage of the co-oxidant system

  6. Thaumarchaeal Ammonia Oxidation in an Acidic Forest Peat Soil Is Not Influenced by Ammonium Amendment▿ †

    OpenAIRE

    Stopnišek, Nejc; Gubry-Rangin, Cécile; Höfferle, Špela; Nicol, Graeme W.; Mandič-Mulec, Ines; Prosser, James I.

    2010-01-01

    Both bacteria and thaumarchaea contribute to ammonia oxidation, the first step in nitrification. The abundance of putative ammonia oxidizers is estimated by quantification of the functional gene amoA, which encodes ammonia monooxygenase subunit A. In soil, thaumarchaeal amoA genes often outnumber the equivalent bacterial genes. Ecophysiological studies indicate that thaumarchaeal ammonia oxidizers may have a selective advantage at low ammonia concentrations, with potential adaptation to soils...

  7. Performance of sulfate-dependent anaerobic ammo-nium oxidation

    Institute of Scientific and Technical Information of China (English)

    ZHANG Lei; ZHENG Ping; HE YuHui; JIN RenCun

    2009-01-01

    The performance of sulfate-dependent anaerobic ammonium oxidation was studied. The results showed that both SO42- and NH4+ were chemically stable under anaerobic conditions. They did not react with each other in the absence of biological catalyst (sludge). The anaerobic digested sludge cultivated in an anaerobic reactor for three years took on the ability of oxidizing ammonium with sulfate anaero-bically. The average reduction of sulfate and ammonium was 71.67 mg.L-1 and 56.82 mg.L-1 at high concentrations.The reaction between SO42- and NH4+ was difficult, though feasible, due to its low standard Gibbs free energy change. The experiment demonstrated that high substrate concentrations and low oxidation-reduction potential (ORP) may be favourable for the biological reaction.

  8. [Achievement of Sulfate-Reducing Anaerobic Ammonium Oxidation Reactor Started with Nitrate-Reducting Anaerobic Ammonium Oxidation].

    Science.gov (United States)

    Liu, Zheng-chuan; Yuan, Lin-jiang; Zhou, Guo-biao; Li, Jing

    2015-09-01

    The transformation of nitrite-reducing anaerobic ammonium oxidation to sulfate-reducing anaerobic ammonium oxidation in an UASB was performed and the changes in microbial community were studied. The result showed that the sulfate reducing anaerobic ammonium oxidation process was successfully accomplished after 177 days' operation. The removal rate of ammonium nitrogen and sulfate were up to 58. 9% and 15. 7%, the removing load of ammonium nitrogen and sulfate were 74. 3 mg.(L.d)-1 and 77. 5 mg.(L.d)-1 while concentration of ammonium nitrogen and sulfate of influent were 130 mg.(L.d)-1 and 500 mg.(L.d)-1, respectively. The lost nitrogen and sulphur was around 2 in molar ratio. The pH value of the effluent was lower than that of the influent. Instead of Candidatus brocadia in nitrite reducing anaerobic ammonium oxidation granular sludge, Bacillus benzoevorans became the dominant species in sulfate reducing anaerobic ammonium oxidation sludge. The dominant bacterium in the two kinds of anaerobic ammonium oxidation process is different. Our results imply that the two anaerobic ammonium oxidation processes are carried out by different kind of bacterium. PMID:26717697

  9. Anaerobic ammonium oxidation for advanced municipal wastewater treatment: is it feasible?

    Institute of Scientific and Technical Information of China (English)

    LI Jie; XIONG Bi-yong; ZHANG Shu-de; YANG Hong; ZHANG Jie

    2005-01-01

    Anaerobic ammonium oxidation(ANAMMOX) is a recently developed process to treat ammonia-rich wastewater. There were numerous articles about the new technology with focus on the ammonium-rich wastewater treatment, but few on advanced municipal wastewater treatment. The paper studied the anaerobic ammonium oxidation(ANAMMOX) process with a down flow anoxic biofilter for nitrogen removal from secondary clarifier effluent of municipal wastewater with low COD/N ratio. The results showed that ANAMMOX process is applicable to advanced wastewater treatment with normal temperature as well as ammonia-rich high temperature wastewater treatment. The results indicated that ammonia removal rate was improved by raising the nitrite concentration, and the reaction rate reached a climax at 118.4 mgN/L of the nitrite nitrogen concentration. If the concentration exceeds 118.4 mgN/L, the ANAMMOX process was significantly inhibited although the ANAMMOX bacteria still showed a relatively high reactivity. The data also indicated that the ratio of NO2- -N:NH4 + -N = 1.3:1 in the influent was appropriate for excellent nitrogen removal. The pH increased gradually along the ANAMMOX biofilter reactor. When the ANAMMOX reaction was ended, the pH was tend to calm. The data suggested that the pH could be used as an indicator to describe the course of ANAMMOX reaction.

  10. Inhibition of bacterial ammonia oxidation by organohydrazines in soil microcosms

    Directory of Open Access Journals (Sweden)

    Yucheng eWu

    2012-01-01

    Full Text Available Hydroxylamine oxidation by hydroxylamine oxidoreductase (HAO is a key step for energy-yielding in support of the growth of ammonia-oxidizing bacteria (AOB. Organohydrazines have been shown to inactivate HAO from Nitrosomonas europaea, and may serve as selective inhibitors to differentiate bacterial from archaeal ammonia oxidation due to the absence of bacterial HAO gene homologue in known ammonia-oxidizing archaea (AOA. In this study, the effects of three organohydrazines on activity, abundance and composition of AOB and AOA were evaluated in soil microcosms. The results indicate that phenylhydrazine and methylhydrazine at the concentration of 100 mol per gram dry weight soil completely suppressed the activity of soil nitrification. DGGE fingerprinting and sequencing analysis of bacterial ammonia monooxygenase subunit A gene (amoA clearly demonstrated that nitrification activity change is well paralleled with the growth of Nitrosomonas europaea-like AOB in soil microcosms. No significant correlation between AOA community structure and nitrification activity was observed among all treatments during the incubation period, although incomplete inhibition of nitrification activity occurred in 2-hydroxyethylhydrazine-amended soil microcosms. These findings show that the HAO-targeted organohydrazines can effectively inhibit bacterial nitrification in soil, and the mechanism of organohydrazine affecting AOA remains unclear.

  11. Process model for ammonia volatilization from anaerobic swine lagoons incorporating varying wind speeds and biogas bubbling

    Science.gov (United States)

    Ammonia volatilization from treatment lagoons varies widely with the total ammonia concentration, pH, temperature, suspended solids, atmospheric ammonia concentration above the water surface, and wind speed. Ammonia emissions were estimated with a process-based mechanistic model integrating ammonia ...

  12. Ammonia oxidation at high pressure and intermediate temperatures

    DEFF Research Database (Denmark)

    Song, Yu; Hashemi, Hamid; Christensen, Jakob Munkholt;

    2016-01-01

    Ammonia oxidation experiments were conducted at high pressure (30 bar and 100 bar) under oxidizing and stoichiometric conditions, respectively, and temperatures ranging from 450 to 925 K. The oxidation of ammonia was slow under stoichiometric conditions in the temperature range investigated. Under...... oxidizing conditions the onset temperature for reaction was 850–875 K at 30 bar, while at 100 bar it was about 800 K, with complete consumption of NH3 at 875 K. The products of reaction were N2 and N2O, while NO and NO2 concentrations were below the detection limit even under oxidizing conditions. The data...... satisfactory. The main oxidation path for NH3 at high pressure under oxidizing conditions is NH3⟶+OH NH2⟶+HO2,NO2 H2NO⟶+O2 HNO⟶+O2 NO ⟶+NH2 N2. The modeling predictions are most sensitive to the reactions NH2 + NO = NNH + OH and NH2 + HO2 = H2NO + OH, which promote the ammonia consumption by forming OH...

  13. Chemically reduced graphene oxide for ammonia detection at room temperature.

    Science.gov (United States)

    Ghosh, Ruma; Midya, Anupam; Santra, Sumita; Ray, Samit K; Guha, Prasanta K

    2013-08-14

    Chemically reduced graphene oxide (RGO) has recently attracted growing interest in the area of chemical sensors because of its high electrical conductivity and chemically active defect sites. This paper reports the synthesis of chemically reduced GO using NaBH4 and its performance for ammonia detection at room temperature. The sensing layer was synthesized on a ceramic substrate containing platinum electrodes. The effect of the reduction time of graphene oxide (GO) was explored to optimize the response, recovery, and response time. The RGO film was characterized electrically and also with atomic force microscopy and X-ray photoelectron spectroscopy. The sensor response was found to lie between 5.5% at 200 ppm (parts per million) and 23% at 2800 ppm of ammonia, and also resistance recovered quickly without any application of heat (for lower concentrations of ammonia). The sensor was exposed to different vapors and found to be selective toward ammonia. We believe such chemically reduced GO could potentially be used to manufacture a new generation of low-power portable ammonia sensors. PMID:23856001

  14. Ammonia-oxidizing archaea have better adaptability in oxygenated/hypoxic alternant conditions compared to ammonia-oxidizing bacteria.

    Science.gov (United States)

    Liu, Shuai; Hu, Baolan; He, Zhanfei; Zhang, Bin; Tian, Guangming; Zheng, Ping; Fang, Fang

    2015-10-01

    Ammonia oxidation is performed by both ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB). Few studies compared the adaptability of AOA and AOB for oxygenated/hypoxic alternant conditions in water-level-fluctuating zones. Here, using qPCR and 454 high-throughput sequencing of functional amoA genes of AOA and AOB, we examined the changes of abundances, diversities, and community structures of AOA and AOB in periodically flooded soils compared to the non-flooded soils in Three Gorges Reservoir. The increased AOA operational taxonomic unit (OTU) numbers and the higher ratios of abundance (AOA:AOB) in the periodically flooded soils suggested AOA have better adaptability for oxygenated/hypoxic alternant conditions in the water-level-fluctuating zones in the Three Gorges Reservoir and probably responsible for the ammonia oxidation there. Canonical correspondence analysis (CCA) showed that oxidation-reduction potential (ORP) had the most significant effect on the community distribution of AOA (p amoA gene abundances (AOA:AOB) (p < 0.05). ORP was also significantly positively correlated with AOB abundance (p < 0.05). PMID:26099334

  15. Ammonia oxidation rates and nitrification in the Arabian Sea

    Science.gov (United States)

    Newell, Silvia E.; Babbin, Andrew R.; Jayakumar, Amal; Ward, Bess B.

    2011-12-01

    Nitrification rates, as well as the relationships between rates and ammonia oxidizer abundance (both archaeal and bacterial), were investigated in the Arabian Sea. Ammonia oxidation rates were measured directly using 15N-NH4+stable isotope additions in gas-impermeable, trace metal clean trilaminate bags (500 mL) at in situ temperature. Tracer incubations were performed at three stations at depths above, below, and within the oxycline of the open-ocean oxygen minimum zone (OMZ). Ammonia oxidation rates were similar to previous open-ocean measurements, ranging from undetectable to 21.6 ± 0.1 nmol L-1 d-1. The highest rates at each station occurred at the primary nitrite maximum (above the OMZ), and rates were very low at depths greater than 900 m. The abundances of both ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) were estimated using theamoA gene by quantitative polymerase chain reaction (qPCR). Both AOA and AOB amoA were detected above, within, and below the OMZ, although the AOA were always more abundant than the AOB, by a factor of 35-216. Nitrification rates were not directly correlated to AOA or AOB amoA abundance. These rates offer new insight into the role of nitrification in the mesopelagic zone. The abundance of AOA amoA genes at 1000 m suggests that ˜50% of the microbial biomass could be autotrophic. Additionally, the integrated nitrification rate at depth implies that nitrification could consume most of the ammonium produced by the flux of organic carbon in the mesopelagic zone.

  16. Performance of sulfate-dependent anaerobic ammonium oxidation

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The performance of sulfate-dependent anaerobic ammonium oxidation was studied.The results showed that both SO42-and NH4+ were chemically stable under anaerobic conditions.They did not react with each other in the absence of biological catalyst(sludge).The anaerobic digested sludge cultivated in an anaerobic reactor for three years took on the ability of oxidizing ammonium with sulfate anaero-bically.The average reduction of sulfate and ammonium was 71.67 mg.L-1 and 56.82 mg.L-1 at high concentrations.The reaction between SO42-and NH4+ was difficult,though feasible,due to its low standard Gibbs free energy change.The experiment demonstrated that high substrate concentrations and low oxidation-reduction potential(ORP) may be favourable for the biological reaction.

  17. Identification of a denitrifying bacterium and verification of its anaerobic ammonium oxidation ability

    Institute of Scientific and Technical Information of China (English)

    HU; Baolan; ZHENG; Ping; LI; Jinye; XU; Xiangyang; JIN; Rencun

    2006-01-01

    A strain D3 of denitrifying bacterium was isolated from an anammox reactor, and identified as Pseudomonas mendocina based on the morphological and physiological assay, Vitek test,Biolog test, (G+C) mol% content, and 16S rDNA phylogenetic analysis. As a typical denitrifying bactration of 88.5 mg N/L. The optimal pH and growth temperature were 7.84 and 34.9℃, respectively.Strain D3 was able to oxidize ammonia under anaerobic condition. The maximum nitrate and ammoof ammonia to nitrate was 1:1.91. Electron microscopic observation revealed peculiar cell inclusions in strain D3. Because of its relation to anammox activity, strain D3 was presumed to be anammoxosome.The present investigation proved that denitrifying bacteria have the anammox ability, and the results have engorged the range of anammox populations.

  18. Ammonia modification of oxide-free Si(111) surfaces

    Science.gov (United States)

    Chopra, Tatiana Peixoto; Longo, Roberto C.; Cho, Kyeongjae; Chabal, Yves J.

    2016-08-01

    Amination of surfaces is useful in a variety of fields, ranging from device manufacturing to biological applications. Previous studies of ammonia reaction on silicon surfaces have concentrated on vapor phase rather than wet chemical processes, and mostly on clean Si surfaces. In this work, the interaction of liquid and vapor-phase ammonia is examined on three types of oxide-free surfaces - passivated by hydrogen, fluorine (1/3 monolayer) or chlorine - combining infrared absorption spectroscopy, X-ray photoelectron spectroscopy, and first-principles calculations. The resulting chemical composition highly depends on the starting surface; there is a stronger reaction on both F- and Cl-terminated than on the H-terminated Si surfaces, as evidenced by the formation of Si-NH2. Side reactions can also occur, such as solvent reaction with surfaces, formation of ammonium salt by-products (in the case of 0.2 M ammonia in dioxane solution), and nitridation of silicon (in the case of neat and gas-phase ammonia reactions for instance). Unexpectedly, there is formation of Si-H bonds on hydrogen-free Cl-terminated Si(111) surfaces in all cases, whether vapor phase of neat liquid ammonia is used. The first-principles modeling of this complex system suggests that step-edge surface defects may play a key role in enabling the reaction under certain circumstances, despite the endothermic nature for Si-H bond formation.

  19. Detection of Ammonia-Oxidizing Archaea in Fish Processing Effluent Treatment Plants

    OpenAIRE

    Devivaraprasad Reddy, A.; Subrahmanyam, Gangavarapu; Shivani Kallappa, Girisha; Karunasagar, Iddya; Karunasagar, Indrani

    2014-01-01

    Ammonia oxidation is the rate limiting step in nitrification and thus have an important role in removal of ammonia in natural and engineered systems with participation of both ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB). However, their relative distribution and activity in fish processing effluent treatment plants (FPETPs) though significant, is hitherto unreported. Presence of AOA in sludge samples obtained from FPETPs was studied by amplification and sequencing of t...

  20. Ammonia oxidation kinetics and temperature sensitivity of a natural marine community dominated by Archaea

    OpenAIRE

    Horak, Rachel E. A.; Qin, Wei; Schauer, Andy J; Armbrust, E. Virginia; Ingalls, Anitra E; Moffett, James W.; Stahl, David A.; Devol, Allan H.

    2013-01-01

    Archaeal ammonia oxidizers (AOAs) are increasingly recognized as prominent members of natural microbial assemblages. Evidence that links the presence of AOA with in situ ammonia oxidation activity is limited, and the abiotic factors that regulate the distribution of AOA natural assemblages are not well defined. We used quantitative PCR to enumerate amoA (encodes α-subunit of ammonia monooxygenase) abundances; AOA amoA gene copies greatly outnumbered ammonia-oxidizing bacteria and amoA transcr...

  1. Protective effect of immobilized ammonia oxidizers and phenol-degrading bacteria on nitrification in ammonia- and phenol-containing wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Morita, M.; Watanabe, A. [Environmental Science Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Chiba (Japan); Kudo, N.; Shinozaki, H. [Materials Science Engineering, Tokyo Denki University, Tokyo (Japan); Uemoto, H.

    2007-12-15

    Phenol present in wastewaters from various industries has an inhibitory effect on nitrification even at low concentrations. Hence, the biological treatment of wastewater containing both phenol and ammonia involves a series of treatment steps. It is difficult to achieve nitrification capability in an activated sludge system that contains phenol at concentrations above the inhibitory level. Batch treatment of wastewater containing various concentrations of phenol showed that the ammonia oxidation capability of suspended Nitrosomonas europaea cells, an ammonia oxidizer, was completely inhibited in the presence of more than 5.0 mg/L phenol. To protect the ammonia oxidizer from the inhibitory effect of phenol and to achieve ammonia oxidation capability in the wastewater containing phenol at concentrations above the inhibitory level, a simple bacterial consortium composed of an ammonia oxidizer (N. europaea) and a phenol-degrading bacterial strain (Acinetobacter sp.) was used. Ammonia oxidation did not occur in the presence of phenol at concentrations above the inhibitory level when suspended or immobilized N. europaea and Acinetobacter sp. cells were used in batch treatment. Following the acclimatization of the immobilized cells, accumulation of nitrite was observed, even when the wastewater contained phenol at concentrations above the inhibitory level. These results showed that immobilization was effective in protecting N. europaea cells from the inhibitory effect of phenol present in the wastewater. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  2. Low-ammonia niche of ammonia-oxidizing archaea in rotating biological contactors of a municipal wastewater treatment plant

    NARCIS (Netherlands)

    Sauder, L.A.; Peterse, F.; Schouten, S.; Neufeld, J.D.

    2012-01-01

    The first step of nitrification is catalysed by both ammonia-oxidizing bacteria (AOB) and archaea (AOA), but physicochemical controls on the relative abundance and function of these two groups are not yet fully understood, especially in freshwater environments. This study investigated ammonia-oxidiz

  3. How to make a living from anaerobic ammonium oxidation

    NARCIS (Netherlands)

    Kartal, B.; De Almeida, N.M.; Maalcke, W.J.; Op den Camp, H.J.M.; Jetten, M.S.M.; Keltjens, J.T.

    2013-01-01

    Anaerobic ammonium-oxidizing (anammox) bacteria primarily grow by the oxidation of ammonium coupled to nitrite reduction, using CO2 as the sole carbon source. Although they were neglected for a long time, anammox bacteria are encountered in an enormous species (micro)diversity in virtually any anoxi

  4. Diversity of Ammonia Oxidizing Archaea in Tropical Compost Systems

    OpenAIRE

    Vidya eDe Gannes; Gaius eEudoxie; Dyer, David H.; William James Hickey

    2012-01-01

    Composting is widely used to transform waste materials into valuable agricultural products. In the tropics, large quantities of agricultural wastes could be potentially useful in agriculture after composting. However, while microbiological processes of composts in general are well established, relatively little is known about microbial communities that may be unique to these in tropical systems, particularly nitrifiers. The recent discovery of ammonia oxidizing archaea (AOA) has changed the p...

  5. Low-ammonia niche of ammonia-oxidizing archaea in rotating biological contactors of a municipal wastewater treatment plant

    OpenAIRE

    Sauder, L.A.; Peterse, F.; Schouten, S; Neufeld, J. D.

    2012-01-01

    The first step of nitrification is catalysed by both ammonia-oxidizing bacteria (AOB) and archaea (AOA), but physicochemical controls on the relative abundance and function of these two groups are not yet fully understood, especially in freshwater environments. This study investigated ammonia-oxidizing populations in nitrifying rotating biological contactors (RBCs) from a municipal wastewater treatment plant. Individual RBC stages are arranged in series, with nitrification at each stage creat...

  6. Effect of different ammonia concentrations on community succession of ammonia-oxidizing microorganisms in a simulated paddy soil column.

    Directory of Open Access Journals (Sweden)

    Hu Baolan

    Full Text Available Ammonia oxidation is performed by both ammonia-oxidizing bacteria (AOB and ammonia-oxidizing archaea (AOA. To explore the effect of ammonia concentration on the population dynamic changes of ammonia-oxidizing microorganisms, we examined changes in the abundance and community composition of AOA and AOB in different layers. Most of the archaeal amoA sequences were Nitrosotalea-related and the proportion that Nitrosotalea cluster occupied decreased in the surface layer and increased in the deep layer during the cultivation process. Nitrosopumilus-related sequences were only detected in the deep layer in the first stage and disappeared later. Both phylogenetic and quantitative analysis showed that there were increased Nitrosomonas-related sequences appeared in the surface layer where the ammonia concentration was the highest. Both AOA and AOB OTU numbers in different layers decreased under selective pressure and then recovered. The potential nitrification rates were 25.06 µg · N · L(-1 · g(-1 dry soil · h(-1 in the mid layer which was higher than the other two layers. In general, obvious population dynamic changes were found for both AOA and AOB under the selective pressure of exogenous ammonia and the changes were different in three layers of the soil column.

  7. Drivers of archaeal ammonia-oxidizing communities in soil

    Directory of Open Access Journals (Sweden)

    KaterynaZhalnina

    2012-06-01

    Full Text Available Soil ammonia-oxidizing archaea (AOA are highly abundant and play an important role in the nitrogen cycle. In addition, AOA have a significant impact on soil quality. AOA may cause nitrogen loss from soils, and the nitrate produced by AOA can lead to ground and surface water contamination, water eutrophication, and soil subsidence. The ammonia-oxidizing archaea discovered to date are classified in the phylum Thaumarchaeota. Only a few archaeal genomes are available in databases. As a result, AOA genes are not well annotated, and it is difficult to mine and identify archaeal genes within metagenomic libraries. Nevertheless, 16S rRNA and comparative analysis of ammonia monooxygenase sequences show that soils can vary greatly in the relative abundance of AOA. In some soils, AOA can comprise more than 10% of the total prokaryotic community. In other soils, AOA comprise less than 0.5% of the community. Many approaches have been used to measure the abundance and diversity of this group including DGGE, T-RFLP, q-PCR, and DNA sequencing. AOA have been studied across different soil types and various ecosystems from the Antarctic dry valleys to the tropical forests of South America to the soils near Mount Everest. Different studies have identified multiple soil factors that trigger the abundance of AOA. These factors include pH, concentration of available ammonia, organic matter content, moisture content, nitrogen content, clay content, as well as other triggers. Land use management appears to have a major effect on the abundance of AOA in soil, which may be the result of nitrogen fertilizer used in agricultural soils. This review summarizes the published results on this topic and suggests future work that will increase our understanding of how soil management and edaphoclimatic factors influence AOA.

  8. Abundance and Composition of Epiphytic Bacterial and Archaeal Ammonia Oxidizers of Marine Red and Brown Macroalgae

    OpenAIRE

    Trias, R. (Rosalía); García-Lledó A. (Arantzazu); Sánchez, N.; López-Jurado, J. L.; Hallin, S. (Sara); Bañeras, Ll. (Lluís)

    2012-01-01

    Ammonia-oxidizing bacteria (AOB) and archaea (AOA) are important for nitrogen cycling in marine ecosystems. Little is known about the diversity and abundance of these organisms on the surface of marine macroalgae, despite the algae’s potential importance to create surfaces and local oxygen-rich environments supporting ammonia oxidation at depths with low dissolved oxygen levels. We determined the abundance and composition of the epiphytic bacterial and archaeal ammonia-oxidizing communities o...

  9. Co-Mn-Al Mixed Oxides as Catalysts for Ammonia Oxidation to N2O.

    Czech Academy of Sciences Publication Activity Database

    Ludvíková, Jana; Jablońska, M.; Jirátová, Květa; Chmielarz, L.; Balabánová, Jana; Kovanda, F.; Obalová, L.

    2016-01-01

    Roč. 42, č. 3 (2016), s. 2669-2690. ISSN 0922-6168 R&D Projects: GA ČR GA14-13750S Institutional support: RVO:67985858 Keywords : Co-Mn-Al mixed oxides * catalytic ammonia oxidation * N2O production * mechanochemical production Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.221, year: 2014

  10. Intensive Ammonia and Methane Oxidation in Organic Liquid Manure Crusts

    DEFF Research Database (Denmark)

    Nielsen, Daniel Aagren; Nielsen, Lars Peter; Schramm, Andreas;

    methane oxidizing bacteria (MOB) and are known to accumulate nitrite and nitrate, indicating the presence of ammonia oxidizers (AOB). We have surveyed six manure tanks with organic covers to investigate the prevalence of MOB and AOB and to link the potential activity with physical and chemical aspects of...... characterized with respect to O2 availability by in situ profiling with electrochemical microsensors. Results show that oxygen penetration increased from few micrometers up to several centimetres with crust age. AOB and ammonium oxidation are ubiquitously present in well-developed manure crusts whereas MOB were...... also CH4 emission mitigation, an organic surface crust can be effective if populations of MOB and AOB are allowed to build up....

  11. Diversity of Ammonia Oxidizing Archaea in Tropical Compost Systems

    Directory of Open Access Journals (Sweden)

    Vidya eDe Gannes

    2012-07-01

    Full Text Available Composting is widely used to transform waste materials into valuable agricultural products. In the tropics, large quantities of agricultural wastes could be potentially useful in agriculture after composting. However, while microbiological processes of composts in general are well established, relatively little is known about microbial communities that may be unique to these in tropical systems, particularly nitrifiers. The recent discovery of ammonia oxidizing archaea (AOA has changed the paradigm of nitrification being initiated solely by ammonia oxidizing bacteria. In the present study, AOA abundance and diversity was examined in composts produced from combinations of plant waste materials common in tropical agriculture (rice straw, sugar cane bagasse, coffee hulls, which were mixed with either cow- or sheep-manure. The objective was to determine how AOA abundance and diversity varied as a function of compost system and time, the latter being a contrast between the start of the compost process (mesophilic phase and the finished product (mature phase. The results showed that AOA were relatively abundant in composts of tropical agricultural wastes, and significantly more so than were the ammonia-oxidizing bacteria. Furthermore, while the AOA communities in the composts were predominatly group I.1b, the communities were diverse and exhibited structures that diverged between compost types and phases. These patterns could be taken as indicators of the ecophysiological diversity in the soil AOA (groub I.1b, in that significantly different AOA communties developed when exposed to varying physico-chemical environments. Nitrification patterns and levels differed in the composts which, for the mature material, could have signifcant effects on its performanc as a plant growth medium. Thus, it will also be important to determine the association of AOA (and diversity in their communities with nitrification in these systems.

  12. Anaerobic oxidation of p-cresol by a denitrifying bacterium.

    OpenAIRE

    Bossert, I D; Young, L Y

    1986-01-01

    Metabolism of p-cresol (pCr) under nitrate-reducing conditions is mediated by the denitrifying bacterial isolate PC-07. The methyl substituent of the substrate is oxidized anaerobically by whole-cell suspensions of PC-07 through a series of dehydrogenation and hydration reactions to yield p-hydroxybenzoate (pOHB) in stoichiometric proportions. The partially oxidized intermediates in the pathway p-hydroxybenzyl alcohol and p-hydroxybenzaldehyde can also serve as substrates for pOHB formation. ...

  13. Anaerobic Nitrate-Dependent Metal Bio-Oxidation

    Science.gov (United States)

    Weber, K.; Knox, T.; Achenbach, L. A.; Coates, J. D.

    2007-12-01

    Direct biological oxidation of reduced metals (Fe(II) and U(IV)) coupled to nitrate reduction at circumneutral pH under anaerobic conditions has been recognized in several environments as well as pure culture. Several phylogentically diverse mesophilic bacteria have been described as capable of anaerobic, nitrate-dependent Fe(II) oxidation (NFOx). Our recent identification of a freshwater mesophilic, lithoautotroph, Ferrutens nitratireducens strain 2002, capable of growth through NFOx presents an opportunity to further study metal bio- oxidation. Continuing physiological studies revealed that in addition to Fe(II) oxidation, strain 2002 is capable of oxidizing U(IV) (4 μM) in washed cell suspensions with nitrate serving as the electron acceptor. Pasteurized cultures exhibited abiotic oxidation of 2 μM U(IV). Under growth conditions, strain 2002 catalyzed the oxidation of 12 μM U(IV) within a two week period. Cultures amended with sodium azide, an electron transport inhibitor, demonstrated limited oxidation (7 μM) similar to pasteurized cultures, supporting the direct role of electron transport in U(IV) bio-oxidation. The oxidation of U(IV) coupled denitrification at circumneutral pH would yield enough energy to support anaerobic microbial growth (ΔG°'= -460.36 kJ/mole). It is currently unknown whether or not strain 2002 can couple this metabolism to growth. The growth of F. nitratireducens strain 2002 utilizing Fe(II) as the sole electron donor was previously demonstrated. The amount of U(IV) (~12 μM) that strain 2002 oxidized under similar autotrophic growth conditions yields 0.0019 kJ, enough energy for the generation of ATP (5.3 x 10-20 kJ ATP-1), but not enough energy for cell replication as calculated for nitrate-dependent Fe(II) oxidizing conditions (0.096 kJ) assuming a similar metabolism. In addition to F. nitratireducens strain 2002, a nitrate-dependent Fe(II) oxidizing bacterium isolated from U contaminated groundwater, Diaphorobacter sp. strain

  14. Bacterial domination over Archaea in ammonia oxidation in a monsoon-driven tropical estuary

    Digital Repository Service at National Institute of Oceanography (India)

    Vipindas, P.V.; Anas, A.; Jasmin, C.; Lallu, K.R.; Fausia, K.H.; Balachandran, K.K.; Muraleedharan, K.R.; Nair, S.

    rivers, seawater influx from two bar mouths [Major opening at Fort Cochin (450 m wide) and minor opening at Munambam (250 m wide)] and the prolonged southwest monsoon. Ammonia in CE accounts for 50 – 65% of the dissolved inorganic nitrogen [11... concentrations [36], while that of bacterial gets triggered at higher concentration of ammonia. CE contains high concentrations of ammonia, i.e. 50 -65 % of the dissolved inorganic nitrogen [11], and therefore the AOB’s contribution in ammonia oxidation could...

  15. Amperometric detection and electrochemical oxidation of aliphatic amines and ammonia on silver-lead oxide thin-film electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Ge, Jisheng

    1996-01-08

    This thesis comprises three parts: Electrocatalysis of anodic oxygen-transfer reactions: aliphatic amines at mixed Ag-Pb oxide thin-film electrodes; oxidation of ammonia at anodized Ag-Pb eutectic alloy electrodes; and temperature effects on oxidation of ethylamine, alanine, and aquated ammonia.

  16. Comparative study on ammonia oxidation over Ni-based cermet anodes for solid oxide fuel cells

    Science.gov (United States)

    Molouk, Ahmed Fathi Salem; Yang, Jun; Okanishi, Takeou; Muroyama, Hiroki; Matsui, Toshiaki; Eguchi, Koichi

    2016-02-01

    In the current work, we investigate the performance of solid oxide fuel cells (SOFCs) with Ni‒yttria-stabilized zirconia (Ni-YSZ) and Ni‒gadolinia-dope ceria (Ni-GDC) cermet anodes fueled with H2 or NH3 in terms of the catalytic activity of ammonia decomposition. The cermet of Ni-GDC shows higher catalytic activity for ammonia decomposition than Ni-YSZ. In response to this, the performance of direct NH3-fueled SOFC improved by using Ni-GDC anode. Moreover, we observe further enhancement in the cell performance and the catalytic activity for ammonia decomposition with applying Ni-GDC anode synthesised by the glycine-nitrate combustion process. These results reveal that the high performance of Ni-GDC anode for the direct NH3-fueled SOFC results from its mixed ionic-electronic conductivity as well as high catalytic activity for ammonia decomposition.

  17. Anaerobic digestion for methane generation and ammonia reforming for hydrogen production: A thermodynamic energy balance of a model system to demonstrate net energy feasibility

    International Nuclear Information System (INIS)

    During anaerobic digestion, organic matter is converted to carbon dioxide and methane, and organic nitrogen is converted to ammonia. Generally, ammonia is recycled as a fertilizer or removed via nitrification–denitrification in treatment systems; alternatively it could be recovered and catalytically converted to hydrogen, thus supplying additional fuel. To provide a basis for further investigation, a theoretical energy balance for a model system that incorporates anaerobic digestion, ammonia separation and recovery, and conversion of the ammonia to hydrogen is reported. The model Anaerobic Digestion-Bioammonia to Hydrogen (ADBH) system energy demands including heating, pumping, mixing, and ammonia reforming were subtracted from the total energy output from methane and hydrogen to create an overall energy balance. The energy balance was examined for the ADBH system operating with a fixed feedstock loading rate with C:N ratios (gC/gN) ranging from 136 to 3 which imposed corresponding total ammonia nitrogen (TAN) concentrations of 20–10,000 mg/L. Normalizing total energy potential to the methane potential alone indicated that at a C:N ratio of 17, the energy output was greater for the ADBH system than from anaerobic digestion generating only methane. Decreasing the C:N ratio increased the methane content of the biogas comprising primarily methane to >80% and increased the ammonia stripping energy demand. The system required 23–34% of the total energy generated as parasitic losses with no energy integration, but when internally produced heat and pressure differentials were recovered, parasitic losses were reduced to between 8 and 17%. -- Highlights: •Modeled an integrated Anaerobic Digestion-Bioammonia to Hydrogen (ADBH) system. •Demonstrated positive net energy produced over a range of conditions by ADBH. •Demonstrated significant advantages of dual fuel recovery for energy gain by >20%. •Suggested system design considerations for energy recovery with

  18. Nitrification of archaeal ammonia oxidizers in acid soils is supported by hydrolysis of urea

    OpenAIRE

    Lu, Lu; Han, Wenyan; Zhang, Jinbo; Wu, Yucheng; Wang, Baozhan; Lin, Xiangui; Zhu, Jianguo; Cai, Zucong; Jia, Zhongjun

    2012-01-01

    The hydrolysis of urea as a source of ammonia has been proposed as a mechanism for the nitrification of ammonia-oxidizing bacteria (AOB) in acidic soil. The growth of Nitrososphaera viennensis on urea suggests that the ureolysis of ammonia-oxidizing archaea (AOA) might occur in natural environments. In this study, 15N isotope tracing indicates that ammonia oxidation occurred upon the addition of urea at a concentration similar to the in situ ammonium content of tea orchard soil (pH 3.75) and ...

  19. A moderately thermophilic ammonia-oxidizing crenarchaeote from a hot spring

    OpenAIRE

    Hatzenpichler, Roland; Elena V Lebedeva; Spieck, Eva; Stoecker, Kilian; Richter, Andreas; Daims, Holger; WAGNER, Michael

    2008-01-01

    The recent discovery of ammonia-oxidizing archaea (AOA) dramatically changed our perception of the diversity and evolutionary history of microbes involved in nitrification. In this study, a moderately thermophilic (46°C) ammonia-oxidizing enrichment culture, which had been seeded with biomass from a hot spring, was screened for ammonia oxidizers. Although gene sequences for crenarchaeotal 16S rRNA and two subunits of the ammonia monooxygenase (amoA and amoB) were detected via PCR, no hints fo...

  20. Membrane topography of anaerobic carbon monoxide oxidation in Rhodocyclus gelatinosus

    International Nuclear Information System (INIS)

    Rhodocyclus gelatinosus 1 grows anaerobically in the dark at the expense of carbon monoxide. Topographical studies with methyl viologen as the membrane probe indicated that CO oxidation and H2 production sites were on the cytoplasmic side of the cell membrane. Membrane-associated hydrogen gas production appeared to be a unidirectional reaction. In the dark, strain 1 whole cells oxidized CO and incorporated about 306 pmol of 32P/sub i/ into ATP per min per mg of protein. With CO as the sole energy-yielding substrate, cells grew with a low growth yield coefficient of 3.7 g (dry weight) of cells per mg of CO oxidized

  1. Seasonality and depth distribution of the abundance and activity of ammonia oxidizing microorganisms in marine coastal sediments (North Sea

    Directory of Open Access Journals (Sweden)

    Yvonne Antonia Lipsewers

    2014-09-01

    Full Text Available Microbial processes such as nitrification and anaerobic ammonium oxidation (anammox are important for nitrogen cycling in marine sediments. Seasonal variations of archaeal and bacterial ammonia oxidizers (AOA and AOB and anammox bacteria, as well as the environmental factors affecting these groups, are not well studied. We have examined the seasonal and depth distribution of the abundance and potential activity of these microbial groups in coastal marine sediments of the southern North Sea. This was achieved by quantifying specific intact polar lipids (IPLs as well as the abundance and gene expression of their 16S rRNA gene, the ammonia monooxygenase subunit A (amoA gene of AOA and AOB, and the hydrazine synthase (hzsA gene of anammox bacteria. AOA, AOB and anammox bacteria were detected and transcriptionally active down to 12 cm sediment depth. In all seasons, the abundance of AOA was higher compared to the AOB abundance suggesting that AOA play a more dominant role in aerobic ammonia oxidation in these sediments. Anammox bacteria were abundant and active even in oxygenated and bioturbated parts of the sediment. The abundance of AOA and AOB was relatively stable with depth and over the seasonal cycle, while anammox bacteria abundance and transcriptional activity were highest in August. North Sea sediments thus seem to provide a common, stable, ecological niche for AOA, AOB and anammox bacteria.

  2. Ammonia Oxidizers in a Pilot-Scale Multilayer Rapid Infiltration System for Domestic Wastewater Treatment

    OpenAIRE

    Lian, Yingli; Xu, Meiying; Zhong, Yuming; Yang, Yongqiang; Chen, Fanrong; Guo, Jun

    2014-01-01

    A pilot-scale multilayer rapid infiltration system (MRIS) for domestic wastewater treatment was established and efficient removal of ammonia and chemical oxygen demand (COD) was achieved in this study. The microbial community composition and abundance of ammonia oxidizers were investigated. Efficient biofilms of ammonia oxidizers in the stationary phase (packing material) was formed successfully in the MRIS without special inoculation. DGGE and phylogenetic analyses revealed that proteobacter...

  3. Ammonia-Oxidizer Communities in an Agricultural Soil treated with Contrasting Nitrogen Sources.

    OpenAIRE

    Mussie Y. Habteselassie; Li eXu; Norton, Jeanette M.

    2013-01-01

    The community of ammonia-oxidizing prokaryotes was examined in an agricultural soil treated for 6 seasons with contrasting nitrogen (N) sources. Molecular tools based on the gene encoding ammonia monooxygenase were used to characterize the ammonia oxidizer communities and their abundance. Soil DNA was extracted from soils sampled from silage corn plots that received no additional N (control), dairy waste compost (DC), liquid dairy waste (LW), and ammonium sulfate (AS) treatments at approxima...

  4. Aquarium Nitrification Revisited: Thaumarchaeota Are the Dominant Ammonia Oxidizers in Freshwater Aquarium Biofilters

    OpenAIRE

    Sauder, Laura A; Katja Engel; Stearns, Jennifer C; Masella, Andre P; Richard Pawliszyn; Neufeld, Josh D.

    2011-01-01

    Ammonia-oxidizing archaea (AOA) outnumber ammonia-oxidizing bacteria (AOB) in many terrestrial and aquatic environments. Although nitrification is the primary function of aquarium biofilters, very few studies have investigated the microorganisms responsible for this process in aquaria. This study used quantitative real-time PCR (qPCR) to quantify the ammonia monooxygenase (amoA) and 16S rRNA genes of Bacteria and Thaumarchaeota in freshwater aquarium biofilters, in addition to assessing the d...

  5. Community Structure of Ammonia-Oxidizing Archaea and Ammonia-Oxidizing Bacteria in Soil Treated with the Insecticide Imidacloprid

    Directory of Open Access Journals (Sweden)

    Mariusz Cycoń

    2015-01-01

    Full Text Available The purpose of this experiment was to assess the effect of imidacloprid on the community structure of ammonia-oxidizing archaea (AOA and ammonia-oxidizing bacteria (AOB in soil using the denaturing gradient gel electrophoresis (DGGE approach. Analysis showed that AOA and AOB community members were affected by the insecticide treatment. However, the calculation of the richness (S and the Shannon-Wiener index (H values for soil treated with the field rate (FR dosage of imidacloprid (1 mg/kg soil showed no changes in measured indices for the AOA and AOB community members. In turn, the 10*FR dosage of insecticide (10 mg/kg soil negatively affected the AOA community, which was confirmed by the decrease of the S and H values in comparison with the values obtained for the control soil. In the case of AOB community, an initial decline followed by the increase of the S and H values was obtained. Imidacloprid decreased the nitrification rate while the ammonification process was stimulated by the addition of imidacloprid. Changes in the community structure of AOA and AOB could be due to an increase in the concentration of N-NH4+, known as the most important factor which determines the contribution of these microorganisms to soil nitrification.

  6. Anaerobic Ammonium-Oxidizing Bacteria: Unique Microorganisms with Exceptional Properties

    OpenAIRE

    Niftrik, L.A.M.P. van; Jetten, M.S.M.

    2012-01-01

    Summary: Anaerobic ammonium-oxidizing (anammox) bacteria defy many microbiological concepts and share numerous properties with both eukaryotes and archaea. Among their most intriguing characteristics are their compartmentalized cell plan and archaeon-like cell wall. Here we review our current knowledge about anammox cell biology. The anammox cell is divided into three separate compartments by bilayer membranes. The anammox cell consists of (from outside to inside) the cell wall, paryphoplasm,...

  7. Nitrogen loss by anaerobic oxidation of ammonium in rice rhizosphere

    OpenAIRE

    Nie, San'an; Li, Hu; Yang, Xiaoru; Zhang, Zhaoji; Weng, Bosen; Huang, Fuyi; Zhu, Gui-Bing; Zhu, Yong-Guan

    2015-01-01

    Anaerobic oxidation of ammonium (anammox) is recognized as an important process for nitrogen (N) cycling, yet its role in agricultural ecosystems, which are intensively fertilized, remains unclear. In this study, we investigated the presence, activity, functional gene abundance and role of anammox bacteria in rhizosphere and non-rhizosphere paddy soils using catalyzed reporter deposition–fluorescence in situ hybridization, isotope-tracing technique, quantitative PCR assay and 16S rRNA gene cl...

  8. Differential contributions of ammonia oxidizers and nitrite oxidizers to nitrification in four paddy soils.

    Science.gov (United States)

    Wang, Baozhan; Zhao, Jun; Guo, Zhiying; Ma, Jing; Xu, Hua; Jia, Zhongjun

    2015-05-01

    Rice paddy fields are characterized by regular flooding and nitrogen fertilization, but the functional importance of aerobic ammonia oxidizers and nitrite oxidizers under unique agricultural management is poorly understood. In this study, we report the differential contributions of ammonia-oxidizing archaea (AOA), bacteria (AOB) and nitrite-oxidizing bacteria (NOB) to nitrification in four paddy soils from different geographic regions (Zi-Yang (ZY), Jiang-Du (JD), Lei-Zhou (LZ) and Jia-Xing (JX)) that are representative of the rice ecosystems in China. In urea-amended microcosms, nitrification activity varied greatly with 11.9, 9.46, 3.03 and 1.43 μg NO3(-)-N g(-1) dry weight of soil per day in the ZY, JD, LZ and JX soils, respectively, over the course of a 56-day incubation period. Real-time quantitative PCR of amoA genes and pyrosequencing of 16S rRNA genes revealed significant increases in the AOA population to various extents, suggesting that their relative contributions to ammonia oxidation activity decreased from ZY to JD to LZ. The opposite trend was observed for AOB, and the JX soil stimulated only the AOB populations. DNA-based stable-isotope probing further demonstrated that active AOA numerically outcompeted their bacterial counterparts by 37.0-, 10.5- and 1.91-fold in (13)C-DNA from ZY, JD and LZ soils, respectively, whereas AOB, but not AOA, were labeled in the JX soil during active nitrification. NOB were labeled to a much greater extent than AOA and AOB, and the addition of acetylene completely abolished the assimilation of (13)CO2 by nitrifying populations. Phylogenetic analysis suggested that archaeal ammonia oxidation was predominantly catalyzed by soil fosmid 29i4-related AOA within the soil group 1.1b lineage. Nitrosospira cluster 3-like AOB performed most bacterial ammonia oxidation in the ZY, LZ and JX soils, whereas the majority of the (13)C-AOB in the JD soil was affiliated with the Nitrosomona communis lineage. The (13)C-NOB was

  9. Determination of Ammonia Oxidizing Bacteria and Nitrate Oxidizing Bacteria in Wastewater and Bioreactors

    Science.gov (United States)

    Francis, Somilez Asya

    2014-01-01

    The process of water purification has many different physical, chemical, and biological processes. One part of the biological process is the task of ammonia oxidizing bacteria (AOB) and nitrite oxidizing bacteria (NOB). Both play critical roles in the treatment of wastewater by oxidizing toxic compounds. The broad term is nitrification, a naturally occurring process that is carried out by AOB and NOB by using oxidation to convert ammonia to nitrite and nitrite to nitrate. To monitor this biological activity, bacterial staining was performed on wastewater contained in inoculum tanks and biofilm samples from bioreactors. Using microscopy and qPCR, the purpose of this experiment was to determine if the population of AOB and NOB in wastewater and membrane bioreactors changed depending on temperature and hibernation conditions to determine the optimal parameters for AOB/NOB culture to effectively clean wastewater.

  10. Vertical segregation and phylogenetic characterization of ammonia-oxidizing bacteria and archaea in the sediment of a freshwater aquaculture pond

    OpenAIRE

    Shimin eLu; Xingguo eLiu; Qigen eLiu; Zhuojun eMa; Zongfan eWu; Xianlei eZeng; Xu eShi; Zhaojun eGu

    2016-01-01

    Pond aquaculture is the major freshwater aquaculture method in China. Ammonia-oxidizing communities inhabiting pond sediments play an important role in controlling culture water quality. However, the distribution and activities of ammonia-oxidizing microbial communities along sediment profiles are poorly understood in this specific environment. Vertical variations in the abundance, transcription, potential ammonia oxidizing rate, and community composition of ammonia-oxidizing bacteria (AOB) a...

  11. Vertical Segregation and Phylogenetic Characterization of Ammonia-Oxidizing Bacteria and Archaea in the Sediment of a Freshwater Aquaculture Pond

    OpenAIRE

    Lu, Shimin; Liu, Xingguo; Ma, Zhuojun; Liu, Qigen; Wu, Zongfan; Zeng, Xianlei; Shi, Xu; Gu, Zhaojun

    2016-01-01

    Pond aquaculture is the major freshwater aquaculture method in China. Ammonia-oxidizing communities inhabiting pond sediments play an important role in controlling culture water quality. However, the distribution and activities of ammonia-oxidizing microbial communities along sediment profiles are poorly understood in this specific environment. Vertical variations in the abundance, transcription, potential ammonia oxidizing rate, and community composition of ammonia-oxidizing bacteria (AOB) a...

  12. Formation of hydroxylamine on dust grains via ammonia oxidation

    CERN Document Server

    He, Jiao; Lemaire, Jean-Louis; Garrod, Robin T

    2015-01-01

    The quest to detect prebiotic molecules in space, notably amino acids, requires an understanding of the chemistry involving nitrogen atoms. Hydroxylamine (NH$_2$OH) is considered a precursor to the amino acid glycine. Although not yet detected, NH$_2$OH is considered a likely target of detection with ALMA. We report on an experimental investigation of the formation of hydroxylamine on an amorphous silicate surface via the oxidation of ammonia. The experimental data are then fed into a simulation of the formation of NH$_2$OH in dense cloud conditions. On ices at 14 K and with a modest activation energy barrier, NH$_2$OH is found to be formed with an abundance that never falls below a factor 10 with respect to NH$_3$. Suggestions of conditions for future observations are provided.

  13. FORMATION OF HYDROXYLAMINE ON DUST GRAINS VIA AMMONIA OXIDATION

    International Nuclear Information System (INIS)

    The quest to detect prebiotic molecules in space, notably amino acids, requires an understanding of the chemistry involving nitrogen atoms. Hydroxylamine (NH2OH) is considered a precursor to the amino acid glycine. Although not yet detected, NH2OH is considered a likely target of detection with ALMA. We report on an experimental investigation of the formation of hydroxylamine on an amorphous silicate surface via the oxidation of ammonia. The experimental data are then fed into a simulation of the formation of NH2OH in dense cloud conditions. On ices at 14 K and with a modest activation energy barrier, NH2OH is found to be formed with an abundance that never falls below a factor 10 with respect to NH3. Suggestions of conditions for future observations are provided

  14. FORMATION OF HYDROXYLAMINE ON DUST GRAINS VIA AMMONIA OXIDATION

    Energy Technology Data Exchange (ETDEWEB)

    He, Jiao; Vidali, Gianfranco [Physics Department, Syracuse University, Syracuse, NY 13244 (United States); Lemaire, Jean-Louis [Paris Observatory, F-75014 Paris (France); Garrod, Robin T., E-mail: gvidali@syr.edu [Center for Radiophysics and Space Research, Cornell University, Ithaca, NY 14853 (United States)

    2015-01-20

    The quest to detect prebiotic molecules in space, notably amino acids, requires an understanding of the chemistry involving nitrogen atoms. Hydroxylamine (NH{sub 2}OH) is considered a precursor to the amino acid glycine. Although not yet detected, NH{sub 2}OH is considered a likely target of detection with ALMA. We report on an experimental investigation of the formation of hydroxylamine on an amorphous silicate surface via the oxidation of ammonia. The experimental data are then fed into a simulation of the formation of NH{sub 2}OH in dense cloud conditions. On ices at 14 K and with a modest activation energy barrier, NH{sub 2}OH is found to be formed with an abundance that never falls below a factor 10 with respect to NH{sub 3}. Suggestions of conditions for future observations are provided.

  15. Inhibition of Direct Electrolytic Ammonia Oxidation Due to a Change in Local pH

    International Nuclear Information System (INIS)

    Electrochemical ammonia oxidation has gained a lot of attention recently as an efficient method for ammonia removal from wastewater, for the use in ammonia-based fuel cells and the production of high purity hydrogen. Thermally decomposed iridium oxide films (TDIROF) have been shown to be catalytically active for direct ammonia oxidation in aqueous solutions if NH3 is present. However, the process was reported to be rapidly inhibited on TDIROF. Herein, we show that this fast inhibition of direct ammonia oxidation does not result from surface poisoning by adsorbed elemental nitrogen (Nads). Instead, we propose that direct ammonia oxidation and oxygen evolution can lead to a drop of the local pH at the electrode resulting in a low availability of the actual reactant, NH3. The hypothesis was tested with cyclic voltammetry (CV) experiments on stagnant and rotating disk electrodes (RDE). The CV experiments on the stagnant electrode revealed that the decrease of the ammonia oxidation peaks was considerably reduced by introducing an idle phase at open circuit potential between subsequent scans. Furthermore, the polarization of the TDIROF electrode into the hydrogen evolution region (HER) resulted in increased ammonia oxidation peaks in the following anodic scans which can be explained with an increased local pH after the consumption of protons in the HER. On the RDE, the ammonia oxidation peaks did not decrease in immediately consecutive scans. These findings would not be expected if surface poisoning was responsible for the fast inhibition but they are in good agreement with the proposed mechanism of pH induced limitation by the reactant, NH3. The plausibility of the mechanism was also supported by our numerical simulations of the processes in the Nernstian diffusion layer. The knowledge about this inhibition mechanism of direct ammonia oxidation is especially important for the design of electrochemical cells for wastewater treatment. The mechanism is not only valid for

  16. An innovative bioelectrochemical-anaerobic digestion-coupled system for in-situ ammonia recovery and biogas enhancement: process performance and microbial ecology

    DEFF Research Database (Denmark)

    Zhang, Yifeng; Angelidaki, Irini

    Ammonia (NH4+/NH3) inhibition during anaerobic digestion process is one of the most frequent problems existing in biogas plants, resulting in unstable process and reduced biogas production. In this study, we developed a novel hybrid system, consisted of a submersed microbial resource recovery cell...

  17. Anaerobic oxidation of cholesterol by a denitrifying enrichment.

    Science.gov (United States)

    Barrandeguy, E; Tarlera, S

    2001-01-01

    Sterols (e.g. cholesterol) present in wool scouring effluent represent the most recalcitrant fraction in anaerobic treatment. This study was conducted to examine the feasibility of removal of this organic load through a denitrifying post-treatment stage. A stable cholesterol-denitrifying enrichment (CHOL-1) was obtained from sludge of a bench-scale upflow sludge bed (USB) denitrifying reactor integrated to a carbon and nitrogen removal system for sanitary landfill leachate. According to the amounts of cholesterol degraded and of nitrite and nitrogen gas formed, the capacity for complete cholesterol oxidation under anaerobic conditions by CHOL-1 can be assumed. Nitrite accumulation observed at a low C/N ratio outlines the importance of determining the optimal C/N ratio for adequate denitrifying reactor performance. The enrichment was partly identified with molecular analysis of cloned 16S rDNA sequences revealing the presence of two groups of bacteria belonging to the beta subclass of the Proteobacteria. According to analysis of sequences, it can be inferred that a yet uncultivated new bacterium is the one responsible for cholesterol oxidation. Results of this study suggest that sludge from a denitrifying reactor treating leachate is potentially useful in a combined anaerobic-anoxic system for degradation of cholesterol that remains after methanogenic treatment. PMID:11575077

  18. Enrichment culture of marine anaerobic ammonium oxidation (anammox) bacteria

    Institute of Scientific and Technical Information of China (English)

    GUAN Yong-jie

    2016-01-01

    The present study investigates the enrichment of anaerobic ammonium oxidation (anammox) bacteria in the marine environment using sediment samples obtained from the East China Sea and discusses the nitrogen removal efficiency of marine anammox bioreactor. Enrichment of anammox bacteria with simultaneous removal of nitrite and ammonium ions was observed in the Anaerobic Sequencing Batch Reactor under a total nitrogen loading rate of 0.37kg-N m-3day-1. In this study, The nitrogen removal efficiency was up to 80% and the molar-reaction ratio of ammonium, nitrite and nitrate was 1.0:1.22:0.22 which was a little different from a previously reported ratio of 1.0:1.32:0.26 in a freshwater system.

  19. Linking Diversity and Stable Isotope Fractionation in Ammonia-Oxidizing Bacteria

    Science.gov (United States)

    Casciotti, K. L.; Sigman, D. M.; Ward, B. B.

    2002-12-01

    Ammonia-oxidizing bacteria play a key role in the regeneration of nitrate (NO3) and the production of nitrous oxide (N2O) in many marine, estuarine, and terrestrial ecosystems. While isotopic ratios (15N/14N) of dissolved inorganic nitrogen pools (NH4+ and NO3) can serve as in situ tracers for overall nitrification activity, genetic characterization of bacterial communities can provide information about the diversity and relative abundance of specific groups of ammonia-oxidizers. An important question facing microbial ecologists is how diversity in gene or protein sequences is reflected in diversity in biogeochemical activity. Here we investigate the link between similarity in amino acid sequence for ammonia monooxygenase (AmoA) and its isotopic discrimination (ɛAMO) for B-subdivision ammonia-oxidizing bacteria. Isotope effects for ammonia-oxidation were measured for 5 cultured nitrifier strains. A 20 permil range in isotope effects was observed among these nitrifiers, which could not be explained by differential rates of ammonia oxidation, transport of NH4+, accumulation of NH2OH, or N2O production among the strains. The major similarities and differences observed in ɛAMO are, however, paralleled by similarities and differences in AmoA amino sequences from these organisms. These results suggest that combining genetic and stable isotopic tools may provide complementary information regarding the activity of particular groups of ammonia-oxidizers in the environment.

  20. Global ecological pattern of ammonia-oxidizing archaea.

    Directory of Open Access Journals (Sweden)

    Huiluo Cao

    Full Text Available BACKGROUND: The global distribution of ammonia-oxidizing archaea (AOA, which play a pivotal role in the nitrification process, has been confirmed through numerous ecological studies. Though newly available amoA (ammonia monooxygenase subunit A gene sequences from new environments are accumulating rapidly in public repositories, a lack of information on the ecological and evolutionary factors shaping community assembly of AOA on the global scale is apparent. METHODOLOGY AND RESULTS: We conducted a meta-analysis on uncultured AOA using over ca. 6,200 archaeal amoA gene sequences, so as to reveal their community distribution patterns along a wide spectrum of physicochemical conditions and habitat types. The sequences were dereplicated at 95% identity level resulting in a dataset containing 1,476 archaeal amoA gene sequences from eight habitat types: namely soil, freshwater, freshwater sediment, estuarine sediment, marine water, marine sediment, geothermal system, and symbiosis. The updated comprehensive amoA phylogeny was composed of three major monophyletic clusters (i.e. Nitrosopumilus, Nitrosotalea, Nitrosocaldus and a non-monophyletic cluster constituted mostly by soil and sediment sequences that we named Nitrososphaera. Diversity measurements indicated that marine and estuarine sediments as well as symbionts might be the largest reservoirs of AOA diversity. Phylogenetic analyses were further carried out using macroevolutionary analyses to explore the diversification pattern and rates of nitrifying archaea. In contrast to other habitats that displayed constant diversification rates, marine planktonic AOA interestingly exhibit a very recent and accelerating diversification rate congruent with the lowest phylogenetic diversity observed in their habitats. This result suggested the existence of AOA communities with different evolutionary history in the different habitats. CONCLUSION AND SIGNIFICANCE: Based on an up-to-date amoA phylogeny, this

  1. Identifying Potential Mechanisms Enabling Acidophily in the Ammonia-Oxidizing Archaeon “Candidatus Nitrosotalea devanaterra”

    Science.gov (United States)

    Sayavedra-Soto, Luis A.; Gallois, Nicolas; Schouten, Stefan; Stein, Lisa Y.; Prosser, James I.; Nicol, Graeme W.

    2016-01-01

    Ammonia oxidation is the first and rate-limiting step in nitrification and is dominated by two distinct groups of microorganisms in soil: ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB). AOA are often more abundant than AOB and dominate activity in acid soils. The mechanism of ammonia oxidation under acidic conditions has been a long-standing paradox. While high rates of ammonia oxidation are frequently measured in acid soils, cultivated ammonia oxidizers grew only at near-neutral pH when grown in standard laboratory culture. Although a number of mechanisms have been demonstrated to enable neutrophilic AOB growth at low pH in the laboratory, these have not been demonstrated in soil, and the recent cultivation of the obligately acidophilic ammonia oxidizer “Candidatus Nitrosotalea devanaterra” provides a more parsimonious explanation for the observed high rates of activity. Analysis of the sequenced genome, transcriptional activity, and lipid content of “Ca. Nitrosotalea devanaterra” reveals that previously proposed mechanisms used by AOB for growth at low pH are not essential for archaeal ammonia oxidation in acidic environments. Instead, the genome indicates that “Ca. Nitrosotalea devanaterra” contains genes encoding both a predicted high-affinity substrate acquisition system and potential pH homeostasis mechanisms absent in neutrophilic AOA. Analysis of mRNA revealed that candidate genes encoding the proposed homeostasis mechanisms were all expressed during acidophilic growth, and lipid profiling by high-performance liquid chromatography–mass spectrometry (HPLC-MS) demonstrated that the membrane lipids of “Ca. Nitrosotalea devanaterra” were not dominated by crenarchaeol, as found in neutrophilic AOA. This study for the first time describes a genome of an obligately acidophilic ammonia oxidizer and identifies potential mechanisms enabling this unique phenotype for future biochemical characterization. PMID:26896134

  2. Identifying Potential Mechanisms Enabling Acidophily in the Ammonia-Oxidizing Archaeon "Candidatus Nitrosotalea devanaterra".

    Science.gov (United States)

    Lehtovirta-Morley, Laura E; Sayavedra-Soto, Luis A; Gallois, Nicolas; Schouten, Stefan; Stein, Lisa Y; Prosser, James I; Nicol, Graeme W

    2016-05-01

    Ammonia oxidation is the first and rate-limiting step in nitrification and is dominated by two distinct groups of microorganisms in soil: ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB). AOA are often more abundant than AOB and dominate activity in acid soils. The mechanism of ammonia oxidation under acidic conditions has been a long-standing paradox. While high rates of ammonia oxidation are frequently measured in acid soils, cultivated ammonia oxidizers grew only at near-neutral pH when grown in standard laboratory culture. Although a number of mechanisms have been demonstrated to enable neutrophilic AOB growth at low pH in the laboratory, these have not been demonstrated in soil, and the recent cultivation of the obligately acidophilic ammonia oxidizer "Candidatus Nitrosotalea devanaterra" provides a more parsimonious explanation for the observed high rates of activity. Analysis of the sequenced genome, transcriptional activity, and lipid content of "Ca Nitrosotalea devanaterra" reveals that previously proposed mechanisms used by AOB for growth at low pH are not essential for archaeal ammonia oxidation in acidic environments. Instead, the genome indicates that "Ca Nitrosotalea devanaterra" contains genes encoding both a predicted high-affinity substrate acquisition system and potential pH homeostasis mechanisms absent in neutrophilic AOA. Analysis of mRNA revealed that candidate genes encoding the proposed homeostasis mechanisms were all expressed during acidophilic growth, and lipid profiling by high-performance liquid chromatography-mass spectrometry (HPLC-MS) demonstrated that the membrane lipids of "Ca Nitrosotalea devanaterra" were not dominated by crenarchaeol, as found in neutrophilic AOA. This study for the first time describes a genome of an obligately acidophilic ammonia oxidizer and identifies potential mechanisms enabling this unique phenotype for future biochemical characterization. PMID:26896134

  3. Iron biomineralization by anaerobic neutrophilic iron-oxidizing bacteria

    Science.gov (United States)

    Miot, Jennyfer; Benzerara, Karim; Morin, Guillaume; Kappler, Andreas; Bernard, Sylvain; Obst, Martin; Férard, Céline; Skouri-Panet, Fériel; Guigner, Jean-Michel; Posth, Nicole; Galvez, Matthieu; Brown, Gordon E., Jr.; Guyot, François

    2009-02-01

    Minerals formed by bio-oxidation of ferrous iron (Fe(II)) at neutral pH, their association with bacterial ultrastructures as well as their impact on the metabolism of iron-oxidizing bacteria remain poorly understood. Here, we investigated iron biomineralization by the anaerobic nitrate-dependent iron-oxidizing bacterium Acidovorax sp. strain BoFeN1 in the presence of dissolved Fe(II) using electron microscopy and Scanning Transmission X-ray Microscopy (STXM). All detected minerals consisted mainly of amorphous iron phosphates, but based on their morphology and localization, three types of precipitates could be discriminated: (1) mineralized filaments at distance from the cells, (2) globules of 100 ± 25 nm in diameter, at the cell surface and (3) a 40-nm thick mineralized layer within the periplasm. All of those phases were shown to be intimately associated with organic molecules. Periplasmic encrustation was accompanied by an accumulation of protein moieties. In the same way, exopolysaccharides were associated with the extracellular mineralized filaments. The evolution of cell encrustation was followed by TEM over the time course of a culture: cell encrustation proceeded progressively, with rapid precipitation in the periplasm (in a few tens of minutes), followed by the formation of surface-bound globules. Moreover, we frequently observed an asymmetric mineral thickening at the cell poles. In parallel, the evolution of iron oxidation was quantified by STXM: iron both contained in the bacteria and in the extracellular precipitates reached complete oxidation within 6 days. While a progressive oxidation of Fe in the bacteria and in the medium could be observed, spatial redox (oxido-reduction state) heterogeneities were detected at the cell poles and in the extracellular precipitates after 1 day. All these findings provide new information to further the understanding of molecular processes involved in iron biomineralization by anaerobic iron-oxidizing bacteria and

  4. Distribution of Ammonia-Oxidizing Archaea and Bacteria in the Surface Sediments of Matsushima Bay in Relation to Environmental Variables

    OpenAIRE

    Sakami, Tomoko

    2011-01-01

    Ammonia oxidization is the first and a rate-limiting step of nitrification, which is often a critical process in nitrogen removal from estuarine and coastal environments. To clarify the correlation of environmental conditions with the distribution of ammonia oxidizers in organic matter-rich coastal sediments, ammonia-oxidizing archaea (AOA) and bacteria (AOB) ammonia monooxygenase alpha subunit gene (amoA) abundance was determined in sediments of Matsushima Bay located in northeast Japan. The...

  5. Temperature and moisture effects on ammonia oxidizer communities in cryoturbated Arctic soils

    Science.gov (United States)

    Aiglsdorfer, Stefanie; Alves, Ricardo J. E.; Bárta, Jiří; Kohoutová, Iva; Bošková, Hana; Diáková, Katerina; Čapek, Petr; Schnecker, Jörg; Wild, Birgit; Mooshammer, Maria; Urich, Tim; Gentsch, Norman; Gittel, Antje; Guggenberger, Georg; Mikutta, Robert; Lashchinskiy, Nikolay; Richter, Andreas; Šantrůčková, Hana; Shibistova, Olga; Schleper, Christa

    2014-05-01

    Arctic permafrost-affected soils contain large amounts of soil organic carbon (SOC) and are expected to experience drastic changes in environmental conditions, such as moisture and temperature, due to the high surface temperature increase predicted for these regions. Although the SOC decomposition processes driven by the microbiota are considered to be nitrogen (N) limited, little information about the microbial groups involved in N cycle is currently available, including their reactions to environmental changes. Here, we investigate the presence of ammonia oxidizing archaea (AOA) and bacteria (AOB) in distinct soil horizons from the Taymyr peninsula (Siberia, Russia), and investigate their activities under changing temperature and moisture regimes. These two groups of organisms perform the first step in nitrification, an important and rate limiting process in the global N cycle, which involves the oxidation of ammonia to nitrate via nitrite. The soil samples were separated into different horizons: organic topsoil (O) and subducted organic topsoil (Ajj). The samples were incubated for 18 weeks at 4, 12 and 20° C and 50, 80 and 100 % water holding capacity (WHC). AOA and AOB abundances were quantified by quantitative PCR targeting genes of the key metabolic enzyme, ammonia monooxygenase. AOA diversity was analyzed in-depth by high-throughput amplicon sequencing of the same gene. Additionally, gross and net nitrification and mineralization rates were determined in order to investigate potential relationships between AOA and AOB populations and these processes, in response to the incubation treatments. We found higher abundances of AOA than AOB in the organic topsoil, whereas AOB dominated in the subducted organic topsoil. Increased temperature resulted in higher numbers of both groups at low WHC %, with AOB showing a more pronounced response. However, these effects were not observed under anaerobic conditions (100 % WHC). Deep sequencing of AOA amoA genes revealed

  6. A Zinc Oxide Nanorod Ammonia Microsensor Integrated with a Readout Circuit on-a-Chip

    Directory of Open Access Journals (Sweden)

    Chyan-Chyi Wu

    2011-11-01

    Full Text Available A zinc oxide nanorod ammonia microsensor integrated with a readout circuit on-a-chip fabricated using the commercial 0.35 mm complementary metal oxide semiconductor (CMOS process was investigated. The structure of the ammonia sensor is composed of a sensitive film and polysilicon electrodes. The ammonia sensor requires a post-process to etch the sacrificial layer, and to coat the sensitive film on the polysilicon electrodes. The sensitive film that is prepared by a hydrothermal method is made of zinc oxide. The sensor resistance changes when the sensitive film adsorbs or desorbs ammonia gas. The readout circuit is used to convert the sensor resistance into the voltage output. Experiments show that the ammonia sensor has a sensitivity of about 1.5 mV/ppm at room temperature.

  7. Geographic distribution of archaeal ammonia oxidizing ecotypes in the Atlantic Ocean

    Directory of Open Access Journals (Sweden)

    Eva eSintes

    2016-02-01

    Full Text Available In marine ecosystems, Thaumarchaeota are most likely the major ammonia oxidizers. While ammonia concentrations vary by about two orders of magnitude in the oceanic water column, archaeal ammonia oxidizers (AOA vary by only one order of magnitude from surface to bathypelagic waters. Thus, the question arises whether the key enzyme responsible for ammonia oxidation, ammonia monooxygenase (amo, exhibits different affinities to ammonia along the oceanic water column and consequently, whether there are different ecotypes of AOA present in the oceanic water column. We determined the abundance and phylogeny of archaeal ammonia oxidizers (AOA based on their amoA gene. Two ecotypes of AOA exhibited a distribution pattern reflecting the reported availability of ammonia and the physico-chemical conditions throughout the Atlantic, and from epi- to bathypelagic waters. The distinction between these two ecotypes was not only detectable at the nucleotide level. Consistent changes were also detected at the amino acid level. These changes include substitutions of polar to hydrophobic amino acid, and glycine substitutions that could have an effect on the configuration of the amo protein and thus, on its activity. Although we cannot identify the specific effect, the ratio of non-synonymous to synonymous substitutions (dN/dS between the two ecotypes indicates a strong positive selection between them. Consequently, our results point to a certain degree of environmental selection on these two ecotypes that have led to their niche specialization.

  8. Archaea Dominate the Ammonia-Oxidizing Community in the Rhizosphere of the Freshwater Macrophyte Littorella uniflora▿

    OpenAIRE

    Herrmann, Martina; Saunders, Aaron M.; Schramm, Andreas

    2008-01-01

    Archaeal and bacterial ammonia monooxygenase genes (amoA) had similar low relative abundances in freshwater sediment. In the rhizosphere of the submersed macrophyte Littorella uniflora, archaeal amoA was 500- to >8,000-fold enriched compared to bacterial amoA, suggesting that the enhanced nitrification activity observed in the rhizosphere was due to ammonia-oxidizing Archaea.

  9. Controls of nitrite oxidation in ammonia-removing biological air filters

    DEFF Research Database (Denmark)

    Juhler, Susanne; Ottosen, Lars Ditlev Mørck; Nielsen, Lars Peter;

    2008-01-01

    In biological air filters ammonia is removed due to the action of Ammonia Oxidizing Bacteria (AOB) resulting in nitrite accumulation exceeding 100 mM. Among filters treating exhaust air from pig facilities successful establishment of Nitrite Oxidizing Bacteria (NOB) sometimes occurs, resulting in...... accumulation of nitrate rather than nitrite and a significant decline in pH. As a consequence, ammonia is removed more efficiently, but heterotrophic oxidation of odorous compounds might be inhibited.  To identify the controlling mechanisms of nitrite oxidation, full-scale biological air filters were...... analysis. Furthermore, the effect of varying air load and water exchange was investigated. Absence of NOB in many filters was explained by the inhibitory effect of Free Ammonia (FA). When first established, NOB induced a self-perpetuating effect through oxidation of nitrite which allowed increased AOB...

  10. Distribution of ammonia oxidizers in relation to vegetation characteristics in the Qilian Mountains, northwestern China

    Science.gov (United States)

    Tai, X. S.; Mao, W. L.; Liu, G. X.; Chen, T.; Zhang, W.; Wu, X. K.; Long, H. Z.; Zhang, B. G.; Gao, T. P.

    2014-04-01

    Nitrogen is the major limiting nutrient in cold environments, and its availability is strongly dependent on nitrification. However, microbial communities driving this process remain largely uncharacterized in alpine meadow soils in northwestern China, namely those catalyzing the rate-limiting step of ammonia oxidation. In this study, ammonia-oxidizing communities in alpine meadow soils were characterized by real-time PCR and clone sequencing by targeting on amoA genes, which putatively encode ammonia monooxygenase subunit A. The results demonstrated that ammonia-oxidizing archaea (AOA) outnumbered ammonia-oxidizing bacteria (AOB) in the alpine meadow soils. Most of the AOA phylotypes detected in the study region fell within typical Group I.1b of Thaumarchaeota. Interestingly, a new ammonia-oxidizing archaeal group named "Kobresia meadow soil group" was found. Phylogenetic analysis of AOB communities exhibited a dominance of Nitrosospira-like sequences affiliated to beta-Proteobacteria. Compared with other alpine environments, Qilian Mountains had a great phylogenetic diversity of ammonia oxidizers. Principal Component Analysis (PCA) analysis showed that distinct AOA/AOB phylotype groups were attributed to different meadow types, reflecting an overall distribution of ammonia-oxidizing communities associated with meadow types. Redundancy Analysis (RDA) analysis showed that Axis 1 (90.9%) together with Axis 2 (9.1%) explained all the variables while Axis 1 exhibited a significant explanatory power. So that vegetation coverage mostly correlated to Axis 1 was the most powerful environmental factor in the study region. Characteristics of ammonia-oxidizing communities showed a close association with vegetation coverage.

  11. A marine microbial consortium apparently mediating anaerobic oxidation of methane

    DEFF Research Database (Denmark)

    Boetius, A.; Ravenschlag, K.; Schubert, CJ;

    2000-01-01

    A large fraction of globally produced methane is converted to CO2 by anaerobic oxidation in marine sediments(1). Strong geochemical evidence for net methane consumption in anoxic sediments is based on methane profiles(2), radiotracer experiments(3) and stable carbon isotope data(4). But the elusive...... evidence for a structured consortium of archaea and sulphate-reducing bacteria, which we identified by fluorescence in situ hybridization using specific 16S rRNA-targeted oligonucleotide probes. In this example of a structured archaeal-bacterial symbiosis, the archaea grow in dense aggregates of about 100...

  12. Effect of methanogenic substrates on anaerobic oxidation of methane and sulfate reduction by an anaerobic methanotrophic enrichment

    OpenAIRE

    Meulepas, R.J.W.; Jagersma, C.G.; Khadem, A.F.; Buisman, C.J.N.; Stams, A.J.M.; Lens, P. N. L.

    2010-01-01

    Anaerobic oxidation of methane (AOM) coupled to sulfate reduction (SR) is assumed to be a syntrophic process, in which methanotrophic archaea produce an interspecies electron carrier (IEC), which is subsequently utilized by sulfate-reducing bacteria. In this paper, six methanogenic substrates are tested as candidate-IECs by assessing their effect on AOM and SR by an anaerobic methanotrophic enrichment. The presence of acetate, formate or hydrogen enhanced SR, but did not inhibit AOM, nor did ...

  13. Long term partial nitritation of anaerobically treated black water and the emission of nitrous oxide.

    Science.gov (United States)

    de Graaff, M S; Zeeman, G; Temmink, H; van Loosdrecht, M C M; Buisman, C J N

    2010-04-01

    Black water (toilet water) contains half the load of organic material and the major fraction of the nutrients nitrogen and phosphorus in a household and is 25 times more concentrated, when collected with a vacuum toilet, than the total wastewater stream from a Dutch household. This research focuses on the partial nitritation of anaerobically treated black water to produce an effluent suitable to feed to the anammox process. Successful partial nitritation was achieved at 34 degrees C and 25 degrees C and for a long period (almost 400 days in the second period at 25 degrees C) without strict process control a stable effluent at a ratio of 1.3 NO(2)-N/NH(4)-N was produced which is suitable to feed to the anammox process. Nitrite oxidizers were successfully outcompeted due to inhibition by free ammonia and nitrous acid and due to fluctuating conditions in SRT (1.0-17 days) and pH (from 6.3 to 7.7) in the reactor. Microbial analysis of the sludge confirmed the presence of mainly ammonium oxidizers. The emission of nitrous oxide (N(2)O) is of growing concern and it corresponded to 0.6-2.6% (average 1.9%) of the total nitrogen load. PMID:20106499

  14. N2O production by ammonia oxidizing bacteria in an enriched nitrifying sludge linearly depends on inorganic carbon concentration.

    Science.gov (United States)

    Peng, Lai; Ni, Bing-Jie; Ye, Liu; Yuan, Zhiguo

    2015-05-01

    The effect of inorganic carbon (IC) on nitrous oxide (N2O) production by ammonia oxidizing bacteria (AOB) was investigated over a concentration range of 0-12 mmol C/L, encompassing typical IC levels in a wastewater treatment reactors. The AOB culture was enriched along with nitrite-oxidizing bacteria (NOB) in a sequencing batch reactor (SBR) to perform complete nitrification. Batch experiments were conducted with continuous carbon dioxide (CO2) stripping or at controlled IC concentrations. The results revealed a linear relationship between N2O production rate (N2OR) and IC concentration (R(2) = 0.97) within the IC range studied, suggesting a substantial effect of IC on N2O production by AOB. Similar results were also obtained with an AOB culture treating anaerobic sludge digestion liquor. The fundamental mechanism responsible for this dependency is unclear; however, in agreement with previous studies, it was observed that the ammonia oxidation rate (AOR) was also influenced by the IC concentration, which could be well described by the Monod kinetics. These resulted in an exponential relationship between N2OR and AOR, as previously observed in experiments where AOR was altered by varying dissolved oxygen and ammonia concentrations. It is therefore possible that IC indirectly affected N2OR by causing a change in AOR. The observation in this study indicates that alkalinity (mostly contributed by IC) could be a significant factor influencing N2O production and should be taken into consideration in estimating and mitigating N2O emissions in wastewater treatment systems. PMID:25706224

  15. Anaerobic ammonium-oxidizing (anammox) bacteria and associated activity in fixed-film biofilters of a marine recirculating aquaculture system.

    Science.gov (United States)

    Tal, Yossi; Watts, Joy E M; Schreier, Harold J

    2006-04-01

    Microbial communities in the biological filter and waste sludge compartments of a marine recirculating aquaculture system were examined to determine the presence and activity of anaerobic ammonium-oxidizing (anammox) bacteria. Community DNA was extracted from aerobic and anaerobic fixed-film biofilters and the anaerobic sludge waste collection tank and was analyzed by amplifying 16S rRNA genes by PCR using anammox-selective and universal GC-clamped primers. Separation of amplified PCR products by denaturing gradient gel electrophoresis and sequencing of the different phylotypes revealed a diverse biofilter microbial community. While Planctomycetales were found in all three communities, the anaerobic denitrifying biofilters contained one clone that exhibited high levels of sequence similarity to known anammox bacteria. Fluorescence in situ hybridization studies using an anammox-specific probe confirmed the presence of anammox Planctomycetales in the microbial biofilm from the denitrifying biofilters, and anammox activity was observed in these biofilters, as detected by the ability to simultaneously consume ammonia and nitrite. To our knowledge, this is the first identification of anammox-related sequences in a marine recirculating aquaculture filtration system, and our findings provide a foundation for incorporating this important pathway for complete nitrogen removal in such systems. PMID:16597996

  16. Links between Ammonia Oxidizer Community Structure, Abundance, and Nitrification Potential in Acidic Soils ▿ †

    OpenAIRE

    Yao, Huaiying; Gao, Yangmei; Nicol, Graeme W.; Campbell, Colin D.; Prosser, James I.; Zhang, Limei; Han, Wenyan; Singh, Brajesh K.

    2011-01-01

    Ammonia oxidation is the first and rate-limiting step of nitrification and is performed by both ammonia-oxidizing archaea (AOA) and bacteria (AOB). However, the environmental drivers controlling the abundance, composition, and activity of AOA and AOB communities are not well characterized, and the relative importance of these two groups in soil nitrification is still debated. Chinese tea orchard soils provide an excellent system for investigating the long-term effects of low pH and nitrogen f...

  17. Community Dynamics and Activity of Ammonia-Oxidizing Prokaryotes in Intertidal Sediments of the Yangtze Estuary

    OpenAIRE

    Zheng, Yanling; Hou, Lijun; Newell, Silvia; LIU Min; Zhou, Junliang; Zhao, Hui; You, Lili; Cheng, Xunliang

    2014-01-01

    Diversity, abundance, and activity of ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) were investigated using the ammonia monooxygenase α subunit (amoA) in the intertidal sediments of the Yangtze Estuary. Generally, AOB had a lower diversity of amoA genes than did AOA in this study. Clone library analysis revealed great spatial variations in both AOB and AOA communities along the estuary. The UniFrac distance matrix showed that all the AOB communities and 6 out of 7 AOA c...

  18. Ammonia-oxidizing archaea respond positively to inorganic nitrogen addition in desert soils.

    Science.gov (United States)

    Marusenko, Yevgeniy; Garcia-Pichel, Ferran; Hall, Sharon J

    2015-02-01

    In soils, nitrogen (N) addition typically enhances ammonia oxidation (AO) rates and increases the population density of ammonia-oxidizing bacteria (AOB), but not that of ammonia-oxidizing archaea (AOA). We asked if long-term inorganic N addition also has similar consequences in arid land soils, an understudied yet spatially ubiquitous ecosystem type. Using Sonoran Desert top soils from between and under shrubs within a long-term N-enrichment experiment, we determined community concentration-response kinetics of AO and measured the total and relative abundance of AOA and AOB based on amoA gene abundance. As expected, N addition increased maximum AO rates and the abundance of bacterial amoA genes compared to the controls. Surprisingly, N addition also increased the abundance of archaeal amoA genes. We did not detect any major effects of N addition on ammonia-oxidizing community composition. The ammonia-oxidizing communities in these desert soils were dominated by AOA as expected (78% of amoA gene copies were related to Nitrososphaera), but contained unusually high contributions of Nitrosomonas (18%) and unusually low numbers of Nitrosospira (2%). This study highlights unique traits of ammonia oxidizers in arid lands, which should be considered globally in predictions of AO responses to changes in N availability. PMID:25764551

  19. Evaluation on the microbial interactions of anaerobic ammonium oxidizers and heterotrophs in Anammox biofilm

    DEFF Research Database (Denmark)

    Ni, Bing-Jie; Ruscalleda, Mael; Smets, Barth F.

    2012-01-01

    Anaerobic ammonium oxidation (Anammox) is a cost-effective new process to treat high-strength nitrogenous wastewater. In this work, the microbial interactions of anaerobic ammonium oxidizers and heterotrophs through the exchange of soluble microbial products (SMP) in Anammox biofilm and the affec...

  20. Geographic Distribution of Archaeal Ammonia Oxidizing Ecotypes in the Atlantic Ocean

    Science.gov (United States)

    Sintes, Eva; De Corte, Daniele; Haberleitner, Elisabeth; Herndl, Gerhard J.

    2016-01-01

    In marine ecosystems, Thaumarchaeota are most likely the major ammonia oxidizers. While ammonia concentrations vary by about two orders of magnitude in the oceanic water column, archaeal ammonia oxidizers (AOA) vary by only one order of magnitude from surface to bathypelagic waters. Thus, the question arises whether the key enzyme responsible for ammonia oxidation, ammonia monooxygenase (amo), exhibits different affinities to ammonia along the oceanic water column and consequently, whether there are different ecotypes of AOA present in the oceanic water column. We determined the abundance and phylogeny of AOA based on their amoA gene. Two ecotypes of AOA exhibited a distribution pattern reflecting the reported availability of ammonia and the physico-chemical conditions throughout the Atlantic, and from epi- to bathypelagic waters. The distinction between these two ecotypes was not only detectable at the nucleotide level. Consistent changes were also detected at the amino acid level. These changes include substitutions of polar to hydrophobic amino acid, and glycine substitutions that could have an effect on the configuration of the amo protein and thus, on its activity. Although we cannot identify the specific effect, the ratio of non-synonymous to synonymous substitutions (dN/dS) between the two ecotypes indicates a strong positive selection between them. Consequently, our results point to a certain degree of environmental selection on these two ecotypes that have led to their niche specialization. PMID:26903961

  1. Geographic Distribution of Archaeal Ammonia Oxidizing Ecotypes in the Atlantic Ocean.

    Science.gov (United States)

    Sintes, Eva; De Corte, Daniele; Haberleitner, Elisabeth; Herndl, Gerhard J

    2016-01-01

    In marine ecosystems, Thaumarchaeota are most likely the major ammonia oxidizers. While ammonia concentrations vary by about two orders of magnitude in the oceanic water column, archaeal ammonia oxidizers (AOA) vary by only one order of magnitude from surface to bathypelagic waters. Thus, the question arises whether the key enzyme responsible for ammonia oxidation, ammonia monooxygenase (amo), exhibits different affinities to ammonia along the oceanic water column and consequently, whether there are different ecotypes of AOA present in the oceanic water column. We determined the abundance and phylogeny of AOA based on their amoA gene. Two ecotypes of AOA exhibited a distribution pattern reflecting the reported availability of ammonia and the physico-chemical conditions throughout the Atlantic, and from epi- to bathypelagic waters. The distinction between these two ecotypes was not only detectable at the nucleotide level. Consistent changes were also detected at the amino acid level. These changes include substitutions of polar to hydrophobic amino acid, and glycine substitutions that could have an effect on the configuration of the amo protein and thus, on its activity. Although we cannot identify the specific effect, the ratio of non-synonymous to synonymous substitutions (dN/dS) between the two ecotypes indicates a strong positive selection between them. Consequently, our results point to a certain degree of environmental selection on these two ecotypes that have led to their niche specialization. PMID:26903961

  2. Mathematical Modeling of Ammonia Electro-Oxidation on Polycrystalline Pt Deposited Electrodes

    Science.gov (United States)

    Diaz Aldana, Luis A.

    The ammonia electrolysis process has been proposed as a feasible way for electrochemical generation of fuel grade hydrogen (H2). Ammonia is identified as one of the most suitable energy carriers due to its high hydrogen density, and its safe and efficient distribution chain. Moreover, the fact that this process can be applied even at low ammonia concentration feedstock opens its application to wastewater treatment along with H 2 co-generation. In the ammonia electrolysis process, ammonia is electro-oxidized in the anode side to produce N2 while H2 is evolved from water reduction in the cathode. A thermodynamic energy requirement of just five percent of the energy used in hydrogen production from water electrolysis is expected from ammonia electrolysis. However, the absence of a complete understanding of the reaction mechanism and kinetics involved in the ammonia electro-oxidation has not yet allowed the full commercialization of this process. For that reason, a kinetic model that can be trusted in the design and scale up of the ammonia electrolyzer needs to be developed. This research focused on the elucidation of the reaction mechanism and kinetic parameters for the ammonia electro-oxidation. The definition of the most relevant elementary reactions steps was obtained through the parallel analysis of experimental data and the development of a mathematical model of the ammonia electro-oxidation in a well defined hydrodynamic system, such as the rotating disk electrode (RDE). Ammonia electro-oxidation to N 2 as final product was concluded to be a slow surface confined process where parallel reactions leading to the deactivation of the catalyst are present. Through the development of this work it was possible to define a reaction mechanism and values for the kinetic parameters for ammonia electro-oxidation that allow an accurate representation of the experimental observations on a RDE system. Additionally, the validity of the reaction mechanism and kinetic parameters

  3. Anaerobic, Nitrate-Dependent Oxidation of U(IV) Oxide Minerals by the Chemolithoautotrophic Bacterium Thiobacillus denitrificans

    Energy Technology Data Exchange (ETDEWEB)

    Beller, H R

    2004-06-25

    Under anaerobic conditions and at circumneutral pH, cells of the widely-distributed, obligate chemolithoautotrophic bacterium Thiobacillus denitrificans oxidatively dissolved synthetic and biogenic U(IV) oxides (uraninite) in nitrate-dependent fashion: U(IV) oxidation required the presence of nitrate and was strongly correlated to nitrate consumption. This is the first report of anaerobic U(IV) oxidation by an autotrophic bacterium.

  4. Response of performance and ammonia oxidizing bacteria community to high salinity stress in membrane bioreactor with elevated ammonia loading.

    Science.gov (United States)

    Wang, Zhu; Luo, Gan; Li, Jun; Chen, Shi-Yu; Li, Yan; Li, Wen-Tao; Li, Ai-Min

    2016-09-01

    Effect of elevated ammonia loading rate (ALR) and increasing salinity on the operation of membrane bioreactor (MBR) and the response of microbial community were investigated. Results showed that MBR started up with 1% NaCl stress achieved amazing nitrification performance at high salinity up to 4% when treating wastewater containing 1000mg/L NH(+)4-N. Further increasing salinity to 7% led to failure of MBR unrecoverably. Steep decline of sludge activity contributed to the extremely worse performance. High-throughput sequencing analysis showed that both ALR and salinity had selective effects on the microbial community structure. In genus level, Methyloversatilis and Maribacter were enriched during the operation. Survival of salt-resistant microbes contributed to the rising of richness and diversity at 2% and 4% NaCl stress. Analysis of amoA-gene-based cloning revealed Nitrosomonas marina are chiefly responsible for catalyzing ammonia oxidation in high ALR at high salinity stress. PMID:27290667

  5. Kinetic analysis of phenol, thiocyanate and ammonia-nitrogen removals in an anaerobic-anoxic-aerobic moving bed bioreactor system

    International Nuclear Information System (INIS)

    A simulated wastewater containing phenol (2500 mg/L), thiocyanate and ammonia-nitrogen (500 mg/L) was treated in an anaerobic (R1)-anoxic (R2)-aerobic (R3) moving bed biofilm reactor system at different hydraulic retention time (HRT) intervals (total HRT 3-8 days, R1: 1.5-4 days; R2: 0.75-2 days and R3: 0.75-2 days) and feed thiocyanate (SCN-) concentrations (110-600 mg/L) to determine substrate removal kinetics. In R1, phenol and COD reduction and specific methanogenic activity were inhibited due to the increase of SCN- in feed. Bhatia et al. model having inbuilt provision of process inhibition described the kinetics of COD and phenol utilization with maximum utilization rates of 0.398 day-1 and 0.486 day-1, respectively. In R2 and R3 modified Stover-Kincannon model was suitable to describe substrate utilization. In R2 respective maximum SCN-, phenol, COD and NO3-N utilization rates were 0.23, 5.28, 37.7 and 11.82 g/L day, respectively. In aerobic reactor R3, COD, SCN- and NH4+-N removal rates were, respectively, 10.53, 1.89, and 2.17 g/L day. The minimum total HRT of three-stage system was recommended as 4 days.

  6. Anaerobic ammonium oxidation in a bioreactor treating slaughterhouse wastewater

    Directory of Open Access Journals (Sweden)

    V. Reginatto

    2005-12-01

    Full Text Available Ammonium oxidation was thought to be an exclusively aerobic process; however, as recently described in the literature, it is also possible under anaerobic conditions and this process was named ANAMMOX. This work describes the operation of a system consisting of a denitrifying reactor coupled to a nitrifying reactor used for removal of nitrogen from slaughterhouse wastewater. During operation of the denitrifying reactor an average nitrogen ammonium removal rate of 50 mg/Ld was observed. This biomass was used to seed a second reactor, operated in repeated fed batch mode, fed with synthetic medium specific to the growth of bacteria responsible for the ANAMMOX process. The nitrogen loading rate varied between 33 and 67 mgN/Ld and average nitrogen removal was 95% and 40%, respectively. Results of fluorescence in situ hybridization (FISH confirmed the presence of anammox-like microorganisms in the enriched biomass.

  7. Benthic ammonia oxidizers differ in community structure and biogeochemical potential across a riverine delta.

    Science.gov (United States)

    Damashek, Julian; Smith, Jason M; Mosier, Annika C; Francis, Christopher A

    2014-01-01

    Nitrogen pollution in coastal zones is a widespread issue, particularly in ecosystems with urban or agricultural watersheds. California's Sacramento-San Joaquin Delta, at the landward reaches of San Francisco Bay, is highly impacted by both agricultural runoff and sewage effluent, leading to chronically high nutrient loadings. In particular, the extensive discharge of ammonium into the Sacramento River has altered this ecosystem by vastly increasing ammonium concentrations and thus changing the stoichiometry of inorganic nitrogen stocks, with potential effects throughout the food web. This debate surrounding ammonium inputs highlights the importance of understanding the rates of, and controls on, nitrogen (N) cycling processes across the delta. To date, however, there has been little research examining N biogeochemistry or N-cycling microbial communities in this system. We report the first data on benthic ammonia-oxidizing microbial communities and potential nitrification rates for the Sacramento-San Joaquin Delta, focusing on the functional gene amoA (which codes for the α-subunit of ammonia monooxygenase). There were stark regional differences in ammonia-oxidizing communities, with ammonia-oxidizing bacteria (AOB) outnumbering ammonia-oxidizing archaea (AOA) only in the ammonium-rich Sacramento River. High potential nitrification rates in the Sacramento River suggested these communities may be capable of oxidizing significant amounts of ammonium, compared to the San Joaquin River and the upper reaches of San Francisco Bay. Gene diversity also showed regional patterns, as well as phylogenetically unique ammonia oxidizers in the Sacramento River. The benthic ammonia oxidizers in this nutrient-rich aquatic ecosystem may be important players in its overall nutrient cycling, and their community structure and biogeochemical function appear related to nutrient loadings. Unraveling the microbial ecology and biogeochemistry of N cycling pathways, including benthic

  8. Benthic Ammonia Oxidizers Differ in Community Structure and Biogeochemical Potential Across a Riverine Delta

    Directory of Open Access Journals (Sweden)

    Julian eDamashek

    2015-01-01

    Full Text Available Nitrogen pollution in coastal zones is a widespread issue, particularly in ecosystems with urban or agricultural watersheds. California’s Sacramento-San Joaquin Delta, at the landward reaches of San Francisco Bay, is highly impacted by both agricultural runoff and sewage effluent, leading to chronically high nutrient loadings. In particular, the massive discharge of ammonium into the Sacramento River has altered this ecosystem by increasing ammonium concentrations and thus changing the stoichiometry of inorganic nitrogen stocks, with potential effects throughout the food web. To date, however, there has been little research examining N biogeochemistry or N-cycling microbial communities in this system. We report the first data on benthic ammonia-oxidizing microbial communities and potential nitrification rates for the Sacramento-San Joaquin Delta, focusing on the functional gene amoA (encoding the α-subunit of ammonia monooxygenase. There were stark regional differences in ammonia-oxidizing communities, with ammonia-oxidizing bacteria (AOB outnumbering ammonia-oxidizing archaea (AOA only in the ammonium-rich Sacramento River. High potential nitrification rates in the Sacramento River suggested these communities may be capable of oxidizing significant amounts of ammonium, compared to the San Joaquin River and the upper reaches of San Francisco Bay. Gene diversity also showed regional patterns, as well as phylogenetically unique ammonia oxidizers in the Sacramento River. The community structure and biogeochemical function of benthic ammonia oxidizers appears related to nutrient loadings. Unraveling the microbial ecology and biogeochemistry of N cycling pathways is a critical step toward understanding how such ecosystems respond to the changing environmental conditions wrought by human development and climate change.

  9. Nitrification of archaeal ammonia oxidizers in a high- temperature hot spring

    Science.gov (United States)

    Chen, Shun; Peng, Xiaotong; Xu, Hengchao; Ta, Kaiwen

    2016-04-01

    The oxidation of ammonia by microbes has been shown to occur in diverse natural environments. However, the link of in situ nitrification activity to taxonomic identities of ammonia oxidizers in high-temperature environments remains poorly understood. Here, we studied in situ ammonia oxidation rates and the diversity of ammonia-oxidizing Archaea (AOA) in surface and bottom sediments at 77 °C in the Gongxiaoshe hot spring, Tengchong, Yunnan, China. The in situ ammonia oxidation rates measured by the 15N-NO3- pool dilution technique in the surface and bottom sediments were 4.80 and 5.30 nmol N g-1 h-1, respectively. Real-time quantitative polymerase chain reaction (qPCR) indicated that the archaeal 16S rRNA genes and amoA genes were present in the range of 0.128 to 1.96 × 108 and 2.75 to 9.80 × 105 gene copies g-1 sediment, respectively, while bacterial amoA was not detected. Phylogenetic analysis of 16S rRNA genes showed high sequence similarity to thermophilic Candidatus Nitrosocaldus yellowstonii, which represented the most abundant operational taxonomic units (OTU) in both surface and bottom sediments. The archaeal predominance was further supported by fluorescence in situ hybridization (FISH) visualization. The cell-specific rate of ammonia oxidation was estimated to range from 0.410 to 0.790 fmol N archaeal cell-1 h-1, higher than those in the two US Great Basin hot springs. These results suggest the importance of archaeal rather than bacterial ammonia oxidation in driving the nitrogen cycle in terrestrial geothermal environments.

  10. Continuous anaerobic digestion of swine manure: ADM1-based modelling and effect of addition of swine manure fibers pretreated with aqueous ammonia soaking

    DEFF Research Database (Denmark)

    Jurado, E.; Antonopoulou, G.; Lyberatos, G.;

    2016-01-01

    Anaerobic digestion of manure fibers presents challenges due to their low biodegradability. Aqueous ammonia soaking (AAS) has been tested as a simple method to disrupt the lignocellulose and increase the methane yield of manure fibers. In the present study, mesophilic anaerobic digestion of AAS...... pretreated manure fibers was performed in CSTR-type digesters, fed with swine manure and/or a mixtureof swine manure and AAS pretreated manure fibers (at a total solids based ratio of 0.52 manure per0.48 fibers). Two different simulations were performed. In the first place, the Anaerobic Digestion Model 1...... contribute to the methane production. In the second place, ADM1 was used to describe biogas production from the codigestion of manure and AAS pretreated manure fibers. The model predictions regarding biogas production and methane content were in good agreement with the experimental data. It was shown that...

  11. Grassland Management Regimens Reduce Small-Scale Heterogeneity and Species Diversity of β-Proteobacterial Ammonia Oxidizer Populations

    OpenAIRE

    Webster, Gordon; Embley, T Martin; Prosser, James I.

    2002-01-01

    The impact of soil management practices on ammonia oxidizer diversity and spatial heterogeneity was determined in improved (addition of N fertilizer), unimproved (no additions), and semi-improved (intermediate management) grassland pastures at the Sourhope Research Station in Scotland. Ammonia oxidizer diversity within each grassland soil was assessed by PCR amplification of microbial community DNA with both ammonia oxidizer-specific, 16S rRNA gene (rDNA) and functional, amoA, gene primers. P...

  12. Spatial Distribution and Factors Shaping the Niche Segregation of Ammonia-Oxidizing Microorganisms in the Qiantang River, China

    OpenAIRE

    Liu, Shuai; Shen, Lidong; Lou, Liping; Guangming TIAN; Zheng, Ping; Hu, Baolan

    2013-01-01

    Ammonia oxidation is performed by both ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB). However, the current knowledge of the distribution, diversity, and relative abundance of these two microbial groups in freshwater sediments is insufficient. We examined the spatial distribution and analyzed the possible factors leading to the niche segregation of AOA and AOB in the sediments of the Qiantang River, using clone library construction and quantitative PCR for both archaeal ...

  13. Ecosystem-specific selection of microbial ammonia oxidizers in an acid soil

    OpenAIRE

    M. Saiful Alam; Ren, G.; Lu, L.; Y. Zheng; Peng, X.; Jia, Z

    2013-01-01

    The function of ammonia-oxidizing archaea (AOA) and bacteria (AOB) depends on the availability of ammonia substrate and the supply of oxygen. The interactions and evolutions of AOA and AOB communities along ecological gradients of substrate availability in complex environment have been much debated, but rarely tested. In this study, two ecosystems of maize and rice crops under different fertilization regimes were selected to investigate the community diversification of soil AOA and AOB i...

  14. Seasonal and vertical distribution of putative ammonia-oxidizing thaumarchaeotal communities in an oligotrophic lake

    OpenAIRE

    Vissers, E.W.; Blaga, C. I.; Bodelier, P.L.E.; Muyzer, G; Schleper, C.; Sinninghe Damsté, J.S.; Tourna, M.; Laanbroek, H. J.

    2013-01-01

    The discovery of Archaea carrying an amoA gene coding for the A-subunit of ammonia monooxygenase gave a boost to studies aimed at detecting this gene under diverse conditions. Despite numerous studies describing the archaeal amoA gene abundance and richness in different habitats, the understanding of the freshwater ecology of potentially archaeal ammonia oxidizers, recently positioned in the phylum Thaumarchaeota, is still lacking. In a seasonal and vertical study of deep oligotrophic Lake Lu...

  15. Growth and Methane Oxidation Rates of Anaerobic Methanotrophic Archaea in a Continuous-Flow Bioreactor

    OpenAIRE

    Peter R. Girguis; Orphan, Victoria J; Hallam, Steven J.; DeLong, Edward F

    2003-01-01

    Anaerobic methanotrophic archaea have recently been identified in anoxic marine sediments, but have not yet been recovered in pure culture. Physiological studies on freshly collected samples containing archaea and their sulfate-reducing syntrophic partners have been conducted, but sample availability and viability can limit the scope of these experiments. To better study microbial anaerobic methane oxidation, we developed a novel continuous-flow anaerobic methane incubation system (AMIS) that...

  16. Enzymes involved in the anaerobic oxidation of n-alkanes: from methane to long-chain paraffins

    OpenAIRE

    Amy V. Callaghan

    2013-01-01

    Anaerobic microorganisms play key roles in the biogeochemical cycling of methane and non-methane alkanes. To date, there appear to be at least three proposed mechanisms of anaerobic methane oxidation (AOM). The first pathway is mediated by consortia of archaeal anaerobic methane oxidizers and sulfate-reducing bacteria via ‘reverse methanogenesis’ and is catalyzed by a homologue of methyl-coenzyme M reductase. The second pathway is also mediated by anaerobic methane oxidizers and sulfate-red...

  17. The abundance and diversity of ammonia-oxidizing bacteria in activated sludge under autotrophic domestication.

    Science.gov (United States)

    Li, Qiang; Ma, Chao; Sun, Shifang; Xie, Hui; Zhang, Wei; Feng, Jun; Song, Cunjiang

    2013-04-01

    Ammonia-oxidizing bacteria (AOB) play a key role in nitrogen-removal wastewater treatment plants (WWTPs) as they can transform ammonia into nitrite. AOB can be enriched in activated sludge through autotrophic domestication although they are difficult to be isolated. In this study, autotrophic domestication was carried out in a lab-scale sequencing-batch-reactor (SBR) system with two activated sludge samples. The ammonia removal capacity of the sludge samples increased during the domestication, and pH exhibited a negative correlation with the ammonia removal amount, which indicated that it was one important factor of microbial ammonia oxidation. The count of AOB, measured by the most probable number (MPN) method, increased significantly during autotrophic domestication as ammonia oxidation efficiency was enhanced. We investigated the changes in the community structure of AOB before and after domestication by amoA clone library and T-RFLP profile. It showed that AOB had been successfully enriched and the community structure significantly shifted during the domestication. Two groups of AOB were found in sludge samples: Nitrosomonas-like group remained predominant all the time and Nitrosospira-like group changed obviously. Simultaneously, the total heterotrophic bacteria were investigated by MPN and Biolog assay. The metabolic diversity of heterotrophs had changed minutely, although the count of them decreased significantly and lost superiority of microbial communities in the sludge. PMID:24620598

  18. Ammonia oxidation is not required for growth of Group 1.1c soil Thaumarchaeota.

    Science.gov (United States)

    Weber, Eva B; Lehtovirta-Morley, Laura E; Prosser, James I; Gubry-Rangin, Cécile

    2015-03-01

    Thaumarchaeota are among the most abundant organisms on Earth and are ubiquitous. Within this phylum, all cultivated representatives of Group 1.1a and Group 1.1b Thaumarchaeota are ammonia oxidizers, and play a key role in the nitrogen cycle. While Group 1.1c is phylogenetically closely related to the ammonia-oxidizing Thaumarchaeota and is abundant in acidic forest soils, nothing is known about its physiology or ecosystem function. The goal of this study was to perform in situ physiological characterization of Group 1.1c Thaumarchaeota by determining conditions that favour their growth in soil. Several acidic grassland, birch and pine tree forest soils were sampled and those with the highest Group 1.1c 16S rRNA gene abundance were incubated in microcosms to determine optimal growth temperature, ammonia oxidation and growth on several organic compounds. Growth of Group 1.1c Thaumarchaeota, assessed by qPCR of Group 1.1c 16S rRNA genes, occurred in soil, optimally at 30°C, but was not associated with ammonia oxidation and the functional gene amoA could not be detected. Growth was also stimulated by addition of organic nitrogen compounds (glutamate and casamino acids) but not when supplemented with organic carbon alone. This is the first evidence for non-ammonia oxidation associated growth of Thaumarchaeota in soil. PMID:25764563

  19. Biotransformation of Two Pharmaceuticals by the Ammonia-Oxidizing Archaeon Nitrososphaera gargensis.

    Science.gov (United States)

    Men, Yujie; Han, Ping; Helbling, Damian E; Jehmlich, Nico; Herbold, Craig; Gulde, Rebekka; Onnis-Hayden, Annalisa; Gu, April Z; Johnson, David R; Wagner, Michael; Fenner, Kathrin

    2016-05-01

    The biotransformation of some micropollutants has previously been observed to be positively associated with ammonia oxidation activities and the transcript abundance of the archaeal ammonia monooxygenase gene (amoA) in nitrifying activated sludge. Given the increasing interest in and potential importance of ammonia-oxidizing archaea (AOA), we investigated the capabilities of an AOA pure culture, Nitrososphaera gargensis, to biotransform ten micropollutants belonging to three structurally similar groups (i.e., phenylureas, tertiary amides, and tertiary amines). N. gargensis was able to biotransform two of the tertiary amines, mianserin (MIA) and ranitidine (RAN), exhibiting similar compound specificity as two ammonia-oxidizing bacteria (AOB) strains that were tested for comparison. The same MIA and RAN biotransformation reactions were carried out by both the AOA and AOB strains. The major transformation product (TP) of MIA, α-oxo MIA was likely formed via a two-step oxidation reaction. The first hydroxylation step is typically catalyzed by monooxygenases. Three RAN TP candidates were identified from nontarget analysis. Their tentative structures and possible biotransformation pathways were proposed. The biotransformation of MIA and RAN only occurred when ammonia oxidation was active, suggesting cometabolic transformations. Consistently, a comparative proteomic analysis revealed no significant differential expression of any protein-encoding gene in N. gargensis grown on ammonium with MIA or RAN compared with standard cultivation on ammonium only. Taken together, this study provides first important insights regarding the roles played by AOA in micropollutant biotransformation. PMID:27046099

  20. Environmental evidence for net methane production and oxidation in putative ANaerobic MEthanotrophic (ANME) archaea

    DEFF Research Database (Denmark)

    Lloyd, Karen; Teske, Andreas; Alperin, Marc J.

    2011-01-01

    Uncultured ANaerobic MEthanotrophic (ANME) archaea are often assumed to be obligate methanotrophs that are incapable of net methanogenesis, and are therefore used as proxies for anaerobic methane oxidation in many environments in spite of uncertainty regarding their metabolic capabilities....... Anaerobic methane oxidation regulates methane emissions in marine sediments and appears to occur through a reversal of a methane-producing metabolism. We tested the assumption that ANME are obligate methanotrophs by detecting and quantifying gene transcription of ANME-1 across zones of methane oxidation...

  1. Temporal and Spatial Stability of Ammonia-Oxidizing Archaea and Bacteria in Aquarium Biofilters

    KAUST Repository

    Bagchi, Samik

    2014-12-05

    Nitrifying biofilters are used in aquaria and aquaculture systems to prevent accumulation of ammonia by promoting rapid conversion to nitrate via nitrite. Ammonia-oxidizing archaea (AOA), as opposed to ammonia-oxidizing bacteria (AOB), were recently identified as the dominant ammonia oxidizers in most freshwater aquaria. This study investigated biofilms from fixed-bed aquarium biofilters to assess the temporal and spatial dynamics of AOA and AOB abundance and diversity. Over a period of four months, ammonia-oxidizing microorganisms from six freshwater and one marine aquarium were investigated at 4–5 time points. Nitrogen balances for three freshwater aquaria showed that active nitrification by aquarium biofilters accounted for ≥81–86% of total nitrogen conversion in the aquaria. Quantitative PCR (qPCR) for bacterial and thaumarchaeal ammonia monooxygenase (amoA) genes demonstrated that AOA were numerically dominant over AOB in all six freshwater aquaria tested, and contributed all detectable amoA genes in three aquarium biofilters. In the marine aquarium, however, AOB outnumbered AOA by three to five orders of magnitude based on amoA gene abundances. A comparison of AOA abundance in three carrier materials (fine sponge, rough sponge and sintered glass or ceramic rings) of two three-media freshwater biofilters revealed preferential growth of AOA on fine sponge. Denaturing gel gradient electrophoresis (DGGE) of thaumarchaeal 16S rRNA genes indicated that community composition within a given biofilter was stable across media types. In addition, DGGE of all aquarium biofilters revealed low AOA diversity, with few bands, which were stable over time. Nonmetric multidimensional scaling (NMDS) based on denaturing gradient gel electrophoresis (DGGE) fingerprints of thaumarchaeal 16S rRNA genes placed freshwater and marine aquaria communities in separate clusters. These results indicate that AOA are the dominant ammonia-oxidizing microorganisms in freshwater aquarium

  2. Temporal and spatial stability of ammonia-oxidizing archaea and bacteria in aquarium biofilters.

    Directory of Open Access Journals (Sweden)

    Samik Bagchi

    Full Text Available Nitrifying biofilters are used in aquaria and aquaculture systems to prevent accumulation of ammonia by promoting rapid conversion to nitrate via nitrite. Ammonia-oxidizing archaea (AOA, as opposed to ammonia-oxidizing bacteria (AOB, were recently identified as the dominant ammonia oxidizers in most freshwater aquaria. This study investigated biofilms from fixed-bed aquarium biofilters to assess the temporal and spatial dynamics of AOA and AOB abundance and diversity. Over a period of four months, ammonia-oxidizing microorganisms from six freshwater and one marine aquarium were investigated at 4-5 time points. Nitrogen balances for three freshwater aquaria showed that active nitrification by aquarium biofilters accounted for ≥ 81-86% of total nitrogen conversion in the aquaria. Quantitative PCR (qPCR for bacterial and thaumarchaeal ammonia monooxygenase (amoA genes demonstrated that AOA were numerically dominant over AOB in all six freshwater aquaria tested, and contributed all detectable amoA genes in three aquarium biofilters. In the marine aquarium, however, AOB outnumbered AOA by three to five orders of magnitude based on amoA gene abundances. A comparison of AOA abundance in three carrier materials (fine sponge, rough sponge and sintered glass or ceramic rings of two three-media freshwater biofilters revealed preferential growth of AOA on fine sponge. Denaturing gel gradient electrophoresis (DGGE of thaumarchaeal 16S rRNA genes indicated that community composition within a given biofilter was stable across media types. In addition, DGGE of all aquarium biofilters revealed low AOA diversity, with few bands, which were stable over time. Nonmetric multidimensional scaling (NMDS based on denaturing gradient gel electrophoresis (DGGE fingerprints of thaumarchaeal 16S rRNA genes placed freshwater and marine aquaria communities in separate clusters. These results indicate that AOA are the dominant ammonia-oxidizing microorganisms in freshwater

  3. Multiple factors affect diversity and abundance of ammonia-oxidizing microorganisms in iron mine soil.

    Science.gov (United States)

    Xing, Yi; Si, Yan-Xiao; Hong, Chen; Li, Yang

    2015-07-01

    Ammonia oxidation by microorganisms is a critical process in the nitrogen cycle. In this study, four soil samples collected from a desert zone in an iron-exploration area and others from farmland and planted forest soil in an iron mine surrounding area. We analyzed the abundance and diversity of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in iron-mining area near the Miyun reservoir using ammonia monooxygenase. A subunit gene (amoA) as molecular biomarker. Quantitative polymerase chain reaction was applied to explore the relationships between the abundance of AOA and AOB and soil physicochemical parameters. The results showed that AOA were more abundant than AOB and may play a more dominant role in the ammonia-oxidizing process in the whole region. PCR-denaturing gradient gel electrophoresis was used to analyze the structural changes of AOA and AOB. The results showed that AOB were much more diverse than AOA. Nitrosospira cluster three constitute the majority of AOB, and AOA were dominated by group 1.1b in the soil. Redundancy analysis was performed to explore the physicochemical parameters potentially important to AOA and AOB. Soil characteristics (i.e. water, ammonia, organic carbon, total nitrogen, available phosphorus, and soil type) were proposed to potentially contribute to the distributions of AOB, whereas Cd was also closely correlated to the distributions of AOB. The community of AOA correlated with ammonium and water contents. These results highlight the importance of multiple drivers in microbial niche formation as well as their affect on ammonia oxidizer composition, both which have significant consequences for ecosystem nitrogen functioning. PMID:25860433

  4. Effect of ISPAD Anaerobic Digestion on Ammonia Volatilization from Soil Applied Swine Manure

    Directory of Open Access Journals (Sweden)

    Susan King

    2012-01-01

    Full Text Available Swine manure subjected to in-storage psychrophilic anaerobic digestion (ISPAD undergoes proteins degradation but limited NH3 volatilization, producing an effluent rich in plant-available nitrogen. Accordingly, ISPAD effluent can offer a higher fertilizer value during land application, as compared to manure of similar age stored in an open tank. However, this additional nitrogen can also be lost by volatilization during land application. The objective of this study was therefore to measure NH3 volatilization from both ISPAD and open tank swine manures when applied to 5 different soils, namely, washed sand, a Ste Rosalie clay, an Upland sandy loam, a St Bernard loam, and an Ormstown loam. This research was conducted using laboratory wind tunnels simulating land application. The five experimental soils offered similar pH values but different water holding capacity, cation exchange capacity, cation saturation, and organic matter. After 47 h of wind tunnel monitoring, the % of total available nitrogen (TAN or NH4 + and NH3 volatilized varied with both manure and soil type. For all soil types, the ISPAD manure consistently lost less NH3 as compared to the open tank manure, averaging 53% less. Lower volatile solids content improving manure infiltration into the soil and a more complex ionic solution explain the effect of the ISPAD manure advantages. This was reinforced by the St Bernard sandy loam losing the same nitrogen mass for both manures, because of its higher pH and buffer pH coupled with an intermediate CEC resulting in more soil solution NH3. Within each manure type, % TAN volatilized was highest for washed sand and lowest for the clay soil. As a result, ISPAD manure can offer up to 21% more plant-available nitrogen fertilizer especially when the manure is not incorporated into the soil following its application.

  5. Evaluation of granular anaerobic ammonium oxidation process for the disposal of pre-treated swine manure

    Directory of Open Access Journals (Sweden)

    Shou-Qing Ni

    2014-04-01

    Full Text Available With rising environmental concerns on potable water safety and eutrophication, increased media attention and tighter environmental regulations, managing animal waste in an environmentally responsible and economically feasible way can be a challenge. In this study, the possibility of using granular anammox process for ammonia removal from swine waste treatment water was investigated. A rapid decrease of NO2−–N and NH4+–N was observed during incubation with wastewater from an activated sludge deodorization reactor and anaerobic digestion-partial oxidation treatment process treating swine manure and its corresponding control artificial wastewaters. Ammonium removal dropped from 98.0 ± 0.6% to 66.9 ± 2.7% and nearly absent when the organic load in the feeding increased from 232 mg COD/L to 1160 mg COD/L and 2320 mg COD/L. The presence of organic carbon had limited effect on nitrite and total nitrogen removal. At a COD to N ratio of 0.9, COD inhibitory organic load threshold concentration was 727 mg COD/L. Mass balance indicated that denitrifiers played an important role in nitrite, nitrate and organic carbon removal. These results demonstrated that anammox system had the potential to effectively treat swine manure that can achieve high nitrogen standards at reduced costs.

  6. Anaerobic oxidation of methane in grassland soils used for cattle husbandry

    Directory of Open Access Journals (Sweden)

    A. Bannert

    2012-04-01

    Full Text Available While the importance of anaerobic methane oxidation has been reported for marine ecosystems, the role of this process in soils is still questionable. Grasslands used as pastures for cattle-overwintering show an increase in anaerobic soil micro-sites caused by animal treading and excrement deposition. Therefore anaerobic potential methane oxidation activity of severely impacted soil from a cattle winter pasture was investigated in an incubation experiment under anaerobic conditions using 13C-labeled methane. We were able to detect a high microbial activity utilizing CH4 as nutrient source shown by the respiration of 13CO2. Measurements of possible terminal electron acceptors for anaerobic oxidation of methane were carried out. Soil sulfate concentrations were too low to explain the oxidation of the amount of methane added, but enough nitrate and iron(III were detected. However, only nitrate was consumed during the experiment. 13C-PLFA analyses clearly showed the utilization of CH4 as nutrient source mainly by organisms harbouring 16:1ω7 PLFAs. These lipids were found in Gram-negative microorganisms and anaerobes. The fact that these lipids are also typical for type I methanotrophs, known as aerobic methane oxidizers, might indicate a link between aerobic and anaerobic methane oxidation.

  7. Nitrate reduction to nitrite, nitric oxide and ammonia by gut bacteria under physiological conditions.

    Directory of Open Access Journals (Sweden)

    Mauro Tiso

    Full Text Available The biological nitrogen cycle involves step-wise reduction of nitrogen oxides to ammonium salts and oxidation of ammonia back to nitrites and nitrates by plants and bacteria. Neither process has been thought to have relevance to mammalian physiology; however in recent years the salivary bacterial reduction of nitrate to nitrite has been recognized as an important metabolic conversion in humans. Several enteric bacteria have also shown the ability of catalytic reduction of nitrate to ammonia via nitrite during dissimilatory respiration; however, the importance of this pathway in bacterial species colonizing the human intestine has been little studied. We measured nitrite, nitric oxide (NO and ammonia formation in cultures of Escherichia coli, Lactobacillus and Bifidobacterium species grown at different sodium nitrate concentrations and oxygen levels. We found that the presence of 5 mM nitrate provided a growth benefit and induced both nitrite and ammonia generation in E.coli and L.plantarum bacteria grown at oxygen concentrations compatible with the content in the gastrointestinal tract. Nitrite and ammonia accumulated in the growth medium when at least 2.5 mM nitrate was present. Time-course curves suggest that nitrate is first converted to nitrite and subsequently to ammonia. Strains of L.rhamnosus, L.acidophilus and B.longum infantis grown with nitrate produced minor changes in nitrite or ammonia levels in the cultures. However, when supplied with exogenous nitrite, NO gas was readily produced independently of added nitrate. Bacterial production of lactic acid causes medium acidification that in turn generates NO by non-enzymatic nitrite reduction. In contrast, nitrite was converted to NO by E.coli cultures even at neutral pH. We suggest that the bacterial nitrate reduction to ammonia, as well as the related NO formation in the gut, could be an important aspect of the overall mammalian nitrate/nitrite/NO metabolism and is yet another way in

  8. Thermodynamic and kinetic control on anaerobic oxidation of methane in marine sediments

    DEFF Research Database (Denmark)

    Knab, Nina J.; Dale, Andrew W.; Lettmann, Karsten;

    2008-01-01

    The free energy yield of microbial respiration reactions in anaerobic marine sediments must be sufficient to be conserved as biologically usable energy in the form of ATP. Anaerobic oxidation of methane (AOM) coupled to sulfate reduction (SRR) has a very low standard free energy yield of ΔG  = -3...

  9. Catalytic wet oxidation of ammonia solution: Activity of the nanoscale platinum-palladium-rhodium composite oxide catalyst

    International Nuclear Information System (INIS)

    Aqueous solutions of 400-1000 mg/L of ammonia were oxidized in a trickle-bed reactor (TBR) in this study of nanoscale platinum-palladium-rhodium composite oxide catalysts, which were prepared by the co-precipitation of H2PtCl6, Pd(NO3)3 and Rh(NO3)3. Hardly any of the dissolved ammonia was removed by wet oxidation in the absence of any catalyst, whereas about 99% of the ammonia was reduced during wet oxidation over nanoscale platinum-palladium-rhodium composite oxide catalysts at 503 K in an oxygen partial pressure of 2.0 MPa. A synergistic effect exists in the nanoscale platinum-palladium-rhodium composite structure, which is the material with the highest ammonia reduction activity. The nanometer-sized particles were characterized by TEM, XRD and FTIR. The effect of the initial concentration and reaction temperature on the removal of ammonia from the effluent streams was also studied at a liquid hourly space velocity of under 9 h-1 in the wet catalytic processes

  10. Removal of ammonia from air on molybdenum and tungsten oxide modified activated carbons.

    Science.gov (United States)

    Petit, Camille; Bandosz, Teresa J

    2008-04-15

    Microporous coconut-based activated carbon was impregnated with solutions of ammonium metatungstate or ammonium molybdate and then calcined in air in order to convert the salts into their corresponding oxides. The surface of those materials was characterized using adsorption of nitrogen, potentiometric titration, Fourier-transform infrared spectroscopy, X-ray diffraction, and thermal analysis. The results indicated a significant increase in surface acidity related to the presence of tungsten or molybdenum oxides. On the materials obtained, adsorption of ammonia from either dry or moist air was carried out. The oxides distributed on the surface provided Lewis and/or Brønsted centers for interactions with ammonia molecules or ammonium ions. Water on the surface of carbon or in the gas phase increased the amount of ammonia adsorbed via involvement of Brønsted-type interactions and/or by leading to the formation of molybdate or tungstate salts on the surface. Although the amount of ammonia adsorbed is closely related to the number of moles of oxides and their acidic centers, the carbon surface also contributes to the adsorption via providing small pores where ammonia can be dissolved in the water film. PMID:18497162

  11. Mitigation of ammonia inhibition by internal dilution in high-rate anaerobic digestion of food waste leachate and evidences of microbial community response.

    Science.gov (United States)

    Yun, Yeo-Myeong; Kim, Dong-Hoon; Cho, Si-Kyung; Shin, Hang-Sik; Jung, Kyung-Won; Kim, Hyun-Woo

    2016-09-01

    A high-rate anaerobic digestion of food waste leachate were tested using intermittent continuously stirred tank reactors (iCSTRs) to evaluate how severe ammonia inhibition could be mitigated with internal dilution strategy, and to identify how bacterial and archaeal community respond in genus and species level. Experimental results show that the digestion performance was well maintained up to hydraulic retention time (HRT) of 40 days but could not keep steady-state as HRT decreased to 30 days due to severe free ammonia (FA) inhibition. Coupling internal dilution was the key to relieve the inhibition since it reduced FA concentration as low as 62 mg/L even at HRT 30 days, which corresponds to organic loading rate of 5 g COD/L/d, demonstrating CH4 yield of 0.32 L CH4 /g CODadded . It was confirmed that the dilution offers iCTSRs manage severe ammonia inhibition with the balanced community structure between bacteria and archaea in this high-rate anaerobic digestion. Genus and species level pyrosequencing evidence that FA inhibition to community dynamics of Methanosarcina and Methanosaeta is strongly connected to methanogenesis, and Methanosarcina plays a key role in an iCSTR with the dilution. Biotechnol. Bioeng. 2016;113: 1892-1901. © 2016 Wiley Periodicals, Inc. PMID:26927830

  12. Visible light photo response from N-doped anodic niobium oxide after annealing in ammonia atmosphere

    International Nuclear Information System (INIS)

    Niobium oxide films with a thickness of approximately 165 nm were prepared by electrochemical anodization. These anodic oxide layers were then treated in an ammonia atmosphere at different temperatures and durations, and characterized with XRD, XPS, ToF-SIMS and photoelectrochemical methods. Under optimized conditions nitrogen doping of the niobium oxide films takes place, resulting in a distinct photo response in the visible range of light.

  13. Emissions of ammonia, nitrous oxide and methane during the management of solid manures

    DEFF Research Database (Denmark)

    Webb, J; Sommer, Sven Gjedde; Kupper, Thomas;

    2012-01-01

    gaseous emissions. These emissions are in the form of ammonia (NH3), nitrous oxide (N2O) and methane (CH4). Ammonia forms particles in the atmosphere which reduce visibility and may also harm human health, and when deposited to land NH3 causes nutrient enrichment of soil. Nitrous oxide and CH4 contribute...... incorporation after application. Conversely, emissions following application of pig and poultry manures were 0.003 and 0.001 TAN respectively without and 0.035 and 0.089 TAN respectively with incorporation after application...

  14. Abundance, Diversity, and Activity of Ammonia-Oxidizing Prokaryotes in the Coastal Arctic Ocean in Summer and Winter ▿ †

    OpenAIRE

    Christman, Glenn D.; Cottrell, Matthew T.; Brian N Popp; Gier, Elizabeth; Kirchman, David L.

    2011-01-01

    Ammonia oxidation, the first step in nitrification, is performed by certain Beta- and Gammaproteobacteria and Crenarchaea to generate metabolic energy. Ammonia monooxygenase (amoA) genes from both Bacteria and Crenarchaea have been found in a variety of marine ecosystems, but the relative importance of Bacteria versus Crenarchaea in ammonia oxidation is unresolved, and seasonal comparisons are rare. In this study, we compared the abundance of betaproteobacterial and crenarchaeal amoA genes in...

  15. Concurrence of Anaerobic Ammonium Oxidation and Organotrophic Denitrification in Presence of p-Cresol.

    Science.gov (United States)

    González-Blanco, G; Cervantes, F J; Beristain-Cardoso, R; Gómez, J

    2015-08-01

    This study was carried out to evaluate the capacity of anaerobic granular sludge for oxidizing ammonium and p-cresol with nitrate as terminal electron acceptor. Kinetics for the anaerobic oxidation of ammonium and p-cresol is described in this paper. The phenolic compound was very efficiently consumed, achieving 65 % of mineralization. Ammonium and nitrate were also consumed at 83 and 92 %, respectively, being the main product N2. Anaerobic ammonium oxidation was promoted owing to accumulation of nitrite, and it allowed the synergy of anaerobic ammonium oxidation and organotrophic denitrification for the simultaneous removal of ammonium, nitrate, and p-cresol. A carbonaceous intermediate partially identified was transiently accumulated, and it transitorily truncated the respiratory process of denitrification. These experimental results might be considered for defining strategies in order to remove nitrate, ammonium, and phenolic compounds from wastewaters. PMID:26062920

  16. Nitrogen removal by autotrophic ammonium oxidizing bacteria enrichment under anaerobic conditions

    OpenAIRE

    Pongsak (Lek) Noophan; Chalermraj Wantawin; Siriporn Sripiboon; Sanya Sirivitayapakorn

    2008-01-01

    Sludge from an anoxic tank at the centralized wastewater treatment plant, Nong Khaem, Bangkok, Thailand, was inoculatedin an anaerobic sequencing batch reactor (ASBR). The optimal compositions and operating conditions of the stock of autotrophic ammonium oxidizing bacteria medium were determined. The process of oxidizing ammonium with bacteria under anaerobic conditions is often referred to as the Anammox process (NO2- to N2 gas, using NH4+ as the electron donor and NO2- as the electron accep...

  17. Metabolic Capabilities of Microorganisms Involved in and Associated with the Anaerobic Oxidation of Methane

    OpenAIRE

    Wegener, Gunter; Krukenberg, Viola; Ruff, S. Emil; Kellermann, Matthias Y.; Knittel, Katrin

    2016-01-01

    In marine sediments the anaerobic oxidation of methane with sulfate as electron acceptor (AOM) is responsible for the removal of a major part of the greenhouse gas methane. AOM is performed by consortia of anaerobic methane-oxidizing archaea (ANME) and their specific partner bacteria. The physiology of these organisms is poorly understood, which is due to their slow growth with doubling times in the order of months and the phylogenetic diversity in natural and in vitro AOM enrichments. Here w...

  18. Isolation and characterization of facultative mixotrophic ammonia-oxidizing bacteria from constructed wetlands

    Institute of Scientific and Technical Information of China (English)

    Soulwène Kouki; Neila Saidi; Fadhel M'hiri; Houda Nasr; Hanène Cherif; Hadda Ouzari; Abdermaceur Hassen

    2011-01-01

    Autotrophic ammonia-oxidizing bacteria (AOB) have been widely studied in constructed wetlands systems,while mixotrophic AOB have been less thoroughly examined.Heterotrophic bacteria were isolated from wastewater and rhizospheres of macrophytes of constructed wetlands,and then cultivated in a mixotrophic medium containing ammonium and acetic acid.A molecular characterization was accomplished using ITS-PCR amplification,and phylogenetic analysis based on 16S rRNA gene sequences.Results showed the presence of 35 bacteria,among 400 initially heterotrophic isolates,that were able to remove ammonia.These 35 isolates were classified into 10 genetically different groups based on ITS pattern.Then,a collection of 10 isolates were selected because of their relatively high ammonia removal efficiencies (ARE ≥ 80%) and their phylogenetic diversity.In conditions of mixotrophy,these strains were shown to be able to grow (increase of optical density OD660 during incubation with assimilation of nitrogen into cellular biomass) and to oxidize ammonia (important ammonia oxidation efficiencies,AOE between 79% and 87%).Among these facultative mixotrophic AOB,four isolates were genetically related to Firmicutes (Bacillus and Exiguobacterium),three isolates were affiliated to Actinobacteria (Arthrobacter) and three other isolates were associated with Proteobacteria (Pseudomonas,Ochrobactrum and Bordetella).

  19. Ammonia-Oxidizer Communities in an Agricultural Soil treated with Contrasting Nitrogen Sources.

    Directory of Open Access Journals (Sweden)

    Mussie Y. Habteselassie

    2013-11-01

    Full Text Available The community of ammonia-oxidizing prokaryotes was examined in an agricultural soil treated for 6 seasons with contrasting nitrogen (N sources. Molecular tools based on the gene encoding ammonia monooxygenase were used to characterize the ammonia oxidizer communities and their abundance. Soil DNA was extracted from soils sampled from silage corn plots that received no additional N (control, dairy waste compost (DC, liquid dairy waste (LW, and ammonium sulfate (AS treatments at approximately 100 and 200 kg available N ha-1 over 6 years. The N treatment affected the quantity of ammonia oxidizers based on estimates of amoA by real-time PCR. Ammonia oxidizing bacteria (AOB were higher in soils from the AS200, AS100, and LW200 treatments (2.5 x107, 2.5x107, and 2.1 x107 copies g-1 soil, respectively than in the control (8.1x106copies/g while the abundance of amoA encoding archaea (AOA was not significantly affected by treatment (3.8x107copies g-1 soil, average. The ratio of AOA/AOB was higher in the control and compost treated soils, both treatments have the majority of their ammonium supplied through mineralization of organic nitrogen. Clone libraries of partial amoA sequences indicated AOB related to Nitrosospira multiformis and AOA related to uncultured Nitrososphaera similar to those described by soil fosmid 54d9 were prevalent. Profiles of the amoC-amoA intergenic region indicated that both Nitrosospira- and Nitrosomonas-type AOB were present in all soils examined. In contrast to the intergenic amoC-amoA profile results, Nitrosomonas-like clones were recovered only in the LW200 treated soil-DNA. The impact of six years of contrasting nitrogen sources applications caused changes in ammonia oxidizer abundance while the community composition remained relatively stable for both AOB and AOA.

  20. Monnte Carlo Simulation of Kinetics of Ammonia Oxidative Decomposition over the Commercial Propylene Ammoxidation Catalyst(Mo-Bi)

    Institute of Scientific and Technical Information of China (English)

    罗正鸿; 詹晓力; 等

    2003-01-01

    Monte Carlo method is applied to investigate the kinetics of ammonia oxidative decomposition over the commercial propylene ammoxidation catalyst(Mo-Bi).The simulation is quite in agreement with experimetal results.Monte Carlo simulation proves that the process of ammonia oxidation decomposition is a two-step reaction.

  1. Emergence of Competitive Dominant Ammonia-Oxidizing Bacterial Populations in a Full-Scale Industrial Wastewater Treatment Plant

    OpenAIRE

    Layton, Alice C.; Dionisi, Hebe; Kuo, H.-W.; Robinson, Kevin G.; Garrett, Victoria M.; Meyers, Arthur; Sayler, Gary S.

    2005-01-01

    Ammonia-oxidizing bacterial populations in an industrial wastewater treatment plant were investigated with amoA and 16S rRNA gene real-time PCR assays. Nitrosomonas nitrosa initially dominated, but over time RI-27-type ammonia oxidizers, also within the Nitrosomonas communis lineage, increased from below detection to codominance. This shift occurred even though nitrification remained constant.

  2. Competitive interactions between methane- and ammonia-oxidizing bacteria modulate carbon and nitrogen cycling in paddy soil

    NARCIS (Netherlands)

    Zheng, Yan; Huang, Rong; Wang, B.; Bodelier, P.L.E.; Jia, Z.

    2014-01-01

    Pure culture studies have demonstrated that methanotrophs and ammonia oxidizers can both carry out the oxidation of methane and ammonia. However, the expected interactions resulting from these similarities are poorly understood, especially in complex, natural environments. Using DNA-based stable iso

  3. Treating leachate mixture with anaerobic ammonium oxidation technology

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hong-guo; ZHOU Shao-qi

    2006-01-01

    Large amounts of ammonium and a low content of biodegradable chemical oxygen demand(COD) are contained in leachate from aged landfills, together with the effluent containing high concentration of nitric nitrogen after biochemical treatment.Treatment effect of anaerobic ammonium oxidation (anammox) process on the mixture of the leachate and its biochemical effluent was investigated. The results show that the average removal efficiencies of ammonium, nitric nitrogen and total nitrogen are 87.51%,74.95% and 79.59%, respectively, corresponding to the average ratio of removed nitric nitrogen to ammonium, i.e. 1.14 during the steady phase of anammox activity. The mean removal efficiency of COD is only 24.01% during the experimental period. The demand of total phosphorous for the anammox process is unobvious. Especially, the alkalinity and pH value of the effluent are close to those of the influent during the steady phase of anammox activity. In addition, it is demonstrated that the status of the anammox bioreactor can be indicated by the alkalinity and pH value during the course of the experiment. The anammox bioreactor has shown potential for nitrogen removal in the leachate mixture. However, COD and total phosphorous in the leachate mixture need further treatment for removal efficiencies of COD and total phosphorous are not good in the anammox bioreactor.

  4. Anaerobic ferrous oxidation by heterotrophic denitrifying enriched culture.

    Science.gov (United States)

    Wang, Ru; Zheng, Ping; Xing, Ya-Juan; Zhang, Meng; Ghulam, Abbas; Zhao, Zhi-Qing; Li, Wei; Wang, Lan

    2014-05-01

    Heterotrophic denitrifying enriched culture (DEC) from a lab-scale high-rate denitrifying reactor was discovered to perform nitrate-dependent anaerobic ferrous oxidation (NAFO). The DEC was systematically investigated to reveal their denitrification activity, their NAFO activity, and the predominant microbial population. The DEC was capable of heterotrophic denitrification with methanol as the electron donor, and autotrophic denitrification with ferrous salt as the electron donor named NAFO. The conversion ratios of ferrous-Fe and nitrate-N were 87.41 and 98.74 %, and the consumption Fe/N ratio was 2.3:1 (mol/mol). The maximum reaction velocity and half saturation constant of Fe were 412.54 mg/(l h) and 8,276.44 mg/l, and the counterparts of N were 20.87 mg/(l h) and 322.58 mg/l, respectively. The predominant bacteria were Hyphomicrobium, Thauera, and Flavobacterium, and the predominant archaea were Methanomethylovorans, Methanohalophilus, and Methanolobus. The discovery of NAFO by heterotrophic DEC is significant for the development of wastewater treatment and the biogeochemical iron cycle and nitrogen cycle. PMID:24619339

  5. Indium oxide thin film based ammonia gas and ethanol vapour sensor

    Indian Academy of Sciences (India)

    K K Makhija; Arabinda Ray; R M Patel; U B Trivedi; H N Kapse

    2005-02-01

    A sensor for ammonia gas and ethanol vapour has been fabricated using indium oxide thin film as sensing layer and indium tin oxide thin film encapsulated in poly(methyl methacrylate) (PMMA) as a miniature heater. For the fabrication of miniature heater indium tin oxide thin film was grown on special high temperature corning glass substrate by flash evaporation method. Gold was deposited on the film using thermal evaporation technique under high vacuum. The film was then annealed at 700 K for an hour. The thermocouple attached on sensing surface measures the appropriate operating temperature. The thin film gas sensor for ammonia was operated at different concentrations in the temperature range 323–493 K. At 473 K the sensitivity of the sensor was found to be saturate. The detrimental effect of humidity on ammonia sensing is removed by intermittent periodic heating of the sensor at the two temperatures 323K and 448 K, respectively. The indium oxide ethanol vapour sensor operated at fixed concentration of 400 ppm in the temperature range 293–393 K. Above 373 K, the sensor conductance was found to be saturate. With various thicknesses from 150–300 nm of indium oxide sensor there was no variation in the sensitivity measurements of ethanol vapour. The block diagram of circuits for detecting the ammonia gas and ethanol vapour has been included in this paper.

  6. Nitrification resilience and community dynamics of ammonia-oxidizing bacteria with respect to ammonia loading shock in a nitrification reactor treating steel wastewater.

    Science.gov (United States)

    Cho, Kyungjin; Shin, Seung Gu; Lee, Joonyeob; Koo, Taewoan; Kim, Woong; Hwang, Seokhwan

    2016-08-01

    The aim of this study was to investigate the nitrification resilience pattern and examine the key ammonia-oxidizing bacteria (AOB) with respect to ammonia loading shocks (ALSs) in a nitrification bioreactor treating steel wastewater. The perturbation experiments were conducted in a 4-L bioreactor operated in continuous mode with a hydraulic retention time of 10 d. Three sequential ALSs were given to the bioreactor (120, 180 and 180 mg total ammonia nitrogen (TAN)/L. When the first shock was given, the nitrification process completely recovered after 14 d of further operation. However, the resilience duration was significantly reduced to ∼1 d after the second and third ALSs. In the bioreactor, Nitrosomonas aestuarii dominated the other AOB species, Nitrosomonas europaea and N. nitrosa, throughout the process. In addition, the population of N. aestuarii increased with ammonia utilization following each ALS; i.e., this species responded to acute ammonia overloadings by contributing to ammonia oxidation. This finding suggests that N. aestuarii could be exploited to achieve stable nitrification in industrial wastewaters that contain high concentrations of ammonia. PMID:26896313

  7. Moisture and temperature controls on nitrification differ among ammonia oxidizer communities from three alpine soil habitats

    Science.gov (United States)

    Osborne, Brooke B.; Baron, Jill S.; Wallenstein, Matthew D.

    2016-03-01

    Climate change is altering the timing and magnitude of biogeochemical fluxes in many highelevation ecosystems. The consequent changes in alpine nitrification rates have the potential to influence ecosystem scale responses. In order to better understand how changing temperature and moisture conditions may influence ammonia oxidizers and nitrification activity, we conducted laboratory incubations on soils collected in a Colorado watershed from three alpine habitats (glacial outwash, talus, and meadow). We found that bacteria, not archaea, dominated all ammonia oxidizer communities. Nitrification increased with moisture in all soils and under all temperature treatments. However, temperature was not correlated with nitrification rates in all soils. Site-specific temperature trends suggest the development of generalist ammonia oxidzer communities in soils with greater in situ temperature fluctuations and specialists in soils with more steady temperature regimes. Rapidly increasing temperatures and changing soil moisture conditions could explain recent observations of increased nitrate production in some alpine soils.

  8. The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations.

    OpenAIRE

    Rotthauwe, J H; K. P. WITZEL; Liesack, W.

    1997-01-01

    The naturally occurring genetic heterogeneity of autotrophic ammonia-oxidizing populations belonging to the beta subclass of the Proteobacteria was studied by using a newly developed PCR-based assay targeting a partial stretch of the gene which encodes the active-site polypeptide of ammonia monooxygenase (amoA). The PCR yielded a specific 491-bp fragment with all of the nitrifiers tested, but not with the homologous stretch of the particulate methane monooxygenase, a key enzyme of methane-oxi...

  9. Enrichment and Characterization of an Autotrophic Ammonia-Oxidizing Archaeon of Mesophilic Crenarchaeal Group I.1a from an Agricultural Soil

    NARCIS (Netherlands)

    Jung, M.Y.; Park, S.J.; Min, D.; Kim, J.S.; Rijpstra, W.I.C.; Sinninghe Damsté, J.S.; Kim, G.J.; Madsen, E.L.; Rhee, S.K.

    2011-01-01

    Soil nitrification is an important process for agricultural productivity and environmental pollution. Though one cultivated representative of ammonia-oxidizing Archaea from soil has been described, additional representatives warrant characterization. We describe an ammonia-oxidizing archaeon (strain

  10. Iron oxide reduction in deep Baltic Sea sediments: the potential role of anaerobic oxidation of methane

    Science.gov (United States)

    Egger, Matthias; Slomp, Caroline P.; Dijkstra, Nikki; Sapart, Célia J.; Risgaard-Petersen, Nils; Kasten, Sabine; Riedinger, Natascha; Barker Jørgensen, Bo

    2015-04-01

    Methane is a powerful greenhouse gas and its emission from marine sediments to the atmosphere is largely controlled by anaerobic oxidation of methane (AOM). Traditionally, sulfate is considered to be the most important electron acceptor for AOM in marine sediments. However, recent studies have shown that AOM may also be coupled to the reduction of iron (Fe) oxides (Beal et al., 2009; Riedinger et al., 2014; Egger et al., 2014). In the Baltic Sea, the transition from the Ancylus freshwater phase to the Littorina brackish/marine phase (A/L-transition) ca. 9-7 ka ago (Zillén et al., 2008) resulted in the accumulation of methanogenic brackish/marine sediments overlying Fe-oxide rich lacustrine deposits. The downward diffusion of methane from the brackish/marine sediments into the lake sediments leads to an ideal diagenetic system to study a potential coupling between Fe oxide reduction and methane oxidation. Here, we use porewater and sediment geochemical data obtained at sites M0063 and M0065 during the IODP Baltic Sea Paleoenvironment Expedition 347 in 2013 to identify the potential mechanisms responsible for the apparent Fe oxide reduction in the non-sulfidic limnic sediments below the A/L transition. In this presentation, we will review the various explanations for the elevated ferrous Fe in the porewater in the lake sediments and we will specifically address the potential role of the reaction of methane with Fe-oxides. References: Beal E. J., House C. H. and Orphan V. J. (2009) Manganese- and iron-dependent marine methane oxidation. Science 325, 184-187. Egger M., Rasigraf O., Sapart C. J., Jilbert T., Jetten M. S. M., Röckmann T., van der Veen C., Banda N., Kartal B., Ettwig K. F. and Slomp C. P. (2014) Iron-mediated anaerobic oxidation of methane in brackish coastal sediments. Environ. Sci. Technol. 49, 277-283. Riedinger N., Formolo M. J., Lyons T. W., Henkel S., Beck A. and Kasten S. (2014) An inorganic geochemical argument for coupled anaerobic oxidation of

  11. CATALYTIC REDUCTION OF NITROGEN OXIDES WITH AMMONIA: UTILITY PILOT PLANT OPERATION

    Science.gov (United States)

    The report describes work to demonstrate, on a utility pilot plant scale, the performance, reliability, and practicability of reducing nitrogen oxides (NOx) emissions from steam boilers by reduction of NOx with ammonia over a platinum catalyst. A utility pilot plant treating a sl...

  12. Species, Abundance and Function of Ammonia-oxidizing Archaea in Inland Waters across China

    Science.gov (United States)

    Zhou, Leiliu; Wang, Shanyun; Zou, Yuxuan; Xia, Chao; Zhu, Guibing

    2015-11-01

    Ammonia oxidation is the first step in nitrification and was thought to be performed solely by specialized bacteria. The discovery of ammonia-oxidizing archaea (AOA) changed this view. We examined the large scale and spatio-temporal occurrence, abundance and role of AOA throughout Chinese inland waters (n = 28). Molecular survey showed that AOA was ubiquitous in inland waters. The existence of AOA in extreme acidic, alkaline, hot, cold, eutrophic and oligotrophic environments expanded the tolerance limits of AOA, especially their known temperature tolerance to -25 °C, and substrate load to 42.04 mM. There were spatio-temporal divergences of AOA community structure in inland waters, and the diversity of AOA in inland water ecosystems was high with 34 observed species-level operational taxonomic units (OTUs; based on a 15% cutoff) distributed widely in group I.1b, I.1a, and I.1a-associated. The abundance of AOA was quite high (8.5 × 104 to 8.5 × 109 copies g-1), and AOA outnumbered ammonia-oxidizing bacteria (AOB) in the inland waters where little human activities were involved. On the whole AOB predominate the ammonia oxidation rate over AOA in inland water ecosystems, and AOA play an indispensable role in global nitrogen cycle considering that AOA occupy a broader habitat range than AOB, especially in extreme environments.

  13. Adsorption of ammonia on vanadium-antimony mixed oxides

    Energy Technology Data Exchange (ETDEWEB)

    Seitz, Hernan; German, Estefania [Departamento e Instituto de Fisica del Sur, Universidad Nacional del Sur-CONICET, Avda. Alem 1253, (8000) Bahia Blanca (Argentina); Juan, Alfredo, E-mail: cajuan@uns.edu.ar [Departamento e Instituto de Fisica del Sur, Universidad Nacional del Sur-CONICET, Avda. Alem 1253, (8000) Bahia Blanca (Argentina); Irigoyen, Beatriz [Departamento de Ingenieria Quimica, Facultad de Ingenieria, Universidad de Buenos Aires, Pabellon de Industrias, Ciudad Universitaria, (1428) Ciudad Autonoma de Buenos Aires (Argentina)

    2012-02-01

    We analyzed the adsorption of ammonia (NH{sub 3}) on the VSbO{sub 4}(1 1 0) catalyst surface using density functional theory (DFT) calculations. We followed the evolution of the chemical bonds between different atoms of the resulting NH{sub 3}/VSbO{sub 4} system and the changes in the electronic structure of the catalyst. NH{sub 3} preferential adsorption geometries were analyzed through the crystal orbital overlap population (COOP) concept and the density of states (DOS) curves. The VSbO{sub 4}(1 1 0) surface exhibits Lewis and Bronsted acid sites on which the ammonia molecule can interact. On the Lewis acid site, NH{sub 3} adsorption resulted in the interaction between the N and a surface V-isolated cation. On Bronsted acid site, N interacted with a surface H coming from the chemical dissociation of water. The COOP analysis indicate that NH{sub 3} interaction on the VSbO{sub 4}(1 1 0) surface is weak. In addition, the DOS curves show more developed electronic interactions for NH{sub 3} adsorption on Lewis acid site than over Bronsted acid site.

  14. Application of a Chemiluminescence Detector for the Measurement of Total Oxides of Nitrogen and Ammonia in the Atmosphere

    Science.gov (United States)

    Hodgeson, J. A.; Bell, J. P.; Rehme, K. A.; Krost, K. J.; Stevens, R. K.

    1971-01-01

    By means of the thermal conversion of nitrogen dioxide to the nitric oxide, the chemiluminescent nitric oxide monitor, based on the nitric oxide plus ozone reaction, may be used for monitoring nitrogen dioxide plus nitric oxide (NO(x)). Under conditions previously described, ammonia is also converted to nitric oxide and therefore interferes. A metal surface, gold wool or stainless steel, operated at two different temperatures has been used to convert only nitrogen dioxide or nitrogen dioxide plus ammonia. Quantitative conversion of nitrogen dioxide to nitric oxide has been obtained at temperatures as low as 200 C. Conversion of ammonia is effected at temperatures of 300 C or higher. By the addition of a converter the basic nitric oxide monitor may be used for measuring NO(x) or NO(x) plus ammonia. As an alternate mode, for a fixed high temperature, a specific scrubber is described for removing NH3 without affecting NO2 concentrations.

  15. Occurrence of Anaerobic Ammonium Oxidation in the Yangtze Estuary

    Science.gov (United States)

    Hou, L.

    2013-12-01

    Over the past several decades, a large quantity of reactive nitrogen has been transported into the Yangtze estuarine and coastal water, due to intense human activities in the Yangtze River Basin. At present, it annually receives a high load of anthropogenic inorganic nitrogen (about 1.1 × 1011 mol N) from increased agricultural activities, fish farming, and domestic and industrial wastewater discharge in the Yangtze River Basin, consequently leading to severe eutrophication and frequent occurrences of harmful algal blooms in the estuary and adjacent coastal areas. Hence, the microbial nitrogen transformations are of major concern in the Yangtze Estuary. Anaerobic ammonium oxidation (anammox) has been reported to play a significant role in the removal of reactive nitrogen in aquatic ecosystems. In this study, the occurrences of anammox bacteria and associated activity in the Yangtze Estuary were evidenced with molecular and isotope-tracing techniques. It is observed that the anammox bacteria at the study area mainly consisted of Candidatus Scalindua, Brocadia, Kuenenia. Salinity was found to be a key environmental factor controlling distribution and diversity of the anammox bacterial community at the estuarine ecosystem. Also, temperature and organic carbon had significant influences on anammox bacterial biodiversity. Q-PCR assays of anammox bacteria indicated that their abundance had a range of 2.63 ×106 - 9.48 ×107 copies g-1 dry sediment, with high spatiotemporal heterogeneity. The potential anammox activities measured in the present work varied between 0.94 - 6.61nmol N g-1 dry sediment h-1, which were related to temperature, nitrite and anammox bacterial abundance. On the basis of the 15N tracing experiments, the anammox process was estimated to contribute 6.6 - 12.9 % to the total nitrogen loss whereas the remainder was attributed to denitrification.

  16. Abundance and Community Composition of Ammonia-Oxidizers in Paddy Soil at Different Nitrogen Fertilizer Rates

    Institute of Scientific and Technical Information of China (English)

    SONG Ya-na; LIN Zhi-min

    2014-01-01

    Ammonia oxidation, the ifrst and rate-limiting step of nitriifcation, is carried out by both ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA). However, the relative importance of AOB and AOA to nitriifcation in terrestrial ecosystems is not well understood. The aim of this study was to investigate the effect of the nitrogen input amount on abundance and community composition of AOB and AOA in red paddy soil. Soil samples of 10-20 cm (root layer soil) and 0-5 cm (surface soil) depths were taken from a red paddy. Rice in the paddy was fertilized with different rates of N as urea of N1 (75 kg N ha-1 yr-1), N2 (150 kg N ha-1 yr-1), N3 (225 kg N ha-1 yr-1) and CK (without fertilizers) in 2009, 2010 and 2011. Abundance and community composition of ammonia oxidizers was analyzed by real-time PCR and denaturing gradient gel electrophoresis (DGGE) based on amoA (the unit A of ammonia monooxygenase) gene. Archaeal amoA copies in N3 and N2 were signiifcantly (P<0.05) higher than those in CK and N1 in root layer soil or in surface soil under tillering and heading stages of rice, while the enhancement in bacterial amoA gene copies with increasing of N fertilizer rates only took on in root layer soil. N availability and soil NO3--N content increased but soil NH4+-N content didn’t change with increasing of N fertilizer rates. Otherwise, the copy numbers of archaeal amoA gene were higher (P<0.05) than those of bacterial amoA gene in root lary soil or in surface soil. Redundancy discriminate analysis based on DGGE bands showed that there were no obvious differs in composition of AOA or AOB communities in the ifeld among different N fertilizer rates. Results of this study suggested that the abundance of ammonia-oxidizers had active response to N fertilizer rates and the response of AOA was more obvious than that of AOB. Similarity in the community composition of AOA or AOB among different N fertilizer rates indicate that the community composition of ammonia-oxidizers

  17. Ammonia-Oxidizing β-Proteobacteria from the Oxygen Minimum Zone off Northern Chile▿

    OpenAIRE

    Molina, Verónica; Ulloa, Osvaldo; Farías, Laura; Urrutia, Homero; Ramírez, Salvador; Junier, Pilar; Witzel, Karl-Paul

    2007-01-01

    The composition of ammonia-oxidizing bacteria from the β-Proteobacteria subclass (βAOB) was studied in the surface and upper-oxycline oxic waters (2- to 50-m depth, ∼200 to 44 μM O2) and within the oxygen minimum zone (OMZ) suboxic waters (50- to 400-m depth, ≤10 μM O2) of the eastern South Pacific off northern Chile. This study was carried out through cloning and sequencing of genes coding for 16S rRNA and the ammonia monooxygenase enzyme active subunit (amoA). Sequences affiliated with Nitr...

  18. A robust and cost-effective integrated process for nitrogen and bio-refractory organics removal from landfill leachate via short-cut nitrification, anaerobic ammonium oxidation in tandem with electrochemical oxidation.

    Science.gov (United States)

    Wu, Li-Na; Liang, Da-Wei; Xu, Ying-Ying; Liu, Ting; Peng, Yong-Zhen; Zhang, Jie

    2016-07-01

    A cost-effective process, consisting of a denitrifying upflow anaerobic sludge blanket (UASB), an oxygen-limited anoxic/aerobic (A/O) process for short-cut nitrification, and an anaerobic reactor (ANR) for anaerobic ammonia oxidation (anammox), followed by an electrochemical oxidation process with a Ti-based SnO2-Sb2O5 anode, was developed to remove organics and nitrogen in a sewage diluted leachate. The final chemical oxygen demand (COD), ammonia nitrogen (NH4(+)-N) and total nitrogen (TN) of 70, 11.3 and 39 (all in mg/L), respectively, were obtained. TN removal in UASB, A/O and ANR were 24.6%, 49.6% and 16.1%, respectively. According to the water quality and molecular biology analysis, a high degree of anammox besides short-cut nitrification and denitrification occurred in A/O. Counting for 16.1% of TN removal in ANR, at least 43.2-49% of TN was removed via anammox. The anammox bacteria in A/O and ANR, were in respective titers of (2.5-5.9)×10(9) and 2.01×10(10)copy numbers/(gSS). PMID:27115616

  19. Enhanced recovery of ammonia from swine manure anaerobic digester effluent using gas-permeable membranes and aeration

    Science.gov (United States)

    Atmospheric ammonia pollution from livestock wastes can be reduced using gas-permeable membrane technology by converting ammonia contained in the manure into ammonium salt for use in fertilizers. In this study, gas-permeable membrane technology was enhanced using aeration combined with nitrificatio...

  20. CFD modelling of flow mal-distribution in an industrial ammonia oxidation reactor: A case study

    International Nuclear Information System (INIS)

    Ammonia oxidation reactor is widely used in nitric acid plant to cause the catalytic reaction between air and ammonia to produce nitrous gases. In this work, the flow distribution inside the ammonia oxidation reactor at Shiraz Petrochemical Complex (SPC) has been simulated using Computational Fluid Dynamics (CFD) code. The CFD results showed that the flow is non-uniformly distributed inside the reactor due to improper header design of the reactor. Measuring of the temperature distribution around the skin of the reactor has been carried out using thermograph. The thermograph experiment showed a considerable temperature difference between the left and right side of the reactor. It was found that the mal-distribution of the gas flow inside the reactor can directly affect the performance of the reactor. - Highlights: •A failure has been observed in an industrial ammonia oxidation reactor. •CFD code helps to simulate the flow inside the reactor. •The flow becomes non-uniformly distributed due to the reactor header mal-design. •The flow mal-distribution results in some drawbacks

  1. Nitrogen removal by autotrophic ammonium oxidizing bacteria enrichment under anaerobic conditions

    Directory of Open Access Journals (Sweden)

    Pongsak (Lek Noophan

    2008-07-01

    Full Text Available Sludge from an anoxic tank at the centralized wastewater treatment plant, Nong Khaem, Bangkok, Thailand, was inoculatedin an anaerobic sequencing batch reactor (ASBR. The optimal compositions and operating conditions of the stock of autotrophic ammonium oxidizing bacteria medium were determined. The process of oxidizing ammonium with bacteria under anaerobic conditions is often referred to as the Anammox process (NO2- to N2 gas, using NH4+ as the electron donor and NO2- as the electron acceptor. The startup period for the anammox culture took more than three months. With ammoniumand nitrite concentration ratios of 1:1.38 and 1:1.6, the nitrogen conversion rate zero order. Fluorescent in situ hybridization(FISH was used to identify specific autotrophic ammonium oxidizing bacteria (Nitrosomonas spp., Candidatus Brocadia anammoxidans, and Candidatus Kuenenia stuttgartiensis. Results from this work demonstrated a shift in the species of ammonium oxidizing bacteria from Nitrosomonas spp. to Candidati Brocadia anammoxidans and Kuenenia stuttgartiensis, with increased ammonium concentrations from 3 mM to 15 mM. Under NH4+:NO2- ratios of 1:1.38 and 1:1.6 the ammoniumoxidizing bacteria were able to remove both ammonium and nitrite simultaneously. The specific nitrogen removal rate of theanammox bacteria (Candidati Brocadia anammoxidans and Kuenenia stuttgartiensis was significantly higher than that of anaerobic ammonium oxidizing bacteria (Nitrosomonas spp.. Anaerobic ammonium oxidizing bacteria (Candidati Brocadia anammoxidans and Kuenenia stuttgartiensis are strict anaerobes.

  2. Biogeochemical controls and isotopic signatures of nitrous oxide production by a marine ammonia-oxidizing bacterium

    Science.gov (United States)

    Frame, C. H.; Casciotti, K. L.

    2010-09-01

    Nitrous oxide (N2O) is a trace gas that contributes to the greenhouse effect and stratospheric ozone depletion. The N2O yield from nitrification (moles N2O-N produced per mole ammonium-N consumed) has been used to estimate marine N2O production rates from measured nitrification rates and global estimates of oceanic export production. However, the N2O yield from nitrification is not constant. Previous culture-based measurements indicate that N2O yield increases as oxygen (O2) concentration decreases and as nitrite (NO2-) concentration increases. Here, we have measured yields of N2O from cultures of the marine β-proteobacterium Nitrosomonas marina C-113a as they grew on low-ammonium (50 μM) media. These yields, which were typically between 4 × 10-4 and 7 × 10-4 for cultures with cell densities between 2 × 102 and 2.1 × 104 cells ml-1, were lower than previous reports for ammonia-oxidizing bacteria. The observed impact of O2 concentration on yield was also smaller than previously reported under all conditions except at high starting cell densities (1.5 × 106 cells ml-1), where 160-fold higher yields were observed at 0.5% O2 (5.1 μM dissolved O2) compared with 20% O2 (203 μM dissolved O2). At lower cell densities (2 × 102 and 2.1 × 104 cells ml-1), cultures grown under 0.5% O2 had yields that were only 1.25- to 1.73-fold higher than cultures grown under 20% O2. Thus, previously reported many-fold increases in N2O yield with dropping O2 could be reproduced only at cell densities that far exceeded those of ammonia oxidizers in the ocean. The presence of excess NO2- (up to 1 mM) in the growth medium also increased N2O yields by an average of 70% to 87% depending on O2 concentration. We made stable isotopic measurements on N2O from these cultures to identify the biochemical mechanisms behind variations in N2O yield. Based on measurements of δ15Nbulk, site preference (SP = δ15Nα-δ15Nβ), and δ18O of N2O (δ18O-N2O), we estimate that nitrifier

  3. Struvite Precipitation as a Means of Recovering Nutrients and Mitigating Ammonia Toxicity in a Two-Stage Anaerobic Digester Treating Protein-Rich Feedstocks

    Directory of Open Access Journals (Sweden)

    Shunli Wang

    2016-08-01

    Full Text Available Accumulation of ammonia, measured as total ammonia nitrogen (TAN, a product of protein decomposition in slaughterhouse wastes, inhibits the anaerobic digestion process, reducing digester productivity and leading to failure. Struvite precipitation (SP is an effective means to remove TAN and enhance the buffering of substrates. Different Mg and P sources were evaluated as reactants in SP in acidogenic digester effluents to reduce its TAN levels. In order to measure impact of TAN removal, a standard biochemical methane potential (BMP test was conducted to measure methane yield from treatments that had the highest TAN reductions. SP results showed 6 of 9 reagent combinations resulted in greater than 70% TAN removal. The BMP results indicated that SP treatment by adding Mg(OH2 and H3PO4 resulted in 57.6% nitrogen recovery and 41.7% increase in methane yield relative to the substrate without SP. SP is an effective technology to improve nutrient recovery and methane production from the anaerobic digestion of protein-rich feedstocks.

  4. Improving anaerobic digestion of pig manure by adding in the same reactor a stabilizing agent formulated with low-grade magnesium oxide

    International Nuclear Information System (INIS)

    Struvite precipitation and pig manure anaerobic digestion were coupled in the same reactor in order to mitigate the inhibitory effect of free ammonia and avoid precipitator costs. The stabilizing agent used to facilitate struvite precipitation was formulated with low-grade magnesium oxide by-product; an approach that would notably reduce struvite processing costs. The interaction between pig manure and stabilizing agent was analyzed in batch experiments, on a wide range of stabilizing agent additions from 5 to 100 kg m−3. The monitoring of the pH and ammonia removal during 24 h showed the high capacity of the stabilizing agent to remove ammonia; removal efficiencies above 80% were obtained from 40 kg m−3. However, a long-term anaerobic digester operation was required to assess the feasibility of the process and to ensure that the stabilizing agent does not introduce any harmful compound for the anaerobic biomass. In this vein, the addition of 5 and 30 kg m−3 of the stabilizing agent in a pig manure continuous digester resulted in a 25% (0.17 m3 kg−1) and a 40% (0.19 m3 kg−1) increase in methane production per mass of volatile solid, respectively, when compared with the reference digester (0.13 m3 kg−1). Moreover, the stability of the process during four hydraulic retention times guarantees that the stabilizing agent did not exert a negative effect on the consortium of microorganisms. Finally, scanning electron microscopy and X-ray diffraction analysis confirmed the presence of struvite as well as two precipitation mechanisms, struvite precipitation on the stabilizing agent surface and in the bulk solution. - Highlights: • Anaerobic digestion and struvite precipitation were satisfactorily coupled. • The stabilizing agent showed high ammonia removals efficiencies. • The stabilizing agent improved the methane production of a pig manure digester. • The stabilizing agent does not introduce harmful compound for the anaerobic biomass.

  5. Iron-mediated anaerobic oxidation of methane in brackish coastal sediments

    OpenAIRE

    Egger, Matthias; Rasigraf, Olivia; Sapart, Célia J.; Jilbert, Tom; Mike S.M. Jetten; Röckmann, Thomas; van der Veen, Carina; Bândă, Narcisa; Kartal, Boran; Ettwig, Katharina F.; Slomp, Caroline P.

    2015-01-01

    Methane is a powerful greenhouse gas and its biological conversion in marine sediments, largely controlled by anaerobic oxidation of methane (AOM), is a crucial part of the global carbon cycle. However, little is known about the role of iron oxides as an oxidant for AOM. Here we provide the first field evidence for iron-dependent AOM in brackish coastal surface sediments and show that methane produced in Bothnian Sea sediments is oxidized in distinct zones of iron- and sulfate-dependent AOM. ...

  6. Anaerobic oxidation of methane in grassland soils used for cattle husbandry

    Directory of Open Access Journals (Sweden)

    A. Bannert

    2012-10-01

    Full Text Available While the importance of anaerobic methane oxidation has been reported for marine ecosystems, the role of this process in soils is still questionable. Grasslands used as pastures for cattle overwintering show an increase in anaerobic soil micro-sites caused by animal treading and excrement deposition. Therefore, anaerobic potential methane oxidation activity of severely impacted soil from a cattle winter pasture was investigated in an incubation experiment under anaerobic conditions using 13C-labelled methane. We were able to detect a high microbial activity utilizing CH4 as nutrient source shown by the respiration of 13CO2. Measurements of possible terminal electron acceptors for anaerobic oxidation of methane were carried out. Soil sulfate concentrations were too low to explain the oxidation of the amount of methane added, but enough nitrate and iron(III were detected. However, only nitrate was consumed during the experiment. 13C-PLFA analyses clearly showed the utilization of CH4 as nutrient source mainly by organisms harbouring 16:1ω7 PLFAs. These lipids were also found as most 13C-enriched fatty acids by Raghoebarsing et al. (2006 after addition of 13CH4 to an enrichment culture coupling denitrification of nitrate to anaerobic oxidation of methane. This might be an indication for anaerobic oxidation of methane by relatives of "Candidatus Methylomirabilis oxyfera" in the investigated grassland soil under the conditions of the incubation experiment.

  7. Characterization of FeCo based catalyst for ammonia decomposition. The effect of potassium oxide

    Directory of Open Access Journals (Sweden)

    Lendzion-Bieluń Zofia

    2014-12-01

    Full Text Available FeCo fused catalyst was obtained by fusing iron and cobalt oxides with an addition of calcium, aluminium, and potassium oxides (CaO, Al2O3, K2O. An additional amount of potassium oxide was inserted by wet impregnation. Chemical composition of the prepared catalysts was determined with an aid of the XRF method. On the basis of XRD analysis it was found that cobalt was built into the structure of magnetite and solid solution of CoFe2O4 was formed. An increase in potassium content develops surface area of the reduced form of the catalyst, number of adsorption sites for hydrogen, and the ammonia decomposition rate. The nitriding process of the catalyst slows down the ammonia decomposition.

  8. Enhanced and selective ammonia sensing of reduced graphene oxide based chemo resistive sensor at room temperature

    Science.gov (United States)

    Kumar, Ramesh; Kaur, Amarjeet

    2016-05-01

    The reduced graphene oxide thin films were fabricated by using the spin coating method. The reduced graphene oxide samples were characterised by Raman studies to obtain corresponding D and G bands at 1360 and 1590 cm-1 respectively. Fourier transform infra-red (FTIR) spectra consists of peak corresponds to sp2 hybridisation of carbon atoms at 1560 cm-1. The reduced graphene oxide based chemoresistive sensor exhibited a p-type semiconductor behaviour in ambient conditions and showed good sensitivity to different concentration of ammonia from 25 ppm to 500 ppm and excellent selectivity at room temperature. The sensor displays selectivity to several hazardous vapours such as methanol, ethanol, acetone and hydrazine hydrate. The sensor demonstrated a sensitivity of 9.8 at 25 ppm concentration of ammonia with response time of 163 seconds.

  9. Diversity and enrichment of nitrite-dependent anaerobic methane oxidizing bacteria from wastewater sludge

    OpenAIRE

    Luesken, Francisca A.; van Alen, Theo A.; van der Biezen, Erwin; Frijters, Carla; Toonen, Ger; Kampman, Christel; Hendrickx, Tim L. G.; Zeeman, Grietje; Temmink, Hardy; Strous, Marc; Op den Camp, Huub J. M.; Jetten, Mike S. M.

    2011-01-01

    Recently discovered microorganisms affiliated to the bacterial phylum NC10, named “Candidatus Methylomirabilis oxyfera”, perform nitrite-dependent anaerobic methane oxidation. These microorganisms could be important players in a novel way of anaerobic wastewater treatment where ammonium and residual dissolved methane might be removed at the expense of nitrate or nitrite. To find suitable inocula for reactor startup, ten selected wastewater treatment plants (WWTPs) located in The Netherlands w...

  10. Inactivation of ANAMMOX communities under concurrent operation of anaerobic ammonium oxidation (ANAMMOX) and denitrification

    DEFF Research Database (Denmark)

    Chamchoi, N.; Nitisoravut, S.; Schmidt, Jens Ejbye

    2008-01-01

    A concurrent operation of anaerobic ammonium oxidation (ANAMMOX) and denitrification was investigated in a well known UASB reactor seeding with both ANAMMOX and anaerobic granular sludges. ANAMMOX activity was confirmed by hydroxylamine test and the hybridization of biomass using the gene probes of......–nitrate concentrations in all reactors confirmed the undergone concurrent denitrification which thrives when sufficient organic matter is available. COD concentration over 300 mg l−1 was found to inactivate or eradicate ANAMMOX communities....

  11. Screening of electrocatalysts for direct ammonia fuel cell: Ammonia oxidation on PtMe (Me: Ir, Rh, Pd, Ru) and preferentially oriented Pt(1 0 0) nanoparticles

    Science.gov (United States)

    Vidal-Iglesias, F. J.; Solla-Gullón, J.; Montiel, V.; Feliu, J. M.; Aldaz, A.

    Ammonia has attracted attention as a possible fuel for direct fuel cells since it is easy to handle and to transport as liquid or as concentrated aqueous solution. However, on noble metal electrodes ammonia oxidation is a sluggish reaction and the electrocatalyst needs to be improved for developing efficient ammonia fuel cells. In this work, ammonia electrooxidation reaction on 3-4-nm bimetallic PtMe (Ir, Rh, Pd, Ru) and on preferentially oriented Pt(1 0 0) nanoparticles is reported. PtMe nanoparticles have been prepared by using water-in-oil microemulsions to obtain a narrow size distribution whereas preferentially oriented Pt nanoparticles have been prepared through colloidal routes. Among all the bimetallic samples tested, only Pt 75Ir 25 and Pt 75Rh 25 nanoparticles show, at the low potential range, an enhancement of the oxidation density current with respect to the behaviour found for pure platinum nanoparticles prepared by the same method. In addition, two Pt(1 0 0) preferentially oriented nanoparticles of different particle size (4 and 9 nm) have been also studied. These oriented nanoparticles show higher current densities than polycrystalline Pt nanoparticles due to the sensitivity of ammonia oxidation toward the presence of surface sites with square symmetry. The reactivity of the different 4-nm nanoparticles parallels well with that expected from bulk PtMe alloys and Pt single crystal electrodes.

  12. Environmental and Taxonomic Bacterial Diversity of Anaerobic Uranium(IV) Bio-Oxidation ▿ †

    OpenAIRE

    Weber, Karrie A.; Thrash, J. Cameron; Van Trump, J. Ian; Achenbach, Laurie A.; Coates, John D.

    2011-01-01

    Microorganisms in diverse terrestrial surface and subsurface environments can anaerobically catalyze the oxidative dissolution of uraninite. While a limited quantity (∼5 to 12 μmol liter−1) of uranium is oxidatively dissolved in pure culture studies, the metabolism is coupled to electron transport, providing the potential of uraninite to support indigenous microbial populations and to solubilize uranium.

  13. amoA Gene Abundances and Nitrification Potential Rates Suggest that Benthic Ammonia-Oxidizing Bacteria and Not Archaea Dominate N Cycling in the Colne Estuary, United Kingdom

    OpenAIRE

    Li, Jialin; Nedwell, David B.; Beddow, Jessica; Alex J Dumbrell; McKew, Boyd A; Thorpe, Emma L.; Whitby, Corinne

    2014-01-01

    Nitrification, mediated by ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA), is important in global nitrogen cycling. In estuaries where gradients of salinity and ammonia concentrations occur, there may be differential selections for ammonia-oxidizer populations. The aim of this study was to examine the activity, abundance, and diversity of AOA and AOB in surface oxic sediments of a highly nutrified estuary that exhibits gradients of salinity and ammonium. AOB and AOA comm...

  14. Urea coated with oxidized charcoal reduces ammonia volatilization

    OpenAIRE

    Diogo Mendes de Paiva; Reinaldo Bertola Cantarutti; Gelton Geraldo Fernandes Guimarães; Ivo Ribeiro da Silva

    2012-01-01

    Urea is the most consumed nitrogen fertilizer in the world. However, its agronomic and economic efficiency is reduced by the volatilization of NH3, which can reach 78 % of the applied nitrogen. The coating of urea granules with acidic compounds obtained by charcoal oxidation has the potential to reduce the volatilization, due to the acidic character, the high buffering capacity and CEC. This work aimed to evaluate the effect of HNO3-oxidized carbon on the control of NH3 volatilization. These ...

  15. Complete genome sequence of Nitrosomonas sp. Is79, an ammonia oxidizing bacterium adapted to low ammonium concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Bollmann, Annette [Miami University, Oxford, OH; Sedlacek, Christopher J [Miami University, Oxford, OH; Laanbroek, Hendrikus J [Netherlands Institute of Ecology (NIOO-KNAW); Suwa, Yuichi [Chuo University, Tokyo, Japan; Stein, Lisa Y [University of California, Riverside; Klotz, Martin G [University of Louisville, Louisville; Arp, D J [Oregon State University; Sayavedra-Soto, LA [Oregon State University; Lu, Megan [Los Alamos National Laboratory (LANL); Bruce, David [Los Alamos National Laboratory (LANL); Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Tapia, Roxanne [Los Alamos National Laboratory (LANL); Han, James [U.S. Department of Energy, Joint Genome Institute; Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute; Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Pennacchio, Len [U.S. Department of Energy, Joint Genome Institute; Nolan, Matt [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Huntemann, Marcel [U.S. Department of Energy, Joint Genome Institute; Deshpande, Shweta [U.S. Department of Energy, Joint Genome Institute; Han, Cliff [Los Alamos National Laboratory (LANL); Chen, Amy [U.S. Department of Energy, Joint Genome Institute; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Mavromatis, K [U.S. Department of Energy, Joint Genome Institute; Markowitz, Victor [U.S. Department of Energy, Joint Genome Institute; Szeto, Ernest [U.S. Department of Energy, Joint Genome Institute; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Mikhailova, Natalia [U.S. Department of Energy, Joint Genome Institute; Pagani, Ioanna [U.S. Department of Energy, Joint Genome Institute; Pati, Amrita [U.S. Department of Energy, Joint Genome Institute; Peters, Lin [U.S. Department of Energy, Joint Genome Institute; Ovchinnikova, Galina [U.S. Department of Energy, Joint Genome Institute; Goodwin, Lynne A. [Los Alamos National Laboratory (LANL)

    2013-01-01

    Nitrosomonas sp. Is79 is a chemolithoautotrophic ammonia-oxidizing bacterium that belongs to the family Nitrosomonadaceae within the phylum Proteobacteria. Ammonia oxidation is the first step of nitrification, an important process in the global nitrogen cycle ultimately resulting in the production of nitrate. Nitrosomonas sp. Is79 is an ammonia oxidizer of high interest because it is adapted to low ammonium and can be found in freshwater environments around the world. The 3,783,444-bp chromosome with a total of 3,553 protein coding genes and 44 RNA genes was sequenced by the DOE-Joint Genome Institute Program CSP 2006.

  16. Outdoor cultures of Chlorella pyrenoidosa in the effluent of anaerobically digested activated sludge: The effects of pH and free ammonia.

    Science.gov (United States)

    Tan, Xiao-Bo; Zhang, Ya-Lei; Yang, Li-Bin; Chu, Hua-Qiang; Guo, Jun

    2016-01-01

    A freshwater algae Chlorella pyrenoidosa was cultured outdoors using anaerobically digested activated sludge effluent. The effects of pH variations were evaluated. The coupled pH variations and free ammonia toxicity significantly affected the algal growth, lipids accumulation and contamination control during every season. The free ammonia toxicity at high pH levels actually inhibited the algal growth. Compared to an optimal algal growth at a pH of 5.7-6.5, biomass productivity at a high pH of 8.3-8.8 was reduced by 67.15±6.98%, 54.39±6.42% and 83.63±5.71% in the spring, fall and summer, respectively. When the pH rose above 9.1-9.6, algae were unable to grow in the wastewater. However, high pH levels reduced contamination (e.g., bacteria and microalgae grazers) and triggered lipids accumulation in algal cells. These findings suggest that pH control strategies are essential for this type of algal wastewater system, where ammonia is the dominant nitrogen source. PMID:26547810

  17. Do freshwater macrophytes influence the community structure of ammonia-oxidizing and denitrifying bacteria in the rhizospere?

    DEFF Research Database (Denmark)

    Herrmann, Martina; Schramm, Andreas

    2006-01-01

    nitrification-denitrification using the 15N isotope pairing technique. Ammonia-oxidizing and nitrate-reducing populations are analyzed based on the ammonia monooxygenase gene (amoA) and the nitrate reductase gene (narG) as functional markers. Preliminary data indicate that there in fact exist differences in the...

  18. Archaeal amoA gene diversity points to distinct biogeography of ammonia-oxidizing Crenarchaeota in the ocean

    NARCIS (Netherlands)

    Sintes, Eva; Bergauer, Kristin; De Corte, Daniele; Yokokawa, Taichi; Herndl, Gerhard J.

    2013-01-01

    Mesophilic ammonia-oxidizing Archaea (AOA) are abundant in a diverse range of marine environments, including the deep ocean, as revealed by the quantification of the archaeal amoA gene encoding the alpha-subunit of the ammonia monooxygenase. Using two different amoA primer sets, two distinct ecotype

  19. The effect of ammonia upon the electrocatalysis of hydrogen oxidation and oxygen reduction on polycrystalline platinum

    Science.gov (United States)

    Verdaguer-Casadevall, Arnau; Hernandez-Fernandez, Patricia; Stephens, Ifan E. L.; Chorkendorff, Ib; Dahl, Søren

    2012-12-01

    The influence of ammonium ions on the catalysis of hydrogen oxidation and oxygen reduction is studied by means of rotating ring-disk electrode experiments on polycrystalline platinum in perchloric acid. While ammonium does not affect the hydrogen oxidation reaction, the oxygen reduction reaction is severely poisoned. Poisoning at the cathode explains the majority of the losses observed in polymer electrolyte membrane fuel cells contaminated with ammonia. Voltammetry in deaerated solution suggest that the poisoning can be attributed to either ammonium oxidation or increased binding to OH species.

  20. Ammonia oxidizing bacteria and archaea in horizontal flow biofilm reactors treating ammonia-contaminated air at 10 °C.

    Science.gov (United States)

    Gerrity, Seán; Clifford, Eoghan; Kennelly, Colm; Collins, Gavin

    2016-05-01

    The objective of this study was to demonstrate the feasibility of novel, Horizontal Flow Biofilm Reactor (HFBR) technology for the treatment of ammonia (NH3)-contaminated airstreams. Three laboratory-scale HFBRs were used for remediation of an NH3-containing airstream at 10 °C during a 90-d trial to test the efficacy of low-temperature treatment. Average ammonia removal efficiencies of 99.7 % were achieved at maximum loading rates of 4.8 g NH3 m(3) h(-1). Biological nitrification of ammonia to nitrite (NO2 (-)) and nitrate (NO3 (-)) was mediated by nitrifying bacterial and archaeal biofilm populations. Ammonia-oxidising bacteria (AOB) were significantly more abundant than ammonia-oxidising archaea (AOA) vertically at each of seven sampling zones along the vertical HFBRs. Nitrosomonas and Nitrosospira, were the two most dominant bacterial genera detected in the HFBRs, while an uncultured archaeal clone dominated the AOA community. The bacterial community composition across the three HFBRs was highly conserved, although variations occurred between HFBR zones and were driven by physicochemical variables. The study demonstrates the feasibility of HFBRs for the treatment of ammonia-contaminated airstreams at low temperatures; identifies key nitrifying microorganisms driving the removal process; and provides insights for process optimisation and control. The findings are significant for industrial applications of gas oxidation technology in temperate climates. PMID:26879980

  1. Trichloroethylene biodegradation by mesophilic and psychrophilic ammonia oxidizers and methanotrophs in groundwater microcosms.

    OpenAIRE

    Moran, B N; Hickey, W J

    1997-01-01

    This study investigated the efficiency of methane and ammonium for stimulating trichloroethylene (TCE) biodegradation in groundwater microcosms (flasks and batch exchange columns) at a psychrophilic temperature (12 degrees C) typical of shallow aquifers in the northern United States or a mesophilic temperature (24 degrees C) representative of most laboratory experiments. After 140 days, TCE biodegradation rates by ammonia oxidizers and methanotrophs in mesophilic flask microcosms were similar...

  2. Hydrogen peroxide detoxification is a key mechanism for growth of ammonia-oxidizing archaea

    Science.gov (United States)

    Kim, Jong-Geol; Park, Soo-Je; Sinninghe Damsté, Jaap S.; Schouten, Stefan; Rijpstra, W. Irene C.; Jung, Man-Young; Kim, So-Jeong; Gwak, Joo-Han; Hong, Heeji; Si, Ok-Ja; Lee, SangHoon; Madsen, Eugene L.; Rhee, Sung-Keun

    2016-01-01

    Ammonia-oxidizing archaea (AOA), that is, members of the Thaumarchaeota phylum, occur ubiquitously in the environment and are of major significance for global nitrogen cycling. However, controls on cell growth and organic carbon assimilation by AOA are poorly understood. We isolated an ammonia-oxidizing archaeon (designated strain DDS1) from seawater and used this organism to study the physiology of ammonia oxidation. These findings were confirmed using four additional Thaumarchaeota strains from both marine and terrestrial habitats. Ammonia oxidation by strain DDS1 was enhanced in coculture with other bacteria, as well as in artificial seawater media supplemented with α-keto acids (e.g., pyruvate, oxaloacetate). α-Keto acid-enhanced activity of AOA has previously been interpreted as evidence of mixotrophy. However, assays for heterotrophic growth indicated that incorporation of pyruvate into archaeal membrane lipids was negligible. Lipid carbon atoms were, instead, derived from dissolved inorganic carbon, indicating strict autotrophic growth. α-Keto acids spontaneously detoxify H2O2 via a nonenzymatic decarboxylation reaction, suggesting a role of α-keto acids as H2O2 scavengers. Indeed, agents that also scavenge H2O2, such as dimethylthiourea and catalase, replaced the α-keto acid requirement, enhancing growth of strain DDS1. In fact, in the absence of α-keto acids, strain DDS1 and other AOA isolates were shown to endogenously produce H2O2 (up to ∼4.5 μM), which was inhibitory to growth. Genomic analyses indicated catalase genes are largely absent in the AOA. Our results indicate that AOA broadly feature strict autotrophic nutrition and implicate H2O2 as an important factor determining the activity, evolution, and community ecology of AOA ecotypes. PMID:27339136

  3. Fabrication of platinum submonolayer electrodes and their high electrocatalytic activities for ammonia oxidation

    International Nuclear Information System (INIS)

    Highlights: • Pt submonolayer on the Au electrode for ammonia oxidation. • The surface coverage of the Pt submonolayer can be effectively controlled by the Cu UPD potential. • Pt submonolayer on the Au electrode has both high mass activity and specific activity. - Abstract: Pt submonolayer with different coverage on the Au electrode for ammonia oxidation was prepared by Cu underpotential deposition (UPD) followed by redox replacement of UPD Cu by Pt. The effects of the Cu UPD potential and time on the deposited Cu and the redox replaced Pt layer on the electrode were investigated. The amount of the deposited Cu and Pt was determined by the anodic stripping method. The electrocatalytic activity of the Pt decorated electrodes for ammonia oxidation was characterized by cyclic voltammetry. The results showed that the Cu UPD potential has a significant influence on the formed Cu layer and the subsequent Pt submonolayer. The Cu deposition behaviour changes from UPD process to overpotential deposition (OPD) process with the decrease of deposition potential. Besides, the amount of the deposited Cu increases as the Cu deposition potential decreases. Consequently, Pt layer with different coverage on the electrode can be effectively controlled by adjusting the Cu UPD potential. The Pt submonolayer electrodes prepared by the redox replacement of Cu UPD layer have a high mass activity for ammonia oxidation, and their mass activities are more than two times higher than that of the Pt decorated electrodes obtained by redox replacement of Cu OPD layer. Besides, the Pt submonolayer electrodes also have a higher specific activity possibly due to the modification in structural and electronic properties of the Pt submonolayer induced by the Au substrate

  4. Isotopic signatures of N2O produced by ammonia-oxidizing archaea from soils.

    Science.gov (United States)

    Jung, Man-Young; Well, Reinhard; Min, Deullae; Giesemann, Anette; Park, Soo-Je; Kim, Jong-Geol; Kim, So-Jeong; Rhee, Sung-Keun

    2014-05-01

    N2O gas is involved in global warming and ozone depletion. The major sources of N2O are soil microbial processes. Anthropogenic inputs into the nitrogen cycle have exacerbated these microbial processes, including nitrification. Ammonia-oxidizing archaea (AOA) are major members of the pool of soil ammonia-oxidizing microorganisms. This study investigated the isotopic signatures of N2O produced by soil AOA and associated N2O production processes. All five AOA strains (I.1a, I.1a-associated and I.1b clades of Thaumarchaeota) from soil produced N2O and their yields were comparable to those of ammonia-oxidizing bacteria (AOB). The levels of site preference (SP), δ(15)N(bulk) and δ(18)O -N2O of soil AOA strains were 13-30%, -13 to -35% and 22-36%, respectively, and strains MY1-3 and other soil AOA strains had distinct isotopic signatures. A (15)N-NH4(+)-labeling experiment indicated that N2O originated from two different production pathways (that is, ammonia oxidation and nitrifier denitrification), which suggests that the isotopic signatures of N2O from AOA may be attributable to the relative contributions of these two processes. The highest N2O production yield and lowest site preference of acidophilic strain CS may be related to enhanced nitrifier denitrification for detoxifying nitrite. Previously, it was not possible to detect N2O from soil AOA because of similarities between its isotopic signatures and those from AOB. Given the predominance of AOA over AOB in most soils, a significant proportion of the total N2O emissions from soil nitrification may be attributable to AOA. PMID:24225887

  5. Diversity and abundance of ammonia oxidizing archaea in tropical compost systems

    OpenAIRE

    de Gannes, Vidya; Eudoxie, Gaius; Dyer, David H.; Hickey, William J.

    2012-01-01

    Composting is widely used to transform waste materials into valuable agricultural products. In the tropics, large quantities of agricultural wastes could be potentially useful in agriculture after composting. However, while microbiological processes of composts in general are well established, relatively little is known about microbial communities that may be unique to these in tropical systems, particularly nitrifiers. The recent discovery of ammonia oxidizing archaea (AOA) has changed the p...

  6. Bacteria dominate ammonia oxidation in soils used for outdoor cattle overwintering

    Czech Academy of Sciences Publication Activity Database

    Radl, V.; Chroňáková, Alica; Čuhel, Jiří; Šimek, Miloslav; Elhottová, Dana; Welzl, G.; Schloter, M.

    2014-01-01

    Roč. 77, May (2014), s. 68-71. ISSN 0929-1393 R&D Projects: GA MŠk LC06066 Grant ostatní: Akademie věd ČR(CZ) D-CZ 45:05/06 Institutional support: RVO:60077344 Keywords : ammonia oxidation * bacteria * archaea * amoA diversity * urea * pasture Subject RIV: EH - Ecology, Behaviour Impact factor: 2.644, year: 2014

  7. Autotrophic Ammonia-Oxidizing Bacteria Contribute Minimally to Nitrification in a Nitrogen-Impacted Forested Ecosystem

    OpenAIRE

    Jordan, F L; Cantera, JJL; Fenn, M E; Stein, L.Y.

    2005-01-01

    Deposition rates of atmospheric nitrogenous pollutants to forests in the San Bernardino Mountains range east of Los Angeles, California, are the highest reported in North America. Acidic soils from the west end of the range are N-saturated and have elevated rates of N-mineralization, nitrification, and nitrate leaching. We assessed the impact of this heavy nitrogen load on autotrophic ammonia-oxidizing communities by investigating their composition, abundance, and activity. Analysis of 177 cl...

  8. Effects of drought on nitrogen turnover and abundances of ammonia-oxidizers in mountain grassland

    Directory of Open Access Journals (Sweden)

    L. Fuchslueger

    2014-06-01

    Full Text Available Future climate scenarios suggest an increased frequency of summer drought periods in the European Alpine Region. Drought can affect soil nitrogen (N cycling, by altering N transformation rates, as well as the abundances of ammonia-oxidizing bacteria and archaea. However, the extent to which drought affects N cycling under in situ conditions is still controversial. The goal of this study was to analyse effects of drought on soil N turnover and ammonia-oxidizer abundances. To this end we conducted a rain-exclusion experiment at two differently managed mountain grassland sites, an annually mown and occasionally fertilized meadow and an abandoned grassland. Soils were sampled before, during and after drought and were analysed for gross rates of N mineralization, microbial uptake of inorganic N, nitrification, and the abundances of bacterial and archaeal ammonia oxidizers based on gene copy numbers of the amoA gene (AOB and AOA, respectively. Our results showed that the response to drought differed between the two sites. Effects were stronger at the managed meadow, where NH4+ immobilization rates increased and AOA abundances decreased. At the abandoned site gross nitrification and NO3− immobilization rates decreased during drought, while neither AOB, nor AOA abundances were affected. The different responses of the two sites to drought were likely related to site specific differences, such as soil organic matter content, nitrogen pools and absolute soil water content, resulting from differences in land-management. At both sites rewetting after drought had only minor short-term effects on the parameters that had been affected by drought, and seven weeks after the drought no effects of drought were detectable anymore. Thus, our findings indicate that drought can have distinct transient effects on soil nitrogen cycling and ammonia-oxidizer abundances in mountain grasslands and that the effect strength could be modulated by grassland management.

  9. Effects of drought on nitrogen turnover and abundances of ammonia-oxidizers in mountain grassland

    Science.gov (United States)

    Fuchslueger, L.; Kastl, E.-M.; Bauer, F.; Kienzl, S.; Hasibeder, R.; Ladreiter-Knauss, T.; Schmitt, M.; Bahn, M.; Schloter, M.; Richter, A.; Szukics, U.

    2014-11-01

    Future climate scenarios suggest an increased frequency of summer drought periods in the European Alpine Region. Drought can affect soil nitrogen (N) cycling, by altering N transformation rates, as well as the abundances of ammonia-oxidizing bacteria and archaea. However, the extent to which drought affects N cycling under in situ conditions is still controversial. The goal of this study was to analyse effects of drought on soil N turnover and ammonia-oxidizer abundances in soil without drought history. To this end we conducted rain-exclusion experiments at two differently managed mountain grassland sites, an annually mown and occasionally fertilized meadow and an abandoned grassland. Soils were sampled before, during and after drought and were analysed for potential gross rates of N mineralization, microbial uptake of inorganic N, nitrification, and the abundances of bacterial and archaeal ammonia-oxidizers based on gene copy numbers of the amoA gene (AOB and AOA, respectively). Drought induced different responses at the two studied sites. At the managed meadow drought increased NH4+ immobilization rates and NH4+ concentrations in the soil water solution, but led to a reduction of AOA abundance compared to controls. At the abandoned site gross nitrification and NO3- immobilization rates decreased during drought, while AOB and AOA abundances remained stable. Rewetting had only minor, short-term effects on the parameters that had been affected by drought. Seven weeks after the end of drought no differences to control plots could be detected. Thus, our findings demonstrated that in mountain grasslands drought had distinct transient effects on soil nitrogen cycling and ammonia-oxidizers, which could have been related to a niche differentiation of AOB and AOA with increasing NH4+ levels. However, the effect strength of drought was modulated by grassland management.

  10. Influence of ammonia oxidation rate on thaumarchaeal lipid composition and the TEX86 temperature proxy.

    Science.gov (United States)

    Hurley, Sarah J; Elling, Felix J; Könneke, Martin; Buchwald, Carolyn; Wankel, Scott D; Santoro, Alyson E; Lipp, Julius Sebastian; Hinrichs, Kai-Uwe; Pearson, Ann

    2016-07-12

    Archaeal membrane lipids known as glycerol dibiphytanyl glycerol tetraethers (GDGTs) are the basis of the TEX86 paleotemperature proxy. Because GDGTs preserved in marine sediments are thought to originate mainly from planktonic, ammonia-oxidizing Thaumarchaeota, the basis of the correlation between TEX86 and sea surface temperature (SST) remains unresolved: How does TEX86 predict surface temperatures, when maximum thaumarchaeal activity occurs below the surface mixed layer and TEX86 does not covary with in situ growth temperatures? Here we used isothermal studies of the model thaumarchaeon Nitrosopumilus maritimus SCM1 to investigate how GDGT composition changes in response to ammonia oxidation rate. We used continuous culture methods to avoid potential confounding variables that can be associated with experiments in batch cultures. The results show that the ring index scales inversely (R(2) = 0.82) with ammonia oxidation rate (ϕ), indicating that GDGT cyclization depends on available reducing power. Correspondingly, the TEX86 ratio decreases by an equivalent of 5.4 °C of calculated temperature over a 5.5 fmol·cell(-1)·d(-1) increase in ϕ. This finding reconciles other recent experiments that have identified growth stage and oxygen availability as variables affecting TEX86 Depth profiles from the marine water column show minimum TEX86 values at the depth of maximum nitrification rates, consistent with our chemostat results. Our findings suggest that the TEX86 signal exported from the water column is influenced by the dynamics of ammonia oxidation. Thus, the global TEX86-SST calibration potentially represents a composite of regional correlations based on nutrient dynamics and global correlations based on archaeal community composition and temperature. PMID:27357675

  11. Anaerobic ammonium oxidation by anammox bacteria in the Black Sea RID B-8834-2011

    DEFF Research Database (Denmark)

    Kuypers, MMM; Sliekers, AO; Lavik, G.; Schmid, M.; Jørgensen, BB; Kuenen, JG; Damste, JSS; Strous, M.; Jetten, MSM

    2003-01-01

    ). Here we provide evidence for bacteria that anaerobically oxidize ammonium with nitrite to N(2) in the world's largest anoxic basin, the Black Sea. Phylogenetic analysis of 16S ribosomal RNA gene sequences shows that these bacteria are related to members of the order Planctomycetales performing the...... anammox (anaerobic ammonium oxidation) process in ammonium-removing bioreactors(3). Nutrient profiles, fluorescently labelled RNA probes, (15)N tracer experiments and the distribution of specific 'ladderane' membrane lipids(4) indicate that ammonium diffusing upwards from the anoxic deep water is consumed...

  12. Coupling Between and Among Ammonia Oxidizers and Nitrite Oxidizers in Grassland Mesocosms Submitted to Elevated CO2 and Nitrogen Supply.

    Science.gov (United States)

    Simonin, Marie; Le Roux, Xavier; Poly, Franck; Lerondelle, Catherine; Hungate, Bruce A; Nunan, Naoise; Niboyet, Audrey

    2015-10-01

    Many studies have assessed the responses of soil microbial functional groups to increases in atmospheric CO2 or N deposition alone and more rarely in combination. However, the effects of elevated CO2 and N on the (de)coupling between different microbial functional groups (e.g., different groups of nitrifiers) have been barely studied, despite potential consequences for ecosystem functioning. Here, we investigated the short-term combined effects of elevated CO2 and N supply on the abundances of the four main microbial groups involved in soil nitrification: ammonia-oxidizing archaea (AOA), ammonia-oxidizing bacteria (AOB), and nitrite-oxidizing bacteria (belonging to the genera Nitrobacter and Nitrospira) in grassland mesocosms. AOB and AOA abundances responded differently to the treatments: N addition increased AOB abundance, but did not alter AOA abundance. Nitrobacter and Nitrospira abundances also showed contrasted responses to the treatments: N addition increased Nitrobacter abundance, but decreased Nitrospira abundance. Our results support the idea of a niche differentiation between AOB and AOA, and between Nitrobacter and Nitrospira. AOB and Nitrobacter were both promoted at high N and C conditions (and low soil water content for Nitrobacter), while AOA and Nitrospira were favored at low N and C conditions (and high soil water content for Nitrospira). In addition, Nitrobacter abundance was positively correlated to AOB abundance and Nitrospira abundance to AOA abundance. Our results suggest that the couplings between ammonia and nitrite oxidizers are influenced by soil N availability. Multiple environmental changes may thus elicit rapid and contrasted responses between and among the soil ammonia and nitrite oxidizers due to their different ecological requirements. PMID:25877793

  13. Ammonia-oxidizing archaea and nitrite-oxidizing nitrospiras in the biofilter of a shrimp recirculating aquaculture system.

    Science.gov (United States)

    Brown, Monisha N; Briones, Aurelio; Diana, James; Raskin, Lutgarde

    2013-01-01

    This study analysed the nitrifier community in the biofilter of a zero discharge, recirculating aquaculture system (RAS) for the production of marine shrimp in a low density (low ammonium production) system. The ammonia-oxidizing populations were examined by targeting 16S rRNA and amoA genes of ammonia-oxidizing bacteria (AOB) and archaea (AOA). The nitrite-oxidizing bacteria (NOB) were investigated by targeting the 16S rRNA gene. Archaeal amoA genes were more abundant in all compartments of the RAS than bacterial amoA genes. Analysis of bacterial and archaeal amoA gene sequences revealed that most ammonia oxidizers were related to Nitrosomonas marina and Nitrosopumilus maritimus. The NOB detected were related to Nitrospira marina and Nitrospira moscoviensis, and Nitrospira marina-type NOB were more abundant than N. moscoviensis-type NOB. Water quality and biofilm attachment media played a role in the competitiveness of AOA over AOB and Nitrospira marina-over N. moscoviensis-type NOB. PMID:22775980

  14. Urea coated with oxidized charcoal reduces ammonia volatilization

    Directory of Open Access Journals (Sweden)

    Diogo Mendes de Paiva

    2012-08-01

    Full Text Available Urea is the most consumed nitrogen fertilizer in the world. However, its agronomic and economic efficiency is reduced by the volatilization of NH3, which can reach 78 % of the applied nitrogen. The coating of urea granules with acidic compounds obtained by charcoal oxidation has the potential to reduce the volatilization, due to the acidic character, the high buffering capacity and CEC. This work aimed to evaluate the effect of HNO3-oxidized carbon on the control of NH3 volatilization. These compounds were obtained by oxidation of Eucalyptus grandis charcoal, produced at charring temperatures of 350 and 450 ºC, with 4.5 mol L-1 HNO3. The charcoal was oxidized by solubilization in acidic or alkaline medium, similar to the procedure of soil organic matter fractionation (CHox350 and CHox450. CHox was characterized by C, H, O, N contents and their respective atomic relations, by the ratio E4 (absorbance 465 nm by E6 (absorbance 665 nm, and by active acidity and total acidity (CEC. The inhibitory effect of CHox on the urease activity of Canavalia ensiformis was assessed in vitro. The NH3 volatilization from urea was evaluated with and without coating of oxidized charcoal (U-CHox350 or U-CHox450 in a closed system with continuous air flow. The pH of both CHox was near 2.0, but the total acidity of CHox350 was higher, 72 % of which was attributed to carboxylic groups. The variation in the ionization constants of CHox350 was also greater. The low E4/E6 ratios characterize the high stability of the compounds in CHox. CHox did not inhibit the urease activity in vitro, although the maximum volatilization peak from U-CHox450 and U-CHox350 occurred 24 h after that observed for uncoated urea. The lowest volatilization rate was observed for U-CHox350 as well as a 43 % lower total amount of NH3 volatilized than from uncoated urea.

  15. Trace methane oxidation and the methane dependency of sulfate reduction in anaerobic granular sludge

    KAUST Repository

    Meulepas, Roel J.W.

    2010-05-01

    This study investigates the oxidation of labeled methane (CH4) and the CH4 dependence of sulfate reduction in three types of anaerobic granular sludge. In all samples, 13C-labeled CH4 was anaerobically oxidized to 13C-labeled CO2, while net endogenous CH4 production was observed. Labeled-CH4 oxidation rates followed CH4 production rates, and the presence of sulfate hampered both labeled-CH4 oxidation and methanogenesis. Labeled-CH4 oxidation was therefore linked to methanogenesis. This process is referred to as trace CH4 oxidation and has been demonstrated in methanogenic pure cultures. This study shows that the ratio between labeled-CH4 oxidation and methanogenesis is positively affected by the CH4 partial pressure and that this ratio is in methanogenic granular sludge more than 40 times higher than that in pure cultures of methanogens. The CH4 partial pressure also positively affected sulfate reduction and negatively affected methanogenesis: a repression of methanogenesis at elevated CH4 partial pressures confers an advantage to sulfate reducers that compete with methanogens for common substrates, formed from endogenous material. The oxidation of labeled CH 4 and the CH4 dependence of sulfate reduction are thus not necessarily evidence of anaerobic oxidation of CH4 coupled to sulfate reduction. © 2010 Federation of European Microbiological Societies.

  16. Enhanced sulfamethoxazole degradation through ammonia oxidizing bacteria co-metabolism and fate of transformation products.

    Science.gov (United States)

    Kassotaki, Elissavet; Buttiglieri, Gianluigi; Ferrando-Climent, Laura; Rodriguez-Roda, Ignasi; Pijuan, Maite

    2016-05-01

    The occurrence of the widely-used antibiotic sulfamethoxazole (SFX) in wastewaters and surface waters has been reported in a large number of studies. However, the results obtained up-to-date have pointed out disparities in its removal. This manuscript explores the enhanced biodegradation potential of an enriched culture of Ammonia Oxidizing Bacteria (AOB) towards SFX. Several sets of batch tests were conducted to establish a link between SFX degradation and specific ammonia oxidation rate. The occurrence, degradation and generation of SFX and some of its transformation products (4-Nitro SFX, Desamino-SFX and N(4)-Acetyl-SFX) was also monitored. A clear link between the degradation of SFX and the nitrification rate was found, resulting in an increased SFX removal at higher specific ammonia oxidation rates. Moreover, experiments conducted under the presence of allylthiourea (ATU) did not present any removal of SFX, suggesting a connection between the AMO enzyme and SFX degradation. Long term experiments (up to 10 weeks) were also conducted adding two different concentrations (10 and 100 μg/L) of SFX in the influent of a partial nitrification sequencing batch reactor, resulting in up to 98% removal. Finally, the formation of transformation products during SFX degradation represented up to 32%, being 4-Nitro-SFX the most abundant. PMID:26938496

  17. The Significance of Myriophyllum elatinoides for Swine Wastewater Treatment: Abundance and Community Structure of Ammonia-Oxidizing Microorganisms in Sediments

    OpenAIRE

    Xi Li; Miaomiao Zhang; Feng Liu(Central China Normal University); Yong Li; Yang He; Shunan Zhang; Jinshui Wu

    2015-01-01

    Myriophyllum elatinoides was reported to effectively treat wastewater by removing nitrogen (N) and phosphorus (P). However, little is known about the abundance and community structure of ammonia-oxidizing microorganisms associated with M. elatinoides purification systems. The objective of this research was to characterize the abundance and community structure of ammonia-oxidizing microorganisms in swine wastewater and determine the main nitrogen removal pathways. In this study, five different...

  18. Nitrogen Cycling and Community Structure of Proteobacterial β-Subgroup Ammonia-Oxidizing Bacteria within Polluted Marine Fish Farm Sediments

    OpenAIRE

    McCaig, Allison E.; Phillips, Carol J.; Stephen, John R.; Kowalchuk, George A.; Harvey, S. Martyn; Herbert, Rodney A.; Embley, T. Martin; Prosser, James I

    1999-01-01

    A multidisciplinary approach was used to study the effects of pollution from a marine fish farm on nitrification rates and on the community structure of ammonia-oxidizing bacteria in the underlying sediment. Organic content, ammonium concentrations, nitrification rates, and ammonia oxidizer most-probable-number counts were determined in samples of sediment collected from beneath a fish cage and on a transect at 20 and 40 m from the cage. The data suggest that nitrogen cycling was significantl...

  19. Archaeal Ammonia Oxidizers Dominate in Numbers, but Bacteria Drive Gross Nitrification in N-amended Grassland Soil

    OpenAIRE

    Sterngren, Anna E.; Hallin, Sara; Bengtson, Per

    2015-01-01

    Both ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) play an important role in nitrification in terrestrial environments. Most often AOA outnumber AOB, but the relative contribution of AOA and AOB to nitrification rates remains unclear. The aim of this experiment was to test the hypotheses that high nitrogen availability would favor AOB and result in high gross nitrification rates, while high carbon availability would result in low nitrogen concentrations that favor the a...

  20. Thaumarchaeotes abundant in refinery nitrifying sludges express amoA but are not obligate autotrophic ammonia oxidizers

    OpenAIRE

    Mußmann, M; Brito, I.; A. Pitcher; Hatzenpichler, R.; Richter, A; Nielsen, J. L.; Nielsen, P. H.; Daims, H.; MÜller, A.; Wagner, M.; Head, I.M.

    2011-01-01

    Nitrification is a core process in the global nitrogen cycle that is essential for the functioning of many ecosystems. The discovery of autotrophic ammonia-oxidizing archaea (AOA) within the phylum Thaumarchaeota has changed our perception of the microbiology of nitrification, in particular since their numerical dominance over ammonia-oxidizing bacteria (AOB) in many environments has been revealed. These and other data have led to a widely held assumption that all amoA-encoding members of the...

  1. Thaumarchaeotes abundant in refinery nitrifying sludges express amoA but are not obligate autotrophic ammonia oxidizers

    OpenAIRE

    Mußmann, Marc; Brito, Ivana; Pitcher, Angela; Sinninghe Damsté, Jaap S.; Hatzenpichler, Roland; Richter, Andreas; Nielsen, Jeppe L.; Nielsen, Per Halkjær; Müller, Anneliese; Daims, Holger; WAGNER, MICHAEL; Head, Ian M.

    2011-01-01

    Nitrification is a core process in the global nitrogen cycle that is essential for the functioning of many ecosystems. The discovery of autotrophic ammonia-oxidizing archaea (AOA) within the phylum Thaumarchaeota has changed our perception of the microbiology of nitrification, in particular since their numerical dominance over ammonia-oxidizing bacteria (AOB) in many environments has been revealed. These and other data have led to a widely held assumption that all amoA-encoding members of the...

  2. Competitive interactions between methane- and ammonia-oxidizing bacteria modulate carbon and nitrogen cycling in paddy soil

    OpenAIRE

    Zheng, Y.; Huang, R.; Wang, B.Z.; Bodelier, P.L.E.; Z. J. Jia

    2014-01-01

    Pure culture studies have demonstrated that methanotrophs and ammonia oxidizers can both carry out the oxidation of methane and ammonia. However, the expected interactions resulting from these similarities are poorly understood, especially in complex, natural environments. Using DNA-based stable isotope probing and pyrosequencing of 16S rRNA and pmoA genes, we report on biogeochemical and molecular evidence for growth stimulation of methanotrophic communitie...

  3. Biogeochemical modelling of anaerobic vs. aerobic methane oxidation in a meromictic crater lake (Lake Pavin, France)

    International Nuclear Information System (INIS)

    Methane is a powerful greenhouse gas and its concentration in the atmosphere has increased over the past decades. Methane produced by methanogenic Archae can be consumed through aerobic and anaerobic oxidation pathways. In anoxic conditions found in freshwater environments such as meromictic lakes, CH4 oxidation pathways involving different terminal electron acceptors such as NO3-, SO42-, and oxides of Fe and Mn are thermodynamically possible. In this study, a reactive transport model was developed to assess the relative significance of the different pathways of CH4 consumption in the water column of Lake Pavin. In most cases, the model reproduced experimental data collected from the field from June 2006 to June 2007. Although the model and the field measurements suggest that anaerobic CH4 oxidation may contribute to CH4 consumption in the water column of Lake Pavin, aerobic oxidation remains the major sink of CH4 in this lake.

  4. Biogeochemical controls and isotopic signatures of nitrous oxide production by a marine ammonia-oxidizing bacterium

    Directory of Open Access Journals (Sweden)

    C. H. Frame

    2010-09-01

    Full Text Available Nitrous oxide (N2O is a trace gas that contributes to the greenhouse effect and stratospheric ozone depletion. The N2O yield from nitrification (moles N2O-N produced per mole ammonium-N consumed has been used to estimate marine N2O production rates from measured nitrification rates and global estimates of oceanic export production. However, the N2O yield from nitrification is not constant. Previous culture-based measurements indicate that N2O yield increases as oxygen (O2 concentration decreases and as nitrite (NO2 concentration increases. Here, we have measured yields of N2O from cultures of the marine β-proteobacterium Nitrosomonas marina C-113a as they grew on low-ammonium (50 μM media. These yields, which were typically between 4 × 10−4 and 7 × 10−4 for cultures with cell densities between 2 × 102 and 2.1 × 104 cells ml−1, were lower than previous reports for ammonia-oxidizing bacteria. The observed impact of O2 concentration on yield was also smaller than previously reported under all conditions except at high starting cell densities (1.5 × 106 cells ml−1, where 160-fold higher yields were observed at 0.5% O2 (5.1 μM dissolved O2 compared with 20% O2 (203 μM dissolved O2. At lower cell densities (2 × 102 and 2.1 × 104 cells ml−1, cultures grown under 0.5% O2 had yields that were only 1.25- to 1.73-fold higher than cultures grown under 20% O2. Thus, previously reported many-fold increases in N2O yield with dropping O2 could be reproduced only at cell densities that far exceeded those of ammonia oxidizers in the ocean. The presence of excess NO2 (up to 1 mM in the growth

  5. Conversion of the refractory ammonia and acetic acid in catalytic wet air oxidation of animal byproducts

    Institute of Scientific and Technical Information of China (English)

    Virginie Fontanier; Sofiane Zalouk; Stéphane Barbati

    2011-01-01

    Wet air oxidation (WAO) and catalytic wet air oxidation (CWAO) of slaughtered animal byproducts (ABPs) were investigated.Two step experiment was carried out consisting ofa non-catalysed WAO run followed by a CWAO run at 170-275℃, 20 MPa, and reaction time 180 min.The WAO (1st step) of sample (5 g/L total organic carbon (TOC)) yielded (82.0 ± 4)% TOC removal and (78.4 ± 13.2)%conversion of the initial organic-N into NH4+-N.Four metal catalysts (Pd, Pt, Rh, Ru) supported over alumina have been tested in catalytic WAO (2nd step) at elevated pH to enhance ammonia conversion and organic matter removal, particularly acetic acid.It was found that the catalysts Ru, Pt, and Rh had significant effects on the TOC removal (95.1%, 99.5% and 96.7%, respectively) and on the abatement of ammonia (93.4%, 96.7% and 96.3%, respectively) with high nitrogen selectivity.The catalyst Pd was found to have the less activity while Pt had the best performance.The X-Ray diffraction analysis showed that the support of catalyst was not stable under the experimental conditions since it reacted with phosphate present in solution.Nitrite and nitrate ions were monitored during the oxidation reaction and it was concluded that CWAO of ammonia in real waste treatment framework was in good agreement with the results obtained from the literature for ideal solutions of ammonia.

  6. Ethanol production from maize silage as lignocellulosic biomass in anaerobically digested and wet-oxidized manure

    DEFF Research Database (Denmark)

    Oleskowicz-Popiel, Piotr; Lisiecki, P.; Holm-Nielsen, J.B.;

    2008-01-01

    investigated using 2 1 bioreactors. Wet oxidation performed for 20 min at 121 degrees C was found as the most suitable pretreatment conditions for AD manure. High ammonia concentration and significant amount of macro- and micro-nutrients in the AD manure had a positive influence on the ethanol fermentation. No...

  7. Ammonia-oxidizing Bacteria of the Nitrosospira cluster 1 dominate over ammonia-oxidizing Archaea in oligotrophic surface sediments near the South Atlantic Gyre.

    Science.gov (United States)

    Lagostina, Lorenzo; Goldhammer, Tobias; Røy, Hans; Evans, Thomas W; Lever, Mark A; Jørgensen, Bo B; Petersen, Dorthe G; Schramm, Andreas; Schreiber, Lars

    2015-06-01

    Sediments across the Namibian continental margin feature a strong microbial activity gradient at their surface. This is reflected in ammonium concentrations of  700 μM in upwelling areas near the coast. Here we address changes in apparent abundance and structure of ammonia-oxidizing archaeal and bacterial communities (AOA and AOB) along a transect of seven sediment stations across the Namibian shelf by analysing their respective ammonia monooxygenase genes (amoA). The relative abundance of archaeal and bacterial amoA (g(-1) DNA) decreased with increasing ammonium concentrations, and bacterial amoA frequently outnumbered archaeal amoA at the sediment-water interface [0-1 cm below seafloor (cmbsf)]. In contrast, AOA were apparently as abundant as AOB or dominated in several deeper (> 10 cmbsf), anoxic sediment layers. Phylogenetic analyses showed a change within the AOA community along the transect, from two clusters without cultured representatives at the gyre to Nitrososphaera and Nitrosopumilus clusters in the upwelling region. AOB almost exclusively belonged to the Nitrosospira cluster 1. Our results suggest that this predominantly marine AOB lineage without cultured representatives can thrive at low ammonium concentrations and is active in the marine nitrogen cycle. PMID:25581373

  8. Single stage biological nitrogen removal by nitritation and anaerobic ammonium oxidation in biofilm systems.

    Science.gov (United States)

    Helmer, C; Tromm, C; Hippen, A; Rosenwinkel, K H; Seyfried, C F; Kunst, S

    2001-01-01

    In full scale wastewater treatment plants with at times considerable deficits in the nitrogen balances, it could hitherto not be sufficiently explained which reactions are the cause of the nitrogen losses and which micro-organisms participate in the process. The single stage conversion of ammonium into gaseous end-products--which is henceforth referred to as deammonification--occurs particularly frequently in biofilm systems. In the meantime, one has succeeded to establish the deammonification processes in a continuous flow moving-bed pilot plant. In batch tests with the biofilm covered carriers, it was possible for the first time to examine the nitrogen conversion at the intact biofilm. Depending on the dissolved oxygen (DO) concentration, two autotrophic nitrogen converting reactions in the biofilm could be proven: one nitritation process under aerobic conditions and one anaerobic ammonium oxidation. With the anaerobic ammonium oxidation, ammonium as electron donor was converted with nitrite as electron acceptor. The end-product of this reaction was N2. Ammonium and nitrite did react in a stoichiometrical ratio of 1:1.37, a ratio which has in the very same dimension been described for the ANAMMOX-process (1:1.31 +/- 0.06). Via the oxygen concentration in the surrounding medium, it was possible to control the ratio of nitritation and anaerobic ammonium oxidation in the nitrogen conversion of the biofilm. Both processes were evenly balanced at a DO concentration of 0.7 mg/l, so that it was possible to achieve a direct, almost complete elimination of ammonium without addition of nitrite. One part of the provided ammonium did participate in the nitritation, the other in the anaerobic ammonium oxidation. Through the aerobic ammonium oxidation into nitrite within the outer oxygen supplied layers of the biofilm, the reaction partner was produced for the anaerobic ammonium oxidation within the inner layers of the biofilm. PMID:11379106

  9. Dynamics of ammonia-oxidizing Archaea and Bacteria in contrasted freshwater ecosystems.

    Science.gov (United States)

    Hugoni, Mylène; Etien, Sandrine; Bourges, Antoine; Lepère, Cécile; Domaizon, Isabelle; Mallet, Clarisse; Bronner, Gisèle; Debroas, Didier; Mary, Isabelle

    2013-05-01

    Thaumarchaeota have been recognized as the main drivers of aerobic ammonia oxidation in many ecosystems. However, little is known about the role of ammonia-oxidizing Archaea (AOA) and Bacteria (AOB) in lacustrine ecosystems. In this study, the photic zone of three contrasted freshwater ecosystems located in France was sampled during two periods: winter homothermy (H) and summer thermal stratification (TS), to investigate the distribution of planktonic AOA and AOB. We showed that AOB were predominant in nutrient-rich ecosystems, whereas AOA dominated when ammonia concentrations were the lowest and during winter, which could provide a favorable environment for their growth. Moreover, analyses of archaeal libraries revealed the ubiquity of the thaumarchaeal I.1a clade associated with higher diversity of AOA in the most nutrient-poor lake. More generally, this work assesses the presence of AOA in lakes, but also highlights the existence of clades typically associated with lacustrine and hot spring ecosystems and specific ecological niches occupied by these microorganisms. PMID:23395876

  10. Moisture and temperature controls on nitrification differ among ammonia oxidizer communities from three alpine soil habitats

    Institute of Scientific and Technical Information of China (English)

    Brooke B.OSBORNE; Jill S.BARON; Matthew D.WALLENSTEIN

    2016-01-01

    Climate change is altering the timing and magnitude of biogeochemical fluxes in many high-elevation ecosystems.The consequent changes in alpine nitrification rates have the potential to influence ecosystem scale responses.In order to better understand how changing temperature and moisture conditions may influence ammonia oxidizers and nitrification activity,we conducted laboratory incubations on soils collected in a Colorado watershed from three alpine habitats (glacial outwash,talus,and meadow).We found that bacteria,not archaea,dominated all ammonia oxidizer communities.Nitrification increased with moisture in all soils and under all temperature treatments.However,temperature was not correlated with nitrification rates in all soils.Site-specific temperature trends suggest the development of generalist ammonia oxidzer communities in soils with greater in situ temperature fluctuations and specialists in soils with more steady temperature regimes.Rapidly increasing temperatures and changing soil moisture conditions could explain recent observations of increased nitrate production in some alpine soils.

  11. pH as a Driver for Ammonia-Oxidizing Archaea in Forest Soils.

    Science.gov (United States)

    Stempfhuber, Barbara; Engel, Marion; Fischer, Doreen; Neskovic-Prit, Ganna; Wubet, Tesfaye; Schöning, Ingo; Gubry-Rangin, Cécile; Kublik, Susanne; Schloter-Hai, Brigitte; Rattei, Thomas; Welzl, Gerhard; Nicol, Graeme W; Schrumpf, Marion; Buscot, Francois; Prosser, James I; Schloter, Michael

    2015-05-01

    In this study, we investigated the impact of soil pH on the diversity and abundance of archaeal ammonia oxidizers in 27 different forest soils across Germany. DNA was extracted from topsoil samples, the amoA gene, encoding ammonia monooxygenase, was amplified; and the amplicons were sequenced using a 454-based pyrosequencing approach. As expected, the ratio of archaeal (AOA) to bacterial (AOB) ammonia oxidizers' amoA genes increased sharply with decreasing soil pH. The diversity of AOA differed significantly between sites with ultra-acidic soil pH (4.5, regardless of geographic position and vegetation. These OTUs could be related to the Nitrosotalea group 1.1 and the Nitrososphaera subcluster 7.2, respectively, and showed significant similarities to OTUs described from other acidic environments. Conversely, none of the major OTUs typical of sites with a soil pH >4.6 could be found in the ultra- and extreme acidic soils. Based on a comparison with the amoA gene sequence data from a previous study performed on agricultural soils, we could clearly show that the development of AOA communities in soils with ultra-acidic pH (<3.5) is mainly triggered by soil pH and is not influenced significantly by the type of land use, the soil type, or the geographic position of the site, which was observed for sites with acido-neutral soil pH. PMID:25501889

  12. Anaerobic oxidation of methane in grassland soils used for cattle husbandry

    Czech Academy of Sciences Publication Activity Database

    Bannert, A.; Bogen, C.; Esperschütz, J.; Koubová, Anna; Buegger, F.; Fischer, D.; Radl, V.; Fuss, R.; Chroňáková, Alica; Elhottová, Dana; Šimek, Miloslav; Schloter, M.

    2012-01-01

    Roč. 9, č. 10 (2012), s. 3891-3899. ISSN 1726-4170 R&D Projects: GA ČR GA526/09/1570 Institutional support: RVO:60077344 Keywords : anaerobic oxidation of methane * grassland soils * cattle husbandry Subject RIV: EH - Ecology, Behaviour Impact factor: 3.754, year: 2012

  13. A genomic view of methane oxidation by aerobic bacteria and anaerobic archaea

    OpenAIRE

    Chistoserdova, Ludmila; Vorholt, Julia A.; Lidstrom, Mary E.

    2005-01-01

    Recent sequencing of the genome and proteomic analysis of a model aerobic methanotrophic bacterium, Methylococcus capsulatus (Bath) has revealed a highly versatile metabolic potential. In parallel, environmental genomics has provided glimpses into anaerobic methane oxidation by certain archaea, further supporting the hypothesis of reverse methanogenesis.

  14. Anaerobic oxidation of methane above gas hydrates at Hydrate Ridge, NE Pacific Ocean

    DEFF Research Database (Denmark)

    Treude, T.; Boetius, A.; Knittel, K.; Wallmann, K.; Jørgensen, BB

    2003-01-01

    At Hydrate Ridge (HR), Cascadia convergent margin, surface sediments contain massive gas hydrates formed from methane that ascends together with fluids along faults from deeper reservoirs. Anaerobic oxidation of methane (AOM), mediated by a microbial consortium of archaea and sulfate-reducing bac...

  15. ANAEROBIC DDT BIOTRANSFORMATION: ENHANCEMENT BY APPLICATION OF SURFACTANTS AND LOW OXIDATION REDUCTION POTENTIAL

    Science.gov (United States)

    Enhancement of anaerobic DDT (1,1,1-trichloro-2,2-bis(p-chlorophenyl) ethane) biotransformation by mixed cultures was studied with application of surfactants and oxidation reduction potential reducing agents. Without amendments, DDT transformation resulted mainly in the pr...

  16. Thermal wet oxidation improves anaerobic biodegradability of raw and digested biowaste

    DEFF Research Database (Denmark)

    Lissens, G.; Thomsen, Anne Belinda; De Baere, L.;

    2004-01-01

    Anaerobic digestion of solid biowaste generally results in relatively low methane yields of 50-60% of the theoretical maximum. Increased methane recovery from organic waste would lead to reduced handling of digested solilds, lower methane emissions to the environment, and higher green energy....... Measured methane yields for raw yard waste, wet oxidized yard waste, raw food waste, and wet oxidized food waste were 345, 685, 536, and 571 mL of CH4/g of volatile suspended solids, respectively. Higher oxygen pressure during wet oxidation of digested biowaste considerably increased the total methane...... profits. The objective of this research was to enhance the anaerobic biodegradability and methane yields from different biowastes (food waste, yard waste, and digested biowaste already treated in a full-scale biogas plant (DRANCO, Belgium)) by assessing thermal wet oxidation. The biodegradability of the...

  17. Cultivation of Autotrophic Ammonia-Oxidizing Archaea from Marine Sediments in Coculture with Sulfur-Oxidizing Bacteria▿ †

    OpenAIRE

    Park, Byoung-Joon; Park, Soo-Je; Yoon, Dae-No; Schouten, Stefan; Sinninghe Damsté, Jaap S.; Rhee, Sung-Keun

    2010-01-01

    The role of ammonia-oxidizing archaea (AOA) in nitrogen cycling in marine sediments remains poorly characterized. In this study, we enriched and characterized AOA from marine sediments. Group I.1a crenarchaea closely related to those identified in marine sediments and “Candidatus Nitrosopumilus maritimus” (99.1 and 94.9% 16S rRNA and amoA gene sequence identities to the latter, respectively) were substantially enriched by coculture with sulfur-oxidizing bacteria (SOB). The selective enrichmen...

  18. Toxicity in anaerobic digestion with emphasis on the effect of ammonia, sulfide and long-chain fatty acids on methanogenesis.

    NARCIS (Netherlands)

    Koster, I.W.

    1989-01-01

    The dissertation concerns the problem of toxicity in anaerobic digestion, which to a large extent is the problem of inhibition of methanogenic conversions by chemical compounds. The dissertation begins with an extensive literature review in which the microbiology o

  19. On the effect of aqueous ammonia soaking pretreatment on batch and continuous anaerobic digestion of digested swine manure fibers

    DEFF Research Database (Denmark)

    Mirtsou Xanthopoulou, Chrysoula; Jurado, Esperanza; Skiadas, Ioannis;

    2012-01-01

    The continuously increasing demand for renewable energy sources renders anaerobic digestion to one of the most promising technologies for renewable energy production. Due to the animal production intensification, manure is being used as the primary feedstock for most of the biogas plants. Thus...

  20. Effect of methanogenic substrates on anaerobic oxidation of methane and sulfate reduction by an anaerobic methanotrophic enrichment.

    KAUST Repository

    Meulepas, Roel J W

    2010-05-06

    Anaerobic oxidation of methane (AOM) coupled to sulfate reduction (SR) is assumed to be a syntrophic process, in which methanotrophic archaea produce an interspecies electron carrier (IEC), which is subsequently utilized by sulfate-reducing bacteria. In this paper, six methanogenic substrates are tested as candidate-IECs by assessing their effect on AOM and SR by an anaerobic methanotrophic enrichment. The presence of acetate, formate or hydrogen enhanced SR, but did not inhibit AOM, nor did these substrates trigger methanogenesis. Carbon monoxide also enhanced SR but slightly inhibited AOM. Methanol did not enhance SR nor did it inhibit AOM, and methanethiol inhibited both SR and AOM completely. Subsequently, it was calculated at which candidate-IEC concentrations no more Gibbs free energy can be conserved from their production from methane at the applied conditions. These concentrations were at least 1,000 times lower can the final candidate-IEC concentration in the bulk liquid. Therefore, the tested candidate-IECs could not have been produced from methane during the incubations. Hence, acetate, formate, methanol, carbon monoxide, and hydrogen can be excluded as sole IEC in AOM coupled to SR. Methanethiol did inhibit AOM and can therefore not be excluded as IEC by this study.

  1. Autotrophy as a predominant mode of carbon fixation in anaerobic methane-oxidizing microbial communities

    OpenAIRE

    Kellermann, M. Y.; Wegener, G.; Elvert, M; Yoshinaga, M. Y.; Lin, Y.-S.; Holler, T.; Mollar, X. P.; Knittel, K; Hinrichs, K.-U.

    2012-01-01

    The methane-rich, hydrothermally heated sediments of the Guaymas Basin are inhabited by thermophilic microorganisms, including anaerobic methane-oxidizing archaea (mainly ANME-1) and sulfate-reducing bacteria (e.g., HotSeep-1 cluster). We studied the microbial carbon flow in ANME-1/ HotSeep-1 enrichments in stable-isotope–probing experiments with and without methane. The relative incorporation of 13C from either dissolved inorganic carbon or methane into lipids revealed that methane-oxidizing...

  2. Towards a Mechanistic Understanding of Anaerobic Nitrate Dependent Iron Oxidation: Balancing Electron Uptake and Detoxification

    Directory of Open Access Journals (Sweden)

    JohnDCoates

    2012-02-01

    Full Text Available The anaerobic oxidation of Fe(II by subsurface microorganisms is an important part of biogeochemical cycling in the environment, but the biochemical mechanisms used to couple iron oxidation to nitrate respiration are not well understood. Based on our own work and the evidence available in the literature, we propose a mechanistic model for anaerobic nitrate dependent iron oxidation. We suggest that anaerobic iron oxidizing microorganisms likely exist along a continuum including: 1 bacteria that inadvertently oxidize Fe(II by abiotic or biotic reactions with enzymes or chemical intermediates in their metabolic pathways (e.g. denitrification and suffer from toxicity or energetic penalty, 2 Fe(II tolerant bacteria that gain little or no growth benefit from iron oxidation but can manage the toxic reactions, and 3 bacteria that efficiently accept electrons from Fe(II to gain a growth advantage while preventing or mitigating the toxic reactions. Predictions of the proposed model are highlighted and experimental approaches are discussed.

  3. Vertical Segregation and Phylogenetic Characterization of Ammonia-Oxidizing Bacteria and Archaea in the Sediment of a Freshwater Aquaculture Pond

    Science.gov (United States)

    Lu, Shimin; Liu, Xingguo; Ma, Zhuojun; Liu, Qigen; Wu, Zongfan; Zeng, Xianlei; Shi, Xu; Gu, Zhaojun

    2016-01-01

    Pond aquaculture is the major freshwater aquaculture method in China. Ammonia-oxidizing communities inhabiting pond sediments play an important role in controlling culture water quality. However, the distribution and activities of ammonia-oxidizing microbial communities along sediment profiles are poorly understood in this specific environment. Vertical variations in the abundance, transcription, potential ammonia oxidizing rate, and community composition of ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) in sediment samples (0–50 cm depth) collected from a freshwater aquaculture pond were investigated. The concentrations of the AOA amoA gene were higher than those of the AOB by an order of magnitude, which suggested that AOA, as opposed to AOB, were the numerically predominant ammonia-oxidizing organisms in the surface sediment. This could be attributed to the fact that AOA are more resistant to low levels of dissolved oxygen. However, the concentrations of the AOB amoA mRNA were higher than those of the AOA by 2.5- to 39.9-fold in surface sediments (0–10 cm depth), which suggests that the oxidation of ammonia was mainly performed by AOB in the surface sediments, and by AOA in the deeper sediments, where only AOA could be detected. Clone libraries of AOA and AOB amoA sequences indicated that the diversity of AOA and AOB decreased with increasing depth. The AOB community consisted of two groups: the Nitrosospira and Nitrosomonas clusters, and Nitrosomonas were predominant in the freshwater pond sediment. All AOA amoA gene sequences in the 0–2 cm deep sediment were grouped into the Nitrososphaera cluster, while other AOA sequences in deeper sediments (10–15 and 20–25 cm depths) were grouped into the Nitrosopumilus cluster. PMID:26834709

  4. Vertical segregation and phylogenetic characterization of ammonia-oxidizing bacteria and archaea in the sediment of a freshwater aquaculture pond

    Directory of Open Access Journals (Sweden)

    Shimin eLu

    2016-01-01

    Full Text Available Pond aquaculture is the major freshwater aquaculture method in China. Ammonia-oxidizing communities inhabiting pond sediments play an important role in controlling culture water quality. However, the distribution and activities of ammonia-oxidizing microbial communities along sediment profiles are poorly understood in this specific environment. Vertical variations in the abundance, transcription, potential ammonia oxidizing rate, and community composition of ammonia-oxidizing bacteria (AOB and ammonia-oxidizing archaea (AOA in sediment samples (0–50 cm depth collected from a freshwater aquaculture pond were investigated. The concentrations of the AOA amoA gene were higher than those of the AOB by an order of magnitude, which suggested that AOA, as opposed to AOB, were the numerically predominant ammonia-oxidizing organisms in the surface sediment. This could be attributed to the fact that AOA are more resistant to low levels of dissolved oxygen. However, the concentrations of the AOB amoA mRNA were higher than those of the AOA by 2.5–39.9-fold in surface sediments (0–10 cm depth, which suggests that the oxidation of ammonia was mainly performed by AOB in the surface sediments, and by AOA in the deeper sediments, where only AOA could be detected. Clone libraries of AOA and AOB amoA sequences indicated that the diversity of AOA and AOB decreased with increasing depth. The AOB community consisted of two groups: the Nitrosospira and Nitrosomonas clusters, and Nitrosomonas were predominant in the freshwater pond sediment. All AOA amoA gene sequences in the 0–2 cm deep sediment were grouped into the Nitrososphaera cluster, while other AOA sequences in deeper sediments (10–15 and 20–25 cm depths were grouped into the Nitrosopumilus cluster.

  5. Anaerobic oxidation of carbon steel in granitic groundwaters: A review of the relevant literature

    International Nuclear Information System (INIS)

    This report reviews the published literature on the anaerobic oxidation of iron in aqueous solutions which are of particular relevance to Swedish granitic groundwaters. The thermodynamics of iron corrosion in water are briefly considered. Following this the experimental data found in the literature are presented and discussed. Results were found for corrosion of iron in both pure water and solutions containing mineral salts. The literature work in the nature of the films formed on iron surfaces under anaerobic conditions is reviewed and the possible mechanisms of film formation are discussed. Conclusions are drawn on the factors most likely to influence and control film growth. 32 refs

  6. Anaerobic Ammonium-Oxidizing (Anammox) Bacteria and Associated Activity in Fixed-Film Biofilters of a Marine Recirculating Aquaculture System†

    OpenAIRE

    Tal, Yossi; Joy E M Watts; Schreier, Harold J.

    2006-01-01

    Microbial communities in the biological filter and waste sludge compartments of a marine recirculating aquaculture system were examined to determine the presence and activity of anaerobic ammonium-oxidizing (anammox) bacteria. Community DNA was extracted from aerobic and anaerobic fixed-film biofilters and the anaerobic sludge waste collection tank and was analyzed by amplifying 16S rRNA genes by PCR using anammox-selective and universal GC-clamped primers. Separation of amplified PCR product...

  7. Biogas production from undiluted chicken manure and maize silage: A study of ammonia inhibition in high solids anaerobic digestion.

    Science.gov (United States)

    Sun, Chen; Cao, Weixing; Banks, Charles J; Heaven, Sonia; Liu, Ronghou

    2016-10-01

    The feasibility of co-digestion of chicken manure (CM) and maize silage (MS) without water dilution was investigated in 5-L digesters. Specific methane production (SMP) of 0.309LCH4g(-1) volatile solids (VS) was achieved but only at lower %CM. Above a critical threshold for total ammonia nitrogen (TAN), estimated at 7gNL(-1), VFA accumulated with a characteristic increase in acetic acid followed by its reduction and an increase in propionic acid. During this transition the predominant methanogenic pathway was hydrogenotrophic. Methanogenesis was completely inhibited at TAN of 9gNL(-1). The low digestibility of the mixed feedstock led to a rise in digestate TS and a reduction in SMP over the 297-day experimental period. Methanogenesis appeared to be failing in one digester but was recovered by reducing the %CM. Co-digestion was feasible with CM ⩽20% of feedstock VS, and the main limiting factor was ammonia inhibition. PMID:27474956

  8. Biogeochemical controls and isotopic signatures of nitrous oxide production by a marine ammonia-oxidizing bacterium

    Directory of Open Access Journals (Sweden)

    C. H. Frame

    2010-04-01

    Full Text Available Nitrous oxide (N2O is a trace gas that contributes to greenhouse warming of the atmosphere and stratospheric ozone depletion. The N2O yield from nitrification (moles N2O-N produced/mole ammonium-N consumed has been used to estimate marine N2O production rates from measured nitrification rates and global estimates of oceanic export production. However, the N2O yield from nitrification is not constant. Previous culture-based measurements indicate that N2O yield increases as oxygen (O2 concentration decreases and as nitrite (NO2 concentration increases. These results were obtained in substrate-rich conditions and may not reflect N2O production in the ocean. Here, we have measured yields of N2O from cultures of the marine β-proteobacterium Nitrosomonas marina C-113a as they grew on low-ammonium (50 μM media. These yields were lower than previous reports, between 4×10−4 and 7×10−4 (moles N/mole N. The observed impact of O2 concentration on yield was also smaller than previously reported under all conditions except at high starting cell densities (1.5×10 cells ml−1, where 160-fold higher yields were observed at 0.5% O2 compared with 20% O2. At environmentally relevant cell densities (2×102 to 2.1×104 cells ml−1, cultures grown under 0.5% O2 had yields that were only 1.25- to 1.73-fold higher than cultures grown under 20% O2. Thus, previously reported many-fold increases in N2O yield with dropping O2 could be reproduced only at cell densities that far exceeded those of ammonia oxidizers in the ocean. The presence of excess NO2 (up to 1 mM in the growth medium also increased N2O yields by an average of 70% to 87% depending

  9. Archaeal amoA gene diversity points to distinct biogeography of ammonia-oxidizing Crenarchaeota in the ocean

    OpenAIRE

    Sintes, Eva; Bergauer, Kristin; de Corte, Daniele; Yokokawa, Taichi; Herndl, Gerhard J.

    2013-01-01

    Mesophilic ammonia-oxidizing Archaea (AOA) are abundant in a diverse range of marine environments, including the deep ocean, as revealed by the quantification of the archaeal amoA gene encoding the alpha-subunit of the ammonia monooxygenase. Using two different amoA primer sets, two distinct ecotypes of marine Crenarchaeota Group I (MCGI) were detected in the waters of the tropical Atlantic and the coastal Arctic. The HAC-AOA ecotype (high ammonia concentration AOA) was ≍ 8000 times and 15 ti...

  10. Anaerobic methane oxidation coupled to denitrification is the dominant methane sink in a deep lake

    DEFF Research Database (Denmark)

    Deutzmann, Joerg S.; Stief, Peter; Brandes, Josephin;

    2014-01-01

    Anaerobic methane oxidation coupled to denitrification, also known as “nitrate/nitrite-dependent anaerobic methane oxidation” (n-damo), was discovered in 2006. Since then, only a few studies have identified this process and the associated microorganisms in natural environments. In aquatic sediments......, the close proximity of oxygen- and nitrate-consumption zones can mask n-damo as aerobic methane oxidation. We therefore investigated the vertical distribution and the abundance of denitrifying methanotrophs related to Candidatus Methylomirabilis oxyfera with cultivation-independent molecular...... techniques in the sediments of Lake Constance. Additionally, the vertical distribution of methane oxidation and nitrate consumption zones was inferred from high-resolution microsensor profiles in undisturbed sediment cores. M. oxyfera-like bacteria were virtually absent at shallow-water sites (littoral...

  11. Seasonal dynamics of ammonia/ammonium-oxidizing prokaryotes in oxic and anoxic wetland sediments of subtropical coastal mangrove

    OpenAIRE

    Wang, Yong-Feng; Feng, Yao-Yu; Ma, Xiaojun; Gu, Ji-Dong

    2012-01-01

    Mangrove wetlands are an important ecosystem in tropical and subtropical regions, and the sediments may contain both oxic and anoxic zones. In this study, ammonia/ammonium-oxidizing prokaryotes (AOPs) in yellow and black sediments with vegetation and non-vegetated sediments in a mangrove wetland of subtropical Hong Kong were investigated in winter and summer. The phylogenetic diversity of anammox bacterial 16S rRNA genes and archaeal and bacterial amoA genes (encoding ammonia monooxygenase al...

  12. Conversion of upland to paddy field specifically alters the community structure of archaeal ammonia oxidizers in an acid soil

    OpenAIRE

    Alam, M. S.; Ren, G. D.; Lu, L.; Y. Zheng; Peng, X.H.; Jia, Z. J.

    2013-01-01

    The function of ammonia-oxidizing archaea (AOA) and bacteria (AOB) depends on the major energy-generating compounds (i.e., ammonia and oxygen). The diversification of AOA and AOB communities along ecological gradients of substrate availability in a complex environment have been much debated but rarely tested. In this study, two ecosystems of maize and rice crops under different fertilization regimes were selected to investigate the community diversification of soil AOA and AOB upon conversion...

  13. Spatial distribution of ammonia-oxidizing archaea and bacteria across eight freshwater lakes in sediments from Jiangsu of China

    OpenAIRE

    Xu Sun; Aili Wang; Liuyan Yang; Liyun Guo; Qiankun Chen; Zhinxin Hu; Lijuan Jiang; Lin Xiao

    2014-01-01

    Ammonia-oxidizingarchaea (AOA) and ammonia-oxidizing bacteria (AOB) play an important role innitrogen transformation in freshwater sediments. However, it is still unclear towhat extent the distribution patterns of these microorganisms are affected bythe freshwater sediment across a large geographical scale. This study wasdesigned to gain insight into the heterogeneity distribution of AOA and AOB in32 freshwater sediments from a wide range of ecologic types. Real-time quantitative polymerasech...

  14. Seasonal Changes of Freshwater Ammonia-Oxidizing Archaeal Assemblages and Nitrogen Species in Oligotrophic Alpine Lakes▿ †

    OpenAIRE

    Auguet, Jean-Christophe; Nomokonova, Natalya; Camarero, Lluis; Casamayor, Emilio O.

    2011-01-01

    The annual changes in the composition and abundance of ammonia-oxidizing archaea (AOA) were analyzed monthly in surface waters of three high mountain lakes within the Limnological Observatory of the Pyrenees (LOOP; northeast Spain) using both 16S rRNA and functional (ammonia monooxygenase gene, amoA) gene sequencing as well as quantitative PCR amplification. The set of biological data was related to changes in nitrogen species and to other relevant environmental variables. The whole archaeal ...

  15. Biodegradation and cometabolic modeling of selected beta blockers during ammonia oxidation.

    Science.gov (United States)

    Sathyamoorthy, Sandeep; Chandran, Kartik; Ramsburg, C Andrew

    2013-11-19

    Accurate prediction of pharmaceutical concentrations in wastewater effluents requires that the specific biochemical processes responsible for pharmaceutical biodegradation be elucidated and integrated within any modeling framework. The fate of three selected beta blockers-atenolol, metoprolol, and sotalol-was examined during nitrification using batch experiments to develop and evaluate a new cometabolic process-based (CPB) model. CPB model parameters describe biotransformation during and after ammonia oxidation for specific biomass populations and are designed to be integrated within the Activated Sludge Models framework. Metoprolol and sotalol were not biodegraded by the nitrification enrichment culture employed herein. Biodegradation of atenolol was observed and linked to the activity of ammonia-oxidizing bacteria (AOB) and heterotrophs but not nitrite-oxidizing bacteria. Results suggest that the role of AOB in atenolol degradation may be disproportionately more significant than is otherwise suggested by their lower relative abundance in typical biological treatment processes. Atenolol was observed to competitively inhibit AOB growth in our experiments, though model simulations suggest inhibition is most relevant at atenolol concentrations greater than approximately 200 ng·L(-1). CPB model parameters were found to be relatively insensitive to biokinetic parameter selection suggesting the model approach may hold utility for describing pharmaceutical biodegradation during biological wastewater treatment. PMID:24112027

  16. Effects of temperature and carbon-nitrogen (C/N) ratio on the performance of anaerobic co-digestion of dairy manure, chicken manure and rice straw: focusing on ammonia inhibition.

    Science.gov (United States)

    Wang, Xiaojiao; Lu, Xingang; Li, Fang; Yang, Gaihe

    2014-01-01

    Anaerobic digestion is a promising alternative to disposal organic waste and co-digestion of mixed organic wastes has recently attracted more interest. This study investigated the effects of temperature and carbon-nitrogen (C/N) ratio on the performance of anaerobic co-digestion of dairy manure (DM), chicken manure (CM) and rice straw (RS). We found that increased temperature improved the methane potential, but the rate was reduced from mesophilic (30∼40°C) to thermophilic conditions (50∼60°C), due to the accumulation of ammonium nitrogen and free ammonia and the occurrence of ammonia inhibition. Significant ammonia inhibition was observed with a C/N ratio of 15 at 35°C and at a C/N ratio of 20 at 55°C. The increase of C/N ratios reduced the negative effects of ammonia and maximum methane potentials were achieved with C/N ratios of 25 and 30 at 35°C and 55°C, respectively. When temperature increased, an increase was required in the feed C/N ratio, in order to reduce the risk of ammonia inhibition. Our results revealed an interactive effect between temperature and C/N on digestion performance. PMID:24817003

  17. Distribution and Diversity of Archaeal and Bacterial Ammonia Oxidizers in Salt Marsh Sediments▿

    OpenAIRE

    Moin, Nicole S.; Nelson, Katelyn A.; Bush, Alexander; Bernhard, Anne E.

    2009-01-01

    Diversity and abundance of ammonia-oxidizing Betaproteobacteria (β-AOB) and archaea (AOA) were investigated in a New England salt marsh at sites dominated by short or tall Spartina alterniflora (SAS and SAT sites, respectively) or Spartina patens (SP site). AOA amoA gene richness was higher than β-AOB amoA richness at SAT and SP, but AOA and β-AOB richness were similar at SAS. β-AOB amoA clone libraries were composed exclusively of Nitrosospira-like amoA genes. AOA amoA genes at SAT and SP we...

  18. Temperature Responses of Ammonia-Oxidizing Prokaryotes in Freshwater Sediment Microcosms

    OpenAIRE

    Jin Zeng; Dayong Zhao; Zhongbo Yu; Rui Huang; Wu, Qinglong L.

    2014-01-01

    In order to investigate the effects of temperature on the abundances and community compositions of ammonia-oxidizing archaea (AOA) and bacteria (AOB), lake microcosms were constructed and incubated at 15°C, 25°C and 35°C for 40 days, respectively. Temperature exhibited different effects on the abundance and diversity of archaeal and bacterial amoA gene. The elevated temperature increased the abundance of archaeal amoA gene, whereas the abundance of bacterial amoA gene decreased. The highest d...

  19. Batch culture enrichment of ANAMMOX populations from anaerobic and aerobic seed cultures.

    Science.gov (United States)

    Suneethi, S; Joseph, Kurian

    2011-01-01

    Discharge of nitrate and ammonia rich wastewaters into the natural waters encourage eutrophication, and contribute to aquatic toxicity. Anaerobic ammonium oxidation process (ANAMMOX) is a novel biological nitrogen removal alternative to nitrification-denitrification, that removes ammonia using nitrite as the electron acceptor. The feasibility of enriching the ANAMMOX bacteria from the anaerobic digester sludge of a biomethanation plant treating vegetable waste and aerobic sludge from an activated sludge process treating domestic sewage is reported in this paper. ANAMMOX bacterial activity was monitored and established in terms of nitrogen transformations to ammonia, nitrite and nitrate along with formation of hydrazine and hydroxylamine. PMID:20729077

  20. Aquarium nitrification revisited: Thaumarchaeota are the dominant ammonia oxidizers in freshwater aquarium biofilters.

    Science.gov (United States)

    Sauder, Laura A; Engel, Katja; Stearns, Jennifer C; Masella, Andre P; Pawliszyn, Richard; Neufeld, Josh D

    2011-01-01

    Ammonia-oxidizing archaea (AOA) outnumber ammonia-oxidizing bacteria (AOB) in many terrestrial and aquatic environments. Although nitrification is the primary function of aquarium biofilters, very few studies have investigated the microorganisms responsible for this process in aquaria. This study used quantitative real-time PCR (qPCR) to quantify the ammonia monooxygenase (amoA) and 16S rRNA genes of Bacteria and Thaumarchaeota in freshwater aquarium biofilters, in addition to assessing the diversity of AOA amoA genes by denaturing gradient gel electrophoresis (DGGE) and clone libraries. AOA were numerically dominant in 23 of 27 freshwater biofilters, and in 12 of these biofilters AOA contributed all detectable amoA genes. Eight saltwater aquaria and two commercial aquarium nitrifier supplements were included for comparison. Both thaumarchaeal and bacterial amoA genes were detected in all saltwater samples, with AOA genes outnumbering AOB genes in five of eight biofilters. Bacterial amoA genes were abundant in both supplements, but thaumarchaeal amoA and 16S rRNA genes could not be detected. For freshwater aquaria, the proportion of amoA genes from AOA relative to AOB was inversely correlated with ammonium concentration. DGGE of AOA amoA genes revealed variable diversity across samples, with nonmetric multidimensional scaling (NMDS) indicating separation of freshwater and saltwater fingerprints. Composite clone libraries of AOA amoA genes revealed distinct freshwater and saltwater clusters, as well as mixed clusters containing both freshwater and saltwater amoA gene sequences. These results reveal insight into commonplace residential biofilters and suggest that aquarium biofilters may represent valuable biofilm microcosms for future studies of AOA ecology. PMID:21858055

  1. Aquarium nitrification revisited: Thaumarchaeota are the dominant ammonia oxidizers in freshwater aquarium biofilters.

    Directory of Open Access Journals (Sweden)

    Laura A Sauder

    Full Text Available Ammonia-oxidizing archaea (AOA outnumber ammonia-oxidizing bacteria (AOB in many terrestrial and aquatic environments. Although nitrification is the primary function of aquarium biofilters, very few studies have investigated the microorganisms responsible for this process in aquaria. This study used quantitative real-time PCR (qPCR to quantify the ammonia monooxygenase (amoA and 16S rRNA genes of Bacteria and Thaumarchaeota in freshwater aquarium biofilters, in addition to assessing the diversity of AOA amoA genes by denaturing gradient gel electrophoresis (DGGE and clone libraries. AOA were numerically dominant in 23 of 27 freshwater biofilters, and in 12 of these biofilters AOA contributed all detectable amoA genes. Eight saltwater aquaria and two commercial aquarium nitrifier supplements were included for comparison. Both thaumarchaeal and bacterial amoA genes were detected in all saltwater samples, with AOA genes outnumbering AOB genes in five of eight biofilters. Bacterial amoA genes were abundant in both supplements, but thaumarchaeal amoA and 16S rRNA genes could not be detected. For freshwater aquaria, the proportion of amoA genes from AOA relative to AOB was inversely correlated with ammonium concentration. DGGE of AOA amoA genes revealed variable diversity across samples, with nonmetric multidimensional scaling (NMDS indicating separation of freshwater and saltwater fingerprints. Composite clone libraries of AOA amoA genes revealed distinct freshwater and saltwater clusters, as well as mixed clusters containing both freshwater and saltwater amoA gene sequences. These results reveal insight into commonplace residential biofilters and suggest that aquarium biofilters may represent valuable biofilm microcosms for future studies of AOA ecology.

  2. Ecosystem-specific selection of microbial ammonia oxidizers in an acid soil

    Science.gov (United States)

    Saiful Alam, M.; Ren, G.; Lu, L.; Zheng, Y.; Peng, X.; Jia, Z.

    2013-01-01

    The function of ammonia-oxidizing archaea (AOA) and bacteria (AOB) depends on the availability of ammonia substrate and the supply of oxygen. The interactions and evolutions of AOA and AOB communities along ecological gradients of substrate availability in complex environment have been much debated, but rarely tested. In this study, two ecosystems of maize and rice crops under different fertilization regimes were selected to investigate the community diversification of soil AOA and AOB in response to long-term field fertilization and flooding management in an acid soil. Real-time quantitative PCR of amoA genes demonstrated that the abundance of AOA was significantly stimulated after conversion of upland to paddy soils, while slight decline of AOB populations was observed. DGGE fingerprints of amoA genes further revealed remarkable changes in community compositions of AOA in paddy soil when compared to upland soil. Sequencing analysis revealed that upland soil was dominated by AOA within the soil group 1.1b lineage, while the marine group 1.1a lineage predominated AOA communities in paddy soils. Irrespective of upland and paddy soils, long-term field fertilizations led to higher abundance of amoA genes of AOA and AOB than control treatment that received no fertilization, whereas archaeal amoA gene abundances outnumbered their bacterial counterpart in all samples. Phylogenetic analyses of amoA genes showed that Nitrosospira cluster 3-like AOB dominated bacterial ammonia oxidizers in both paddy and upland soils, regardless of fertilization treatments. The results of this study suggest that the marine group 1.1a AOA could be better adapted to low-oxygen environment than AOA ecotypes of the soil group 1.1b lineage, and implicate that long-term flooding as the dominant selective force driving the community diversification of AOA populations in the acid soil tested.

  3. Ecosystem-specific selection of microbial ammonia oxidizers in an acid soil

    Directory of Open Access Journals (Sweden)

    M. Saiful Alam

    2013-01-01

    Full Text Available The function of ammonia-oxidizing archaea (AOA and bacteria (AOB depends on the availability of ammonia substrate and the supply of oxygen. The interactions and evolutions of AOA and AOB communities along ecological gradients of substrate availability in complex environment have been much debated, but rarely tested. In this study, two ecosystems of maize and rice crops under different fertilization regimes were selected to investigate the community diversification of soil AOA and AOB in response to long-term field fertilization and flooding management in an acid soil. Real-time quantitative PCR of amoA genes demonstrated that the abundance of AOA was significantly stimulated after conversion of upland to paddy soils, while slight decline of AOB populations was observed. DGGE fingerprints of amoA genes further revealed remarkable changes in community compositions of AOA in paddy soil when compared to upland soil. Sequencing analysis revealed that upland soil was dominated by AOA within the soil group 1.1b lineage, while the marine group 1.1a lineage predominated AOA communities in paddy soils. Irrespective of upland and paddy soils, long-term field fertilizations led to higher abundance of amoA genes of AOA and AOB than control treatment that received no fertilization, whereas archaeal amoA gene abundances outnumbered their bacterial counterpart in all samples. Phylogenetic analyses of amoA genes showed that Nitrosospira cluster 3-like AOB dominated bacterial ammonia oxidizers in both paddy and upland soils, regardless of fertilization treatments. The results of this study suggest that the marine group 1.1a AOA could be better adapted to low-oxygen environment than AOA ecotypes of the soil group 1.1b lineage, and implicate that long-term flooding as the dominant selective force driving the community diversification of AOA populations in the acid soil tested.

  4. Comparison of the community structures of ammonia-oxidizing bacteria and archaea in rhizoplanes of floating aquatic macrophytes.

    Science.gov (United States)

    Wei, Bo; Yu, Xin; Zhang, Shuting; Gu, Li

    2011-09-20

    Some common floating aquatic macrophytes could remove nutrients, such as nitrogen, from eutrophic water. However, the relationship between these macrophytes and the ammonia-oxidizing microorganisms on their rhizoplanes is still unknown. In this study, we examined communities of ammonia-oxidizing archaea (AOA) and bacteria (AOB) on the rhizoplanes of common floating aquatic macrophytes (Eichhornia crassipes, Pistia stratiotes and Ipomoea aquatic) in a eutrophic reservoir.The results show that AOB were the predominant ammonia-oxidizer on the three rhizoplanes. The principal AOB were Nitrosomonas europaea and Nitrosomonas ureae clades. The principal group of AOA was most similar to the clone from activated sludge. The ratio of AOB amoA gene copies to AOA varied from 1.36 (on E. crassipes) to 41.90 (on P. stratiotes). Diversity of AOA was much lower than that of AOB in most samples, with the exception of P. stratiotes. PMID:21239153

  5. Enhanced abundance and diversity of ammonia-oxidizing Archaea in the Pearl River estuary

    Science.gov (United States)

    Xie, W.; Zhang, C. L.; Wang, P.; Zhou, X.; Guo, W.

    2014-12-01

    Thaumarchaeota are recently recognized as an important group of Archaea that can perform aerobic oxidation of ammonia in a wide range of environments. The goal of this study was to evaluate changes in abundance and diversity of planktonic ammonia-oxidizing Archaea (e.g., Thaumarchaeota) along a salinity gradient from the lower Pearl River to the northern South China Sea. Quantitative PCR and sequencing of total archaeal 16S rRNA gene and the archaeal amoA gene were performed on suspended particulate organic matter collected in different seasons from the freshwater to the ocean water. Total amoA gene copies and relative abundance of Thaumarchaeota all peaked in the estuary where salinity ranged between 4.5‰ and 26.7‰. The diversity of archaeal amoA gene was also highest in the estuary. Seasonality and SiO32- appear to be two major factors affecting the distribution of subclusters of archaeal amoA genes. For example, Nitrosopumilus subcluster 7.1 was most abundant in winter in fresh water, whereas Nitrososphaera were more abundant in summer. Samples collected from the area around Wanshan Island, which is located at the outermost part of the Pearl River estuary, had high abundance of unclassified archaeal amoA genes, suggesting some new groups of Thaumarchaeota might inhabit this water body. Overall, the high abundance and diversity of Thaumarchaeota in the Pearl River estuary may indicate enhanced role of AOA in nitrogen cycle in this dynamic ecosystem.

  6. Ammonia-oxidizing activity and microbial community structure in acid tea (Camellia sinensis) orchard soil

    Science.gov (United States)

    Okamura, K.; Takanashi, A.; Yamada, T.; Hiraishi, A.

    2012-03-01

    The purpose of this study was to determine the ammonia-oxidizing activity and the phylogentic composition of microorganisms involved in acid tea (Camellia sinensis) orchard soil. All soil samples were collected from three sites located in Tahara and Toyohashi, Aichi Prefecture, Japan. The potential nitrification rate (PNR) was measured by the chlorate inhibition method. The soil pH of tea orchards studied ranged from 2.78 to 4.84, differing significantly from sample to sample, whereas that of meadow and unplanted fields ranged from 5.78 to 6.35. The PNR ranged from 0.050 to 0.193 μg NO2--Ng-1 h-1 and were positively correlated with the soil pH (r2 = 0.382, pamoA genes. The detected archaeal clones separated from the cluster of the 'Soil clones' and tightly clustered with the clones originating from other acidic soil environments including the Chinese tea orchard soil. These results suggest that the specific archaeal populations dominate as the ammonia oxidizers in acid tea-orchard soils and possibly other acid soils, independent of geographic locations, which results from the adaptation to specific ecological niches.

  7. 氨氧化工艺(AMOXP)处理高氨氮有机废水%Ammonia oxidation process for the treatment of organic wastewater containing high-cncentration ammonia nitrogen

    Institute of Scientific and Technical Information of China (English)

    刘卫霞; 张科; 刘天宇; 李丽; 高照吉

    2015-01-01

    介绍了某生物工程厂采用厌氧工艺(循环式颗粒污泥反应器,即MQIC反应器)、氨氧化工艺和絮凝沉淀池处理厂区生产废水,处理量为10000 m3/d,该工艺系统对原水中COD、NH4+-N、TN的去除率分别可达97%、98%、90%,运行稳定,整个工艺处理出水水质可达到园区接管要求。同时,对厂区MQIC反应器和氨氧化工艺的启动调试进行了阐述,实践证明该工艺系统对处理高氨氮有机废水效果显著。%The plant-produced wastewater of a bioengineering plant has been treated by anaerobic process (circula-ting granula sludge reactor,i.e. MQIC reactor),ammonia oxidation process and flocculation-sedimentation tank, whose treatment capacity is 10 000 m3/d. The removing rates of COD,NH4+-N and TN are 97%,98% and 90%, respectively. The operation is stable and the effluent water quality could meet the acceptable requirements specified by the industrial park. In addition,the statement on the start-up and debugging for MQIC reactor and AMOXP are made. The practice proves that this process has remarkable effect on the treatment of organic wastewater containing highly concentrated ammonia nitrogen.

  8. Nitrification rates in Arctic soils are associated with functionally distinct populations of ammonia-oxidizing archaea

    Science.gov (United States)

    Alves, Ricardo J. E.; Wanek, Wolfgang; Zappe, Anna; Richter, Andreas; Svenning, Mette M.; Schleper, Christa; Urich, Tim

    2014-05-01

    The functioning of Arctic soil ecosystems is crucially important for global climate, although basic knowledge regarding their biogeochemical processes is lacking. Nitrogen (N) is the major limiting nutrient in these environments, and therefore it is particularly important to gain a better understanding of the microbial populations catalyzing transformations that influence N bioavailability. However, microbial communities driving this process remain largely uncharacterized in Arctic soils, namely those catalyzing the rate-limiting step of ammonia (NH3) oxidation. Eleven Arctic soils from Svalbard were analyzed through a polyphasic approach, including determination of gross nitrification rates through a 15N pool dilution method, qualitative and quantitative analyses of ammonia-oxidizing archaea (AOA) and bacteria (AOB) populations based on the functional marker gene amoA (encoding the ammonia monooxygenase subunit A), and enrichment of AOA in laboratory cultures. AOA were the only NH3 oxidizers detected in five out of 11 soils, and outnumbered AOB by 1 to 3 orders of magnitude in most others. AOA showed a great overall phylogenetic diversity that was differentially distributed across soil ecosystems, and exhibited an uneven population composition that reflected the dominance of a single AOA phylotype in each population. Moreover, AOA populations showed a multifactorial association with the soil properties, which reflected an overall distribution associated with tundra type and with several physico-chemical parameters combined, namely pH and soil moisture and N contents (i.e., NO3- and dissolved organic N). Remarkably, the different gross in situ and potential nitrification rates between soils were associated with distinct AOA phylogenetic clades, suggesting differences in their nitrifying potential, both under the native NH3 conditions and as a response to higher NH3 availability. This was further supported by the selective enrichment of two AOA clades that exhibited

  9. Addition of anaerobic tanks to an oxidation ditch system to enhance removal of phosphorus from wastewater

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The oxidation ditch has been used for many years all over the world as an economic and efficient wastewater treatment technology. It can remove COD, nitrogen and a part of phosphorus efficiently. In the experiment described, a pilot scale Pasveer oxidation ditch system has been tested to investigate the removal of phosphorus from wastewater. The experimental results showed that influent total phosphorus(TP) was removed for 35% -50%. After this, two anaerobic tanks with total volume of 11 m3 were added to the system to release phosphorus. As a result, the TP removal efficiency increased by about 20%. At an anaerobic HRT of about 6 hours, a TP removal efficiency of 71 % was achieved.

  10. A Stability Study of Ni/Yttria-Stabilized Zirconia Anode for Direct Ammonia Solid Oxide Fuel Cells.

    Science.gov (United States)

    Yang, Jun; Molouk, Ahmed Fathi Salem; Okanishi, Takeou; Muroyama, Hiroki; Matsui, Toshiaki; Eguchi, Koichi

    2015-12-30

    In recent years, solid oxide fuel cells fueled with ammonia have been attracting intensive attention. In this work, ammonia fuel was supplied to the Ni/yttria-stabilized zirconia (YSZ) cermet anode at 600 and 700 °C, and the change of electrochemical performance and microstructure under the open-circuit state was studied in detail. The influence of ammonia exposure on the microstructure of Ni was also investigated by using Ni/YSZ powder and Ni film deposited on a YSZ disk. The obtained results demonstrated that Ni in the cermet anode was partially nitrided under an ammonia atmosphere, which considerably roughened the Ni surface. Moreover, the destruction of the anode support layer was confirmed for the anode-supported cell upon the temperature cycling test between 600 and 700 °C because of the nitriding phenomenon of Ni, resulting in severe performance degradation. PMID:26642379

  11. The Potential for Biologically Catalyzed Anaerobic Methane Oxidation on Ancient Mars

    OpenAIRE

    Marlow, Jeffrey J.; LaRowe, Douglas E.; Ehlmann, Bethany L.; Amend, Jan P.; Orphan, Victoria J

    2014-01-01

    This study examines the potential for the biologically mediated anaerobic oxidation of methane (AOM) coupled to sulfate reduction on ancient Mars. Seven distinct fluids representative of putative martian groundwater were used to calculate Gibbs energy values in the presence of dissolved methane under a range of atmospheric CO_2 partial pressures. In all scenarios, AOM is exergonic, ranging from −31 to −135 kJ/mol CH_4. A reaction transport model was constructed to examine how environmentally ...

  12. The Short-term Effects of Temperature and Free Ammonia on Ammonium Oxidization in Granular and Floccular Nitrifying System

    Institute of Scientific and Technical Information of China (English)

    吴蕾; 彭永臻; 马勇; 刘旭; 李凌云; 王淑莹

    2012-01-01

    The short-term effects of temperature and free ammonia (FA) on ammonium oxidization were investigated in this study by operating several batch tests with two different partial nitrification aggregates, formed as either granules or flocs. The results showed that the rate of ammonium oxidation in both cultures increased significantly as temperature increased from 10 to 30 °C. The specific ammonium oxidation rate with the granules was 2-3 times higher than that with flocs at the same temperature. Nitrification at various FA concentrations and temperatures combination exhibited obvious inhibition in ammonium oxidation rate when FA was 90 mg·L 1 and tempera- ture dropped to 10 °C in the two systems. However, the increase in substrate oxidation rate of ammonia at 30 °C was observed. The results suggested that higher reaction temperature was helpful to reduce the toxicity of FA. Granules appeared to be more tolerant to FA attributed to the much fraction of ammonia oxidizing bacteria (AOB) and higher resistance to the transfer of ammonia into the bacterial aggregates, whereas in the floc system, the bacteria distributed throughout the entire aggregate. These results may contribute to the applicability of the nitrifying granules in wastewater treatment operated at high ammonium concentration.

  13. Spatial Interaction of Archaeal Ammonia-Oxidizers and Nitrite-Oxidizing Bacteria in an Unfertilized Grassland Soil

    Science.gov (United States)

    Stempfhuber, Barbara; Richter-Heitmann, Tim; Regan, Kathleen M.; Kölbl, Angelika; Wüst, Pia K.; Marhan, Sven; Sikorski, Johannes; Overmann, Jörg; Friedrich, Michael W.; Kandeler, Ellen; Schloter, Michael

    2016-01-01

    Interrelated successive transformation steps of nitrification are performed by distinct microbial groups – the ammonia-oxidizers, comprising ammonia-oxidizing archaea (AOA) and bacteria (AOB), and nitrite-oxidizers such as Nitrobacter and Nitrospira, which are the dominant genera in the investigated soils. Hence, not only their presence and activity in the investigated habitat is required for nitrification, but also their temporal and spatial interactions. To demonstrate the interdependence of both groups and to address factors promoting putative niche differentiation within each group, temporal and spatial changes in nitrifying organisms were monitored in an unfertilized grassland site over an entire vegetation period at the plot scale of 10 m2. Nitrifying organisms were assessed by measuring the abundance of marker genes (amoA for AOA and AOB, nxrA for Nitrobacter, 16S rRNA gene for Nitrospira) selected for the respective sub-processes. A positive correlation between numerically dominant AOA and Nitrospira, and their co-occurrence at the same spatial scale in August and October, suggests that the nitrification process is predominantly performed by these groups and is restricted to a limited timeframe. Amongst nitrite-oxidizers, niche differentiation was evident in observed seasonally varying patterns of co-occurrence and spatial separation. While their distributions were most likely driven by substrate concentrations, oxygen availability may also have played a role under substrate-limited conditions. Phylogenetic analysis revealed temporal shifts in Nitrospira community composition with an increasing relative abundance of OTU03 assigned to sublineage V from August onward, indicating its important role in nitrite oxidation. PMID:26834718

  14. Spatial interaction of archaeal ammonia-oxidizers and nitrite-oxidizing bacteria in an unfertilized grassland soil

    Directory of Open Access Journals (Sweden)

    Barbara eStempfhuber

    2016-01-01

    Full Text Available Interrelated successive transformation steps of nitrification are performed by distinct microbial groups – the ammonia-oxidizers, comprising ammonia-oxidizing archaea (AOA and bacteria (AOB, and nitrite-oxidizers such as Nitrobacter and Nitrospira, which are the dominant genera in the investigated soils. Hence, not only their presence and activity in the investigated habitat is required for nitrification, but also their temporal and spatial interactions. To demonstrate the interdependence of both groups and to address factors promoting putative niche differentiation within each group, temporal and spatial changes in nitrifying organisms were monitored in an unfertilized grassland site over an entire vegetation period at the plot scale of 10 m². Nitrifying organisms were assessed by measuring the abundance of marker genes (amoA for AOA and AOB, nxrA for Nitrobacter, 16S rRNA gene for Nitrospira selected for the respective sub-processes. A positive correlation between numerically dominant AOA and Nitrospira, and their co-occurrence at the same spatial scale in August and October, suggests that the nitrification process is predominantly performed by these groups and is restricted to a limited timeframe. Amongst nitrite-oxidizers, niche differentiation was evident in observed seasonally varying patterns of co-occurrence and spatial separation. While their distributions were most likely driven by substrate concentrations, oxygen availability may also have played a role under substrate-limited conditions. Phylogenetic analysis revealed temporal shifts in Nitrospira community composition with an increasing relative abundance of OTU03 assigned to sublineage V from August onwards, indicating its important role in nitrite oxidation.

  15. Diversity and quantity of ammonia-oxidizing Archaea and Bacteria in sediment of the Pearl River Estuary, China

    OpenAIRE

    Jin, Tao; ZHANG, Tong; Lin YE; Lee, On On; Wong, Yue Him; Qian, Pei Yuan

    2011-01-01

    The diversity and abundance of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in the sediment of the Pearl River Estuary were investigated by cloning and quantitative real-time polymerase chain reaction (qPCR). From one sediment sample S16, 36 AOA OTUs (3% cutoff) were obtained from three clone libraries constructed using three primer sets for amoA gene. Among the 36 OTUs, six were shared by all three clone libraries, two appeared in two clone libraries, and the other 28...

  16. Ammonia oxidation is not required for growth of Group 1.1c soil Thaumarchaeota

    OpenAIRE

    Weber, Eva B.; Lehtovirta-Morley, Laura E.; Prosser, James I.; Gubry-Rangin, Cécile

    2015-01-01

    Thaumarchaeota are among the most abundant organisms on Earth and are ubiquitous. Within this phylum, all cultivated representatives of Group 1.1a and Group 1.1b Thaumarchaeota are ammonia oxidizers, and play a key role in the nitrogen cycle. While Group 1.1c is phylogenetically closely related to the ammonia-oxidizing Thaumarchaeota and is abundant in acidic forest soils, nothing is known about its physiology or ecosystem function. The goal of this study was to perform in situ physiological ...

  17. Abundance and Diversity of Ammonia-Oxidizing Archaea and Bacteria in Sediments of Trophic End Members of the Laurentian Great Lakes, Erie and Superior

    OpenAIRE

    Annette Bollmann; Bullerjahn, George S.; Robert Michael McKay

    2014-01-01

    Ammonia oxidation is the first step of nitrification carried out by ammonia-oxidizing Archaea (AOA) and Bacteria (AOB). Lake Superior and Erie are part of the Great Lakes system differing in trophic status with Lake Superior being oligotrophic and Lake Erie meso- to eutrophic. Sediment samples were collected from both lakes and used to characterize abundance and diversity of AOA and AOB based on the ammonia monooxygenase (amoA) gene. Diversity was accessed by a pyro-sequencing approach and th...

  18. Spatial Variability in Nitrification Rates and Ammonia-Oxidizing Microbial Communities in the Agriculturally Impacted Elkhorn Slough Estuary, California ▿ †

    OpenAIRE

    Scott D Wankel; Mosier, Annika C.; Hansel, Colleen M.; Paytan, Adina; Francis, Christopher A.

    2010-01-01

    Ammonia oxidation—the microbial oxidation of ammonia to nitrite and the first step in nitrification—plays a central role in nitrogen cycling in coastal and estuarine systems. Nevertheless, questions remain regarding the connection between this biogeochemical process and the diversity and abundance of the mediating microbial community. In this study, we measured nutrient fluxes and rates of sediment nitrification in conjunction with the diversity and abundance of ammonia-oxidizing archaea (AOA...

  19. Bioaugmentation with an acetate-oxidising consortium as a tool to tackle ammonia inhibition of anaerobic digestion

    DEFF Research Database (Denmark)

    Fotidis, Ioannis; Karakashev, Dimitar Borisov; Angelidaki, Irini

    2013-01-01

    blanket (UASB) reactor subjected to high ammonia loads was tested. The co-cultivation in fed-batch reactors of a fast-growing hydrogenotrophic methanogen (i.e. Methanoculleus bourgensis MS2T) with the SAO co-culture was also investigated. Results demonstrated that bioaugmentation of SAO co-culture in a...... UASB reactor was not possible most likely due to the slow maximum growth rate (μmax=0.007h-1) of the culture caused by the methanogenic partner. The addition of M. bourgensis to SAO led to 42% higher growth rate (μmax=0.01h-1) in fed-batch reactors. This indicates that methanogens were the slowest...... partners of the SAO co-culture and therefore were the limiting factor during bioaugmentation in the UASB reactor. © 2013 Elsevier Ltd....

  20. Sulfate reduction and anaerobic methane oxidation in Black Sea sediments

    DEFF Research Database (Denmark)

    Jørgensen, BB; Weber, A.; Zopfi, J.

    2001-01-01

    Beyond the shelf break at ca. 150 m water depth, sulfate reduction is the only important process of organic matter oxidation in Black Sea sediments from the surface down to the sulfate-methane transition at 2-4 m depth. Sulfate reduction rates were measured experimentally with (SO42-)-S-35, and the...... the process was very sluggish with turnover times of methane within the sulfate-methane transition zone of 20 yr or more. (C) 2001 Elsevier Science Ltd. All rights reserved.Beyond the shelf break at ca. 150 m water depth, sulfate reduction is the only important process of organic matter oxidation in...... Black Sea sediments from the surface down to the sulfate-methane transition at 2-4 m depth. Sulfate reduction rates were measured experimentally with (SO42-)-S-35, and the rates were compared with results of two diffusion-reaction models. The results showed that, even in these non-bioirrigated sediments...

  1. The effect of human settlement on the abundance and community structure of ammonia oxidizers in tropical stream sediments

    Science.gov (United States)

    Reis, Mariana P.; Ávila, Marcelo P.; Keijzer, Rosalinde M.; Barbosa, Francisco A. R.; Chartone-Souza, Edmar; Nascimento, Andréa M. A.; Laanbroek, Hendrikus J.

    2015-01-01

    Ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) are a diverse and functionally important group in the nitrogen cycle. Nevertheless, AOA and AOB communities driving this process remain uncharacterized in tropical freshwater sediment. Here, the effect of human settlement on the AOA and AOB diversity and abundance have been assessed by phylogenetic and quantitative PCR analyses, using archaeal and bacterial amoA and 16S rRNA genes. Overall, each environment contained specific clades of amoA and 16S rRNA genes sequences, suggesting that selective pressures lead to AOA and AOB inhabiting distinct ecological niches. Human settlement activities, as derived from increased metal and mineral nitrogen contents, appear to cause a response among the AOB community, with Nitrosomonas taking advantage over Nitrosospira in impacted environments. We also observed a dominance of AOB over AOA in mining-impacted sediments, suggesting that AOB might be the primary drivers of ammonia oxidation in these sediments. In addition, ammonia concentrations demonstrated to be the driver for the abundance of AOA, with an inversely proportional correlation between them. Our findings also revealed the presence of novel ecotypes of Thaumarchaeota, such as those related to the obligate acidophilic Nitrosotalea devanaterra at ammonia-rich places of circumneutral pH. These data add significant new information regarding AOA and AOB from tropical freshwater sediments, albeit future studies would be required to provide additional insights into the niche differentiation among these microorganisms. PMID:26379659

  2. Impact of free ammonia on anammox rates (anoxic ammonium oxidation) in a moving bed biofilm reactor.

    Science.gov (United States)

    Jaroszynski, L W; Cicek, N; Sparling, R; Oleszkiewicz, J A

    2012-06-01

    Using a bench scale moving bed bioreactor (MBBR), the effect of free ammonia (FA, NH(3), the un-ionized form of ammonium NH(4)(+)) concentration on anoxic ammonium oxidation (anammox) was evaluated based on the volumetric nitrogen removal rate (NRR). Although, a detailed microbial analysis was not conducted, the major NRR observed was assumed to be by anammox, based on the nitrogen conversion ratios of nitrite to ammonium and nitrate to ammonium. Since the concentration of free ammonia as a proportion of the total ammonia concentration is pH-dependent, the impact of changing the operating pH from 6.9 to 8.2, was investigated under constant nitrogen loading conditions during continuous reactor operation. Furthermore, the effect of sudden nitrogen load changes was investigated under constant pH conditions. Batch tests were conducted to determine the immediate response of the anammox consortium to shifts in pH and FA concentrations. It was found that FA was inhibiting NRR at concentrations exceeding 2 mg N L(-1). In the pH range 7-8, the decrease in anammox activity was independent of pH and related only to the concentration of FA. Nitrite concentrations of up to 120 mg N L(-1) did not negatively affect NRR for up to 3.5 h. It was concluded that a stable NRR in a moving bed biofilm reactor depended on maintaining FA concentrations below 2 mg N L(-1) when the pH was maintained between 7 and 8. PMID:22483855

  3. Simultaneous removal of ammonia, P and COD from anaerobically digested piggery wastewater using an integrated process of chemical precipitation and air stripping

    International Nuclear Information System (INIS)

    The paper presented an efficient integrated physicochemical process, which consists of chemical precipitation and air stripping, for the simultaneous removal of NH3-N, total P and COD from anaerobically digested piggery wastewater. In the integrated process, Ca(OH) 2 was used as the precipitant for NH4+, PO43- and organic phosphorous compounds, and as the pH adjuster for the air stripping of residual ammonia. The possibility of the suggested process and the related mechanisms were first investigated through a series of equilibrium tests. Laboratory scale tests were carried out to validate the application possibility of the integrated process using a new-patented water sparged aerocyclone reactor (WSA). The WSA could be effectively used for the simultaneous removal of NH3-N, total P and COD. 3 g/L of Ca(OH) 2 is a proper dosage for the simultaneous removal. The simultaneous removal of NH3-N, total P and COD in the WSA reactor could be easily optimized by selecting a proper air inlet velocity and a proper jet velocity of the liquid phase. In all the cases, the removal efficiencies of the NH3-N, total P and COD were over 91%, 99.2% and 52% for NH3-N, total P and COD, respectively. The formed precipitates in the process could be easily settled down from the suspension system. Therefore, the integrated process provided an efficient alternative for the simultaneous removal of NH3-N, total P and COD from the wastewater.

  4. Competitive interactions between methane- and ammonia-oxidizing bacteria modulate carbon and nitrogen cycling in paddy soil

    Science.gov (United States)

    Zheng, Y.; Huang, R.; Wang, B. Z.; Bodelier, P. L. E.; Jia, Z. J.

    2014-06-01

    Pure culture studies have demonstrated that methanotrophs and ammonia oxidizers can both carry out the oxidation of methane and ammonia. However, the expected interactions resulting from these similarities are poorly understood, especially in complex, natural environments. Using DNA-based stable isotope probing and pyrosequencing of 16S rRNA and functional genes, we report on biogeochemical and molecular evidence for growth stimulation of methanotrophic communities by ammonium fertilization, and that methane modulates nitrogen cycling by competitive inhibition of nitrifying communities in a rice paddy soil. Pairwise comparison between microcosms amended with CH4, CH4+Urea, and Urea indicated that urea fertilization stimulated methane oxidation activity 6-fold during a 19-day incubation period, while ammonia oxidation activity was significantly suppressed in the presence of CH4. Pyrosequencing of the total 16S rRNA genes revealed that urea amendment resulted in rapid growth of Methylosarcina-like MOB, and nitrifying communities appeared to be partially inhibited by methane. High-throughput sequencing of the 13C-labeled DNA further revealed that methane amendment resulted in clear growth of Methylosarcina-related MOB while methane plus urea led to an equal increase in Methylosarcina and Methylobacter-related type Ia MOB, indicating the differential growth requirements of representatives of these genera. An increase in 13C assimilation by microorganisms related to methanol oxidizers clearly indicated carbon transfer from methane oxidation to other soil microbes, which was enhanced by urea addition. The active growth of type Ia methanotrops was significantly stimulated by urea amendment, and the pronounced growth of methanol-oxidizing bacteria occurred in CH4-treated microcosms only upon urea amendment. Methane addition partially inhibited the growth of Nitrosospira and Nitrosomonas in urea-amended microcosms, as well as growth of nitrite-oxidizing bacteria. These

  5. Electrochemical oxidation of ammonia-containing wastewater using Ti/RuO2-Pt electrode

    Directory of Open Access Journals (Sweden)

    Wei-wu HU

    2009-12-01

    Full Text Available The electrochemical oxidation degradation processes for artificial and actual wastewater containing ammonia were carried out with a Ti/RuO2-Pt anode and a Ti plate cathode. We studied the effects of different current densities, space sizes between the two electrodes, and amounts of added NaCl on ammonia-containing wastewater treatment. It was shown that, after a 30-min treatment under the optimal conditions, which were a current density of 20 mA/cm2, a space size between the two electrodes of 1 cm, and an added amount of 0.5 g/L of NaCl, the COD concentration in municipal wastewater was 40 mg/L, a removal rate of 90%; and the NH3-N concentration was 7 mg/L, a removal rate of 88.3%. The effluent of municipal wastewater qualified for Class A of the Discharge Standard of Pollutants for Municipal Wastewater Treatment Plant (GB18918-2002.

  6. Catalytic oxidation of ammonia on RuO2(110) surfaces: mechanism and selectivity.

    Science.gov (United States)

    Wang, Y; Jacobi, K; Schöne, W-D; Ertl, G

    2005-04-28

    The selective oxidation of ammonia to either N2 or NO on RuO2(110) single-crystal surfaces was investigated by a combination of vibrational spectroscopy (HREELS), thermal desorption spectroscopy (TDS) and steady-state rate measurements under continuous flow conditions. The stoichiometric RuO2(110) surface exposes coordinatively unsaturated (cus) Ru atoms onto which adsorption of NH3 (NH3-cus) or dissociative adsorption of oxygen (O-cus) may occur. In the absence of O-cus, ammonia desorbs completely thermally without any reaction. However, interaction between NH3-cus and O-cus starts already at 90 K by hydrogen abstraction and hydrogenation to OH-cus, leading eventually to N-cus and H2O. The N-cus species recombine either with each other to N2 or with neighboring O-cus leading to strongly held NO-cus which desorbs around 500 K. The latter reaction is favored by higher concentrations of O-cus. Under steady-state flow condition with constant NH3 partial pressure and varying O2 pressure, the rate for N2 formation takes off first, passes through a maximum and then decreases again, whereas that for NO production exhibits an S-shape and rises continuously. In this way at 530 K almost 100% selectivity for NO formation (with fairly high reaction probability for NH3) is reached. PMID:16851919

  7. Differential response of ammonia-oxidizing archaea and bacteria to the wetting of salty arid soil.

    Science.gov (United States)

    Sher, Yonatan; Ronen, Zeev; Nejidat, Ali

    2016-08-01

    Ammonia-oxidizing archaea and bacteria (AOA, AOB) catalyze the first and rate-limiting step of nitrification. To examine their differential responses to the wetting of dry and salty arid soil, AOA and AOB amoA genes (encoding subunit A of the ammonia monooxygenase) and transcripts were enumerated in dry (summer) and wet (after the first rainfall) soil under the canopy of halophytic shrubs and between the shrubs. AOA and AOB were more abundant under shrub canopies than between shrubs in both the dry and wetted soil. Soil wetting caused a significant decrease in AOB abundance under the canopy and an increase of AOA between the shrubs. The abundance of the archaeal amoA gene transcript was similar for both the wet and dry soil, and the transcript-to-gene ratios were amoA transcript-to-gene ratios were between 78 and 514. The lowest ratio was in dry soil under the canopy and the highest in the soil between the shrubs. The results suggest that the AOA are more resilient to stress conditions and maintain a basic activity in arid ecosystems, while the AOB are more responsive to changes in the biotic and abiotic conditions. PMID:27037935

  8. Global biodiversity of aquatic ammonia-oxidizing archaea is partitioned by habitat

    Directory of Open Access Journals (Sweden)

    Steven J Biller

    2012-07-01

    Full Text Available Archaea play an important role in nitrification and are, thus, inextricably linked to the global carbon and nitrogen cycles. Since the initial discovery of an ammonia monooxygenase α-subunit (amoA gene associated with an archaeal metagenomic fragment, archaeal amoA sequences have been detected in a wide variety of nitrifying environments. Recent sequencing efforts have revealed extensive diversity of archaeal amoA sequences within different habitats. In this study, we have examined over 8000 amoA sequences from the literature and public databases in an effort to understand the ecological factors influencing the distribution and diversity of ammonia-oxidizing archaea (AOA, with a particular focus on sequences from aquatic habitats. This broad survey provides strong statistical support for the hypothesis that different environments contain distinct clusters of AOA amoA sequences, as surprisingly few sequences are found in more than one habitat type. Within aquatic environments, salinity, depth in the water column, and temperature were significantly correlated with the distribution of sequence types. These findings support the existence of multiple distinct aquatic AOA populations in the environment and suggest some possible selective pressures driving the partitioning of AOA amoA diversity.

  9. A novel ammonia-oxidizing archaeon from wastewater treatment plant: Its enrichment, physiological and genomic characteristics

    Science.gov (United States)

    Li, Yuyang; Ding, Kun; Wen, Xianghua; Zhang, Bing; Shen, Bo; Yang, Yunfeng

    2016-03-01

    Ammonia-oxidizing archaea (AOA) are recently found to participate in the ammonia removal processes in wastewater treatment plants (WWTPs), similar to their bacterial counterparts. However, due to lack of cultivated AOA strains from WWTPs, their functions and contributions in these systems remain unclear. Here we report a novel AOA strain SAT1 enriched from activated sludge, with its physiological and genomic characteristics investigated. The maximal 16S rRNA gene similarity between SAT1 and other reported AOA strain is 96% (with “Ca. Nitrosotenuis chungbukensis”), and it is affiliated with Wastewater Cluster B (WWC-B) based on amoA gene phylogeny, a cluster within group I.1a and specific for activated sludge. Our strain is autotrophic, mesophilic (25 °C–33 °C) and neutrophilic (pH 5.0–7.0). Its genome size is 1.62 Mb, with a large fragment inversion (accounted for 68% genomic size) inside. The strain could not utilize urea due to truncation of the urea transporter gene. The lack of the pathways to synthesize usual compatible solutes makes it intolerant to high salinity (>0.03%), but could adapt to low salinity (0.005%) environments. This adaptation, together with possibly enhanced cell-biofilm attachment ability, makes it suitable for WWTPs environment. We propose the name “Candidatus Nitrosotenuis cloacae” for the strain SAT1.

  10. Atmospheric cycles of nitrogen oxides and ammonia. [source strengths and destruction rates

    Science.gov (United States)

    Bottger, A.; Ehhalt, D. H.; Gravenhorst, G.

    1981-01-01

    The atmospheric cycles of nitrogenous trace compounds for the Northern and Southern Hemispheres are discussed. Source strengths and destruction rates for the nitrogen oxides: NO, NO2 and HNO3 -(NOX) and ammonia (NH3) are given as a function of latitude over continents and oceans. The global amounts of NOX-N and NH3-N produced annually in the period 1950 to 1975 (34 + 5 x one trillion g NOx-N/yr and 29 + or - 6 x one trillion g NH3-N/yr) are much less than previously assumed. Globally, natural and anthropogenic emissions are of similar magnitude. The NOx emission from anthropogenic sources is 1.5 times that from natural processes in the Northern Hemisphere, whereas in the Southern Hemisphere, it is a factor of 3 or 4 less. More than 80% of atmospheric ammonia seems to be derived from excrements of domestic animals, mostly by bulk deposition: 24 + or - 9 x one trillion g NO3 -N/yr and 21 + or - 9 x one trillion g NH4+-N/yr. Another fraction may be removed by absorption on vegetation and soils.

  11. Effect of inorganic carbon on anaerobic ammonium oxidation enriched in sequencing batch reactor

    Institute of Scientific and Technical Information of China (English)

    Liao Dexiang; Li Xiaoming; Yang Qi; Zeng Guangming; Guo Liang; Yue Xiu

    2008-01-01

    The present lab-scale research reveals the enrichment of anaerobic ammonium oxidation microorganism from methanogenic anaerobic granular sludge and the effect of inorganic carbon (sodium bicarbonate) on anaerobic ammonium oxidation. The enrichment of anammox bacteria was carried out in a 7.0-L SBR and the effect of bicarbonate on anammox was conducted in a 3.0-L SBR. Research results , especially the biomass, showed first signs of anammox activity after 54 d cultivation with synthetic wastewater, when the pH was controlled between 7.5 and 8.3, the temperature was 35℃. The anammox activity increased as the influent bicarbonate concentration increased from 1.0 to 1.5 g/L and then, was inhibited as the bicarbonate concentration approached 2.0 g/L. However, the activity could be restored by the reduction of bicarbonate concentration to 1.0 g/L, as shown by rapid conversion of ammonium, and nitrite and nitrate production with normal stoichiometry. The optimization of the bicarbonate concentration in the reactor could increase the anammox rate up to 66.4 mgN/(L·d).

  12. Competitive interactions between methane- and ammonia-oxidizing bacteria modulate carbon and nitrogen cycling in paddy soil

    Directory of Open Access Journals (Sweden)

    Y. Zheng

    2014-03-01

    Full Text Available Pure culture studies have demonstrated that methanotrophs and ammonia oxidizers can both carry out the oxidation of methane and ammonia. However, the expected interactions resulting from these similarities are poorly understood, especially in complex, natural environments. Using DNA-based stable isotope probing and pyrosequencing of 16S rRNA and pmoA genes, we report on biogeochemical and molecular evidence for growth stimulation of methanotrophic communities by ammonium fertilization, and that methane modulates nitrogen cycling by competitive inhibition of nitrifying communities in a rice paddy soil. Pairwise comparison between microcosms amended with CH4, CH4+Urea, and Urea indicated that urea fertilization stimulated methane oxidation activity by 6-fold during a 19 day incubation period, while ammonia oxidation activity was significantly inhibited in the presence of CH4. Pyrosequencing of the total 16S rRNA genes revealed that urea amendment resulted in rapid growth of Methylosarcina-like type Ia MOB, and nitrifying communities appeared to be suppressed by methane. High-throughput sequencing of the 13C-labeled DNA further revealed that methane amendment resulted in clear growth of Methylosarcina-related MOB while methane plus urea led to equal increase in Methylosarcina and Methylobacter-related MOB, indicating the differential growth requirements of representatives of these genera. Strikingly, type Ib MOB did not respond to methane nor to urea. Increase in 13C-assimilation by microorganisms related to methanol oxidizers clearly indicated carbon transfer from methane oxidation to other soil microbes, which was enhanced by urea addition. The active growth of type Ia methanotrops was significantly stimulated by urea amendment, and the pronounced growth of methanol-oxidizing bacteria occurred in CH4-treated microcosms only upon urea amendment. Methane addition inhibited the growth of Nitrosospira and Nitrosomonas in urea-amended microcosms, in

  13. Anaerobic Exercise Affects the Saliva Antioxidant/Oxidant Balance in High-Performance Pentathlon Athletes

    Directory of Open Access Journals (Sweden)

    Sant’Anna Marcelo de Lima

    2016-03-01

    Full Text Available Purpose. Investigate free radical production and antioxidant buffering in military pentathletes’ saliva after their performance of a standardized, running-based anaerobic sprint test (RAST. Methods. Seven members of the Brazilian Navy pentathlon team were recruited to perform a running-based anaerobic test (~90 sec. The participants provided samples of saliva before and after the test that were analyzed for biomarkers of oxidative stress such as lipid peroxidation, total antioxidant capacity and the quantity of two specific antioxidants, glutathione and uric acid. Results. The lipid peroxidation increased ~2 fold after RAST, despite an increase in total antioxidant capacity (46%. The concentration of reduced glutathione did not change, while the uric acid concentration increased by 65%. Conclusions. The evaluation in saliva following a sprint test that lasted no more than 90 sec was sensitive enough to reveal changes in redox state.

  14. Shifts in the dominant populations of ammonia-oxidizing beta-subclass Proteobacteria along the eutrophic Schelde estuary

    NARCIS (Netherlands)

    de Bie, MJM; Speksnijder, AGCL; Kowalchuk, GA; Schuurman, T; Zwart, G; Stephen, [No Value; Diekmann, OE; Laanbroek, HJ

    2001-01-01

    The community structure of ammonia-oxidizing bacteria of the beta -subclass Proteobacteria was investigated with respect to environmental gradients along the Schelde, a eutrophic estuary system. A dominance of Nitrosomonas-Like sequences was detected using molecular techniques targeting the 16S rRNA

  15. RNA-Based Investigation of Ammonia-Oxidizing Archaea in Hot Springs of Yunnan Province, China ▿ †

    OpenAIRE

    Jiang, Hongchen; Huang, Qiuyuan; DONG, HAILIANG; WANG, Peng; Wang, Fengping; Li, Wenjun; Zhang, Chuanlun

    2010-01-01

    Using RNA-based techniques and hot spring samples collected from Yunnan Province, China, we show that the amoA gene of aerobic ammonia-oxidizing archaea can be transcribed at temperatures higher than 74°C and up to 94°C, suggesting that archaeal nitrification can potentially occur at near boiling temperatures.

  16. Archaeal Ammonia Oxidizers Dominate in Numbers, but Bacteria Drive Gross Nitrification in N-amended Grassland Soil

    Science.gov (United States)

    Sterngren, Anna E.; Hallin, Sara; Bengtson, Per

    2015-01-01

    Both ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) play an important role in nitrification in terrestrial environments. Most often AOA outnumber AOB, but the relative contribution of AOA and AOB to nitrification rates remains unclear. The aim of this experiment was to test the hypotheses that high nitrogen availability would favor AOB and result in high gross nitrification rates, while high carbon availability would result in low nitrogen concentrations that favor the activity of AOA. The hypotheses were tested in a microcosm experiment where sugars, ammonium, or amino acids were added regularly to a grassland soil for a period of 33 days. The abundance of amoA genes from AOB increased markedly in treatments that received nitrogen, suggesting that AOB were the main ammonia oxidizers here. However, AOB could not account for the entire ammonia oxidation activity observed in treatments where the soil was deficient in available nitrogen. The findings suggest that AOA are important drivers of nitrification under nitrogen-poor conditions, but that input of easily available nitrogen results in increased abundance, activity, and relative importance of AOB for gross nitrification in grassland soil. PMID:26648926

  17. Draft Genome Sequence of Nitrosospira sp. Strain APG3, a Psychrotolerant Ammonia-Oxidizing Bacterium Isolated from Sandy Lake Sediment

    OpenAIRE

    Garcia, Juan C.; Urakawa, Hidetoshi; Le, Vang Q.; Stein, Lisa Y.; Klotz, Martin G; Nielsen, Jeppe L.

    2013-01-01

    Bacteria in the genus Nitrosospira play vital roles in the nitrogen cycle. Nitrosospira sp. strain APG3 is a psychrotolerant betaproteobacterial ammonia-oxidizing bacterium isolated from freshwater lake sediment. The draft genome revealed that it represents a new species of cluster 0 Nitrosospira, which is presently not represented by described species.

  18. Mitigation of ammonia, nitrous oxide and methane emissions from manure management chains: a meta-analysis and integrated assessment

    NARCIS (Netherlands)

    Yong, Y.; Velthof, G.L.; Oenema, O.

    2015-01-01

    Livestock manure contributes considerably to global emissions of ammonia (NH3) and greenhouse gases (GHG), especially methane (CH4) and nitrous oxide (N2O). Various measures have been developed to mitigate these emissions, but most of these focus on one specific gas and/or emission source. Here, we

  19. Biotransformation of pharmaceuticals by ammonia oxidizing bacteria in wastewater treatment processes.

    Science.gov (United States)

    Xu, Yifeng; Yuan, Zhiguo; Ni, Bing-Jie

    2016-10-01

    Pharmaceutical residues could potentially pose detrimental effects on aquatic ecosystems and human health, with wastewater treatment being one of the major pathways for pharmaceuticals to enter into the environment. Enhanced removal of pharmaceuticals by ammonia oxidizing bacteria (AOB) has been widely observed in wastewater treatment processes. This article reviews the current knowledge on the biotransformation of pharmaceuticals by AOB. The relationship between the pharmaceuticals removal and nitrification process was revealed. The important role of AOB-induced cometabolism on the biotransformation of pharmaceuticals as well as their transformation products and pathways was elucidated. Kinetics and mathematical models describing the biotransformation of pharmaceuticals by AOB were also reviewed. The results highlighted the high degradation capabilities of AOB toward some refractory pharmaceuticals, with their degradations being clearly related to the nitrification rate and their transformation products being identified, which may exhibit similar or higher ecotoxicological impacts compared to the parent compound. PMID:27243932

  20. pH regulates ammonia-oxidizing bacteria and archaea in paddy soils in Southern China.

    Science.gov (United States)

    Li, Hu; Weng, Bo-Sen; Huang, Fu-Yi; Su, Jian-Qiang; Yang, Xiao-Ru

    2015-07-01

    Ammonia-oxidizing archaea (AOA) and bacteria (AOB) play important roles in nitrogen cycling. However, the effects of environmental factors on the activity, abundance, and diversity of AOA and AOB and the relative contributions of these two groups to nitrification in paddy soils are not well explained. In this study, potential nitrification activity (PNA), abundance, and diversity of amoA genes from 12 paddy soils in Southern China were determined by potential nitrification assay, quantitative PCR, and cloning. The results showed that PNA was highly variable between paddy soils, ranging from 4.05 ± 0.21 to 9.81 ± 1.09 mg NOx-N kg(-1) dry soil day(-1), and no significant correlation with soil parameters was found. The abundance of AOA was predominant over AOB, indicating that AOA may be the major members in aerobic ammonia oxidation in these paddy soils. Community compositions of AOA and AOB were highly variable among samples, but the variations were best explained by pH. AOA sequences were affiliated to the Nitrosopumilus cluster and Nitrososphaera cluster, and AOB were classified into the lineages of Nitrosospira and Nitrosomonas, with Nitrosospira being predominant over Nitrosomonas, accounting for 83.6 % of the AOB community. Moreover, the majority of Nitrosomonas was determined in neutral soils. Canonical correspondence analysis (CCA) analysis further demonstrated that AOA and AOB community structures were significantly affected by pH, soil total organic carbon, total nitrogen, and C/N ratio, suggesting that these factors exert strong effects on the distribution of AOB and AOA in paddy soils in Southern China. In conclusion, our results imply that soil pH was a key explanatory variable for both AOA and AOB community structure and nitrification activity. PMID:25744648

  1. Influence of environmental ammonia on the production of nitric oxide and expression of inducible nitric oxide synthase in the freshwater air-breathing catfish (Heteropneustes fossilis)

    International Nuclear Information System (INIS)

    Highlights: ► High environmental ammonia caused more production and accumulation of NO in air-breathing catfish (Heteropneustes fossilis). ► Hyper-ammonia stress caused induction and zonal specific expression of iNOS enzyme protein, mRNA expression in different tissues. ► Activation of NFκB that resulted under hyper-ammonia stress was believed to be the cause of induction of iNOS gene. - Abstract: Nitric oxide (NO) is a highly versatile and unique ubiquitous signaling molecule, and is known to play diverse physiological functions in mammals including those of adaptation to various stresses. The present study reports on the influence of exposure to high external ammonia (HEA) on the production of nitric oxide (NO) and the expression of inducible nitric oxide synthase (iNOS), that produces NO from L-arginine in the freshwater air-breathing catfish (Heteropneustes fossilis), which is reported to tolerate a very HEA. Some levels of NO were found to be present in all the tissues and also in plasma of control fish, which further enhanced significantly in fishes treated with high concentrations of environmental ammonia (25 and 50 mM ammonium chloride) for 7 days, accompanied by more efflux of NO from the perfused liver. This was accomplished by the induction of iNOS activity in different tissues of fish exposed to HEA, which otherwise was not detectable in control fish. Exposure to 25 mM ammonium chloride also led to a significant expression of iNOS protein in different tissues, followed by further increase at 50 mM ammonium chloride. Further, there was an increase in the expression of iNOS mRNA in ammonia-treated fish, thus suggesting that the expression of iNOS gene under hyper-ammonia stress was probably regulated at the transcriptional level. Immunocytochemical analysis indicated that the expression of iNOS in different tissues was zonal specific and not expressed uniformly throughout the organ. Hyper-ammonia stress also led to activation and nuclear

  2. Influence of environmental ammonia on the production of nitric oxide and expression of inducible nitric oxide synthase in the freshwater air-breathing catfish (Heteropneustes fossilis)

    Energy Technology Data Exchange (ETDEWEB)

    Choudhury, Mahua G. [Biochemical Adaptation Laboratory, Department of Zoology, North-Eastern Hill University, Shillong 793022 (India); Saha, Nirmalendu, E-mail: nsaha@nehu.ac.in [Biochemical Adaptation Laboratory, Department of Zoology, North-Eastern Hill University, Shillong 793022 (India)

    2012-07-15

    Highlights: Black-Right-Pointing-Pointer High environmental ammonia caused more production and accumulation of NO in air-breathing catfish (Heteropneustes fossilis). Black-Right-Pointing-Pointer Hyper-ammonia stress caused induction and zonal specific expression of iNOS enzyme protein, mRNA expression in different tissues. Black-Right-Pointing-Pointer Activation of NF{kappa}B that resulted under hyper-ammonia stress was believed to be the cause of induction of iNOS gene. - Abstract: Nitric oxide (NO) is a highly versatile and unique ubiquitous signaling molecule, and is known to play diverse physiological functions in mammals including those of adaptation to various stresses. The present study reports on the influence of exposure to high external ammonia (HEA) on the production of nitric oxide (NO) and the expression of inducible nitric oxide synthase (iNOS), that produces NO from L-arginine in the freshwater air-breathing catfish (Heteropneustes fossilis), which is reported to tolerate a very HEA. Some levels of NO were found to be present in all the tissues and also in plasma of control fish, which further enhanced significantly in fishes treated with high concentrations of environmental ammonia (25 and 50 mM ammonium chloride) for 7 days, accompanied by more efflux of NO from the perfused liver. This was accomplished by the induction of iNOS activity in different tissues of fish exposed to HEA, which otherwise was not detectable in control fish. Exposure to 25 mM ammonium chloride also led to a significant expression of iNOS protein in different tissues, followed by further increase at 50 mM ammonium chloride. Further, there was an increase in the expression of iNOS mRNA in ammonia-treated fish, thus suggesting that the expression of iNOS gene under hyper-ammonia stress was probably regulated at the transcriptional level. Immunocytochemical analysis indicated that the expression of iNOS in different tissues was zonal specific and not expressed uniformly

  3. Ammonia-oxidizing archaea and bacteria in water columns and sediments of a highly eutrophic plateau freshwater lake.

    Science.gov (United States)

    Yang, Yuyin; Li, Ningning; Zhao, Qun; Yang, Mengxi; Wu, Zhen; Xie, Shuguang; Liu, Yong

    2016-08-01

    Both ammonia-oxidizing archaea (AOA) and bacteria (AOB) can play important roles in the microbial oxidation of ammonia nitrogen in freshwater lake, but information on spatiotemporal variation in water column and sediment community structure is still limited. Additionally, the drivers of the differences between sediment and water assemblages are still unclear. The present study investigated the variation of AOA and AOB communities in both water columns and sediments of eutrophic freshwater Dianchi Lake. The abundance, diversity, and structure of both planktonic and sediment ammonia-oxidizing microorganisms in Dianchi Lake showed the evident changes with sampling site and time. In both water columns and sediments, AOB amoA gene generally outnumbered AOA, and the AOB/AOA ratio was much higher in summer than in autumn. The total AOA amoA abundance was relatively great in autumn, while sediment AOB was relatively abundant in summer. Sediment AOA amoA abundance was likely correlated with ammonia nitrogen (rs = 0.963). The AOB/AOA ratio in lake sediment was positively correlated with total phosphorus (rs = 0.835), while pH, dissolved organic carbon, and ammonia nitrogen might be the key driving forces for the AOB/AOA ratio in lake water. Sediment AOA and AOB diversity was correlated with nitrate nitrogen (rs = -0.786) and total organic carbon (rs = 0.769), respectively, while planktonic AOB diversity was correlated with ammonia nitrogen (rs = 0.854). Surface water and sediment in the same location had a distinctively different microbial community structure. In addition, sediment AOB community structure was influenced by total phosphorus, while total phosphorus might be a key determinant of planktonic AOB community structure. PMID:27109114

  4. Enzymes involved in the anaerobic oxidation of n-alkanes: from methane to long-chain paraffins

    Directory of Open Access Journals (Sweden)

    Amy V. Callaghan

    2013-05-01

    Full Text Available Anaerobic microorganisms play key roles in the biogeochemical cycling of methane and non-methane alkanes. To date, there appear to be at least three proposed mechanisms of anaerobic methane oxidation (AOM. The first pathway is mediated by consortia of archaeal anaerobic methane oxidizers and sulfate-reducing bacteria via ‘reverse methanogenesis’ and is catalyzed by a homologue of methyl-coenzyme M reductase. The second pathway is also mediated by anaerobic methane oxidizers and sulfate-reducing bacteria, wherein the archaeal members catalyze both methane oxidation and sulfate reduction and zero-valent sulfur is a key intermediate. The third AOM mechanism is a nitrite-dependent, intra-aerobic pathway described for the denitrifying bacterium, ‘Candidatus Methylomirabilis oxyfera.’ It is hypothesized that AOM proceeds via reduction of nitrite to nitric oxide, followed by the conversion of two nitric oxide molecules to dinitrogen and molecular oxygen. The latter can be used to functionalize the methane via a particulate methane monooxygenase. With respect to non-methane alkanes, there also appears to be novel mechanisms of activation. The most well-described pathway is the addition of non-methane alkanes across the double bond of fumarate to form alkyl-substituted succinates via the putative glycyl radical enzyme, alkylsuccinate synthase (also known as methylalkylsuccinate synthase. Other proposed mechanisms include anaerobic hydroxylation via ethylbenzene dehydrogenase-like enzymes and an ‘intra-aerobic’ denitrification pathway similar to that described for ‘M. oxyfera.’

  5. Composition of ammonia-oxidizing archaea and their contribution to nitrification in a high-temperature hot spring

    Science.gov (United States)

    Chen, S.; Peng, X.-T.; Xu, H.-C.; Ta, K.-W.

    2015-10-01

    The oxidation of ammonia by microbes and associated organisms has been shown to occur in diverse natural environments. However, the contribution of ammonia-oxidizing archaea to nitrification in high-temperature environments remains unclear. Here, we studied in situ ammonia oxidation rates and the abundance of ammonia-oxidizing archaea (AOA) in surface and bottom sediments at 77 °C in the Gongxiaoshe hot spring, Tengchong, Yunnan, China. The in situ ammonia oxidation rates measured by the 15N-NO3- pool dilution technique in the surface sinter and bottom sediments were 4.8 and 5.3 nmol N g-1 h-1, respectively. Relative abundances of Crenarchaea in both samples were determined by fluorescence in situ hybridization (FISH). Phylogenetic analysis of 16S rRNA genes showed high sequence similarity to thermophilic "Candidatus Nitrosocaldus yellowstonii", which represented the most abundant operation taxonomic units (OTU) in both sediments. Furthermore, bacterial amoA was not detected in this study. Quantitative PCR (qPCR) indicated that AOA and 16S rRNA genes were present in the range of 2.75 to 9.80 × 105 and 0.128 to 1.96 × 108 gene copies g-1 sediment. The cell-specific nitrification rates were estimated to be in the range of 0.41 to 0.79 fmol N archaeal cell-1 h-1, which is consistent with earlier estimates in estuary environments. This study demonstrated that AOA were widely involved in nitrification in this hot spring. It further indicated the importance of archaea rather than bacteria in driving the nitrogen cycle in terrestrial geothermal environments.

  6. Composition of ammonia-oxidizing archaea and their contribution to nitrification in a high-temperature hot spring

    Directory of Open Access Journals (Sweden)

    S. Chen

    2015-10-01

    Full Text Available The oxidation of ammonia by microbes and associated organisms has been shown to occur in diverse natural environments. However, the contribution of ammonia-oxidizing archaea to nitrification in high-temperature environments remains unclear. Here, we studied in situ ammonia oxidation rates and the abundance of ammonia-oxidizing archaea (AOA in surface and bottom sediments at 77 °C in the Gongxiaoshe hot spring, Tengchong, Yunnan, China. The in situ ammonia oxidation rates measured by the 15N–NO3- pool dilution technique in the surface sinter and bottom sediments were 4.8 and 5.3 nmol N g−1 h−1, respectively. Relative abundances of Crenarchaea in both samples were determined by fluorescence in situ hybridization (FISH. Phylogenetic analysis of 16S rRNA genes showed high sequence similarity to thermophilic "Candidatus Nitrosocaldus yellowstonii", which represented the most abundant operation taxonomic units (OTU in both sediments. Furthermore, bacterial amoA was not detected in this study. Quantitative PCR (qPCR indicated that AOA and 16S rRNA genes were present in the range of 2.75 to 9.80 × 105 and 0.128 to 1.96 × 108 gene copies g−1 sediment. The cell-specific nitrification rates were estimated to be in the range of 0.41 to 0.79 fmol N archaeal cell−1 h−1, which is consistent with earlier estimates in estuary environments. This study demonstrated that AOA were widely involved in nitrification in this hot spring. It further indicated the importance of archaea rather than bacteria in driving the nitrogen cycle in terrestrial geothermal environments.

  7. Changes in Nitrogen-Fixing and Ammonia-Oxidizing Bacterial Communities in Soil of a Mixed Conifer Forest after Wildfire

    OpenAIRE

    Yeager, Chris M.; Northup, Diana E.; Grow, Christy C.; Barns, Susan M.; Kuske, Cheryl R.

    2005-01-01

    This study was undertaken to examine the effects of forest fire on two important groups of N-cycling bacteria in soil, the nitrogen-fixing and ammonia-oxidizing bacteria. Sequence and terminal restriction fragment length polymorphism (T-RFLP) analysis of nifH and amoA PCR amplicons was performed on DNA samples from unburned, moderately burned, and severely burned soils of a mixed conifer forest. PCR results indicated that the soil biomass and proportion of nitrogen-fixing and ammonia-oxidizin...

  8. Comparison among amoA Primers Suited for Quantification and Diversity Analyses of Ammonia-Oxidizing Bacteria in Soil

    OpenAIRE

    Shimomura, Yumi; Morimoto, Sho; Hoshino, Yuko Takada; Uchida, Yoshitaka; akiyama, Hiroko; Hayatsu, Masahito

    2011-01-01

    Ammonia monooxygenase subunit A gene (amoA) is frequently used as a functional gene marker for diversity analysis of ammonia-oxidizing bacteria (AOB). To select a suitable amoA primer for real-time PCR and PCR-denaturing gradient gel electrophoresis (DGGE), three reverse primers (degenerate primer amoA-2R; non-degenerate primers amoA-2R-GG and amoA-2IR) were examined. No significant differences were observed among the three primers in terms of quantitative values of amoA from environmental sa...

  9. Anaerobic Oxidation of Toluene, Phenol, and p-Cresol by the Dissimilatory Iron-Reducing Organism, GS-15

    OpenAIRE

    Lovley, Derek R.; Lonergan, Debra J.

    1990-01-01

    The dissimilatory Fe(III) reducer, GS-15, is the first microorganism known to couple the oxidation of aromatic compounds to the reduction of Fe(III) and the first example of a pure culture of any kind known to anaerobically oxidize an aromatic hydrocarbon, toluene. In this study, the metabolism of toluene, phenol, and p-cresol by GS-15 was investigated in more detail. GS-15 grew in an anaerobic medium with toluene as the sole electron donor and Fe(III) oxide as the electron acceptor. Growth c...

  10. Abundance and diversity of ammonia-oxidizing bacteria in relation to ammonium in a Chinese shallow eutrophic urban lake

    Directory of Open Access Journals (Sweden)

    Shanlian Qiu

    2010-03-01

    Full Text Available The measures of most-probable-number and restriction fragment length polymorphism analysis were used to analyze the abundance and diversity of ammonia-oxidizing bacteria in sediment of a Chinese shallow eutrophic urban lake (Lake Yuehu. Among the 5 sampling sites, ammonia concentration in interstitial water was positively proportional not only to the content of organic matter, but also to ammonia-oxidizing bacteria numbers (at a magnitude of 10(5 cells g-1 dry weight in sediment significantly. Furthermore, the diversity of ammonia-oxidizing bacteria were determined by means of PCR primers targeting the amoA gene with five gene libraries created and restriction pattern analysis. The 13 restriction patterns were recorded with 4 ones being common among all sampling sites. The 8 restriction patterns including 4 unique ones were found at the site with the highest NH4+ concentrations in interstitial water, while, there were only common patterns without unique ones at the site with the lowest NH4+ concentrations in interstitial water. Phylogenetic analysis showed that the amoA fragments retrieved belong to Nitrosomonas oligotropha & ureae lineage, N. europaea lineage, N. communis lineage and Nitrosospira lineage, most of which were affiliated with the genus Nitrosomonas. The N. oligotropha & ureae-like bacteria were the dominant species. Thus, the abundance and diversity of sediment AOB is closely linked to ammonium status in eutrophic lakes.

  11. Anaerobic Oxidation of Methane at a Marine Methane Seep in a Forearc Sediment Basin off Sumatra, Indian Ocean

    OpenAIRE

    Siegert, Michael; Krüger, Martin; Teichert, Barbara; Wiedicke, Michael; Schippers, Axel

    2011-01-01

    A cold methane seep was discovered in a forearc sediment basin off the island Sumatra, exhibiting a methane-seep adapted microbial community. A defined seep center of activity, like in mud volcanoes, was not discovered. The seep area was rather characterized by a patchy distribution of active spots. The relevance of anaerobic oxidation of methane (AOM) was reflected by 13C-depleted isotopic signatures of dissolved inorganic carbon. The anaerobic conversion of methane to CO2 was confirmed in a...

  12. Development of Electroactive and Anaerobic Ammonium-Oxidizing (Anammox Biofilms from Digestate in Microbial Fuel Cells

    Directory of Open Access Journals (Sweden)

    Enea Gino Di Domenico

    2015-01-01

    Full Text Available Microbial Fuel cells (MFCs have been proposed for nutrient removal and energy recovery from different wastes. In this study the anaerobic digestate was used to feed H-type MFC reactors, one with a graphite anode preconditioned with Geobacter sulfurreducens and the other with an unconditioned graphite anode. The data demonstrate that the digestate acts as a carbon source, and even in the absence of anode preconditioning, electroactive bacteria colonise the anodic chamber, producing a maximum power density of 172.2 mW/m2. The carbon content was also reduced by up to 60%, while anaerobic ammonium oxidation (anammox bacteria, which were found in the anodic compartment of the reactors, contributed to nitrogen removal from the digestate. Overall, these results demonstrate that MFCs can be used to recover anammox bacteria from natural sources, and it may represent a promising bioremediation unit in anaerobic digestor plants for the simultaneous nitrogen removal and electricity generation using digestate as substrate.

  13. The effect of hydrology on the distribution of ammonia-oxidizing betaproteobacteria in impounded black mangroves (Avicennia germinans

    Directory of Open Access Journals (Sweden)

    Hendrikus J. eLaanbroek

    2012-04-01

    Full Text Available The distribution of species of aerobic chemolitho-autotrophic microorganisms such as the ammonia-oxidizing bacteria will be governed by pH, salinity and temperature as well as by the availability of oxygen, ammonia, carbon dioxide and other inorganic elements required for growth. Impounded mangrove forests in the Indian River Lagoon, a coastal estuary on the east coast of Florida, are dominated by mangroves, especially black mangrove (Avicennia germinans, that differ in size and density. In March 2009 the management in one of the impoundments was changed for purpose of insect control, by pumping water from the adjacent estuary. We collected soil samples in three different black mangrove habitats in this and an adjacent impoundment in 2008, 2009 and 2010, always in March, to determine the pre- and post-management effects of summer flooding on the distribution of 16s rRNA genes belonging to ammonia-oxidizing betaproteobacteria (β-AOB.At the level of 95% mutual similarity in the 16s rRNA gene, 11 different Operational Taxonomic Units were identified; the majority related to the lineages Nitrosomonas marina (57% of the total, Nitrosomonas sp. Nm143 (23% and Nitrosospira cluster 1 (18%. Higher salinities of interstitial water, probably due to severe winter drought, had a significant effect on the composition of the β-AOB in March 2009 compared to March 2008. Nitrosomonas sp. Nm143 was replaced as second important lineage by Nitrosospira cluster 1. Simultaneously with the community change, the level of potential ammonia-oxidizing activities decreased by an average of 67%. Long-term summer flooding in 2009 reduced the percentage of N. marina by half in favor of the two other major lineages, but decreased again the potential ammonia-oxidizing activities by 41% on average. No significant differences were observed between the flooded and non-flooded impoundment. There were differences in the community composition of the bacteria in the three black

  14. Dynamics of ultrathin V-oxide layers on Rh(111) in catalytic oxidation of ammonia and CO.

    Science.gov (United States)

    von Boehn, B; Preiss, A; Imbihl, R

    2016-07-20

    Catalytic oxidation of ammonia and CO has been studied in the 10(-4) mbar range using a catalyst prepared by depositing ultra-thin vanadium oxide layers on Rh(111) (θV ≈ 0.2 MLE). Using photoemission electron microscopy (PEEM) as a spatially resolving method, we observe that upon heating in an atmosphere of NH3 and O2 the spatial homogeneity of the VOx layer is removed at 800 K and a pattern consisting of macroscopic stripes develops; at elevated temperatures this pattern transforms into a pattern of circular VOx islands. Under reaction conditions the neighboring VOx islands become attracted by each other and coalesce. Similar processes of pattern formation and island coalescence are observed in catalytic CO oxidation. Reoxidation of the reduced VOx catalyst proceeds via surface diffusion of oxygen adsorbed onto Rh(111). A pattern consisting of macroscopic circular VOx islands can also be obtained by heating a Rh(111)/VOx catalyst in pure O2. PMID:27380822

  15. Anaerobic oxidation of methane in an iron-rich Danish freshwater lake sediment

    DEFF Research Database (Denmark)

    Nordi, Katrin á; Thamdrup, Bo; Schubert, Carsten J.

    2013-01-01

    Freshwater systems are identified as one of the main natural methane sources, but little is known about the importance of anaerobic oxidation of methane (AOM) in these systems. We investigated AOM in a lake sediment characterized by a high reactive iron content, normal sulfate concentrations in the...... bottom water (similar to 250 mu mol L-1), and a relatively deep sulfate penetration of similar to 14 cm, which facilitated the spatial resolution of the zones of methane production and consumption. Methane concentrations, delta C-13 methane profiles, and directly measured and modeled AOM rates all...

  16. Anaerobic oxidation of methane and sulfate reduction along the Chilean continental margin

    DEFF Research Database (Denmark)

    Treude, T.; Niggemann, J.; Kallmeyer, J.;

    2005-01-01

    Anaerobic oxidation of methane (AOM) and sulfate reduction (SR) were investigated in sediments of the Chilean upwelling region at three stations between 800 and 3000 In water depth. Major goals of this study were to quantify and evaluate rates of AOM and SR in a coastal marine upwelling system with...... peaks of 2 to 51 nmol cm(-3) d(-1), with highest rates at the shallowest station (800 m). The methane turnover was higher than in other diffusive systems of similar ocean depth. This higher turnover was most likely due to elevated organic matter input in this upwelling region offering significant...

  17. Review:Anaerobic ammonium oxidation for treatment of ammonium-rich wastewaters

    Institute of Scientific and Technical Information of China (English)

    Lei ZHANG; Ping ZHENG; Chongojian TANG; Ren-cun JIN

    2008-01-01

    The concept of anaerobic ammonium oxidation (ANAMMOX) is presently of great interest.The functional bacteria belonging to the Planctomycete phylum and their metabolism are investigated by microbiologists.Meanwhile,the ANAMMOX is equally valuable in treatment of ammonium-rich wastewaters.Related processes including partial nitritation-ANAMMOX and completely autotrophic nitrogen removal over nitrite (CANON) have been developed,and lab-scale experiments proved that both processes were quite feasible in engineering with appropriate control.Successful full-scale practice in the Netherlands will ac-celerate application of the process in future.This review introduces the microbiology and more focuses on application of the ANAMMOX process.

  18. The Complete Genome Sequence of the Marine, Chemolithoautotrophic, Ammonia-Oxidizing Bacterium Nitrosococcus oceani ATCC19707

    Energy Technology Data Exchange (ETDEWEB)

    Klotz, M G; Arp, D J; Chain, P S; El-Sheikh, A F; Hauser, L J; Hommes, N G; Larimer, F W; Malfatti, S A; Norton, J M; Poret-Peterson, A T; Vergez, L M; Ward, B B

    2006-08-03

    The Gammaproteobacterium, Nitrosococcus oceani (ATCC 19707), is a Gram-negative obligate chemolithoautotroph capable of extracting energy and reducing power from the oxidation of ammonia to nitrite. Sequencing and annotation of the genome revealed a single circular chromosome (3,481,691 bp; 50.4% G+C) and a plasmid (40,420 bp) that contain 3052 and 41 candidate protein-encoding genes, respectively. The genes encoding proteins necessary for the function of known modes of lithotrophy and autotrophy were identified. In contrast to betaproteobacterial nitrifier genomes, the N. oceani genome contained two complete rrn operons. In contrast, only one copy of the genes needed to synthesize functional ammonia monooxygenase and hydroxylamine oxidoreductase, as well as the proteins that relay the extracted electrons to a terminal electron acceptor were identified. The N. oceani genome contained genes for 13 complete two-component systems. The genome also contained all the genes needed to reconstruct complete central pathways, the tricarboxylic acid cycle and the Embden-Meyerhof-Parnass and pentose phosphate pathways. The N. oceani genome contains the genes required to store and utilize energy from glycogen inclusion bodies and sucrose. Polyphosphate and pyrophosphate appear to be integrated in this bacterium's energy metabolism, stress tolerance and the ability to assimilate carbon via gluconeogenesis. One set of genes for type I RuBisCO was identified, while genes necessary for methanotrophy and for carboxysome formation were not identified. The N. oceani genome contains two copies each of the genes or operons necessary to assemble functional complexes I and IV as well as ATP synthase (one H{sup +}-dependent F{sub 0}F{sub 1}-type, one Na{sup +}-dependent V-type).

  19. Influence of tropical leaf litter on nitrogen mineralization and community structure of ammonia-oxidizing bacteria

    Directory of Open Access Journals (Sweden)

    Diallo, MD.

    2015-01-01

    Full Text Available Description of the subject. The present study concerns the relationships among leaf litter decomposition, substrate quality, ammonia-oxidizing bacteria (AOB community composition and nitrogen (N availability. Decomposition of organic matter affects the biogeochemical cycling of carbon (C and N. Since the composition of the soil microbial community can alter the physiological capacity of the community, it is timely to study the litter quality effect on N dynamic in ecosystems. Objectives. The aim of this study was to determine the influence of leaf litter decomposition on N mineralization. The specific objectives of this study were to evaluate the influence of the litter biochemistry of five plants species (Faidherbia albida A.Chev., Azadirachta indica A.Juss., Casuarina equisetifolia L., Andropogon gayanus Kunth and Eragrostis tremula Hochst. ex Steud. on N mineralization in a tropical ferrous soil (Lixisol, nitrification, and genetic diversity of ammonia-oxidizing bacteria. Denaturing gradient gel electrophoresis (DGGE of amplified fragments of genes coding for 16S rRNA was used to study the development of bacterial communities during decomposition of leaf litter in soils. Method. Community structure of AOB was determined at two time periods: day 0 and day 140. Ten strains were tested and each of these strains produced a single band. Thus, DGGE DNA band patterns were used to estimate bacterial diversity. Plant secondary compounds such as polyphenols are purported to influence nutrient cycling by affecting organic matter degradation, mineralization rates, N availability and humus formation. In a laboratory study, we investigated the influence of six phenolic acids (ferulic, gallic, vanillic, syringic, p-coumaric and p-HBA acids commonly found in the plant residues on N mineralization and NH4+ and NO3- production in soils. Results. The results showed that litter type did affect soil nitrification. Faidherbia albida litter was associated with

  20. Anaerobic U(IV) Bio-oxidation and the Resultant Remobilization of Uranium in Contaminated Sediments

    International Nuclear Information System (INIS)

    A proposed strategy for the remediation of uranium (U) contaminated sites is based on immobilizing U by reducing the oxidized soluble U, U(VI), to form a reduced insoluble end product, U(IV). Due to the use of nitric acid in the processing of nuclear fuels, nitrate is often a co-contaminant found in many of the environments contaminated with uranium. Recent studies indicate that nitrate inhibits U(VI) reduction in sediment slurries. However, the mechanism responsible for the apparent inhibition of U(VI) reduction is unknown, i.e. preferential utilization of nitrate as an electron acceptor, direct biological oxidation of U(IV) coupled to nitrate reduction, and/or abiotic oxidation by intermediates of nitrate reduction. Recent studies indicates that direct biological oxidation of U(IV) coupled to nitrate reduction may exist in situ, however, to date no organisms have been identified that can grow by this metabolism. In an effort to evaluate the potential for nitrate-dependent bio-oxidation of U(IV) in anaerobic sedimentary environments, we have initiated the enumeration of nitrate-dependent U(IV) oxidizing bacteria. Sediments, soils, and groundwater from uranium (U) contaminated sites, including subsurface sediments from the NABIR Field Research Center (FRC), as well as uncontaminated sites, including subsurface sediments from the NABIR FRC and Longhorn Army Ammunition Plant, Texas, lake sediments, and agricultural field soil, sites served as the inoculum source. Enumeration of the nitrate-dependent U(IV) oxidizing microbial population in sedimentary environments by most probable number technique have revealed sedimentary microbial populations ranging from 9.3 x 101 - 2.4 x 103 cells (g sediment)-1 in both contaminated and uncontaminated sites. Interestingly uncontaminated subsurface sediments (NABIR FRC Background core FB618 and Longhorn Texas Core BH2-18) both harbored the most numerous nitrate-dependent U(IV) oxidizing population 2.4 x 103 cells (g sediment)-1

  1. Superior Fe-ZSM-5 catalyst for selective catalytic reduction of nitric oxide by ammonia

    Energy Technology Data Exchange (ETDEWEB)

    Long, R.Q.; Yang, R.T. [Univ. of Michigan, Ann Arbor, MI (United States). Dept. of Chemical Engineering

    1999-06-16

    Nitrogen oxides in the exhaust gases from combustion of fossil fuels remain a major source for air pollution and acid rain. The current technology for reducing NO{sub x} (NO + NO{sub 2}) emissions from power plants is selective catalytic reduction (SCR) with ammonia in the presence of oxygen. For the SCR reaction, V{sub 2}O{sub 5} + WO{sub 3} (or MoO{sub 3}) supported on TiO{sub 2} are the commercial catalysts. The mechanism of the reaction on the vanadia catalysts has been studied extensively, and several different mechanisms have been proposed. Ion-exchanged zeolite catalysts have also been studied, e.g., Fe-Y, Cu-ZSM-5, and Fe-ZSM-5, but the reported activities were lower than that of the commercial vanadia catalysts. The SCR technology based on vanadia catalysts is being used in Europe and Japan and is being quickly adopted in the US. However, problems associated with vanadia catalysts remain, e.g., high activity for oxidation of SO{sub 2} to SO{sub 3}, toxicity of vanadia, and formation of N{sub 2}O at high temperature. Hence, there are continuing efforts in developing new catalysts. In this paper, the authors report a superior Fe-ZSM-5 catalyst that is much more active than the commercial vanadia catalysts and does not have the deficiencies that are associated with the vanadia catalysts.

  2. Nitrosomonas Nm143-like ammonia oxidizers and Nitrospira marina-like nitrite oxidizers dominate the nitrifier community in a marine aquaculture biofilm.

    Science.gov (United States)

    Foesel, Bärbel U; Gieseke, Armin; Schwermer, Carsten; Stief, Peter; Koch, Liat; Cytryn, Eddie; de la Torré, José R; van Rijn, Jaap; Minz, Dror; Drake, Harold L; Schramm, Andreas

    2008-02-01

    Zero-discharge marine aquaculture systems are an environmentally friendly alternative to conventional aquaculture. In these systems, water is purified and recycled via microbial biofilters. Here, quantitative data on nitrifier community structure of a trickling filter biofilm associated with a recirculating marine aquaculture system are presented. Repeated rounds of the full-cycle rRNA approach were necessary to optimize DNA extraction and the probe set for FISH to obtain a reliable and comprehensive picture of the ammonia-oxidizing community. Analysis of the ammonia monooxygenase gene (amoA) confirmed the results. The most abundant ammonia-oxidizing bacteria (AOB) were members of the Nitrosomonas sp. Nm143-lineage (6.7% of the bacterial biovolume), followed by Nitrosomonas marina-like AOB (2.2% of the bacterial biovolume). Both were outnumbered by nitrite-oxidizing bacteria of the Nitrospira marina-lineage (15.7% of the bacterial biovolume). Although more than eight other nitrifying populations were detected, including Crenarchaeota closely related to the ammonia-oxidizer 'Nitrosopumilus maritimus', their collective abundance was below 1% of the total biofilm volume; their contribution to nitrification in the biofilter is therefore likely to be negligible. PMID:18093145

  3. Human settlement as driver of bacterial, but not of archaeal, ammonia oxidizers abundance and community structure in tropical stream sediments

    Directory of Open Access Journals (Sweden)

    Mariana De Paula Reis

    2015-08-01

    Full Text Available Ammonia-oxidizing archaea (AOA and bacteria (AOB are a diverse and functionally important group in the nitrogen cycle. Nevertheless, AOA and AOB communities driving this process remain uncharacterized in tropical freshwater sediment. Here, the effect of human settlement on the AOA and AOB diversity and abundance have been assessed by phylogenetic and quantitative PCR analyses, using archaeal and bacterial amoA and 16S rRNA genes. Overall, each environment contained specific clades of amoA and 16S rRNA genes sequences, suggesting that selective pressures lead to AOA and AOB inhabiting distinct ecological niches. Human settlement activities, as derived from increased metal and mineral nitrogen contents, appear to cause a response among the AOB community, with Nitrosomonas taking advantage over Nitrosospira in impacted environments. We also observed a dominance of AOB over AOA in mining-impacted sediments, suggesting that AOB might be the primary drivers of ammonia oxidation in these sediments. In addition, ammonia concentrations demonstrated to be the driver for the abundance of AOA, with an inversely proportional correlation between them. Our findings also revealed the presence of novel ecotypes of Thaumarchaeota, such as those related to the obligate acidophilic Nitrosotalea devanaterra at ammonia-rich places of circumneutral pH. These data add significant new information regarding AOA and AOB from tropical freshwater sediments, albeit future studies would be required to provide additional insights into the niche differentiation among these microorganisms.

  4. The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations.

    Science.gov (United States)

    Rotthauwe, J H; Witzel, K P; Liesack, W

    1997-12-01

    The naturally occurring genetic heterogeneity of autotrophic ammonia-oxidizing populations belonging to the beta subclass of the Proteobacteria was studied by using a newly developed PCR-based assay targeting a partial stretch of the gene which encodes the active-site polypeptide of ammonia monooxygenase (amoA). The PCR yielded a specific 491-bp fragment with all of the nitrifiers tested, but not with the homologous stretch of the particulate methane monooxygenase, a key enzyme of methane-oxidizing bacteria. The assay also specifically detected amoA in DNA extracted from various aquatic and terrestrial environments. The resulting PCR products retrieved from rice roots, activated sludge, a freshwater sample, and an enrichment culture were used for the generation of amoA gene libraries. No false positives were detected in a set of 47 randomly selected clone sequences that were analyzed further. The majority of the environmental sequences retrieved from rice roots and activated sludge grouped within the phylogenetic radiation defined by cultured strains of the genera Nitrosomonas and Nitrosospira. The comparative analysis identified members of both of these genera in activated sludge; however, only Nitrosospira-like sequences with very similar amino acid patterns were found on rice roots. Further differentiation of these molecular isolates was clearly possible on the nucleic acid level due to the accumulation of synonymous mutations, suggesting that several closely related but distinct Nitrosospira-like populations are the main colonizers of the rhizosphere of rice. Each of the amoA gene libraries obtained from the freshwater sample and the enrichment culture was dominated by a novel lineage that shared a branch with the Nitrosospira cluster but could not be assigned to any of the known pure cultures. Our data suggest that amoA represents a very powerful molecular tool for analyzing indigenous ammonia-oxidizing communities due to (i) its specificity, (ii) its fine

  5. Anaerobic treatability of liquid residue from wet oxidation of sewage sludge.

    Science.gov (United States)

    Bertanza, Giorgio; Galessi, Raniero; Menoni, Laura; Pedrazzani, Roberta; Salvetti, Roberta; Zanaboni, Sabrina

    2015-05-01

    Wet Oxidation (WO) of sewage sludge is a chemical oxidation of sludge at high temperatures and pressures by means of an oxygen-containing gas. The liquid stream originated by WO is easily biodegradable, and therefore, the recirculation to the biological Waste Water Treatment Plant (WWTP) may be a feasible solution. However, the WO effluent has a residual organic and nitrogen content so that its treatment may be required when the receiving WWTP has no surplus treatment capacity left. The aim of this research was the assessment of the anaerobic treatability of the WO liquid residue, in order to reduce the organic load to be recirculated to the WWTP, simultaneously promoting energy recovery. For this purpose, the liquid residue obtained during full scale WO tests on two different types of sludge was submitted to anaerobic digestion in a continuous flow pilot reactor (V = 5 L). Furthermore, batch tests were carried out in order to evaluate possible inhibition factors. Experimental results showed that, after the start-up/acclimation period (~130 days), Chemical Oxygen Demand (COD) removal efficiency was stably around 60% for about 120 days, despite the change in operating conditions. In the last phase of the experimental activity, COD removal reached 70% under the following treatment conditions: Hydraulic Retention Time (HRT) = 20 days, Volumetric Organic Loading Rate (VOLR) = 0.868 kg COD/m(3)/day, Organic Loading Rate per Volatile Suspended Solids (OLRvss) = 0.078 kg COD/kg VSS/day, temperature (T) = 36.5 °C, pH = 8. Energy balance calculation demonstrated anaerobic treatment sustainability. PMID:25035054

  6. Influence of preservation temperature on the characteristics of anaerobic ammonium oxidation (anammox) granular sludge.

    Science.gov (United States)

    Xing, Bao-Shan; Guo, Qiong; Jiang, Xiao-Yan; Chen, Qian-Qian; Li, Peng; Ni, Wei-Min; Jin, Ren-Cun

    2016-05-01

    Preserving active anaerobic ammonium oxidation (anammox) biomass is a potential method for securing sufficient seeding biomass for the rapid start-up of full-scale anammox processes. In this study, anammox granules were cultured in an upflow anaerobic sludge blanket (UASB) reactor (R0), and then the enriched anammox granules were preserved at 35, 20, 4, and -30 °C. The subsequent reactivation characteristics of the granules were evaluated in four UASB reactors (denoted R1, R2, R3, and R4, respectively) to investigate the effect of preservation temperature on the characteristics of anammox granules and their reactivation performance. The results demonstrated that 4 °C was the optimal preservation temperature for maintaining the biomass, activity, settleability, and integrity of the anammox granules and their cellular structures. During the preservation period, a first-order exponential decay model may be used to simulate the decay of anammox biomass and activity. The protein-to-polysaccharide ratio in the extracellular polymeric substances and the heme c content could not effectively indicate the changes in settleability and activity of the anammox granules, respectively, and a loss of bioactivity was positively associated with the degree of anaerobic ammonium-oxidizing bacteria cell lysis. After 42 days of storage, the anammox granules preserved at 4 °C (R3) exhibited a better recovery performance than those preserved at 20 °C (R2), -30 °C (R4), and 35 °C (R1). The comprehensive comparison indicated that 4 °C is the optimal storage temperature for anammox granular sludge because it promotes improved maintenance and recovery performance properties. PMID:26780355

  7. Use of Aliphatic n-Alkynes To Discriminate Soil Nitrification Activities of Ammonia-Oxidizing Thaumarchaea and Bacteria

    OpenAIRE

    Taylor, Anne E.; Vajrala, Neeraja; Giguere, Andrew T.; Gitelman, Alix I; Arp, Daniel J.; Myrold, David D.; Sayavedra-Soto, Luis; Bottomley, Peter J

    2013-01-01

    Ammonia (NH3)-oxidizing bacteria (AOB) and thaumarchaea (AOA) co-occupy most soils, yet no short-term growth-independent method exists to determine their relative contributions to nitrification in situ. Microbial monooxygenases differ in their vulnerability to inactivation by aliphatic n-alkynes, and we found that NH3 oxidation by the marine thaumarchaeon Nitrosopumilus maritimus was unaffected during a 24-h exposure to ≤20 μM concentrations of 1-alkynes C8 and C9. In contrast, NH3 oxidation ...

  8. Ammonia toxicity induces glutamine accumulation, oxidative stress and immunosuppression in juvenile yellow catfish Pelteobagrus fulvidraco.

    Science.gov (United States)

    Li, Ming; Gong, Shiyan; Li, Qing; Yuan, Lixia; Meng, Fanxing; Wang, Rixin

    2016-01-01

    A study was carried to test the response of yellow catfish for 28days under two ammonia concentrations. Weight gain of fish exposure to high and low ammonia abruptly increased at day 3. There were no significant changes in fish physiological indexes and immune responses at different times during 28-day exposure to low ammonia. Fish physiological indexes and immune responses in the treatment of high ammonia were lower than those of fish in the treatment of low ammonia. When fish were exposed to high ammonia, the ammonia concentration in the brain increased by 19-fold on day 1. By comparison, liver ammonia concentration reached its highest level much earlier at hour 12. In spite of a significant increase in brain and liver glutamine concentration, there was no significant change in glutamate level throughout the 28-day period. The total superoxide dismutase (SOD), glutathione peroxidase (GPX) and glutathione reductase (GR) activities in the brain gradually decreased from hour 0 to day 28. Liver SOD, GPX and GR activities reached the highest levels at hour 12, and then gradually decreased. Thiobarbituric acid reactive substance brain and liver content gradually increased throughout the 28-day period. Lysozyme, acid phosphatase and alkaline phosphatase activities in the liver reached exceptionally low levels after day 14. This study indicated that glutamine accumulation in the brain was not the major cause of ammonia poisoning, the toxic reactive oxygen species is not fully counter acted by the antioxidant enzymes and immunosuppression is a process of gradual accumulation of immunosuppressive factors. PMID:26811908

  9. Anaerobic ammonium-oxidizing bacteria gain antibiotic resistance during long-term acclimatization.

    Science.gov (United States)

    Zhang, Zheng-Zhe; Zhang, Qian-Qian; Guo, Qiong; Chen, Qian-Qian; Jiang, Xiao-Yan; Jin, Ren-Cun

    2015-09-01

    Three broad-spectrum antibiotics, amoxicillin (AMX), florfenicol (FF) and sulfamethazine (SMZ), that inhibit bacteria via different target sites, were selected to evaluate the acute toxicity and long-term effects on anaerobic ammonium oxidation (anammox) granules. The specific anammox activity (SAA) levels reduced by approximately half within the first 3 days in the presence of antibiotics but no nitrite accumulation was observed in continuous-flow experiments. However, the SAA levels and heme c content gradually recovered as the antibiotic concentrations increased. Extracellular polymeric substances (EPS) analysis suggested that anaerobic ammonium-oxidizing bacteria gradually developed a better survival strategy during long-term acclimatization, which reduced the antibiotic stress via increased EPS secretion that provided a protective 'cocoon.' In terms of nitrogen removal efficiency, anammox granules could resist 60 mg-AMX L(-1), 10 mg-FF L(-1) and 100 mg-SMZ L(-1). This study supported the feasibility of using anammox granules to treat antibiotic-containing wastewater. PMID:26111629

  10. Nitrogen and phosphorus removal in pilot-scale anaerobic-anoxic oxidation ditch system

    Institute of Scientific and Technical Information of China (English)

    PENG Yongzhen; HOU Hongxun; WANG Shuying; CUI Youwei; Zhiguo Yuan

    2008-01-01

    To achieve high efficiency of nitrogen and phosphorus removal and to investigate the rule of simultaneous nitrification and denitrification phosphorus removal(SNDPR),a whole course of SNDPR damage and recovery was studied in a pilot-scale,anaerobicanoxic oxidation ditch(OD),where the volumes of anaerobic zone,anoxic zone,and ditches zone of the OD system were 7,21,and 280L,respectively.The reactor was fed with municipal wastewater with a flow rate of 336 L/d.The concept of simultaneous nitrification and denitrification (SND)rate(rSND) was put forward to quantify SND.The results indicate that:(1)high nitrogen and phosphorus removal efficiencies were achieved during the stable SND phase,total nitrogen (TN) and total phosphate(TP) removal rates were 80%and 85%,respectively;(2)when the system was aerated excessively,the stability of SND was damaged,and rSND dropped from 80% to 20%or less;(3)the natural logarithm of the ratio of NOx to MJ4+ in the effluent had a linear correlation to oxidation-reduction potential (ORP);(4)when NO3- was less than 6 mg/L.high phosphorus removal efficiency could be achieved;(5)denitrifying phosphorus removal (DNPR) could take place in the anaerobic-anoxic OD system.The major innovation was that the SND rate was devised and quantified.

  11. Molecular and Stable Isotope Investigation of Nitrite Respiring Bacterial Communities Capable of Anaerobic Ammonium Oxidation (ANAMMOX) and Denitrifying Anaerobic Methane Oxidation (DAMO) in Nitrogen Contaminated Groundwater

    Science.gov (United States)

    Song, B.; Hirsch, M.; Taylor, J.; Smith, R. L.; Repert, D.; Tobias, C. R.

    2010-12-01

    Anaerobic ammonium oxidation (ANAMMOX) and denitrifying anaerobic methane oxidation (DAMO) are two recently discovered N2 production pathways in the microbial nitrogen cycle. ANAMMOX has been relatively well investigated in various aquatic ecosystems, while DAMO has been examined only in freshwater wetlands. However, neither ANAMMOX nor DAMO have been studied in groundwater ecosystems as microbial N removal processes where they could compliment or compete with denitrification to remediate N contaminated aquifers. Thus, we conducted molecular and stable isotope analyses to detect and measure ANAMMOX and DAMO in a nitrogen contaminated aquifer on Cape Cod, Massachusetts. The study site has a plume of nitrogen contaminated groundwater as a result of continuous discharge of treated wastewater over 60 years. Groundwater was collected from multiport sampling devices installed at two sites, near the waste-water disposal location (A) and more than 3 km down gradient (B) along the contamination plume. Biomass was collected from water samples for DNA extraction and 15N tracer incubation experiments. PCR with specific 16S rRNA gene primers detected the presence of ANAMMOX and DAMO bacteria at both sites. Phylogenetic analysis of 16S rRNA genes revealed that the ANAMMOX community at site A was most associated with Kuenenia spp. while site B had a community more closely related to Brocadia spp. The DAMO communities at the two sites were quite different based on 16S rRNA gene analysis. The communities at site B are closely associated with Candidatus “Methylomirabilis oxyfera”, which is the first enriched DAMO culture. Most of the 16S rRNA sequences detected in site A were related to those found in other DAMO enrichment cultures established from a eutrophic ditch sediment. In order to determine active members of ANAMMOX communities, the transcriptional expression of hydrazine oxidase (hzo) and hydrazine hydrolase (hh) genes was examined at both sites. In addition, 15N tracer

  12. Nitrous oxide emission related to ammonia-oxidizing bacteria and mitigation options from N fertilization in a tropical soil

    Science.gov (United States)

    Soares, Johnny R.; Cassman, Noriko A.; Kielak, Anna M.; Pijl, Agata; Carmo, Janaína B.; Lourenço, Kesia S.; Laanbroek, Hendrikus J.; Cantarella, Heitor; Kuramae, Eiko E.

    2016-07-01

    Nitrous oxide (N2O) from nitrogen fertilizers applied to sugarcane has high environmental impact on ethanol production. This study aimed to determine the main microbial processes responsible for the N2O emissions from soil fertilized with different N sources, to identify options to mitigate N2O emissions, and to determine the impacts of the N sources on the soil microbiome. In a field experiment, nitrogen was applied as calcium nitrate, urea, urea with dicyandiamide or 3,4 dimethylpyrazone phosphate nitrification inhibitors (NIs), and urea coated with polymer and sulfur (PSCU). Urea caused the highest N2O emissions (1.7% of N applied) and PSCU did not reduce cumulative N2O emissions compared to urea. NIs reduced N2O emissions (95%) compared to urea and had emissions comparable to those of the control (no N). Similarly, calcium nitrate resulted in very low N2O emissions. Interestingly, N2O emissions were significantly correlated only with bacterial amoA, but not with denitrification gene (nirK, nirS, nosZ) abundances, suggesting that ammonia-oxidizing bacteria, via the nitrification pathway, were the main contributors to N2O emissions. Moreover, the treatments had little effect on microbial composition or diversity. We suggest nitrate-based fertilizers or the addition of NIs in NH4+-N based fertilizers as viable options for reducing N2O emissions in tropical soils and lessening the environmental impact of biofuel produced from sugarcane.

  13. Nitrous oxide emission related to ammonia-oxidizing bacteria and mitigation options from N fertilization in a tropical soil.

    Science.gov (United States)

    Soares, Johnny R; Cassman, Noriko A; Kielak, Anna M; Pijl, Agata; Carmo, Janaína B; Lourenço, Kesia S; Laanbroek, Hendrikus J; Cantarella, Heitor; Kuramae, Eiko E

    2016-01-01

    Nitrous oxide (N2O) from nitrogen fertilizers applied to sugarcane has high environmental impact on ethanol production. This study aimed to determine the main microbial processes responsible for the N2O emissions from soil fertilized with different N sources, to identify options to mitigate N2O emissions, and to determine the impacts of the N sources on the soil microbiome. In a field experiment, nitrogen was applied as calcium nitrate, urea, urea with dicyandiamide or 3,4 dimethylpyrazone phosphate nitrification inhibitors (NIs), and urea coated with polymer and sulfur (PSCU). Urea caused the highest N2O emissions (1.7% of N applied) and PSCU did not reduce cumulative N2O emissions compared to urea. NIs reduced N2O emissions (95%) compared to urea and had emissions comparable to those of the control (no N). Similarly, calcium nitrate resulted in very low N2O emissions. Interestingly, N2O emissions were significantly correlated only with bacterial amoA, but not with denitrification gene (nirK, nirS, nosZ) abundances, suggesting that ammonia-oxidizing bacteria, via the nitrification pathway, were the main contributors to N2O emissions. Moreover, the treatments had little effect on microbial composition or diversity. We suggest nitrate-based fertilizers or the addition of NIs in NH4(+)-N based fertilizers as viable options for reducing N2O emissions in tropical soils and lessening the environmental impact of biofuel produced from sugarcane. PMID:27460335

  14. Diversity of Ammonia-Oxidizing Archaea and Bacteria Across Physical-Chemical Gradients in San Francisco Bay Estuary Sediments

    Science.gov (United States)

    Mosier, A. C.; Francis, C. A.

    2006-12-01

    A combination of recent metagenomic analyses and the cultivation of a novel, ammonia-oxidizing, marine crenarchaeota revealed the first evidence for nitrification within the Archaeal domain. Further genetic and metagenomic studies demonstrated the presence of ammonia-oxidizing crenarchaea in diverse marine and terrestrial environments. These discoveries challenge the currently accepted view of the global nitrogen cycle and validate the need for further research on microbial diversity and function. In particular, it is imperative to reexamine the microbial communities involved in ammonia oxidation in marine and estuarine sediments, where this process plays a pivotal role in the cycling and removal of nitrogen. Using phylogenetic analyses of ammonia monooxygenase subunit A (amoA) gene sequences, we examined the distribution and diversity of ammonia-oxidizing archaea (AOA) and bacteria (AOB) in San Francisco Bay, the largest estuary on the West coast of the United States. The highly impacted bay, encompassing nearly 178,000 km2, effectively connects two estuaries with varying physical-chemical characteristics to the Pacific Ocean. We recovered archaeal and bacterial amoA genes from 11 sites distributed throughout the bay, spanning the northern and southern estuaries and the central region where they connect to the ocean. Richness estimates varied considerably across all sites examined, with archaeal amoA estimates being generally higher than bacterial amoA. Several of the bacterial amoA libraries were represented by fewer than 3 genotypes. Archaeal amoA sequences were phylogenetically diverse and grouped within previously described sediment and soil/sediment clusters. Several sequences were closely related to the only cultivated AOA, Nitrosopumilus maritimus. Both the archaeal and bacterial amoA sequences showed significant regional specificity. Distinct populations exist in the northern and southern estuaries and sequences from the northernmost and southernmost sites

  15. Anaerobic oxidation of methane associated with sulfate reduction in a natural freshwater gas source.

    Science.gov (United States)

    Timmers, Peer Ha; Suarez-Zuluaga, Diego A; van Rossem, Minke; Diender, Martijn; Stams, Alfons Jm; Plugge, Caroline M

    2016-06-01

    The occurrence of anaerobic oxidation of methane (AOM) and trace methane oxidation (TMO) was investigated in a freshwater natural gas source. Sediment samples were taken and analyzed for potential electron acceptors coupled to AOM. Long-term incubations with (13)C-labeled CH4 ((13)CH4) and different electron acceptors showed that both AOM and TMO occurred. In most conditions, (13)C-labeled CO2 ((13)CO2) simultaneously increased with methane formation, which is typical for TMO. In the presence of nitrate, neither methane formation nor methane oxidation occurred. Net AOM was measured only with sulfate as electron acceptor. Here, sulfide production occurred simultaneously with (13)CO2 production and no methanogenesis occurred, excluding TMO as a possible source for (13)CO2 production from (13)CH4. Archaeal 16S rRNA gene analysis showed the highest presence of ANME-2a/b (ANaerobic MEthane oxidizing archaea) and AAA (AOM Associated Archaea) sequences in the incubations with methane and sulfate as compared with only methane addition. Higher abundance of ANME-2a/b in incubations with methane and sulfate as compared with only sulfate addition was shown by qPCR analysis. Bacterial 16S rRNA gene analysis showed the presence of sulfate-reducing bacteria belonging to SEEP-SRB1. This is the first report that explicitly shows that AOM is associated with sulfate reduction in an enrichment culture of ANME-2a/b and AAA methanotrophs and SEEP-SRB1 sulfate reducers from a low-saline environment. PMID:26636551

  16. Carbon and hydrogen isotope fractionation during nitrite-dependent anaerobic methane oxidation by Methylomirabilis oxyfera

    Science.gov (United States)

    Rasigraf, Olivia; Vogt, Carsten; Richnow, Hans-Hermann; Jetten, Mike S. M.; Ettwig, Katharina F.

    2012-07-01

    Anaerobic oxidation of methane coupled to nitrite reduction is a recently discovered methane sink of as yet unknown global significance. The bacteria that have been identified to carry out this process, Candidatus Methylomirabilis oxyfera, oxidize methane via the known aerobic pathway involving the monooxygenase reaction. In contrast to aerobic methanotrophs, oxygen is produced intracellularly and used for the activation of methane by a phylogenetically distinct particulate methane monooxygenase (pMMO). Here we report the fractionation factors for carbon and hydrogen during methane oxidation by an enrichment culture of M. oxyfera bacteria. In two separate batch incubation experiments with different absolute biomass and methane contents, the specific methanotrophic activity was similar and the progressive isotope enrichment identical. Headspace methane was consumed up to 98% with rates showing typical first order reaction kinetics. The enrichment factors determined by Rayleigh equations were -29.2 ± 2.6‰ for δ13C (εC) and -227.6 ± 13.5‰ for δ2H (εH), respectively. These enrichment factors were in the upper range of values reported so far for aerobic methanotrophs. In addition, two-dimensional specific isotope analysis (Λ = ( α H - 1 - 1)/( α C - 1 - 1)) was performed and also the determined Λ value of 9.8 was within the range determined for other aerobic and anaerobic methanotrophs. The results showed that in contrast to abiotic processes biological methane oxidation exhibits a narrow range of fractionation factors for carbon and hydrogen irrespective of the underlying biochemical mechanisms. This work will therefore facilitate the correct interpretation of isotopic composition of atmospheric methane with implications for modeling of global carbon fluxes.

  17. Acclimatization of communities of ammonia oxidizing bacteria to seasonal changes in optimal conditions in a coke wastewater treatment plant.

    Science.gov (United States)

    Kim, Young Mo

    2013-11-01

    The goal of this study was to investigate the correlation between optimal conditions of ammonia oxidation rates (AORs) and communities of ammonia oxidizing bacteria (AOB) adapting to seasonal changes in a full-scale wastewater treatment plant (WWTP). The optimal temperature and pH of specific AORs reflected seasonal variation patterns, showing the lowest values during the cold season, while the highest values in the warm season. Throughout the study period, Nitrosomonas europaea/eutropha and Nitrosomonas nitrosa remained the dominant AOB, indicating resistance to the influences of a changing environment. These results show that the optimal conditions for AOR can be adjusted to accommodate changing environmental conditions, relying on the acclimatization of a stable AOB community to given conditions, without any visible shift in the AOB community. PMID:24001689

  18. Evidence of novel plant-species specific ammonia oxidizing bacterial clades in acidic South African fynbos soils.

    Science.gov (United States)

    Ramond, Jean-Baptiste; Lako, Joseph D W; Stafford, William H L; Tuffin, Marla I; Cowan, Don A

    2015-08-01

    Ammonia-oxidizing bacteria (AOB) are essential in the biogeochemical cycling of nitrogen as they catalyze the rate-limiting oxidation of ammonia into nitrite. Since their first isolation in the late 19th century, chemolithoautotrophic AOBs have been identified in a wide range of natural (e.g., soils, sediments, estuarine, and freshwaters) and man created or impacted habitats (e.g., wastewater treatment plants and agricultural soils). However, little is known on the plant-species association of AOBs, particularly in the nutrient-starved fynbos terrestrial biome. In this study, we evaluated the diversity of AOBs in the plant canopy of three South African fynbos-specific plant species, namely Leucadendron xanthoconus, Leucospermum truncatulum and Leucadendron microcephalum, through the construction of amoA-gene clone libraries. Our results clearly demonstrate that plant-species specific and monophyletic AOB clades are present in fynbos canopy soils. PMID:25721729

  19. Changes in community composition of ammonia-oxidizing betaproteobacteria from stands of Black mangrove (Avicennia germinans in response to ammonia enrichment and more oxic conditions

    Directory of Open Access Journals (Sweden)

    Hendrikus J. Laanbroek

    2013-11-01

    Full Text Available In flooded and non-flooded impounded forests of Black mangrove (Avicennia germinans, the community structure of the ammonia-oxidizing betaproteobacteria (β-AOB differed among distinct mangrove vegetation cover types and hydrological regimes. This had been explained by a differential response of lineages of β-AOB to the prevailing soil conditions that included increased levels of moisture and ammonium. To test this hypothesis, slurries of soils collected from a flooded and a non-flooded impoundment were subjected to enhanced levels of ammonium in the absence and presence of additional shaking. After a period of 6 days, the community composition of the β-AOB based on the 16S rRNA gene was determined and compared with the original community structures. Regardless of the incubation conditions and the origin of the samples, sequences belonging to the Nitrosomonas aestuarii lineage became increasingly dominant, whereas the number of sequences of the lineages of Nitrosospira (i.e. Cluster 1 and Nitrosomonas sp. Nm143 declined. Changes in community structure were related to changes in community sizes determined by quantitative PCR based on the amoA gene. The amoA gene copy numbers of β-AOB were compared to those of the ammonia-oxidizing archaea (AOA. Gene copy numbers of the bacteria increased irrespective of incubation conditions, but the numbers of archaea declined in the continuously shaken cultures. This observation is discussed in relation to the distribution of the β-AOB lineages in the impounded Black mangrove forests.

  20. Isolation and identification of bacteria responsible for simultaneous anaerobic ammonium and sulfate removal

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Sulfate-dependent anaerobic ammonium oxidation is a novel biological reaction,in which ammonium is oxidized with sulfate as the electron acceptor under anoxic conditions.Ammonium and sulfate are cosmopolitan chemical species which are an integral part of the global nitrogen and sulfur cycles.A detailed exploration of sulfate-dependent anaerobic ammonium oxidation is quite practical.In this work,a bacterial strain named ASR has been isolated from an anaerobic ammonia and sulfate removing reactor working under steady-state.On the basis of electron microscopy,physiological tests and 16S rDNA phylogenetic sequence analysis,the strain ASR is found to be related to Bacillus benzoevorans.According to the biological carbon source utilization test,the strain ASR could use many carbon sources.Its optimum pH value and temperature were 8.5 and 30 °C,respectively.The test proves that the strain ASR is able to use sulfate to oxidize ammonia anaerobically.The maximum ammonia and sulfate removal rates were 44.4% and 40.0%,respectively.The present study provided biological evidence for the confirmation and development of sulfate-dependent anaerobic ammonium oxidation and brought new insights into the global nitrogen and sulfur cycles.

  1. Autotrophy as a predominant mode of carbon fixation in anaerobic methane-oxidizing microbial communities.

    Science.gov (United States)

    Kellermann, Matthias Y; Wegener, Gunter; Elvert, Marcus; Yoshinaga, Marcos Yukio; Lin, Yu-Shih; Holler, Thomas; Mollar, Xavier Prieto; Knittel, Katrin; Hinrichs, Kai-Uwe

    2012-11-20

    The methane-rich, hydrothermally heated sediments of the Guaymas Basin are inhabited by thermophilic microorganisms, including anaerobic methane-oxidizing archaea (mainly ANME-1) and sulfate-reducing bacteria (e.g., HotSeep-1 cluster). We studied the microbial carbon flow in ANME-1/ HotSeep-1 enrichments in stable-isotope-probing experiments with and without methane. The relative incorporation of (13)C from either dissolved inorganic carbon or methane into lipids revealed that methane-oxidizing archaea assimilated primarily inorganic carbon. This assimilation is strongly accelerated in the presence of methane. Experiments with simultaneous amendments of both (13)C-labeled dissolved inorganic carbon and deuterated water provided further insights into production rates of individual lipids derived from members of the methane-oxidizing community as well as their carbon sources used for lipid biosynthesis. In the presence of methane, all prominent lipids carried a dual isotopic signal indicative of their origin from primarily autotrophic microbes. In the absence of methane, archaeal lipid production ceased and bacterial lipid production dropped by 90%; the lipids produced by the residual fraction of the metabolically active bacterial community predominantly carried a heterotrophic signal. Collectively our results strongly suggest that the studied ANME-1 archaea oxidize methane but assimilate inorganic carbon and should thus be classified as methane-oxidizing chemoorganoautotrophs. PMID:23129626

  2. Catalysts for selective oxidation of ammonia in a gas containing hydrogen

    DEFF Research Database (Denmark)

    2014-01-01

    The invention contributes to a cost effective way to solve the problem of trace ammonia removal from hydrogen containing gas. The set of catalysts of the invention selectively oxidised ammonia in ppm concentration even in gas mixture containing hydrogen gas in concentration of three orders of...

  3. Catalysts for selective oxidation of ammonia in a gas containing hydrogen

    DEFF Research Database (Denmark)

    2015-01-01

    The invention contributes to a cost effective way to solve the problem of trace ammonia removal from a hydrogen and nitrogen containing gas. The set of catalysts of the invention selectively oxidised ammonia in ppm concentration even in gas mixtures containing hydrogen gas in concentrations of...

  4. Environmental controls on the abundance, diversity, growth, and activity of  ammonia-oxidizing microorganisms in temperate forest soils

    OpenAIRE

    Norman, Jeffrey Stancill

    2014-01-01

    The goal of my dissertation research was to investigate the structure and function of ammonia-oxidizing microbial communities in temperate forest soils. Accomplishing this goal required a hybrid approach: I used modern molecular biology techniques alongside soil biogeochemical measurements and framed my research using ecological theory largely developed in plant systems. All of my field work was done at Coweeta Hydrologic Laboratory, a Forest Service Station and Long Term Ecological Researc...

  5. Archaeal Ammonia Oxidizers and Total Production of N2O and CH4 in Arctic Polar Desert Soils

    Science.gov (United States)

    Brummell, Martin; Robert, Stan; Bodrossy, Levente; Abell, Guy; Siciliano, Steven

    2014-05-01

    Ammonia-oxidizing Archaea are abundant in Arctic desert soils and appear to be responsible for the majority of ammonia oxidation activity in these cold and dry ecosystems. We used DNA microarrays to characterize the microbial community consisting of ammonia-oxidizing Archaea and methane-oxidizing Bacteria in three polar deserts from Ellesmere Island, Canada. Patterns of net greenhouse gas production, including production and consumption of CO2, CH4, and N2O were compared with community relative richness and abundance in a structural equation model that tested causal hypotheses relating edaphic factors to the biological community and net gas production. We extracted and amplified DNA sequences from soils collected at three polar deserts on Ellesmere Island in the Canadian high Arctic, and characterized the community structure using DNA microarrays. The functional genes Archaeal AmoA and pMMO were used to compare patterns of biological community structure to the observed patterns of net greenhouse gas production from those soils, as measured in situ. Edaphic factors including water content, bulk density, pH, and nutrient levels such as nitrate, ammonia, and extractable organic carbon were also measured for each soil sample, resulting in a highly multivariate dataset. Both concentration and net production of the three greenhouse gases were correlated, suggesting underlying causal factors. Edaphic factors such as soil moisture and pH had important, direct effects on the community composition of both functional groups of microorganisms, and pH further had a direct effect on N2O production. The structural relationship between the examined microbial communities and net production of both N2O and CH4 was strong and consistent between varying model structures and matrices, providing high confidence that this model relationship accurately reflects processes occurring in Arctic desert soils.

  6. Comparison of water availability effect on ammonia-oxidizing bacteria and archaea in microcosms of a Chilean semiarid soil

    OpenAIRE

    JulietaOrlando

    2012-01-01

    Water availability is the main limiting factor in arid soils; however few studies have examined the effects of drying and rewetting on nitrifiers from these environments. The effect of water availability on the diversity of ammonia-oxidizing bacteria (AOB) and archaea (AOA) from a semiarid soil of the Chilean sclerophyllous matorral was determined by microcosm assays. The addition of water every 14 days to reach 60% of the WHC significantly increased nitrate content in rewetted soil microcosm...

  7. Influence of Different Cultivars on Populations of Ammonia-Oxidizing Bacteria in the Root Environment of Rice

    OpenAIRE

    Briones, Aurelio M.; Okabe, Satoshi; Umemiya, Yoshiaki; Ramsing, Niels-Birger; Reichardt, Wolfgang; Okuyama, Hidetoshi

    2002-01-01

    Comparisons of the activities and diversities of ammonia-oxidizing bacteria (AOB) in the root environment of different cultivars of rice (Oryza sativa L.) indicated marked differences despite identical environmental conditions during growth. Gross nitrification rates obtained by the 15N dilution technique were significantly higher in a modern variety, IR63087-1-17, than in two traditional varieties. Phylogenetic analysis based on the ammonium monooxygenase gene (amoA) identified strains relat...

  8. Comparison of water availability effect on ammonia-oxidizing bacteria and archaea in microcosms of a Chilean semiarid soil

    OpenAIRE

    Bustamante, Mauricio; Verdejo, Valentina; Zúñiga, Catalina; Espinosa, Fernanda; Orlando, Julieta; Carú, Margarita

    2012-01-01

    Water availability is the main limiting factor in arid soils; however, few studies have examined the effects of drying and rewetting on nitrifiers from these environments. The effect of water availability on the diversity of ammonia-oxidizing bacteria (AOB) and archaea (AOA) from a semiarid soil of the Chilean sclerophyllous matorral was determined by microcosm assays. The addition of water every 14 days to reach 60% of the WHC significantly increased nitrate content in rewetted soil microcos...

  9. Community structure of β-Proteobacterial ammonia-oxidizing bacteria in prawn farm sediment

    Institute of Scientific and Technical Information of China (English)

    Ying Ma; Lin Wang; Lumin Qian

    2008-01-01

    To examine the community structure of β-Proteobacterial ammonia-oxidizing bacteria (AOB) in prawn farm sediment, the 16S rRNA gene library was constructed with β-Proteobacterial AOB-specific primers. The library was screened by PCR-restriction fragment length polymorphism (RFLP) analysis and clones with unique RFLP patterns were sequenced. Two groups of β-Proteobacterial AOB, the Nitrosomonas and the Nitrosospira, were detected. The Nitrosomonas occupied an absolute dominant position, accounting for more than 90% of total clones in the clone library, while the Nitrosospira accounting for 5.48%. Nitrosomonas-affiliated clones were grouped into the Nitrosomonas marina and the Nitrosomonas sp. Nm 143 clusters, and Nitrosospira-affiliated clones were grouped into the Nitrosospira cluster 1. No other clusters of β-Proteobacterial AOB were found. The results enriched our knowledge of AOB diversity in the prawn farm sediment and provided important foundational data for further functional studies of these microbes in mariculture environments.

  10. Complete genome sequence of Nitrosospira multiformis, an ammonia-oxidizing bacterium from the soil environment

    Energy Technology Data Exchange (ETDEWEB)

    Norton, Jeanette M. [Utah State University (USU); Klotz, Martin G [University of Louisville, Louisville; Stein, Lisa Y [University of California, Riverside; Arp, D J [Oregon State University; Bottomley, Peter J [Oregon State University; Chain, Patrick S. G. [Lawrence Livermore National Laboratory (LLNL); Hauser, Loren John [ORNL; Land, Miriam L [ORNL; Larimer, Frank W [ORNL; Shin, M [U.S. Department of Energy, Joint Genome Institute; Starkenburg, Shawn R [Oregon State University

    2008-01-01

    The complete genome of the ammonia-oxidizing bacterium, Nitrosospira multiformis (ATCC 25196T), consists of a circular chromosome and three small plasmids totaling 3,234,309 bp and encoding 2827 putative proteins. Of these, 2026 proteins have predicted functions and 801 are without conserved functional domains, yet 747 of these have similarity to other predicted proteins in databases. Gene homologs from Nitrosomonas europaea and N. eutropha were the best match for 42% of the predicted genes in N. multiformis. The genome contains three nearly identical copies of amo and hao gene clusters as large repeats. Distinguishing features compared to N. europaea include: the presence of gene clusters encoding urease and hydrogenase, a RuBisCO-encoding operon of distinctive structure and phylogeny, and a relatively small complement of genes related to Fe acquisition. Systems for synthesis of a pyoverdine-like siderophore and for acyl-homoserine lactone were unique to N. multiformis among the sequenced AOB genomes. Gene clusters encoding proteins associated with outer membrane and cell envelope functions including transporters, porins, exopolysaccharide synthesis, capsule formation and protein sorting/export were abundant. Numerous sensory transduction and response regulator gene systems directed towards sensing of the extracellular environment are described. Gene clusters for glycogen, polyphosphate and cyanophycin storage and utilization were identified providing mechanisms for meeting energy requirements under substrate-limited conditions. The genome of N. multiformis encodes the core pathways for chemolithoautotrophy along with adaptations for surface growth and survival in soil environments.

  11. Temperature responses of ammonia-oxidizing prokaryotes in freshwater sediment microcosms.

    Directory of Open Access Journals (Sweden)

    Jin Zeng

    Full Text Available In order to investigate the effects of temperature on the abundances and community compositions of ammonia-oxidizing archaea (AOA and bacteria (AOB, lake microcosms were constructed and incubated at 15°C, 25°C and 35°C for 40 days, respectively. Temperature exhibited different effects on the abundance and diversity of archaeal and bacterial amoA gene. The elevated temperature increased the abundance of archaeal amoA gene, whereas the abundance of bacterial amoA gene decreased. The highest diversity of bacterial amoA gene was found in the 25°C treatment sample. However, the 25°C treatment sample maintained the lowest diversity of archaeal amoA gene. Most of the archaeal amoA sequences obtained in this study affiliated with the Nitrosopumilus cluster. Two sequences obtained from the 15°C treatment samples were affiliated with the Nitrosotalea cluster. N. oligotropha lineage was the most dominant bacterial amoA gene group. Several sequences affiliated to Nitrosospira and undefined N. europaea/NC. mobilis like lineage were found in the pre-incubation and 25°C treatment groups.

  12. Emissions of ammonia, nitrous oxide and methane from cattle manure heaps: effect of compaction and covering

    Science.gov (United States)

    Chadwick, D. R.

    The effect of compaction and covering during storage of beef cattle ( Bos taurus) farmyard manure (FYM) on ammonia (NH 3), nitrous oxide (N 2O) and methane (CH 4) emissions was determined. Gaseous emission measurements were made over three separate storage periods of between 90 and 109 days. The effect of the different storage treatments on manure chemical composition was also determined. Compaction was carried out as the manure was put into store and the compacted manures covered with plastic sheeting. Compaction and covering significantly reduced NH 3 emissions from manure by over 90% during the first summer storage period (PMethane emissions from cattle FYM were unaffected by treatment over the first storage period and were decreased by compaction in the second storage period yet was increased by compaction during the third storage period. It would appear that compacting and covering manure heaps does have the potential to reduce emissions of both NH 3 and N 2O when the manure contains relatively high ammonium-N contents. Additional benefits are that N and K are retained in the manure heap for agronomic benefit.

  13. The inoculum effect on the ammonia-oxidizing bacterial communities in parallel sequential batch reactors.

    Science.gov (United States)

    Wittebolle, Lieven; Verstraete, Willy; Boon, Nico

    2009-09-01

    Three identical sequential batch reactors (SBRs) were each inoculated with sludge from a full-scale wastewater treatment plant (WWTP) treating a waste stream of different origin, i.e. a hospital, a meat processing company, and a municipal WWTP. The SBRs were run in parallel for 84 consecutive days to investigate whether the reactors would become more phylogenetically similar or stay separated concerning their functionality and microbial communities. Overall, the nitrification functionality was high throughout the experiment, and the size and structure of the sludge flocs were very similar. The total bacterial and ammonia-oxidizing bacterial (AOB) communities were analyzed by PCR-DGGE. Cluster analysis demonstrated very distinct bacterial communities in the three SBRs, not showing any trend becoming more similar. The carrying capacity, dynamics and functional organization of the communities were assessed by DGGE analysis and based on these patterns the range-weighted richness, moving window analysis, and constructing Pareto-Lorenz evenness distribution curves were calculated. Between the SBRs, highly comparable internal structure and dynamics of the AOB communities were observed, although they had only one AOB DGGE band in common. These observations indicate that community characteristics such as the extent of biodiversity and dynamics are more important indicators of good microbial functionality than the presence of certain specific species. PMID:19596129

  14. Final Report: Molecular mechanisms and kinetics of microbial anaerobic nitrate-dependent U(IV) and Fe(II) oxidation

    Energy Technology Data Exchange (ETDEWEB)

    O' Day, Peggy A. [Univ. of California, Merced, CA (United States); Asta, Maria P. [Univ. of California, Merced, CA (United States); Kanematsu, Masakazu [Univ. of California, Merced, CA (United States); Beller, Harry [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Zhou, Peng [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Steefel, Carl [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-02-27

    In this project, we combined molecular genetic, spectroscopic, and microscopic techniques with kinetic and reactive transport studies to describe and quantify biotic and abiotic mechanisms underlying anaerobic, nitrate-dependent U(IV) and Fe(II) oxidation, which influences the long-term efficacy of in situ reductive immobilization of uranium at DOE sites. In these studies, Thiobacillus denitrificans, an autotrophic bacterium that catalyzes anaerobic U(IV) and Fe(II) oxidation, was used to examine coupled oxidation-reduction processes under either biotic (enzymatic) or abiotic conditions in batch and column experiments with biogenically produced UIVO2(s). Synthesis and quantitative analysis of coupled chemical and transport processes were done with the reactive transport modeling code Crunchflow. Research focused on identifying the primary redox proteins that catalyze metal oxidation, environmental factors that influence protein expression, and molecular-scale geochemical factors that control the rates of biotic and abiotic oxidation.

  15. High Concentrations of the Antibiotic Spiramycin in Wastewater Lead to High Abundance of Ammonia-Oxidizing Archaea in Nitrifying Populations.

    Science.gov (United States)

    Zhang, Yu; Tian, Zhe; Liu, Miaomiao; Shi, Zhou Jason; Hale, Lauren; Zhou, Jizhong; Yang, Min

    2015-08-01

    To evaluate the potential effects of antibiotics on ammonia-oxidizing microbes, multiple tools including quantitative PCR (qPCR), 454-pyrosequencing, and a high-throughput functional gene array (GeoChip) were used to reveal the distribution of ammonia-oxidizing archaea (AOA) and archaeal amoA (Arch-amoA) genes in three wastewater treatment systems receiving spiramycin or oxytetracycline production wastewaters. The qPCR results revealed that the copy number ratios of Arch-amoA to ammonia-oxidizing bacteria (AOB) amoA genes were the highest in the spiramycin full-scale (5.30) and pilot-scale systems (1.49 × 10(-1)), followed by the oxytetracycline system (4.90 × 10(-4)), with no Arch-amoA genes detected in the control systems treating sewage or inosine production wastewater. The pyrosequencing result showed that the relative abundance of AOA affiliated with Thaumarchaeota accounted for 78.5-99.6% of total archaea in the two spiramycin systems, which was in accordance with the qPCR results. Mantel test based on GeoChip data showed that Arch-amoA gene signal intensity correlated with the presence of spiramycin (P amoA functional gene structures by variance partitioning analysis. This study revealed the selection of AOA in the presence of high concentrations of spiramycin in activated sludge systems. PMID:26125322

  16. Spatial distribution and factors shaping the niche segregation of ammonia-oxidizing microorganisms in the Qiantang River, China.

    Science.gov (United States)

    Liu, Shuai; Shen, Lidong; Lou, Liping; Tian, Guangming; Zheng, Ping; Hu, Baolan

    2013-07-01

    Ammonia oxidation is performed by both ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB). However, the current knowledge of the distribution, diversity, and relative abundance of these two microbial groups in freshwater sediments is insufficient. We examined the spatial distribution and analyzed the possible factors leading to the niche segregation of AOA and AOB in the sediments of the Qiantang River, using clone library construction and quantitative PCR for both archaeal and bacterial amoA genes. pH and NH4(+)-N content had a significant effect on AOA abundance and AOA operational taxonomy unit (OTU) numbers. pH and organic carbon content influenced the ratio of AOA/AOB OTU numbers significantly. The influence of these factors showed an obvious spatial trend along the Qiantang River. This result suggested that AOA may contribute more than AOB to the upstream reaches of the Qiantang River, where the pH is lower and the organic carbon and NH4(+)-N contents are higher, but AOB were the principal driver of nitrification downstream, where the opposite environmental conditions were present. PMID:23624482

  17. Spatial distribution of ammonia-oxidizing archaea and bacteria across eight freshwater lakes in sediments from Jiangsu of China

    Directory of Open Access Journals (Sweden)

    Xu Sun

    2014-03-01

    Full Text Available Ammonia-oxidizingarchaea (AOA and ammonia-oxidizing bacteria (AOB play an important role innitrogen transformation in freshwater sediments. However, it is still unclear towhat extent the distribution patterns of these microorganisms are affected bythe freshwater sediment across a large geographical scale. This study wasdesigned to gain insight into the heterogeneity distribution of AOA and AOB in32 freshwater sediments from a wide range of ecologic types. Real-time quantitative polymerasechain reaction PCR(qPCR combined with the terminal restrictionfragment length polymorphism(T-RFLP were employed to characterize the abundance, diversity, and communitystructure of the AOA and AOB in 32 freshwater sediments. AOA and AOB wereubiquitous in all sediments, and archaeal amoA far outnumbered bacterial amoA inmost sediments with lower organic matters. The abundance of AOA and AOB did notvary with the freshwater ecological type (macrophyte dominated region and algaedominated region. Based on  the T-RFLP of an amoA gene, this research found that organicmatters in pore water rather than other factors affect the AOA communitystructure in sediments, while the AOB were not significantly different in thefreshwater sediments. Phylogenetic analysis showed that all archaeal amoAsequences fell within either the Crenarchaeotal Group (CG I.1b or the CGI.1asubgroup, and all AOB clustered with genus Nitrosomonas or Nitrosospira. The data obtained inthis study elucidates the role of ammonia-oxidizing archaea andammonia-oxidizing bacteria in the nitrogen cycle of freshwater ecosystems.

  18. Anaerobic methane oxidation may be more prevalent in surface soils than was originally thought

    Science.gov (United States)

    Gauthier, Mathieu; Bradley, Robert L.; Šimek, Miloslav

    2013-04-01

    Anaerobic oxidation of methane (CH4) (AOM) is a process that was first reported to occur in deep anoxic marine sediments. In this environment, CH4 is oxidized with sulphate (SO42-) as the terminal electron acceptor. It is mediated by a syntrophic consortium formed by SO42- reducing bacteria and anaerobic CH4 oxidizing Archaea, or by the latter alone. Since this landmark discovery, AOM was found to occur in other environments including freshwater lake sediments and water columns, mud volcanoes, landfill leachate, deep buried Holocene sediments and hydrocarbon contaminated aquifers. All of these situations are very specific and point to AOM as being primarily occurring in highly reducing conditions. Thus, observations of AOM in surface soils with fluctuating REDOX conditions are relatively scarce, although a few independent studies have reported AOM in surface peatlands as well as in a forest soil. Furthermore, AOM may follow different pathways, such as via the coupled oxidation of CH4 and reduction of manganese (Mn(IV)) or iron (Fe(III)), or by a lone denitrifying species that converts nitrite to nitric oxide in order to generate O2 that is then used internally to oxidize CH4. Thus, the goal of our study was to determine whether AOM is more prevalent than was thought in hydromorphic surface soils across different environments, and whether the addition of NO3- or SO4= as alternative electron acceptors may stimulate the process. We collected samples from 3 peatland soils in Scotland, 2 acid-sulphate soils in Finland, and shore sediments of 15 drained fish ponds in the Czech Republic. Subsamples were incubated in the absence of O2 and amended with either NO3-, SO42-, or left unamended (control). The net flux of CH4 and CO2 were assessed by gas chromatography after 2, 20, 40 and 60 days. We also used a 13C-CH4 isotope dilution technique to determine gross production and consumption rates of CH4. We detected AOM in all of our soils, with oxidation rates ranging between 0

  19. Diversity of Ammonia-Oxidizing Archaea and Bacteria in the Sediments of a Hypernutrified Subtropical Estuary: Bahía del Tóbari, Mexico▿

    OpenAIRE

    Beman, J. Michael; Francis, Christopher A.

    2006-01-01

    Nitrification within estuarine sediments plays an important role in the nitrogen cycle, both at the global scale and in individual estuaries. Although bacteria were once thought to be solely responsible for catalyzing the first and rate-limiting step of this process, several recent studies have suggested that mesophilic Crenarchaeota are capable of performing ammonia oxidation. Here we examine the diversity (richness and community composition) of ammonia-oxidizing archaea (AOA) and bacteria (...

  20. Liberation of ammonia by cyanobacteria

    International Nuclear Information System (INIS)

    Photoheterotrophic nitrogen-fixing cyanobacteria release ammonia when treated with methionine sulfoximine (MSX) to inhibit nitrogen incorporation into protein. This released ammonia can be derived from recently fixed nitrogen (nitrogen atmosphere) or endogenous reserves (argon atmosphere). Anaerobic ammonia release requires light and is stimulated by the photosystem II herbicides DCMU and Atrazine, regardless of the source of ammonia. As much as one quarter of the total cellular nitrogen can be released as ammonia by cyanbacteria treated with MSX and DCMU under argon in light. Chromatography of cell extracts indicates that virtually all cellular proteins are degraded. DCMU and Atrazine, at very low concentration, inhibit sustained uptake of the ammonia analog 14C methylamine. These data indicate that the herbicides interrupt ammonia uptake and retention by the cells, and support a role for photosystem II in ammonia metabolism

  1. Anaerobic oxidation of Hg(0) and methylmercury formation by Desulfovibrio desulfuricans ND132

    Science.gov (United States)

    Colombo, Matthew J.; Ha, Juyoung; Reinfelder, John R.; Barkay, Tamar; Yee, Nathan

    2013-07-01

    The transformation of inorganic mercury (Hg) to methylmercury (MeHg) plays a key role in determining the amount of Hg that is bioaccumulated in aquatic food chains. An accurate knowledge of Hg methylation mechanisms is required to predict the conditions that promote MeHg production in aquatic environments. In this study, we conducted experiments to examine the oxidation and methylation of dissolved elemental mercury [Hg(0)] by the anaerobic bacterium Desulfovibrio desulfuricans ND132. Anoxic cultures of D. desulfuricans ND132 were exposed to Hg(0) in the dark, and samples were collected and analyzed for the loss of Hg(0), formation of non-purgeable Hg, and formation of MeHg over time. We found that D. desulfuricans ND132 rapidly transformed dissolved gaseous mercury into non-purgeable Hg, with bacterial cultures producing approximately 40 μg/L of non-purgeable Hg within 30 min, and as much as 800 μg/L of non-purgeable Hg after 36 h. Derivatization of the non-purgeable Hg in the cell suspensions to diethylmercury and analysis of Hg(0)-reacted D. desulfuricans ND132 cells using X-ray absorption near edge structure (XANES) spectroscopy demonstrated that cell-associated Hg was dominantly in the oxidized Hg(II) form. Spectral comparisons and linear combination fitting of the XANES spectra indicated that the oxidized Hg(II) was covalently bonded to cellular thiol functional groups. MeHg analyses revealed that D. desulfuricans ND132 produced up to 118 μg/L of methylmercury after 36 h of incubation. We found that a significant fraction of the methylated Hg was exported out of the cell and released into the culture medium. The results of this work demonstrate a previously unrecognized pathway in the mercury cycle, whereby anaerobic bacteria produce MeHg when provided with dissolved Hg(0) as their sole Hg source.

  2. Plutonium Oxidation State Distribution under Aerobic and Anaerobic Subsurface Conditions for Metal-Reducing Bacteria

    Science.gov (United States)

    Reed, D. T.; Swanson, J.; Khaing, H.; Deo, R.; Rittmann, B.

    2009-12-01

    The fate and potential mobility of plutonium in the subsurface is receiving increased attention as the DOE looks to cleanup the many legacy nuclear waste sites and associated subsurface contamination. Plutonium is the near-surface contaminant of concern at several DOE sites and continues to be the contaminant of concern for the permanent disposal of nuclear waste. The mobility of plutonium is highly dependent on its redox distribution at its contamination source and along its potential migration pathways. This redox distribution is often controlled, especially in the near-surface where organic/inorganic contaminants often coexist, by the direct and indirect effects of microbial activity. The redox distribution of plutonium in the presence of facultative metal reducing bacteria (specifically Shewanella and Geobacter species) was established in a concurrent experimental and modeling study under aerobic and anaerobic conditions. Pu(VI), although relatively soluble under oxidizing conditions at near-neutral pH, does not persist under a wide range of the oxic and anoxic conditions investigated in microbiologically active systems. Pu(V) complexes, which exhibit high chemical toxicity towards microorganisms, are relatively stable under oxic conditions but are reduced by metal reducing bacteria under anaerobic conditions. These facultative metal-reducing bacteria led to the rapid reduction of higher valent plutonium to form Pu(III/IV) species depending on nature of the starting plutonium species and chelating agents present in solution. Redox cycling of these lower oxidation states is likely a critical step in the formation of pseudo colloids that may lead to long-range subsurface transport. The CCBATCH biogeochemical model is used to explain the redox mechanisms and final speciation of the plutonium oxidation state distributions observed. These results for microbiologically active systems are interpreted in the context of their importance in defining the overall migration

  3. Impact of aerobic and anaerobic exercise training on oxidative stress and antioxidant defense in athletes

    Science.gov (United States)

    Park, Song-Young; Kwak, Yi-Sub

    2016-01-01

    Exercise mediates an excessive free radical production leading to oxidative stress (OS). The body has natural antioxidant systems that help decrease OS, and these systems may be enhanced with exercise training. However, only a few studies have investigated the differences in resting OS and antioxidant capacity (AOC) between aerobically trained athletes (ET), anaerobically trained athletes (RT), and untrained individuals (UT). Therefore, this study sought to investigate the resting and postexercise OS and AOC in ET, RT, and UT. Sixty healthy young males (26.6±0.8 yr) participated in this study. Subjects were divided into three groups, ET, RT, and UT by distinct training background. Resting plasma malondialdehyde (MDA) and protein carbonyls (PC) were not significantly different in ET, RT, and UT. However, MDA and PC were significantly increased following a graded exercise test (GXT) in UT but not in ET and RT. Resting total antioxidant capacity (TAC) levels and TAC were not different in ET, RT, and UT. Interestingly, TAC levels significantly decreased after the GXT in all groups. Additionally, UT showed lower post-exercise TAC levels compared to ET and RT. These results showed that ET, RT, and UT have similar OS and AOC at rest. However, both ET and RT have greater AOC against exercise mediated OS compared to UT. These findings may explain, at least in part, why both aerobic and anaerobic types of exercise training improve redox balance. However, it appears there is no specific exercise type effect in terms of redox balance.

  4. Impact of aerobic and anaerobic exercise training on oxidative stress and antioxidant defense in athletes.

    Science.gov (United States)

    Park, Song-Young; Kwak, Yi-Sub

    2016-04-01

    Exercise mediates an excessive free radical production leading to oxidative stress (OS). The body has natural antioxidant systems that help decrease OS, and these systems may be enhanced with exercise training. However, only a few studies have investigated the differences in resting OS and antioxidant capacity (AOC) between aerobically trained athletes (ET), anaerobically trained athletes (RT), and untrained individuals (UT). Therefore, this study sought to investigate the resting and postexercise OS and AOC in ET, RT, and UT. Sixty healthy young males (26.6±0.8 yr) participated in this study. Subjects were divided into three groups, ET, RT, and UT by distinct training background. Resting plasma malondialdehyde (MDA) and protein carbonyls (PC) were not significantly different in ET, RT, and UT. However, MDA and PC were significantly increased following a graded exercise test (GXT) in UT but not in ET and RT. Resting total antioxidant capacity (TAC) levels and TAC were not different in ET, RT, and UT. Interestingly, TAC levels significantly decreased after the GXT in all groups. Additionally, UT showed lower post-exercise TAC levels compared to ET and RT. These results showed that ET, RT, and UT have similar OS and AOC at rest. However, both ET and RT have greater AOC against exercise mediated OS compared to UT. These findings may explain, at least in part, why both aerobic and anaerobic types of exercise training improve redox balance. However, it appears there is no specific exercise type effect in terms of redox balance. PMID:27162773

  5. Spatial distribution of total, ammonia-oxidizing, and denitrifying bacteria in biological wastewater treatment reactors for bioregenerative life support

    Science.gov (United States)

    Sakano, Yuko; Pickering, Karen D.; Strom, Peter F.; Kerkhof, Lee J.; Janes, H. W. (Principal Investigator)

    2002-01-01

    Bioregenerative life support systems may be necessary for long-term space missions due to the high cost of lifting supplies and equipment into orbit. In this study, we investigated two biological wastewater treatment reactors designed to recover potable water for a spacefaring crew being tested at Johnson Space Center. The experiment (Lunar-Mars Life Support Test Project-Phase III) consisted of four crew members confined in a test chamber for 91 days. In order to recycle all water during the experiment, an immobilized cell bioreactor (ICB) was employed for organic carbon removal and a trickling filter bioreactor (TFB) was utilized for ammonia removal, followed by physical-chemical treatment. In this study, the spatial distribution of various microorganisms within each bioreactor was analyzed by using biofilm samples taken from four locations in the ICB and three locations in the TFB. Three target genes were used for characterization of bacteria: the 16S rRNA gene for the total bacterial community, the ammonia monooxygenase (amoA) gene for ammonia-oxidizing bacteria, and the nitrous oxide reductase (nosZ) gene for denitrifying bacteria. A combination of terminal restriction fragment length polymorphism (T-RFLP), sequence, and phylogenetic analyses indicated that the microbial community composition in the ICB and the TFB consisted mainly of Proteobacteria, low-G+C gram-positive bacteria, and a Cytophaga-Flexibacter-Bacteroides group. Fifty-seven novel 16S rRNA genes, 8 novel amoA genes, and 12 new nosZ genes were identified in this study. Temporal shifts in the species composition of total bacteria in both the ICB and the TFB and ammonia-oxidizing and denitrifying bacteria in the TFB were also detected when the biofilms were compared with the inocula after 91 days. This result suggests that specific microbial populations were either brought in by the crew or enriched in the reactors during the course of operation.

  6. Communities of ammonia oxidizers at different stages of Spartina alterniflora invasion in salt marshes of Yangtze River estuary.

    Science.gov (United States)

    Xia, Fei; Zeleke, Jemaneh; Sheng, Qiang; Wu, Ji-Hua; Quan, Zhe-Xue

    2015-05-01

    Spartina alterniflora, an aggressive invasive plant species at the estuarine wetlands of China's coasts, has become a major threat to the natural ecosystems. To understand its potential influence on nitrification processes, the community structures and abundance of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) were investigated using 454-pyrosequencing and quantitative real-time PCR (qPCR) in S. alterniflora invading salt marsh sediments at the Yangtze River estuary in Chongming island, Shanghai, China. Copy numbers of archaeal and bacterial ammonia monooxygenase subunit A (amoA) genes did not show accordant shifts with S. alterniflora invasion in the two sampling sites. However, the copy numbers of archaeal amoA gene were higher in summer than in spring. Phylogenetic analysis indicated that more than 90% of the archaeal and 92% of the bacterial amoA gene sequences were closely related to marine group I.1a and the clusters 13 and 15 in Nitrosospira lineage, respectively. The effect of different seasons (spring and summer) was important for the abundance variation of AOA, while different stages of S. alterniflora invasion did not show significant effect for both AOA and AOB. Variation of AOA community was significantly related to total carbon (TC) and sulfate concentration (P < 0.05), whereas the AOB community was significantly related to sulfate concentration, total nitrogen (TN), TC and pH (P < 0.05). In conclusion, the abundance and diversity of ammonia oxidizing microbial communities were not strongly affected by S. alterniflora invasion. PMID:25935302

  7. Archaeal dominated ammonia-oxidizing communities in Icelandic grassland soils are moderately affected by long-term N fertilization and geothermal heating

    Directory of Open Access Journals (Sweden)

    Anne eDaebeler

    2012-10-01

    Full Text Available The contribution of ammonia-oxidizing bacteria and archaea (AOB and AOA, respectively to the net oxidation of ammonia varies greatly between terrestrial environments. To better understand, predict and possibly manage terrestrial nitrogen turnover, we need to develop a conceptual understanding of ammonia oxidation as a function of environmental conditions including the ecophysiology of the associated organisms. We examined the discrete and combined effects of mineral nitrogen deposition and geothermal heating on ammonia-oxidizing communities by sampling soils from a long-term fertilisation site along a temperature gradient in Icelandic grasslands. Microarray, clone library and quantitative PCR analyses of the ammonia monooxygenase subunit A (amoA gene accompanied by physico-chemical measurements of the soil properties were conducted. In contrast to most other terrestrial environments, the ammonia-oxidizing communities consisted almost exclusively of archaea. Their bacterial counterparts proved to be undetectable by quantitative PCR suggesting AOB are only of minor relevance for ammonia oxidation in these soils. Our results show that fertilization and local, geothermal warming affected detectable ammonia-oxidizing communities, but not soil chemistry: only a subset of the detected AOA phylotypes was present in higher temperature soils and AOA abundance was increased in the fertilized soils, while the measured soil physico-chemical properties remained unchanged. Differences in distribution and structure of AOA communities were best explained by soil pH and clay content irrespective of temperature or fertilizer treatment in these grassland soils, suggesting that these factors have a greater potential for ecological niche-differentiation of AOA in soil than temperature and N fertilization.

  8. [Abundance and Community Composition of Ammonia-Oxidizing Archaea in Two Completely Autotrophic Nitrogen Removal over Nitrite Systems].

    Science.gov (United States)

    Gao, Jing-feng; Li, Ting; Zhang, Shu-jun; Fan, Xiao-yan; Pan, Kai-ling; Ma, Qian; Yuan, Ya-lin

    2015-08-01

    Ammonia oxidation is the first and rate-limiting step of nitrification, which was thought to be only performed by ammonia-oxidizing bacteria (AOB). In recent years, ammonia-oxidizing archaea (AOA) was also confirmed to take part in ammonia oxidation. The diversity and abundance of AOA have been investigated in various environments, however, little is known regarding the AOA in the completely autotrophic nitrogen removal over nitrite (CANON) wastewater treatment process. In this study, the abundance and diversity of AOA were investigated in the biofilm and flocculent activated sludge collected in a lab-scale (L) CANON system and a pilot-scale (P) CANON systems, respectively. The quantitative real time PCR (qPCR) was applied to investigate the abundance of AOA and the diversity of AOA was determined by polymerase chain reaction (PCR), cloning and sequencing. The qPCR results showed that the average abundance of AOA amoA gene of L and P was 2.42 x 10(6) copies x g(-1) dry sludge and 6.51 x 10(6) copies x g(-1) dry sludge, respectively. The abundance of AOA in biofilm was 10.1-14.1 times higher than that in flocculent activated sludge. For P system, the abundance of AOA in flocculent activated sludge was 1.8 times higher than that in biofilm. The results indicated that the abundance of AOA might be affected by different sludge morphology. The diversity of AOA in P system was extremely limited, only one OTU was observed, which was classified into Nitrosopumilus subcluster 5.2. The diversity of AOA in L system was higher, eight OTUs were observed, which were classified into five genera: Nitrososphaera subcluster 9, subcluster 8.1, subcluster 4.1, subcluster 1.1 and Nitrosopumilus subcluster 5.2. The diversity and abundance of AOA were different in CANON systems with different sludge morphology. AOA may play an important role in ammonia oxidation in CANON system. PMID:26592025

  9. Molecular evidence for ammonia oxidation bacteria in the sediments of shallow lake: A case study in Yangcheng Lake%浅水湖泊(阳澄湖)沉积物氨氧化菌的分子证据

    Institute of Scientific and Technical Information of China (English)

    张亚平; 阮晓红

    2012-01-01

    选择长江三角洲中型浅水湖泊--阳澄湖,应用分子生物学方法鉴定淡水系统底质中的厌氧氨氧化细菌和好氧氨氧化细菌.试验设计三组厌氧氨氧化特异性巢式引物,对沉积物细菌的16S rRNA进行特异性扩增.其中,引物对AMX368f-AMX820r从底质中扩增出了anammox特异性序列,系统发育分析表明样品序列分别与Candidatus brocadia fulgida、Candidatus brocadia anammoxidans和Candidatus scalindua属近似.应用amoA基因特异性探针在底质中扩增出的好氧氨氧化菌序列,均属于Betaproteobacteria.本研究提供了阳澄湖中好氧氨氧化菌与厌氧氨氧化菌共存的分子证据.%Sediment samples were collected from Yangcheng Lake, a middle size shallow lake in Yangtze River Delta. Molecular biology methods were adopted to detect the anaerobic ammonia oxidation (anammox) and aerobic ammonia oxidation bacteria in the samples. Three pairs of nest PCR primers were designed to amplify the 16S rRNA from the sediment samples. The specified sequences of anammox were amplified by the primer pairs AMX368f- AMX820r, and analyses of phylogenetics showed that these sequences were similar to Candidatus brocadia fulgida, Candidatus brocadia anammoxidans and Candidatus scalindua. The sequences amplified by the amoA gene specified primer from the sediment samples belonged to the Betaproteobacteria class. This study provided the molecular evidence for coexistence of anammox and aerobic-ammonia-oxidation in Yangcheng Lake.

  10. Activity, Microenvironments, and Community Structure of Aerobic and Anaerobic Ammonium Oxidizing Prokaryotes in Estuarine Sediment (Randers Fjord, DK)

    DEFF Research Database (Denmark)

    Schramm, Andreas; Revsbech, Niels Peter; Dalsgaard, Tage;

    2006-01-01

    ACTIVITY, MICROENVIRONMENTS, AND COMMUNITY STRUCTURE OF AEROBIC AND ANAEROBIC AMMONIUM OXIDIZING PROKARYOTES IN ESTUARINE SEDIMENT (RANDERS FJORD, DK) A. Schramm 1, N.P. Revsbech 1, T. Dalsgaard 2, E. Piña-Ochoa 3, J. de la Torré 4, D.A. Stahl 4, N. Risgaard-Petersen 2 1 Department of Biological...

  11. Archaeal lipids and anaerobic oxidation of methane : A comparative study of the euxinic Black Sea and Cariaco Basin

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Wakeham, S.G.; Hopmans, E.C.; Schouten, S.

    2004-01-01

    The Black Sea and the Cariaco Basin are both large, euxinic marine basins in which methane concentrations are high and where anaerobic oxidation of methane (AOM) is an important part of the carbon cycle. AOM can be recognized by lipid biomarkers that are specific to methanotrophic archaea involved a

  12. More evidence that anaerobic oxidation of methane is prevalent in soils: Is it time to upgrade our biogeochemical models?

    Czech Academy of Sciences Publication Activity Database

    Gauthier, M.; Bradley, R.L.; Šimek, Miloslav

    2015-01-01

    Roč. 80, January (2015), s. 167-174. ISSN 0038-0717 R&D Projects: GA ČR GA526/09/1570 Institutional support: RVO:60077344 Keywords : anaerobic oxidation of methane * isotope dilution * peatland soil * shoreline soil * acid sulfate soil * alternative electron acceptors Subject RIV: EH - Ecology, Behaviour Impact factor: 3.932, year: 2014

  13. The structure-function relationship for alumina supported platinum during the formation of ammonia from nitrogen oxide and hydrogen in the presence of oxygen.

    Science.gov (United States)

    Adams, Emma Catherine; Merte, Lindsay Richard; Hellman, Anders; Skoglundh, Magnus; Gustafson, Johan; Bendixen, Eva Charlotte; Gabrielsson, Pär; Bertram, Florian; Evertsson, Jonas; Zhang, Chu; Carlson, Stefan; Carlsson, Per-Anders

    2016-04-20

    We study the structure-function relationship of alumina supported platinum during the formation of ammonia from nitrogen oxide and dihydrogen by employing in situ X-ray absorption and Fourier transform infrared spectroscopy. Particular focus has been directed towards the effect of oxygen on the reaction as a model system for emerging technologies for passive selective catalytic reduction of nitrogen oxides. The suppressed formation of ammonia observed as the feed becomes net-oxidizing is accompanied by a considerable increase in the oxidation state of platinum as well as the formation of surface nitrates and the loss of NH-containing surface species. In the presence of (excess) oxygen, the ammonia formation is proposed to be limited by weak interaction between nitrogen oxide and the oxidized platinum surface. This leads to a slow dissociation rate of nitrogen oxide and thus low abundance of the atomic nitrogen surface species that can react with the adsorbed hydrogen species. In this case the consumption of hydrogen through the competing water formation reaction and decomposition/oxidation of ammonia are of less importance for the net ammonia formation. PMID:27039829

  14. Ammonia Oxidizing, Nitrite Reducing Bacteria and the Cycling of Nitrous Oxide in the Oxygen Minimum Zone (OMZ) of the Eastern South Pacific

    Science.gov (United States)

    Molina, V.; Castro-González, M.; Farías, L.; Farías, L.; Ulloa, O.; Braker, G.; Witzel, K.

    2004-12-01

    The distribution of nitrous oxide, oxygen, nitrite and nitrate, and 16S rDNA and functional genes (amoA,nirS) richness of ammonia oxidizing (AOB) and nitrite reducing bacteria (NRB) were studied in the water column of one of the shallowest (8 μ M) is also present at the OMZ core. The relationship among apparent oxygen utilization (AOU), apparent nitrous oxide production, and nitrate distribution allowed the differentiation among nitrification, denitrification, and the coupling between both, at AOU values of 230 and 200-230 μ mol kg-1, respectively. The richness of the AOB ribotypes (DGGE) and the NRB {it\

  15. Distribution and Abundance of Archaea in South China Sea Sponge Holoxea sp. and the Presence of Ammonia-Oxidizing Archaea in Sponge Cells

    Directory of Open Access Journals (Sweden)

    Fang Liu

    2011-01-01

    Full Text Available Compared with bacterial symbionts, little is known about archaea in sponges especially about their spatial distribution and abundance. Understanding the distribution and abundance of ammonia-oxidizing archaea will help greatly in elucidating the potential function of symbionts in nitrogen cycling in sponges. In this study, gene libraries of 16S rRNA gene and ammonia monooxygenase subunit A (amoA genes and quantitative real-time PCR were used to study the spatial distribution and abundance of archaea in the South China Sea sponge Holoxea sp. As a result, Holoxea sp. specific AOA, mainly group C1a (marine group I: Crenarchaeota were identified. The presence of ammonia-oxidizing crenarchaea was observed for the first time within sponge cells. This study suggested a close relationship between sponge host and its archaeal symbionts as well as the archaeal potential contribution to sponge host in the ammonia-oxidizing process of nitrification.

  16. Reduction of bromate to bromide coupled to acetate oxidation by anaerobic mixed microbial cultures.

    Science.gov (United States)

    van Ginkel, C G; van Haperen, A M; van der Togt, B

    2005-01-01

    Bromate, a weakly mutagenic oxidizing agent, exists in surface waters. The biodegradation of bromate was investigated by assessing the ability of mixed cultures of micro-organisms for utilization of bromate as electron acceptor and acetate as electron donor. Reduction of bromate was only observed at relatively low concentrations (sludge from an activated sludge treatment plant and a digester reduced bromate without lag period at a constant rate. Using an enrichment culture adapted to bromate, it was demonstrated that bromate was a terminal electron acceptor for anaerobic growth. Approximately 50% of the acetate was utilized for growth with bromate by the enrichment culture. A doubling of 20 h was estimated from a logarithmic growth curve. Other electron acceptors, like perchlorate, chlorate and nitrate, were not reduced or at negligible rates by bromate-utilizing microorganisms. PMID:15607164

  17. A Potentiometric Flow Biosensor Based on Ammonia-Oxidizing Bacteria for the Detection of Toxicity in Water

    Directory of Open Access Journals (Sweden)

    Qianyu Zhang

    2013-05-01

    Full Text Available A flow biosensor for the detection of toxicity in water using the ammonia-oxidizing bacterium (AOB Nitrosomonas europaea as a bioreceptor and a polymeric membrane ammonium-selective electrode as a transducer is described. The system is based on the inhibition effects of toxicants on the activity of AOB, which can be evaluated by measuring the ammonium consumption rates with the ammonium-selective membrane electrode. The AOB cells are immobilized on polyethersulfone membranes packed in a holder, while the membrane electrode is placed downstream in the flow cell. Two specific inhibitors of the ammonia oxidation‒allylthiourea and thioacetamide‒have been tested. The IC50 values defined as the concentration of an inhibitor causing a 50% reduction in the ammonia oxidation activity have been measured as 0.17 μM and 0.46 μM for allylthiourea and thioacetamide, respectively. The proposed sensor offers advantages of simplicity, speed and high sensitivity for measuring toxicity in water.

  18. Seasonal and spatial distribution of ammonia-oxidizing microorganism communities in surface sediments from the East China Sea

    Institute of Scientific and Technical Information of China (English)

    HE Hui; ZHEN Yu; MI Tiezhu; LU Xinglan; YU Zhigang

    2015-01-01

    Ammonia oxidation plays a significant role in the nitrogen cycle in marine sediments. Seasonal and spatial distribution of ammonia-oxidizing archaea (AOA) and betaproteobacteria (β-AOB) in surface sediments from the East China Sea (ECS) were investigated using ammonia monooxygenaseα subunit (amoA) gene. In order to characterize the community of AOA andβ-AOB, real-time quantitative polymerase chain reaction (qPCR) was carried out in this study, along with environmental parameters. The abundance ofβ-AOBamoA gene (2.17×106–4.54×107 copy numbers per gram wet weight sediment) was always greater than that of AOAamoA gene (2.18×105–9.89×106 copy numbers per gram wet weight sediment) in all sampling stations. The qPCR results were correlated with environmental parameters. AOAamoA gene copy numbers in April were positively related to temperature and nitrite concentration (p<0.05).β-AOBamoA gene copy numbers in August correlated negatively with salinity (p<0.01), and correlated positively with ammonium concentration (p<0.05). With the increase of salinity, theamoA gene copy ratio of AOB to AOA had a tendency to decrease, which suggestedβ-AOB dominated in the area of high level ammonium and AOA preferred high salinity area.

  19. Spatial distribution and abundance of ammonia-oxidizing microorganisms in deep-sea sediments of the Pacific Ocean.

    Science.gov (United States)

    Luo, Zhu-Hua; Xu, Wei; Li, Meng; Gu, Ji-Dong; Zhong, Tian-Hua

    2015-08-01

    Nitrification, the aerobic oxidation of ammonia to nitrate via nitrite, is performed by nitrifying microbes including ammonia-oxidizing bacteria (AOB) and archaea (AOA). In the current study, the phylogenetic diversity and abundance of AOB and AOA in deep-sea sediments of the Pacific Ocean were investigated using ammonia monooxygenase subunit A (amoA) coding genes as molecular markers. The study uncovered 3 AOB unique operational taxonomic units (OTUs, defined at sequence groups that differ by ≤5 %), which indicates lower diversity than AOA (13 OTUs obtained). All AOB amoA gene sequences were phylogenetically related to amoA sequences similar to those found in marine Nitrosospira species, and all AOA amoA gene sequences were affiliated with the marine sediment clade. Quantitative PCR revealed similar archaeal amoA gene abundances [1.68 × 10(5)-1.89 × 10(6) copies/g sediment (wet weight)] among different sites. Bacterial amoA gene abundances ranged from 5.28 × 10(3) to 2.29 × 10(6) copies/g sediment (wet weight). The AOA/AOB amoA gene abundance ratios ranged from 0.012 to 162 and were negatively correlated with total C and C/N ratio. These results suggest that organic loading may be a key factor regulating the relative abundance of AOA and AOB in deep-sea environments of the Pacific Ocean. PMID:26014493

  20. Spatial and temporal dynamics of ammonia oxidizers in the sediments of the Gulf of Finland, Baltic Sea.

    Science.gov (United States)

    Vetterli, Adrien; Hietanen, Susanna; Leskinen, Elina

    2016-02-01

    The diversity and dynamics of ammonia-oxidizing bacteria (AOB) and archaea (AOA) nitrifying communities in the sediments of the eutrophic Gulf of Finland (GoF) were investigated. Using clone libraries of ammonia monooxygenase (amoA) gene fragments and terminal restriction fragment length polymorphism (TRFLP), we found a low richness of both AOB and AOA. The AOB amoA phylogeny matched that of AOB 16S ribosomal genes from the same samples. AOA communities were characterized by strong spatial variation while AOB communities showed notable temporal patterns. At open sea sites, where transient anoxic conditions prevail, richness of both AOA and AOB was lowest and communities were dominated by organisms with gene signatures unique to the GoF. Given the importance of nitrification as a link between the fixation of nitrogen and its removal from aquatic environments, the low diversity of ammonia-oxidizing microbes across the GoF could be of relevance for ecosystem resilience in the face of rapid global environmental changes. PMID:26722795

  1. Experimental investigations of ammonia adsorption and nitric oxide reduction on activated coke

    Energy Technology Data Exchange (ETDEWEB)

    Sirko Ogriseck; Gloria Patricia Galindo Vanegas [Infraserv GmbH & Co. Hoechst KG, Frankfurt am Main (Germany)

    2010-06-01

    In this work the enhancement of ammonia adsorption on activated coke has been investigated to increase the efficiency of the denitrification in the dry flue gas cleaning system located at Infraserv GmbH & Co. Hoechst KG in Frankfurt am Main, Germany. The influence of loading temperatures and sulfur components content of the activated coke on the ammonia adsorption were studied. Additionally, urea was tested as an alternative loading substance. Increasing ammonia adsorption was observed by raising loading temperatures. The highest ammonia loading was possible at the highest temperature tested at 469{sup o}C. The activated coke loaded at these conditions, as well as the one loaded with urea, was found to have higher denitrification efficiency than that loaded at present conditions of about 114{sup o}C. The results of this study allowed the recommendation of possible measures to be applied in the plant to increase its denitrification efficiency.

  2. The role of paraffin oil on the interaction between denitrifying anaerobic methane oxidation and Anammox processes.

    Science.gov (United States)

    Fu, Liang; Ding, Zhao-Wei; Ding, Jing; Zhang, Fang; Zeng, Raymond J

    2015-10-01

    Methane is sparingly soluble in water, resulting in a slow reaction rate in the denitrifying anaerobic methane oxidation (DAMO) process. The slow rate limits the feasibility of research to examine the interaction between the DAMO and the anaerobic ammonium oxidation (Anammox) process. In this study, optimized 5 % (v/v) paraffin oil was added as a second liquid phase to improve methane solubility in a reactor containing DAMO and Anammox microbes. After just addition, methane solubility was found to increase by 25 % and DAMO activity was enhanced. After a 100-day cultivation, the paraffin reactor showed almost two times higher consumption rates of NO3 (-) (0.2268 mmol/day) and NH4 (+) (0.1403 mmol/day), compared to the control reactor without paraffin oil. The microbes tended to distribute in the oil-water interface. The quantitative (q) PCR result showed the abundance of gene copies of DAMO archaea, DAMO bacteria, and Anammox bacteria in the paraffin reactor were higher than those in the control reactor after 1 month. Fluorescence in situ hybridization revealed that the percentages of the three microbes were 55.5 and 77.6 % in the control and paraffin reactors after 100 days, respectively. A simple model of mass balance was developed to describe the interactions between DAMO and Anammox microbes and validate the activity results. A mechanism was proposed to describe the possible way that paraffin oil enhanced DAMO activity. It is quite clear that paraffin oil enhances not only DAMO activity but also Anammox activity via the interaction between them; both NO3 (-) and NH4 (+) consumption rates were about two times those of the control. PMID:26036704

  3. Nitrate reduction by denitrifying anaerobic methane oxidizing microorganisms can reach a practically useful rate.

    Science.gov (United States)

    Cai, Chen; Hu, Shihu; Guo, Jianhua; Shi, Ying; Xie, Guo-Jun; Yuan, Zhiguo

    2015-12-15

    Methane in biogas has been proposed to be an electron donor to facilitate complete nitrogen removal using denitrifying anaerobic methane oxidizing (DAMO) microorganisms in an anaerobic ammonium oxidation (anammox) reactor, by reducing the nitrate produced. However, the slow growth and the low activity of DAMO microorganisms cast a serious doubt about the practical usefulness of such a process. In this study, a previously established lab-scale membrane biofilm reactor (MBfR), with biofilms consisting of a coculture of DAMO and anammox microorganisms, was operated to answer if the DAMO reactor can achieve a nitrate reduction rate that can potentially be applied for wastewater treatment. Through progressively increasing nitrate and ammonium loading rates to the reactor, a nitrate removal rate of 684 ± 10 mg-N L(-1) d(-1) was achieved after 453 days of operation. This rate is, to our knowledge, by far the highest reported for DAMO reactors, and far exceeds what is predicted to be required for nitrate removal in a sidestream (5.6-135 mg-N L(-1) d(-1)) or mainstream anammox reactor (3.2-124 mg-N L(-1) d(-1)). Mass balance analysis showed that the nitrite produced by nitrate reduction was jointly reduced by anammox bacteria at a rate of 354 ± 3 mg-N L(-1) d(-1), accompanied by an ammonium removal rate of 268 ± 2 mg-N L(-1) d(-1), and DAMO bacteria at a rate of 330 ± 9 mg-N L(-1) d(-1). This study shows that the nitrate reduction rate achieved by the DAMO process can be high enough for removing nitrate produced by anammox process, which would enable complete nitrogen removal from wastewater. PMID:26414889

  4. Anaerobic Oxidation of Methane in a French meromictic lake (Lake Pavin): Who is responsible?

    Science.gov (United States)

    Grossi, V.; Attard, E.; Birgel, D.; Schaeffer, P.; Jézéquel, D.; Lehours, A.

    2012-12-01

    Methane is an important greenhouse gas and its biogeochemical cycle is of primary significance to the global carbon cycle. The Anaerobic Oxidation of Methane (AOM) has been estimated to be responsible for >90% of methane consumption. This biogeochemical process has been increasingly documented during the last two decades but the underlying microbial processes and their key agents remain incompletely understood. Freshwater lakes account for 2-10% of the total emissions of methane and are therefore an important part of the global methane cycle. Lake Pavin is a French meromictic crater lake with unusual hydrological characteristics: its morphology (depth >92m, mean diameter 750m) induce that waters below 60m are never mixed with overlying waters and remain permanently anoxic. The deep anoxic waters of Lake Pavin contain high concentrations (i.e. 4 mM) of methane but, contrary to other aquatic systems, almost no methane escapes from the lake. Previous biogeochemical and modeling studies suggest that methane is preferentially consumed within the oxic-anoxic transition zone (ca. 55-60 m depth) but that ca. 30% of methane oxidation occurs in the anoxic part of the lake. Phylogenetic (16S rRNA) analyses showed that ANME generally involved in AOM (ANME-1, -2 and -3) are not present in Lake Pavin. Other archaeal groups that do not have any cultured representatives so far appear well represented in the anoxic parts of the lake but their implication in AOM is not demonstrated. The analysis of lipid biomarkers using GC-MS and LC-MS revealed the presence of a low diversity of archaeal-specific biomarkers in the superficial sediments and in the anoxic waters of the lake. Archaeol and caldarcheaol (GDGT-0) are the two main archaeal core lipids detected; other biomarkers generally present in ANME such as pentamethylicosane or hydroxyarchaeol are not present. However, the stable carbon isotopic composition of archaeol (δ13C = -18‰) and of the biphytane chain of GDGT-0 (δ13C

  5. Microsite Differentiation Drives the Abundance of Soil Ammonia Oxidizing Bacteria along Aridity Gradients.

    Science.gov (United States)

    Delgado-Baquerizo, Manuel; Maestre, Fernando T; Eldridge, David J; Singh, Brajesh K

    2016-01-01

    Soil ammonia oxidizing bacteria (AOB) and archaea (AOA) are responsible for nitrification in terrestrial ecosystems, and play important roles in ecosystem functioning by modulating the rates of N losses to ground water and the atmosphere. Vascular plants have been shown to modulate the abundance of AOA and AOB in drylands, the largest biome on Earth. Like plants, biotic and abiotic features such as insect nests and biological soil crusts (biocrusts) have unique biogeochemical attributes (e.g., nutrient availability) that may modify the local abundance of AOA and AOB. However, little is known about how these biotic and abiotic features and their interactions modulate the abundance of AOA and AOB in drylands. Here, we evaluate the abundance of amoA genes from AOB and AOA within six microsites commonly found in drylands (open areas, biocrusts, ant nests, grasses, nitrogen-fixing shrubs, and trees) at 21 sites from eastern Australia, including arid and mesic ecosystems that are threatened by predicted increases in aridity. Our results from structural equation modeling suggest that soil microsite differentiation alters the abundance of AOB (but not AOA) in both arid and mesic ecosystems. While the abundance of AOA sharply increased with increasing aridity in all microsites, the response of AOB abundance was microsite-dependent, with increases (nitrogen-fixing shrubs, ant nests), decreases (open areas) or no changes (grasses, biocrusts, trees) in abundance with increasing aridity. Microsites supporting the highest abundance of AOB were trees, nitrogen-fixing shrubs, and ant nests. These results are linked to particular soil characteristics (e.g., total carbon and ammonium) under these microsites. Our findings advance our understanding of key drivers of functionally important microbial communities and N availability in highly heterogeneous ecosystems such as drylands, which may be obscured when different soil microsites are not explicitly considered. PMID:27148194

  6. Impact of acetochlor on ammonia-oxidizing bacteria in microcosm soils

    Institute of Scientific and Technical Information of China (English)

    LI Xinyu; ZHANG Huiwen; WU Minna; SU Zhencheng; ZHANG Chenggang

    2008-01-01

    Acetochlor is an increasingly used herbicide on corn in North China. Currently, the effect of acetochlor on soil ammonia-oxidizing bacteria (AOB) communities is not well documented. Here, we studied the diversity and community composition of AOB in soil amended with three concentrations of acetochlor (50, 150, 250 mg/kg) and the control (0 mg acetochlor/kg soil) in a microcosm experiment by PCR-DGGE (polymerase chain reaction-denaturing gradient gel electrophoresis) and the phylogenetic analysis of excised DGGE bands. DGGE profiles showed that acetochlor had a stimulating effect on AOB at the early stage after acetochlor amended, and the order of intensity and duration is medium-acetochlor amended samples (AM) > low-acetochlor amended samples (AL) > high-acetochlor amended samples (AH). At the end of 60 d microcosm, acetochlor had a negative effect on the diversity of AOB. Cluster analysis of DGGE profiles showed that acetochlor had a greater effect on the community structure of AOB on day 60 than on day 1. The phylogenetic analysis revealed that all the sequences of excised DGGE bands were closely related to members of the genus Nitrosospira and formed two separate subclusters designated as subcluster 1 and subcluster 2 affiliated respectively with clusters 3 and 4 in Nitrosospira as defined by Stephen. Some dominant AOB had a change from subcluster 2 to subcluster 1 with the incubation. The results showed that acetochlor had an effect on the AOB on a long-term basis and the chronic effect of acetochlor should be paid more attention in future.

  7. Microsite Differentiation Drives the Abundance of Soil Ammonia Oxidizing Bacteria along Aridity Gradients

    Science.gov (United States)

    Delgado-Baquerizo, Manuel; Maestre, Fernando T.; Eldridge, David J.; Singh, Brajesh K.

    2016-01-01

    Soil ammonia oxidizing bacteria (AOB) and archaea (AOA) are responsible for nitrification in terrestrial ecosystems, and play important roles in ecosystem functioning by modulating the rates of N losses to ground water and the atmosphere. Vascular plants have been shown to modulate the abundance of AOA and AOB in drylands, the largest biome on Earth. Like plants, biotic and abiotic features such as insect nests and biological soil crusts (biocrusts) have unique biogeochemical attributes (e.g., nutrient availability) that may modify the local abundance of AOA and AOB. However, little is known about how these biotic and abiotic features and their interactions modulate the abundance of AOA and AOB in drylands. Here, we evaluate the abundance of amoA genes from AOB and AOA within six microsites commonly found in drylands (open areas, biocrusts, ant nests, grasses, nitrogen-fixing shrubs, and trees) at 21 sites from eastern Australia, including arid and mesic ecosystems that are threatened by predicted increases in aridity. Our results from structural equation modeling suggest that soil microsite differentiation alters the abundance of AOB (but not AOA) in both arid and mesic ecosystems. While the abundance of AOA sharply increased with increasing aridity in all microsites, the response of AOB abundance was microsite-dependent, with increases (nitrogen-fixing shrubs, ant nests), decreases (open areas) or no changes (grasses, biocrusts, trees) in abundance with increasing aridity. Microsites supporting the highest abundance of AOB were trees, nitrogen-fixing shrubs, and ant nests. These results are linked to particular soil characteristics (e.g., total carbon and ammonium) under these microsites. Our findings advance our understanding of key drivers of functionally important microbial communities and N availability in highly heterogeneous ecosystems such as drylands, which may be obscured when different soil microsites are not explicitly considered. PMID:27148194

  8. Anaerobic Oxidation of Methane Coupled to Nitrite Reduction by Halophilic Marine NC10 Bacteria.

    Science.gov (United States)

    He, Zhanfei; Geng, Sha; Cai, Chaoyang; Liu, Shuai; Liu, Yan; Pan, Yawei; Lou, Liping; Zheng, Ping; Xu, Xinhua; Hu, Baolan

    2015-08-15

    Anaerobic oxidation of methane (AOM) coupled to nitrite reduction is a novel AOM process that is mediated by denitrifying methanotrophs. To date, enrichments of these denitrifying methanotrophs have been confined to freshwater systems; however, the recent findings of 16S rRNA and pmoA gene sequences in marine sediments suggest a possible occurrence of AOM coupled to nitrite reduction in marine systems. In this research, a marine denitrifying methanotrophic culture was obtained after 20 months of enrichment. Activity testing and quantitative PCR (qPCR) analysis were then conducted and showed that the methane oxidation activity and the number of NC10 bacteria increased correlatively during the enrichment period. 16S rRNA gene sequencing indicated that only bacteria in group A of the NC10 phylum were enriched and responsible for the resulting methane oxidation activity, although a diverse community of NC10 bacteria was harbored in the inoculum. Fluorescence in situ hybridization showed that NC10 bacteria were dominant in the enrichment culture after 20 months. The effect of salinity on the marine denitrifying methanotrophic culture was investigated, and the apparent optimal salinity was 20.5‰, which suggested that halophilic bacterial AOM coupled to nitrite reduction was obtained. Moreover, the apparent substrate affinity coefficients of the halophilic denitrifying methanotrophs were determined to be 9.8 ± 2.2 μM for methane and 8.7 ± 1.5 μM for nitrite. PMID:26048927

  9. Characterization of specific membrane fatty acids as chemotaxonomic markers for sulfate-reducing bacteria involved in anaerobic oxidation of methane

    DEFF Research Database (Denmark)

    Elvert, M.; Boetius, A.; Knittel, K.; Jørgensen, BB

    2003-01-01

    Membrane fatty acids were extracted from a sediment core above marine gas hydrates at Hydrate Ridge, NE Pacific. Anaerobic sediments from this environment are characterized by high sulfate reduction rates driven by the anaerobic oxidation of methane (AOM). The assimilation of methane carbon into...... bacterial biomass is indicated by carbon isotope values of specific fatty acids as low as -103parts per thousand. Specific fatty acids released from bacterial membranes include C(16:1omega5c) , C(17:1omega6c) , and cyC(17:0omega5,6) , all of which have been fully characterized by mass spectrometry. These...

  10. A nonenzymatic biosensor based on gold electrodes modified with peptide self-assemblies for detecting ammonia and urea oxidation.

    Science.gov (United States)

    Bianchi, Roberta C; da Silva, Emerson Rodrigo; Dall'Antonia, Luiz H; Ferreira, Fabio Furlan; Alves, Wendel Andrade

    2014-09-30

    We have developed a nonenzymatic biosensor for the detection of ammonia and urea oxidation based on the deposition of peptide microstructures onto thiolated gold electrodes. FF-MNSs/MCP/Au assemblies were obtained by modifying gold substrates with 4-mercaptopyridine (MCP), followed by coating with l,l-diphenylalanine micro/nanostructures (FF-MNSs) grown in the solid-vapor phase. Benzene rings and amide groups with peptide micro/nanostructures interact with synthetic NH4(+) receptors through cation-π and hydrogen bonding. AuOH clusters on the Au surface provided the catalytic sites. The application of a predetermined concentration of analytes at the peptide interfaces activated the catalytic sites. We observed a relationship between the stability of films and the crystal structure of peptides, and we organized the FF-MNSs into an orthorhombic symmetry that was the most suitable assembly for creation of our biosensors. At 0.1 mol L(-1) NaOH, these FF-MNSs/MCP/Au electrodes have electrocatalytic properties regarding ammonia and urea oxidation that are comparable to those of enzyme-based architectures. Under optimal conditions, the electrocatalytic response is proportional to the ammonia and urea concentration in the range 0.1-1.0 mmol L(-1). The sensitivity was calculated as 2.83 and 81.3 μA mmol L(-1) cm(-2) for ammonia and urea, respectively, at +0.40 V (vs SCE). Our detection method is easy to follow, does not require a mediator or enzyme, and has strong potential for detecting urea via nonenzymatic routes. PMID:25188339

  11. Improvement of anaerobic digestion of waste-activated sludge by using H₂O₂ oxidation, electrolysis, electro-oxidation and thermo-alkaline pretreatments.

    Science.gov (United States)

    Feki, Emna; Khoufi, Sonia; Loukil, Slim; Sayadi, Sami

    2015-10-01

    Disintegration of municipal waste-activated sludge (WAS) is regarded as a prerequisite of the anaerobic digestion process to reduce sludge volume and improve biogas yield. Pretreatment of WAS using thermo-alkaline (TA), H2O2 oxidation, electrolysis and electro-oxidation (EO) processes were investigated and compared in term of COD solubilization and biogas production. For each pretreatment, the influences of different operational variables were studied in detail. At optimum conditions, EO gave the maximum COD solubilization (28 %). The effects of pretreatments under the optimum conditions on anaerobic digestion were experienced with biochemical methane potential assay. Significant increases in biogas yield up to 78 and 40 % were observed respectively in the EO and TA pretreated samples compared to raw sludge. Results clearly revealed that the application of EO is a significant alternative method for the improvement of WAS anaerobic digestion. PMID:25982985

  12. Simultaneous removal of SO2 and NOx with ammonia combined with gas-phase oxidation of NO using ozone

    Directory of Open Access Journals (Sweden)

    Guo Shaopeng

    2015-01-01

    Full Text Available A process for simultaneous desulfurization and denitrification was proposed, which was made up of ozone as the oxidizing agent for NO and ammonia solution as absorbent. The results showed that the presence of SO2 and the concentration changes of NO and SO2 have little impact on the oxidation of NO, the oxidation efficiency of NO can achieve over 90% when the molar ratio of O3/NO is 1.0. The presence of NOx had little effects on the absorption of SO2, an appropriate increase of SO2 concentration was favorable to the NOx absorption. The removal efficiency of SO2 and NOx reached 99.34% and 90.01% at pH 10, flow rate 0.95 Nm3/h, n[O3]/n[NO] 1.0, initial SO2 concentration 2000 mg/Nm3, initial NO concentration 200 mg/Nm3, ammonia concentration 0.3%, oxygen content of the simulated flue gas 12%, oxidation reaction temperature 423K and absorption reaction temperature 298K in the experimental system.

  13. Nitrosomonas Nm143-like ammonia oxidizers and Nitrospira marina -like nitrite oxidizers dominate the nitrifier community in a marine aquaculture biofilm

    DEFF Research Database (Denmark)

    Foesel, Bärbel U.; Gieseke, Armin; Schwermer, Carsten;

    2008-01-01

    recirculating marine aquaculture system are presented. Repeated rounds of the full-cycle rRNA approach were necessary to optimize DNA extraction and the probe set for FISH to obtain a reliable and comprehensive picture of the ammonia-oxidizing community. Analysis of the ammonia monooxygenase gene (amoA...

  14. ANAMMOX process start up and stabilization with an anaerobic seed in Anaerobic Membrane Bioreactor (AnMBR).

    Science.gov (United States)

    Suneethi, S; Joseph, Kurian

    2011-10-01

    ANaerobic AMMonium OXidation (ANAMMOX) process, an advanced biological nitrogen removal alternative to traditional nitrification--denitrification removes ammonia using nitrite as the electron acceptor without oxygen. The feasibility of enriching anammox bacteria from anaerobic seed culture to start up an Anaerobic Membrane Bioreactor (AnMBR) for N-removal is reported in this paper. The Anammox activity was established in the AnMBR with anaerobic digester seed culture from a Sewage Treatment Plant in batch mode with recirculation followed by semi continuous process and continuous modes of operation. The AnMBR performance under varying Nitrogen Loading Rates (NLR) and HRTs is reported for a year, in terms of nitrogen transformations to ammoniacal nitrogen, nitrite and nitrate along with hydrazine and hydroxylamine. Interestingly ANAMMOX process was evident from simultaneous Amm-N and nitrite reduction, consistent nitrate production, hydrazine and hydroxylamine presence, notable organic load reduction and bicarbonate consumption. PMID:21775136

  15. Regulation of anaerobic methane oxidation in sediments of the Black Sea

    Directory of Open Access Journals (Sweden)

    N. J. Knab

    2008-05-01

    Full Text Available Anaerobic oxidation of methane (AOM and sulfate reduction (SRR were investigated in sediments of the western Black Sea, where methane transport is controlled by diffusion. To understand the regulation and dynamics of methane production and oxidation in the Black Sea, rates of methanogenesis, AOM, and SRR were determined using radiotracers in combination with pore water chemistry and stable isotopes. On the shelf of the Danube paleo-delta and the Dnjepr Canyon, AOM did not consume methane effectively and upwards diffusing methane created an extended sulfate-methane transition zone (SMTZ that spread over more than 2.5 m and was located in formerly limnic sediment. Measurable AOM rates occurred mainly in the lower part of the SMTZ, sometimes even at depths where sulfate seemed to be unavailable. The inefficiency of methane oxidation appears to be linked to the limnic history of the sediment, since in all cores methane was completely oxidized at the limnic-marine transition. The upward tailing of methane was less pronounced in a core from the deep sea in the area of the Dnjepr Canyon, the only station with a SMTZ close to the marine deposits. Sulfate reduction rates were mostly extremely low, and in the SMTZ were even lower than AOM rates. Rates of bicarbonate-based methanogenesis were below detection limit in two of the cores, but δ13C values of methane indicate a biogenic origin. The most depleted δ13C-signal was found in the SMTZ of the core from the deep sea, most likely as a result of carbon recycling between AOM and methanogenesis.

  16. Regulation of anaerobic methane oxidation in sediments of the Black Sea

    Directory of Open Access Journals (Sweden)

    N. J. Knab

    2009-08-01

    Full Text Available Anaerobic oxidation of methane (AOM and sulfate reduction (SRR were investigated in sediments of the western Black Sea, where upward methane transport is controlled by diffusion. To understand the regulation and dynamics of methane production and oxidation in the Black Sea, rates of methanogenesis, AOM, and SRR were determined using radiotracers in combination with pore water chemistry and stable isotopes. In the Danube Canyon and the Dnjepr palaeo-delta AOM did not consume methane effectively and upwards diffusing methane created an extended sulfate-methane transition zone (SMTZ that spread over more than 2.5 m and was located in brackish and limnic sediment. Measurable AOM rates occurred mainly in the lower part of the SMTZ, sometimes even at depths where sulfate seemed to be unavailable. The inefficiency of methane oxidation appears to be linked to the paleoceanographic history of the sediment, since in all cores methane was completely oxidized at the transition from the formerly oxic brackish clays to marine anoxic sediments. The upward tailing of methane was less pronounced in a core from the deep sea in the area of the Dnjepr Canyon, the only station with a SMTZ close to the marine deposits. Sub-surface sulfate reduction rates were mostly extremely low, and in the SMTZ were even lower than AOM rates. Rates of bicarbonate-based methanogenesis were below detection limit in two of the cores, but δ13C values of methane indicate a biogenic origin. The most δ13C- depleted isotopic signal of methane was found in the SMTZ of the core from the deep sea, most likely as a result of carbon recycling between AOM and methanogenesis.

  17. Hydroxylamine-dependent Anaerobic Ammonium Oxidation (Anammox) by “ Candidatus Brocadia sinica”

    KAUST Repository

    Oshiki, Mamoru

    2016-04-26

    Although metabolic pathways and associated enzymes of anaerobic ammonium oxidation (anammox) of “Ca. Kuenenia stuttgartiensis” have been studied, those of other anammox bacteria are still poorly understood. NO2- reduction to NO is considered to be the first step in the anammox metabolism of “Ca. K. stuttgartiensis”, however, “Ca. Brocadia” lacks the genes that encode canonical NO-forming nitrite reductases (NirS or NirK) in its genome, which is different from “Ca. K. stuttgartiensis”. Here, we studied the anammox metabolism of “Ca. Brocadia sinica”. 15N-tracer experiments demonstrated that “Ca. B. sinica” cells could reduce NO2- to NH2OH, instead of NO, with as yet unidentified nitrite reductase(s). Furthermore, N2H4 synthesis, downstream reaction of NO2- reduction, was investigated using a purified “Ca. B. sinica” hydrazine synthase (Hzs) and intact cells. Both the “Ca. B. sinica” Hzs and cells utilized NH2OH and NH4+, but not NO and NH4+, for N2H4 synthesis and further oxidized N2H4 to N2 gas. Taken together, the metabolic pathway of “Ca. B. sinica” is NH2OH-dependent and different from the one of “Ca. K. stuttgartiensis”, indicating metabolic diversity of anammox bacteria. This article is protected by copyright. All rights reserved.

  18. Post-treatment of anaerobic reactor effluent using coagulation/oxidation followed by double filtration.

    Science.gov (United States)

    Cavallini, Grasiele Soares; de Sousa Vidal, Carlos Magno; de Souza, Jeanette Beber; de Campos, Sandro Xavier

    2016-04-01

    This study evaluates the efficacy of a sanitary sewage treatment system, proposing post-treatment of the effluent generated by the upflow anaerobic sludge blanket UASB reactor, through a Fenton coagulation/oxidation ((ferric chloride (FC) or ferrous sulfate (FS) and peracetic acid (PAA)), followed by a double filtration system, composed of a gravel ascending drainage filter and a sand descending filter. Following the assessment of treatability, the system efficiency was evaluated using physicochemical and microbiological parameters. In all treatments performed in the pilot unit, total suspended solids (TSS) were completely removed, leading to a decrease in turbidity greater than 90 % and close to 100 % removal of total phosphorous. In the FC and PAA combination, the effluent was oxygenated prior to filtration, enabling a more significant removal of biochemical oxygen demand (BOD), which characterizes aerobic degradation even in a quick sand filter. The treatments carried out in the presence of the PAA oxidizing agent showed a more significant bleaching of the effluent. Concerning the microbiological parameters, the simultaneous use of PAA and FC contributed to the partial inactivation of the assessed microorganisms. A 65 % recovery of the effluent was obtained with the proposed treatment system, considering the volume employed in filter backwashing. PMID:26611629

  19. Mechanism of the Ammonia Molecules Protonation on the Naturally Oxidized Silicon Surface

    Directory of Open Access Journals (Sweden)

    F.A. Ptashchenko

    2015-10-01

    Full Text Available The protonation of a single ammonia molecule in the presence of several (1-5 water molecules on the surface of the hydroxylated β-cristobalite surface was studied by means of density functional method with the potential B3LYP using 6-311 ++ g (d, p basis set in the cluster approximation. The important role of surface OH-groups and H2O molecules in this process is shown. The energy required for the ammonia molecule protonation decreases with the number of adsorbed H2O molecules in the vicinity of this molecule, and the protonation becomes energetically favorable when the adsorbed water molecules form more than one layer. The phenomenon of Si natural surface charging in wet ammonia vapors can also be explained by protonation of NH3 molecules.

  20. Effects of different fertilizers on the abundance and community structure of ammonia oxidizers in a yellow clay soil.

    Science.gov (United States)

    Yao, Huaiying; Huang, Sha; Qiu, Qiongfen; Li, Yaying; Wu, Lianghuan; Mi, Wenhai; Dai, Feng

    2016-08-01

    Yellow clay paddy soil (Oxisols) is a typical soil with low productivity in southern China. Nitrification inhibitors and slow release fertilizers have been used to improve nitrogen fertilizer utilization and reduce environmental impaction of the paddy soil. However, their effects on ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in paddy soil have rarely been investigated. In the present work, we compared the influences of several slow release fertilizers and nitrification inhibitors on the community structure and activities of the ammonia oxidizers in yellow clay soil. The abundances and community compositions of AOA and AOB were determined with qPCR, terminal restriction fragment length polymorphism (T-RFLP), and clone library approaches. Our results indicated that the potential nitrification rate (PNR) of the soil was significantly related to the abundances of both AOA and AOB. Nitrogen fertilizer application stimulated the growth of AOA and AOB, and the combinations of nitrapyrin with urea (NPU) and urea-formaldehyde (UF) inhibited the growth of AOA and AOB, respectively. Compared with other treatments, the applications of NPU and UF also led to significant shifts in the community compositions of AOA and AOB, respectively. NPU showed an inhibitory effect on AOA T-RF 166 bp that belonged to Nitrosotalea. UF had a negative effect on AOB T-RF 62 bp that was assigned to Nitrosospira. These results suggested that NPU inhibited PNR and increased nitrogen use efficiency (NUE) by inhibiting the growth of AOA and altering AOA community. UF showed no effect on NUE but decreased AOB abundance and shifted AOB community. PMID:27063014

  1. Effect of chemical fertilization and green manure on the abundance and community structure of ammonia oxidizers in a paddy soil

    Directory of Open Access Journals (Sweden)

    Yu Fang

    2015-12-01

    Full Text Available Ammonia oxidization is a critical step in the soil N cycle and can be affected by the fertilization regimes. Chinese milk-vetch (Astragalus sinicus L., MV is a major green manure of rice (Oryza sativa L. fields in southern China, which is recommended as an important agronomic practice to improve soil fertility. Soil chemical properties, abundance and community structures of ammonia-oxidizing bacteria (AOB and ammonia-oxidizing archaea (AOA in a MV-rice rotation field under different fertilization regimes were investigated. The field experiment included six treatments: control, without MV and chemical fertilizer (CK; 100% chemical fertilizer (NPK; 18 000 kg MV ha-1 plus 100% chemical fertilizer (NPKM1; 18 000 kg MV ha-1 plus 40% chemical fertilizer (NPKM2; 18 000 kg MV ha-1 alone (MV; and 18 000 kg MV ha-1 plus 40% chemical fertilizer plus straw (NPKMS. Results showed that NPKMS treatment could improve the soil fertility greatly although the application of 60% chemical fertilizer. The abundance of AOB only in the MV treatment had significant difference with the control; AOA were more abundant than AOB in all corresponding treatments. The NPKMS treatment had the highest AOA abundance (1.19 x 10(8 amoA gene copies g-1 and the lowest abundance was recorded in the CK treatment (3.21 x 10(7 amoA gene copies g-1. The abundance of AOA was significantly positively related to total N, available N, NH4+-N, and NO3--N. The community structure of AOA exhibited little variation among different fertilization regimes, whereas the community structure of AOB was highly responsive. Phylogenetic analysis showed that all AOB sequences were affiliated with Nitrosospira or Nitrosomonas and all AOA denaturing gradient gel electrophoresis (DGGE bands belonged to the soil and sediment lineage. These findings could be fundamental to improve our understanding of AOB and AOA in the N cycle in the paddy soil.

  2. Comparison of the abundance and community structure of ammonia oxidizing prokaryotes in rice rhizosphere under three different irrigation cultivation modes.

    Science.gov (United States)

    Zhang, Jinping; Zhou, Xiaohong; Chen, Lei; Chen, Zhigang; Chu, Jinyu; Li, Yimin

    2016-05-01

    The abundance, diversity and community structure of ammonia oxidizing archaea (AOA) and bacteria (AOB) in rice rhizosphere soils under three different irrigation cultivated modes, named continuous irrigation mode (C), intermittent irrigation mode (I) and semi-arid mode (M), respectively, were investigated using amoA gene as a molecular biomarker. Clone libraries and quantitative polymerase chain reaction results indicated the highest number of archaeal amoA gene copy was detected in M cultivation mode, then in I and C, whereas, their order of amoA gene copy numbers were I > M > C for AOB, and those were obvious higher than in the bulk soil. The ratios of AOA/AOB were greater than 1 for all samples, suggested the predominance of AOA throughout the period of rice growth in the three different irrigation cultivation modes. Diversity index (SChao1 and Shannon H) have an obvious variation in three different irrigation cultivation modes. For AOA, SChao1 was highest in M and lowest in I mode, whereas, Shannon H was highest in M cultivation mode and lowest in C mode. For AOB, mode M exhibited the highest diversity index (SChao1 and Shannon H), while C showed the lowest highest diversity, suggested long-term water input (continuous mode) may decrease diversity of ammonia oxidizers, whereas mode M may be more appropriate for them. In addition, AOA sequences fall within Nitrososphaera, Nitrosopumilus and Nitrosotalea cluster with proportion of 89.38, 8.85 and 1.77 %, respectively. AOB gene sequences belonged to the Nitrosomonas and Nitrosospira genera with proportion of 90.97 and 9.03 %, respectively. In addition, the abundances, diversity and community structure had an obvious temporal variation in three developmental stages of rice, further suggested rice growth obviously affected the ammonia oxidizing prokaryotes in their rhizosphere soil. PMID:27038955

  3. Community shift of ammonia-oxidizing bacteria along an anthropogenic pollution gradient from the Pearl River Delta to the South China Sea

    OpenAIRE

    Cao, Huiluo; Hong, Yiguo; Li, Meng; Gu, Ji-Dong

    2012-01-01

    The phylogenetic diversity and abundance of ammonia-oxidizing beta-proteobacteria (beta-AOB) was analyzed along an anthropogenic pollution gradient from the coastal Pearl River Delta to the South China Sea using the ammonia monooxygenase subunit A (amoA) gene. Along the gradient from coastal to the open ocean, the phylogenetic diversity of the dominant genus changed from Nitrosomonas to Nitrosospira, indicating the niche specificity by these two genera as both salinity and anthropogenic influ...

  4. Quantitative and compositional responses of ammonia-oxidizing archaea and bacteria to long-term field fertilization

    Science.gov (United States)

    Xue, Chao; Zhang, Xu; Zhu, Chen; Zhao, Jun; Zhu, Ping; Peng, Chang; Ling, Ning; Shen, Qirong

    2016-06-01

    Archaeal (AOA) and bacterial (AOB) ammonia-oxidizer responses to long-term field fertilization in a Mollisol soil were assessed through pyrosequencing of amoA genes. Long-term fertilization treatments including chemical fertilizer (NPK), NPK plus manure (NPKM), and no fertilization over 23 years altered soil properties resulting in significant shifts in AOA and AOB community composition and abundance. NPK exhibited a strong influence on AOA and AOB composition while the addition of manure neutralized the community change induced by NPK. NPK also led to significant soil acidification and enrichment of Nitrosotalea. Nitrosospira cluster 9 and 3c were the most abundant AOB populations with opposing responses to fertilization treatments. NPKM had the largest abundance of ammonia-oxidizers and highest potential nitrification activity (PNA), suggesting high N loss potential due to a doubling of nutrient input compared to NPK. PNA was strongly correlated to AOA and AOB community composition indicating that both were important in ammonium oxidization in this Mollisol soil. Total N and organic C were the most important factors driving shifts in AOA and AOB community composition. The AOA community was strongly correlated to the activities of all sugar hydrolysis associated soil enzymes and was more responsive to C and N input than AOB.

  5. Mechanism of the Ammonia Molecules Protonation on the Naturally Oxidized Silicon Surface

    OpenAIRE

    F.A. Ptashchenko

    2015-01-01

    The protonation of a single ammonia molecule in the presence of several (1-5) water molecules on the surface of the hydroxylated β-cristobalite surface was studied by means of density functional method with the potential B3LYP using 6-311 ++ g (d, p) basis set in the cluster approximation. The important role of surface OH-groups and H2O molecules in this process is shown. The energy required for the ammonia molecule protonation decreases with the number of adsorbed H2O molecules in the vicini...

  6. Responses of bacterial and archaeal ammonia oxidizers to soil organic and fertilizer amendments under long-term management

    Energy Technology Data Exchange (ETDEWEB)

    Wessen, E.; Nyberg, K.; Jansson, J.K.; Hallin, S.

    2010-05-01

    Ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) co-exist in soil, but their relative distribution may vary depending on the environmental conditions. Effects of changes in soil organic matter and nutrient content on the AOB and AOA are poorly understood. Our aim was to compare effects of long-term soil organic matter depletion and amendments with labile (straw) and more recalcitrant (peat) organic matter, with and without easily plant-available nitrogen, on the activities, abundances and community structures of AOB and AOA. Soil was sampled from a long-term field site in Sweden that was established in 1956. The potential ammonia oxidation rates, the AOB and AOA amoA gene abundances and the community structures of both groups based on T-RFLP of amoA genes were determined. Straw amendment during 50 years had not altered any of the measured soil parameters, while the addition of peat resulted in a significant increase of soil organic carbon as well as a decrease in pH. Nitrogen fertilization alone resulted in a small decrease in soil pH, organic carbon and total nitrogen, but an increase in primary production. Type and amount of organic matter had an impact on the AOB and AOA community structures and the AOA abundance. Our findings confirmed that AOA are abundant in soil, but showed that under certain conditions the AOB dominate, suggesting niche differentiation between the two groups at the field site. The large differences in potential rates between treatments correlated to the AOA community size, indicating that they were functionally more important in the nitrification process than the AOB. The AOA abundance was positively related to addition of labile organic carbon, which supports the idea that AOA could have alternative growth strategies using organic carbon. The AOB community size varied little in contrast to that of the AOA. This indicates that the bacterial ammonia oxidizers as a group have a greater ecophysiological diversity and

  7. Effect of Soil Ammonium Concentration on N2O Release and on the Community Structure of Ammonia Oxidizers and Denitrifiers

    OpenAIRE

    Avrahami, Sharon; Conrad, Ralf; Braker, Gesche

    2002-01-01

    The effect of ammonium addition (6.5, 58, and 395 μg of NH4+-N g [dry weight] of soil−1) on soil microbial communities was explored. For medium and high ammonium concentrations, increased N2O release rates and a shift toward a higher contribution of nitrification to N2O release occurred after incubation for 5 days at 4°C. Communities of ammonia oxidizers were assayed after 4 weeks of incubation by denaturant gradient gel electrophoresis (DGGE) of the amoA gene coding for the small subunit of ...

  8. Nitrosomonas communis strain YNSRA, an ammonia-oxidizing bacterium, isolated from the reed rhizoplane in an aquaponics plant.

    Science.gov (United States)

    Tokuyama, Tatsuaki; Mine, Atsusi; Kamiyama, Kaoru; Yabe, Ryuichi; Satoh, Kazuo; Matsumoto, Hirotoshi; Takahashi, Reiji; Itonaga, Koji

    2004-01-01

    An ammonia-oxidizing bacterium (strain YNSRA) was isolated from the rhizoplane of the reed (Phragmites communis) used in an aquaponics plant which is a wastewater treatment plant. Strain YNSRA was identified as Nitrosomonas communis by taxonomic studies. The hydroxylamine-cytochrome c reductase (HCR) of strain YNSRA was found to have a higher activity (25.60 u/mg) than that of Nitrosomonas europaea ATCC25978T (8.94 u/mg). Ribulose-1,5-bisphosphate carboxylase (RubisCO) activity was detected at very low levels in strain YNSRA, whereas strain ATCC25978T had definite activity. PMID:16233712

  9. Underestimation of ammonia-oxidizing bacteria abundance by amplification bias in amoA-targeted qPCR

    DEFF Research Database (Denmark)

    Dechesne, Arnaud; Musovic, Sanin; Palomo, Alejandro;

    2016-01-01

    quantitative PCR methods to enumerate ammonia-oxidizing bacteria (AOB): one targeting the phylogenetic gene 16S rRNA and the other, the functional gene amoA. Cloning-sequencing with both primer sets on DNA from two waterworks revealed contrasting images of AOB diversity. The amoA-based approach preferentially...... analysis against sequences of AOB (both isolates and high-quality environmental sequences). The difference in primer coverage significantly impacted the estimation of AOB abundance at the waterworks with high Cluster 6A prevalence, with estimates up to 50-fold smaller for amoA than for 16S r...

  10. Inhabitancy of active Nitrosopumilus-like ammonia-oxidizing archaea and Nitrospira nitrite-oxidizing bacteria in the sponge Theonella swinhoei.

    Science.gov (United States)

    Feng, Guofang; Sun, Wei; Zhang, Fengli; Karthik, Loganathan; Li, Zhiyong

    2016-01-01

    Nitrification directly contributes to the ammonia removal in sponges, and it plays an indispensable role in sponge-mediated nitrogen cycle. Previous studies have demonstrated genomic evidences of nitrifying lineages in the sponge Theonella swinhoei. However, little is known about the transcriptional activity of nitrifying community in this sponge. In this study, combined DNA- and transcript-based analyses were performed to reveal the composition and transcriptional activity of the nitrifiers in T. swinhoei from the South China Sea. Transcriptional activity of ammonia-oxidizing archaea (AOA) and nitrite-oxidizing bacteria (NOB) in this sponge were confirmed by targeting their nitrifying genes,16S rRNA genes and their transcripts. Phylogenetic analysis coupled with RDP rRNA classification indicated that archaeal 16S rRNA genes, amoA (the subunit of ammonia monooxygenase) genes and their transcripts were closely related to Nitrosopumilus-like AOA; whereas nitrifying bacterial 16S rRNA genes, nxrB (the subunit of nitrite oxidoreductase) genes and their transcripts were closely related to Nitrospira NOB. Quantitative assessment demonstrated relative higher abundances of nitrifying genes and transcripts of Nitrosopumilus-like AOA than those of Nitrospira NOB in this sponge. This study illustrated the transcriptional potentials of Nitrosopumilus-like archaea and Nitrospira bacteria that would predominantly contribute to the nitrification functionality in the South China Sea T. swinhoei. PMID:27113140

  11. The biostimulation of anaerobic digestion with (semi)conductive ferric oxides: their potential for enhanced biomethanation.

    Science.gov (United States)

    Baek, Gahyun; Kim, Jaai; Cho, Kyungjin; Bae, Hyokwan; Lee, Changsoo

    2015-12-01

    The effect of biostimulation with ferric oxides, semiconductive ferric oxyhydroxide, and conductive magnetite on the anaerobic digestion of dairy wastewater was examined in a batch mode. The reactors supplemented with ferric oxyhydroxide (R2) and magnetite (R3) showed significantly enhanced biomethanation performance compared with the control (R1). The removal of chemical oxygen demand (COD) after 30 days was 31.9, 59.3, and 82.5% in R1, R2, and R3, respectively. The consumed COD was almost fully recovered as biogas in R2 and R3, while only 79% was recovered in R1. The total energy production as biogas was accordingly 32.2, 71.0, and 97.7 kJ in R1, R2, and R3, respectively. The reactors also differed in the acid formation profile with more propionate and butyrate found in R1 and more acetate found in R3. The enhanced biomethanation seems to be associated with variations in the bacterial community structure supposedly induced by the ferric oxides added. In contrast, no evident variation was observed in the archaeal community structure among the reactors. The potential electric syntrophy formed between Methanosaeta concilii-like methanogens and electroactive iron-reducing bacteria, particularly Trichococcus, was likely responsible for the enhanced performance. The stimulated growth of fermentative iron reducers may also have contributed by altering the metabolic characteristics of the bacterial communities to produce more favorable acidogenic products for methanogenesis. The overall results suggest the potential of biostimulation with (semi)conductive ferric oxides to enhance the rate and efficiency of the biomethanation of organic wastes. This seems to be potentially attractive, as increasing attention is being paid to the energy self-sufficiency of waste/wastewater treatment processes today. PMID:26272096

  12. Metabolic Capabilities of Microorganisms Involved in and Associated with the Anaerobic Oxidation of Methane.

    Science.gov (United States)

    Wegener, Gunter; Krukenberg, Viola; Ruff, S Emil; Kellermann, Matthias Y; Knittel, Katrin

    2016-01-01

    In marine sediments the anaerobic oxidation of methane with sulfate as electron acceptor (AOM) is responsible for the removal of a major part of the greenhouse gas methane. AOM is performed by consortia of anaerobic methane-oxidizing archaea (ANME) and their specific partner bacteria. The physiology of these organisms is poorly understood, which is due to their slow growth with doubling times in the order of months and the phylogenetic diversity in natural and in vitro AOM enrichments. Here we study sediment-free long-term AOM enrichments that were cultivated from seep sediments sampled off the Italian Island Elba (20°C; hereon called E20) and from hot vents of the Guaymas Basin, Gulf of California, cultivated at 37°C (G37) or at 50°C (G50). These enrichments were dominated by consortia of ANME-2 archaea and Seep-SRB2 partner bacteria (E20) or by ANME-1, forming consortia with Seep-SRB2 bacteria (G37) or with bacteria of the HotSeep-1 cluster (G50). We investigate lipid membrane compositions as possible factors for the different temperature affinities of the different ANME clades and show autotrophy as characteristic feature for both ANME clades and their partner bacteria. Although in the absence of additional substrates methane formation was not observed, methanogenesis from methylated substrates (methanol and methylamine) could be quickly stimulated in the E20 and the G37 enrichment. Responsible for methanogenesis are archaea from the genus Methanohalophilus and Methanococcoides, which are minor community members during AOM (1-7‰ of archaeal 16S rRNA gene amplicons). In the same two cultures also sulfur disproportionation could be quickly stimulated by addition of zero-valent colloidal sulfur. The isolated partner bacteria are likewise minor community members (1-9‰ of bacterial 16S rRNA gene amplicons), whereas the dominant partner bacteria (Seep-SRB1a, Seep-SRB2, or HotSeep-1) did not grow on elemental sulfur. Our results support a functioning of AOM as

  13. Metabolic capabilities of microorganisms involved in and associated with the anaerobic oxidation of methane

    Directory of Open Access Journals (Sweden)

    Gunter eWegener

    2016-02-01

    Full Text Available In marine sediments the anaerobic oxidation of methane with sulfate as electron acceptor (AOM is responsible for the removal of a major part of the greenhouse gas methane. AOM is performed by consortia of anaerobic methane-oxidizing archaea (ANME and their specific partner bacteria. The physiology of these organisms is poorly understood, which is due to their slow growth with doubling times in the order of months and the phylogenetic diversity in natural and in vitro AOM enrichments. Here we study sediment-free long-term AOM enrichments that were cultivated from seep sediments sampled off the Italian Island Elba (20°C; hereon called E20 and from hot vents of the Guaymas Basin, Gulf of California, cultivated at 37°C (G37 or at 50°C (G50. These enrichments were dominated by consortia of ANME-2 archaea and Seep-SRB2 partner bacteria (E20 or by ANME-1, forming consortia with Seep-SRB2 bacteria (G37 or with bacteria of the HotSeep-1 cluster (G50. We investigate lipid membrane compositions as possible factors for the different temperature affinities of the different ANME clades and show autotrophy as characteristic feature for both ANME clades and their partner bacteria. Although in the absence of additional substrates methane formation was not observed, methanogenesis from methylated substrates (methanol and methylamine could be quickly stimulated in the E20 and the G37 enrichment. Responsible for methanogenesis are archaea from the genus Methanohalophilus and Methanococcoides, which are minor community members during AOM (1 to 7‰ of archaeal 16S rRNA gene amplicons. In the same two cultures also sulfur disproportionation could be quickly stimulated by addition of zero-valent colloidal sulfur. The isolated partner bacteria are likewise minor community members (1 to 9‰ of bacterial 16S rRNA gene amplicons, whereas the dominant partner bacteria (Seep-SRB1a, Seep-SRB2 or HotSeep-1 did not grow on elemental sulfur. Our results support a

  14. Effect of toxic metals on indigenous soil {beta}-subgroup proteobacterium ammonia oxidizer community structure and protection against toxicity by inoculated metal-resistant bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Stephen, J.R.; Chang, Y.J.; MacNaughton, S.J.; Leung, K.T.; Flemming, C.A. [Univ. of Tennessee, Knoxville, TN (United States). Center for Environmental Biotechnology; Kowalchuk, G.A. [Netherlands Inst. of Ecology, Heteren (Netherlands); White, D.C. [Univ. of Tennessee, Knoxville, TN (United States). Center for Environmental Biotechnology]|[Oak Ridge National Lab., TN (United States). Biological Sciences Div.

    1999-01-01

    Contamination of soils with toxic metals is a major problem on military, industrial, and mining sites worldwide. Of particular interest to the field of bioremediation is the selection of biological markers for the end point of remediation. In this microcosm study, the authors focus on the effect of addition of a mixture of toxic metals (cadmium, cobalt, cesium, and strontium as chlorides) to soil on the population structure and size of the ammonia, oxidizers that are members of the beta subgroup of the Proteobacteria. In a parallel experiment, the soils were also treated by the addition of five strains of metal-resistant heterotrophic bacteria. Effects on nitrogen cycling were measured by monitoring the NH{sub 3} and NH{sub 4}{sup +} levels in soil samples. The gene encoding the {alpha}-subunit of ammonia monooxygenase (amoA) was selected as a functional molecular marker for the {beta}-subgroup ammonia oxidizing bacteria. Community structure comparisons were performed with clone libraries of PCR-amplified fragments of amoA recovered from contaminated and control microcosms for 8 weeks. Analysis was performed by restriction digestion and sequence comparison. The abundance of ammonia oxidizers in these microcosms was also monitored by competitive PCR. All amoA gene fragments recovered grouped with sequences derived from cultured Nitrosospira. These comprised four novel sequence clusters and a single unique clone. Specific changes in the community structure of {beta}-subgroup ammonia oxidizers were associated with the addition of metals. These changes were not seen in the presence of the inoculated metal-resistant bacteria. Neither treatment significantly altered the total number of {beta}-subgroup ammonia-oxidizing cells per gram of soil compared to untreated controls. Following an initial decrease in concentration, ammonia began to accumulate in metal-treated soils toward the end of the experiment.

  15. Seasonal and vertical distribution of putative ammonia-oxidizing thaumarchaeotal communities in an oligotrophic lake

    NARCIS (Netherlands)

    Vissers, E.W.; Blaga, C.I.; Bodelier, P.L.E.; Muyzer, G.; Schleper, C.; Sinninghe Damsté, J.S.; Tourna, M.; Laanbroek, H.J.

    2013-01-01

    The discovery of Archaea carrying an amoA gene coding for the A-subunit of ammonia monooxygenase gave a boost to studies aimed at detecting this gene under diverse conditions. Despite numerous studies describing the archaeal amoA gene abundance and richness in different habitats, the understanding o

  16. Use of ammonia as an additive reducing sulphur dioxide and nitric oxide emissions

    International Nuclear Information System (INIS)

    Test results obtained on an operating object when proportioning ammonia have been presented. As analyses of the obtained results was carried out and possibilities of SO2 and NOx emission reductions by using additives was discussed in this aspect. (author). 5 refs, 1 fig., 2 tabs

  17. Anaerobic nitrification–denitrification mediated by Mn-oxides in meso-tidal sediments: Implications for N2 and N2O production..

    Digital Repository Service at National Institute of Oceanography (India)

    Fernandes, S.O.; Javanaud, C.; Aigle, A.; Michotey, V.D.; Guasco, S.; Deborde, J.; Deflandre, B.; Anschutz, P.; Bonin, P.C.

    Field measurements in the Arcachon Bay (southwest France) indicated anaerobic production of NOx via nitrification, which was coupled to the reduction of Mn-oxides. To prove the occurrence of this process, laboratory microcosm experiments were set up...

  18. Genome-enabled studies of anaerobic, nitrate-dependent iron oxidation in the chemolithoautotrophic bacterium Thiobacillus denitrificans

    Directory of Open Access Journals (Sweden)

    Harry R Beller

    2013-08-01

    Full Text Available Thiobacillus denitrificans is a chemolithoautotrophic bacterium capable of anaerobic, nitrate-dependent U(IV and Fe(II oxidation, both of which can strongly influence the long-term efficacy of in situ reductive immobilization of uranium in contaminated aquifers. We previously identified two c-type cytochromes involved in nitrate-dependent U(IV oxidation in T. denitrificans and hypothesized that c-type cytochromes would also catalyze Fe(II oxidation, as they have been found to play this role in anaerobic phototrophic Fe(II-oxidizing bacteria. Here we report on efforts to identify genes associated with nitrate-dependent Fe(II oxidation, namely (a whole-genome transcriptional studies [using FeCO3, Fe2+, and U(IV oxides as electron donors under denitrifying conditions], (b Fe(II oxidation assays performed with knockout mutants targeting primarily highly expressed or upregulated c-type cytochromes, and (c random transposon-mutagenesis studies with screening for Fe(II oxidation. Assays of mutants for 26 target genes, most of which were c-type cytochromes, indicated that none of the mutants tested were significantly defective in nitrate-dependent Fe(II oxidation. The non-defective mutants included the c1-cytochrome subunit of the cytochrome bc1 complex (complex III, which has relevance to a previously proposed role for this complex in nitrate-dependent Fe(II oxidation and to current concepts of reverse electron transfer. A transposon mutant with a disrupted gene associated with NADH:ubiquinone oxidoreductase (complex I was ~35% defective relative to the wild-type strain; this strain was similarly defective in nitrate reduction with thiosulfate as the electron donor. Overall, our results indicate that nitrate-dependent Fe(II oxidation in T. denitrificans is not catalyzed by the same c-type cytochromes involved in U(IV oxidation, nor have other c-type cytochromes yet been implicated in the process.

  19. Diversity and Abundance of Ammonia-Oxidizing Archaeal Nitrite Reductase (nirK) Genes in Estuarine Sediments of San Francisco Bay

    Science.gov (United States)

    Reji, L.; Lee, J. A.; Damashek, J.; Francis, C. A.

    2013-12-01

    Nitrification, the microbially-mediated aerobic oxidation of ammonia to nitrate via nitrite, is an integral component of the global biogeochemical nitrogen cycle. The first and rate-limiting step of nitrification, ammonia oxidation, is carried out by two distinct microbial groups: ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA). Molecular ecological studies targeting the amoA gene have revealed the abundance and ubiquity of AOA in terrestrial as well as aquatic environments. In addition to the ammonia oxidation machinery that includes the amoA gene, AOA also encode a gene for copper-containing nitrite reductase (nirK). The distribution patterns and functional role of nirK in AOA remain mostly unknown; proposed functions include the indirect involvement in ammonia oxidation through the production of nitric oxide during nitrite reduction, and (2) nitrite detoxification. In the present study, the diversity and abundance of archaeal nirK genes in estuarine sediments were investigated using quantitative polymerase chain reaction, cloning and sequencing approaches. In sediment samples collected from the San Francisco Bay estuary, two archaeal nirK variants (AnirKa and AnirKb) were amplified using specific primer sets. Overall, AnirKa was observed to be significantly more abundant than AnirKb in the sediment samples, with variation in relative abundance spanning two to three orders of magnitude between sampling sites. Phylogenetic analysis revealed a number of unique archaeal nirK sequence types, as well as many that clustered with sequences from previous estuarine studies and cultured AOA isolates, such as Nitrosopumilus maritimus. This study yielded new insights into the diversity and abundance of archaeal nirK genes in estuarine sediments, and highlights the importance of further investigating the physiological role of this gene in AOA, as well as its suitability as a marker gene for studying AOA in the environment.

  20. Relating the Diversity, Abundance, and Activity of Ammonia-Oxidizing Archaeal Communities to Nitrification Rates in the Coastal Ocean

    Science.gov (United States)

    Tolar, B. B.; Smith, J. M.; Chavez, F.; Francis, C.

    2015-12-01

    Ammonia oxidation, the rate-limiting first step of nitrification, is an important link between reduced (ammonia) and oxidized (nitrate) nitrogen, and controls the relative distribution of these forms of inorganic nitrogen. This process is catalyzed via the ammonia monooxygenase enzyme of both ammonia-oxidizing Bacteria (AOB) and Archaea (AOA); the α subunit of this enzyme is encoded by the amoA gene and has been used as the molecular marker to detect this process. In the ocean, AOA are typically 10-1000 times more and are likely more active than AOB, and thus are key players in the marine nitrogen cycle. Monterey Bay is a dynamic site to study nitrification, as seasonal upwelling brings deep water and nutrients into surface waters, which can promote phytoplankton blooms and impact biogeochemical processes such as the nitrogen cycle. We have sampled two sites within Monterey Bay bimonthly for two years as part of the ongoing Monterey Bay Time Series (MBTS) to quantify AOA genes, transcripts, and nitrification rates. Two ecotypes of AOA are routinely found in Monterey Bay - the 'shallow' water column A (WCA) and 'deep' water column B (WCB) clades, which are thought to have distinct physiological properties and can be distinguished based on the amoA gene sequence. Previous work has shown a strong relationship between nitrification rates in Monterey Bay with the abundance of WCA amoA genes and transcripts. Additionally, we found a correlation between the relative abundance of Marine Group I (MGI) Thaumarchaeota 16S rRNA reads (as % of total) and the absolute abundance of AOA amoA genes (determined via qPCR) in Monterey Bay and the California Current System. AOA 16S rRNA gene abundances in turn correlated significantly with changes in nitrification rate with depth, while the relative abundance of genes and transcripts binned to a single AOA (Nitrosopumilus maritimus) was not significantly correlated to nitrification rate. Further analysis of the sequenced AOA

  1. The role of oxygen during the catalytic oxidation of ammonia on Co3O4(1 0 0)

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • Ammonia oxidation on Co3O4(1 0 0) surface is studied using Density Functional Theory. • The role of lattice O, on-surface O and OH in the dehydrogenation of ammonia is clarified. • NO and H2O are the main products of ammonia oxidation on Co3O4(1 0 0). • The Co3O4 surface is itself capable of oxidising NH3 to NO using the lattice O, opening the way for a Mars–van Krevelen mechanism of reaction. - Abstract: The adsorption selectivity and dehydrogenation energy barriers of NH3, NH2 and NH on the (1 0 0) surface planes of Co3O4 are determined by means of density functional methods. Stepwise hydrogen abstraction is effected by lattice O3o associated with octahedrally coordinated surface Co atoms. The final H-abstraction, from NH, leads directly to the formation of gaseous product NO with the creation of a lattice oxygen vacancy. Reaction of this vacancy with gas-phase O2 repairs the vacancy and creates surface-adsorbed O* which is also capable of abstracting H from NH3*, NH2* and NH*, the final step leading to directly again to NO formation. The mobile surface OH* formed from the O*-mediated abstraction steps is also capable of abstracting H from the NHx* species, leading ultimately to surface N* which then easily extracts a lattice O3o to form NO and a new vacancy. The overall mechanism to form NO is a complex cycle of lattice- and surface-mediated abstractions. The hydrogen budget in the reaction shows corresponding complexity. Surface H* (formed when lattice O3o abstracts H from NHx) is stable and immobile but it can be abstracted by surface OH* to form water. OH* disproportionation reaction also forms water

  2. Anaerobic ammonium oxidation by Nitrosomonas spp. and anammox bacteria in a sequencing batch reactor.

    Science.gov (United States)

    Lek Noophan, Pongsak; Sripiboon, Siriporn; Damrongsri, Mongkol; Munakata-Marr, Junko

    2009-02-01

    A sequencing batch reactor (SBR) was inoculated with mixed nitrifying bacteria from an anoxic tank at the conventional activated sludge wastewater treatment plant in Nongkhaem, Bangkok, Thailand. This enriched nitrifying culture was maintained under anaerobic conditions using ammonium (NH(4)(+)) as an electron donor and nitrite (NO(2)(-)) as an electron acceptor. Autotrophic ammonium oxidizing bacteria survived under these conditions. The enrichment period for anammox culture was over 100 days. Both ammonium and nitrite conversion rates were proportional to the biomass of ammonium oxidizing bacteria; rates were 0.08 g N/gV SS/d and 0.05 g N/g VSS/d for ammonium and nitrite, respectively, in a culture maintained for 3 months at 42 mg N/L ammonium. The nitrogen transformation rate at a ratio of NH(4)(+)-N to NO(2)(-)-N of 1:1.38 was faster, and effluent nitrogen levels were lower, than at ratios of 1:0.671, 1:2.18, and 1:3.05. Fluorescent in situ hybridization (FISH) was used to identify specific autotrophic ammonium oxidizing bacteria (Nitrosomonas spp., Candidatus Brocadia anammoxidans, and Candidatus Kuenenia stuttgartiensis). The ammonium oxidizing culture maintained at 42 mg N/L ammonium was enriched for Nitrosomonas spp. (30%) over Candidati B. anammoxidans and K. stuttgartiensis (2.1%) while the culture maintained at 210 mg N/L ammonium was dominated by Candidati B. anammoxidans and K. stuttgartiensis (85.6%). The specific nitrogen removal rate of anammox bacteria (0.6 g N/g anammox VSS/d) was significantly higher than that of ammonium oxidizing bacteria (0.4 g N/g Nitrosomonas VSS/d). Anammox bacteria removed up to 979 mg N/L/d of total nitrogen (ammonium:nitrite concentrations, 397:582 mg N/L). These results suggest significant promise of this approach for application to wastewater with high nitrogen but low carbon content, such as that found in Bangkok. PMID:18423965

  3. Anaerobic sulfide-oxidation in marine colorless sulfur-oxidizing bacteria

    Digital Repository Service at National Institute of Oceanography (India)

    LokaBharathi, P.A.; Nair, S.; Chandramohan, D.

    to the concentration in milligrams per liter of sulfide sulfur. Percentage oxidation was calculated by comparing the experimental values with the respective uninoculated controls at the end of incubation period using the formula (C f 2 E f /C f ) 3 100, where C f... is the final sulfide content in the control, and E f is the final sulfide content in the experiment. Effect of iron (FeCl 3 ) Positive controls at ambient conditions [room temperature (RT) 30 6 28C and atmospheric pressure] were always included to verify normal...

  4. Population and diversity of ammonia-oxidizing archaea and bacteria in a pollutants' receiving area in Hangzhou Bay.

    Science.gov (United States)

    Zhang, Yan; Chen, Lujun; Sun, Renhua; Dai, Tianjiao; Tian, Jinping; Zheng, Wei; Wen, Donghui

    2016-07-01

    The community structure of ammonia-oxidizing microorganisms is sensitive to various environmental factors, including pollutions. In this study, real-time PCR and 454 pyrosequencing were adopted to investigate the population and diversity of ammonia-oxidizing archaea (AOA) and bacteria (AOB) temporally and spatially in the sediments of an industrial effluent receiving area in the Qiantang River's estuary, Hangzhou Bay. The abundances of AOA and AOB amoA genes fluctuated in 10(5)-10(7) gene copies per gram of sediment; the ratio of AOA amoA/AOB amoA ranged in 0.39-5.52. The AOA amoA/archaeal 16S rRNA, AOB amoA/bacterial 16S rRNA, and AOA amoA/AOB amoA were found to positively correlate with NH4 (+)-N concentration of the seawater. Nitrosopumilus cluster and Nitrosomonas-like cluster were the dominant AOA and AOB, respectively. The community structures of both AOA and AOB in the sediments exhibited significant seasonal differences rather than spatial changes in the effluent receiving area. The phylogenetic distribution of AOB in this area was consistent with the wastewater treatment plants (WWTPs) discharging the effluent but differed from the Qiantang River and other estuaries, which might be an outcome of long-term effluent discharge. PMID:26960319

  5. Abundance and composition of ammonia-oxidizing bacteria and archaea in different types of soil in the Yangtze River estuary

    Institute of Scientific and Technical Information of China (English)

    Xiao-ran LI; Yi-ping XIAO; Wen-wei REN; Zeng-fu LIU; Jin-huan SHI; Zhe-xue QUAN

    2012-01-01

    Tidal fiats are soil resources of great significance.Nitrification plays a central role in the nitrogen cycle and is often a critical first step in nitrogen removal from estuarine and coastal environments.We determined the abundance as well as composition of ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) in different soils during land reclamation process.The abundance of AOA was higher than that of AOB in farm land and wild land while AOA was not detected in tidal flats using real-time polymerase chain reaction (PCR).The different abundances of AOB and AOA were negatively correlated with the salinity.The diversities of AOB and AOA were also investigated using clone libraries by amplification of amoA gene.Among AOB,nearly all sequences belonged to the Nitrosomonas lineage in the initial land reclamation process,i.e.,tidal flats,while both Nitrosomonas and Nitrosospira lineages were detected in later and transition phases of land reclamation process,farm land and wild land.The ratio of the numbers of sequences of Nitrosomonas and Nitrosospira lineages was positively correlated with the salinity and the net nitrification rate.As for AOA,there was no obvious correlation with the changes in the physicochemical properties of the soil.This study suggests that AOB may be more import than AOA with respect to influencing the different land reclamation process stages.

  6. Electrodeposited platinum thin films with preferential (100) orientation: Characterization and electrocatalytic properties for ammonia and formic acid oxidation

    Science.gov (United States)

    Bertin, Erwan; Garbarino, Sébastien; Guay, Daniel; Solla-Gullón, José; Vidal-Iglesias, Francisco J.; Feliu, Juan M.

    2013-03-01

    The electrocatalytic activity of preferentially oriented {100} Pt electrodes for the electro-oxidation of ammonia (0.2 M NaOH + 0.1 M NH3) and formic acid (0.5 M HCOOH + 0.5 M H2SO4) was assessed. They were prepared without using any surfactant through potentiostatic deposition (Ed = -0.10 V vs RHE, [HCl] = 10 mM and [Na2PtCl6·6H2O] = 0.5 mM) and by varying the deposition charge. For comparison, polycrystalline Pt thin films were prepared using the same solution but with Ed = +0.10 V vs RHE. Quantification of the fraction of (111) and (100) sites was performed by bismuth irreversible adsorption and deconvolution of the hydrogen region, respectively. Samples with as much as 47% of (100) surface sites were obtained. The preferential orientation was further confirmed by CO stripping voltammetry that exhibits similar characteristic features, as well as a similar potential of zero total charge than those expected for a preferential (100) surface. As compared to polycrystalline Pt, the occurrence of Pt (100) surface sites leads to an electrocatalytic activity enhancement by a factor of 4.8 and 2.6 (expressed as μA cmPt-2) for the oxidation of ammonia and formic acid, respectively.

  7. Catalytic Hydrolysis of Ammonia Borane by Cobalt Nickel Nanoparticles Supported on Reduced Graphene Oxide for Hydrogen Generation

    Directory of Open Access Journals (Sweden)

    Yuwen Yang

    2014-01-01

    Full Text Available Well dispersed magnetically recyclable bimetallic CoNi nanoparticles (NPs supported on the reduced graphene oxide (RGO were synthesized by one-step in situ coreduction of aqueous solution of cobalt(II chloride, nickel (II chloride, and graphite oxide (GO with ammonia borane (AB as the reducing agent under ambient condition. The CoNi/RGO NPs exhibits excellent catalytic activity with a total turnover frequency (TOF value of 19.54 mol H2 mol catalyst−1 min−1 and a low activation energy value of 39.89 kJ mol−1 at room temperature. Additionally, the RGO supported CoNi NPs exhibit much higher catalytic activity than the monometallic and RGO-free CoNi counterparts. Moreover, the as-prepared catalysts exert satisfying durable stability and magnetically recyclability for the hydrolytic dehydrogenation of AB, which make the practical reusing application of the catalysts more convenient. The usage of the low-cost, easy-getting catalyst to realize the production of hydrogen under mild condition gives more confidence for the application of ammonia borane as a hydrogen storage material. Hence, this general method indicates that AB can be used as both a potential hydrogen storage material and an efficient reducing agent, and can be easily extended to facile preparation of other RGO-based metallic systems.

  8. Ammonia oxidizers are pioneer microorganisms in the colonization of new acidic volcanic soils from South of Chile.

    Science.gov (United States)

    Hernández, Marcela; Dumont, Marc G; Calabi, Marcela; Basualto, Daniel; Conrad, Ralf

    2014-02-01

    Ammonia oxidation, performed by specialized microorganisms belonging to the Bacteria and Archaea, is the first and most limiting step of soil nitrification. Nitrification has not yet been examined in young volcanic soils. The aim of the present work was to evaluate the abundance and diversity of ammonia-oxidizing bacteria (AOB) and archaea (AOA) in acidic volcanic soils (andisols) of different defined ages to determine their relative contribution to nitrification and soil colonization. Soil was collected from three vegetated sites on Llaima Volcano (Chile) recolonized after lava eruptions in 1640, 1751 and 1957. Quantitative polymerase chain reaction, terminal restriction fragment length polymorphism and clone sequence analyses of the amoA gene were performed for the AOA and AOB communities. All soils showed high nitrification potentials, but they were highest in the younger soils. Archaeal amoA genes outnumbered bacterial amoA genes at all sites, and AOA abundances were found to be proportional to the nitrification potentials. Sequencing indicated the presence of AOA related to Nitrososphaera and Nitrosotalea, and AOB related primarily to Nitrosospira and sporadically to Nitrosomonas. The study showed that both AOA and AOB are early colonizers of andisols, but that AOA outnumber AOB and play an important role in nitrification. PMID:24596264

  9. Anaerobic oxidation of toluene, phenol, and p-cresol by the dissimilatory iron-reducing organism, GS-15

    Science.gov (United States)

    Lovley, D.R.; Lonergan, D.J.

    1990-01-01

    The dissimilatory Fe(III) reducer, GS-15, is the first microorganism known to couple the oxidation of aromatic compounds to the reduction of Fe(III) and the first example of a pure culture of any kind known to anaerobically oxidize an aromatic hydrocarbon, toluene. In this study, the metabolism of toluene, phenol, and p-cresol by GS-15 was investigated in more detail. GS-15 grew in an anaerobic medium with toluene as the sole electron donor and Fe(III) oxide as the electron acceptor. Growth coincided with Fe(III) reduction. [ring-14C]toluene was oxidized to 14CO2, and the stoichiometry of 14CO2 production and Fe(III) reduction indicated that GS-15 completely oxidized toluene to carbon dioxide with Fe(III) as the electron acceptor. Magnetite was the primary iron end product during toluene oxidation. Phenol and p-cresol were also completely oxidized to carbon dioxide with Fe(III) as the sole electron acceptor, and GS-15 could obtain energy to support growth by oxidizing either of these compounds as the sole electron donor. p-Hydroxybenzoate was a transitory extracellular intermediate of phenol and p-cresol metabolism but not of toluene metabolism. GS-15 oxidized potential aromatic intermediates in the oxidation of toluene (benzylalcohol and benzaldehyde) and p-cresol (p-hydroxybenzylalcohol and p-hydroxybenzaldehyde). The metabolism described here provides a model for how aromatic hydrocarbons and phenols may be oxidized with the reduction of Fe(III) in contaminated aquifers and petroleum-containing sediments.

  10. Anaerobic oxidation of toluene, phenol, and p-cresol by the dissimilatory iron-reducing organism, GS-15

    International Nuclear Information System (INIS)

    The dissimilatory Fe(III) reducer, GS-15, is the first microorganism known to couple the oxidation of aromatic compounds to the reduction of Fe(III) and the first example of a pure culture of any kind known to anaerobically oxidize an aromatic hydrocarbon, toluene. In this study, the metabolism of toluene, phenol, and p-cresol by GS-15 was investigated in more detail. GS-15 grew in an anaerobic medium with toluene as the sole electron donor and Fe(III) oxide as the electron acceptor. Growth coincided with Fe(III) reduction. [ring-14C]toluene was oxidized to 14CO2, and the stoichiometry of 14CO2 production and Fe(III) reduction indicated that GS-15 completely oxidized toluene to carbon dioxide with Fe(III) as the electron acceptor. Magnetite was the primary iron end product during toluene oxidation. Phenol and p-cresol were also completely oxidized to carbon dioxide with Fe(III) as the sole electron acceptor, and GS-15 could obtain energy to support growth by oxidizing either of these compounds as the sole electron donor. p-Hydroxybenzoate was a transitory extracellular intermediate of phenol and p-cersol metabolism but not of toluene metabolism. GS-15 oxidized potential aromatic intermediates in the oxidation of toluene (benzylalcohol and benzaldehyde) and p-cersol (p-hydroxybenzylalchol and p-hydroxybenzaldehyde). The metabolism described here provides a model for how aromatic hydrocarbons and phenols may be oxidized with the reduction of Fe(III) in contaminated aquifers and petroleum-containing sediments

  11. A new constraint on the antiquity of anaerobic oxidation of methane: Late Pennsylvanian seep limestones from southern Namibia

    Science.gov (United States)

    Birgel, Daniel; Himmler, Tobias; Freiwald, André; Peckmann, Jörn

    2008-07-01

    Late Pennsylvanian seep limestones (ca. 300 Ma) enclosed inthe Ganigobis shales in southern Namibia formed by microbialactivity. The process that induced carbonate precipitation wasthe anaerobic oxidation of methane. The presence of 13C-depletedpentamethylicosane (PMI) (-113) and a mixture of crocetaneand phytane (-112) in concert with similarly 13C-depletedpseudohomologous series of regular isoprenoids reveals thatmethanotrophic archaea oxidized methane anaerobically at theancient seep site. Biphytane and a C39 pseudohomologue are otherarchaeal molecular fossils with 13C values of -99 and-97, respectively. The former presence of sulfate-reducingbacteria as the syntrophic partners of methanotrophic archaeain the anaerobic oxidation of methane is indicated by isotopicallydepleted iso- and anteiso-alkanes. These compounds most probablyderive from non-isoprenoidal monoethers and diethers, synthatesof sulfate-reducing bacteria. These findings show that anaerobicoxidation of methane is at least 300 m.y. old, extending therecord of this process for 140 m.y. As the molecular fossilsof archaea and bacteria are preserved in a product of theirown metabolic activity (i.e., methane-derived carbonates with13C values as low as -51), the syngenicity of molecularfossils and enclosing deposits is unambiguous. This revealsthat microbially formed rocks can represent excellent archivesfor studying past biogeochemical processes.

  12. Carbohydrate oxidation coupled to Fe(III) reduction, a novel form of anaerobic metabolism.

    Science.gov (United States)

    Coates, J D; Councell, T; Ellis, D J; Lovley, D R

    1998-12-01

    An isolate, designated GC-29, that could incompletely oxidize glucose to acetate and carbon dioxide with Fe(III) serving as the electron acceptor was recovered from freshwater sediments of the Potomac River, Maryland. This metabolism yielded energy to support cell growth. Strain GC-29 is a facultatively anaerobic, gram-negative motile rod which, in addition to glucose, also used sucrose, lactate, pyruvate, yeast extract, casamino acids or H2 as alternative electron donors for Fe(III) reduction. Stain GC-29 could reduce NO3(-), Mn(IV), U(VI), fumarate, malate, S2O3(2-), and colloidal S0 as well as the humics analog, 2,6-anthraquinone disulfonate. Analysis of the almost complete 16S rRNA sequence indicated that strain GC-29 belongs in the Shewanella genus in the epsilon subdivision of the Proteobacteria. The name Shewanella saccharophilia is proposed. Shewanella saccharophilia differs from previously described fermentative microorganisms that metabolize glucose with the reduction of Fe(III) because it transfers significantly more electron equivalents to Fe(III); acetate and carbon dioxide are the only products of glucose metabolism; energy is conserved from Fe(III) reduction; and glucose is not metabolized in the absence of Fe(III). The metabolism of organisms like S. saccharophilia may account for the fact that glucose is metabolized primarily to acetate and carbon dioxide in a variety of sediments in which Fe(III) reduction is the terminal electron accepting process. PMID:16887653

  13. Applicability of anaerobic nitrate-dependent Fe(II) oxidation to microbial enhanced oil recovery (MEOR).

    Science.gov (United States)

    Zhu, Hongbo; Carlson, Han K; Coates, John D

    2013-08-01

    Microbial processes that produce solid-phase minerals could be judiciously applied to modify rock porosity with subsequent alteration and improvement of floodwater sweep in petroleum reservoirs. However, there has been little investigation of the application of this to enhanced oil recovery (EOR). Here, we investigate a unique approach of altering reservoir petrology through the biogenesis of authigenic rock minerals. This process is mediated by anaerobic chemolithotrophic nitrate-dependent Fe(II)-oxidizing microorganisms that precipitate iron minerals from the metabolism of soluble ferrous iron (Fe(2+)) coupled to the reduction of nitrate. This mineral biogenesis can result in pore restriction and reduced pore throat diameter. Advantageously and unlike biomass plugs, these biominerals are not susceptible to pressure or thermal degradation. Furthermore, they do not require continual substrate addition for maintenance. Our studies demonstrate that the biogenesis of insoluble iron minerals in packed-bed columns results in effective hydrology alteration and homogenization of heterogeneous flowpaths upon stimulated microbial Fe(2+) biooxidation. We also demonstrate almost 100% improvement in oil recovery from hydrocarbon-saturated packed-bed columns as a result of this metabolism. These studies represent a novel departure from traditional microbial EOR approaches and indicate the potential for nitrate-dependent Fe(2+) biooxidation to improve volumetric sweep efficiency and enhance both the quality and quantity of oil recovered. PMID:23799785

  14. Modeling of Nitrous Oxide Production from Nitritation Reactors Treating Real Anaerobic Digestion Liquor.

    Science.gov (United States)

    Wang, Qilin; Ni, Bing-Jie; Lemaire, Romain; Hao, Xiaodi; Yuan, Zhiguo

    2016-01-01

    In this work, a mathematical model including both ammonium oxidizing bacteria (AOB) and heterotrophic bacteria (HB) is constructed to predict N2O production from the nitritation systems receiving the real anaerobic digestion liquor. This is for the first time that N2O production from such systems was modeled considering both AOB and HB. The model was calibrated and validated using experimental data from both lab- and pilot-scale nitritation reactors. The model predictions matched the dynamic N2O, ammonium, nitrite and chemical oxygen demand data well, supporting the capability of the model. Modeling results indicated that HB are the dominant contributor to N2O production in the above systems with the dissolved oxygen (DO) concentration of 0.5-1.0 mg O2/L, accounting for approximately 75% of N2O production. The modeling results also suggested that the contribution of HB to N2O production decreased with the increasing DO concentrations, from 75% at DO = 0.5 mg O2/L to 25% at DO = 7.0 mg O2/L, with a corresponding increase of the AOB contribution (from 25% to 75%). Similar to HB, the total N2O production rate also decreased dramatically from 0.65 to 0.25 mg N/L/h when DO concentration increased from 0.5 to 7.0 mg O2/L. PMID:27125491

  15. Importance and controls of anaerobic ammonium oxidation influenced by riverbed geology

    Science.gov (United States)

    Lansdown, K.; McKew, B. A.; Whitby, C.; Heppell, C. M.; Dumbrell, A. J.; Binley, A.; Olde, L.; Trimmer, M.

    2016-05-01

    Rivers are an important global sink for excess bioavailable nitrogen: they convert approximately 40% of terrestrial N runoff per year (~47 Tg) to biologically unavailable N2 gas and return it to the atmosphere. At present, riverine N2 production is conceptualized and modelled as denitrification. Anaerobic ammonium oxidation, known as anammox, is an alternative pathway of N2 production important in marine environments, but its contribution to riverine N2 production is not well understood. Here we use in situ and laboratory measurements of anammox activity using 15N tracers and molecular analyses of microbial communities to evaluate anammox in clay-, sand- and chalk-dominated river beds in the Hampshire Avon catchment, UK during summer 2013. Abundance of the hzo gene, which encodes an enzyme central to anammox metabolism, varied across the contrasting geologies. Anammox rates were similar across geologies but contributed different proportions of N2 production because of variation in denitrification rates. In spite of requiring anoxic conditions, anammox, most likely coupled to partial nitrification, contributed up to 58% of in situ N2 production in oxic, permeable riverbeds. In contrast, denitrification dominated in low-permeability clay-bed rivers, where anammox contributes roughly 7% to the production of N2 gas. We conclude that anammox can represent an important nitrogen loss pathway in permeable river sediments.

  16. Modeling of Nitrous Oxide Production from Nitritation Reactors Treating Real Anaerobic Digestion Liquor

    Science.gov (United States)

    Wang, Qilin; Ni, Bing-Jie; Lemaire, Romain; Hao, Xiaodi; Yuan, Zhiguo

    2016-01-01

    In this work, a mathematical model including both ammonium oxidizing bacteria (AOB) and heterotrophic bacteria (HB) is constructed to predict N2O production from the nitritation systems receiving the real anaerobic digestion liquor. This is for the first time that N2O production from such systems was modeled considering both AOB and HB. The model was calibrated and validated using experimental data from both lab- and pilot-scale nitritation reactors. The model predictions matched the dynamic N2O, ammonium, nitrite and chemical oxygen demand data well, supporting the capability of the model. Modeling results indicated that HB are the dominant contributor to N2O production in the above systems with the dissolved oxygen (DO) concentration of 0.5–1.0 mg O2/L, accounting for approximately 75% of N2O production. The modeling results also suggested that the contribution of HB to N2O production decreased with the increasing DO concentrations, from 75% at DO = 0.5 mg O2/L to 25% at DO = 7.0 mg O2/L, with a corresponding increase of the AOB contribution (from 25% to 75%). Similar to HB, the total N2O production rate also decreased dramatically from 0.65 to 0.25 mg N/L/h when DO concentration increased from 0.5 to 7.0 mg O2/L. PMID:27125491

  17. Anoxic phosphorus removal in a pilot scale anaerobic-anoxic oxidation ditch process

    Institute of Scientific and Technical Information of China (English)

    Hongxun HOU; Shuying WANG; Yongzhen PENG; Zhiguo YUAN; Fangfang YIN; Wang GAN

    2009-01-01

    The anaerobic-anoxic oxidation ditch (A2/O OD) process is popularly used to eliminate nutrients from domestic wastewater. In order to identify the existence of denitrifying phosphorus removing bacteria (DPB), evalu-ate the contribution of DPB to biological nutrient removal,and enhance the denitrifying phosphorus removal in the A2/O OD process, a pilot-scale A2/O OD plant (375 L)was conducted. At the same time batch tests using sequence batch reactors (12 L and 4 L) were operated to reveal the significance of anoxic phosphorus removal. The results indicated that: The average removal efficiency of COD, NH4+, pO3-4, and TN were 88.2%, 92.6%, 87.8%,and 73.1%, respectively, when the steady state of the pilotscale A2/O OD plant was reached during 31-73d,demonstrating a good denitrifying phosphorus removal performance. Phosphorus uptake took place in the anoxic zone by poly-phosphorus accumulating organisms NO2- could be used as electron receptors in denitrifying phosphorus removal, and the phosphorus uptake rate with NO2- as the electron receptor was higher than that with NO3- when the initial concentration of either NO2- or NO3 was 40 mg/L.

  18. Synthesis of Ru nanoparticles confined in magnesium oxide-modified mesoporous alumina and their enhanced catalytic performance during ammonia decomposition

    KAUST Repository

    Tan, Hua

    2012-09-01

    In this work, Ru nanoparticles confined in the channels of ordered mesoporous alumina (MA) and magnesium oxide-modified ordered MA are prepared for the first time via a two-solvent technique, combined with the amorphous citrate route. Structural characterizations reveal that uniform 2-3 nm Ru nanoparticles are highly dispersed in the blockage-free channels of mesoporous supports. The Ru nanoparticles confined in MA modified with 20% molar ratio magnesium oxide exhibited a high catalytic activity and stability during ammonia decomposition due to the optimized particle size, basic support, lack of chlorine, and confined space provided by the channels of the mesoporous supports. © 2012 Elsevier B.V. All rights reserved.

  19. The large-scale distribution of ammonia oxidizers in paddy soils is driven by soil pH, geographic distance and climatic factors

    Directory of Open Access Journals (Sweden)

    Hangwei eHu

    2015-09-01

    Full Text Available Paddy soils distribute widely from temperate to tropical regions, and are characterized by intensive nitrogen fertilization practices in China. Mounting evidence has confirmed the functional importance of ammonia-oxidizing archaea (AOA and bacteria (AOB in soil nitrification, but little is known about their biogeographic distribution patterns in paddy ecosystems. Here, we used barcoded pyrosequencing to characterize the effects of climatic, geochemical and spatial factors on the distribution of ammonia oxidizers from 11 representative rice-growing regions (75-1945 km apart of China. Potential nitrification rates varied greatly by more than three orders of magnitude, and were significantly correlated with the abundances of AOA and AOB. The community composition of ammonia oxidizer was affected by multiple factors, but changes in relative abundances of the major lineages could be best predicted by soil pH. The alpha diversity of AOA and AOB displayed contrasting trends over the gradients of latitude and atmospheric temperature, indicating a possible niche separation between AOA and AOB along the latitude. The Bray-Curtis dissimilarities in ammonia-oxidizing community structure significantly increased with increasing geographical distance, indicating that more geographically distant paddy fields tend to harbor more dissimilar ammonia oxidizers. Variation partitioning analysis revealed that spatial, geochemical and climatic factors could jointly explain majority of the data variation, and were important drivers defining the ecological niches of AOA and AOB. Our findings suggest that both AOA and AOB are of functional importance in paddy soil nitrification, and ammonia oxidizers in paddy ecosystems exhibit large-scale biogeographic patterns shaped by soil pH, geographic distance, and climatic factors.

  20. Anaerobic oxidation of methane in coastal sediment from Guishan Island (Pearl River Estuary), South China Sea

    Indian Academy of Sciences (India)

    Zijun Wu; Huaiyang Zhou; Xiaotong Peng; Nan Jia; Yuhong Wang; Linxi Yuan

    2008-12-01

    The concentrations of CH4, SO$^{2−}_{4}$, CO2 and the carbon isotope compositions of CO2 and CH4 in the pore-water of the GS sedimentary core collected from Guishan Island (Pearl River Estuary), South China Sea,were determined. The methane concentration in the pore-water shows dramatic changes and sulfate concentration gradients are linear at the base of the sulfate reduction zone for the station. The carbon isotope of methane becomes heavier at the sulfate-methane transition (SMT)likely because of the Raleigh distillation effect; 12CH4 was oxidized faster than 13CH4 and this caused the enrichment of residual methane 13C and 13C- CO2 minimum. The geochemical profiles of the pore-water support the existence of anaerobic oxidation of methane (AOM), which is mainly controlled by the quality and quantity of the sedimentary organic matter. As inferred from the index of 13C-TOC value and TOC/TN ratio, the organic matter is a mix of mainly refractory terrestrial component plus some labile alga marine-derived in the study area. A large amount of labile organic matter (mainly labile alga marine-derived) is consumed via the process of sedimentary organic matter diagenesis, and this reduces the amount of labile organic matter incorporated into the base of the sulfate reduction zone. Due to the scarcity of labile organic matter, the sulfate will in turn be consumed by its reaction with methane and therefore AOM takes place.Based on a diffussion model, the portion of pore-water sulfate reduction via AOM is 58.6%,and the percentage of CO2 in the pore-water derived from AOM is 41.4%. Thus, AOM plays an important role in the carbon and sulfur cycling in the marine sediments of Pearl River Estuary.

  1. Role of Anaerobic Ammonium Oxidation (Anammox) in Nitrogen Removal from a Freshwater Aquifer.

    Science.gov (United States)

    Smith, Richard L; Böhlke, J K; Song, Bongkeun; Tobias, Craig R

    2015-10-20

    Anaerobic ammonium oxidation (anammox) couples the oxidation of ammonium with the reduction of nitrite, producing N2. The presence and activity of anammox bacteria in groundwater were investigated at multiple locations in an aquifer variably affected by a large, wastewater-derived contaminant plume. Anammox bacteria were detected at all locations tested using 16S rRNA gene sequencing and quantification of hydrazine oxidoreductase (hzo) gene transcripts. Anammox and denitrification activities were quantified by in situ (15)NO2(-) tracer tests along anoxic flow paths in areas of varying ammonium, nitrate, and organic carbon abundances. Rates of denitrification and anammox were determined by quantifying changes in (28)N2, (29)N2, (30)N2, (15)NO3(-), (15)NO2(-), and (15)NH4(+) with groundwater travel time. Anammox was present and active in all areas tested, including where ammonium and dissolved organic carbon concentrations were low, but decreased in proportion to denitrification when acetate was added to increase available electron supply. Anammox contributed 39-90% of potential N2 production in this aquifer, with rates on the order of 10 nmol N2-N L(-1) day(-1). Although rates of both anammox and denitrification during the tracer tests were low, they were sufficient to reduce inorganic nitrogen concentrations substantially during the overall groundwater residence times in the aquifer. These results demonstrate that anammox activity in groundwater can rival that of denitrification and may need to be considered when assessing nitrogen mass transport and permanent loss of fixed nitrogen in aquifers. PMID:26401911

  2. Conversion of upland to paddy field specifically alters the community structure of archaeal ammonia oxidizers in an acid soil

    Directory of Open Access Journals (Sweden)

    M. S. Alam

    2013-08-01

    Full Text Available The function of ammonia-oxidizing archaea (AOA and bacteria (AOB depends on the major energy-generating compounds (i.e., ammonia and oxygen. The diversification of AOA and AOB communities along ecological gradients of substrate availability in a complex environment have been much debated but rarely tested. In this study, two ecosystems of maize and rice crops under different fertilization regimes were selected to investigate the community diversification of soil AOA and AOB upon conversion of an upland field to a paddy field and long-term field fertilization in an acid soil. Real-time quantitative polymerase chain reaction of ammonia monooxygenase (amoA genes demonstrated that the abundance of AOA was significantly stimulated after conversion of upland to paddy soils for more than 100 yr, whereas a slight decline in AOB numbers was observed. Denaturing gradient gel electrophoresis fingerprints of amoA genes further revealed remarkable changes in the community compositions of AOA after conversion of aerobic upland to flooded paddy field. Sequencing analysis revealed that upland soil was dominated by AOA within the soil group 1.1b lineage, whereas the marine group 1.1a-associated lineage predominated in AOA communities in paddy soils. Irrespective of whether the soil was upland or paddy soil, long-term field fertilization led to increased abundance of amoA genes in AOA and AOB compared with control treatments (no fertilization, whereas archaeal amoA gene abundances outnumbered their bacterial counterparts in all samples. Phylogenetic analyses of amoA genes showed that Nitrosospira cluster-3-like AOB dominated bacterial ammonia oxidizers in both paddy and upland soils, regardless of fertilization treatment. The results of this study suggest that the marine group 1.1a-associated AOA will be better adapted to the flooded paddy field than AOA ecotypes of the soil group 1.1b lineage, and indicate that long-term flooding is the dominant selective force

  3. Conversion of upland to paddy field specifically alters the community structure of archaeal ammonia oxidizers in an acid soil

    Science.gov (United States)

    Alam, M. S.; Ren, G. D.; Lu, L.; Zheng, Y.; Peng, X. H.; Jia, Z. J.

    2013-08-01

    The function of ammonia-oxidizing archaea (AOA) and bacteria (AOB) depends on the major energy-generating compounds (i.e., ammonia and oxygen). The diversification of AOA and AOB communities along ecological gradients of substrate availability in a complex environment have been much debated but rarely tested. In this study, two ecosystems of maize and rice crops under different fertilization regimes were selected to investigate the community diversification of soil AOA and AOB upon conversion of an upland field to a paddy field and long-term field fertilization in an acid soil. Real-time quantitative polymerase chain reaction of ammonia monooxygenase (amoA) genes demonstrated that the abundance of AOA was significantly stimulated after conversion of upland to paddy soils for more than 100 yr, whereas a slight decline in AOB numbers was observed. Denaturing gradient gel electrophoresis fingerprints of amoA genes further revealed remarkable changes in the community compositions of AOA after conversion of aerobic upland to flooded paddy field. Sequencing analysis revealed that upland soil was dominated by AOA within the soil group 1.1b lineage, whereas the marine group 1.1a-associated lineage predominated in AOA communities in paddy soils. Irrespective of whether the soil was upland or paddy soil, long-term field fertilization led to increased abundance of amoA genes in AOA and AOB compared with control treatments (no fertilization), whereas archaeal amoA gene abundances outnumbered their bacterial counterparts in all samples. Phylogenetic analyses of amoA genes showed that Nitrosospira cluster-3-like AOB dominated bacterial ammonia oxidizers in both paddy and upland soils, regardless of fertilization treatment. The results of this study suggest that the marine group 1.1a-associated AOA will be better adapted to the flooded paddy field than AOA ecotypes of the soil group 1.1b lineage, and indicate that long-term flooding is the dominant selective force driving the

  4. Global biodiversity of aquatic ammonia-oxidizing archaea is partitioned by habitat

    OpenAIRE

    Biller, Steven J.; Mosier, Annika C.; Wells, George F.; Francis, Christopher A.

    2012-01-01

    Archaea play an important role in nitrification and are, thus, inextricably linked to the global carbon and nitrogen cycles. Since the initial discovery of an ammonia monooxygenase α-subunit (amoA) gene associated with an archaeal metagenomic fragment, archaeal amoA sequences have been detected in a wide variety of nitrifying environments. Recent sequencing efforts have revealed extensive diversity of archaeal amoA sequences within different habitats. In this study, we have examined over 800...

  5. Short-term changes in anaerobic oxidation of methane in response to varying methane and sulfate fluxes

    Directory of Open Access Journals (Sweden)

    G. Wegener

    2008-08-01

    Full Text Available A major role in global methane fluxes has been attributed to the process of anaerobic oxidation of methane, which is performed by consortia of methanotrophic archaea and sulfate reducing bacteria. An important question remains how these very slow growing microorganisms with generation times of 3–7 months respond to natural variations in methane fluxes at cold seeps. Here, we used an experimental flow-through column system filled with cold seep sediments naturally enriched in methanotrophic communities, to test their response to short-term variations in methane and sulfate fluxes. At stable methane and sulfate concentrations of ~2 mM and 28 mM, respectively, we measured constant rates of anaerobic oxidation of methane (AOM and sulfide production (SR for up to 160 days of incubation. When percolated with methane-free medium, the anaerobic methanotrophs ceased to oxidize methane and to produce sulfide. After a starvation phase of 40 days, the addition of methane restored former AOM and SR rates immediately. At methane concentrations between 0–2.3 mM we measured a linear correlation between methane availability, AOM and SR. At constant fluid flow rates of 30 m yr−1, ca. 50% of the methane was consumed by the ANME population at all concentrations tested. Reducing the sulfate concentration from 28 to 1 mM, a decrease in AOM and SR by 35% was observed. Hence, the marine anaerobic methanotrophs (ANME are capable to consume substantial amounts of methane rising from the subsurface seabed to the hydrosphere over a wide range of fluxes of methane and sulfate.

  6. Differential aerobic and anaerobic oxidation of hydrocarbon gases discharged at mud volcanoes in the Nile deep-sea fan

    Science.gov (United States)

    Mastalerz, Vincent; de Lange, Gert J.; Dählmann, Anke

    2009-07-01

    The present study investigates hydrocarbon oxidation processes at Isis and Amon mud volcanoes (MV's), in the eastern Nile deep-sea fan. In the water column, molecular and carbon isotopic signatures of light hydrocarbons indicate that gases rapidly dissolve in seawater and are partially oxidized. In the upper sediments, anaerobic oxidation of the light hydrocarbons takes place, as clearly shown by their molecular and isotopic composition. These processes lead to the presence of a distinct Sulfate-Hydrocarbon Interface at 120-145 cm and 20-50 cm below the seafloor, for Isis and Amon MV's, respectively. In contrast to processes occurring in the water column, a clear preferential oxidation of methane, propane and n-butane over ethane and i-butane is observed in the anoxic sediments. Furthermore, for the first time, fractionation factors have been determined for the anaerobic oxidation of propane and butane, being respectively -4.80‰ and -0.7‰ for δ 13C, and -43.3‰ for δ 2H of propane.

  7. Chemoautotrophic growth of ammonia-oxidizing Thaumarchaeota enriched from a pelagic redox gradient in the Baltic Sea

    Directory of Open Access Journals (Sweden)

    Carlo eBerg

    2015-01-01

    Full Text Available Ammonia-oxidizing archaea (AOA are an important component of the planktonic community in aquatic habitats, linking nitrogen and carbon cycles through nitrification and carbon fixation. Therefore, measurements of these processes in culture-based experiments can provide insights into their contributions to energy conservation and biomass production by specific AOA. In this study, by enriching AOA from a brackish, oxygen-depleted water-column in the Landsort Deep, central Baltic Sea, we were able to investigate ammonium oxidation, chemoautotrophy, and growth in seawater batch experiments. The highly enriched culture consisted of up to 97% archaea, with maximal archaeal numbers of 2.9 × 107 cells mL-1. Phylogenetic analysis of the 16S rRNA and ammonia monooxygenase subunit A (amoA gene sequences revealed an affiliation with assemblages from low-salinity and freshwater habitats, with Candidatus Nitrosoarchaeum limnia as the closest relative. Growth correlated significantly with nitrite production, ammonium consumption, and CO2 fixation, which occurred at a ratio of 10 atoms N oxidized per 1 atom C fixed. According to the carbon balance, AOA biomass production can be entirely explained by chemoautotrophy. The cellular carbon content was estimated to be 9 fg C per cell. Single-cell-based 13C and 15N labeling experiments and analysis by nano-scale secondary ion mass spectrometry provided further evidence that cellular carbon was derived from bicarbonate and that ammonium was taken up by the cells. Our study therefore revealed that growth by an AOA belonging to the genus Nitrosoarchaeum can be sustained largely by chemoautotrophy.

  8. Enhanced biological nutrients removal using an integrated oxidation ditch with vertical circle from wastewater by adding an anaerobic column

    Institute of Scientific and Technical Information of China (English)

    WANG Shu-mei; LIU Jun-xin

    2005-01-01

    Compared to conventional oxidation ditches, an integrated oxidation ditch with vertical circle(IODVC) has the characters of concise configuration, simple operation and maintenance, land saving and automatical sludge returning. By the utilization of vertical circulation, an aerobic zone and an anoxic zone can be unaffectedly formed in the IODVC. Therefore, COD and nitrogen can be efficiently removed. However, the removal efficiency of phosphorus was Iow in the IODVC. In the experiment described, a laboratory scale system to add an anaerobic column to the IODVC has been tested to investigate the removal of phosphorus from wastewater. The experimental results showed that the removal efficiency of TP with the anaerobic column was increased to 54.0 % from 22.3 % without the anaerobic column. After the acetic sodium was added into the influent as carbon sources, the mean TP removal efficency of 77.5 % was obtained. At the same time, the mean removal efficiencies of COD, TN and NH3-N were 92.2%, 81.6% and 98.1%, respectively, at 12 h of HRT and 21-25 d of SRT. The optimal operational conditions in this study were as follows: recycle rate = 1.5-2.0, COD/TN > 6, COD/TP > 40,COD loading rate = 0.26-0.32 kgCOD/(kgSS·d), TN loading rate =0.028-0.034 kgTN/(kgSS·d) and TP loading rate = 0.003-0.005kgTP/(kgSS·d), respectively.

  9. Enrichment of Thermophilic Ammonia-Oxidizing Archaea from an Alkaline Hot Spring in the Great Basin, USA

    Science.gov (United States)

    Zhang, C.; Huang, Z.; Jiang, H.; Wiegel, J.; Li, W.; Dong, H.

    2010-12-01

    One of the major advances in the nitrogen cycle is the recent discovery of ammonia oxidation by archaea. While culture-independent studies have revealed occurrence of ammonia-oxidizing archaea (AOA) in nearly every surface niche on earth, most of these microorganisms have resisted isolation and so far only a few species have been identified. The Great Basin contains numerous hot springs, which are characterized by moderately high temperature (40-65 degree C) and circumneutral or alkaline pH. Unique thermophilic archaea have been identified based on molecular DNA and lipid biomarkers; some of which may be ammonia oxidizers. This study aims to isolate some of these archaea from a California hot spring that has pH around 9.0 and temperature around 42 degree C. Mat material was collected from the spring and transported on ice to the laboratory. A synthetic medium (SCM-5) was inoculated with the mat material and the culture was incubated under varying temperature (35-65 degree C) and pH (7.0-10.0) conditions using antibiotics to suppress bacterial growth. Growth of the culture was monitored by microscopy, decrease in ammonium and increase in nitrite, and increases in Crenarchaeota and AOA abundances over time. Clone libraries were constructed to compare archaeal community structures before and after the enrichment experiment. Temperature and pH profiles indicated that the culture grew optimally at pH 9.0 and temperature 45 degree C, which are consistent with the geochemical conditions of the natural environment. Phylogenetic analysis showed that the final OTU was distantly related to all known hyperthermophilic archaea. Analysis of the amoA genes showed two OTUs in the final culture; one of them was closely related to Candidatus Nitrososphaera gargensis. However, the enrichment culture always contained bacteria and attempts to separate them from archaea have failed. This highlights the difficulty in bringing AOA into pure culture and suggests that some of the AOA may

  10. Faster autotrophic growth of anaerobic ammonium-oxidizing microorganisms in presence of nitrite, using inocula from Colombia

    Directory of Open Access Journals (Sweden)

    Jaime Sanchez

    2014-06-01

    Full Text Available Título en español: Crecimiento rápido autotrófico de microorganismos anaerobios oxidadores de amonio en presencia de nitrito, usando inóculos de ColombiaShort Title: Growth from Colombian inoculated anammoxSummary: Anammox is a nitrite dependent process, catalyzed by bacteria of the order Brocadiales. Anammox bacteria oxidize ammonia under anoxic conditions, with nitrite as electron acceptor producing dinitrogen gas. Here, we demonstrated the presence of anammox bacteria by enriched them in a SBR reactor, with anaerobic samples taken from de bottom of a pond used in primary wastewater treatment. The enrichment reached nitrogen (N removal rates of nearly 1.92kg N/m3/day. (The stoichiometry of the reaction matched previous anammox studies. The enriched bacterial communities were analyzed by Fluorescence In situ Hybridization (FISH, and showed nearly a 90% of enrichment at the end of the experiment (day 90. As far as we know, this is the first time that the anammox bacteria were enriched using Colombian inocula. The enrichment was achieved in relatively short time with high yields and has an excellent potential for application in wastewater treatment opening the opportunity to treat nitrogen-rich effluents by partial nitritation and anammox, thereby decreasing operational costs with respect to aeration (nitrification and addition of organic electron donor (heterotrophic denitrification. This more sustainable treatment is a good alternative to control nutrient pollution in water bodies in tropical countries.Key words: nitrogen cycle; advanced treatment; anammox;  nitritation; nitratation; denitrification.Resumen: La oxidación anaerobia del amonio (anammox, es un proceso nitrito dependiente, catalizado por bacterias del filo planctomicetes. Estas bacterias oxidan el amonio en ausencia de oxígeno, con nitrito como aceptor de electrones produciendo nitrógeno molecular. En Colombia, demostramos la presencia de estas bacterias mediante el

  11. Population Dynamics and Community Composition of Ammonia Oxidizers in Salt Marshes after the Deepwater Horizon Oil Spill

    Science.gov (United States)

    Bernhard, Anne E.; Sheffer, Roberta; Giblin, Anne E.; Marton, John M.; Roberts, Brian J.

    2016-01-01

    The recent oil spill in the Gulf of Mexico had significant effects on microbial communities in the Gulf, but impacts on nitrifying communities in adjacent salt marshes have not been investigated. We studied persistent effects of oil on ammonia-oxidizing archaeal (AOA) and bacterial (AOB) communities and their relationship to nitrification rates and soil properties in Louisiana marshes impacted by the Deepwater Horizon oil spill. Soils were collected at oiled and unoiled sites from Louisiana coastal marshes in July 2012, 2 years after the spill, and analyzed for community differences based on ammonia monooxygenase genes (amoA). Terminal Restriction Fragment Polymorphism and DNA sequence analyses revealed significantly different AOA and AOB communities between the three regions, but few differences were found between oiled and unoiled sites. Community composition of nitrifiers was best explained by differences in soil moisture and nitrogen content. Despite the lack of significant oil effects on overall community composition, we identified differences in correlations of individual populations with potential nitrification rates between oiled and unoiled sites that help explain previously published correlation patterns. Our results suggest that exposure to oil, even 2 years post-spill, led to subtle changes in population dynamics. How, or if, these changes may impact ecosystem function in the marshes, however, remains uncertain. PMID:27375576

  12. Population Dynamics and Community Composition of Ammonia Oxidizers in Salt Marshes after the Deepwater Horizon Oil Spill.

    Science.gov (United States)

    Bernhard, Anne E; Sheffer, Roberta; Giblin, Anne E; Marton, John M; Roberts, Brian J

    2016-01-01

    The recent oil spill in the Gulf of Mexico had significant effects on microbial communities in the Gulf, but impacts on nitrifying communities in adjacent salt marshes have not been investigated. We studied persistent effects of oil on ammonia-oxidizing archaeal (AOA) and bacterial (AOB) communities and their relationship to nitrification rates and soil properties in Louisiana marshes impacted by the Deepwater Horizon oil spill. Soils were collected at oiled and unoiled sites from Louisiana coastal marshes in July 2012, 2 years after the spill, and analyzed for community differences based on ammonia monooxygenase genes (amoA). Terminal Restriction Fragment Polymorphism and DNA sequence analyses revealed significantly different AOA and AOB communities between the three regions, but few differences were found between oiled and unoiled sites. Community composition of nitrifiers was best explained by differences in soil moisture and nitrogen content. Despite the lack of significant oil effects on overall community composition, we identified differences in correlations of individual populations with potential nitrification rates between oiled and unoiled sites that help explain previously published correlation patterns. Our results suggest that exposure to oil, even 2 years post-spill, led to subtle changes in population dynamics. How, or if, these changes may impact ecosystem function in the marshes, however, remains uncertain. PMID:27375576

  13. Macroscopic biofilms in fracture-dominated sediment that anaerobically oxidize methane

    Science.gov (United States)

    Briggs, B.R.; Pohlman, J.W.; Torres, M.; Riedel, M.; Brodie, E.L.; Colwell, F.S.

    2011-01-01

    Methane release from seafloor sediments is moderated, in part, by the anaerobic oxidation of methane (AOM) performed by consortia of archaea and bacteria. These consortia occur as isolated cells and aggregates within the sulfate-methane transition (SMT) of diffusion and seep-dominant environments. Here we report on a new SMT setting where the AOM consortium occurs as macroscopic pink to orange biofilms within subseafloor fractures. Biofilm samples recovered from the Indian and northeast Pacific Oceans had a cellular abundance of 10 7 to 10 8 cells cm -3. This cell density is 2 to 3 orders of magnitude greater than that in the surrounding sediments. Sequencing of bacterial 16S rRNA genes indicated that the bacterial component is dominated by Deltaproteobacteria, candidate division WS3, and Chloroflexi, representing 46%, 15%, and 10% of clones, respectively. In addition, major archaeal taxa found in the biofilm were related to the ANME-1 clade, Thermoplasmatales, and Desulfurococcales, representing 73%, 11%, and 10% of archaeal clones, respectively. The sequences of all major taxa were similar to sequences previously reported from cold seep environments. PhyloChip microarray analysis detected all bacterial phyla identified by the clone library plus an additional 44 phyla. However, sequencing detected more archaea than the PhyloChip within the phyla of Methanosarcinales and Desulfurococcales. The stable carbon isotope composition of the biofilm from the SMT (-35 to-43%) suggests that the production of the biofilm is associated with AOM. These biofilms are a novel, but apparently widespread, aggregation of cells represented by the ANME-1 clade that occur in methane-rich marine sediments. ?? 2011, American Society for Microbiology.

  14. Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments: A modeling perspective

    Science.gov (United States)

    Regnier, P.; Dale, A. W.; Arndt, S.; LaRowe, D. E.; Mogollón, J.; Van Cappellen, P.

    2011-05-01

    Recent developments in the quantitative modeling of methane dynamics and anaerobic oxidation of methane (AOM) in marine sediments are critically reviewed. The first part of the review begins with a comparison of alternative kinetic models for AOM. The roles of bioenergetic limitations, intermediate compounds and biomass growth are highlighted. Next, the key transport mechanisms in multi-phase sedimentary environments affecting AOM and methane fluxes are briefly treated, while attention is also given to additional controls on methane and sulfate turnover, including organic matter mineralization, sulfur cycling and methane phase transitions. In the second part of the review, the structure, forcing functions and parameterization of published models of AOM in sediments are analyzed. The six-orders-of-magnitude range in rate constants reported for the widely used bimolecular rate law for AOM emphasizes the limited transferability of this simple kinetic model and, hence, the need for more comprehensive descriptions of the AOM reaction system. The derivation and implementation of more complete reaction models, however, are limited by the availability of observational data. In this context, we attempt to rank the relative benefits of potential experimental measurements that should help to better constrain AOM models. The last part of the review presents a compilation of reported depth-integrated AOM rates (ΣAOM). These rates reveal the extreme variability of ΣAOM in marine sediments. The model results are further used to derive quantitative relationships between ΣAOM and the magnitude of externally impressed fluid flow, as well as between ΣAOM and the depth of the sulfate-methane transition zone (SMTZ). This review contributes to an improved understanding of the global significance of the AOM process, and helps identify outstanding questions and future directions in the modeling of methane cycling and AOM in marine sediments.

  15. A bio-electrochemical system for removing inhibitors of anaerobic digestion processes from anaerobic reactors

    DEFF Research Database (Denmark)

    2014-01-01

    reactor to recover ammonia from anaerobic digestion reactor, and thereby alleviate or counteract ammonia inhibition and enhance the conversion of ammonia-rich wastes to biogas. The invention may further reduce overall cost, giving synergistic advantages for both ammonia recycling and biogas plants......Inhibition of anaerobic digestion process by high level of ammonia (NH4 +/I\\IH3) is the most serious problem existing in biogas plants. No viable/applicable method to overcome this problem has been found up to now. This invention proposes an innovative submersible bio-electrochemical membrane...

  16. Removal of ammonia from aqueous solutions by catalytic oxidation with copper-based rare earth composite metal materials: catalytic performance, characterization, and cytotoxicity evaluation

    Institute of Scientific and Technical Information of China (English)

    Chang-Mao Hung

    2011-01-01

    Ammonia (NH3) has an important use in the chemical industry and is widely found in industrial wastewater.For this investigation of copper-based rare earth composite metal materials,aqueous solutions containing 400 mg/L of ammonia were oxidized in a batch-bed reactor with a catalyst prepared by the co-precipitation of copper nitrate,lanthanum nitrate and cerium nitrate.Barely any of the dissolved ammonia was removed by wet oxidation without a catalyst,but about 88% of the ammonia was reduced during wet oxidation over the catalysts at 423 K with an oxygen partial pressure of 4.0 MPa.The catalytic redox behavior was determined by cyclic voltammetry (CV).Furthermore,the catalysts were characterized using thermogravimetric analyzer (TGA) and scanning electron microscope-energy dispersive X-ray spectroscopy (SEM-EDX),which showed that the catalytic behavior was related to the metal oxide properties of the catalyst.In addition,the copper-lanthanum-cerium composite-induced cytotoxicity in the human lung MRC-5 cell line was tested,and the percentage cell survival was determined by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetra-zolium (MTS) analysis in vitro.No apparent cytotoxicity was observed when the human lung cells were exposed to the copper-lanthanum-cerium composite.

  17. Comparison of ammonia-oxidizing bacterial community structure in membrane-assisted bioreactors using PCR-DGGE and FISH.

    Science.gov (United States)

    Ziembińska, A; Ciesielski, S; Gnida, A; Zabczyńki, S; Surmacz-Górska, J; Miksch, K

    2012-08-01

    The ammonia-oxidizing bacterial (AOB) communities in three membrane bioreactors (MBRs) were monitored for 2 months after an acclimation period in order to investigate the influence of sludge age and medium type on AOB changeability and its connection with nitrification effectiveness. One MBR with a sludge age of 4 days was fed with a synthetic medium, whereas the other two with sludge ages of 8 and 32 days were fed with landfill leachate. The research revealed that landfill leachate can be effectively treated in an MBR with a higher sludge age for longer periods of time and that this improvement in performance was correlated with an increase in AOB biodiversity. Interestingly, the medium type has a stronger influence on AOB biocenosis formation than the sludge age. PMID:22713978

  18. Effect of Ni7+ Ion Irradiation on Structure and Ammonia Sensing Properties of Thermally Oxidized Zinc and Indium Films

    Institute of Scientific and Technical Information of China (English)

    Amandeep Kaur Bal; Rafinder Singh; R.K. Bedi

    2012-01-01

    ZnO and In203 films were prepared by thermal oxidation of vacuum deposited zinc and indium films, respec- tively onto the glass substrate at 30 ℃. The fabricated films have been irradiated with 100-MeV Ni7+ ions at different fluences ranging from 5×1011 to 5×1013 ions/cm2. The structural and gas sensing properties of pristine and irradiated films have been discussed. X-ray diffraction (XRD) pattern of pristine and irradiated films reveal that the films are polycrystalline in nature and crystallinity increases after irradiation. In this study, highly porous In203 nanorods evolved when being irradiated at a fluence of 5×1013 ions/cm2 while ZnO film shows decrease in number of nanowires. The ammonia sensing performance of the Ni^7+ irradiated In203 films shows an improvement as compared to its pristine counterpart.

  19. The effect of dissolved oxygen on N2O production by ammonia-oxidizing bacteria in an enriched nitrifying sludge.

    Science.gov (United States)

    Peng, Lai; Ni, Bing-Jie; Erler, Dirk; Ye, Liu; Yuan, Zhiguo

    2014-12-01

    Dissolved oxygen (DO) is commonly recognized as an important factor influencing nitrous oxide (N2O) production by ammonia-oxidizing bacteria (AOB). However, it has been difficult to separate the true effect of DO from that of nitrite, as DO variation often affects nitrite accumulation. The effect of DO on N2O production by an enriched nitrifying sludge, consisting of both AOB and nitrite-oxidizing bacteria (NOB), was investigated in this study. Nitrite accumulation was minimised by augmenting nitrite oxidation through the addition of an enriched NOB sludge. It was demonstrated that the specific N2O production rate increased from 0 to 1.9 ± 0.09 (n = 3) mg N2O-N/hr/g VSS with an increase of DO concentration from 0 to 3.0 mg O2/L, whereas N2O emission factor (the ratio between N2O nitrogen emitted and the ammonium nitrogen converted) decreased from 10.6 ± 1.7% (n = 3) at DO = 0.2 mg O2/L to 2.4 ± 0.1% (n = 3) at DO = 3.0 mg O2/L. The site preference measurements indicated that both the AOB denitrification and hydroxylamine (NH2OH) oxidation pathways contributed to N2O production, and DO had an important effect on the relative contributions of the two pathways. This finding is supported by analysis of the process data using an N2O model describing both pathways. As DO increased from 0.2 to 3.0 mg O2/L, the contribution of AOB denitrification decreased from 92% - 95%-66% - 73%, accompanied by a corresponding increase in the contribution by the NH2OH oxidation pathway. PMID:25179869

  20. Whole-genome analysis of the ammonia-oxidizing bacterium, Nitrosomonas eutropha C91: implications for niche adaptation

    Energy Technology Data Exchange (ETDEWEB)

    Stein, Lisa Y [University of California, Riverside; Arp, D J [Oregon State University; Berube, PM [University of Washington, Seattle; Chain, Patrick S. G. [Lawrence Livermore National Laboratory (LLNL); Hauser, Loren John [ORNL; Jetten, MSM [Radboud University Nijmegen; Klotz, Martin G [University of Louisville, Louisville; Larimer, Frank W [ORNL; Norton, Jeanette M. [Utah State University (USU); Op den Camp, HJM [Radboud University Nijmegen; Shin, M [U.S. Department of Energy, Joint Genome Institute; Wei, Xueming [Oregon State University

    2007-12-01

    Analysis of the structure and inventory of the genome of Nitrosomonas eutropha C91 revealed distinctive features that may explain the adaptation of N. eutropha-like bacteria to N-saturated ecosystems. Multiple gene-shuffling events are apparent, including mobilized and replicated transposition, as well as plasmid or phage integration events into the 2.66 Mbp chromosome and two plasmids (65 and 56 kbp) of N. eutropha C91. A 117 kbp genomic island encodes multiple genes for heavy metal resistance, including clusters for copper and mercury transport, which are absent from the genomes of other ammonia-oxidizing bacteria (AOB). Whereas the sequences of the two ammonia monooxygenase and three hydroxylamine oxidoreductase gene clusters in N. eutropha C91 are highly similar to those of Nitrosomonas europaea ATCC 19718, a break of synteny in the regions flanking these clusters in each genome is evident. Nitrosomonas eutropha C91 encodes four gene clusters for distinct classes of haem-copper oxidases, two of which are not found in other aerobic AOB. This diversity of terminal oxidases may explain the adaptation of N. eutropha to environments with variable O2 concentrations and/or high concentrations of nitrogen oxides. As with N. europaea, the N. eutropha genome lacks genes for urease metabolism, likely disadvantaging nitrosomonads in low-nitrogen or acidic ecosystems. Taken together, this analysis revealed significant genomic variation between N. eutropha C91 and other AOB, even the closely related N. europaea, and several distinctive properties of the N. eutropha genome that are supportive of niche specialization.

  1. Differential responses of ammonia-oxidizing archaea and bacteria to long-term fertilization in a New England salt marsh

    Directory of Open Access Journals (Sweden)

    Xuefeng ePeng

    2013-01-01

    Full Text Available Since the discovery of ammonia-oxidizing archaea (AOA, new questions have arisen about population and community dynamics and potential interactions between AOA and ammonia-oxidizing Bacteria (AOB. We investigated the effects of long-term fertilization on AOA and AOB in the Great Sippewissett Marsh, Falmouth, MA, USA to address some of these questions. Sediment samples were collected from low and high marsh habitats in July 2009 from replicate plots that received low (LF, high (HF, and extra high (XF levels of a mixed NPK fertilizer biweekly during the growing season since 1974. Additional untreated plots were included as controls (C. Terminal restriction fragment length polymorphism analysis of the amoA genes revealed distinct shifts in AOB communities related to fertilization treatment, but the response patterns of AOA were less consistent. Four AOB operational taxonomic units (OTUs predictably and significantly responded to fertilization, but only one AOA OTU showed a significant pattern. Betaproteobacterial amoA gene sequences within the Nitrosospira-like cluster dominated at C and LF sites, while sequences related to Nitrosomonas spp. dominated at HF and XF sites. We identified some clusters of AOA sequences recovered primarily from high fertilization regimes, but other clusters consisted of sequences recovered from all fertilization treatments, suggesting greater physiological diversity. Surprisingly, fertilization appeared to have little impact on abundance of AOA or AOB. In summary, our data reveal striking patterns for AOA and AOB in response to long-term fertilization, and also suggest a missing link between community composition and abundance and nitrogen processing in the marsh.

  2. Community composition of ammonia-oxidizing archaea from surface and anoxic depths of oceanic oxygen minimum zones

    Directory of Open Access Journals (Sweden)

    Xuefeng ePeng

    2013-07-01

    Full Text Available Ammonia-oxidizing archaea (AOA have been reported at high abundance in much of the global ocean, even in environments, such as pelagic oxygen minimum zones (OMZs, where conditions seem unlikely to support aerobic ammonium oxidation. Due to the lack of information on any potential alternative metabolism of AOA, the AOA community composition might be expected to differ between oxic and anoxic environments, indicating some difference in ecology and/or physiology of the AOA assemblage. This hypothesis was tested by evaluating AOA community composition using a functional gene microarray that targets the ammonia monooxygenase gene subunit A (amoA. The relationship between environmental parameters and the biogeography of the Arabian Sea and the Eastern Tropical South Pacific (ETSP AOA assemblages was investigated using principal component analysis (PCA and redundancy analysis (RDA. In both the Arabian Sea and the ETSP, AOA communities within the core of the OMZ were not significantly different from those inhabiting the oxygenated surface waters above the OMZ. The AOA communities in the Arabian Sea were significantly different from those in the ETSP. In both oceans, the abundance of archaeal amoA gene in the core of the OMZ was higher than that in the surface waters. Our results indicate that AOA communities are distinguished by their geographic origin. RDA suggested that temperature was the main factor that correlated with the differences between the AOA communities from the Arabian Sea and those from the ETSP. Physicochemical properties that characterized the different environments of the OMZ and surface waters played a less important role, than did geography, in shaping the AOA community composition.

  3. Spatial distribution of archaeal and bacterial ammonia oxidizers in the littoral buffer zone of a nitrogen-rich lake

    Institute of Scientific and Technical Information of China (English)

    Yu Wang; Guibing Zhu; Lei Ye; Xiaojuan Feng; Huub J. M. Op den Camp; Chengqing Yin

    2012-01-01

    The spatial distribution and diversity of archaeal and bacterial ammonia oxidizers (AOA and AOB) were evaluated targeting amoA genes in the gradient of a littoral buffer zone which has been identified as a hot spot for N cycling.Here we found high spatial heterogeneity in the nitrification rate and abundance of ammonia oxidizers in the five sampling sites.The bacterial amoA gene was numerically dominant in most of the surface soil but decreased dramatically in deep layers.Higher nitrification potentials were detected in two sites near the land/water interface at 4.4-6.1 μg NO2--N/(g dry weight soil.hr),while only 1.0-1.7 μg NO2- -N/(gdry weight soil·hr) was measured at other sites.The potential nitrification rates were proportional to the amoA gene abundance for AOB,hut with no significant correlation with AOA.The NH4+ concentration was the most determinative parameter for the abundance of AOB and potential nitrification rates in this study.Higher richness in the surface layer was found in the analysis of biodiversity.Phylogenetic analysis revealed that most of the bacterial amoA sequences in surface soil were affiliated with the genus of Nitrosopira while the archaeal sequences were almost equally affiliated with Candidatus ‘Nitrososphaera gargensis' and Candidatus ‘Nitrosoealdus yellowstonii'.The spatial distribution of AOA and AOB indicated that bacteria may play a more important role in nitrification in the littoral buffer zone of a N-rich lake.

  4. Genome-Enabled Studies of Anaerobic, Nitrate-Dependent Iron Oxidation in the Chemolithoautotrophic Bacterium Thiobacillus denitrificans

    Science.gov (United States)

    Beller, H. R.; Zhou, P.; Legler, T. C.; Chakicherla, A.; O'Day, P. A.

    2013-12-01

    Thiobacillus denitrificans is a chemolithoautotrophic bacterium capable of anaerobic, nitrate-dependent U(IV) and Fe(II) oxidation, both of which can strongly influence the long-term efficacy of in situ reductive immobilization of uranium in contaminated aquifers. We previously identified two c-type cytochromes involved in nitrate-dependent U(IV) oxidation in T. denitrificans and hypothesized that c-type cytochromes would also catalyze Fe(II) oxidation, as they have been found to play this role in anaerobic phototrophic Fe(II)-oxidizing bacteria. Here we report on efforts to identify genes associated with nitrate-dependent Fe(II) oxidation, namely (a) whole-genome transcriptional studies [using FeCO3, Fe2+, and U(IV) oxides as electron donors under denitrifying conditions], (b) Fe(II) oxidation assays performed with knockout mutants targeting primarily highly expressed or upregulated c-type cytochromes, and (c) random transposon-mutagenesis studies with screening for Fe(II) oxidation. Assays of mutants for 26 target genes, most of which were c-type cytochromes, indicated that none of the mutants tested were significantly defective in nitrate-dependent Fe(II) oxidation. The non-defective mutants included the c1-cytochrome subunit of the cytochrome bc1 complex (complex III), which has relevance to a previously proposed role for this complex in nitrate-dependent Fe(II) oxidation and to current concepts of reverse electron transfer. Of the transposon mutants defective in Fe(II) oxidation, one mutant with a disrupted gene associated with NADH:ubiquinone oxidoreductase (complex I) was ~35% defective relative to the wild-type strain; this strain was similarly defective in nitrate reduction with thiosulfate as the electron donor. Overall, our results indicate that nitrate-dependent Fe(II) oxidation in T. denitrificans is not catalyzed by the same c-type cytochromes involved in U(IV) oxidation, nor have other c-type cytochromes yet been implicated in the process.

  5. Induction of inducible nitric oxide synthase expression in ammonia-exposed cultured astrocytes is coupled to increased arginine transport by upregulated y(+) LAT2 transporter.

    Science.gov (United States)

    Zielińska, Magdalena; Milewski, Krzysztof; Skowrońska, Marta; Gajos, Anna; Ziemińska, Elżbieta; Beręsewicz, Andrzej; Albrecht, Jan

    2015-12-01

    One of the aspects of ammonia toxicity to brain cells is increased production of nitric oxide (NO) by NO synthases (NOSs). Previously we showed that ammonia increases arginine (Arg) uptake in cultured rat cortical astrocytes specifically via y(+) L amino acid transport system, by activation of its member, a heteromeric y(+) LAT2 transporter. Here, we tested the hypothesis that up-regulation of y(+) LAT2 underlies ammonia-dependent increase of NO production via inducible NOS (iNOS) induction, and protein nitration. Treatment of rat cortical astrocytes for 48 with 5 mM ammonium chloride ('ammonia') (i) increased the y(+) L-mediated Arg uptake, (ii) raised the expression of iNOS and endothelial NOS (eNOS), (iii) stimulated NO production, as manifested by increased nitrite+nitrate (Griess) and/or nitrite alone (chemiluminescence), and consequently, (iv) evoked nitration of tyrosine residues of proteins in astrocytes. Except for the increase of eNOS, all the above described effects of ammonia were abrogated by pre-treatment of astrocytes with either siRNA silencing of the Slc7a6 gene coding for y(+) LAT2 protein, or antibody to y(+) LAT2, indicating their strict coupling to y(+) LAT2 activity. Moreover, induction of y(+) LAT2 expression by ammonia was sensitive to Nf-κB inhibitor, BAY 11-7085, linking y(+) LAT2 upregulation to the Nf-κB activation in this experimental setting as reported earlier and here confirmed. Importantly, ammonia did not affect y(+) LAT2 expression nor y(+) L-mediated Arg uptake activity in the cultured cerebellar neurons, suggesting astroglia-specificity of the above described mechanism. The described coupling of up-regulation of y(+) LAT2 transporter with iNOS in ammonia-exposed astrocytes may be considered as a mechanism to ensure NO supply for protein nitration. Ammonia (NH4(+) ) increases the expression and activity of the L-arginine (Arg) transporter (Arg/neutral amino acids [NAA] exchanger) y(+) LAT2 in cultured rat cortical astrocytes

  6. Comparison of Two Methods for Enumeration of Anaerobe Numbers on Forages and Evaluation of Ethylene Oxide Treatment for Forage Sterilization †

    OpenAIRE

    Shockey, W. L.; Dehority, B. A.

    1989-01-01

    Experiments were conducted to (i) compare most-probable-number (MPN) procedures with roll tube procedures for enumeration of forage anaerobic bacteria and (ii) evaluate the efficacy of using ethylene oxide to sterilize wet herbage. Alfalfa, corn, and alfalfa-orchardgrass silages and alfalfa and orchardgrass herbages were analyzed for total anaerobic bacteria (medium pH, 6.8) and acid-tolerant anaerobic bacteria (medium pH, 4.5) by both roll tube and MPN procedures. No difference was found bet...

  7. Ammonium sorption and ammonia inhibition of nitrite-oxidizing bacteria explain contrasting soil N2O production

    Science.gov (United States)

    Venterea, R. T.; Sadowsky, M.; Breuillin-Sessoms, F.; Wang, P.; Clough, T. J.; Coulter, J. A.

    2015-12-01

    Better understanding of process controls over nitrous oxide (N2O) production in urine-impacted 'hot spots' and fertilizer bands is needed to improve mitigation strategies and emission models. Following amendment with bovine (Bos taurus) urine (Bu) or urea (Ur), we measured inorganic N, pH, N2O, and genes associated with nitrification in two soils ('L' and 'W') having similar texture, pH, C, and C/N ratio. Solution-phase ammonia (slNH3) was also calculated accounting for non-linear ammonium (NH4+) sorption capacities (ASC). Soil W displayed greater nitrification rates and nitrate (NO3-) levels than soil L, but was more resistant to nitrite (NO2-) accumulation and produced two to ten times less N2O than soil L. Genes associated with NO2- oxidation (nxrA) increased substantially in soil W but remained static in soil L. Soil NO2- was strongly correlated with N2O production, and cumulative (c-) slNH3 explained 87% of the variance in c-NO2-. Differences between soils were explained by greater slNH3 in soil L which inhibited NO2- oxidization leading to greater NO2- levels and N2O production. This is the first study to correlate the dynamics of soil slNH3, NO2-, N2O and nitrifier genes, and the first to show how ASC can regulate NO2- levels and N2O production.

  8. Ammonium sorption and ammonia inhibition of nitrite-oxidizing bacteria explain contrasting soil N2O production

    Science.gov (United States)

    Venterea, Rodney T.; Clough, Timothy J.; Coulter, Jeffrey A.; Breuillin-Sessoms, Florence

    2015-07-01

    Better understanding of process controls over nitrous oxide (N2O) production in urine-impacted ‘hot spots’ and fertilizer bands is needed to improve mitigation strategies and emission models. Following amendment with bovine (Bos taurus) urine (Bu) or urea (Ur), we measured inorganic N, pH, N2O, and genes associated with nitrification in two soils (‘L’ and ‘W’) having similar texture, pH, C, and C/N ratio. Solution-phase ammonia (slNH3) was also calculated accounting for non-linear ammonium (NH4+) sorption capacities (ASC). Soil W displayed greater nitrification rates and nitrate (NO3-) levels than soil L, but was more resistant to nitrite (NO2-) accumulation and produced two to ten times less N2O than soil L. Genes associated with NO2- oxidation (nxrA) increased substantially in soil W but remained static in soil L. Soil NO2- was strongly correlated with N2O production, and cumulative (c-) slNH3 explained 87% of the variance in c-NO2-. Differences between soils were explained by greater slNH3 in soil L which inhibited NO2- oxidization leading to greater NO2- levels and N2O production. This is the first study to correlate the dynamics of soil slNH3, NO2-, N2O and nitrifier genes, and the first to show how ASC can regulate NO2- levels and N2O production.

  9. QPCR quantification of ammonia oxidizing bacteria: What should the target be?

    DEFF Research Database (Denmark)

    Musovic, Sanin; Palomo, Alejandro; Diwan, Vaibhav;

    for drinking water production. Being able to quantify precisely the abundance of this functional group is thus important to be able monitor these processes. AOB are moderately diverse Beta-Proteobacteria that all carry the amoA gene coding for the ammonia monooxigenase. Therefore, molecular...... quantification can be carried out by targeting either the 16S rRNA gene or amoA, for which standard primer sets are widely used. Using these two approaches to quantify AOB abundance across three Danish rapid sand filters (RSFs) revealed a significant discrepancy: in two RSFs, the amoA-based qPCR consistently...... amoA primer set has a narrower coverage than the 16S rRNA one and thus led to an underestimation of AOB in RSFs hosting broad AOB diversity. This highlights the importance of the choice of primer set to quantify functional groups in environmental samples....

  10. Simultaneous determination of ammonia, dimethylamine, trimethylamine and trimethylamine-N-oxide in fish extracts by capillary electrophoresis with indirect UV-detection

    DEFF Research Database (Denmark)

    Timm Heinrich, Maike; Jørgensen, Bo

    2002-01-01

    A capillary electrophoretic method with indirect UV detection is described for simultaneous determination of ammonia, dimethylamine (DMA), trimethylamine (TMA) and trimethylamine-N- oxide (TMAO) in aqueous extracts of fish, A buffer consisting of 4 mM formic acid, 5 mM copper(II)sulfate and 3 m......M. The detection limit for ammonia, DMA, TMA, and TMAO was less than 0.04 mM, corresponding to 2 mg nitrogen per 100 g fish. As an extra benefit, the method also provided a quantitative determination of potassium, sodium, calcium and magnesium ions. (C) 2002 Elsevier Science Ltd. All rights reserved....

  11. Metabolic potential of fatty acid oxidation and anaerobic respiration by abundant members of Thaumarchaeota and Thermoplasmata in deep anoxic peat

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Xueju [Georgia Inst. of Technology, Atlanta, GA (United States); Handley, Kim M. [Univ. of Chicago, IL (United States); Argonne National Lab. (ANL), Argonne, IL (United States); Gilbert, Jack A. [Univ. of Chicago, IL (United States); Argonne National Lab. (ANL), Argonne, IL (United States); Marine Biological Lab., Woods Hole, MA (United States); Zhejiang Univ., Hangzhou (China); Kostka, Joel E. [Georgia Inst. of Technology, Atlanta, GA (United States)

    2015-05-22

    To probe the metabolic potential of abundant Archaea in boreal peats, we reconstructed two near-complete archaeal genomes, affiliated with Thaumarchaeota group 1.1c (bin Fn1, 8% abundance), which was a genomically unrepresented group, and Thermoplasmata (bin Bg1, 26% abundance), from metagenomic data acquired from deep anoxic peat layers. Each of the near-complete genomes encodes the potential to degrade long-chain fatty acids (LCFA) via β-oxidation. Fn1 has the potential to oxidize LCFA either by syntrophic interaction with methanogens or by coupling oxidation with anaerobic respiration using fumarate as a terminal electron acceptor (TEA). Fn1 is the first Thaumarchaeota genome without an identifiable carbon fixation pathway, indicating that this mesophilic phylum encompasses more diverse metabolisms than previously thought. Furthermore, we report genetic evidence suggestive of sulfite and/or organosulfonate reduction by Thermoplasmata Bg1. In deep peat, inorganic TEAs are often depleted to extremely low levels, yet the anaerobic respiration predicted for two abundant archaeal members suggests organic electron acceptors such as fumarate and organosulfonate (enriched in humic substances) may be important for respiration and C mineralization in peatlands.

  12. The effect of ammonia upon the electrocatalysis of hydrogen oxidation and oxygen reduction on polycrystalline platinum

    DEFF Research Database (Denmark)

    Verdaguer Casadevall, Arnau; Hernandez-Fernandez, Patricia; Stephens, Ifan E.L.;

    2012-01-01

    The influence of ammonium ions on the catalysis of hydrogen oxidation and oxygen reduction is studied by means of rotating ring-disk electrode experiments on polycrystalline platinum in perchloric acid. While ammonium does not affect the hydrogen oxidation reaction, the oxygen reduction reaction is...

  13. Exogenous nitrate attenuates nitrite toxicity to anaerobic ammonium oxidizing (anammox) bacteria.

    Science.gov (United States)

    Li, Guangbin; Vilcherrez, David; Carvajal-Arroyo, Jose Maria; Sierra-Alvarez, Reyes; Field, Jim A

    2016-02-01

    Anaerobic ammonium oxidizing bacteria (anammox) can be severely inhibited by one of its main substrates, nitrite (NO2(-)). At present, there is limited information on the processes by which anammox bacteria are able to tolerate toxic NO2(-). Intracellular consumption or electrochemically driven (transmembrane proton motive force) NO2(-) export are considered the main mechanisms of NO2(-) detoxification. In this work, we evaluated the potential of exogenous nitrate (NO3(-)) on relieving NO2(-) toxicity, putatively facilitated by NarK, a NO3(-)/NO2(-) transporter encoded in the anammox genome. The relative contribution of NO3(-) to NO2(-) detoxification was found to be pH dependent. Exposure of anammox cells to NO2(-) in absence of their electron donating substrate, ammonium (NH4(+)), causes NO2(-) stress. At pH 6.7 and 7.0, the activity of NO2(-) stressed cells was respectively 0 and 27% of the non-stressed control activity (NO2(-) and NH4(+) fed simultaneously). Exogenous NO3(-) addition caused the recovery to 42% and 80% of the control activity at pH 6.7 and 7.0, respectively. The recovery of the activity of NO2(-) stressed cells improved with increasing NO3(-) concentration, the maximum recovery being achieved at 0.85 mM. The NO3(-) pre-incubation time is less significant at pH 7.0 than at pH 6.7 due to a more severe NO2(-) toxicity at lower pH. Additionally, NO3(-) caused almost complete attenuation of NO2(-) toxicity in cells exposed to the proton gradient disruptor carbonyl cyanide m-chlorophenyl hydrazone at pH 7.5, providing evidence that the NO3(-) attenuation is independent of the proton motive force. The absence of a measurable NO3(-) consumption (or NO3(-) dependent N2 production) during the batch tests leaves NO3(-) dependent active transport of NO2(-) as the only plausible explanation for the relief of NO2(-) inhibition. We suggest that anammox cells can use a secondary transport system facilitated by exogenous NO3(-) to alleviate NO2(-) toxicity. PMID

  14. Anaerobes beyond anaerobic digestion

    OpenAIRE

    Sousa, D. Z.; Pereira, M A; Alves, M.M.

    2009-01-01

    Anaerobic microorganisms are widespread in nature. Sediments, gastrointestinal tracks, volcanic vents, geothermal sources are examples of habitats where anaerobic metabolism prevail, in some cases at extreme temperature, pH and pressure conditions. In such microbial ecosystems waste of some is food for others in a true integrated structure. Anaerobic microorganisms are able to use a wide variety of organic and inorganic compounds. Recalcitrant compounds, such as hydrocarbons, a...

  15. Effects of repeated application of sulfadiazine-contaminated pig manure on the abundance and diversity of ammonia and nitrite oxidizers in the root-rhizosphere complex of pasture plants under field conditions

    OpenAIRE

    Ollivier, Julien; Schacht, Daniela; Kindler, Reimo; Groeneweg, Joost; Engel, Marion; Wilke, Berndt-Michael; Kleineidam, Kristina; Schloter, Michael

    2013-01-01

    In a field experiment, the impact of repeated application of the antibiotic sulfadiazine (SDZ)-contaminated pig manure was assessed on functional microbial communities involved in ammonia and nitrite oxidation in the root-rhizosphere complexes (RRCs) of diverse plants composing a pasture. We surveyed the abundance of ammonia-oxidizing archaea (AOA) and bacteria (AOB) as well as Nitrobacter- and Nitrospira-like nitrite-oxidizing bacteria (NOB) by quantitative PCR (qPCR), and the diversity of a...

  16. An experimental and numerical study of nitrogen oxide formation mechanisms in ammonia-hydrogen-air flames

    Science.gov (United States)

    Kumar, Praveen

    The demand for sustainable alternative fuels is ever-increasing in the power generation, transportation, and energy sectors due to the inherent non-sustainable characteristics and political constraints of current energy resources. A number of alternative fuels derived from cellulosic biomass, algae, or waste are being considered, along with the conversion of electricity to non-carbon fuels such as hydrogen or ammonia (NH3). The latter is receiving attention recently because it is a non-carbon fuel that is readily produced in large quantities, stored and transported with current infrastructure, and is often a byproduct of biomass or waste conversion processes. However, pure or anhydrous ammonia combustion is severely challenging due to its high auto-ignition temperature (650 °C), low reactivity, and tendency to promote NOx formation. As such, the present study focuses on two major aspects of the ammonia combustion. The first is an applied investigation of the potential to achieve pure NH3 combustion with low levels of emissions in flames of practical interest. In this study, a swirl-stabilized flame typically used in fuel-oil home-heating systems is optimized for NH3 combustion, and measurements of NO and NH3 are collected for a wide range of operating conditions. The second major focus of this work is on fundamental investigation of NO x formation mechanisms in flames with high levels of NH3 in H2. For laminar premixed and diffusion jet flames, experimental measurements of flame speeds, exhaust-gas sampling, and in-situ NO measurements (NO PLIF) are compared with numerically predicted flames using complex chemical kinetics within CHEMKIN and reacting CFD codes i.e., UNICORN. From the preliminary testing of the NOx formation mechanisms, (1) Tian (2) Konnov and (3) GRI-Mech3.0 in laminar premixed H2/NH 3 flames, the Tian and Konnov mechanisms are found to capture the reduction in measured flame speeds with increasing NH3 in the fuel mixture, both qualitatively and

  17. Comparison of PCR-DGGE and Nested-PCR-DGGE Approach for Ammonia Oxidizers Monitoring in Membrane Bioreactors’ Activated Sludge

    Directory of Open Access Journals (Sweden)

    Ziembińska-Buczyńska Aleksandra

    2014-12-01

    Full Text Available Nitritation, the first stage of ammonia removal process is known to be limiting for total process performance. Ammonia oxidizing bacteria (AOB which perform this process are obligatory activated sludge habitants, a mixture consisting of Bacteria, Protozoa and Metazoa used for biological wastewater treatment. Due to this fact they are an interesting bacterial group, from both the technological and ecological point of view. AOB changeability and biodiversity analyses both in wastewater treatment plants and lab-scale reactors are performed on the basis of 16S rRNA gene sequences using PCR-DGGE (Polymerase Chain Reaction – Denaturing Gradient Gel Electrophoresis as a molecular biology tool. AOB researches are usually led with nested PCR. Because the application of nested PCR is laborious and time consuming, we have attempted to check the possibility of using only first PCR round to obtain DGGE fingerprinting of microbial communities. In this work we are comparing the nested and non-nested PCR-DGGE monitoring of an AOB community and presenting advantages and disadvantages of both methods used. The experiment revealed that PCR technique is a very sensitive tool for the amplification of even a minute amount of DNA sample. But in the case of nested-PCR, the sensitivity is higher and the template amount could be even smaller. The nested PCR-DGGE seems to be a better tool for AOB community monitoring and complexity research in activated sludge, despite shorter fragments of DNA amplification which seems to be a disadvantage in the case of bacteria identification. It is recommended that the sort of analysis approach should be chosen according to the aim of the study: nested-PCR-DGGE for community complexity analysis, while PCR-DGGE for identification of the dominant bacteria.

  18. Effects of Soil and Water Content on Methyl Bromide Oxidation by the Ammonia-Oxidizing Bacterium Nitrosomonas europaea†

    OpenAIRE

    Duddleston, Khrystyne N.; Bottomley, Peter J; Porter, Angela; Arp, Daniel J.

    2000-01-01

    Little information exists on the potential of NH3-oxidizing bacteria to cooxidize halogenated hydrocarbons in soil. A study was conducted to examine the cooxidation of methyl bromide (MeBr) by an NH3-oxidizing bacterium, Nitrosomonas europaea, under soil conditions. Soil and its water content modified the availability of NH4+ and MeBr and influenced the relative rates of substrate (NH3) and cosubstrate (MeBr) oxidations. These observations highlight the complexity associated with characterizi...

  19. A laboratory investigation of interactions between denitrifying anaerobic methane oxidation (DAMO) and anammox processes in anoxic environments

    Science.gov (United States)

    Hu, Shihu; Zeng, Raymond J.; Haroon, Mohamed F.; Keller, Jurg; Lant, Paul A.; Tyson, Gene W.; Yuan, Zhiguo

    2015-03-01

    This study investigates interactions between recently identified denitrifying anaerobic methane oxidation (DAMO) and anaerobic ammonium oxidation (anammox) processes in controlled anoxic laboratory reactors. Two reactors were seeded with the same inocula containing DAMO organisms Candidatus Methanoperedens nitroreducens and Candidatus Methylomirabilis oxyfera, and anammox organism Candidatus Kuenenia stuttgartiensis. Both were fed with ammonium and methane, but one was also fed with nitrate and the other with nitrite, providing anoxic environments with different electron acceptors. After steady state reached in several months, the DAMO process became solely/primarily responsible for nitrate reduction while the anammox process became solely responsible for nitrite reduction in both reactors. 16S rRNA gene amplicon sequencing showed that the nitrate-driven DAMO organism M. nitroreducens dominated both the nitrate-fed (~70%) and the nitrite-fed (~26%) reactors, while the nitrite-driven DAMO organism M. oxyfera disappeared in both communities. The elimination of M. oxyfera from both reactors was likely the results of this organism being outcompeted by anammox bacteria for nitrite. K. stuttgartiensis was detected at relatively low levels (1-3%) in both reactors.

  20. Empowering a mesophilic inoculum for thermophilic nitrification: Growth mode and temperature pattern as critical proliferation factors for archaeal ammonia oxidizers.

    Science.gov (United States)

    Courtens, Emilie N P; Vandekerckhove, Tom; Prat, Delphine; Vilchez-Vargas, Ramiro; Vital, Marius; Pieper, Dietmar H; Meerbergen, Ken; Lievens, Bart; Boon, Nico; Vlaeminck, Siegfried E

    2016-04-01

    Cost-efficient biological treatment of warm nitrogenous wastewaters requires the development of thermophilic nitrogen removal processes. Only one thermophilic nitrifying bioreactor was described so far, achieving 200 mg N L(-1) d(-1) after more than 300 days of enrichment from compost samples. From the practical point of view in which existing plants would be upgraded, however, a more time-efficient development strategy based on mesophilic nitrifying sludge is preferred. This study evaluated the adaptive capacities of mesophilic nitrifying sludge for two linear temperature increase patterns (non-oscillating vs. oscillating), two different slopes (0.25 vs. 0.08 °C d(-1)) and two different reactor types (floc vs. biofilm growth). The oscillating temperature pattern (0.25 °C d(-1)) and the moving bed biofilm reactor (0.08 °C d(-1)) could not reach nitrification at temperatures higher than 46 °C. However, nitrification rates up to 800 mg N L(-1) d(-1) and 150 mg N g(-1) volatile suspended solids d(-1) were achieved at a temperature as high as 49 °C by imposing the slowest linear temperature increase to floccular sludge. Microbial community analysis revealed that this successful transition was related with a shift in ammonium oxidizing archaea dominating ammonia oxidizing bacteria, while for nitrite oxidation Nitrospira spp. was constantly more abundant than Nitrobacter spp.. This observation was accompanied with an increase in observed sludge yield and a shift in maximal optimum temperature, determined with ex-situ temperature sensitivity measurements, predicting an upcoming reactor failure at higher temperature. Overall, this study achieved nitrification at 49 °C within 150 days by gradual adaptation of mesophilic sludge, and showed that ex-situ temperature sensitivity screening can be used to monitor and steer the transition process. PMID:26841233