WorldWideScience

Sample records for anabaena sensory rhodopsin

  1. Ultrafast photochemistry of anabaena sensory rhodopsin: experiment and theory.

    Science.gov (United States)

    Schapiro, Igor; Ruhman, Sanford

    2014-05-01

    Light induced isomerization of the retinal chromophore activates biological function in all retinal protein (RP) driving processes such as ion-pumping, vertebrate vision and phototaxis in organisms as primitive as archea, or as complex as mammals. This process and its consecutive reactions have been the focus of experimental and theoretical research for decades. The aim of this review is to demonstrate how the experimental and theoretical research efforts can now be combined to reach a more comprehensive understanding of the excited state process on the molecular level. Using the Anabaena Sensory Rhodopsin as an example we will show how contemporary time-resolved spectroscopy and recently implemented excited state QM/MM methods consistently describe photochemistry in retinal proteins. This article is part of a Special Issue entitled: Retinal Proteins - You can teach an old dog new tricks.

  2. Photoreactions and Structural Changes of Anabaena Sensory Rhodopsin

    Directory of Open Access Journals (Sweden)

    Akira Kawanabe

    2009-12-01

    Full Text Available Anabaena sensory rhodopsin (ASR is an archaeal-type rhodopsin found in eubacteria. The gene encoding ASR forms a single operon with ASRT (ASR transducer which is a 14 kDa soluble protein, suggesting that ASR functions as a photochromic sensor by activating the soluble transducer. This article reviews the detailed photoreaction processes of ASR, which were studied by low-temperature Fourier-transform infrared (FTIR and UV-visible spectroscopy. The former research reveals that the retinal isomerization is similar to bacteriorhodopsin (BR, but the hydrogen-bonding network around the Schiff base and cytoplasmic region is different. The latter study shows the stable photoproduct of the all-trans form is 100% 13-cis, and that of the 13-cis form is 100% all-trans. These results suggest that the structural changes of ASR in the cytoplasmic domain play important roles in the activation of the transducer protein, and photochromic reaction is optimized for its sensor function.

  3. Quantum yields for the light adaptations in Anabaena sensory rhodopsin and bacteriorhodopsin

    Science.gov (United States)

    Wada, Yoichiro; Kawanabe, Akira; Furutani, Yuji; Kandori, Hideki; Ohtani, Hiroyuki

    2008-02-01

    Archael-type rhodopsin has an all- trans or a 13- cis retinal. The light-induced interconversion between these two forms has been found in Anabaena sensory rhodopsin, even though only the photoreaction from the 13- cis form to the all- trans form exists in bacteriorhodopsin. In this study, we obtained the quantum yields for the 13- cis → all- trans and all- trans → 13- cis reactions of Anabaena sensory rhodopsin (0.24 ± 0.03 and 0.38 ± 0.07, respectively) and concluded that these values were independent of the wavelength of the excitation light as well as bacteriorhodopsin. In other words, no excess energy effects can be found in these reactions.

  4. DNA binding activity of Anabaena sensory rhodopsin transducer probed by fluorescence correlation spectroscopy.

    Science.gov (United States)

    Kim, Sung Hyun; Kim, So Young; Jung, Kwang-Hwan; Kim, Doseok

    2015-01-01

    Anabaena sensory rhodopsin transducer (ASRT) is believed to be a major player in the photo-signal transduction cascade, which is triggered by Anabaena sensory rhodopsin. Here, we characterized DNA binding activity of ASRT probed by using fluorescence correlation spectroscopy. We observed clear decrease of diffusion coefficient of DNA upon binding of ASRT. The dissociation constant, K(D), of ASRT to 20 bp-long DNA fragments lied in micro-molar range and varied moderately with DNA sequence. Our results suggest that ASRT may interact with several different regions of DNA with different binding affinity for global regulation of several genes that need to be activated depending on the light illumination.

  5. The Anabaena sensory rhodopsin transducer defines a novel superfamily of prokaryotic small-molecule binding domains

    Directory of Open Access Journals (Sweden)

    De Souza Robson F

    2009-08-01

    Full Text Available Abstract The Anabaena sensory rhodopsin transducer (ASRT is a small protein that has been claimed to function as a signaling molecule downstream of the cyanobacterial sensory rhodopsin. However, orthologs of ASRT have been detected in several bacteria that lack rhodopsin, raising questions about the generality of this function. Using sequence profile searches we show that ASRT defines a novel superfamily of β-sandwich fold domains. Through contextual inference based on domain architectures and predicted operons and structural analysis we present strong evidence that these domains bind small molecules, most probably sugars. We propose that the intracellular versions like ASRT probably participate as sensors that regulate a diverse range of sugar metabolism operons or even the light sensory behavior in Anabaena by binding sugars or related metabolites. We also show that one of the extracellular versions define a predicted sugar-binding structure in a novel cell-surface lipoprotein found across actinobacteria, including several pathogens such as Tropheryma, Actinomyces and Thermobifida. The analysis of this superfamily also provides new data to investigate the evolution of carbohydrate binding modes in β-sandwich domains with very different topologies. Reviewers: This article was reviewed by M. Madan Babu and Mark A. Ragan.

  6. A role of Anabaena sensory rhodopsin transducer (ASRT) in photosensory transduction.

    Science.gov (United States)

    Kim, So Young; Yoon, Sa Ryong; Han, SongI; Yun, Yuna; Jung, Kwang-Hwan

    2014-08-01

    In 2003, Anabaena sensory rhodopsin (ASR), a membrane-bound light sensor protein, was discovered in cyanobacteria. Since then, a large number of functions have been described for ASR, based on protein biochemical and biophysical studies. However, no study has determined the in vivo mechanism of photosensory transduction for ASR and its transducer protein (ASRT). Here, we aimed to determine the role of ASRT in physiological photo-regulation. ASRT is known to be related to photochromism, because it regulates the expression of phycocyanin (cpc-gene) and phycoerythrocyanin (pec gene), two major proteins of the phycobilisome in cyanobacteria. By examining wild type and knockout mutant Anabaena cells, we showed that ASRT repressed the expression of these two genes. We also demonstrated physical interactions between ASRT, ASR, and the promoter regions of cpc, pec, kaiABC (circadian clock gene) and the asr operon, both in vitro and in vivo. Binding assays indicated that ASRT had different sites of interaction for binding to ASR and DNA promoter regions. ASRT also influenced the retinal re-isomerization rate in dark through a physical interaction with ASR, and it regulated reporter gene expression in vivo. These results suggested that ASRT relayed the photosignal from ASR and directly regulated gene expression.

  7. Structure of an Inward Proton-Transporting Anabaena Sensory Rhodopsin Mutant: Mechanistic Insights.

    Science.gov (United States)

    Dong, Bamboo; Sánchez-Magraner, Lissete; Luecke, Hartmut

    2016-09-01

    Microbial rhodopsins are light-activated, seven-α-helical, retinylidene transmembrane proteins that have been identified in thousands of organisms across archaea, bacteria, fungi, and algae. Although they share a high degree of sequence identity and thus similarity in structure, many unique functions have been discovered and characterized among them. Some function as outward proton pumps, some as inward chloride pumps, whereas others function as light sensors or ion channels. Unique among the microbial rhodopsins characterized thus far, Anabaena sensory rhodopsin (ASR) is a photochromic sensor that interacts with a soluble 14-kDa cytoplasmic transducer that is encoded on the same operon. The sensor itself stably interconverts between all-trans-15-anti and 13-cis-15-syn retinal forms depending on the wavelength of illumination, although only the former participates in a photocycle with a signaling M intermediate. A mutation in the cytoplasmic half-channel of the protein, replacing Asp217 with Glu (D217E), results in the creation of a light-driven, single-photon, inward proton transporter. We present the 2.3 Å structure of dark-adapted D217E ASR, which reveals significant changes in the water network surrounding Glu217, as well as a shift in the carbon backbone near retinal-binding Lys210, illustrating a possible pathway leading to the protonation of Glu217 in the cytoplasmic half-channel, located 15 Å from the Schiff base. Crystallographic evidence for the protonation of nearby Glu36 is also discussed, which was described previously by Fourier transform infrared spectroscopy analysis. Finally, two histidine residues near the extracellular surface and their possible role in proton uptake are discussed. PMID:27602724

  8. Crystallization, X-ray diffraction analysis and SIRAS/molecular-replacenent phasing of three crystal forms of Anabaena sensory rhodopsin transducer

    Energy Technology Data Exchange (ETDEWEB)

    Vogeley, Lutz; Luecke, Hartmut, E-mail: hudel@uci.edu [University of California, Irvine (United States)

    2006-04-01

    Crystals of Anabaena sensory rhodopsin transducer, the transducer for the cyanobacterial photosensor Anabaena sensory rhodopsin, obtained in the space groups P4, C2 and P2{sub 1}2{sub 1}2{sub 1} diffract to 1.8, 2.1 and 2.0 Å, respectively. Phases for these crystal forms were obtained by SIRAS phasing using an iodide quick-soak derivative (P4) and molecular replacement (C2 and P2{sub 1}2{sub 1}2{sub 1}). Anabaena sensory rhodopsin transducer (ASRT) is a 14.7 kDa soluble signaling protein associated with the membrane-embedded light receptor Anabaena sensory rhodopsin (ASR) from Anabaena sp., a freshwater cyanobacterium. Crystals of ASRT were obtained in three different space groups, P4, C2 and P2{sub 1}2{sub 1}2{sub 1}, which diffract to 1.8, 2.1 and 2.0 Å, respectively. Phases for one of these crystal forms (P4) were obtained by SIRAS phasing using an iodide quick-soak derivative and a partial model was built. Phases for the remaining crystal forms were obtained by molecular replacement using the partial model from the P4 crystal form.

  9. Steady state emission of the fluorescent intermediate of Anabaena Sensory Rhodopsin as a function of light adaptation conditions

    Science.gov (United States)

    Cheminal, A.; Léonard, J.; Kim, S. Y.; Jung, K.-H.; Kandori, H.; Haacke, S.

    2013-11-01

    Steady-state fluorescence measurements of the first excited state of the anabaena sensory rhodopsin (ASR), and Bacteriorhodopsin are reported for different light stabilization conditions, including the dark-adapted state. We determine the fluorescence spectra of both all-trans (AT), and 13-cis (13C) protonated Schiff base of retinal, and compare the effect of the proteins. Referenced against the fluorescence quantum yield of AT-bR (2.5 × 10-4) we find for AT-ASR, 13C-ASR, and 13C-bR the values of 3.3 × 10-4, 0.8 × 10-4, and 1.7 × 10-4, respectively. Using reported excited state lifetimes, the radiative rates are deduced, and their differences discussed on the basis of a configuration-dependent oscillator strength.

  10. Primary structural response in tryptophan residues of Anabaena sensory rhodopsin to photochromic reactions of the retinal chromophore

    Science.gov (United States)

    Inada, Seisuke; Mizuno, Misao; Kato, Yoshitaka; Kawanabe, Akira; Kandori, Hideki; Wei, Zhengrong; Takeuchi, Satoshi; Tahara, Tahei; Mizutani, Yasuhisa

    2013-06-01

    Anabaena sensory rhodopsin (ASR) is a microbial rhodopsin found in eubacteria and functions as a photosensor. The photoreaction of ASR is photochromic between all-trans, 15-anti (ASRAT), and 13-cis, 15-syn (ASR13C) isomers. To understand primary protein dynamics in the photoreaction starting in ASRAT and ASR13C, picosecond time-resolved ultraviolet resonance Raman spectra were obtained. In the intermediate state appearing in the picosecond temporal region, spectral changes of Trp bands were observed. For both ASRAT and ASR13C, the intensities of the Trp bands were bleached within the instrumental response time and recovered with a time constant of 30 ps. This suggests that the rates of structural changes in the Trp residue in the vicinity of the chromophore do not depend on the direction of the isomerization of retinal. A comparison between spectra of the wild-type and Trp mutants indicates that the structures of Trp76 and Trp46 change upon the primary photoreaction of retinal.

  11. Advanced solid-state NMR techniques for characterization of membrane protein structure and dynamics: Application to Anabaena Sensory Rhodopsin

    Science.gov (United States)

    Ward, Meaghan E.; Brown, Leonid S.; Ladizhansky, Vladimir

    2015-04-01

    Studies of the structure, dynamics, and function of membrane proteins (MPs) have long been considered one of the main applications of solid-state NMR (SSNMR). Advances in instrumentation, and the plethora of new SSNMR methodologies developed over the past decade have resulted in a number of high-resolution structures and structural models of both bitopic and polytopic α-helical MPs. The necessity to retain lipids in the sample, the high proportion of one type of secondary structure, differential dynamics, and the possibility of local disorder in the loop regions all create challenges for structure determination. In this Perspective article we describe our recent efforts directed at determining the structure and functional dynamics of Anabaena Sensory Rhodopsin, a heptahelical transmembrane (7TM) protein. We review some of the established and emerging methods which can be utilized for SSNMR-based structure determination, with a particular focus on those used for ASR, a bacterial protein which shares its 7TM architecture with G-protein coupled receptors.

  12. Advanced solid-state NMR techniques for characterization of membrane protein structure and dynamics: application to Anabaena Sensory Rhodopsin.

    Science.gov (United States)

    Ward, Meaghan E; Brown, Leonid S; Ladizhansky, Vladimir

    2015-04-01

    Studies of the structure, dynamics, and function of membrane proteins (MPs) have long been considered one of the main applications of solid-state NMR (SSNMR). Advances in instrumentation, and the plethora of new SSNMR methodologies developed over the past decade have resulted in a number of high-resolution structures and structural models of both bitopic and polytopic α-helical MPs. The necessity to retain lipids in the sample, the high proportion of one type of secondary structure, differential dynamics, and the possibility of local disorder in the loop regions all create challenges for structure determination. In this Perspective article we describe our recent efforts directed at determining the structure and functional dynamics of Anabaena Sensory Rhodopsin, a heptahelical transmembrane (7TM) protein. We review some of the established and emerging methods which can be utilized for SSNMR-based structure determination, with a particular focus on those used for ASR, a bacterial protein which shares its 7TM architecture with G-protein coupled receptors.

  13. Conformational dynamics of a seven transmembrane helical protein Anabaena Sensory Rhodopsin probed by solid-state NMR.

    Science.gov (United States)

    Good, Daryl B; Wang, Shenlin; Ward, Meaghan E; Struppe, Jochem; Brown, Leonid S; Lewandowski, Józef R; Ladizhansky, Vladimir

    2014-02-19

    The ability to detect and characterize molecular motions represents one of the unique strengths of nuclear magnetic resonance (NMR) spectroscopy. In this study, we report solid-state NMR site-specific measurements of the dipolar order parameters and (15)N rotating frame spin-lattice (R1ρ) relaxation rates in a seven transmembrane helical protein Anabaena Sensory Rhodopsin reconstituted in lipids. The magnitudes of the observed order parameters indicate that both the well-defined transmembrane regions and the less structured intramembrane loops undergo restricted submicrosecond time scale motions. In contrast, the R1ρ rates, which were measured under fast magic angle spinning conditions, vary by an order of magnitude between the TM and exposed regions and suggest the presence of intermediate time scale motions. Using a simple model, which assumes a single exponential autocorrelation function, we estimated the time scales of dominant stochastic motions to be on the order of low tens of nanoseconds for most residues within the TM helices and tens to hundreds of nanoseconds for the extracellular B-C and F-G loops. These relatively slow time scales could be attributed to collective anisotropic motions. We used the 3D Gaussian axial fluctuations model to estimate amplitudes, directions, and time scales of overall motions for helices and the extracellular B-C and F-G loops. Within this model, the TM helices A,B,C,D,E,F undergo rigid body motions on a time scale of tens of nanoseconds, while the time scale for the seventh helix G approaches 100 ns. Similar time scales of roughly 100-200 ns are estimated for the B-C and F-G loops. PMID:24467417

  14. Role of Arg-72 of pharaonis Phoborhodopsin (Sensory Rhodopsin II) on its Photochemistry

    OpenAIRE

    Ikeura, Yukako; Shimono, Kazumi; Iwamoto, Masayuki; Sudo, Yuki; Kamo, Naoki

    2004-01-01

    Pharaonis phoborhodopsin (ppR, or pharaonis sensory rhodopsin II, NpsRII) is a sensor for the negative phototaxis of Natronomonas (Natronobacterium) pharaonis. Arginine 72 of ppR corresponds to Arg-82 of bacteriorhodopsin, which is a highly conserved residue among microbial rhodopsins. Using various Arg-72 ppR mutants, we obtained the following results: 1), Arg-72ppR together possibly with Asp-193 influenced the pKa of the counterion of the protonated Schiff base. 2), The M-rise became approx...

  15. Photo-induced proton transport of pharaonis phoborhodopsin (sensory rhodopsin II) is ceased by association with the transducer.

    OpenAIRE

    Sudo, Y; Iwamoto, M.; Shimono, K.; Sumi, M.; Kamo, N

    2001-01-01

    Phoborhodopsin (pR; also sensory rhodopsin II, sRII) is a retinoid protein in Halobacterium salinarum and works as a receptor of negative phototaxis. Pharaonis phoborhodopsin (ppR; also pharaonis sensory rhodopsin II, psRII) is a corresponding protein of Natronobacterium pharaonis. In bacterial membrane, ppR forms a complex with its transducer pHtrII, and this complex transmits the light signal to the sensory system in the cytoplasm. We expressed pHtrII-free ppR or ppR-pHtrII complex in H. sa...

  16. Transient Conformational Changes of Sensory Rhodopsin II Investigated by Vibrational Stark Effect Probes.

    Science.gov (United States)

    Mohrmann, Hendrik; Kube, Ines; Lórenz-Fonfría, Víctor A; Engelhard, Martin; Heberle, Joachim

    2016-05-19

    Sensory rhodopsin II (SRII) is the primary light sensor in the photophobic reaction of the halobacterium Natronomonas pharaonis. Photoactivation of SRII results in a movement of helices F and G of this seven-helical transmembrane protein. This conformational change is conveyed to the transducer protein (HtrII). Global changes in the protein backbone have been monitored by IR difference spectroscopy by recording frequency shifts in the amide bands. Here we investigate local structural changes by judiciously inserting thiocyanides at different locations of SRII. These vibrational Stark probes absorb in a frequency range devoid of any protein vibrations and respond to local changes in the dielectric, electrostatics, and hydrogen bonding. As a proof of principle, we demonstrate the use of Stark probes to test the conformational changes occurring in SRII 12 ms after photoexcitation and later. Thus, a methodology is provided to trace local conformational changes in membrane proteins by a minimal invasive probe at the high temporal resolution inherent to IR spectroscopy. PMID:27111635

  17. Molecular bases for the selection of the chromophore of animal rhodopsins.

    Science.gov (United States)

    Luk, Hoi Ling; Melaccio, Federico; Rinaldi, Silvia; Gozem, Samer; Olivucci, Massimo

    2015-12-15

    The functions of microbial and animal rhodopsins are triggered by the isomerization of their all-trans and 11-cis retinal chromophores, respectively. To lay the molecular basis driving the evolutionary transition from the all-trans to the 11-cis chromophore, multiconfigurational quantum chemistry is used to compare the isomerization mechanisms of the sensory rhodopsin from the cyanobacterium Anabaena PCC 7120 (ASR) and of the bovine rhodopsin (Rh). It is found that, despite their evolutionary distance, these eubacterial and vertebrate rhodopsins start to isomerize via distinct implementations of the same bicycle-pedal mechanism originally proposed by Warshel [Warshel A (1976) Nature 260:678-683]. However, by following the electronic structure changes of ASR (featuring the all-trans chromophore) during the isomerization, we find that ASR enters a region of degeneracy between the first and second excited states not found in Rh (featuring the 11-cis chromophore). We show that such degeneracy is modulated by the preorganized structure of the chromophore and by the position of the reactive double bond. It is argued that the optimization of the electronic properties of the chromophore, which affects the photoisomerization efficiency and the thermal isomerization barrier, provided a key factor for the emergence of the striking amino acid sequence divergence observed between the microbial and animal rhodopsins. PMID:26607446

  18. Feedback from Rhodopsin controls rhodopsin exclusion in Drosophila photoreceptors

    OpenAIRE

    Vasiliauskas, Daniel; Mazzoni, Esteban O.; Sprecher, Simon G.; Brodetskiy, Konstantin; Johnston, Robert J.; Lidder, Preetmoninder; Vogt, Nina; Celik, Arzu; Desplan, Claude

    2011-01-01

    Sensory systems with high discriminatory power employ neurons that express only one of several alternative sensory receptor proteins. This exclusive receptor gene expression restricts the sensitivity spectrum of neurons and is coordinated with the choice of their synaptic targets 1-3 . However, little is known about how it is maintained throughout the life of a neuron. Here we show that the green-light sensing receptor Rhodopsin 6 (Rh6) acts to exclude an alternative blue-sensitive Rhodopsin ...

  19. Probing the Photodynamics of Rhodopsins with Reduced Retinal Chromophores.

    Science.gov (United States)

    Manathunga, Madushanka; Yang, Xuchun; Luk, Hoi Ling; Gozem, Samer; Frutos, Luis Manuel; Valentini, Alessio; Ferrè, Nicolas; Olivucci, Massimo

    2016-02-01

    While the light-induced population dynamics of different photoresponsive proteins has been investigated spectroscopically, systematic computational studies have not yet been possible due to the phenomenally high cost of suitable high level quantum chemical methods and the need of propagating hundreds, if not thousands, of nonadiabatic trajectories. Here we explore the possibility of studying the photodynamics of rhodopsins by constructing and investigating quantum mechanics/molecular mechanics (QM/MM) models featuring reduced retinal chromophores. In order to do so we use the sensory rhodopsin found in the cyanobacterium Anabaena PCC7120 (ASR) as a benchmark system. We find that the basic mechanistic features associated with the excited state dynamics of ASR QM/MM models are reproduced using models incorporating a minimal (i.e., three double-bond) chromophore. Furthermore, we show that ensembles of nonadiabatic ASR trajectories computed using the same abridged models replicate, at both the CASPT2 and CASSCF levels of theory, the trends in spectroscopy and lifetimes estimated using unabridged models and observed experimentally at room temperature. We conclude that a further expansion of these studies may lead to low-cost QM/MM rhodopsin models that may be used as effective tools in high-throughput in silico mutant screening. PMID:26640959

  20. Xenorhodopsins, an enigmatic new class of microbial rhodopsins horizontally transferred between archaea and bacteria

    Directory of Open Access Journals (Sweden)

    Ugalde Juan A

    2011-10-01

    Full Text Available Abstract Based on unique, coherent properties of phylogenetic analysis, key amino acid substitutions and structural modeling, we have identified a new class of unusual microbial rhodopsins related to the Anabaena sensory rhodopsin (ASR protein, including multiple homologs not previously recognized. We propose the name xenorhodopsin for this class, reflecting a taxonomically diverse membership spanning five different Bacterial phyla as well as the Euryarchaeotal class Nanohaloarchaea. The patchy phylogenetic distribution of xenorhodopsin homologs is consistent with historical dissemination through horizontal gene transfer. Shared characteristics of xenorhodopsin-containing microbes include the absence of flagellar motility and isolation from high light habitats. Reviewers: This article was reviewed by Dr. Michael Galperin and Dr. Rob Knight.

  1. Nontransducing rhodopsin

    OpenAIRE

    1987-01-01

    Rhodopsin is converted by light to an active photoproduct that triggers the transduction cascade. The active photoproduct must then be inactivated by some kind of chemical modification. The question addressed here is whether photoconversion of the inactive photoproduct to rhodopsin creates a modified form of rhodopsin that is unable to support transduction. This question was investigated in ultraviolet receptors of Limulus median eye by measuring the relative quantum efficiency of excitation ...

  2. Molecular assemblies that control rhodopsin transport to the cilia

    OpenAIRE

    Deretic, Dusanka; Jing WANG

    2012-01-01

    This review will focus on the conserved molecular mechanisms for the specific targeting of rhodopsin and rhodopsin-like sensory receptors to the primary cilia. We will discuss the molecular assemblies that control the movement of rhodopsin from the central sorting station of the cell, the trans-Golgi network (TGN), into membrane-enclosed rhodopsin transport carriers (RTCs), and their delivery to the primary cilia and the cilia-derived sensory organelles, the rod outer segments (ROS). Recent s...

  3. Rhodopsin 7–The unusual Rhodopsin in Drosophila

    Science.gov (United States)

    2016-01-01

    Rhodopsins are the major photopigments in the fruit fly Drosophila melanogaster. Drosophila express six well-characterized Rhodopsins (Rh1–Rh6) with distinct absorption maxima and expression pattern. In 2000, when the Drosophila genome was published, a novel Rhodopsin gene was discovered: Rhodopsin 7 (Rh7). Rh7 is highly conserved among the Drosophila genus and is also found in other arthropods. Phylogenetic trees based on protein sequences suggest that the seven Drosophila Rhodopsins cluster in three different groups. While Rh1, Rh2 and Rh6 form a “vertebrate-melanopsin-type”–cluster, and Rh3, Rh4 and Rh5 form an “insect-type”-Rhodopsin cluster, Rh7 seem to form its own cluster. Although Rh7 has nearly all important features of a functional Rhodopsin, it differs from other Rhodopsins in its genomic and structural properties, suggesting it might have an overall different role than other known Rhodopsins. PMID:27651995

  4. The Evolutionary Relationship between Microbial Rhodopsins and Metazoan Rhodopsins

    Directory of Open Access Journals (Sweden)

    Libing Shen

    2013-01-01

    Full Text Available Rhodopsins are photoreceptive proteins with seven-transmembrane alpha-helices and a covalently bound retinal. Based on their protein sequences, rhodopsins can be classified into microbial rhodopsins and metazoan rhodopsins. Because there is no clearly detectable sequence identity between these two groups, their evolutionary relationship was difficult to decide. Through ancestral state inference, we found that microbial rhodopsins and metazoan rhodopsins are divergently related in their seven-transmembrane domains. Our result proposes that they are homologous proteins and metazoan rhodopsins originated from microbial rhodopsins. Structure alignment shows that microbial rhodopsins and metazoan rhodopsins share a remarkable structural homology while the position of retinal-binding lysine is different between them. It suggests that the function of photoreception was once lost during the evolution of rhodopsin genes. This result explains why there is no clearly detectable sequence similarity between the two rhodopsin groups: after losing the photoreception function, rhodopsin gene was freed from the functional constraint and the process of divergence could quickly change its original sequence beyond recognition.

  5. Biochemical Analysis of Microbial Rhodopsins.

    Science.gov (United States)

    Maresca, Julia A; Keffer, Jessica L; Miller, Kelsey J

    2016-01-01

    Ion-pumping rhodopsins transfer ions across the microbial cell membrane in a light-dependent fashion. As the rate of biochemical characterization of microbial rhodopsins begins to catch up to the rate of microbial rhodopsin identification in environmental and genomic sequence data sets, in vitro analysis of their light-absorbing properties and in vivo analysis of ion pumping will remain critical to characterizing these proteins. As we learn more about the variety of physiological roles performed by microbial rhodopsins in different cell types and environments, observing the localization patterns of the rhodopsins and/or quantifying the number of rhodopsin-bearing cells in natural environments will become more important. Here, we provide protocols for purification of rhodopsin-containing membranes, detection of ion pumping, and observation of functional rhodopsins in laboratory and environmental samples using total internal reflection fluorescence microscopy. © 2016 by John Wiley & Sons, Inc. PMID:27153387

  6. Cyanobacterial light-driven proton pump, gloeobacter rhodopsin: complementarity between rhodopsin-based energy production and photosynthesis.

    Directory of Open Access Journals (Sweden)

    Ah Reum Choi

    Full Text Available A homologue of type I rhodopsin was found in the unicellular Gloeobacter violaceus PCC7421, which is believed to be primitive because of the lack of thylakoids and peculiar morphology of phycobilisomes. The Gloeobacter rhodopsin (GR gene encodes a polypeptide of 298 amino acids. This gene is localized alone in the genome unlike cyanobacterium Anabaena opsin, which is clustered together with 14 kDa transducer gene. Amino acid sequence comparison of GR with other type I rhodopsin shows several conserved residues important for retinal binding and H+ pumping. In this study, the gene was expressed in Escherichia coli and bound all-trans retinal to form a pigment (λmax  = 544 nm at pH 7. The pKa of proton acceptor (Asp121 for the Schiff base, is approximately 5.9, so GR can translocate H+ under physiological conditions (pH 7.4. In order to prove the functional activity in the cell, pumping activity was measured in the sphaeroplast membranes of E. coli and one of Gloeobacter whole cell. The efficient proton pumping and rapid photocycle of GR strongly suggests that Gloeobacter rhodopsin functions as a proton pumping in its natural environment, probably compensating the shortage of energy generated by chlorophyll-based photosynthesis without thylakoids.

  7. Binding of rhodopsin and rhodopsin analogues to transducin, rhodopsin kinase and arrestin-1

    Institute of Scientific and Technical Information of China (English)

    Nelson; A; Araujo; Carlos; E; Sanz-Rodríguez; José; Bubis

    2014-01-01

    AIM: To investigate the interaction of reconstituted rhodopsin, 9-cis-retinal-rhodopsin and 13-cis-retinal-rhodopsin with transducin, rhodopsin kinase and arrestin-1. METHODS: Rod outer segments(ROS) were isolated from bovine retinas. Following bleaching of ROS membranes with hydroxylamine, rhodopsin and rhodopsin analogues were generated with the different retinal isomers and the concentration of the reconstituted pigments was calculated from their UV/visible absorption spectra. Transducin and arrestin-1 were purified to homogeneity by column chromatography, and an enriched-fraction of rhodopsin kinase was obtainedby extracting freshly prepared ROS in the dark. The guanine nucleotide binding activity of transducin was determined by Millipore filtration using β,γ-imido-(3H)-guanosine 5’-triphosphate. Recognition of the reconstituted pigments by rhodopsin kinase was determined by autoradiography following incubation of ROS membranes containing the various regenerated pigments with partially purified rhodopsin kinase in the presence of(γ-32P) ATP. Binding of arrestin-1 to the various pigments in ROS membranes was determined by a sedimentation assay analyzed by sodium dodecyl sulphatepolyacrylamide gel electrophoresis. RESULTS: Reconstituted rhodopsin and rhodopsin analogues containing 9-cis-retinal and 13-cis-retinal rendered an absorption spectrum showing a maximum peak at 498 nm, 486 nm and about 467 nm, respectively, in the dark; which was shifted to 380 nm, 404 nm and about 425 nm, respectively, after illumination. The percentage of reconstitution of rhodopsin and the rhodopsin analogues containing 9-cis-retinal and 13-cis-retinal was estimated to be 88%, 81% and 24%, respectively. Although only residual activation of transducin was observed in the dark when reconstituted rhodopsin and 9-cis-retinal-rhodopsin was used, the rhodopsin analogue containing the 13-cis isomer of retinal was capable of activating transducin independently of light. Moreover, only a

  8. Human Rhodopsin: A Fresh View

    OpenAIRE

    Williams, Owen

    2014-01-01

    This work examines the microsecond and millisecond photochemistry of human rhodopsin. There have been significant advances in the mechanistic and structural understanding of bovine rhodopsin over the last two decades that have not been applied to human rhodopsin. This study uses time-resolved absorbance spectroscopy to probe human rhodopsin in its native disk membrane. Human rhodopsin is first studied at pH 7.0 and 20°C from 1 µs - 128 µs to explore the lumirhodopsin I - lumirhodopsin II e...

  9. Ion-Pumping Microbial Rhodopsins

    Directory of Open Access Journals (Sweden)

    Hideki eKandori

    2015-09-01

    Full Text Available Rhodopsins are light-sensing proteins used in optogenetics. The word rhodopsin originates from the Greek words rhodo and opsis, indicating rose and sight, respectively. Although the classical meaning of rhodopsin is the red-colored pigment in our eyes, the modern meaning of rhodopsin encompasses photoactive proteins containing a retinal chromophore in animals and microbes. Animal and microbial rhodopsins possess 11-cis and all-trans retinal, respectively, to capture light in seven transmembrane α-helices, and photoisomerizations into all-trans and 13-cis forms, respectively, initiate each function. Ion-transporting proteins can be found in microbial rhodopsins, such as light-gated channels and light-driven pumps, which are the main tools in optogenetics. Light-driven pumps, such as archaeal H+ pump bacteriorhodopsin (BR and Cl- pump halorhodopsin (HR, were discovered in the 1970s, and their mechanism has been extensively studied. On the other hand, different kinds of H+ and Cl- pumps have been found in marine bacteria, such as proteorhodopsin (PR and Fulvimarina pelagi rhodopsin (FR, respectively. In addition, a light-driven Na+ pump was found, Krokinobacter eikastus rhodopsin 2 (KR2. These light-driven ion-pumping microbial rhodopsins are classified as DTD, TSA, DTE, NTQ and NDQ rhodopsins for BR, HR, PR, FR and KR2, respectively. Recent understanding of ion-pumping microbial rhodopsins is reviewed in this paper.

  10. Rhodopsin/Lipid Hydrophobic Matching—Rhodopsin Oligomerization and Function

    OpenAIRE

    Soubias, Olivier; Teague, Walter E.; Hines, Kirk G.; Gawrisch, Klaus

    2015-01-01

    Lipid composition of the membrane and rhodopsin packing density strongly modulate the early steps of the visual response of photoreceptor membranes. In this study, lipid-order and bovine rhodopsin function in proteoliposomes composed of the sn-1 chain perdeuterated lipids 14:0d27-14:1-PC, 16:0d31-16:1-PC, 18:0d35-18:1-PC, or 20:0d39-20:1-PC at rhodopsin/lipid molar ratios from 1:70 to 1:1000 (mol/mol) were investigated. Clear evidence for matching of hydrophobic regions on rhodopsin transmemb...

  11. Structure and activation of rhodopsin

    OpenAIRE

    Zhou, X. Edward; Melcher, Karsten; Xu, H Eric

    2012-01-01

    Rhodopsin is the first G-protein-coupled receptor (GPCR) with its three-dimensional structure solved by X-ray crystallography. The crystal structure of rhodopsin has revealed the molecular mechanism of photoreception and signal transduction in the visual system. Although several other GPCR crystal structures have been reported over the past few years, the rhodopsin structure remains an important model for understanding the structural and functional characteristics of other GPCRs. This review ...

  12. Structure and activation of rhodopsin

    Institute of Scientific and Technical Information of China (English)

    X Edward ZHOU; Karsten MELCHER; H Eric XU

    2012-01-01

    Rhodopsin is the first G-protein-coupled receptor (GPCR) with its three-dimensional structure solved by X-ray crystallography.The crystal structure of rhodopsin has revealed the molecular mechanism of photoreception and signal transduction in the visual system.Although several other GPCR crystal structures have been reported over the past few years,the rhodopsin structure remains an important model for understanding the structural and functional characteristics of other GPCRs.This review summarizes the structural features,the photoactivation,and the G protein signal transduction of rhodopsin.

  13. Lipid-rhodopsin hydrophobic mismatch alters rhodopsin helical content

    OpenAIRE

    Soubias, Olivier; Niu, Shui-Lin; Mitchell, Drake C.; Gawrisch, Klaus

    2008-01-01

    The ability of photo-activated rhodopsin to achieve the enzymatically active metarhodopsin II conformation is exquisitely sensitive to bilayer hydrophobic thickness. The sensitivity of rhodopsin to the lipid matrix has been explained by the hydrophobic matching theory which predicts that lipid bilayers adjust elastically to the hydrophobic length of transmembrane helices. Here, we examined if bilayer thickness adjusts to the length of the protein or if the protein alters its conformation to a...

  14. Rhodopsin expression level affects rod outer segment morphology and photoresponse kinetics.

    Directory of Open Access Journals (Sweden)

    Clint L Makino

    Full Text Available BACKGROUND: The retinal rod outer segment is a sensory cilium that is specialized for the conversion of light into an electrical signal. Within the cilium, up to several thousand membranous disks contain as many as a billion copies of rhodopsin for efficient photon capture. Disks are continually turned over, requiring the daily synthesis of a prodigious amount of rhodopsin. To promote axial diffusion in the aqueous cytoplasm, the disks have one or more incisures. Across vertebrates, the range of disk diameters spans an order of magnitude, and the number and length of the incisures vary considerably, but the mechanisms controlling disk architecture are not well understood. The finding that transgenic mice overexpressing rhodopsin have enlarged disks lacking an incisure prompted us to test whether lowered rhodopsin levels constrain disk assembly. METHODOLOGY/PRINCIPAL FINDINGS: The structure and function of rods from hemizygous rhodopsin knockout (R+/- mice with decreased rhodopsin expression were analyzed by transmission electron microscopy and single cell recording. R+/- rods were structurally altered in three ways: disk shape changed from circular to elliptical, disk surface area decreased, and the single incisure lengthened to divide the disk into two sections. Photocurrent responses to flashes recovered more rapidly than normal. A spatially resolved model of phototransduction indicated that changes in the packing densities of rhodopsin and other transduction proteins were responsible. The decrease in aqueous outer segment volume and the lengthened incisure had only minor effects on photon response amplitude and kinetics. CONCLUSIONS/SIGNIFICANCE: Rhodopsin availability limits disk assembly and outer segment girth in normal rods. The incisure may buffer the supply of structural proteins needed to form larger disks. Decreased rhodopsin level accelerated photoresponse kinetics by increasing the rates of molecular collisions on the membrane

  15. A Drosophila metallophosphoesterase mediates deglycosylation of rhodopsin

    OpenAIRE

    Cao, Jinguo; Li, Yi; Xia, Wenjing; Reddig, Keith; Hu, Wen; XIE, Wei; Li, Hong-Sheng; Han, Junhai

    2011-01-01

    The glycosylation status of Rhodopsin controls its trafficking and stability, and is hence critical for photoreceptor function. Here, a Drosophila metallophosphoesterase is identified that affects Rhodopsin glycosylation by regulating the activity of an enzyme involved in glycan processing.

  16. Bathorhodopsin intermediates from 11-cis-rhodopsin and 9-cis-rhodopsin.

    OpenAIRE

    Spalink, J D; Reynolds, A H; Rentzepis, P M; Sperling, W.; Applebury, M L

    1983-01-01

    Bathorhodopsin-rhodopsin difference spectra of native 11-cis-rhodopsin and regenerated 9-cis-rhodopsin were measured at room temperature with a double-beam laser spectrophotometer after excitation at 532 nm. A detailed analysis of data obtained at 85 psec after excitation suggests that the bathorhodopsins generated from 11-cis- and 9-cis-rhodopsin differ in their extinction coefficients and that their absorption maxima are shifted in wavelength by about 10 nm from one another. The ratio of qu...

  17. Structure and function in rhodopsin: Asymmetric reconstitution of rhodopsin in liposomes

    OpenAIRE

    Niu, Li; Kim, Jong-Myoung; Khorana, H. Gobind

    2002-01-01

    We report on preparation of rhodopsin proteoliposomes with the cytoplasmic domain of rhodopsin facing the exterior of the proteoliposomes. Rhodopsin purified from rod outer segments of bovine retinae by immunoaffinity chromatography in octyl glucoside was reconstituted into liposomes prepared from soybean phospholipids by detergent dialysis. The orientation of rhodopsin in the liposomes was determined by susceptibility of its C terminus to papain and the endoproteinase, Asp-N, followed by SDS...

  18. G Protein–Coupled Receptor Rhodopsin

    OpenAIRE

    Palczewski, Krzysztof

    2006-01-01

    The rhodopsin crystal structure provides a structural basis for understanding the function of this and other G protein–coupled receptors (GPCRs). The major structural motifs observed for rhodopsin are expected to carry over to other GPCRs, and the mechanism of transformation of the receptor from inactive to active forms is thus likely conserved. Moreover, the high expression level of rhodopsin in the retina, its specific localization in the internal disks of the photoreceptor structures [term...

  19. Of ion pumps, sensors and channels - perspectives on microbial rhodopsins between science and history.

    Science.gov (United States)

    Grote, Mathias; Engelhard, Martin; Hegemann, Peter

    2014-05-01

    We present a historical overview of research on microbial rhodopsins ranging from the 1960s to the present date. Bacteriorhodopsin (BR), the first identified microbial rhodopsin, was discovered in the context of cell and membrane biology and shown to be an outward directed proton transporter. In the 1970s, BR had a big impact on membrane structural research and bioenergetics, that made it to a model for membrane proteins and established it as a probe for the introduction of various biophysical techniques that are widely used today. Halorhodopsin (HR), which supports BR physiologically by transporting negatively charged Cl⁻ into the cell, is researched within the microbial rhodopsin community since the late 1970s. A few years earlier, the observation of phototactic responses in halobacteria initiated research on what are known today as sensory rhodopsins (SR). The discovery of the light-driven ion channel, channelrhodopsin (ChR), serving as photoreceptors for behavioral responses in green alga has complemented inquiries into this photoreceptor family. Comparing the discovery stories, we show that these followed quite different patterns, albeit the objects of research being very similar. The stories of microbial rhodopsins present a comprehensive perspective on what can nowadays be considered one of nature's paradigms for interactions between organisms and light. Moreover, they illustrate the unfolding of this paradigm within the broader conceptual and instrumental framework of the molecular life sciences. This article is part of a Special Issue entitled: Retinal Proteins - You can teach an old dog new tricks.

  20. Fluorescence Relaxation Kinetics from Rhodopsin and Isorhodopsin

    OpenAIRE

    Doukas, A G; Lu, P. Y.; Alfano, R. R.

    1981-01-01

    The fluorescence kinetics of bovine rhodopsin and isorhodopsin excited with a single picosecond laser pulse have been measured with a streak camera. The rise and the decay time of the intrinsic fluorescence emission from rhodopsin and isorhodopsin are found to be

  1. Relevance of rhodopsin studies for GPCR activation.

    Science.gov (United States)

    Deupi, Xavier

    2014-05-01

    Rhodopsin, the dim-light photoreceptor present in the rod cells of the retina, is both a retinal-binding protein and a G protein-coupled receptor (GPCR). Due to this conjunction, it benefits from an arsenal of spectroscopy techniques that can be used for its characterization, while being a model system for the important family of Class A (also referred to as "rhodopsin-like") GPCRs. For instance, rhodopsin has been a crucial player in the field of GPCR structural biology. Until 2007, it was the only GPCR for which a high-resolution crystal structure was available, so all structure-activity analyses on GPCRs, from structure-based drug discovery to studies of structural changes upon activation, were based on rhodopsin. At present, about a third of currently available GPCR structures are still from rhodopsin. In this review, I show some examples of how these structures can still be used to gain insight into general aspects of GPCR activation. First, the analysis of the third intracellular loop in rhodopsin structures allows us to gain an understanding of the structural and dynamic properties of this region, which is absent (due to protein engineering or poor electron density) in most of the currently available GPCR structures. Second, a detailed analysis of the structure of the transmembrane domains in inactive, intermediate and active rhodopsin structures allows us to detect early conformational changes in the process of ligand-induced GPCR activation. Finally, the analysis of a conserved ligand-activated transmission switch in the transmembrane bundle of GPCRs in the context of the rhodopsin activation cycle, allows us to suggest that the structures of many of the currently available agonist-bound GPCRs may correspond to intermediate active states. While the focus in GPCR structural biology is inevitably moving away from rhodopsin, in other aspects rhodopsin is still at the forefront. For instance, the first studies of the structural basis of disease mutants in

  2. Isolation and nucleotide sequence of the gene encoding human rhodopsin.

    OpenAIRE

    Nathans, J; Hogness, D S

    1984-01-01

    We have isolated and completely sequenced the gene encoding human rhodopsin. The coding region of the human rhodopsin gene is interrupted by four introns, which are located at positions analogous to those found in the previously characterized bovine rhodopsin gene. The amino acid sequence of human rhodopsin, deduced from the nucleotide sequence of its gene, is 348 residues long and is 93.4% homologous to that of bovine rhodopsin. Interestingly, those portions of the polypeptide chain predicte...

  3. Towards Understanding the Ultrafast Dynamics of Rhodopsin

    Science.gov (United States)

    Aalberts, Daniel; Vos, Fernando; van Saarloos, Wim

    1997-03-01

    The photoisomerization of rhodopsin in 200 femtoseconds is among the fastest and most efficient photochemical reactions known. We have developed a microscopic model to study rhodopsin's dynamics which retains the collective quantum mechanics of the π electrons in the conjugated system. CAROT.html>Our model is a generalization to three dimensions of Su, Schrieffer, and Heeger's model for polyacetylene (CH)_x. Model parameters are inferred from comparison with experiments and ab initio calculations. The spatial structure and vibrational modes of the rhodopsin chromophore 11-cis retinal are calculated and shown to agree quite well with NMR and Raman spectroscopy measurements. Dynamics following photoexcitation are studied.

  4. Microbial rhodopsins of Halorubrum species isolated from Ejinoor salt lake in Inner Mongolia of China.

    Science.gov (United States)

    Chaoluomeng; Dai, Gang; Kikukawa, Takashi; Ihara, Kunio; Iwasa, Tatsuo

    2015-11-01

    Microbial rhodopsins are photoactive proteins that use a retinal molecule as the photoactive center. Because of structural simplicity and functional diversity, microbial rhodopsins have been an excellent model system for structural biology. In this study, a halophilic archaea that has three microbial rhodopsin-type genes in its genome was isolated from Ejinoor salt lake in Inner Mongolia of China. A sequence of 16S rRNA showed that the strain belongs to Halorubrum genus and named Halorubrum sp. ejinoor (He). The translated amino acid sequences of its microbial rhodopsin-type genes suggest that they are homologs of archaerhodopsin (HeAR), halorhodopsin (HeHR) and sensory rhodopsin II (HeSRII). The mRNAs of three types of genes were detected by RT-PCR and their amounts were investigated by Real-Time RT-PCR. The amount of mRNA of HeSRII was the smallest and the amounts of of HeAR and HeHR were 30 times and 10 times greater than that of HeSRII. The results of light-induced pH changes suggested the presence of a light-driven proton pump and a light-driven chloride ion pump in the membrane vesicles of He. Flash induced absorbance changes of the He membrane fraction indicated that HeAR and HeHR are photoactive and undergo their own photocycles. This study revealed that three microbial rhodopsin-type genes are all expressed in the strain and at least two of them, HeAR and HeHR, are photochemically and physiologically active like BR and HR of Halobacterium salinarum, respectively. To our knowledge, this is the first report of physiological activity of HR-homolog of Halorubrum species. PMID:26328780

  5. Evolution of rhodopsin ion pumps in haloarchaea

    Directory of Open Access Journals (Sweden)

    Ford Doolittle W

    2007-05-01

    Full Text Available Abstract Background The type 1 (microbial rhodopsins are a diverse group of photochemically reactive proteins that display a broad yet patchy distribution among the three domains of life. Recent work indicates that this pattern is likely the result of lateral gene transfer (LGT of rhodopsin genes between major lineages, and even across domain boundaries. Within the lineage in which the microbial rhodopsins were initially discovered, the haloarchaea, a similar patchy distribution is observed. In this initial study, we assess the roles of LGT and gene loss in the evolution of haloarchaeal rhodopsin ion pump genes, using phylogenetics and comparative genomics approaches. Results Mapping presence/absence of rhodopsins onto the phylogeny of the RNA polymerase B' subunit (RpoB' of the haloarchaea supports previous notions that rhodopsins are patchily distributed. The phylogeny for the bacteriorhodopsin (BR protein revealed two discrepancies in comparison to the RpoB' marker, while the halorhodopsin (HR tree showed incongruence to both markers. Comparative analyses of bacteriorhodopsin-linked regions of five haloarchaeal genomes supported relationships observed in the BR tree, and also identified two open reading frames (ORFs that were more frequently linked to the bacteriorhodopsin gene than those genes previously shown to be important to the function and expression of BR. Conclusion The evidence presented here reveals a complex evolutionary history for the haloarchaeal rhodopsins, with both LGT and gene loss contributing to the patchy distribution of rhodopsins within this group. Similarities between the BR and RpoB' phylogenies provide supportive evidence for the presence of bacteriorhodopsin in the last common ancestor of haloarchaea. Furthermore, two loci that we have designated bacterio-opsin associated chaperone (bac and bacterio-opsin associated protein (bap are inferred to have important roles in BR biogenesis based on frequent linkage and co

  6. Photoisomerization Mechanism of Rhodopsin and 9-cis-Rhodopsin Revealed by X-ray Crystallography

    OpenAIRE

    Nakamichi, Hitoshi; Buss, Volker; Okada, Tetsuji

    2007-01-01

    The primary photochemical process of the visual function has been investigated using the three crystallographic models, 11-cis-rhodopsin, all-trans-bathorhodopsin, and the artificial isomeric 9-cis-rhodopsin. Detailed examination of the atomic displacements and dihedral angle changes of the retinal chromophore involved in the interconversion among these isomers suggests the mechanism of isomerization efficiency.

  7. FTIR difference and resonance Raman spectroscopy of rhodopsins with applications to optogenetics

    Science.gov (United States)

    Saint Clair, Erica C.

    The major aim of this thesis is to investigate the molecular basis for the function of several types of rhodopsins with special emphasis on their application to the new field of optogenetics. Rhodopsins are transmembrane biophotonic proteins with 7 alpha-helices and a retinal chromophore. Studies included Archaerhodopsin 3 (AR3), a light driven proton pump similar to the extensively studied bacteriorhodopsin (BR); channelrhodopsins 1 and 2, light-activated ion channels; sensory rhodopsin II (SRII), a light-sensing protein that modulates phototaxis used in archaebacteria; and squid rhodopsins (sRho), the major photopigment in squid vision and a model for human melanopsin, which controls circadian rhythms. The primary techniques used in these studies were FTIR difference spectroscopy and resonance Raman spectroscopy. These techniques, in combination with site directed mutagenesis and other biochemical methodologies produced new knowledge regarding the structural changes of the retinal chromophore, the location and function of internal water molecules as well as specific amino acids and peptide backbone. Specialized techniques were developed that allowed rhodopsins to be studied in intact membrane environments and in some cases in vivo measurements were made on rhodopsin heterologously expressed in E. coli thus allowing the effects of interacting proteins and membrane potential to be investigated. Evidence was found that the local environment of one or more internal water molecules in SRII is altered by interaction with its cognate transducer, HtrII, and is also affected by the local lipid environment. In the case of AR3, many of the broad IR continuum absorption changes below 3000 cm -1, assigned to networks of water molecules involved in proton transport through cytoplasmic and extracellular portions in BR, were found to be very similar to BR. Bands assigned to water molecules near the Schiff base postulated to be involved in proton transport were, however, shifted

  8. Hydrogen uptake by Azolla-Anabaena

    International Nuclear Information System (INIS)

    The hydrogen uptake in the Azolla-Anabaena system is studied. Tritium is used as tracer. Plants are incubated under different atmosphere composition: a) Air + 3H2; b) Air + CO2 + 3H2 + CO; c) Air + 3H2 + CO; d) Air + CO2 + 3H2 + CO to study the pathway of absorbed hydrogen in the Azolla - Anabaena system. Azolla-Anabaena showed greater hydrogen uptake under argonium atmosphere than under air. Carbon monoxide decreased hydrogen uptake. There are evidences of recycling of the hydrogen evolved through notrogenease. (Author)

  9. Antibacterial phycocyanin from Anabaena oryzae SOS13

    OpenAIRE

    Mahmoud Sitohy; Ali Osman; Abdel Ghany Abdel Ghany; Ali Salama

    2015-01-01

    Summary. The antimicrobial activity of phycocyanin extracted from Anabaena oryzae SOS13 was assayed against 4 pathogenic bacteria using agar well-diffusion assay and using benzyl Penicillin, Clindamycin, Ofloxacin and Doxycycline as positive controls. The concentration inhibiting 50% bacterial growth and the minimum inhibition concentration (MIC). The mode of action of phycocyanin on bacteria was explored using electron microscopy (SEM & TEM). Phycocyanin from Anabaena oryzae SOS13 has α and ...

  10. Accumulation of rhodopsin in late endosomes triggers photoreceptor cell degeneration.

    OpenAIRE

    Yashodhan Chinchore; Amitavo Mitra; Dolph, Patrick J.

    2009-01-01

    Author Summary Irreversible loss of photoreceptor cells has been attributed as a cause of blindness in many retinal degenerative disorders. One such group of disorders is retinitis pigmentosa, which affects 1 in 3,000 individuals. Over 100 mutations in the light-sensing molecule rhodopsin have been identified in patients with autosomal dominant retinitis pigmentosa. These mutations affect rhodopsin transport to the outer segments of rod photoreceptor cells, rhodopsin folding, and rhodopsin en...

  11. Modulation of molecular interactions and function by rhodopsin palmitylation†

    OpenAIRE

    Park, Paul S.-H.; Sapra, K. Tanuj; Jastrzebska, Beata; Maeda, Tadao; MAEDA, Akiko; Pulawski, Wojciech; Kono, Masahiro; Lem, Janis; Crouch, Rosalie K.; Filipek, Slawomir; Müller, Daniel J.; Palczewski, Krzysztof

    2009-01-01

    Rhodopsin is palmitylated at two cysteine residues in its carboxyl terminal region. We have looked at the effects of palmitylation on the molecular interactions formed by rhodopsin using single-molecule force spectroscopy and the function of rhodopsin using both in vitro and in vivo approaches. A knockin mouse model expressing palmitate-deficient rhodopsin was used for live animal in vivo studies and to obtain native tissue samples for in vitro assays. We specifically looked at the effects pa...

  12. The rice field cyanobacteria Anabaena azotica and Anabaena sp. CH1 express vanadium-dependent nitrogenase

    NARCIS (Netherlands)

    Boison, G.; Steingen, C.; Stal, L.J.; Bothe, H.

    2006-01-01

    Anabaena azotica FACHB-118 and Anabaena sp. CH1, heterocystous cyanobacteria isolated from Chinese and Taiwanese rice fields, expressed vanadium-containing nitrogenase when under molybdenum deficiency. This is the second direct observation of an alternative nitrogenase in cyanobacteria. The vanadium

  13. Mechanism of colour discrimination by a bacterial sensory rhodopsin

    Science.gov (United States)

    Spudich, J. L.; Bogomolni, R. A.

    1984-01-01

    A photosensitive protein resembling the visual pigments of invertebrates enables phototactic archaebacteria to distinguish color. This protein exists in two spectrally-distinct forms, one of which is a transient photoproduct of the other and each of which undergoes photochemical reactions controlling the cell's swimming behaviour. Activation of a single pigment molecule in the cell is sufficient to signal the flagellar motor. This signal-transduction mechanism makes evident a color-sensing capability inherent in the retinal/protein chromophore.

  14. Molecular physiology of rhodopsin: Computer simulation

    Science.gov (United States)

    Fel'Dman, T. B.; Kholmurodov, Kh. T.; Ostrovsky, M. A.

    2008-03-01

    Computer simulation is used for comparative investigation of the molecular dynamics of rhodopsin containing the chromophore group (11- cis-retinal) and free opsin. Molecular dynamics is traced within a time interval of 3000 ps; 3 × 106 discrete conformational states of rhodopsin and opsin are obtained and analyzed. It is demonstrated that the presence of the chromophore group in the chromophore center of opsin influences considerably the nearest protein environment of 11- cis-retinal both in the region of the β-ionone ring and in the region of the protonated Schiff base bond. Based on simulation results, a possible intramolecular mechanism of keeping rhodopsin as a G-protein-coupled receptor in the inactive state, i.e., the chromophore function as an efficient ligand antagonist, is discussed.

  15. Accumulation of rhodopsin in late endosomes triggers photoreceptor cell degeneration.

    Directory of Open Access Journals (Sweden)

    Yashodhan Chinchore

    2009-02-01

    Full Text Available Progressive retinal degeneration is the underlying feature of many human retinal dystrophies. Previous work using Drosophila as a model system and analysis of specific mutations in human rhodopsin have uncovered a connection between rhodopsin endocytosis and retinal degeneration. In these mutants, rhodopsin and its regulatory protein arrestin form stable complexes, and endocytosis of these complexes causes photoreceptor cell death. In this study we show that the internalized rhodopsin is not degraded in the lysosome but instead accumulates in the late endosomes. Using mutants that are defective in late endosome to lysosome trafficking, we were able to show that rhodopsin accumulates in endosomal compartments in these mutants and leads to light-dependent retinal degeneration. Moreover, we also show that in dying photoreceptors the internalized rhodopsin is not degraded but instead shows characteristics of insoluble proteins. Together these data implicate buildup of rhodopsin in the late endosomal system as a novel trigger of death of photoreceptor neurons.

  16. Functional metagenomic screen reveals new and diverse microbial rhodopsins

    Science.gov (United States)

    Pushkarev, Alina; Béjà, Oded

    2016-01-01

    Ion-translocating retinylidene rhodopsins are widely distributed among marine and freshwater microbes. The translocation is light-driven, contributing to the production of biochemical energy in diverse microbes. Until today, most microbial rhodopsins had been detected using bioinformatics based on homology to other rhodopsins. In the past decade, there has been increased interest in microbial rhodopsins in the field of optogenetics since microbial rhodopsins were found to be most useful in vertebrate neuronal systems. Here we report on a functional metagenomic assay for detecting microbial rhodopsins. Using an array of narrow pH electrodes and light-emitting diode illumination, we were able to screen a metagenomic fosmid library to detect diverse marine proteorhodopsins and an actinorhodopsin based solely on proton-pumping activity. Our assay therefore provides a rather simple phenotypic means to enrich our understanding of microbial rhodopsins without any prior knowledge of the genomic content of the environmental entities screened. PMID:26894445

  17. Structure and function in rhodopsin: covalent crosslinking of the rhodopsin (metarhodopsin II)-transducin complex--the rhodopsin cytoplasmic face links to the transducin alpha subunit.

    OpenAIRE

    Resek, J F; Farrens, D; Khorana, H G

    1994-01-01

    We prepared rhodopsin mutants that contained a single reactive cysteine residue per rhodopsin molecule at position 65, 140, 240, or 316 on the cytoplasmic face. A carbene-generating photoactivatable group was linked by a disulfide bond to the cysteine sulfhydryl group of each of the rhodopsin mutants. The resulting derivative was then light-activated at lambda > 495 nm to form the metarhodopsin II intermediate, which bound transducin. Subsequent photoactivation (355 nm) of the carbene-generat...

  18. Carboxyl terminal of rhodopsin kinase is required for the phosphorylation of photo—activated rhodopsin

    Institute of Scientific and Technical Information of China (English)

    YUQINGMING; LANMA; 等

    1998-01-01

    Human rhodopsin kinase (RK) and a carboxyl terminus-truncated mutant RK lacking the last 59 amino acids (RKC) were expressed in human embryonic kidney 293 cells to investigate the role of the carboxyl terminus of RK in recognition and phosphorylation of rhodopsin.RKC,like the wild-type RK,was detected in both plasma membranes and cytosolic fractions.The Cterminal truncated rhodopsin kinase was unable to phosphorylate photo-activated rhodopsin,but possesses kinase activity similar to the wild-type RK in phosphorylation of small peptide substrate.It suggests that the truncation did not disturb the gross structures of RK catalytic domain.Our results also show that RKC failed to translocate to photo-activated rod out segments.Taken together,our study demonstrate the carboxyl terminus of RK is required for phosphorylation of photo-activated rhodopsin and strongly indicate that carboxyl-terminus of RK may be involved in interaction with photo-activated rhodopsin.

  19. Crystallization and crystal properties of squid rhodopsin

    OpenAIRE

    Murakami, Midori; Kitahara, Rei; Gotoh, Toshiaki; Kouyama, Tsutomu

    2007-01-01

    Truncated rhodopsin from the retina of the squid Todarodes pacificus was extracted and crystallized by the sitting-drop vapour-diffusion method. Hexagonal crystals grown in the presence of octylglucoside and ammonium sulfate diffracted to 2.8 Å resolution.

  20. Rhodopsin Photoisomerization: Coherent vs. Incoherent Excitation

    CERN Document Server

    Hoki, Kunihito

    2009-01-01

    A uniform minimal model of rhodopsin photoisomerization induced by either coherent laser light or low level incoherent light (e.g. moonlight) is provided. Realistic timescales for both processes, which differ by ten orders of magnitude, are obtained. Further, a kinetic scheme involving rates for both coherent and incoherent light excitation is introduced, placing all timescales into a uniform framework.

  1. Crystal Packing Analysis of Rhodopsin Crystals

    Energy Technology Data Exchange (ETDEWEB)

    Lodowski, D.T.; Salom, D.; Trong, I.Le; Teller, D.C.; Ballesteros, J.A.; Palczewski, K.; Stenkamp, R.E.; /Basel U. /Texas U. /Scripps Res. Inst.

    2007-07-10

    Oligomerization has been proposed as one of several mechanisms to regulate the activity of G protein-coupled receptors (GPCRs), but little is known about the structure of GPCR oligomers. Crystallographic analyses of two new crystal forms of rhodopsin reveal an interaction surface which may be involved in the formation of functional dimers or oligomers. New crystallization conditions lead to the formation of two crystal forms with similar rhodopsin-rhodopsin interactions, but changes in the crystal lattice are induced by the addition of different surfactant additives. However, the intermolecular interactions between rhodopsin molecules in these crystal structures may reflect the contacts necessary for the maintenance of dimers or oligomers in rod outer segment membranes. Similar contacts may assist in the formation of dimers or oligomers in other GPCRs as well. These new dimers are compared with other models proposed by crystallography or EM and AFM studies. The inter-monomer surface contacts are different for each model, but several of these models coincide in implicating helix I, II, and H-8 as contributors to the main contact surface stabilizing the dimers.

  2. Spectral Tuning of Killer Whale (Orcinus orca) Rhodopsin: Evidence for Positive Selection and Functional Adaptation in a Cetacean Visual Pigment.

    Science.gov (United States)

    Dungan, Sarah Z; Kosyakov, Alexander; Chang, Belinda S W

    2016-02-01

    Cetaceans have undergone a remarkable evolutionary transition that was accompanied by many sensory adaptations, including modification of the visual system for underwater environments. Recent sequencing of cetacean genomes has made it possible to begin exploring the molecular basis of these adaptations. In this study we use in vitro expression methods to experimentally characterize the first step of the visual transduction cascade, the light activation of rhodopsin, for the killer whale. To investigate the spectral effects of amino acid substitutions thought to correspond with absorbance shifts relative to terrestrial mammals, we used the orca gene as a background for the first site-directed mutagenesis experiments in a cetacean rhodopsin. The S292A mutation had the largest effect, and was responsible for the majority of the spectral difference between killer whale and bovine (terrestrial) rhodopsin. Using codon-based likelihood models, we also found significant evidence for positive selection in cetacean rhodopsin sequences, including on spectral tuning sites we experimentally mutated. We then investigated patterns of ecological divergence that may be correlated with rhodopsin functional variation by using a series of clade models that partitioned the data set according to phylogeny, habitat, and foraging depth zone. Only the model partitioning according to depth was significant. This suggests that foraging dives might be a selective regime influencing cetacean rhodopsin divergence, and our experimental results indicate that spectral tuning may be playing an adaptive role in this process. Our study demonstrates that combining computational and experimental methods is crucial for gaining insight into the selection pressures underlying molecular evolution. PMID:26486871

  3. G Protein-Coupled Receptor Rhodopsin: A Prospectus

    OpenAIRE

    Filipek, Sławomir; Stenkamp, Ronald E.; Teller, David C.; Palczewski, Krzysztof

    2002-01-01

    Rhodopsin is a retinal photoreceptor protein of bipartite structure consisting of the transmembrane protein opsin and a light-sensitive chromophore 11-cis-retinal, linked to opsin via a protonated Schiff base. Studies on rhodopsin have unveiled many structural and functional features that are common to a large and pharmacologically important group of proteins from the G protein-coupled receptor (GPCR) superfamily, of which rhodopsin is the best-studied member. In this work, we focus on struct...

  4. Regulation of Arrestin Binding by Rhodopsin Phosphorylation Level

    OpenAIRE

    Vishnivetskiy, Sergey A.; Raman, Dayanidhi; Wei, Junhua; Kennedy, Matthew J.; Hurley, James B; Vsevolod V Gurevich

    2007-01-01

    Arrestins ensure the timely termination of receptor signaling. The role of rhodopsin phosphorylation in visual arrestin binding was established more than 20 years ago, but the effects of the number of receptor-attached phosphates on this interaction remain controversial. Here we use purified rhodopsin fractions with carefully quantified content of individual phosphorylated rhodopsin species to elucidate the impact of phosphorylation level on arrestin interaction with three biologically releva...

  5. Conformational activation of visual rhodopsin in native disc membranes

    NARCIS (Netherlands)

    Malmerberg, E.; Bovee-Geurts, P.H.M.; Katona, G.; Deupi, X.; Arnlund, D.; Wickstrand, C.; Johansson, L.C.; Westenhoff, S.; Nazarenko, E.; GF, X.S.; Menzel, A.; Grip, W.J. de; Neutze, R.

    2015-01-01

    Rhodopsin is the G protein-coupled receptor (GPCR) that serves as a dim-light receptor for vision in vertebrates. We probed light-induced conformational changes in rhodopsin in its native membrane environment at room temperature using time-resolved wide-angle x-ray scattering. We observed a rapid co

  6. Complete Genome Sequence of the Cyanobacterium Anabaena sp. 33047

    Science.gov (United States)

    2016-01-01

    This study presents the complete nucleotide sequence of Anabaena sp. ATCC 33047 (Anabaena CA), a filamentous, nitrogen-fixing marine cyanobacterium, which under salt stress conditions accumulates sucrose internally. The elucidation of the genome will contribute to the understanding of cyanobacterial diversity. PMID:27516507

  7. Signals Governing the Trafficking and Mistrafficking of a Ciliary GPCR, Rhodopsin

    OpenAIRE

    Lodowski, Kerrie H.; Lee, Richard; Ropelewski, Philip; Nemet, Ina; Tian, Guilian; Imanishi, Yoshikazu

    2013-01-01

    Rhodopsin is a cilia-specific GPCR essential for vision. Rhodopsin mislocalization is associated with blinding diseases called retinal ciliopathies. The mechanism by which rhodopsin mislocalizes in rod photoreceptor neurons is not well understood. Therefore, we investigated the roles of trafficking signals in rhodopsin mislocalization. Rhodopsin and its truncation mutants were fused to a photoconvertible fluorescent protein, Dendra2, and expressed in Xenopus laevis rod photoreceptors. Photoco...

  8. Effect of Packing Density on Rhodopsin Stability and Function in Polyunsaturated Membranes

    OpenAIRE

    Niu, Shui-Lin; Mitchell, Drake C.

    2005-01-01

    Rod outer segment disk membranes are densely packed with rhodopsin. The recent notion of raft or microdomain structures in disk membranes suggests that the local density of rhodopsin in disk membranes could be much higher than the average density corresponding to the lipid/protein ratio. Little is known about the effect of high packing density of rhodopsin on the structure and function of rhodopsin and lipid membranes. Here we examined the role of rhodopsin packing density on membrane dynamic...

  9. The Bilayer Enhances Rhodopsin Kinetic Stability in Bovine Rod Outer Segment Disk Membranes

    OpenAIRE

    Corley, Scott C.; Sprangers, Peter; Albert, Arlene D.

    2011-01-01

    Rhodopsin is a kinetically stable protein constituting >90% of rod outer segment disk membrane protein. To investigate the bilayer contribution to rhodopsin kinetic stability, disk membranes were systematically disrupted by octyl-β-D-glucopyranoside. Rhodopsin kinetic stability was examined under subsolubilizing (rhodopsin in a bilayer environment perturbed by octyl-β-D-glucopyranoside) and under fully solubilizing conditions (rhodopsin in a micelle with cosolubilized phospholipids). As deter...

  10. Robust Endoplasmic Reticulum-Associated Degradation of Rhodopsin Precedes Retinal Degeneration

    OpenAIRE

    Chiang, WC; Kroeger, H.; Sakami, S; Messah, C; Yasumura, D; Matthes, MT; Coppinger, JA; Palczewski, K; LaVail, MM; Lin, JH

    2014-01-01

    © 2014, Springer Science+Business Media New York. Rhodopsin is a G protein-coupled receptor essential for vision and rod photoreceptor viability. Disease-associated rhodopsin mutations, such as P23H rhodopsin, cause rhodopsin protein misfolding and trigger endoplasmic reticulum (ER) stress, activating the unfolded protein response (UPR). The pathophysiologic effects of ER stress and UPR activation on photoreceptors are unclear. Here, by examining P23H rhodopsin knock-in mice, we found that th...

  11. Rer1p regulates the ER retention of immature rhodopsin and modulates its intracellular trafficking

    OpenAIRE

    Akinori Yamasaki; Taichi Hara; Ikuko Maejima; Miyuki Sato; Katsuya Sato; Ken Sato

    2014-01-01

    Rhodopsin is a pigment in photoreceptor cells. Some rhodopsin mutations cause the protein to accumulate in the endoplasmic reticulum (ER), leading to photoreceptor degeneration. Although several mutations have been reported, how mutant rhodopsin is retained in the ER remains unclear. In this study, we identified Rer1p as a modulator of ER retention and rhodopsin trafficking. Loss of Rer1p increased the transport of wild-type rhodopsin to post-Golgi compartments. Overexpression of Rer1p caused...

  12. Chemical chaperone 4-phenylbutyrate prevents endoplasmic reticulum stress induced by T17M rhodopsin

    OpenAIRE

    Jiang, Haibo; Xiong, Siqi; Xia, Xiaobo

    2014-01-01

    Background Rhodopsin mutations are associated with the autosomal dominant form of retinitis pigmentosa. T17M mutation in rhodopsin predisposes cells to endoplasmic reticulum (ER) stress and induces cell death. This study aimed to examine whether chemical chaperone 4-phenylbutyrate prevents ER stress induced by rhodopsin T17M. Results ARPE-19 cells were transfected with myc-tagged wild-type (WT) and T17M rhodopsin constructs. Turnover of WT and T17M rhodopsin was measured by cycloheximide chas...

  13. Free backbone carbonyls mediate rhodopsin activation.

    Science.gov (United States)

    Kimata, Naoki; Pope, Andreyah; Sanchez-Reyes, Omar B; Eilers, Markus; Opefi, Chikwado A; Ziliox, Martine; Reeves, Philip J; Smith, Steven O

    2016-08-01

    Conserved prolines in the transmembrane helices of G-protein-coupled receptors (GPCRs) are often considered to function as hinges that divide the helix into two segments capable of independent motion. Depending on their potential to hydrogen-bond, the free C=O groups associated with these prolines can facilitate conformational flexibility, conformational switching or stabilization of the receptor structure. To address the role of conserved prolines in family A GPCRs through solid-state NMR spectroscopy, we focus on bovine rhodopsin, a GPCR in the visual receptor subfamily. The free backbone C=O groups on helices H5 and H7 stabilize the inactive rhodopsin structure through hydrogen-bonds to residues on adjacent helices. In response to light-induced isomerization of the retinal chromophore, hydrogen-bonding interactions involving these C=O groups are released, thus facilitating repacking of H5 and H7 onto the transmembrane core of the receptor. These results provide insights into the multiple structural and functional roles of prolines in membrane proteins. PMID:27376589

  14. Archaebacterial rhodopsin sequences: Implications for evolution

    Science.gov (United States)

    Lanyi, J. K.

    1991-01-01

    It was proposed over 10 years ago that the archaebacteria represent a separate kingdom which diverged very early from the eubacteria and eukaryotes. It follows that investigations of archaebacterial characteristics might reveal features of early evolution. So far, two genes, one for bacteriorhodopsin and another for halorhodopsin, both from Halobacterium halobium, have been sequenced. We cloned and sequenced the gene coding for the polypeptide of another one of these rhodopsins, a halorhodopsin in Natronobacterium pharaonis. Peptide sequencing of cyanogen bromide fragments, and immuno-reactions of the protein and synthetic peptides derived from the C-terminal gene sequence, confirmed that the open reading frame was the structural gene for the pharaonis halorhodopsin polypeptide. The flanking DNA sequences of this gene, as well as those of other bacterial rhodopsins, were compared to previously proposed archaebacterial consensus sequences. In pairwise comparisons of the open reading frame with DNA sequences for bacterio-opsin and halo-opsin from Halobacterium halobium, silent divergences were calculated. These indicate very considerable evolutionary distance between each pair of genes, even in the dame organism. In spite of this, three protein sequences show extensive similarities, indicating strong selective pressures.

  15. Monomeric Rhodopsin Is Sufficient for Normal Rhodopsin Kinase (GRK1) Phosphorylation and Arrestin-1 Binding*

    OpenAIRE

    Bayburt, Timothy H.; Vishnivetskiy, Sergey A.; McLean, Mark A.; Morizumi, Takefumi; Huang, Chih-chin; Tesmer, John J. G.; Ernst, Oliver P.; Sligar, Stephen G.; Vsevolod V Gurevich

    2010-01-01

    G-protein-coupled receptor (GPCR) oligomerization has been observed in a wide variety of experimental contexts, but the functional significance of this phenomenon at different stages of the life cycle of class A GPCRs remains to be elucidated. Rhodopsin (Rh), a prototypical class A GPCR of visual transduction, is also capable of forming dimers and higher order oligomers. The recent demonstration that Rh monomer is sufficient to activate its cognate G protein, transducin, prompted us to test w...

  16. Molecular physiology of visual pigment rhodopsin: computer simulations

    International Nuclear Information System (INIS)

    Based on the computer simulations a comparative analysis of molecular dynamics of the rhodopsin protein (with 11-cis chromophore retinal) and free opsin (without 11-cis chromophore retinal) is performed. Molecular dynamics calculations were traced within the time interval 3000 ps, so that totally 3·106 discrete conformational states of the rhodopsin and free opsin were analyzed and compared. It was demonstrated that the inclusion and adaptation of chromophore retinal in the opsin site causes a considerable influence on the nearest protein pocket (surrounding 11-cis retinal chromophore), as well as on conformations of the beta-ionone ring and a protonated Schiff base regions. On the basis of the simulation results we discuss a possible intermolecular mechanism that kept rhodopsin as a G-protein-coupled receptor in an inactive state, i.e., for the chromophore retinal as a ligand-agonist stabilizing the inactive conformation of the rhodopsin

  17. Recent advances in engineering microbial rhodopsins for optogenetics.

    Science.gov (United States)

    McIsaac, R Scott; Bedbrook, Claire N; Arnold, Frances H

    2015-08-01

    Protein engineering of microbial rhodopsins has been successful in generating variants with improved properties for applications in optogenetics. Members of this membrane protein family can act as both actuators and sensors of neuronal activity. Chimeragenesis, structure-guided mutagenesis, and directed evolution have proven effective strategies for tuning absorption wavelength, altering ion specificity and increasing fluorescence. These approaches facilitate the development of useful optogenetic tools and, in some cases, have yielded insights into rhodopsin structure-function relationships.

  18. TRP and Rhodopsin Transport Depends on Dual XPORT ER Chaperones Encoded by an Operon

    Directory of Open Access Journals (Sweden)

    Zijing Chen

    2015-10-01

    Full Text Available TRP channels and G protein-coupled receptors (GPCRs play critical roles in sensory reception. However, the identities of the chaperones that assist GPCRs in translocating from the endoplasmic reticulum (ER are limited, and TRP ER chaperones are virtually unknown. The one exception for TRPs is Drosophila XPORT. Here, we show that the xport locus is bicistronic and encodes unrelated transmembrane proteins, which enable the signaling proteins that initiate and culminate phototransduction, rhodopsin 1 (Rh1 and TRP, to traffic to the plasma membrane. XPORT-A and XPORT-B are ER proteins, and loss of either has a profound impact on TRP and Rh1 targeting to the light-sensing compartment of photoreceptor cells. XPORT-B complexed in vivo with the Drosophila homolog of the mammalian HSP70 protein, GRP78/BiP, which, in turn, associated with Rh1. Our work highlights a coordinated network of chaperones required for the biosynthesis of the TRP channel and rhodopsin in Drosophila photoreceptor cells.

  19. TRP and Rhodopsin Transport Depends on Dual XPORT ER Chaperones Encoded by an Operon.

    Science.gov (United States)

    Chen, Zijing; Chen, Hsiang-Chin; Montell, Craig

    2015-10-20

    TRP channels and G protein-coupled receptors (GPCRs) play critical roles in sensory reception. However, the identities of the chaperones that assist GPCRs in translocating from the endoplasmic reticulum (ER) are limited, and TRP ER chaperones are virtually unknown. The one exception for TRPs is Drosophila XPORT. Here, we show that the xport locus is bicistronic and encodes unrelated transmembrane proteins, which enable the signaling proteins that initiate and culminate phototransduction, rhodopsin 1 (Rh1) and TRP, to traffic to the plasma membrane. XPORT-A and XPORT-B are ER proteins, and loss of either has a profound impact on TRP and Rh1 targeting to the light-sensing compartment of photoreceptor cells. XPORT-B complexed in vivo with the Drosophila homolog of the mammalian HSP70 protein, GRP78/BiP, which, in turn, associated with Rh1. Our work highlights a coordinated network of chaperones required for the biosynthesis of the TRP channel and rhodopsin in Drosophila photoreceptor cells. PMID:26456832

  20. The rhodopsin-like pigments of halobacteria - Light-energy and signal transducers in an archaebacterium

    Science.gov (United States)

    Stoeckenius, W.

    1985-01-01

    Three, small retinylidene proteins observed in halobacteria are described. The characteristics of bacteriorhodopsin (bR), which is synthesized during low O2 tension and intense illumination, and the role of bR in the cyclic photoreactions that translocate protons are examined. The detected light-driven chloride influx pigment, halorhodopsin (hR), is also capable of light-driven ion translocation; the hR transport reactions which are chloride dependent and involve isomerization are studied. The sensory photosystem of halobacteria and the receptor functions of the retinal pigment slow rhodopsin are discussed. The similarity of the choromphore structure and photoreactions, and the evolutionary relation between halobacteria and animal pigments are considered.

  1. Unusual radioresistance of nitrogen-fixing cultures of Anabaena strains

    Indian Academy of Sciences (India)

    Harinder Singh; Tonina Fernandes; Shree Kumar Apte

    2010-09-01

    Nitrogen-fixing cultures of two species of the filamentous, heterocystous cyanobacterium Anabaena, namely Anabaena sp. strain L-31 and Anabaena torulosa were found to be highly tolerant to 60Co gamma radiation. No adverse effect on diazotrophic growth and metabolism were observed up to a dose of 5 kGy. At higher doses, radiation tolerance showed a correspondence with the inherent osmotolerance, with Anabaena L-31 being the more radiation tolerant as well as osmotolerant strain. In Anabaena L-31, exposure to 6 kGy of gamma rays resulted in genome disintegration, but did not reduce viability. Irradiation delayed heterocyst differentiation and nitrogen fixation, and marginally affected diazotrophic growth. All the affected parameters recovered after a short lag, without any discernible post-irradiation phenotype. The radiation tolerance of these Gram-negative photoautodiazotrophs is comparable with that of the adiazotrophic photoautotrophic cyanobacterium Chroococcidiopsis or adiazotrophic heterotroph Deinococcus radiodurans. This is the first report of extreme radioresistance in nitrogen-fixing Anabaena cultures.

  2. Transient dichroism in photoreceptor membranes indicates that stable oligomers of rhodopsin do not form during excitation.

    OpenAIRE

    Downer, N W; Cone, R A

    1985-01-01

    If a photoexcited rhodopsin molecule initiates the formation of rhodopsin oligomers during the process of visual excitation, the rate of rotational diffusion of the rhodopsin molecules involved should change markedly. Using microsecond-flash photometry, we have observed the rotational diffusion of rhodopsin throughout the time period of visual excitation and found that no detectable change occurs in its rotational diffusion rate. Partial chemical cross-linking of the retina yields oligomers o...

  3. Experimental and Computational Studies of the Desensitization Process in the Bovine Rhodopsin-Arrestin Complex

    OpenAIRE

    Ling, Y.; Ascano, M.; Robinson, P.; Gregurick, S. K.

    2004-01-01

    The deactivation of the bovine G-protein-coupled receptor, rhodopsin, is a two-step process consisting of the phosphorylation of specific serine and threonine residues in the cytoplasmic tail of rhodopsin by rhodopsin kinase. Subsequent binding of the regulatory protein arrestin follows this phosphorylation. Previous results find that at least three phosphorylatable sites on the rhodopsin tail (T340) and at least two of the S338, S334, or S343 sites are needed for complete arrestin-mediated d...

  4. Impact of Reduced Rhodopsin Expression on the Structure of Rod Outer Segment Disc Membranes†

    OpenAIRE

    Rakshit, Tatini; Park, Paul S.-H.

    2015-01-01

    Rhodopsin is the light receptor embedded in rod outer segment (ROS) disc membranes of photoreceptor cells that initiates vision via phototransduction. The relationship between rhodopsin expression and the formation of membrane structures in the ROS is unclear but important to better understand both normal function and pathological conditions. To determine the impact of reduced rhodopsin expression on the structure of ROS discs and the supramolecular organization of rhodopsin, ROS disc membran...

  5. Regulation of Expression of Nitrate and Dinitrogen Assimilation by Anabaena Species

    OpenAIRE

    Meeks, John C.; Wycoff, Keith L.; Chapman, John S.; Enderlin, Carol S.

    1983-01-01

    Anabaena sp. strain 7120 appeared more responsive to nitrogen control than A. cylindrica. Growth in the presence of nitrate strongly repressed the differentiation of heterocysts and fixation of dinitrogen in Anabaena sp. strain 7120, but only weakly in A. cylindrica. Nitrate assimilation by ammonium-grown cultures was strongly repressed in Anabaena sp. strain 7120, but less so in A. cylindrica. The repressive effect of nitrate on dinitrogen assimilation in Anabaena sp. strain 7120, compared t...

  6. A Novel Rhodopsin Gene from Octopus vulgaris for Optobioelectronics Materials

    Directory of Open Access Journals (Sweden)

    Alexander Zhgun

    2015-06-01

    Full Text Available The unique photochromic retinal protein from rhabdomeric octopus membranes – octopus rhodopsin (OctR has emerged as promising material for biomolecular photonic applications due to its unique properties and advantages. Here we report isolation of the novel full length octR gene from retina cDNA of Octopus vulgaris eyes and its sequence comparison with rhodopsins of other cephalopods and vertebrates. The isolated gene can be used to develop various expression systems for production of recombinant OctR for structural studies and novel optobioelectronic applications. The alignment of amino acid (a.a. sequence with different opsins revealed similarity to cephalopoda rhodopsins (Rho and to human melanopsin from intrinsically photosensitive retinal ganglion cells. The alingment of OctR a.a. sequence with mammalian and cephalopoda Rho with known 3D structures revealed promising substitutions V2C and W292C for developing stable and functionally active recombinant OctR after heterologous expression.

  7. On the origins of arrestin and rhodopsin

    Directory of Open Access Journals (Sweden)

    Alvarez Carlos E

    2008-07-01

    Full Text Available Abstract Background G protein coupled receptors (GPCRs are the most numerous proteins in mammalian genomes, and the most common targets of clinical drugs. However, their evolution remains enigmatic. GPCRs are intimately associated with trimeric G proteins, G protein receptor kinases, and arrestins. We conducted phylogenetic studies to reconstruct the history of arrestins. Those findings, in turn, led us to investigate the origin of the photosensory GPCR rhodopsin. Results We found that the arrestin clan is comprised of the Spo0M protein family in archaea and bacteria, and the arrestin and Vps26 families in eukaryotes. The previously known animal arrestins are members of the visual/beta subfamily, which branched from the founding "alpha" arrestins relatively recently. Curiously, we identified both the oldest visual/beta arrestin and opsin genes in Cnidaria (but not in sponges. The arrestin clan has 14 human members: 6 alphas, 4 visual/betas, and 4 Vps26 genes. Others recently showed that the 3D structure of mammalian Vps26 and the biochemical function of the yeast alpha arrestin PalF are similar to those of beta arrestins. We note that only alpha arrestins have PY motifs (known to bind WW domains in their C-terminal tails, and only visual/betas have helix I in the Arrestin N domain. Conclusion We identified ciliary opsins in Cnidaria and propose this subfamily is ancestral to all previously known animal opsins. That finding is consistent with Darwin's theory that eyes evolved once, and lends some support to Parker's hypothesis that vision triggered the Cambrian explosion of life forms. Our arrestin findings have implications on the evolution of GPCR signaling, and on the biological roles of human alpha arrestins.

  8. Chemistry and molecular physiology of vision: light-sensitive protein rhodopsin

    Science.gov (United States)

    Ostrovsky, Mikhail A.; Feldman, Tatyana B.

    2012-11-01

    The review concerns literature data on the structure, functions and molecular simulation of rhodopsin. The mechanisms of the spectral tuning of visual pigments, photoisomerization of the rhodopsin chromophore group (11-cis-retinal moiety) and the formation of the physiologically active state of rhodopsin as a G-protein-coupled receptor are considered. Particular attention is given to the rhodopsin visual cycle and pathogenetic consequences of its impairment. A knowledge of the structure and photochemistry of rhodopsin was shown to be of importance for the use in nanotechnology of the future. The bibliography includes 219 references.

  9. Expression of a synthetic bovine rhodopsin gene in monkey kidney cells.

    OpenAIRE

    Oprian, D D; Molday, R S; Kaufman, R. J.; Khorana, H G

    1987-01-01

    We report here the high-level expression of a synthetic gene for bovine rhodopsin in transfected monkey kidney COS-1 cells. Rhodopsin is produced in these cells to a level of 0.3% of the cell protein, and it binds exogenously added 11-cis-retinal to generate the characteristic rhodopsin absorption spectrum. We describe a one-step immunoaffinity procedure for purification of the rhodopsin essentially to homogeneity. The COS-1 cell rhodopsin activates the GTPase activity of bovine transducin in...

  10. Rhodopsin TM6 Can Interact with Two Separate and Distinct Sites on Arrestin: Evidence for Structural Plasticity and Multiple Docking Modes in Arrestin–Rhodopsin Binding

    OpenAIRE

    Sinha, Abhinav; Jones Brunette, Amber M.; Fay, Jonathan F.; Schafer, Christopher T.; Farrens, David L.

    2014-01-01

    Various studies have implicated the concave surface of arrestin in the binding of the cytosolic surface of rhodopsin. However, specific sites of contact between the two proteins have not previously been defined in detail. Here, we report that arrestin shares part of the same binding site on rhodopsin as does the transducin Gα subunit C-terminal tail, suggesting binding of both proteins to rhodopsin may share some similar underlying mechanisms. We also identify two areas of contact between the...

  11. Depth-resolved rhodopsin molecular contrast imaging for functional assessment of photoreceptors

    Science.gov (United States)

    Liu, Tan; Wen, Rong; Lam, Byron L.; Puliafito, Carmen A.; Jiao, Shuliang

    2015-09-01

    Rhodopsin, the light-sensing molecule in the outer segments of rod photoreceptors, is responsible for converting light into neuronal signals in a process known as phototransduction. Rhodopsin is thus a functional biomarker for rod photoreceptors. Here we report a novel technology based on visible-light optical coherence tomography (VIS-OCT) for in vivo molecular imaging of rhodopsin. The depth resolution of OCT allows the visualization of the location where the change of optical absorption occurs and provides a potentially accurate assessment of rhodopsin content by segmentation of the image at the location. Rhodopsin OCT can be used to quantitatively image rhodopsin distribution and thus assess the distribution of functional rod photoreceptors in the retina. Rhodopsin OCT can bring significant impact into ophthalmic clinics by providing a tool for the diagnosis and severity assessment of a variety of retinal conditions.

  12. LEDGF1-326 Decreases P23H and Wild Type Rhodopsin Aggregates and P23H Rhodopsin Mediated Cell Damage in Human Retinal Pigment Epithelial Cells

    OpenAIRE

    Rinku Baid; Scheinman, Robert I; Toshimichi Shinohara; Singh, Dhirendra P; Kompella, Uday B.

    2011-01-01

    BACKGROUND: P23H rhodopsin, a mutant rhodopsin, is known to aggregate and cause retinal degeneration. However, its effects on retinal pigment epithelial (RPE) cells are unknown. The purpose of this study was to determine the effect of P23H rhodopsin in RPE cells and further assess whether LEDGF(1-326), a protein devoid of heat shock elements of LEDGF, a cell survival factor, reduces P23H rhodopsin aggregates and any associated cellular damage. METHODS: ARPE-19 cells were transiently transfect...

  13. Electronic and spatial characteristics of the retinylidene chromophore in rhodopsin

    NARCIS (Netherlands)

    Verhoeven, Michiel Adriaan

    2005-01-01

    The G protein coupled receptor rhodopsin was characterised by physical chemical methods like solid-state NMR, FTIR and UV/Vis spectroscopy. Goal of the research was to determine the impact of steric and electronic properties of the retinal ligand on the rate and efficiency of the photochemical react

  14. Rhodopsin molecular contrast imaging by optical coherence tomography for functional assessment of photoreceptors (Conference Presentation)

    Science.gov (United States)

    Nafra, Zahra; Liu, Tan; Jiao, Shuliang

    2016-03-01

    Rhodopsin, the light-sensing molecule in the outer segments of rod photoreceptors, is responsible for converting light into neuronal signals in a process known as phototransduction. Rhodopsin is thus a functional biomarker for rod photoreceptors. We developed a novel technology based on visible-light optical coherence tomography (VIS-OCT) for in vivo molecular imaging of rhodopsin. The depth resolution of OCT allows the visualization of the location where the change of optical absorption occurs and provides a potentially accurate assessment of rhodopsin content by segmentation of the image at the location. A broadband supercontinuum laser, whose filtered output was centered at 520 nm, was used as the illuminating light source. To test the capabilities of the system on rhodopsin mapping we imaged the retina of albino rats. The rats were dark adapted before imaging. An integrated near infrared OCT was used to guide the alignment in dark. VIS-OCT three-dimensional images were then acquired under dark- and light- adapted states sequentially. Rhodopsin distribution was calculated from the differential image. The rhodopsin distributions can be displayed in both en face view and depth-resolved cross-sectional image. Rhodopsin OCT can be used to quantitatively image rhodopsin distribution and thus assess the distribution of functional rod photoreceptors in the retina. Rhodopsin OCT can bring significant impact into ophthalmic clinics by providing a tool for the diagnosis and severity assessment of a variety of retinal conditions.

  15. Structural, energetic, and mechanical perturbations in rhodopsin mutant that causes congenital stationary night blindness.

    Science.gov (United States)

    Kawamura, Shiho; Colozo, Alejandro T; Ge, Lin; Müller, Daniel J; Park, Paul S-H

    2012-06-22

    Several point mutations in rhodopsin cause retinal diseases including congenital stationary night blindness and retinitis pigmentosa. The mechanism by which a single amino acid residue substitution leads to dysfunction is poorly understood at the molecular level. A G90D point mutation in rhodopsin causes constitutive activity and leads to congenital stationary night blindness. It is unclear which perturbations the mutation introduces and how they can cause the receptor to be constitutively active. To reveal insight into these mechanisms, we characterized the perturbations introduced into dark state G90D rhodopsin from a transgenic mouse model expressing exclusively the mutant rhodopsin in rod photoreceptor cells. UV-visible absorbance spectroscopy revealed hydroxylamine accessibility to the chromophore-binding pocket of dark state G90D rhodopsin, which is not detected in dark state wild-type rhodopsin but is detected in light-activated wild-type rhodopsin. Single-molecule force spectroscopy suggested that the structural changes introduced by the mutation are small. Dynamic single-molecule force spectroscopy revealed that, compared with dark state wild-type rhodopsin, the G90D mutation decreased energetic stability and increased mechanical rigidity of most structural regions in the dark state mutant receptor. The observed structural, energetic, and mechanical changes in dark state G90D rhodopsin provide insights into the nature of perturbations caused by a pathological point mutation. Moreover, these changed properties observed for dark state G90D rhodopsin are consistent with properties expected for an active state. PMID:22549882

  16. Marine Bacterial and Archaeal Ion-Pumping Rhodopsins: Genetic Diversity, Physiology, and Ecology.

    Science.gov (United States)

    Pinhassi, Jarone; DeLong, Edward F; Béjà, Oded; González, José M; Pedrós-Alió, Carlos

    2016-12-01

    The recognition of a new family of rhodopsins in marine planktonic bacteria, proton-pumping proteorhodopsin, expanded the known phylogenetic range, environmental distribution, and sequence diversity of retinylidene photoproteins. At the time of this discovery, microbial ion-pumping rhodopsins were known solely in haloarchaea inhabiting extreme hypersaline environments. Shortly thereafter, proteorhodopsins and other light-activated energy-generating rhodopsins were recognized to be widespread among marine bacteria. The ubiquity of marine rhodopsin photosystems now challenges prior understanding of the nature and contributions of "heterotrophic" bacteria to biogeochemical carbon cycling and energy fluxes. Subsequent investigations have focused on the biophysics and biochemistry of these novel microbial rhodopsins, their distribution across the tree of life, evolutionary trajectories, and functional expression in nature. Later discoveries included the identification of proteorhodopsin genes in all three domains of life, the spectral tuning of rhodopsin variants to wavelengths prevailing in the sea, variable light-activated ion-pumping specificities among bacterial rhodopsin variants, and the widespread lateral gene transfer of biosynthetic genes for bacterial rhodopsins and their associated photopigments. Heterologous expression experiments with marine rhodopsin genes (and associated retinal chromophore genes) provided early evidence that light energy harvested by rhodopsins could be harnessed to provide biochemical energy. Importantly, some studies with native marine bacteria show that rhodopsin-containing bacteria use light to enhance growth or promote survival during starvation. We infer from the distribution of rhodopsin genes in diverse genomic contexts that different marine bacteria probably use rhodopsins to support light-dependent fitness strategies somewhere between these two extremes.

  17. Marine Bacterial and Archaeal Ion-Pumping Rhodopsins: Genetic Diversity, Physiology, and Ecology.

    Science.gov (United States)

    Pinhassi, Jarone; DeLong, Edward F; Béjà, Oded; González, José M; Pedrós-Alió, Carlos

    2016-12-01

    The recognition of a new family of rhodopsins in marine planktonic bacteria, proton-pumping proteorhodopsin, expanded the known phylogenetic range, environmental distribution, and sequence diversity of retinylidene photoproteins. At the time of this discovery, microbial ion-pumping rhodopsins were known solely in haloarchaea inhabiting extreme hypersaline environments. Shortly thereafter, proteorhodopsins and other light-activated energy-generating rhodopsins were recognized to be widespread among marine bacteria. The ubiquity of marine rhodopsin photosystems now challenges prior understanding of the nature and contributions of "heterotrophic" bacteria to biogeochemical carbon cycling and energy fluxes. Subsequent investigations have focused on the biophysics and biochemistry of these novel microbial rhodopsins, their distribution across the tree of life, evolutionary trajectories, and functional expression in nature. Later discoveries included the identification of proteorhodopsin genes in all three domains of life, the spectral tuning of rhodopsin variants to wavelengths prevailing in the sea, variable light-activated ion-pumping specificities among bacterial rhodopsin variants, and the widespread lateral gene transfer of biosynthetic genes for bacterial rhodopsins and their associated photopigments. Heterologous expression experiments with marine rhodopsin genes (and associated retinal chromophore genes) provided early evidence that light energy harvested by rhodopsins could be harnessed to provide biochemical energy. Importantly, some studies with native marine bacteria show that rhodopsin-containing bacteria use light to enhance growth or promote survival during starvation. We infer from the distribution of rhodopsin genes in diverse genomic contexts that different marine bacteria probably use rhodopsins to support light-dependent fitness strategies somewhere between these two extremes. PMID:27630250

  18. Rhodopsin kinase and arrestin binding control the decay of photoactivated rhodopsin and dark adaptation of mouse rods.

    Science.gov (United States)

    Frederiksen, Rikard; Nymark, Soile; Kolesnikov, Alexander V; Berry, Justin D; Adler, Leopold; Koutalos, Yiannis; Kefalov, Vladimir J; Cornwall, M Carter

    2016-07-01

    Photoactivation of vertebrate rhodopsin converts it to the physiologically active Meta II (R*) state, which triggers the rod light response. Meta II is rapidly inactivated by the phosphorylation of C-terminal serine and threonine residues by G-protein receptor kinase (Grk1) and subsequent binding of arrestin 1 (Arr1). Meta II exists in equilibrium with the more stable inactive form of rhodopsin, Meta III. Dark adaptation of rods requires the complete thermal decay of Meta II/Meta III into opsin and all-trans retinal and the subsequent regeneration of rhodopsin with 11-cis retinal chromophore. In this study, we examine the regulation of Meta III decay by Grk1 and Arr1 in intact mouse rods and their effect on rod dark adaptation. We measure the rates of Meta III decay in isolated retinas of wild-type (WT), Grk1-deficient (Grk1(-/-)), Arr1-deficient (Arr1(-/-)), and Arr1-overexpressing (Arr1(ox)) mice. We find that in WT mouse rods, Meta III peaks ∼6 min after rhodopsin activation and decays with a time constant (τ) of 17 min. Meta III decay slows in Arr1(-/-) rods (τ of ∼27 min), whereas it accelerates in Arr1(ox) rods (τ of ∼8 min) and Grk1(-/-) rods (τ of ∼13 min). In all cases, regeneration of rhodopsin with exogenous 11-cis retinal is rate limited by the decay of Meta III. Notably, the kinetics of rod dark adaptation in vivo is also modulated by the levels of Arr1 and Grk1. We conclude that, in addition to their well-established roles in Meta II inactivation, Grk1 and Arr1 can modulate the kinetics of Meta III decay and rod dark adaptation in vivo. PMID:27353443

  19. In silico study of the human rhodopsin and meta rhodopsin II/S-arrestin complexes: impact of single point mutations related to retina degenerative diseases.

    Science.gov (United States)

    Mokarzel-Falcón, Leonardo; Padrón-García, Juan Alexander; Carrasco-Velar, Ramón; Berry, Colin; Montero-Cabrera, Luis A

    2008-03-01

    We propose two models of the human S-arrestin/rhodopsin complex in the inactive dark adapted rhodopsin and meta rhodopsin II form, obtained by homology modeling and knowledge based docking. First, a homology model for the human S-arrestin was built and validated by molecular dynamics, showing an average root mean square deviation difference from the pattern behavior of 0.76 A. Then, combining the human S-arrestin model and the modeled structure of the two human rhodopsin forms, we propose two models of interaction for the human S-arrestin/rhodopsin complex. The models involve two S-arrestin regions related to the N domain (residues 68-78; 170-182) and a third constituent of the C domain (248-253), with the rhodopsin C terminus (330-348). Of the 22 single point mutations related to retinitis pigmentosa and congenital night blindness located in the cytoplasmatic portion of rhodopsin or in S-arrestin, our models locate 16 in the interaction region and relate two others to possible dimer formation. Our calculations also predict that the light activated complex is more stable than the dark adapted rhodopsin and, therefore, of higher affinity to S-arrestin. PMID:18175313

  20. Spatial arrangement of rhodopsin in retinal rod outer segment membranes studied by spin-labeling and pulsed electron double resonance

    Energy Technology Data Exchange (ETDEWEB)

    Yasuda, Satoshi [Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043 (Japan); Department of Space and Earth Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043 (Japan); Hara, Hideyuki [Bruker Biospin, Yokohama, Kanagawa 215-0022 (Japan); Tokunaga, Fumio [Department of Space and Earth Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043 (Japan); Arata, Toshiaki, E-mail: arata@bio.sci.osaka-u.ac.jp [Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043 (Japan); Department of Space and Earth Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043 (Japan)

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer Use of spin labeling and PELDOR to measure inter-rhodopsin distance in ROS. Black-Right-Pointing-Pointer Strong decay of PELDOR signal indicated a high density (mM range) of rhodopsin. Black-Right-Pointing-Pointer The decay was modeled by rhodopsin monomers dispersed in a planar membrane. -- Abstract: We have determined the spatial arrangement of rhodopsin in the retinal rod outer segment (ROS) membrane by measuring the distances between rhodopsin molecules in which native cysteines were spin-labeled at {approx}1.0 mol/mol rhodopsin. The echo modulation decay of pulsed electron double resonance (PELDOR) from spin-labeled ROS curved slightly with strong background decay. This indicated that the rhodopsin was densely packed in the retina and that the rhodopsin molecules were not aligned well. The curve was simulated by a model in which rhodopsin is distributed randomly as monomers in a planar membrane.

  1. Sensory mononeuropathies.

    Science.gov (United States)

    Massey, E W

    1998-01-01

    The clinical neurologist frequently encounters patients with a variety of focal sensory symptoms and signs. This article reviews the clinical features, etiologies, laboratory findings, and management of the common sensory mononeuropathies including meralgia paresthetica, cheiralgia paresthetica, notalgia paresthetica, gonyalgia paresthetica, digitalgia paresthetica, intercostal neuropathy, and mental neuropathy. PMID:9608615

  2. Structure of plastocyanin from the cyanobacterium Anabaena variabilis

    DEFF Research Database (Denmark)

    Schmidt, Lars; Christensen, Hans Erik Mølager; Harris, Pernille

    2006-01-01

    Plastocyanin from the cyanobacterium Anabaena variabilis was heterologously produced in E. coli and purified. Plate-like crystals were obtained by crystallisation in 1.15 M trisodium citrate and 7.67 mM sodium borate buffer pH 8.5. The crystals belong to the orthorhombic space group P212121...

  3. Rhodopsin Forms Nanodomains in Rod Outer Segment Disc Membranes of the Cold-Blooded Xenopus laevis.

    Directory of Open Access Journals (Sweden)

    Tatini Rakshit

    Full Text Available Rhodopsin forms nanoscale domains (i.e., nanodomains in rod outer segment disc membranes from mammalian species. It is unclear whether rhodopsin arranges in a similar manner in amphibian species, which are often used as a model system to investigate the function of rhodopsin and the structure of photoreceptor cells. Moreover, since samples are routinely prepared at low temperatures, it is unclear whether lipid phase separation effects in the membrane promote the observed nanodomain organization of rhodopsin from mammalian species. Rod outer segment disc membranes prepared from the cold-blooded frog Xenopus laevis were investigated by atomic force microscopy to visualize the organization of rhodopsin in the absence of lipid phase separation effects. Atomic force microscopy revealed that rhodopsin nanodomains form similarly as that observed previously in mammalian membranes. Formation of nanodomains in ROS disc membranes is independent of lipid phase separation and conserved among vertebrates.

  4. Biochemical analysis of a rhodopsin photoactivatable GFP fusion as a model of G-protein coupled receptor transport

    OpenAIRE

    Sammons, Joshua D.; Gross, Alecia K.

    2013-01-01

    Rhodopsin is trafficked to the rod outer segment of vertebrate rod cells with high fidelity. When rhodopsin transport is disrupted retinal photoreceptors apoptose, resulting in the blinding disease autosomal dominant retinitis pigmentosa. Herein, we introduce rhodopsin-photoactivatable GFP-1D4 (rhodopsin-paGFP-1D4) for the purposes of monitoring rhodopsin transport in living cells. Rhodopsin-paGFP-1D4 contains photoactivatable GFP (paGFP) fused to rhodopsin’s C-terminus and the last eight ami...

  5. Defective intracellular transport is the molecular basis of rhodopsin-dependent dominant retinal degeneration.

    OpenAIRE

    Colley, N J; Cassill, J A; Baker, E K; Zuker, C S

    1995-01-01

    Retinitis pigmentosa (RP) is a group of hereditary human diseases that cause retinal degeneration and lead to eventual blindness. More than 25% of all RP cases in humans appear to be caused by dominant mutations in the gene encoding the visual pigment rhodopsin. The mechanism by which the mutant rhodopsin proteins cause dominant retinal degeneration is still unclear. Interestingly, the great majority of these mutants appear to produce misfolded rhodopsin. We now report the isolation and chara...

  6. Endoplasmic reticulum stress in vertebrate mutant rhodopsin models of retinal degeneration

    OpenAIRE

    Kroeger, H.; LaVail, MM; Lin, JH

    2014-01-01

    © Springer Science+Business Media, LLC 2014. Rhodopsin mutations cause many types of heritable retinitis pigmentosa (RP). Biochemical and in vitro studies have demonstrated that many RPlinked mutant rhodopsins produce misfolded rhodopsin proteins, which are prone to aggregation and retention within the endoplasmic reticulum, where they cause endoplasmic reticulum stress and activate the Unfolded Protein Response signaling pathways. Many vertebrate models of retinal degeneration have been crea...

  7. Rhodopsin Forms Nanodomains in Rod Outer Segment Disc Membranes of the Cold-Blooded Xenopus laevis

    OpenAIRE

    Tatini Rakshit; Subhadip Senapati; Satyabrata Sinha; Whited, A. M.; Paul S-H Park

    2015-01-01

    Rhodopsin forms nanoscale domains (i.e., nanodomains) in rod outer segment disc membranes from mammalian species. It is unclear whether rhodopsin arranges in a similar manner in amphibian species, which are often used as a model system to investigate the function of rhodopsin and the structure of photoreceptor cells. Moreover, since samples are routinely prepared at low temperatures, it is unclear whether lipid phase separation effects in the membrane promote the observed nanodomain organizat...

  8. Rhodopsin coexpression in UV photoreceptors of Aedes aegypti and Anopheles gambiae mosquitoes

    OpenAIRE

    Hu, Xiaobang; Leming, Matthew T; Whaley, Michelle A.; O'Tousa, Joseph E.

    2014-01-01

    Differential rhodopsin gene expression within specialized R7 photoreceptor cells divides the retinas of Aedes aegypti and Anopheles gambiae mosquitoes into distinct domains. The two species express the rhodopsin orthologs Aaop8 and Agop8, respectively, in a large subset of these R7 photoreceptors that function as ultraviolet receptors. We show here that a divergent subfamily of mosquito rhodopsins, Aaop10 and Agop10, is coexpressed in these R7 photoreceptors. The properties of the A. aegypti ...

  9. Depth-resolved rhodopsin molecular contrast imaging for functional assessment of photoreceptors

    OpenAIRE

    Tan Liu; Rong Wen; Lam, Byron L.; Puliafito, Carmen A.; Shuliang Jiao

    2015-01-01

    Rhodopsin, the light-sensing molecule in the outer segments of rod photoreceptors, is responsible for converting light into neuronal signals in a process known as phototransduction. Rhodopsin is thus a functional biomarker for rod photoreceptors. Here we report a novel technology based on visible-light optical coherence tomography (VIS-OCT) for in vivo molecular imaging of rhodopsin. The depth resolution of OCT allows the visualization of the location where the change of optical absorption oc...

  10. Monomeric rhodopsin is the minimal functional unit required for arrestin binding*

    OpenAIRE

    Tsukamoto, Hisao; Sinha, Abhinav; DeWitt, Mark; Farrens, David L.

    2010-01-01

    We have tested if arrestin binding requires the G protein-coupled receptor (GPCR) be a dimer or multimer. To do this, we encapsulated single rhodopsin molecules into nanoscale phospholipids particles (so called nanodiscs) and measured their ability to bind arrestin. Our data clearly show that both visual arrestin and β-arrestin 1 can bind to monomeric rhodopsin and stabilize the active metarhodopsin II form. Interestingly, we find the monomeric rhodopsin in nanodiscs has a higher affinity for...

  11. Assessing the correlation between mutant rhodopsin stability and the severity of retinitis pigmentosa

    OpenAIRE

    McKeone, Richard; Wikstrom, Matthew; Kiel, Christina; Rakoczy, P. Elizabeth

    2014-01-01

    Purpose Following a previous study that demonstrated a correlation between rhodopsin stability and the severity of retinitis pigmentosa (RP), we investigated whether predictions of severity can be improved with a regional analysis of this correlation. The association between changes to the stability of the protein and the relative amount of rhodopsin reaching the plasma membrane was assessed. Methods Crystallography-based estimations of mutant rhodopsin stability were compared with descriptio...

  12. Rhodopsin Kinase Activity in the Mammalian Pineal Gland and Other Tissues

    Science.gov (United States)

    Somers, Robert L.; Klein, David C.

    1984-10-01

    Rhodopsin kinase, an enzyme involved in photochemical transduction in the retina, has been found in the mammalian pineal gland in amounts equal to those in the retina; other tissues had 7 percent of this amount, or less. This finding suggests that, in mammals, rhodopsin kinase functions in the pineal gland and other tissues to phosphorylate rhodopsin-like integral membrane receptors and is thereby involved in signal transduction.

  13. Alternative models for two crystal structures of bovine rhodopsin

    Energy Technology Data Exchange (ETDEWEB)

    Stenkamp, Ronald E., E-mail: stenkamp@u.washington.edu [Departments of Biological Structure and Biochemistry, Biomolecular Structure Center, University of Washington, Seattle, WA 98195 (United States)

    2008-08-01

    Two crystal structures of rhodopsin that were originally described using trigonal symmetry can be interpreted in a hexagonal unit cell with a smaller asymmetric unit. The space-group symmetry of two crystal forms of rhodopsin (PDB codes 1gzm and 2j4y; space group P3{sub 1}) can be re-interpreted as hexagonal (space group P6{sub 4}). Two molecules of the G protein-coupled receptor are present in the asymmetric unit in the trigonal models. However, the noncrystallographic twofold axes parallel to the c axis can be treated as crystallographic symmetry operations in the hexagonal space group. This halves the asymmetric unit and makes all of the protein molecules equivalent in these structures. Corrections for merohedral twinning were also applied in the refinement in the higher symmetry space group for one of the structures (2j4y)

  14. A Photoisomerizing Rhodopsin Mimic Observed at Atomic Resolution.

    Science.gov (United States)

    Nosrati, Meisam; Berbasova, Tetyana; Vasileiou, Chrysoula; Borhan, Babak; Geiger, James H

    2016-07-20

    The members of the rhodopsin family of proteins are involved in many essential light-dependent processes in biology. Specific photoisomerization of the protein-bound retinylidene PSB at a specified wavelength range of light is at the heart of all of these systems. Nonetheless, it has been difficult to reproduce in an engineered system. We have developed rhodopsin mimics, using intracellular lipid binding protein family members as scaffolds, to study fundamental aspects of protein/chromophore interactions. Herein we describe a system that specifically isomerizes the retinylidene protonated Schiff base both thermally and photochemically. This isomerization has been characterized at atomic resolution by quantitatively interconverting the isomers in the crystal both thermally and photochemically. This event is accompanied by a large pKa change of the imine similar to the pKa changes observed in bacteriorhodopsin and visual opsins during isomerization. PMID:27310917

  15. Origin of Fluorescence in 11-cis Locked Bovine Rhodopsin.

    Science.gov (United States)

    Laricheva, Elena N; Gozem, Samer; Rinaldi, Silvia; Melaccio, Federico; Valentini, Alessio; Olivucci, Massimo

    2012-08-14

    The excited state lifetime of bovine rhodopsin (Rh) increases from ca. 100 fs to 85 ps when the C11═C12 bond of its chromophore is locked by a cyclopentene moiety (Rh5). To explain such an increase, we employed ab initio multiconfigurational quantum chemistry to construct computer models of Rh and Rh5 and to investigate the shape of their excited state potential energy surfaces in a comparative way. Our results show that the observed Rh5 fluorescence (λmax(f) = 620 nm) is due to a previously unreported locally excited intermediate whose lifetime is controlled by a small energy barrier. The analysis of the properties and decay path of such an intermediate provides useful information for engineering rhodopsin variants with augmented fluorescence efficiencies.

  16. Modelling vibrational coherence in the primary rhodopsin photoproduct

    Science.gov (United States)

    Weingart, O.; Garavelli, M.

    2012-12-01

    Molecular dynamics simulations of the rhodopsin photoreaction reveal coherent low frequency oscillations in the primary photoproduct (photorhodopsin), with frequencies slightly higher than observed in the experiment. The coherent molecular motions in the batho-precursor can be attributed to the activation of ground state vibrational modes in the hot photo-product, involving out-of-plane deformations of the carbon skeleton. Results are discussed and compared with respect to spectroscopic data and suggested reaction mechanisms.

  17. Mass genetics study of rhodopsin point mutations in retinitis pigmentosa

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xiao-li; YIN Zheng-qin; ZHANG Xue; FU Wei-ling

    2004-01-01

    Objective: To evaluate the incidence and pattern of rhodopsin (RHO) mutations in Chinese patients with retinitis pigmentosa (RP). Methods: Conformation sensitive gel electrophoresis (CSGE) and direct DNA sequencing were applied to detect point mutations that occurred in the five coding exous and splice sites of RHO gene in 98 index patients with RP. Results: Four patients of one ADRP family were found to have a missense mutation at codon 347, Pro347Leu. One late-onset RP patient and her daughter, without clinical expression at present, were discovered to have a novel frameshift mutation at codon 327, Pro327 ( 1-bp del). Neither of the two mutations was found in 100 normal controls. Ala299Ser was found in one RP patient. Two control subjects also had Ala299Ser, suggesting its nonpathogenicity and just single nucleotide polymorphism (SNP). Conclusion: Two RP patients had rhodopsin mutations, thus the expected frequency of RHO mutations in RP is about 2.0% (95% confidence interval: 0.3% - 4.4% ). A highly conserved C-terminal sequence QVS (A)PA was altered due to Pro347Leu and thereby misdirecting rhodopsin to incorrect subcellular location. Loss of all phosphorylation sites at the C-terminus and a highly conserved sequence QVS(A)PA may occur because of Pro327( 1-bp del). To elucidate the predominant biochemical defects in such mutant, transgenic mice and transfected culture cells carrying Pro327( 1-bp del) would be of great value.

  18. Rhodopsin Photoactivation Dynamics Revealed by Quasi-Elastic Neutron Scattering

    Science.gov (United States)

    Bhowmik, Debsindhu; Shrestha, Utsab; Perera, Suchhithranga M. C. D.; Chawla, Udeep; Mamontov, Eugene; Brown, Michael; Chu, Xiang-Qiang

    2015-03-01

    Rhodopsin is a G-protein-coupled receptor (GPCR) responsible for vision. During photoactivation, the chromophore retinal dissociates from protein yielding the opsin apoprotein. What are the changes in protein dynamics that occur during the photoactivation process? Here, we studied the microscopic dynamics of dark-state rhodopsin and the ligand-free opsin using quasielastic neutron scattering (QENS). The QENS technique tracks individual hydrogen atom motion because of the much higher neutron scattering cross-section of hydrogen than other atoms. We used protein with CHAPS detergent hydrated with heavy water. The activation of proteins is confirmed at low temperatures up to 300 K by mean-square displacement (MSD) analysis. The QENS experiments at temperatures ranging from 220 K to 300 K clearly indicate an increase in protein dynamic behavior with temperature. The relaxation time for the ligand-bound protein rhodopsin is faster compared to opsin, which can be correlated with the photoactivation. Moreover, the protein dynamics are orders of magnitude slower than the accompanying CHAPS detergent, which unlike protein, manifests localized motions.

  19. Regulation of Fructose Transport and Its Effect on Fructose Toxicity in Anabaena spp.▿ †

    OpenAIRE

    Ungerer, Justin L.; Pratte, Brenda S.; Thiel, Teresa

    2008-01-01

    Anabaena variabilis grows heterotrophically using fructose, while the close relative Anabaena sp. strain PCC 7120 does not. Introduction of a cluster of genes encoding a putative ABC transporter, herein named frtRABC, into Anabaena sp. strain PCC 7120 on a replicating plasmid allowed that strain to grow in the dark using fructose, indicating that these genes are necessary and sufficient for heterotrophic growth. FrtR, a putative LacI-like regulatory protein, was essential for heterotrophic gr...

  20. Structure and function in rhodopsin: Destabilization of rhodopsin by the binding of an antibody at the N-terminal segment provides support for involvement of the latter in an intradiscal tertiary structure

    OpenAIRE

    Cha, Kiweon; Reeves, Philip J.; Khorana, H. Gobind

    2000-01-01

    A monoclonal anti-rhodopsin antibody (B6–30N), characterized by Hargrave and coworkers [Adamus, G., Zam, Z. S., Arendt, A., Palczewski, K., McDowell, J. M. & Hargrave, P. (1991) Vision Res. 31, 17–31] as recognizing a short peptide sequence at the N terminus, failed to bind to rhodopsin when the latter was solubilized in dodecylmaltoside (DM). Of the detergents tested thus far, DM affords maximum stability to rhodopsin. Solubilization of rhodopsin in cholate allowe...

  1. Scanning Laser Ophthalmoscope Measurement of Local Fundus Reflectance and Autofluorescence Changes Arising from Rhodopsin Bleaching and Regeneration

    OpenAIRE

    Morgan, Jessica I. W.; Pugh, Edward N.

    2013-01-01

    Rhodopsin was measured locally in the retina with a widely available, dual wavelength scanning laser ophthalmoscope that does not require pupil dilation. Increased autofluorescence attendant bleaching arises largely from transient removal of rhodopsin's screening of autofluorescent fluorochromes.

  2. A new cyanobacterial species of Anabaena genus (Nostocales, Cyanobacteria) from Bulgaria

    OpenAIRE

    Kirilov Kirjakov, Ivan; Naneva Velichkova, Katya

    2016-01-01

    Una nueva especie de cianobacteria del género Anabaena (Nostocales, Cyanobacteria) de Bulgaria Se describe una nueva especie del género de Cyanobacterias, Anabaena Bory ex Born. et Flah. (Nostocales) de las montañas Ródope de Bulgaria. Anabaena rhodopensis sp. nova. tiene acinetas con paredes celulares esculpidas. Se dan los datos biométricos para el tamaño de las células vegetativas, heterocistos y acinetos. Abstract: A new species of cyanobacterial genus Anabaena Bo...

  3. Absolute absorption spectra of batho- and photorhodopsins at room temperature. Picosecond laser photolysis of rhodopsin in polyacrylamide.

    OpenAIRE

    Kandori, H; Shichida, Y; Yoshizawa, T

    1989-01-01

    Picosecond laser photolysis of rhodopsin in 15% polyacrylamide gel was performed for estimating absolute absorption spectra of the primary intermediates of cattle rhodopsin (bathorhodopsin and photorhodopsin). Using a rhodopsin digitonin extract embedded in 15% polyacrylamide gel, a precise percentage of bleaching of rhodopsin after excitation of a picosecond laser pulse was measured. Using this value, the absolute absorption spectrum of bathorhodopsin was calculated from the spectral change ...

  4. Mechanisms of Ubiquitylation and Endoplasmic Reticulum- Associated Degradation of P23H Mutant Rhodopsin in Retinal Degeneration

    OpenAIRE

    Chen, Allen PF

    2015-01-01

    Rhodopsin protein is the archetypal G-protein coupled receptor that is specifically and massively expressed in rod photoreceptor cells. Over 100 rhodopsin mutations lead to inheritable retinal disease. The P23H point mutation in rhodopsin leads to autosomal dominant retinitis pigmentosa, in which gradual death of rod photoreceptor cells results in night blindness and eventual total blindness. Both in vitro and in vivo systems demonstrate that P23H rhodopsin is misfolded and subjected to deple...

  5. Mislocalization and Degradation of Human P23H-Rhodopsin-GFP in a Knockin Mouse Model of Retinitis Pigmentosa

    OpenAIRE

    Price, Brandee A.; Sandoval, Ivette M.; Chan, Fung; Simons, David L.; Wu, Samuel M.; Theodore G Wensel; Wilson, John H.

    2011-01-01

    The fate of P23H-rhodopsin in rod photoreceptors is uncertain and the basis for the resulting pathology is unclear. A human P23H-rhodopsin-GFP knockin mouse model that allows ready tracking of the localization and stability of P23H-rhodopsin in rod cells is presented.

  6. All-trans retinal constitutes the functional chromophore in Chlamydomonas rhodopsin

    OpenAIRE

    Hegemann, P.; Gärtner, W; R. Uhl

    1991-01-01

    Orientation of the green alga Chlamydomonas in light (phototaxis and stop responses) is controlled by a visual system with a rhodopsin as the functional photoreceptor. Here, we present evidence that in Chlamydomonas wild-type cells all-trans retinal is the predominant isomer and that it is present in amounts similar to that of the rhodopsin itself.

  7. Complete genome sequence of Anabaena variabilis ATCC 29413

    Energy Technology Data Exchange (ETDEWEB)

    Thiel, Teresa [University of Missouri, St. Louis; Pratte, Brenda S. [University of Missouri, St. Louis; Zhong, Jinshun [University of Missouri, St. Louis; Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Copeland, A [U.S. Department of Energy, Joint Genome Institute; Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Han, Cliff [Los Alamos National Laboratory (LANL); Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute

    2013-01-01

    Anabaena variabilis ATCC 29413 is a filamentous, heterocyst-forming cyanobacterium that has served as a model organism, with an extensive literature extending over 40 years. The strain has three distinct nitrogenases that function under different environmental conditions and is capable of photoautotrophic growth in the light and true heterotrophic growth in the dark using fructose as both carbon and energy source. While this strain was first isolated in 1964 in Mississippi and named Ana-baena flos-aquae MSU A-37, it clusters phylogenetically with cyanobacteria of the genus Nostoc. The strain is a moderate thermophile, growing well at approximately 40 C. Here we provide some additional characteristics of the strain, and an analysis of the complete genome sequence.

  8. Phosphate transport and arsenate resistance in the cyanobacterium Anabaena variabilis.

    OpenAIRE

    Thiel, T.

    1988-01-01

    Cells of the cyanobacterium Anabaena variabilis starved for phosphate for 3 days took up phosphate at about 100 times the rate of unstarved cells. Kinetic data suggested that a new transport system had been induced by starvation for phosphate. The inducible phosphate transport system was quickly repressed by addition of Pi. Phosphate-starved cells were more sensitive to the toxic effects of arsenate than were unstarved cells, but phosphate could alleviate some of the toxicity. Arsenate was a ...

  9. 中国鱼腥藻属的八个新记录种%EIGHT NEWLY RECORDED SPECIES OF ANABAENA BORY (NOSTOCACEAE, CYANOPHYTA) FROM CHINA

    Institute of Scientific and Technical Information of China (English)

    杨丽; 虞功亮; 李仁辉

    2009-01-01

    menioides Forti 1912、伯氏鱼腥藻Anabaena bergii Ostenfeld 1908、乌克兰鱼腥藻Anabaena ucrainica(Schkorb.)Watanabe 1996、大湖鱼腥藻Anabaena oumiana Watanabe 1996和真紧密鱼腥藻Anabaena eucompacta Li et Watanabe 1999.

  10. Femtosecond Laser Spectroscopy of the Rhodopsin Photochromic Reaction: A Concept for Ultrafast Optical Molecular Switch Creation (Ultrafast Reversible Photoreaction of Rhodopsin

    Directory of Open Access Journals (Sweden)

    Olga Smitienko

    2014-11-01

    Full Text Available Ultrafast reverse photoreaction of visual pigment rhodopsin in the femtosecond time range at room temperature is demonstrated. Femtosecond two-pump probe experiments with a time resolution of 25 fs have been performed. The first рump pulse at 500 nm initiated cis-trans photoisomerization of rhodopsin chromophore, 11-cis retinal, which resulted in the formation of the primary ground-state photoproduct within a mere 200 fs. The second pump pulse at 620 nm with a varying delay of 200 to 3750 fs relative to the first рump pulse, initiated the reverse phototransition of the primary photoproduct to rhodopsin. The results of this photoconversion have been observed on the differential spectra obtained after the action of two pump pulses at a time delay of 100 ps. It was found that optical density decreased at 560 nm in the spectral region of bathorhodopsin absorption and increased at 480 nm, where rhodopsin absorbs. Rhodopsin photoswitching efficiency shows oscillations as a function of the time delay between two рump pulses. The quantum yield of reverse photoreaction initiated by the second pump pulse falls within the range 15% ± 1%. The molecular mechanism of the ultrafast reversible photoreaction of visual pigment rhodopsin may be used as a concept for the development of an ultrafast optical molecular switch.

  11. Repression of Six3 by a corepressor regulates rhodopsin expression

    OpenAIRE

    Manavathi, Bramanandam; Peng, Shaohua; Rayala, Suresh K.; Talukder, Amjad H; Wang, Minhua H.; WANG, RUI-AN; Balasenthil, Seetharaman; Agarwal, Neeraj; Frishman, Laura J.; Kumar, Rakesh

    2007-01-01

    Here, we provide gain-of-function, loss-of function, and molecular evidence supporting genetic interactions between metastasis associated protein 1 (MTA1) and Six3 and between Six3 and rhodopsin. We discovered that MTA1 physically interacts with the Six3 chromatin in a histone deacetylase-dependent manner, leading to transcriptional suppression of the Six3 gene. MTA1 is also a Six3-interacting corepressor that contributes to a self-negative regulation of Six3 transcription by Six3. In contras...

  12. Optical control of a rhodopsin-based switch

    Science.gov (United States)

    Ovryn, Ben; Li, Xiang; Chiel, Hillel; Herlitze, Stefan

    2004-07-01

    A preliminary result supports the feasibility of using visible light to modulate the membrane potential of a cell. Human embryonic kidney cells (HEK293) were transfected with vertebrate rhodopsin and a gradient inward rectifying potassium (GIRK) channel. Whole cell patch clamp recordings of HEK293 cells exposed to 9-cis retinal showed that illumination increases the potassium current compared with recordings obtained in the dark. When combined with a rapid scanning device, this approach has the potential to control the activity of many neurons.

  13. Competition for phosphorus between the nitrogen-fixing cyanobacteria Anabaena and Aphanizomenon

    NARCIS (Netherlands)

    DeNobel, WT; Snoep, JL; Mur, LR

    1997-01-01

    The influence of Na fixation on the P-limited growth of two strains of Anabaena and Aphanizomenon was investigated using continuous cultures. Under N-2-fixing conditions Anabaena had a higher maximum growth rate, a greater affinity for P, a higher yield on P and a higher N-2 fixation activity than A

  14. Production of cyanopeptolins, anabaenopeptins, and microcystins by the harmful cyanobacteria Anabaena 90 and Microcystis PCC 7806

    NARCIS (Netherlands)

    L. Tonk; M. Welker; J. Huisman; P.M. Visser

    2009-01-01

    This study investigated the effects of light intensity, temperature, and phosphorus limitation on the peptide production of the cyanobacteria Microcystis PCC 7806 and Anabaena 90. Microcystis PCC 7806 produced two microcystin variants and three cyanopeptolins, whereas Anabaena 90 produced four micro

  15. Regulation of Development and Nitrogen Fixation in Anabaena

    Energy Technology Data Exchange (ETDEWEB)

    James W Golden

    2004-08-05

    The nitrogen-fixing filamentous cyanobacterium Anabaena sp. strain PCC 7120 is being used as a simple model of microbial development and pattern formation in a multicellular prokaryotic organism. Anabaena reduces atmospheric nitrogen to ammonia in highly specialized, terminally differentiated cells called heterocysts. Anabaena is an important model system because of the multicellular growth pattern, the suspected antiquity of heterocyst development, and the contribution of fixed nitrogen to the environment. We are especially interested in understanding the molecular signaling pathways and genetic regulation that control heterocyst development. In the presence of an external source of reduced nitrogen, the differentiation of heterocysts is inhibited. When Anabaena is grown on dinitrogen, a one-dimensional developmental pattern of single heterocysts separated by approximately ten vegetative cells is established to form a multicellular organism composed of two interdependent cell types. The goal of this project is to understand the signaling and regulatory pathways that commit a vegetative cell to terminally differentiate into a nitrogen-fixing heterocyst. Several genes identified by us and by others were chosen as entry points into the regulatory network. Our research, which was initially focused on transcriptional regulation by group 2 sigma factors, was expanded to include group 3 sigma factors and their regulators after the complete Anabaena genome sequence became available. Surprisingly, no individual sigma factor is essential for heterocyst development. We have used the isolation of extragenic suppressors to study genetic interactions between key regulatory genes such as patS, hetR, and hetC in signaling and developmental pathways. We identified a hetR R223W mutation as a bypass suppressor of patS overexpression. Strains containing the hetR R223W allele fail to respond to pattern formation signals and overexpression of this allele results in a lethal phenotype

  16. Biodegradation of polychlorinated biphenyls (PCBs by the novel identified cyanobacterium Anabaena PD-1.

    Directory of Open Access Journals (Sweden)

    Hangjun Zhang

    Full Text Available Polychlorinated biphenyls (PCBs, a class of hazardous pollutants, are difficult to dissipate in the natural environment. In this study, a cyanobacterial strain Anabaena PD-1 showed good resistance against PCB congeners. Compared to a control group, chlorophyll a content decreased 3.7% and 11.7% when Anabaena PD-1 was exposed to 2 and 5 mg/L PCBs for 7 d. This cyanobacterial strain was capable of decomposing PCB congeners which was conclusively proved by determination of chloride ion concentrations in chlorine-free medium. After 7 d, the chloride ion concentrations in PCB-treated groups (1, 2, 5 mg/L were 3.55, 3.05, and 2.25 mg/L, respectively. The genetic information of strain PD-1 was obtained through 16S rRNA sequencing analysis. The GenBank accession number of 16S rRNA of Anabaena PD-1 was KF201693.1. Phylogenetic tree analysis clearly indicated that Anabaena PD-1 belonged to the genus Anabaena. The degradation half-life of Aroclor 1254 by Anabaena PD-1 was 11.36 d; the total degradation rate for Aroclor 1254 was 84.4% after 25 d. Less chlorinated PCB congeners were more likely to be degraded by Anabaena PD-1 in comparison with highly chlorinated congeners. Meta- and para-chlorines in trichlorodiphenyls and tetrachlorobiphenyls were more susceptible to dechlorination than ortho-chlorines during the PCB-degradation process by Anabaena PD-1. Furthermore, Anabaena PD-1 can decompose dioxin-like PCBs. The percent biodegradation of 12 dioxin-like PCBs by strain PD-1 ranged from 37.4% to 68.4% after 25 days. Results above demonstrate that Anabaena PD-1 is a PCB-degrader with great potential for the in situ bioremediation of PCB-contaminated paddy soils.

  17. Biodegradation of polychlorinated biphenyls (PCBs) by the novel identified cyanobacterium Anabaena PD-1.

    Science.gov (United States)

    Zhang, Hangjun; Jiang, Xiaojun; Lu, Liping; Xiao, Wenfeng

    2015-01-01

    Polychlorinated biphenyls (PCBs), a class of hazardous pollutants, are difficult to dissipate in the natural environment. In this study, a cyanobacterial strain Anabaena PD-1 showed good resistance against PCB congeners. Compared to a control group, chlorophyll a content decreased 3.7% and 11.7% when Anabaena PD-1 was exposed to 2 and 5 mg/L PCBs for 7 d. This cyanobacterial strain was capable of decomposing PCB congeners which was conclusively proved by determination of chloride ion concentrations in chlorine-free medium. After 7 d, the chloride ion concentrations in PCB-treated groups (1, 2, 5 mg/L) were 3.55, 3.05, and 2.25 mg/L, respectively. The genetic information of strain PD-1 was obtained through 16S rRNA sequencing analysis. The GenBank accession number of 16S rRNA of Anabaena PD-1 was KF201693.1. Phylogenetic tree analysis clearly indicated that Anabaena PD-1 belonged to the genus Anabaena. The degradation half-life of Aroclor 1254 by Anabaena PD-1 was 11.36 d; the total degradation rate for Aroclor 1254 was 84.4% after 25 d. Less chlorinated PCB congeners were more likely to be degraded by Anabaena PD-1 in comparison with highly chlorinated congeners. Meta- and para-chlorines in trichlorodiphenyls and tetrachlorobiphenyls were more susceptible to dechlorination than ortho-chlorines during the PCB-degradation process by Anabaena PD-1. Furthermore, Anabaena PD-1 can decompose dioxin-like PCBs. The percent biodegradation of 12 dioxin-like PCBs by strain PD-1 ranged from 37.4% to 68.4% after 25 days. Results above demonstrate that Anabaena PD-1 is a PCB-degrader with great potential for the in situ bioremediation of PCB-contaminated paddy soils.

  18. Nuclear Wavepacket Propogation Model for the Retinal Chromophore in Rhodopsin

    Science.gov (United States)

    Corn, Brittany; Malinovskaya, Svetlana

    2009-05-01

    Rhodopsin, consisting of a retinal chromophore and a protein opsin, is responsible for the first steps in the vision process through a cis to trans photoisomerization, which is completed within 200 fs[1]. Efforts to control the ultrafast dynamics of this molecule have been carried out experimentally[2] as well as through quantum mechanical modeling of nuclear wave packet propagation[3]. We propose a two state model in which the ground electronic Potential Energy Surface (PES) is made up of two adjacent harmonic potentials, representing the cis and trans retinal saddle points, as well as an excited PES, characterized by the Morse potential, which meets the ground PES at a conical intersection. We explore the achievement of a high quantum yield of the trans retinal configuration by varying parameters of the external field and choosing the most adequate shape. Another investigation is presented in which we compare the charge distribution of cis and trans retinal in order to reveal a charge transfer mechanism behind the isomerization of rhodopsin. The results of the Lowdin and Natural Population Analyses demonstrate a significant transfer of charge in and around the isomerization region. [1] RW Schoenlein, LA Peteanu, RA Mathies, CV Shank, Science 254, 412 (1991) [2] VI Prokhorenko, AM Nagy, SA Waschuk, LS Brown, RR Birge, RJD Miller, Science 313, 1257 (2006) [3] S Hahn, G Stock, Chem Phys 259, 297-312 (2000)

  19. Rescue of photoreceptor degeneration by curcumin in transgenic rats with P23H rhodopsin mutation.

    Directory of Open Access Journals (Sweden)

    Vidyullatha Vasireddy

    Full Text Available The P23H mutation in the rhodopsin gene causes rhodopsin misfolding, altered trafficking and formation of insoluble aggregates leading to photoreceptor degeneration and autosomal dominant retinitis pigmentosa (RP. There are no effective therapies to treat this condition. Compounds that enhance dissociation of protein aggregates may be of value in developing new treatments for such diseases. Anti-protein aggregating activity of curcumin has been reported earlier. In this study we present that treatment of COS-7 cells expressing mutant rhodopsin with curcumin results in dissociation of mutant protein aggregates and decreases endoplasmic reticulum stress. Furthermore we demonstrate that administration of curcumin to P23H-rhodopsin transgenic rats improves retinal morphology, physiology, gene expression and localization of rhodopsin. Our findings indicate that supplementation of curcumin improves retinal structure and function in P23H-rhodopsin transgenic rats. This data also suggest that curcumin may serve as a potential therapeutic agent in treating RP due to the P23H rhodopsin mutation and perhaps other degenerative diseases caused by protein trafficking defects.

  20. Environmental and nutritional factors affecting geosmin synthesis by Anabaena sp.

    Science.gov (United States)

    Saadoun, I M; Schrader, K K; Blevins, W T

    2001-04-01

    A cyanobacterium isolated from a source-water reservoir during a spring odor and taste episode and identified as Anabaena sp. consistently produced geosmin during laboratory culture on modified BG-11 liquid medium. Maximal geosmin/biomass occurred at 20 degrees C and a light intensity of 17 microE/m2/s; geosmin/chla values directly correlated with increasing light intensity (r2 = 0.95, P geosmin synthesis; at 17 microE/m2/s, increasing temperature stimulates chla production (to 25 degrees C) while repressing geosmin synthesis (above 20 degrees C). Nutritional factors promoting biomass, chla, and geosmin synthesis by Anabaena sp. were also investigated. For cultures grown at 17 microE/m2/s and 20 degrees C for 20 days, both ammonium-N and nitrate-N generally enhanced the growth of Anabaena sp. Nitrate-N promoted more chla production (r2 = 0.99) than ammonium-N. Geosmin synthesis was directly correlated with ammonium-N concentrations (r2 = 0.89), with low nitrate-N (123.5 micrograms/l) favoring maximal geosmin production (2.8 micrograms/l). Increasing nitrate-N concentrations promoted a three-fold increase in chla content with geosmin synthesis decreased by two-fold. Geosmin/mg biomass was directly related to ammonium-N concentration; high nitrate-N levels suppressed geosmin production. No geosmin was detected at or below 118 micrograms phosphate-phosphorus/l. Geosmin, dry weight biomass, and chla production were correlated with increasing phosphorus (P) concentration (r2 = 0.76, 0.96 and 0.98, respectively). No geosmin was detected when copper was present in growth media at or above 6.92 micrograms Cu2+/l (CuSO4.5H2O). Dry weight biomass and chla production were negatively correlated with Cu2+ ion concentrations.

  1. Effects of Atmospheric NO2 on Azolla-Anabaena Symbiosis.

    OpenAIRE

    Hur, Jae-Seoun; Wellburn, Alan R.

    1994-01-01

    Cultures of the water fern Azolla pinnata R, Br. exposed for 1 week to atmospheric NO2 (50, 100 or 200 nl l-1) induced additional levels of nitrate reductase (NaR) protein and nitrite reductase (NiR) activity. At low concentrations of NO2 (50 nl l-1), nitrate derived from NO2 provides an alternative N source for Azolla but does not affect rates of acetylene reduction. However, the symbiotic relationship between Azolla and its endosymbiont, Anabaena azollae is only affected adversely by high c...

  2. Regulation of Development and Nitrogen Fixation in Anabaena

    Energy Technology Data Exchange (ETDEWEB)

    James W. Golden

    2008-10-17

    The regulation of development and cellular differentiation is important for all multicellular organisms. The nitrogen-fixing filamentous cyanobacterium Anabaena (also Nostoc) sp. PCC 7120 (hereafter Anabaena) provides a model of multicellular microbial development and pattern formation. Anabaena reduces N2 to ammonia in specialized terminally differentiated cells called heterocysts. A one-dimensional developmental pattern of single heterocysts regularly spaced along filaments of photosynthetic vegetative cells is established to form a multicellular organism composed of these two interdependent cell types. This multicellular growth pattern, the distinct phylogeny of cyanobacteria, and the suspected antiquity of heterocyst development make this an important model system. Our long-term goal is to understand the regulatory network required for heterocyst development and nitrogen fixation. This project is focused on two key aspects of heterocyst regulation: one, the mechanism by which HetR controls the initiation of differentiation, and two, the cis and trans acting factors required for expression of the nitrogen-fixation (nif) genes. HetR is thought to be a central regulator of heterocyst development but the partners and mechanisms involved in this regulation are unknown. Our recent results indicate that PatS and other signals that regulate heterocyst pattern cannot interact, directly or indirectly, with a R223W mutant of HetR. We plan to use biochemical and genetic approaches to identify proteins that interact with the HetR protein, which will help reveal the mechanisms underlying its regulation of development. Our second goal is to determine how the nif genes are expressed. It is important to understand the mechanisms controlling nif genes since they represent the culmination of the differentiation process and the essence of heterocyst function. The Anabaena genome lacks the genes required for expression of nif genes present in other organisms such as rpoN (sigma 54

  3. Fluorapatite as Inorganic Phosphate Source for the Cyanobacterium Anabaena PCC 7120

    Science.gov (United States)

    Schaperdoth, I.; Brantley, S.

    2003-12-01

    We investigated the hypothesis that the cyanobacterium Anabaena PCC 7120 is able to use fluorapatite (FAP) as sole phosphate source for growth. In the experimental setup the dissolution of FAP was tested in a phosphate free growth medium in the presence and absence of the Anabaena, as well as the cell free supernatant of an Anabaena culture. The results were compared with that of an Anabaena culture grown without fluorapatite. Parameters measured were pH, dissolved P and Ca, as well as cell density. The FAP grains were analyzed using SEM and XPS. Additionally, the differential expression of secreted proteins in cultures with and without dissolved phosphate was examined. P-limited Anabaena cultures tend to aggregate and in the presence of FAP the cells attached themselves to the mineral grains. The cultures benefit from the presence of FAP. The cells have a very effective P-uptake system that is able to take up dissolved phosphate very efficiently and draw the concentrations down to very low levels. Furthermore, the SEM analysis of FAP showed an etching of the mineral grains in the samples from the Anabaena cultures. The mechanism of apatite dissolution with and without Anabaena will be discussed in terms of these experimental observations.

  4. Investigation of the chromophore binding cavity in the 11-cis acceptable microbial rhodopsin MR

    Science.gov (United States)

    Mori, Arisa; Yagasaki, Jin; Homma, Michio; Reissig, Louisa; Sudo, Yuki

    2013-06-01

    Rhodopsins are photoactive molecules functioning as photo-energy or photo-signal converters with the chromophore retinal. Recently we characterized a unique microbial rhodopsin (middle rhodopsin, MR) which can also bind 11-cis retinal besides all-trans and 13-cis retinal at a particular ratio. In this study, we investigated the structural characteristics around the retinal binding cavity in MR. The results suggest that the space of the retinal binding site of MR is less restricted to the retinal chromophore and the presence of the 11-cis conformer is regulated by the residues located around the retinal. Furthermore, although the triple mutant of MR has identical residues with the well-studied microbial rhodopsin bacteriorhodopsin (BR) within 5 Å from the retinal, the absorption maximum and retinal composition of MR did not reach those of BR, indicating that some long-range effect(s) (>5 Å) is also important for the maintenance of the chemical properties of MR.

  5. Molecular dynamics simulations on structural conformations of rhodopsin and prion proteins

    International Nuclear Information System (INIS)

    Molecular dynamics simulations were performed to investigate the structural conformation of the rhodopsin and prion proteins. We have estimated the effect of specific disease-related amino acid mutations on the dynamics and conformational changes

  6. Rhodopsin mutant P23H destabilizes rod photoreceptor disk membranes.

    Directory of Open Access Journals (Sweden)

    Mohammad Haeri

    Full Text Available Mutations in rhodopsin cause retinitis pigmentosa in humans and retinal degeneration in a multitude of other animals. We utilized high-resolution live imaging of the large rod photoreceptors from transgenic frogs (Xenopus to compare the properties of fluorescently tagged rhodopsin, Rho-EGFP, and Rho(P23H-EGFP. The mutant was abnormally distributed both in the inner and outer segments (OS, accumulating in the OS to a concentration of ∼0.1% compared to endogenous opsin. Rho(P23H-EGFP formed dense fluorescent foci, with concentrations of mutant protein up to ten times higher than other regions. Wild-type transgenic Rho-EGFP did not concentrate in OS foci when co-expressed in the same rod with Rho(P23H-EGFP. Outer segment regions containing fluorescent foci were refractory to fluorescence recovery after photobleaching, while foci in the inner segment exhibited recovery kinetics similar to OS regions without foci and Rho-EGFP. The Rho(P23H-EGFP foci were often in older, more distal OS disks. Electron micrographs of OS revealed abnormal disk membranes, with the regular disk bilayers broken into vesiculotubular structures. Furthermore, we observed similar OS disturbances in transgenic mice expressing Rho(P23H, suggesting such structures are a general consequence of mutant expression. Together these results show that mutant opsin disrupts OS disks, destabilizing the outer segment possibly via the formation of aggregates. This may render rods susceptible to mechanical injury or compromise OS function, contributing to photoreceptor loss.

  7. The role of the lipid matrix for structure and function of the GPCR rhodopsin

    OpenAIRE

    Soubias, Olivier; Gawrisch, Klaus

    2011-01-01

    Photoactivation of rhodopsin in lipid bilayers results within milliseconds in a metarhodopsin I (MI) – metarhodopsin II (MII) equilibrium that is very sensitive to the lipid composition. It has been well established that lipid bilayers that are under negative curvature elastic stress from incorporation of lipids like phosphatidylethanolamines (PE) favor formation of MII, the rhodopsin photointermediate that is capable of activating G protein. Furthermore, formation of the MII state is favored...

  8. Axial gradients of rhodopsin in light-exposed retinal rods of the toad

    OpenAIRE

    1990-01-01

    Exposure of an intact vertebrate eye to light bleaches the rhodopsin in the photoreceptor outer segments in spatially nonuniform patterns. Some axial bleaching patterns produced in toad rods were determined using microspectrophotometric techniques. More rhodopsin was bleached at the base of the outer segment than at the distal tip. The shape of the bleaching gradient varied with the extent of bleach and with the spectral content of the illuminant. Monochromatic light at the lambda max of the ...

  9. Squid rhodopsin and GTP-binding protein crossreact with vertebrate photoreceptor enzymes.

    OpenAIRE

    Saibil, H R; Michel-Villaz, M

    1984-01-01

    The activation of photoreceptor GTP-binding protein by rhodopsin was studied in squid photoreceptors and in crossreactions between the squid and bovine proteins. Turbidity changes were observed in the far-red after photoexcitation of rhodopsin with brief flashes and were used to probe interactions between photoreceptor membrane suspensions and soluble protein extracts. Our findings are squid photoreceptors contain a GTP-binding protein detectable by light- and GTP-sensitive turbidity changes ...

  10. Anabaenolysins, novel cytolytic lipopeptides from benthic Anabaena cyanobacteria.

    Directory of Open Access Journals (Sweden)

    Jouni Jokela

    Full Text Available Two novel cyclic lipopeptides, anabaenolysin A and anabaenolysin B, were isolated from two benthic cyanobacterial strains of the genus Anabaena. This novel class of cyanobacterial lipopeptides has a general structure of a small peptide ring consisting of four amino acids from which two are proteinogenic and two unusual; glycine(1, glycine(2, 2-(3-amino-5-oxytetrahydrofuran-2-yl-2-hydroxyacetic acid(3 and a long unsaturated C(18 β-amino acid(4 with a conjugated triene structure. They are distinguished by the presence of a conjugated dienic structure in the C18 β-amino acid present in anabaenolysin A but not in anabaenolysin B. Conjugated triene structure generates a typical UV spectrum for anabaenolysins for easy recognition. Anabaenolysin A constituted up to 400 ppm of the cyanobacterial dry weight. We found evidence of thirteen variants of anabaenolysins in one cyanobacterial strain. This suggests that the anabaenolysins are an important class of secondary metabolites in benthic Anabaena cyanobacteria. Both anabaenolysin A and B had cytolytic activity on a number of mammalian cell lines.

  11. BIODEGRADATION OF TEXTILE DYES BY Anabaena flos-aqual

    Directory of Open Access Journals (Sweden)

    Brigida Pimentel Villar de Queiroz

    2011-04-01

    Full Text Available The pollution caused by dumping of toxic waste into the environment has resulted in impairment of essential natural resources such as water. With population growth and industries, the generation of waste increases substantially. Specifically, about 3,000 were commercial dyes to be carcinogenic and have no longer been manufactured, but in third world countries such as Brazil, some of these dyes high commercial value, are still in use. This study aimed to evaluate the possibility of biodegradation of dyes technical Drim CL 2 R Yellow and Blue Drim CL R. We tested the ability of degradation of these dyes by the cyanobacteria blue-green algae Anabaena flos-aqual. For this, their effectiveness in the degradation was evaluated in terms of discoloration spectrophotometrically. The blue dye was greater than R Drim CL degradation rate compared to the yellow dye Drim CL 2R. The species Anabaena flos-aqual achieved high degradation efficiency compared to blue dye, revealing a high potential applicability in processes of textile biodegradations in the county of Americana.

  12. Femtosecond Laser Spectroscopy of the Rhodopsin Photochromic Reaction: A Concept for Ultrafast Optical Molecular Switch Creation (Ultrafast Reversible Photoreaction of Rhodopsin)

    OpenAIRE

    Olga Smitienko; Victor Nadtochenko; Tatiana Feldman; Maria Balatskaya; Ivan Shelaev; Fedor Gostev; Oleg Sarkisov; Mikhail Ostrovsky

    2014-01-01

    Ultrafast reverse photoreaction of visual pigment rhodopsin in the femtosecond time range at room temperature is demonstrated. Femtosecond two-pump probe experiments with a time resolution of 25 fs have been performed. The first рump pulse at 500 nm initiated cis-trans photoisomerization of rhodopsin chromophore, 11-cis retinal, which resulted in the formation of the primary ground-state photoproduct within a mere 200 fs. The second pump pulse at 620 nm with a varying delay of 200 to 3750 fs ...

  13. Regulation of sorting and post-Golgi trafficking of rhodopsin by its C-terminal sequence QVS(A)PA

    OpenAIRE

    Deretic, Dusanka; Schmerl, Sonia; Hargrave, Paul A.; Arendt, Anatol; McDowell, J. Hugh

    1998-01-01

    Several mutations that cause severe forms of the human disease autosomal dominant retinitis pigmentosa cluster in the C-terminal region of rhodopsin. Recent studies have implicated the C-terminal domain of rhodopsin in its trafficking on specialized post-Golgi membranes to the rod outer segment of the photoreceptor cell. Here we used synthetic peptides as competitive inhibitors of rhodopsin trafficking in the frog retinal cell-free system to delineate the potential regulatory sequence within ...

  14. Identification of an Outer Segment Targeting Signal in the Cooh Terminus of Rhodopsin Using Transgenic Xenopus laevis

    OpenAIRE

    Tam, Beatrice M; Moritz, Orson L.; Hurd, Lawrence B.; Papermaster, David S.

    2000-01-01

    Mislocalization of the photopigment rhodopsin may be involved in the pathology of certain inherited retinal degenerative diseases. Here, we have elucidated rhodopsin's targeting signal which is responsible for its polarized distribution to the rod outer segment (ROS). Various green fluorescent protein (GFP)/rhodopsin COOH-terminal fusion proteins were expressed specifically in the major red rod photoreceptors of transgenic Xenopus laevis under the control of the Xenopus opsin promoter. The fu...

  15. Calorimetric Studies of Bovine Rod Outer Segment Disk Membranes Support a Monomeric Unit for Both Rhodopsin and Opsin

    OpenAIRE

    Edrington, Thomas C.; Bennett, Michael; Albert, Arlene D.

    2008-01-01

    The photoreceptor rhodopsin is a G-protein coupled receptor that has recently been proposed to exist as a dimer or higher order oligomer, in contrast to the previously described monomer, in retinal rod outer segment disk membranes. Rhodopsin exhibits considerably greater thermal stability than opsin (the bleached form of the receptor), which is reflected in an ∼15°C difference in the thermal denaturation temperatures (Tm) of rhodopsin and opsin as measured by differential scanning calorimetry...

  16. Single-molecule observation of the ligand-induced population shift of rhodopsin, a g-protein-coupled receptor.

    OpenAIRE

    Maeda, Ryo; Hiroshima, Michio; Yamashita, Takahiro; Wada, Akimori; Nishimura, Shoko; Sako, Yasushi; Shichida, Yoshinori; Imamoto, Yasushi

    2014-01-01

    Rhodopsin is a G-protein-coupled receptor, in which retinal chromophore acts as inverse-agonist or agonist depending on its configuration and protonation state. Photostimulation of rhodopsin results in a pH-dependent equilibrium between the active state (Meta-II) and its inactive precursor (Meta-I). Here, we monitored conformational changes of rhodopsin using a fluorescent probe Alexa594 at the cytoplasmic surface, which shows fluorescence increase upon the generation of active state, by sing...

  17. Azolla-Anabaena relationship. XIII. Fixation of (/sup 13/N)N/sub 2/. [Azolla caroliniana; Anabaena azollae

    Energy Technology Data Exchange (ETDEWEB)

    Meeks, J.C.; Steinberg, N.A.; Enderlin, C.S.; Joseph, C.M.; Peters, G.A.

    1987-07-01

    The major radioactive products of the fixation of (/sup 13/N)N/sub 2/ by Azolla caroliniana willd.-Anabaena azollae Stras. were ammonium, glutamine, and glutamate, plus a small amount of alanine. Ammonium accounted for 70 and 32% of the total radioactivity recovered after fixation for 1 and 10 minutes, respectively. The presence of a substantial pool of (/sup 13/N)N/sub 2/-derived /sup 13/NH/sub 4//sup +/ after long incubation periods was attributed to the spatial separation between the site of N/sub 2/-fixation (Anabaena) and a second, major site of assimilation (Azolla). Initially, glutamine was the most highly radioactive organic product formed from (/sup 13/N)N/sub 2/, but after 10 minutes of fixation glutamate had 1.5 times more radiolabel than glutamine. These kinetics of radiolabeling, along with the effects of inhibitors of glutamine synthetase and glutamate synthase on assimilation of exogenous and (/sup 13/N)N/sub 2/-derived /sup 13/NH/sub 4//sup +/, indicate that ammonium assimilation occurred by the glutamate synthase cycle and that glutamate dehydrogenase played little or no role in the synthesis of glutamate by Azolla-Azabaena.

  18. Novel surface associated polyphosphate bodies sequester uranium in the filamentous, marine cyanobacterium, Anabaena torulosa.

    Science.gov (United States)

    Acharya, Celin; Apte, Shree Kumar

    2013-12-01

    A filamentous, heterocystous, nitrogen-fixing marine cyanobacterium, Anabaena torulosa, has been shown to harbour surface associated, acid soluble polyphosphate bodies. Uranium immobilization by such polyphosphate bodies, reported in cyanobacteria for the first time, demonstrates a novel uranium sequestration phenomenon.

  19. Cheese sensory evaluation

    OpenAIRE

    Pinheiro, Pinheiro C; Lamy, Lamy, E; Machado, Machado, G

    2014-01-01

    Sensory evaluation is a scientific discipline used to evoke, measure, analyse, and interpreted reactions to characteristics of food as they are perceived by senses of sight, smell, taste, touch, and hearing. Without the proper sensory evaluations techniques (sensorial methodology) it is difficult to assess sensory responses and make logical and sound decisions. Many different types of sensorial methods have been proposed and used to select, trained a sensorial panel and to evaluate an...

  20. Helical rearrangement of photoactivated rhodopsin in monomeric and dimeric forms probed by high-angle X-ray scattering

    OpenAIRE

    Imamoto, Yasushi; Kojima, Keiichi; Oka, Toshihiko; Maeda, Ryo; Shichida, Yoshinori

    2015-01-01

    Light-induced helical rearrangement of vertebrate visual rhodopsin was directly monitored by high-angle X-ray scattering (HAXS), ranging from Q (= 4π sin θ/λ) = 0.03 Å-1 to Q = 1.5 Å-1. HAXS of nanodiscs containing a single rhodopsin molecule was performed before and after photoactivation of rhodopsin. The intensity difference curve obtained by HAXS agreed with that calculated from the crystal structure of dark state rhodopsin and metarhodopsin II, indicating that the conformational change of...

  1. [Effect of light and temperature on growth kinetics of Anabaena flosaquae under phosphorus limitation].

    Science.gov (United States)

    Yin, Zhi-Kun; Li, Zhe; Wang, Sheng; Guo, Jin-Song; Xiao, Yan; Liu, Jing; Zhang, Ping

    2015-03-01

    Phosphorus, light and temperature are the key environmental factors leading to algae growth. But the effects of interaction between light and temperature on the growth of Anabaena flosaquae under phosphorus limitation were not well documented in literature. Anabaena flosaquae was selected for the study and lab-scale experiment and simulation were carried out. The results showed that the optimal temperature of Anabaena flosaquae was 20 degrees C under phosphorus limitation when the light intensity was constant, and the optimal light intensity (illuminance) of Anabaena flosaquae was 3 000 lx under phosphorus limitation when the temperature was constant. Based on model fitting and parameter calibration, the optimal temperature and light intensity of Anabaena flosaquae were 21.03 degress C ± 1.55 degrees C and 2 675.12 lx ± 262.93 lx, respectively. These data were close to the actual water environmental condition at the end of spring. Results of this study will provide important foundation for prediction of Anabaena blooms.

  2. Stochastic de-repression of Rhodopsins in single photoreceptors of the fly retina.

    Directory of Open Access Journals (Sweden)

    Pranidhi Sood

    2012-02-01

    Full Text Available The photoreceptors of the Drosophila compound eye are a classical model for studying cell fate specification. Photoreceptors (PRs are organized in bundles of eight cells with two major types - inner PRs involved in color vision and outer PRs involved in motion detection. In wild type flies, most PRs express a single type of Rhodopsin (Rh: inner PRs express either Rh3, Rh4, Rh5 or Rh6 and outer PRs express Rh1. In outer PRs, the K(50 homeodomain protein Dve is a key repressor that acts to ensure exclusive Rh expression. Loss of Dve results in de-repression of Rhodopsins in outer PRs, and leads to a wide distribution of expression levels. To quantify these effects, we introduce an automated image analysis method to measure Rhodopsin levels at the single cell level in 3D confocal stacks. Our sensitive methodology reveals cell-specific differences in Rhodopsin distributions among the outer PRs, observed over a developmental time course. We show that Rhodopsin distributions are consistent with a two-state model of gene expression, in which cells can be in either high or basal states of Rhodopsin production. Our model identifies a significant role of post-transcriptional regulation in establishing the two distinct states. The timescale for interconversion between basal and high states is shown to be on the order of days. Our results indicate that even in the absence of Dve, the Rhodopsin regulatory network can maintain highly stable states. We propose that the role of Dve in outer PRs is to buffer against rare fluctuations in this network.

  3. Four of the six Drosophila rhodopsin-expressing photoreceptors can mediate circadian entrainment in low light.

    Science.gov (United States)

    Saint-Charles, Alexandra; Michard-Vanhée, Christine; Alejevski, Faredin; Chélot, Elisabeth; Boivin, Antoine; Rouyer, François

    2016-10-01

    Light is the major stimulus for the synchronization of circadian clocks with day-night cycles. The light-driven entrainment of the clock that controls rest-activity rhythms in Drosophila relies on different photoreceptive molecules. Cryptochrome (CRY) is expressed in most brain clock neurons, whereas six different rhodopsins (RH) are present in the light-sensing organs. The compound eye includes outer photoreceptors that express RH1 and inner photoreceptors that each express one of the four rhodopsins RH3-RH6. RH6 is also expressed in the extraretinal Hofbauer-Buchner eyelet, whereas RH2 is only found in the ocelli. In low light, the synchronization of behavioral rhythms relies on either CRY or the canonical rhodopsin phototransduction pathway, which requires the phospholipase C-β encoded by norpA (no receptor potential A). We used norpA(P24) cry(02) double mutants that are circadianly blind in low light and restored NORPA function in each of the six types of photoreceptors, defined as expressing a particular rhodopsin. We first show that the NORPA pathway is less efficient than CRY for synchronizing rest-activity rhythms with delayed light-dark cycles but is important for proper phasing, whereas the two light-sensing pathways can mediate efficient adjustments to phase advances. Four of the six rhodopsin-expressing photoreceptors can mediate circadian entrainment, and all are more efficient for advancing than for delaying the behavioral clock. In contrast, neither RH5-expressing retinal photoreceptors nor RH2-expressing ocellar photoreceptors are sufficient to mediate synchronization through the NORPA pathway. Our results thus reveal different contributions of rhodopsin-expressing photoreceptors and suggest the existence of several circuits for rhodopsin-dependent circadian entrainment. J. Comp. Neurol. 524:2828-2844, 2016. © 2016 Wiley Periodicals, Inc. PMID:26972685

  4. Nanoparticle-mediated rhodopsin cDNA but not intron-containing DNA delivery causes transgene silencing in a rhodopsin knockout model.

    Science.gov (United States)

    Zheng, Min; Mitra, Rajendra N; Filonov, Nazar A; Han, Zongchao

    2016-03-01

    Previously, we compared the efficacy of nanoparticle (NP)-mediated intron-containing rhodopsin (sgRho) vs. intronless cDNA in ameliorating retinal disease phenotypes in a rhodopsin knockout (RKO) mouse model of retinitis pigmentosa. We showed that NP-mediated sgRho delivery achieved long-term expression and phenotypic improvement in RKO mice, but not NP housing cDNA. However, the protein level of the NP-sgRho construct was only 5-10% of wild-type at 8 mo postinjection. To have a better understanding of the reduced levels of long-term expression of the vectors, in the present study, we evaluated the epigenetic changes of subretinal delivering NP-cDNA vs. NP-sgRho in the RKO mouse eyes. Following the administration, DNA methylation and histone status of specific regions (bacteria plasmid backbone, promoter, rhodopsin gene, and scaffold/matrix attachment region) of the vectors were evaluated at various time points. We documented that epigenetic transgene silencing occurred in vector-mediated gene transfer, which were caused by the plasmid backbone and the cDNA of the transgene, but not the intron-containing transgene. No toxicity or inflammation was found in the treated eyes. Our results suggest that cDNA of the rhodopsin transgene and bacteria backbone interfered with the host defense mechanism of DNA methylation-mediated transgene silencing through heterochromatin-associated modifications.

  5. UV-inducible DNA repair in the cyanobacteria Anabaena spp

    International Nuclear Information System (INIS)

    Strains of the filamentous cyanobacteria Anabaena spp. were capable of very efficient photoreactivation of UV irradiation-induced damage to DNA. Cells were resistant to several hundred joules of UV irradiation per square meter under conditions that allowed photoreactivation, and they also photoreactivated UV-damaged cyanophage efficiently. Reactivation of UV-irradiated cyanophage (Weigle reactivation) also occurred; UV irradiation of host cells greatly enhanced the plaque-forming ability of irradiated phage under nonphotoreactivating conditions. Postirradiation incubation of the host cells under conditions that allowed photoreactivation abolished the ability of the cells to perform Weigle reactivation of cyanophage N-1. Mitomycin C also induced Weigle reactivation of cyanophage N-1, but nalidixic acid did not. The inducible repair system (defined as the ability to perform Weigle reactivation of cyanophages) was relatively slow and inefficient compared with photoreactivation

  6. A novel potassium deficiency-induced stimulon in Anabaena torulosa

    Indian Academy of Sciences (India)

    Anuradha Alahari; Shree Kumar Apte

    2004-06-01

    Potassium deficiency enhanced the synthesis of fifteen proteins in the nitrogen-fixing cyanobacterium Anabaena torulosa and of nine proteins in Escherichia coli. These were termed potassium deficiency-induced proteins or PDPs and constitute hitherto unknown potassium deficiency–induced stimulons. Potassium deficiency also enhanced the synthesis of certain osmotic stress-induced proteins. Addition of K+ repressed the synthesis of a majority of the osmotic stress-induced proteins and of PDPs in these bacteria. These proteins contrast with the dinitrogenase reductase of A. torulosa and the glycine betaine-binding protein of E. coli, both of which were osmo-induced to a higher level in potassium-supplemented conditions. The data demonstrate the occurrence of novel potassium deficiency-induced stimulons and a wider role of K+ in regulation of gene expression and stress responses in bacteria.

  7. Xenopus laevis P23H rhodopsin transgene causes rod photoreceptor degeneration that is more severe in the ventral retina and is modulated by light

    OpenAIRE

    Zhang, Rui; Oglesby, Ericka; Marsh-Armstrong, Nicholas

    2008-01-01

    Rhodopsin transgenes carrying mutations that cause autosomal dominant retinitis pigmentosa in humans have been used to study rod photoreceptor degeneration in various model organisms including Xenopus laevis. To date, the only transgenes shown to cause rod photoreceptor degeneration in Xenopus laevis have been either mammalian rhodopsins or chimeric versions of rhodopsin based mainly on Xenopus laevis rhodopsin sequences but with a mammalian C-terminus. Since the C-terminal sequence of rhodop...

  8. Rhodopsin gene expression determines rod outer segment size and rod cell resistance to a dominant-negative neurodegeneration mutant.

    Directory of Open Access Journals (Sweden)

    Brandee A Price

    Full Text Available Two outstanding unknowns in the biology of photoreceptors are the molecular determinants of cell size, which is remarkably uniform among mammalian species, and the mechanisms of rod cell death associated with inherited neurodegenerative blinding diseases such as retinitis pigmentosa. We have addressed both questions by performing an in vivo titration with rhodopsin gene copies in genetically engineered mice that express only normal rhodopsin or an autosomal dominant allele, encoding rhodopsin with a disease-causing P23H substitution. The results reveal that the volume of the rod outer segment is proportional to rhodopsin gene expression; that P23H-rhodopsin, the most common rhodopsin gene disease allele, causes cell death via a dominant-negative mechanism; and that long term survival of rod cells carrying P23H-rhodopsin can be achieved by increasing the levels of wild type rhodopsin. These results point to promising directions in gene therapy for autosomal dominant neurodegenerative diseases caused by dominant-negative mutations.

  9. A single gene all3940 (Dps) overexpression in Anabaena sp. PCC 7120 confers multiple abiotic stress tolerance via proteomic alterations.

    Science.gov (United States)

    Narayan, Om Prakash; Kumari, Nidhi; Bhargava, Poonam; Rajaram, Hema; Rai, Lal Chand

    2016-01-01

    DNA-binding proteins (Dps) induced during starvation play an important role in gene regulation and maintaining homeostasis in bacteria. The nitrogen-fixing cyanobacterium, Anabaena PCC7120, has four genes annotated as coding for Dps; however, the information on their physiological roles is limiting. One of the genes coding for Dps, 'all3940' was found to be induced under different abiotic stresses in Anabaena and upon overexpression enhanced the tolerance of Anabaena to a multitude of stresses, which included salinity, heat, heavy metals, pesticide, and nutrient starvation. On the other hand, mutation in the gene resulted in decreased growth of Anabaena. The modulation in the levels of All3940 in Anabaena, achieved either by overexpression of the protein or mutation of the gene, resulted in changes in the proteome, which correlated well with the physiological changes observed. Proteins required for varied physiological activities, such as photosynthesis, carbon-metabolism, oxidative stress alleviation, exhibited change in protein profile upon modulation of All3940 levels in Anabaena. This suggested a direct or an indirect effect of All3940 on the expression of the above stress-responsive proteins, thereby enhancing tolerance in Anabaena PCC7120. Thus, All3940, though categorized as a Dps, is possibly a general stress protein having a global role in regulating tolerance to multitude of stresses in Anabaena.

  10. Low-Temperature Trapping of Photointermediates of the Rhodopsin E181Q Mutant

    Science.gov (United States)

    Sandberg, Megan N.; Greco, Jordan A.; Wagner, Nicole L.; Amora, Tabitha L.; Ramos, Lavoisier A.; Chen, Min-Hsuan; Knox, Barry E.; Birge, Robert R.

    2015-01-01

    Three active-site components in rhodopsin play a key role in the stability and function of the protein: 1) the counter-ion residues which stabilize the protonated Schiff base, 2) water molecules, and 3) the hydrogen-bonding network. The ionizable residue Glu-181, which is involved in an extended hydrogen-bonding network with Ser-186, Tyr-268, Tyr-192, and key water molecules within the active site of rhodopsin, has been shown to be involved in a complex counter-ion switch mechanism with Glu-113 during the photobleaching sequence of the protein. Herein, we examine the photobleaching sequence of the E181Q rhodopsin mutant by using cryogenic UV-visible spectroscopy to further elucidate the role of Glu-181 during photoactivation of the protein. We find that lower temperatures are required to trap the early photostationary states of the E181Q mutant compared to native rhodopsin. Additionally, a Blue Shifted Intermediate (BSI, λmax = 498 nm, 100 K) is observed after the formation of E181Q Bathorhodopsin (Batho, λmax = 556 nm, 10 K) but prior to formation of E181Q Lumirhodopsin (Lumi, λmax = 506 nm, 220 K). A potential energy diagram of the observed photointermediates suggests the E181Q Batho intermediate has an enthalpy value 7.99 KJ/mol higher than E181Q BSI, whereas in rhodopsin, the BSI is 10.02 KJ/mol higher in enthalpy than Batho. Thus, the Batho to BSI transition is enthalpically driven in E181Q and entropically driven in native rhodopsin. We conclude that the substitution of Glu-181 with Gln-181 results in a significant perturbation of the hydrogen-bonding network within the active site of rhodopsin. In addition, the removal of a key electrostatic interaction between the chromophore and the protein destabilizes the protein in both the dark state and Batho intermediate conformations while having a stabilizing effect on the BSI conformation. The observed destabilization upon this substitution further supports that Glu-181 is negatively charged in the early

  11. UV-B stress induced metabolic rearrangements explored with comparative proteomics in three Anabaena species.

    Science.gov (United States)

    Shrivastava, Alok Kumar; Chatterjee, Antra; Yadav, Shivam; Singh, Prashant Kumar; Singh, Shilpi; Rai, L C

    2015-09-01

    Comparative proteomics together with physiological variables revealed different responses among three species of diazotrophic cyanobacterium Anabaena exposed to UV-B stress at the same time points. Perceptible decline in PSII activity, ATP pool, nitrogenase activity and respiration rate was observed for all the three species; this being maximum in Anabaena doliolum, followed by Anabaena sp. PCC 7120 and minimum in Anabaena L31. Statistical analysis of the protein abundance divided majority of them as early accumulated in A. L31, late accumulated in A. sp. PCC 7120 and downregulated in A. doliolum. Tolerance of A. L31 may be ascribed to post-translational modification reflected through the highest number of protein isoforms in its proteome followed by A. PCC 7120 and A. doliolum. Furthermore, increase in abundance of cyanophycinase, glutamine synthetase and succinate semialdehyde dehydrogenase in A. L31 suggests operation of an alternate pathway for assimilation of nitrogen and carbon under UV-B stress. An early accumulation of four proteins viz., glutamate ammonia ligase (Alr2328), transketolase (Alr3344), inorganic pyrophosphatase (All3570), and trigger protein (Alr3681) involved respectively in amino acid metabolism, energy metabolism, biosynthesis of cofactor and trigger protein and chaperone like activity across three species, suggests them to be marker of UV-B stress in Anabaena spp. This article is part of a Special Issue entitled: Proteomics in India.

  12. Methyl viologen responsive proteome dynamics of Anabaena sp. strain PCC7120.

    Science.gov (United States)

    Panda, Bandita; Basu, Bhakti; Rajaram, Hema; Kumar Apte, Shree

    2014-08-01

    A proteomic approach was employed to elucidate the response of an agriculturally important microbe, Anabaena sp. strain PCC7120, to methyl viologen (MV). Exposure to 2 μM MV caused 50% lethality (LD50 ) within 6 h and modified the cellular levels of several proteins. About 31 proteins increased in abundance and 24 proteins decreased in abundance, while 55 proteins showed only a minor change in abundance. Of these, 103 proteins were identified by MS. Levels of proteins involved in ROS detoxification and chaperoning activities were enhanced but that of crucial proteins involved in light and dark reactions of photosynthesis declined or constitutive. The abundance of proteins involved in carbon and energy biogenesis were altered. The study elaborated the oxidative stress defense mechanism deployed by Anabaena, identified carbon metabolism and energy biogenesis as possible major targets of MV sensitivity, and suggested potential biotechnological interventions for improved stress tolerance in Anabaena 7120.

  13. Enhanced resistance to UV-B radiation in Anabaena sp. PCC 7120 (Cyanophyceae) by repeated exposure.

    Science.gov (United States)

    Qin, Hongjie; Li, Dunhai

    2014-07-01

    In natural habitats, organisms especially phytoplankton are not always continuously subjected to ultraviolet-B radiation (UVBR). By simulation of the natural situation, the N2-fixing cyanobacterium Anabaena sp. PCC 7120 was subjected to UV-B exposure and recovery cycles. A series of morphological and physiological changes were observed in Anabaena sp. PCC 7120 under repeated UVBR when compared with controls. Such as the breakage of filaments, intervals between heterocysts, heterocyst frequency, total carbohydrate, and carotenoids were increased, while the nitrogenase activity and photosynthetic activity were inhibited by repeated UVBR; however, these activities could recover when UV-B stress was removed. Unexpectedly, the over-compensatory growth was observed at the end of the second round of exposure and recovery cycle. Our results showed that discontinuous UVBR could increase the growth rate and the tolerance as well as repair capacity of Anabaena sp. PCC 7120. These results indicate that moderate UVBR may increase the growth of cyanobacteria in natural habitats.

  14. Accessibility and sensory experiences

    DEFF Research Database (Denmark)

    Ryhl, Camilla

    2010-01-01

    This article introduces a new design concept; sensory accessibility. While acknowledging the importance of sensory experiences in architectural quality, as well as the importance of accommodating user needs the concept combines three equally important factors; architecture, the senses...... and accessibility. Sensory accessibility accommodates aspects of a sensory disability and describes architectural design requirements needed to ensure access to architectural experiences. In the context of architecture accessibility has become a design concept of its own. It is generally described as ensuring...

  15. Evidence that the Rhodopsin Kinase (GRK1) N-Terminus and the Transducin Gα C-Terminus Interact with the Same "Hydrophobic Patch" on Rhodopsin TM5.

    Science.gov (United States)

    Jones Brunette, Amber M; Sinha, Abhinav; David, Larry; Farrens, David L

    2016-06-01

    Phosphorylation of G protein-coupled receptors (GPCRs) terminates their ability to couple with and activate G proteins by increasing their affinity for arrestins. Unfortunately, detailed information regarding how GPCRs interact with the kinases responsible for their phosphorylation is still limited. Here, we purified fully functional GPCR kinase 1 (GRK1) using a rapid method and used it to gain insights into how this important kinase interacts with the GPCR rhodopsin. Specifically, we find that GRK1 uses the same site on rhodopsin as the transducin (Gt) Gtα C-terminal tail and the arrestin "finger loop", a cleft formed in the cytoplasmic face of the receptor upon activation. Our studies also show GRK1 requires two conserved residues located in this cleft (L226 and V230) that have been shown to be required for Gt activation due to their direct interactions with hydrophobic residues on the Gα C-terminal tail. Our data and modeling studies are consistent with the idea that all three proteins (Gt, GRK1, and visual arrestin) bind, at least in part, in the same site on rhodopsin and interact with the receptor through a similar hydrophobic contact-driven mechanism. PMID:27078130

  16. The effects of SO sub 2 on Azolla - Anabaena symbiosis

    Energy Technology Data Exchange (ETDEWEB)

    Jaeseoun Hur; Wellburn, A.R. (Lancaster Univ. (United Kingdom))

    1991-05-01

    Cultures of Azolla pinnata containing Anabaena were investigated as a sensitive and reproducible bioindicator of air pollution. Three equal doses of SO{sub 2} (week*ppb: 1*100, 2*50, 4*25) were applied to Azolla cultures growing in nitrogen-free medium in a specially-designed exposure system. Exposure to high concentrations of SO{sub 2} showed highly significant reductions in growth of the fern, while nitrogen fixation and heterocyst development were severely damaged. This was associated with a reduction of protein content in the SO{sub 2}-exposed ferns and again more significant at higher SO{sub 2} levels. There was a variation in the absolute amount of the individual pigments between SO{sub 2} doses and/or treatments which was related to the physiological development of the ferns throughout the fumigations. Moreover, the ratio of violaxanthin to antheraxanthin in the 100 ppb SO{sub 2}-treated ferns was significantly higher than that in the clean air-grown ferns. The results clearly demonstrate that SO{sub 2} has adverse effects on the symbiosis and suggest that this fern is a promising bioindicator of air pollution and a very good model to investigate the inter-relationships between photosynthesis, nitrogen fixation and air pollution stress.

  17. Report sensory analyses veal

    NARCIS (Netherlands)

    Veldman, M.; Schelvis-Smit, A.A.M.

    2005-01-01

    On behalf of a client of Animal Sciences Group, different varieties of veal were analyzed by both instrumental and sensory analyses. The sensory evaluation was performed with a sensory analytical panel in the period of 13th of May and 31st of May, 2005. The three varieties of veal were: young bull,

  18. Efficient Gene Induction and Endogenous Gene Repression Systems for the Filamentous Cyanobacterium Anabaena sp. PCC 7120.

    Science.gov (United States)

    Higo, Akiyoshi; Isu, Atsuko; Fukaya, Yuki; Hisabori, Toru

    2016-02-01

    In the last decade, many studies have been conducted to employ genetically engineered cyanobacteria in the production of various metabolites. However, the lack of a strict gene regulation system in cyanobacteria has hampered these attempts. The filamentous cyanobacterium Anabaena sp. PCC 7120 performs both nitrogen and carbon fixation and is, therefore, a good candidate organism for such production. To employ Anabaena cells for this purpose, we intended to develop artificial gene regulation systems to alter the cell metabolic pathways efficiently. We introduced into Anabaena a transcriptional repressor TetR, widely used in diverse organisms, and green fluorescent protein (GFP) as a reporter. We found that anhydrotetracycline (aTc) substantially induced GFP fluorescence in a concentration-dependent manner. By expressing tetR under the nitrate-specific promoter nirA, we successfully reduced the concentration of aTc required for the induction of gfp under nitrogen fixation conditions (to 10% of the concentration needed under nitrate-replete conditions). Further, we succeeded in the overexpression of GFP by depletion of nitrate without the inducer by means of promoter engineering of the nirA promoter. Moreover, we applied these gene regulation systems to a metabolic enzyme in Anabaena and successfully repressed glnA, the gene encoding glutamine synthetase that is essential for nitrogen assimilation in cyanobacteria, by expressing the small antisense RNA for glnA. Consequently, the ammonium production of an ammonium-excreting Anabaena mutant was significantly enhanced. We therefore conclude that the gene regulation systems developed in this study are useful tools for the regulation of metabolic enzymes and will help to increase the production of desired substances in Anabaena. PMID:26684202

  19. Efficient Gene Induction and Endogenous Gene Repression Systems for the Filamentous Cyanobacterium Anabaena sp. PCC 7120.

    Science.gov (United States)

    Higo, Akiyoshi; Isu, Atsuko; Fukaya, Yuki; Hisabori, Toru

    2016-02-01

    In the last decade, many studies have been conducted to employ genetically engineered cyanobacteria in the production of various metabolites. However, the lack of a strict gene regulation system in cyanobacteria has hampered these attempts. The filamentous cyanobacterium Anabaena sp. PCC 7120 performs both nitrogen and carbon fixation and is, therefore, a good candidate organism for such production. To employ Anabaena cells for this purpose, we intended to develop artificial gene regulation systems to alter the cell metabolic pathways efficiently. We introduced into Anabaena a transcriptional repressor TetR, widely used in diverse organisms, and green fluorescent protein (GFP) as a reporter. We found that anhydrotetracycline (aTc) substantially induced GFP fluorescence in a concentration-dependent manner. By expressing tetR under the nitrate-specific promoter nirA, we successfully reduced the concentration of aTc required for the induction of gfp under nitrogen fixation conditions (to 10% of the concentration needed under nitrate-replete conditions). Further, we succeeded in the overexpression of GFP by depletion of nitrate without the inducer by means of promoter engineering of the nirA promoter. Moreover, we applied these gene regulation systems to a metabolic enzyme in Anabaena and successfully repressed glnA, the gene encoding glutamine synthetase that is essential for nitrogen assimilation in cyanobacteria, by expressing the small antisense RNA for glnA. Consequently, the ammonium production of an ammonium-excreting Anabaena mutant was significantly enhanced. We therefore conclude that the gene regulation systems developed in this study are useful tools for the regulation of metabolic enzymes and will help to increase the production of desired substances in Anabaena.

  20. Salt Effects on the Conformational Stability of the Visual G-Protein-Coupled Receptor Rhodopsin

    Science.gov (United States)

    Reyes-Alcaraz, Arfaxad; Martínez-Archundia, Marlet; Ramon, Eva; Garriga, Pere

    2011-01-01

    Membrane protein stability is a key parameter with important physiological and practical implications. Inorganic salts affect protein stability, but the mechanisms of their interactions with membrane proteins are not completely understood. We have undertaken the study of a prototypical G-protein-coupled receptor, the α-helical membrane protein rhodopsin from vertebrate retina, and explored the effects of inorganic salts on the thermal decay properties of both its inactive and photoactivated states. Under high salt concentrations, rhodopsin significantly increased its activation enthalpy change for thermal bleaching, whereas acid denaturation affected the formation of a denatured loose-bundle state for both the active and inactive conformations. This behavior seems to correlate with changes in protonated Schiff-base hydrolysis. However, chromophore regeneration with the 11-cis-retinal chromophore and MetarhodopsinII decay kinetics were slower only in the presence of sodium chloride, suggesting that in this case, the underlying phenomenon may be linked to the activation of rhodopsin and the retinal release processes. Furthermore, the melting temperature, determined by means of circular dichroism and differential scanning calorimetry measurements, was increased in the presence of high salt concentrations. The observed effects on rhodopsin could indicate that salts favor electrostatic interactions in the retinal binding pocket and indirectly favor hydrophobic interactions at the membrane protein receptor core. These effects can be exploited in applications where the stability of membrane proteins in solution is highly desirable. PMID:22261069

  1. A possible role of rhodopsin in maintaining bilayer structure in the photoreceptor membrane

    NARCIS (Netherlands)

    Grip, W.J. de; Drenthe, E.H.S.; Echteld, C.J.A. van; Kruijff, B. de; Verkleij, A.J.

    1979-01-01

    31P-NMR measurements demonstrate that at 37°C, independent of the photolytic state of the photopigment rhodopsin, the lipids in the photoreceptormembrane are almost exclusively organised in a bilayer. In strong contrast, the 31P-NMR spectra of the extracted lipids are characteristic for the hexagona

  2. Batch crystallization of rhodopsin for structural dynamics using an X-ray free-electron laser

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Wenting; Nogly, Przemyslaw; Rheinberger, Jan; Kick, Leonhard M.; Gati, Cornelius; Nelson, Garrett; Deupi, Xavier; Standfuss, Jörg; Schertler, Gebhard; Panneels, Valérie, E-mail: valerie.panneels@psi.ch [Paul Scherrer Institute, OFLC/103, 5232 Villigen-PSI (Switzerland)

    2015-06-27

    A new batch preparation method is presented for high-density micrometre-sized crystals of the G protein-coupled receptor rhodopsin for use in time-resolved serial femtosecond crystallography at an X-ray free-electron laser using a liquid jet. Rhodopsin is a membrane protein from the G protein-coupled receptor family. Together with its ligand retinal, it forms the visual pigment responsible for night vision. In order to perform ultrafast dynamics studies, a time-resolved serial femtosecond crystallography method is required owing to the nonreversible activation of rhodopsin. In such an approach, microcrystals in suspension are delivered into the X-ray pulses of an X-ray free-electron laser (XFEL) after a precise photoactivation delay. Here, a millilitre batch production of high-density microcrystals was developed by four methodical conversion steps starting from known vapour-diffusion crystallization protocols: (i) screening the low-salt crystallization conditions preferred for serial crystallography by vapour diffusion, (ii) optimization of batch crystallization, (iii) testing the crystal size and quality using second-harmonic generation (SHG) imaging and X-ray powder diffraction and (iv) production of millilitres of rhodopsin crystal suspension in batches for serial crystallography tests; these crystals diffracted at an XFEL at the Linac Coherent Light Source using a liquid-jet setup.

  3. Lipopolysaccharide dependence of cyanophage sensitivity and aerobic nitrogen fixation in Anabaena sp. strain PCC 7120.

    OpenAIRE

    Xu, X.; Khudyakov, I; Wolk, C P

    1997-01-01

    Fox- mutants of Anabaena sp. strain PCC 7120 are unable to fix dinitrogen in the presence of oxygen. A fragment of the DNA of Anabaena sp. was cloned by complementation of a spontaneous Fox-, cyanophage-resistant mutant, R56, and characterized. Random insertion of transposon Tn5 delimited the complementing DNA to a 0.6-kb portion of the cloned fragment. Sequencing of this region and flanking DNA showed one complete open reading frame (ORF) similar to the gene rfbP (undecaprenyl-phosphate gala...

  4. Mecanismos de tolerancia del simbiosistema Azolla-Anabaena azollae ante arsénico y cobre.

    OpenAIRE

    Sánchez Viveros, Gabriela

    2012-01-01

    Esta investigación evaluó algunos mecanismos de tolerancia del simbiosistema Azolla-Anabaena azollae ante agua contaminada con arsénico (As+5) y/o cobre (Cu2+). Para lo anterior, se plantearon seis fases experimentales: 1) identificar molecularmente a nivel de especie a diez colectas de Azolla, 2) evaluar la capacidad de acumulación de As+5 y los efectos tóxicos del metaloide en el simbiosistema Azolla-Anabaena azollae, 3) determinar la influencia del As+5 en la concentración de nueve element...

  5. Structural basis for calcium-induced inhibition of rhodopsin kinase by recoverin.

    Science.gov (United States)

    Ames, James B; Levay, Konstantin; Wingard, Jennifer N; Lusin, Jacqueline D; Slepak, Vladlen Z

    2006-12-01

    Recoverin, a member of the neuronal calcium sensor branch of the EF-hand superfamily, serves as a calcium sensor that regulates rhodopsin kinase (RK) activity in retinal rod cells. We report here the NMR structure of Ca(2+)-bound recoverin bound to a functional N-terminal fragment of rhodopsin kinase (residues 1-25, called RK25). The overall main-chain structure of recoverin in the complex is similar to structures of Ca(2+)-bound recoverin in the absence of target (<1.8A root-mean-square deviation). The first eight residues of recoverin at the N terminus are solvent-exposed, enabling the N-terminal myristoyl group to interact with target membranes, and Ca(2+) is bound at the second and third EF-hands of the protein. RK25 in the complex forms an amphipathic helix (residues 4-16). The hydrophobic face of the RK25 helix (Val-9, Val-10, Ala-11, Ala-14, and Phe-15) interacts with an exposed hydrophobic groove on the surface of recoverin lined by side-chain atoms of Trp-31, Phe-35, Phe-49, Ile-52, Tyr-53, Phe-56, Phe-57, Tyr-86, and Leu-90. Residues of recoverin that contact RK25 are highly conserved, suggesting a similar target binding site structure in all neuronal calcium sensor proteins. Site-specific mutagenesis and deletion analysis confirm that the hydrophobic residues at the interface are necessary and sufficient for binding. The recoverin-RK25 complex exhibits Ca(2+)-induced binding to rhodopsin immobilized on concanavalin-A resin. We propose that Ca(2+)-bound recoverin is bound between rhodopsin and RK in a ternary complex on rod outer segment disk membranes, thereby blocking RK interaction with rhodopsin at high Ca(2+).

  6. Anabaena bergii Ostenf. [f. minor (Kisselev Kossinsk.] (Cyanoprokaryota: The first record in Serbia, its taxonomic status, and that of the genus Anabaena Bory ex Born. & Flah.

    Directory of Open Access Journals (Sweden)

    Cvijan M.

    2009-01-01

    Full Text Available Within the framework of a detailed survey of the algal community in salt marshes of the Vojvodina Province (Northern Serbia, we rather unexpectedly found the blue-green alga Anabaena bergii Ostenf. [forma minor (Kisselev Kossinsk.] in water samples from Slatina Pond near Opovo. Our finding represents its first record in Serbia. The present paper gives general characteristics of this alga and of the habitat in which it was found. Based on analysis of a large number of works dealing with characteristics and the taxonomic status of the genus Anabaena, the species A. bergii, and its forma minor, it is concluded that there are numerous problems in taxonomy of the given genus, with no consensus among researchers. In light of the available data, the authors retain the name of the species A. bergii, but accept forma minor with some reserve.

  7. An ecophysiological study of the Azolla filiculoides- Anabaena azollae association

    Science.gov (United States)

    van Kempen, Monique; Smolders, Fons; Speelman, Eveline; Reichart, Gert Jan; Barke, Judith; Brinkhuis, Henk; Lotter, Andy; Roelofs, Jan

    2010-05-01

    The long term effects of salinity stress on the growth, nutrient content and amino acid composition of the Azolla filiculoides - Anabaena azollae association was studied in a laboratory experiment. It was demonstrated that the symbiosis could tolerate salt stress up to 90 mM NaCl, even after a 100 day period of preconditioning at salt concentrations that were 30 mM NaCl lower. In the 120 mM NaCl treatment the Azolla filiculoides survived, but hardly any new biomass was produced. It was shown that during the experiment, A. filiculoides became increasingly efficient in excluding salt ions from the plant tissue and was thus able to increase its salt tolerance. The amino acid analysis revealed that the naturally occurring high glutamine concentration in the plants was strongly reduced at salt concentrations of 120 mM NaCl and higher. This was the result of the reduced nitrogenase activity at these salt concentrations, as was demonstrated in an acetylene reduction assay. We suggest that the high glutamine concentration in the plants might play a role in the osmoregulatory response against salt stress, enabling growth of the A. filiculoides -Anabaena azollae association up to 90 mM NaCl. In a mesocosm experiment it furthermore was demonstrated that Azolla might manipulate its own microenvironment when grown at elevated salt concentration (up to ~50 mmol•L-1) by promoting salinity stratification, especially when it has formed a dense cover at the water surface. Beside salt stress, we also studied the growth of Azolla filiculoides in response to elevated atmospheric carbon dioxide concentration, in combination with different light intensities and different pH of the nutrient solution. The results demonstrated that as compared to the control (ambient pCO2 concentrations), Azolla filiculoides was able to produce twice as much biomass at carbon dioxide concentrations that were five times as high as the ambient pCO2 concentration. However, it was also shown that this

  8. Anabaena bergii Ostenf. [f. minor (Kisselev) Kossinsk.] (Cyanoprokaryota): The first record in Serbia, its taxonomic status, and that of the genus Anabaena Bory ex Born. & Flah.

    OpenAIRE

    Cvijan M.; Krizmanić Jelena

    2009-01-01

    Within the framework of a detailed survey of the algal community in salt marshes of the Vojvodina Province (Northern Serbia), we rather unexpectedly found the blue-green alga Anabaena bergii Ostenf. [forma minor (Kisselev) Kossinsk.] in water samples from Slatina Pond near Opovo. Our finding represents its first record in Serbia. The present paper gives general characteristics of this alga and of the habitat in which it was found. Based on analysis of a large number of works dealing with char...

  9. Photosynthetic vesicles with bound phycobilisomes from Anabaena variabilis

    Energy Technology Data Exchange (ETDEWEB)

    Katoh, T.; Gantt, E.

    1979-01-01

    Photosynthetically active vesicles with attached phycobilisomes from Anabaena variabilis, were isolated and shown to transfer excitation energy from phycobiliproteins to F696 chlorophyll (Photosystem II). The best results were obtained when cells were disrupted in a sucrose/phosphate/citrate mixture (0.3:0.5:0.3 M, respectively) containing 1.5% serum albumin. The vesicles showed a phycocyanin/chlorophyll ratio essentially identical to that of whole cells, and oxygen evolution rates of 250 ..mu..mol; O/sub 2//h per mg chlorophyll (with 4 mM ferricyanide added as oxidant), whereas whole cells had rates of up to 450. Excitation of the vesicles by 600 nm light produced fluorescence peaks (-196/sup 0/C) at 644, 662, 685, 695, and 730 nm. On aging of the vesicles, or upon dilution, the fluorescence yield of the 695 nm emission peak gradually decreased with an accompanying increase and final predominant peak at 685 nm. This shift was accompanied by a decrease in the quantum efficiency of Photosystem II activity from an initial 0.05 to as low as 0.01 mol O/sub 2//einstein (605 nm), with a lesser change in the V/sub max/ values. The decrease in the quantum efficiency is mainly attributed to excitation uncoupling between phycobilisomes and Photosystem II. It is concluded that the F685 nm emission peak, often exclusively attributed to Photosystem II chlorophyll, arises from more than one component with phycobilisome emission being a major contributor. Vesicles from which phycobilisomes had been removed, as verified by electron microscopy and spectroscopy, had an almost negligible emission at 685 nm.

  10. Photosynthetic vesicles with bound phycobilisomes from Anabaena variabilis

    Energy Technology Data Exchange (ETDEWEB)

    Katoh, T.; Gantt, E.

    1979-01-01

    Photosynthetically active vesicles with attached phycobilisomes from Anabaena variabilis, were isolated and shown to transfer excitation energy from phycobiliproteins to F696 chlorophyll (Photosystem II). The best results were obtained when cells were disrupted in a sucrose/phosphate/citrate mixture (0.3:0.5:0.3 M, respectively) containing 1.5% serum albumin. The vesicles showed a phycocyanin/chlorophyll ratio essentially identical to that of whole cells, and oxygen evolution rates of 250 ..mu..mol O/sub 2//h per mg chlorophyll (with 4 mM ferricyanide added as oxidant), whereas whole cells had rates of up to 450. Excitation of the vesicles by 600 nm light produced fluorescence peaks (-196/sup 0/C) at 644, 662, 685, 695, and 730 nm. On aging of the vesicles, or upon dilution, the fluorescence yield of the 695 nm emission peak gradually decreased with an accompanying increase and final predominant peak at 685 nm. This shift was accompanied by a decrease in the quantum efficiency of Photosystem II activity from an initial 0.05 to as low as 0.01 mol O/sub 2//einstein (605 nm), with a lesser change in the V/sub max/ values. The decrease in the quantum efficiency is mainly attributed to excitation uncoupling between phycobilisomes and Photosystem II. It is concluded that the F685 nm emission peak, often exclusively attributed to Photosystem II chlorophyll, arises from more than one component with phycobilisome emission being a major contributor. Vesicles from which phycobilisomes had been removed, as verified by electron microscopy and spectroscopy, had an almost negligible emission at 685 nm.

  11. Solution structure of reduced plastocyanin from the blue-green alga Anabaena variabilis

    DEFF Research Database (Denmark)

    Badsberg, U; Jørgensen, A.M.; Gesmar, H;

    1996-01-01

    The three-dimensional solution structure of plastocyanin from Anabaena variabilis (A.v.PCu) has been determined by nuclear magnetic resonance spectroscopy. Sixty structures were calculated by distance geometry from 1141 distance restraints and 46 dihedral angle restraints. The distance geometry s...

  12. Solution Structure of Reduced Plastocyanin from the Blue-Green Alga Anabaena Variabilis

    DEFF Research Database (Denmark)

    Led, J.J.; Badsberg, U.; Jørgensen, A.M.;

    1996-01-01

    The three-dimensional solution structure of plastocyanin from Anabaena variabilis (A.v. PCu) has been determined by nuclear magnetic resonance spectroscopy. Sixty structures were calculated by distance geometry from 1141 distance restraints and 46 dihedral angle restraints. The distance geometry ...

  13. Effect of butachlor on growth and nitrogen fixation by Anabaena sphaerica.

    Science.gov (United States)

    Suseela, M R

    2001-07-01

    Present study was carried out to examine the effect of Butachlor on growth and nitrogen fixation by Anabaena sphaerica. The increased concentration of the pesticide did not have any adverse effect on the alga. Rather it accelerated the algal contribution in terms of biomass and nitrogen fixation.

  14. Role of manganese in protection against oxidative stress under iron starvation in cyanobacterium Anabaena 7120.

    Science.gov (United States)

    Kaushik, Manish Singh; Srivastava, Meenakshi; Verma, Ekta; Mishra, Arun Kumar

    2015-06-01

    The cyanobacterium Anabaena sp. PCC 7120 was grown in presence and absence of iron to decipher the role of manganese in protection against the oxidative stress under iron starvation and growth, manganese uptake kinetics, antioxidative enzymes, lipid peroxidation, electrolyte leakage, thiol content, total peroxide, proline and NADH content was investigated. Manganese supported the growth of cyanobacterium Anabaena 7120 under iron deprived conditions where maximum uptake rate of manganese was observed with lower K(m) and higher V(max) values. Antioxidative enzymes were also found to be elevated in iron-starved conditions. Estimation of lipid peroxidation and electrolyte leakage depicted the role of manganese in stabilizing the integrity of the membrane which was considered as the prime target of oxygen free radicals in oxidative stress. The levels of total peroxide, thiol, proline and NADH content, which are the representative of oxidative stress response in Anabaena 7120, were also showed increasing trends in iron starvation. Hence, the results discerned, clearly suggested the role of manganese in protection against the oxidative stress in cyanobacterium Anabaena 7120 under iron starvation either due to its antioxidative properties or involvement as cofactor in a number of antioxidative enzymes.

  15. Complete Genome Sequence of a Novel Strain of Cyanobacterium, Anabaena sp. 4-3

    Science.gov (United States)

    Sowa, Steven

    2016-01-01

    We report the complete nucleotide sequence of Anabaena sp. 4-3, an efficient producer of sucrose. It was isolated from salt flats near the University of Texas Marine Science Institute in Port Aransas, Texas. The genome may provide insight into the utilization of cyanobacteria as a source for biofuels. PMID:27540066

  16. Multiple modes of iron uptake by the filamentous, siderophore-producing cyanobacterium, Anabaena sp. PCC 7120.

    Science.gov (United States)

    Rudolf, Mareike; Kranzler, Chana; Lis, Hagar; Margulis, Ketty; Stevanovic, Mara; Keren, Nir; Schleiff, Enrico

    2015-08-01

    Iron is a member of a small group of nutrients that limits aquatic primary production. Mechanisms for utilizing iron have to be efficient and adapted according to the ecological niche. In respect to iron acquisition cyanobacteria, prokaryotic oxygen evolving photosynthetic organisms can be divided into siderophore- and non-siderophore-producing strains. The results presented in this paper suggest that the situation is far more complex. To understand the bioavailability of different iron substrates and the advantages of various uptake strategies, we examined iron uptake mechanisms in the siderophore-producing cyanobacterium Anabaena sp. PCC 7120. Comparison of the uptake of iron complexed with exogenous (desferrioxamine B, DFB) or to self-secreted (schizokinen) siderophores by Anabaena sp. revealed that uptake of the endogenous produced siderophore complexed to iron is more efficient. In addition, Anabaena sp. is able to take up dissolved, ferric iron hydroxide species (Fe') via a reductive mechanism. Thus, Anabaena sp. exhibits both, siderophore- and non-siderophore-mediated iron uptake. While assimilation of Fe' and FeDFB are not induced by iron starvation, FeSchizokinen uptake rates increase with increasing iron starvation. Consequently, we suggest that Fe' reduction and uptake is advantageous for low-density cultures, while at higher densities siderophore uptake is preferred.

  17. Monomeric G protein-coupled receptor rhodopsin in solution activates its G protein transducin at the diffusion limit

    OpenAIRE

    Ernst, Oliver P.; Gramse, Verena; Kolbe, Michael; Hofmann, Klaus Peter; Heck, Martin

    2007-01-01

    G protein-coupled receptors mediate biological signals by stimulating nucleotide exchange in heterotrimeric G proteins (Gαβγ). Receptor dimers have been proposed as the functional unit responsible for catalytic interaction with Gαβγ. To investigate whether a G protein-coupled receptor monomer can activate Gαβγ, we used the retinal photoreceptor rhodopsin and its cognate G protein transducin (Gt) to determine the stoichiometry of rhodopsin/Gt binding and the rate of catalyzed nucleotide exchan...

  18. Relationships between visual cycle retinoids, rhodopsin phosphorylation and phototransduction in mouse eyes during light and dark-adaptation

    OpenAIRE

    Lee, Kimberly A.; Nawrot, Maria; Garwin, Gregory G.; Saari, John C.; Hurley, James B

    2010-01-01

    Phosphorylation and regeneration of rhodopsin, the prototypical G-Protein Coupled Receptor, each can influence light- and dark-adaptation. To evaluate their relative contributions we quantified rhodopsin, retinoids, phosphorylation and photosensitivity in mice during 90 minutes of illumination followed by dark-adaptation. During illumination, all-trans retinyl esters and, to a lesser extent, all-trans retinal, accumulate and reach steady state within an hour. Each major phosphorylation site o...

  19. UNCOMMON SENSORY METHODOLOGIES

    OpenAIRE

    Vladimír Vietoris; Hana Balková; Peter Czako; Tatiana Bojňanská

    2015-01-01

    Sensory science is the young but the rapidly developing field of the food industry. Actually, the great emphasis is given to the production of rapid techniques of data collection, the difference between consumers and trained panel is obscured and the role of sensory methodologists is to prepare the ways for evaluation, by which a lay panel (consumers) can achieve identical results as a trained panel. Currently, there are several conventional methods of sensory evaluation of food (ISO standard...

  20. Structural Mechanism for Light-driven Transport by a New Type of Chloride Ion Pump, Nonlabens marinus Rhodopsin-3.

    Science.gov (United States)

    Hosaka, Toshiaki; Yoshizawa, Susumu; Nakajima, Yu; Ohsawa, Noboru; Hato, Masakatsu; DeLong, Edward F; Kogure, Kazuhiro; Yokoyama, Shigeyuki; Kimura-Someya, Tomomi; Iwasaki, Wataru; Shirouzu, Mikako

    2016-08-19

    The light-driven inward chloride ion-pumping rhodopsin Nonlabens marinus rhodopsin-3 (NM-R3), from a marine flavobacterium, belongs to a phylogenetic lineage distinct from the halorhodopsins known as archaeal inward chloride ion-pumping rhodopsins. NM-R3 and halorhodopsin have distinct motif sequences that are important for chloride ion binding and transport. In this study, we present the crystal structure of a new type of light-driven chloride ion pump, NM-R3, at 1.58 Å resolution. The structure revealed the chloride ion translocation pathway and showed that a single chloride ion resides near the Schiff base. The overall structure, chloride ion-binding site, and translocation pathway of NM-R3 are different from those of halorhodopsin. Unexpectedly, this NM-R3 structure is similar to the crystal structure of the light-driven outward sodium ion pump, Krokinobacter eikastus rhodopsin 2. Structural and mutational analyses of NM-R3 revealed that most of the important amino acid residues for chloride ion pumping exist in the ion influx region, located on the extracellular side of NM-R3. In contrast, on the opposite side, the cytoplasmic regions of K. eikastus rhodopsin 2 were reportedly important for sodium ion pumping. These results provide new insight into ion selection mechanisms in ion pumping rhodopsins, in which the ion influx regions of both the inward and outward pumps are important for their ion selectivities. PMID:27365396

  1. Genomic makeup of the marine flavobacterium Nonlabens (Donghaeana) dokdonensis and identification of a novel class of rhodopsins.

    Science.gov (United States)

    Kwon, Soon-Kyeong; Kim, Byung Kwon; Song, Ju Yeon; Kwak, Min-Jung; Lee, Choong Hoon; Yoon, Jung-Hoon; Oh, Tae Kwang; Kim, Jihyun F

    2013-01-01

    Rhodopsin-containing marine microbes such as those in the class Flavobacteriia play a pivotal role in the biogeochemical cycle of the euphotic zone (Fuhrman JA, Schwalbach MS, Stingl U. 2008. Proteorhodopsins: an array of physiological roles? Nat Rev Microbiol. 6:488-494). Deciphering the genome information of flavobacteria and accessing the diversity and ecological impact of microbial rhodopsins are important in understanding and preserving the global ecosystems. The genome sequence of the orange-pigmented marine flavobacterium Nonlabens dokdonensis (basonym: Donghaeana dokdonensis) DSW-6 was determined. As a marine photoheterotroph, DSW-6 has written in its genome physiological features that allow survival in the oligotrophic environments. The sequence analysis also uncovered a gene encoding an unexpected type of microbial rhodopsin containing a unique motif in addition to a proteorhodopsin gene and a number of photolyase or cryptochrome genes. Homologs of the novel rhodopsin gene were found in other flavobacteria, alphaproteobacteria, a species of Cytophagia, a deinococcus, and even a eukaryote diatom. They all contain the characteristic NQ motif and form a phylogenetically distinct group. Expression analysis of this rhodopsin gene in DSW-6 indicated that it is induced at high NaCl concentrations, as well as in the presence of light and the absence of nutrients. Genomic and metagenomic surveys demonstrate the diversity of the NQ rhodopsins in nature and the prevalent occurrence of the encoding genes among microbial communities inhabiting hypersaline niches, suggesting its involvement in sodium metabolism and the sodium-adapted lifestyle.

  2. Classification and phylogeny of the cyanobiont Anabaena azollae Strasburger: an answered question?

    Science.gov (United States)

    Pereira, Ana L; Vasconcelos, Vitor

    2014-06-01

    The symbiosis Azolla-Anabaena azollae, with a worldwide distribution in pantropical and temperate regions, is one of the most studied, because of its potential application as a biofertilizer, especially in rice fields, but also as an animal food and in phytoremediation. The cyanobiont is a filamentous, heterocystic cyanobacterium that inhabits the foliar cavities of the pteridophyte and the indusium on the megasporocarp (female reproductive structure). The classification and phylogeny of the cyanobiont is very controversial: from its morphology, it has been named Nostoc azollae, Anabaena azollae, Anabaena variabilis status azollae and recently Trichormus azollae, but, from its 16S rRNA gene sequence, it has been assigned to Nostoc and/or Anabaena, and from its phycocyanin gene sequence, it has been assigned as non-Nostoc and non-Anabaena. The literature also points to a possible co-evolution between the cyanobiont and the Azolla host, since dendrograms and phylogenetic trees of fatty acids, short tandemly repeated repetitive (STRR) analysis and restriction fragment length polymorphism (RFLP) analysis of nif genes and the 16S rRNA gene give a two-cluster association that matches the two-section ranking of the host (Azolla). Another controversy surrounds the possible existence of more than one genus or more than one species strain. The use of freshly isolated or cultured cyanobionts is an additional problem, since their morphology and protein profiles are different. This review gives an overview of how morphological, chemical and genetic analyses influence the classification and phylogeny of the cyanobiont and future research. PMID:24737795

  3. Classification and phylogeny of the cyanobiont Anabaena azollae Strasburger: an answered question?

    Science.gov (United States)

    Pereira, Ana L; Vasconcelos, Vitor

    2014-06-01

    The symbiosis Azolla-Anabaena azollae, with a worldwide distribution in pantropical and temperate regions, is one of the most studied, because of its potential application as a biofertilizer, especially in rice fields, but also as an animal food and in phytoremediation. The cyanobiont is a filamentous, heterocystic cyanobacterium that inhabits the foliar cavities of the pteridophyte and the indusium on the megasporocarp (female reproductive structure). The classification and phylogeny of the cyanobiont is very controversial: from its morphology, it has been named Nostoc azollae, Anabaena azollae, Anabaena variabilis status azollae and recently Trichormus azollae, but, from its 16S rRNA gene sequence, it has been assigned to Nostoc and/or Anabaena, and from its phycocyanin gene sequence, it has been assigned as non-Nostoc and non-Anabaena. The literature also points to a possible co-evolution between the cyanobiont and the Azolla host, since dendrograms and phylogenetic trees of fatty acids, short tandemly repeated repetitive (STRR) analysis and restriction fragment length polymorphism (RFLP) analysis of nif genes and the 16S rRNA gene give a two-cluster association that matches the two-section ranking of the host (Azolla). Another controversy surrounds the possible existence of more than one genus or more than one species strain. The use of freshly isolated or cultured cyanobionts is an additional problem, since their morphology and protein profiles are different. This review gives an overview of how morphological, chemical and genetic analyses influence the classification and phylogeny of the cyanobiont and future research.

  4. Report sensory analyses veal

    OpenAIRE

    Veldman, M.; Schelvis-Smit, A.A.M.

    2005-01-01

    On behalf of a client of Animal Sciences Group, different varieties of veal were analyzed by both instrumental and sensory analyses. The sensory evaluation was performed with a sensory analytical panel in the period of 13th of May and 31st of May, 2005. The three varieties of veal were: young bull, pink veal and white veal. The sensory descriptive analyses show that the three groups Young bulls, pink veal and white veal, differ significantly in red colour for the raw meat as well as the baked...

  5. Upstream factors affecting Tualatin River algae—Tracking the 2008 Anabaena algae bloom to Wapato Lake, Oregon

    Science.gov (United States)

    Rounds, Stewart A.; Carpenter, Kurt D.; Fesler, Kristel J.; Dorsey, Jessica L.

    2015-12-17

    Significant Findings A large bloom that included floating mats of the blue-green algae Anabaena flos-aquae occurred in the lower 20 miles of the Tualatin River in northwestern Oregon between July 7 and July 17, 2008.

  6. Two distinct states of the HAMP domain from sensory rhodopsin transducer observed in unbiased molecular dynamics simulations.

    Directory of Open Access Journals (Sweden)

    Ivan Gushchin

    Full Text Available HAMP domain is a ubiquitous module of bacterial and archaeal two-component signaling systems. Considerable progress has been made recently in studies of its structure and conformational changes. However, the mechanism of signal transduction through the HAMP domain is not clear. It remains a question whether all the HAMPs have the same mechanism of action and what are the differences between the domains from different protein families. Here, we present the results of unbiased molecular dynamics simulations of the HAMP domain from the archaeal phototaxis signal transducer NpHtrII. Two distinct conformational states of the HAMP domain are observed, that differ in relative position of the helices AS1 and AS2. The longitudinal shift is roughly equal to a half of an α-helix turn, although sometimes it reaches one full turn. The states are closely related to the position of bulky hydrophobic aminoacids at the HAMP domain core. The observed features are in good agreement with recent experimental results and allow us to propose that the states detected in the simulations are the resting state and the signaling state of the NpHtrII HAMP domain. To the best of our knowledge, this is the first observation of the same HAMP domain in different conformations. The simulations also underline the difference between AMBER ff99-SB-ILDN and CHARMM22-CMAP forcefields, as the former favors the resting state and the latter favors the signaling state.

  7. Mapping of contact sites in complex formation between light-activated rhodopsin and transducin by covalent crosslinking: Use of a chemically preactivated reagent

    OpenAIRE

    ITOH, Yoshiki; Cai, Kewen; Khorana, H. Gobind

    2001-01-01

    Contact sites in interaction between light-activated rhodopsin and transducin (T) have been investigated by using a chemically preactivated crosslinking reagent, N-succinimidyl 3-(2-pyridyldithio)propionate. The 3 propionyl-N-succinimidyl group in the reagent was attached by a disulfide exchange reaction to rhodopsin mutants containing single reactive cysteine groups in the cytoplasmic loops. Complex formation between the derivatized rhodopsin mutants and T was ...

  8. Roles of STAT3/SOCS3 Pathway in Regulating the Visual Function and Ubiquitin-Proteasome-dependent Degradation of Rhodopsin during Retinal Inflammation*

    OpenAIRE

    Ozawa, Yoko; Nakao, Keiko; Kurihara, Toshihide; Shimazaki, Takuya; Shimmura, Shigeto; Ishida, Susumu; Yoshimura, Akihiko; Tsubota, Kazuo; Okano, Hideyuki

    2008-01-01

    Inflammatory cytokines cause tissue dysfunction. We previously reported that retinal inflammation down-regulates rhodopsin expression and impairs visual function by an unknown mechanism. Here, we demonstrate that rhodopsin levels were preserved by suppressor of cytokine signaling 3 (SOCS3), a negative feedback regulator of STAT3 activation. SOCS3 was expressed mainly in photoreceptor cells in the retina. In the SOCS3-deficient retinas, rhodopsin protein levels dropped sooner, and the reductio...

  9. Na+-Translocating Rhodopsin from Dokdonia sp. PRO95 Does Not Contain Carotenoid Antenna.

    Science.gov (United States)

    Bertsova, Y V; Arutyunyan, A M; Bogachev, A V

    2016-04-01

    Carotenoid-binding properties of Na+-translocating rhodopsin (NaR) from Dokdonia sp. PRO95 were studied. Carotenoids were extracted from Dokdonia sp. PRO95 cells. It was found that zeaxanthin is the predominant carotenoid of this bacterium. Incubation of recombinant NaR purified from Escherichia coli cells with carotenoids from Dokdonia sp. PRO95 did not result in any changes in optical absorption or circular dichroism spectra, indicating the absence of binding of the carotenoids by NaR. The same results were obtained using salinixanthin as the carotenoid. These data along with genome analysis of Dokdonia sp. PRO95 and other flavobacteria indicate that NaR from Dokdonia sp. PRO95 and possibly the other flavobacterial Na+-translocating rhodopsins do not contain a carotenoid antenna. PMID:27293099

  10. Mutation analysis of codons 345 and 347 of rhodopsin gene in Indian retinitis pigmentosa patients

    Indian Academy of Sciences (India)

    Madhurima Dikshit; Rakhi Agarwal

    2001-08-01

    More than 100 mutations have been reported till date in the rhodopsin gene in patients with retinitis pigmentosa. The present study was undertaken to detect the reported rhodopsin gene point mutations in Indian retinitis pigmentosa patients. We looked for presence or absence of codon 345 and 347 mutations in exon 5 of the gene using the technique of allele-specific polymerase chain reaction by designing primers for each mutation. We have examined 100 patients from 76 families irrespective of genetic categories. Surprisingly, in our sample the very widely reported highly frequent mutations of codon 347 (P → S/A/R/Q/L/T) were absent while the codon 345 mutation V → M was seen in three cases in one family (autosomal dominant form) and in one sporadic case (total two families). This is the first report on codon 345 and 347 mutation in Indian retinitis pigmentosa subjects.

  11. NEUROSCIENCE. Natural light-gated anion channels: A family of microbial rhodopsins for advanced optogenetics.

    Science.gov (United States)

    Govorunova, Elena G; Sineshchekov, Oleg A; Janz, Roger; Liu, Xiaoqin; Spudich, John L

    2015-08-01

    Light-gated rhodopsin cation channels from chlorophyte algae have transformed neuroscience research through their use as membrane-depolarizing optogenetic tools for targeted photoactivation of neuron firing. Photosuppression of neuronal action potentials has been limited by the lack of equally efficient tools for membrane hyperpolarization. We describe anion channel rhodopsins (ACRs), a family of light-gated anion channels from cryptophyte algae that provide highly sensitive and efficient membrane hyperpolarization and neuronal silencing through light-gated chloride conduction. ACRs strictly conducted anions, completely excluding protons and larger cations, and hyperpolarized the membrane of cultured animal cells with much faster kinetics at less than one-thousandth of the light intensity required by the most efficient currently available optogenetic proteins. Natural ACRs provide optogenetic inhibition tools with unprecedented light sensitivity and temporal precision.

  12. Isotope labeling of mammalian GPCRs in HEK293 cells and characterization of the C-terminus of bovine rhodopsin by high resolution liquid NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Werner, Karla; Richter, Christian; Klein-Seetharaman, Judith, E-mail: jks33@pitt.edu; Schwalbe, Harald [Johann Wolfgang Goethe-University, Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (Germany)], E-mail: schwalbe@nmr.uni-frankfurt.de

    2008-01-15

    High amino acid coverage labeling of the mammalian G protein coupled receptors (GPCR) rhodopsin was established with {sup 15}N and {sup 15}N/{sup 13}C isotopes. Rhodopsin was expressed at preparative scale in HEK293S cells and studied in full-length by NMR spectroscopy in detergent micelle solution. This resulted in the assignment and detailed study of the dynamic properties of the C-terminus of rhodopsin. The rhodopsin C-terminus is immobilized until Ala333, after which it becomes unstructured.

  13. Feeding and the rhodopsin family G-Protein Coupled Receptors (GPCRs in nematodes and arthropods

    Directory of Open Access Journals (Sweden)

    Joao Carlos dos Reis Cardoso

    2012-12-01

    Full Text Available In vertebrates, receptors of the rhodopsin G-protein coupled superfamily (GPCRs play an important role in the regulation of feeding and energy homeostasis and are activated by peptide hormones produced in the brain-gut axis. These peptides regulate appetite and energy expenditure by promoting or inhibiting food intake. Sequence and function homologues of human GPCRs involved in feeding exist in the nematode roundworm, Caenorhabditis elegans (C. elegans and the arthropod fruit fly, Drosophila melanogaster (D. melanogaster, suggesting that the mechanisms that regulate food intake emerged early and have been conserved during metazoan radiation. Nematodes and arthropods are the most diverse and successful animal phyla on Earth. They can survive in a vast diversity of environments and have acquired distinct life styles and feeding strategies. The aim of the present review is to investigate if this diversity has affected the evolution of invertebrate GPCRs. Homologues of the C. elegans and D. melanogaster rhodopsin receptors were characterized in the genome of other nematodes and arthropods and receptor evolution compared. With the exception of bombesin receptors (BBR that are absent from nematodes, a similar gene complement was found. In arthropods, rhodopsin GPCR evolution is characterized by species-specific gene duplications and deletions and in nematodes by gene expansions in species with a free-living stage and gene deletions in representatives of obligate parasitic taxa. Based upon variation in GPCR gene number and potentially divergent functions within phyla we hypothesize that life style and feeding diversity practiced by nematodes and arthropods was one factor that contributed to rhodopsin GPCR gene evolution. Understanding how the regulation of food intake has evolved in invertebrates will contribute to the development of novel drugs to control nematodes and arthropods and the pests and diseases that use them as vectors.

  14. Feeding and the rhodopsin family g-protein coupled receptors in nematodes and arthropods.

    Science.gov (United States)

    Cardoso, João C R; Félix, Rute C; Fonseca, Vera G; Power, Deborah M

    2012-01-01

    In vertebrates, receptors of the rhodopsin G-protein coupled superfamily (GPCRs) play an important role in the regulation of feeding and energy homeostasis and are activated by peptide hormones produced in the brain-gut axis. These peptides regulate appetite and energy expenditure by promoting or inhibiting food intake. Sequence and function homologs of human GPCRs involved in feeding exist in the nematode roundworm, Caenorhabditis elegans (C. elegans), and the arthropod fruit fly, Drosophila melanogaster (D. melanogaster), suggesting that the mechanisms that regulate food intake emerged early and have been conserved during metazoan radiation. Nematodes and arthropods are the most diverse and successful animal phyla on Earth. They can survive in a vast diversity of environments and have acquired distinct life styles and feeding strategies. The aim of the present review is to investigate if this diversity has affected the evolution of invertebrate GPCRs. Homologs of the C. elegans and D. melanogaster rhodopsin receptors were characterized in the genome of other nematodes and arthropods and receptor evolution compared. With the exception of bombesin receptors (BBR) that are absent from nematodes, a similar gene complement was found. In arthropods, rhodopsin GPCR evolution is characterized by species-specific gene duplications and deletions and in nematodes by gene expansions in species with a free-living stage and gene deletions in representatives of obligate parasitic taxa. Based upon variation in GPCR gene number and potentially divergent functions within phyla we hypothesize that life style and feeding diversity practiced by nematodes and arthropods was one factor that contributed to rhodopsin GPCR gene evolution. Understanding how the regulation of food intake has evolved in invertebrates will contribute to the development of novel drugs to control nematodes and arthropods and the pests and diseases that use them as vectors. PMID:23264768

  15. Blocking transcription of the human rhodopsin gene by triplex-mediated DNA photocrosslinking

    OpenAIRE

    Intody, Zsofia; Perkins, Brian D.; Wilson, John H.; Wensel, Theodore G.

    2000-01-01

    To explore the ability of triplex-forming oligodeoxyribonucleotides (TFOs) to inhibit genes responsible for dominant genetic disorders, we used two TFOs to block expression of the human rhodopsin gene, which encodes a G protein-coupled receptor involved in the blinding disorder autosomal dominant retinitis pigmentosa. Psoralen-modified TFOs and UVA irradiation were used to form photoadducts at two target sites in a plasmid expressing a rhodopsin–EGFP fusion, which was then transfected into HT...

  16. In vivo und in vitro Expression von Membranproteinen am Beispiel archae- und eubakterieller Rhodopsine

    OpenAIRE

    Kalmbach, Rolf

    2005-01-01

    The completion of the human genome project and the development of sensitive high-throughput assay techniques initiated a dramatic acceleration in the pace of biological research. An essential prerequisition for further progress will be the establishment of effective and selective methods for the expression of the gene products in their functional state. In this work the cell-free protein biosynthesis of integral membrane proteins was established. Several rhodopsins from archae- and eubacte...

  17. Batch crystallization of rhodopsin for structural dynamics using an X-ray free-electron laser.

    Science.gov (United States)

    Wu, Wenting; Nogly, Przemyslaw; Rheinberger, Jan; Kick, Leonhard M; Gati, Cornelius; Nelson, Garrett; Deupi, Xavier; Standfuss, Jörg; Schertler, Gebhard; Panneels, Valérie

    2015-07-01

    Rhodopsin is a membrane protein from the G protein-coupled receptor family. Together with its ligand retinal, it forms the visual pigment responsible for night vision. In order to perform ultrafast dynamics studies, a time-resolved serial femtosecond crystallography method is required owing to the nonreversible activation of rhodopsin. In such an approach, microcrystals in suspension are delivered into the X-ray pulses of an X-ray free-electron laser (XFEL) after a precise photoactivation delay. Here, a millilitre batch production of high-density microcrystals was developed by four methodical conversion steps starting from known vapour-diffusion crystallization protocols: (i) screening the low-salt crystallization conditions preferred for serial crystallography by vapour diffusion, (ii) optimization of batch crystallization, (iii) testing the crystal size and quality using second-harmonic generation (SHG) imaging and X-ray powder diffraction and (iv) production of millilitres of rhodopsin crystal suspension in batches for serial crystallography tests; these crystals diffracted at an XFEL at the Linac Coherent Light Source using a liquid-jet setup.

  18. NEUROPHYSIOLOGICAL EVALUATION OF SENSORY SYSTEMS'

    Science.gov (United States)

    Exposure to many neurotoxic compounds has been shown to produce a sensory system dysfunction. Neurophysiological assessment of sensory function in humans and animal models often uses techniques known as sensory evoked potentials. Because both humans and animals show analogous res...

  19. Physiological and proteomic analysis of salinity tolerance of the halotolerant cyanobacterium Anabaena sp.

    Science.gov (United States)

    Yadav, Ravindra Kumar; Thagela, Preeti; Tripathi, Keshawanand; Abraham, G

    2016-09-01

    The halotolerant cyanobacterium Anabaena sp was grown under NaCl concentration of 0, 170 and 515 mM and physiological and proteomic analysis was performed. At 515 mM NaCl the cyanobacterium showed reduced photosynthetic activities and significant increase in soluble sugar content, proline and SOD activity. On the other hand Anabaena sp grown at 170 mM NaCl showed optimal growth, photosynthetic activities and comparatively low soluble sugar content, proline accumulation and SOD activity. The intracellular Na(+) content of the cells increased both at 170 and 515 mM NaCl. In contrast, the K(+) content of the cyanobacterium Anabaena sp remained stable in response to growth at identical concentration of NaCl. While cells grown at 170 mM NaCl showed highest intracellular K(+)/Na(+) ratio, salinity level of 515 mM NaCl resulted in reduced ratio of K(+)/Na(+). Proteomic analysis revealed 50 salt-responsive proteins in the cyanobacterium Anabaena sp under salt treatment compared with control. Ten protein spots were subjected to MALDI-TOF-MS/MS analysis and the identified proteins are involved in photosynthesis, protein folding, cell organization and energy metabolism. Differential expression of proteins related to photosynthesis, energy metabolism was observed in Anabaena sp grown at 170 mM NaCl. At 170 mM NaCl increased expression of photosynthesis related proteins and effective osmotic adjustment through increased antioxidant enzymes and modulation of intracellular ions contributed to better salinity tolerance and optimal growth. On the contrary, increased intracellular Na(+) content coupled with down regulation of photosynthetic and energy related proteins resulted in reduced growth at 515 mM NaCl. Therefore reduced growth at 515 mM NaCl could be due to accumulation of Na(+) ions and requirement to maintain higher organic osmolytes and antioxidants which is energy intensive. The results thus show that the basis of salt tolerance is different when the

  20. Nonsense mutations in the rhodopsin gene that give rise to mild phenotypes trigger mRNA degradation in human cells by nonsense-mediated decay.

    Science.gov (United States)

    Roman-Sanchez, Ramon; Wensel, Theodore G; Wilson, John H

    2016-04-01

    Eight different nonsense mutations in the human rhodopsin gene cause retinitis pigmentosa (RP), an inherited degenerative disease of the retina that can lead to complete blindness. Although all these nonsense mutations lead to premature termination codons (PTCs) in rhodopsin mRNA, some display dominant inheritance, while others are recessive. Because nonsense-mediated decay (NMD) can degrade mRNAs containing PTCs and modulate the inheritance patterns of genetic diseases, we asked whether any of the nonsense mutations in the rhodopsin gene generated mRNAs that were susceptible to degradation by NMD. We hypothesized that nonsense mutations that caused mild RP phenotypes would trigger NMD, whereas those that did not engage NMD would cause more severe RP phenotypes-presumably due to the toxicity of the truncated protein. To test our hypothesis, we transfected human rhodopsin nonsense mutants into HEK293 and HT1080 human cells and measured transcript levels by qRT-PCR. In both cell lines, rhodopsin mutations Q64X and Q344X, which cause severe phenotypes that are dominantly inherited, yielded the same levels of rhodopsin mRNA as wild type. By contrast, rhodopsin mutations W161X and E249X, which cause recessive RP, showed decreased rhodopsin mRNA levels, consistent with NMD. Rhodopsin mutant Y136X, a dominant mutation that causes late-onset RP with a very mild pathology, also gave lower mRNA levels. Treatment of cells with Wortmannin, an inhibitor of NMD, eliminated the degradation of Y136X, W161X, and E249X rhodopsin mRNAs. These results suggest that NMD modulates the severity of RP in patients with nonsense mutations in the rhodopsin gene. PMID:26416182

  1. Evaluation of antibacterial activity of zinc oxide nanoparticles synthesized using phycobilins of Anabaena variabilis NTSS17

    Directory of Open Access Journals (Sweden)

    Thangaraj Ramasamy

    2015-12-01

    Full Text Available Objective: To evaluate the antibacterial activity of zinc oxide nanoparticles synthesized using phycobilins of Anabaena variabilis NTSS17. Methods: The cyanobacterial isolate was collected from paddy field and morphologically identified as Anabaena variabilis NTSS17, that produces a pigment i.e. phycobiliproteins. The biosynthesized zinc nanoparticles were characterized by different spectroscopic and analytical techniques such as UV-visible spectrophotometer, Fourier transform infrared spectroscopy and X-ray diffraction which confirmed the formation of zinc nanoparticles. Results: Antibacterial activity of zinc oxide nanoparticles was examined against Escherichia coli, Rhodococcus rhodochrous and Pseudomonas aeruginosa. The maximum zone of inhibition occurred at 5 mg/1000 mL concentration of zinc oxide nanoparticles. Conclusions: Due to potent antimicrobial and intrinsic properties of zinc oxide, it can be actively used for biomedical applications.

  2. Molecular Dynamics Simulation and Experimental Studies on the Visual Pigment Rhodopsin: Multiple Conformational States and Structural Changes

    CERN Document Server

    Kholmurodov, Kh T; Ostrovsky, M A; Biochemical Physics Institute, Russian Academy of Sciences, Moscow, Russia

    2005-01-01

    Based on the MD simulations with a supercomputer and the special-purposes MDGRAPE-2 machine we have performed 3-ns MD calculations on the rhodopsin molecule and presented the structure analysis data for its dark-adapted state. We have fulfilled the RMSD (root-mean-square deviation) and structural analysis for the rhodopsin (with 11-\\textit{cis} retinal), generated the pictures of the atomic-scale processes for the binding pocket, surrounding the chromophore retinal, and compared the helical deviations for the beta-ionone ring and Schiff base linkage regions of the protein. The most remarkable point of our observations is that the rhodopsin helical distortions in the dark state are accompanied with the transformation of the retinal chromophore, viz. with the rotation of the beta-ionone ring inside the protein binding pocket. The low-temperature absorption spectroscopy technique has been used to study the primary stages of rhodopsin photolysis. The structural transformation properties of rhodopsin were discusse...

  3. Whole Cell Biosensor Using Anabaena torulosa with Optical Transduction for Environmental Toxicity Evaluation

    OpenAIRE

    Ling Shing Wong; Yook Heng Lee; Salmijah Surif

    2013-01-01

    A whole cell-based biosensor using Anabaena torulosa for the detection of heavy metals (Cu, Pb, and Cd), 2,4-dichlorophenoxyacetate (2,4-D), and chlorpyrifos was constructed. The cyanobacteria were entrapped on a cellulose membrane through filtration. Then, the membrane was dried and fixed into a cylindrical well, which was designed to be attached to an optical probe. The probe was connected to fluorescence spectrometer with optical fibre. The presence of the toxicants was indicated by the ch...

  4. Morphological and ultrastructural changes in vegetative cells and heterocysts of Anabaena variabilis grown with fructose.

    OpenAIRE

    Lang, N. J.; Krupp, J M; Koller, A L

    1987-01-01

    The morphology and ultrastructure of Anabaena variabilis grown in medium with and without 40 mM fructose were compared. Vegetative cells and young heterocysts in fructose-supplemented medium were significantly larger, were filled with glycogen granules, and had fewer thylakoids. Developing heterocysts contained large numbers of glycogen granules well into mature stages, and envelope formation was precocious. As heterocysts enlarged in fructose medium, their shape became more broadly oblong co...

  5. All1371 is a polyphosphate-dependent glucokinase in Anabaena sp. PCC 7120.

    Science.gov (United States)

    Klemke, Friederike; Beyer, Gabriele; Sawade, Linda; Saitov, Ali; Korte, Thomas; Maldener, Iris; Lockau, Wolfgang; Nürnberg, Dennis J; Volkmer, Thomas

    2014-12-01

    The polyphosphate glucokinases can phosphorylate glucose to glucose 6-phosphate using polyphosphate as the substrate. ORF all1371 encodes a putative polyphosphate glucokinase in the filamentous heterocyst-forming cyanobacterium Anabaena sp. PCC 7120. Here, ORF all1371 was heterologously expressed in Escherichia coli, and its purified product was characterized. Enzyme activity assays revealed that All1371 is an active polyphosphate glucokinase that can phosphorylate both glucose and mannose in the presence of divalent cations in vitro. Unlike many other polyphosphate glucokinases, for which nucleoside triphosphates (e.g. ATP or GTP) act as phosphoryl group donors, All1371 required polyphosphate to confer its enzymic activity. The enzymic reaction catalysed by All1371 followed classical Michaelis-Menten kinetics, with kcat = 48.2 s(-1) at pH 7.5 and 28 °C and KM = 1.76 µM and 0.118 mM for polyphosphate and glucose, respectively. Its reaction mechanism was identified as a particular multi-substrate mechanism called the 'bi-bi ping-pong mechanism'. Bioinformatic analyses revealed numerous polyphosphate-dependent glucokinases in heterocyst-forming cyanobacteria. Viability of an Anabaena sp. PCC 7120 mutant strain lacking all1371 was impaired under nitrogen-fixing conditions. GFP promoter studies indicate expression of all1371 under combined nitrogen deprivation. All1371 might play a substantial role in Anabaena sp. PCC 7120 under these conditions.

  6. Utilization of the cyanobacteria Anabaena sp CH1 in biological carbon dioxide mitigation processes

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, C.L.; Lee, C.M.; Chen, P.C. [Hungkuang University, Taichung (Taiwan)

    2011-05-15

    Before switching totally to alternative fuel stage, CO{sub 2} mitigation process has considered a transitional strategy for combustion of fossil fuels inevitably. In comparison to other CO{sub 2} mitigation options, such as oceanic or geologic injection, the biological photosynthetic process would present a far superior and sustainable solution under both environmental and social considerations. The utilization of the cyanobacteria Anabaena sp. CH1 in carbon dioxide mitigation processes is analyzed in our research. It was found that an original developed photobioreactor with internal light source exhibits high light utilization. Anabaena sp. CH1 demonstrates excellent CO{sub 2} tolerance even at 15% CO{sub 2} level. This enables flue gas from power plant to be directly introduced to Anabaena sp. CH1 culture. Double light intensity and increased 47% CO{sub 2} bubble retention time could enhance CO{sub 2} removal efficiencies by 79% and 67%, respectively. A maximum CO{sub 2} fixation rate of 1.01 g CO{sub 2} L{sup -1} day{sup -1} was measured experimentally.

  7. Functional properties of LptA and LptD in Anabaena sp. PCC 7120.

    Science.gov (United States)

    Hsueh, Yi-Ching; Brouwer, Eva-M; Marzi, Julian; Mirus, Oliver; Schleiff, Enrico

    2015-09-01

    Lipopolysaccharides (LPS) are central components of the outer membrane and consist of Lipid A, the core polysaccharide, and the O-antigen. The synthesis of LPS is initiated at the cytosolic face of the cytoplasmic membrane. The subsequent transport to and across the outer membrane involves multiple lipopolysaccharide transport (Lpt) proteins. Among those proteins, the periplasmic-localized LptA and the outer membrane-embedded LptD participate in the last steps of transfer and insertion of LPS into the outer membrane. While the process is described for proteobacterial model systems, not much is known about the machinery in cyanobacteria. We demonstrate that anaLptD (alr1278) of Anabaena sp. PCC 7120 is important for cell wall function and its pore domain shows a Lipid A sensitive cation-selective gating behavior. The N-terminal domain of anaLptD recognizes anaLptA (alr4067), but not ecLptA. Furthermore, anaLptA specifically interacts with the Lipid A from Anabaena sp. PCC 7120 only, while anaLptD binds to Lipid A isolated from Escherichia coli as well. Based on the comparative analysis of proteins from E. coli and Anabaena sp. we discuss the properties of the cyanobacterial Lpt system.

  8. Examining Sensory Quadrants in Autism

    Science.gov (United States)

    Kern, Janet K.; Garver, Carolyn R.; Carmody, Thomas; Andrews, Alonzo A.; Trivedi, Madhukar H.; Mehta, Jyutika A.

    2007-01-01

    The purpose of this study was to examine sensory quadrants in autism based on Dunn's Theory of Sensory Processing. The data for this study was collected as part of a cross-sectional study that examined sensory processing (using the Sensory Profile) in 103 persons with autism, 3-43 years of age, compared to 103 age- and gender-matched community…

  9. Modeling Photo-Bleaching Kinetics to Create High Resolution Maps of Rod Rhodopsin in the Human Retina.

    Directory of Open Access Journals (Sweden)

    Martin Ehler

    Full Text Available We introduce and describe a novel non-invasive in-vivo method for mapping local rod rhodopsin distribution in the human retina over a 30-degree field. Our approach is based on analyzing the brightening of detected lipofuscin autofluorescence within small pixel clusters in registered imaging sequences taken with a commercial 488nm confocal scanning laser ophthalmoscope (cSLO over a 1 minute period. We modeled the kinetics of rhodopsin bleaching by applying variational optimization techniques from applied mathematics. The physical model and the numerical analysis with its implementation are outlined in detail. This new technique enables the creation of spatial maps of the retinal rhodopsin and retinal pigment epithelium (RPE bisretinoid distribution with an ≈ 50μm resolution.

  10. Rhodopsin in the Dark Hot Sea: Molecular Analysis of Rhodopsin in a Snailfish, Careproctus rhodomelas, Living near the Deep-Sea Hydrothermal Vent.

    Directory of Open Access Journals (Sweden)

    Rie Sakata

    Full Text Available Visual systems in deep-sea fishes have been previously studied from a photobiological aspect; however, those of deep-sea fish inhabiting the hydrothermal vents are far less understood due to sampling difficulties. In this study, we analyzed the visual pigment of a deep-sea snailfish, Careproctus rhodomelas, discovered and collected only near the hydrothermal vents of oceans around Japan. Proteins were solubilized from the C. rhodomelas eyeball and subjected to spectroscopic analysis, which revealed the presence of a pigment characterized by an absorption maximum (λmax at 480 nm. Immunoblot analysis of the ocular protein showed a rhodopsin-like immunoreactivity. We also isolated a retinal cDNA encoding the entire coding sequence of putative C. rhodomelas rhodopsin (CrRh. HEK293EBNA cells were transfected with the CrRh cDNA and the proteins extracted from the cells were subjected to spectroscopic analysis. The recombinant CrRh showed the absorption maximum at 480 nm in the presence of 11-cis retinal. Comparison of the results from the eyeball extract and the recombinant CrRh strongly suggests that CrRh has an A1-based 11-cis-retinal chromophore and works as a photoreceptor in the C. rhodomelas retina, and hence that C. rhodomelas responds to dim blue light much the same as other deep-sea fishes. Because hydrothermal vent is a huge supply of viable food, C. rhodomelas likely do not need to participate diel vertical migration and may recognize the bioluminescence produced by aquatic animals living near the hydrothermal vents.

  11. A comparative study of rhodopsin function in the great bowerbird (Ptilonorhynchus nuchalis): Spectral tuning and light-activated kinetics.

    Science.gov (United States)

    van Hazel, Ilke; Dungan, Sarah Z; Hauser, Frances E; Morrow, James M; Endler, John A; Chang, Belinda S W

    2016-07-01

    Rhodopsin is the visual pigment responsible for initiating the phototransduction cascade in vertebrate rod photoreceptors. Although well-characterized in a few model systems, comparative studies of rhodopsin function, particularly for nonmammalian vertebrates are comparatively lacking. Bowerbirds are rare among passerines in possessing a key substitution, D83N, at a site that is otherwise highly conserved among G protein-coupled receptors. While this substitution is present in some dim-light adapted vertebrates, often accompanying another unusual substitution, A292S, its functional relevance in birds is uncertain. To investigate functional effects associated with these two substitutions, we use the rhodopsin gene from the great bowerbird (Ptilonorhynchus nuchalis) as a background for site-directed mutagenesis, in vitro expression and functional characterization. We also mutated these sites in two additional rhodopsins that do not naturally possess N83, chicken and bovine, for comparison. Both sites were found to contribute to spectral blue-shifts, but had opposing effects on kinetic rates. Substitutions at site 83 were found to primarily affect the kinetics of light-activated rhodopsin, while substitutions at site 292 had a larger impact on spectral tuning. The contribution of substitutions at site 83 to spectral tuning in particular depended on genetic background, but overall, the effects of substitutions were otherwise surprisingly additive, and the magnitudes of functional shifts were roughly similar across all three genetic backgrounds. By employing a comparative approach with multiple species, our study provides new insight into the joint impact of sites 83 and 292 on rhodopsin structure-function as well as their evolutionary significance for dim-light vision across vertebrates. PMID:26889650

  12. Assessment of Anabaena sp. Strain PCC 7120 as a Heterologous Expression Host for Cyanobacterial Natural Products: Production of Lyngbyatoxin A.

    Science.gov (United States)

    Videau, Patrick; Wells, Kaitlyn N; Singh, Arun J; Gerwick, William H; Philmus, Benjamin

    2016-09-16

    Cyanobacteria are well-known producers of natural products of highly varied structure and biological properties. However, the long doubling times, difficulty in establishing genetic methods for marine cyanobacteria, and low compound titers have hindered research into the biosynthesis of their secondary metabolites. While a few attempts to heterologously express cyanobacterial natural products have occurred, the results have been of varied success. Here, we report the first steps in developing the model freshwater cyanobacterium Anabaena sp. strain PCC 7120 (Anabaena 7120) as a general heterologous expression host for cyanobacterial secondary metabolites. We show that Anabaena 7120 can heterologously synthesize lyngbyatoxin A in yields comparable to those of the native producer, Moorea producens, and detail the design and use of replicative plasmids for compound production. We also demonstrate that Anabaena 7120 recognizes promoters from various biosynthetic gene clusters from both free-living and obligate symbiotic marine cyanobacteria. Through simple genetic manipulations, the titer of lyngbyatoxin A can be improved up to 13-fold. The development of Anabaena 7120 as a general heterologous expression host enables investigation of interesting cyanobacterial biosynthetic reactions and genetic engineering of their biosynthetic pathways.

  13. Processus de conversion d'énergie ultra-rapide dans des protéines photosensibles et nanostructures organiques à visée photovoltaïque

    OpenAIRE

    Cheminal, Alexandre

    2015-01-01

    Femtosecond transient spectroscopies are used to investigate photonic energy conversion inorganic systems. These techniques allow to observe the ground and excited states of themolecules at the timescale of the photoreactions. It is used to understand the inter- andintramolecular energy and charge transfers leading to the desired photochemical process.The natural photoswiching retinal protein Anabaena sensory Rhodopsin is studied to understand the key parameters ruling the isomerisation quant...

  14. Frequency-rank correlations of rhodopsin mutations with tuned hydropathic roughness based on self-organized criticality

    Science.gov (United States)

    Phillips, J. C.

    2012-11-01

    The behavior of disease-linked mutations of membrane proteins is especially simple in rhodopsin, where they are well-studied, as they are responsible for retinitis pigmentosa, RP (retinal degeneration). Here we show that the frequency of occurrence of single RP mutations is strongly influenced by their transportational survival rates, and that this survival correlates well (82%) with a long-range, non-local hydropathic measure of the roughness of the water interfaces of ex-membrane rhodopsin based on self-organized criticality (SOC). It is speculated that this concept may be generally useful in studying survival rates of many mutated proteins.

  15. Cryptogenic sensory polyneuropathy.

    Science.gov (United States)

    Pasnoor, Mamatha; Dimachkie, Mazen M; Barohn, Richard J

    2013-05-01

    Chronic sensory or sensorimotor polyneuropathy is a common cause for referral to neurologists. Despite extensive diagnostic testing, up to one-third of these patients remain without a known cause, and are referred to as having cryptogenic sensory peripheral neuropathy. Symptoms progress slowly. On examination, there may be additional mild toe flexion and extension weakness. Electrophysiologic testing and histology reveals axonal neuropathy. Prognosis is usually favorable, as most patients maintain independent ambulation. Besides patient education and reassurance, management is focused on pharmacotherapy for neuropathic pain and physical therapy for balance training, and, occasionally, assistive devices.

  16. Spectral methods for study of the G-protein-coupled receptor rhodopsin. II. Magnetic resonance methods

    Science.gov (United States)

    Struts, A. V.; Barmasov, A. V.; Brown, M. F.

    2016-02-01

    This article continues our review of spectroscopic studies of G-protein-coupled receptors. Magnetic resonance methods including electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR) provide specific structural and dynamical data for the protein in conjunction with optical methods (vibrational, electronic spectroscopy) as discussed in the accompanying article. An additional advantage is the opportunity to explore the receptor proteins in the natural membrane lipid environment. Solid-state 2H and 13C NMR methods yield information about both the local structure and dynamics of the cofactor bound to the protein and its light-induced changes. Complementary site-directed spin-labeling studies monitor the structural alterations over larger distances and correspondingly longer time scales. A multiscale reaction mechanism describes how local changes of the retinal cofactor unlock the receptor to initiate large-scale conformational changes of rhodopsin. Activation of the G-protein-coupled receptor involves an ensemble of conformational substates within the rhodopsin manifold that characterize the dynamically active receptor.

  17. Voltage imaging in vivo with a new class of rhodopsin-based indicators

    Science.gov (United States)

    Douglass, Adam

    2013-03-01

    Reliable, optical detection of single action potentials in an intact brain is one of the longest-standing challenges in neuroscience. We have recently shown that a number of microbial rhodopsins exhibit intrinsic fluorescence that is sensitive to transmembrane potential. One class of indicator, derived from Archaerhodopsin-3 (Arch), responds to voltage transients with a speed and sensitivity that enable near-perfect identification of single action potentials in cultured neurons [Nat Methods. (2011). 9:90-5]. We have extended the use of these indicators to an in vivo context through the application of advanced imaging techniques to the larval zebrafish. Using planar-illumination, spinning-disk confocal, and epifluorescence imaging modalities, we have successfully recorded electrical activity in a variety of fish structures, including the brain and heart, in a completely noninvasive manner. Transgenic lines expressing Arch variants in defined cells enable comprehensive measurements to be made from specific target populations. In parallel, we have also extended the capabilities of our indicators by improving their multiphoton excitability and overall brightness. Microbial rhodopsin-based voltage indicators now enable optical interrogation of complex neural circuits, and electrophysiology in systems for which electrode-based techniques are challenging.

  18. X-ray Crystallographic Structure of Thermophilic Rhodopsin: IMPLICATIONS FOR HIGH THERMAL STABILITY AND OPTOGENETIC FUNCTION.

    Science.gov (United States)

    Tsukamoto, Takashi; Mizutani, Kenji; Hasegawa, Taisuke; Takahashi, Megumi; Honda, Naoya; Hashimoto, Naoki; Shimono, Kazumi; Yamashita, Keitaro; Yamamoto, Masaki; Miyauchi, Seiji; Takagi, Shin; Hayashi, Shigehiko; Murata, Takeshi; Sudo, Yuki

    2016-06-01

    Thermophilic rhodopsin (TR) is a photoreceptor protein with an extremely high thermal stability and the first characterized light-driven electrogenic proton pump derived from the extreme thermophile Thermus thermophilus JL-18. In this study, we confirmed its high thermal stability compared with other microbial rhodopsins and also report the potential availability of TR for optogenetics as a light-induced neural silencer. The x-ray crystal structure of TR revealed that its overall structure is quite similar to that of xanthorhodopsin, including the presence of a putative binding site for a carotenoid antenna; but several distinct structural characteristics of TR, including a decreased surface charge and a larger number of hydrophobic residues and aromatic-aromatic interactions, were also clarified. Based on the crystal structure, the structural changes of TR upon thermal stimulation were investigated by molecular dynamics simulations. The simulations revealed the presence of a thermally induced structural substate in which an increase of hydrophobic interactions in the extracellular domain, the movement of extracellular domains, the formation of a hydrogen bond, and the tilting of transmembrane helices were observed. From the computational and mutational analysis, we propose that an extracellular LPGG motif between helices F and G plays an important role in the thermal stability, acting as a "thermal sensor." These findings will be valuable for understanding retinal proteins with regard to high protein stability and high optogenetic performance. PMID:27129243

  19. Small-angle neutron and X-ray scattering reveal conformational changes in rhodopsin activation

    Science.gov (United States)

    Shrestha, Utsab R.; Bhowmik, Debsindhu; Perera, Suchitrhanga M. C. D.; Chawla, Udeep; Struts, Andrey V.; Graziono, Vito; Pingali, Sai Venkatesh; Heller, William T.; Qian, Shuo; Brown, Michael F.; Chu, Xiang-Qiang

    2015-03-01

    Understanding G-protein-coupled receptor (GPCR) activation plays a crucial role in the development of novel improved molecular drugs. During photo-activation, the retinal chromophore of the visual GPCR rhodopsin isomerizes from 11-cis to all-trans conformation, yielding an equilibrium between inactive Meta-I and active Meta-II states. The principal goals of this work are to address whether the activation of rhodopsin leads to a single state or a conformational ensemble, and how protein organizational structure changes with detergent environment in solution. We use both small-angle neutron scattering (SANS) and small-angle X-ray scattering (SAXS) techniques to answer the above questions. For the first time we observe the change in protein conformational ensemble upon photo-activation by SANS with contrast variation, which enables the separate study of the protein structure within the detergent assembly. In addition, SAXS study of protein structure within detergent assembly suggests that the detergent molecules form a belt of monolayer (micelle) around protein with different geometrical shapes to keep the protein in folded state.

  20. Evolution of eye morphology and rhodopsin expression in the Drosophila melanogaster species subgroup.

    Directory of Open Access Journals (Sweden)

    Nico Posnien

    Full Text Available A striking diversity of compound eye size and shape has evolved among insects. The number of ommatidia and their size are major determinants of the visual sensitivity and acuity of the compound eye. Each ommatidium is composed of eight photoreceptor cells that facilitate the discrimination of different colours via the expression of various light sensitive Rhodopsin proteins. It follows that variation in eye size, shape, and opsin composition is likely to directly influence vision. We analyzed variation in these three traits in D. melanogaster, D. simulans and D. mauritiana. We show that D. mauritiana generally has larger eyes than its sibling species, which is due to a combination of larger ommatidia and more ommatidia. In addition, intra- and inter-specific differences in eye size among D. simulans and D. melanogaster strains are mainly caused by variation in ommatidia number. By applying a geometric morphometrics approach to assess whether the formation of larger eyes influences other parts of the head capsule, we found that an increase in eye size is associated with a reduction in the adjacent face cuticle. Our shape analysis also demonstrates that D. mauritiana eyes are specifically enlarged in the dorsal region. Intriguingly, this dorsal enlargement is associated with enhanced expression of rhodopsin 3 in D. mauritiana. In summary, our data suggests that the morphology and functional properties of the compound eyes vary considerably within and among these closely related Drosophila species and may be part of coordinated morphological changes affecting the head capsule.

  1. Retinal orientation and interactions in rhodopsin reveal a two-stage trigger mechanism for activation.

    Science.gov (United States)

    Kimata, Naoki; Pope, Andreyah; Eilers, Markus; Opefi, Chikwado A; Ziliox, Martine; Hirshfeld, Amiram; Zaitseva, Ekaterina; Vogel, Reiner; Sheves, Mordechai; Reeves, Philip J; Smith, Steven O

    2016-01-01

    The 11-cis retinal chromophore is tightly packed within the interior of the visual receptor rhodopsin and isomerizes to the all-trans configuration following absorption of light. The mechanism by which this isomerization event drives the outward rotation of transmembrane helix H6, a hallmark of activated G protein-coupled receptors, is not well established. To address this question, we use solid-state NMR and FTIR spectroscopy to define the orientation and interactions of the retinal chromophore in the active metarhodopsin II intermediate. Here we show that isomerization of the 11-cis retinal chromophore generates strong steric interactions between its β-ionone ring and transmembrane helices H5 and H6, while deprotonation of its protonated Schiff's base triggers the rearrangement of the hydrogen-bonding network involving residues on H6 and within the second extracellular loop. We integrate these observations with previous structural and functional studies to propose a two-stage mechanism for rhodopsin activation. PMID:27585742

  2. Protective role of grape seed extract against the effect of electromagnetic radiation on retinal rhodopsin

    International Nuclear Information System (INIS)

    In recent time, people exposure to blue light has increased. Much of the world of commercial display and industry is lit with cool white fluorescent tubes which emit a strong spike of light in the blue and ultraviolet ranges. Indeed many homes and offices are lit with cool white fluorescent tubes. No doubts, more people are spending more time in front of Video Display Terminals which produce blue light. This study aimed to investigate the effect of blue light and the combined effect of blue light and gamma radiation on retinal rhodopsin. Also, the possible protective role of grape seed extract (GSE) to retinal rhodopsin was tested. New zealand albino rabbits were used in this study. The rabbits were classified into five groups I, II, III, IV and V according to the following: Group I: used as control group. Group II: subdivided into four subgroups subgroups were exposed to blue light of intensity 3.9 lux and decapitated after 48 hours, one week, two weeks and 3 weeks respectively. Group III: subdivided into four subgroups. All rabbits were supplemented with 10 mg/Kg body weight Grape seed extract (GSE) two weeks before exposure to 3.9 lux blue light. GSE supplementation was continued till decapitation. Rabbits were decapitated after 48 hours, one week, two weeks and 3 weeks of exposure to blue light respectively. Group IV: subdivided into two subgroups. The two subgroups were exposed to blue light of 3.9 lux for one week and two weeks, then irradiated with 5 Gy gamma rays and decapitated. Group V: subdivided into two subgroups. The rabbits were supplemented with 10 mg/Kg body weight Grape seed extract (GSE) two weeks before exposure to 3.9 lux blue light for one week and two weeks respectively. After these periods, the rabbits were irradiated with 5 Gy gamma rays then decapitated. GSE supplementation was continued till decapitation. At the end of each period, the electroretinogram (ERG) was recorded. After the decapitation, the rhodopsin was extracted and the

  3. Backbone dynamics of reduced plastocyanin from the cyanobacterium Anabaena variabilis: Regions involved in electron transfer have enhanced mobility

    DEFF Research Database (Denmark)

    Ma, L.X.; Hass, M.A.S.; Vierick, N.;

    2003-01-01

    The dynamics of the backbone of the electron-transfer protein plastocyanin from the cyanobacterium Anabaena variabilis were determined from the N-15 and C-13(alpha) R-1 and R-2) relaxation rates and steady-state [H-1]-N-15 and [H-1]-C-13 nuclear Overhauser effects (NOEs) using the model-free appr......The dynamics of the backbone of the electron-transfer protein plastocyanin from the cyanobacterium Anabaena variabilis were determined from the N-15 and C-13(alpha) R-1 and R-2) relaxation rates and steady-state [H-1]-N-15 and [H-1]-C-13 nuclear Overhauser effects (NOEs) using the model...

  4. Photoreceptor Differentiation following Transplantation of Allogeneic Retinal Progenitor Cells to the Dystrophic Rhodopsin Pro347Leu Transgenic Pig

    DEFF Research Database (Denmark)

    Klassen, H; Kiilgaard, Jens Folke; Warfvinge, K;

    2012-01-01

    . Methods. Retinal progenitor cells were derived from the neural retina of GFP-transgenic pigs and transplanted to the subretinal space of rhodopsin Pro347Leu-transgenic allorecipients, in the early stage of the degeneration and the absence of immune suppression. Results. Results confirm the survival of...

  5. Opsin cDNA sequences of a UV and green rhodopsin of the satyrine butterfly Bicyclus anynana

    NARCIS (Netherlands)

    Vanhoutte, Kürt; Eggen, BJL; Janssen, JJM; Stavenga, DG

    2002-01-01

    The cDNAs of an ultraviolet (UV) and long-wavelength (LW) (green) absorbing rhodopsin of the bush brown Bicyclus anynana were partially identified. The UV sequence, encoding 377 amino acids, is 76-79% identical to the UV sequences of the papilionids Papilio glaucus and Papilio xuthus and the moth Ma

  6. Sensory analysis of lipstick.

    Science.gov (United States)

    Yap, K C S; Aminah, A

    2011-06-01

    Sensory analysis of lipstick product by trained panellists started with recruiting female panels who are lipstick users, in good health condition and willing to be a part of sensory members. This group of people was further scrutinized with duo-trio method using commercial lipstick samples that are commonly used among them. About 40% of the 15 panels recruited were unable to differentiate the lipstick samples they usually use better than chance. The balance of nine panels that were corrected at least with 65% across all trials in panels screening process was formed a working group to develop sensory languages as a means of describing product similarities and differences and a scoring system. Five sessions with each session took about 90 min were carried out using 10 types of lipsticks with different waxes mixture ratio in the formulation together with six commercial lipsticks that are the most common to the panels. First session was focus on listing out the panels' perception towards the characteristic of the lipstick samples after normal application on their lips. Second session was focus on the refining and categorizing the responses gathered from the first session and translated into sensory attributes with its definition. Third session was focus on the scoring system. Fourth and fifth sessions were repetition of the third session to ensure consistency. In a collective effort of the panels, sensory attributes developed for lipstick were Spreadability, Off flavour, Hardness, Smoothness, Moist, Not messy, Glossy and Greasy. Analysis of variance was able to provide ample evidence on gauging the panel performance. A proper panels selecting and training was able to produce a reliable and sensitive trained panel for evaluating the product based on the procedures being trained. PMID:21272038

  7. Biosorption of cadmium and lead from aqueous solution by fresh water alga Anabaena sphaerica biomass

    OpenAIRE

    Abdel -Aty, Azza M.; Ammar, Nabila S.; Hany H. Abdel Ghafar; Ali, Rizka K.

    2013-01-01

    The present work represents the biosorption of Cd(II) and Pb(II) from aqueous solution onto the biomass of the blue green alga Anabaena sphaerica as a function of pH, biosorbent dosage, contact time, and initial metal ion concentrations. Freundlich, Langmuir, and Dubinin–Radushkevich (D–R) models were applied to describe the biosorption isotherm of both metals by A. sphaerica biomass. The biosorption isotherms studies indicated that the biosorption of Cd(II) and Pb(II) follows the Langmuir an...

  8. Fructose uptake and influence on growth of and nitrogen fixation by Anabaena variabilis.

    OpenAIRE

    Haury, J F; Spiller, H.

    1981-01-01

    Fructose is specifically taken up by nitrogen-fixing cultures of Anabaena variabilis in the light and lowers the doubling time from 24 to 8 h. The kinetics for both fructose-dependent growth and fructose uptake are exponential. The apparent Km for fructose uptake in N2-fixing cultures is 160 microM for cells not previously exposed to fructose and 50 microM in cells adapted to fructose. Picomolar amounts of [14C]fructose are scavenged from the medium and accumulate in filaments. Heterocysts of...

  9. Cloning and sequencing of the ferredoxin gene of blue-green alga Anabaena siamensis

    Science.gov (United States)

    Li, Shou-Dong; Song, Li-Rong; Liu, Yong-Ding; Zhao, Jin-Dong

    1998-03-01

    The structure gene for ferredoxin, petFI, from Anabaena siamensis has been amplified by polymerase chain reaction(PCR) and cloned into cloning vector pGEM-3zf(+). The nucleotide sequence of petFI has been determined with silver staining sequencing method. There is 96.8% homology between coding region of petFI from A. siamensis and that of petFI from A. sp. 7120. Amino acid sequences of seven strains of blue-green algae are compared.

  10. INFLUENCE OF HIGH LIGHT INTENSITY ON THE CELLS OF CYANOBACTERIA ANABAENA VARIABILIS SP. ATCC 29413

    Directory of Open Access Journals (Sweden)

    OPRIŞ SANDA

    2012-12-01

    Full Text Available In this article is presented the result of research regardind the effect of high light intensity on the cells of Anabaena variabilis sp. ATCC 29413, the main objective is to study the adaptation of photosynthetic apparatus to light stress. Samples were analyzed in the present of herbicide diuron (DCMU which blocks electron flow from photosystem II and without diuron. During treatment maximum fluorescence and photosystems efficiency are significantly reduced, reaching very low values compared with the blank, as a result of photoinhibition installation. Also by this treatment is shown the importance of the mechanisms by which cells detect the presence of light stress and react accordingly.

  11. The Evolution of Sensory Placodes

    OpenAIRE

    Francoise Mazet

    2006-01-01

    The vertebrate cranial sensory placodes are ectodermal embryonic patches that give rise to sensory receptor cells of the peripheral paired sense organs and to neurons in the cranial sensory ganglia. Their differentiation and the genetic pathways that underlay their development are now well understood. Their evolutionary history, however, has remained obscure. Recent molecular work, performed on close relatives of the vertebrates, demonstrated that some sensory placodes (namely the adenohypoph...

  12. Understanding Sensory Integration. ERIC Digest.

    Science.gov (United States)

    DiMatties, Marie E.; Sammons, Jennifer H.

    This brief paper summarizes what is known about sensory integration and sensory integration dysfunction (DSI). It outlines evaluation of DSI, treatment approaches, and implications for parents and teachers, including compensatory strategies for minimizing the impact of DSI on a child's life. Review of origins of sensory integration theory in the…

  13. Instabilities in sensory processes

    Science.gov (United States)

    Balakrishnan, J.

    2014-07-01

    In any organism there are different kinds of sensory receptors for detecting the various, distinct stimuli through which its external environment may impinge upon it. These receptors convey these stimuli in different ways to an organism's information processing region enabling it to distinctly perceive the varied sensations and to respond to them. The behavior of cells and their response to stimuli may be captured through simple mathematical models employing regulatory feedback mechanisms. We argue that the sensory processes such as olfaction function optimally by operating in the close proximity of dynamical instabilities. In the case of coupled neurons, we point out that random disturbances and fluctuations can move their operating point close to certain dynamical instabilities triggering synchronous activity.

  14. Descriptive sensory evaluations

    DEFF Research Database (Denmark)

    Dehlholm, Christian

    aim of this thesis is to compare and evaluate selected rapid evaluation techniques for sensory profiling. Method variations have been suggested for evaluations in product development and quality control, and method insight is provided. The thesis includes three original studies, designed......A recent trend in descriptive sensory evaluation methodology has been the application of rapid evaluation techniques. The ease in use makes the techniques extremely easy to implement by industry and university environments. Thus, one might not consider validity in the choice of method. The overall...... as a consequence of the current practices and needs faced in the industry. Study I compared applicability and validity of rapid methods across several panels of trained assessors. Two rapid approaches were introduced for the evaluation of foods. The first method, ‘Free Multiple Sorting’, allows subjects to perform...

  15. Canine Sensory Perception

    OpenAIRE

    Homolková, Eliška

    2014-01-01

    Senses are physiological capacities of an individual that provide the individual with data for perception of the outside world. Perception is a subjective reflection of an objective reality in our brain through our sensory receptors. The way we perceive the actual stimulus depends in some way on our experiences and on the way the stimulus is interpreted by our memory. This thesis describes the mechanisms of transport of the stimuli about the outside world to the central nervous system and the...

  16. BIOTRANSFORMATION OF 2,4,6-TRINITROTOLUENE IN A CONTINUOUS-FLOW ANABAENA SP. SYSTEM. (R825513C013)

    Science.gov (United States)

    Reductive transformation of 2,4,6-trinitrotoluene (TNT) was observed in a continuous-flow system of Anabaena sp. operated for 33 d with a 5.7 d hydraulic retention time and a range of influent TNT concentrations of 1–58 mg/l. The TNT removal effici...

  17. Amino Acid Transporters and Release of Hydrophobic Amino Acids in the Heterocyst-Forming Cyanobacterium Anabaena sp. Strain PCC 7120

    Directory of Open Access Journals (Sweden)

    Rafael Pernil

    2015-04-01

    Full Text Available Anabaena sp. strain PCC 7120 is a filamentous cyanobacterium that can use inorganic compounds such as nitrate or ammonium as nitrogen sources. In the absence of combined nitrogen, it can fix N2 in differentiated cells called heterocysts. Anabaena also shows substantial activities of amino acid uptake, and three ABC-type transporters for amino acids have been previously characterized. Seven new loci encoding predicted amino acid transporters were identified in the Anabaena genomic sequence and inactivated. Two of them were involved in amino acid uptake. Locus alr2535-alr2541 encodes the elements of a hydrophobic amino acid ABC-type transporter that is mainly involved in the uptake of glycine. ORF all0342 encodes a putative transporter from the dicarboxylate/amino acid:cation symporter (DAACS family whose inactivation resulted in an increased uptake of a broad range of amino acids. An assay to study amino acid release from Anabaena filaments to the external medium was set up. Net release of the alanine analogue α-aminoisobutyric acid (AIB was observed when transport system N-I (a hydrophobic amino acid ABC-type transporter was engaged in the uptake of a specific substrate. The rate of AIB release was directly proportional to the intracellular AIB concentration, suggesting leakage from the cells by diffusion.

  18. Crystallization and preliminary X-ray crystallographic studies of O-methyltransferase from Anabaena PCC 7120

    International Nuclear Information System (INIS)

    The O-methyltransferase (OMT) from the Anabaena PCC 7120 has been overexpressed in a soluble form in E. coli, purified and crystallized. The crystals belonged to space group C2221 and diffracted to 2.4 Å resolution. O-Methyltransferase (OMT) is a ubiquitous enzyme that exists in bacteria, plants and humans and catalyzes a methyl-transfer reaction using S-adenosyl-l-methionine as a methyl donor and a wide range of phenolics as acceptors. To investigate the structure and function of OMTs, omt from Anabaena PCC 7120 was cloned into expression vector pET21a and expressed in a soluble form in Escherichia coli strain BL21 (DE3). The recombinant OMT protein was purified to homogeneity using a two-step strategy. Crystals of OMT that diffracted to a resolution of 2.4 Å were obtained using the hanging-drop vapour-diffusion method. The crystals belonged to space group C2221, with unit-cell parameters a = 131.620, b = 227.994, c = 150.777 Å, α = β = γ = 90°. There are eight molecules per asymmetric unit

  19. Effects of lead accumulation on the Azolla caroliniana-Anabaena association.

    Science.gov (United States)

    Roberts, Anne E; Boylen, Charles W; Nierzwicki-Bauer, Sandra A

    2014-04-01

    The effect of lead accumulation on photopigment production, mineral nutrition, and Anabaena vegetative cell size and heterocyst formation in Azolla caroliniana was investigated. Plants were exposed to 0, 1, 5, 10, and 20 mg L(-1) lead acetate for ten days. Lead accumulation increased when plants were treated with higher lead concentrations. Results revealed a statistically significant decline in total chlorophyll, chlorophyll a, chlorophyll b, and carotenoids in 5, 10, and 20 mg Pb L(-1) treatment groups as compared to plants with 0 or 1 mg Pb L(-1) treatments. No statistically significant change in anthocyanin production was observed. Calcium, magnesium, and zinc concentrations in plants decreased in increasing treatment groups, whereas sodium and potassium concentrations increased. Nitrogen and carbon were also found to decrease in plant tissue. Anabaena vegetative cells decreased in size and heterocyst frequency declined rapidly in a Pb dose-dependent manner. These results indicate that, while A. caroliniana removes lead from aqueous solution, the heavy metal causes physiological and biochemical changes by impairing photosynthesis, changing mineral nutrition, and impeding the growth and formation of heterocysts of the symbiotic cyanobacteria that live within leaf cavities of the fronds. PMID:24509077

  20. Energy transfer in Anabaena variabilis filaments under nitrogen depletion, studied by time-resolved fluorescence.

    Science.gov (United States)

    Onishi, Aya; Aikawa, Shimpei; Kondo, Akihiko; Akimoto, Seiji

    2015-08-01

    Some filamentous cyanobacteria (including Anabaena) differentiate into heterocysts under nitrogen-depleted conditions. During differentiation, the phycobiliproteins and photosystem II in the heterocysts are gradually degraded. Nitrogen depletion induces changes in the pigment composition of both vegetative cells and heterocysts, which affect the excitation energy transfer processes. To investigate the changes in excitation energy transfer processes of Anabaena variabilis filaments grown in standard medium (BG11) and a nitrogen-free medium (BG110), we measured their steady-state absorption spectra, steady-state fluorescence spectra, and time-resolved fluorescence spectra (TRFS) at 77 K. TRFS were measured with a picosecond time-correlated single photon counting system. The pigment compositions of the filaments grown in BG110 changed throughout the growth period; the relative phycocyanin levels monotonically decreased, whereas the relative carotenoid (Car) levels decreased and then recovered to their initial value (at day 0), with formation of lower-energy Cars. Nitrogen starvation also altered the fluorescence kinetics of PSI; the fluorescence maximum of TRFS immediately after excitation occurred at 735, 740, and 730 nm after 4, 8, and 15 days growth in BG110, respectively. Based on these results, we discuss the excitation energy transfer dynamics of A. variabilis filaments under the nitrogen-depleted condition throughout the growth period. PMID:25596847

  1. Utilization of the cyanobacteria Anabaena sp. ATCC 33047 in CO2 removal processes.

    Science.gov (United States)

    González López, C V; Acién Fernández, F G; Fernández Sevilla, J M; Sánchez Fernández, J F; Cerón García, M C; Molina Grima, E

    2009-12-01

    In this paper the utilization of the cyanobacteria Anabaena sp. in carbon dioxide removal processes is evaluated. For this, continuous cultures of this strain were performed at different dilution rates; alternatives for the recovery of the organic matter produced being also studied. A maximum CO(2) fixation rate of 1.45 g CO(2) L(-1) day(-1) was measured experimentally, but it can be increased up to 3.0 g CO(2) L(-1) day(-1) outdoors. The CO(2) is mainly transformed into exopolysaccharides, biomass representing one third of the total organic matter produced. Organic matter can be recovered by sedimentation with efficiencies higher than 90%, the velocity of sedimentation being 2.10(-4) s(-1). The major compounds were carbohydrates and proteins with productivities of 0.70 and 0.12 g L(-1) day(-1), respectively. The behaviour of the cultures of Anabaena sp. has been modelized, also the characteristics parameters requested to design separation units being reported. Finally, to valorizate the organic matter as biofertilizers and biofuels is proposed.

  2. Effects of lead accumulation on the Azolla caroliniana-Anabaena association.

    Science.gov (United States)

    Roberts, Anne E; Boylen, Charles W; Nierzwicki-Bauer, Sandra A

    2014-04-01

    The effect of lead accumulation on photopigment production, mineral nutrition, and Anabaena vegetative cell size and heterocyst formation in Azolla caroliniana was investigated. Plants were exposed to 0, 1, 5, 10, and 20 mg L(-1) lead acetate for ten days. Lead accumulation increased when plants were treated with higher lead concentrations. Results revealed a statistically significant decline in total chlorophyll, chlorophyll a, chlorophyll b, and carotenoids in 5, 10, and 20 mg Pb L(-1) treatment groups as compared to plants with 0 or 1 mg Pb L(-1) treatments. No statistically significant change in anthocyanin production was observed. Calcium, magnesium, and zinc concentrations in plants decreased in increasing treatment groups, whereas sodium and potassium concentrations increased. Nitrogen and carbon were also found to decrease in plant tissue. Anabaena vegetative cells decreased in size and heterocyst frequency declined rapidly in a Pb dose-dependent manner. These results indicate that, while A. caroliniana removes lead from aqueous solution, the heavy metal causes physiological and biochemical changes by impairing photosynthesis, changing mineral nutrition, and impeding the growth and formation of heterocysts of the symbiotic cyanobacteria that live within leaf cavities of the fronds.

  3. The Anabaena sp. PCC 7120 Exoproteome: Taking a Peek outside the Box

    Directory of Open Access Journals (Sweden)

    Paulo Oliveira

    2015-01-01

    Full Text Available The interest in examining the subset of proteins present in the extracellular milieu, the exoproteome, has been growing due to novel insights highlighting their role on extracellular matrix organization and biofilm formation, but also on homeostasis and development. The cyanobacterial exoproteome is poorly studied, and the role of cyanobacterial exoproteins on cell wall biogenesis, morphology and even physiology is largely unknown. Here, we present a comprehensive examination of the Anabaena sp. PCC 7120 exoproteome under various growth conditions. Altogether, 139 proteins belonging to 16 different functional categories have been identified. A large fraction (48% of the identified proteins is classified as “hypothetical”, falls into the “other categories” set or presents no similarity to other proteins. The evidence presented here shows that Anabaena sp. PCC 7120 is capable of outer membrane vesicle formation and that these vesicles are likely to contribute to the exoproteome profile. Furthermore, the activity of selected exoproteins associated with oxidative stress has been assessed, suggesting their involvement in redox homeostasis mechanisms in the extracellular space. Finally, we discuss our results in light of other cyanobacterial exoproteome studies and focus on the potential of exploring cyanobacteria as cell factories to produce and secrete selected proteins.

  4. Paired cloning vectors for complementation of mutations in the cyanobacterium Anabaena sp. strain PCC 7120

    Energy Technology Data Exchange (ETDEWEB)

    Wolk, C. Peter Wolk [Michigan State University, East Lansing; Fan, Qing [Northwestern University, Evanston; Zhou, Ruanbao [Anhui Normal University, People' s Republic of China; Huang, Guocun [University of Texas Southwestern Medical; Lechno-Yossef, Sigal [Michigan State University, East Lansing; Kuritz, Tanya [ORNL; Wojciuch, Elizabeth [Michigan State University, East Lansing

    2007-01-01

    The clones generated in a sequencing project represent a resource for subsequent analysis of the organism whose genome has been sequenced. We describe an interrelated group of cloning vectors that either integrate into the genome or replicate, and that enhance the utility, for developmental and other studies, of the clones used to determine the genomic sequence of the cyanobacterium, Anabaena sp. strain PCC 7120. One integrating vector is a mobilizable BAC vector that was used both to generate bridging clones and to complement transposon mutations. Upon addition of a cassette that permits mobilization and selection, pUC-based sequencing clones can also integrate into the genome and thereupon complement transposon mutations. The replicating vectors are based on cyanobacterial plasmid pDU1, whose sequence we report, and on broad-host-range plasmid RSF1010. The RSF1010- and pDU1-based vectors provide the opportunity to express different genes from either cell-type-specific or -generalist promoters, simultaneously from different plasmids in the same cyanobacterial cells. We show that pDU1 ORF4 and its upstream region play an essential role in the replication and copy number of pDU1, and that ORFs alr2887 and alr3546 (hetF{sub A}) of Anabaena sp. are required specifically for fixation of dinitrogen under oxic conditions.

  5. X-ray laser diffraction for structure determination of the rhodopsin-arrestin complex.

    Science.gov (United States)

    Zhou, X Edward; Gao, Xiang; Barty, Anton; Kang, Yanyong; He, Yuanzheng; Liu, Wei; Ishchenko, Andrii; White, Thomas A; Yefanov, Oleksandr; Han, Gye Won; Xu, Qingping; de Waal, Parker W; Suino-Powell, Kelly M; Boutet, Sébastien; Williams, Garth J; Wang, Meitian; Li, Dianfan; Caffrey, Martin; Chapman, Henry N; Spence, John C H; Fromme, Petra; Weierstall, Uwe; Stevens, Raymond C; Cherezov, Vadim; Melcher, Karsten; Xu, H Eric

    2016-01-01

    Serial femtosecond X-ray crystallography (SFX) using an X-ray free electron laser (XFEL) is a recent advancement in structural biology for solving crystal structures of challenging membrane proteins, including G-protein coupled receptors (GPCRs), which often only produce microcrystals. An XFEL delivers highly intense X-ray pulses of femtosecond duration short enough to enable the collection of single diffraction images before significant radiation damage to crystals sets in. Here we report the deposition of the XFEL data and provide further details on crystallization, XFEL data collection and analysis, structure determination, and the validation of the structural model. The rhodopsin-arrestin crystal structure solved with SFX represents the first near-atomic resolution structure of a GPCR-arrestin complex, provides structural insights into understanding of arrestin-mediated GPCR signaling, and demonstrates the great potential of this SFX-XFEL technology for accelerating crystal structure determination of challenging proteins and protein complexes. PMID:27070998

  6. Wavelength Discrimination in Drosophila Suggests a Role of Rhodopsin 1 in Color Vision

    Science.gov (United States)

    Garbers, Christian; Wachtler, Thomas

    2016-01-01

    Among the five photoreceptor opsins in the eye of Drosophila, Rhodopsin 1 (Rh1) is expressed in the six outer photoreceptors. In a previous study that combined behavioral genetics with computational modeling, we demonstrated that flies can use the signals from Rh1 for color vision. Here, we provide an in-depth computational analysis of wildtype Drosophila wavelength discrimination specifically considering the consequences of different choices of computations in the preprocessing of the behavioral data. The results support the conclusion that Drosophila wavelength discrimination behavior can best be explained by a contribution of Rh1. These findings are corroborated by results of an information-theoretical analysis that shows that Rh1 provides information for discrimination of natural reflectance spectra. PMID:27258000

  7. Kinetics of rhodopsin deactivation and its role in regulating recovery and reproducibility of rod photoresponse.

    Directory of Open Access Journals (Sweden)

    Giovanni Caruso

    Full Text Available The single photon response (SPR in vertebrate phototransduction is regulated by the dynamics of R* during its lifetime, including the random number of phosphorylations, the catalytic activity and the random sojourn time at each phosphorylation level. Because of this randomness the electrical responses are expected to be inherently variable. However the SPR is highly reproducible. The mechanisms that confer to the SPR such a low variability are not completely understood. The kinetics of rhodopsin deactivation is investigated by a Continuous Time Markov Chain (CTMC based on the biochemistry of rhodopsin activation and deactivation, interfaced with a spatio-temporal model of phototransduction. The model parameters are extracted from the photoresponse data of both wild type and mutant mice, having variable numbers of phosphorylation sites and, with the same set of parameters, the model reproduces both WT and mutant responses. The sources of variability are dissected into its components, by asking whether a random number of turnoff steps, a random sojourn time between steps, or both, give rise to the known variability. The model shows that only the randomness of the sojourn times in each of the phosphorylated states contributes to the Coefficient of Variation (CV of the response, whereas the randomness of the number of R* turnoff steps has a negligible effect. These results counter the view that the larger the number of decay steps of R*, the more stable the photoresponse is. Our results indicate that R* shutoff is responsible for the variability of the photoresponse, while the diffusion of the second messengers acts as a variability suppressor.

  8. From the ultrasonic to the infrared: molecular evolution and the sensory biology of bats.

    Science.gov (United States)

    Jones, Gareth; Teeling, Emma C; Rossiter, Stephen J

    2013-01-01

    Great advances have been made recently in understanding the genetic basis of the sensory biology of bats. Research has focused on the molecular evolution of candidate sensory genes, genes with known functions [e.g., olfactory receptor (OR) genes] and genes identified from mutations associated with sensory deficits (e.g., blindness and deafness). For example, the FoxP2 gene, underpinning vocal behavior and sensorimotor coordination, has undergone diversification in bats, while several genes associated with audition show parallel amino acid substitutions in unrelated lineages of echolocating bats and, in some cases, in echolocating dolphins, representing a classic case of convergent molecular evolution. Vision genes encoding the photopigments rhodopsin and the long-wave sensitive opsin are functional in bats, while that encoding the short-wave sensitive opsin has lost functionality in rhinolophoid bats using high-duty cycle laryngeal echolocation, suggesting a sensory trade-off between investment in vision and echolocation. In terms of olfaction, bats appear to have a distinctive OR repertoire compared with other mammals, and a gene involved in signal transduction in the vomeronasal system has become non-functional in most bat species. Bitter taste receptors appear to have undergone a "birth-and death" evolution involving extensive gene duplication and loss, unlike genes coding for sweet and umami tastes that show conservation across most lineages but loss in vampire bats. Common vampire bats have also undergone adaptations for thermoperception, via alternative splicing resulting in the evolution of a novel heat-sensitive channel. The future for understanding the molecular basis of sensory biology is promising, with great potential for comparative genomic analyses, studies on gene regulation and expression, exploration of the role of alternative splicing in the generation of proteomic diversity, and linking genetic mechanisms to behavioral consequences.

  9. From the ultrasonic to the infrared: molecular evolution and the sensory biology of bats

    Directory of Open Access Journals (Sweden)

    Gareth eJones

    2013-05-01

    Full Text Available Great advances have been made recently in understanding the genetic basis of the sensory biology of bats. Research has focused on the molecular evolution of candidate sensory genes, genes with known functions (e.g. olfactory receptor genes and genes identified from mutations associated with sensory deficits (e.g. blindness and deafness. For example, the FoxP2 gene, underpinning vocal behaviour and sensorimotor coordination, has undergone diversification in bats, while several genes associated with audition show parallel amino acid substitutions in unrelated lineages of echolocating bats and, in some cases, in echolocating dolphins, representing a classic case of convergent molecular evolution. Vision genes encoding the photopigments rhodopsin and the long-wave sensitive opsin are functional in bats, while that encoding the short-wave sensitive opsin has lost functionality in rhinolophoid bats using high-duty cycle laryngeal echolocation, suggesting a sensory trade-off between investment in vision and echolocation. In terms of olfaction, bats appear to have a distinctive olfactory receptor repertoire compared with other mammals, and a gene involved in signal transduction in the vomeronasal system has become non-functional in most bat species. Bitter taste receptors appear to have undergone a ‘birth-and death’ evolution involving extensive gene duplication and loss, unlike genes coding for sweet and umami tastes that show conservation across most lineages but loss in vampire bats. Common vampire bats have also undergone adaptations for thermoperception, via alternative splicing resulting in the evolution of a novel heat-sensitive channel. The future for understanding the molecular basis of sensory biology is promising, with great potential for comparative genomic analyses, studies on gene regulation and expression, exploration of the role of alternative splicing in the generation of proteomic diversity, and linking genetic mechanisms to

  10. From the ultrasonic to the infrared: molecular evolution and the sensory biology of bats.

    Science.gov (United States)

    Jones, Gareth; Teeling, Emma C; Rossiter, Stephen J

    2013-01-01

    Great advances have been made recently in understanding the genetic basis of the sensory biology of bats. Research has focused on the molecular evolution of candidate sensory genes, genes with known functions [e.g., olfactory receptor (OR) genes] and genes identified from mutations associated with sensory deficits (e.g., blindness and deafness). For example, the FoxP2 gene, underpinning vocal behavior and sensorimotor coordination, has undergone diversification in bats, while several genes associated with audition show parallel amino acid substitutions in unrelated lineages of echolocating bats and, in some cases, in echolocating dolphins, representing a classic case of convergent molecular evolution. Vision genes encoding the photopigments rhodopsin and the long-wave sensitive opsin are functional in bats, while that encoding the short-wave sensitive opsin has lost functionality in rhinolophoid bats using high-duty cycle laryngeal echolocation, suggesting a sensory trade-off between investment in vision and echolocation. In terms of olfaction, bats appear to have a distinctive OR repertoire compared with other mammals, and a gene involved in signal transduction in the vomeronasal system has become non-functional in most bat species. Bitter taste receptors appear to have undergone a "birth-and death" evolution involving extensive gene duplication and loss, unlike genes coding for sweet and umami tastes that show conservation across most lineages but loss in vampire bats. Common vampire bats have also undergone adaptations for thermoperception, via alternative splicing resulting in the evolution of a novel heat-sensitive channel. The future for understanding the molecular basis of sensory biology is promising, with great potential for comparative genomic analyses, studies on gene regulation and expression, exploration of the role of alternative splicing in the generation of proteomic diversity, and linking genetic mechanisms to behavioral consequences. PMID:23755015

  11. COMPARATIVE GROWTH AND BIOCHEMICAL COMPOSITION OF FOUR STRAINS OF Nostoc AND Anabaena (CYANOBACTERIA, NOSTOCALES IN RELATION TO SODIUM NITRATE

    Directory of Open Access Journals (Sweden)

    Néstor Rosales Loaiza

    2016-04-01

    Full Text Available ABSTRACTNitrogen concentration is an essential parameter in cyanobacterial cultures to produce enriched biomass with biotechnological purposes. Growth and biochemical composition of Nostoc LAUN0015, Nostoc UAM206, Anabaena sp.1 and Anabaena sp.2 were compared at 0, 4.25, 8.5 and 17 mM NaNO3. Cultures under laboratory conditions were maintained for 30 days at a volume of 500 mL. Anabaena sp.1 yielded the highest value of dry mass of 0.26 ± 2.49 mg mL-1 at 8.5 mM NaNO3. For chlorophyll, phycocyanin and phycoerythrin, maximum values were achieved at 17 mM NaNO3 with 18.09 ± 1.74, 102.90 ± 6.73 and 53.47 ± 2.40 μg mL-1, respectively. Nostoc LAUN0015 produced its maximum value of protein 644.86 ± 19.77 μg mL-1, and 890 mg mL-1 of carbohydrates in the absence of nitrogen. This comparative study shows that the most efficient strain for the production of protein, carbohydrates and lipids in diazotrophic conditions corresponded to Nostoc LAUN0015. However, Anabaena sp.1 and Anabaena sp.2 required high nitrogen concentrations to achieve higher values of metabolites, comparing with Nostoc strains. Nitrogen dependence for the production of pigments and high protein production in strains of Anabaena and in diazotrophic conditions for Nostoc was demonstrated. Nostoc can be cultured under nitrogen deficiency and Anabaena in sufficiency, for biomass production enriched with proteins and carbohydrates.Comparación del crecimiento y Composición Bioquímica de cuatro cepas de Nostoc y Anabaena (Cyanobacteria, Nostocales en relación con el nitrato de sodioRESUMENLa concentración de nitrógeno constituye un parámetro esencial en cultivos de cianobacterias para la producción de biomasa enriquecida con fines biotecnológicos. Se comparó el crecimiento y composición bioquímica de las cepas Nostoc LAUN0015, Nostoc UAM206, Anabaena sp.1 y Anabaena sp.2 a 0, 4,25; 8,5 y 17 mM NaNO3. Los cultivos en condiciones de laboratorio fueron mantenidos durante 30 d

  12. Sensory syndromes in parietal stroke.

    Science.gov (United States)

    Bassetti, C; Bogousslavsky, J; Regli, F

    1993-10-01

    We studied 20 patients with an acute parietal stroke with hemisensory disturbances but no visual field deficit and no or only slight motor weakness, without thalamic involvement on CT or MRI and found three main sensory syndromes. (1) The pseudothalamic sensory syndrome consists of a faciobrachiocrural impairment of elementary sensation (touch, pain, temperature, vibration). All patients have an inferior-anterior parietal stroke involving the parietal operculum, posterior insula, and, in all but one patient, underlying white matter. (2) The cortical sensory syndrome consists of an isolated loss of discriminative sensation (stereognosis, graphesthesia, position sense) involving one or two parts of the body. These patients show a superior-posterior parietal stroke. (3) The atypical sensory syndrome consists of a sensory loss involving all modalities of sensation in a partial distribution. Parietal lesions of different topography are responsible for this clinical picture, which probably represents a minor variant of the two previous sensory syndromes. Neuropsychological dysfunction was present in 17 patients. The only constant association was between conduction aphasia and right-sided pseudothalamic sensory deficit. We conclude that parietal stroke can cause different sensory syndromes depending on the topography of the underlying lesion. Sensory deficits can be monosymptomatic but never present as a "pure sensory stroke" involving face, arm, leg, and trunk together.

  13. In silico and wet-lab study revealed cadmium is the potent inhibitor of HupL in Anabaena sp. PC C 7120.

    Science.gov (United States)

    Singh, Shilpi; Shrivastava, Alok Kumar

    2016-01-01

    The hupL of Anabaena sp. PCC 7120 encodes the large subunit of uptake hydrogenase found in all diazotrophic cyanobacteria and boosts up the nitrogen-fixing potential by catalyzing the removal of the molecular hydrogen produced as a by-product of dinitrogen fixation. Bioinformatics analysis revealed that HupL from Anabaena sp. PCC7120 is a 60.2 kDa, thermostable, glycine-rich protein having highest structural similarity with NiFeSe hydrogenase of Desulfomicrobium baculatumis. Toxicity of selected abiotic stresses like arsenic, cadmium, copper, and salt with HupL was further reconciled by wet-lab approaches like qRT-PCR, hydrogenase and nitrogenase activity assay as hydrogenases unintendedly affect the nitrogenase activity in Anabaena. Down-regulated transcript along with highly inhibited hydrogenase and nitrogenase activities under cadmium stress revealed that cadmium is a potent inhibitor of hydrogenases in Anabaena which indirectly affects its nitrogen-fixing capabilities

  14. Sensory Ecology, Evolution, and Behavior

    Institute of Scientific and Technical Information of China (English)

    Martin STEVENS; Guest Editor

    2010-01-01

    @@ 1 Introduction Sensory ecology deals with how animals capture in formation from their environment, and the sensory sys tems involved in doing so (Hailman, 1977; Lythgoe, 1979; Dusenbery, 1992; Mappes and Stevens 2010). Although the term sensory ecology itself is compara tively recent, its basis has a long history, in part due to numerous links with subjects such as neurobiology, physiology, ethology, and evolutionary behavioral ecology.

  15. Attention and Optimal Sensory Codes

    OpenAIRE

    Jaramillo, Santiago; Pearlmutter, Barak A.

    2004-01-01

    Neuronal activity can be modulated by attention even while the sensory stimulus is held fixed. This modulation implies changes in the tuning curve (or receptive field) of the neurons involved in sensory processing. We propose an information-theoretic hypothesis for the purpose of this modulation, and show using computer simulation that the similar modulation emerges in a system that is optimally encoding a sensory stimulus when the system is informed about the changing relevance of different ...

  16. 中国鱼腥藻属的两个新记录种%Two newly recorded species of Anabaena(Nostocales, Cyanobacteria) in China

    Institute of Scientific and Technical Information of China (English)

    李守淳; 柴文波; 郑洪萍; 耿军灵; 李仁辉

    2012-01-01

    迄今为止,全球范围共报道出100多种鱼腥藻,中国记录报道的仅有50余种,但有些种类的描述仍较模糊.最近在福建、浙江等地进行野外调查时,发现了多种丝状蓝藻.其中就有2种鱼腥藻在中国尚未报道:威格鱼腥藻( Anabaena viguieri Denis et Frémy 1923)和史密斯鱼腥藻(Anabaena smithii( Komárek)Watanabe 1992).%So far, more than 100 species of genus Anabaena have been recorded in the world, and about 50 taxa were described in China. During our recent field investigations for water-bloom forming cyanobacteria in China, several filamentous cyanobacterial species were examined in the samples. In this study, we demonstrated that two Anabaena species as Anabaena viguieri Denis et Fremy 1923 and Anabaena smithii (Komdrek) Watanabe 1992, had never been reported in China, and they are newly described and discussed in the present study.

  17. Lipopolysaccharide dependence of cyanophage sensitivity and aerobic nitrogen fixation in Anabaena sp. strain PCC 7120.

    Science.gov (United States)

    Xu, X; Khudyakov, I; Wolk, C P

    1997-05-01

    Fox- mutants of Anabaena sp. strain PCC 7120 are unable to fix dinitrogen in the presence of oxygen. A fragment of the DNA of Anabaena sp. was cloned by complementation of a spontaneous Fox-, cyanophage-resistant mutant, R56, and characterized. Random insertion of transposon Tn5 delimited the complementing DNA to a 0.6-kb portion of the cloned fragment. Sequencing of this region and flanking DNA showed one complete open reading frame (ORF) similar to the gene rfbP (undecaprenyl-phosphate galactosephosphotransferase) and two partial ORFs similar to genes rfbD (GDP-D-mannose dehydratase) and rfbZ (first mannosyl transferase), all of which are active in the synthesis of the O antigen unit of the lipopolysaccharide (LPS) component of the outer membrane of gram-negative bacteria. In a transposon (Tn5-1087b)-induced, Fox-, cyanophage-resistant mutant, B14, the transposon was found within the same rfbP-like ORF. The three ORFs were insertionally inactivated with the omega cassette (P. Prentki and H. M. Krisch, Gene 29:303-313, 1984) or with Tn5::omega. Only the insertions in the rfbZ- and rfbP-like ORFs led to resistance to cyanophages A-1(L) and A-4(L) and to a Fox- phenotype. Electrophoretic analysis showed that interruption of the rfbZ- and rfbP-like ORFs resulted in a change in or loss of the characteristic pattern of the lengths of the LPS, whereas interruption of the rfbD-like ORF merely changed the distribution of the lengths of the LPS to one with a greater prevalence of low molecular weights. According to electron microscopy, interruption of the rfbP-like ORF may have led to aberrant deposition of the layers of the heterocyst envelope, resulting in increased leakage of oxygen into the heterocyst. The results suggest that modified LPS may prevent cyanophage infection of Anabaena sp. vegetative cells and the formation of a functional heterocyst envelope. PMID:9139904

  18. Differentiation of free-living Anabaena and Nostoc cyanobacteria on the basis of fatty acid composition.

    Science.gov (United States)

    Caudales, R; Wells, J M

    1992-04-01

    The cellular fatty acids of free-living, nitrogen-fixing cyanobacteria belonging to the genera Anabaena and Nostoc were analyzed to differentiate the genera. The fatty acid compositions of 10 Anabaena strains and 10 Nostoc strains that were grown for 12 days on BG-11o medium were determined by gas-liquid chromatography-mass spectroscopy. Of the 53 fatty acids detected, 17 were major components; the average level for each of these 17 fatty acids was at least 0.9% of the total fatty acids (in at least one of the genera). These fatty acids included (with mean percentages in the Anabaena and Nostoc strains, respectively) the saturated fatty acids 16:0 (30.55 and 23.23%) and 18:0 (0.77 and 1.27%); several unsaturated fatty acids, including 14:1 cis-7 (2.50 and 0.11%), 14:1 cis-9 (3.10 and 3.41%), a polyunsaturated 16-carbon (sites undetermined) fatty acid with an equivalent chain length of 15.30 (1.20 and 1.03%), 16:4 cis-4 (0.95 and 0.87%), 16:3 cis-6 (2.16 and 1.51%), 16:1 cis-7 (1.44 and 0.36%), 16:1 cis-9 (6.53 and 18.76%), 16:1 trans-9 (4.02 and 1.35%), 16:1 cis-11 (1.62 and 0.42%), 18:2 cis-9 (10.16 and 12.44%), 18:3 cis-9 (18.19 and 17.25%), 18:1 cis-9 (4.01 and 5.10%), and 18:1 trans-9 (0.92 and 1.94%); and the branched-chain fatty acids iso-16:0 (2.50 and 1.14%) and iso-15:1 (0.34 and 2.05%).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1581185

  19. Multi-sensory Sculpting (MSS)

    DEFF Research Database (Denmark)

    von Wallpach, Sylvia; Kreuzer, Maria

    2013-01-01

    in a format similar to their cognitive representations. This article introduces multi-sensory sculpting (MSS) as a method that allows retrieving embodied brand knowledge via multi-sensory metaphors and proposes a multi-layered metaphor analysis procedure to interpret these multi-sensory data. The paper......-conscious and modality-specific level and use multi-sensory metaphors to express embodied knowledge. Retrieving embodied brand knowledge requires methods that (a) stimulate various senses that have been involved in brand knowledge formation and (b) give consumers the opportunity to express themselves metaphorically...

  20. Characterization of two dominant alleles of the major rhodopsin-encoding gene ninaE in Drosophila

    OpenAIRE

    Mitra, Amitavo; Chinchore, Yashodhan; Kinser, Ronald; Dolph, Patrick J.

    2011-01-01

    Purpose In this study we investigated the biochemical and cell biologic characteristics of flies expressing two novel dominant alleles of the major rhodopsin encoding gene neither inactivation nor afterpotential E (ninaE) in a heterozygous background. Methods Presence of the deep pseudopupil in flies was assayed 5 days post eclosion. For structural analysis, 1-μm-retinal cross sections were obtained from fixed and resin-embedded Drosophila heads. Confocal microscopy was performed on dissected...

  1. Modulation of rhodopsin gene expression and signaling mechanisms evoked by endothelins in goldfish and murine pigment cell lines

    Directory of Open Access Journals (Sweden)

    G.J.D. Lopes

    2010-09-01

    Full Text Available Endothelins (ETs and sarafotoxins (SRTXs belong to a family of vasoconstrictor peptides, which regulate pigment migration and/or production in vertebrate pigment cells. The teleost Carassius auratus erythrophoroma cell line, GEM-81, and Mus musculus B16 melanocytes express rhodopsin, as well as the ET receptors, ETB and ETA, respectively. Both cell lines are photoresponsive, and respond to light with a decreased proliferation rate. For B16, the doubling time of cells kept in 14-h light (14L:10-h darkness (10D was higher compared to 10L:14D, or to DD. The doubling time of cells kept in 10L:14D was also higher compared to DD. Using real-time PCR, we demonstrated that SRTX S6c (12-h treatment, 100 pM and 1 nM; 24-h treatment, 1 nM and ET-1 (12-h treatment, 10 and 100 pM; 24- and 48-h treatments, 100 pM increased rhodopsin mRNA levels in GEM-81 and B16 cells, respectively. This modulation involves protein kinase C (PKC and the mitogen-activated protein kinase cascade in GEM-81 cells, and phospholipase C, Ca2+, calmodulin, a Ca2+/calmodulin-dependent kinase, and PKC in B16 cells. Cells were kept under constant darkness throughout the gene expression experiments. These results show that rhodopsin mRNA levels can be modulated by SRTXs/ETs in vertebrate pigment cells. It is possible that SRTX S6c binding to the ETB receptors in GEM-81 cells, and ET-1 binding to ETA receptors in B16 melanocytes, although activating diverse intracellular signaling mechanisms, mobilize transcription factors such as c-Fos, c-Jun, c-Myc, and neural retina leucine zipper protein. These activated transcription factors may be involved in the positive regulation of rhodopsin mRNA levels in these cell lines.

  2. Mixotrophic Cultures of Anabaena sp. PCC7120%鱼腥藻 Anabaena sp. PCC7120的混合营养生长

    Institute of Scientific and Technical Information of China (English)

    喻国策; 辛晓峰; 蔡昭铃; 施定基; 欧阳藩

    2000-01-01

    在高光强为160 μE/(m2.s)、低光强为16 μE/(m2.s)、葡萄糖浓度030g/L范围内,进行了鱼腥藻 Anabaena sp. PCC7120的摇瓶光自养和混合营养培养.在高光强下最大藻细胞密度(0.923.1g/L)明显高于低光强(0.110.58g/L),而且高光强使混合营养培养的对数期缩短.在不同光强下,葡萄糖浓度在018g/L范围内提高显著促进了细胞的生长,在1830g/L范围内变化对细胞生长不再有更大的影响.高光强促进了藻细胞对葡萄糖的利用.在高光强下随着葡萄糖浓度的提高,细胞得率逐渐变小.

  3. Conserved waters mediate structural and functional activation of family A (rhodopsin-like) G protein-coupled receptors

    Energy Technology Data Exchange (ETDEWEB)

    Angel, T.; Chance, M; Palczewski, K

    2009-01-01

    G protein-coupled receptors with seven transmembrane {alpha}-helices (GPCRs) comprise the largest receptor superfamily and are involved in detecting a wide variety of extracellular stimuli. The availability of high-resolution crystal structures of five prototypical GPCRs, bovine and squid rhodopsin, engineered A2A-adenosine, {beta}1- and {beta}2-adrenergic receptors, permits comparative analysis of features common to these and likely all GPCRs. We provide an analysis of the distribution of water molecules in the transmembrane region of these GPCR structures and find conserved contacts with microdomains demonstrated to be involved in receptor activation. Colocalization of water molecules associating with highly conserved and functionally important residues in several of these GPCR crystal structures supports the notion that these waters are likely to be as important to proper receptor function as the conserved residues. Moreover, in the absence of large conformational changes in rhodopsin after photoactivation, we propose that ordered waters contribute to the functional plasticity needed to transmit activation signals from the retinal-binding pocket to the cytoplasmic face of rhodopsin and that fundamental features of the mechanism of activation, involving these conserved waters, are shared by many if not all family A receptors.

  4. Spectral methods for study of the G-protein-coupled receptor rhodopsin: I. Vibrational and electronic spectroscopy

    Science.gov (United States)

    Struts, A. V.; Barmasov, A. V.; Brown, M. F.

    2015-05-01

    Here we review the application of modern spectral methods for the study of G-protein-coupled receptors (GPCRs) using rhodopsin as a prototype. Because X-ray analysis gives us immobile snapshots of protein conformations, it is imperative to apply spectroscopic methods for elucidating their function: vibrational (Raman, FTIR), electronic (UV-visible absorption, fluorescence) spectroscopies, and magnetic resonance (electron paramagnetic resonance, EPR), and nuclear magnetic resonance (NMR). In the first of the two companion articles, we discuss the application of optical spectroscopy for studying rhodopsin in a membrane environment. Information is obtained regarding the time-ordered sequence of events in rhodopsin activation. Isomerization of the chromophore and deprotonation of the retinal Schiff base leads to a structural change of the protein involving the motion of helices H5 and H6 in a pH-dependent process. Information is obtained that is unavailable from X-ray crystallography, which can be combined with spectroscopic studies to achieve a more complete understanding of GPCR function.

  5. Effects of atmospheric SO[sub 2] on Azolla and Anabaena symbiosis

    Energy Technology Data Exchange (ETDEWEB)

    Hur, J.-S.; Wellburn, A.R. (Division of Biological Sciences, Institute of Environmental and Biological Sciences, Lancaster Univ., Lancaster (United Kingdom))

    1993-01-01

    The water fern Azolla pinnata R. Br. was fumigated for 1 week with either 25, 50 or 100 nl l[sup -1] SO[sub 2]. The symbiosis of Azolla with Anabaena azollae (spp.) was severely damaged by atmospheric SO[sub 2] even at the lowest concentration studied showing significant reductions in growth, reduction of C[sub 2]H[sub 2], NH[sub 3] assimilation, protein synthesis, and heterocyst development. These disturbances appear to be mainly responsible for the extreme sensitivity of this fern to atmospheric SO[sub 2]. Changes in violaxanthin/antheraxanthin and epoxylutein/lutein ratios also indicate that free radical products are induced by atmospheric SO[sub 2]. These results suggest that the Azolla-Anabeana symbiotic system is a very responsive and reliable lower plant model to study the detailed effects of total sulfur deposition upon the balances between various important plant metabolic processes.

  6. Genetic Basis for Geosmin Production by the Water Bloom-Forming Cyanobacterium, Anabaena ucrainica

    Directory of Open Access Journals (Sweden)

    Zhongjie Wang

    2014-12-01

    Full Text Available Geosmin is a common, musty-smelling sesquiterpene, principally produced by cyanobacteria. Anabaena ucrainica (Schhorb. Watanabe, a water bloom-forming cyanobacterium, is the geosmin producer responsible for odor problems in Dianchi and Erhai lakes in China. In this study, the geosmin synthase gene (geo of A. ucrainica and its flanking regions were identified and cloned by polymerase chain reaction (PCR and genome walking. The geo gene was found to be located in a transcription unit with two cyclic nucleotide-binding protein genes (cnb. The two cnb genes were highly similar and were predicted members of the cyclic adenosine monophosphate (cAMP receptor protein/fumarate nitrate reductase regulator (Crp–Fnr family. Phylogenetic and evolutionary analyses implied that the evolution of the geosmin genes involved a horizontal gene transfer process in cyanobacteria. These genes showed a close relationship to 2-methylisoborneol genes in origin and evolution.

  7. EXPRESSION OF THE GEOSMIN SYNTHASE GENE IN THE CYANOBACTERIUM ANABAENA CIRCINALIS AWQC318(1).

    Science.gov (United States)

    Giglio, Steven; Saint, Christopher P; Monis, Paul T

    2011-12-01

    The occurrence of taste and odor episodes attributed to geosmin continues to trouble water utilities worldwide, and only recently have advances been made in our fundamental understanding of the biochemical and genetic mechanisms responsible for the production of geosmin in microorganisms. For the first time, we have examined the expression of the geosmin synthase gene and corresponding geosmin production by Anabaena circinalis Rabenh. ex Bornet et Flahault AWQC318 under conditions of continuous light illumination and the removal of light as a stimulus and demonstrate that the expression of geosmin synthase appears to be constitutive under these conditions. The decrease in geosmin synthase transcription post maximum cell numbers and stationary phase suggests that a decrease in isoprenoid synthesis may occur before a decrease in the transcription of ribosomal units as the process of cell death is initiated.

  8. Outer membrane proteins induced by iron deficiency in Anabaena sp.PCC 7120

    Institute of Scientific and Technical Information of China (English)

    Yanling Dong; Xudong Xu

    2009-01-01

    Iron deficiency can induce cyanobacteria to synthesize siderophore receptor proteins on the outer membrane to enhance the uptake of iron. In this study, an outer membrane of high purity was prepared from Anabaena sp. PCC 7120 based on aqueous polymer two-phase partitioning and discontinuous sucrose density ultra-centrifugation, and the induction of outer membrane proteins by iron deficiency was investigated using 2-D gel electrophoresis. At least five outer membrane proteins were newly synthesized or significantly up-regulated in cells transferred to iron-deficient conditions, which were all identified to be siderophore receptor proteins according to MALDI-TOF-MS analyses. Bacterial luciferase reporter genes luxAB were employed to monitor the transcription of the encoding genes. The genes were induced by iron deficiency at the transcriptional level in different responsive modes. Luciferase activity expressed from an iron-regulated promoter may be used as a bioreporter for utilizable iron in natural water samples.

  9. [Chromatographic and spectroscopic characterization of phycocyanin and its subunits purified from Anabaena variabilis CCC421].

    Science.gov (United States)

    Chakdar, N; Sakha, S; Pabbi, S

    2014-01-01

    Phycocyanin, a high value pigment was purified from diazotrophic cyanobacteria Anabaena variabilis CCC421 using a strategy involving ammonium sulfate precipitation, dialysis and anion exchange chromatography using DEAE-cellulose column. 36% phycocyanin with a purity of 2.75 was recovered finally after anion exchange chromatography. Purified phycocyanin was found to contain 2 subunits of 17 and 18 kDa which were identified as a-and (3 subunits by SDS-PAGE and MALDI-TOE HPLC method using a C5 column coupled with fluorescence or photodiode-based detection was also developed to separate and detect the A. variabilis CCC421 phycocyanin subunits. The fluorescence method was more sensitive than photodiode one. The purified phycocyanin from A. variabilis CCC421 as well as its subunits was characterized with respect to absorption and IR spectra. Spectral characterization of the subunits revealed that alpha and beta subunits contained one and two phycocyanobilin groups as chromophores, respectively. PMID:25272755

  10. Hydrogen production by Anabaena sp. CH1 with 2-stage process

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, C.L.; Lee, C.M. [National Chung Hsing Univ., Taiwan (China). Dept. of Environmental Engineering; Chen, P.C. [Hungkuang Univ., Taiwan (China). Dept. of Biomedical Nutrition

    2009-07-01

    While hydrogen can be produced by cyanobacteria under anoxic conditions, chlorophylls can break down and provide the nitrogen needed for cell material synthesis. The breakdown of chlorophylls is unfavorable for the long-term production of hydrogen. This study provided details of a 2-stage operation designed to prevent chlorophyll breakdown. Anabaena sp. CH1 was used in both the hydrogen production and recovery stages. Nitrogenase activity, chlorophyll concentrations, and hydrogen production rates decreased to 54 per cent after argon gases were used for a 3-day period. Growth conditions than shifted to normal conditions after 3 to 5 days. Cells recovered their nitrogenase activities, biomass, and chlorophyll concentrations within 4 days. The recovery stage then shifted to the hydrogen production stage, where hydrogen production rates were as high as previous observed rates. It was concluded that the effects of nitrogen deprivation on photosynthetic mechanisms are reversible.

  11. Purification and some properties of Fe protein of nitrogenase from. Anabaena cylindrica

    Science.gov (United States)

    Du, Daixian; Lin, Huimin; He, Zhenrong; Dai, Lingfen; Xin, Wusheng; Li, Shanghao

    1990-12-01

    The Fe protein of Anabaena cylindrica was first separated and purified by chromatography through DEAE-cellulose columns then by gel electrophoresis. The specific activity was up to 142.46 nmol C2H4/mg protein · min. It was homogeneous as shown by 1) a single band in the gel electrophorogram; 2) absence of Mo and tryptophan; 3) content of about 3.4 atoms of Fe per mole protein. The molecular weight of the Fe protein of A. cylindrica was about 61,000 daltons as estimated by SDS-gel electrophoresis and calculated from the amino acid composition. The residues of aspartate and glutamate were about 2.6 times that of arginine and lysine in the Fe protein. Crossing Fe protein of A. cylindrica with Mo-Fe protein of Azotobacter vinelandii gave positive result. The reciprocal crossing also showed activity.

  12. The electronic structure of the neutral isoalloxazine semiquinone within Anabaena flavodoxin: New insights from HYSCORE experiments

    Science.gov (United States)

    Martínez, Jesús I.; Alonso, Pablo J.; Medina, Milagros

    2012-05-01

    A complete study of Anabaena flavodoxin in the neutral semiquinone state by means of the EPR pulse technique HYSCORE is here presented. The results provide new information about the hyperfine interactions of the unpaired electronic spin and the nuclei in the isoalloxazine ring. This allows a better knowledge of the electronic structure of the neutral flavin radical within the protein. Combination of these results with other previously obtained by using other EPR related techniques allowed producing a very precise mapping of the flavin spin distribution in the neutral semiquinone state. This information can be very useful for determining the relationship between the electronic structure and mechanisms in flavoproteins. An experimental protocol for measuring the electronic structure details available to date is suggested.

  13. The regulation of HanA during heterocyst development in cyanobacterium Anabaena sp. PCC 7120.

    Science.gov (United States)

    Lu, Jing-Jing; Shi, Lei; Chen, Wen-Li; Wang, Li

    2014-10-01

    In response to deprivation of combined nitrogen, the filamentous cyanobacterium Anabaena sp. strain PCC 7120 develops heterocyst, which is specifically involved in the nitrogen fixation. In this study, we focused on the regulation of HanA, a histone-like protein, in heterocyst development. Electrophoretic mobility shift assay results showed that NtcA, a global nitrogen regulator necessary for heterocyst differentiation, could bind to two NtcA-binding motifs in the hanA promoter region. qPCR results also showed that NtcA may regulate the expression of hanA. By using the hanA promoter-controlled gfp as a reporter gene and performing western blot we found that the amount of HanA in mature heterocysts was decreased gradually.

  14. Enhanced biohydrogen production by the N{sub 2}-fixing cyanobacterium Anabaena siamensis strain TISTR 8012

    Energy Technology Data Exchange (ETDEWEB)

    Khetkorn, Wanthanee [Program of Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok, 10330 (Thailand); Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Bangkok, 10330 (Thailand); Department of Photochemistry and Molecular Science, Uppsala University, Box 523, SE-75120, Uppsala (Sweden); Lindblad, Peter [Department of Photochemistry and Molecular Science, Uppsala University, Box 523, SE-75120, Uppsala (Sweden); Incharoensakdi, Aran [Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Bangkok, 10330 (Thailand)

    2010-12-15

    The efficiency of hydrogen production depends on several factors. We focused on external conditions leading to enhanced hydrogen production when using the N{sub 2}-fixing cyanobacterium Anabaena siamensis TISTR 8012, a novel strain isolated from a rice paddy field in Thailand. In this study, we controlled key factors affecting hydrogen production such as cell age, light intensity, time of light incubation and source of carbon. Our results showed an enhanced hydrogen production when cells, at log phase, were adapted under N{sub 2}-fixing condition using 0.5% fructose as carbon source and a continuous illumination of 200 {mu}E m{sup -2} s{sup -1} for 12 h under anaerobic incubation. The maximum hydrogen production rate was 32 {mu}mol H{sub 2} mg chl a{sup -1} h{sup -1}. This rate was higher than that observed in the model organisms Anabaena PCC 7120, Nostoc punctiforme ATCC 29133 and Synechocystis PCC 6803. This higher production was likely caused by a higher nitrogenase activity since we observed an upregulation of nifD. The production did not increase after 12 h which was probably due to an increased activity of the uptake hydrogenase as evidenced by an increased hupL transcript level. Interestingly, a proper adjustment of light conditions such as intensity and duration is important to minimize both the photodamage of the cells and the uptake hydrogenase activity. Our results indicate that A. siamensis TISTR 8012 has a high potential for hydrogen production with the ability to utilize sugars as substrate to produce hydrogen. (author)

  15. Expanding the direct HetR regulon in Anabaena sp. strain PCC 7120.

    Science.gov (United States)

    Videau, Patrick; Ni, Shuisong; Rivers, Orion S; Ushijima, Blake; Feldmann, Erik A; Cozy, Loralyn M; Kennedy, Michael A; Callahan, Sean M

    2014-03-01

    In response to a lack of environmental combined nitrogen, the filamentous cyanobacterium Anabaena sp. strain PCC 7120 differentiates nitrogen-fixing heterocyst cells in a periodic pattern. HetR is a transcription factor that coordinates the regulation of this developmental program. An inverted repeat-containing sequence in the hepA promoter required for proheterocyst-specific transcription was identified based on sequence similarity to a previously characterized binding site for HetR in the promoter of hetP. The binding affinity of HetR for the hepA site is roughly an order of magnitude lower than that for the hetP binding site. A BLAST search of the Anabaena genome identified 166 hepA-like sites that occur as single or tandem sites (two binding sites separated by 13 bp). The vast majority of these sites are present in predicted intergenic regions. HetR bound five representative single binding sites in vitro, and binding was abrogated by transversions in the binding sites that conserved the inverted repeat nature of the sites. Binding to four representative tandem sites was not observed. Transcriptional fusions of the green fluorescent protein gene gfp with putative promoter regions associated with the representative binding sites indicated that HetR could function as either an activator or repressor and that activation was cell-type specific. Taken together, we have expanded the direct HetR regulon and propose a model in which three categories of HetR binding sites, based on binding affinity and nucleotide sequence, contribute to three of the four phases of differentiation.

  16. Measurement of activation of rhodopsine with heavy ions irradiation in the ALTEA program: a possible mechanism responsible for light flash perceptions in space

    Science.gov (United States)

    Narici, Livio; Rinaldi, Adele; Sannita, Walter, , Prof; Paci, Maurizio; Brunetti, Valentina; de Martino, Angelo; Picozza, Piergiorgio

    Since late 60s astronauts in space have reported seeing flashes of light, more frequently when dark adapted. Experiments have been performed to characterize these phenomena, and to suggest possible mechanisms. High Z ions have been shown to be the most likely cause of these perceptions: when ionizing radiation hits the eye there is a high probability of a light flash perception. However the mechanisms behind this phenomenon are not fully understood yet. We show that one of these mechanisms is the activation of the rhodopsin (bleaching) by heavy ions. Rhodopsin is at the start of the photo-electronic cascade in the process of vision. It is one of the best molecular transducer to convert a visible photon into an electric signal. In this work we show that rhodopsine can also be activated by irradiation with 12C nuclei. In the frame of ALTEA program, aimed at studying the effects of cosmic radiation on brain functions, an investigation on the interaction between heavy ions and rhodopsin has been performed. Intact Rod Outer Segment (ROS) containing rhodopsin were isolated from bovine retina. Suspended rods were irradiated with 12C (200 MeV/n, well below the Cherenkov threshold) at GSI (Darmstadt FRG) with doses ranging from few mrem to several rem. Spectrophotometric measurements investigated the presence of non activated and activated rhodopsin. The functionality of the purified rods were checked by previous light irradiation and subsequent regeneration by the addition of external 11-cis-retinal, to confirm the reversibility of the process in vitro. We can show effective and reversible bleaching also following irradiation, thus proving that the rhodopsin was not damaged by radiation. Works are in progress to model this interaction. Latest analysis results and considerations about the underlying mechanism will be presented.

  17. Sensory Dominance in Product Experience

    NARCIS (Netherlands)

    Fenko, A.B.

    2010-01-01

    People perceive the material world around them with their five senses. Information from different sensory modalities is integrated in the brain to create a stable and meaningful experience of objects, including industrial products that accompany us in our everyday life. Some of the sensory systems p

  18. The Evolution of Sensory Placodes

    Directory of Open Access Journals (Sweden)

    Francoise Mazet

    2006-01-01

    Full Text Available The vertebrate cranial sensory placodes are ectodermal embryonic patches that give rise to sensory receptor cells of the peripheral paired sense organs and to neurons in the cranial sensory ganglia. Their differentiation and the genetic pathways that underlay their development are now well understood. Their evolutionary history, however, has remained obscure. Recent molecular work, performed on close relatives of the vertebrates, demonstrated that some sensory placodes (namely the adenohypophysis, the olfactory, and accoustico-lateralis placodes first evolved at the base of the chordate lineage, while others might be specific to vertebrates. Combined with morphological and cellular fate data, these results also suggest that the sensory placodes of the ancestor of all chordates differentiated into a wide range of structures, most likely to fit the lifestyle and environment of each species.

  19. FurA from Anabaena PCC 7120: New insights on its regulation and the interaction with DNA

    Science.gov (United States)

    Hernández, J. A.; López-Gomollón, S.; Pellicer, S.; Martín, B.; Sevilla, E.; Bes, M. T.; Peleato, M. L.; Fillat, M. F.

    2006-08-01

    Fur (ferric uptake regulator) proteins are global regulatory proteins involved in the maintenance of iron homeostasis. They recognize specific DNA sequences denoted iron boxes. It is assumed that Fur proteins act as classical repressors. Under iron-rich conditions, Fur dimers complexed with ferrous ions bind to iron boxes, preventing transcription. In addition to iron homeostasis, Fur proteins control the concerted response to oxidative and acidic stresses in heterotrophic prokaryotes. Our group studies the interaction between Fur proteins and target DNA sequences. Moreover, the regulation of FurA in the nitrogen-fixing cyanobacterium Anabaena sp. PCC 7120, whose genome codes for three fur homologues has been investigated. We present an overview about the different factors involved in the regulation of FurA and analyze the parameters that influence FurA-DNA interaction in the cyanobacterium Anabaena PCC 7120.

  20. Biological hydrogen production by Anabaena sp. – Yield, energy and CO2 analysis including fermentative biomass recovery

    OpenAIRE

    Ferreira, Ana F.; Marques, Ana C.; Batista, Ana Paula; Marques, Paula Alexandra; de Gouveia, L.; Carla M. Silva

    2012-01-01

    This paper presents laboratory results of biological production of hydrogen by photoautrotophic cyanobacterium Anabaena sp. Additional hydrogen production from residual Cyanobacteria fermentation was achieved by Enterobacter aerogenes bacteria. The authors evaluated the yield of H2 production, the energy consumption and CO2 emissions and the technological bottlenecks and possible improvements of the whole energy and CO2 emission chain. The authors did not attempt to extrapolate the results to...

  1. Characterization of two naturally truncated, Ssb-like proteins from the nitrogen-fixing cyanobacterium, Anabaena sp. PCC7120.

    Science.gov (United States)

    Kirti, Anurag; Rajaram, Hema; Apte, Shree Kumar

    2013-11-01

    Single-stranded (ss) DNA-binding (Ssb) proteins are vital for all DNA metabolic processes and are characterized by an N-terminal OB-fold followed by P/G-rich spacer region and a C-terminal tail. In the genome of the heterocystous, nitrogen-fixing cyanobacterium, Anabaena sp. strain PCC 7120, two genes alr0088 and alr7579 are annotated as ssb, but the corresponding proteins have only the N-terminal OB-fold and no P/G-rich region or acidic tail, thereby rendering them unable to interact with genome maintenance proteins. Both the proteins were expressed under normal growth conditions in Anabaena PCC7120 and regulated differentially under abiotic stresses which induce DNA damage, indicating that these are functional genes. Constitutive overexpression of Alr0088 in Anabaena enhanced the tolerance to DNA-damaging stresses which caused formation of DNA adducts such as UV and MitomycinC, but significantly decreased the tolerance to γ-irradiation, which causes single- and double-stranded DNA breaks. On the other hand, overexpression of Alr7579 had no significant effect on normal growth or stress tolerance of Anabaena. Thus, of the two truncated Ssb-like proteins, Alr0088 may be involved in protection of ssDNA from damage, but due to the absence of acidic tail, it may not aid in repair of damaged DNA. These two proteins are present across cyanobacterial genera and unique to them. These initial studies pave the way to the understanding of DNA repair in cyanobacteria, which is not very well documented.

  2. NADPH-Thioredoxin Reductase C Mediates the Response to Oxidative Stress and Thermotolerance in the Cyanobacterium Anabaena sp. PCC7120.

    Science.gov (United States)

    Sánchez-Riego, Ana M; Mata-Cabana, Alejandro; Galmozzi, Carla V; Florencio, Francisco J

    2016-01-01

    NADPH-thioredoxin reductase C (NTRC) is a bimodular enzyme composed of an NADPH-thioredoxin reductase and a thiioredoxin domain extension in the same protein. In plants, NTRC has been described to be involved in the protection of the chloroplast against oxidative stress damage through reduction of the 2-Cys peroxiredoxin (2-Cys Prx) as well as through other functions related to redox enzyme regulation. In cyanobacteria, the Anabaena NTRC has been characterized in vitro, however, nothing was known about its in vivo function. In order to study that, we have generated the first knockout mutant strain (ΔntrC), apart from the previously described in Arabidopsis. Detailed characterization of this strain reveals a differential sensitivity to oxidative stress treatments with respect to the wild-type Anabaena strain, including a higher level of ROS (reactive oxygen species) in normal growth conditions. In the mutant strain, different oxidative stress treatments such as hydrogen peroxide, methyl-viologen or high light irradiance provoke an increase in the expression of genes related to ROS detoxification, including AnNTRC and peroxiredoxin genes, with a concomitant increase in the amount of AnNTRC and 2-Cys Prx. Moreover, the role of AnNTRC in the antioxidant response is confirmed by the observation of a pronounced overoxidation of the 2-Cys Prx and a time-delay recovery of the reduced form of this protein upon oxidative stress treatments. Our results suggest the participation of this enzyme in the peroxide detoxification in Anabaena. In addition, we describe the role of Anabaena NTRC in thermotolerance, by the appearance of high molecular mass AnNTRC complexes, showing that the mutant strain is more sensitive to high temperature treatments.

  3. The interaction of boron with glycolipids is required to increase tolerance to stresses in Anabaena PCC 7120.

    Science.gov (United States)

    Abreu, Isidro; Orús, Isabel; Bolaños, Luis; Bonilla, Ildefonso

    2014-10-01

    Boron (B) is an essential nutrient for heterocystous cyanobacteria growing under diazotrophic conditions. Under B-deficient conditions, the heterocyst envelope is highly disorganized, and the glycolipid layer is predominantly lost. Therefore, we examined whether B is implicated in the regulation of synthesis or processing and/or stability of glycolipids in Anabaena PCC 7120. RT-PCR analysis indicated that the expression of hglE was not significantly changed under B deficiency, suggesting that the synthesis of glycolipids during heterocyst formation was not compromised. In contrast, the overexpression of devB and hepA, encoding a glycolipid and a carbohydrate transporter, respectively, results in the instability of the envelope under B-deficient conditions. The capacity of borate to bind and stabilize molecules is considered the basis of any B biological function. Using a borate-binding-specific resin and thin layer chromatography, we detected the glycolipids that interact with B. Several heterocyst-specific glycolipids were detected as putative B ligands, suggesting a role for B in stabilizing the heterocyst envelope. Moreover, the glycolipids of Anabaena growing in non-diazotrophic conditions were also detected as putative B ligands. Although B is not essential for Anabaena under non-N2-fixing conditions, the presence of this micronutrient increased the tolerance of Anabaena to detergent treatment, salinity and hyperosmotic conditions. Taken together, the results of the present experiment suggest a beneficial role for B in environmental adaptation. Furthermore, we discuss the nutrient requirement for living organisms growing in nature and not under laboratory conditions.

  4. Photoisomerization dynamics of a rhodopsin-based molecule (potential molecular switch) with high quantum yields

    Science.gov (United States)

    Allen, Roland; Jiang, Chen-Wei; Zhang, Xiu-Xing; Fang, Ai-Ping; Li, Hong-Rong; Xie, Rui-Hua; Li, Fu-Li

    2015-03-01

    It is worthwhile to explore the detailed reaction dynamics of various candidates for molecular switches, in order to understand, e.g., the differences in quantum yields and switching times. Here we report density-functional-based simulations for the rhodopsin-based molecule 4-[4-Methylbenzylidene]-5-p-tolyl-3,4-dihydro-2H-pyrrole (MDP), synthesized by Sampedro et al. We find that the photoisomerization quantum yields are remarkably high: 82% for cis-to-trans, and 68% for trans-to-cis. The lifetimes of the S1 excited state in cis-MDP in our calculations are in the range of 900-1800 fs, with a mean value of 1270 fs, while the range of times required for full cis-to-trans isomerization are 1100-2000 fs, with a mean value of 1530 fs. In trans-MDP, the calculated S1 excited state lifetimes are 860-2140 fs, with a mean value of 1330 fs, and with the full trans-to-cis isomerization completed about 200 fs later. In both cases, the dominant reaction mechanism is rotation around the central C =C bond (connected to the pyrroline ring), and de-excitation occurs at an avoided crossing between the ground state and the lowest singlet state, near the midpoint of the rotational pathway. Research Fund for the Doctoral Program of Higher Education of China; Fundamental Research Funds for the Central Universities; Robert A. Welch Foundation; National Natural Science Foundation of China.

  5. Studying of Phototransformation of Light Signal by Photoreceptor Pigments - Rhodopsin, Iodopsin and Bacteriorhodopsin

    Directory of Open Access Journals (Sweden)

    Ignat Ignatov

    2014-09-01

    Full Text Available This review article views predominately the structure and function of animal and bacterial photoreceptor pigments (rhodopsin, iodopsin, bacteriorhodopsin and their aspects of nano- and biotechnological usage. On an example of bacteriorhodopsin is described the method of its isolation from purple membranes of photo-organotrophic halobacterium Halobacterium halobium by cellular autolysis by distilled water, processing of bacterial biomass by ultrasound at 22 KHz, alcohol extraction of low and high-weight molecular impurities, cellular RNA, carotenoids and lipids, the solubilization with 0,5 % (w/v SDS-Na and subsequent fractionation by methanol and gel filtration chromatography on Sephadex G-200 Column balanced with 0.09 M Tris-borate buffer (pH = 8,35 with 0,1 % (w/v SDS-Na and 2,5 mM EDTA. Within the framework of the research the mechanism of color perception by the visual analyzer having the ability to analyze certain ranges of the optical spectrum, as colors was studied along with an analysis of the additive mixing of two colors. It was shown that at the mixing of electromagnetic waves with different wavelengths, the visual analyzer perceive them as separate or average wave length corresponding to mix color.

  6. New Nano- and Biotechnological Applications of Bacterial and Animal Photoreceptor Pigments  Bacteriorhodopsin, Rhodopsin and Iodopsin

    Directory of Open Access Journals (Sweden)

    Ignat Ignatov

    2016-03-01

    Full Text Available This paper views predominately the structure and function of animal and bacterial photoreceptor pigments (rhodopsin, iodopsin, bacteriorhodopsin and new aspects of their nano- and biotechnological usage. On an example of bacteriorhodopsin was described the method of its isolation from purple membranes of photo-organotrophic halobacterium Halobacterium halobium by cellular autolysis by distilled water, processing of bacterial biomass by ultrasound at 22 KHz, alcohol extraction of low and high-weight molecular impurities, cellular RNA, carotenoids and lipids, the solubilization with 0,5 % (w/v SDS-Na and subsequent fractionation by methanol and gel filtration chromatography on Sephadex G-200 Column balanced with 0.09 M Tris-HCl buffer (pH = 6,76 with 0,1 % (w/v SDS-Na and 2,5 mM EDTA. Within the framework of the research the mechanism of color perception by the visual analyzer having the ability to analyze certain ranges of the optical spectrum, as colors was studied along with an analysis of the additive mixing of two colors. It was shown that at the mixing of electromagnetic waves with different wavelengths, the visual analyzer perceive them as separate or average wave length corresponding to mix color.

  7. Identification of a rhodopsin gene mutation in a large family with autosomal dominant retinitis pigmentosa.

    Science.gov (United States)

    Yu, Xinping; Shi, Wei; Cheng, Lulu; Wang, Yanfang; Chen, Ding; Hu, Xuting; Xu, Jinling; Xu, Limin; Wu, Yaming; Qu, Jia; Gu, Feng

    2016-01-01

    Retinitis pigmentosa (RP) is a genetically highly heterogeneous retinal disease and one of the leading causes of blindness in the world. Next-generation sequencing technology has enormous potential for determining the genetic etiology of RP. We sought to identify the underlying genetic defect in a 35-year-old male from an autosomal-dominant RP family with 14 affected individuals. By capturing next-generation sequencing (CNGS) of 144 genes associated with retinal diseases, we identified eight novel DNA variants; however, none of them cosegregated for all the members of the family. Further analysis of the CNGS data led to identification of a recurrent missense mutation (c.403C > T, p.R135W) in the rhodopsin (RHO) gene, which cosegregated with all affected individuals in the family and was not observed in any of the unaffected family members. The p.R135W mutation has a reference single nucleotide polymorphism (SNP) ID (rs104893775), and it appears to be responsible for the disease in this large family. This study highlights the importance of examining NGS data with reference SNP IDs. Thus, our study is important for data analysis of NGS-based clinical genetic diagnoses. PMID:26794436

  8. A novel alkyl hydroperoxidase (AhpD) of Anabaena PCC7120 confers abiotic stress tolerance in Escherichia coli.

    Science.gov (United States)

    Shrivastava, Alok Kumar; Singh, Shilpi; Singh, Prashant Kumar; Pandey, Sarita; Rai, L C

    2015-01-01

    In silico analysis together with cloning, molecular characterization and heterologous expression reports that the hypothetical protein All5371 of Anabaena sp. PCC7120 is a novel hydroperoxide scavenging protein similar to AhpD of bacteria. The presence of E(X)11CX HC(X)3H motif in All5371 confers peroxidase activity and closeness to bacterial AhpD which is also reflected by its highest 3D structure homology with Rhodospirillum rubrum AhpD. Heterologous expression of all5371 complimented for ahpC and conferred resistance in MJF178 strain (ahpCF::Km) of Escherichia coli. All5371 reduced the organic peroxide more efficiently than inorganic peroxide and the recombinant E. coli strain following exposure to H2O2, CdCl2, CuCl2, heat, UV-B and carbofuron registered increased growth over wild-type and mutant E. coli transformed with empty vector. Appreciable expression of all5371 in Anabaena sp. PCC7120 as measured by qRT-PCR under selected stresses and their tolerance against H2O2, tBOOH, CuOOH and menadione attested its role in stress tolerance. In view of the above, All5371 of Anabaena PCC7120 emerged as a new hydroperoxide detoxifying protein. PMID:25391500

  9. Overexpression of SepJ alters septal morphology and heterocyst pattern regulated by diffusible signals in Anabaena.

    Science.gov (United States)

    Mariscal, Vicente; Nürnberg, Dennis J; Herrero, Antonia; Mullineaux, Conrad W; Flores, Enrique

    2016-09-01

    Filamentous, N2 -fixing, heterocyst-forming cyanobacteria grow as chains of cells that are connected by septal junctions. In the model organism Anabaena sp. strain PCC 7120, the septal protein SepJ is required for filament integrity, normal intercellular molecular exchange, heterocyst differentiation, and diazotrophic growth. An Anabaena strain overexpressing SepJ made wider septa between vegetative cells than the wild type, which correlated with a more spread location of SepJ in the septa as observed with a SepJ-GFP fusion, and contained an increased number of nanopores, the septal peptidoglycan perforations that likely accommodate septal junctions. The septa between heterocysts and vegetative cells, which are narrow in wild-type Anabaena, were notably enlarged in the SepJ-overexpressing mutant. Intercellular molecular exchange tested with fluorescent tracers was increased for the SepJ-overexpressing strain specifically in the case of calcein transfer between vegetative cells and heterocysts. These results support an association between calcein transfer, SepJ-related septal junctions, and septal peptidoglycan nanopores. Under nitrogen deprivation, the SepJ-overexpressing strain produced an increased number of contiguous heterocysts but a decreased percentage of total heterocysts. These effects were lost or altered in patS and hetN mutant backgrounds, supporting a role of SepJ in the intercellular transfer of regulatory signals for heterocyst differentiation.

  10. Establishment of quantitative PCR methods for the quantification of geosmin-producing potential and Anabaena sp. in freshwater systems.

    Science.gov (United States)

    Su, Ming; Gaget, Virginie; Giglio, Steven; Burch, Michael; An, Wei; Yang, Min

    2013-06-15

    Geosmin has often been associated with off-flavor problems in drinking water with Anabaena sp. as the major producer. Rapid on-site detection of geosmin-producers as well as geosmin is important for a timely management response to potential off-flavor events. In this study, quantitative polymerase chain reaction (qPCR) methods were developed to detect the levels of Anabaena sp. and geosmin, respectively, by designing two PCR primer sets to quantify the rpoC1 gene (ARG) and geosmin synthase one (GSG) in Anabaena sp. in freshwater systems. The ARG density determined by qPCR assay is highly related to microscopic cell count (r(2) = 0.726, p geosmin concentrations measured by gas chromatography-mass spectrometry (GC-MS) and GSG copies was also established (r(2) = 0.742, p < 0.001) with similar LOD and LOQ values. Using the two qPCR protocols, we succeeded in measuring different levels of ARG and GSG copies in different freshwater systems with high incidence environmental substrata and diverse ecological conditions, showing that the methods developed could be applied for environmental monitoring. Moreover, comparing to the microscopic count and GC-MS analytical methods, the qPCR methods can reduce the time-to-results from several days to a few hours and require considerably less traditional algal identification and taxonomic expertise.

  11. In vitro antibacterial evaluation of Anabaena sp. against several clinically significant microflora and HPTLC analysis of its active crude extracts

    Directory of Open Access Journals (Sweden)

    Chauhan Abhishek

    2010-01-01

    Full Text Available The present study was conducted to evaluate the possible antibacterial activity of Anabaena extracts. Anabaena was isolated from a natural source and cultured in vitro. after suitable growth, cyanobacterial culture was harvested using different solvents. Extracts, thus prepared, were evaluated for their antibacterial potential by agar-well diffusion assay against bacterial species of clinical significance. MIC values were determined further to check the concentration ranges for significant inhibition. HPTLC analysis was done to separate the components of active crude extract in an attempt to identify the bio-active chemical entity. Methanol extract exhibited more potent activity than that of hexane and ethyl acetate extracts. No inhibitory effect was found against Pseudomonas aeruginosa, Salmonella typhi, and Klebsiella pneumoniae. Staphylococcus aureus required about 256 μg/ml of the crude methanol extract for effective inhibition. HPTLC evaluation at λ 254 nm was performed for the separation of a complex mixture of the methanol extract. The results provide evidence that Anabaena sp. extracts might indeed be potential sources of new antibacterial agents.

  12. Assessment of the CO2 fixation capacity of Anabaena sp. ATCC 33047 outdoor cultures in vertical flat-panel reactors.

    Science.gov (United States)

    Clares, Marta E; Moreno, José; Guerrero, Miguel G; García-González, Mercedes

    2014-10-10

    The extent of biological CO2 fixation was evaluated for outdoor cultures of the cyanobacterium Anabaena sp. ATCC 33047. Culture conditions were optimized indoors in bubble-column photochemostats operating in continuous mode, subjected to irradiance cycles mimicking the light regime outdoors. Highest values achieved for CO2 fixation rate and biomass productivity were 1 and 0.6 g L(-1) day(-1), respectively. The comparison among different reactors operating simultaneously - open pond, horizontal tubular reactor and vertical flat-panel - allowed to assess their relative efficiency for the outdoor development of Anabaena cultures. Despite the higher volumetric CO2 fixation capacity (and biomass productivity) exhibited by the tubular photobioreactor, yield of the flat-panel reactor was 50% higher than that of the tubular option on a per area basis, reaching values over 35 g CO2 fixed m(-2) d(-1). The flat-panel reactor actually represents a most suitable system for CO2 capture coupled to the generation of valuable biomass by Anabaena cultures.

  13. The influence of humic acid on the toxicity of nano-ZnO and Zn2+ to the Anabaena sp.

    Science.gov (United States)

    Tang, Yulin; Li, Shuyan; Lu, Yao; Li, Qian; Yu, Shuili

    2015-07-01

    This study explored the effects of humic acid (HA) on the toxicity of ZnO nanoparticles (nano-ZnO) and Zn(2+) to Anabaena sp. Typical chlorophyll fluorescence parameters, including effective quantum yield, photosynthetic efficiency and maximal electron transport rate, were measured by a pulse-amplitude modulated fluorometer. Results showed that nano-ZnO and Zn(2+) could inhibit Anabaena sp. growth with the EC50 (concentration for 50% of maximal effect) of 0.74 ± 0.01 and 0.3 ± 0.01 mg/L, respectively. In the presence of 3.0 mg/L of HA, EC50 of nano-ZnO increased to 1.15 ± 0.04 mg/L and EC50 of Zn(2+) was still 0.3 ± 0.01 mg/L. Scanning electron microscopy observation revealed that HA prevented the adhesion of nano-ZnO on the algae cells due to the increased electrostatic repulsion. The generation of intracellular reactive oxygen species and cellular lipid peroxidation were significantly limited by HA. Nano-ZnO had more damage to the cell membrane than Zn(2+) did, which could be proven by the malondialdehyde content in Anabaena sp. cells. © 2014 Wiley Periodicals, Inc. Environ Toxicol 30: 895-903, 2015.

  14. A novel alkyl hydroperoxidase (AhpD) of Anabaena PCC7120 confers abiotic stress tolerance in Escherichia coli.

    Science.gov (United States)

    Shrivastava, Alok Kumar; Singh, Shilpi; Singh, Prashant Kumar; Pandey, Sarita; Rai, L C

    2015-01-01

    In silico analysis together with cloning, molecular characterization and heterologous expression reports that the hypothetical protein All5371 of Anabaena sp. PCC7120 is a novel hydroperoxide scavenging protein similar to AhpD of bacteria. The presence of E(X)11CX HC(X)3H motif in All5371 confers peroxidase activity and closeness to bacterial AhpD which is also reflected by its highest 3D structure homology with Rhodospirillum rubrum AhpD. Heterologous expression of all5371 complimented for ahpC and conferred resistance in MJF178 strain (ahpCF::Km) of Escherichia coli. All5371 reduced the organic peroxide more efficiently than inorganic peroxide and the recombinant E. coli strain following exposure to H2O2, CdCl2, CuCl2, heat, UV-B and carbofuron registered increased growth over wild-type and mutant E. coli transformed with empty vector. Appreciable expression of all5371 in Anabaena sp. PCC7120 as measured by qRT-PCR under selected stresses and their tolerance against H2O2, tBOOH, CuOOH and menadione attested its role in stress tolerance. In view of the above, All5371 of Anabaena PCC7120 emerged as a new hydroperoxide detoxifying protein.

  15. Q344ter mutation causes mislocalization of rhodopsin molecules that are catalytically active: a mouse model of Q344ter-induced retinal degeneration.

    Directory of Open Access Journals (Sweden)

    Francis Concepcion

    Full Text Available Q344ter is a naturally occurring rhodopsin mutation in humans that causes autosomal dominant retinal degeneration through mechanisms that are not fully understood, but are thought to involve an early termination that removed the trafficking signal, QVAPA, leading to its mislocalization in the rod photoreceptor cell. To better understand the disease mechanism(s, transgenic mice that express Q344ter were generated and crossed with rhodopsin knockout mice. Dark-reared Q344ter(rho+/- mice exhibited retinal degeneration, demonstrating that rhodopsin mislocalization caused photoreceptor cell death. This degeneration is exacerbated by light-exposure and is correlated with the activation of transducin as well as other G-protein signaling pathways. We observed numerous sub-micrometer sized vesicles in the inter-photoreceptor space of Q344ter(rho+/- and Q344ter(rho-/- retinas, similar to that seen in another rhodopsin mutant, P347S. Whereas light microscopy failed to reveal outer segment structures in Q344ter(rho-/- rods, shortened and disorganized rod outer segment structures were visible using electron microscopy. Thus, some Q344ter molecules trafficked to the outer segment and formed disc structures, albeit inefficiently, in the absence of full length wildtype rhodopsin. These findings helped to establish the in vivo role of the QVAPA domain as well as the pathways leading to Q344ter-induced retinal degeneration.

  16. LexA protein of cyanobacterium Anabaena sp. strain PCC7120 exhibits in vitro pH-dependent and RecA-independent autoproteolytic activity.

    Science.gov (United States)

    Kumar, Arvind; Kirti, Anurag; Rajaram, Hema

    2015-02-01

    The LexA protein of the nitrogen-fixing cyanobacterium, Anabaena sp. strain PCC7120 exhibits a RecA-independent and alkaline pH-dependent autoproteolytic cleavage. The autoproteolytic cleavage of Anabaena LexA occurs at pH 8.5 and above, stimulated by the addition of Ca(2+) and in the temperature range of 30-57°C. Mutational analysis of Anabaena LexA protein indicated that the cleavage occurred at the peptide bond between Ala-84 and Gly-85, and optimal cleavage required the presence of Ser-118 and Lys-159, as also observed for LexA protein of Escherichia coli. Cleavage of Anabaena LexA was affected upon deletion of three amino acids, (86)GLI. These three amino acids are unique to all cyanobacterial LexA proteins predicted to be cleavable. The absence of RecA-dependent cleavage at physiological pH, which has not been reported for other bacterial LexA proteins, is possibly due to the absence of RecA interacting sites on Anabaena LexA protein, corresponding to the residues identified in E. coli LexA, and low cellular levels of RecA in Anabaena. Exposure to SOS-response inducing stresses, such as UV-B and mitomycin C neither affected the expression of LexA in Anabaena nor induced cleavage of LexA in either Anabaena 7120 or E. coli overexpressing Anabaena LexA protein. Though the LexA may be acting as a repressor by binding to the LexA box in the vicinity of the promoter region of specific gene, their derepression may not be via proteolytic cleavage during SOS-inducing stresses, unless the stress induces increase in cytoplasmic pH. This could account for the regulation of several carbon metabolism genes rather than DNA-repair genes under the regulation of LexA in cyanobacteria especially during high light induced oxidative stress.

  17. Assessment of the effect of azo dye RP2B on the growth of a nitrogen fixing cyanobacterium--Anabaena sp.

    Science.gov (United States)

    Hu, T L; Wu, S C

    2001-03-01

    Certain nitrogen fixing cyanobacteria are diazotrophic, which profoundly impacts the aquatic ecosystem chemically and biologically. Although certain types are banned due to their carcinogenicity, azo dyes are commonly used in the dyeing or textile industry. This work investigates the effect of azo dye on the growth of cyanobacteria. Anabaena sp. isolated from the Da Jia Brook is an odor producing, nitrogen fixing cyanobacterium. The growth rates of Anabaena sp. in the media with or without nitrogen source were 3.56 x 10(-2) mg/ml day and 2.44 x 10(-2) mg/ml day, respectively. Anabaena sp. could not use azo dye RP2B as the nitrogen source. Experimental results indicated that the growth of Anabaena sp. was inhibited in the medium containing RP2B. The degree of inhibition increased from 50% to 81% with an increasing concentration of RP2B (0-50 mg/l). The IC-50 (inhibitory concentration) of RP2B on the growth of Anabaena sp. was 5 mg/l (as based on dry weight) or 7 mg/l (as measured by chlorophyll a).

  18. Sensory Dissonance Using Memory Model

    DEFF Research Database (Denmark)

    Jensen, Karl Kristoffer

    2015-01-01

    Music may occur concurrently or in temporal sequences. Current machine-based methods for the estimation of qualities of the music are unable to take into account the influence of temporal context. A method for calculating dissonance from audio, called sensory dissonance is improved by the use of ...... of a memory model. This approach is validated here by the comparison of the sensory dissonance using memory model to data obtained using human subjects....

  19. Analyzing sensory data with R

    CERN Document Server

    Le, Sebastien

    2014-01-01

    Quantitative Descriptive Approaches When panelists rate products according to one single list of attributes Data, sensory issues, notations In practice For experienced users: Measuring the impact of the experimental design on the perception of the products? When products are rated according to one single list of attributesData, sensory issues, notations In practice For experienced users: Adding supplementary information to the product space When products are rated according to several lists

  20. Sensory Underdetermination and Perceptual Constancy

    OpenAIRE

    Crockett, Damon

    2015-01-01

    This project has as its focus a pair of related phenomena central to human perception. The first is the underdetermination of perceptual content by sensor input, and the second is a class of mechanisms designed to transform impoverished sensor input into useful perceptual content, mechanisms commonly called `perceptual constancies'. The goal of this project is to discuss a particularly difficult form of sensory underdetermination I call \\textit{stacking}, a \\textit{co-local} sensory conflatio...

  1. Histochemical demonstration of a rhodopsin-like substance in the eye of the arrow-worm, Spadella schizoptera (Chaetognatha).

    Science.gov (United States)

    Goto, T; Yoshida, M

    1988-01-01

    The presumed photoreceptive region of the arrow-worms of the species Sagitta crassa and Spadella schizoptera consists of perforated lamellae which are unique as the photoreceptive structure. The existence of a visual pigment in this region was demonstrated by a histofluorescent technique using Spadella schizoptera, whose presumed photoreceptive region was much larger than in Sagitta crassa. A specific fluorescence, indicative of the presence of retinal-based proteins, appeared only in the perforated lamellar region. The result suggests that the perforated lamellae contain a rhodopsin-like substance and could be the primary photoreceptive site. PMID:3268423

  2. Drosophila king tubby (ktub mediates light-induced rhodopsin endocytosis and retinal degeneration

    Directory of Open Access Journals (Sweden)

    Chen Shu-Fen

    2012-12-01

    Full Text Available Background The tubby (tub and tubby-like protein (tulp genes encode a small family of proteins found in many organisms. Previous studies have shown that TUB and TULP genes in mammalian involve in obesity, neural development, and retinal degeneration. The purpose of this study was to investigate the role of Drosophila king tubby (ktub in rhodopsin 1 (Rh1 endocytosis and retinal degeneration upon light stimulation. Results Drosophila ktub mutants were generated using imprecise excision. Wild type and mutant flies were raised in dark or constant light conditions. After a period of light stimulation, retinas were dissected, fixed and stained with anti-Rh1 antibody to reveal Rh1 endocytosis. Confocal and transmission electron microscope were used to examine the retinal degeneration. Immunocytochemical analysis shows that Ktub is expressed in the rhabdomere domain under dark conditions. When flies receive light stimulation, the Ktub translocates from the rhabdomere to the cytoplasm and the nucleus of the photoreceptor cells. Wild type photoreceptors form Rh1-immunopositive large vesicles (RLVs shortly after light stimulation. In light-induced ktub mutants, the majority of Rh1 remains at the rhabdomere, and only a few RLVs appear in the cytoplasm of photoreceptor cells. Mutation of norpA allele causes massive Rh1 endocytosis in light stimulation. In ktub and norpA double mutants, however, Rh1 endocytosis is blocked under light stimulation. This study also shows that ktub and norpA double mutants rescue the light-induced norpA retinal degeneration. Deletion constructs further demonstrate that the Tubby domain of the Ktub protein participates in an important role in Rh1 endocytosis. Conclusions The results in this study delimit the novel function of Ktub in Rh1 endocytosis and retinal degeneration.

  3. Sequence-structure based phylogeny of GPCR Class A Rhodopsin receptors.

    Science.gov (United States)

    Kakarala, Kavita Kumari; Jamil, Kaiser

    2014-05-01

    Current methods of G protein coupled receptors (GPCRs) phylogenetic classification are sequence based and therefore inappropriate for highly divergent sequences, sharing low sequence identity. In this study, sequence structure profile based alignment generated by PROMALS3D was used to understand the GPCR Class A Rhodopsin superfamily evolution using the MEGA 5 software. Phylogenetic analysis included a combination of Neighbor-Joining method and Maximum Likelihood method, with 1000 bootstrap replicates. Our study was able to identify potential ligand association for Class A Orphans and putative/unclassified Class A receptors with no cognate ligand information: GPR21 and GPR52 with fatty acids; GPR75 with Neuropeptide Y; GPR82, GPR18, GPR141 with N-arachidonylglycine; GPR176 with Free fatty acids, GPR10 with Tachykinin & Neuropeptide Y; GPR85 with ATP, ADP & UDP glucose; GPR151 with Galanin; GPR153 and GPR162 with Adrenalin, Noradrenalin; GPR146, GPR139, GPR142 with Neuromedin, Ghrelin, Neuromedin U-25 & Thyrotropin-releasing hormone; GPR171 with ATP, ADP & UDP Glucose; GPR88, GPR135, GPR161, GPR101with 11-cis-retinal; GPR83 with Tackykinin; GPR148 with Prostanoids, GPR109b, GPR81, GPR31with ATP & UTP and GPR150 with GnRH I & GnRHII. Furthermore, we suggest that this study would prove useful in re-classification of receptors, selecting templates for homology modeling and identifying ligands which may show cross reactivity with other GPCRs as signaling via multiple ligands play a significant role in disease modulation. PMID:24503482

  4. Imaging rhodopsin degeneration in vivo in a new model of ocular ischemia in living mice.

    Science.gov (United States)

    Ren, Jiaqian; Chen, Yinching I; Mackey, Ashley M; Liu, Philip K

    2016-02-01

    Delivery of antibodies to monitor key biomarkers of retinopathy in vivo represents a significant challenge because living cells do not take up immunoglobulins to cellular antigens. We met this challenge by developing novel contrast agents for retinopathy, which we used with magnetic resonance imaging (MRI). Biotinylated rabbit polyclonal to chick IgY (rIgPxcIgY) and phosphorylthioate-modified oligoDNA (sODN) with random sequence (bio-sODN-Ran) were conjugated with NeutrAvidin-activated superparamagnetic iron oxide nanoparticles (SPION). The resulting Ran-SPION-rIgPxcIgY carries chick polyclonal to microtubule-associated protein 2 (MAP2) as Ran-SPION-rIgP/cIgY-MAP2, or to rhodopsin (Rho) as anti-Rho-SPION-Ran. We examined the uptake of Ran-SPION-rIgP/cIgY-MAP2 or SPION-rIgP/cIgY-MAP2 in normal C57black6 mice (n = 3 each, 40 μg/kg, i.c.v.); we found retention of Ran-SPION-rIgP/cIgY-MAP2 using molecular contrast-enhanced MRI in vivo and validated neuronal uptake using Cy5-goat IgPxcIgY ex vivo. Applying this novel method to monitor retinopathy in a bilateral carotid artery occlusion-induced ocular ischemia, we observed pericytes (at d 2, using Gd-nestin, by eyedrop solution), significant photoreceptor degeneration (at d 20, using anti-Rho-SPION-Ran, eyedrops, P = 0.03, Student's t test), and gliosis in Müller cells (at 6 mo, using SPION-glial fibrillary acidic protein administered by intraperitoneal injection) in surviving mice (n ≥ 5). Molecular contrast-enhanced MRI results were confirmed by optical and electron microscopy. We conclude that chimera and molecular contrast-enhanced MRI provide sufficient sensitivity for monitoring retinopathy and for theranostic applications. PMID:26443823

  5. An Introduction to Intelligent Sensory Evaluation

    Institute of Scientific and Technical Information of China (English)

    曾宪奕; 丁永生

    2004-01-01

    Sensory evaluation is the evaluation of signals that a buman receives via its sensory organs. Nowadays sensory evaluation is widely used in quality inspection and quality control of products. and many other fields. Actually sensory evaluation always give. uncertain and inprecise results, therefore it derivates many problems. we reviews in detail these problem and give some cumputing methods to resolve them.

  6. Effect of light on the content of photosynthetically active pigments in plants. Pt. 4. Chromatic adaption in blue-green algae Anabaena cylindrica and A. variabilis

    Energy Technology Data Exchange (ETDEWEB)

    Czeczuga, B.

    1986-07-15

    The photosynthetic pigments (chlorophyll a, carotenoids and phycobiliprotein pigments) of two species of the genus Anabaena grown in white, red, yellow, green and blue light were examined. The highest concentration of the cells was observed in the sample with red light in case of the both species, and the smallest with blue light. The biggest amounts of chlorophyll a and carotenoids were included in the cells of samples with the yellow and the smallest in case of the red light. The ratio of two phycobiliproteins is as follows: - in Anabaena cylindrica: the highest amount of C-phycocyanin in the cells was observed in the case of the red light, and C-phycoerytherin was found in the blue light; - in Anabaena variabiles: the highest amount of C-phycocyanien in the cells was found in case of the yellow light, and allophycocyanin was found in the blue light.

  7. Azolla-Anabaena's behaviour in urban wastewater and artificial media--influence of combined nitrogen.

    Science.gov (United States)

    Costa, M L; Santos, M C R; Carrapiço, F; Pereira, A L

    2009-08-01

    The results of using the nitrogen fixing symbiotic system Azolla-Anabaena to improve the quality of treated urban wastewater, particularly on what concerns phosphorus removal efficiencies (40-65%), obtained in continuous assays performed during the past few years and presented earlier, were very promising. Nevertheless, the presence of combined nitrogen in some wastewaters can compromise the treatment efficiency. The main goal of this work was to compare plants behaviour in wastewater and in mineral media with and without added nitrogen. Azolla filiculoides's specific growth rates in wastewater and in mineral media without added nitrogen or with low nitrate concentration were very similar (0.122 d(-1)-0.126 d(-1)), but decreased in the presence of ammonium (0.100 d(-1)). The orthophosphate removal rate coefficients were similar in all the growth media (0.210 d(-1)-0.232 d(-1)), but ammonium removal rate coefficient in wastewater was higher (0.117 d(-1)) than in mineral medium using that source of nitrogen (0.077 d(-1)). The ammonium present in wastewater, despite its high concentration (34 mg NL(-1)), didn't seem to inhibit growth and nitrogen fixation, however, in mineral media, ammonium (40 mg NL(-1)) was found to induce, respectively, 18% and 46% of inhibition. PMID:19559459

  8. Biosorption of cadmium and lead from aqueous solution by fresh water alga Anabaena sphaerica biomass

    Directory of Open Access Journals (Sweden)

    Azza M. Abdel -Aty

    2013-07-01

    Full Text Available The present work represents the biosorption of Cd(II and Pb(II from aqueous solution onto the biomass of the blue green alga Anabaena sphaerica as a function of pH, biosorbent dosage, contact time, and initial metal ion concentrations. Freundlich, Langmuir, and Dubinin–Radushkevich (D–R models were applied to describe the biosorption isotherm of both metals by A. sphaerica biomass. The biosorption isotherms studies indicated that the biosorption of Cd(II and Pb(II follows the Langmuir and Freundlish models. The maximum biosorption capacities (qmax were 111.1 and 121.95 mg/g, respectively, at the optimum conditions for each metal. From the D–R isotherm model, the mean free energy was calculated to be 11.7 and 14.3 kJ/mol indicating that the biosorption mechanism of Cd(II and Pb(II by A. sphaerica was chemisorption. The FTIR analysis for surface function group of algal biomass revealed the existence of amino, carboxyl, hydroxyl, and carbonyl groups, which are responsible for the biosorption of Cd(II and Pb(II. The results suggested that the biomass of A. sphaerica is an extremely efficient biosorbent for the removal of Cd(II and Pb(II from aqueous solutions.

  9. Characterization of Anabaena cylindrica Solution System Using Synchronous- Scan Fluorescence Spectroscopy

    Institute of Scientific and Technical Information of China (English)

    LIU Xian-li; DENG Nan-sheng; TAO Shu

    2005-01-01

    The characterization of the algae Anabaena cylindrica solu tion with Fe (Ⅲ) was investigated using fluorescence emission and syn chronous-scan spectroscopy. The ranges of concentrations of algae and Fe (Ⅲ) in aqueous solutions were 5. 0 × 107-2. 5 × 108 cell/L and 10-60μmol/L, respectively. The effective characterization method used was synchronous-scan fluorescence spectroscopy (SFS). The wavelength difference (△λ) of 90 nm was maintained between excitation wavelength (λex) and emission wavelength(λem ). The peak was observed at about λex 236 nm/λem 326 nm for synchronous-scan fluorescence spectroscopy. The fluorescence quenching in system of algae-Fe( Ⅲ)-HA was studied using synchronous-scan spectroscopy for the first time. Fe(Ⅲ) was clearly the effective quencher. The relationship between I0 / I (quenching efficiency)and c (concentration of Fe (Ⅲ) added) was a linear correlation for the al gae solution with Fe(Ⅲ). Also, Aldrich humic acid (HA) was found to be an effective quencher.

  10. Accelerating of Pink Pigment Excretion from Cyanobacterium Oscillatoria by Co-Cultivation with Anabaena

    Directory of Open Access Journals (Sweden)

    DWI SUSILANINGSIH

    2007-03-01

    Full Text Available The freshwater cyanobacterium Oscillatoria BTCC/A 0004 excretes pink pigment containing lipoproteins with molecular weights of about 10 kDa. This pigment has surfactant properties with strong emulsification activity toward several hydrocarbons. This extracellular metabolite was suspected as toxin or allelochemical in their habitat. In this study, I investigated the effect of co-cultivation of Oscillatoria with Anabaena variabilis on the pigment excretion to explore the physiological roles of this pigment in its natural environment. The dead or viable cells and medium of A. variabilis were added into Oscillatoria cultures. Results showed that co-cultivation of free viable cells of A. variabilis enhanced the excretion of pigment without effect on the cell growth. Co-cultivation with viable cells in separated method and dead cells did not influenced the pigment production. The addition of A. variabilis medium was slightly increased the excretion of the pigment. Those results indicated that direct contact with A. variabilis caused Oscillatoria released a certain signaling compound.

  11. Effect of growth conditions on the hydrogen production with cyanobacterium Anabaena sp. strain CH3

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Pei-Chung [Institute of Clinical Nutrition, Hungkuang University, 34, Chung-Chie Road, Sha Lu, Taichung 433 (China); Fan, Shin-Huei; Chiang, Char-Lin; Lee, Chi-Mei [Department of Environmental Engineering, National Chung Hsing University, 250, Kuo-Kuang Road, Taichung 402 (China)

    2008-03-15

    Cyanobacteria could use sugars as carbon source and reductant to produce hydrogen by nitrogenase. However, oxygen is also produced during photosynthesis and it is an inhibitor of the enzyme nitrogenase. Filamentous cyanobacterium Anabaena sp. CH{sub 3} could use sugars as substrate to produce molecular hydrogen anaerobically. The production activity was dependent on growth phases. It was found that the cells at sub-stage of late-log phase had better ability to produce hydrogen than at log phase. In such case, oxygen content was too low to be detected to inhibit hydrogen production. Among different kinds of sugar, fructose and glucose had the best performance for producing hydrogen. Hydrogen could be accumulated to 0.6 mmol (in 40 ml head space) in 100 h from 1000 ppm fructose. Increasing light intensities from 65 to 130{mu}molm{sup -2}s{sup -1} would enhance hydrogen production to 0.8 mmol. Under illumination of 130{mu}molm{sup -2}s{sup -1} and 2000 ppm fructose, 1.7 mmol of hydrogen could be accumulated. When fructose content was higher than 2000 ppm, cells could not produce more hydrogen at all. (author)

  12. Anabaena sp. DyP-type peroxidase is a tetramer consisting of two asymmetric dimers.

    Science.gov (United States)

    Yoshida, Toru; Ogola, Henry Joseph Oduor; Amano, Yoshimi; Hisabori, Toru; Ashida, Hiroyuki; Sawa, Yoshihiro; Tsuge, Hideaki; Sugano, Yasushi

    2016-01-01

    DyP-type peroxidases are a newly discovered family of heme peroxidases distributed from prokaryotes to eukaryotes. Recently, using a structure-based sequence alignment, we proposed the new classes, P, I and V, as substitutes for classes A, B, C, and D [Arch Biochem Biophys 2015;574:49-55]. Although many class V enzymes from eukaryotes have been characterized, only two from prokaryotes have been reported. Here, we show the crystal structure of one of these two enzymes, Anabaena sp. DyP-type peroxidase (AnaPX). AnaPX is tetramer formed from Cys224-Cys224 disulfide-linked dimers. The tetramer of wild-type AnaPX was stable at all salt concentrations tested. In contrast, the C224A mutant showed salt concentration-dependent oligomeric states: in 600 mM NaCl, it maintained a tetrameric structure, whereas in the absence of salt, it dissociated into monomers, leading to a reduction in thermostability. Although the tetramer exhibits non-crystallographic, 2-fold symmetry in the asymmetric unit, two subunits forming the Cys224-Cys224 disulfide-linked dimer are related by 165° rotation. This asymmetry creates an opening to cavities facing the inside of the tetramer, providing a pathway for hydrogen peroxide access. Finally, a phylogenetic analysis using structure-based sequence alignments showed that class V enzymes from prokaryotes, including AnaPX, are phylogenetically closely related to class V enzymes from eukaryotes.

  13. HesF, an exoprotein required for filament adhesion and aggregation in Anabaena sp. PCC 7120.

    Science.gov (United States)

    Oliveira, Paulo; Pinto, Filipe; Pacheco, Catarina C; Mota, Rita; Tamagnini, Paula

    2015-05-01

    Here, we report on the identification and characterization of a protein (Alr0267) named HesF, found in the extracellular milieu of Anabaena sp. PCC 7120 grown diazotrophically. hesF was found to be highly upregulated upon transition from non-nitrogen-fixing to nitrogen-fixing conditions, and the highest transcript levels were detected towards the end of the heterocyst differentiation process. The hesF promoter drives transcription of the gene in heterocysts only, and both NtcA and HetR are essential for the gene's in vivo activation. An examination of HesF's translocation showed that the secretion system is neither heterocyst-specific nor dependent on nitrogen-fixing conditions. Furthermore, HesF was found to be a type I secretion system substrate, since an HgdD mutant failed to secrete HesF. Several analyses revealed that a HesF minus mutant strain lacks the heterocyst-specific polysaccharide fibrous layer, accumulates high amounts of polysaccharides in the medium and that HesF is essential for the typical aggregation phenotype in diazotrophic conditions. Thus, we propose that HesF is a carbohydrate-binding exoprotein that plays a role in maintaining the heterocyst cell wall structure. A combination of and possibly interaction between HesF and heterocyst-specific polysaccharides seems to be responsible for filament adhesion and culture aggregation in heterocyst-forming cyanobacteria.

  14. Effects of recombinated Anabaena sp. lipoxygenase on the protein component and dough property of wheat flour.

    Science.gov (United States)

    Wang, Xiaoming; Lu, Fengxia; Zhang, Chong; Lu, Yingjian; Bie, Xiaomei; Xie, Yajuan; Lu, Zhaoxin

    2014-10-01

    The improvement effect of recombinated Anabaena sp. lipoxygenase (ana-rLOX) on the rheological property of dough was investigated with a farinograph and an extensograph. When 30 U/g ana-rLOX was added to wheat flour, the dough stability time extended from 7 to 9.5 min, the degree of softening increased about 31.1%, and the farinograph index also ascended. The dough with added ana-rLOX showed stronger resistance to extension throughout 135 min of resting time as compared to the dough without ana-rLOX. In addition, the protein component in the dough was varied with ana-rLOX. The glutenin in the dough was increased, whereas the gliadin, albumin, and globulin were decreased after the additino of ana-rLOX to the flours. Ana-rLOX could make globulin-3A, globulin 1a, and S48186 grain softness protein cross-link with gliadin and low-molecular-weight (LMW) glutenin, leading to the formation of the protein polymer. These results based on proteomic analysis might provide evidence that ana-rLOX could affect the gluten protein component and explain why it improved the farinograph and extensograph parameters of wheat flour.

  15. Cryo-imaging of photosystems and phycobilisomes in Anabaena sp. PCC 7120 cells.

    Science.gov (United States)

    Steinbach, Gábor; Schubert, Félix; Kaňa, Radek

    2015-11-01

    Primary photosynthetic reactions take place inside thylakoid membrane where light-to-chemical energy conversion is catalyzed by two pigment-protein complexes, photosystem I (PSI) and photosystem II (PSII). Light absorption in cyanobacteria is increased by pigment-protein supercomplexes--phycobilisomes (PBSs) situated on thylakoid membrane surfaces that transfer excitation energy into both photosystems. We have explored the localization of PSI, PSII and PBSs in thylakoid membrane of native cyanobacteria cell Anabaena sp. 7120 by means of cryogenic confocal microscopy. We have adapted a conventional temperature controlling stage to an Olympus FV1000 confocal microscope. The presence of red shifted emission of chlorophylls from PSI has been confirmed by spectral measurements. Confocal fluorescence images of PSI (in a spectral range 710-750 nm), PSII (in a spectral range 690-705 nm) and PBSs (in a spectral range 650-680 nm) were recorded at low temperature. Co-localization of images showed spatial heterogeneity of PSI, PSII and PBSs over the thylakoid membrane, and three dominant areas were identified: PSI-PSII-PBS supercomplex area, PSII-PBS supercomplex area and PSI area. The observed results were discussed with regard to light-harvesting regulation in cyanobacteria.

  16. Nitrate assimilation gene cluster from the heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120.

    Science.gov (United States)

    Frías, J E; Flores, E; Herrero, A

    1997-01-01

    A region of the genome of the filamentous, nitrogen-fixing, heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120 that contains a cluster of genes involved in nitrate assimilation has been identified. The genes nir, encoding nitrite reductase, and nrtABC, encoding elements of a nitrate permease, have been cloned. Insertion of a gene cassette into the nir-nrtA region impaired expression of narB, the nitrate reductase structural gene which together with nrtD is found downstream from nrtC in the gene cluster. This indicates that the nir-nrtABCD-narB genes are cotranscribed, thus constituting an operon. Expression of the nir operon in strain PCC 7120 is subjected to ammonium-promoted repression and takes place from an NtcA-activated promoter located 460 bp upstream from the start of the nir gene. In the absence of ammonium, cellular levels of the products of the nir operon are higher in the presence of nitrate than in the absence of combined nitrogen.

  17. Cadmium toxicity in diazotrophic Anabaena spp. adjudged by hasty up-accumulation of transporter and signaling and severe down-accumulation of nitrogen metabolism proteins.

    Science.gov (United States)

    Singh, Prashant Kumar; Shrivastava, Alok Kumar; Chatterjee, Antra; Pandey, Sarita; Rai, Snigdha; Singh, Shilpi; Rai, L C

    2015-09-01

    Present study demonstrates interspecies variation in proteome and survival strategy of three Anabaena species i.e., Anabaena L31, Anabaena sp. PCC 7120 and Anabaena doliolum subjected to respective LC50 doses of Cd at 0, 1, 3, 5 and 7day intervals. The proteome coverage with 452 differentially accumulated proteins unveiled species and time specific expression and interaction network of proteins involved in important cellular functions. Statistical analysis of protein abundance across Cd-treated proteomes clustered their co-expression pattern into four groups viz., (i) early (days 1 and 3) accumulated proteins, (ii) proteins up-accumulated for longer duration, (iii) late (days 5 and 7) accumulated proteins, and (iv) mostly down-accumulated proteins. Appreciable growth of Cd treated A L31 over other two species may be ascribed to proteins contained in the first and second groups (belonging to energy and carbohydrate metabolism (TK, G6-PI, PGD, FBA, PPA, ATP synthase)), sulfur metabolism (GR, GST, PGDH, PAPS reductase, GDC-P, and SAM synthetase), fatty acid metabolism (AspD, PspA, SQD-1), phosphorous metabolism (PhoD, PstB and SQD1), molecular chaperones (Gro-EL, FKBP-type peptidylprolyl isomerase), and antioxidative defense enzymes (SOD-A, catalase). Anabaena sp. PCC 7120 harboring proteins largely from the third group qualified as a late accumulator and A. doliolum housing majority of proteins from the fourth group emerged as the most sensitive species. Thus early up-accumulation of transporter and signaling category proteins and drastic reduction of nitrogen assimilation proteins could be taken as a vital indicator of cadmium toxicity in Anabaena spp. This article is part of a Special Issue entitled: Proteomics in India.

  18. Study on the Salt tolerance and Mechanism of Nitrogen-Fixing Cyanobacteria Nostoc Commune and Anabaena Azotica Ley%固氮蓝藻Nostoc commune和Anabaena azotica Ley耐盐性及机理研究

    Institute of Scientific and Technical Information of China (English)

    张巍; 冯玉杰

    2008-01-01

    文章考察了两种固氮蓝藻Nostoc commune(地木耳)和Anabaena azotica Ley(固氮鱼腥藻)在不同浓度Na2CO3(0.2×10-4~1.8×10-4 g/ml)的BG11o培养基中的耐盐性.分别测定了两种固氮蓝藻在不同培养阶段的叶绿素a含量、胞外多糖含量、氨基酸含量和固氮酶活性的变化.研究结果表明两种固氮蓝藻都能在Na2CO3盐胁迫条件下生长,且随着Na2CO3盐胁迫性增加,两种蓝藻的叶绿素a含量、胞外多糖含量、氨基酸含量和固氮酶活性都呈现先增加后减少的趋势;而随着培养天数的增加,两种藻类叶绿素a的变化曲线与微生物的生长曲线很相似,胞外多糖和氨基酸的增长和叶绿素a的增长是同步的,其中,Anabaena azotica Ley的固氮酶活性在培养到21天时达到最大值,Nostoc commune的固氮酶活性在培养到28天时达到最大值;比较而言Anabaena azotica Ley的耐盐性好于Nostoc commune的耐盐性,固氮能力也高于Nostoc commune.

  19. Sensory Transduction in Caenorhabditis elegans

    Science.gov (United States)

    Brown, Austin L.; Ramot, Daniel; Goodman, Miriam B.

    The roundworm Caenorhabditis elegans has a well-defined and comparatively simple repertoire of sensory-guided behaviors, all of which rely on its ability to detect chemical, mechanical or thermal stimuli. In this chapter, we review what is known about the ion channels that mediate sensation in this remarkable model organism. Genetic screens for mutants defective in sensory-guided behaviors have identified genes encoding channel proteins, which are likely transducers of chemical, thermal, and mechanical stimuli. Such classical genetic approaches are now being coupled with molecular genetics and in vivo cellular physiology to elucidate how these channels are activated in specific sensory neurons. The ion channel superfamilies implicated in sensory transduction in C. elegans - CNG, TRP, and DEG/ENaC - are conserved across phyla and also appear to contribute to sensory transduction in other organisms, including vertebrates. What we learn about the role of these ion channels in C. elegans sensation is likely to illuminate analogous processes in other animals, including humans.

  20. Crossmodal plasticity in sensory loss.

    Science.gov (United States)

    Frasnelli, Johannes; Collignon, Olivier; Voss, Patrice; Lepore, Franco

    2011-01-01

    In this review, we describe crossmodal plasticity following sensory loss in three parts, with each section focusing on one sensory system. We summarize a wide range of studies showing that sensory loss may lead, depending of the affected sensory system, to functional changes in other, primarily not affected senses, which range from heightened to lowered abilities. In the first part, the effects of blindness on mainly audition and touch are described. The latest findings on brain reorganization in blindness are reported, with a particular emphasis on imaging studies illustrating how nonvisual inputs recruit the visually deafferented occipital cortex. The second part covers crossmodal processing in deafness, with a special focus on the effects of deafness on visual processing. In the last portion of this review, we present the effects that the loss of a chemical sense have on the sensitivity of the other chemical senses, that is, smell, taste, and trigeminal chemosensation. We outline how the convergence of the chemical senses to the same central processing areas may lead to the observed reduction in sensitivity of the primarily not affected senses. Altogether, the studies reviewed herein illustrate the fascinating plasticity of the brain when coping with sensory deprivation. PMID:21741555

  1. Sensory analysis in grapes benitaka

    Energy Technology Data Exchange (ETDEWEB)

    Santillo, Amanda G.; Rodrigues, Flavio T.; Arthur, Paula B.; Villavicencio, Ana Lucia C.H. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    Abstract Sensory analysis is considered one of the main techniques when you want to know the organoleptic qualities of foods. Marketing strategies, showing that some foods produced organically is more nutritious, flavorful than conventional ones are affecting some consumers. The advantages of using radiation in sensory analysis are not the formation of waste, the less nutritional loss and little change in taste of food. The possibility that the fruit is harvested at more advanced maturity, when all characteristics of flavor and external appearance are fully developed is another advantage. The possibility of fruits being packed irradiated prevents contamination after processing. This type of study, ionizing radiation associated with sensory evaluation scarce, making it necessary for future discoveries. The objective this paper was to evaluate the quality of grapes Benitaka after the irradiation process with doses 0,5; 1; 1,5 e 2 kGy. (author)

  2. Sensory analysis in grapes benitaka

    International Nuclear Information System (INIS)

    Abstract Sensory analysis is considered one of the main techniques when you want to know the organoleptic qualities of foods. Marketing strategies, showing that some foods produced organically is more nutritious, flavorful than conventional ones are affecting some consumers. The advantages of using radiation in sensory analysis are not the formation of waste, the less nutritional loss and little change in taste of food. The possibility that the fruit is harvested at more advanced maturity, when all characteristics of flavor and external appearance are fully developed is another advantage. The possibility of fruits being packed irradiated prevents contamination after processing. This type of study, ionizing radiation associated with sensory evaluation scarce, making it necessary for future discoveries. The objective this paper was to evaluate the quality of grapes Benitaka after the irradiation process with doses 0,5; 1; 1,5 e 2 kGy. (author)

  3. Hereditary sensory and autonomic neuropathies.

    Science.gov (United States)

    Auer-Grumbach, Michaela

    2013-01-01

    Hereditary sensory and autonomic neuropathies (HSN/HSAN) are clinically and genetically heterogeneous disorders of the peripheral nervous system that predominantly affect the sensory and autonomic neurons. Hallmark features comprise not only prominent sensory signs and symptoms and ulcerative mutilations but also variable autonomic and motor disturbances. Autosomal dominant and autosomal recessive inheritance has been reported. Molecular genetics studies have identified disease-causing mutations in 11 genes. Some of the affected proteins have nerve-specific roles but underlying mechanisms have also been shown to involve sphingolipid metabolism, vesicular transport, structural integrity, and transcription regulation. Genetic and functional studies have substantially improved the understanding of the pathogenesis of the HSN/HSAN and will help to find preventive and causative therapies in the future.

  4. Establishment of quantitative PCR methods for the quantification of geosmin-producing potential and Anabaena sp. in freshwater systems.

    Science.gov (United States)

    Su, Ming; Gaget, Virginie; Giglio, Steven; Burch, Michael; An, Wei; Yang, Min

    2013-06-15

    Geosmin has often been associated with off-flavor problems in drinking water with Anabaena sp. as the major producer. Rapid on-site detection of geosmin-producers as well as geosmin is important for a timely management response to potential off-flavor events. In this study, quantitative polymerase chain reaction (qPCR) methods were developed to detect the levels of Anabaena sp. and geosmin, respectively, by designing two PCR primer sets to quantify the rpoC1 gene (ARG) and geosmin synthase one (GSG) in Anabaena sp. in freshwater systems. The ARG density determined by qPCR assay is highly related to microscopic cell count (r(2) = 0.726, p < 0.001), and the limit of detection (LOD) and limit of quantification (LOQ) of the qPCR method were 0.02 pg and 0.2 pg of DNA, respectively. At the same time, the relationship between geosmin concentrations measured by gas chromatography-mass spectrometry (GC-MS) and GSG copies was also established (r(2) = 0.742, p < 0.001) with similar LOD and LOQ values. Using the two qPCR protocols, we succeeded in measuring different levels of ARG and GSG copies in different freshwater systems with high incidence environmental substrata and diverse ecological conditions, showing that the methods developed could be applied for environmental monitoring. Moreover, comparing to the microscopic count and GC-MS analytical methods, the qPCR methods can reduce the time-to-results from several days to a few hours and require considerably less traditional algal identification and taxonomic expertise. PMID:23622984

  5. Overexpression of AhpC enhances stress tolerance and N2-fixation in Anabaena by upregulating stress responsive genes.

    Science.gov (United States)

    Shrivastava, Alok Kumar; Pandey, Sarita; Dietz, Karl Josef; Singh, Prashant Kumar; Singh, Shilpi; Rai, Ruchi; Rai, Lal Chand

    2016-11-01

    The study explores the significance of peroxides in regulating the CO2- and N2-fixation capacities in Anabaena sp. PCC7120. To this end Anabaena strains were generated carrying an extra copy of ahpC (An+ahpC) or by deleting from their endogenous functional ahpC (AnΔahpC). AhpC levels were 2.2- to 6.0-fold higher in An+ahpC than in wild type. An+ahpC revealed 1.4- to 2-fold upregulation of photosystems I and II, nitrogenase, superoxide dismutase and catalase activities while same activities were 1.3- to 2.5-fold downregulated in the insertional mutant (AnΔahpC) compared to the wild type. Peroxide, superoxide and malondialdehyde contents were low in An+ahpC and high in AnΔahpC. Growth was inhibited in AnΔahpC by approximately 40-60% compared to a 33-40% enhanced growth in An+ahpC under selected stresses. Most interestingly, heterocyst frequency was increased in An+ahpC. In order to address transcriptional and posttranscriptional effects, transcripts of genes including groEL, fld, kat, gor, gst, dps, bfr, tf, sodA, dnaK, prx, uspA, pcs and apx were quantified and found to be increased 1.33- to 7.70-fold in unstressed and 1.76- to 13.80-fold in stressed An+ahpC. In a converse manner, they were downregulated by 1.20- to 7.50-fold in unstressed and 1.23 to 10.20-fold in stressed AnΔahpC. It is concluded that the level of AhpC controls a major set of metabolic and developmental genes in normal and stress conditions and thus likely is in the core of the redox regulatory system of Anabaena.

  6. ppGpp metabolism is involved in heterocyst development in the cyanobacterium Anabaena sp. strain PCC 7120.

    Science.gov (United States)

    Zhang, Shao-Ran; Lin, Gui-Ming; Chen, Wen-Li; Wang, Li; Zhang, Cheng-Cai

    2013-10-01

    When deprived of a combined-nitrogen source in the growth medium, the filamentous cyanobacterium Anabaena sp. PCC 7120 (Anabaena) can form heterocysts capable of nitrogen fixation. The process of heterocyst differentiation takes about 20 to 24 h, during which extensive metabolic and morphological changes take place. Guanosine tetraphosphate (ppGpp) is the signal of the stringent response that ensures cell survival by adjusting major cellular activities in response to nutrient starvation in bacteria, and ppGpp accumulates at the early stage of heterocyst differentiation (J. Akinyanju, R. J. Smith, FEBS Lett. 107:173-176, 1979; J Akinyanju, R. J. Smith, New Phytol. 105:117-122, 1987). Here we show that all1549 (here designated relana) in Anabaena, homologous to relA/spoT, is upregulated in response to nitrogen deprivation and predominantly localized in vegetative cells. The disruption of relana strongly affects the synthesis of ppGpp, and the resulting mutant, all1549Ωsp/sm, fails to form heterocysts and to grow in the absence of a combined-nitrogen source. This phenotype can be complemented by a wild-type copy of relana. Although the upregulation of hetR is affected in the mutant, ectopic overexpression of hetR cannot rescue the phenotype. However, we found that the mutant rapidly loses its viability, within a time window of 3 to 6 h, following the deprivation of combined nitrogen. We propose that ppGpp plays a major role in rebalancing the metabolic activities of the cells in the absence of the nitrogen source supply and that this regulation is necessary for filament survival and consequently for the success of heterocyst differentiation.

  7. Primers and polymerase chain reaction conditions for DNA barcoding teleost fish based on the mitochondrial cytochrome b and nuclear rhodopsin genes

    NARCIS (Netherlands)

    Sevilla, R.G.; Diez, A.; Noren, M.; Mouchel, O.; Jerome, M.; Verrez-Bagnis, V.; Pelt-Heerschap, van H.M.L.

    2007-01-01

    This report describes a set of 21 polymerase chain reaction primers and amplification conditions developed to barcode practically any teleost fish species according to their mitochondrial cytochrome b and nuclear rhodopsin gene sequences. The method was successfully tested in more than 200 marine fi

  8. Fourier transform infrared studies of active-site-methylated rhodopsin. Implications for chromophore-protein interaction, transducin activation, and the reaction pathway

    Energy Technology Data Exchange (ETDEWEB)

    Ganter, U.M.; Longstaff, C.; Pajares, M.A.; Rando, R.R.; Siebert, F. (Institut fuer Biophysik Und Strahlenbiologie, Albert-Ludwigs-Universitaet Freiburg (West Germany))

    1991-03-01

    Fourier transform infrared studies of active-site-methylated rhodopsin (ASMR) show that, as compared to unmodified rhodopsin, the photoreaction is almost unchanged up to the formation of lumirhodopsin. Especially, the deviations are much smaller than those observed for the corresponding intermediates of 13-desmethyl-rhodopsin. In metarhodopsin-I, larger alterations are present with respect to the three internal carboxyl groups. Similar deviations have been observed in meta-I of 13-desmethyl-rhodopsin. This indicates that, in agreement with our previous investigations, these carboxyl groups are located in close proximity to the chromophore. Because this latter pigment is capable, when bleached, of activating transducin, our data provide support for the earlier conclusion that deprotonation of the Schiff base is a prerequisite for transducin activation. The positions of the C = C and C - C stretching modes of the retinal suggest that the redshift observed in ASMR and its photoproducts can be explained by an increased distance of the Schiff base from the counterion(s). It is further shown that the photoreaction does not stop at metarhodopsin-I, but that this intermediate directly decays to a metarhodopsin-III-like species.

  9. Fourier transform infrared studies of active-site-methylated rhodopsin. Implications for chromophore-protein interaction, transducin activation, and the reaction pathway.

    Science.gov (United States)

    Ganter, U M; Longstaff, C; Pajares, M A; Rando, R R; Siebert, F

    1991-03-01

    Fourier transform infrared studies of active-site-methylated rhodopsin (ASMR) show that, as compared to unmodified rhodopsin, the photoreaction is almost unchanged up to the formation of lumirhodopsin. Especially, the deviations are much smaller than those observed for the corresponding intermediates of 13-desmethyl-rhodopsin. In metarhodopsin-I, larger alterations are present with respect to the three internal carboxyl groups. Similar deviations have been observed in meta-I of 13-desmethyl-rhodopsin. This indicates that, in agreement with our previous investigations, these carboxyl groups are located in close proximity to the chromophore. Because this latter pigment is capable, when bleached, of activating transducin, our data provide support for the earlier conclusion that deprotonation of the Schiff base is a prerequisite for transducin activation. The positions of the C = C and C - C stretching modes of the retinal suggest that the redshift observed in ASMR and its photoproducts can be explained by an increased distance of the Schiff base from the counterion(s). It is further shown that the photoreaction does not stop at metarhodopsin-I, but that this intermediate directly decays to a metarhodopsin-III-like species.

  10. Repair of rhodopsin mRNA by spliceosome-mediated RNA trans-splicing: a new approach for autosomal dominant retinitis pigmentosa.

    Science.gov (United States)

    Berger, Adeline; Lorain, Stéphanie; Joséphine, Charlène; Desrosiers, Melissa; Peccate, Cécile; Voit, Thomas; Garcia, Luis; Sahel, José-Alain; Bemelmans, Alexis-Pierre

    2015-05-01

    The promising clinical results obtained for ocular gene therapy in recent years have paved the way for gene supplementation to treat recessively inherited forms of retinal degeneration. The situation is more complex for dominant mutations, as the toxic mutant gene product must be removed. We used spliceosome-mediated RNA trans-splicing as a strategy for repairing the transcript of the rhodopsin gene, the gene most frequently mutated in autosomal dominant retinitis pigmentosa. We tested 17 different molecules targeting the pre-mRNA intron 1, by transient transfection of HEK-293T cells, with subsequent trans-splicing quantification at the transcript level. We found that the targeting of some parts of the intron promoted trans-splicing more efficiently than the targeting of other areas, and that trans-splicing rate could be increased by modifying the replacement sequence. We then developed cell lines stably expressing the rhodopsin gene, for the assessment of phenotypic criteria relevant to the pathogenesis of retinitis pigmentosa. Using this model, we showed that trans-splicing restored the correct localization of the protein to the plasma membrane. Finally, we tested our best candidate by AAV gene transfer in a mouse model of retinitis pigmentosa that expresses a mutant allele of the human rhodopsin gene, and demonstrated the feasibility of trans-splicing in vivo. This work paves the way for trans-splicing gene therapy to treat retinitis pigmentosa due to rhodopsin gene mutation and, more generally, for the treatment of genetic diseases with dominant transmission.

  11. Sequence of the gene coding for the β-subunit of dinitrogenase from the blue-green alga Anabaena

    OpenAIRE

    Mazur, Barbara J.; Chui, Chok-Fun

    1982-01-01

    The nitrogen fixation nif K gene of the blue-green alga Anabaena, which codes for the β-subunit of dinitrogenase, has been subjected to sequence analysis. The nif K protein is predicted to be 512 amino acids long, to have a Mr or 57,583, and to contain six cysteine residues. Three of these cysteines are within peptides homologous to FeS cluster-binding cysteinyl peptides from ferredoxins and from a high potential iron protein and, thus, may be ligands to which FeS clusters bind in dinitrogena...

  12. Characterization of three putative xylulose 5-phosphate/fructose 6-phosphate phosphoketolases in the cyanobacterium Anabaena sp. PCC 7120.

    Science.gov (United States)

    Moriyama, Takashi; Tajima, Naoyuki; Sekine, Kohsuke; Sato, Naoki

    2015-01-01

    Xylulose 5-phosphate/fructose 6-phosphate phosphoketolase (Xfp) is a key enzyme in the central carbohydrate metabolism in heterofermentative bacteria, in which enzymatic property of Xfps is well characterized. This is not the case in other microbes. The cyanobacterium Anabaena sp. PCC 7120 possesses three putative genes encoding Xfp, all1483, all2567, and alr1850. We purified three putative Xfps as recombinant proteins. The results of gel filtration indicated that these proteins form homomultimer complex. All1483 and All2567 showed phosphoketolase activity, whereas Alr1850 did not show the activity. Kinetic analyses demonstrated that substrates, fructose 6-phosphate and inorganic phosphate, are cooperatively bound to enzymes positively and negatively, respectively.

  13. Sensory imagination and narrative perspective

    DEFF Research Database (Denmark)

    Grünbaum, Thor

    2013-01-01

    in the narrated world. Explaining perceptual focalization as a material counterpart of the perspective in sensory imagination enables us to see the crucial role played by the narrative representation of perspective in the reader’s understanding of and immersion in the narrative as well the reader’s emotional......I argue that we can clarify and explain an important form of focalization or narrative perspective by the structure of perspective in sensory imagination. Understanding focalization in this way enables us to see why one particular form of focalization has to do with the representation of perceptual...

  14. Regulation of Three Nitrogenase Gene Clusters in the Cyanobacterium Anabaena variabilis ATCC 29413

    Directory of Open Access Journals (Sweden)

    Teresa Thiel

    2014-12-01

    Full Text Available The filamentous cyanobacterium Anabaena variabilis ATCC 29413 fixes nitrogen under aerobic conditions in specialized cells called heterocysts that form in response to an environmental deficiency in combined nitrogen. Nitrogen fixation is mediated by the enzyme nitrogenase, which is very sensitive to oxygen. Heterocysts are microxic cells that allow nitrogenase to function in a filament comprised primarily of vegetative cells that produce oxygen by photosynthesis. A. variabilis is unique among well-characterized cyanobacteria in that it has three nitrogenase gene clusters that encode different nitrogenases, which function under different environmental conditions. The nif1 genes encode a Mo-nitrogenase that functions only in heterocysts, even in filaments grown anaerobically. The nif2 genes encode a different Mo-nitrogenase that functions in vegetative cells, but only in filaments grown under anoxic conditions. An alternative V-nitrogenase is encoded by vnf genes that are expressed only in heterocysts in an environment that is deficient in Mo. Thus, these three nitrogenases are expressed differentially in response to environmental conditions. The entire nif1 gene cluster, comprising at least 15 genes, is primarily under the control of the promoter for the first gene, nifB1. Transcriptional control of many of the downstream nif1 genes occurs by a combination of weak promoters within the coding regions of some downstream genes and by RNA processing, which is associated with increased transcript stability. The vnf genes show a similar pattern of transcriptional and post-transcriptional control of expression suggesting that the complex pattern of regulation of the nif1 cluster is conserved in other cyanobacterial nitrogenase gene clusters.

  15. Determination of 2-methylisoborneol and geosmin produced by Streptomyces sp. and Anabaena PCC7120.

    Science.gov (United States)

    Xie, Yuqun; He, Jin; Huang, Jun; Zhang, Jibin; Yu, Ziniu

    2007-08-22

    A new sample preparation and enrichment technique, headspace liquid-phase microextraction (HS-LPME) linked to gas chromatography-mass spectrometry (GC-MS), was developed for the determination of the off-flavor odorants, 2-methylisoborneol and geosmin, produced by Streptomyces sp. and Anabaena PCC7120. Some of the factors that influence the extraction efficiency of HS-LPME, such as the type of extraction solvent, ionic strength of sample solution, and sample agitation rate, were studied and optimized by a single factor test. Other factors, including extraction temperature, extraction time, microdrop volume, and headspace volume were optimized by orthogonal array design. Extraction of 2-methylisoborneol and geosmin was conducted by exposing 2.5 microL of 1-hexanol for 9 min at 50 degrees C in the headspace of a 20 mL vial with a 10 mL of sample solution saturated by NaCl and stirred at 800 rpm. The developed protocol demonstrated good repeatability (relative standard deviations (RSDs) 0.999), and low limits of detection (LODs) for 2-methylisoborneol and geosmin (0.05 ng/L for both analytes). Subsequently, the method was successfully applied to extract the analytes in bacterial cultures with high recoveries (from 94% to 98%). Compared with headspace solid-phase microextraction (HS-SPME), HS-LPME demonstrates better linearity, precision, and recovery. Importantly, the sensitivity is about 1 order of magnitude higher than that of most HS-SPME. The results showed that HS-LPME coupled with GC-MS is a simple, convenient, rapid, sensitive, and effective method for the qualitative and quantitative analysis of 2-methylisoborneol and geosmin.

  16. Evaluation of conversion efficiency of light to hydrogen energy by Anabaena variabilis

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Jong Hyun; Hae Shin, Ji; Park, Tai Hyun [School of Chemical and Biological Engineering, Seoul National University, Seoul 151-744 (Korea, Republic of); Kim, Mi-Sun [Biomass Research Team, Korea Institute of Energy Research, Daejeon 305-343 (Korea, Republic of); Jun Sim, Sang [Department of Chemical Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2006-05-15

    Cyanobacteria provide an efficient system for producing H{sub 2} from water using solar energy. The energy conversion efficiency can be defined by the ratio of H{sub 2} produced to the light energy absorbed. An IR and opalescent plate method was used to measure the light energy absorbed. Since cyanobacteria absorb light in the visible range but not in the infrared range, the net amount of light energy absorbed by the cells can be estimated by measuring the IR and visible light intensities transmitted through the biochamber. A rectangular biochamber was used for measuring the conversion efficiency from light energy to H{sub 2} energy. A quantum meter and radiometer were used to measure the light intensity transmitted through the chamber. Anabaena variabilis was cultured in a BG11 medium with 3.6mM NaNO{sub 3} and the light intensity was 40-50{mu}mol/m{sup 2}/s in the growth phase and 120-140{mu}mol/m{sup 2}/s in the H{sub 2} production phase. The maximum H{sub 2} production was 50ml for 40h and cell density was 1.2g/l. The H{sub 2} production rate was 4.1ml H{sub 2}/g dry cell weight/h. Based on the light absorbed in the H{sub 2} production phase, the energy conversion efficiency from light to H{sub 2} was 1.5% on average and 3.9% at the maximum. Based on the light energy absorbed in the cell growth and H{sub 2} production phases, the energy conversion efficiency was 1.1% on average. (author)

  17. Whole Cell Biosensor Using Anabaena torulosa with Optical Transduction for Environmental Toxicity Evaluation

    Directory of Open Access Journals (Sweden)

    Ling Shing Wong

    2013-01-01

    Full Text Available A whole cell-based biosensor using Anabaena torulosa for the detection of heavy metals (Cu, Pb, and Cd, 2,4-dichlorophenoxyacetate (2,4-D, and chlorpyrifos was constructed. The cyanobacteria were entrapped on a cellulose membrane through filtration. Then, the membrane was dried and fixed into a cylindrical well, which was designed to be attached to an optical probe. The probe was connected to fluorescence spectrometer with optical fibre. The presence of the toxicants was indicated by the change of fluorescence emission, before and after the exposure. The linear detection ranges for Cu, Pb, and Cd were 2.5–10.0 µg/L, 0.5–5.0 µg/L, and 0.5–10.0 µg/L, respectively, while 2,4-D and chlorpyrifos shared similar linear ranges of 0.05–0.75 µg/L. The biosensor showed good sensitivity with the lowest limits of detection (LLD for Cu, Pb, Cd, 2,4-D and chlorpyrifos determined at 1.195 µg/L, 0.100 µg/L, 0.027 µg/L, 0.025 µg/L, and 0.025 µg/L, respectively. The overall reproducibility of the biosensor (n=3 was <±6.35%. The biosensor had been tested with different combinations of toxicants, with the results showing predominantly antagonistic responses. The results confirmed that the biosensor constructed in this report is suitable to be used in quantitative and qualitative detections of heavy metals and pesticides.

  18. Transcriptomic and Proteomic Profiling of Anabaena sp. Strain 90 under Inorganic Phosphorus Stress.

    Science.gov (United States)

    Teikari, Jonna; Österholm, Julia; Kopf, Matthias; Battchikova, Natalia; Wahlsten, Matti; Aro, Eva-Mari; Hess, Wolfgang R; Sivonen, Kaarina

    2015-08-01

    Inorganic phosphorus (Pi) is one of the main growth-limiting factors of diazotrophic cyanobacteria. Due to human activity, the availability of Pi has increased in water bodies, resulting in eutrophication and the formation of massive cyanobacterial blooms. In this study, we examined the molecular responses of the cyanobacterium Anabaena sp. strain 90 to phosphorus deprivation, aiming at the identification of candidate genes to monitor the Pi status in cyanobacteria. Furthermore, this study increased the basic understanding of how phosphorus affects diazotrophic and bloom-forming cyanobacteria as a major growth-limiting factor. Based on RNA sequencing data, we identified 246 differentially expressed genes after phosphorus starvation and 823 differentially expressed genes after prolonged Pi limitation, most of them related to central metabolism and cellular growth. The transcripts of the genes related to phosphorus transport and assimilation (pho regulon) were most upregulated during phosphorus depletion. One of the most increased transcripts encodes a giant protein of 1,869 amino acid residues, which contains, among others, a phytase-like domain. Our findings predict its crucial role in phosphorus starvation, but future studies are still needed. Using two-dimensional difference in gel electrophoresis (2D-DIGE) and liquid chromatography-tandem mass spectrometry (LC-MS/MS), we found 43 proteins that were differentially expressed after prolonged phosphorus stress. However, correlation analysis unraveled an association only to some extent between the transcriptomic and proteomic abundances. Based on the present results, we suggest that the method used for monitoring the Pi status in cyanobacterial bloom should contain wider combinations of pho regulon genes (e.g., PstABCS transport systems) in addition to the commonly used alkaline phosphatase gene alone.

  19. Identification and characterization of UDP-glucose pyrophosphorylase in cyanobacteria Anabaena sp. PCC 7120.

    Science.gov (United States)

    Kawano, Yusuke; Sekine, Midori; Ihara, Masaki

    2014-05-01

    Exopolysaccharides produced by photosynthetic cyanobacteria have received considerable attention in recent years for their potential applications in the production of renewable biofuels. Particularly, cyanobacterial cellulose is one of the most promising products because it is extracellularly secreted as a non-crystalline form, which can be easily harvested from the media and converted into glucose units. In cyanobacteria, the production of UDP-glucose, the cellulose precursor, is a key step in the cellulose synthesis pathway. UDP-glucose is synthesized from UTP and glucose-1-phosphate (Glc-1P) by UDP-glucose pyrophosphorylase (UGPase), but this pathway in cyanobacteria has not been well characterized. Therefore, to elucidate the overall cellulose biosynthesis pathway in cyanobacteria, we studied the putative UGPase All3274 and seven other putative NDP-sugar pyrophosphorylases (NSPases), All4645, Alr2825, Alr4491, Alr0188, Alr3400, Alr2361, and Alr3921 of Anabaena sp. PCC 7120. Assays using the purified recombinant proteins revealed that All3274 exhibited UGPase activity, All4645, Alr2825, Alr4491, Alr0188, and Alr3921 exhibited pyrophosphorylase activities on ADP-glucose, CDP-glucose, dTDP-glucose, GDP-mannose, and UDP-N-acetylglucosamine, respectively. Further characterization of All3274 revealed that the kcat for UDP-glucose formation was one or two orders lower than those of other known UGPases. The activity and dimerization tendency of All3274 increased at higher enzyme concentrations, implying catalytic activation by dimerization. However, most interestingly, All3274 dimerization was inhibited by UTP and Glc-1P, but not by UDP-glucose. This study presents the first in vitro characterization of a cyanobacterial UGPase, and provides insights into biotechnological attempts to utilize the photosynthetic production of cellulose from cyanobacteria.

  20. Effects of nutrient loading on Anabaena flos-aquae biofilm: biofilm growth and nutrient removals.

    Science.gov (United States)

    Li, Xiaowei; Wei, Qun; Tu, Xiaojie; Zhu, Yuxuan; Chen, Yanfei; Guo, Lina; Zhou, Jun; Sun, Hongyun

    2016-01-01

    Effects of three different nutrient loadings (low nutrient loading, medium nutrient loading and high nutrient loading, denoted as LNS, MNS and HNS, respectively) on the structure and functions of algal biofilm using Anabaena flos-aquae were investigated using synthetic wastewater. Nutrients removal efficiencies, biofilm thickness, microalgae dehydrogenase activity (DHA) and exopolysaccharide (EPS) productions were examined. Results showed that the changes of nutrient concentration were insignificant after 4 days of experiment for the case of HNS condition; 9 days for the case of MNS condition, and 6 days for the case of LNS condition, respectively. The biofilm thickness, nutrient removal efficiencies, algae DHA and EPS productions increased with the increase of nutrient loadings in synthetic wastewater. For the case of HNS condition, the microalgal biofilm exhibited the best performance in terms of C, N and P removal efficiencies, reaching the removal rates of 68.45, 3.56 and 1.61 mg·L(-1)·d(-1) for C, N, P, respectively. This was likely because, fact with the high nutrient loading, the high biological activity could be achieved, thus resulting in high nutrient removals. The thickness of the biofilm in HNS condition was 75 μm, which was closely related to EPS production. DHA and EPS concentrations were 7.24 and 1.8 × 10(-2) mg·mm(-2), respectively. It was also shown that apart from the nutrient loading, the structure and functions of microalgal biofilm were also influenced by other factors, such as illumination and temperature. PMID:27438243

  1. Evolving concepts of sensory adaptation

    OpenAIRE

    Webster, Michael A.

    2012-01-01

    Sensory systems constantly adapt their responses to match the current environment. These adjustments occur at many levels of the system and increasingly appear to calibrate even for highly abstract perceptual representations of the stimulus. The similar effects of adaptation across very different stimulus domains point to common design principles but also continue to raise questions about the purpose of adaptation.

  2. Making Sense of Sensory Systems

    Science.gov (United States)

    Hendrix, Marie

    2010-01-01

    The role of caregivers requires that they continuously assess the needs and performance of children and provide the support necessary for them to achieve their potential. A thorough understanding of child development, including the role and impact of sensory development, is critical for caregivers to properly evaluate and assist these children.…

  3. Nuevas funciones de las proteínas Fur en cianobacterias: Contribución a la definición del regulón FurA en Anabaena sp. PCC 7120

    OpenAIRE

    González Rodríguez, Andrés; Fillat Castejón, María Francisca

    2013-01-01

    En el presente trabajo de tesis nos propusimos avanzar en el conocimiento de la funciones de las proteínas Fur en cianobacterias mediante el estudio del regulón FurA de la cianobacteria filamentosa formadora de heterocistos Anabaena sp. PCC 7120. Como herramienta de trabajo para el estudio del regulón construimos una estirpe de sobreexpresión de FurA en Anabaena sp. PCC 7120, empleando un vector lanzadera con orígenes de replicación en E. coli y Anabaena sp. que logró incrementar hasta ~32 ve...

  4. GroEL of the nitrogen-fixing cyanobacterium Anabaena sp. strain L-31 exhibits GroES and ATP-independent refolding activity.

    Science.gov (United States)

    Potnis, Akhilesh A; Rajaram, Hema; Apte, Shree K

    2016-03-01

    The nitrogen-fixing cyanobacterium, Anabaena L-31 has two Hsp60 proteins, 59 kDa GroEL coded by the second gene of groESL operon and 61 kDa Cpn60 coded by cpn60 gene. Anabaena GroEL formed stable higher oligomer (>12-mer) in the presence of K(+) and prevented thermal aggregation of malate dehydrogenase (MDH). Using three protein substrates (MDH, All1541 and green fluorescent protein), it was found that the refolding activity of Anabaena GroEL was lower than that of Escherichia coli GroEL, but independent of both GroES and ATP. This correlated with in vivo data. GroEL exhibited ATPase activity which was enhanced in the presence of GroES and absence of a denatured protein, contrary to that observed for bacterial GroEL. However, a significant role for ATP could not be ascertained during in vitro folding assays. The monomeric Cpn60 exhibited much lower refolding activity than GroEL, unaffected by GroES and ATP. In vitro studies revealed inhibition of the refolding activity of Anabaena GroEL by Cpn60, which could be due to their different oligomeric status. The role of GroES and ATP may have been added during the course of evolution from the ancient cyanobacteria to modern day bacteria enhancing the refolding ability and ensuring wider scope of substrates for GroEL.

  5. Alr5068, a Low-Molecular-Weight protein tyrosine phosphatase, is involved in formation of the heterocysts polysaccharide layer in the cyanobacterium Anabaena sp. PCC 7120.

    Science.gov (United States)

    Tan, Hui; Wan, Shuang; Liu, Pi-Qiong; Wang, Li; Zhang, Cheng-Cai; Chen, Wen-Li

    2013-10-01

    The filamentous cyanobacterium Anabaena sp. PCC 7120 forms nitrogen-fixing heterocysts after deprivation of combined nitrogen. Under such conditions, vegetative cells provide heterocysts with photosynthate and receive fixed nitrogen from the latter. Heterocyst envelope contains a glycolipid layer and a polysaccharide layer to restrict the diffusion of oxygen into heterocysts. Low-Molecular-Weight protein tyrosine phosphatases (LMW-PTPs) are involved in the biosynthesis of exopolysaccharides in bacteria. Alr5068, a protein from Anabaena sp. PCC 7120, shows significant sequence similarity with LMW-PTPs. In this study we characterized the enzymatic properties of Alr5068 and showed that it can dephosphorylate several autophosphorylated tyrosine kinases (Alr2856, Alr3059 and All4432) of Anabaena sp. PCC 7120 in vitro. Several conserved residues among LMW-PTPs are shown to be essential for the phosphatase activity of Alr5068. Overexpression of alr5068 results in a strain unable to survive under diazotrophic conditions, with the formation of morphologically mature heterocysts detached from the filaments. Overexpression of an alr5068 allele that lost phosphatase activity led to the formation of heterocyst with an impaired polysaccharide layer. The alr5068 gene was upregulated after nitrogen step-down and its mutation affected the expression of hepA and hepC, two genes necessary for the formation of the heterocyst envelope polysaccharide (HEP) layer. Our results suggest that Alr5068 is associated with the production of HEP in Anabaena sp. PCC 7120.

  6. Characterization and Optimization of Bioflocculant Exopolysaccharide Production by Cyanobacteria Nostoc sp. BTA97 and Anabaena sp. BTA990 in Culture Conditions.

    Science.gov (United States)

    Tiwari, Onkar Nath; Khangembam, Romi; Shamjetshabam, Minerva; Sharma, Aribam Subhalaxmi; Oinam, Gunapati; Brand, Jerry J

    2015-08-01

    Bioflocculant exopolysaccharide (EPS) production by 40 cyanobacterial strains during their photoautotrophic growth was investigated. Highest levels of EPS were produced by Nostoc sp. BTA97 and Anabaena sp. BTA990. EPS production was maximum during stationary growth phase, when nitrogenase activity was very low. Maximum EPS production occurred at pH 8.0 in the absence of any combined nitrogen source. The cyanobacterial EPS consisted of soluble protein and polysaccharide that included substantial amounts of neutral sugars and uronic acid. The EPS isolated from Anabaena sp. BTA990 and Nostoc sp. BTA97 demonstrated high flocculation capacity. There was a positive correlation between uronic acid content and flocculation activity. The flocculant bound a cationic dye, Alcian Blue, indicating it to be polyanionic. The 16S rRNA gene sequences for Nostoc sp. BTA97 and Anabaena sp. BTA990 were deposited at NCBI GenBank, and accession numbers were obtained as KJ830951 and KJ830948, respectively. The results of these experiments indicate that strains Anabaena sp. BTA990 and Nostoc sp. BTA97 are good candidates for the commercial production of EPS and might be utilized in industrial applications as an alternative to synthetic and abiotic flocculants.

  7. A review on intelligent sensory modelling

    Science.gov (United States)

    Tham, H. J.; Tang, S. Y.; Teo, K. T. K.; Loh, S. P.

    2016-06-01

    Sensory evaluation plays an important role in the quality control of food productions. Sensory data obtained through sensory evaluation are generally subjective, vague and uncertain. Classically, factorial multivariate methods such as Principle Component Analysis (PCA), Partial Least Square (PLS) method, Multiple Regression (MLR) method and Response Surface Method (RSM) are the common tools used to analyse sensory data. These methods can model some of the sensory data but may not be robust enough to analyse nonlinear data. In these situations, intelligent modelling techniques such as Fuzzy Logic and Artificial neural network (ANNs) emerged to solve the vagueness and uncertainty of sensory data. This paper outlines literature of intelligent sensory modelling on sensory data analysis.

  8. The Sakaguchi reaction product quenches phycobilisome fluorescence, allowing determination of the arginine concentration in cells of Anabaena strain PCC 7120.

    Science.gov (United States)

    Ke, Shan; Haselkorn, Robert

    2013-01-01

    The filamentous cyanobacterium Anabaena fixes nitrogen in specialized cells called heterocysts. The immediate product of fixation, ammonia, is known to be assimilated by addition to glutamate to make glutamine. How fixed nitrogen is transported along the filament to the 10 to 20 vegetative cells that separate heterocysts is unknown. N-fixing heterocysts accumulate an insoluble polymer containing aspartate and arginine at the cell poles. Lockau's group has proposed that the polymer is degraded at the poles to provide a mobile carrier, arginine, to the vegetative cells (R. Richter, M. Hejazi, R. Kraft, K. Ziegler, and W. Lockau, Eur. J. Biochem. 263:163-169, 1999). We wished to use the Sakaguchi reaction for arginine to determine the relative cellular concentration of arginine along the filament. At present, the methods for measuring absorption of the Sakaguchi reaction product at 520 nm are insufficiently sensitive for that purpose. However, that product quenches the fluorescence of phycobiliproteins, which we have adapted to a determination of arginine. Our results are consistent with the proposal that arginine is a principal nitrogen carrier from heterocysts to vegetative cells in Anabaena.

  9. Inactivation of a heterocyst-specific invertase indicates a principal role of sucrose catabolism in heterocysts of Anabaena sp.

    Science.gov (United States)

    López-Igual, Rocío; Flores, Enrique; Herrero, Antonia

    2010-10-01

    Anabaena sp. strain PCC 7120 is a filamentous cyanobacterium that carries out N(2) fixation in specialized cells called heterocysts, which exchange nutrients and regulators with the filament's vegetative cells that perform the photosynthetic fixation of CO(2). The Anabaena genome carries two genes coding for alkaline/neutral invertases, invA and invB. As shown by Northern analysis, both genes were expressed monocistronically and induced under nitrogen deprivation, although induction was stronger for invB than for invA. Whereas expression of an InvA-N-GFP fusion (green fluorescent protein [GFP] fused to the N terminus of the InvA protein [InvA-N]) was homogeneous along the cyanobacterial filament, consistent with the lack of dependence on HetR, expression of an InvB-N-GFP fusion upon combined nitrogen deprivation took place mainly in differentiating and mature heterocysts. In an hetR genetic background, the InvB-N-GFP fusion was strongly expressed all along the filament. An insertional mutant of invA could grow diazotrophically but was impaired in nifHDK induction and exhibited an increased frequency of heterocysts, suggesting a regulatory role of the invertase-mediated carbon flux in vegetative cells. In contrast, an invB mutant was strongly impaired in diazotrophic growth, showing a crucial role of sucrose catabolism mediated by the InvB invertase in the heterocysts.

  10. PHOTOSYNTHETIC, BIOCHEMICAL AND ENZYMATIC INVESTIGATION OF Anabaena fertilissima IN RESPONSE TO AN INSECTICIDE-HEXACHLORO-HEXAHYDRO-METHANOBENZODIOXATHIEPINE- OXIDE

    Directory of Open Access Journals (Sweden)

    Kumar, Nirmal J.I

    2009-09-01

    Full Text Available A study on the heterocystous, nitrogen fixing cyanobacterium, Anabaena fertilissima was carried out to investigate the effect of an organochlorine insecticide (hexachloro-hexahydro-methano-benzodioxathiepineoxide, called as endosulfan at different concentrations of 3, 6 and 12 μgml-1 on the photosynthetic pigments-Chl-a, Carotenoids and Phycobiliproteins-phycocyanin, allophycocyanin and phycoerythrin, stress metabolites such as carbohydrates, proteins, amino acids, phenols and enzyme activities-nitrate reductase and glutamine synthetase. The insecticide- Endosulfan showed to be deleteriously affecting the activities in the cyanobacterium. As early as the 4th day, chl-a and carotenoids reduced by 38% and 20% respectively. The phycobiliproteins declined by 60%, 64% and 28% with respect to Phycocyanin, Allophycocyanin and Phycoerythrin. Moreover, Endosulfan adversely depleted the cellular activities, leading to a marked decrease in the carbohydrates, proteins, phenols and amino acids and enzymes-nitrate reductase and glutamine synthetase. Despite of deleterious effects of Endosulfan on the cyanobacterium Anabaena fertilissima, a unique regenerating ability in presence of the insecticide was observed by the end of 12 days in the lower doses of insecticide.

  11. Purification, crystallization and preliminary crystallographic analysis of KatB, a manganese catalase from Anabaena PCC 7120.

    Science.gov (United States)

    Bihani, Subhash Chandra; Chakravarty, Dhiman; Ballal, Anand

    2013-11-01

    Catalases are enzymes that play an important role in the detoxification of hydrogen peroxide (H2O2) in aerobic organisms. Among catalases, haem-containing catalases are ubiquitously distributed and their enzymatic mechanism is very well understood. On the other hand, manganese catalases that contain a bimanganese core in the active site have been less well characterized and their mode of action is not fully understood. The genome of Anabaena PCC 7120 does not show the presence of a haem catalase-like gene; instead, two ORFs encoding manganese catalases (Mn-catalases) are present. Here, the crystallization and preliminary X-ray crystallographic analysis of KatB, one of the two Mn-catalases from Anabaena, are reported. KatB was crystallized using the hanging-drop vapour-diffusion method with PEG 400 as a precipitant and calcium acetate as an additive. Diffraction data were collected in-house on an Agilent SuperNova system using a microfocus sealed-tube X-ray source. The crystal diffracted to 2.2 Å resolution at 100 K. The tetragonal crystal belonged to space group P4(1)2(1)2 (or enantiomer), with unit-cell parameters a = b = 101.87, c = 138.86 Å. Preliminary X-ray diffraction analysis using the Matthews coefficient and self-rotation function suggests the presence of a trimer in the asymmetric unit.

  12. Peroxidation radical formation and regiospecificity of recombinated Anabaena sp. lipoxygenase and its effect on modifying wheat proteins.

    Science.gov (United States)

    Wang, Xiaoming; Lu, Fengxia; Zhang, Chong; Lu, Yingjian; Bie, Xiaomei; Ren, Di; Lu, Zhaoxin

    2014-02-19

    Peroxidation radical formation and the regiospecificity of recombinated lipoxygenase from Anabaena sp. PCC7120 (ana-rLOX) were characterized by using ESR and HPLC-MS. It was found that ana-rLOX oxygenated at the C-13 position of the substrate linoleic acid (LA); at C-13 and C-16 of α-linolenic acid (ALA); at C-9, C-12, and C-15 of arachidonic acid (AA); at C-12, C-15, and C-18 of eicosapentaenoic acid (EPA); and at C-14 and C-16 of docosahexaenoic acid (DHA), respectively. A total of 7, 14, 30, 28, and 18 radical adducts for LA, ALA, AA, EPA, and DHA were respectively identified by HPLC-MS. The functional characteristics of wheat protein, such as foaming capacity (FC), foam stability (FS), emulsifying activity index (EAI), emulsifying stability index (ESI), increased with enzymatic reactions. However, the average particle size of wheat proteins decreased with addition of ana-rLOX/LA. The ana-rLOX was also positivele effective in improving dough properties. These results provided clear evidence that ana-rLOX from Anabaena sp. could effectively improve the quality of wheat flour, which suggested that the enzyme could be applied as flour improver.

  13. Divisome-dependent subcellular localization of cell-cell joining protein SepJ in the filamentous cyanobacterium Anabaena.

    Science.gov (United States)

    Ramos-León, Félix; Mariscal, Vicente; Frías, José E; Flores, Enrique; Herrero, Antonia

    2015-05-01

    Heterocyst-forming cyanobacteria are multicellular organisms that grow as filaments that can be hundreds of cells long. Septal junction complexes, of which SepJ is a possible component, appear to join the cells in the filament. SepJ is a cytoplasmic membrane protein that contains a long predicted periplasmic section and localizes not only to the cell poles in the intercellular septa but also to a position similar to a Z ring when cell division starts suggesting a relation with the divisome. Here, we created a mutant of Anabaena sp. strain PCC 7120 in which the essential divisome gene ftsZ is expressed from a synthetic NtcA-dependent promoter, whose activity depends on the nitrogen source. In the presence of ammonium, low levels of FtsZ were produced, and the subcellular localization of SepJ, which was investigated by immunofluorescence, was impaired. Possible interactions of SepJ with itself and with divisome proteins FtsZ, FtsQ and FtsW were investigated using the bacterial two-hybrid system. We found SepJ self-interaction and a specific interaction with FtsQ, confirmed by co-purification and involving parts of the SepJ and FtsQ periplasmic sections. Therefore, SepJ can form multimers, and in Anabaena, the divisome has a role beyond cell division, localizing a septal protein essential for multicellularity.

  14. On-water remote monitoring robotic system for estimating the patch coverage of Anabaena sp. filaments in shallow water.

    Science.gov (United States)

    Romero-Vivas, E; Von Borstel, F D; Pérez-Estrada, C J; Torres-Ariño, D; Villa-Medina, J F; Gutiérrez, J

    2015-06-01

    An on-water remote monitoring robotic system was developed for indirectly estimating the relative density of marine cyanobacteria blooms at the subtidal sandy-rocky beach in Balandra Cove, Baja California Sur, Mexico. The system is based on an unmanned surface vehicle to gather underwater videos of the seafloor for avoiding physical damage on Anabaena sp. cyanobacteria colonies, which grow in tufts of filaments weakly attached to rocks, seagrass, and macroalgae. An on-axis image stabilization mechanism was developed to support a camcorder and minimize wave perturbation while recording underwater digital images of the seafloor. Color image processing algorithms were applied to estimate the patch coverage area and density, since Anabaena sp. filaments exhibit a characteristic green tone. Results of field tests showed the feasibility of the robotic system to estimate the relative density, distribution, and coverage area of cyanobacteria blooms, preventing the possible impact of direct observation. The robotic system could also be used in surveys of other benthos in the sublittoral zone.

  15. The LysR-type transcription factor PacR is a global regulator of photosynthetic carbon assimilation in Anabaena.

    Science.gov (United States)

    Picossi, Silvia; Flores, Enrique; Herrero, Antonia

    2015-09-01

    Cyanobacteria perform water-splitting photosynthesis and are important primary producers impacting the carbon and nitrogen cycles at global scale. They fix CO2 through ribulose-bisphosphate carboxylase/oxygenase (RuBisCo) and have evolved a distinct CO2 concentrating mechanism (CCM) that builds high CO2 concentrations in the vicinity of RuBisCo favouring its carboxylase activity. Filamentous cyanobacteria such as Anabaena fix CO2 in photosynthetic vegetative cells, which donate photosynthate to heterocysts that rely on a heterotrophic metabolism to fix N2 . CCM elements are induced in response to inorganic carbon limitation, a cue that exposes the photosynthetic apparatus to photodamage by over-reduction. An Anabaena mutant lacking the LysR-type transcription factor All3953 grew poorly and dies under high light. The rbcL operon encoding RuBisCo was induced upon carbon limitation in the wild type but not in the mutant. ChIP-Seq analysis was used to globally identify All3953 targets under carbon limitation. Targets include, besides rbcL, genes encoding CCM elements, photorespiratory pathway- photosystem- and electron transport-related components, and factors, including flavodiiron proteins, with a demonstrated or putative function in photoprotection. Quantitative reverse transcription polymerase chain reaction analysis of selected All3953 targets showed regulation in the wild type but not in the mutant. All3953 (PacR) is a global regulator of carbon assimilation in an oxygenic photoautotroph.

  16. Sequence of the nifD gene coding for the α subunit of dinitrogenase from the cyanobacterium Anabaena

    Science.gov (United States)

    Lammers, Peter J.; Haselkorn, Robert

    1983-01-01

    The nucleotide sequence of nifD, the structural gene for the α subunit of dinitrogenase from Anabaena 7120, has been determined. The coding sequence contains 1,440 nucleotides, which predict an amino acid sequence of 480 residues and Mr of 54,283. The predicted sequence contains eight cysteines, of which five are conserved with respect to adjoining sequences and position relative to the α subunits of dinitrogenase from Azotobacter, Clostridium, and Klebsiella. Because there are also five conserved cysteines in the β subunit of Anabaena dinitrogenase [Mazur, B. J. & Chiu, C.-F. (1982) Proc. Natl. Acad. Sci. USA 79, 6782-6786], the number of cysteine residues participating as ligands to FeS clusters is likely to be 20 per α2β2 tetramer. This number is sufficient to accommodate the known four Fe4S4 clusters, leaving at least four cysteines to be shared among the two FeMo cofactors and the more poorly characterized two-iron center. Although the α- and β-subunit gene sequences are not recognizably homologous, their secondary structures, predicted from the sequences, indicate similar domains around three of the conserved cysteine residues. PMID:16593347

  17. Food Intake Is Influenced by Sensory Sensitivity

    OpenAIRE

    Naish, Katherine R.; Gillian Harris

    2012-01-01

    Wide availability of highly palatable foods is often blamed for the rising incidence of obesity. As palatability is largely determined by the sensory properties of food, this study investigated how sensitivity to these properties affects how much we eat. Forty females were classified as either high or low in sensory sensitivity based on their scores on a self-report measure of sensory processing (the Adult Sensory Profile), and their intake of chocolate during the experiment was measured. Foo...

  18. Directional RNA deep sequencing sheds new light on the transcriptional response of Anabaena sp. strain PCC 7120 to combined-nitrogen deprivation

    Directory of Open Access Journals (Sweden)

    Head Steven R

    2011-06-01

    Full Text Available Abstract Background Cyanobacteria are potential sources of renewable chemicals and biofuels and serve as model organisms for bacterial photosynthesis, nitrogen fixation, and responses to environmental changes. Anabaena (Nostoc sp. strain PCC 7120 (hereafter Anabaena is a multicellular filamentous cyanobacterium that can "fix" atmospheric nitrogen into ammonia when grown in the absence of a source of combined nitrogen. Because the nitrogenase enzyme is oxygen sensitive, Anabaena forms specialized cells called heterocysts that create a microoxic environment for nitrogen fixation. We have employed directional RNA-seq to map the Anabaena transcriptome during vegetative cell growth and in response to combined-nitrogen deprivation, which induces filaments to undergo heterocyst development. Our data provide an unprecedented view of transcriptional changes in Anabaena filaments during the induction of heterocyst development and transition to diazotrophic growth. Results Using the Illumina short read platform and a directional RNA-seq protocol, we obtained deep sequencing data for RNA extracted from filaments at 0, 6, 12, and 21 hours after the removal of combined nitrogen. The RNA-seq data provided information on transcript abundance and boundaries for the entire transcriptome. From these data, we detected novel antisense transcripts within the UTRs (untranslated regions and coding regions of key genes involved in heterocyst development, suggesting that antisense RNAs may be important regulators of the nitrogen response. In addition, many 5' UTRs were longer than anticipated, sometimes extending into upstream open reading frames (ORFs, and operons often showed complex structure and regulation. Finally, many genes that had not been previously identified as being involved in heterocyst development showed regulation, providing new candidates for future studies in this model organism. Conclusions Directional RNA-seq data were obtained that provide

  19. The Chemical Background for Sensory Quality

    DEFF Research Database (Denmark)

    Zhang, Shujuan

    and sensory methods in understanding the pre-fermentation treatment on sensory quality of wine (Study 3). In Study 4, the RATA method was used to provide the intensity of significant sensory descriptors that discriminate the significant differences between chocolate samples. Part three step by step moves...

  20. Response to Vestibular Sensory Events in Autism

    Science.gov (United States)

    Kern, Janet K.; Garver, Carolyn R.; Grannemann, Bruce D.; Trivedi, Madhukar H.; Carmody, Thomas; Andrews, Alonzo A.; Mehta, Jyutika A.

    2007-01-01

    The purpose of this study was to examine the response to vestibular sensory events in persons with autism. The data for this study was collected as part of a cross-sectional study that examined sensory processing (using the Sensory Profile) in 103 persons with autism, 3-43 years of age, compared to age- and gender-matched community controls. The…

  1. Inactivation of agmatinase expressed in vegetative cells alters arginine catabolism and prevents diazotrophic growth in the heterocyst-forming cyanobacterium Anabaena.

    Science.gov (United States)

    Burnat, Mireia; Flores, Enrique

    2014-10-01

    Arginine decarboxylase produces agmatine, and arginase and agmatinase are ureohydrolases that catalyze the production of ornithine and putrescine from arginine and agmatine, respectively, releasing urea. In the genome of the filamentous, heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120, ORF alr2310 putatively encodes an ureohydrolase. Cells of Anabaena supplemented with [(14) C]arginine took up and catabolized this amino acid generating a set of labeled amino acids that included ornithine, proline, and glutamate. In an alr2310 deletion mutant, an agmatine spot appeared and labeled glutamate increased with respect to the wild type, suggesting that Alr2310 is an agmatinase rather than an arginase. As determined in cell-free extracts, agmatinase activity could be detected in the wild type but not in the mutant. Thus, alr2310 is the Anabaena speB gene encoding agmatinase. The ∆alr2310 mutant accumulated large amounts of cyanophycin granule polypeptide, lacked nitrogenase activity, and did not grow diazotrophically. Growth tests in solid media showed that agmatine is inhibitory for Anabaena, especially under diazotrophic conditions, suggesting that growth of the mutant is inhibited by non-metabolized agmatine. Measurements of incorporation of radioactivity from [(14) C]leucine into macromolecules showed, however, a limited inhibition of protein synthesis in the ∆alr2310 mutant. Analysis of an Anabaena strain producing an Alr2310-GFP (green fluorescent protein) fusion showed expression in vegetative cells but much less in heterocysts, implying compartmentalization of the arginine decarboxylation pathway in the diazotrophic filaments of this heterocyst-forming cyanobacterium.

  2. A large geometric distortion in the first photointermediate of rhodopsin, determined by double-quantum solid-state NMR

    Energy Technology Data Exchange (ETDEWEB)

    Concistre, Maria, E-mail: mariac@soton.ac.uk; Johannessen, Ole G.; McLean, Neville [University of Southampton, School of Chemistry (United Kingdom); Bovee-Geurts, Petra H. M. [Radboud University Nijmegen Medical Centre, Nijmegen Centre for Molecular Life Sciences (Netherlands); Brown, Richard C. D. [University of Southampton, School of Chemistry (United Kingdom); DeGrip, Willem J. [Radboud University Nijmegen Medical Centre, Nijmegen Centre for Molecular Life Sciences (Netherlands); Levitt, Malcolm H., E-mail: mhl@soton.ac.uk [University of Southampton, School of Chemistry (United Kingdom)

    2012-07-15

    Double-quantum magic-angle-spinning NMR experiments were performed on 11,12-{sup 13}C{sub 2}-retinylidene-rhodopsin under illumination at low temperature, in order to characterize torsional angle changes at the C11-C12 photoisomerization site. The sample was illuminated in the NMR rotor at low temperature ({approx}120 K) in order to trap the primary photointermediate, bathorhodopsin. The NMR data are consistent with a strong torsional twist of the HCCH moiety at the isomerization site. Although the HCCH torsional twist was determined to be at least 40 Degree-Sign , it was not possible to quantify it more closely. The presence of a strong twist is in agreement with previous Raman observations. The energetic implications of this geometric distortion are discussed.

  3. Synthesis of 13C and 2H labelled retinals: spectroscopic investigations on isotopically labelled rhodopsin and bacteriorhodopsin

    International Nuclear Information System (INIS)

    In order to develop probes of the structure of chromophores, the author introduces isotopic modifications at specific chromophoric positions as structural probes. To obtain bacteriorhodopsin, rhodopsin and their photoproducts labelled in the chromophore at selected positions, bacterioopsin and opsin were reacted with the appropriate labelled a11-trans and 11-cis retinals. The author describes the synthesis of a11-trans retinal selectively 13C labelled at different positions. The characterization of these labelled a11-trans retinals by mass spectrometry, 300 MHz 1H NMR and 75 MHz 13C NMR spectroscopy is given. The photochemical preparation and isolation of the pure 9-, 11- and 13-cis forms is described in the experimental part. (Auth.)

  4. Real-time kinetics of electrogenic Na+ transport by rhodopsin from the marine flavobacterium Dokdonia sp. PRO95

    OpenAIRE

    Bogachev, Alexander V.; Bertsova, Yulia V.; Verkhovskaya, Marina L.; Mamedov, Mahir D.; Skulachev, Vladimir P.

    2016-01-01

    Discovery of the light-driven sodium-motive pump Na+-rhodopsin (NaR) has initiated studies of the molecular mechanism of this novel membrane-linked energy transducer. In this paper, we investigated the photocycle of NaR from the marine flavobacterium Dokdonia sp. PRO95 and identified electrogenic and Na+-dependent steps of this cycle. We found that the NaR photocycle is composed of at least four steps: NaR 519 + hv → K 585 → (L 450↔M 495) → O 585 → NaR 519. The third step is the only step tha...

  5. Crystal Structure of Rhodopsin: A Template for Cone Visual Pigments and Other G Protein-coupled Receptors

    Energy Technology Data Exchange (ETDEWEB)

    Stenkamp, R. E.

    2002-01-01

    The crystal structure of rhodopsin has provided the first three-dimensional molecular model for a G-protein-coupled receptor (GPCR). Alignment of the molecular model from the crystallographic structure with the helical axes seen in cryo-electron microscopic (cryo-EM) studies provides an opportunity to investigate the properties of the molecule as a function of orientation and location within the membrane. In addition, the structure provides a starting point for modeling and rational experimental approaches of the cone pigments, the GPCRs in cone cells responsible for color vision. Homology models of the cone pigments provide a means of understanding the roles of amino acid sequence differences that shift the absorption maximum of the retinal chromophore in the environments of different opsins.

  6. Quantitative modeling of the molecular steps underlying shut-off of rhodopsin activity in rod phototransduction

    Science.gov (United States)

    Kraft, Timothy W.

    2016-01-01

    Purpose To examine the predictions of alternative models for the stochastic shut-off of activated rhodopsin (R*) and their implications for the interpretation of experimentally recorded single-photon responses (SPRs) in mammalian rods. Theory We analyze the transitions that an activated R* molecule undergoes as a result of successive phosphorylation steps and arrestin binding. We consider certain simplifying cases for the relative magnitudes of the reaction rate constants and derive the probability distributions for the time to arrestin binding. In addition to the conventional model in which R* catalytic activity declines in a graded manner with successive phosphorylations, we analyze two cases in which the activity is assumed to occur not via multiple small steps upon each phosphorylation but via a single large step. We refer to these latter two cases as the binary R* shut-off and three-state R* shut-off models. Methods We simulate R*’s stochastic reactions numerically for the three models. In the simplifying cases for the ratio of rate constants in the binary and three-state models, we show that the probability distribution of the time to arrestin binding is accurately predicted. To simulate SPRs, we then integrate the differential equations for the downstream reactions using a standard model of the rod outer segment that includes longitudinal diffusion of cGMP and Ca2+. Results Our simulations of SPRs in the conventional model of graded shut-off of R* conform closely to the simulations in a recent study. However, the gain factor required to account for the observed mean SPR amplitude is higher than can be accounted for from biochemical experiments. In addition, a substantial minority of the simulated SPRs exhibit features that have not been reported in published experiments. Our simulations of SPRs using the model of binary R* shut-off appear to conform closely to experimental results for wild type (WT) mouse rods, and the required gain factor conforms to

  7. Multi-Sensory Informatics Education

    Directory of Open Access Journals (Sweden)

    Zoltan KATAI

    2014-10-01

    Full Text Available A recent report by the joint Informatics Europe & ACM Europe Working Group on Informatics Education emphasizes that: (1 computational thinking is an important ability that all people should possess; (2 informatics-based concepts, abilities and skills are teachable, and must be included in the primary and particularly in the secondary school curriculum. Accordingly, the "2013 Best Practices in Education Award" (organized by Informatics Europe was devoted to initiatives promoting Informatics Education in Primary and Secondary Schools. In this paper we present one of the winning projects: "Multi-Sensory Informatics Education". We have developed effective multi-sensory methods and software-tools to improve the teaching-learning process of elementary, sorting and recursive algorithms. The technologically and artistically enhanced learning environment we present has also the potential to promote intercultural computer science education and the algorithmic thinking of both science- and humanities-oriented learners.

  8. Sensory augmentation for the blind

    Directory of Open Access Journals (Sweden)

    Silke Manuela Kärcher

    2012-03-01

    Full Text Available Enacted theories of consciousness conjecture that perception and cognition arise from an active experience of the regular relations that are tying together the sensory stimulation of different modalities and associated motor actions. Previous experiments investigated this concept by employing the technique of sensory substitution. Building on these studies, here we test a set of hypotheses derived from this framework and investigate the utility of sensory augmentation in handicapped people. We provide a late blind subject with a new set of sensorimotor laws: A vibro-tactile belt continually signals the direction of magnetic north. The subject completed a set of behavioral tests before and after an extended training period. The tests were complemented by questionnaires and interviews. This newly supplied information improved performance on different time scales. In a pointing task we demonstrate an instant improvement of performance based on the signal provided by the device. Furthermore, the signal was helpful in relevant daily tasks, often complicated for the blind, such as keeping a direction over longer distances or taking shortcuts in familiar environments. A homing task with an additional attentional load demonstrated a significant improvement after training. The subject found the directional information highly expedient for the adjustment of his inner maps of familiar environments and describes an increase in his feeling of security when exploring unfamiliar environments with the belt. The results give evidence for a firm integration of the newly supplied signals into the behavior of this late blind subject with better navigational performance and more courageous behavior in unfamiliar environments. Most importantly, the complementary information provided by the belt lead to a positive emotional impact with enhanced feeling of security. This experimental approach demonstrates the potential of sensory augmentation devices for the help of

  9. Sensory evaluation of buffalo butter

    Directory of Open Access Journals (Sweden)

    J.C.S. Carneiro

    2010-02-01

    Full Text Available Butter obtained from buffalo milk was compared with commercial products obtained from cow milk. One buffalo butter and two cow butters were subjected to sensory analysis using non-trained panelists. The acceptance related to sensorial characteristics (color, flavor, and firmness was evaluated through a 9 point structured hedonic scale varying from “I displeased extremely” to “I liked extremely”. Analysis of variance (ANOVA was performed to evaluate the sensory characteristics and the means were compared by Tukey’s Test at 5% of significance. The buffalo butter received lower scores than the others for all attributes. The greatest difference was observed for color, as the buffalo butter exhibited a white color contrasting with the yellow color of commercial butters, which is the pattern expected by the consumers. For flavor and firmness attributes, the buffalo butter received scores similar to the commercial products. These results show. These results shows that the buffalo’s butter has a good acceptance on local market, and this could be improved through the correction of product’s color, what can be obtained by adding a dye.

  10. DNA Probes Show Genetic Variation in Cyanobacterial Symbionts of the Azolla Fern and a Closer Relationship to Free-Living Nostoc Strains than to Free-Living Anabaena Strains

    OpenAIRE

    Plazinski, Jacek; Zheng, Qi; Taylor, Rona; Croft, Lynn; Rolfe, Barry G.; Gunning, Brian E. S.

    1990-01-01

    Twenty-two isolates of Anabaena azollae derived from seven Azolla species from various geographic and ecological sources were characterized by DNA-DNA hybridization. Cloned DNA fragments derived from the genomic sequences of three different A. azollae isolates were used to detect restriction fragment length polymorphism among all symbiotic anabaenas. DNA clones were radiolabeled and hybridized against southern blot transfers of genomic DNAs of different isolates of A. azollae digested with re...

  11. Spatial fluctuations in expression of the heterocyst differentiation regulatory gene hetR in Anabaena filaments.

    Directory of Open Access Journals (Sweden)

    Laura Corrales-Guerrero

    2015-04-01

    Full Text Available Under nitrogen deprivation, filaments of the cyanobacterium Anabaena undergo a process of development, resulting in a one-dimensional pattern of nitrogen-fixing heterocysts separated by about ten photosynthetic vegetative cells. Many aspects of gene expression before nitrogen deprivation and during the developmental process remain to be elucidated. Furthermore, the coupling of gene expression fluctuations between cells along a multicellular filament is unknown. We studied the statistics of fluctuations of gene expression of HetR, a transcription factor essential for heterocyst differentiation, both under steady-state growth in nitrogen-rich conditions and at different times following nitrogen deprivation, using a chromosomally-encoded translational hetR-gfp fusion. Statistical analysis of fluorescence at the individual cell level in wild-type and mutant filaments demonstrates that expression fluctuations of hetR in nearby cells are coupled, with a characteristic spatial range of circa two to three cells, setting the scale for cellular interactions along a filament. Correlations between cells predominantly arise from intercellular molecular transfer and less from cell division. Fluctuations after nitrogen step-down can build up on those under nitrogen-replete conditions. We found that under nitrogen-rich conditions, basal, steady-state expression of the HetR inhibitor PatS, cell-cell communication influenced by the septal protein SepJ and positive HetR auto-regulation are essential determinants of fluctuations in hetR expression and its distribution along filaments. A comparison between the expression of hetR-gfp under nitrogen-rich and nitrogen-poor conditions highlights the differences between the two HetR inhibitors PatS and HetN, as well as the differences in specificity between the septal proteins SepJ and FraC/FraD. Activation, inhibition and cell-cell communication lie at the heart of developmental processes. Our results show that proteins

  12. Spatial fluctuations in expression of the heterocyst differentiation regulatory gene hetR in Anabaena filaments.

    Science.gov (United States)

    Corrales-Guerrero, Laura; Tal, Asaf; Arbel-Goren, Rinat; Mariscal, Vicente; Flores, Enrique; Herrero, Antonia; Stavans, Joel

    2015-04-01

    Under nitrogen deprivation, filaments of the cyanobacterium Anabaena undergo a process of development, resulting in a one-dimensional pattern of nitrogen-fixing heterocysts separated by about ten photosynthetic vegetative cells. Many aspects of gene expression before nitrogen deprivation and during the developmental process remain to be elucidated. Furthermore, the coupling of gene expression fluctuations between cells along a multicellular filament is unknown. We studied the statistics of fluctuations of gene expression of HetR, a transcription factor essential for heterocyst differentiation, both under steady-state growth in nitrogen-rich conditions and at different times following nitrogen deprivation, using a chromosomally-encoded translational hetR-gfp fusion. Statistical analysis of fluorescence at the individual cell level in wild-type and mutant filaments demonstrates that expression fluctuations of hetR in nearby cells are coupled, with a characteristic spatial range of circa two to three cells, setting the scale for cellular interactions along a filament. Correlations between cells predominantly arise from intercellular molecular transfer and less from cell division. Fluctuations after nitrogen step-down can build up on those under nitrogen-replete conditions. We found that under nitrogen-rich conditions, basal, steady-state expression of the HetR inhibitor PatS, cell-cell communication influenced by the septal protein SepJ and positive HetR auto-regulation are essential determinants of fluctuations in hetR expression and its distribution along filaments. A comparison between the expression of hetR-gfp under nitrogen-rich and nitrogen-poor conditions highlights the differences between the two HetR inhibitors PatS and HetN, as well as the differences in specificity between the septal proteins SepJ and FraC/FraD. Activation, inhibition and cell-cell communication lie at the heart of developmental processes. Our results show that proteins involved in these

  13. 具异型胞蓝细菌Anabaena sp. PCC 71 20 质膜和%Isolation of Plasma and Thylakoid Membranes from the Heterocystous Cyanobacterium Anabaena sp. PCC 7120

    Institute of Scientific and Technical Information of China (English)

    李斌; 徐冬一; 赵进东

    2001-01-01

    利用水溶性多聚体双相法分离蓝细菌Anabaena sp. PCC 7120质膜和类囊体膜两种膜系统.吸收光谱分析表明,质膜相和类囊体膜相的主要色素分别为类胡萝卜素和叶绿素.SDS_ 凝胶电泳显示这两种膜系统蛋白组成有很大差别.这种分离方法容易操作,对研究蓝细菌的膜蛋白和膜脂非常有用.

  14. 碳氮源对转基因鱼腥藻Anabaena sp.PCC7120培养的影响%Effects of carbon and nitrogen sources on the culture of recombinant Anabaena sp. PCC7120

    Institute of Scientific and Technical Information of China (English)

    刘志伟; 郭勇; 张晨

    2001-01-01

    对碳源、氮源种类和用量对转rhTNF-α基因鱼腥藻7120( Anabaena sp. PCC7120)培养的影响进行了研究,发现最适碳源为蔗糖,最适氮源为NaNO3,最佳用量分别为9 g/L和2.25 g/L,此时生物量远高于自养方式,达2.52g/L,比相同条件下在BG-11培养基培养高71.66%,TNF-α表达量为16%~22%,生物活性为105U/mg.

  15. H2 production by Anabaena variabilis mutant in computer controlled two-stage air-lift tubular photobioreactor

    Science.gov (United States)

    Liu, Jian-Guo; Hall, D. O.; Rao, K. K.; Tsygankov, A. A.; Sveshnikov, D. A.

    2000-06-01

    A 4.34 liter two-stage air-lift photobioreactor incorporating Anabaena variabilis ATCC29413 mutant PK84 was used to study H2 production. Results showed that H2 production increased with increasing light intensity from 47 μE/(m2·s) up to 190 μE/(m2·s), but that further increase of light intensity decreased the H2 production because of the inhibition due to the high pO2. The data also indicated that longer argon gas charge resulted in more H2 produced due to the increase of nitrogenase activities and heterocyst frequency, and that more than 1.3 L net H2 was produced from this computer controlled photobioreactor.

  16. H2 PRODUCTION BY ANABAENA VARIABILIS MUTANT IN COMPUTER CONTROLLED TWO-STAGE AIR-LIFT TUBULAR PHOTOBIOREACTOR

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A 4.34 liter two-stage air-lift photobioreactor incorporating Anabaena variabilis ATCC29413 mutant PK84 was used to study H2 production. Results showed that H2 production increased with increasing light intensity from 47 μE/(m2·s) up to 190 μE/(m2·s), but that further increase of light intensity decreased the H2 production because of the inhibition due to the high pO2. The data also indicated that longer argon gas charge resulted in more H2 produced due to the increase of nitrogenase activities and heterocyst frequency, and that more than 1.3 L net H2 was produced from this computer controlled photobioreactor.

  17. Direct measurement of excitation transfer dynamics between two trimers in C-phycocyanin hexamer from cyanobacterium Anabaena variabilis

    Science.gov (United States)

    Zhang, Jingmin; Zhao, Fuli; Zheng, Xiguang; Wang, Hezhou

    1999-05-01

    We provide the first experimental evidence for the excitation transfers between two trimers of an isolated C-phycocyanin hexamer (αβ) 6PCL RC27, at the end of the rod proximal to the core of PBS in cyanobacterium of Anabaena variabilis, with picosecond time-resolved fluorescence spectroscopy. Our results strongly suggest that the observed fluorescence decay constants around 20 and 10 ps time scales, shown in anisotropy decay, not in isotropic decay experiments arose from the excitation transfers between two trimers via two types of transfer pathways such as 1β 155↔6β 155 (2β 155↔5β 155 and 3β 155↔4β 155) and 2α 84↔5α 84 (3α 84↔6α 84 and 1α 84↔4α 84) channels and these could be described by Föster dipole-dipole resonance mechanism.

  18. Requirement of Fra proteins for communication channels between cells in the filamentous nitrogen-fixing cyanobacterium Anabaena sp. PCC 7120.

    Science.gov (United States)

    Omairi-Nasser, Amin; Mariscal, Vicente; Austin, Jotham R; Haselkorn, Robert

    2015-08-11

    The filamentous nitrogen-fixing cyanobacterium Anabaena sp. PCC 7120 differentiates specialized cells, heterocysts, that fix atmospheric nitrogen and transfer the fixed nitrogen to adjacent vegetative cells. Reciprocally, vegetative cells transfer fixed carbon to heterocysts. Several routes have been described for metabolite exchange within the filament, one of which involves communicating channels that penetrate the septum between adjacent cells. Several fra gene mutants were isolated 25 y ago on the basis of their phenotypes: inability to fix nitrogen and fragmentation of filaments upon transfer from N+ to N- media. Cryopreservation combined with electron tomography were used to investigate the role of three fra gene products in channel formation. FraC and FraG are clearly involved in channel formation, whereas FraD has a minor part. Additionally, FraG was located close to the cytoplasmic membrane and in the heterocyst neck, using immunogold labeling with antibody raised to the N-terminal domain of the FraG protein.

  19. Sensory Motor Coordination in Robonaut

    Science.gov (United States)

    Peters, Richard Alan, II

    2003-01-01

    As a participant of the year 2000 NASA Summer Faculty Fellowship Program, I worked with the engineers of the Dexterous Robotics Laboratory at NASA Johnson Space Center on the Robonaut project. The Robonaut is an articulated torso with two dexterous arms, left and right five-fingered hands, and a head with cameras mounted on an articulated neck. This advanced space robot, now driven only teleoperatively using VR gloves, sensors and helmets, is to be upgraded to a thinking system that can find, interact with and assist humans autonomously, allowing the Crew to work with Robonaut as a (junior) member of their team. Thus, the work performed this summer was toward the goal of enabling Robonaut to operate autonomously as an intelligent assistant to astronauts. Our underlying hypothesis is that a robot can develop intelligence if it learns a set of basic behaviors (i.e., reflexes - actions tightly coupled to sensing) and through experience learns how to sequence these to solve problems or to accomplish higher-level tasks. We describe our approach to the automatic acquisition of basic behaviors as learning sensory-motor coordination (SMC). Although research in the ontogenesis of animals development from the time of conception) supports the approach of learning SMC as the foundation for intelligent, autonomous behavior, we do not know whether it will prove viable for the development of autonomy in robots. The first step in testing the hypothesis is to determine if SMC can be learned by the robot. To do this, we have taken advantage of Robonaut's teleoperated control system. When a person teleoperates Robonaut, the person's own SMC causes the robot to act purposefully. If the sensory signals that the robot detects during teleoperation are recorded over several repetitions of the same task, it should be possible through signal analysis to identify the sensory-motor couplings that accompany purposeful motion. In this report, reasons for suspecting SMC as the basis for

  20. Hereditary sensory neuropathy type I

    Directory of Open Access Journals (Sweden)

    Auer-Grumbach Michaela

    2008-03-01

    Full Text Available Abstract Hereditary sensory neuropathy type I (HSN I is a slowly progressive neurological disorder characterised by prominent predominantly distal sensory loss, autonomic disturbances, autosomal dominant inheritance, and juvenile or adulthood disease onset. The exact prevalence is unknown, but is estimated as very low. Disease onset varies between the 2nd and 5th decade of life. The main clinical feature of HSN I is the reduction of sensation sense mainly distributed to the distal parts of the upper and lower limbs. Variable distal muscle weakness and wasting, and chronic skin ulcers are characteristic. Autonomic features (usually sweating disturbances are invariably observed. Serious and common complications are spontaneous fractures, osteomyelitis and necrosis, as well as neuropathic arthropathy which may even necessitate amputations. Some patients suffer from severe pain attacks. Hypacusis or deafness, or cough and gastrooesophageal reflux have been observed in rare cases. HSN I is a genetically heterogenous condition with three loci and mutations in two genes (SPTLC1 and RAB7 identified so far. Diagnosis is based on the clinical observation and is supported by a family history. Nerve conduction studies confirm a sensory and motor neuropathy predominantly affecting the lower limbs. Radiological studies, including magnetic resonance imaging, are useful when bone infections or necrosis are suspected. Definitive diagnosis is based on the detection of mutations by direct sequencing of the SPTLC1 and RAB7 genes. Correct clinical assessment and genetic confirmation of the diagnosis are important for appropriate genetic counselling and prognosis. Differential diagnosis includes the other hereditary sensory and autonomic neuropathies (HSAN, especially HSAN II, as well as diabetic foot syndrome, alcoholic neuropathy, neuropathies caused by other neurotoxins/drugs, immune mediated neuropathy, amyloidosis, spinal cord diseases, tabes dorsalis, lepra

  1. Genome-derived insights into the biology of the hepatotoxic bloom-forming cyanobacterium Anabaena sp. strain 90

    Directory of Open Access Journals (Sweden)

    Wang Hao

    2012-11-01

    Full Text Available Abstract Background Cyanobacteria can form massive toxic blooms in fresh and brackish bodies of water and are frequently responsible for the poisoning of animals and pose a health risk for humans. Anabaena is a genus of filamentous diazotrophic cyanobacteria commonly implicated as a toxin producer in blooms in aquatic ecosystems throughout the world. The biology of bloom-forming cyanobacteria is poorly understood at the genome level. Results Here, we report the complete sequence and comprehensive annotation of the bloom-forming Anabaena sp. strain 90 genome. It comprises two circular chromosomes and three plasmids with a total size of 5.3 Mb, encoding a total of 4,738 genes. The genome is replete with mobile genetic elements. Detailed manual annotation demonstrated that almost 5% of the gene repertoire consists of pseudogenes. A further 5% of the genome is dedicated to the synthesis of small peptides that are the products of both ribosomal and nonribosomal biosynthetic pathways. Inactivation of the hassallidin (an antifungal cyclic peptide biosynthetic gene cluster through a deletion event and a natural mutation of the buoyancy-permitting gvpG gas vesicle gene were documented. The genome contains a large number of genes encoding restriction-modification systems. Two novel excision elements were found in the nifH gene that is required for nitrogen fixation. Conclusions Genome analysis demonstrated that this strain invests heavily in the production of bioactive compounds and restriction-modification systems. This well-annotated genome provides a platform for future studies on the ecology and biology of these important bloom-forming cyanobacteria.

  2. Proteomic strategy for the analysis of the polychlorobiphenyl-degrading cyanobacterium Anabaena PD-1 exposed to Aroclor 1254.

    Science.gov (United States)

    Zhang, Hangjun; Jiang, Xiaojun; Xiao, Wenfeng; Lu, Liping

    2014-01-01

    The cyanobacterium Anabaena PD-1, which was originally isolated from polychlorobiphenyl (PCB)-contaminated paddy soils, has capabilities for dechlorinatin and for degrading the commercial PCB mixture Aroclor 1254. In this study, 25 upregulated proteins were identified using 2D electrophoresis (2-DE) coupled with matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS). These proteins were involved in (i) PCB degradation (i.e., 3-chlorobenzoate-3,4-dioxygenase); (ii) transport processes [e.g., ATP-binding cassette (ABC) transporter substrate-binding protein, amino acid ABC transporter substrate-binding protein, peptide ABC transporter substrate-binding protein, putrescine-binding protein, periplasmic solute-binding protein, branched-chain amino acid uptake periplasmic solute-binding protein, periplasmic phosphate-binding protein, phosphonate ABC transporter substrate-binding protein, and xylose ABC transporter substrate-binding protein]; (iii) energetic metabolism (e.g., methanol/ethanol family pyrroloquinoline quinone (PQQ)-dependent dehydrogenase, malate-CoA ligase subunit beta, enolase, ATP synthase β subunit, FOF1 ATP synthase subunit beta, ATP synthase α subunit, and IMP cyclohydrolase); (iv) electron transport (cytochrome b6f complex Fe-S protein); (v) general stress response (e.g., molecular chaperone DnaK, elongation factor G, and translation elongation factor thermostable); (vi) carbon metabolism (methanol dehydrogenase and malate-CoA ligase subunit beta); and (vii) nitrogen reductase (nitrous oxide reductase). The results of real-time polymerase chain reaction showed that the genes encoding for dioxygenase, ABC transporters, transmembrane proteins, electron transporter, and energetic metabolism proteins were significantly upregulated during PCB degradation. These genes upregulated by 1.26- to 8.98-fold. These findings reveal the resistance and adaptation of cyanobacterium to the presence of PCBs, shedding light on the

  3. Characterisation of the paralytic shellfish toxin biosynthesis gene clusters in Anabaena circinalis AWQC131C and Aphanizomenon sp. NH-5

    Directory of Open Access Journals (Sweden)

    Neilan Brett A

    2009-03-01

    Full Text Available Abstract Background Saxitoxin and its analogues collectively known as the paralytic shellfish toxins (PSTs are neurotoxic alkaloids and are the cause of the syndrome named paralytic shellfish poisoning. PSTs are produced by a unique biosynthetic pathway, which involves reactions that are rare in microbial metabolic pathways. Nevertheless, distantly related organisms such as dinoflagellates and cyanobacteria appear to produce these toxins using the same pathway. Hypothesised explanations for such an unusual phylogenetic distribution of this shared uncommon metabolic pathway, include a polyphyletic origin, an involvement of symbiotic bacteria, and horizontal gene transfer. Results We describe the identification, annotation and bioinformatic characterisation of the putative paralytic shellfish toxin biosynthesis clusters in an Australian isolate of Anabaena circinalis and an American isolate of Aphanizomenon sp., both members of the Nostocales. These putative PST gene clusters span approximately 28 kb and contain genes coding for the biosynthesis and export of the toxin. A putative insertion/excision site in the Australian Anabaena circinalis AWQC131C was identified, and the organization and evolution of the gene clusters are discussed. A biosynthetic pathway leading to the formation of saxitoxin and its analogues in these organisms is proposed. Conclusion The PST biosynthesis gene cluster presents a mosaic structure, whereby genes have apparently transposed in segments of varying size, resulting in different gene arrangements in all three sxt clusters sequenced so far. The gene cluster organizational structure and sequence similarity seems to reflect the phylogeny of the producer organisms, indicating that the gene clusters have an ancient origin, or that their lateral transfer was also an ancient event. The knowledge we gain from the characterisation of the PST biosynthesis gene clusters, including the identity and sequence of the genes involved

  4. Induction and differential expression of certain novel proteins in Anabaena L31 under UV-B radiation stress

    Directory of Open Access Journals (Sweden)

    Piyoosh Kumar Babele

    2015-02-01

    Full Text Available For examining how UV-B radiation alters the proteome of the N2-fixing cyanobacterium, Anabaena L31, we extracted proteins from cultures irradiated with UV-B + white light and controls (white light irradiated and analyzed the proteins using two-dimensional gel electrophoresis (2-DE and matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS. Twenty one proteins, including 2 hypothetical proteins were identified and placed in 8 functional categories. However several of the proteins were housekeeping proteins involved in key metabolic processes such as carbon, amino acid biosynthesis and energy metabolism, certain proteins seem to have a role in stress (antioxidative enzymes, translation, cellular processes and reductases. Two novel hypothetical proteins (all3797 and all4050 were characterized in detail. These two were over-expressed after UV-B irradiation and characterized as FAS 1 (all3797 and PRC barrel-like (all4050 proteins. Bioinformatics analysis revealed that the genes of both the hypothetical proteins have promoter regions as well as transcription binding sites in their upstream region (UTR. Promoters present in all3797 genes suggest their crucial role against UV-B and certain other abiotic stresses. To our knowledge these novel proteins have not been previously reported in any Anabaena strains subjected to UV-B stress. Although we have focused our study on a limited number of proteins, results obtained shed light on the highly complicated but poorly studied aspect of UV-B radiation-mediated changes in the proteome and expression of proteins in cyanobacteria.

  5. Proteomic strategy for the analysis of the polychlorobiphenyl-degrading cyanobacterium Anabaena PD-1 exposed to Aroclor 1254.

    Directory of Open Access Journals (Sweden)

    Hangjun Zhang

    Full Text Available The cyanobacterium Anabaena PD-1, which was originally isolated from polychlorobiphenyl (PCB-contaminated paddy soils, has capabilities for dechlorinatin and for degrading the commercial PCB mixture Aroclor 1254. In this study, 25 upregulated proteins were identified using 2D electrophoresis (2-DE coupled with matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS. These proteins were involved in (i PCB degradation (i.e., 3-chlorobenzoate-3,4-dioxygenase; (ii transport processes [e.g., ATP-binding cassette (ABC transporter substrate-binding protein, amino acid ABC transporter substrate-binding protein, peptide ABC transporter substrate-binding protein, putrescine-binding protein, periplasmic solute-binding protein, branched-chain amino acid uptake periplasmic solute-binding protein, periplasmic phosphate-binding protein, phosphonate ABC transporter substrate-binding protein, and xylose ABC transporter substrate-binding protein]; (iii energetic metabolism (e.g., methanol/ethanol family pyrroloquinoline quinone (PQQ-dependent dehydrogenase, malate-CoA ligase subunit beta, enolase, ATP synthase β subunit, FOF1 ATP synthase subunit beta, ATP synthase α subunit, and IMP cyclohydrolase; (iv electron transport (cytochrome b6f complex Fe-S protein; (v general stress response (e.g., molecular chaperone DnaK, elongation factor G, and translation elongation factor thermostable; (vi carbon metabolism (methanol dehydrogenase and malate-CoA ligase subunit beta; and (vii nitrogen reductase (nitrous oxide reductase. The results of real-time polymerase chain reaction showed that the genes encoding for dioxygenase, ABC transporters, transmembrane proteins, electron transporter, and energetic metabolism proteins were significantly upregulated during PCB degradation. These genes upregulated by 1.26- to 8.98-fold. These findings reveal the resistance and adaptation of cyanobacterium to the presence of PCBs, shedding light on the

  6. Effect of nutrient media on photobiological hydrogen production by Anabaena variabilis ATCC 29413

    Energy Technology Data Exchange (ETDEWEB)

    Berberoglu, Halil; Pilon, Laurent [Mechanical and Aerospace Engineering Department, Henry Samueli School of Engineering and Applied Science, University of California Los Angeles, Los Angeles, CA 90095 (United States); Jay, Jenny [Civil and Environmental Engineering Department, Henry Samueli School of Engineering and Applied Science, University of California Los Angeles, Los Angeles, CA 90095 (United States)

    2008-02-15

    This study reports a factor 5.5 increase in hydrogen production by Anabaena variabilis ATCC 29413 using Allen-Arnon medium compared with BG-11 and BG-11{sub 0} media. The results were obtained with a flat panel photobioreactor made of acrylic and operated in two stages at 30 C. Stage 1 aims at converting carbon dioxide into biomass by photosynthesis while Stage 2 aims at producing hydrogen. During Stage 1, the photobioreactor was irradiated with 65{mu}mol/m{sup 2}/s (14W/m{sup 2}) of light and sparged with a mixture of air (95% by volume) and carbon dioxide (5% by volume). During Stage 2, irradiance was increased to 150{mu}mol/m{sup 2}/s (32W/m{sup 2}) and the photobioreactor was sparged with pure argon. The parameters continuously monitored were (1) the cyanobacteria concentration, (2) the pH, (3) the dissolved oxygen concentration, (4) the nitrate and (5) the ammonia concentrations in the medium, and (6) the hydrogen concentration in the effluent gas. The three media BG-11, BG-11{sub 0}, and Allen-Arnon were tested under otherwise similar conditions. The maximum cyanobacteria concentrations during Stage 2 were 1.10 and 1.17kg drycell/m{sup 3} with BG-11 and Allen-Arnon media, respectively, while it could not exceed 0.76kg drycell/m{sup 3} with medium BG-11{sub 0}. Moreover, the heterocyst frequency was 5%, 4%, and 9% for A.variabilis grown in BG-11, BG-11{sub 0}, and Allen-Arnon media. The average specific hydrogen production rates were about 8.0 x 10{sup -5} and 7.2 x 10{sup -5}kgH{sub 2}/kgdrycell/h (1 and 0.9LH{sub 2}/kgdrycell/h at 1 atm and 30 {sup o}C) in media BG-11 and BG-11{sub 0}, respectively. In contrast, it was about 4.5 x 10{sup -4}kgH{sub 2}/kgdrycell/h (5.6LH{sub 2}/kgdrycell/h at 1 atm and 30 {sup o}C) in Allen-Arnon medium. The maximum light to hydrogen energy conversion efficiencies achieved were 0.26%, 0.16%, and 1.32% for BG-11, BG-11{sub 0}, and Allen-Arnon media, respectively. The larger heterocyst frequency, specific hydrogen production

  7. Cloning and Characterization of the fecC Gene Necessary for Optimal Growth under Iron-Deficiency Conditions in the Cyanobacterium Anabaena sp.PCC 7120

    Institute of Scientific and Technical Information of China (English)

    XU Wen-liang; LIU Yong-ding; ZHANG Cheng-cai; LI Juan

    2004-01-01

    The fecC gene encoding a putative iron (Ⅲ) dicitrate transporter was cloned from nitrogen-fixing cyanobacterium Anabaena sp. PCC 7120, and inactivated. The mutant grows normally in medium with NO-3, NH+4 or without combined nitrogen. But in iron-deficient medium, the mutant grows slowly. Photosynthetic properties were compared between the mutant and the wild-type strain, the content of photosynthetic pigments in the mutant is lower than that of the wild-type. The results of RT-PCR experiments show that the fecC gene is expressed under iron-deficient conditions, but is not expressed under iron-replete conditions. These results revealed that fecC gene product is required for optimal growth under iron-deficient conditions in Anabaena sp. PCC 7120.

  8. Involvement of thioredoxin on the scaffold activity of NifU in heterocyst cells of the diazotrophic cyanobacterium Anabaena sp. strain PCC 7120.

    Science.gov (United States)

    Nomata, Jiro; Maeda, Maki; Isu, Atsuko; Inoue, Kazuhito; Hisabori, Toru

    2015-09-01

    The diazotrophic cyanobacterium Anabaena sp. strain PCC 7120 (A.7120) differentiates into specialized heterocyst cells that fix nitrogen under nitrogen starvation conditions. Although reducing equivalents are essential for nitrogen fixation, little is known about redox systems in heterocyst cells. In this study, we investigated thioredoxin (Trx) networks in Anabaena using TrxM, and identified 16 and 38 candidate target proteins in heterocysts and vegetative cells, respectively, by Trx affinity chromatography (Motohashi et al. (Comprehensive survey of proteins targeted by chloroplast thioredoxin. Proc Natl Acad Sci USA, 2001; 98: , 11224-11229)). Among these, the Fe-S cluster scaffold protein NifU that facilitates functional expression of nitrogenase in heterocysts was found to be a potential TrxM target. Subsequently, we observed that the scaffold activity of N-terminal catalytic domain of NifU is enhanced in the presence of Trx-system, suggesting that TrxM is involved in the Fe-S cluster biogenesis.

  9. Hereditary motor-sensory, motor, and sensory neuropathies in childhood.

    Science.gov (United States)

    Landrieu, Pierre; Baets, Jonathan; De Jonghe, Peter

    2013-01-01

    Hereditary neuropathies (HN) are categorized according to clinical presentation, pathogenic mechanism based on electrophysiology, genetic transmission, age of occurrence, and, in selected cases, pathological findings. The combination of these parameters frequently orients towards specific genetic disorders. Ruling out a neuropathy secondary to a generalized metabolic disorder remains the first pediatric concern. Primary, motor-sensory are the most frequent HN and are dominated by demyelinating AD forms (CMT1). Others are demyelinating AR forms, axonal AD/AR forms, and forms with "intermediate" electrophysiological phenotype. Pure motor HN represent40 genes with various biological functions have been found responsible for HN. Many are responsible for various phenotypes, including some without the polyneuropathic trait: for the pediatric neurologist, phenotype/genotype correlations constitute a permanent bidirectional exercise.

  10. Azolla-Anabaena as a Biofertilizer for Rice Paddy Fields in the Po Valley, a Temperate Rice Area in Northern Italy

    OpenAIRE

    Stefano Bocchi; Antonino Malgioglio

    2010-01-01

    Azolla is a floating pteridophyte, which contains as endosymbiont the nitrogen-fixing cyanobacterium Anabaena azollae (Nostocaceae family). Widely cultivated in the Asian regions, Azolla is either incorporated into the soil before rice transplanting or grown as a dual crop along with rice. To examine the feasibility of its use in flooded rice fields sited in the Temperate European Areas, we carried out a series of experiments in PVC tanks during 2000–2002 in Po Valley (northern Italy) conditi...

  11. Alterations in proteins and amino acids of the Nile cyanobacteria Pseudanabaena limnetica and Anabaena wisconsinense in response to industrial wastewater pollution

    OpenAIRE

    Mostafa Mohamed El-Sheekh; Ahmed Mohamed El-Otify; Hani Saber

    2011-01-01

    The effect of industrial wastewater on the Nile cyanobacteria Pseudanabaena limnetica and Anabaena wisconsinense was investigated. The data showed that P. limnetica was more sensitive to pollution than A. wisconsinense. The treatments with different levels of wastewater exerted pronounced reductions in protein and amino acids content. SDS-PAGE analysis revealed that the cyanobacteria grown in the industrial wastewater showed induction in the synthesis of certain polypeptides and repression of...

  12. Detection of Anatoxin-a and Three Analogs in Anabaena spp. Cultures: New Fluorescence Polarization Assay and Toxin Profile by LC-MS/MS

    OpenAIRE

    Sanchez, Jon A.; Paz Otero; Amparo Alfonso; Vitor Ramos; Vitor Vasconcelos; Romulo Aráoz; Jordi Molgó; Vieytes, Mercedes R.; Botana, Luis M.

    2014-01-01

    Anatoxin-a (ATX) is a potent neurotoxin produced by several species of Anabaena spp. Cyanobacteria blooms around the world have been increasing in recent years; therefore, it is urgent to develop sensitive techniques that unequivocally confirm the presence of these toxins in fresh water and cyanobacterial samples. In addition, the identification of different ATX analogues is essential to later determine its toxicity. In this paper we designed a fluorescent polarization (FP) method to detect ...

  13. Detection of anatoxin-a and three analogs in Anabaena spp. cultures: new fluorescence polarization assay and toxin profile by LC-MS/MS.

    Science.gov (United States)

    Sanchez, Jon A; Otero, Paz; Alfonso, Amparo; Ramos, Vitor; Vasconcelos, Vitor; Aráoz, Romulo; Molgó, Jordi; Vieytes, Mercedes R; Botana, Luis M

    2014-01-24

    Anatoxin-a (ATX) is a potent neurotoxin produced by several species of Anabaena spp. Cyanobacteria blooms around the world have been increasing in recent years; therefore, it is urgent to develop sensitive techniques that unequivocally confirm the presence of these toxins in fresh water and cyanobacterial samples. In addition, the identification of different ATX analogues is essential to later determine its toxicity. In this paper we designed a fluorescent polarization (FP) method to detect ATXs in water samples. A nicotinic acetylcholine receptor (nAChR) labeled with a fluorescein derivative was used to develop this assay. Data showed a direct relationship between the amount of toxin in a sample and the changes in the polarization degree of the emitted light by the labeled nAChR, indicating an interaction between the two molecules. This method was used to measure the amount of ATX in three Anabaena spp. cultures. Results indicate that it is a good method to show ATXs presence in algal samples. In order to check the toxin profile of Anabaena cultures a LC-MS/MS method was also developed. Within this new method, ATX-a, retention time (RT) 5 min, and three other molecules with a mass m/z 180.1 eluting at 4.14 min, 5.90 min and 7.14 min with MS/MS spectra characteristic of ATX toxin group not previously identified were detected in the Anabaena spp. cultures. These ATX analogues may have an important role in the toxicity of the sample.

  14. Bilateral Sensory Abnormalities in Patients with Unilateral Neuropathic Pain; A Quantitative Sensory Testing (QST) Study

    NARCIS (Netherlands)

    Konopka, Karl-Heinz; Harbers, Marten; Houghton, Andrea; Kortekaas, Rudie; van Vliet, Andre; Timmerman, Wia; den Boer, Johan A.; Struys, Michel M. R. F.; van Wijhe, Marten

    2012-01-01

    In patients who experience unilateral chronic pain, abnormal sensory perception at the non-painful side has been reported. Contralateral sensory changes in these patients have been given little attention, possibly because they are regarded as clinically irrelevant. Still, bilateral sensory changes i

  15. Sensory Sensitivities and Performance on Sensory Perceptual Tasks in High-Functioning Individuals with Autism

    Science.gov (United States)

    Minshew, Nancy J.; Hobson, Jessica A.

    2008-01-01

    Most reports of sensory symptoms in autism are second hand or observational, and there is little evidence of a neurological basis. Sixty individuals with high-functioning autism and 61 matched typical participants were administered a sensory questionnaire and neuropsychological tests of elementary and higher cortical sensory perception. Thirty-two…

  16. Expression, nucleotide sequence and mutational analysis of two open reading frames in the nif gene region of Anabaena sp. strain PCC7120.

    Science.gov (United States)

    Borthakur, D; Basche, M; Buikema, W J; Borthakur, P B; Haselkorn, R

    1990-04-01

    A 1.8 kb transcript corresponding to a region of the Anabaena 7120 chromosome 4 kb downstream of the nifHDK operon appears 12-18 h after heterocyst induction. The DNA corresponding to this transcript was sequenced and found to contain two open reading frames, designated ORF 1 and ORF 2. Two polypeptides, of 30 kDa and 13 kDa, encoded by these ORFs were expressed in Escherichia coli. An apparent start site for the transcript, detected by S1 nuclease protection, was located 42 bp upstream of the ATG start codon of ORF 1. ORF 2 shows strong sequence similarity to ORF 6 in the nif gene region of Azotobacter vinelandii. ORF 1 was interrupted using a 1.4 kb neomycin resistance cassette and the resulting mutant grew very slowly on medium lacking combined nitrogen. The mutant had 45% of wild-type acetylene reduction activity, which could be complemented by a 2.8 kb EcoRI fragment of wild-type Anabaena DNA containing only ORF 1 and ORF 2. Thus, one or both of these ORFs is required for efficient nitrogen fixation in Anabaena. PMID:2115111

  17. Zur (FurB) is a key factor in the control of the oxidative stress response in Anabaena sp. PCC 7120.

    Science.gov (United States)

    Sein-Echaluce, Violeta C; González, Andrés; Napolitano, Mauro; Luque, Ignacio; Barja, Francisco; Peleato, M Luisa; Fillat, María F

    2015-06-01

    Iron and zinc are necessary nutrients whose homeostasis is tightly controlled by members of the ferric uptake regulator (FUR) superfamily in the cyanobacterium Anabaena sp. PCC7120. Although the link between iron metabolism and oxidative stress management is well documented, little is known about the connection between zinc homeostasis and the oxidative stress response in cyanobacteria. Zinc homeostasis in Anabaena is controlled by Zur, also named FurB. When overexpressed in Escherichia coli, Zur (FurB) improved cell survival during oxidative stress. In order to investigate the possible correlation between Zur and the oxidative stress response in Anabaena, zur deletion and zur-overexpressing strains have been constructed, and the consequences of Zur imbalance evaluated. The lack of Zur increased sensitivity to hydrogen peroxide (H2 O2 ), whereas an excess of Zur enhanced oxidative stress resistance. Both mutants displayed pleiotropic phenotypes, including alterations on the filament surfaces observable by scanning electron microscopy, reduced content of endogenous H2 O2 and altered expression of sodA, catalases and several peroxiredoxins. Transcriptional and biochemical analyses unveiled that the appropriate level of Zur is required for proper control of the oxidative stress response and allowed us to identify major antioxidant enzymes as novel members of the Zur regulon.

  18. Age dependent sensitivity of two-photon isomerization of rhodopsin chromophores in the human retina (Conference Presentation)

    Science.gov (United States)

    Wojtkowski, Maciej; Komar, Katarzyna; Palczewska, Grazyna; Zielinska, Agnieszka; Stremplewski, Patrycjusz; Palczewski, Krzysztof

    2016-03-01

    Light sensation relies on photoisomerization of chromophores in rod and cone photoreceptor cells. Spectral sensitivity of these photoreceptor cells in the retina is determined by the absorption spectra of their pigments which covers a range from 400 nm to above 700 nm. Regardless the mechanism leading to visual pigment isomerization, light sensation is triggered every time visual pigment molecules change their conformation. Thus, two-photon absorption (TPA) should produce the same result (visual sensation) as single photon absorption of light. This observation was positively verified and published by our group. During human psychophysics experiments, we found that humans can perceive light in the infrared (IR) range as colors that match half of the wavelength of the applied laser beam. Other experiments and theoretical research, such as mouse electrophysiology, biochemical studies of TPA in rhodopsin or molecular modeling studies, confirmed that visual sensation can be triggered by TPA. There are few publications describing human near infrared (NIR) perception and no formal proposals to use this phenomenon to improve ophthalmic diagnosis and monitor treatment. Here we report that the use of novel instrumentation revealed that the sensitivity threshold for NIR vision depends on age.

  19. Studying the Mechanism of Phototransformation of Light Signal by Various Mammal and Bacterial Photoreceptor Pigments  Rhodopsin, Iodopsin and Bacteriorhodopsin

    Directory of Open Access Journals (Sweden)

    Ignat Ignatov

    2015-06-01

    Full Text Available This review article outlines the structure and function of mammal and bacterial photoreceptor pigments (rhodopsin, iodopsin, bacteriorhodopsin and their aspects of bio-nanotechnological usage. On an example of bacteriorhodopsin is described the method of its isolation from purple membranes of photo-organotrophic halobacterium Halobacterium halobium ET 1001 by cellular autolysis by distilled water, processing of bacterial biomass by ultrasound at 22 KHz, alcohol extraction of low and high-weight molecular impurities, cellular RNA, carotenoids and lipids, the solubilization with 0,5 % (w/v SDS-Na and subsequent fractionation by methanol and gel filtration chromatography on Sephadex G-200 Column balanced with 0,09 M Tris-buffer (pH = 8,35 with 0,1 % (w/v SDS-Na and 2,5 mM EDTA. Within the framework of the research the mechanism of color perception by the visual retina analyzer having the ability to analyze certain ranges of the optical spectrum as colors, was studied along with an analysis of the additive mixing of two or more colors. It was shown that at the mixing of electromagnetic waves with different wavelengths, the visual analyzer perceives them as the separate or average wave length corresponding to the mixing color.

  20. Topological change and impedance spectrum of rat olfactory receptor I7: A comparative analysis with bovine rhodopsin and bacteriorhodopsin

    Science.gov (United States)

    Alfinito, Eleonora; Pennetta, Cecilia; Reggiani, Lino

    2009-04-01

    We present a theoretical investigation on possible selection of olfactory receptors (ORs) as sensing components of nanobiosensors. Accordingly, we generate the impedance spectra of the rat OR I7 in the native and activated states and analyze their differences. In this way, we connect the protein morphological transformation, caused by the sensing action, with its change in electrical impedance. The results are compared with those obtained by studying the best known protein of the G protein coupled receptor (GPCR) family: bovine rhodopsin. Our investigations indicate that a change in morphology goes with a change in impedance spectrum mostly associated with a decrease in the static impedance up to about 60% of the initial value, in qualitative agreement with existing experiments on rat OR I7. The predictiveness of the model is tested successfully for the case of recent experiments on bacteriorhodopsin. The present results point to a promising development of a new class of nanobiosensors based on the electrical properties of GPCR and other sensing proteins.

  1. Structures of Rhodopsin Kinase in Different Ligand States Reveal Key Elements Involved in G Protein-coupled Receptor Kinase Activation

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Puja; Wang, Benlian; Maeda, Tadao; Palczewski, Krzysztof; Tesmer, John J.G. (Case Western); (Michigan)

    2008-10-08

    G protein-coupled receptor (GPCR) kinases (GRKs) phosphorylate activated heptahelical receptors, leading to their uncoupling from G proteins. Here we report six crystal structures of rhodopsin kinase (GRK1), revealing not only three distinct nucleotide-binding states of a GRK but also two key structural elements believed to be involved in the recognition of activated GPCRs. The first is the C-terminal extension of the kinase domain, which was observed in all nucleotide-bound GRK1 structures. The second is residues 5-30 of the N terminus, observed in one of the GRK1{center_dot}(Mg{sup 2+}){sub 2} {center_dot}ATP structures. The N terminus was also clearly phosphorylated, leading to the identification of two novel phosphorylation sites by mass spectral analysis. Co-localization of the N terminus and the C-terminal extension near the hinge of the kinase domain suggests that activated GPCRs stimulate kinase activity by binding to this region to facilitate full closure of the kinase domain.

  2. Synergistic Sensory Platform: Robotic Nurse

    Directory of Open Access Journals (Sweden)

    Dale Wick

    2013-05-01

    Full Text Available This paper presents the concept, structural design and implementation of components of a multifunctional sensory network, consisting of a Mobile Robotic Platform (MRP and stationary multifunctional sensors, which are wirelessly communicating with the MRP. Each section provides the review of the principles of operation and the network components’ practical implementation. The analysis is focused on the structure of the robotic platform, sensory network and electronics and on the methods of the environment monitoring and data processing algorithms that provide maximal reliability, flexibility and stable operability of the system. The main aim of this project is the development of the Robotic Nurse (RN—a 24/7 robotic helper for the hospital nurse personnel. To support long-lasting autonomic operation of the platform, all mechanical, electronic and photonic components were designed to provide minimal weight, size and power consumption, while still providing high operational efficiency, accuracy of measurements and adequateness of the sensor response. The stationary sensors serve as the remote “eyes, ears and noses” of the main MRP. After data acquisition, processing and analysing, the robot activates the mobile platform or specific sensors and cameras. The cross-use of data received from sensors of different types provides high reliability of the system. The key RN capabilities are simultaneous monitoring of physical conditions of a large number of patients and alarming in case of an emergency. The robotic platform Nav-2 exploits innovative principles of any-direction motion with omni-wheels, navigation and environment analysis. It includes an innovative mini-laser, the absorption spectrum analyser and a portable, extremely high signal-to-noise ratio spectrometer with two-dimensional detector array.

  3. Multisensory integration, sensory substitution and visual rehabilitation

    DEFF Research Database (Denmark)

    Proulx, Michael J; Ptito, Maurice; Amedi, Amir

    2014-01-01

    Sensory substitution has advanced remarkably over the past 35 years since first introduced to the scientific literature by Paul Bach-y-Rita. In this issue dedicated to his memory, we describe a collection of reviews that assess the current state of neuroscience research on sensory substitution, v......, visual rehabilitation, and multisensory processes....

  4. Sensory neuropathy in two Border collie puppies.

    Science.gov (United States)

    Vermeersch, K; Van Ham, L; Braund, K G; Bhatti, S; Tshamala, M; Chiers, K; Schrauwen, E

    2005-06-01

    A peripheral sensory neuropathy was diagnosed in two Border collie puppies. Neurological, electrophysiological and histopathological examinations suggested a purely sensory neuropathy with mainly distal involvement. Urinary incontinence was observed in one of the puppies and histological examination of the vagus nerve revealed degenerative changes. An inherited disorder was suspected. PMID:15971901

  5. Poisoning by organophosphorus insecticides and sensory neuropathy

    OpenAIRE

    Moretto, A; M. Lotti

    1998-01-01

    OBJECTIVES—Poisoning by organophosphate insecticides causes cholinergic toxicity. Organophosphate induced delayed polyneuropathy (OPIDP) is a sensory-motor distal axonopathy which usually occurs after ingestion of large doses of certain organophosphate insecticides and has so far only been reported in patients with preceding cholinergic toxicity. Surprisingly, it was recently reported by other authors that an exclusively sensory neuropathy developed in eight patients afte...

  6. Nicotinic Acetylcholine Receptors in Sensory Cortex

    Science.gov (United States)

    Metherate, Raju

    2004-01-01

    Acetylcholine release in sensory neocortex contributes to higher-order sensory function, in part by activating nicotinic acetylcholine receptors (nAChRs). Molecular studies have revealed a bewildering array of nAChR subtypes and cellular actions; however, there is some consensus emerging about the major nAChR subtypes and their functions in…

  7. ASIC3 channels in multimodal sensory perception.

    Science.gov (United States)

    Li, Wei-Guang; Xu, Tian-Le

    2011-01-19

    Acid-sensing ion channels (ASICs), which are members of the sodium-selective cation channels belonging to the epithelial sodium channel/degenerin (ENaC/DEG) family, act as membrane-bound receptors for extracellular protons as well as nonproton ligands. At least five ASIC subunits have been identified in mammalian neurons, which form both homotrimeric and heterotrimeric channels. The highly proton sensitive ASIC3 channels are predominantly distributed in peripheral sensory neurons, correlating with their roles in multimodal sensory perception, including nociception, mechanosensation, and chemosensation. Different from other ASIC subunit composing ion channels, ASIC3 channels can mediate a sustained window current in response to mild extracellular acidosis (pH 7.3-6.7), which often occurs accompanied by many sensory stimuli. Furthermore, recent evidence indicates that the sustained component of ASIC3 currents can be enhanced by nonproton ligands including the endogenous metabolite agmatine. In this review, we first summarize the growing body of evidence for the involvement of ASIC3 channels in multimodal sensory perception and then discuss the potential mechanisms underlying ASIC3 activation and mediation of sensory perception, with a special emphasis on its role in nociception. We conclude that ASIC3 activation and modulation by diverse sensory stimuli represent a new avenue for understanding the role of ASIC3 channels in sensory perception. Furthermore, the emerging implications of ASIC3 channels in multiple sensory dysfunctions including nociception allow the development of new pharmacotherapy. PMID:22778854

  8. Measuring Sensory Reactivity in Autism Spectrum Disorder: Application and Simplification of a Clinician-Administered Sensory Observation Scale

    Science.gov (United States)

    Tavassoli, Teresa; Bellesheim, Katherine; Siper, Paige M.; Wang, A. Ting; Halpern, Danielle; Gorenstein, Michelle; Grodberg, David; Kolevzon, Alexander; Buxbaum, Joseph D.

    2016-01-01

    Sensory reactivity is a new DSM-5 criterion for autism spectrum disorder (ASD). The current study aims to validate a clinician-administered sensory observation in ASD, the Sensory Processing Scale Assessment (SPS). The SPS and the Short Sensory Profile (SSP) parent-report were used to measure sensory reactivity in children with ASD (n = 35) and…

  9. Sensory characteristics of different cod products

    DEFF Research Database (Denmark)

    Sveinsdottir, K.; Martinsdottir, E.; Hyldig, Grethe;

    2010-01-01

    Sensory characteristics of cod products available to consumers were analyzed, and different ways to analyze sensory results were viewed. Ten cod samples of different origin (wild and farmed cod), storage time (short and extended) and storage method (stored fresh, frozen or packed in modified...... the products, and principal component analysis provided an overview of the differences and similarities between the products with regard to sensory characteristics. Farmed cod had different sensory characteristics compared with wild cod, such as more meat flavor, and rubbery and meaty texture. Different...... to be more applicable for studying results of extensive data sets by handling missing values and estimating the significance of sensory attributes. The practical use of the paper is also a quantitative descriptive analysis vocabulary, which may be used as a basis for other studies with cod. It may also...

  10. Genetics Home Reference: hereditary sensory neuropathy type IA

    Science.gov (United States)

    ... Health Conditions hereditary sensory neuropathy type IA hereditary sensory neuropathy type IA Enable Javascript to view the ... Download PDF Open All Close All Description Hereditary sensory neuropathy type IA is a condition characterized by ...

  11. in-silico analysis suggests alterations in the function of XisA protein as a possible mechanism of butachlor toxicity in the nitrogen fixing cyanobacterium Anabaena sp. PCC 7120.

    Science.gov (United States)

    Singh, Shilpi; Singh, Prem Pal

    2013-01-01

    Butachlor, a commonly used herbicide adversely affects the nitrogen fixing capability of Anabaena, an acclaimed nitrogen fixer in the Indian paddy fields. The nitrogen fixation in Anabaena is triggered by the excision of nifD element by xisA gene leading to rearrangement of nifD forming nifHDK operon in the heterocyst of Anabaena sp. PCC7120. Functional elucidation adjudged through in-silico analysis revealed that xisA belongs to integrase family of tyrosine recombinase. The predicted functional partners with XisA protein that have shown cooccurence with this protein in a network are mainly hypothetical proteins with unknown functions except psaK1 whose exact function in photosystem I is not yet known. The focus of this study was to find out the relation between XisA and butachlor using in-silico approaches. The XisA protein was modeled and its active sites were identified. Docking studies revealed that butachlor binds at the active site of XisA protein hampering its excision ability vis-à-vis nif genes in Anabaena sp. PCC7120. This study reveals that butachlor is not directly involved in hampering the nitrogen fixing ability of Anabaena sp. PCC7120 but by arresting the excision ability of XisA protein necessary for the functioning of nif gene and nitrogen fixation.

  12. 视紫红质和Peripherin/RDS基因在视网膜色素变性家系中的突变检测%Mutation of rhodopsin and peripherin/rhodopsin genes in a family with retinitis pigmentosa

    Institute of Scientific and Technical Information of China (English)

    章雪敏; 刘铁城; 金鑫; 张宝全; 徐华

    2012-01-01

    目的 对一常染色体显性视网膜色素变性(autosomal dominant retinitis pigmentosa,adRP) 家系进行视紫红质基因(rhodopsin,RHO)、盘膜边缘蛋白/ 视网膜变性慢基因(Peripherin/retinal degeneration slow,Peripherin/RDS)、视杆外节盘膜蛋白1 基因(retinal outer segment membrane protein 1,ROM1)、神经视网膜亮氨酸拉链基因(neural retinal leucine zipper,NRL) 和视锥杆细胞同源盒基(cone-rod homeobox-containing gene,CRX) 基因的突变检测.方法 采集一连续3 代发病的adRP 家系28 名成员外周血,提取基因组DNA,采用聚合酶链反应(polymerase chain reaction,PCR) 和直接测序技术,对RHO、Peripherin/RDS、ROM1、NRL 和CRX 基因进行检测,结果与标准核酸序列进行比对和分析.结果 该家系成员在RHO、Peripherin/RDS、ROM1、NRL 和CRX 基因中未发现致病突变,但是在Peripherin/RDS 基因第1 外显子和第3 外显子编码区发现4 处单核苷酸改变.结论 该家系在RHO、Peripherin/RDS、ROM1、NRL 和CRX 基因中未检测到致病突变,Peripherin/RDS 基因外显子中4 处单核苷酸改变属于单核苷酸多态性(single nucleotide polymorphisms,SNPs).%Objective To detect the mutations of rhodopsin(RDS), peripherin/RDS, retinal outer segment membrane protein 1(ROM1), neural retinal leucine(NRL) zipper and cone-rod homeobox-containing(CRX) genes in a family with retinitis pigmentosa(RP). Methods Peripheral blood samples were taken from 28 members of a family with autosomal dominant retinitis pigmentosa(adRP) to isolate genomic DNA. RHO, peripherin/RDS, ROM1, NRL and CRX genes were detected by PCR and direct sequencing respectively and compared with the standard nucleic acid sequences. Results No pathogenic mutation of RHO, peripherin/RDS, ROM1, NRL and CRX genes was detected in the family members. However, single nucleotide polymorphisms(SNP) were detected in exons 1 and 3 coding areas of the peripherin/RDS gene. Conclusion No pathogenic mutation of

  13. 无机盐诱导鱼腥藻 595 (Anabaena sp.595)的细胞学效应%The Cellular Effect of Anabaena sp.595 Induced by Inorganic Salts

    Institute of Scientific and Technical Information of China (English)

    吴红艳; 赵以军; 郭厚良; 张婷; 吴涛

    2003-01-01

    鱼腥藻 595 (Anabaena sp. 595)在0.05 mol/L钾、钠、铵的盐酸盐、硝酸盐、硫酸盐和磷酸盐的诱导下,2 d后即出现显著的细胞学效应:细胞体积增大,明显液泡化;少数细胞发生横向和不均等分裂;藻丝片段化,异形胞分化率相对提高.其中,铵盐培养的藻丝细胞内出现特异的浓缩颗粒状区域.钙盐、镁盐也诱导类似细胞学变化,但作用较弱.在含0.1 mol/L NaCl的培养基中长期培养,细胞出现周期性分化行为,开始细胞膨大并液泡化,以后色素质重新充满细胞,液泡消失,然后细胞分裂至正常细胞大小,成为接近正常的藻丝,但接着又膨大液泡化,如此进入新的周期过程.

  14. Understanding the sensory irregularities of esophageal disease.

    Science.gov (United States)

    Farmer, Adam D; Brock, Christina; Frøkjaer, Jens Brøndum; Gregersen, Hans; Khan, Sheeba; Lelic, Dina; Lottrup, Christian; Drewes, Asbjørn Mohr

    2016-08-01

    Symptoms relating to esophageal sensory abnormalities can be encountered in the clinical environment. Such sensory abnormalities may be present in demonstrable disease, such as erosive esophagitis, and in the ostensibly normal esophagus, such as non-erosive reflux disease or functional chest pain. In this review, the authors discuss esophageal sensation and the esophageal pain system. In addition, the authors provide a primer concerning the techniques that are available for investigating the autonomic nervous system, neuroimaging and neurophysiology of esophageal sensory function. Such technological advances, whilst not readily available in the clinic may facilitate the stratification and individualization of therapy in disorders of esophageal sensation in the future. PMID:26890720

  15. Sensory Marketing:Designing Pleasurable Products

    Institute of Scientific and Technical Information of China (English)

    Lageat Thierry

    2004-01-01

    Luxury products, household appliances, cosmetics and products for the general public all use the techniques of sensory marketing in the very first phases of conception to specify or give a distinct character to the way they are perceived. Creating the visio-tactile qualities of a mobile phone or dashboard, designing the acoustics used in a lipstick tube closure: these considerations offer industry a way of managing and mastering the sensorial identity which will set their products apart from those of their competitors. Sensory marketing is based upon the objective definition, the analysis and the mastering of the qualitative characteristics of the object to be conceived.

  16. 视紫红质基因突变相关的视网膜色素变性%Retinitis pigmentosa associated rhodopsin gene mutants

    Institute of Scientific and Technical Information of China (English)

    江海波; 夏晓波

    2014-01-01

    视紫红质基因突变是导致视网膜色素变性最常见的原因,占常染色体显性遗传视网膜色素变性的25%~30%.在视网膜色素变性中已发现的视紫红质基因突变多达150余种.视紫红质基因突变可引起内质网应激、蛋白聚集、膜受体异常激活,从而导致视网膜色素变性.P23H和T17M等突变小鼠转基因模型的建立,为深入探讨视紫红质在视网膜色素变性中的作用,以及为干扰突变基因表达,替换突变基因等潜在治疗策略提供理论依据.%Rhodopsin gene mutant is the most common cause of retinitis pigmentosa(RP),accounting for about 25% to 30% of autosomal dominant retinitis pigmentosa(ADRP).More than 150 different mutations responsible for ADRP have been found.Rhodopsin mutations induce endoplasmic reticulum stress,protein aggregation,abnormal activation of membrane receptors,causing RP.P23H and T17M and other mutant mice of transgenic models were useful for investigating the role of rhodopsin in RP.It will provide a theoretical basis for interfering with the expression of the mutant gene,replacing the mutated gene and other potential therapeutic strategies.

  17. Mechanism of Spectral Tuning Going from Retinal in Vacuo to Bovine Rhodopsin and its Mutants: Multireference ab initio Quantum Mechanics/Molecular Mechanics Studies

    OpenAIRE

    Altun, Ahmet; Yokoyama, Shozo; Morokuma, Keiji

    2008-01-01

    We have investigated photoabsorption spectra of bovine rhodopsin and its mutants (E122Q and E113Q) by hybrid quantum mechanical/molecular mechanical (QM/MM) calculations as well as retinal in vacuo by pure QM calculations, employing multireference (MR) ab initio and TD-B3LYP methods. The sophisticated MR-SORCI+Q and MRCISD+Q methods extrapolated with respect to adopted approximations can reproduce the experimental absorption maxima of retinal very well. The relatively inexpensive MR-DDCI2+Q m...

  18. NLRP3 inflammasome activation drives bystander cone photoreceptor cell death in a P23H rhodopsin model of retinal degeneration.

    Science.gov (United States)

    Viringipurampeer, Ishaq A; Metcalfe, Andrew L; Bashar, Abu E; Sivak, Olena; Yanai, Anat; Mohammadi, Zeinabsadat; Moritz, Orson L; Gregory-Evans, Cheryl Y; Gregory-Evans, Kevin

    2016-04-15

    The molecular signaling leading to cell death in hereditary neurological diseases such as retinal degeneration is incompletely understood. Previous neuroprotective studies have focused on apoptotic pathways; however, incomplete suppression of cell death with apoptosis inhibitors suggests that other mechanisms are at play. Here, we report that different signaling pathways are activated in rod and cone photoreceptors in the P23H rhodopsin mutant rat, a model representing one of the commonest forms of retinal degeneration. Up-regulation of the RIP1/RIP3/DRP1 axis and markedly improved survival with necrostatin-1 treatment highlighted necroptosis as a major cell-death pathway in degenerating rod photoreceptors. Conversely, up-regulation of NLRP3 and caspase-1, expression of mature IL-1β and IL-18 and improved cell survival with N-acetylcysteine treatment suggested that inflammasome activation and pyroptosis was the major cause of cone cell death. This was confirmed by generation of the P23H mutation on an Nlrp3-deficient background, which preserved cone viability. Furthermore, Brilliant Blue G treatment inhibited inflammasome activation, indicating that the 'bystander cell death' phenomenon was mediated through the P2RX7 cell-surface receptor. Here, we identify a new pathway in cones for bystander cell death, a phenomenon important in development and disease in many biological systems. In other retinal degeneration models different cell-death pathways are activated, which suggests that the particular pathways that are triggered are to some extent genotype-specific. This also implies that neuroprotective strategies to limit retinal degeneration need to be customized; thus, different combinations of inhibitors will be needed to target the specific pathways in any given disease. PMID:27008885

  19. Integrated membrane systems incorporating coagulation, activated carbon and ultrafiltration for the removal of toxic cyanobacterial metabolites from Anabaena circinalis.

    Science.gov (United States)

    Dixon, M B; Richard, Y; Ho, L; Chow, C W K; O'Neill, B K; Newcombe, G

    2011-01-01

    The use of integrated membrane systems (a train of treatment processes incorporating one or more membranes) is increasing globally as the technology is very effective for the production of high quality drinking water. In this investigation a laboratory scale integrated membrane system (IMS) featuring coagulation, powdered activated carbon (PAC) and ultrafiltration (UF) was investigated for the removal of an Australian strain of the cyanobacteria Anabaena circinalis and the cyanotoxin it produced. Three coagulants were compared, aluminium chlorohydrate (ACH), aluminium sulphate (alum) and an engineered aluminium coagulant referred to as high performance aluminium chlorohydrate (HPAC). PAC (Acticarb PS1000) was tested to determine adsorption of extracellular saxitoxin. Removal of A. circinalis cells was 100% by UF alone and the removal of cells prior to the membrane by coagulation reduced fouling attributed to algogenic organic material. Alum was the least efficient coagulant for removal of cells while ACH and HPAC were similar. Saxitoxin removal reached a maximum of 80% using ACH and PAC. The UF-IMS was challenged using a natural bloom of A. circinalis that occurred in the Myponga Reservoir in South Australia. PMID:21508543

  20. AhpC (alkyl hydroperoxide reductase) from Anabaena sp. PCC 7120 protects Escherichia coli from multiple abiotic stresses

    International Nuclear Information System (INIS)

    Alkyl hydroperoxide reductase (AhpC) is known to detoxify peroxides and reactive sulfur species (RSS). However, the relationship between its expression and combating of abiotic stresses is still not clear. To investigate this relationship, the genes encoding the alkyl hydroperoxide reductase (ahpC) from Anabaena sp. PCC 7120 were introduced into E. coli using pGEX-5X-2 vector and their possible functions against heat, salt, carbofuron, cadmium, copper and UV-B were analyzed. The transformed E. coli cells registered significantly increase in growth than the control cells under temperature (47 oC), NaCl (6% w/v), carbofuron (0.025 mg ml-1), CdCl2 (4 mM), CuCl2 (1 mM), and UV-B (10 min) exposure. Enhanced expression of ahpC gene as measured by semi-quantitative RT-PCR under aforementioned stresses at different time points demonstrated its role in offering tolerance against multiple abiotic stresses.

  1. Effect of Iron Deficiency on Heterocyst Differentiation and Physiology of the Filamentous Cyanobacterium Anabaena sp. PCC 7120

    Institute of Scientific and Technical Information of China (English)

    XuWen-liang; LiuYong-ding; ZhangCheng-cai

    2003-01-01

    The effect of iron deficiency on heterocyst differentiation and some physiological properties of the filamentous cyanobacterium Anabaena sp. PCC 7120 was investigated. Under moderate iron limitation conditions, achieved by addition of iron chelator 2,2′-Dipyridyl (<80 μmol/L) led to delayed heterocyst differentiation,no heterocyst differentiation was observed under severe iron limitation conditions,when the concentration of 2,2′-Dipyridyl in the medium was more than 100 μmol/L.It seemed that there are certain iron-regulated genes or operons whose function is to control heterocyst development. In addition, iron deficiency impaired the growth.Low-iron cells had a decrease in the quantities of pigment content (chlorophyll and phycocyanin content), the whole cell in vivo absorbance spectra confirmed the decrease, the protein electrophoretic profiles revealed that iron-deficient cells had less protein bands, with the increase of 2,2'-Dipyridyl , the protein bands was more and more less. And differently, iron deficiency also caused an increase of ROS (Reactive Oxygen Species)and SOD activity, it suggests that iron deficiency led to oxidative stress, which uenerallv occured under hiuh-iron conditions.

  2. Effect of Iron Deficiency on Heterocyst Differentiation and Physiology of the Filamentous Cyanobacterium Anabaena sp. PCC 7120

    Institute of Scientific and Technical Information of China (English)

    Zhang Cheng-cai

    2003-01-01

    The effect of iron deficiency on heterocyst differentiation and some physiological properties of the filamentous cyanobacterium Anabaena sp. PCC 7120was investigated. Under moderate iron limitation conditions, achieved by addition of iron chelator 2,2′-Dipyridyl (<80 μmol/L) led to delayed heterocyst differentiation,no heterocyst differentiation was observed under severe iron limitation conditions,when the concentration of 2,2′-Dipyridyl in the medium was more than 100 μmol/L.It seemed that there are certain iron-regulated genes or operons whose function is to control heterocyst development. In addition, iron deficiency impaired the growth.Low-iron cells had a decrease in the quantities of pigment content (chlorophyll and phycocyanin content), the whole cell in vivo absorbance spectra confirmed the de crease, the protein electrophoretic profiles revealed that iron-deficient cells had less protein bands, with the increase of 2,2′ Dipyridyl , the protein bands was more and more less. And differently, iron deficiency also caused an increase of ROS (Reactive Oxygen Species)and SOD activity, it suggests that iron deficiency led to oxidative stress, which generally occured under high-iron conditions.

  3. Optimising water treatment practices for the removal of Anabaena circinalis and its associated metabolites, geosmin and saxitoxins.

    Science.gov (United States)

    Ho, Lionel; Tanis-Plant, Paul; Kayal, Nawal; Slyman, Najwa; Newcombe, Gayle

    2009-12-01

    The cyanobacterium Anabaena circinalis has the ability to co-produce geosmin and saxitoxins, compounds which can compromise the quality of drinking water. This study provides pertinent information in optimising water treatment practices for the removal of geosmin and saxitoxins. In particular, it demonstrates that pre-oxidation using potassium permanganate could be applied at the head of water treatment plants without releasing intracellular geosmin and saxitoxins from A. circinalis. Furthermore, powdered activated carbon (PAC) was shown to be an effective treatment barrier for the removal of extracellular (dissolved) geosmin and saxitoxins, with similar adsorption trends of both compounds. The relative removal of the saxitoxins compared with geosmin was determined to be 0.84 +/- 0.27, which implies that saxitoxin removal with PAC can be estimated to be approximately 60 to 100% of the removal of geosmin under equivalent conditions. Chlorine was shown to be effective for the oxidation of the saxitoxins with CT values of approximately 30 mg min l(-1) required for greater than 90% destruction of the saxitoxins.

  4. Light energy conversion into H{sub 2} by Anabaena variabilis mutant PK84 dense cultures exposed to nitrogen limitations

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jianguo [Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071 (China); Bukatin, Vyacheslav E.; Tsygankov, Anatoly A. [Institute of Basic Biological Problem, Russia Academy of Sciences, Pushchino, Moscow Region 142292 (Russian Federation)

    2006-09-15

    Concentrated cultures (25-86mgChl al{sup -1}) of Anabaena variabilis PK84 were incubated under 99% Ar+1% CO{sub 2} atmosphere in the photobioreactor made of coaxial cylinders. Under illumination equal to 353{mu}Em{sup -2}s{sup -1} they produced hydrogen with the rate more than 20mll{sup -1}h{sup -1} for several days. The efficiency of light energy conversion into H{sub 2} was approx. 1% and did not depend significantly on initial Chl a concentration. H{sub 2}/O{sub 2} ratio reached 41.5% of theoretical value for water photolysis. Data indicate that dense cultures might be used for outdoor systems under direct sun light. Supra-optimal temperatures 36{sup |}C were not harmful for cultures even for 2 days period. Short-term incubation of cultures under 36{sup |}C even increased H{sub 2} production rate and efficiency of light energy bioconversion by 1.25 times. (author)

  5. AhpC (alkyl hydroperoxide reductase) from Anabaena sp. PCC 7120 protects Escherichia coli from multiple abiotic stresses

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Yogesh; Chaurasia, Neha [Molecular Biology Section, Laboratory of Algal Biology, Center of Advanced Study in Botany, Banaras Hindu University, Varanasi-221005 (India); Rai, Lal Chand, E-mail: lcraibhu@gmail.com [Molecular Biology Section, Laboratory of Algal Biology, Center of Advanced Study in Botany, Banaras Hindu University, Varanasi-221005 (India)

    2009-04-17

    Alkyl hydroperoxide reductase (AhpC) is known to detoxify peroxides and reactive sulfur species (RSS). However, the relationship between its expression and combating of abiotic stresses is still not clear. To investigate this relationship, the genes encoding the alkyl hydroperoxide reductase (ahpC) from Anabaena sp. PCC 7120 were introduced into E. coli using pGEX-5X-2 vector and their possible functions against heat, salt, carbofuron, cadmium, copper and UV-B were analyzed. The transformed E. coli cells registered significantly increase in growth than the control cells under temperature (47 {sup o}C), NaCl (6% w/v), carbofuron (0.025 mg ml{sup -1}), CdCl{sub 2} (4 mM), CuCl{sub 2} (1 mM), and UV-B (10 min) exposure. Enhanced expression of ahpC gene as measured by semi-quantitative RT-PCR under aforementioned stresses at different time points demonstrated its role in offering tolerance against multiple abiotic stresses.

  6. In silico analysis and experimental validation of lipoprotein and novel Tat signal peptides processing in Anabaena sp. PCC7120.

    Science.gov (United States)

    Kumari, Sonika; Chaurasia, Akhilesh Kumar

    2015-12-01

    Signal peptide (SP) plays a pivotal role in protein translocation. Lipoprotein- and twin arginine translocase (Tat) dependent signal peptides were studied in All3087, a homolog of competence protein of Synechocystis PCC6803 and in two putative alkaline phosphatases (ALPs, Alr2234 and Alr4976), respectively. In silico analysis of All3087 is shown to possess the characteristics feature of competence proteins such as helix-hairpin-helix, N and C-terminal HKD endonuclease domain, calcium binding domain and N-terminal lipoprotein signal peptide. The SP recognition-cleavage site in All3087 was predicted (AIA-AC) using SignalP while further in-depth analysis using Pred-Lipo and WebLogo analysis for consensus sequence showed it as IAA-C. Activities of putative ALPs were confirmed by heterologous overexpression, activity assessment and zymogram analysis. ALP activity in Anabaena remains cell bound in log-phase, but during late log/stationary phase, an enhanced ALP activity was detected in extracellular milieu. The enhancement of ALP activity during stationary phase was not only due to inorganic phosphate limitation but also contributed by the presence of novel bipartite Tat-SP. The Tat signal transported the folded active ALPs to the membrane, followed by anchoring into the membrane and successive cleavage enabling transportation of the ALPs to the extracellular milieu, because of bipartite architecture and processing of transit Tat-SP.

  7. The FurA regulon in Anabaena sp. PCC 7120: in silico prediction and experimental validation of novel target genes.

    Science.gov (United States)

    González, Andrés; Angarica, Vladimir Espinosa; Sancho, Javier; Fillat, María F

    2014-04-01

    In the filamentous cyanobacterium Anabaena sp. PCC 7120, the ferric uptake regulator FurA functions as a global transcriptional regulator. Despite several analyses have focused on elucidating the FurA-regulatory network, the number of target genes described for this essential transcription factor is limited to a handful of examples. In this article, we combine an in silico genome-wide predictive approach with experimental determinations to better define the FurA regulon. Predicted FurA-binding sites were identified upstream of 215 genes belonging to diverse functional categories including iron homeostasis, photosynthesis and respiration, heterocyst differentiation, oxidative stress defence and light-dependent signal transduction mechanisms, among others. The probabilistic model proved to be effective at discerning FurA boxes from non-cognate sequences, while subsequent electrophoretic mobility shift assay experiments confirmed the in vitro specific binding of FurA to at least 20 selected predicted targets. Gene-expression analyses further supported the dual role of FurA as transcriptional modulator that can act both as repressor and as activator. In either role, the in vitro affinity of the protein to its target sequences is strongly dependent on metal co-regulator and reducing conditions, suggesting that FurA couples in vivo iron homeostasis and the response to oxidative stress to major physiological processes in cyanobacteria.

  8. Responses of a rice-field cyanobacterium Anabaena siamensis TISTR-8012 upon exposure to PAR and UV radiation.

    Science.gov (United States)

    Rastogi, Rajesh P; Incharoensakdi, Aran; Madamwar, Datta

    2014-10-15

    The effects of PAR and UV radiation and subsequent responses of certain antioxidant enzymatic and non-enzymatic defense systems were studied in a rice field cyanobacterium Anabaena siamensis TISTR 8012. UV radiation resulted in a decline in growth accompanied by a decrease in chlorophyll a and photosynthetic efficiency. Exposure of cells to UV radiation significantly affected the differentiation of vegetative cells into heterocysts or akinetes. UV-B radiation caused the fragmentation of the cyanobacterial filaments conceivably due to the observed oxidative stress. A significant increase of reactive oxygen species in vivo and DNA strand breaks were observed in UV-B exposed cells followed by those under UV-A and PAR radiation, respectively. The UV-induced oxidative damage was alleviated due to an induction of antioxidant enzymatic/non-enzymatic defense systems. In response to UV irradiation, the studied cyanobacterium exhibited a significant increase in antioxidative enzyme activities of superoxide dismutase, catalase and peroxidase. Moreover, the cyanobacterium also synthesized some UV-absorbing/screening substances. HPLC coupled with a PDA detector revealed the presence of three compounds with UV-absorption maxima at 326, 331 and 345 nm. The induction of the biosynthesis of these UV-absorbing compounds was found under both PAR and UV radiation, thus suggesting their possible function as an active photoprotectant.

  9. Experimental measurements of the radiation characteristics of Anabaena variabilis ATCC 29413-U and Rhodobacter sphaeroides ATCC 49419

    Energy Technology Data Exchange (ETDEWEB)

    Berberoglu, Halil; Pilon, Laurent [Mechanical and Aerospace Engineering Department, Henry Samueli School of Engineering and Applied Science, University of California Los Angeles, Los Angeles, CA 90095 (United States)

    2007-12-15

    The objective of this study is to experimentally measure the radiation characteristics of hydrogen producing microorganisms. Special attention is paid to the filamentous cyanobacteria Anabaena variabilis ATCC 29413-U and the unicellular purple bacteria Rhodobacter sphaeroides ATCC 49419 two of the widely studied photobiological hydrogen producers. The extinction and absorption coefficients are measured in the spectral range from 300 to 1300 nm using a spectrophotometer with and without an integrating sphere. Moreover, a nephelometer has been constructed to measure the scattering phase function of the microorganisms at 632.8 nm. The data are used to recover the mass specific absorption, scattering, and extinction cross-sections, the single scattering albedo, and the scattering phase function of the microorganisms. The scattering phase functions of both microorganisms were peaked strongly in the forward direction as expected from their size parameter and shape. The results reported in this study can be used with the radiative transport equation (RTE) to accurately predict and optimize light transport in photobioreactors for photobiological hydrogen production. Finally, the results show that absorption cross-sections of A. variabilis and R. sphaeroides have peaks that do not overlap but rather enlarge the spectral width of the absorption cross-section of a potential symbiotic culture promising more efficient utilization of solar radiation from light transfer point of view. (author)

  10. Comparative proteomics reveals that a saxitoxin-producing and a nontoxic strain of Anabaena circinalis are two different ecotypes.

    Science.gov (United States)

    D'Agostino, Paul M; Song, Xiaomin; Neilan, Brett A; Moffitt, Michelle C

    2014-03-01

    In Australia, saxitoxin production is restricted to the cyanobacterial species Anabaena circinalis and is strain-dependent. We aimed to characterize a saxitoxin-producing and nontoxic strain of A. circinalis at the proteomic level using iTRAQ. Seven proteins putatively involved in saxitoxin biosynthesis were identified within our iTRAQ experiment for the first time. The proteomic profile of the toxic A. circinalis was significantly different from the nontoxic strain, indicating that each is likely to inhabit a unique ecological niche. Under control growth conditions, the saxitoxin-producing A. circinalis displayed a higher abundance of photosynthetic, carbon fixation and nitrogen metabolic proteins. Differential abundance of these proteins suggests a higher intracellular C:N ratio and a higher concentration of intracellular 2-oxoglutarate in our toxic strain compared with the nontoxic strain. This may be a novel site for posttranslational regulation because saxitoxin biosynthesis putatively requires a 2-oxoglutarate-dependent dioxygenase. The nontoxic A. circinalis was more abundant in proteins, indicating cellular stress. Overall, our study has provided the first insight into fundamental differences between a toxic and nontoxic strain of A. circinalis, indicating that they are distinct ecotypes.

  11. Cell envelope components influencing filament length in the heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120.

    Science.gov (United States)

    Burnat, Mireia; Schleiff, Enrico; Flores, Enrique

    2014-12-01

    Heterocyst-forming cyanobacteria grow as chains of cells (known as trichomes or filaments) that can be hundreds of cells long. The filament consists of individual cells surrounded by a cytoplasmic membrane and peptidoglycan layers. The cells, however, share a continuous outer membrane, and septal proteins, such as SepJ, are important for cell-cell contact and filament formation. Here, we addressed a possible role of cell envelope components in filamentation, the process of producing and maintaining filaments, in the model cyanobacterium Anabaena sp. strain PCC 7120. We studied filament length and the response of the filaments to mechanical fragmentation in a number of strains with mutations in genes encoding cell envelope components. Previously published peptidoglycan- and outer membrane-related gene mutants and strains with mutations in two genes (all5045 and alr0718) encoding class B penicillin-binding proteins isolated in this work were used. Our results show that filament length is affected in most cell envelope mutants, but the filaments of alr5045 and alr2270 gene mutants were particularly fragmented. All5045 is a dd-transpeptidase involved in peptidoglycan elongation during cell growth, and Alr2270 is an enzyme involved in the biosynthesis of lipid A, a key component of lipopolysaccharide. These results indicate that both components of the cell envelope, the murein sacculus and the outer membrane, influence filamentation. As deduced from the filament fragmentation phenotypes of their mutants, however, none of these elements is as important for filamentation as the septal protein SepJ.

  12. Heterocyst-specific flavodiiron protein Flv3B enables oxic diazotrophic growth of the filamentous cyanobacterium Anabaena sp. PCC 7120.

    Science.gov (United States)

    Ermakova, Maria; Battchikova, Natalia; Richaud, Pierre; Leino, Hannu; Kosourov, Sergey; Isojärvi, Janne; Peltier, Gilles; Flores, Enrique; Cournac, Laurent; Allahverdiyeva, Yagut; Aro, Eva-Mari

    2014-07-29

    Flavodiiron proteins are known to have crucial and specific roles in photoprotection of photosystems I and II in cyanobacteria. The filamentous, heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120 contains, besides the four flavodiiron proteins Flv1A, Flv2, Flv3A, and Flv4 present in vegetative cells, two heterocyst-specific flavodiiron proteins, Flv1B and Flv3B. Here, we demonstrate that Flv3B is responsible for light-induced O2 uptake in heterocysts, and that the absence of the Flv3B protein severely compromises the growth of filaments in oxic, but not in microoxic, conditions. It is further demonstrated that Flv3B-mediated photosynthetic O2 uptake has a distinct role in heterocysts which cannot be substituted by respiratory O2 uptake in the protection of nitrogenase from oxidative damage and, thus, in an efficient provision of nitrogen to filaments. In line with this conclusion, the Δflv3B strain has reduced amounts of nitrogenase NifHDK subunits and shows multiple symptoms of nitrogen deficiency in the filaments. The apparent imbalance of cytosolic redox state in Δflv3B heterocysts also has a pronounced influence on the amounts of different transcripts and proteins. Therefore, an O2-related mechanism for control of gene expression is suggested to take place in heterocysts.

  13. [Sensory illusions in hang-gliding].

    Science.gov (United States)

    Bousquet, F; Bizeau, A; Resche-Rigon, P; Taillemite, J P; De Rotalier

    1997-01-01

    Sensory illusions in hang-gliding and para-gliding. Hang-gliding and para-gliding are at the moment booming sports. Sensory illusions are physiological phenomena sharing the wrong perception of the pilote's real position in space. These phenomena are very familiar to aeroplane pilotes, they can also be noticed on certain conditions with hang-gliding pilotes. There are many and various sensory illusions, but only illusions of vestibular origin will be dealt with in this article. Vestibular physiology is reminded with the working principle of a semicircular canal. Physiology and laws of physics explain several sensory illusions, especially when the pilote loses his visual landmarks: flying through a cloud, coriolis effect. Also some specific stages of hang-gliding foster those phenomena: spiraling downwards, self-rotation, following an asymetric closing of the parachute, spin on oneself. Therefore a previous briefing for the pilotes seems necessary.

  14. Sensory properties of menthol and smoking topography

    Directory of Open Access Journals (Sweden)

    Hoffman Allison C

    2011-05-01

    Full Text Available Abstract Although there is a great deal known about menthol as a flavoring agent in foods and confections, less is known about the particular sensory properties of menthol cigarette smoke. Similarly, although smoking topography (the unique way an individual smokes a cigarette has been well studied using non-menthol cigarettes, there is relatively less known about how menthol affects smoking behavior. The objective of this review is to assess the sensory properties of menthol tobacco smoke, and smoking topography associated with menthol cigarettes. The cooling, analgesic, taste, and respiratory effects of menthol are well established, and studies have indicated that menthol’s sensory attributes can have an influence on the positive, or rewarding, properties associated smoking, including ratings of satisfaction, taste, perceived smoothness, and perceived irritation. Despite these sensory properties, the data regarding menthol’s effect on smoking topography are inconsistent. Many of the topography studies have limitations due to various methodological issues.

  15. Heterogeneous sensory processing in persistent postherniotomy pain

    DEFF Research Database (Denmark)

    Aasvang, Eske Kvanner; Brandsborg, Birgitte; Jensen, Troels Staehelin;

    2010-01-01

    Previous studies on sensory function in persistent postherniotomy pain (PPP) have only identified pressure pain threshold to be significantly different from pain-free patients despite several patients reporting cutaneous pain and wind-up phenomena. However the limited number of patients studied...... hinders evaluation of potential subgroups for further investigation and/or treatment allocation. Thus we used a standardized QST protocol to evaluate sensory functions in PPP and pain-free control patients, to allow individual sensory characterization of pain patients from calculated Z-values. Seventy PPP...... patients with pain related impairment of everyday activities were compared with normative data from 40 pain-free postherniotomy patients operated>1 year previously. Z-values showed a large variation in sensory disturbances ranging from pronounced detection hypoesthesia (Z=6, cold) to pain hyperalgesia (Z...

  16. Positive Effect of Noises on Sensory Systems

    Institute of Scientific and Technical Information of China (English)

    Jun Liu; Guang Li

    2004-01-01

    Stochastic resonance phenomenon in the biological sensory systems has been studied through the signal detection theories and the psychophysical experiments. In this paper, sensory systems are considered as a threshold detector including the receiver part and the classifier part. Compared with conventional models regarding the receiver part of sensory system as a linear or single non-linear system, a summing network was constructed by MacCulloch-Pitts neurons to simulate the receiver part. The simulation results show that the relevant index of the detectability of signal exhibit the stochastic resonance behaviours. The psychophysical experiments were carried out through the 2IFC (two interval two alternative forced choice) method. The experimental results qualitatively verify the conclusion in accordance with the theoretical model.These works give a proof that stochastic resonance is not only epiphenonmenon in sensory systems.

  17. Sensory stimulation activates both motor and sensory components of the swallowing system

    OpenAIRE

    Lowell, Soren Y.; Poletto, Christopher J.; Knorr-Chung, Bethany R.; Reynolds, Richard C.; Simonyan, Kristina; Ludlow, Christy L.

    2008-01-01

    Volitional swallowing in humans involves the coordination of both brainstem and cerebral swallowing control regions. Peripheral sensory inputs are necessary for safe and efficient swallowing, and their importance to the patterned components of swallowing has been demonstrated. However, the role of sensory inputs to the cerebral system during volitional swallowing is less clear. We used four conditions applied during functional magnetic resonance imaging to differentiate between sensory, motor...

  18. Sensory marketing strategies. Case study: Oltenia

    OpenAIRE

    Aurelia-Felicia STĂNCIOIU; Mihail-Cristian DIŢOIU; Nicolae TEODORESCU; Lucian-Florin ONIŞOR; Ion PÂRGARU

    2014-01-01

    From the perspective of the tourist, sensory marketing strategies may result in an experience improvement which leads, in time, to acquiring a positive destination image, and, from the perspective of the destination, to furthering its harmonious development. Even though it appears that sensory marketing strategies can be considered as alternatives for marketing strategies, they actually are complementary, and their objective (increasing product quality by “turning to the beginning”, where per...

  19. The Etiological Spectrum of Acute Sensory Myelitis

    OpenAIRE

    Hyun, Jae-Won; Kim, Jee Young; Choi, Kyung Gyu; Kim, Ho Jin; Park, Kee Duk

    2015-01-01

    Background and Purpose Acute myelitis patients exhibiting only sensory deficits upon initial presentation are not commonly encountered in clinical practice, but they definitely exist. Since acute sensory myelitis has not been investigated previously, this study evaluated the etiological spectrum of the condition with the aim of describing the clinical characteristics thereof. Methods Patients with acute myelitis who presented at the Ewha Womans University Medical Center (during 1999-2012) and...

  20. Characterization of cutaneous and articular sensory neurons

    OpenAIRE

    da Silva Serra, I.; Husson, Z.; Bartlett, J.D.; Smith, E.S.J.

    2016-01-01

    Background A wide range of stimuli can activate sensory neurons and neurons innervating specific tissues often have distinct properties. Here, we used retrograde tracing to identify sensory neurons innervating the hind paw skin (cutaneous) and ankle/knee joints (articular), and combined immunohistochemistry and electrophysiology analysis to determine the neurochemical phenotype of cutaneous and articular neurons, as well as their electrical and chemical excitability. Results Immunohistoche...

  1. P50 sensory gating in infants.

    Science.gov (United States)

    Ross, Anne Spencer; Hunter, Sharon Kay; Groth, Mark A; Ross, Randal Glenn

    2013-12-26

    Attentional deficits are common in a variety of neuropsychiatric disorders including attention deficit-hyperactivity disorder, autism, bipolar mood disorder, and schizophrenia. There has been increasing interest in the neurodevelopmental components of these attentional deficits; neurodevelopmental meaning that while the deficits become clinically prominent in childhood or adulthood, the deficits are the results of problems in brain development that begin in infancy or even prenatally. Despite this interest, there are few methods for assessing attention very early in infancy. This report focuses on one method, infant auditory P50 sensory gating. Attention has several components. One of the earliest components of attention, termed sensory gating, allows the brain to tune out repetitive, noninformative sensory information. Auditory P50 sensory gating refers to one task designed to measure sensory gating using changes in EEG. When identical auditory stimuli are presented 500 ms apart, the evoked response (change in the EEG associated with the processing of the click) to the second stimulus is generally reduced relative to the response to the first stimulus (i.e. the response is "gated"). When response to the second stimulus is not reduced, this is considered a poor sensory gating, is reflective of impaired cerebral inhibition, and is correlated with attentional deficits. Because the auditory P50 sensory gating task is passive, it is of potential utility in the study of young infants and may provide a window into the developmental time course of attentional deficits in a variety of neuropsychiatric disorders. The goal of this presentation is to describe the methodology for assessing infant auditory P50 sensory gating, a methodology adapted from those used in studies of adult populations.

  2. Sensory and Foaming Properties of Sparkling Cider

    OpenAIRE

    Picinelli, A.M. (Anna); Fernández, Norman; Rodríguez, Roberto; Suárez, Belén

    2012-01-01

    The effect of yeast strain and aging time on the chemical composition, analytical, and sensory foam properties of sparkling ciders has been studied. The analytical foam parameters (foamability, HM; Bikerman coefficient, ∑; and foam stability time, Ts) were significantly influenced by aging and yeast strain. The sensory attributes (initial foam, foam area persistence, bubble size, foam collar, and overall foam quality) improved with aging time. Likewise, the yeast strain positively influenced ...

  3. Visualizing Multi-Way Sensory Data

    OpenAIRE

    2008-01-01

    This thesis is part of a project called PanelCheck which involves creation of a software tool. A statistical method called Manhattan plot has been implemented in this software tool, which is applied for visualization of performance of assessors from sensory panels. There is background on the methodology of the Manhattan plot and an example on usage is presented using sensory data of a cheese experiment. There is information about the software packages used for creation of the application and ...

  4. Dopamine gates sensory representations in cortex

    OpenAIRE

    Eshel, Neir; Tian, Ju

    2014-01-01

    The prefrontal cortex (PFC) maintains information about relevant sensory stimuli, in a process thought to rely on dopamine release. In a recent paper, Jacob et al. (J Neurosci 33: 13724–13734, 2013) demonstrated one way in which dopamine might facilitate this process. The authors recorded from PFC neurons in monkeys during local application of dopamine. They found that dopamine increases the gain of sensory-evoked responses in putative pyramidal neurons in PFC, potentially by inhibiting local...

  5. A Computational Theory for Sensory Adaptation

    OpenAIRE

    Lee, Alan Lap Fai

    2013-01-01

    Our sensory system consists of multiple processing stages, and its response characteristics change based on recent stimulus history. Although much is known about both the hierarchical nature and the adaptability of the sensory system, it remains unclear how this multilevel neural system adapts to changes in the environment and leads to various perceptual consequences. In my dissertation, I focus on adaptation of the visual motion system. I aim to address the following questions: (I) Can the a...

  6. Exploring Sensory Neuroscience Through Experience and Experiment

    OpenAIRE

    Wyttenbach, Robert A.

    2012-01-01

    Many phenomena that we take for granted are illusions — color and motion on a TV or computer monitor, for example, or the impression of space in a stereo music recording. Even the stable image that we perceive when looking directly at the real world is illusory. One of the important lessons from sensory neuroscience is that our perception of the world is constructed rather than received. Sensory illusions effectively capture student interest, but how do you then move on to substantive discuss...

  7. Sensory processing disorders among substance dependents

    Directory of Open Access Journals (Sweden)

    Batya Engel-Yeger

    2014-08-01

    Full Text Available Purpose: (1 To compare sensory processing patterns as expressed in daily life between substance dependents and typical controls; (2 profile the prevalence of sensory processing disorders (SPD among substance dependents; and (3 examine gender effect on SPD within and between groups. Methods: Two hundred ninety people aged 19-64 participated in this study. The study group included 145 individuals who lived in the community or took part in an outpatient program because of addiction to drugs/alcohol and had been clean for over three months. The control group included 145 individuals who were not exposed to drugs or alcohol on a regular basis and did not suffer from addictive behavior. All participants filled a demographic questionnaire. Those who met the inclusion criteria completed the Adolescent/Adult Sensory Profile (AASP so that their sensory processing patterns could be assessed. Results: When comparing both groups, the study group showed greater sensory sensitivity and significantly higher prevalence of SPD. Significant group/gender interaction was found in regard to sensation seeking. Discussion: SPD among substance dependents may be expressed in daily life by either hypersensitivity or hyposensitivity. The behavioral outcomes reflected by the AASP support neurophysiological manifestations about SPD of substance dependents. The evaluation process of substance dependents should refer to their sensory processing abilities. In case SPD is diagnosed, Occupational Therapy and specific sensory–based interventions should be considered in order to fit the specific needs of individuals and enhance their performance, meaningful participation, and quality of life.

  8. 38 CFR 17.149 - Sensori-neural aids.

    Science.gov (United States)

    2010-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2010-07-01 2010-07-01 false Sensori-neural aids. 17... Prosthetic, Sensory, and Rehabilitative Aids § 17.149 Sensori-neural aids. (a) Notwithstanding any other provision of this part, VA will furnish needed sensori-neural aids (i.e., eyeglasses, contact...

  9. 鱼腥藻PCC7120ntcA基因研究进展%Research Progress of ntcA Gene in Anabaena sp.PCC 7120

    Institute of Scientific and Technical Information of China (English)

    蔡雁; 高宏

    2012-01-01

    Since the first identification of the coded protein by ntcA gene in Anabaena sp. PCC 7120 in 1990, the study had obtained a great achievement, the research achievements mainly focused on the structure, function and mechanism of ntcA gene and its encoding proteins, which provided clues for comprehensively knowing nitrogen metabolism and heterocyst differentiation in Anabaena sp. PCC 7120. The study reviewed the advances of ntcA gene in Anabaena sp. PCC 7120 from the following four aspects: the structure of ntcA gene, the function of its encoding proteins, the mechanism of action and the action range.%自1990年鱼腥藻PCC 7120中ntcA基因编码的蛋白被发现和鉴定以来,对其研究已取得一系列重要进展,其研究成果主要集中于ntcA基因及其编码蛋白的结构、功能及作用机制等方面,为更全面的了解鱼腥藻PCC 7120中的氮代谢和异形胞分化提供了线索.该研究分别从ntcA基因结构、其编码蛋白的功能、作用机制及作用范围等4个方面对鱼腥藻PCC 7120 ntcA基因的研究进展进行了简要综述.

  10. Anabaena sp. mediated bio-oxidation of arsenite to arsenate in synthetic arsenic (III) solution: Process optimization by response surface methodology.

    Science.gov (United States)

    Jana, Animesh; Bhattacharya, Priyankari; Swarnakar, Snehasikta; Majumdar, Swachchha; Ghosh, Sourja

    2015-11-01

    Blue green algae Anabaena sp. was cultivated in synthetic arsenite solution to investigate its bio-oxidation potential for arsenic species. Response surface methodology (RSM) was employed based on a 3-level full factorial design considering four factors, viz. initial arsenic (III) concentration, algal dose, temperature and time. Bio-oxidation (%) of arsenic (III) was considered as response for the design. The study revealed that about 100% conversion of As (III) to As (V) was obtained for initial As (III) concentration of 2.5-7.5 mg/L at 30 °C for 72 h of exposure using 3 g/L of algal dose signifying a unique bio-oxidation potential of Anabaena sp. The dissolved CO2 (DCO2) and oxygen (DO) concentration in solution was monitored during the process and based on the data, a probable mechanism was proposed wherein algal cell acts like a catalytic membrane surface and expedites the bio-oxidation process. Bioaccumulation of arsenic, as well as, surface adsorption on algal cell was found considerably low. Lipid content of algal biomass grown in arsenite solution was found slightly lower than that of algae grown in synthetic media. Toxicity effects on algal cells due to arsenic exposure were evaluated in terms of comet assay and chlorophyll a content which indicated DNA damage to some extent along with very little decrease in chlorophyll a content. In summary, the present study explored the potential application of Anabaena sp. as an ecofriendly and sustainable option for detoxification of arsenic contaminated natural water with value-added product generation.

  11. The nuiA gene from Anabaena sp. encoding an inhibitor of the NucA sugar-non-specific nuclease.

    Science.gov (United States)

    Muro-Pastor, A M; Herrero, A; Flores, E

    1997-05-01

    Many filamentous, heterocyst-forming cyanobacteria express a sugar-non-specific nuclease of about 29 kDa that can be detected in DNA-containing SDS-PAGE gels. The nucA gene encoding this nuclease has previously been cloned from Anabaena sp. PCC 7120, sequenced and expressed in Escherichia coli. The NucA protein bears a putative signal peptide close to its N-terminal end and, in Anabaena cultures, is present in both the cells and the extracellular medium. Cell-free extracts of different cyanobacteria producing NucA-like nucleases exhibited an inhibitory activity on NucA. In Anabaena sp. PCC 7120, this inhibition was exerted by protein(s) or protein-containing molecule(s) that were heat resistant. Immediately downstream from the nucA gene, in the complementary strand, we have identified an open reading frame composed of 135 codons, that we have named nuiA, whose expression in E. coli conferred heat-resistant NucA-inhibitory activity to cell-free extracts. The NuiA protein was purified to homogeneity, and purified NuiA inhibited the nuclease activity of NucA. Sequences hybridizing with the nuiA gene have been found in all the tested cyanobacterial strains that express a NucA-like nuclease. Whereas the NucA protein is homologous to endonuclease G from vertebrates and to nucleases from Serratia marcescens and yeast, no protein homologous to NuiA was found in the available databases. Therefore, nuiA represents a novel gene encoding a nuclease inhibitor.

  12. The Efficiency of Sensory Integration Interventions in Preterm Infants.

    Science.gov (United States)

    Pekçetin, Serkan; Akı, Esra; Üstünyurt, Zeynep; Kayıhan, Hülya

    2016-10-01

    This study aimed to explore the effects of individualized sensory integration interventions on the sensory processing functions of preterm infants. Thirty-four preterm infants (intervention group) at a corrected age of seven months and 34 term infants (control group) were included. The preterm infants underwent an eight-week sensory integration intervention. Before and after the intervention, the preterm infants' sensory processing functions were evaluated using the Test of Sensory Functions in Infants and compared with those of term infants. Preterm infants had significantly poorer sensory processing function preintervention when compared with term infants. There was a significant improvement in preterm infants' sensory processing functions after the sensory integration intervention. In conclusion, preterm infants should be evaluated for sensory processing disorders and individualized sensory integration interventions should be implemented.

  13. High radiation and desiccation tolerance of nitrogen-fixing cultures of the cyanobacterium Anabaena sp. strain PCC 7120 emanates from genome/proteome repair capabilities.

    Science.gov (United States)

    Singh, Harinder; Anurag, Kirti; Apte, Shree Kumar

    2013-10-12

    The filamentous nitrogen-fixing cyanobacterium, Anabaena sp. strain PCC 7120 was found to tolerate very high doses of (60)Co-gamma radiation or prolonged desiccation. Post-stress, cells remained intact and revived all the vital functions. A remarkable capacity to repair highly disintegrated genome and recycle the damaged proteome appeared to underlie such high radioresistance and desiccation tolerance. The close similarity observed between the cellular response to irradiation or desiccation stress lends strong support to the notion that tolerance to these stresses may involve similar mechanisms.

  14. 可见分光光度法测定水华鱼腥藻%The Measurement of Anabaena flos-aquae with Visible Spectrophotography

    Institute of Scientific and Technical Information of China (English)

    胡先文; 董元彦; 张新萍; 叶发兵

    2002-01-01

    采用可见分光光度法测定水华鱼腥藻(Anabaena flos-aquae)藻液的吸光度A.这种方法与细胞计数法、叶绿素a含量测定法和荧光分光光度法相比较,既简便又准确,且可获得十分理想的线性相关性,其测得的A值可以作为水华鱼腥藻现存量的指标.

  15. Genes encoding the alpha, gamma, delta, and four F0 subunits of ATP synthase constitute an operon in the cyanobacterium Anabaena sp. strain PCC 7120.

    OpenAIRE

    McCarn, D F; R A Whitaker; Alam, J; Vrba, J M; Curtis, S E

    1988-01-01

    A cluster of genes encoding subunits of ATP synthase of Anabaena sp. strain PCC 7120 was cloned, and the nucleotide sequences of the genes were determined. This cluster, denoted atp1, consists of four F0 genes and three F1 genes encoding the subunits a (atpI), c (atpH), b' (atpG), b (atpF), delta (atpD), alpha (aptA), and gamma (atpC) in that order. Closely linked upstream of the ATP synthase subunit genes is an open reading frame denoted gene 1, which is equivalent to the uncI gene of Escher...

  16. Effects of Zinc Ion on Photosynthetic System of Anabaena azotica Ley%Zn2+浓度对固氮鱼腥藻(Anabaena azotica Ley)光能转化特性的影响

    Institute of Scientific and Technical Information of China (English)

    王山杉; 刘永定; 金传荫; 李敦海

    2002-01-01

    本实验对在不同Zn2+浓度条件下培养的固氮鱼腥藻(Anabaena azotica Ley)的生长、光合放氧速率和叶绿素荧光参数Fv/Fm进行了测定.结果表明,当Zn2+浓度为1.0μmol/L时,其比生长速率(Specific growth rate)最大,光合放氧速率和Fv/Fm值最高.当Zn2+浓度大于等于5.0μmol/L时会抑制A.azotica Ley的生长和光合作用.对在0μmol/L和5.0μmol/L Zn2+浓度下生长的藻细胞藻胆体-类囊体膜复合物吸收光谱的比较和对与5.0μmol/L Zn2+发生反应的藻蓝蛋白溶液的可见光吸收光谱的分析,发现前者624nm处藻胆体的吸收峰和后者620nm处藻蓝蛋白的吸收峰都因Zn2+的作用而下降,推测藻蓝蛋白为Zn2+影响光合作用的位点之一.碳酸酐酶活性的测定表明Zn2+的浓度水平会影响其活性大小,推测是Zn2+影响光合作用的另一途径.

  17. Variations of Anabaena in the transition levels between river-and lake-type of Lake Poyang%鄱阳湖河湖转换期间鱼腥藻(Anabaena)的变化

    Institute of Scientific and Technical Information of China (English)

    钱奎梅; 刘霞; 齐凌艳; 陈宇炜

    2016-01-01

    鄱阳湖作为我国长江目前仅存的两个通江湖泊之一,年内水位变幅巨大.通过在鄱阳湖2013年河湖转换期间(5-11月)对鄱阳湖主航道都昌段进行每月3~4次的高频监测,以考察鄱阳湖水体中鱼腥藻(Anabaena)的动态变化,分析鄱阳湖中鱼腥藻生长并占优势的影响因素.结果表明,蓝藻为鄱阳湖浮游植物的次级优势种,8月蓝藻生物量平均占浮游植物生物量的57%,蓝藻取代硅藻成为暂时的优势种.夏、秋季水华蓝藻以固氮鱼腥藻为主,主要与夏、秋季水温较高以及适宜的营养盐条件等有关.研究期间鄱阳湖水体氮磷比平均在15左右,鱼腥藻能够产生有固氮能力的异形胞,并在水华蓝藻中成为优势种,也反映了鄱阳湖某些湖区存在氮相对缺乏的阶段.

  18. Learning about Sensory Integration Dysfunction: Strategies to Meet Young Children's Sensory Needs at Home

    Science.gov (United States)

    Thompson, Stacy D.; Rains, Kari W.

    2009-01-01

    Practitioners and parents are seeking ways to help children who are not able to integrate sensory information; this has generated recent media attention. A child's inability to integrate sensory information can have implications for the whole family and their everyday routines. Research conducted by occupational therapists has provided a rich…

  19. Sensory profiling: a method for describing the sensory characteristics of virgin olive oil

    Directory of Open Access Journals (Sweden)

    Lyon, David H.

    1994-04-01

    Full Text Available Sensory profiling is an objective, descriptive technique which uses a panel of trained assessors. It was used at Campden to differentiate olive oil which differed in terms of the country of origin, variety, ripeness and extraction techniques. The data were related to similar results from the Netherlands and Italy. The results indicated that all three sensory panels perceived the samples in the same way, however, the differed in the way the oils were described.
    The new European legislation on olive oil is partially concerned with the sensory aspects of the oil. The sensory grading takes into account the 'positive' and 'negative' attributes in the oil before giving an overall quality grade. These attributes do not reflect the consumer requirements, therefore, the grading should be restricted to the assessment of the presence or absence of sensory defects.

  20. Evolution of sensory structures in basal metazoa.

    Science.gov (United States)

    Jacobs, Dave K; Nakanishi, Nagayasu; Yuan, David; Camara, Anthony; Nichols, Scott A; Hartenstein, Volker

    2007-11-01

    Cnidaria have traditionally been viewed as the most basal animals with complex, organ-like multicellular structures dedicated to sensory perception. However, sponges also have a surprising range of the genes required for sensory and neural functions in Bilateria. Here, we: (1) discuss "sense organ" regulatory genes, including; sine oculis, Brain 3, and eyes absent, that are expressed in cnidarian sense organs; (2) assess the sensory features of the planula, polyp, and medusa life-history stages of Cnidaria; and (3) discuss physiological and molecular data that suggest sensory and "neural" processes in sponges. We then develop arguments explaining the shared aspects of developmental regulation across sense organs and between sense organs and other structures. We focus on explanations involving divergent evolution from a common ancestral condition. In Bilateria, distinct sense-organ types share components of developmental-gene regulation. These regulators are also present in basal metazoans, suggesting evolution of multiple bilaterian organs from fewer antecedent sensory structures in a metazoan ancestor. More broadly, we hypothesize that developmental genetic similarities between sense organs and appendages may reflect descent from closely associated structures, or a composite organ, in the common ancestor of Cnidaria and Bilateria, and we argue that such similarities between bilaterian sense organs and kidneys may derive from a multifunctional aggregations of choanocyte-like cells in a metazoan ancestor. We hope these speculative arguments presented here will stimulate further discussion of these and related questions. PMID:21669752

  1. Cross-sensory transfer of sensory-motor information: visuomotor learning affects performance on an audiomotor task, using sensory-substitution

    OpenAIRE

    Shelly Levy-Tzedek; Itai Novick; Roni Arbel; Sami Abboud; Shachar Maidenbaum; Eilon Vaadia; Amir Amedi

    2012-01-01

    Visual-to-auditory sensory-substitution devices allow users to perceive a visual image using sound. Using a motor-learning task, we found that new sensory-motor information was generalized across sensory modalities. We imposed a rotation when participants reached to visual targets, and found that not only seeing, but also hearing the location of targets via a sensory-substitution device resulted in biased movements. When the rotation was removed, aftereffects occurred whether the location of ...

  2. The susceptibility of five African Anopheles species to Anabaena PCC 7120 expressing Bacillus thuringiensis subsp. israelensis mosquitocidal cry genes

    Directory of Open Access Journals (Sweden)

    Ketseoglou Irene

    2012-10-01

    Full Text Available Abstract Background Malaria, one of the leading causes of death in Africa, is transmitted by the bite of an infected female Anopheles mosquito. Problems associated with the development of resistance to chemical insecticides and concerns about the non-target effects and persistence of chemical insecticides have prompted the development of environmentally friendly mosquito control agents. The aim of this study was to evaluate the larvicidal activity of a genetically engineered cyanobacterium, Anabaena PCC 7120#11, against five African Anopheles species in laboratory bioassays. Findings There were significant differences in the susceptibility of the anopheline species to PCC 7120#11. The ranking of the larvicidal activity of PCC 7120#11 against species in the An. gambiae complex was: An. merus An. arabiensis An. gambiae An. quadriannulatus, where 50. The LC50 of PCC 7120#11 against the important malaria vectors An. gambiae and An. arabiensis was 12.3 × 105 cells/ml and 8.10 × 105 cells/ml, respectively. PCC 7120#11 was not effective against An. funestus, with less than 50% mortality obtained at concentrations as high as 3.20 × 107 cells/ml. Conclusions PCC 7120#11 exhibited good larvicidal activity against larvae of the An. gambiae complex, but relatively weak larvicidal activity against An. funestus. The study has highlighted the importance of evaluating a novel mosquitocidal agent against a range of malaria vectors so as to obtain a clear understanding of the agent’s spectrum of activity and potential as a vector control agent.

  3. Influence of Various Levels of Iron and Other Abiotic Factors on Siderophorogenesis in Paddy Field Cyanobacterium Anabaena oryzae.

    Science.gov (United States)

    Singh, Anumeha; Mishra, Arun Kumar

    2015-05-01

    Siderophore production in Anabaena oryzae was investigated under the influence of various levels of iron and other abiotic factors such as pH, temperature, light and different nitrogen sources. Optimization of culture conditions under controlled mechanisms of these abiotic factors lead to the siderophore production in significant amount. Under iron-starved condition, A. oryzae extracellularly releases 89.17% hydroxymate-type siderophore. Slightly alkaline pH and 30 °C temperature was found stimulatory for the cyanobacterial growth and siderophorogenesis (88.52% SU and 83.87% SU, respectively). Excess iron loading had a negative impact on siderophore production along with the alterations in the morphology and growth. Further, scanning electron microphotographs signified that higher concentrations of iron lead to complete damage of the cells and alterations in membrane proteins possibly transporters responsible for exchange of siderophore complex from environment to the cell. SDS-PAGE analysis of whole cell proteins showed overexpression of low molecular weight proteins ranges between 20.1 to 29.0 kDa up to 100-μM iron concentrations. These polypeptides/proteins might be involved in maintaining iron homeostasis by regulating siderophore production. Results suggest that lower concentrations of iron ≤ 50 μM along with other abiotic factors are stimulatory, whereas higher concentrations (>50 μM) are toxic. Data further suggested that cyanobacterium A. oryzae can serve as a potential biofertilizer especially in iron-rich soil through sequestration by the power of natural Fe(III)-siderophore complex formation.

  4. Cyclic nucleotide binding and structural changes in the isolated GAF domain of Anabaena adenylyl cyclase, CyaB2

    Directory of Open Access Journals (Sweden)

    Kabir Hassan Biswas

    2015-04-01

    Full Text Available GAF domains are a large family of regulatory domains, and a subset are found associated with enzymes involved in cyclic nucleotide (cNMP metabolism such as adenylyl cyclases and phosphodiesterases. CyaB2, an adenylyl cyclase from Anabaena, contains two GAF domains in tandem at the N-terminus and an adenylyl cyclase domain at the C-terminus. Cyclic AMP, but not cGMP, binding to the GAF domains of CyaB2 increases the activity of the cyclase domain leading to enhanced synthesis of cAMP. Here we show that the isolated GAFb domain of CyaB2 can bind both cAMP and cGMP, and enhanced specificity for cAMP is observed only when both the GAFa and the GAFb domains are present in tandem (GAFab domain. In silico docking and mutational analysis identified distinct residues important for interaction with either cAMP or cGMP in the GAFb domain. Structural changes associated with ligand binding to the GAF domains could not be detected by bioluminescence resonance energy transfer (BRET experiments. However, amide hydrogen-deuterium exchange mass spectrometry (HDXMS experiments provided insights into the structural basis for cAMP-induced allosteric regulation of the GAF domains, and differences in the changes induced by cAMP and cGMP binding to the GAF domain. Thus, our findings could allow the development of molecules that modulate the allosteric regulation by GAF domains present in pharmacologically relevant proteins.

  5. Characterization of five putative aspartate aminotransferase genes in the N2-fixing heterocystous cyanobacterium Anabaena sp. strain PCC 7120.

    Science.gov (United States)

    Xu, Xinyi; Gu, Liping; He, Ping; Zhou, Ruanbao

    2015-06-01

    Aspartate and glutamate are two key amino acids used in biosynthesis of many amino acids that play vital role in cellular metabolism. Aspartate aminotransferases (AspATs) are required for channelling nitrogen (N(2)) between Glu and Asp in all life forms. Biochemical and genetic characterization of AspATs have been lacking in N(2)-fixing cyanobacteria. In this report, five putative AspAT genes (alr1039, all2340, alr2765, all4327 and alr4853) were identified in the N(2)-fixing heterocystous cyanobacterium Anabaena sp. PCC 7120. Five recombinant C-terminal hexahistidine-tagged AspATs (AspAT-H(6)) were overexpressed in Escherichia coli and purified to homogeneity. Biochemical analysis demonstrated that these five putative AspATs have authentic AspAT activity in vitro using aspartate as an amino donor. However, the enzymic activities of the five AspATs differed in vitro. Alr4853-H(6) showed the highest AspAT activity, while the enzymic activity for the other four AspATs ranged from 6.5 to 53.7 % activity compared to Alr4853 (100 %). Genetic characterization of the five AspAT genes was also performed by inactivating each individual gene. All of the five AspAT knockout mutants exhibited reduced diazotrophic growth, and alr4853 was further identified to be a Fox gene (requiring fixed N(2) for growth in the presence of oxygen). Four out of five P(aspAT)-gfp transcriptional fusions were constitutively expressed in both diazotrophic and nitrate-dependent growth conditions. Quantitative reverse transcriptase PCR showed that alr4853 expression was increased by 2.3-fold after 24 h of N(2) deprivation. Taken together, these findings add to our understanding of the role of AspATs in N(2)-fixing within heterocystous cyanobacteria.

  6. Green synthesis of silver nanoparticles using cell extracts of Anabaena doliolum and screening of its antibacterial and antitumor activity.

    Science.gov (United States)

    Singh, Garvita; Babele, Piyoosh K; Shahi, Shailesh K; Sinha, Rajeshwar P; Tyagi, Madhu B; Kumar, Ashok

    2014-10-01

    In the present work, we describe a simple, cheap, and unexplored method for "green" synthesis of silver nanoparticles using cell extracts of the cyanobacterium Anabaena doliolum. An attempt was also made to test the antimicrobial and antitumor activities of the synthesized nanoparticles. Analytical techniques, namely UV-vis spectroscopy, X-ray diffraction, Fourier transform infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), and TEMselected area electron diffraction, were used to elucidate the formation and characterization of silver-cyanobacterial nanoparticles (Ag-CNPs). Results showed that the original color of the cell extract changed from reddish blue to dark brown after addition of silver nitrate solution (1 mM) within 1 h, suggesting the synthesis of Ag-CNPs. That the formation Ag-CNPs indeed occurred was also evident from the spectroscopic analysis of the reaction mixture, wherein a prominent peak at 420 nm was noted. TEM images revealed well-dispersed, spherical Ag- CNPs with a particle size in the range of 10-50 nm. The X-ray diffraction spectrum suggested a crystalline nature of the Ag-CNPs. FTIR analysis indicated the utilization of a hydroxyl (-OH) group in the formation of Ag-CNPs. Ag-CNPs exhibited strong antibacterial activity against three multidrug-resistant bacteria. Additionally, Ag-CNPs strongly affected the survival of Dalton's lymphoma and human carcinoma colo205 cells at a very low concentration. The Ag-CNPs-induced loss of survival of both cell types may be due to the induction of reactive oxygen species generation and DNA fragmentation, resulting in apoptosis. Properties exhibited by the Ag-CNP suggest that it may be used as a potential antibacterial and antitumor agent.

  7. Physiological and behavioral differences in sensory processing: a comparison of children with Autism Spectrum Disorder and Sensory Modulation Disorder

    Directory of Open Access Journals (Sweden)

    Sarah A Schoen

    2009-11-01

    Full Text Available A high incidence of sensory processing difficulties exists in children with Autism Spectrum Disorder (ASD and children with idiopathic Sensory Modulation Disorder (SMD. This is the first study to directly compare and contrast these clinical disorders. Sympathetic nervous system markers of arousal and reactivity were utilized in a laboratory paradigm that administered a series of sensory challenges across five sensory domains. The Short Sensory Profile, a standardized parent-report measure, provided a measure of sensory-related behaviors. Physiological arousal and sensory reactivity were lower in children with ASD whereas reactivity after each sensory stimulus was higher in SMD, particularly to the first stimulus in each sensory domain. Both clinical groups had significantly more sensory-related behaviors than typically developing children, with contrasting profiles. The ASD group had more taste/smell sensitivity and sensory under-responsivity while the SMD group had more atypical sensory seeking behavior. This study provides preliminary evidence distinguishing sympathetic nervous system functions and sensory-related behaviors in Autism Spectrum Disorder and Sensory Modulation Disorder. Differentiating the physiology and sensory symptoms in clinical groups is essential to the provision of appropriate interventions.

  8. Sensory source strength of used ventilation filters

    DEFF Research Database (Denmark)

    Clausen, Geo; Alm, Ole Martin; Fanger, Povl Ole

    2002-01-01

    the experimental space after facial exposure, without entering the space. Alternatively, the panel could enter the space and evaluate the air quality after full exposure to the air. The sensory pollution load of the filter determined from full exposure was approximately 7 times lower than when......A two-year-old filter was placed in a ventilation system recirculating the air in an experimental space. Via glass tubes supplied with a small fan it was possible to extract air upstream and downstream of the filter to an adjacent room. A panel could thus perform sensory assessments of the air from...... determined after facial exposure. Even with the lower values of the sensory pollution load found in the present study, model predictions of the perceived air quality in a typical office show that used filters may still be important sources of indoor air pollution....

  9. Sensory quality criteria for five fish species

    DEFF Research Database (Denmark)

    Warm, Karin; Nielsen, Jette; Hyldig, Grethe;

    2000-01-01

    Sensory profiling has been used to develop one sensory vocabulary for five fish species: cod (Gadus morhua), saithe (Pollachius virens), rainbow trout (Salmo gardineri), herring (Clupea harengus) and flounder (Platichthys flessus). A nine- member trained panel assessed 18 samples with variation in...... for odor and taste during the qualitative part. The descriptive words should fulfil these criteria: be relevant to the product, discriminate clearly between samples, be nonredundant and have cognitive clarity to the assessors. Criteria fulfilment was reached by evaluating samples spanning a...... representative variation and by presenting references, panel discussions and interpreting plots from multivariate data analysis. The developed profile can be used as a sensory wheel for these species, and with minor changes it may be adapted to similar species...

  10. Photodegradation of 17α-ethynylestradiol in Aqueous Solution with Anabaena HB101%含鱼腥藻水溶液中17α-乙炔雌二醇光降解

    Institute of Scientific and Technical Information of China (English)

    刘先利; 邓南圣; 徐栋; 邓琳

    2003-01-01

    研究了含鱼腥藻Anabaena HB101水溶液中17α-乙炔雌二醇在250W高压汞灯光照下的光降解,并进行了动力学分析,研究结果表明,水溶液中鱼腥藻Anabaena HB101能促进17α-乙炔雌二醇光降解,随着水溶液中鱼腥藻Anabaena HB101的浓度增大,其光降解效率也增大,表明了鱼腥藻对17α-乙炔雌二醇光降解有明显的催化作用.同时也研究了在紫外光下的光降解情况,结果表明其光降解效率比高压汞灯光照下的光降解效率高,总体上讲,藻具有催化光降解作用.探讨分析了鱼腥藻Anabaena HB101催化17α-乙炔雌二醇光降解的作用与机理.

  11. Study on Molecular Cloning and Enzyme Kinetics of Anabaena α-Phycocyanin Lyase%藻蓝蛋白α亚基裂合酶的分子克隆和酶动力学研究

    Institute of Scientific and Technical Information of China (English)

    苏平; 周明

    2012-01-01

    To comparatively study the differences on structures and functions of phycocyanin lyase CpcE/F from different cyanobacteria, CpcE/F from Anabaena sp. PCC 7120 were cloned and expressed greatly. The reconstitution of PCB and CpcA from Mastigocladus laminosus PCC 7603 in vitro using the overexpressed lyase Anabaena sp. PCC 7120 CpcE/F showed that CpcE/F from Anabaena sp. PCC 7120 is the specific enzyme for biosynthesis of α-PC, furthermore, the enzyme kinetics of PcE/F lyase were studied preliminarily.%为了比较研究不同藻种中藻蓝蛋白裂合酶CpcE/F的结构与功能的差异,对Anabaena sp.PCC 7120中的CpcE/F进行克隆,并进行大量表达,将表达的裂合酶CpcE/F用于藻蓝胆素(PCB)与Mastigocladus laminosus PCC 7603藻蓝蛋白α-亚基(α-PC)脱辅基蛋白(CpcA)的体外重组,得到天然活性的α-PC,从而表明CpcE/F所编码的蛋白质是α-PC生物合成的裂合酶,并对CpcE/F的酶动力学进行了初步研究.

  12. 致乏库蚊幼虫摄食和消化鱼腥藻的观察%THE OBSERVATION OF FEEDING ABILITY OF CULEX PIPIEN FATIGANS LARVAE ON ANABAENA

    Institute of Scientific and Technical Information of China (English)

    张世萍; 王方雨; 朱艳芳; 但丽; 喻子牛

    2005-01-01

    Under the laboratory condition, the larvae of Culex pipens fatigans may feed mainly on Anabaena sp and complete their life cycle. The retention time of Anabaena sp. in larval intestine is about 6 hours while that of Saccharomyces sp. is about 5hours, meaning that Anabaena sp. is not so digestible for the larvae. From hatching to pupation, the larvae fed with Anabaena sp. lasted 194 hours and those fed with Saccharomyces sp were 142 hours, showing that the duration for completing larval stage of the former is 52 hours, which is longer than those fed on Saccharomyces.%在实验室条件下,致乏库蚊幼虫可大量摄食鱼腥藻,并能消化利用,完成生活史.鱼腥藻在蚊幼虫肠道中滞留时间约6h,酵母约5h,鱼腥藻比酵母稍难消化.蚊幼虫至化蛹时期相比,饲喂鱼腥藻为194h,而饲喂酵母的为142h,饲喂鱼腥藻比饲喂酵母延缓了蚊幼虫期52h.

  13. Sensory Synergy as Environmental Input Integration

    Directory of Open Access Journals (Sweden)

    Fady eAlnajjar

    2015-01-01

    Full Text Available The development of a method to feed proper environmental inputs back to the central nervous system (CNS remains one of the challenges in achieving natural movement when part of the body is replaced with an artificial device. Muscle synergies are widely accepted as a biologically plausible interpretation of the neural dynamics between the CNS and the muscular system. Yet the sensorineural dynamics of environmental feedback to the CNS has not been investigated in detail. In this study, we address this issue by exploring the concept of sensory synergy. In contrast to muscle synergy, we hypothesize that sensory synergy plays an essential role in integrating the overall environmental inputs to provide low-dimensional information to the CNS. We assume that sensor synergy and muscle synergy communicate using these low-dimensional signals. To examine our hypothesis, we conducted posture control experiments involving lateral disturbance with 9 healthy participants. Proprioceptive information represented by the changes on muscle lengths were estimated by using the musculoskeletal model analysis software SIMM. Changes on muscles lengths were then used to compute sensory synergies. The experimental results indicate that the environmental inputs were translated into the two dimensional signals and used to move the upper limb to the desired position immediately after the lateral disturbance. Participants who showed high skill in posture control were found to be likely to have a strong correlation between sensory and muscle signaling as well as high coordination between the utilized sensory synergies. These results suggest the importance of integrating environmental inputs into suitable low-dimensional signals before providing them to the CNS. This mechanism should be essential when designing the prosthesis’ sensory system to make the controller simpler

  14. Construction of shuttle, expression vector of human tumor necrosis factor alpha (hTNF-α) gene and its expression in a cyanobacterium, Anabaena sp. PCC 7120

    Institute of Scientific and Technical Information of China (English)

    刘凤龙; 施定基; 商之狄; 邵宁; 徐旭东; 钟泽璞; 张宏斌; 吴锦银; 王捷; 江悦华; 赵树进; 林晨; 张雪艳; 吴旻; 彭国宏; 张海霞; 曾呈奎

    1999-01-01

    The construction of the shuttle, expression vector of human tumor necrosis factor alpha (hTNF-a) gene and its expression in a cyanobacterium Anabaena sp. PCC 7120 was reported. The 700-bp hTNF cDNA fragments have been recovered from plasmid pRL-rhTNF, then inserted downstream of the promoter PpsbA in the plasmid pRL439. The resultant intermediary plasmid pRL-TC has further been combined with the shuttle vector pDC-8 to get the shuttle, expression vector pDC-TNF. The expression of the rhTNF gene in Escherichia coli has been analyzed by SDS-PAGE and thin-layer scanning, and the results show that the expressed TNF protein with these two vectors is 16.9 percent (pRL-TC) and 15.0 percent (pDC-TNF) of the total proteins in the cells, respectively, while the expression level of TNF gene in plasmid pRL-rhTNF is only 11.8 percent. Combined with the participation of the conjugal and helper plasmids, pDC-TNF has been introduced into Anabaena sp PCC 7120 by triparental conjugative transfer, and the stable transgenic

  15. Regulation of pepc gene expression in Anabaena sp. PCC 7120 and its effects on cyclic electron flow around photosystem I and tolerances to environmental stresses.

    Science.gov (United States)

    Jia, Xiao-Hui; Zhang, Peng-Peng; Shi, Ding-Ji; Mi, Hua-Ling; Zhu, Jia-Cheng; Huang, Xi-Wen; He, Pei-Min

    2015-05-01

    Since pepc gene encoding phosphoenolpyruvate carboxylase (PEPCase) has been cloned from Anabaena sp. PCC 7120 and other cyanobacteria, the effects of pepc gene expression on photosynthesis have not been reported yet. In this study, we constructed mutants containing either upregulated (forward) or downregulated (reverse) pepc gene in Anabaena sp. PCC 7120. Results from real-time quantitative polymerase chain reaction (RT-qPCR), Western blot and enzymatic analysis showed that PEPCase activity was significantly reduced in the reverse mutant compared with the wild type, and that of the forward mutant was obviously increased. Interestingly, the net photosynthesis in both the reverse mutant and the forward mutant were higher than that of the wild type, but dark respiration was decreased only in the reverse mutant. The absorbance changes of P700 upon saturation pulse showed the photosystem I (PSI) activity was inhibited, as reflected by Y(I), and Y(NA) was elevated, and dark reduction of P700(+) was stimulated, indicating enhanced cyclic electron flow (CEF) around PSI in the reverse mutant. Additionally, the reverse mutant photosynthesis was higher than that of the wild type in low temperature, low and high pH, and high salinity, and this implies increased tolerance in the reverse mutant through downregulated pepc gene.

  16. Secretome analysis of Anabaena sp. PCC 7120 and the involvement of the TolC-homologue HgdD in protein secretion.

    Science.gov (United States)

    Hahn, Alexander; Stevanovic, Mara; Brouwer, Eva; Bublak, Daniela; Tripp, Joanna; Schorge, Tobias; Karas, Michael; Schleiff, Enrico

    2015-03-01

    Secretion of proteins is a central strategy of bacteria to influence and respond to their environment. Until now, there has been very few discoveries regarding the cyanobacterial secrotome or the secretion machineries involved. For a mutant of the outer membrane channel TolC-homologue HgdD of Anabaena sp. PCC 7120, a filamentous and heterocyst-forming cyanobacterium, an altered secretome profile was reported. To define the role of HgdD in protein secretion, we have developed a method to isolate extracellular proteins of Anabaena sp. PCC 7120 wild type and an hgdD loss-of-function mutant. We identified 51 proteins of which the majority is predicted to have an extracellular secretion signal, while few seem to be localized in the periplasmic space. Eight proteins were exclusively identified in the secretome of wild-type cells, which coincides with the distribution of type I secretion signal. We selected three candidates and generated hemagglutinin-tagged fusion proteins which could be exclusively detected in the extracellular protein fraction. However, these proteins are not secreted in the hgdD-mutant background, where they are rapidly degraded. This confirms a direct function of HgdD in protein secretion and points to the existence of a quality control mechanism at least for proteins secreted in an HgdD-dependent pathway.

  17. Regulation of pepc gene expression in Anabaena sp. PCC 7120 and its effects on cyclic electron flow around photosystem I and tolerances to environmental stresses

    Institute of Scientific and Technical Information of China (English)

    Xiao-Hui Jia; Peng-Peng Zhang; Ding-Ji Shi; Hua-Ling Mi; Jia-Cheng Zhu; Xi-Wen Huang; Pei-Min He

    2015-01-01

    Since pepc gene encoding phosphoenolpyruvate carboxylase (PEPCase) has been cloned from Anabaena sp. PCC 7120 and other cyanobacteria, the effects of pepc gene expression on photosynthesis have not been reported yet. In this study, we constructed mutants containing either upregu-lated (forward) or downregulated (reverse) pepc gene in Anabaena sp. PCC 7120. Results from real‐time quantitative polymerase chain reaction (RT‐qPCR), Western blot and enzymatic analysis showed that PEPCase activity was signifi-cantly reduced in the reverse mutant compared with the wild type, and that of the forward mutant was obviously increased. Interestingly, the net photosynthesis in both the reverse mutant and the forward mutant were higher than that of the wild type, but dark respiration was decreased only in the reverse mutant. The absorbance changes of P700 upon saturation pulse showed the photosystem I (PSI) activity was inhibited, as reflected by Y(I), and Y(NA) was elevated, and dark reduction of P700þ was stimulated, indicating enhanced cyclic electron flow (CEF) around PSI in the reverse mutant. Additional y, the reverse mutant photosynthesis was higher than that of the wild type in low temperature, low and high pH, and high salinity, and this implies increased tolerance in the reverse mutant through downregulated pepc gene.

  18. Sensory neuropeptide effects in human skin.

    OpenAIRE

    Fuller, R W; Conradson, T B; Dixon, C M; Crossman, D.C.; Barnes, P. J.

    1987-01-01

    1 Neuropeptides released from sensory nerves may account for cutaneous flare and wheal following local trauma. In 28 normal subjects we have studied the effects of four sensory neuropeptides given by intradermal injection on the forearm or back. 2 All peptides caused a flare distant from the site of injection, presumably due to an axon reflex. Substance P (SP) was the most potent (geometric mean dose causing 50% of maximum flare, 4.2 pmol). Neurokinin A (NKA) was the next most potent with neu...

  19. Sensory exotropia subsequent to senile cataract

    Institute of Scientific and Technical Information of China (English)

    LOU Ding-hua; XU Ye-sheng; LI Yu-min

    2005-01-01

    To evaluate the phacoemulsification and intraocular lens implantation in patients with sensory exotropia subsequent to senile cataract. The authors prospectively studied the role of phacoemulsification and intraocular lens implantation on 25 patients by observing visual acuity, ocular alignment, binocular vision and diplopia pre-, 1 month post- and 3 months post-operation. The patients underwent follow-up for three months. Postoperatively, one patient had a corrected visual acuity of 20/50, and 24 patients had 20/40 or better. The ocular alignment, binocular vision and diplopia were resolved spontaneously. Phacoemulsification and intraocular lens implantation performed together is effective on sensory exotropia subsequent to senile cataract.

  20. Dorsal and ventral streams across sensory modalities

    Institute of Scientific and Technical Information of China (English)

    Anna Sedda; Federica Scarpina

    2012-01-01

    In this review,we describe the current models of dorsal and ventral streams in vision,audition and touch.Available theories take their first steps from the model of Milner and Goodale,which was developed to explain how human actions can be efficiently carried out using visual information.Since then,similar concepts have also been applied to other sensory modalities.We propose that advances in the knowledge of brain functioning can be achieved through models explaining action and perception patterns independently from sensory modalities.