WorldWideScience

Sample records for amyloid-beta peptide decreases

  1. Nasal administration of amyloid-beta peptide decreases cerebral amyloid burden in a mouse model of Alzheimer's disease

    DEFF Research Database (Denmark)

    Weiner, H L; Lemere, C A; Maron, R;

    2000-01-01

    Progressive cerebral deposition of amyloid-beta (Abeta) peptide, an early and essential feature of Alzheimer's disease (AD), is accompanied by an inflammatory reaction marked by microgliosis, astrocytosis, and the release of proinflammatory cytokines. Mucosal administration of disease......-Abeta antibodies of the IgG1 and IgG2b classes, and mononuclear cells in the brain expressing the anti-inflammatory cytokines interleukin-4, interleukin-10, and tumor growth factor-beta. Our results demonstrate that chronic nasal administration of Abeta peptide can induce an immune response to Abeta that decreases...

  2. Amyloid Beta-peptide (25-35) changes (Ca2+) in hippocampal neurons

    DEFF Research Database (Denmark)

    Mogensen, Helle Smidt; Beatty, Diane; Morris, Stephen

    1998-01-01

    neuroscience, Alzheimer, calcium ion, hippocampal neurons, amyloid-beta-peptide, hydrogen ion, rat......neuroscience, Alzheimer, calcium ion, hippocampal neurons, amyloid-beta-peptide, hydrogen ion, rat...

  3. PARP-1 modulates amyloid beta peptide-induced neuronal damage.

    Directory of Open Access Journals (Sweden)

    Sara Martire

    Full Text Available Amyloid beta peptide (Aβ causes neurodegeneration by several mechanisms including oxidative stress, which is known to induce DNA damage with the consequent activation of poly (ADP-ribose polymerase (PARP-1. To elucidate the role of PARP-1 in the neurodegenerative process, SH-SY5Y neuroblastoma cells were treated with Aβ25-35 fragment in the presence or absence of MC2050, a new PARP-1 inhibitor. Aβ25-35 induces an enhancement of PARP activity which is prevented by cell pre-treatment with MC2050. These data were confirmed by measuring PARP-1 activity in CHO cells transfected with amylod precursor protein and in vivo in brains specimens of TgCRND8 transgenic mice overproducing the amyloid peptide. Following Aβ25-35 exposure a significant increase in intracellular ROS was observed. These data were supported by the finding that Aβ25-35 induces DNA damage which in turn activates PARP-1. Challenge with Aβ25-35 is also able to activate NF-kB via PARP-1, as demonstrated by NF-kB impairment upon MC2050 treatment. Moreover, Aβ25-35 via PARP-1 induces a significant increase in the p53 protein level and a parallel decrease in the anti-apoptotic Bcl-2 protein. These overall data support the hypothesis of PARP-1 involvment in cellular responses induced by Aβ and hence a possible rationale for the implication of PARP-1 in neurodegeneration is discussed.

  4. Endoplasmic reticulum stress promotes amyloid-beta peptides production in RGC-5 cells.

    Science.gov (United States)

    Liu, Bingqian; Zhu, Yingting; Zhou, Jiayi; Wei, Yantao; Long, Chongde; Chen, Mengfei; Ling, Yunlan; Ge, Jian; Zhuo, Yehong

    2014-11-01

    Endoplasmic reticulum (ER) stress has been implicated in various neurodegenerative diseases, including Alzheimer's disease. We have previously observed amyloid production in the retina of the Tg2576 transgenic mouse model of Alzheimer's disease. In this study, we used tunicamycin-induced ER stress in RGC-5 cells, a cell line identical to the photoreceptor cell line 661W, to investigate the effect of ER stress on production of amyloid-beta (Abeta) peptides. We found that the mRNA level of amyloid-beta precursor protein (APP) remained stable, while the protein level of amyloid-beta precursor protein (APP) was decreased, the amyloid-beta precursor protein cleaving enzymes beta-site APP-cleaving enzyme 1 and presenilin 1 were upregulated, Abeta1-40 and Abeta1-42 production were increased, and reactive oxygen species production and apoptosis markers were elevated following induction of ER stress. The protein level of Abeta degradation enzymes, neprilysin, endothelin-converting enzyme 1, and endothelin-converting enzyme 2 remained unchanged during the prolonged ER stress, showing that the generation of Abeta did not result from reduction of proteolysis by these enzymes. Inclusion of group II caspase inhibitor, Z-DEVD-FMK, increased the ER stress mediated Abeta production, suggesting that they are generated by a caspase-independent mechanism. Our findings provided evidence of a role of ER stress in Abeta peptide overproduction and apoptotic pathway activation in RGC-5 cells.

  5. Amyloid beta peptide immunotherapy in Alzheimer disease.

    Science.gov (United States)

    Delrieu, J; Ousset, P J; Voisin, T; Vellas, B

    2014-12-01

    Recent advances in the understanding of Alzheimer's disease pathogenesis have led to the development of numerous compounds that might modify the disease process. Amyloid β peptide represents an important molecular target for intervention in Alzheimer's disease. The main purpose of this work is to review immunotherapy studies in relation to the Alzheimer's disease. Several types of amyloid β peptide immunotherapy for Alzheimer's disease are under investigation, active immunization and passive administration with monoclonal antibodies directed against amyloid β peptide. Although immunotherapy approaches resulted in clearance of amyloid plaques in patients with Alzheimer's disease, this clearance did not show significant cognitive effect for the moment. Currently, several amyloid β peptide immunotherapy approaches are under investigation but also against tau pathology. Results from amyloid-based immunotherapy studies in clinical trials indicate that intervention appears to be more effective in early stages of amyloid accumulation in particular solanezumab with a potential impact at mild Alzheimer's disease, highlighting the importance of diagnosing Alzheimer's disease as early as possible and undertaking clinical trials at this stage. In both phase III solanezumab and bapineuzumab trials, PET imaging revealed that about a quarter of patients lacked fibrillar amyloid pathology at baseline, suggesting that they did not have Alzheimer's disease in the first place. So a new third phase 3 clinical trial for solanezumab, called Expedition 3, in patients with mild Alzheimer's disease and evidence of amyloid burden has been started. Thus, currently, amyloid intervention is realized at early stage of the Alzheimer's disease in clinical trials, at prodromal Alzheimer's disease, or at asymptomatic subjects or at risk to develop Alzheimer's disease and or at asymptomatic subjects with autosomal dominant mutation. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  6. Modeling Amyloid Beta Peptide Insertion into Lipid Bilayers

    CERN Document Server

    Mobley, D L; Singh, R R P; Maddox, M W; Longo, M J; Mobley, David L.; Cox, Daniel L.; Singh, Rajiv R. P.; Maddox, Michael W.; Longo, Marjorie L.

    2003-01-01

    Inspired by recent suggestions that the Alzheimer's amyloid beta peptide (A-beta), can insert into cell membranes and form harmful ion channels, we model insertion of the peptide into cell membranes using a Monte Carlo code which is specific at the amino acid level. We examine insertion of the regular A-beta peptide as well as mutants causing familial Alzheimer's disease. We present our results and develop the hypothesis that partial insertion into the membrane, leaving the peptide in one leaflet, increases the probability of harmful channel formation. This hypothesis can partly explain why these mutations are neurotoxic simply due to peptide insertion behavior, and also explains why, normally, A-beta 42 is more toxic to some cultured cells than A-beta 40, but the E22Q mutation reverses this effect. We further apply this model to various artificial A-beta mutants which have been examined experimentally, and offer testable experimental predictions contrasting the roles of aggregation and insertion with regard ...

  7. The novel amyloid-beta peptide aptamer inhibits intracellular amyloid-beta peptide toxicity

    Institute of Scientific and Technical Information of China (English)

    Xu Wang; Yi Yang; Mingyue Jia; Chi Ma; Mingyu Wang; Lihe Che; Yu Yang; Jiang Wu

    2013-01-01

    Amyloid β peptide binding alcohol dehydrogenase (ABAD) decoy peptide (DP) can competitively antagonize binding of amyloid β peptide to ABAD and inhibit the cytotoxic effects of amyloid β peptide. Based on peptide aptamers, the present study inserted ABAD-DP into the disulfide bond of human thioredoxin (TRX) using molecular cloning technique to construct a fusion gene that can express the TRX1-ABAD-DP-TRX2 aptamer. Moreover, adeno-associated virus was used to allow its stable expression. Immunofluorescent staining revealed the co-expression of the transduced fusion gene TRX1-ABAD-DP-TRX2 and amyloid β peptide in NIH-3T3 cells, indicating that the TRX1-ABAD-DP-TRX2 aptamer can bind amyloid β peptide within cells. In addition, cell morphology and MTT results suggested that TRX1-ABAD-DP-TRX2 attenuated amyloid β peptide-induced SH-SY5Y cell injury and improved cell viability. These findings confirmed the possibility of constructing TRX-based peptide aptamer using ABAD-DP. Moreover, TRX1-ABAD-DP-TRX2 inhibited the cytotoxic effect of amyloid β peptide.

  8. Amyloid Beta Peptides Differentially Affect Hippocampal Theta Rhythms In Vitro

    Directory of Open Access Journals (Sweden)

    Armando I. Gutiérrez-Lerma

    2013-01-01

    Full Text Available Soluble amyloid beta peptide (Aβ is responsible for the early cognitive dysfunction observed in Alzheimer's disease. Both cholinergically and glutamatergically induced hippocampal theta rhythms are related to learning and memory, spatial navigation, and spatial memory. However, these two types of theta rhythms are not identical; they are associated with different behaviors and can be differentially modulated by diverse experimental conditions. Therefore, in this study, we aimed to investigate whether or not application of soluble Aβ alters the two types of theta frequency oscillatory network activity generated in rat hippocampal slices by application of the cholinergic and glutamatergic agonists carbachol or DHPG, respectively. Due to previous evidence that oscillatory activity can be differentially affected by different Aβ peptides, we also compared Aβ25−35 and Aβ1−42 for their effects on theta rhythms in vitro at similar concentrations (0.5 to 1.0 μM. We found that Aβ25−35 reduces, with less potency than Aβ1−42, carbachol-induced population theta oscillatory activity. In contrast, DHPG-induced oscillatory activity was not affected by a high concentration of Aβ25−35 but was reduced by Aβ1−42. Our results support the idea that different amyloid peptides might alter specific cellular mechanisms related to the generation of specific neuronal network activities, instead of exerting a generalized inhibitory effect on neuronal network function.

  9. Tau/Amyloid Beta 42 Peptide Test (Alzheimer Biomarkers)

    Science.gov (United States)

    ... Was this page helpful? Also known as: Alzheimer Biomarkers Formal name: Tau Protein and Amyloid Beta 42 ... being researched for their potential use as AD biomarkers. If someone has symptoms of dementia , a health ...

  10. Amyloid Beta Peptide Slows Down Sensory-Induced Hippocampal Oscillations

    Directory of Open Access Journals (Sweden)

    Fernando Peña-Ortega

    2012-01-01

    Full Text Available Alzheimer’s disease (AD progresses with a deterioration of hippocampal function that is likely induced by amyloid beta (Aβ oligomers. Hippocampal function is strongly dependent on theta rhythm, and disruptions in this rhythm have been related to the reduction of cognitive performance in AD. Accordingly, both AD patients and AD-transgenic mice show an increase in theta rhythm at rest but a reduction in cognitive-induced theta rhythm. We have previously found that monomers of the short sequence of Aβ (peptide 25–35 reduce sensory-induced theta oscillations. However, considering on the one hand that different Aβ sequences differentially affect hippocampal oscillations and on the other hand that Aβ oligomers seem to be responsible for the cognitive decline observed in AD, here we aimed to explore the effect of Aβ oligomers on sensory-induced theta rhythm. Our results show that intracisternal injection of Aβ1–42 oligomers, which has no significant effect on spontaneous hippocampal activity, disrupts the induction of theta rhythm upon sensory stimulation. Instead of increasing the power in the theta band, the hippocampus of Aβ-treated animals responds to sensory stimulation (tail pinch with an increase in lower frequencies. These findings demonstrate that Aβ alters induced theta rhythm, providing an in vivo model to test for therapeutic approaches to overcome Aβ-induced hippocampal and cognitive dysfunctions.

  11. In vitro oligomerization and fibrillogenesis of amyloid-beta peptides.

    Science.gov (United States)

    Benseny-Cases, Núria; Klementieva, Oksana; Cladera, Josep

    2012-01-01

    The amyloid beta Ab(1-40) and Ab(1-42) peptides are the main components of the fibrillar plaques characteristically found in the brains affected by Alzheimer's disease. Fibril formation has been thoroughly studied in vitro using synthetic amyloid peptides and has been described to be a nucleation dependent polymerization process. During this process, defined by a slow nucleation phase followed by a rapid exponential elongation reaction, a whole range of aggregated species (low and high molecular weight aggregates) precede fibril formation. Toxic species related to the onset and development of Alzheimer's disease are thought to be found among these prefibrillar aggregates. Two main procedures are used to experimentally monitor fibril formation kinetics: through the measurement of the light scattered by the different peptide aggregates and using the fluorescent dye thioflavin T, which fluorescence increases when specifically interacting with amyloid fibrils. Reproducibility may, however, be difficult to achieve when measuring and characterizing fibril formation kinetics. This fact is mainly due to the difficulty in experimentally handling amyloid peptides, which is directly related to the difficulty of having them in a monomeric form at the beginning of the polymerization process. This has to do mainly with the type of solvent used for the preparation of the peptide stock solutions (water, DMSO, TFE, HFIP) and the control of determinant physicochemical parameters such as pH. Moreover, kinetic progression turns out to be highly dependent on the type of peptide counter-ion used, which will basically determine the duration of the nucleation phase and the rate at which high molecular weight oligomers are formed. Centrifugation and filtration procedures used in the preparation of the peptide stock solutions will also greatly influence the duration of the fibril formation process. In this chapter, a survey of the alluded experimental procedures is provided and a general

  12. Influence of hydrophobic Teflon particles on the structure of amyloid beta-peptide

    NARCIS (Netherlands)

    Giacomelli, C.E.; Norde, W.

    2003-01-01

    The amyloid beta-protein (Abeta) constitutes the major peptide component of the amyloid plaque deposits of Alzheimer's disease in humans. The Abeta changes from a nonpathogenic to a pathogenic conformation resulting in self-aggregation and deposition of the peptide. It has been established that dena

  13. Influence of hydrophobic Teflon particles on the structure of amyloid beta-peptide

    NARCIS (Netherlands)

    Giacomelli, C.E.; Norde, W.

    2003-01-01

    The amyloid beta-protein (Abeta) constitutes the major peptide component of the amyloid plaque deposits of Alzheimer's disease in humans. The Abeta changes from a nonpathogenic to a pathogenic conformation resulting in self-aggregation and deposition of the peptide. It has been established that

  14. Influence of hydrophobic Teflon particles on the structure of amyloid beta-peptide

    NARCIS (Netherlands)

    Giacomelli, CE; Norde, W

    2003-01-01

    The amyloid beta-protein (Abeta) constitutes the major peptide component of the amyloid plaque deposits of Alzheimer's disease in humans. The Abeta changes from a nonpathogenic to a pathogenic conformation resulting in self-aggregation and deposition of the peptide. It has been established that dena

  15. Interaction of calreticulin with amyloid beta peptide 1-42.

    Science.gov (United States)

    Duus, K; Hansen, P R; Houen, G

    2008-01-01

    The interaction of calreticulin with amyloid beta (Abeta) was investigated using solid phase and solution binding assays. Calreticulin bound Abeta 1-42 in a time and concentration dependent fashion. The binding was optimal at pH 5 and was stimulated by Ca2+ and inhibited by Zn2+ at pH 7. Interaction took place through the hydrophobic C-terminus of Abeta 1-42 and the polypeptide binding site of calreticulin. The results are discussed in the light of a reported role of calreticulin as a cell surface scavenger receptor.

  16. PEGylated nanoparticles bind to and alter amyloid-beta peptide conformation

    DEFF Research Database (Denmark)

    Brambilla, Davide; Verpillot, Romain; Le Droumaguet, Benjamin;

    2012-01-01

    We have demonstrated that the polyethylene glycol (PEG) corona of long-circulating polymeric nanoparticles (NPs) favors interaction with the amyloid-beta (Aß(1-42)) peptide both in solution and in serum. The influence of PEGylation of poly(alkyl cyanoacrylate) and poly(lactic acid) NPs on the int...

  17. TLR2 is a primary receptor for Alzheimer's amyloid beta peptide to trigger neuroinflammatory activation.

    NARCIS (Netherlands)

    Liu, S.; Liu, Y.; Hao, W.; Wolf, L.; Kiliaan, A.J.; Penke, B.; Rube, C.E.; Walter, J.; Heneka, M.T.; Hartmann, T.; Menger, M.D.; Fassbender, K.

    2012-01-01

    Microglia activated by extracellularly deposited amyloid beta peptide (Abeta) act as a two-edged sword in Alzheimer's disease pathogenesis: on the one hand, they damage neurons by releasing neurotoxic proinflammatory mediators (M1 activation); on the other hand, they protect neurons by triggering an

  18. TLR2 is a primary receptor for Alzheimer's amyloid beta peptide to trigger neuroinflammatory activation.

    NARCIS (Netherlands)

    Liu, S.; Liu, Y.; Hao, W.; Wolf, L.; Kiliaan, A.J.; Penke, B.; Rube, C.E.; Walter, J.; Heneka, M.T.; Hartmann, T.; Menger, M.D.; Fassbender, K.

    2012-01-01

    Microglia activated by extracellularly deposited amyloid beta peptide (Abeta) act as a two-edged sword in Alzheimer's disease pathogenesis: on the one hand, they damage neurons by releasing neurotoxic proinflammatory mediators (M1 activation); on the other hand, they protect neurons by triggering

  19. Ethyl ether fraction of Gastrodia elata Blume protects amyloid beta peptide-induced cell death.

    Science.gov (United States)

    Kim, Hyeon-Ju; Moon, Kwang-Deog; Lee, Dong-Seok; Lee, Sang-Han

    2003-01-01

    Alzheimer's disease is the most common cause of dementia in the elderly. Recently, it has been reported that Alzheimer's disease is associated with cell death in neuronal cells including the hippocampus. Amyloid beta-peptide stimulates neuronal cell death, but the underlying signaling pathways are poorly understood. In order to develop anti-dementia agents with potential therapeutic value, we examined the effect of the herbal compound Gastrodia elata Blume (GEB) on neuronal cell death induced by amyloid beta-peptide in IMR-32 neuroblastoma cells. The fractionation of GEB was carried out in various solvents. The hydroxyl radical scavenging effect of the ethyl ether fraction was more potent than any other fractions. In cells treated with amyloid beta-peptide, the neuroprotective effect of the ethyl ether, chloroform, and butanol fractions was 92, 44, and 39%, respectively, compared with control. Taken together, these results suggest that the ethyl ether fraction of GEB contains one or more compounds that dramatically reduce amyloid beta-peptide induced neuronal cell death in vitro.

  20. Lipid rafts participate in aberrant degradative autophagic-lysosomal pathway of amyloid-beta peptide in Alzheimer’s disease

    Institute of Scientific and Technical Information of China (English)

    Xin Zhou; Chun Yang; Yufeng Liu; Peng Li; Huiying Yang; Jingxing Dai; Rongmei Qu; Lin Yuan

    2014-01-01

    Amyloid-beta peptide is the main component of amyloid plaques, which are found in Alzhei-mer’s disease. The generation and deposition of amyloid-beta is one of the crucial factors for the onset and progression of Alzheimer’s disease. Lipid rafts are glycolipid-rich liquid domains of the plasma membrane, where certain types of protein tend to aggregate and intercalate. Lipid rafts are involved in the generation of amyloid-beta oligomers and the formation of amyloid-beta peptides. In this paper, we review the mechanism by which lipid rafts disturb the aberrant deg-radative autophagic-lysosomal pathway of amyloid-beta, which plays an important role in the pathological process of Alzheimer’s disease. Moreover, we describe this mechanism from the view of the Two-system Theory of fasciology and thus, suggest that lipid rafts may be a new target of Alzheimer’s disease treatment.

  1. Elevation in sphingomyelin synthase activity is associated with increases in amyloid-beta peptide generation.

    Directory of Open Access Journals (Sweden)

    Jen-Hsiang T Hsiao

    Full Text Available A pathological hallmark of Alzheimer's disease (AD is the presence of amyloid-beta peptide (Aβ plaques in the brain. Aβ is derived from a sequential proteolysis of the transmenbrane amyloid precursor protein (APP, a process which is dependent on the distribution of lipids present in the plasma membrane. Sphingomyelin is a major membrane lipid, however its role in APP processing is unclear. Here, we assessed the expression of sphingomyelin synthase (SGMS1; the gene responsible for sphingomyelin synthesis in human brain and found that it was significantly elevated in the hippocampus of AD brains, but not in the cerebellum. Secondly, we assessed the impact of altering SGMS activity on Aβ generation. Inhibition of SGMS activity significantly reduced the level of Aβ in a dose- and time dependent manner. The decrease in Aβ level occurred without changes in APP expression or cell viability. These results when put together indicate that SGMS activity impacts on APP processing to produce Aβ and it could be a contributing factor in Aβ pathology associated with AD.

  2. Membrane Pore Formation by Amyloid beta (25-35) Peptide

    Science.gov (United States)

    Kandel, Nabin; Tatulian, Suren

    Amyloid (A β) peptide contributes to Alzheimer's disease by a yet unidentified mechanism. One of the possible mechanisms of A β toxicity is formation of pores in cellular membranes. We have characterized the formation of pores in phospholipid membranes by the Aβ25 - 35 peptide (GSNKGAIIGLM) using fluorescence, Fourier transform infrared spectroscopy (FTIR) and circular dichroism (CD) techniques. CD and FTIR identified formation of β-sheet structure upon incubation of the peptide in aqueous buffer for 2 hours. Unilamellar vesicles composed of a zwitterionic lipid, 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC), and 70 % POPC plus 30 % of an acidic lipid, 1-palmitoyl-2-oleoyl-phosphatidylglycerol (POPG), are made in 30 mM CaCl2. Quin-2, a fluorophore that displays increased fluorescence upon Ca2+ binding, is added to the vesicles externally. Peptide addition results in increased Quin-2 fluorescence, which is interpreted by binding of the peptide to the vesicles, pore formation, and Ca2+ leakage. The positive and negative control measurements involve addition of a detergent, Triton X-100, which causes vesicle rupture and release of total calcium, and blank buffer, respectively.

  3. ATP-promoted amyloidosis of an amyloid beta peptide.

    Science.gov (United States)

    Exley, C

    1997-10-20

    Amyloidosis is implicated in the aetiology of a number of disorders of human health. The factors that influence its instigation and subsequent rate of progress are the subject of a considerable research effort. The peptide fragment A beta(25-35) is amyloidogenic and has proven to be a useful model of the processes involved in amyloidosis. It is demonstrated herein that the assembly of A beta(25-35) into thioflavin T-reactive fibrils and their subsequent rearrangement into advanced glycation endproducts is accelerated by ATP. Aluminium potentiated these effects of ATP, suggesting a possible link with the aetiology of amyloidoses in vivo.

  4. Interaction between amyloid beta peptide and an aggregation blocker peptide mimicking islet amyloid polypeptide.

    Directory of Open Access Journals (Sweden)

    Nasrollah Rezaei-Ghaleh

    Full Text Available Assembly of amyloid-beta peptide (Aβ into cytotoxic oligomeric and fibrillar aggregates is believed to be a major pathologic event in Alzheimer's disease (AD and interfering with Aβ aggregation is an important strategy in the development of novel therapeutic approaches. Prior studies have shown that the double N-methylated analogue of islet amyloid polypeptide (IAPP IAPP-GI, which is a conformationally constrained IAPP analogue mimicking a non-amyloidogenic IAPP conformation, is capable of blocking cytotoxic self-assembly of Aβ. Here we investigate the interaction of IAPP-GI with Aβ40 and Aβ42 using NMR spectroscopy. The most pronounced NMR chemical shift changes were observed for residues 13-20, while residues 7-9, 15-16 as well as the C-terminal half of Aβ--that is both regions of the Aβ sequence that are converted into β-strands in amyloid fibrils--were less accessible to solvent in the presence of IAPP-GI. At the same time, interaction of IAPP-GI with Aβ resulted in a concentration-dependent co-aggregation of Aβ and IAPP-GI that was enhanced for the more aggregation prone Aβ42 peptide. On the basis of the reduced toxicity of the Aβ peptide in the presence of IAPP-GI, our data are consistent with the suggestion that IAPP-GI redirects Aβ into nontoxic "off-pathway" aggregates.

  5. Alzheimer's disease and amyloid beta-peptide deposition in the brain: a matter of 'aging'?

    DEFF Research Database (Denmark)

    Moro, Maria Luisa; Collins, Matthew J; Cappellini, Enrico

    2010-01-01

    Biomolecules can experience aging processes that limit their long-term functionality in organisms. Typical markers of protein aging are spontaneous chemical modifications, such as AAR (amino acid racemization) and AAI (amino acid isomerization), mainly involving aspartate and asparagine residues....... Since these modifications may affect folding and turnover, they reduce protein functionality over time and may be linked to pathological conditions. The present mini-review describes evidence of AAR and AAI involvement in the misfolding and brain accumulation of Abeta (amyloid beta-peptide), a central...

  6. Insights into the molecular interactions between aminopeptidase and amyloid beta peptide using molecular modeling techniques.

    Science.gov (United States)

    Dhanavade, Maruti J; Sonawane, Kailas D

    2014-08-01

    Amyloid beta (Aβ) peptides play a central role in the pathogenesis of Alzheimer's disease. The accumulation of Aβ peptides in AD brain was caused due to overproduction or insufficient clearance and defects in the proteolytic degradation of Aβ peptides. Hence, Aβ peptide degradation could be a promising therapeutic approach in AD treatment. Recent experimental report suggests that aminopeptidase from Streptomyces griseus KK565 (SGAK) can degrade Aβ peptides but the interactive residues are yet to be known in detail at the atomic level. Hence, we developed the three-dimensional model of aminopeptidase (SGAK) using SWISS-MODEL, Geno3D and MODELLER. Model built by MODELLER was used for further studies. Molecular docking was performed between aminopeptidase (SGAK) with wild-type and mutated Aβ peptides. The docked complex of aminopeptidase (SGAK) and wild-type Aβ peptide (1IYT.pdb) shows more stability than the other complexes. Molecular docking and MD simulation results revealed that the residues His93, Asp105, Glu139, Glu140, Asp168 and His255 are involved in the hydrogen bonding with Aβ peptide and zinc ions. The interactions between carboxyl oxygen atoms of Glu139 of aminopeptidase (SGAK) with water molecule suggest that the Glu139 may be involved in the nucleophilic attack on Ala2-Glu3 peptide bond of Aβ peptide. Hence, amino acid Glu139 of aminopeptidase (SGAK) might play an important role to degrade Aβ peptides, a causative agent of Alzheimer's disease.

  7. Acetylcholinesterase, a senile plaque component, affects the fibrillogenesis of amyloid-beta-peptides.

    Science.gov (United States)

    Alvarez, A; Bronfman, F; Pérez, C A; Vicente, M; Garrido, J; Inestrosa, N C

    1995-12-01

    Acetylcholinesterase (AChE) colocalizes with amyloid-beta peptide (A beta) deposits present in the brain of Alzheimer's patients. Recent studies showed that A beta 1-40 can adopt two different conformational states in solution (an amyloidogenic conformer, A beta ac, and a non-amyloidogenic conformer, A beta nac) which have distinct abilities to form amyloid fibrils. We report here that AChE binds A beta nac and accelerates amyloid formation by the same peptide. No such effect was observed with A beta ac, the amyloidogenic conformer, suggesting that AChE acts as a 'pathological chaperone' inducing a conformational transition from A beta nac into A beta ac in vitro.

  8. Metabolic changes may precede proteostatic dysfunction in a Drosophila model of amyloid beta peptide toxicity

    DEFF Research Database (Denmark)

    Ott, Stanislav; Vishnivetskaya, Anastasia; Malmendal, Anders;

    2016-01-01

    Amyloid beta (Aβ) peptide aggregation is linked to the initiation of Alzheimer's disease; accordingly, aggregation-prone isoforms of Aβ, expressed in the brain, shorten the lifespan of Drosophila melanogaster. However, the lethal effects of Aβ are not apparent until after day 15. We used shibire(...

  9. Subcellular and metabolic examination of amyloid-beta peptides in Alzheimer disease pathogenesis: evidence for Abeta(25-35).

    NARCIS (Netherlands)

    Kaminsky, Y.G.; Marlatt, M.W.; Smith, M.A.; Kosenko, E.A.

    2010-01-01

    Amyloid-beta peptide (Abeta) is a central player in the pathogenesis and diagnosis of Alzheimer disease. It aggregates to form the core of Alzheimer disease-associated plaques found in coordination with tau deposits in diseased individuals. Despite this clinical relevance, no single hypothesis

  10. Bloodstream Amyloid-beta (1-40) Peptide, Cognition, and Outcomes in Heart Failure.

    Science.gov (United States)

    Bayes-Genis, Antoni; Barallat, Jaume; de Antonio, Marta; Domingo, Mar; Zamora, Elisabet; Vila, Joan; Subirana, Isaac; Gastelurrutia, Paloma; Pastor, M Cruz; Januzzi, James L; Lupón, Josep

    2017-03-06

    In the brain, amyloid-beta generation participates in the pathophysiology of cognitive disorders; in the bloodstream, the role of amyloid-beta is uncertain but may be linked to sterile inflammation and senescence. We explored the relationship between blood levels of amyloid-beta 1-40 peptide (Aβ40), cognition, and mortality (all-cause, cardiovascular, and heart failure [HF]-related) in ambulatory patients with HF. Bloodstream Aβ40 was measured in 939 consecutive patients with HF. Cognition was evaluated with the Pfeiffer questionnaire (adjusted for educational level) at baseline and during follow-up. Multivariate Cox regression analyses and measurements of performance (discrimination, calibration, and reclassification) were used, with competing risk for specific causes of death. Over 5.1 ± 2.9 years, 471 patients died (all-cause): 250 from cardiovascular causes and 131 HF-related. The median Aβ40 concentration was 519.1 pg/mL [Q1-Q3: 361.8-749.9 pg/mL]. The Aβ40 concentration correlated with age, body mass index, renal dysfunction, and New York Heart Association functional class (all P < .001). There were no differences in Aβ40 in patients with and without cognitive impairment at baseline (P = .97) or during follow-up (P = .20). In multivariable analysis, including relevant clinical predictors and N-terminal pro-B-type natriuretic peptide, Aβ40 remained significantly associated with all-cause death (HR, 1.22; 95%CI, 1.10-1.35; P < .001) and cardiovascular death (HR, 1.18; 95%CI, 1.03-1.36; P = .02), but not with HF-related death (HR, 1.13; 95%CI, 0.93-1.37; P = .22). Circulating Aβ40 improved calibration and patient reclassification. Blood levels of Aβ40 are not associated with cognitive decline in HF. Circulating Aβ40 was predictive of mortality and may indicate systemic aging. Copyright © 2017 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.

  11. Scutellaria baicalensis stem-leaf total flavonoid reduces neuronal apoptosis induced by amyloid beta-peptide (25-35)

    Institute of Scientific and Technical Information of China (English)

    Ruiting Wang; Xingbin Shen; Enhong Xing; Lihua Guan; Lisheng Xin

    2013-01-01

    Scutellaria baicalensis stem-leaf total flavonoid might attenuate learning/memory impairment and neuronal loss in rats induced by amyloid beta-peptide. This study aimed to explore the effects of Scutellaria baicalensis stem-leaf total flavonoid on amyloid beta-peptide-induced neuronal apoptosis and the expression of apoptosis-related proteins in the rat hippocampus. Male Wistar rats were given intragastric administration of Scutellaria baicalensis stem-leaf total flavonoid, 50 or 100 mg/kg, once per day. On day 8 after administration, 10 μg amyloid beta-peptide (25–35) was injected into the bilateral hippocampus of rats to induce neuronal apoptosis. On day 20, hippocampal tissue was harvested and probed with the terminal deoxyribonucleotidyl transferase-mediated biotin-16-dUTP nick-end labeling assay. Scutellaria baicalensis stem-leaf total flavonoid at 50 and 100 mg/kg reduced neuronal apoptosis induced by amyloid beta-peptide (25–35) in the rat hippocampus. Immunohistochemistry and western blot assay revealed that expression of the pro-apoptotic protein Bax, cytochrome c and caspase-3 was significantly diminished by 50 and 100 mg/kg Scutellaria baicalensis stem-leaf total flavonoid, while expression of the anti-apoptotic protein Bcl-2 was increased. Moreover, 100 mg/kg Scutellaria baicalensis stem-leaf total flavonoid had a more dramatic effect than the lower dosage. These experimental findings indicate that Scutellaria baicalensis stem-leaf total flavonoid dose-dependently attenuates neuronal apoptosis induced by amyloid beta-peptide in the hippocampus, and it might mediate this by regulating the expression of Bax, cytochrome c, caspase-3 and Bcl-2.

  12. Effect of graphene oxide on the conformational transitions of amyloid beta peptide: A molecular dynamics simulation study.

    Science.gov (United States)

    Baweja, Lokesh; Balamurugan, Kanagasabai; Subramanian, Venkatesan; Dhawan, Alok

    2015-09-01

    The interactions between nanomaterials (NMs) and amyloid proteins are central to the nanotechnology-based diagnostics and therapy in neurodegenerative disorders such as Alzheimer's and Parkinson's. Graphene oxide (GO) and its derivatives have shown to modulate the aggregation pattern of disease causing amyloid beta (Aβ) peptide. However, the mechanism is still not well understood. Using molecular dynamics simulations, the effect of graphene oxide (GO) and reduced graphene oxide (rGO) having carbon:oxygen ratio of 4:1 and 10:1, respectively, on the conformational transitions (alpha-helix to beta-sheet) and the dynamics of the peptide was investigated. GO and rGO decreased the beta-strand propensity of amino acid residues in Aβ. The peptide displayed different modes of adsorption on GO and rGO. The adsorption on GO was dominated by electrostatic interactions, whereas on rGO, both van der Waals and electrostatic interactions contributed in the adsorption of the peptide. Our study revealed that the slight increase in the hydrophobic patches on rGO made it more effective inhibitor of conformational transitions in the peptide. Alpha helix-beta sheet transition in Aβ peptide could be one of the plausible mechanism by which graphene oxide may inhibit amyloid fibrillation.

  13. Dynamics in Alzheimer's disease: the role of peptide flexibility on amyloid beta aggregation

    Science.gov (United States)

    Antonieta Sanchez Farran, Maria; Maranas, Janna

    2010-03-01

    Aggregates of the amyloid beta peptide (Aβ) are thought to trigger brain cell death in Alzheimer's patients. Two different types of Aβ aggregates have been identified: soluble, and insoluble. Soluble aggregates are formed in early stages of peptide association, whereas insoluble aggregates are the final state of aggregation. Interestingly, it is the soluble aggregates, not the insoluble ones, which correlate with disease progression. Despite the relevance of soluble aggregates as a target for Alzheimer's disease, their mechanism of formation is unknown. The role of local flexibility in protein function has recently received attention: in this study we ask if local flexibility plays a similar role in how soluble aggregates form. To answer this question, we perform all-atom molecular dynamics simulations of the wild-type Aβ monomer, and two mutated forms that vary in their ability to form soluble aggregates. We find that enhanced flexibility facilitates the formation and availability of nucleation sites by allowing the peptide to more easily access the conformations most favorable to association. Peptides with high flexibility show larger conformational changes than less flexible peptides, the extent of these changes could determine the ability of Aβ to self associate.

  14. Interaction of amyloid inhibitor proteins with amyloid beta peptides: insight from molecular dynamics simulations.

    Directory of Open Access Journals (Sweden)

    Payel Das

    Full Text Available Knowledge of the detailed mechanism by which proteins such as human αB- crystallin and human lysozyme inhibit amyloid beta (Aβ peptide aggregation is crucial for designing treatment for Alzheimer's disease. Thus, unconstrained, atomistic molecular dynamics simulations in explicit solvent have been performed to characterize the Aβ17-42 assembly in presence of the αB-crystallin core domain and of lysozyme. Simulations reveal that both inhibitor proteins compete with inter-peptide interaction by binding to the peptides during the early stage of aggregation, which is consistent with their inhibitory action reported in experiments. However, the Aβ binding dynamics appear different for each inhibitor. The binding between crystallin and the peptide monomer, dominated by electrostatics, is relatively weak and transient due to the heterogeneous amino acid distribution of the inhibitor surface. The crystallin-bound Aβ oligomers are relatively long-lived, as they form more extensive contact surface with the inhibitor protein. In contrast, a high local density of arginines from lysozyme allows strong binding with Aβ peptide monomers, resulting in stable complexes. Our findings not only illustrate, in atomic detail, how the amyloid inhibitory mechanism of human αB-crystallin, a natural chaperone, is different from that of human lysozyme, but also may aid de novo design of amyloid inhibitors.

  15. Caffeine reverses cognitive impairment and decreases brain amyloid-beta levels in aged Alzheimer's disease mice.

    Science.gov (United States)

    Arendash, Gary W; Mori, Takashi; Cao, Chuanhai; Mamcarz, Malgorzata; Runfeldt, Melissa; Dickson, Alexander; Rezai-Zadeh, Kavon; Tane, Jun; Citron, Bruce A; Lin, Xiaoyang; Echeverria, Valentina; Potter, Huntington

    2009-01-01

    We have recently shown that Alzheimer's disease (AD) transgenic mice given a moderate level of caffeine intake (the human equivalent of 5 cups of coffee per day) are protected from development of otherwise certain cognitive impairment and have decreased hippocampal amyloid-beta (Abeta) levels due to suppression of both beta-secretase (BACE1) and presenilin 1 (PS1)/gamma-secretase expression. To determine if caffeine intake can have beneficial effects in "aged" APPsw mice already demonstrating cognitive impairment, we administered caffeine in the drinking water of 18-19 month old APPsw mice that were impaired in working memory. At 4-5 weeks into caffeine treatment, those impaired transgenic mice given caffeine (Tg/Caff) exhibited vastly superior working memory compared to the continuing impairment of control transgenic mice. In addition, Tg/Caff mice had substantially reduced Abeta deposition in hippocampus (decrease 40%) and entorhinal cortex (decrease 46%), as well as correlated decreases in brain soluble Abeta levels. Mechanistically, evidence is provided that caffeine suppression of BACE1 involves the cRaf-1/NFkappaB pathway. We also determined that caffeine concentrations within human physiological range effectively reduce active and total glycogen synthase kinase 3 levels in SweAPP N2a cells. Even with pre-existing and substantial Abeta burden, aged APPsw mice exhibited memory restoration and reversal of AD pathology, suggesting a treatment potential of caffeine in cases of established AD.

  16. Computational Design of New Peptide Inhibitors for Amyloid Beta (Aβ) Aggregation in Alzheimer's Disease: Application of a Novel Methodology

    OpenAIRE

    Gözde Eskici; Mert Gur

    2013-01-01

    Computational Design of New Peptide Inhibitors for Amyloid Beta (Ab) Aggregation in Alzheimer’s Disease: Application of a Novel Methodology Go¨ zde Eskici¤a , Mert Gur¤b* Center for Computational Biology and Bioinformatics, Koc University, Istanbul, Turkey Abstract Alzheimer’s disease is the most common form of dementia. It is a neurodegenerative and incurable disease that is associated with the tight packing of amyloid fibrils. This packing is facilitated by the compatib...

  17. MALDI, AP/MALDI and ESI techniques for the MS detection of amyloid [beta]-peptides

    Science.gov (United States)

    Grasso, Giuseppe; Mineo, Placido; Rizzarelli, Enrico; Spoto, Giuseppe

    2009-04-01

    Amyloid [beta]-peptides (A[beta]s) are involved in several neuropathological conditions such as Alzheimer's disease and considerable experimental evidences have emerged indicating that different proteases play a major role in regulating the accumulation of A[beta]s in the brain. Particularly, insulin-degrading enzyme (IDE) has been shown to degrade A[beta]s at different cleavage sites, but the experimental results reported in the literature and obtained by mass spectrometry methods are somehow fragmentary. The detection of A[beta]s is often complicated by solubility issues, oxidation artifacts and spontaneous aggregation/cleavage and, in order to rationalize the different reported results, we analyzed A[beta]s solutions by three different MS approaches: matrix assisted laser desorption ionization-time of flight (MALDI-TOF), atmospheric pressure (AP) MALDI ion trap and electrospray ionization (ESI) ion trap. Differences in the obtained results are discussed and ESI is chosen as the most suitable MS method for A[beta]s detection. Finally, cleavage sites produced by interaction of A[beta]s with IDE are identified, two of which had never been reported in the literature.

  18. The Alzheimer's disease-associated amyloid beta-protein is an antimicrobial peptide.

    Directory of Open Access Journals (Sweden)

    Stephanie J Soscia

    Full Text Available BACKGROUND: The amyloid beta-protein (Abeta is believed to be the key mediator of Alzheimer's disease (AD pathology. Abeta is most often characterized as an incidental catabolic byproduct that lacks a normal physiological role. However, Abeta has been shown to be a specific ligand for a number of different receptors and other molecules, transported by complex trafficking pathways, modulated in response to a variety of environmental stressors, and able to induce pro-inflammatory activities. METHODOLOGY/PRINCIPAL FINDINGS: Here, we provide data supporting an in vivo function for Abeta as an antimicrobial peptide (AMP. Experiments used established in vitro assays to compare antimicrobial activities of Abeta and LL-37, an archetypical human AMP. Findings reveal that Abeta exerts antimicrobial activity against eight common and clinically relevant microorganisms with a potency equivalent to, and in some cases greater than, LL-37. Furthermore, we show that AD whole brain homogenates have significantly higher antimicrobial activity than aged matched non-AD samples and that AMP action correlates with tissue Abeta levels. Consistent with Abeta-mediated activity, the increased antimicrobial action was ablated by immunodepletion of AD brain homogenates with anti-Abeta antibodies. CONCLUSIONS/SIGNIFICANCE: Our findings suggest Abeta is a hitherto unrecognized AMP that may normally function in the innate immune system. This finding stands in stark contrast to current models of Abeta-mediated pathology and has important implications for ongoing and future AD treatment strategies.

  19. Non-fibrillar amyloid-{beta} peptide reduces NMDA-induced neurotoxicity, but not AMPA-induced neurotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Niidome, Tetsuhiro, E-mail: tniidome@pharm.kyoto-u.ac.jp [Department of Neuroscience for Drug Discovery, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501 (Japan); Goto, Yasuaki; Kato, Masaru; Wang, Pi-Lin [Department of Neuroscience for Drug Discovery, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501 (Japan); Goh, Saori; Tanaka, Naoki [Department of Biomolecular Engineering, Kyoto Institute of Technology, Kyoto 606-8585 (Japan); Akaike, Akinori [Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501 (Japan); Kihara, Takeshi; Sugimoto, Hachiro [Department of Neuroscience for Drug Discovery, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501 (Japan)

    2009-09-04

    Amyloid-{beta} peptide (A{beta}) is thought to be linked to the pathogenesis of Alzheimer's disease. Recent studies suggest that A{beta} has important physiological roles in addition to its pathological roles. We recently demonstrated that A{beta}42 protects hippocampal neurons from glutamate-induced neurotoxicity, but the relationship between A{beta}42 assemblies and their neuroprotective effects remains largely unknown. In this study, we prepared non-fibrillar and fibrillar A{beta}42 based on the results of the thioflavin T assay, Western blot analysis, and atomic force microscopy, and examined the effects of non-fibrillar and fibrillar A{beta}42 on glutamate-induced neurotoxicity. Non-fibrillar A{beta}42, but not fibrillar A{beta}42, protected hippocampal neurons from glutamate-induced neurotoxicity. Furthermore, non-fibrillar A{beta}42 decreased both neurotoxicity and increases in the intracellular Ca{sup 2+} concentration induced by N-methyl-D-aspartate (NMDA), but not by {alpha}-amino-3-hydrozy-5-methyl-4-isoxazole propionic acid (AMPA). Our results suggest that non-fibrillar A{beta}42 protects hippocampal neurons from glutamate-induced neurotoxicity through regulation of the NMDA receptor.

  20. Role of Notch-1 signaling pathway in PC12 cell apoptosis induced by amyloid beta-peptide (25-35)

    Institute of Scientific and Technical Information of China (English)

    Huimin Liang; Yaozhou Zhang; Xiaoyan Shi; Tianxiang Wei; Jiyu Lou

    2014-01-01

    Recent studies have demonstrated that Notch-1 expression is increased in the hippocampus of Alzheimer’s disease patients. We speculate that Notch-1 signaling may be involved in PC12 cell apoptosis induced by amyloid beta-peptide (25-35) (Aβ25-35). In the present study, PC12 cells were cultured with different doses (0, 0.1, 1.0, 10 and 100 nmol/L) of N-[N-(3,5-Dilfuorophen-acetyl)-L-alanyl]-S-phenylglycine t-butyl ester, a Notch-1 signaling pathway inhibitor, for 30 minutes. Then cultured cells were induced with Aβ25-35 for 48 hours. Pretreatment of PC12 cells with high doses of N-[N-(3,5-Dilfuorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (> 10 nmol/L) prolonged the survival of PC12 cells after Aβ25-35 induction, decreased the expression of apoptosis-related proteins caspase-3, -8, -9, increased the activity of oxidative stress-related su-peroxide dismutase and catalase, inhibited the production of active oxygen, and reduced nuclear factor kappa B expression. This study indicates that the Notch-1 signaling pathway plays a pivotal role in Aβ25-35-induced PC12 apoptosis.

  1. Amyloid-beta induced CA1 pyramidal cell loss in young adult rats is alleviated by systemic treatment with FGL, a neural cell adhesion molecule-derived mimetic peptide.

    Directory of Open Access Journals (Sweden)

    Nicola J Corbett

    Full Text Available Increased levels of neurotoxic amyloid-beta in the brain are a prominent feature of Alzheimer's disease. FG-Loop (FGL, a neural cell adhesion molecule-derived peptide that corresponds to its second fibronectin type III module, has been shown to provide neuroprotection against a range of cellular insults. In the present study impairments in social recognition memory were seen 24 days after a 5 mg/15 µl amyloid-beta(25-35 injection into the right lateral ventricle of the young adult rat brain. This impairment was prevented if the animal was given a systemic treatment of FGL. Unbiased stereology was used to investigate the ability of FGL to alleviate the deleterious effects on CA1 pyramidal cells of the amyloid-beta(25-35 injection. NeuN, a neuronal marker (for nuclear staining was used to identify pyramidal cells, and immunocytochemistry was also used to identify inactive glycogen synthase kinase 3beta (GSK3β and to determine the effects of amyloid-beta(25-35 and FGL on the activation state of GSK3β, since active GSK3β has been shown to cause a range of AD pathologies. The cognitive deficits were not due to hippocampal atrophy as volume estimations of the entire hippocampus and its regions showed no significant loss, but amyloid-beta caused a 40% loss of pyramidal cells in the dorsal CA1 which was alleviated partially by FGL. However, FGL treatment without amyloid-beta was also found to cause a 40% decrease in CA1 pyramidal cells. The action of FGL may be due to inactivation of GSK3β, as an increased proportion of CA1 pyramidal neurons contained inactive GSK3β after FGL treatment. These data suggest that FGL, although potentially disruptive in non-pathological conditions, can be neuroprotective in disease-like conditions.

  2. DCP-LA neutralizes mutant amyloid beta peptide-induced impairment of long-term potentiation and spatial learning.

    Science.gov (United States)

    Nagata, Tetsu; Tomiyama, Takami; Tominaga, Takemi; Mori, Hiroshi; Yaguchi, Takahiro; Nishizaki, Tomoyuki

    2010-01-01

    Long-term potentiation (LTP) was monitored from the CA1 region of the intact rat hippocampus by delivering high frequency stimulation (HFS) to the Schaffer collateral commissural pathway. Intraventricular injection with mutant amyloid beta(1-42) peptide lacking glutamate-22 (Abeta(1-42)E22Delta), favoring oligomerization, 10 min prior to HFS, inhibited expression of LTP, with the potency more than wild-type amyloid beta(1-42) peptide. Intraperitoneal injection with the linoleic acid derivative 8-[2-(2-pentyl-cyclopropylmethyl)-cyclopropyl]-octanoic acid (DCP-LA) 70 min prior to HFS neutralized mutant Abeta(1-42)E22Delta peptide-induced LTP inhibition. In the water maze test, continuous intraventricular injection with mutant Abeta(1-42)E22Delta peptide for 14 days prolonged the acquisition latency as compared with that for control, with the potency similar to wild-type Abeta(1-42) peptide, and intraperitoneal injection with DCP-LA shortened the prolonged latency to control levels. The results of the present study indicate that DCP-LA neutralizes mutant Abeta(1-42)E22Delta peptide-induced impairment of LTP and spatial learning.

  3. Intracellular distribution of amyloid beta peptide and its relationship to the lysosomal system

    Directory of Open Access Journals (Sweden)

    Zheng Lin

    2012-09-01

    Full Text Available Abstract Background Amyloid beta peptide (Aβ is the main component of extraneuronal senile plaques typical of Alzheimer’s disease (AD brains. Although Aβ is produced by normal neurons, it is shown to accumulate in large amounts within neuronal lysosomes in AD. We have recently shown that under normal conditions the majority of Aβ is localized extralysosomally, while oxidative stress significantly increases intralysosomal Aβ content through activation of macroautophagy. It is also suggested that impaired Aβ secretion and resulting intraneuronal increase of Aβ can contribute to AD pathology. However, it is not clear how Aβ is distributed inside normal neurons, and how this distribution is effected when Aβ secretion is inhibited. Methods Using retinoic acid differentiated neuroblastoma cells and neonatal rat cortical neurons, we studied intracellular distribution of Aβ by double immunofluorescence microscopy for Aβ40 or Aβ42 and different organelle markers. In addition, we analysed the effect of tetanus toxin-induced exocytosis inhibition on the intracellular distribution of Aβ. Results Under normal conditions, Aβ was found in the small cytoplasmic granules in both neurites and perikarya. Only minor portion of Aβ was colocalized with trans-Golgi network, Golgi-derived vesicles, early and late endosomes, lysosomes, and synaptic vesicles, while the majority of Aβ granules were not colocalized with any of these structures. Furthermore, treatment of cells with tetanus toxin significantly increased the amount of intracellular Aβ in both perikarya and neurites. Finally, we found that tetanus toxin increased the levels of intralysosomal Aβ although the majority of Aβ still remained extralysosomally. Conclusion Our results indicate that most Aβ is not localized to Golgi-related structures, endosomes, lysosomes secretory vesicles or other organelles, while the suppression of Aβ secretion increases intracellular intra- and

  4. Cerebrolysin decreases amyloid-beta production by regulating amyloid protein precursor maturation in a transgenic model of Alzheimer's disease.

    Science.gov (United States)

    Rockenstein, Edward; Torrance, Magdalena; Mante, Michael; Adame, Anthony; Paulino, Amy; Rose, John B; Crews, Leslie; Moessler, Herbert; Masliah, Eliezer

    2006-05-15

    Cerebrolysin is a peptide mixture with neurotrophic effects that might reduce the neurodegenerative pathology in Alzheimer's disease (AD). We have previously shown in an amyloid protein precursor (APP) transgenic (tg) mouse model of AD-like neuropathology that Cerebrolysin ameliorates behavioral deficits, is neuroprotective, and decreases amyloid burden; however, the mechanisms involved are not completely clear. Cerebrolysin might reduce amyloid deposition by regulating amyloid-beta (Abeta) degradation or by modulating APP expression, maturation, or processing. To investigate these possibilities, APP tg mice were treated for 6 months with Cerebrolysin and analyzed in the water maze, followed by RNA, immunoblot, and confocal microscopy analysis of full-length (FL) APP and its fragments, beta-secretase (BACE1), and Abeta-degrading enzymes [neprilysin (Nep) and insulin-degrading enzyme (IDE)]. Consistent with previous studies, Cerebrolysin ameliorated the performance deficits in the spatial learning portion of the water maze and reduced the synaptic pathology and amyloid burden in the brains of APP tg mice. These effects were associated with reduced levels of FL APP and APP C-terminal fragments, but levels of BACE1, Notch1, Nep, and IDE were unchanged. In contrast, levels of active cyclin-dependent kinase-5 (CDK5) and glycogen synthase kinase-3beta [GSK-3beta; but not stress-activated protein kinase-1 (SAPK1)], kinases that phosphorylate APP, were reduced. Furthermore, Cerebrolysin reduced the levels of phosphorylated APP and the accumulation of APP in the neuritic processes. Taken together, these results suggest that Cerebrolysin might reduce AD-like pathology in the APP tg mice by regulating APP maturation and transport to sites where Abeta protein is generated. This study clarifies the mechanisms through which Cerebrolysin might reduce Abeta production and deposition in AD and further supports the importance of this compound in the potential treatment of early AD.

  5. Hormetic effect of amyloid-beta peptide in hippocampal synaptic plasticity and memory

    Directory of Open Access Journals (Sweden)

    Daniela Puzzo

    2012-09-01

    Full Text Available Background: The term hormesis refers to a biphasic dose-response phenomenon characterized by low-dose stimulation and high-dose inhibition represented by a J-shaped or U-shaped curve, depending on the parameter measured (Calabrese and Baldwin, Hum Exp Toxicol, 2002. Indeed, several, if not all, physiological molecules (i.e. glutamate, glucocorticoids, nitric oxide are likely to present a hormetic effect, exhibiting opposite effects at high or low concentrations. In the last few years, we have focused on amyloid-beta (A, a peptide widely known because it is produced in high amounts during Alzheimer’s disease (AD. A is considered a toxic fragment causing synaptic dysfunction and memory impairment (Selkoe, Science, 2002. However, the peptide is normally produced in the healthy brain and growing evidences indicate that it might have a physiologic function. Aim: Based on previous results showing that picomolar concentrations of A42 enhance synaptic plasticity and memory (Puzzo et al, J Neurosci, 2008 and that endogenous A is necessary for synaptic plasticity and memory (Puzzo et al, Ann Neurol, 2011, the aim of our study was to demonstrate the hormetic role of A in synaptic plasticity and memory. Methods: We used 3-month old wild type mice to analyze how synaptic plasticity, measured on hippocampal slices in vitro, and spatial reference memory were modified by treatment with different doses of A (from 2 pM to 20 μM. Results: We demonstrated that A has a hormetic effect (Puzzo et al, Neurobiol Aging, 2012 with low-doses (200 pM stimulating synaptic plasticity and memory and high-doses (≥ 200 nM inhibiting these processes. Conclusions: Our results suggest that, paradoxically, very low doses of A might serve to enhance memory at appropriate concentrations and conditions. These findings raise several issues when designing

  6. Acetylcholinesterase accelerates assembly of amyloid-beta-peptides into Alzheimer's fibrils: possible role of the peripheral site of the enzyme.

    Science.gov (United States)

    Inestrosa, N C; Alvarez, A; Pérez, C A; Moreno, R D; Vicente, M; Linker, C; Casanueva, O I; Soto, C; Garrido, J

    1996-04-01

    Acetylcholinesterase (AChE), an important component of cholinergic synapses, colocalizes with amyloid-beta peptide (A beta) deposits of Alzheimer's brain. We report here that bovine brain AChE, as well as the human and mouse recombinant enzyme, accelerates amyloid formation from wild-type A beta and a mutant A beta peptide, which alone produces few amyloid-like fibrils. The action of AChE was independent of the subunit array of the enzyme, was not affected by edrophonium, an active site inhibitor, but it was affected by propidium, a peripheral anionic binding site ligand. Butyrylcholinesterase, an enzyme that lacks the peripheral site, did not affect amyloid formation. Furthermore, AChE is a potent amyloid-promoting factor when compared with other A beta-associated proteins. Thus, in addition to its role in cholinergic synapses, AChE may function by accelerating A beta formation and could play a role during amyloid deposition in Alzheimer's brain.

  7. Aloe arborescens Extract Protects IMR-32 Cells against Alzheimer Amyloid Beta Peptide via Inhibition of Radical Peroxide Production.

    Science.gov (United States)

    Clementi, Maria Elisabetta; Tringali, Giuseppe; Triggiani, Doriana; Giardina, Bruno

    2015-11-01

    Aloe arborescens is commonly used as a pharmaceutical ingredient for its effect in burn treatment and ability to increase skin wound healing properties. Besides, it is well known to have beneficial phytotherapeutic, anticancer, and radio-protective properties. In this study, we first provided evidence that A. arborescens extract protects IMR32, a neuroblastoma human cellular line, from toxicity induced by beta amyloid, the peptide responsible for Alzheimer's disease. In particular, pretreatment with A. arborescens maintains an elevated cell viability and exerts a protective effect on mitochondrial functionality, as evidenced by oxygen consumption experiments. The protective mechanism exerted by A. arborescens seems be related to lowering of oxidative potential of the cells, as demonstrated by the ROS measurement compared with the results obtained in the presence of amyloid beta (1-42) peptide alone. Based on these preliminary observations we suggest that use ofA. arborescens extract could be developed as agents for the management of AD.

  8. Amyloid-beta peptide degradation in cell cultures by mycoplasma contaminants.

    Science.gov (United States)

    Zhao, Haitian; Dreses-Werringloer, Ute; Davies, Peter; Marambaud, Philippe

    2008-06-30

    Cell cultures have become an indispensable tool in Alzheimer's disease research for studying amyloid-beta (Abeta) metabolism. It is estimated that up to 35% of cell cultures in current use are infected with various mycoplasma species. In contrast with common bacterial and fungal infections, contaminations of cell cultures with mycoplasmas represent a challenging issue in terms of detectability and prevention. Mycoplasmas are the smallest and simplest self-replicating bacteria and the consequences of an infection for the host cells are variable, ranging from no apparent effect to induction of apoptosis. Here we present evidence that mycoplasmas from a cell culture contamination are able to efficiently and rapidly degrade extracellular Abeta. As a result, we observed no accumulation of Abeta in the conditioned medium of mycoplasma-positive cells stably transfected with the amyloid-beta precursor protein (APP). Importantly, eradication of the mycoplasma contaminant - identified as M. hyorhinis - by treatments with a quinolone-based antibiotic, restored extracellular Abeta accumulation in the APP-transfected cells. These data show that mycoplasmas degrade Abeta and thus may represent a significant source of variability when comparing extracellular Abeta levels in different cell lines. On the basis of these results, we recommend assessment of mycoplasma contaminations prior to extracellular Abeta level measurements in cultured cells.

  9. The amyloid beta-peptide is imported into mitochondria via the TOM import machinery and localized to mitochondrial cristae

    DEFF Research Database (Denmark)

    Hansson Petersen, Camilla A; Alikhani, Nyosha; Behbahani, Homira

    2008-01-01

    The amyloid beta-peptide (Abeta) has been suggested to exert its toxicity intracellularly. Mitochondrial functions can be negatively affected by Abeta and accumulation of Abeta has been detected in mitochondria. Because Abeta is not likely to be produced locally in mitochondria, we decided...... to investigate the mechanisms for mitochondrial Abeta uptake. Our results from rat mitochondria show that Abeta is transported into mitochondria via the translocase of the outer membrane (TOM) machinery. The import was insensitive to valinomycin, indicating that it is independent of the mitochondrial membrane...... potential. Subfractionation studies following the import experiments revealed Abeta association with the inner membrane fraction, and immunoelectron microscopy after import showed localization of Abeta to mitochondrial cristae. A similar distribution pattern of Abeta in mitochondria was shown...

  10. Molecular dynamics simulation and molecular docking studies of Angiotensin converting enzyme with inhibitor lisinopril and amyloid Beta Peptide.

    Science.gov (United States)

    Jalkute, Chidambar Balbhim; Barage, Sagar Hindurao; Dhanavade, Maruti Jayram; Sonawane, Kailas Dasharath

    2013-06-01

    Angiotensin converting enzyme (ACE) cleaves amyloid beta peptide. So far this cleavage mechanism has not been studied in detail at atomic level. Keeping this view in mind, we performed molecular dynamics simulation of crystal structure complex of testis truncated version of ACE (tACE) and its inhibitor lisinopril along with Zn(2+) to understand the dynamic behavior of active site residues of tACE. Root mean square deviation results revealed the stability of tACE throughout simulation. The residues Ala 354, Glu 376, Asp 377, Glu 384, His 513, Tyr 520 and Tyr 523 of tACE stabilized lisinopril by hydrogen bonding interactions. Using this information in subsequent part of study, molecular docking of tACE crystal structure with Aβ-peptide has been made to investigate the interactions of Aβ-peptide with enzyme tACE. The residues Asp 7 and Ser 8 of Aβ-peptide were found in close contact with Glu 384 of tACE along with Zn(2+). This study has demonstrated that the residue Glu 384 of tACE might play key role in the degradation of Aβ-peptide by cleaving peptide bond between Asp 7 and Ser 8 residues. Molecular basis generated by this attempt could provide valuable information towards designing of new therapies to control Aβ concentration in Alzheimer's patient.

  11. Monomeric Amyloid Beta Peptide in Hexafluoroisopropanol Detected by Small Angle Neutron Scattering.

    Directory of Open Access Journals (Sweden)

    Bo Zhang-Haagen

    Full Text Available Small proteins like amyloid beta (Aβ monomers are related to neurodegenerative disorders by aggregation to insoluble fibrils. Small angle neutron scattering (SANS is a nondestructive method to observe the aggregation process in solution. We show that SANS is able to resolve monomers of small molecular weight like Aβ for aggregation studies. We examine Aβ monomers after prolonged storing in d-hexafluoroisopropanol (dHFIP by using SANS and dynamic light scattering (DLS. We determined the radius of gyration from SANS as 1.0±0.1 nm for Aβ1-40 and 1.6±0.1 nm for Aβ1-42 in agreement with 3D NMR structures in similar solvents suggesting a solvent surface layer with 5% increased density. After initial dissolution in dHFIP Aβ aggregates sediment with a major component of pure monomers showing a hydrodynamic radius of 1.8±0.3 nm for Aβ1-40 and 3.2±0.4 nm for Aβ1-42 including a surface layer of dHFIP solvent molecules.

  12. Protective spin-labeled fluorenes maintain amyloid beta peptide in small oligomers and limit transitions in secondary structure

    Energy Technology Data Exchange (ETDEWEB)

    Altman, Robin [Univ. of California, Davis, CA (United States). Dept. of Biochemistry and Molecular Medicine; Ly, Sonny [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Physical and Life Science Directorate; Hilt, Silvia [Univ. of California, Davis, CA (United States). Dept. of Biochemistry and Molecular Medicine; Petrlova, Jitka [Univ. of California, Davis, CA (United States). Dept. of Biochemistry and Molecular Medicine; Maezawa, Izumi [Univ. of California Davis, Sacramento, CA (United States). MIND Inst. and Dept. of Pathology and Laboratory Medicine; Kálai, Tamás [Univ. of Pecs (Hungary). Inst. of Organic and Medicinal Chemistry; Hideg, Kálmán [Univ. of Pecs (Hungary). Inst. of Organic and Medicinal Chemistry; Jin, Lee-Way [Univ. of California Davis, Sacramento, CA (United States). MIND Inst. and Dept. of Pathology and Laboratory Medicine; Laurence, Ted A. [Univ. of California, Davis, CA (United States). Dept. of Biochemistry and Molecular Medicine; Voss, John C. [Univ. of California, Davis, CA (United States). Dept. of Biochemistry and Molecular Medicine

    2015-12-01

    Alzheimer’s disease is characterized by the presence of extracellular plaques comprised of amyloid beta (Aβ) peptides. Soluble oligomers of the Aβ peptide underlie a cascade of neuronal loss and dysfunction associated with Alzheimer's disease. Single particle analyses of Aβ oligomers in solution by fluorescence correlation spectroscopy (FCS) were used to provide real-time descriptions of how spin-labeled fluorenes (SLFs; bi-functional small molecules that block the toxicity of Aβ) prevent and disrupt oligomeric assemblies of Aβ in solution. The FCS results, combined with electron paramagnetic resonance spectroscopy and circular dichroism spectroscopy, demonstrate SLFs can inhibit the growth of Aβ oligomers and disrupt existing oligomers while retaining Aβ in a largely disordered state. Furthermore, while the ability of SLF to block Aβ toxicity correlates with a reduction in oligomer size, our results suggest the conformation of Aβ within the oligomer determines the toxicity of the species. Attenuation of Aβ toxicity, which has been associated primarily with the soluble oligomeric form, can be achieved through redistribution of the peptides into smaller oligomers and arrest of the fractional increase in beta secondary structure.

  13. Amorphous Aggregation of Amyloid Beta 1-40 Peptide in Confined Space.

    Science.gov (United States)

    Foschi, Giulia; Albonetti, Cristiano; Liscio, Fabiola; Milita, Silvia; Greco, Pierpaolo; Biscarini, Fabio

    2015-11-16

    The amorphous aggregation of Aβ1-40 peptide is addressed by using micromolding in capillaries. Both the morphology and the size of the aggregates are modulated by changing the contact angle of the sub-micrometric channel walls. Upon decreasing the hydrophilicity of the channels, the aggregates change their morphology from small aligned drops to discontinuous lines, thereby keeping their amorphous structure. Aβ1-40 fibrils are observed at high contact angles.

  14. Copper enhances amyloid-beta peptide neurotoxicity and non beta-aggregation: a series of experiments conducted upon copper-bound and copper-free amyloid-beta peptide.

    Science.gov (United States)

    Dai, Xueling; Sun, Yaxuan; Gao, Zhaolan; Jiang, Zhaofeng

    2010-05-01

    Alzheimer's disease is characterized by the abnormal aggregation of amyloid-beta peptide (Abeta) in extracellular deposits known as senile plaques. However, the nature of the toxic Abeta species and its precise mechanism of action remain unclear. Previous reports suggest that the histidine residues are involved in copper-Abeta interaction, by which resulting in the neurotoxicity of Abeta and free radical damage. Here, we employed a mutant Abeta (Abeta H13R) in which a histidine residue was replaced by arginine. Copper facilitated the precipitation of both wild-type and mutant Abeta in the spectrophotometric absorbance assay but suppressed beta-structure aggregates according to Thioflavine-T assay. Wild-type Abeta alone is more cytotoxic but produced less amount of H(2)O(2) than AbetaH13R-copper complexes, suggesting that Abeta-membrane interaction may also implicated in the pathologic progress. Abeta toxicity is in positive correlation to its competence to aggregate despite the aggregation is mainly composed of non-beta fibril substances. In short, these findings may provide further evidence on the role of copper in the pathogenesis of Alzheimer's disease.

  15. Real-time imaging and quantification of amyloid-beta peptide aggregates by novel quantum-dot nanoprobes.

    Directory of Open Access Journals (Sweden)

    Kiyotaka Tokuraku

    Full Text Available BACKGROUND: Protein aggregation plays a major role in the pathogenesis of neurodegenerative disorders, such as Alzheimer's disease. However, direct real-time imaging of protein aggregation, including oligomerization and fibrillization, has never been achieved. Here we demonstrate the preparation of fluorescent semiconductor nanocrystal (quantum dot; QD-labeled amyloid-beta peptide (QDAbeta and its advanced applications. METHODOLOGY/PRINCIPAL FINDINGS: The QDAbeta construct retained Abeta oligomer-forming ability, and the sizes of these oligomers could be estimated from the relative fluorescence intensities of the imaged spots. Both QDAbeta coaggregation with intact Abeta42 and insertion into fibrils were detected by fluorescence microscopy. The coaggregation process was observed by real-time 3D imaging using slit-scanning confocal microscopy, which showed a typical sigmoid curve with 1.5 h in the lag-time and 12 h until saturation. Inhibition of coaggregation using an anti-Abeta antibody can be observed as 3D images on a microscopic scale. Microglia ingested monomeric QDAbeta more significantly than oligomeric QDAbeta, and the ingested QDAbeta was mainly accumulated in the lysosome. CONCLUSIONS/SIGNIFICANCE: These data demonstrate that QDAbeta is a novel nanoprobe for studying Abeta oligomerization and fibrillization in multiple modalities and may be applicable for high-throughput drug screening systems.

  16. Activation of Toll-like receptor 2 on microglia promotes cell uptake of Alzheimer disease-associated amyloid beta peptide.

    Science.gov (United States)

    Chen, Keqiang; Iribarren, Pablo; Hu, Jinyue; Chen, Jianhong; Gong, Wanghua; Cho, Edward H; Lockett, Stephen; Dunlop, Nancy M; Wang, Ji Ming

    2006-02-10

    The human G-protein-coupled formyl peptide receptor-like 1 (FPRL1) and its mouse homologue mFPR2 mediate the chemotactic activity of a variety of polypeptides associated with inflammation and bacterial infection, including the 42-amino acid form of amyloid beta peptide (Abeta42), a pathogenic factor in Alzheimer disease. Because mFPR2 was inducible in mouse microglial cells by proinflammatory stimulants, such as bacterial lipopolysaccharide, a ligand for the Toll-like receptor 4 (TLR4), we investigated the role of TLR2 in the regulation of mFPR2. We found that a TLR2 agonist, peptidoglycan (PGN) derived from Gram-positive bacterium Staphylococcus aureus, induced considerable mFpr2 mRNA expression in a mouse microglial cell line and primary microglial cells. This was associated with a markedly increased chemotaxis of the cells in response to mFPR2 agonist peptides. In addition, activation of TLR2 markedly enhanced mFPR2-mediated uptake of Abeta42 by microglia. Studies of the mechanistic basis showed that PGN activates MAPK and IkappaBalpha, and the effect of PGN on induction of mFPR2 was dependent on signaling pathways via ERK1/2 and p38 MAPKs. The use of TLR2 on microglial cells by PGN was supported by the fact that N9 cells transfected with short interfering RNA targeting mouse TLR2 failed to show increased expression of functional mFPR2 after stimulation with PGN. Our results demonstrated a potentially important role for TLR2 in microglial cells of promoting cell responses to chemoattractants produced in lesions of inflammatory and neurodegenerative diseases in the brain.

  17. Altered emotionality leads to increased pain tolerance in amyloid beta (Abeta1-40) peptide-treated mice.

    Science.gov (United States)

    Pamplona, Fabrício A; Pandolfo, Pablo; Duarte, Filipe S; Takahashi, Reinaldo N; Prediger, Rui D S

    2010-09-01

    Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the decline in cognitive functions, but it is also related to emotional disturbances. Since pain experience results from a complex integration of sensory, cognitive and affective processes, it is not surprising that AD patients display a distinct pattern of pain responsivity. We evaluated whether mice treated with amyloid beta (Abeta) peptide-thought to be critical in the pathogenesis of AD-exhibit altered pain responses and its relation to altered emotionality. Mice received a single i.c.v. injection of vehicle (PBS) or Abeta fragment (1-40) (400pmol/mice) and after 30 days, they were evaluated in tests of pain (hotplate, footshock-sensitivity), learning/memory (water-maze), emotionality (elevated plus-maze, forced swim) and locomotion (open-field). Abeta(1-40)-treated mice presented similar latencies to the control group in the hotplate test and similar nociceptive flinch threshold in the footshock-sensitivity test. However, they presented an increased jump threshold in footshock-sensitivity, suggesting increased pain tolerance. Altered emotionality was observed in the elevated plus-maze (EPM) and forced-swim tests (FST), suggesting anxiogenic-like and depressive-like states, respectively. A multifactorial principal component analysis (PCA) revealed that jump threshold of the footshock-sensitivity test falls within 'Emotionality' and 'Pain', showing moderate correlation with each one of the components of behavior. Acute treatment with the antidepressant desipramine (10mg/kg, i.p.) reduced the jump threshold (i.e. pain tolerance) and time of immobility in FST (i.e. depressive-like state). Flinch threshold (i.e. pain sensitivity), locomotion and anxiety were not altered with desipramine treatment. These results suggest that Abeta(1-40) peptide increases pain tolerance, but not pain sensitivity in mice, which seems to be linked to alterations in cognitive/emotional components of pain

  18. Methanolic extract of Piper nigrum fruits improves memory impairment by decreasing brain oxidative stress in amyloid beta(1-42) rat model of Alzheimer's disease.

    Science.gov (United States)

    Hritcu, Lucian; Noumedem, Jaurès A; Cioanca, Oana; Hancianu, Monica; Kuete, Victor; Mihasan, Marius

    2014-04-01

    The present study analyzed the possible memory-enhancing and antioxidant proprieties of the methanolic extract of Piper nigrum L. fruits (50 and 100 mg/kg, orally, for 21 days) in amyloid beta(1-42) rat model of Alzheimer's disease. The memory-enhancing effects of the plant extract were studied by means of in vivo (Y-maze and radial arm-maze tasks) approaches. Also, the antioxidant activity in the hippocampus was assessed using superoxide dismutase-, catalase-, glutathione peroxidase-specific activities and the total content of reduced glutathione, malondialdehyde, and protein carbonyl levels. The amyloid beta(1-42)-treated rats exhibited the following: decrease of spontaneous alternations percentage within Y-maze task and increase of working memory and reference memory errors within radial arm-maze task. Administration of the plant extract significantly improved memory performance and exhibited antioxidant potential. Our results suggest that the plant extract ameliorates amyloid beta(1-42)-induced spatial memory impairment by attenuation of the oxidative stress in the rat hippocampus.

  19. Global properties and propensity to dimerization of the amyloid-beta (12-28) peptide fragment through the modeling of its monomer and dimer diffusion coefficients and electrophoretic mobilities.

    Science.gov (United States)

    Deiber, Julio A; Peirotti, Marta B; Piaggio, Maria V

    2015-03-01

    Neuronal activity loss may be due to toxicity caused mainly by amyloid-beta (1-40) and (1-42) peptides forming soluble oligomers. Here the amyloid-beta (12-28) peptide fragment (monomer) and its dimer are characterized at low pH through the modeling of their diffusion coefficients and effective electrophoretic mobilities. Translational diffusion coefficient experimental values of monomer and dimer analogs of this peptide fragment and monomer and dimer mixtures at thermodynamic equilibrium are used as reported in the literature for different monomer initial concentrations. The resulting electrokinetic and hydrodynamic global properties are employed to evaluate the amyloid-beta (12-28) peptide fragment propensity to dimerization through a thermodynamic theoretical framework. Therefore equilibrium constants are considered at pH 2.9 to elucidate one of the amyloidogenic mechanisms involving the central hydrophobic region LVFFA of the peptide spanning residues 17-21 associated with phenylalanine at positions 19 and 20 in the amino acid sequence of amyloid-beta peptides. An analysis demonstrating that peptide aggregation is a concentration-dependent process is provided, where both pair and intraparticle charge regulation phenomena become relevant. It is shown that the modeling of the effective electrophoretic mobility of the amyloid-beta (12-28) peptide fragment is crucial to understand the effect of hydrophobic region LVFFA in the amyloidogenic process. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Cortical Amyloid Beta in Cognitively Normal Elderly Adults is Associated with Decreased Network Efficiency within the Cerebro-Cerebellar System.

    Science.gov (United States)

    Steininger, Stefanie C; Liu, Xinyang; Gietl, Anton; Wyss, Michael; Schreiner, Simon; Gruber, Esmeralda; Treyer, Valerie; Kälin, Andrea; Leh, Sandra; Buck, Alfred; Nitsch, Roger M; Prüssmann, Klaas P; Hock, Christoph; Unschuld, Paul G

    2014-01-01

    Deposition of cortical amyloid beta (Aβ) is a correlate of aging and a risk factor for Alzheimer disease (AD). While several higher order cognitive processes involve functional interactions between cortex and cerebellum, this study aims to investigate effects of cortical Aβ deposition on coupling within the cerebro-cerebellar system. We included 15 healthy elderly subjects with normal cognitive performance as assessed by neuropsychological testing. Cortical Aβ was quantified using (11)carbon-labeled Pittsburgh compound B positron-emission-tomography late frame signals. Volumes of brain structures were assessed by applying an automated parcelation algorithm to three dimensional magnetization-prepared rapid gradient-echo T1-weighted images. Basal functional network activity within the cerebro-cerebellar system was assessed using blood-oxygen-level dependent resting state functional magnetic resonance imaging at the high field strength of 7 T for measuring coupling between cerebellar seeds and cerebral gray matter. A bivariate regression approach was applied for identification of brain regions with significant effects of individual cortical Aβ load on coupling. Consistent with earlier reports, a significant degree of positive and negative coupling could be observed between cerebellar seeds and cerebral voxels. Significant positive effects of cortical Aβ load on cerebro-cerebellar coupling resulted for cerebral brain regions located in inferior temporal lobe, prefrontal cortex, hippocampus, parahippocampal gyrus, and thalamus. Our findings indicate that brain amyloidosis in cognitively normal elderly subjects is associated with decreased network efficiency within the cerebro-cerebellar system. While the identified cerebral regions are consistent with established patterns of increased sensitivity for Aβ-associated neurodegeneration, additional studies are needed to elucidate the relationship between dysfunction of the cerebro-cerebellar system and risk for AD.

  1. Amyloid beta-peptide worsens cognitive impairment following cerebral ischemia-reperfusion injury*****

    Institute of Scientific and Technical Information of China (English)

    Bo Song; Qiang Ao; Ying Niu; Qin Shen; Huancong Zuo; Xiufang Zhang; Yandao Gong

    2013-01-01

    Amyloid β-peptide, a major component of senile plaques in Alzheimer’s disease, has been impli-cated in neuronal cel death and cognitive impairment. Recently, studies have shown that the pathogenesis of cerebral ischemia is closely linked with Alzheimer’s disease. In this study, a rat model of global cerebral ischemia-reperfusion injury was established via occlusion of four arteries;meanwhile, fibril ar amyloid β-peptide was injected into the rat lateral ventricle. The Morris water maze test and histological staining revealed that administration of amyloid β-peptide could further aggravate impairments to learning and memory and neuronal cel death in the hippocampus of rats subjected to cerebral ischemia-reperfusion injury. Western blot showed that phosphorylation of tau protein and the activity of glycogen synthase kinase 3β were significantly stronger in cerebral is-chemia-reperfusion injury rats subjected to amyloidβ-peptide administration than those undergoing cerebral ischemia-reperfusion or amyloidβ-peptide administration alone. Conversely, the activity of protein phosphatase 2A was remarkably reduced in rats with cerebral ischemia-reperfusion injury fol owing amyloidβ-peptide administration. These findings suggest that amyloidβ-peptide can po-tentiate tau phosphorylation induced by cerebral ischemia-reperfusion and thereby aggravate cog-nitive impairment.

  2. Chronic cladribine administration increases amyloid beta peptide generation and plaque burden in mice.

    Directory of Open Access Journals (Sweden)

    Crystal D Hayes

    Full Text Available BACKGROUND: The clinical uses of 2-chloro-2'-deoxyadenosine (2-CDA or cladribine which was initially prescribed to patients with hematological and lymphoid cancers is now extended to treat patients with multiple sclerosis (MS. Previous data has shown that 2-CDA has high affinity to the brain and readily passes through the blood brain barrier reaching CSF concentrations 25% of that found in plasma. However, whether long-term administration of 2-CDA can lead to any adverse effects in patients or animal models is not yet clearly known. METHODOLOGY: Here we show that exposure of 2-CDA to CHO cells stably expressing wild-type APP751 increased generation and secretion of amyloid β peptide (Aβ in to the conditioned medium. Interestingly, increased Aβ levels were noticed even at non-toxic concentrations of 2-CDA. Remarkably, chronic treatment of APdE9 mice, a model of Alzheimer's disease with 2-CDA for 60 days increased amyloid plaque burden by more than 1-fold. Increased Aβ generation appears to result from increased turnover of APP as revealed by cycloheximide-chase experiments. Additionally, surface labeling of APP with biotin and immunoprecipitation of surface labeled proteins with anti-biotin antibody also indicated increased APP at the cell surface in 2-CDA treated cells compared to controls. Increased turnover of APP by 2-CDA in turn might be a consequence of decreased protein levels of PIN 1, which is known to regulate cis-trans isomerization and phosphorylation of APP. Most importantly, like many other oncology drugs, 2-CDA administration led to significant delay in acquiring a reward-based learning task in a T maze paradigm. CONCLUSIONS: Taken together, these data provide compelling evidence for the first time that chronic 2-CDA administration can increase amyloidogenic processing of APP leading to robustly increased plaque burden which may be responsible for the observed deficits in learning skills. Thus chronic treatment of mice with 2

  3. Molecular Plasticity Regulates Oligomerization and Cytotoxicity of the Multipeptide-length Amyloid-beta Peptide Pool

    NARCIS (Netherlands)

    Vandersteen, A.; Masman, M.F.; Baets, G. de; Jonckheere, W.; Werf, K. van der; Marrink, S.J.; Rozenski, J.; Benilova, I.; Strooper, B. de; Subramaniam, V.; Schymkowitz, J.; Rousseau, F.; Broersen, K.

    2012-01-01

    Current therapeutic approaches under development for Alzheimer disease, including gamma-secretase modulating therapy, aim at increasing the production of Abeta(1-38) and Abeta(1-40) at the cost of longer Abeta peptides. Here, we consider the aggregation of Abeta(1-38) and Abeta(1-43) in addition to

  4. Iron and aluminum interaction with amyloid-beta peptides associated with Alzheimer’s disease

    Energy Technology Data Exchange (ETDEWEB)

    Drochioiu, Gabi; Ion, Laura [Alexandru Ioan Cuza University of Iasi, 11 Carol I, Iasi 700506 (Romania); Murariu, Manuela; Habasescu, Laura [Petru Poni Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, Iasi 700487 (Romania)

    2014-10-06

    An elevation in the concentration of heavy metal ions in Alzheimer’s disease (AD) brain has been demonstrated in many studies. Aβ precipitation and toxicity in AD brains seem to be caused by abnormal interactions with neocortical metal ions, especially iron, copper, zinc, and aluminum [1–3]. There is increasing evidence that iron and aluminum ions are involved in the mechanisms that underlie the neurodegenerative diseases [4,5]. However, evidence was brought to demonstrate that some Aβ fragments, at physiological pH, are not able to form binary complexes with Fe(III) ions of sufficient stability to compete with metal hydroxide precipitation [6]. On the contrary, multiple metal ions are known to interact with Aβ peptides [7]. Consequently, we investigated here the interaction of Fe(II/III) and Al(III) ions with some amyloid-β peptides and fragments that results in peptide aggregation and fibrillation [8,9]. Infrared spectroscopy, atomic force microscopy, scanning electron microscopy, electrophoresis and mass spectrometry demonstrated conformational changes of peptides in the presence of such metals.

  5. Iron and aluminum interaction with amyloid-beta peptides associated with Alzheimer's disease

    Science.gov (United States)

    Drochioiu, Gabi; Murariu, Manuela; Ion, Laura; Habasescu, Laura

    2014-10-01

    An elevation in the concentration of heavy metal ions in Alzheimer's disease (AD) brain has been demonstrated in many studies. Aβ precipitation and toxicity in AD brains seem to be caused by abnormal interactions with neocortical metal ions, especially iron, copper, zinc, and aluminum [1-3]. There is increasing evidence that iron and aluminum ions are involved in the mechanisms that underlie the neurodegenerative diseases [4,5]. However, evidence was brought to demonstrate that some Aβ fragments, at physiological pH, are not able to form binary complexes with Fe(III) ions of sufficient stability to compete with metal hydroxide precipitation [6]. On the contrary, multiple metal ions are known to interact with Aβ peptides [7]. Consequently, we investigated here the interaction of Fe(II/III) and Al(III) ions with some amyloid-β peptides and fragments that results in peptide aggregation and fibrillation [8,9]. Infrared spectroscopy, atomic force microscopy, scanning electron microscopy, electrophoresis and mass spectrometry demonstrated conformational changes of peptides in the presence of such metals.

  6. Structure-Based Peptide Design to Modulate Amyloid Beta Aggregation and Reduce Cytotoxicity.

    Directory of Open Access Journals (Sweden)

    Jitendra Kumar

    Full Text Available The deposition of Aβ peptide in the brain is the key event in Alzheimer disease progression. Therefore, the prevention of Aβ self assembly into disease-associated oligomers is a logical strategy for treatment. π stacking is known to provide structural stability to many amyloids; two phenylalanine residues within the Aβ 14-23 self recognition element are in such an arrangement in many solved structures. Therefore, we targeted this structural stacking by substituting these two phenylalanine residues with their D-enantiomers. The resulting peptides were able to modulate Aβ aggregation in vitro and reduce Aβ cytotoxicity in primary neuronal cultures. Using kinetic analysis of fibril formation, electron microscopy and dynamic light scattering characterization of oligomer size distributions, we demonstrate that, in addition to altering fibril structural characteristics, these peptides can induce the formation of larger amorphous aggregates which are protective against toxic oligomers, possibly because they are able to sequester the toxic oligomers during co-incubation. Alternatively, they may alter the surface structure of the oligomers such that they can no longer interact with cells to induce toxic pathways.

  7. Iron promotes the toxicity of amyloid beta peptide by impeding its ordered aggregation.

    Science.gov (United States)

    Liu, Beinan; Moloney, Aileen; Meehan, Sarah; Morris, Kyle; Thomas, Sally E; Serpell, Louise C; Hider, Robert; Marciniak, Stefan J; Lomas, David A; Crowther, Damian C

    2011-02-11

    We have previously shown that overexpressing subunits of the iron-binding protein ferritin can rescue the toxicity of the amyloid β (Aβ) peptide in our Drosophila model system. These data point to an important pathogenic role for iron in Alzheimer disease. In this study, we have used an iron-selective chelating compound and RNAi-mediated knockdown of endogenous ferritin to further manipulate iron in the brain. We confirm that chelation of iron protects the fly from the harmful effects of Aβ. To understand the pathogenic mechanisms, we have used biophysical techniques to see how iron affects Aβ aggregation. We find that iron slows the progression of the Aβ peptide from an unstructured conformation to the ordered cross-β fibrils that are characteristic of amyloid. Finally, using mammalian cell culture systems, we have shown that iron specifically enhances Aβ toxicity but only if the metal is present throughout the aggregation process. These data support the hypothesis that iron delays the formation of well ordered aggregates of Aβ and so promotes its toxicity in Alzheimer disease.

  8. Minocycline recovers MTT-formazan exocytosis impaired by amyloid beta peptide.

    Science.gov (United States)

    Kreutzmann, Peter; Wolf, Gerald; Kupsch, Kathleen

    2010-10-01

    Minocycline, a tetracycline antibiotic, has been reported to exert beneficial effects in models of Alzheimer's disease (AD). To characterize the mechanisms underlying the putative minocycline-related neuroprotection, we studied its effect in an in vitro model of AD. Primary hippocampal cultures were treated with β-amyloid peptide (Aβ) and cell viability was assessed by standard MTT-assay. Incubation with 10 μM Aβ for 24 h significantly inhibits cellular MTT-reduction without inducing morphological signs of enhanced cell death or increase in release of lactate dehydrogenase. This indicates that cell viability was not affected. The inhibition of MTT-reduction by Aβ was due to an acceleration of MTT-formazan exocytosis. Intriguingly, the Aβ-triggered increase in MTT-formazan exocytosis was abolished by co-treatment with minocycline. In vehicle-treated cells minocycline had no effect on formazan exocytosis. This hitherto unrecognized property of minocycline has to be noticed in the elucidation of the underlying mechanism of this promising neuroprotectant.

  9. pH-dependence of the specific binding of Cu(II) and Zn(II) ions to the amyloid-{beta} peptide

    Energy Technology Data Exchange (ETDEWEB)

    Ghalebani, Leila, E-mail: leila.ghalebani@ki.se [Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm (Sweden); Wahlstroem, Anna, E-mail: anna.wahlstrom@dbb.su.se [Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm (Sweden); Danielsson, Jens, E-mail: jensd@dbb.su.se [Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm (Sweden); Waermlaender, Sebastian K.T.S., E-mail: seb@dbb.su.se [Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm (Sweden); Graeslund, Astrid, E-mail: astrid@dbb.su.se [Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm (Sweden)

    2012-05-11

    Highlights: Black-Right-Pointing-Pointer Cu(II) and Zn(II) display pH-dependent binding to the A{beta}(1-40) peptide. Black-Right-Pointing-Pointer At pH 7.4 both metal ions display residue-specific binding to the A{beta} peptide. Black-Right-Pointing-Pointer At pH 5.5 the binding specificity is lost for Zn(II). Black-Right-Pointing-Pointer Differential Cu(II) and Zn(II) binding may help explain metal-induced AD toxicity. -- Abstract: Metal ions like Cu(II) and Zn(II) are accumulated in Alzheimer's disease amyloid plaques. The amyloid-{beta} (A{beta}) peptide involved in the disease interacts with these metal ions at neutral pH via ligands provided by the N-terminal histidines and the N-terminus. The present study uses high-resolution NMR spectroscopy to monitor the residue-specific interactions of Cu(II) and Zn(II) with {sup 15}N- and {sup 13}C,{sup 15}N-labeled A{beta}(1-40) peptides at varying pH levels. At pH 7.4 both ions bind to the specific ligands, competing with one another. At pH 5.5 Cu(II) retains its specific histidine ligands, while Zn(II) seems to lack residue-specific interactions. The low pH mimics acidosis which is linked to inflammatory processes in vivo. The results suggest that the cell toxic effects of redox active Cu(II) binding to A{beta} may be reversed by the protective activity of non-redox active Zn(II) binding to the same major binding site under non-acidic conditions. Under acidic conditions, the protective effect of Zn(II) may be decreased or changed, since Zn(II) is less able to compete with Cu(II) for the specific binding site on the A{beta} peptide under these conditions.

  10. Specific Triazine Herbicides Induce Amyloid-beta(42) Production

    NARCIS (Netherlands)

    Portelius, Erik; Durieu, Emilie; Bodin, Marion; Cam, Morgane; Pannee, Josef; Leuxe, Charlotte; Mabondzo, Aloise; Oumata, Nassima; Galons, Herve; Lee, Jung Yeol; Chang, Young-Tae; Stuber, Kathrin; Koch, Philipp; Fontaine, Gaelle; Potier, Marie-Claude; Manousopoulou, Antigoni; Garbis, Spiros D.; Covaci, Adrian; Van Dam, Debby; De Deyn, Peter; Karg, Frank; Flajolet, Marc; Omori, Chiori; Hata, Saori; Suzuki, Toshiharu; Blennow, Kaj; Zetterberg, Henrik; Meijer, Laurent

    2016-01-01

    Proteolytic cleavage of the amyloid-beta protein precursor (A beta PP) ecretases leads to extracellular release of amyloid-beta (A beta) peptides. Increased production of A beta(42) over A beta(40) and aggregation into oligomers and plaques constitute an Alzheimer's disease (AD) hallmark. Identifyin

  11. Specific Triazine Herbicides Induce Amyloid-beta(42) Production

    NARCIS (Netherlands)

    Portelius, Erik; Durieu, Emilie; Bodin, Marion; Cam, Morgane; Pannee, Josef; Leuxe, Charlotte; Mabondzo, Aloise; Oumata, Nassima; Galons, Herve; Lee, Jung Yeol; Chang, Young-Tae; Stuber, Kathrin; Koch, Philipp; Fontaine, Gaelle; Potier, Marie-Claude; Manousopoulou, Antigoni; Garbis, Spiros D.; Covaci, Adrian; Van Dam, Debby; De Deyn, Peter; Karg, Frank; Flajolet, Marc; Omori, Chiori; Hata, Saori; Suzuki, Toshiharu; Blennow, Kaj; Zetterberg, Henrik; Meijer, Laurent

    2016-01-01

    Proteolytic cleavage of the amyloid-beta protein precursor (A beta PP) ecretases leads to extracellular release of amyloid-beta (A beta) peptides. Increased production of A beta(42) over A beta(40) and aggregation into oligomers and plaques constitute an Alzheimer's disease (AD) hallmark.

  12. Neurorescue activity, APP regulation and amyloid-beta peptide reduction by novel multi-functional brain permeable iron- chelating- antioxidants, M-30 and green tea polyphenol, EGCG.

    Science.gov (United States)

    Avramovich-Tirosh, Yael; Reznichenko, Lydia; Mit, Tamar; Zheng, Hailin; Fridkin, Mati; Weinreb, Orly; Mandel, Silvia; Youdim, Moussa B H

    2007-09-01

    Accumulation of iron at sites where neurons degenerate in Parkinson's disease (PD) and Alzheimer's disease (AD) is thought to have a major role in oxidative stress induced process of neurodegeneration. The novel non-toxic lipophilic brain- permeable iron chelators, VK-28 (5- [4- (2- hydroxyethyl) piperazine-1-ylmethyl]- quinoline- 8- ol) and its multi-functional derivative, M-30 (5-[N-methyl-N-propargylaminomethyl]-8-hydroxyquinoline), as well as the main polyphenol constituent of green tea (-)-epigallocatechin-3-gallate (EGCG), which possesses iron metal chelating, radical scavenging and neuroprotective properties, offer potential therapeutic benefits for these diseases. M-30 and EGCG decreased apoptosis of human SH-SY5Y neuroblastoma cells in a neurorescue, serum deprivation model, via multiple protection mechanisms including: reduction of the pro-apoptotic proteins, Bad and Bax, reduction of apoptosis-associated Ser139 phosphorylated H2A.X and inhibition of the cleavage and activation of caspase-3. M-30 and EGCG also promoted morphological changes, resulting in axonal growth-associated protein-43 (GAP-43) implicating neuronal differentiation. Both compounds significantly reduced the levels of cellular holo-amyloid precursor protein (APP) in SH-SY5Y cells. The ability of theses novel iron chelators and EGCG to regulate APP are in line with the presence of an iron-responsive element (IRE) in the 5'-untranslated region (5'UTR) of APP. Also, EGCG reduced the levels of toxic amyloid-beta peptides in CHO cells over-expressing the APP "Swedish" mutation. The diverse molecular mechanisms and cell signaling pathways participating in the neuroprotective/neurorescue and APP regulation/processing actions of M-30 and EGCG, make these multifunctional compounds potential neuroprotective drugs for the treatment of neurodegenerative diseases, such as PD, AD, Huntington's disease and amyotrophic lateral sclerosis.

  13. Decreased rhythmic GABAergic septal activity and memory-associated theta oscillations after hippocampal amyloid-beta pathology in the rat.

    Science.gov (United States)

    Villette, Vincent; Poindessous-Jazat, Frédérique; Simon, Axelle; Léna, Clément; Roullot, Elodie; Bellessort, Brice; Epelbaum, Jacques; Dutar, Patrick; Stéphan, Aline

    2010-08-18

    The memory deficits associated with Alzheimer's disease result to a great extent from hippocampal network dysfunction. The coordination of this network relies on theta (symbol) oscillations generated in the medial septum. Here, we investigated in rats the impact of hippocampal amyloid beta (Abeta) injections on the physiological and cognitive functions that depend on the septohippocampal system. Hippocampal Abeta injections progressively impaired behavioral performances, the associated hippocampal theta power, and theta frequency response in a visuospatial recognition test. These alterations were associated with a specific reduction in the firing of the identified rhythmic bursting GABAergic neurons responsible for the propagation of the theta rhythm to the hippocampus, but without loss of medial septal neurons. Such results indicate that hippocampal Abeta treatment leads to a specific functional depression of inhibitory projection neurons of the medial septum, resulting in the functional impairment of the temporal network.

  14. Alzheimer amyloid beta-peptide A-beta25-35 blocks adenylate cyclase-mediated forms of hippocampal long-term potentiation.

    Science.gov (United States)

    Bisel, Blaine E; Henkins, Kristen M; Parfitt, Karen D

    2007-02-01

    Progressive memory loss and deposition of amyloid beta (Abeta) peptides throughout cortical regions are hallmarks of Alzheimer's disease (AD). Several studies in mice and rats have shown that overexpression of amyloid precursor protein (APP) or pretreatment with Abeta peptide fragments results in the inhibition of hippocampal long-term potentiation (LTP) as well as impairments in learning and memory of hippocampal-dependent tasks. For these studies we have investigated the effects of the Abeta(25-35) peptide fragment on LTP induced by adenylate cyclase stimulation followed immediately by application of Mg(++)-free aCSF ("chemLTP"). Treatment of young adult slices with the Abeta(25-35) peptide had no significant effect on basal synaptic transmission in area CA1, but treatment with the peptide for 20 min before inducing chemLTP with isoproterenol (ISO; 1 microM) or forskolin (FSK;10 microM) + Mg(++)-free aCSF resulted in complete blockade of LTP. In contrast, normal ISO-chemLTP was observed after treatment with the control peptide Abeta(35-25). The ability of the Abeta(25-35) peptide fragment to block this and other forms of synaptic plasticity may help elucidate the mechanisms underlying hippocampal deficits observed in animal models of AD and/or AD individuals.

  15. CD147 is a regulatory subunit of the gamma-secretase complex inAlzheimer's disease amyloid beta-peptide production

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Shuxia; Zhou, Hua; Walian, Peter J.; Jap, Bing K.

    2005-04-06

    {gamma}-secretase is a membrane protein complex that cleaves the {beta}-amyloid precursor protein (APP) within the transmembrane region, following prior processing by {beta}-secretase, producing amyloid {beta}-peptides (A{beta}{sub 40} and A{beta}{sub 42}). Errant production of A{beta}-peptides that substantially increases A{beta}{sub 42} production has been associated with the formation of amyloid plaques in Alzheimer's disease patients. Biophysical and genetic studies indicate that presenilin-1 (Psn-1), which contains the proteolytic active site, and three other membrane proteins, nicastrin (Nct), APH-1, and PEN-2 are required to form the core of the active {gamma}-secretase complex. Here, we report the purification of the native {gamma}-secretase complexes from HeLa cell membranes and the identification of an additional {gamma}-secretase complex subunit, CD147, a transmembrane glycoprotein with two immunoglobulin-like domains. The presence of this subunit as an integral part of the complex itself was confirmed through co-immunoprecipitation studies of the purified protein from HeLa cells and solubilized complexes from other cell lines such as neural cell HCN-1A and HEK293. Depletion of CD147 by RNA interference was found to increase the production of A{beta} peptides without changing the expression level of the other {gamma}-secretase components or APP substrates while CD147 overexpression had no statistically significant effect on amyloid {beta}-peptide production, other {gamma}-secretase components or APP substrates, indicating that the presence of the CD147 subunit within the {gamma}-secretase complex directly down-modulates the production of A{beta}-peptides. {gamma}-secretase was first recognized through its role in the production of the A{beta} peptides that are pathogenic in Alzheimer's disease (AD) (1). {gamma}-secretase is a membrane protein complex with unusual aspartyl protease activity that cleaves a variety of type I membrane proteins

  16. Accumulation of Exogenous Amyloid-Beta Peptide in Hippocampal Mitochondria Causes Their Dysfunction: A Protective Role for Melatonin

    Directory of Open Access Journals (Sweden)

    Sergio Rosales-Corral

    2012-01-01

    Full Text Available Amyloid-beta (Aβ pathology is related to mitochondrial dysfunction accompanied by energy reduction and an elevated production of reactive oxygen species (ROS. Monomers and oligomers of Aβ have been found inside mitochondria where they accumulate in a time-dependent manner as demonstrated in transgenic mice and in Alzheimer’s disease (AD brain. We hypothesize that the internalization of extracellular Aβ aggregates is the major cause of mitochondrial damage and here we report that following the injection of fibrillar Aβ into the hippocampus, there is severe axonal damage which is accompanied by the entrance of Aβ into the cell. Thereafter, Aβ appears in mitochondria where it is linked to alterations in the ionic gradient across the inner mitochondrial membrane. This effect is accompanied by disruption of subcellular structure, oxidative stress, and a significant reduction in both the respiratory control ratio and in the hydrolytic activity of ATPase. Orally administrated melatonin reduced oxidative stress, improved the mitochondrial respiratory control ratio, and ameliorated the energy imbalance.

  17. Accumulation of Exogenous Amyloid-Beta Peptide in Hippocampal Mitochondria Causes Their Dysfunction: A Protective Role for Melatonin

    Science.gov (United States)

    Rosales-Corral, Sergio; Acuna-Castroviejo, Dario; Tan, Dun Xian; López-Armas, Gabriela; Cruz-Ramos, José; Munoz, Rubén; Melnikov, Valery G.; Manchester, Lucien C.; Reiter, Russel J.

    2012-01-01

    Amyloid-beta (Aβ) pathology is related to mitochondrial dysfunction accompanied by energy reduction and an elevated production of reactive oxygen species (ROS). Monomers and oligomers of Aβ have been found inside mitochondria where they accumulate in a time-dependent manner as demonstrated in transgenic mice and in Alzheimer's disease (AD) brain. We hypothesize that the internalization of extracellular Aβ aggregates is the major cause of mitochondrial damage and here we report that following the injection of fibrillar Aβ into the hippocampus, there is severe axonal damage which is accompanied by the entrance of Aβ into the cell. Thereafter, Aβ appears in mitochondria where it is linked to alterations in the ionic gradient across the inner mitochondrial membrane. This effect is accompanied by disruption of subcellular structure, oxidative stress, and a significant reduction in both the respiratory control ratio and in the hydrolytic activity of ATPase. Orally administrated melatonin reduced oxidative stress, improved the mitochondrial respiratory control ratio, and ameliorated the energy imbalance. PMID:22666521

  18. Regulation of adenosine triphosphate-sensitive potassium channels suppresses the toxic effects of amyloid-beta peptide (25-35)

    Institute of Scientific and Technical Information of China (English)

    Min Kong; Maowen Ba; Hui Liang; Peng Shao; Tianxia Yu; Ying Wang

    2013-01-01

    In this study, we treated PC12 cells with 0-20 μM amyloid-β peptide (25-35) for 24 hours to induce cytotoxicity, and found that 5-20 μM amyloid-β peptide (25-35) decreased PC12 cell viability, but adenosine triphosphate-sensitive potassium channel activator diazoxide suppressed the decrease reactive oxygen species levels. These protective effects were reversed by the selective mitochondrial adenosine triphosphate-sensitive potassium channel blocker 5-hydroxydecanoate. An inducible nitric oxide synthase inhibitor, Nω-nitro-L-arginine, also protected PC12 cells from intracellular reactive oxygen species levels. However, the H2O2-degrading enzyme catalase could that the increases in both mitochondrial membrane potential and reactive oxygen species levels adenosine triphosphate-sensitive potassium channels and nitric oxide. Regulation of adenosine triphosphate-sensitive potassium channels suppresses PC12 cell cytotoxicity induced by amyloid-β

  19. In silico analysis of the apolipoprotein E and the amyloid beta peptide interaction: misfolding induced by frustration of the salt bridge network.

    Directory of Open Access Journals (Sweden)

    Jinghui Luo

    2010-02-01

    Full Text Available The relationship between Apolipoprotein E (ApoE and the aggregation processes of the amyloid beta (A beta peptide has been shown to be crucial for Alzheimer's disease (AD. The presence of the ApoE4 isoform is considered to be a contributing risk factor for AD. However, the detailed molecular properties of ApoE4 interacting with the A beta peptide are unknown, although various mechanisms have been proposed to explain the physiological and pathological role of this relationship. Here, computer simulations have been used to investigate the process of A beta interaction with the N-terminal domain of the human ApoE isoforms (ApoE2, ApoE3 and ApoE4. Molecular docking combined with molecular dynamics simulations have been undertaken to determine the A beta peptide binding sites and the relative stability of binding to each of the ApoE isoforms. Our results show that from the several ApoE isoforms investigated, only ApoE4 presents a misfolded intermediate when bound to A beta. Moreover, the initial alpha-helix used as the A beta peptide model structure also becomes unstructured due to the interaction with ApoE4. These structural changes appear to be related to a rearrangement of the salt bridge network in ApoE4, for which we propose a model. It seems plausible that ApoE4 in its partially unfolded state is incapable of performing the clearance of A beta, thereby promoting amyloid forming processes. Hence, the proposed model can be used to identify potential drug binding sites in the ApoE4-A beta complex, where the interaction between the two molecules can be inhibited.

  20. Methionine residue 35 is critical for the oxidative stress and neurotoxic properties of Alzheimer's amyloid beta-peptide 1-42.

    Science.gov (United States)

    Butterfield, D Allan; Kanski, Jaroslaw

    2002-07-01

    Amyloid beta-peptide 1-42 [Abeta(1-42)] is central to the pathogenesis of Alzheimer's disease (AD), and the AD brain is under intense oxidative stress. Our laboratory combined these two aspects of AD into the Abeta-associated free radical oxidative stress model for neurodegeneration in AD brain. Abeta(1-42) caused protein oxidation, lipid peroxidation, reactive oxygen species formation, and cell death in neuronal and synaptosomal systems, all of which could be inhibited by free radical antioxidants. Recent studies have been directed at discerning molecular mechanisms by which Abeta(1-42)-associated free radical oxidative stress and neurotoxicity arise. The single methionine located in residue 35 of Abeta(1-42) is critical for these properties. This review presents the evidence supporting the role of methionine in Abeta(1-42)-associated free radical oxidative stress and neurotoxicity. This work is of obvious relevance to AD and provides a coupling between the centrality of Abeta(1-42) in the pathogenesis of AD and the oxidative stress under which the AD brain exists.

  1. On the Involvement of Copper Binding to the N-Terminus of the Amyloid Beta Peptide of Alzheimer's Disease: A Computational Study on Model Systems

    Directory of Open Access Journals (Sweden)

    Samira Azimi

    2011-01-01

    Full Text Available Density functional and second order Moller-Plesset perturbation theoretical methods, coupled with a polarizable continuum model of water, were applied to determine the structures, binding affinities, and reduction potentials of Cu(II and Cu(I bound to models of the Asp1, Ala2, His6, and His13His14 regions of the amyloid beta peptide of Alzheimer's disease. The results indicate that the N-terminal Asp binds to Cu(II together with His6 and either His13 or His14 to form the lower pH Component I of Aβ. Component II of Aβ is the complex between Cu(II and His6, His13, and His14, to which an amide O (of Ala2 is also coordinated. Asp1 does not bind to Cu(II if three His residues are attached nor to any Cu(I species to which one or more His residues are bound. The most stable Cu(I species is one in which Cu(I bridges the Nδ of His13 and His14 in a linear fashion. Cu(I binds more strongly to Aβ than does Cu(II. The computed reduction potential that closely matches the experimental value for Cu(II/Aβ corresponds to reduction of Component II (without Ala2 to the Cu(I complex after endergonic attachment of His6.

  2. Amyloid Beta Peptides Affect Pregnenolone and Pregnenolone Sulfate Levels in PC-12 and SH-SY5Y Cells Depending on Cholesterol.

    Science.gov (United States)

    Calan, Ozlem Gursoy; Akan, Pinar; Cataler, Aysenur; Dogan, Cumhur; Kocturk, Semra

    2016-07-01

    Increased amyloid beta (AB) peptide concentration is one of the initiating factors in the neurodegeneration process. It has been suggested that cholesterol induces the synthesis of AB peptide from amyloid precursor protein or facilitates the formation of amyloid plaque by lowering the aggregation threshold of the peptide. It is also shown that AB peptides may affect cholesterol metabolism and the synthesis of steroid hormones such as progesterone and estradiol. Pregnenolone (P) and pregnenolone sulfate (PS) are the major steroids produced from cholesterol in neural tissue. In toxicity conditions, the effect of AB peptides on P and PS levels has not yet been determined. Furthermore, it has not been clearly defined how changes in cellular P and PS levels affect neuronal cell survival. The aim of this study was to determine the effects of AB peptides on cellular changes in P and PS levels depending on the level of their main precursor, cholesterol. Cholesterol and toxic concentrations of AB fragments (AB 25-35, AB 1-40 and AB 1-42) were applied to PC-12 and SH-SY5Y cells. Changes in cellular cholesterol, P and PS levels were determined simultaneously in a dose-and time-dependent manner. The cell viability and cell death types were also evaluated. AB peptides affected both cell viability and P/PS levels. Steroid levels were altered depending on AB fragment type and the cholesterol content of the cells. Treatment with each of the AB fragments alone increased P levels by twofold. However, combined treatment with AB peptides and cholesterol increased P levels by approximately sixfold, while PS levels were increased only about 2.5 fold in both cell lines. P levels in the groups treated with AB 25-35 were higher than those in AB 1-40 and AB 1-42 groups. The cell viabilities were significantly low in the group treated by AB and cholesterol (9 mM). The effect of AB peptides on P levels might be a result of cellular self-defense. On the other hand, the rate of P increase

  3. Substitution of isoleucine-31 by helical-breaking proline abolishes oxidative stress and neurotoxic properties of Alzheimer's amyloid beta-peptide.

    Science.gov (United States)

    Kanski, Jaroslaw; Aksenova, Marina; Schöneich, Christian; Butterfield, D Allan

    2002-06-01

    Alzheimer's disease (AD) brain is characterized by excess deposition of the 42-amino acid amyloid beta-peptide [A(beta)(1-42)]. AD brain is under intense oxidative stress, and we have previously suggested that A(beta)(1-42) was associated with this increased oxidative stress. In addition, we previously demonstrated that the single methionine residue of A(beta)(1-42), residue 35, was critical for the oxidative stress and neurotoxic properties of this peptide. Others have shown that the C-terminal region of A(beta)(1-42) is helical in aqueous micellar solutions, including that part of the protein containing Met35. Importantly, Cu(II)-binding induces alpha-helicity in A(beta) in aqueous solution. Invoking the i + 4 rule of helices, we hypothesized that the carbonyl oxygen of Ile31 would interact with the S atom of Met35 to change the electronic environment of the sulfur such that molecular oxygen could lead to the production of a sulfuramyl free radical on Met35. If this hypothesis is correct, a prediction would be that breaking the helical interaction of Ile31 and Met35 would abrogate the oxidative stress and neurotoxic properties of A(beta)(1-42). Accordingly, we investigated A(beta)(1-42) in which the Ile31 residue was replaced with the helix-breaking amino acid, proline. The alpha-helical environment around Met35 was completely abolished as indicated by circular dichroism (CD)-spectroscopy. As a consequence, the aggregation, oxidative stress, Cu(II) reduction, and neurotoxic properties of A(beta)(1-42)I31P were completely altered compared to native A(beta)(1-42). The results presented here are consistent with the notion that interaction of Ile31 with Met35 may play an important role in the oxidative processes of Met35 contributing to the toxicity of the peptide.

  4. Role of glycine-33 and methionine-35 in Alzheimer's amyloid beta-peptide 1-42-associated oxidative stress and neurotoxicity.

    Science.gov (United States)

    Kanski, Jaroslaw; Varadarajan, Sridhar; Aksenova, Marina; Butterfield, D Allan

    2002-03-16

    Recent theoretical calculations predicted that Gly33 of one molecule of amyloid beta-peptide (1-42) (Abeta(1-42)) is attacked by a putative sulfur-based free radical of methionine residue 35 of an adjacent peptide. This would lead to a carbon-centered free radical on Gly33 that would immediately bind oxygen to form a peroxyl free radical. Such peroxyl free radicals could contribute to the reported Abeta(1-42)-induced lipid peroxidation, protein oxidation, and neurotoxicity, all of which are prevented by the chain-breaking antioxidant vitamin E. In the theoretical calculations, it was shown that no other amino acid, only Gly, could undergo such a reaction. To test this prediction we studied the effects of substitution of Gly33 of Abeta(1-42) on protein oxidation and neurotoxicity of hippocampal neurons and free radical formation in synaptosomes and in solution. Gly33 of Abeta(1-42) was substituted by Val (Abeta(1-42G33V)). The substituted peptide showed almost no neuronal toxicity compared to the native Abeta(1-42) as well as significantly lowered levels of oxidized proteins. In addition, synaptosomes subjected to Abeta(1-42G33V) showed considerably lower dichlorofluorescein-dependent fluorescence - a measure of reactive oxygen species (ROS) - in comparison to native Abeta(1-42) treatment. The ability of the peptides to generate ROS was also evaluated by electron paramagnetic resonance (EPR) spin trapping methods using the ultrapure spin trap N-tert-butyl-alpha-phenylnitrone (PBN). While Abeta(1-42) gave a strong mixture of four- and six-line PBN-derived spectra, the intensity of the EPR signal generated by Abeta(1-42G33V) was far less. Finally, the ability of the peptides to form fibrils was evaluated by electron microscopy. Abeta(1-42G33V) does not form fibrils nearly as well as Abeta(1-42) after 48 h of incubation. The results suggest that Gly33 may be a possible site of free radical propagation processes that are initiated on Met35 of Abeta(1-42) and that

  5. Protective effects of Lingguizhugan decoction on amyloid-beta peptide (25-35)-induced cell injury Anti-inflammatory effects

    Institute of Scientific and Technical Information of China (English)

    Feifei Xi; Feng Sang; Chunxiang Zhou; Yun Ling

    2012-01-01

    In the present study, a human neuroblastoma cell line (SH-SY5Y) and BV-2 microglia were treated with amyloid-β peptide (25-35), as a model of Alzheimer's disease, to evaluate the protective effects of 10-3-10-8 g/mL Lingguizhugan decoction and to examine the underlying anti-inflammatory mechanism. Lingguizhugan decoction significantly enhanced the viability of SH-SY5Y cells with amyloid-β peptide-induced injury, and lowered levels of interleukin-1β, interleukin-6, tumor necrosis factor-α and nitric oxide in the culture supernatant of activated BV-2 microglia. The effects of 10-3 g/mL Lingguizhugan decoction were more significant. These results suggest that Lingguizhugan decoction can protect SH-SY5Y cells against amyloid-β peptide (25-35)-induced injury in a dose-dependent manner by inhibiting overexpression of inflammatory factors by activated microglia.

  6. Local atomic structure and oxidation processes of Cu(I) binding site in amyloid beta peptide: XAS Study

    Science.gov (United States)

    Kremennaya, M. A.; Soldatov, M. A.; Streltsov, V. A.; Soldatov, A. V.

    2016-05-01

    There are two different motifs of X-ray absorption spectra for Cu(I) K-edge in amyloid-β peptide which could be due to two different configurations of local Cu(I) environment. Two or three histidine ligands can coordinate copper ion in varying conformations. On the other hand, oxidation of amyloid-β peptide could play an additional role in local copper environment. In order to explore the peculiarities of local atomic and electronic structure of Cu(I) binding sites in amyloid-β peptide the x-ray absorption spectra were simulated for various Cu(I) environments including oxidized amyloid-β and compared with experimental data.

  7. Expression of secreted human single-chain fragment variable antibody against human amyloid beta peptide in Pichia pastoris

    Institute of Scientific and Technical Information of China (English)

    Jiong Cai; Fang Li; Shizhen Wang

    2008-01-01

    BACKGROUND: Studies have shown that monoclonal or polyclonal antibody injections ofamyloid β peptide arc effective in removing amyloid β peptide overload in the brain.OBJECTIVE: Based on successful screening of a human single-chain fragment variable antibody specific to amyloid β peptide, this paper aimed to express recombinant human single-chain variable antibody against amyloid β peptide.DESIGN, TIME AND SETTING: A single sample experiment was performed at the Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Hospital (Beijing, China) from January to July 2006.MATERIALS: Human single-chain fragment variable antibody gene against amyloid β peptide was screened from a human phage-display antibody library.METHODS: Human single-chain fragment variable antibody gene was mutated to eliminate a BamHI restriction site and cloned into a Teasy plasmid for pT-seFvAβ construction, which was identified by PCR amplification and endonuclease digestion. Plasmid pT-scFvA β was cut by EcoRl and Notl endonucleases, and the antibody gene was cloned into pPIC9K plasmid to construct pPIC9K-scFvA β expression vector, which was confirmed by gene sequencing. Linearized pPICgK-scFvA β was used to transform a Pichia pastoris GS115 cell line, and the recombinant was induced by 0.5 % methanol to express human single-chain fragment variable antibody specific to amyloid β peptide.MAIN OUTCOME MEASURES: Protein electrophoresis was used to identify PCR products, gene sequencing was uscd to verify the pPIC9K-scFvA sequence, and SDS-PAGE was used to detect recombinant expression of human single-chain fragment variable antibody specific to amyloid β peptide in Pichia pastoris.RESULTS: Gene sequencing confirmed pPICgK-scFvA β orientation. Rccomhinants were obtained by lineadzed pPIC9K-scFvA β transformation. After induction with 0.5% methanol, the recombinant yeast cells secreted proteins of 33-ku size

  8. Influence of the solvent on the self-assembly of a modified amyloid beta peptide fragment. II. NMR and computer simulation investigation.

    Science.gov (United States)

    Hamley, I W; Nutt, D R; Brown, G D; Miravet, J F; Escuder, B; Rodríguez-Llansola, F

    2010-01-21

    The conformation of a model peptide AAKLVFF based on a fragment of the amyloid beta peptide Abeta16-20, KLVFF, is investigated in methanol and water via solution NMR experiments and molecular dynamics computer simulations. In previous work, we have shown that AAKLVFF forms peptide nanotubes in methanol and twisted fibrils in water. Chemical shift measurements were used to investigate the solubility of the peptide as a function of concentration in methanol and water. This enabled the determination of critical aggregation concentrations. The solubility was lower in water. In dilute solution, diffusion coefficients revealed the presence of intermediate aggregates in concentrated solution, coexisting with NMR-silent larger aggregates, presumed to be beta-sheets. In water, diffusion coefficients did not change appreciably with concentration, indicating the presence mainly of monomers, coexisting with larger aggregates in more concentrated solution. Concentration-dependent chemical shift measurements indicated a folded conformation for the monomers/intermediate aggregates in dilute methanol, with unfolding at higher concentration. In water, an antiparallel arrangement of strands was indicated by certain ROESY peak correlations. The temperature-dependent solubility of AAKLVFF in methanol was well described by a van't Hoff analysis, providing a solubilization enthalpy and entropy. This pointed to the importance of solvophobic interactions in the self-assembly process. Molecular dynamics simulations constrained by NOE values from NMR suggested disordered reverse turn structures for the monomer, with an antiparallel twisted conformation for dimers. To model the beta-sheet structures formed at higher concentration, possible model arrangements of strands into beta-sheets with parallel and antiparallel configurations and different stacking sequences were used as the basis for MD simulations; two particular arrangements of antiparallel beta-sheets were found to be stable, one

  9. Serum NGAL is Associated with Distinct Plasma Amyloid-beta Peptides According to the Clinical Diagnosis of Dementia in Down Syndrome

    NARCIS (Netherlands)

    Naude, P.J.; Dekker, A.D.; Coppus, A.M.W.; Vermeiren, Y.; Eisel, U.L.; Duijn, C.M. van; Dam, D. Van; Deyn, P.P. De

    2015-01-01

    BACKGROUND: The majority of people with Down syndrome (DS) develop dementia due to Alzheimer's disease (AD). Neuropathological features are characterized by an accumulation of amyloid-beta (Abeta) deposits and the presence of an activated immune response. Neutrophil Gelatinase-Associated Lipocalin

  10. Binding of fullerenes to amyloid beta fibrils: size matters.

    Science.gov (United States)

    Huy, Pham Dinh Quoc; Li, Mai Suan

    2014-10-01

    Binding affinity of fullerenes C20, C36, C60, C70 and C84 for amyloid beta fibrils is studied by docking and all-atom molecular dynamics simulations with the Amber force field and water model TIP3P. Using the molecular mechanic-Poisson Boltzmann surface area method one can demonstrate that the binding free energy linearly decreases with the number of carbon atoms of fullerene, i.e. the larger is the fullerene size, the higher is the binding affinity. Overall, fullerenes bind to Aβ9-40 fibrils stronger than to Aβ17-42. The number of water molecules trapped in the interior of 12Aβ9-40 fibrils was found to be lower than inside pentamer 5Aβ17-42. C60 destroys Aβ17-42 fibril structure to a greater extent compared to other fullerenes. Our study revealed that the van der Waals interaction dominates over the electrostatic interaction and non-polar residues of amyloid beta peptides play the significant role in interaction with fullerenes providing novel insight into the development of drug candidates against Alzheimer's disease.

  11. Amyloid-beta peptide decreases expression and function of glutamate transporters in nervous system cells.

    Science.gov (United States)

    Tong, Huichun; Zhang, Xiuping; Meng, Xingjun; Xu, Pingyi; Zou, Xiaoming; Qu, Shaogang

    2017-02-08

    Glutamate is an essential excitatory neurotransmitter that regulates brain functions, and its activity is tightly regulated by glutamate transporters. Excess glutamate in the synaptic cleft and dysfunction of excitatory amino acid transporters have been shown to be involved in development of Alzheimer's disease, but the precise regulatory mechanism is poorly understood. Using a D-[(3)H]-aspartic acid uptake assay, we found that Aβ1-42 oligomers impaired glutamate uptake in astrocytes and neurons. In astrocytes, this process was accompanied by reduced expression of GLT-1 and GLAST as detected by Western blot and immunocytofluorescence. However, mRNA levels of EAATs detected by qPCR in astrocytes and neurons were not altered, which suggests that this process is post-translational. Co-localization analysis using immunocytofluorescence showed that ubiquitylation of GLT-1 significantly increased. Therefore, we hypothesized that Aβ1-42 oligomers-induced endocytosis of astrocytic GLT-1 may be involved in ubiquitylation. In addition, Aβ1-42 oligomers enhanced secretion of IL-1β, TNF-α, and IL-6 into culture supernatant, which may be correlated with an inflammatory response and altered EAATs expression or function in Alzheimer's disease. These findings support the idea that dysregulation of the glutamatergic system may play a significant role in pathogenesis of Alzheimer's disease. Furthermore, enhancing expression or function of EAATs in astrocytes and neurons might be a new therapeutic approach in treatment of Alzheimer's disease.

  12. In vivo oxidative stress in brain of Alzheimer disease transgenic mice: Requirement for methionine 35 in amyloid beta-peptide of APP.

    Science.gov (United States)

    Butterfield, D Allan; Galvan, Veronica; Lange, Miranda Bader; Tang, Huidong; Sowell, Renã A; Spilman, Patricia; Fombonne, Joanna; Gorostiza, Olivia; Zhang, Junli; Sultana, Rukhsana; Bredesen, Dale E

    2010-01-01

    Numerous studies have demonstrated oxidative damage in the central nervous system in subjects with Alzheimer disease and in animal models of this dementing disorder. In this study, we show that transgenic mice modeling Alzheimer disease-PDAPP mice with Swedish and Indiana mutations in the human amyloid precursor protein (APP)-develop oxidative damage in brain, including elevated levels of protein oxidation (indexed by protein carbonyls and 3-nitrotyrosine) and lipid peroxidation (indexed by protein-bound 4-hydroxy-2-nonenal). This oxidative damage requires the presence of a single methionine residue at position 35 of the amyloid beta-peptide (Abeta), because all indices of oxidative damage in brain were completely prevented in genetically and age-matched PDAPP mice with an M631L mutation in APP. No significant differences in the levels of APP, Abeta(1-42), and Abeta(1-40) or in the ratio Abeta(1-42)/Abeta(1-40) were found, suggesting that the loss of oxidative stress in vivo in the brain of PDAPP(M631L) mice results solely from the mutation of the Met35 residue to Leu in the Abeta peptide. However, a marked reduction in Abeta-immunoreactive plaques was observed in the M631L mice, which instead displayed small punctate areas of nonplaque immunoreactivity and a microglial response. In contrast to the requirement for Met at residue 35 of the Abeta sequence (M631 of APP) for oxidative damage, indices of spatial learning and memory were not significantly improved by the M631L substitution. Furthermore, a genetically matched line with a different mutation-PDAPP(D664A)-showed the reverse: no reduction in oxidative damage but marked improvement in memory. This is the first in vivo study to demonstrate the requirement for Abeta residue Met35 for oxidative stress in the brain of a mammalian model of Alzheimer disease. However, in this specific transgenic mouse model of AD, oxidative stress is neither required nor sufficient for memory abnormalities. Copyright 2009 Elsevier

  13. Intravenous immunoglobulin protects neurons against amyloid beta-peptide toxicity and ischemic stroke by attenuating multiple cell death pathways.

    Science.gov (United States)

    Widiapradja, Alexander; Vegh, Viktor; Lok, Ker Zhing; Manzanero, Silvia; Thundyil, John; Gelderblom, Mathias; Cheng, Yi-Lin; Pavlovski, Dale; Tang, Sung-Chun; Jo, Dong-Gyu; Magnus, Tim; Chan, Sic L; Sobey, Christopher G; Reutens, David; Basta, Milan; Mattson, Mark P; Arumugam, Thiruma V

    2012-07-01

    Intravenous immunoglobulin (IVIg) preparations obtained by fractionating blood plasma, are increasingly being used increasingly as an effective therapeutic agent in treatment of several inflammatory diseases. Its use as a potential therapeutic agent for treatment of stroke and Alzheimer's disease has been proposed, but little is known about the neuroprotective mechanisms of IVIg. In this study, we investigated the effect of IVIg on downstream signaling pathways that are involved in neuronal cell death in experimental models of stroke and Alzheimer's disease. Treatment of cultured neurons with IVIg reduced simulated ischemia- and amyloid βpeptide (Aβ)-induced caspase 3 cleavage, and phosphorylation of the cell death-associated kinases p38MAPK, c-Jun NH2 -terminal kinase and p65, in vitro. Additionally, Aβ-induced accumulation of the lipid peroxidation product 4-hydroxynonenal was attenuated in neurons treated with IVIg. IVIg treatment also up-regulated the anti-apoptotic protein, Bcl2 in cortical neurons under ischemia-like conditions and exposure to Aβ. Treatment of mice with IVIg reduced neuronal cell loss, apoptosis and infarct size, and improved functional outcome in a model of focal ischemic stroke. Together, these results indicate that IVIg acts directly on neurons to protect them against ischemic stroke and Aβ-induced neuronal apoptosis by inhibiting cell death pathways and by elevating levels of the anti-apoptotic protein Bcl2.

  14. Amyloid-beta(29-42) dimer formations studied by a multicanonical-multioverlap molecular dynamics simulation.

    Science.gov (United States)

    Itoh, Satoru G; Okamoto, Yuko

    2008-03-13

    Amyloid-beta peptides are known to form amyloid fibrils and are considered to play an important role in Alzheimer's disease. Amyloid-beta(29-42) is a fragment of the amyloid-beta peptide and also has a tendency to form amyloid fibrils. In order to study the mechanism of amyloidogenesis of this fragment, we applied one of the generalized-ensemble algorithms, the multicanonical-multioverlap algorithm, to amyloid-beta(29-42) dimer in aqueous solution. We obtained a detailed free-energy landscape of the dimer system. From the detailed free-energy landscape, we examined monomer and dimer formations of amyloid-beta(29-42) and deduced dimerization processes, which correspond to seeding processes in the amyloidogenesis of amyloid-beta(29-42).

  15. Small heat shock protein HspB8: its distribution in Alzheimer's disease brains and its inhibition of amyloid-beta protein aggregation and cerebrovascular amyloid-beta toxicity.

    NARCIS (Netherlands)

    Wilhelmus, M.M.; Boelens, W.C.; Otte-Holler, I.; Kamps, B.; Kusters, B.; Maat-Schieman, M.L.; Waal, R.M.W. de; Verbeek, M.M.

    2006-01-01

    Alzheimer's disease (AD) is characterized by pathological lesions, such as senile plaques (SPs) and cerebral amyloid angiopathy (CAA), both predominantly consisting of a proteolytic cleavage product of the amyloid-beta precursor protein (APP), the amyloid-beta peptide (Abeta). CAA is also the major

  16. Deposition of mouse amyloid beta in human APP/PS1 double and single AD model transgenic mice.

    NARCIS (Netherlands)

    Groen, T. van; Kiliaan, A.J.; Kadish, I.

    2006-01-01

    The deposition of amyloid beta (Abeta) peptides and neurofibrillary tangles are the two characteristic pathological features of Alzheimer's disease (AD). To investigate the relation between amyloid precursor protein (APP) production, amyloid beta deposition and the type of Abeta in deposits, i.e., h

  17. Deposition of mouse amyloid beta in human APP/PS1 double and single AD model transgenic mice.

    NARCIS (Netherlands)

    Groen, T. van; Kiliaan, A.J.; Kadish, I.

    2006-01-01

    The deposition of amyloid beta (Abeta) peptides and neurofibrillary tangles are the two characteristic pathological features of Alzheimer's disease (AD). To investigate the relation between amyloid precursor protein (APP) production, amyloid beta deposition and the type of Abeta in deposits, i.e.,

  18. Quantification of the binding properties of Cu2+ to the amyloid beta peptide: coordination spheres for human and rat peptides and implication on Cu2+-induced aggregation.

    Science.gov (United States)

    Hong, Lian; Carducci, Tessa M; Bush, William D; Dudzik, Christopher G; Millhauser, Glenn L; Simon, John D

    2010-09-02

    There is no consensus on the coordinating ligands for Cu(2+) by Abeta. However, the differences in peptide sequence between human and rat have been hypothesized to alter metal ion binding in a manner that alters Cu(2+)-induced aggregation of Abeta. Herein, we employ isothermal titration calorimetry (ITC), circular dichroism (CD), and electron paramagnetic resonance (EPR) spectroscopy to examine the Cu(2+) coordination spheres to human and rat Abeta and an extensive set of Abeta(16) mutants. EPR of the mutant peptides is consistent with a 3N1O binding geometry, like the native human peptide at pH 7.4. The thermodynamic data reveal an equilibrium between three coordination spheres, {NH(2), O, N(Im)(His6), N(-)}, {NH(2), O, N(Im)(His6), N(Im)(His13)}, and {NH(2), O, N(Im)(His6), N(Im)(His14)}, for human Abeta(16) but one dominant coordination for rat Abeta(16), {NH(2), O, N(Im)(His6), N(-)}, at pH 7.4-6.5. ITC and CD data establish that the mutation R5G is sufficient for reproducing this difference in Cu(2+) binding properties at pH 7.4. The substitution of bulky and positively charged Arg by Gly is proposed to stabilize the coordination {NH(2), O-, N(Im)(His6), N(-)} that then results in one dominating coordination sphere for the case of the rat peptide. The differences in the coordination geometries for Cu(2+) by the human and rat Abeta are proposed to contribute to the variation in the ability of Cu(2+) to induce aggregation of Abeta peptides.

  19. Microscopic factors that control beta-sheet registry in amyloid fibrils formed by fragment 11-25 of amyloid beta peptide: insights from computer simulations.

    Science.gov (United States)

    Negureanu, Lacramioara; Baumketner, Andrij

    2009-06-26

    Short fragments of amyloidogenic proteins are widely used as model systems in studies of amyloid formation. Fragment 11-25 of the amyloid beta protein involved in Alzheimer's disease (Abeta11-25) was recently shown to form amyloid fibrils composed of anti-parallel beta-sheets. Interestingly, fibrils grown under neutral and acidic conditions were seen to possess different registries of their inter-beta-strand hydrogen bonds. In an effort to explain the microscopic origin of this pH dependence, we studied Abeta11-25 fibrils using methods of theoretical modeling. Several structural models were built for fibrils at low and neutral pH levels and these were examined in short molecular dynamics simulations in explicit water. The models that displayed the lowest free energy, as estimated using an implicit solvent model, were selected as representative of the true fibrillar structure. It was shown that the registry of these models agrees well with the experimental results. At neutral pH, the main contribution to the free energy difference between the two registries comes from the electrostatic interactions. The charge group of the carboxy terminus makes a large contribution to these interactions and thus appears to have a critical role in determining the registry.

  20. Neurotoxicity induced by amyloid beta-peptide and ibotenic acid in organotypic hippocampal cultures: protection by S-allyl-L-cysteine, a garlic compound.

    Science.gov (United States)

    Ito, Yoshihisa; Ito, Moriyuki; Takagi, Noritaka; Saito, Hiroshi; Ishige, Kumiko

    2003-09-19

    We have assessed amyloid-beta (Abeta)-induced neurotoxicity, with and without added ibotenic acid (IBO), a potent N-methyl-D-aspartate (NMDA) agonist, in an organotypic hippocampal slice culture (OHC). In the OHC, there was little neurotoxicity after treatment with Abeta(25-35) (25 or 50 microM) alone for 48 h. However, with IBO alone neuronal death was observed in the pyramidal cell layer at low concentrations, and there was dramatic neuronal death at concentrations of 65 microM or more. When Abeta was combined with IBO (Abeta+IBO) there was more intense cell death than with IBO alone. S-Allyl-L-cysteine (SAC), one of the organosulfur compounds having a thioallyl group in aged garlic extract, was shown to protect the hippocampal neurons in the CA3 area and the dentate gyrus (DG) from the cell death induced by Abeta+IBO with no change in the CA1 area. Although L-glutamate (500 microM) potentiated the degree of IBO-induced neuronal death, it attenuated the Abeta+IBO-induced neuronal death in both the CA3 area and the DG with no obvious effect on the CA1 area. These results suggest that Abeta+IBO induces extensive neuronal death, and that SAC and L-glutamate protect cells from death in specific areas of the hippocampus. In addition, inhibition using a pan-caspase inhibitor, z-VAD-fmk, only provided partial protection from Abeta+IBO-induced toxicity for the neurons in the CA3 area. These results suggest that multiple mechanisms may be involved in Abeta+IBO-induced neuronal death in the OHC.

  1. Amyloid Beta as a Modulator of Synaptic Plasticity

    OpenAIRE

    Parihar, Mordhwaj S.; Gregory J. Brewer

    2010-01-01

    Alzheimer’s disease is associated with synapse loss, memory dysfunction and pathological accumulation of amyloid beta in plaques. However, an exclusively pathological role for amyloid beta is being challenged by new evidence for an essential function of amyloid beta at the synapse. Amyloid beta protein exists in different assembly states in the central nervous system and plays distinct roles ranging from synapse and memory formation to memory loss and neuronal cell death. Amyloid beta is pres...

  2. Method for measurement of the blood-brain barrier permeability in the perfused mouse brain: application to amyloid-beta peptide in wild type and Alzheimer's Tg2576 mice.

    Science.gov (United States)

    LaRue, Barbra; Hogg, Elizabeth; Sagare, Abhay; Jovanovic, Suzana; Maness, Lawrence; Maurer, Calvin; Deane, Rashid; Zlokovic, Berislav V

    2004-09-30

    The role of transport exchanges of neuroactive solutes across the blood-brain barrier (BBB) is increasingly recognized. To take full advantage of genetically altered mouse models of neurodegenerative disorders for BBB transport studies, we adapted a brain perfusion technique to the mouse. During a carotid brain perfusion with a medium containing sheep red blood cells and mock plasma, the physiological parameters in the arterial inflow, regional cerebral blood flow (14C-iodoantipyrine autoradiography), ultrastructural integrity of the tissue, barrier to lanthanum, brain water content, energy metabolites and lactate levels remain unchanged. Amyloid-beta peptides (Abeta) were iodinated by lactoperoxidase method. Non-oxidized mono-iodinated Abeta monomers were separated by HPLC (as confirmed by MALDI-TOF spectrometry) and used in transport measurements. Transport of intact 125I-Abeta40 across the BBB was time- and concentration-dependent in contrast to negligible 14C-inulin uptake. In 5-6 months old Alzheimer's Tg2576 mice, Abeta40 BBB transport was increased by >eight-fold compared to age-matched littermate controls, and was mediated via the receptor for advanced glycation endproducts. We conclude the present arterial brain perfusion method provides strictly controlled environment in cerebral microcirculation suitable for examining transport of rapidly and slowly penetrating molecules across the BBB in normal and transgenic mice.

  3. Estrogen protects neuronal cells from amyloid beta-induced apoptosis via regulation of mitochondrial proteins and function

    Directory of Open Access Journals (Sweden)

    Iwamoto Sean

    2006-11-01

    Full Text Available Abstract Background Neurodegeneration in Alzheimer's disease is associated with increased apoptosis and parallels increased levels of amyloid beta, which can induce neuronal apoptosis. Estrogen exposure prior to neurotoxic insult of hippocampal neurons promotes neuronal defence and survival against neurodegenerative insults including amyloid beta. Although all underlying molecular mechanisms of amyloid beta neurotoxicity remain undetermined, mitochondrial dysfunction, including altered calcium homeostasis and Bcl-2 expression, are involved in neurodegenerative vulnerability. Results In this study, we investigated the mechanism of 17β-estradiol-induced prevention of amyloid beta-induced apoptosis of rat hippocampal neuronal cultures. Estradiol treatment prior to amyloid beta exposure significantly reduced the number of apoptotic neurons and the associated rise in resting intracellular calcium levels. Amyloid beta exposure provoked down regulation of a key antiapoptotic protein, Bcl-2, and resulted in mitochondrial translocation of Bax, a protein known to promote cell death, and subsequent release of cytochrome c. E2 pretreatment inhibited the amyloid beta-induced decrease in Bcl-2 expression, translocation of Bax to the mitochondria and subsequent release of cytochrome c. Further implicating the mitochondria as a target of estradiol action, in vivo estradiol treatment enhanced the respiratory function of whole brain mitochondria. In addition, estradiol pretreatment protected isolated mitochondria against calcium-induced loss of respiratory function. Conclusion Therefore, we propose that estradiol pretreatment protects against amyloid beta neurotoxicity by limiting mitochondrial dysfunction via activation of antiapoptotic mechanisms.

  4. Time Until Neuron Death After Initial Puncture From an Amyloid-Beta Oligomer

    CERN Document Server

    Horton, Tanner

    2015-01-01

    Hardy and Higgins first proposed the amyloid cascade hypothesis in 1992, stating that the decrease in neuronal function observed in Alzheimer's Disease (AD) is due to a process initiated by the oligomerization of amyloid-beta peptides. One hypothesis states that toxicity arises from the aggregation of amyloid-beta into a pore structure, which can then puncture the brain cell membrane; this allow toxic calcium ions to flood through the opening, causing eventual cell death. In 2007, neurobiologist Ruth Nussinov calculated the three pore sizes most likely to occur within the brain. Based on her findings, we constructed a method to determine the time it takes for a cell to die after the cell is punctured by the pore. Our findings have shown that cell death occurs within one second after the oligomer makes contact with the cell. We believe this is important because instant cell death has been one criticism of Nussinov's model, and we have calculated a concrete time value for that criticism. We identify two potenti...

  5. High dietary consumption of trans fatty acids decreases brain docosahexaenoic acid but does not alter amyloid-beta and tau pathologies in the 3xTg-AD model of Alzheimer's disease.

    Science.gov (United States)

    Phivilay, A; Julien, C; Tremblay, C; Berthiaume, L; Julien, P; Giguère, Y; Calon, F

    2009-03-03

    Dietary consumption of trans fatty acids (TFA) has increased during the 20th century and is a suspected risk factor for cardiovascular diseases. More recently, high TFA intake has been associated with a higher risk of developing Alzheimer's disease (AD). To investigate the impact of TFA on an animal model genetically programmed to express amyloid-beta (Abeta) and tau pathological markers of AD, we have fed 3xTg-AD mice with either control (0% TFA/total fatty acid), high TFA (16% TFA) or very high TFA (43% TFA) isocaloric diets from 2 to 16 months of age. Effects of TFA on plasma hepatic enzymes, glucose and lipid profile were minimal but very high TFA intake decreased visceral fat of non-transgenic mice. Importantly, dietary TFA increased brain TFA concentrations in a dose-related manner. Very high TFA consumption substantially modified the brain fatty acid profile by increasing mono-unsaturated fatty acids and decreasing polyunsaturated fatty acids (PUFA). Very high TFA intake induced a shift from docosahexaenoic acid (DHA, 22:6n-3) toward n-6 docosapentaenoic acid (DPA, 22:5n-6) without altering the n-3:n-6 PUFA ratio in the cortex of both control and 3xTg-AD mice. Changes in levels of Abeta(40), Abeta(42), tau protein, phosphorylated tau protein and synaptic markers were not statistically significant in the three groups of 3xTg-AD mice, despite a trend toward decreased insoluble tau in very high TFA-fed 3xTg-AD animals. In summary, TFA intake modulated brain fatty acid profiles but had no significant effect on major brain neuropathological hallmarks of AD in an animal model.

  6. Proposal for novel curcumin derivatives as potent inhibitors against Alzheimer's disease: Ab initio molecular simulations on the specific interactions between amyloid-beta peptide and curcumin

    Science.gov (United States)

    Ota, Shintaro; Fujimori, Mitsuki; Ishimura, Hiromi; Shulga, Sergiy; Kurita, Noriyuki

    2017-10-01

    Accumulation of amyloid-β (Aβ) peptides in a brain is closely related with the pathogenesis of Alzheimer's disease. To suppress the production of Aβ peptides, we propose novel curcumin derivatives and investigate their binding properties with the amyloid precursor protein (APP), using protein-ligand docking as well as ab initio molecular simulations. Our proposed derivative (curcumin XIV) is found to have a large binding energy with APP and interacts strongly with the cleavage site Ala19 by secretase. It is thus expected that curcumin XIV can protect APP from the secretase attack and be a potent inhibitor against the production of Aβ peptides.

  7. Protective effect of cyclophilin A against Alzheimer's amyloid beta-peptide (25-35)-induced oxidative stress in PC12 cells

    Institute of Scientific and Technical Information of China (English)

    GE Yu-song; TENG Wei-yu; ZHANG Chao-dong

    2009-01-01

    Background β-amyloid peptide (Aβ) is considered responsible for the pathogenesis of Alzheimer's disease (AD). Possible mechanisms underlying Aβ-induced neuronal cytotoxicity include excessive production of reactive oxidative species (ROS) and apoptosis. Cyclophilin A (CypA), exhibits antioxidant properties and protects neurons against oxidative stress induced injury. This study was conducted to demonstrate whether CyPA added to cultured PC12 cells could alleviate Aβ-induced oxidative stress and protect them from apoptosis.Methods PC12 cells were pre-incubated for 30 minutes with recombinant human cyclophilin A (rhCyPA) in 0.1 nmol/L, 1.0 nmol/L, 10 nmol/L and 100 nmol/L and then incubated with 10 umol/L Aβ25-35. In every group, cell viability, apoptotic morphology, apoptotic rate, intracellular ROS accumulation, the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) of PC12 cells and mitochondrial transmembrane potential were detected. Subsequently, the expression of the active form of caspase-3 was determined by Western blotting.Results It was shown that cultures treated with 1.0 nmol/L, 10 nmol/L or 100 nmol/L rhCyPA + Aβ25-35 had significantly higher cell viability and a lower rate of apoptosis compared with the cultures exposed only to Aβ25-35. In addition, rhCyPA attenuated Aβ25-35-induced overproduction of intracellular ROS and Aβ25-35-induced a decrease in activity of the key antioxidant enzymes SOD and GSH-Px. Furthermore, rhCyPA also attenuated Aβ25-35-induced mitochondrial dysfunction and the activation of caspase-3.Conclusion CyPA may act as an ROS scavenger, and prevent Aβ25-35-induced neurotoxicity through attenuating oxidative stress induced by Aβ25-35.

  8. Mutation-based structural modification and dynamics study of amyloid beta peptide (1–42: An in-silico-based analysis to cognize the mechanism of aggregation

    Directory of Open Access Journals (Sweden)

    Pritam Kumar Panda

    2016-03-01

    Full Text Available Alzheimer's disease is the prevalent cause of premature senility, a progressive mental disorder due to degeneration in brain and deposition of amyloid β peptide (1–42, a misfolded protein in the form of aggregation that prevails for a prolonged time and obstructs every aspect of life. One of the primary hallmarks of the neuropathological disease is the accretion of amyloid β peptide in the brain that leads to Alzheimer's disease, but the mechanism is still a mystery. Several investigations have shown that mutations at specific positions have a significant impact in stability of the peptide as predicted from aggregation profiles. Here in our study, we have analyzed the mutations by substituting residues at position A22G, E22G, E22K, E22Q, D23N, L34V and molecular dynamics have been performed to check the deviation in stability and conformation of the peptide. The results validated that the mutations at specific positions lead to instability and the proline substitution at E22P and L34P stalled the aggregation of the peptide.

  9. Early Treatment Critical: Bexarotene Reduces Amyloid-Beta Burden In Silico.

    Science.gov (United States)

    Rosenthal, Joseph; Belfort, Georges; Isaacson, David

    2016-01-01

    Amyloid-beta peptides have long been implicated in the pathology of Alzheimer's disease. Bexarotene, a drug approved by the U.S. Food and Drug Administration for treating a class of non-Hodgkin's lymphoma, has been reported to facilitate the removal of amyloid-beta. We have developed a mathematical model to explore the efficacy of bexarotene treatment in reducing amyloid-beta load, and simulate amyloid-beta production throughout the lifespan of diseased mice. Both aspects of the model are based on and consistent with previous experimental results. Beyond what is known empirically, our model shows that low dosages of bexarotene are unable to reverse symptoms in diseased mice, but dosages at and above an age-dependent critical concentration can recover healthy brain cells. Further, early treatment was shown to have significantly improved efficacy versus treatment in older mice. Relevance with respect to bexarotene-based amyloid-beta-clearance mechanism and direct treatment for Alzheimer's disease is emphasized.

  10. Involvement of formyl peptide receptors in receptor for advanced glycation end products (RAGE - and amyloid beta 1-42-induced signal transduction in glial cells

    Directory of Open Access Journals (Sweden)

    Slowik Alexander

    2012-11-01

    Full Text Available Abstract Background Recent studies suggest that the chemotactic G-protein-coupled-receptor (GPCR formyl-peptide-receptor-like-1 (FPRL1 and the receptor-for-advanced-glycation-end-products (RAGE play an important role in the inflammatory response involved in neurodegenerative disorders such as Alzheimer’s disease (AD. Therefore, the expression and co-localisation of mouse formyl peptide receptor (mFPR 1 and 2 as well as RAGE in an APP/PS1 transgenic mouse model using immunofluorescence and real-time RT-PCR were analysed. The involvement of rat or human FPR1/FPRL1 (corresponds to mFPR1/2 and RAGE in amyloid-β 1–42 (Aβ1-42-induced signalling were investigated by extracellular signal regulated kinase 1/2 (ERK1/2 phosphorylation. Furthermore, the cAMP level in primary rat glial cells (microglia and astrocytes and transfected HEK 293 cells was measured. Formyl peptide receptors and RAGE were inhibited by a small synthetic antagonist WRW4 and an inactive receptor variant delta-RAGE, lacking the intracytoplasmatic domains. Results We demonstrated a strong increase of mFPR1/2 and RAGE expression in the cortex and hippocampus of APP/PS1 transgenic mice co-localised to the glial cells. In addition, the Aβ1-42-induced signal transduction is dependant on FPRL1, but also on FPR1. For the first time, we have shown a functional interaction between FPRL1/FPR1 and RAGE in RAGE ligands S100B- or AGE-mediated signalling by ERK1/2 phosphorylation and cAMP level measurement. In addition a possible physical interaction between FPRL1 as well as FPR1 and RAGE was shown with co-immunoprecipitation and fluorescence microscopy. Conclusions The results suggest that both formyl peptide receptors play an essential role in Aβ1-42-induced signal transduction in glial cells. The interaction with RAGE could explain the broad ligand spectrum of formyl peptide receptors and their important role for inflammation and the host defence against infections.

  11. Involvement of formyl peptide receptors in receptor for advanced glycation end products (RAGE)--and amyloid beta 1-42-induced signal transduction in glial cells.

    Science.gov (United States)

    Slowik, Alexander; Merres, Julika; Elfgen, Anne; Jansen, Sandra; Mohr, Fabian; Wruck, Christoph J; Pufe, Thomas; Brandenburg, Lars-Ove

    2012-11-20

    Recent studies suggest that the chemotactic G-protein-coupled-receptor (GPCR) formyl-peptide-receptor-like-1 (FPRL1) and the receptor-for-advanced-glycation-end-products (RAGE) play an important role in the inflammatory response involved in neurodegenerative disorders such as Alzheimer's disease (AD).Therefore, the expression and co-localisation of mouse formyl peptide receptor (mFPR) 1 and 2 as well as RAGE in an APP/PS1 transgenic mouse model using immunofluorescence and real-time RT-PCR were analysed. The involvement of rat or human FPR1/FPRL1 (corresponds to mFPR1/2) and RAGE in amyloid-β 1-42 (Aβ1-42)-induced signalling were investigated by extracellular signal regulated kinase 1/2 (ERK1/2) phosphorylation. Furthermore, the cAMP level in primary rat glial cells (microglia and astrocytes) and transfected HEK 293 cells was measured. Formyl peptide receptors and RAGE were inhibited by a small synthetic antagonist WRW4 and an inactive receptor variant delta-RAGE, lacking the intracytoplasmatic domains. We demonstrated a strong increase of mFPR1/2 and RAGE expression in the cortex and hippocampus of APP/PS1 transgenic mice co-localised to the glial cells. In addition, the Aβ1-42-induced signal transduction is dependant on FPRL1, but also on FPR1. For the first time, we have shown a functional interaction between FPRL1/FPR1 and RAGE in RAGE ligands S100B- or AGE-mediated signalling by ERK1/2 phosphorylation and cAMP level measurement. In addition a possible physical interaction between FPRL1 as well as FPR1 and RAGE was shown with co-immunoprecipitation and fluorescence microscopy. The results suggest that both formyl peptide receptors play an essential role in Aβ1-42-induced signal transduction in glial cells. The interaction with RAGE could explain the broad ligand spectrum of formyl peptide receptors and their important role for inflammation and the host defence against infections.

  12. Involvement of formyl peptide receptors in receptor for advanced glycation end products (RAGE) - and amyloid beta 1-42-induced signal transduction in glial cells

    Science.gov (United States)

    2012-01-01

    Background Recent studies suggest that the chemotactic G-protein-coupled-receptor (GPCR) formyl-peptide-receptor-like-1 (FPRL1) and the receptor-for-advanced-glycation-end-products (RAGE) play an important role in the inflammatory response involved in neurodegenerative disorders such as Alzheimer’s disease (AD). Therefore, the expression and co-localisation of mouse formyl peptide receptor (mFPR) 1 and 2 as well as RAGE in an APP/PS1 transgenic mouse model using immunofluorescence and real-time RT-PCR were analysed. The involvement of rat or human FPR1/FPRL1 (corresponds to mFPR1/2) and RAGE in amyloid-β 1–42 (Aβ1-42)-induced signalling were investigated by extracellular signal regulated kinase 1/2 (ERK1/2) phosphorylation. Furthermore, the cAMP level in primary rat glial cells (microglia and astrocytes) and transfected HEK 293 cells was measured. Formyl peptide receptors and RAGE were inhibited by a small synthetic antagonist WRW4 and an inactive receptor variant delta-RAGE, lacking the intracytoplasmatic domains. Results We demonstrated a strong increase of mFPR1/2 and RAGE expression in the cortex and hippocampus of APP/PS1 transgenic mice co-localised to the glial cells. In addition, the Aβ1-42-induced signal transduction is dependant on FPRL1, but also on FPR1. For the first time, we have shown a functional interaction between FPRL1/FPR1 and RAGE in RAGE ligands S100B- or AGE-mediated signalling by ERK1/2 phosphorylation and cAMP level measurement. In addition a possible physical interaction between FPRL1 as well as FPR1 and RAGE was shown with co-immunoprecipitation and fluorescence microscopy. Conclusions The results suggest that both formyl peptide receptors play an essential role in Aβ1-42-induced signal transduction in glial cells. The interaction with RAGE could explain the broad ligand spectrum of formyl peptide receptors and their important role for inflammation and the host defence against infections. PMID:23164356

  13. Graphene oxide strongly inhibits amyloid beta fibrillation

    NARCIS (Netherlands)

    Mahmoudi, Morteza; Akhavan, Omid; Ghavami, Mahdi; Rezaee, Farhad; Ghiasi, Seyyed Mohammad Amin

    2012-01-01

    Since amyloid beta fibrillation (AbF) plays an important role in the development of neurodegenerative diseases, we investigated the effect of graphene oxide (GO) and their protein-coated surfaces on the kinetics of Ab fibrillation in the aqueous solution. We showed that GO and their protein-covered

  14. Rescue of amyloid-Beta-induced inhibition of nicotinic acetylcholine receptors by a peptide homologous to the nicotine binding domain of the alpha 7 subtype.

    Directory of Open Access Journals (Sweden)

    Arthur A Nery

    Full Text Available Alzheimer's disease (AD is characterized by brain accumulation of the neurotoxic amyloid-β peptide (Aβ and by loss of cholinergic neurons and nicotinic acetylcholine receptors (nAChRs. Recent evidence indicates that memory loss and cognitive decline in AD correlate better with the amount of soluble Aβ than with the extent of amyloid plaque deposits in affected brains. Inhibition of nAChRs by soluble Aβ40 is suggested to contribute to early cholinergic dysfunction in AD. Using phage display screening, we have previously identified a heptapeptide, termed IQ, homologous to most nAChR subtypes, binding with nanomolar affinity to soluble Aβ40 and blocking Aβ-induced inhibition of carbamylcholine-induced currents in PC12 cells expressing α7 nAChRs. Using alanine scanning mutagenesis and whole-cell current recording, we have now defined the amino acids in IQ essential for reversal of Aβ40 inhibition of carbamylcholine-induced responses in PC12 cells, mediated by α7 subtypes and other endogenously expressed nAChRs. We further investigated the effects of soluble Aβ, IQ and analogues of IQ on α3β4 nAChRs recombinantly expressed in HEK293 cells. Results show that nanomolar concentrations of soluble Aβ40 potently inhibit the function of α3β4 nAChRs, and that subsequent addition of IQ or its analogues does not reverse this effect. However, co-application of IQ makes the inhibition of α3β4 nAChRs by Aβ40 reversible. These findings indicate that Aβ40 inhibits different subtypes of nAChRs by interacting with specific receptor domains homologous to the IQ peptide, suggesting that IQ may be a lead for novel drugs to block the inhibition of cholinergic function in AD.

  15. The ability of apolipoprotein E fragments to promote intraneuronal accumulation of amyloid beta peptide 42 is both isoform and size-specific

    Science.gov (United States)

    Dafnis, Ioannis; Argyri, Letta; Sagnou, Marina; Tzinia, Athina; Tsilibary, Effie C.; Stratikos, Efstratios; Chroni, Angeliki

    2016-01-01

    The apolipoprotein (apo) E4 isoform is the strongest risk factor for late-onset Alzheimer’s disease (AD). ApoE4 is more susceptible to proteolysis than apoE2 and apoE3 isoforms and carboxyl-terminal truncated apoE4 forms have been found in AD patients’ brain. We have previously shown that a specific apoE4 fragment, apoE4-165, promotes amyloid-peptide beta 42 (Aβ42) accumulation in human neuroblastoma SK-N-SH cells and increased intracellular reactive oxygen species formation, two events considered to occur early in AD pathogenesis. Here, we show that these effects are allele-dependent and absolutely require the apoE4 background. Furthermore, the exact length of the fragment is critical since longer or shorter length carboxyl-terminal truncated apoE4 forms do not elicit the same effects. Structural and thermodynamic analyses showed that apoE4-165 has a compact structure, in contrast to other carboxyl-terminal truncated apoE4 forms that are instead destabilized. Compared however to other allelic backgrounds, apoE4-165 is structurally distinct and less thermodynamically stable suggesting that the combination of a well-folded structure with structural plasticity is a unique characteristic of this fragment. Overall, our findings suggest that the ability of apoE fragments to promote Aβ42 intraneuronal accumulation is specific for both the apoE4 isoform and the particular structural and thermodynamic properties of the fragment. PMID:27476701

  16. Molecular Dynamics Simulation of Amyloid Beta Dimer Formation

    CERN Document Server

    Urbanc, B; Ding, F; Sammond, D; Khare, S; Buldyrev, S V; Stanley, H E; Dokholyan, N V

    2004-01-01

    Recent experiments with amyloid-beta (Abeta) peptide suggest that formation of toxic oligomers may be an important contribution to the onset of Alzheimer's disease. The toxicity of Abeta oligomers depends on their structure, which is governed by assembly dynamics. Due to limitations of current experimental techniques, a detailed knowledge of oligomer structure at the atomic level is missing. We introduce a molecular dynamics approach to study Abeta dimer formation: (1) we use discrete molecular dynamics simulations of a coarse-grained model to identify a variety of dimer conformations, and (2) we employ all-atom molecular mechanics simulations to estimate the thermodynamic stability of all dimer conformations. Our simulations of a coarse-grained Abeta peptide model predicts ten different planar beta-strand dimer conformations. We then estimate the free energies of all dimer conformations in all-atom molecular mechanics simulations with explicit water. We compare the free energies of Abeta(1-42) and Abeta(1-40...

  17. Drugs of Alzheimer's disease targeting amyloid beta-peptide in phase Ⅲ clinical trials%进入临床试验Ⅲ期以β淀粉样蛋白为靶标的抗阿尔采末病药物

    Institute of Scientific and Technical Information of China (English)

    史长城; 于锋

    2012-01-01

    Alzheimer's disease (AD) is a chronic and progressive neurodegenerative disorder. To date, there is still no effective drug for it. With more understanding about the etiology and pathogenesis of AD, amyloid beta - peptide (Aβ) is considered to be an important factor. Therefore, results of these clinical trials with many drugs targeting Aβ were disappointed. Clinical trials of two drugs, tramiprosate and semagacestat have been terminated. The paper reviewed these drugs targeting Aβ in phase Ⅲ clinical trials, in order to provide reference services to researchers.%阿尔采末病(AD)是一种常见的神经退行性疾病,目前尚无有效的治疗药物.随着AD发病机制研究的深入,β淀粉样蛋白(amyloid beta-peptide,Aβ)被认为是AD发病重要因素之一.因此,很多药物设计选择以Aβ为靶标,但这类药物的临床研究却受到不同程度的挫折,tram1prosate和semagacestat的临床试验已经提前终止.本文对目前进入临床试验Ⅲ期以Aβ为靶标的药物进行综述,以期为研究者提供参考.

  18. Laser-induced propagation and destruction of amyloid beta fibrils.

    Science.gov (United States)

    Yagi, Hisashi; Ozawa, Daisaku; Sakurai, Kazumasa; Kawakami, Toru; Kuyama, Hiroki; Nishimura, Osamu; Shimanouchi, Toshinori; Kuboi, Ryoichi; Naiki, Hironobu; Goto, Yuji

    2010-06-18

    The amyloid deposition of amyloid beta (Abeta) peptides is a critical pathological event in Alzheimer disease (AD). Preventing the formation of amyloid deposits and removing preformed fibrils in tissues are important therapeutic strategies against AD. Previously, we reported the destruction of amyloid fibrils of beta(2)-microglobulin K3 fragments by laser irradiation coupled with the binding of amyloid-specific thioflavin T. Here, we studied the effects of a laser beam on Abeta fibrils. As was the case for K3 fibrils, extensive irradiation destroyed the preformed Abeta fibrils. However, irradiation during spontaneous fibril formation resulted in only the partial destruction of growing fibrils and a subsequent explosive propagation of fibrils. The explosive propagation was caused by an increase in the number of active ends due to breakage. The results not only reveal a case of fragmentation-induced propagation of fibrils but also provide insights into therapeutic strategies for AD.

  19. Diagnostic Accuracy of Cerebrospinal Fluid Amyloid-beta Isoforms for Early and Differential Dementia Diagnosis

    NARCIS (Netherlands)

    Struyfs, Hanne; Van Broeck, Bianca; Timmers, Maarten; Fransen, Erik; Sleegers, Kristel; Van Broeckhoven, Christine; De Deyn, Peter P.; Streffer, Johannes R.; Mercken, Marc; Engelborghs, Sebastiaan

    2015-01-01

    Background: Overlapping cerebrospinal fluid biomarkers (CSF) levels between Alzheimer's disease (AD) and non-AD patients decrease differential diagnostic accuracy of the AD core CSF biomarkers. Amyloid-beta (A beta) isoforms might improve the AD versus non-AD differential diagnosis. Objective: To de

  20. Site-specific blockade of RAGE-Vd prevents amyloid-beta oligomer neurotoxicity

    OpenAIRE

    Sturchler, E; Galichet, A; Weibel, M; Leclerc, E; Heizmann, C W

    2008-01-01

    In the genesis of Alzheimer's disease (AD), converging lines of evidence suggest that amyloid-beta peptide (Abeta) triggers a pathogenic cascade leading to neuronal loss. It was long assumed that Abeta had to be assembled into extracellular amyloid fibrils or aggregates to exert its cytotoxic effects. Over the past decade, characterization of soluble oligomeric Abeta species in the brains of AD patients and in transgenic models has raised the possibility that different conformations of Abeta ...

  1. Using optical profilometry to characterize cell membrane roughness influenced by amyloid-beta 42 aggregates and electric fields

    Science.gov (United States)

    Pan, Huei-Jyuan; Wang, Ruei-Lin; Xiao, Jian-Long; Chang, Yu-Jen; Cheng, Ji-Yen; Chen, Yun-Ru; Lee, Chau-Hwang

    2014-01-01

    The membrane roughness of Neuro-2a neroblastoma cells is measured by using noninterferometric wide-field optical profilometry. The cells are treated with the fibril and oligomer conformers of amyloid-beta (Aβ) 42, which is a peptide of 42 amino acids related to the development of Alzheimer's disease. We find that both the Aβ42 fibrils and Aβ42 oligomers reduced the cell membrane roughness, but the effect of Aβ42 oligomers was faster and stronger than that of the fibrils. We also apply direct-current electric field (dcEF) stimulations on the cells. A dcEF of 300 mV/mm can increase the membrane roughness under the treatment of Aβ42. These results suggest that Aβ42 can decrease the membrane compliance of live neuroblastoma cells, and dcEFs may counteract this effect.

  2. The cerebrospinal fluid amyloid beta42/40 ratio in the differentiation of Alzheimer's disease from non-Alzheimer's dementia

    NARCIS (Netherlands)

    Spies, P E; Slats, D; Sjögren, J M C; Kremer, B P H; Verhey, F R J; Rikkert, M G M Olde; Verbeek, M M

    2010-01-01

    BACKGROUND: Amyloid beta(40) (Abeta(40)) is the most abundant Abeta peptide in the brain. The cerebrospinal fluid (CSF) level of Abeta(40) might therefore be considered to most closely reflect the total Abeta load in the brain. Both in Alzheimer's disease (AD) and in normal aging the Abeta load in t

  3. The cerebrospinal fluid amyloid beta42/40 ratio in the differentiation of Alzheimer's disease from non-Alzheimer's dementia

    NARCIS (Netherlands)

    Spies, P E; Slats, D; Sjögren, J M C; Kremer, B P H; Verhey, F R J; Rikkert, M G M Olde; Verbeek, M M

    BACKGROUND: Amyloid beta(40) (Abeta(40)) is the most abundant Abeta peptide in the brain. The cerebrospinal fluid (CSF) level of Abeta(40) might therefore be considered to most closely reflect the total Abeta load in the brain. Both in Alzheimer's disease (AD) and in normal aging the Abeta load in

  4. Effect of four medicinal plants on amyloid-beta induced neurotoxicity in SH-SY5Y Cells

    CSIR Research Space (South Africa)

    Adewusi, EA

    2013-01-01

    Full Text Available Amyloid-beta peptide (Aß) is implicated in the pathogenesis of Alzheimer’s disease (AD), a neurodegenerative disorder. This study was designed to determine the effect of four medicinal plants used to treat neurodegenerative diseases on Aß...

  5. Sugar microarray via click chemistry: molecular recognition with lectins and amyloid {beta} (1-42)

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, Erino; Fukuda, Tomohiro; Miura, Yoshiko [School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292 (Japan); Yamauchi, Takahiro, E-mail: miuray@jaist.ac.j [Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan)

    2009-06-15

    Sugar microarrays were fabricated on various substrates via click chemistry. Acetylene-terminated substrates were prepared by forming self-assembled monolayers (SAMs) on a gold substrate with alkyl-disulfide and on silicon, quartz and glass substrates with a silane-coupling reagent. The gold substrates were subjected to surface plasmon resonance measurements, and the quartz and glass substrates were subjected to spectroscopy measurements and optical microscopy observation. The saccharide-immobilized substrate on the gold substrate showed specific interaction with the corresponding lectin, and the saccharides showed inert surface properties to other proteins with a high signal-to-noise ratio. We also focused on the saccharide-protein interaction on protein amyloidosis of Alzheimer amyloid {beta}. Amyloid {beta} peptide showed conformation transition on the saccharide-immobilization substrate into a {beta}-sheet, and fibril formation and amyloid aggregates were found on the specific saccharides.

  6. Amyloid beta and Alzheimer’s Disease: The role of neprilysin-2 in amyloid-beta clearance

    Directory of Open Access Journals (Sweden)

    Robert eMarr

    2014-08-01

    Full Text Available Accumulation of the amyloid-beta (Ab peptide is a central factor in Alzheimer’s disease (AD pathogenesis as supported by continuing evidence. This review concisely summarizes this evidence supporting a critical role for Ab in AD before discussing the clearance of this peptide. Mechanisms of clearance of Ab are critical for preventing pathological elevations in Ab concentration. Direct degradation of Ab by endopeptidases has emerged as one important pathway for clearance. Of particular interest are endopeptidases that are sensitive to the neprilysin (NEP inhibitors thiorphan and phosphoramidon (i.e. are NEP-like as these inhibitors induce a dramatic increase in Ab levels in rodents. This review will focus on Neprilysin-2 (NEP2, a NEP-like endopeptidase which cooperates with NEP to control Ab levels in the brain. The evidence for the involvement of NEP2 in AD is discussed as well as the therapeutic relevance with regards to gene therapy and the development of molecular markers for the disease.

  7. Amyloid beta: structure, biology and structure-based therapeutic development.

    Science.gov (United States)

    Chen, Guo-Fang; Xu, Ting-Hai; Yan, Yan; Zhou, Yu-Ren; Jiang, Yi; Melcher, Karsten; Xu, H Eric

    2017-09-01

    Amyloid beta peptide (Aβ) is produced through the proteolytic processing of a transmembrane protein, amyloid precursor protein (APP), by β- and γ-secretases. Aβ accumulation in the brain is proposed to be an early toxic event in the pathogenesis of Alzheimer's disease, which is the most common form of dementia associated with plaques and tangles in the brain. Currently, it is unclear what the physiological and pathological forms of Aβ are and by what mechanism Aβ causes dementia. Moreover, there are no efficient drugs to stop or reverse the progression of Alzheimer's disease. In this paper, we review the structures, biological functions, and neurotoxicity role of Aβ. We also discuss the potential receptors that interact with Aβ and mediate Aβ intake, clearance, and metabolism. Additionally, we summarize the therapeutic developments and recent advances of different strategies for treating Alzheimer's disease. Finally, we will report on the progress in searching for novel, potentially effective agents as well as selected promising strategies for the treatment of Alzheimer's disease. These prospects include agents acting on Aβ, its receptors and tau protein, such as small molecules, vaccines and antibodies against Aβ; inhibitors or modulators of β- and γ-secretase; Aβ-degrading proteases; tau protein inhibitors and vaccines; amyloid dyes and microRNAs.

  8. New Insights in the Amyloid-Beta Interaction with Mitochondria

    Directory of Open Access Journals (Sweden)

    Carlos Spuch

    2012-01-01

    Full Text Available Biochemical and morphological alterations of mitochondria may play an important role in the pathogenesis of Alzheimer’s disease (AD. Particularly, mitochondrial dysfunction is a hallmark of amyloid-beta-induced neuronal toxicity in Alzheimer’s disease. The recent emphasis on the intracellular biology of amyloid-beta and its precursor protein (APP has led researchers to consider the possibility that mitochondria-associated and mitochondrial amyloid-beta may directly cause neurotoxicity. Both proteins are known to localize to mitochondrial membranes, block the transport of nuclear-encoded mitochondrial proteins to mitochondria, interact with mitochondrial proteins, disrupt the electron transport chain, increase reactive oxygen species production, cause mitochondrial damage, and prevent neurons from functioning normally. In this paper, we will outline current knowledge of the intracellular localization of amyloid-beta. Moreover, we summarize evidence from AD postmortem brain as well as animal AD models showing that amyloid-beta triggers mitochondrial dysfunction through a number of pathways such as impairment of oxidative phosphorylation, elevation of reactive oxygen species production, alteration of mitochondrial dynamics, and interaction with mitochondrial proteins. Thus, this paper supports the Alzheimer cascade mitochondrial hypothesis such as the most important early events in this disease, and probably one of the future strategies on the therapy of this neurodegenerative disease.

  9. 康复训练对血管性痴呆大鼠海马β淀粉样多肽及胰岛素降解酶的影响%The effects of rehabilitation training on amyloid-beta peptide and insulin-degrading enzyme levels in the hippocampus of rats with vascular dementia

    Institute of Scientific and Technical Information of China (English)

    叶青; 王红卫; 游咏; 黄海芬; 廖慧颖; 潘思; 黄雁

    2012-01-01

    Objective To investigate the effects of rehabilitation training on hippocampal amyloid-beta peptide (Aβ) and insulin-degrading enzyme (IDE) levels in vascular dementia (VD).Methods Thirty female Sprague-Dawley rats were randomly assigned to a rehabilitation group (n =10),a model group (n =10) or a sham-operation group (n =10).An experimental VD model was established in the rats of the first 2 groups by bilateral common carotid artery permanent ligation.The rats in the rehabilitation group then received 1 h of rehabilitation training daily.Learning and memory were assessed at 4 weeks aftet the operation.Immunohistochemical staining was used to detect Aβ and IDE expression in the hippocampus dentate gyrus (DG) area.Results The rats in the rehabilitation group showed significantly better learning ability compared with the model group.The expression of Aβ in the rehabilitation group was significantly less than in the model group.The expression of IDE in the rehabilitation group was significantly greater Conclusion Rehabilitation can accelerate the recovery of learning and memory in VD,at least in rats The mechanism is possibly related to decreased accumulation of Aβ in the hippocampus due to up-regulation of the expression of IDE.%目的 观察康复训练对血管性痴呆(VD)大鼠海马β-淀粉样多肽(Aβ)及胰岛素降解酶(IDE)的影响.方法 共选取30只SD大鼠,采用随机数字表法将其分为康复组、模型组及假手术组.选用结扎双侧颈总动脉方法制成VD大鼠模型,康复组每天进行1h康复训练.于术后第4周进行行为学测试,以评估各组大鼠学习记忆能力;待行为学测试结束后采用免疫组化法检测各组大鼠海马(DG)区Aβ及IDE表达.结果 术后第4周时发现康复组大鼠学习记忆功能明显优于模型组(P<0.05);且康复组大鼠海马区Aβ表达较模型组显著降低(P<0.05),IDE表达则较模型组明显增高(P<0.05).结论 康复训练能改善VD大鼠学习

  10. AMYLOID BETA OLIGOMERS IMPAIR FEAR CONDITIONED MEMORY IN A CALCINEURIN-DEPENDENT FASHION IN MICE

    Science.gov (United States)

    Dineley, Kelly T.; Kayed, Rakez; Neugebauer, Volker; Fu, Yu; Zhang, Wenru; Reese, Lindsay C.; Taglialatela, Giulio

    2010-01-01

    Soluble oligomeric aggregates of the amyloid beta (Aβ) peptide are believed to be the most neurotoxic Aβ species affecting the brain in Alzheimer Disease (AD), a terminal neurodegenerative disorder involving severe cognitive decline underlined by initial synaptic dysfunction and later extensive neuronal death in the CNS. Recent evidence indicates that Aβ oligomers are recruited at the synapse, oppose expression of long term potentiation (LTP), perturb intracellular calcium balance, disrupt dendritic spines and induce memory deficits. However, the molecular mechanisms behind these outcomes are only partially understood; achieving such insight is necessary for the comprehension of Aβ-mediated neuronal dysfunction. We have investigated the role of the phosphatase calcineurin (CaN) in the pathological processes of AD. CaN is especially abundant in the CNS where it is involved in synaptic activity, LTP and memory function. Here, we describe how oligomeric Aβ treatment causes memory deficits and depresses LTP expression in a CaN-dependent fashion. Mice given a single intracerebroventricular injection of Aβ oligomers exhibited increased CaN activity and decreased pCREB, a transcription factor involved in proper synaptic function, accompanied by decreased memory in a fear conditioning task. These effects were reversed by treatment with the CaN inhibitor FK506. We further found that expression of hippocampal LTP in acutely cultured rodent brain slices was opposed by Aβ oligomers and that this effect was also reversed by FK506. Collectively, these results indicate that CaN activation may play a central role in mediating synaptic and memory disrupting effect induced by acute oligomeric Aβ treatment in mice. PMID:20544830

  11. Amyloid-beta oligomers impair fear conditioned memory in a calcineurin-dependent fashion in mice.

    Science.gov (United States)

    Dineley, Kelly T; Kayed, Rakez; Neugebauer, Volker; Fu, Yu; Zhang, Wenru; Reese, Lindsay C; Taglialatela, Giulio

    2010-10-01

    Soluble oligomeric aggregates of the amyloid-beta (A beta) peptide are believed to be the most neurotoxic A beta species affecting the brain in Alzheimer disease (AD), a terminal neurodegenerative disorder involving severe cognitive decline underscored by initial synaptic dysfunction and later extensive neuronal death in the CNS. Recent evidence indicates that A beta oligomers are recruited at the synapse, oppose expression of long-term potentiation (LTP), perturb intracellular calcium balance, disrupt dendritic spines, and induce memory deficits. However, the molecular mechanisms behind these outcomes are only partially understood; achieving such insight is necessary for the comprehension of A beta-mediated neuronal dysfunction. We have investigated the role of the phosphatase calcineurin (CaN) in these pathological processes of AD. CaN is especially abundant in the CNS, where it is involved in synaptic activity, LTP, and memory function. Here, we describe how oligomeric A beta treatment causes memory deficits and depresses LTP expression in a CaN-dependent fashion. Mice given a single intracerebroventricular injection of A beta oligomers exhibited increased CaN activity and decreased pCREB, a transcription factor involved in proper synaptic function, accompanied by decreased memory in a fear conditioning task. These effects were reversed by treatment with the CaN inhibitor FK506. We further found that expression of hippocampal LTP in acutely cultured rodent brain slices was opposed by A beta oligomers and that this effect was also reversed by FK506. Collectively, these results indicate that CaN activation may play a central role in mediating synaptic and memory disruption induced by acute oligomeric A beta treatment in mice. (c) 2010 Wiley-Liss, Inc.

  12. Methods for analysis of amyloid-beta aggregates.

    NARCIS (Netherlands)

    Bruggink, K.A.; Muller, M.; Kuiperij, H.B.; Verbeek, M.M.

    2012-01-01

    Amyloid-beta protein (Abeta) accumulation is one of the major hallmarks of Alzheimer's disease and plays a crucial role in its pathogenesis. Abeta aggregates into fibrils, but rather than these end-products of the aggregation process, intermediate species, referred to as oligomers, have been

  13. The role of mutated amyloid beta 1-42 stimulating dendritic cells in a PDAPP transgenic mouse

    Directory of Open Access Journals (Sweden)

    LI Jia-lin

    2012-06-01

    Full Text Available Background Amyloid plaque is one of the pathological hallmarks of Alzheimer's disease (AD. Anti-beta-amyloid (Aβ immunotherapy is effective in removing brain Aβ, but has shown to be associated with detrimental effects. To avoid severe adverse effects such as meningoencephalitis induced by amyloid beta vaccine with adjuvant, and take advantage of amyloid beta antibody's therapeutic effect on Alzheimer's disease sufficiently, our group has developed a new Alzheimer vaccine with mutated amyloid beta 1-42 peptide stimulating dendritic cells (DC. Our previous work has confirmed that DC vaccine can induce adequate anti-amyloid beta antibody in PDAPP Tg mice safely and efficiently. The DC vaccine can improve impaired learning and memory in the Alzheimer's animal model, and did not cause microvasculitis, microhemorrhage or meningoencephalitis in the animal model. However, the exact mechanism of immunotherapy which reduces Aβ deposition remains unknown. In this report, we studied the mechanism of the vaccine, thinking that this may have implications for better understanding of the pathogenesis of Alzheimer's disease. Methods A new Alzheimer vaccine with mutated amyloid beta 1-42 peptide stimulating DC which were obtained from C57/B6 mouse bone marrow was developed. Amyloid beta with Freund's adjuvant was inoculated at the same time to act as positive control. After the treatment was done, the samples of brains were collected, fixed, cut. Immunohistochemical staining was performed to observe the expression of the nuclear hormone liver X receptor (LXR, membrane-bound protein tyrosine phosphatase (CD45, the ATP-binding cassette family of active transporters (ABCA1, receptor for advanced glycation end products (RAGE, β-site APP-cleaving enzyme (BACE and Aβ in mouse brain tissue. Semi-quantitative analysis was used to defect CA1, CA2, CA3, DG, Rad in hippocampus region and positive neuron in cortex region. Results Aβ was significantly reduced in the

  14. Screening for a human single chain Fv antibody against epitope on amyloid-beta 1-40 from a human phage display library

    Institute of Scientific and Technical Information of China (English)

    ZHAO Zhen-fu; GAO Guo-quan; LIU Shu; ZOU Jun-tao; XIE Yao; YUAN Qun-fang; WANG Hua-qiao; YAO Zhi-bin

    2007-01-01

    @@ Amyloid-beta peptides (Aβ) are believed to be responsible for the mental decline in patients with Alzheimer's disease (AD). In 1999, Schenk et al1 reported that immunization with Aβ attenuated AD-like pathology in the PDAPP mouse, and developed a new vaccination approach to AD.

  15. CCR5 deficiency accelerates lipopolysaccharide-induced astrogliosis, amyloid-beta deposit and impaired memory function.

    Science.gov (United States)

    Hwang, Chul Ju; Park, Mi Hee; Hwang, Jae Yeon; Kim, Ju Hwan; Yun, Na Young; Oh, Sang Yeon; Song, Ju Kyung; Seo, Hyun Ok; Kim, Yun-Bae; Hwang, Dae Yeon; Oh, Ki-Wan; Han, Sang-Bae; Hong, Jin Tae

    2016-03-15

    Chemokine receptors are implicated in inflammation and immune responses. Neuro-inflammation is associated with activation of astrocyte and amyloid-beta (Aβ) generations that lead to pathogenesis of Alzheimer disease (AD). Previous our study showed that deficiency of CC chemokine receptor 5 (CCR5) results in activation of astrocytes and Aβ deposit, and thus memory dysfunction through increase of CC chemokine receptor 2 (CCR2) expression. CCR5 knockout mice were used as an animal model with memory dysfunction. For the purpose LPS was injected i.p. daily (0.25 mg/kg/day). The memory dysfunctions were much higher in LPS-injected CCR5 knockout mice compared to CCR5 wild type mice as well as non-injected CCR5 knockout mice. Associated with severe memory dysfuction in LPS injected CCR5 knockout mice, LPS injection significant increase expression of inflammatory proteins, astrocyte activation, expressions of β-secretase as well as Aβ deposition in the brain of CCR5 knockout mice as compared with that of CCR5 wild type mice. In CCR5 knockout mice, CCR2 expressions were high and co-localized with GFAP which was significantly elevated by LPS. Expression of monocyte chemoattractant protein-1 (MCP-1) which ligands of CCR2 also increased by LPS injection, and increment of MCP-1 expression is much higher in CCR5 knockout mice. BV-2 cells treated with CCR5 antagonist, D-ala-peptide T-amide (DAPTA) and cultured astrocytes isolated from CCR5 knockout mice treated with LPS (1 μg/ml) and CCR2 antagonist, decreased the NF-ĸB activation and Aβ level. These findings suggest that the deficiency of CCR5 enhances response of LPS, which accelerates to neuro-inflammation and memory impairment.

  16. A humanin derivative reduces amyloid beta accumulation and ameliorates memory deficit in triple transgenic mice.

    Directory of Open Access Journals (Sweden)

    Takako Niikura

    Full Text Available Humanin (HN, a 24-residue peptide, was identified as a novel neuroprotective factor and shows anti-cell death activity against a wide spectrum of Alzheimer's disease (AD-related cytotoxicities, including exposure to amyloid beta (Abeta, in vitro. We previously demonstrated that the injection of S14G-HN, a highly potent HN derivative, into brain ameliorated memory loss in an Abeta-injection mouse model. To fully understand HN's functions under AD-associated pathological conditions, we examined the effect of S14G-HN on triple transgenic mice harboring APP(swe, tau(P310L, and PS-1(M146V that show the age-dependent development of multiple pathologies relating to AD. After 3 months of intranasal treatment, behavioral analyses showed that S14G-HN ameliorated cognitive impairment in male mice. Moreover, ELISA and immunohistochemical analyses showed that Abeta levels in brains were markedly lower in S14G-HN-treated male and female mice than in vehicle control mice. We also found the expression level of neprilysin, an Abeta degrading enzyme, in the outer molecular layer of hippocampal formation was increased in S14G-HN-treated mouse brains. NEP activity was also elevated by S14G-HN treatment in vitro. These findings suggest that decreased Abeta level in these mice is at least partly attributed to S14G-HN-induced increase of neprilysin level. Although HN was identified as an anti-neuronal death factor, these results indicate that HN may also have a therapeutic effect on amyloid accumulation in AD.

  17. Aminoguanidine treatment ameliorates inflammatory responses and memory impairment induced by amyloid-beta 25-35 injection in rats.

    Science.gov (United States)

    Díaz, Alfonso; Rojas, Karla; Espinosa, Blanca; Chávez, Raúl; Zenteno, Edgar; Limón, Daniel; Guevara, Jorge

    2014-06-01

    Alzheimer disease (AD) is a neurodegenerative disorder caused by accumulation of the amyloid-beta peptide (Aβ) in neuritic plaques. Its neurotoxic mechanisms are associated with inflammatory responses and nitrosative stress generation that promote expression of inducible nitric oxide synthase (iNOS) and increased nitric oxide causing neuronal death and memory impairment. Studies suggest that treatment with anti-inflammatory and anti-oxidant agents decreases the risk of developing AD. Aminoguanidine (AG) is an iNOS inhibitor with anti-inflammatory and anti-oxidant effects. In this study, we evaluated the effects of systemic administration of AG (100 mg/kg/day for 4 days) on spatial memory and inflammatory responses induced by an injection of Aβ(25-35) [100 μM] into the temporal cortex (TCx) of rats. A significant improvement of spatial memory was evident in the Aβ(25-35)-treated group at day 30 post-injection subjected to AG treatment; this effect was correlated with decreases in reactive gliosis, IL-1β, TNF-α, and nitrite levels, as well as a reduction in neurodegeneration in the TCx and hippocampus (Hp). These results suggest that AG treatment inhibited glia activation and cytokine release, which may help to counteract neurodegenerative events induced by the toxicity of Aβ.

  18. Relationships of Alzheimer's Disease and Compounds of Amyloid beta-Peptides Bonded with Coppers%Aβ-Cu(Ⅱ)复合物与阿尔茨海默病的关系

    Institute of Scientific and Technical Information of China (English)

    戴雪玲; 陈翠丽; 姜招峰

    2005-01-01

    β-淀粉样肽(amyloid peptide β,Aβ)在脑内沉积并与Cu(Ⅱ)螯合形成Aβ-Cu(Ⅱ)复合物,该复合物诱导活性氧形成并造成神经细胞损伤,这可能是阿尔茨海默病(AD)发生与发展的主要机制之一;以此为基础,探讨使用抗氧化剂及金属螯合剂降低Aβ神经毒性,可能是探索预防AD发生和减缓AD发展的一个新途径.

  19. β-淀粉样蛋白对小胶质细胞合成一氧化氮的影响%Effect of amyloid beta-peptide on activated microglial cell excreting nitric oxide

    Institute of Scientific and Technical Information of China (English)

    韩笑峰; 吕丽; 葛汝丽; 唐荣华

    2008-01-01

    目的 探讨β-淀粉样蛋白(arnyloid beta-peptide,AB)诱导小胶质细胞活化后K轻链核因子(nuclear factor-kappa B,NF-kB)的表达及一氧化氮(NO)水平的变化.方法 Ap干预纯化培养的小胶质细胞,观察其形态学变化,采用镉还原法测定NO水平,免疫细胞化学方法研究NF-KB的表达.结果 500 nmol/L及1000 mnol/L AB干预组细胞形态呈"阿米巴样",细胞核内NF-kB的表达增加(P<0.05),培养基中NO浓度升高(P<0.05).结论 AB激活小胶质细胞NF-kB途径大量合成NO,可能参与阿尔茨海默病(Alzheimer's disease,AD)的致病过程.

  20. PPARgamma agonist curcumin reduces the amyloid-beta-stimulated inflammatory responses in primary astrocytes.

    Science.gov (United States)

    Wang, Hong-Mei; Zhao, Yan-Xin; Zhang, Shi; Liu, Gui-Dong; Kang, Wen-Yan; Tang, Hui-Dong; Ding, Jian-Qing; Chen, Sheng-Di

    2010-01-01

    Alzheimer's disease (AD) is the most common age-related neurodegenerative disorder. Accumulating data indicate that astrocytes play an important role in the neuroinflammation related to the pathogenesis of AD. It has been shown that microglia and astrocytes are activated in AD brain and amyloid-beta (Abeta) can increase the expression of cyclooxygenase 2 (COX-2), interleukin-1, and interleukin-6. Suppressing the inflammatory response caused by activated astrocytes may help to inhibit the development of AD. Curcumin is a major constituent of the yellow curry spice turmeric and proved to be a potential anti-inflammatory drug in arthritis and colitis. There is a low age-adjusted prevalence of AD in India, a country where turmeric powder is commonly used as a culinary compound. Curcumin has been shown to suppress activated astroglia in amyloid-beta protein precursor transgenic mice. The real mechanism by which curcumin inhibits activated astroglia is poorly understood. Here we report that the expression of COX-2 and glial fibrillary acidic protein were enhanced and that of peroxisome proliferator-activated receptor gamma (PPARgamma) was decreased in Abeta(25-35)-treated astrocytes. In line with these results, nuclear factor-kappaB translocation was increased in the presence of Abeta. All these can be reversed by the pretreatment of curcumin. Furthermore, GW9662, a PPARgamma antagonist, can abolish the anti-inflammatory effect of curcumin. These results show that curcumin might act as a PPARgamma agonist to inhibit the inflammation in Abeta-treated astrocytes.

  1. Alcadein cleavages by amyloid beta-precursor protein (APP) alpha- and gamma-secretases generate small peptides, p3-Alcs, indicating Alzheimer disease-related gamma-secretase dysfunction.

    Science.gov (United States)

    Hata, Saori; Fujishige, Sayaka; Araki, Yoichi; Kato, Naoko; Araseki, Masahiko; Nishimura, Masaki; Hartmann, Dieter; Saftig, Paul; Fahrenholz, Falk; Taniguchi, Miyako; Urakami, Katsuya; Akatsu, Hiroyasu; Martins, Ralph N; Yamamoto, Kazuo; Maeda, Masahiro; Yamamoto, Tohru; Nakaya, Tadashi; Gandy, Sam; Suzuki, Toshiharu

    2009-12-25

    Alcadeins (Alcs) constitute a family of neuronal type I membrane proteins, designated Alc(alpha), Alc(beta), and Alc(gamma). The Alcs express in neurons dominantly and largely colocalize with the Alzheimer amyloid precursor protein (APP) in the brain. Alcs and APP show an identical function as a cargo receptor of kinesin-1. Moreover, proteolytic processing of Alc proteins appears highly similar to that of APP. We found that APP alpha-secretases ADAM 10 and ADAM 17 primarily cleave Alc proteins and trigger the subsequent secondary intramembranous cleavage of Alc C-terminal fragments by a presenilin-dependent gamma-secretase complex, thereby generating "APP p3-like" and non-aggregative Alc peptides (p3-Alcs). We determined the complete amino acid sequence of p3-Alc(alpha), p3-Alc(beta), and p3-Alc(gamma), whose major species comprise 35, 37, and 31 amino acids, respectively, in human cerebrospinal fluid. We demonstrate here that variant p3-Alc C termini are modulated by FAD-linked presenilin 1 mutations increasing minor beta-amyloid species Abeta42, and these mutations alter the level of minor p3-Alc species. However, the magnitudes of C-terminal alteration of p3-Alc(alpha), p3-Alc(beta), and p3-Alc(gamma) were not equivalent, suggesting that one type of gamma-secretase dysfunction does not appear in the phenotype equivalently in the cleavage of type I membrane proteins. Because these C-terminal alterations are detectable in human cerebrospinal fluid, the use of a substrate panel, including Alcs and APP, may be effective to detect gamma-secretase dysfunction in the prepathogenic state of Alzheimer disease subjects.

  2. Determining the Effect of Aluminum Oxide Nanoparticles on the Aggregation of Amyloid-Beta in Transgenic Caenorhabditis elegans

    Science.gov (United States)

    Patel, Suhag; Matticks, John; Howell, Carina

    2014-03-01

    The cause of Alzheimer's disease has been linked partially to genetic factors but the predicted environmental components have yet to be determined. In Alzheimer's, accumulation of amyloid-beta protein in the brain forms plaques resulting in neurodegeneration and loss of mental functions. It has been postulated that aluminum influences the aggregation of amyloid-beta. To test this hypothesis, transgenic Caenorhabditis elegans, CL2120, was used as a model organism to observe neurodegeneration in nematodes exposed to aluminum oxide nanoparticles. Behavioral testing, fluorescent staining, and fluorescence microscopy were used to test the effects of aggregation of amyloid-beta in the nervous systems of effected nematodes exposed to aluminum oxide nanoparticles. Energy-dispersive x-ray spectroscopy was used to quantify the total concentration of aluminum oxide that the worms were exposed to during the experiment. Exposure of transgenic and wild type worms to a concentration of 4 mg mL-1 aluminum oxide showed a decrease in the sinusoidal motion, as well as an infirmity of transgenic worms when compared to control worms. These results support the hypothesis that aluminum may play a role in neurodegeneration in C. elegans, and may influence and increase the progression of Alzheimer's disease. This work was supported by National Science Foundation grants DUE-1058829, DMR-0923047 DUE-0806660 and Lock Haven FPDC grants.

  3. The conformations of the amyloid-beta (21-30) fragment can be described by three families in solution.

    Science.gov (United States)

    Chen, Wei; Mousseau, Normand; Derreumaux, Philippe

    2006-08-28

    Alzheimer's disease has been linked to the self-assembly of the amyloid-beta protein of 40 and 42 residues. Although monomers are in equilibrium with higher-order species ranging from dimers to heptamers, structural knowledge of the monomeric amyloid-beta (Abeta) peptides is an important issue. Recent experimental data have shown that the fragment (21-30) is protease-resistant within full-length Abeta peptides and displays two structural families in solution. Because the details of the Abeta(21-30) structures found using distinct force fields and protocols differ at various degrees from those of the NMR structures, we revisit the conformational space of this peptide using the activation-relaxation technique (ART nouveau) coupled with a coarse-grained force field (OPEP v.3.0). We find that although Abeta(21-30) does not have a secondary structure, it dominantly populates three structural families, with a loop spanning residues Val24-Lys28. The first two families, which differ in the nature of the electrostatic interactions, satisfy the five interproton rotating frame nuclear Overhauser effect spectroscopy (ROESY) distances and superpose well onto the NMR structures. The third family, which cannot be seen by ROESY NMR experiments, displays a more open structure. This numeric study complements the experimental results by providing a much more detailed description of the dominant structures. Moreover, it provides further evidence of the capability of ART OPEP in providing a reliable conformational picture of peptides in solution.

  4. Amyloid-beta Positron Emission Tomography Imaging Probes : A Critical Review

    NARCIS (Netherlands)

    Kepe, Vladimir; Moghbel, Mateen C.; Langstrom, Bengt; Zaidi, Habib; Vinters, Harry V.; Huang, Sung-Cheng; Satyamurthy, Nagichettiar; Doudet, Doris; Mishani, Eyal; Cohen, Robert M.; Hoilund-Carlsen, Poul F.; Alavi, Abass; Barrio, Jorge R.

    2013-01-01

    The rapidly rising prevalence and cost of Alzheimer's disease in recent decades has made the imaging of amyloid-beta deposits the focus of intense research. Several amyloid imaging probes with purported specificity for amyloid-beta plaques are currently at various stages of FDA approval. However, a

  5. The ratio of monomeric to aggregated forms of Abeta40 and Abeta42 is an important determinant of amyloid-beta aggregation, fibrillogenesis, and toxicity

    OpenAIRE

    Jan, Asad; Gokce, Ozgun; Luthi-Carter, Ruth; Lashuel, Hilal A.

    2008-01-01

    Aggregation and fibril formation of amyloid-beta (Abeta) peptides Abeta40 and Abeta42 are central events in the pathogenesis of Alzheimer disease. Previous studies have established the ratio of Abeta40 to Abeta42 as an important factor in determining the fibrillogenesis, toxicity, and pathological distribution of Abeta. To better understand the molecular basis underlying the pathologic consequences associated with alterations in the ratio of Abeta40 to Abeta42, we probed the concentration- an...

  6. Cu K-edge X-ray Absorption Spectroscopy Reveals Differential Copper Coordimation Within Amyloid-beta Oligomers Compared to Amyloid-beta Monomers

    Energy Technology Data Exchange (ETDEWEB)

    J Shearer; P Callan; T Tran; V Szalai

    2011-12-31

    The fatal neurodegenerative disorder Alzheimer's disease (AD) has been linked to the formation of soluble neurotoxic oligomers of amyloid-{beta} (A{beta}) peptides. These peptides have high affinities for copper cations. Despite their potential importance in AD neurodegeneration few studies have focused on probing the Cu{sup 2+/1+} coordination environment within A{beta} oligomers. Herein we present a Cu K-edge X-ray absorption spectroscopic study probing the copper-coordination environment within oligomers of A{beta}(42) (sequence: DAEFRHDSGYEVHHQKLVFFAEDVGSNKGAIIGLMVGGVVIA). We find that the Cu{sup 2+} cation is contained within a square planar mixed N/O ligand environment within A{beta}(42) oligomers, which is similar to the copper coordination environment of the monomeric forms of {l_brace}Cu{sup II}A{beta}(40){r_brace} and {l_brace}Cu{sup II}A{beta}(16){r_brace}. Reduction of the Cu{sup 2+} cation within the A{beta}(42) oligomers to Cu{sup 1+} yields a highly dioxygen sensitive copper-species that contains Cu{sup 1+} in a tetrahedral coordination geometry. This can be contrasted with monomers of {l_brace}Cu{sup I}A{beta}(40){r_brace} and {l_brace}Cu{sup I}A{beta}(16){r_brace}, which contain copper in a dioxygen inert linear bis-histidine ligand environment [Shearer and Szalai, J. Am. Chem. Soc., 2008, 130, 17826]. The biological implications of these findings are discussed.

  7. C-terminal cleavage of the amyloid-beta protein precursor at Asp664: a switch associated with Alzheimer's disease.

    Science.gov (United States)

    Banwait, Surita; Galvan, Veronica; Zhang, Junli; Gorostiza, Olivia F; Ataie, Marina; Huang, Wei; Crippen, Danielle; Koo, Edward H; Bredesen, Dale E

    2008-02-01

    In addition to the proteolytic cleavages that give rise to amyloid-beta (Abeta), the amyloid-beta protein precursor (AbetaPP) is cleaved at Asp664 intracytoplasmically. This cleavage releases a cytotoxic peptide, APP-C31, removes AbetaPP-interaction motifs required for signaling and internalization, and is required for the generation of AD-like deficits in a mouse model of the disease. Although we and others had previously shown that Asp664 cleavage of AbetaPP is increased in AD brains, the distribution of the Asp664-cleaved forms of AbetaPP in non-diseased and AD brains at different ages had not been determined. Confirming previous reports, we found that Asp664-cleaved forms of AbetaPP were increased in neuronal cytoplasm and nuclei in early-stage AD brains but were absent in age-matched, non-diseased control brains and in late-stage AD brains. Remarkably, however, Asp664-cleaved AbetaPP was prominent in neuronal somata and in processes in entorhinal cortex and hippocampus of non-diseased human brains at ages <45 years. Our observations suggest that Asp664 cleavage of AbetaPP may be part of the normal proteolytic processing of AbetaPP in young (<45 years) human brain and that this cleavage is down-regulated with normal aging, but is aberrantly increased and altered in location in early AD.

  8. NOVEL AMYLOID-BETA SPECIFIC scFv and VH ANTIBODY FRAGMENTS FROM HUMAN AND MOUSE PHAGE DISPLAY ANTIBODY LIBRARIES

    Science.gov (United States)

    Medecigo, M.; Manoutcharian, K.; Vasilevko, V.; Govezensky, T.; Munguia, M. E.; Becerril, B.; Luz-Madrigal, A.; Vaca, L.; Cribbs, D. H.; Gevorkian, G.

    2010-01-01

    Anti-amyloid immunotherapy has been proposed as an appropriate therapeutic approach for Alzheimer’s disease (AD). Significant efforts have been made towards the generation and assessment of antibody-based reagents capable of preventing and clearing amyloid aggregates as well as preventing their synaptotoxic effects. In this study, we selected a novel set of human anti-amyloid-beta peptide 1-42 (Aβ1-42) recombinant monoclonal antibodies in a single chain fragment variable (scFv) and a single domain (VH) formats. We demonstrated that these antibody fragments recognize in a specific manner amyloid beta deposits in APP/Tg mouse brains, inhibit toxicity of oligomeric Aβ1-42 in neuroblastoma cell cultures in a concentration-dependently manner and reduced amyloid deposits in APP/Tg2576 mice after intracranial administration. These antibody fragments recognize epitopes in the middle/C-terminus region of Aβ, which makes them strong therapeutic candidates due to the fact that most of the Aβ species found in the brains of AD patients display extensive N-terminus truncations/modifications. PMID:20451261

  9. Mitochondrion-derived reactive oxygen species lead to enhanced amyloid beta formation

    NARCIS (Netherlands)

    Leuner, K.; Schutt, T.; Kurz, C.; Eckert, S.H.; Schiller, C.; Occhipinti, A.; Mai, S.; Jendrach, M.; Eckert, G.P.; Kruse, S.E.; Palmiter, R.D.; Brandt, U.; Drose, S.; Wittig, I.; Willem, M.; Haass, C.; Reichert, A.S.; Muller, W.E.

    2012-01-01

    AIMS: Intracellular amyloid beta (Abeta) oligomers and extracellular Abeta plaques are key players in the progression of sporadic Alzheimer's disease (AD). Still, the molecular signals triggering Abeta production are largely unclear. We asked whether mitochondrion-derived reactive oxygen species

  10. The tissue plasminogen activator-plasminogen proteolytic cascade accelerates amyloid-beta (Abeta) degradation and inhibits Abeta-induced neurodegeneration.

    Science.gov (United States)

    Melchor, Jerry P; Pawlak, Robert; Strickland, Sidney

    2003-10-01

    Accumulation of the amyloid-beta (Abeta) peptide depends on both its generation and clearance. To better define clearance pathways, we have evaluated the role of the tissue plasminogen activator (tPA)-plasmin system in Abeta degradation in vivo. In two different mouse models of Alzheimer's disease, chronically elevated Abeta peptide in the brain correlates with the upregulation of plasminogen activator inhibitor-1 (PAI-1) and inhibition of the tPA-plasmin system. In addition, Abeta injected into the hippocampus of mice lacking either tPA or plasminogen persists, inducing PAI-1 expression and causing activation of microglial cells and neuronal damage. Conversely, Abeta injected into wild-type mice is rapidly cleared and does not cause neuronal degeneration. Thus, the tPA-plasmin proteolytic cascade aids in the clearance of Abeta, and reduced activity of this system may contribute to the progression of Alzheimer's disease.

  11. Amyloid-beta colocalizes with apolipoprotein B in absorptive cells of the small intestine.

    Science.gov (United States)

    Galloway, Susan; Takechi, Ryusuke; Pallebage-Gamarallage, Menuka M S; Dhaliwal, Satvinder S; Mamo, John C L

    2009-10-22

    Amyloid-beta is recognized as the major constituent of senile plaque found in subjects with Alzheimer's disease. However, there is increasing evidence that in a physiological context amyloid-beta may serve as regulating apolipoprotein, primarily of the triglyceride enriched lipoproteins. To consider this hypothesis further, this study utilized an in vivo immunological approach to explore in lipogenic tissue whether amyloid-beta colocalizes with nascent triglyceride-rich lipoproteins. In murine absorptive epithelial cells of the small intestine, amyloid-beta had remarkable colocalization with chylomicrons (Manders overlap coefficient = 0.73 +/- 0.03 (SEM)), the latter identified as immunoreactive apolipoprotein B. A diet enriched in saturated fats doubled the abundance of both amyloid-beta and apo B and increased the overlap coefficient of the two proteins (0.87 +/- 0.02). However, there was no evidence that abundance of the two proteins was interdependent within the enterocytes (Pearson's Coefficient Coefficient beta is secreted by enterocytes as an apolipoprotein component of chylomicrons. However, secretion of amyloid-beta appears to be independent of chylomicron biogenesis.

  12. Intraneuronal Amyloid Beta Accumulation Disrupts Hippocampal CRTC1-Dependent Gene Expression and Cognitive Function in a Rat Model of Alzheimer Disease.

    Science.gov (United States)

    Wilson, Edward N; Abela, Andrew R; Do Carmo, Sonia; Allard, Simon; Marks, Adam R; Welikovitch, Lindsay A; Ducatenzeiler, Adriana; Chudasama, Yogita; Cuello, A Claudio

    2017-02-01

    In Alzheimer disease (AD), the accumulation of amyloid beta (Aβ) begins decades before cognitive symptoms and progresses from intraneuronal material to extracellular plaques. To date, however, the precise mechanism by which the early buildup of Aβ peptides leads to cognitive dysfunction remains unknown. Here, we investigate the impact of the early Aβ accumulation on temporal and frontal lobe dysfunction. We compared the performance of McGill-R-Thy1-APP transgenic AD rats with wild-type littermate controls on a visual discrimination task using a touchscreen operant platform. Subsequently, we conducted studies to establish the biochemical and molecular basis for the behavioral alterations. It was found that the presence of intraneuronal Aβ caused a severe associative learning deficit in the AD rats. This coincided with reduced nuclear translocation and genomic occupancy of the CREB co-activator, CRTC1, and decreased production of synaptic plasticity-associated transcripts Arc, c-fos, Egr1, and Bdnf. Thus, blockade of CRTC1-dependent gene expression in the early, preplaque phase of AD-like pathology provides a molecular basis for the cognitive deficits that figure so prominently in early AD. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  13. The Effect of Six Weeks-Voluntary Wheel Running on Brain Amyloid Beta (1-42 Levels of Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Ziya Fallah-Mohammadi

    2013-05-01

    Full Text Available Background: Amyloid Beta (1-42 is derived from amyloid precursor protein and plays a critical role in AD pathogenesis. The purpose of this study was to investigate the effect of 6 weeks of voluntary wheel running on brain Amyloid beta (1-42 in the diabetic rats induced with alloxan. Materials and Methods: 28 male rats weight 185±1 were assigned randomly to 4 groups (N=7: normal control (C, training (T, control-diabetic (CD and diabetic-training (DT. Diabetes was induced with injecting Alloxan (120 mg/kg dissolved in saline intraperitoneal. Results: 6 weeks of voluntary wheel running decreased the cortex Aβ1-42 in T and DT groups. Aβ1-42 levels significantly decreased in the T and DT in compare with C and CD (p<0.001, respectively. Also Aβ1-42 levels significantly increased in the CD in compare with C (p<0.001.Conclusion: voluntary exercise had positive effects on decreasing of Aβ1-42 levels during 6 weeks. Therefore it can be recommended as therapeutic strategy for diabetes.

  14. Amyloid-beta: a crucial factor in Alzheimer's disease.

    Science.gov (United States)

    Sadigh-Eteghad, Saeed; Sabermarouf, Babak; Majdi, Alireza; Talebi, Mahnaz; Farhoudi, Mehdi; Mahmoudi, Javad

    2015-01-01

    Alzheimer's disease (AD) is the most prevalent form of dementia which affects people older than 60 years of age. In AD, the dysregulation of the amyloid-beta (Aβ) level leads to the appearance of senile plaques which contain Aβ depositions. Aβ is a complex biological molecule which interacts with many types of receptors and/or forms insoluble assemblies and, eventually, its nonphysiological depositions alternate with the normal neuronal conditions. In this situation, AD signs appear and the patients experience marked cognitional disabilities. In general, intellect, social skills, personality, and memory are influenced by this disease and, in the long run, it leads to a reduction in quality of life and life expectancy. Due to the pivotal role of Aβ in the pathobiology of AD, a great deal of effort has been made to reveal its exact role in neuronal dysfunctions and to finding efficacious therapeutic strategies against its adverse neuronal outcomes. Hence, the determination of its different molecular assemblies and the mechanisms underlying its pathological effects are of interest. In the present paper, some of the well-established structural forms of Aβ, its interactions with various receptors and possible molecular and cellular mechanisms underlying its neurotoxicity are discussed. In addition, several Aβ-based rodent models of AD are reviewed. © 2014 S. Karger AG, Basel.

  15. Amyloid Beta-Protein and Neural Network Dysfunction

    Directory of Open Access Journals (Sweden)

    Fernando Peña-Ortega

    2013-01-01

    Full Text Available Understanding the neural mechanisms underlying brain dysfunction induced by amyloid beta-protein (Aβ represents one of the major challenges for Alzheimer’s disease (AD research. The most evident symptom of AD is a severe decline in cognition. Cognitive processes, as any other brain function, arise from the activity of specific cell assemblies of interconnected neurons that generate neural network dynamics based on their intrinsic and synaptic properties. Thus, the origin of Aβ-induced cognitive dysfunction, and possibly AD-related cognitive decline, must be found in specific alterations in properties of these cells and their consequences in neural network dynamics. The well-known relationship between AD and alterations in the activity of several neural networks is reflected in the slowing of the electroencephalographic (EEG activity. Some features of the EEG slowing observed in AD, such as the diminished generation of different network oscillations, can be induced in vivo and in vitro upon Aβ application or by Aβ overproduction in transgenic models. This experimental approach offers the possibility to study the mechanisms involved in cognitive dysfunction produced by Aβ. This type of research may yield not only basic knowledge of neural network dysfunction associated with AD, but also novel options to treat this modern epidemic.

  16. Dementia of the eye: the role of amyloid beta in retinal degeneration.

    Science.gov (United States)

    Ratnayaka, J A; Serpell, L C; Lotery, A J

    2015-08-01

    Age-related macular degeneration (AMD) is one of the most common causes of irreversible blindness affecting nearly 50 million individuals globally. The disease is characterised by progressive loss of central vision, which has significant implications for quality of life concerns in an increasingly ageing population. AMD pathology manifests in the macula, a specialised region of the retina, which is responsible for central vision and perception of fine details. The underlying pathology of this complex degenerative disease is incompletely understood but includes both genetic as well as epigenetic risk factors. The recent discovery that amyloid beta (Aβ), a highly toxic and aggregate-prone family of peptides, is elevated in the ageing retina and is associated with AMD has opened up new perspectives on the aetiology of this debilitating blinding disease. Multiple studies now link Aβ with key stages of AMD progression, which is both exciting and potentially insightful, as this identifies a well-established toxic agent that aggressively targets cells in degenerative brains. Here, we review the most recent findings supporting the hypothesis that Aβ may be a key factor in AMD pathology. We describe how multiple Aβ reservoirs, now reported in the ageing eye, may target the cellular physiology of the retina as well as associated layers, and propose a mechanistic pathway of Aβ-mediated degenerative change leading to AMD.

  17. Amyloid Beta: Multiple Mechanisms of Toxicity and Only Some Protective Effects?

    Directory of Open Access Journals (Sweden)

    Paul Carrillo-Mora

    2014-01-01

    Full Text Available Amyloid beta (Aβ is a peptide of 39–43 amino acids found in large amounts and forming deposits in the brain tissue of patients with Alzheimer’s disease (AD. For this reason, it has been implicated in the pathophysiology of damage observed in this type of dementia. However, the role of Aβ in the pathophysiology of AD is not yet precisely understood. Aβ has been experimentally shown to have a wide range of toxic mechanisms in vivo and in vitro, such as excitotoxicity, mitochondrial alterations, synaptic dysfunction, altered calcium homeostasis, oxidative stress, and so forth. In contrast, Aβ has also shown some interesting neuroprotective and physiological properties under certain experimental conditions, suggesting that both physiological and pathological roles of Aβ may depend on several factors. In this paper, we reviewed both toxic and protective mechanisms of Aβ to further explore what their potential roles could be in the pathophysiology of AD. The complete understanding of such apparently opposed effects will also be an important guide for the therapeutic efforts coming in the future.

  18. Epicatechin and catechin in cocoa inhibit amyloid beta protein induced apoptosis.

    Science.gov (United States)

    Heo, Ho Jin; Lee, Chang Yong

    2005-03-09

    To elucidate additional health benefits of cocoa phytochemicals on the neurotoxicity induced by amyloid beta protein (Abeta), PC12 cells were treated with toxic peptide (Abeta(25)(-)(35)) and the effects of epicatechin, catechin, and cocoa were studied using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction, lactate dehydrogenase (LDH) release, and trypan blue exclusion methods. Significant increase in neuronal cell death was observed on PC12 cells treated with Abeta(25)(-)(35) (25 microM), while epicatechin and catechin and their mixture prevented the Abeta-induced neuronal cell death. Abeta treatment also led to the increased membrane instability of PC12 cells. The membrane protective effects of the phenolics determined by LDH release and trypan blue exclusion assays demonstrated that epicatechin, catechin, and their mixture protect cellular membrane from Abeta-induced cytotoxicity. In these three different cell viability assays, the mixture of epicatechin and catechin showed the highest protective effect and synergistic activity. The present results showed that the major flavonoids of cocoa, epicatechin and catechin, protect PC12 cells from Abeta-induced neurotoxicity, and suggest that cocoa may have anti-neurodegenerative effect in addition to other known chemopreventive effects.

  19. Low-power laser irradiation inhibits amyloid beta-induced cell apoptosis

    Science.gov (United States)

    Zhang, Heng; Wu, Shengnan

    2011-03-01

    The deposition and accumulation of amyloid-β-peptide (Aβ) in the brain are considered a pathological hallmark of Alzheimer's disease(AD). Apoptosis is a contributing pathophysiological mechanism of AD. Low-power laser irradiation (LPLI), a non-damage physical therapy, which has been used clinically for decades of years, is shown to promote cell proliferation and prevent apoptosis. Recently, low-power laser irradiation (LPLI) has been applied to moderate AD. In this study, Rat pheochromocytoma (PC12) cells were treated with amyloid beta 25-35 (Aβ25-35) for induction of apoptosis before LPLI treatment. We measured cell viability with CCK-8 according to the manufacture's protocol, the cell viability assays show that low fluence of LPLI (2 J/cm2 ) could inhibit the cells apoptosis. Then using statistical analysis of proportion of apoptotic cells by flow cytometry based on Annexin V-FITC/PI, the assays also reveal that low fluence of LPLI (2 J/cm2 ) could inhibit the Aβ-induced cell apoptosis. Taken together, we demonstrated that low fluence of LPLI (2 J/cm2 ) could inhibit the Aβ-induced cell apoptosis, these results directly point to a therapeutic strategy for the treatment of AD through LPLI.

  20. Non-conjugated small molecule FRET for differentiating monomers from higher molecular weight amyloid beta species.

    Directory of Open Access Journals (Sweden)

    Chongzhao Ran

    Full Text Available BACKGROUND: Systematic differentiation of amyloid (Aβ species could be important for diagnosis of Alzheimer's disease (AD. In spite of significant progress, controversies remain regarding which species are the primary contributors to the AD pathology, and which species could be used as the best biomarkers for its diagnosis. These controversies are partially caused by the lack of reliable methods to differentiate the complicated subtypes of Aβ species. Particularly, differentiation of Aβ monomers from toxic higher molecular weight species (HrMW would be beneficial for drug screening, diagnosis, and molecular mechanism studies. However, fast and cheap methods for these specific aims are still lacking. PRINCIPAL FINDINGS: We demonstrated the feasibility of a non-conjugated FRET (Förster resonance energy transfer technique that utilized amyloid beta (Aβ species as intrinsic platforms for the FRET pair assembly. Mixing two structurally similar curcumin derivatives that served as the small molecule FRET pair with Aβ40 aggregates resulted in a FRET signal, while no signal was detected when using Aβ40 monomer solution. Lastly, this FRET technique enabled us to quantify the concentrations of Aβ monomers and high molecular weight species in solution. SIGNIFICANCE: We believe that this FRET technique could potentially be used as a tool for screening for inhibitors of Aβ aggregation. We also suggest that this concept could be generalized to other misfolded proteins/peptides implicated in various pathologies including amyloid in diabetes, prion in bovine spongiform encephalopathy, tau protein in AD, and α-synuclein in Parkinson disease.

  1. P-glycoprotein efflux and other factors limit brain amyloid beta reduction by beta-site amyloid precursor protein-cleaving enzyme 1 inhibitors in mice.

    Science.gov (United States)

    Meredith, Jere E; Thompson, Lorin A; Toyn, Jeremy H; Marcin, Lawrence; Barten, Donna M; Marcinkeviciene, Jovita; Kopcho, Lisa; Kim, Young; Lin, Alan; Guss, Valerie; Burton, Catherine; Iben, Lawrence; Polson, Craig; Cantone, Joe; Ford, Michael; Drexler, Dieter; Fiedler, Tracey; Lentz, Kimberley A; Grace, James E; Kolb, Janet; Corsa, Jason; Pierdomenico, Maria; Jones, Kelli; Olson, Richard E; Macor, John E; Albright, Charles F

    2008-08-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disease. Amyloid beta (Abeta) peptides are hypothesized to cause the initiation and progression of AD based on pathologic data from AD patients, genetic analysis of mutations that cause early onset forms of AD, and preclinical studies. Based on this hypothesis, beta-site amyloid precursor protein (APP)-cleaving enzyme 1 (BACE1) inhibitors are an attractive therapeutic approach for AD because cleavage of the APP by BACE1 is required to form Abeta. In this study, three potent BACE1 inhibitors are characterized. All three inhibitors decrease Abeta formation in cultured cells with IC(50) values less than 10 nM. Analysis of APP C-terminal fragments by immunoblotting and Abeta peptides by mass spectrometry showed that these inhibitors decreased Abeta by inhibiting BACE1. An assay for Abeta1-40 in mice was developed and used to show that these BACE1 inhibitors decreased plasma Abeta1-40, but not brain Abeta1-40, in wild-type mice. Because these BACE1 inhibitors were substrates for P-glycoprotein (P-gp), a member of the ATP-binding cassette superfamily of efflux transporters, these inhibitors were administered to P-gp knockout (KO) mice. These studies showed that all three BACE1 inhibitors decreased brain Abeta1-40 in P-gp KO mice, demonstrating that P-gp is a major limitation for development of BACE1 inhibitors to test the amyloid hypothesis. A comparison of plasma Abeta1-40 and brain Abeta1-40 dose responses for these three compounds revealed differences in relative ED(50) values, indicating that factors other than P-gp can also contribute to poor brain activity by BACE1 inhibitors.

  2. Cerebral microvascular amyloid beta protein deposition induces vascular degeneration and neuroinflammation in transgenic mice expressing human vasculotropic mutant amyloid beta precursor protein.

    NARCIS (Netherlands)

    Miao, J.; Xu, F.; Davis, J.; Otte-Holler, I.; Verbeek, M.M.; Nostrand, W.E. van

    2005-01-01

    Cerebral vascular amyloid beta-protein (Abeta) deposition, also known as cerebral amyloid angiopathy, is a common pathological feature of Alzheimer's disease. Additionally, several familial forms of cerebral amyloid angiopathy exist including the Dutch (E22Q) and Iowa (D23N) mutations of Abeta. Incr

  3. Halogenation generates effective modulators of amyloid-Beta aggregation and neurotoxicity.

    Directory of Open Access Journals (Sweden)

    H Edward Wong

    Full Text Available Halogenation of organic compounds plays diverse roles in biochemistry, including selective chemical modification of proteins and improved oral absorption/blood-brain barrier permeability of drug candidates. Moreover, halogenation of aromatic molecules greatly affects aromatic interaction-mediated self-assembly processes, including amyloid fibril formation. Perturbation of the aromatic interaction caused by halogenation of peptide building blocks is known to affect the morphology and other physical properties of the fibrillar structure. Consequently, in this article, we investigated the ability of halogenated ligands to modulate the self-assembly of amyloidogenic peptide/protein. As a model system, we chose amyloid-beta peptide (Aβ, which is implicated in Alzheimer's disease, and a novel modulator of Aβ aggregation, erythrosine B (ERB. Considering that four halogen atoms are attached to the xanthene benzoate group in ERB, we hypothesized that halogenation of the xanthene benzoate plays a critical role in modulating Aβ aggregation and cytotoxicity. Therefore, we evaluated the modulating capacities of four ERB analogs containing different types and numbers of halogen atoms as well as fluorescein as a negative control. We found that fluorescein is not an effective modulator of Aβ aggregation and cytotoxicity. However, halogenation of either the xanthenes or benzoate ring of fluorescein substantially enhanced the inhibitory capacity on Aβ aggregation. Such Aβ aggregation inhibition by ERB analogs except rose bengal correlated well to the inhibition of Aβ cytotoxicity. To our knowledge, this is the first report demonstrating that halogenation of aromatic rings substantially enhance inhibitory capacities of small molecules on Aβ-associated neurotoxicity via Aβ aggregation modulation.

  4. MMPBSA decomposition of the binding energy throughout a molecular dynamics simulation of amyloid-beta (Abeta(10-35)) aggregation.

    Science.gov (United States)

    Campanera, Josep M; Pouplana, Ramon

    2010-04-15

    Recent experiments with amyloid-beta (Abeta) peptides indicate that the formation of toxic oligomers may be an important contribution to the onset of Alzheimer's disease. The toxicity of Abeta oligomers depend on their structure, which is governed by assembly dynamics. However, a detailed knowledge of the structure of at the atomic level has not been achieved yet due to limitations of current experimental techniques. In this study, replica exchange molecular dynamics simulations are used to identify the expected diversity of dimer conformations of Abeta(10-35) monomers. The most representative dimer conformation has been used to track the dimer formation process between both monomers. The process has been characterized by means of the evolution of the decomposition of the binding free energy, which provides an energetic profile of the interaction. Dimers undergo a process of reorganization driven basically by inter-chain hydrophobic and hydrophilic interactions and also solvation/desolvation processes.

  5. MMPBSA Decomposition of the Binding Energy throughout a Molecular Dynamics Simulation of Amyloid-Beta (Aß10−35 Aggregation

    Directory of Open Access Journals (Sweden)

    Josep M. Campanera

    2010-04-01

    Full Text Available Recent experiments with amyloid-beta (Aβ peptides indicate that the formation of toxic oligomers may be an important contribution to the onset of Alzheimer’s disease. The toxicity of Aβ oligomers depend on their structure, which is governed by assembly dynamics. However, a detailed knowledge of the structure of at the atomic level has not been achieved yet due to limitations of current experimental techniques. In this study, replica exchange molecular dynamics simulations are used to identify the expected diversity of dimer conformations of Aβ10−35 monomers. The most representative dimer conformation has been used to track the dimer formation process between both monomers. The process has been characterized by means of the evolution of the decomposition of the binding free energy, which provides an energetic profile of the interaction. Dimers undergo a process of reorganization driven basically by inter-chain hydrophobic and hydrophilic interactions and also solvation/desolvation processes.

  6. ETAS, an enzyme-treated asparagus extract, attenuates amyloid beta-induced cellular disorder in PC12 cells.

    Science.gov (United States)

    Ogasawara, Junetsu; Ito, Tomohiro; Wakame, Koji; Kitadate, Kentaro; Sakurai, Takuya; Sato, Shogo; Ishibashi, Yoshinaga; Izawa, Tetsuya; Takahashi, Kazuto; Ishida, Hitoshi; Takabatake, Ichiro; Kizaki, Takako; Ohno, Hideki

    2014-04-01

    One of the pathological characterizations of Alzheimer's disease (AD) is the deposition of amyloid beta peptide (Abeta) in cerebral cortical cells. The deposition of Abeta in neuronal cells leads to an increase in the production of free radicals that are typified by reactive oxygen species (ROS), thereby inducing cell death. A growing body of evidence now suggests that several plant-derived food ingredients are capable of scavenging ROS in mammalian cells. The purpose of the present study was to investigate whether enzyme-treated asparagus extract (ETAS), which is rich in antioxidants, is one of these ingredients. The pre-incubation of differentiated PC 12 cells with ETAS significantly recovered Abeta-induced reduction of cell viability, which was accompanied by reduced levels of ROS. These results suggest that ETAS may be one of the functional food ingredients with anti-oxidative capacity to help prevent AD.

  7. Alzheimer's disease amyloid-beta links lens and brain pathology in Down syndrome.

    Directory of Open Access Journals (Sweden)

    Juliet A Moncaster

    Full Text Available Down syndrome (DS, trisomy 21 is the most common chromosomal disorder and the leading genetic cause of intellectual disability in humans. In DS, triplication of chromosome 21 invariably includes the APP gene (21q21 encoding the Alzheimer's disease (AD amyloid precursor protein (APP. Triplication of the APP gene accelerates APP expression leading to cerebral accumulation of APP-derived amyloid-beta peptides (Abeta, early-onset AD neuropathology, and age-dependent cognitive sequelae. The DS phenotype complex also includes distinctive early-onset cerulean cataracts of unknown etiology. Previously, we reported increased Abeta accumulation, co-localizing amyloid pathology, and disease-linked supranuclear cataracts in the ocular lenses of subjects with AD. Here, we investigate the hypothesis that related AD-linked Abeta pathology underlies the distinctive lens phenotype associated with DS. Ophthalmological examinations of DS subjects were correlated with phenotypic, histochemical, and biochemical analyses of lenses obtained from DS, AD, and normal control subjects. Evaluation of DS lenses revealed a characteristic pattern of supranuclear opacification accompanied by accelerated supranuclear Abeta accumulation, co-localizing amyloid pathology, and fiber cell cytoplasmic Abeta aggregates (approximately 5 to 50 nm identical to the lens pathology identified in AD. Peptide sequencing, immunoblot analysis, and ELISA confirmed the identity and increased accumulation of Abeta in DS lenses. Incubation of synthetic Abeta with human lens protein promoted protein aggregation, amyloid formation, and light scattering that recapitulated the molecular pathology and clinical features observed in DS lenses. These results establish the genetic etiology of the distinctive lens phenotype in DS and identify the molecular origin and pathogenic mechanism by which lens pathology is expressed in this common chromosomal disorder. Moreover, these findings confirm increased Abeta

  8. Caffeine suppresses amyloid-beta levels in plasma and brain of Alzheimer's disease transgenic mice.

    Science.gov (United States)

    Cao, Chuanhai; Cirrito, John R; Lin, Xiaoyang; Wang, Li; Wang, Lilly; Verges, Deborah K; Dickson, Alexander; Mamcarz, Malgorzata; Zhang, Chi; Mori, Takashi; Arendash, Gary W; Holtzman, David M; Potter, Huntington

    2009-01-01

    Recent epidemiologic studies suggest that caffeine may be protective against Alzheimer's disease (AD). Supportive of this premise, our previous studies have shown that moderate caffeine administration protects/restores cognitive function and suppresses brain amyloid-beta (Abeta) production in AD transgenic mice. In the present study, we report that acute caffeine administration to both young adult and aged AD transgenic mice rapidly reduces Abeta levels in both brain interstitial fluid and plasma without affecting Abeta elimination. Long-term oral caffeine treatment to aged AD mice provided not only sustained reductions in plasma Abeta, but also decreases in both soluble and deposited Abeta in hippocampus and cortex. Irrespective of caffeine treatment, plasma Abeta levels did not correlate with brain Abeta levels or with cognitive performance in individual aged AD mice. Although higher plasma caffeine levels were strongly associated with lower plasma Abeta1-40 levels in aged AD mice, plasma caffeine levels were also not linked to cognitive performance. Plasma caffeine and theophylline levels were tightly correlated, both being associated with reduced inflammatory cytokine levels in hippocampus. Our conclusion is two-fold: first, that both plasma and brain Abeta levels are reduced by acute or chronic caffeine administration in several AD transgenic lines and ages, indicating a therapeutic value of caffeine against AD; and second, that plasma Abeta levels are not an accurate index of brain Abeta levels/deposition or cognitive performance in aged AD mice.

  9. Protective effects of Dendrobium nobile Lindl. alkaloids on amyloid beta (25–35-induced neuronal injury

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    2017-01-01

    Full Text Available Dendrobium nobile Lindl. alkaloids (DNLA, the active ingredients of a traditional Chinese medicine Dendrobium, have been shown to have anti-oxidative effects, anti-inflammatory action, and protective effect on neurons against oxygen-glucose deprivation. However, it is not clear whether DNLA reduces amyloid-beta (Aβ-induced neuronal injury. In this study, cortical neurons were treated with DNLA at different concentrations (0.025, 0.25, and 2.5 mg/L for 24 hours, followed by administration of Aβ25–35 (10 μM. Aβ25–35 treatments increased cell injury as determined by the leakage of lactate dehydrogenase, which was accompanied by chromatin condensation and mitochondrial tumefaction. The damage caused by Aβ25–35 on these cellular properties was markedly attenuated when cells were pretreated with DNLA. Treatment with Aβ25–35 down-regulated the expressions of postsynaptic density-95 mRNA and decreased the protein expression of synaptophysin and postsynaptic density-95, all changes were significantly reduced by pretreatment of cells with DNLA. These findings suggest that DNLA reduces the cytotoxicity induced by Aβ25–35 in rat primary cultured neurons. The protective mechanism that DNLA confers on the synaptic integrity of cultured neurons might be mediated, at least in part, through the upregulation of neurogenesis related proteins synaptophysin and postsynaptic density-95.

  10. Amyloid-beta transporter expression at the choroid plexus in normal aging: the possibility of reduced resistance to oxidative stress insults.

    Science.gov (United States)

    Liu, Chong-Bin; Wang, Rui; Dong, Miao-Wu; Gao, Xi-Ren; Yu, Feng

    2014-04-25

    Accumulation of amyloid-beta peptides (Aβ) results in amyloid burden in normal aging brain. Clearance of this peptide from the brain occurs via active transport at the interfaces separating the central nervous system (CNS) from the peripheral circulation. The present study was to investigate the change of Aβ transporters expression at the choroid plexus (CP) in normal aging. Morphological modifications of CP were observed by transmission electron microscope. Real-time RT-PCR was used to measure mRNA expressions of Aβ(42) and its transporters, which include low density lipoprotein receptor-related protein-1 and 2 (LRP-1 and -2), P-glycoprotein (P-gp) and the receptor for advanced glycation end-products (RAGE), at the CP epithelium in rats at ages of 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33 and 36 months. At the same time, the mRNA expressions of oxidative stress-related proteins were also measured. The results showed that a striking deterioration of the CP epithelial cells and increased Aβ(42) mRNA expression were observed in aged rats, and there was a decrease in the transcription of the Aβ efflux transporters, LRP-1 and P-gp, no change in RAGE mRNA expression and an increase in LRP-2, the CP epithelium Aβ influx transporter. Heme oxygenase-1 (HO-1) and caspase-3 expressions at the CP epithelium increased with age at the mRNA level. These results suggest the efficacy of the CP in clearing of Aβ deceases in normal aging, which results in the increase of brain Aβ accumulation. And excess Aβ interferes with oxidative phosphorylation, leads to oxidative stress and morphological structural changes. This in turn induces further pathological cascades of toxicity, inflammation and neurodegeneration process.

  11. Novel Roles of Amyloid-Beta Protein Precursor Metabolites in Fragile X Syndrome and Autism

    Science.gov (United States)

    Westmark, Cara J.; Sokol, Deborah K.; Maloney, Bryan; Lahiri, Debomoy K.

    2017-01-01

    Fragile X syndrome (FXS) is the most common form of inherited intellectual disability and is associated with up to 5% of autism cases. Several promising drugs are in preclinical testing for FXS; however, bench-to-bedside plans for the clinic are severely limited due to lack of validated biomarkers and outcome measures. Published work from our laboratories has demonstrated altered levels of amyloid-beta (Aβ) protein precursor (APP) and its metabolites in FXS and idiopathic autism. Westmark and colleagues have focused on β-secretase (amyloidogenic) processing and the accumulation of Aβ peptides in adult FXS models while Lahiri and Sokol have studied α-secretase (nonamyloidogenic or anabolic) processing and altered levels of sAPPα and Aβ in pediatric autism and FXS. Thus, our groups have hypothesized a pivotal role for these Alzheimer’s disease (AD)-related proteins in the neurodevelopmental disorders of FXS and autism. In this review, we discuss the contribution of APP metabolites to FXS and autism pathogenesis as well as the potential use of these metabolites as blood-based biomarkers and therapeutic targets. Our future focus is to identify key underlying mechanisms through which APP metabolites contribute to FXS and autism condition-to-disease pathology. Positive outcomes will support utilizing APP metabolites as blood-based biomarkers in clinical trials as well as testing drugs that modulate APP processing as potential disease therapeutics. Our studies to understand the role of APP metabolites in developmental conditions such as FXS and autism are a quantum leap for the neuroscience field, which has traditionally restricted any role of APP to AD and aging. PMID:27573877

  12. Amyloid beta resistance in nerve cell lines is mediated by the Warburg effect.

    Directory of Open Access Journals (Sweden)

    Jordan T Newington

    Full Text Available Amyloid beta (Aβ peptide accumulation in the brains of patients with Alzheimer's disease (AD is closely associated with increased nerve cell death. However, many cells survive and it is important to understand the mechanisms involved in this survival response. Recent studies have shown that an anti-apoptotic mechanism in cancer cells is mediated by aerobic glycolysis, also known as the Warburg effect. One of the major regulators of aerobic glycolysis is pyruvate dehydrogenase kinase (PDK, an enzyme which represses mitochondrial respiration and forces the cell to rely heavily on glycolysis, even in the presence of oxygen. Recent neuroimaging studies have shown that the spatial distribution of aerobic glycolysis in the brains of AD patients strongly correlates with Aβ deposition. Interestingly, clonal nerve cell lines selected for resistance to Aβ exhibit increased glycolysis as a result of activation of the transcription factor hypoxia inducible factor 1. Here we show that Aβ resistant nerve cell lines upregulate Warburg effect enzymes in a manner reminiscent of cancer cells. In particular, Aβ resistant nerve cell lines showed elevated PDK1 expression in addition to an increase in lactate dehydrogenase A (LDHA activity and lactate production when compared to control cells. In addition, mitochondrial derived reactive oxygen species (ROS were markedly diminished in resistant but not sensitive cells. Chemically or genetically inhibiting LDHA or PDK1 re-sensitized resistant cells to Aβ toxicity. These findings suggest that the Warburg effect may contribute to apoptotic-resistance mechanisms in the surviving neurons of the AD brain. Loss of the adaptive advantage afforded by aerobic glycolysis may exacerbate the pathophysiological processes associated with AD.

  13. Neuronal microRNA deregulation in response to Alzheimer's disease amyloid-beta.

    Directory of Open Access Journals (Sweden)

    Nicole Schonrock

    Full Text Available Normal brain development and function depends on microRNA (miRNA networks to fine tune the balance between the transcriptome and proteome of the cell. These small non-coding RNA regulators are highly enriched in brain where they play key roles in neuronal development, plasticity and disease. In neurodegenerative disorders such as Alzheimer's disease (AD, brain miRNA profiles are altered; thus miRNA dysfunction could be both a cause and a consequence of disease. Our study dissects the complexity of human AD pathology, and addresses the hypothesis that amyloid-beta (Abeta itself, a known causative factor of AD, causes neuronal miRNA deregulation, which could contribute to the pathomechanisms of AD. We used sensitive TaqMan low density miRNA arrays (TLDA on murine primary hippocampal cultures to show that about half of all miRNAs tested were down-regulated in response to Abeta peptides. Time-course assays of neuronal Abeta treatments show that Abeta is in fact a powerful regulator of miRNA levels as the response of certain mature miRNAs is extremely rapid. Bioinformatic analysis predicts that the deregulated miRNAs are likely to affect target genes present in prominent neuronal pathways known to be disrupted in AD. Remarkably, we also found that the miRNA deregulation in hippocampal cultures was paralleled in vivo by a deregulation in the hippocampus of Abeta42-depositing APP23 mice, at the onset of Abeta plaque formation. In addition, the miRNA deregulation in hippocampal cultures and APP23 hippocampus overlaps with those obtained in human AD studies. Taken together, our findings suggest that neuronal miRNA deregulation in response to an insult by Abeta may be an important factor contributing to the cascade of events leading to AD.

  14. Telmisartan reduces progressive accumulation of cellular amyloid beta and phosphorylated tau with inflammatory responses in aged spontaneously hypertensive stroke resistant rat.

    Science.gov (United States)

    Kurata, Tomoko; Lukic, Violeta; Kozuki, Miki; Wada, Daisuke; Miyazaki, Kazunori; Morimoto, Nobutoshi; Ohta, Yasuyuki; Deguchi, Kentaro; Ikeda, Yoshio; Kamiya, Tatsushi; Abe, Koji

    2014-01-01

    In addition to reducing the level of blood pressure (BP), telmisartan was expected to show the long-term neuroprotective effects preventing accumulation of cellular amyloid beta peptide (Aβ) and phosphorylated tau (pτ) by ameliorating neuroinflammation. We examined effects of telmisartan on cellular Aβ and pτ with inflammatory responses in the brain of a spontaneously hypertensive stroke resistant (SHR-SR) rat by giving either telmisartan at 0 (vehicle), .3 mg/kg/day or 3 mg/kg/day, orally, from 3 months of age and performed immunohistologic analysis at 6, 12, and 18 months. Compared with normotensive Wistar rats, numbers of Aβ- and pτ-positive neurons in the cerebral cortex progressively increased with age until 18 months in the SHR-SR rats, as did the numbers of ionized calcium-binding adapter molecule 1 (Iba-1)-positive microglia, tumor necrosis factor alpha (TNF-α)-positive neurons, and monocyte chemotactic protein 1 (MCP-1)-positive neurons. Low-dose telmisartan significantly decreased the numbers of Aβ- and pτ-positive neuron as well as the numbers of TNF-α-positive neurons, Iba-1-positive microglia, and MCP-1-positive neurons at 6, 12, and 18 months. High-dose telmisartan reduced BP and showed a further reduction of cellular Aβ and pτ. The present study suggests that accumulation of cellular Aβ and pτ and the inflammatory responses were decreased via improving metabolic syndrome with low-dose telmisartan and improving both metabolic syndrome and hypertension with high-dose telmisartan. Copyright © 2014 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  15. Inhibition of amyloid-beta-induced cell death in human brain pericytes in vitro.

    NARCIS (Netherlands)

    Rensink, A.A.M.; Verbeek, M.M.; Otte-Holler, I.; Donkelaar, H.J. ten; Waal, R.M.W. de; Kremer, H.P.H.

    2002-01-01

    Amyloid-beta protein (A beta) deposition in the cerebral vascular walls is one of the key features of Alzheimer's disease and hereditary cerebral hemorrhage with amyloidosis-Dutch type (HCHWA-D). A beta(1-40) carrying the 'Dutch' mutation (HCHWA-D A beta(1-40)) induces pronounced degeneration of cul

  16. Mitochondrion-derived reactive oxygen species lead to enhanced amyloid beta formation

    NARCIS (Netherlands)

    Leuner, K.; Schutt, T.; Kurz, C.; Eckert, S.H.; Schiller, C.; Occhipinti, A.; Mai, S.; Jendrach, M.; Eckert, G.P.; Kruse, S.E.; Palmiter, R.D.; Brandt, U.; Drose, S.; Wittig, I.; Willem, M.; Haass, C.; Reichert, A.S.; Muller, W.E.

    2012-01-01

    AIMS: Intracellular amyloid beta (Abeta) oligomers and extracellular Abeta plaques are key players in the progression of sporadic Alzheimer's disease (AD). Still, the molecular signals triggering Abeta production are largely unclear. We asked whether mitochondrion-derived reactive oxygen species (RO

  17. Calpain inhibition prevents amyloid-beta-induced neurodegeneration and associated behavioral dysfunction in rats

    NARCIS (Netherlands)

    Granic, Ivica; Nyakas, Csaba; Luiten, Paul G. M.; Eisel, Ulrich L. M.; Halmy, Laszlo G.; Gross, Gerhard; Schoemaker, Hans; Moeller, Achim; Nimmrich, Volker

    2010-01-01

    Amyloid-beta (A beta) is toxic to neurons and such toxicity is - at least in part - mediated via the NMDA receptor. Calpain, a calcium dependent cystein protease, is part of the NMDA receptor-induced neurodegeneration pathway, and we previously reported that inhibition of calpain prevents excitotoxi

  18. Validation of soluble amyloid-beta precursor protein assays as diagnostic CSF biomarkers for neurodegenerative diseases

    NARCIS (Netherlands)

    Waalwijk van Doorn, L.L.C. van; Koel-Simmelink, M.J.; Haussmann, U.; Klafki, H.; Struyfs, H.; Linning, P.; Knolker, H.J.; Twaalfhoven, H.; Kuiperij, H.B.; Engelborghs, S.; Scheltens, P.; Verbeek, M.M.; Vanmechelen, E.; Wiltfang, J.; Teunissen, C.E.

    2016-01-01

    Analytical validation of a biomarker assay is essential before implementation in clinical practice can occur. In this study, we analytically validated the performance of assays detecting soluble amyloid-beta precursor protein (sAPP) alpha and beta in CSF in two laboratories according to previously

  19. Amyloid-beta Oligomers Relate to Cognitive Decline in Alzheimer's Disease

    NARCIS (Netherlands)

    Jongbloed, W.; Bruggink, K.A.; Kester, M.I.; Visser, P.J.; Scheltens, P.; Blankenstein, M.A.; Verbeek, M.M.; Teunissen, C.E.; Veerhuis, R.

    2015-01-01

    BACKGROUND: Amyloid-beta (Abeta)-oligomers are neurotoxic isoforms of Abeta and are a potential diagnostic biomarker for Alzheimer's disease (AD). OBJECTIVES: 1) Analyze the potential of Abeta-oligomer concentrations in cerebrospinal fluid (CSF) to diagnose and predict progression to AD in a large c

  20. Sulfation of heparan sulfate associated with amyloid-beta plaques in patients with Alzheimer's disease.

    NARCIS (Netherlands)

    Bruinsma, I.B.; Riet, L. te; Gevers, T.; Dam, G.B. ten; Kuppevelt, A.H.M.S.M. van; David, G.; Kusters, B.; Waal, R.M.W. de; Verbeek, M.M.

    2010-01-01

    Alzheimer's disease (AD) is characterized by pathological lesions such as amyloid-beta (Abeta) plaques and cerebral amyloid angiopathy. Both these lesions consist mainly of aggregated Abeta protein and this aggregation is affected by macromolecules such as heparan sulfate (HS) proteoglycans.

  1. Amyloid-beta Oligomers Relate to Cognitive Decline in Alzheimer's Disease

    NARCIS (Netherlands)

    Jongbloed, W.; Bruggink, K.A.; Kester, M.I.; Visser, P.J.; Scheltens, P.; Blankenstein, M.A.; Verbeek, M.M.; Teunissen, C.E.; Veerhuis, R.

    2015-01-01

    BACKGROUND: Amyloid-beta (Abeta)-oligomers are neurotoxic isoforms of Abeta and are a potential diagnostic biomarker for Alzheimer's disease (AD). OBJECTIVES: 1) Analyze the potential of Abeta-oligomer concentrations in cerebrospinal fluid (CSF) to diagnose and predict progression to AD in a large

  2. Amyloid-beta oligomer detection by ELISA in cerebrospinal fluid and brain tissue

    NARCIS (Netherlands)

    Bruggink, K.A.; Jongbloed, W.; Biemans, E.A.L.M.; Veerhuis, R.; Claassen, J.A.H.R.; Kuiperij, H.B.; Verbeek, M.M.

    2013-01-01

    Amyloid-beta (Abeta) deposits are important pathological hallmarks of Alzheimer's disease (AD). Abeta aggregates into fibrils; however, the intermediate oligomers are believed to be the most neurotoxic species and, therefore, are of great interest as potential biomarkers. Here, we have developed an

  3. Insulin inhibits amyloid beta-induced cell death in cultured human brain pericytes.

    NARCIS (Netherlands)

    Rensink, A.A.M.; Otte-Holler, I.; Boer, R.; Bosch, R.R.; Donkelaar, H.J. ten; Waal, R.M.W. de; Verbeek, M.M.; Kremer, H.P.H.

    2004-01-01

    Amyloid-beta (Abeta) deposition in the cerebral arterial and capillary walls is one of the characteristics of Alzheimer's disease and hereditary cerebral hemorrhage with amyloidosis-Dutch type. In vitro, Abeta1-40, carrying the "Dutch" mutation (DAbeta1-40), induced reproducible degeneration of cult

  4. Differential gene expression in human brain pericytes induced by amyloid-beta protein.

    NARCIS (Netherlands)

    Rensink, A.A.M.; Otte-Holler, I.; Donkelaar, H.J. ten; Waal, R.M.W. de; Kremer, H.P.H.; Verbeek, M.M.

    2004-01-01

    Cerebral amyloid angiopathy is one of the characteristics of Alzheimer's disease (AD) and this accumulation of fibrillar amyloid-beta (Alphabeta) in the vascular wall is accompanied by marked vascular damage. In vitro, Abeta1-40 carrying the 'Dutch' mutation (DAbeta1-40) induces degeneration of cult

  5. Amyloid beta inhibits olfactory bulb activity and the ability to smell.

    Directory of Open Access Journals (Sweden)

    Reynaldo Alvarado-Martínez

    Full Text Available Early olfactory dysfunction has been consistently reported in both Alzheimer's disease (AD and in transgenic mice that reproduce some features of this disease. In AD transgenic mice, alteration in olfaction has been associated with increased levels of soluble amyloid beta protein (Aβ as well as with alterations in the oscillatory network activity recorded in the olfactory bulb (OB and in the piriform cortex. However, since AD is a multifactorial disease and transgenic mice suffer a variety of adaptive changes, it is still unknown if soluble Aβ, by itself, is responsible for OB dysfunction both at electrophysiological and behavioral levels. Thus, here we tested whether or not Aβ directly affects OB network activity in vitro in slices obtained from mice and rats and if it affects olfactory ability in these rodents. Our results show that Aβ decreases, in a concentration- and time-dependent manner, the network activity of OB slices at clinically relevant concentrations (low nM and in a reversible manner. Moreover, we found that intrabulbar injection of Aβ decreases the olfactory ability of rodents two weeks after application, an effect that is not related to alterations in motor performance or motivation to seek food and that correlates with the presence of Aβ deposits. Our results indicate that Aβ disrupts, at clinically relevant concentrations, the network activity of the OB in vitro and can trigger a disruption in olfaction. These findings open the possibility of exploring the cellular mechanisms involved in early pathological AD as an approach to reduce or halt its progress.

  6. Construction of human Fab library and screening of a single-domain antibody of amyloid-beta 42 oligomers

    Institute of Scientific and Technical Information of China (English)

    Zuanning Yuan; Minge Du; Yiwen Chen; Fei Dou

    2013-01-01

    Screening humanized antibodies from a human Fab phage display library is an effective and quick method to obtain beta-amyloid oligomers. Thus, the present study prepared amyloid-beta 42 oli-gomers and constructed a naïve human Fab phage display library based on blood samples from six healthy people. After three rounds of biopanning in vitro, a human single-domain antibody that spe-cifical y recognized amyloid-beta 42 oligomers was identified. Western blot and enzyme-linked immunosorbent assay demonstrated this antibody bound specifical y to human amyloid-beta 42 te-tramer and nonamer, but not the monomer or high molecular weight oligomers. This study suc-cessful y constructed a human phage display library and screened a single-domain antibody that specifical y recognized amyloid-beta 42 oligomers.

  7. Amyloid-Beta Related Angiitis of the Central Nervous System: Case Report and Topic Review

    Directory of Open Access Journals (Sweden)

    Amre eNouh

    2014-02-01

    Full Text Available Amyloid-beta related angiitis (ABRA of the central nervous system (CNS is a rare disorder with overlapping features of primary angiits of the CNS (PACNS and cerebral amyloid angiopathy (CAA. We evaluated a 74-year-old man with intermittent left sided weakness and MRI findings of leptomeningeal enhancement, vasogenic edema and subcortical white matter disease proven to have ABRA. We discuss clinicopathological features and review the topic of ABRA.

  8. hA molecular switch in amyloid assembly: Met35 and amyloid beta-protein oligomerization

    OpenAIRE

    Bitan, Gal; Tarus, Bogdan; Vollers, Sabrina S.; Lashuel, Hilal A.; Condron, Margaret M.; Straub, John E.; Teplow, David B.

    2003-01-01

    Aberrant protein oligomerization is an important pathogenetic process in vivo. In Alzheimer's disease (AD), the amyloid beta-protein (Abeta) forms neurotoxic oligomers. The predominant in vivo Abeta alloforms, Abeta40 and Abeta42, have distinct oligomerization pathways. Abeta42 monomers oligomerize into pentamer/hexamer units (paranuclei) which self-associate to form larger oligomers. Abeta40 does not form these paranuclei, a fact which may explain the particularly strong linkage of Abeta42 w...

  9. Amyloid beta-induced nerve growth factor dysmetabolism in Alzheimer disease.

    Science.gov (United States)

    Bruno, Martin A; Leon, Wanda C; Fragoso, Gabriela; Mushynski, Walter E; Almazan, Guillermina; Cuello, A Claudio

    2009-08-01

    We previously reported that the precursor form of nerve growth factor (pro-NGF) and not mature NGF is liberated in the CNS in an activity-dependent manner, and that its maturation and degradation occur in the extracellular space by the coordinated action of proteases.Here, we present evidence of diminished conversion of pro-NGF to its mature form and of greater NGF degradation in Alzheimer disease (AD) brain samples compared with controls. These alterations of the NGF metabolic pathway likely resulted in the increased pro-NGF levels. The pro-NGF was largely in a peroxynitrited form in the AD samples. Intrahippocampal injection of amyloid-beta oligomers provoked similar upregulation of pro-NGF in naive rats that was accompanied by evidence of microglial activation (CD40), increased levels of inducible nitric oxide synthase, and increased activity of the NGF-degrading enzyme matrix metalloproteinase 9. The elevated inducible nitric oxide synthase provoked the generation of biologically inactive, peroxynitrite-modified pro-NGF in amyloid-beta oligomer-injected rats. These parameters were corrected by minocycline treatment. Minocycline also diminished altered matrix metalloproteinase 9, inducible nitric oxide synthase, and microglial activation (CD40); improved cognitive behavior; and normalized pro-NGF levels in a transgenic mouse AD model. The effects of amyloid-beta amyloid CNS burden on NGF metabolism may explain the paradoxical upregulation of pro-NGF in AD accompanied by atrophy of forebrain cholinergic neurons.

  10. Insulin Promotes Survival of Amyloid-Beta Oligomers Neuroblastoma Damaged Cells via Caspase 9 Inhibition and Hsp70 Upregulation

    Directory of Open Access Journals (Sweden)

    M. Di Carlo

    2010-01-01

    Full Text Available Alzheimer's disease (AD and type 2 diabetes are connected in a way that is still not completely understood, but insulin resistance has been implicated as a risk factor for developing AD. Here we show an evidence that insulin is capable of reducing cytotoxicity induced by Amyloid-beta peptides (A-beta in its oligomeric form in a dose-dependent manner. By TUNEL and biochemical assays we demonstrate that the recovery of the cell viability is obtained by inhibition of intrinsic apoptotic program, triggered by A-beta and involving caspase 9 and 3 activation. A protective role of insulin on mitochondrial damage is also shown by using Mito-red vital dye. Furthermore, A-beta activates the stress inducible Hsp70 protein in LAN5 cells and an overexpression is detectable after the addition of insulin, suggesting that this major induction is the necessary condition to activate a cell survival program. Together, these results may provide opportunities for the design of preventive and therapeutic strategies against AD.

  11. Computational identification of potential multitarget treatments for ameliorating the adverse effects of amyloid-beta on synaptic plasticity

    Directory of Open Access Journals (Sweden)

    Thomas J. Anastasio

    2014-05-01

    Full Text Available The leading hypothesis on Alzheimer Disease (AD is that it is caused by buildup of the peptide amyloid-beta (Abeta, which initially causes dysregulation of synaptic plasticity and eventually causes destruction of synapses and neurons. Pharmacological efforts to limit Abeta buildup have proven ineffective, and this raises the twin challenges of understanding the adverse effects of Abeta on synapses and of suggesting pharmacological means to prevent it. The purpose of this paper is to initiate a computational approach to understanding the dysregulation by Abeta of synaptic plasticity and to offer suggestions whereby combinations of various chemical compounds could be arrayed against it. This data-driven approach confronts the complexity of synaptic plasticity by representing findings from the literature in a course-grained manner, and focuses on understanding the aggregate behavior of many molecular interactions. The same set of interactions is modeled by two different computer programs, each written using a different programming modality: one imperative, the other declarative. Both programs compute the same results over an extensive test battery, providing an essential crosscheck. Then the imperative program is used for the computationally intensive purpose of determining the effects on the model of every combination of ten different compounds, while the declarative program is used to analyze model behavior using temporal logic. Together these two model implementations offer new insights into the mechanisms by which Abeta dysregulates synaptic plasticity and suggest many drug combinations that potentially may reduce or prevent it.

  12. Longitudinal assessment of tau and amyloid beta in cerebrospinal fluid of Parkinson disease.

    Science.gov (United States)

    Zhang, Jing; Mattison, Hayley A; Liu, Changqin; Ginghina, Carmen; Auinger, Peggy; McDermott, Michael P; Stewart, Tessandra; Kang, Un Jung; Cain, Kevin C; Shi, Min

    2013-11-01

    Tau gene has been consistently associated with the risk of Parkinson disease in recent genome wide association studies. In addition, alterations of the levels of total tau, phosphorylated tau [181P], and amyloid beta 1-42 in cerebrospinal fluid have been reported in patients with sporadic Parkinson disease and asymptomatic carriers of leucine-rich repeat kinase 2 mutations, in patterns that clearly differ from those typically described for patients with Alzheimer disease. To further determine the potential roles of these molecules in Parkinson disease pathogenesis and/or in tracking the disease progression, especially at early stages, the current study assessed all three proteins in 403 Parkinson disease patients enrolled in the DATATOP (Deprenyl and tocopherol antioxidative therapy of parkinsonism) placebo-controlled clinical trial, the largest cohort to date with cerebrospinal fluid samples collected longitudinally. These initially drug-naive patients at early disease stages were clinically evaluated, and cerebrospinal fluid was collected at baseline and then at endpoint, defined as the time at which symptomatic anti-Parkinson disease medications were determined to be required. General linear models were used to test for associations between baseline cerebrospinal fluid biomarker levels or their rates of change and changes in the Unified Parkinson Disease Rating Scale (total or part III motor score) over time. Robust associations among candidate markers are readily noted. Baseline levels of amyloid beta were weakly but negatively correlated with baseline Unified Parkinson Disease Rating Scale total scores. Baseline phosphorylated tau/total tau and phosphorylated tau/amyloid beta were significantly and negatively correlated with the rates of the Unified Parkinson Disease Rating Scale change. While medications (deprenyl and/or tocopherol) did not appear to alter biomarkers appreciably, a weak but significant positive correlation between the rate of change in total

  13. Chronic administration of docosahexaenoic acid ameliorates the impairment of spatial cognition learning ability in amyloid beta-infused rats.

    Science.gov (United States)

    Hashimoto, Michio; Tanabe, Yoko; Fujii, Yoshimi; Kikuta, Toshihiko; Shibata, Hitoshi; Shido, Osamu

    2005-03-01

    We investigated whether administration of docosahexaenoic acid (DHA), a major (n-3) fatty acid of the brain, ameliorates the impairment of learning ability in an animal model of Alzheimer's disease (AD), rats infused with amyloid-beta (Abeta) peptide (1-40) into the cerebral ventricle. Inbred 3rd generation male rats (20 wk old) fed a fish oil-deficient diet were randomly divided into 4 groups: a vehicle group, an Abeta peptide-infused group (Abeta group), a DHA group, and an Abeta + DHA group. A mini-osmotic pump filled with Abeta peptide or vehicle was implanted in the rats, and they were tested for learning ability-related reference and working memory in an 8-arm radial maze. The rats were then orally fed DHA dissolved in 5% gum Arabic solution at 300 mg/(kg . d) (DHA and Abeta + DHA groups) or vehicle alone (vehicle and Abeta groups) and tested again for learning ability. DHA administered for 12 wk significantly reduced the increase in the number of reference and working memory errors in the Abeta-infused rats, and increased both the cortico-hippocampal level of DHA and the molar ratio of DHA/arachidonic acid, suggesting an amelioration of the impaired spatial cognition learning ability. Furthermore, DHA suppressed the increases in the levels of lipid peroxide and reactive oxygen species in the cerebral cortex and the hippocampus of Abeta-infused rats, suggesting that DHA increases antioxidative defenses. DHA is thus a possible therapeutic agent for ameliorating learning deficiencies due to Alzheimer's disease.

  14. Low levels of amyloid-beta and its transporters in neonatal rats with and without hydrocephalus

    Directory of Open Access Journals (Sweden)

    Silverberg Gerald D

    2009-05-01

    Full Text Available Abstract Background Previous studies in aging animals have shown that amyloid-beta protein (Aβ accumulates and its transporters, low-density lipoprotein receptor-related protein-1 (LRP-1 and the receptor for advanced glycation end products (RAGE are impaired during hydrocephalus. Furthermore, correlations between astrocytes and Aβ have been found in human cases of normal pressure hydrocephalus (NPH and Alzheimer's disease (AD. Because hydrocephalus occurs frequently in children, we evaluated the expression of Aβ and its transporters and reactive astrocytosis in animals with neonatal hydrocephalus. Methods Hydrocephalus was induced in neonatal rats by intracisternal kaolin injections on post-natal day one, and severe ventriculomegaly developed over a three week period. MRI was performed on post-kaolin days 10 and 21 to document ventriculomegaly. Animals were sacrificed on post-kaolin day 21. For an age-related comparison, tissue was used from previous studies when hydrocephalus was induced in a group of adult animals at either 6 months or 12 months of age. Tissue was processed for immunohistochemistry to visualize LRP-1, RAGE, Aβ, and glial fibrillary acidic protein (GFAP and with quantitative real time reverse transcriptase polymerase chain reaction (qRT-PCR to quantify expression of LRP-1, RAGE, and GFAP. Results When 21-day post-kaolin neonatal hydrocephalic animals were compared to adult (6–12 month old hydrocephalic animals, immunohistochemistry demonstrated levels of Aβ, RAGE, and LRP-1 that were substantially lower in the younger animals; in contrast, GFAP levels were elevated in both young and old hydrocephalic animals. When the neonatal hydrocephalic animals were compared to age-matched controls, qRT-PCR demonstrated no significant changes in Aβ, LRP-1 and RAGE. However, immunohistochemistry showed very small increases or decreases in individual proteins. Furthermore, qRT-PCR indicated statistically significant increases in GFAP

  15. Purified and synthetic Alzheimer's amyloid beta (Aβ) prions.

    Science.gov (United States)

    Stöhr, Jan; Watts, Joel C; Mensinger, Zachary L; Oehler, Abby; Grillo, Sunny K; DeArmond, Stephen J; Prusiner, Stanley B; Giles, Kurt

    2012-07-03

    The aggregation and deposition of amyloid-β (Aβ) peptides are believed to be central events in the pathogenesis of Alzheimer's disease (AD). Inoculation of brain homogenates containing Aβ aggregates into susceptible transgenic mice accelerated Aβ deposition, suggesting that Aβ aggregates are capable of self-propagation and hence might be prions. Recently, we demonstrated that Aβ deposition can be monitored in live mice using bioluminescence imaging (BLI). Here, we use BLI to probe the ability of Aβ aggregates to self-propagate following inoculation into bigenic mice. We report compelling evidence that Aβ aggregates are prions by demonstrating widespread cerebral β-amyloidosis induced by inoculation of either purified Aβ aggregates derived from brain or aggregates composed of synthetic Aβ. Although synthetic Aβ aggregates were sufficient to induce Aβ deposition in vivo, they exhibited lower specific biological activity compared with brain-derived Aβ aggregates. Our results create an experimental paradigm that should lead to identification of self-propagating Aβ conformations, which could represent novel targets for interrupting the spread of Aβ deposition in AD patients.

  16. The nicotinic alpha7 acetylcholine receptor agonist ssr180711 is unable to activate limbic neurons in mice overexpressing human amyloid-beta1-42

    DEFF Research Database (Denmark)

    Søderman, Andreas; Thomsen, Morten Skøtt; Hansen, Henrik H;

    2008-01-01

    Recent studies have demonstrated that amyloid-beta1-42 (Abeta1-42) binds to the nicotinergic alpha7 acetylcholine receptor (alpha7 nAChR) and that the application of Abeta1-42 to cells inhibits the function of the alpha7 nAChR. The in vivo consequences of the pharmacological activation of the alpha...... through the use of co-immunoprecipitation that human Abeta-immunoreactive peptides bind to mice alpha7 nAChR in vivo. Agonists of the alpha7 nAChR improve memory and attentional properties and increase immediate early gene expression in the prefrontal cortex and the nucleus accumbens. We show that acute...

  17. Amyloid-beta leads to impaired cellular respiration, energy production and mitochondrial electron chain complex activities in human neuroblastoma cells.

    Science.gov (United States)

    Rhein, V; Baysang, G; Rao, S; Meier, F; Bonert, A; Müller-Spahn, F; Eckert, A

    2009-09-01

    Evidence suggests that amyloid-beta (Abeta) protein is a key factor in the pathogenesis of Alzheimer's disease (AD) and it has been recently proposed that mitochondria are involved in the biochemical pathway by which Abeta can lead to neuronal dysfunction. Here we investigated the specific effects of Abeta on mitochondrial function under physiological conditions. Mitochondrial respiratory functions and energy metabolism were analyzed in control and in human wild-type amyloid precursor protein (APP) stably transfected human neuroblastoma cells (SH-SY5Y). Mitochondrial respiratory capacity of mitochondrial electron transport chain (ETC) in vital cells was measured with a high-resolution respirometry system (Oxygraph-2k). In addition, we determined the individual activities of mitochondrial complexes I-IV that compose ETC and ATP cellular levels. While the activities of complexes I and II did not change between cell types, complex IV activity was significantly reduced in APP cells. In contrast, activity of complex III was significantly enhanced in APP cells, as compensatory response in order to balance the defect of complex IV. However, this compensatory mechanism could not prevent the strong impairment of total respiration in vital APP cells. As a result, the respiratory control ratio (state3/state4) together with ATP production decreased in the APP cells in comparison with the control cells. Chronic exposure to soluble Abeta protein may result in an impairment of energy homeostasis due to a decreased respiratory capacity of mitochondrial electron transport chain which, in turn, may accelerate neurons demise.

  18. Effects of grape seed-derived polyphenols on amyloid beta-protein self-assembly and cytotoxicity.

    Science.gov (United States)

    Ono, Kenjiro; Condron, Margaret M; Ho, Lap; Wang, Jun; Zhao, Wei; Pasinetti, Giulio M; Teplow, David B

    2008-11-21

    Epidemiological evidence suggests that moderate consumption of red wine reduces the incidence of Alzheimer disease (AD). To study the protective effects of red wine, experiments recently were executed in the Tg2576 mouse model of AD. These studies showed that a commercially available grape seed polyphenolic extract, MegaNatural-AZ (MN), significantly attenuated AD-type cognitive deterioration and reduced cerebral amyloid deposition (Wang, J., Ho, L., Zhao, W., Ono, K., Rosensweig, C., Chen, L., Humala, N., Teplow, D. B., and Pasinetti, G. M. (2008) J. Neurosci. 28, 6388-6392). To elucidate the mechanistic bases for these observations, here we used CD spectroscopy, photo-induced cross-linking of unmodified proteins, thioflavin T fluorescence, size exclusion chromatography, and electron microscopy to examine the effects of MN on the assembly of the two predominant disease-related amyloid beta-protein alloforms, Abeta40 and Abeta42. We also examined the effects of MN on Abeta-induced cytotoxicity by assaying 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide metabolism and lactate dehydrogenase activity in Abeta-treated, differentiated pheochromocytoma (PC12) cells. Initial studies revealed that MN blocked Abeta fibril formation. Subsequent evaluation of the assembly stage specificity of the effect showed that MN was able to inhibit protofibril formation, pre-protofibrillar oligomerization, and initial coil --> alpha-helix/beta-sheet secondary structure transitions. Importantly, MN had protective effects in assays of cytotoxicity in which MN was mixed with Abeta prior to peptide assembly or following assembly and just prior to peptide addition to cells. These data suggest that MN is worthy of consideration as a therapeutic agent for AD.

  19. Oxidative stress induces macroautophagy of amyloid beta-protein and ensuing apoptosis

    DEFF Research Database (Denmark)

    Zheng, Lin; Kågedal, Katarina; Dehvari, Nodi;

    2009-01-01

    There is increasing evidence for the toxicity of intracellular amyloid beta-protein (Abeta) to neurons and the involvement of lysosomes in this process in Alzheimer disease (AD). We have recently shown that oxidative stress, a recognized determinant of AD, enhances macroautophagy and leads...... to intralysosomal accumulation of Abeta in cultured neuroblastoma cells. We hypothesized that oxidative stress promotes AD by stimulating macroautophagy of Abeta that further may induce cell death by destabilizing lysosomal membranes. To investigate such possibility, we compared the effects of hyperoxia (40...

  20. A Physiological Role for Amyloid Beta Protein: Enhancement of Learning and Memory

    OpenAIRE

    John Morley; Susan Farr; William Banks; Johnson, Steven N.; Yamada, Kelvin A.; Lin Xu

    2008-01-01

    Amyloid beta protein (A[beta]) is well recognized as having a significant role in the pathogenesis of Alzheimer's disease (AD). The reason for the presence of A[beta] and its physiological role in non-disease states is not clear. In these studies, low doses of A[beta] enhanced memory retention in two memory tasks and enhanced acetylcholine production in the hippocampus _in vivo_. We then tested whether endogenous A[beta] has a role in learning and memory in young, cognitively intact mice...

  1. Icariin Prevents Amyloid Beta-Induced Apoptosis via the PI3K/Akt Pathway in PC-12 Cells

    Directory of Open Access Journals (Sweden)

    Dongdong Zhang

    2015-01-01

    Full Text Available Icariin is a prenylated flavonol glycoside derived from the Chinese herb Epimedium sagittatum that exerts a variety of pharmacological activities and shows promise in the treatment and prevention of Alzheimer’s disease. In this study, we investigated the neuroprotective effects of icariin against amyloid beta protein fragment 25–35 (Aβ25–35 induced neurotoxicity in cultured rat pheochromocytoma PC12 cells and explored potential underlying mechanisms. Our results showed that icariin dose-dependently increased cell viability and decreased Aβ25–35-induced apoptosis, as assessed by MTT assay and Annexin V/propidium iodide staining, respectively. Results of western blot analysis revealed that the selective phosphatidylinositol 3-kinase (PI3K inhibitor LY294002 suppressed icariin-induced Akt phosphorylation, suggesting that the protective effects of icariin are associated with activation of the PI3K/Akt signaling pathway. LY294002 also blocked the icariin-induced downregulation of proapoptotic factors Bax and caspase-3 and upregulation of antiapoptotic factor Bcl-2 in Aβ25–35-treated PC12 cells. These findings provide further evidence for the clinical efficacy of icariin in the treatment of Alzheimer’s disease.

  2. Mitochondria-targeted antioxidant mitotempo protects mitochondrial function against amyloid beta toxicity in primary cultured mouse neurons.

    Science.gov (United States)

    Hu, Hongtao; Li, Mo

    2016-09-01

    Mitochondrial defects including excess reactive oxygen species (ROS) production and compromised ATP generation are featured pathology in Alzheimer's disease (AD). Amyloid beta (Aβ)-mediated mitochondrial ROS overproduction disrupts intra-neuronal Redox balance, in turn exacerbating mitochondrial dysfunction leading to neuronal injury. Previous studies have found the beneficial effects of mitochondria-targeted antioxidants in preventing mitochondrial dysfunction and neuronal injury in AD animal and cell models, suggesting that mitochondrial ROS scavengers hold promise for the treatment of this neurological disorder. In this study, we have determined that mitotempo, a novel mitochondria-targeted antioxidant protects mitochondrial function from the toxicity of Aβ in primary cultured neurons. Our results showed that Aβ-promoted mitochondrial superoxide production and neuronal lipid oxidation were significantly suppressed by the application of mitotempo. Moreover, mitotempo also demonstrated protective effects on mitochondrial bioenergetics evidenced by preserved mitochondrial membrane potential, cytochrome c oxidase activity as well as ATP production. In addition, the Aβ-induced mitochondrial DNA (mtDNA) depletion and decreased expression levels of mtDNA replication-related DNA polymerase gamma (DNA pol γ) and Twinkle were substantially mitigated by mitotempo. Therefore, our study suggests that elimination of excess mitochondrial ROS rescues mitochondrial function in Aβ-insulted neruons; and mitotempo has the potential to be a promising therapeutic agent to protect mitochondrial and neuronal function in AD.

  3. 1,8-cineole (eucalyptol) mitigates inflammation in amyloid Beta toxicated PC12 cells: relevance to Alzheimer's disease.

    Science.gov (United States)

    Khan, Andleeb; Vaibhav, Kumar; Javed, Hayate; Tabassum, Rizwana; Ahmed, Md Ejaz; Khan, Mohd Moshahid; Khan, M Badruzzaman; Shrivastava, Pallavi; Islam, Farah; Siddiqui, M Saeed; Safhi, M M; Islam, Fakhrul

    2014-02-01

    Inflammatory process has a fundamental role in the pathogenesis of Alzheimer's disease and insoluble amyloid beta deposits and neurofibrillary tangles provide the obvious stimuli for inflammation. The present study demonstrate the effect of pretreatment of 1,8-cineole (Cin) on inflammation induced by Aβ(25-35) in differentiated PC12 cells. The cells were treated with Cin at different doses for 24 h and then replaced by media containing Aβ(25-35) for another 24 h. The cell viability was decreased in Aβ(25-35) treated cells which was significantly restored by Cin pretreatment. Cin successfully reduced the mitochondrial membrane potential, ROS and NO levels in Aβ(25-35) treated cells. Cin also lowered the levels of proinflammatory cytokines TNF-α, IL-1β and IL-6 in Aβ(25-35) treated cells. Moreover, Cin also succeeded in lowering the expression of NOS-2, COX-2 and NF-κB. This study suggests the protective effects of Cin on inflammation and provides additional evidence for its potential beneficial use in therapy as an anti-inflammatory agent in neurodegenerative disease.

  4. Novel strategies for Alzheimer's disease treatment: An overview of anti-amyloid beta monoclonal antibodies

    Directory of Open Access Journals (Sweden)

    Katarzyna Rygiel

    2016-01-01

    Full Text Available Alzheimer's disease (AD is a multifactorial, progressive neurodegenerative disorder with a poor prognosis, and thus, novel therapies for AD are certainly needed in a growing population of elderly patients or asymptomatic individuals, who are at risk for AD, worldwide. It has been established that some AD biomarkers such as amyloid-beta load in the brain, precede the onset of the disease, by approximately 20 years. Therefore, the therapy to prevent or effectively treat AD has to be initiated before the emergence of symptoms. A goal of this review is to present the results of recent clinical trials on monoclonal antibodies against amyloid beta, used for the treatment of AD and also to address some of the current challenges and emerging strategies to prevent AD. In recent trials, a monoclonal antibody, i.e. solanezumab has shown some beneficial cognitive effects among mild AD patients. Ongoing studies with gantenerumab and crenezumab will examine when exactly the AD treatment, aimed at modifying the disease course has to be started. This review was based on Medline database search for trials on passive anti-AD immunotherapy, for which the main timeframe was set from 2012 to 2015.

  5. A novel transgenic rat model with a full Alzheimer's-like amyloid pathology displays pre-plaque intracellular amyloid-beta-associated cognitive impairment.

    Science.gov (United States)

    Leon, Wanda Carolina; Canneva, Fabio; Partridge, Vanessa; Allard, Simon; Ferretti, Maria Teresa; DeWilde, Arald; Vercauteren, Freya; Atifeh, Ramtin; Ducatenzeiler, Adriana; Klein, William; Szyf, Moshe; Alhonen, Leena; Cuello, A Claudio

    2010-01-01

    Alzheimer's disease (AD) is a neurodegenerative pathology in which amyloid-beta (Abeta) peptide accumulates in different brain areas leading to deposition of plaques and a progressive decline of cognitive functions. After a decade in which a number of transgenic (Tg) mouse models mimicking AD-like amyloid-deposition pathology have been successfully generated, few rat models have been reported that develop intracellular and extracellular Abeta accumulation, together with impairment of cognition. The generation of a Tg rat reproducing the full AD-like amyloid pathology has been elusive. Here we describe the generation and characterization of a new transgenic rat line, coded McGill-R-Thy1-APP, developed to express the human amyloid-beta precursor protein (AbetaPP) carrying both the Swedish and Indiana mutations under the control of the murine Thy1.2 promoter. The selected mono-transgenic line displays an extended phase of intraneuronal Abeta accumulation, already apparent at 1 week after birth, which is widespread throughout different cortical areas and the hippocampus (CA1, CA2, CA3, and dentate gyrus). Homozygous Tg animals eventually produce extracellular Abeta deposits and, by 6 months of age, dense, thioflavine S-positive, amyloid plaques are detected, associated with glial activation and surrounding dystrophic neurites. The cognitive functions in transgenic McGill-R-Thy1-APP rats, as assessed using the Morris water maze task, were found already altered as early as at 3 months of age, when no CNS plaques are yet present. The spatial cognitive impairment becomes more prominent in older animals (13 months), where the behavioral performance of Tg rats positively correlates with the levels of soluble Abeta (trimers) measured in the cortex.

  6. Amyloid beta modulated the selectivity of heme-catalyzed protein tyrosine nitration: an alternative mechanism for selective protein nitration.

    Science.gov (United States)

    Yuan, Can; Li, Hailing; Gao, Zhonghong

    2012-10-01

    Protein tyrosine nitration is a post-translational modification associated with numerous pathological conditions. The biological consequences of this modification strongly depend on the site selectivity. Unfortunately, to date there is still no reliable model for predicting the selectivity of protein tyrosine nitration. Previously, we found that amyloid beta (Aβ) changed the selectivity of enolase tyrosine nitration upon binding to heme. It seemed that there was a link between the hydrophilicity of Aβ and the site-specific tyrosine nitration. We further investigated the role of the hydrophilicity of the molecules that bind to heme in the selectivity of protein tyrosine nitration. We found that Aβ(1-16), Aβ(1-20), and Aβ(1-40), upon binding to heme and interacting with glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in a site-specific manner, differently modulated the site selectivity of heme-catalyzed GAPDH tyrosine nitration. The modulation is associated with the hydrophilicity of the Aβ peptides, which changed the surrounding environment of the heme. At the same time, the Aβ-heme complexes were found to be more effective at inactivating GAPDH than heme alone, and the selective tyrosine nitration that was catalyzed by Aβ-heme played an important role. These findings suggest an alternative mechanism for the selectivity of protein tyrosine nitration, which may lead to a better understanding of the factors that influence protein tyrosine nitration selectivity and the important roles of Aβ and heme in the pathogenesis of Alzheimer's disease, where Aβ accumulation and Aβ-dependent protein nitration play central roles.

  7. The coding sequence of amyloid-beta precursor protein APP contains a neural-specific promoter element.

    NARCIS (Netherlands)

    Collin, R.W.J.; Martens, G.J.M.

    2006-01-01

    The amyloid-beta precursor protein APP is generally accepted to be involved in the pathology of Alzheimer's disease. Since its physiological role is still unclear, we decided to study the function of APP via stable transgenesis in the amphibian Xenopus laevis. However, the application of constructs

  8. Nanoparticle-chelator conjugates as inhibitors of amyloid-beta aggregation and neurotoxicity: a novel therapeutic approach for Alzheimer disease.

    Science.gov (United States)

    Liu, Gang; Men, Ping; Kudo, Wataru; Perry, George; Smith, Mark A

    2009-05-22

    Oxidative stress and amyloid-beta are considered major etiological and pathological factors in the initiation and promotion of neurodegeneration in Alzheimer disease (AD). Insomuch as causes of such oxidative stress, transition metals, such as iron and copper, which are found in high concentrations in the brains of AD patients and accumulate specifically in the pathological lesions, are viewed as key contributors to the altered redox state. Likewise, the aggregation and toxicity of amyloid-beta is dependent upon transition metals. As such, chelating agents that selectively bind to and remove and/or "redox silence" transition metals have long been considered as attractive therapies for AD. However, the blood-brain barrier and neurotoxicity of many traditional metal chelators has limited their utility in AD or other neurodegenerative disorders. To circumvent this, we previously suggested that nanoparticles conjugated to iron chelators may have the potential to deliver chelators into the brain and overcome such issues as chelator bioavailability and toxic side-effects. In this study, we synthesized a prototype nanoparticle-chelator conjugate (Nano-N2PY) and demonstrated its ability to protect human cortical neurons from amyloid-beta-associated oxidative toxicity. Furthermore, Nano-N2PY nanoparticle-chelator conjugates effectively inhibited amyloid-beta aggregate formation. Overall, this study indicates that Nano-N2PY, or other nanoparticles conjugated to metal chelators, may provide a novel therapeutic strategy for AD and other neurodegenerative diseases associated with excess transition metals.

  9. Do amyloid beta-associated factors co-deposit with Abeta in mouse models for Alzheimer's disease?

    NARCIS (Netherlands)

    Timmer, N.M.; Kuiperij, H.B.; Waal, R.M.W. de; Verbeek, M.M.

    2010-01-01

    Senile plaques and cerebral amyloid angiopathy in Alzheimer's disease (AD) patients not only consist of the amyloid-beta protein (Abeta), but also contain many different Abeta-associated factors, such as heparan sulfate proteoglycans, apolipoproteins, and complement factors. These factors may all

  10. The coding sequence of amyloid-beta precursor protein APP contains a neural-specific promoter element.

    NARCIS (Netherlands)

    Collin, R.W.J.; Martens, G.J.M.

    2006-01-01

    The amyloid-beta precursor protein APP is generally accepted to be involved in the pathology of Alzheimer's disease. Since its physiological role is still unclear, we decided to study the function of APP via stable transgenesis in the amphibian Xenopus laevis. However, the application of constructs

  11. Always around, never the same: Pathways of amyloid beta induced neurodegeneration throughout the pathogenic cascade of Alzheimer's disease

    NARCIS (Netherlands)

    J.J.M. Hoozemans; S.M. Chafekar; F. Baas; P. Eikelenboom; W. Scheper

    2006-01-01

    There is an increasing amount of evidence showing the importance of intermediate aggregation species of amyloid beta (A beta) in the pathogenic cascade of Alzheimer's disease (AD). Different A beta assembly forms may mediate diverse toxic effects at different stages of the disease. Mouse models for

  12. Matrix metalloproteinase 2 (MMP-2) degrades soluble vasculotropic amyloid-beta E22Q and L34V mutants, delaying their toxicity for human brain microvascular endothelial cells.

    Science.gov (United States)

    Hernandez-Guillamon, Mar; Mawhirt, Stephanie; Fossati, Silvia; Blais, Steven; Pares, Mireia; Penalba, Anna; Boada, Merce; Couraud, Pierre-Olivier; Neubert, Thomas A; Montaner, Joan; Ghiso, Jorge; Rostagno, Agueda

    2010-08-27

    Patients carrying mutations within the amyloid-beta (Abeta) sequence develop severe early-onset cerebral amyloid angiopathy with some of the related variants manifesting primarily with hemorrhagic phenotypes. Matrix metalloproteases (MMPs) are typically associated with blood brain barrier disruption and hemorrhagic transformations after ischemic stroke. However, their contribution to cerebral amyloid angiopathy-related hemorrhage remains unclear. Human brain endothelial cells challenged with Abeta synthetic homologues containing mutations known to be associated in vivo with hemorrhagic manifestations (AbetaE22Q and AbetaL34V) showed enhanced production and activation of MMP-2, evaluated via Multiplex MMP antibody arrays, gel zymography, and Western blot, which in turn proteolytically cleaved in situ the Abeta peptides. Immunoprecipitation followed by mass spectrometry analysis highlighted the generation of specific C-terminal proteolytic fragments, in particular the accumulation of Abeta-(1-16), a result validated in vitro with recombinant MMP-2 and quantitatively evaluated using deuterium-labeled internal standards. Silencing MMP-2 gene expression resulted in reduced Abeta degradation and enhanced apoptosis. Secretion and activation of MMP-2 as well as susceptibility of the Abeta peptides to MMP-2 degradation were dependent on the peptide conformation, with fibrillar elements of AbetaE22Q exhibiting negligible effects. Our results indicate that MMP-2 release and activation differentially degrades Abeta species, delaying their toxicity for endothelial cells. However, taking into consideration MMP ability to degrade basement membrane components, these protective effects might also undesirably compromise blood brain barrier integrity and precipitate a hemorrhagic phenotype.

  13. Effect of copper (II) ion against elongation behavior of amyloid {beta} fibrils on liposome membranes

    Energy Technology Data Exchange (ETDEWEB)

    Shimanouchi, T.; Onishi, R.; Kitaura, N.; Umakoshi, H.; Kuboi, R. [Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka (Japan)

    2012-01-15

    The fibril growth behavior of amyloid {beta} protein (A{beta}) on cell membranes is relating to the progression of Alzheimer's disease. This growth behavior of A{beta} fibrils is sensitively affected by the metal ions, neurotransmitters, or bioreactive substrate. The inhibitory effect of those materials was quantitatively estimated from the viewpoints of ''crystal growth''. In a bulk aqueous solution, copper (II) ion showed the strong inhibitory effect on the growth of A{beta} fibrils. Meanwhile, the addition of a closed-phospholipid bilayer membrane (liposome) could reduce the above inhibitory effect of copper (II) ion. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  14. Indirubin-3′-monoxime suppresses amyloid-beta-induced apoptosis by inhibiting tau hyperphosphorylation

    Institute of Scientific and Technical Information of China (English)

    Shu-gang Zhang; Xiao-shan Wang; Ying-dong Zhang; Qing Di; Jing-ping Shi; Min Qian; Li-gang Xu; Xing-jian Lin; Jie Lu

    2016-01-01

    Indirubin-3′-monoxime is an effective inhibitor of cyclin-dependent protein kinases, and may play an obligate role in neuronal apopto-sis in Alzheimer’s disease. Here, we found that indirubin-3′-monoxime improved the morphology and increased the survival rate of SH-SY5Y cells exposed to amyloid-beta 25–35 (Aβ25–35), and also suppressed apoptosis by reducing tau phosphorylation at Ser199 and Thr205. Furthermore, indirubin-3′-monoxime inhibited phosphorylation of glycogen synthase kinase-3β (GSK-3β). Our results suggest that in-dirubin-3′-monoxime reduced Aβ25–35-induced apoptosis by suppressing tau hyperphosphorylationvia a GSK-3β-mediated mechanism. Indirubin-3′-monoxime is a promising drug candidate for Alzheimer’s disease.

  15. Increased plasma amyloid beta protein 1-42 levels in Down syndrome.

    Science.gov (United States)

    Mehta, P D; Dalton, A J; Mehta, S P; Kim, K S; Sersen, E A; Wisniewski, H M

    1998-01-23

    Amyloid beta protein 1-40 (A beta40) and A beta42 levels were quantitated in plasma from 43 persons with Down syndrome (DS; 26-68 years of age), 43 age-matched normal controls, and 19 non-DS mentally retarded (MR) persons (26-91 years of age) by using a sandwich enzyme linked immunosorbent assay. A beta40 levels were higher in DS and MR than controls, but were similar between DS and MR groups. A beta42 levels were higher in DS than controls or MR persons. The ratios of A beta42/A beta40 were higher in DS than controls or MR persons. The findings are consistent with those seen in DS brains.

  16. Voluntary Exercise Promotes Glymphatic Clearance of Amyloid Beta and Reduces the Activation of Astrocytes and Microglia in Aged Mice

    Directory of Open Access Journals (Sweden)

    Xiao-fei He

    2017-05-01

    Full Text Available Age is characterized by chronic inflammation, leading to synaptic dysfunction and dementia because the clearance of protein waste is reduced. The clearance of proteins depends partly on the permeation of the blood–brain barrier (BBB or on the exchange of water and soluble contents between the cerebrospinal fluid (CSF and the interstitial fluid (ISF. A wealth of evidence indicates that physical exercise improves memory and cognition in neurodegenerative diseases during aging, such as Alzheimer’s disease (AD, but the influence of physical training on glymphatic clearance, BBB permeability and neuroinflammation remains unclear. In this study, glymphatic clearance and BBB permeability were evaluated in aged mice using in vivo two-photon imaging. The mice performed voluntary wheel running exercise and their water-maze cognition was assessed; the expression of the astrocytic water channel aquaporin 4 (AQP4, astrocyte and microglial activation, and the accumulation of amyloid beta (Aβ were evaluated with immunofluorescence or an enzyme-linked immunosorbent assay (ELISA; synaptic function was investigated with Thy1–green fluorescent protein (GFP transgenic mice and immunofluorescent staining. Voluntary wheel running significantly improved water-maze cognition in the aged mice, accelerated the efficiency of glymphatic clearance, but which did not affect BBB permeability. The numbers of activated astrocytes and microglia decreased, AQP4 expression increased, and the distribution of astrocytic AQP4 was rearranged. Aβ accumulation decreased, whereas dendrites, dendritic spines and postsynaptic density protein (PSD95 increased. Our study suggests that voluntary wheel running accelerated glymphatic clearance but not BBB permeation, improved astrocytic AQP4 expression and polarization, attenuated the accumulation of amyloid plaques and neuroinflammation, and ultimately protected mice against synaptic dysfunction and a decline in spatial cognition

  17. Clinical and cost implications of amyloid beta detection with amyloid beta positron emission tomography imaging in early Alzheimer's disease - the case of florbetapir.

    Science.gov (United States)

    Hornberger, John; Bae, Jay; Watson, Ian; Johnston, Joe; Happich, Michael

    2017-04-01

    Amyloid beta (Aβ) positron emission tomography (PET) imaging helps estimate Aβ neuritic plaque density in patients with cognitive impairment who are under evaluation for Alzheimer's disease (AD). This study aims to evaluate the cost-effectiveness of the Aβ-PET scan as an adjunct to standard diagnostic assessment for diagnosis of AD in France, using florbetapir as an example. A state-transition probability analysis was developed adopting the French Health Technology Assessment (HTA) perspective per guidance. Parameters included test characteristics, rate of cognitive decline, treatment effect, costs, and quality of life. Additional scenarios assessed the validity of the analytical framework, including: (1) earlier evaluation/treatment; (2) cerebrospinal fluid (CSF) as a comparator; and (3) use of other diagnostic procedures. Outputs included differences in quality-adjusted life years (QALYs), costs, and incremental cost-effectiveness ratios (ICERs). All benefits and costs were discounted for time preferences. Sensitivity analyses were performed to assess the robustness of findings and key influencers of outcomes. Aβ-PET used as an adjunct to standard diagnostic assessment increased QALYs by 0.021 years and 10 year costs by €470 per patient. The ICER was €21,888 per QALY gained compared to standard diagnostic assessment alone. When compared with CSF, Aβ-PET costs €24,084 per QALY gained. In other scenarios, Aβ-PET was consistently cost-effective relative to the commonly used affordability threshold (€40,000 per QALY). Over 95% of simulations in the sensitivity analysis were cost-effective. Aβ-PET is projected to affordably increase QALYs from the French HTA perspective per guidance over a range of clinical scenarios, comparators, and input parameters.

  18. Soluble amyloid beta levels are elevated in the white matter of Alzheimer's patients, independent of cortical plaque severity.

    Science.gov (United States)

    Collins-Praino, Lyndsey E; Francis, Yitshak I; Griffith, Erica Y; Wiegman, Anne F; Urbach, Jonathan; Lawton, Arlene; Honig, Lawrence S; Cortes, Etty; Vonsattel, Jean Paul G; Canoll, Peter D; Goldman, James E; Brickman, Adam M

    2014-08-17

    Alzheimer's disease (AD) is the most common neurodegenerative disease and the leading cause of dementia. In addition to grey matter pathology, white matter changes are now recognized as an important pathological feature in the emergence of the disease. Despite growing recognition of the importance of white matter abnormalities in the pathogenesis of AD, the causes of white matter degeneration are still unknown. While multiple studies propose Wallerian-like degeneration as the source of white matter change, others suggest that primary white matter pathology may be due, at least in part, to other mechanisms, including local effects of toxic Aβ peptides. In the current study, we investigated levels of soluble amyloid-beta (Aβ) in white matter of AD patients (n=12) compared with controls (n=10). Fresh frozen white matter samples were obtained from anterior (Brodmann area 9) and posterior (Brodmann area 1, 2 and 3) areas of post-mortem AD and control brains. ELISA was used to examine levels of soluble Aβ -42 and Aβ -40. Total cortical neuritic plaque severity rating was derived from individual ratings in the following areas of cortex: mid-frontal, superior temporal, pre-central, inferior parietal, hippocampus (CA1), subiculum, entorhinal cortex, transentorhinal cortex, inferior temporal, amygdala and basal forebrain. Compared with controls, AD samples had higher white matter levels of both soluble Aβ -42 and Aβ -40. While no regional white matter differences were found in Aβ -40, Aβ -42 levels were higher in anterior regions than in posterior regions across both groups. After statistically controlling for total cortical neuritic plaque severity, differences in both soluble Aβ -42 and Aβ -40 between the groups remained, suggesting that white matter Aβ peptides accumulate independent of overall grey matter fibrillar amyloid pathology and are not simply a reflection of overall amyloid burden. These results shed light on one potential mechanism through which

  19. Neuroprotective Effect of Fisetin Against Amyloid-Beta-Induced Cognitive/Synaptic Dysfunction, Neuroinflammation, and Neurodegeneration in Adult Mice.

    Science.gov (United States)

    Ahmad, Ashfaq; Ali, Tahir; Park, Hyun Young; Badshah, Haroon; Rehman, Shafiq Ur; Kim, Myeong Ok

    2017-04-01

    Alzheimer's disease (AD) is a devastating and progressive neurodegenerative disease and is characterized pathologically by the accumulation of amyloid beta (Aβ) and the hyperphosphorylation of tau proteins in the brain. The deposition of Aβ aggregates triggers synaptic dysfunction, hyperphosphorylation of tau, and neurodegeneration, which lead to cognitive disorders. Here, we investigated the neuroprotective effect of fisetin in the Aβ1-42 mouse model of AD. Single intracerebroventricular injections of Aβ1-42 (3 μl/5 min/mouse) markedly induced memory/synaptic deficits, neuroinflammation, and neurodegeneration. Intraperitoneal injections of fisetin at a dose of 20 mg/kg/day for 2 weeks starting 24 h after Aβ1-42 injection significantly decreased the Aβ1-42-induced accumulation of Aβ, BACE-1 expression, and hyperphosphorylation of tau protein at serine 413. Fisetin treatment also markedly reversed Aβ1-42-induced synaptic dysfunction by increasing the levels of both presynaptic (SYN and SNAP-25) and postsynaptic proteins (PSD-95, SNAP-23, p-GluR1 (Ser 845), p-CREB (Ser 133) and p-CAMKII (Thr 286) and ultimately improved mouse memory, as observed in the Morris water maze test. Fisetin significantly activated p-PI3K, p-Akt (Ser 473), and p-GSK3β (Ser 9) expression in Aβ1-42-treated mice. Moreover, fisetin prevented neuroinflammation by suppressing various activated neuroinflammatory mediators and gliosis; it also suppressed the apoptotic neurodegeneration triggered by Aβ1-42 injections in the mouse hippocampus. Fluorojade-B and immunohistochemical staining for caspase-3 revealed that fisetin prevented neurodegeneration in Aβ1-42-treated mice. Our results suggest that fisetin has a potent neuroprotective effect against Aβ1-42-induced neurotoxicity. These results demonstrate that polyphenolic flavonoids such as fisetin could be a beneficial, effective and safe neuroprotective agent for preventing neurological disorders such as AD.

  20. Cerebrospinal Fluid Levels of Amyloid Beta 1-43 Mirror 1-42 in Relation to Imaging Biomarkers of Alzheimer’s Disease

    Science.gov (United States)

    Almdahl, Ina S.; Lauridsen, Camilla; Selnes, Per; Kalheim, Lisa F.; Coello, Christopher; Gajdzik, Beata; Møller, Ina; Wettergreen, Marianne; Grambaite, Ramune; Bjørnerud, Atle; Bråthen, Geir; Sando, Sigrid B.; White, Linda R.; Fladby, Tormod

    2017-01-01

    Introduction: Amyloid beta 1-43 (Aβ43), with its additional C-terminal threonine residue, is hypothesized to play a role in early Alzheimer’s disease pathology possibly different from that of amyloid beta 1-42 (Aβ42). Cerebrospinal fluid (CSF) Aβ43 has been suggested as a potential novel biomarker for predicting conversion from mild cognitive impairment (MCI) to dementia in Alzheimer’s disease. However, the relationship between CSF Aβ43 and established imaging biomarkers of Alzheimer’s disease has never been assessed. Materials and Methods: In this observational study, CSF Aβ43 was measured with ELISA in 89 subjects; 34 with subjective cognitive decline (SCD), 51 with MCI, and four with resolution of previous cognitive complaints. All subjects underwent structural MRI; 40 subjects on a 3T and 50 on a 1.5T scanner. Forty subjects, including 24 with SCD and 12 with MCI, underwent 18F-Flutemetamol PET. Seventy-eight subjects were assessed with 18F-fluorodeoxyglucose PET (21 SCD/7 MCI and 11 SCD/39 MCI on two different scanners). Ten subjects with SCD and 39 with MCI also underwent diffusion tensor imaging. Results: Cerebrospinal fluid Aβ43 was both alone and together with p-tau a significant predictor of the distinction between SCD and MCI. There was a marked difference in CSF Aβ43 between subjects with 18F-Flutemetamol PET scans visually interpreted as negative (37 pg/ml, n = 27) and positive (15 pg/ml, n = 9), p < 0.001. Both CSF Aβ43 and Aβ42 were negatively correlated with standardized uptake value ratios for all analyzed regions; CSF Aβ43 average rho -0.73, Aβ42 -0.74. Both CSF Aβ peptides correlated significantly with hippocampal volume, inferior parietal and frontal cortical thickness and axial diffusivity in the corticospinal tract. There was a trend toward CSF Aβ42 being better correlated with cortical glucose metabolism. None of the studied correlations between CSF Aβ43/42 and imaging biomarkers were significantly different for the two A

  1. Influence of genetic variability and external regulating factors on amyloid-beta peptide aggregation

    NARCIS (Netherlands)

    Hubin, Ellen Sofie

    2014-01-01

    Protein aggregation has been associated with a wide range of highly debilitating and increasingly prevalent human diseases, ranging from neurodegenerative disorders to non-neuropathic amyloidoises. One of the most widespread neurodegenerative diseases is Alzheimer’s disease (AD), which is the leadin

  2. alpha-Synuclein enhances secretion and toxicity of amyloid beta peptides in PC12 cells

    NARCIS (Netherlands)

    Kazmierczak, Anna; Strosznajder, Joanna B.; Adamczyk, Agata

    2008-01-01

    alpha-Synuclein is the fundamental component of Lewy bodies which occur in the brain of 60% of sporadic and familial Alzheimer's disease patients. Moreover, a proteolytic fragment of alpha-synuclein, the so-called non-amyloid component of Alzheimer's disease amyloid, was found to be an integral part

  3. Amyloid beta-peptide(25-35) changes [Ca2+] in hippocampal neurons

    DEFF Research Database (Denmark)

    Mogensen, Helle Smidt; Beatty, D M; Morris, S J

    1998-01-01

    of A beta(25-35) on [Ca2+]i and intracellular H+ concentration ([H+]i) in single hippocampal neurons by real time fluorescence imaging using the Ca(2+)- and H(+)-specific ratio dyes, indo-1 and SNARF-1. Incubation of these cultures with A beta(25-35) for 3-12 days in vitro increased [Ca2+]i and [H......+]i in large, NMDA-responsive neurons....

  4. Chemokines, macrophage inflammatory protein-2 and stromal cell-derived factor-1{alpha}, suppress amyloid {beta}-induced neurotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Raman, Dayanidhi; Milatovic, Snjezana-Zaja [Department of Cancer Biology, Vanderbilt University, School of Medicine, Nashville, TN 37232 (United States); Milatovic, Dejan [Department of Pediatrics/Pediatric Toxicology, Vanderbilt University, School of Medicine, Nashville, TN 37232 (United States); Splittgerber, Ryan [Department of Cancer Biology, Vanderbilt University, School of Medicine, Nashville, TN 37232 (United States); Fan, Guo-Huang [Department of Neurobiology and Neurotoxicology, Meharry Medical College, Nashville, TN 37221 (United States); Richmond, Ann, E-mail: ann.richmond@vanderbilt.edu [VA Medical Center, Nashville, TN 37232 (United States); Department of Cancer Biology, Vanderbilt University, School of Medicine, Nashville, TN 37232 (United States)

    2011-11-15

    Alzheimer's disease (AD) is characterized by a progressive cognitive decline and accumulation of neurotoxic oligomeric peptides amyloid-{beta} (A{beta}). Although the molecular events are not entirely known, it has become evident that inflammation, environmental and other risk factors may play a causal, disruptive and/or protective role in the development of AD. The present study investigated the ability of the chemokines, macrophage inflammatory protein-2 (MIP-2) and stromal cell-derived factor-1{alpha} (SDF-1{alpha}), the respective ligands for chemokine receptors CXCR2 and CXCR4, to suppress A{beta}-induced neurotoxicity in vitro and in vivo. Pretreatment with MIP-2 or SDF-1{alpha} significantly protected neurons from A{beta}-induced dendritic regression and apoptosis in vitro through activation of Akt, ERK1/2 and maintenance of metalloproteinase ADAM17 especially with SDF-1{alpha}. Intra-cerebroventricular (ICV) injection of A{beta} led to reduction in dendritic length and spine density of pyramidal neurons in the CA1 area of the hippocampus and increased oxidative damage 24 h following the exposure. The A{beta}-induced morphometric changes of neurons and increase in biomarkers of oxidative damage, F{sub 2}-isoprostanes, were significantly inhibited by pretreatment with the chemokines MIP-2 or SDF-1{alpha}. Additionally, MIP-2 or SDF-1{alpha} was able to suppress the aberrant mislocalization of p21-activated kinase (PAK), one of the proteins involved in the maintenance of dendritic spines. Furthermore, MIP-2 also protected neurons against A{beta} neurotoxicity in CXCR2-/- mice, potentially through observed up regulation of CXCR1 mRNA. Understanding the neuroprotective potential of chemokines is crucial in defining the role for their employment during the early stages of neurodegeneration. -- Research highlights: Black-Right-Pointing-Pointer Neuroprotective ability of the chemokines MIP2 and CXCL12 against A{beta} toxicity. Black-Right-Pointing-Pointer MIP

  5. Modeling clustered activity increase in amyloid-beta positron emission tomographic images with statistical descriptors

    Directory of Open Access Journals (Sweden)

    Shokouhi S

    2015-04-01

    Full Text Available Sepideh Shokouhi,1 Baxter P Rogers,1 Hakmook Kang,2 Zhaohua Ding,1 Daniel O Claassen,3 John W Mckay,1 William R Riddle1On behalf of the Alzheimer’s Disease Neuroimaging Initiative1Department of Radiology and Radiological Sciences, Vanderbilt University Institute of Imaging Science, 2Department of Biostatistics, 3Department of Neurology, Vanderbilt University, Nashville, TN, USABackground: Amyloid-beta (Aβ imaging with positron emission tomography (PET holds promise for detecting the presence of Aβ plaques in the cortical gray matter. Many image analyses focus on regional average measurements of tracer activity distribution; however, considerable additional information is available in the images. Metrics that describe the statistical properties of images, such as the two-point correlation function (S2, have found wide applications in astronomy and materials science. S2 provides a detailed characterization of spatial patterns in images typically referred to as clustering or flocculence. The objective of this study was to translate the two-point correlation method into Aβ-PET of the human brain using 11C-Pittsburgh compound B (11C-PiB to characterize longitudinal changes in the tracer distribution that may reflect changes in Aβ plaque accumulation.Methods: We modified the conventional S2 metric, which is primarily used for binary images and formulated a weighted two-point correlation function (wS2 to describe nonbinary, real-valued PET images with a single statistical function. Using serial 11C-PiB scans, we calculated wS2 functions from two-dimensional PET images of different cortical regions as well as three-dimensional data from the whole brain. The area under the wS2 functions was calculated and compared with the mean/median of the standardized uptake value ratio (SUVR. For three-dimensional data, we compared the area under the wS2 curves with the subjects’ cerebrospinal fluid measures.Results: Overall, the longitudinal changes in wS2

  6. The Effect of Iron in MR Imaging and Transverse Relaxation of Amyloid-Beta Plaques in Alzheimer’s Disease

    OpenAIRE

    Meadowcroft, Mark D.; Peters, Douglas G.; Dewal, Rahul; Connor, James R.; Yang, Qing X.

    2014-01-01

    Dysregulation of neural iron is known to occur during the progression of Alzheimer’s disease. Visualization of amyloid-beta (Aβ) plaques with magnetic resonance imaging (MRI) has largely been credited to rapid proton relaxation in the vicinity of plaques due to focal iron deposition. The goal of this work was to determine the relationship between local relaxation and related focal iron content associated with Aβ plaques. Alzheimer’s disease (N=5) and control tissue (N=3) sample slices from th...

  7. AMYLOID-β PEPTIDE BINDS TO MICROTUBULE-ASSOCIATED PROTEIN 1B (MAP1B)

    Science.gov (United States)

    Gevorkian, Goar; Gonzalez-Noriega, Alfonso; Acero, Gonzalo; Ordoñez, Jorge; Michalak, Colette; Munguia, Maria Elena; Govezensky, Tzipe; Cribbs, David H.; Manoutcharian, Karen

    2008-01-01

    Extracellular and intraneuronal formation of amyloid-beta aggregates have been demonstrated to be involved in the pathogenesis of Alzheimer’s disease. However, the precise mechanism of amyloid-beta neurotoxicity is not completely understood. Previous studies suggest that binding of amyloid-beta to a number of targets have deleterious effects on cellular functions. In the present study we have shown for the first time that amyloid-beta 1-42 bound to a peptide comprising the microtubule binding domain of the heavy chain of microtubule-associated protein 1B by the screening of a human brain cDNA library expressed on M13 phage. This interaction may explain, in part, the loss of neuronal cytoskeletal integrity, impairment of microtubule-dependent transport and synaptic dysfunction observed previously in Alzheimer’s disease. PMID:18079022

  8. Computational optimization of AG18051 inhibitor for amyloid-beta binding alcohol dehydrogenase enzyme

    Science.gov (United States)

    Marques, Alexandra T.; Antunes, Agostinho; Fernandes, Pedro A.; Ramos, Maria J.

    Amyloid-beta (Abeta) binding alcohol dehydrogenase (ABAD) is a multifunctional enzyme involved in maintaining the homeostasis. The enzyme can also mediate some diseases, including genetic diseases, Alzheimer's disease, and possibly some prostate cancers. Potent inhibitors of ABAD might facilitate a better clarification of the functions of the enzyme under normal and pathogenic conditions and might also be used for therapeutic intervention in disease conditions mediated by the enzyme. The AG18051 is the only presently available inhibitor of ABAD. It binds in the active-site cavity of the enzyme and reacts with the NAD+ cofactor to form a covalent adduct. In this work, we use computational methods to perform a rational optimization of the AG18051 inhibitor, through the introduction of chemical substitutions directed to improve the affinity of the inhibitor to the enzyme. The molecular mechanics-Poisson-Boltzmann surface area methodology was used to predict the relative free binding energy of the different modified inhibitor-NAD-enzyme complexes. We show that it is possible to increase significantly the affinity of the inhibitor to the enzyme with small modifications, without changing the overall structure and ADME (absorption, distribution, metabolism, and excretion) properties of the original inhibitor.

  9. Nanoscale-alumina induces oxidative stress and accelerates amyloid beta (Aβ) production in ICR female mice.

    Science.gov (United States)

    Shah, Shahid Ali; Yoon, Gwang Ho; Ahmad, Ashfaq; Ullah, Faheem; Ul Amin, Faiz; Kim, Myeong Ok

    2015-10-01

    The adverse effects of nanoscale-alumina (Al2O3-NPs) have been previously demonstrated in both in vitro and in vivo studies, whereas little is known about their mechanism of neurotoxicity. It is the goal of this research to determine the toxic effects of nano-alumina on human neuroblastoma SH-SY5Y and mouse hippocampal HT22 cells in vitro and on ICR female mice in vivo. Nano-alumina displayed toxic effects on SH-SY5Y cell lines in three different concentrations also increased aluminium abundance and induced oxidative stress in HT22 cells. Nano-alumina peripherally administered to ICR female mice for three weeks increased brain aluminium and ROS production, disturbing brain energy homeostasis, and led to the impairment of hippocampus-dependent memory. Most importantly, these nano-particles induced Alzheimer disease (AD) neuropathology by enhancing the amyloidogenic pathway of Amyloid Beta (Aβ) production, aggregation and implied the progression of neurodegeneration in the cortex and hippocampus of these mice. In conclusion, these data demonstrate that nano-alumina is toxic to both cells and female mice and that prolonged exposure may heighten the chances of developing a neurodegenerative disease, such as AD.

  10. Replica exchange molecular dynamics study of the truncated amyloid beta (11-40) trimer in solution.

    Science.gov (United States)

    Ngo, Son Tung; Hung, Huynh Minh; Truong, Duc Toan; Nguyen, Minh Tho

    2017-01-18

    Amyloid beta (Aβ) oligomers are neurotoxic compounds that destroy the brain of Alzheimer's disease patients. Recent studies indicated that the trimer is one of the most cytotoxic forms of low molecular weight Aβ oligomers. As there was limited information about the structure of the Aβ trimer, either by experiment or by computation, we determined in this work the structure of the 3Aβ11-40 oligomer for the first time using the temperature replica exchange molecular dynamics simulations in the presence of an explicit solvent. More than 20.0 μs of MD simulations were performed. The probability of the β-content and random coil structure of the solvated trimer amounts to 42 ± 6 and 49 ± 7% which is in good agreement with experiments. Intermolecular interactions in central hydrophobic cores play a key role in stabilizing the oligomer. Intermolecular polar contacts between D23 and residues 24-29 replace the salt bridge D23-K28 to secure the loop region. The hydrophilic region of the N-terminus is maintained by the intermolecular polar crossing contacts H13A-Q15B and H13B-Q15C. The difference in the free energy of binding between the constituting monomers and the others amounts to -36 ± 8 kcal mol(-1). The collision cross section of the representative structures of the trimer was computed to be 1330 ± 47 Å(2), which is in good agreement with previous experiments.

  11. Analyzing and Modeling the Kinetics of Amyloid Beta Pores Associated with Alzheimer's Disease Pathology.

    Directory of Open Access Journals (Sweden)

    Ghanim Ullah

    Full Text Available Amyloid beta (Aβ oligomers associated with Alzheimer's disease (AD form Ca2+-permeable plasma membrane pores, leading to a disruption of the otherwise well-controlled intracellular calcium (Ca2+ homeostasis. The resultant up-regulation of intracellular Ca2+ concentration has detrimental implications for memory formation and cell survival. The gating kinetics and Ca2+ permeability of Aβ pores are not well understood. We have used computational modeling in conjunction with the ability of optical patch-clamping for massively parallel imaging of Ca2+ flux through thousands of pores in the cell membrane of Xenopus oocytes to elucidate the kinetic properties of Aβ pores. The fluorescence time-series data from individual pores were idealized and used to develop data-driven Markov chain models for the kinetics of the Aβ pore at different stages of its evolution. Our study provides the first demonstration of developing Markov chain models for ion channel gating that are driven by optical-patch clamp data with the advantage of experiments being performed under close to physiological conditions. Towards the end, we demonstrate the up-regulation of gating of various Ca2+ release channels due to Aβ pores and show that the extent and spatial range of such up-regulation increases as Aβ pores with low open probability and Ca2+ permeability transition into those with high open probability and Ca2+ permeability.

  12. Polarization properties of amyloid-beta plaques in Alzheimer's disease (Conference Presentation)

    Science.gov (United States)

    Baumann, Bernhard; Wöhrer, Adelheid; Ricken, Gerda; Pircher, Michael; Kovacs, Gabor G.; Hitzenberger, Christoph K.

    2016-03-01

    In histopathological practice, birefringence is used for the identification of amyloidosis in numerous tissues. Amyloid birefringence is caused by the parallel arrangement of fibrous protein aggregates. Since neurodegenerative processes in Alzheimer's disease (AD) are also linked to the formation of amyloid-beta (Aβ) plaques, optical methods sensitive to birefringence may act as non-invasive tools for Aβ identification. At last year's Photonics West, we demonstrated polarization-sensitive optical coherence tomography (PS-OCT) imaging of ex vivo cerebral tissue of advanced stage AD patients. PS-OCT provides volumetric, structural imaging based on both backscatter contrast and tissue polarization properties. In this presentation, we report on polarization-sensitive neuroimaging along with numerical simulations of three-dimensional Aβ plaques. High speed PS-OCT imaging was performed using a spectral domain approach based on polarization maintaining fiber optics. The sample beam was interfaced to a confocal scanning microscope arrangement. Formalin-fixed tissue samples as well as thin histological sections were imaged. For comparison to the PS-OCT results, ray propagation through plaques was modeled using Jones analysis and various illumination geometries and plaque sizes. Characteristic polarization patterns were found. The results of this study may not only help to understand PS-OCT imaging of neuritic Aβ plaques but may also have implications for polarization-sensitive imaging of other fibrillary structures.

  13. Biological markers of amyloid beta-related mechanisms in Alzheimer's disease.

    LENUS (Irish Health Repository)

    Hampel, Harald

    2012-02-01

    Recent research progress has given detailed knowledge on the molecular pathogenesis of Alzheimer\\'s disease (AD), which has been translated into an intense, ongoing development of disease-modifying treatments. Most new drug candidates are targeted on inhibiting amyloid beta (Abeta) production and aggregation. In drug development, it is important to co-develop biomarkers for Abeta-related mechanisms to enable early diagnosis and patient stratification in clinical trials, and to serve as tools to identify and monitor the biochemical effect of the drug directly in patients. Biomarkers are also requested by regulatory authorities to serve as safety measurements. Molecular aberrations in the AD brain are reflected in the cerebrospinal fluid (CSF). Core CSF biomarkers include Abeta isoforms (Abeta40\\/Abeta42), soluble APP isoforms, Abeta oligomers and beta-site APP-cleaving enzyme 1 (BACE1). This article reviews recent research advances on core candidate CSF and plasma Abeta-related biomarkers, and gives a conceptual review on how to implement biomarkers in clinical trials in AD.

  14. Gene expression profile of amyloid beta protein-injected mouse model for Alzheimer disease

    Institute of Scientific and Technical Information of China (English)

    Ling-na KONG; Ping-ping ZUO; Liang MU; Yan-yong LIU; Nan YANG

    2005-01-01

    Aim: To investigate the gene expression profile changes in the cerebral cortex of mice injected icv with amyloid beta-protein (Aβ) fragment 25-35 using cDNA microarray. Methods: Balb/c mice were randomly divided into a control group and Aβ-treated group. The Morris water maze test was performed to detect the effect of Aβ-injection on the learning and memory of mice. Atlas Mouse 1.2 Expression Arrays containing 1176 genes were used to investigate the gene expression pattern of each group. Results: The gene expression profiles showed that 19 genes including TBX1, NF-κB, AP-1/c-Jun, cadherin, integrin, erb-B2, and FGFR1 were up-regulated after 2 weeks oficv administration of Aβ; while 12 genes were downregulated, including NGF, glucose phosphate isomerase 1, AT motif binding factor 1, Na+/K+-ATPase, and Akt. Conclusions: The results provide important leads for pursuing a more complete understanding of the molecular events of Aβ-injection into mice with Alzheimer disease.

  15. Association of cardiovascular factors and Alzheimer's disease plasma amyloid-beta protein in subjective memory complainers.

    Science.gov (United States)

    Bates, Kristyn A; Sohrabi, Hamid R; Rodrigues, Mark; Beilby, John; Dhaliwal, Satvinder S; Taddei, Kevin; Criddle, Arthur; Wraith, Megan; Howard, Matthew; Martins, Georgia; Paton, Athena; Mehta, Pankaj; Foster, Jonathan K; Martins, Ian J; Lautenschlager, Nicola T; Mastaglia, Frank L; Laws, Simon M; Gandy, Samuel E; Martins, Ralph N

    2009-01-01

    A strong link is indicated between cardiovascular disease (CVD) and risk for developing Alzheimer's disease (AD), which may be exacerbated by the major AD genetic risk factor apolipoprotein Eepsilon4 (APOEepsilon4). Since subjective memory complaint (SMC) may potentially be an early indicator for cognitive decline, we examined CVD risk factors in a cohort of SMC. As amyloid-beta (Abeta) is considered to play a central role in AD, we hypothesized that the CVD risk profile (increased LDL, reduced HDL, and increased body fat) would be associated with plasma Abeta levels. We explored this in 198 individuals with and without SMC (average age = 63 years). Correlations between Abeta40 and HDL were observed, which were stronger in non-APOEepsilon4 carriers (rho = -0.315, p association between HDL and Abeta, which if demonstrated to be causal has implications for the development of lifestyle interventions and/or novel therapeutics. The relationship between HDL and Abeta and the potential significance of such an association needs to be validated in a larger longitudinal study.

  16. Computational modeling of the effects of amyloid-beta on release probability at hippocampal synapses

    Directory of Open Access Journals (Sweden)

    Armando eRomani

    2013-01-01

    Full Text Available The role of amyloid-beta (Aβ in brain function and in the pathogenesis of Alzheimer’s disease remains elusive. Recent publications reported that an increase in Aβ concentration perturbs pre-synaptic release in hippocampal neurons. In particular, it was shown in vitro that Aβ is an endogenous regulator of synaptic transmission at the CA3-CA1 synapse, enhancing its release probability. How this synaptic modulator influences neuronal output during physiological stimulation patterns, such as those elicited in vivo, is still unknown. Using a realistic model of hippocampal CA1 pyramidal neurons, we first implemented this Aβ-induced enhancement of release probability and validated the model by reproducing the experimental findings. We then demonstrated that this synaptic modification can significantly alter synaptic integration properties in a wide range of physiologically relevant input frequencies (from 5 to 200 Hz. Finally, we used natural input patterns, obtained from CA3 pyramidal neurons in vivo during free exploration of rats in an open field, to investigate the effects of enhanced Aβ on synaptic release under physiological conditions. The model shows that the CA1 neuronal response to these natural patterns is altered in the increased-Aβ condition, especially for frequencies in the theta and gamma ranges. These results suggest that the perturbation of release probability induced by increased Aβ can significantly alter the spike probability of CA1 pyramidal neurons and thus contribute to abnormal hippocampal function during Alzheimer’s disease.

  17. Biological markers of amyloid beta-related mechanisms in Alzheimer's disease.

    LENUS (Irish Health Repository)

    Hampel, Harald

    2010-06-01

    Recent research progress has given detailed knowledge on the molecular pathogenesis of Alzheimer\\'s disease (AD), which has been translated into an intense, ongoing development of disease-modifying treatments. Most new drug candidates are targeted on inhibiting amyloid beta (Abeta) production and aggregation. In drug development, it is important to co-develop biomarkers for Abeta-related mechanisms to enable early diagnosis and patient stratification in clinical trials, and to serve as tools to identify and monitor the biochemical effect of the drug directly in patients. Biomarkers are also requested by regulatory authorities to serve as safety measurements. Molecular aberrations in the AD brain are reflected in the cerebrospinal fluid (CSF). Core CSF biomarkers include Abeta isoforms (Abeta40\\/Abeta42), soluble APP isoforms, Abeta oligomers and beta-site APP-cleaving enzyme 1 (BACE1). This article reviews recent research advances on core candidate CSF and plasma Abeta-related biomarkers, and gives a conceptual review on how to implement biomarkers in clinical trials in AD.

  18. Amyloid-Beta Induced Changes in Vesicular Transport of BDNF in Hippocampal Neurons

    Directory of Open Access Journals (Sweden)

    Bianca Seifert

    2016-01-01

    Full Text Available The neurotrophin brain derived neurotrophic factor (BDNF is an important growth factor in the CNS. Deficits in transport of this secretory protein could underlie neurodegenerative diseases. Investigation of disease-related changes in BDNF transport might provide insights into the cellular mechanism underlying, for example, Alzheimer’s disease (AD. To analyze the role of BDNF transport in AD, live cell imaging of fluorescently labeled BDNF was performed in hippocampal neurons of different AD model systems. BDNF and APP colocalized with low incidence in vesicular structures. Anterograde as well as retrograde transport of BDNF vesicles was reduced and these effects were mediated by factors released from hippocampal neurons into the extracellular medium. Transport of BDNF was altered at a very early time point after onset of human APP expression or after acute amyloid-beta(1-42 treatment, while the activity-dependent release of BDNF remained unaffected. Taken together, extracellular cleavage products of APP induced rapid changes in anterograde and retrograde transport of BDNF-containing vesicles while release of BDNF was unaffected by transgenic expression of mutated APP. These early transport deficits might lead to permanently impaired brain functions in the adult brain.

  19. Analyzing and Modeling the Kinetics of Amyloid Beta Pores Associated with Alzheimer's Disease Pathology.

    Science.gov (United States)

    Ullah, Ghanim; Demuro, Angelo; Parker, Ian; Pearson, John E

    2015-01-01

    Amyloid beta (Aβ) oligomers associated with Alzheimer's disease (AD) form Ca2+-permeable plasma membrane pores, leading to a disruption of the otherwise well-controlled intracellular calcium (Ca2+) homeostasis. The resultant up-regulation of intracellular Ca2+ concentration has detrimental implications for memory formation and cell survival. The gating kinetics and Ca2+ permeability of Aβ pores are not well understood. We have used computational modeling in conjunction with the ability of optical patch-clamping for massively parallel imaging of Ca2+ flux through thousands of pores in the cell membrane of Xenopus oocytes to elucidate the kinetic properties of Aβ pores. The fluorescence time-series data from individual pores were idealized and used to develop data-driven Markov chain models for the kinetics of the Aβ pore at different stages of its evolution. Our study provides the first demonstration of developing Markov chain models for ion channel gating that are driven by optical-patch clamp data with the advantage of experiments being performed under close to physiological conditions. Towards the end, we demonstrate the up-regulation of gating of various Ca2+ release channels due to Aβ pores and show that the extent and spatial range of such up-regulation increases as Aβ pores with low open probability and Ca2+ permeability transition into those with high open probability and Ca2+ permeability.

  20. Low Cerebrospinal Fluid Amyloid-Beta Concentration Is Associated with Poorer Delayed Memory Recall in Women

    Directory of Open Access Journals (Sweden)

    Fanni Haapalinna

    2016-07-01

    Full Text Available Background: Data on the association of memory performance with cerebrospinal fluid (CSF biomarkers of Alzheimer's disease (AD are inconsistent. The Consortium to Establish a Registry for Alzheimer's Disease neuropsychological battery (CERAD-NB is a commonly used validated cognitive tool; however, only few studies have examined its relationship with CSF biomarkers for AD. We studied the correlation of pathological changes in CSF biomarkers with various CERAD-NB subtests and total scores. Methods: Out of 79 subjects (36 men, mean age 70.5 years, 63 had undergone an assessment of cognitive status with CERAD-NB and a CSF biomarker analysis due to a suspected memory disorder, and 16 were controls with no memory complaint.Results: In women we found a significant correlation between CSF amyloid-beta (Aβ1-42 and several subtests measuring delayed recall. Word List Recall correlated with all markers: Aβ1-42 (r = 0.323, p = 0.035, tau (r = -0.304, p = 0.050 and hyperphosphorylated tau (r = -0.331, p = 0.046. No such correlations were found in men. Conclusions: CSF biomarkers correlate with delayed memory scores in CERAD-NB in women, and women may have more actual AD pathology at the time of the investigations than men.

  1. The HMG-CoA reductase inhibitor, atorvastatin, attenuates the effects of acute administration of amyloid-beta1-42 in the rat hippocampus in vivo.

    Science.gov (United States)

    Clarke, Rachael M; O'Connell, Florence; Lyons, Anthony; Lynch, Marina A

    2007-01-01

    One response of the brain to stressors is to increase microglial activation with the consequent production of proinflammatory cytokines like interleukin-1beta (IL-1beta), which has been shown to exert an inhibitory effect on long-term potentiation (LTP) in the hippocampus. It has been consistently shown, particularly in vitro, that amyloid-beta (Abeta) peptides increase activation of microglia, while its inhibitory effect on LTP is well documented, and associated with the Abeta-induced increase in IL-1beta. Here we set out to establish whether the Abeta-induced inhibition of LTP in perforant path-granule cell synapses, was coupled with evidence of microglial activation and to assess whether atorvastatin, which is used primarily in the treatment of hyperlipidaemia but which possesses anti-inflammatory properties, might modulate the effect of Abeta on LTP. We report that intracerebroventricular injection of Abeta increased expression of several markers of microglial activation, and in parallel, inhibited LTP in dentate gyrus. The data show that atorvastatin abrogated the Abeta-induced microglial activation and the associated deficit in LTP. On the basis of the evidence presented, we propose that the action of atorvastatin is mediated by its ability to increase production of the anti-inflammatory cytokine, interleukin-4, which we report mimics several of the actions of atorvastatin in the rat hippocampus.

  2. Antibodies targeted to the brain with image-guided focused ultrasound reduces amyloid-beta plaque load in the TgCRND8 mouse model of Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Jessica F Jordão

    Full Text Available Immunotherapy for Alzheimer's disease (AD relies on antibodies directed against toxic amyloid-beta peptide (Abeta, which circulate in the bloodstream and remove Abeta from the brain. In mouse models of AD, the administration of anti-Abeta antibodies directly into the brain, in comparison to the bloodstream, was shown to be more efficient at reducing Abeta plaque pathology. Therefore, delivering anti-Abeta antibodies to the brain of AD patients may also improve treatment efficiency. Transcranial focused ultrasound (FUS is known to transiently-enhance the permeability of the blood-brain barrier (BBB, allowing intravenously administered therapeutics to enter the brain. Our goal was to establish that anti-Abeta antibodies delivered to the brain using magnetic resonance imaging-guided FUS (MRIgFUS can reduce plaque pathology. To test this, TgCRND8 mice received intravenous injections of MRI and FUS contrast agents, as well as anti-Abeta antibody, BAM-10. MRIgFUS was then applied transcranially. Within minutes, the MRI contrast agent entered the brain, and BAM-10 was later found bound to Abeta plaques in targeted cortical areas. Four days post-treatment, Abeta pathology was significantly reduced in TgCRND8 mice. In conclusion, this is the first report to demonstrate that MRIgFUS delivery of anti-Abeta antibodies provides the combined advantages of using a low dose of antibody and rapidly reducing plaque pathology.

  3. Aggregation, impaired degradation and immunization targeting of amyloid-beta dimers in Alzheimer’s disease: a stochastic modelling approach

    Directory of Open Access Journals (Sweden)

    Proctor Carole J

    2012-07-01

    Full Text Available Abstract Background Alzheimer’s disease (AD is the most frequently diagnosed neurodegenerative disorder affecting humans, with advanced age being the most prominent risk factor for developing AD. Despite intense research efforts aimed at elucidating the precise molecular underpinnings of AD, a definitive answer is still lacking. In recent years, consensus has grown that dimerisation of the polypeptide amyloid-beta (Aß, particularly Aß42, plays a crucial role in the neuropathology that characterise AD-affected post-mortem brains, including the large-scale accumulation of fibrils, also referred to as senile plaques. This has led to the realistic hope that targeting Aß42 immunotherapeutically could drastically reduce plaque burden in the ageing brain, thus delaying AD onset or symptom progression. Stochastic modelling is a useful tool for increasing understanding of the processes underlying complex systems-affecting disorders such as AD, providing a rapid and inexpensive strategy for testing putative new therapies. In light of the tool’s utility, we developed computer simulation models to examine Aß42 turnover and its aggregation in detail and to test the effect of immunization against Aß dimers. Results Our model demonstrates for the first time that even a slight decrease in the clearance rate of Aß42 monomers is sufficient to increase the chance of dimers forming, which could act as instigators of protofibril and fibril formation, resulting in increased plaque levels. As the process is slow and levels of Aβ are normally low, stochastic effects are important. Our model predicts that reducing the rate of dimerisation leads to a significant reduction in plaque levels and delays onset of plaque formation. The model was used to test the effect of an antibody mediated immunological response. Our results showed that plaque levels were reduced compared to conditions where antibodies are not present. Conclusion Our model supports the current

  4. Protein corona composition of gold nanoparticles/nanorods affects amyloid beta fibrillation process

    Science.gov (United States)

    Mirsadeghi, Somayeh; Dinarvand, Rassoul; Ghahremani, Mohammad Hossein; Hormozi-Nezhad, Mohammad Reza; Mahmoudi, Zohreh; Hajipour, Mohammad Javad; Atyabi, Fatemeh; Ghavami, Mahdi; Mahmoudi, Morteza

    2015-03-01

    Protein fibrillation process (e.g., from amyloid beta (Aβ) and α-synuclein) is the main cause of several catastrophic neurodegenerative diseases such as Alzheimer's and Parkinson diseases. During the past few decades, nanoparticles (NPs) were recognized as one of the most promising tools for inhibiting the progress of the disease by controlling the fibrillation kinetic process; for instance, gold NPs have a strong capability to inhibit Aβ fibrillations. It is now well understood that a layer of biomolecules would cover the surface of NPs (so called ``protein corona'') upon the interaction of NPs with protein sources. Due to the fact that the biological species (e.g., cells and amyloidal proteins) ``see'' the protein corona coated NPs rather than the pristine coated particles, one should monitor the fibrillation process of amyloidal proteins in the presence of corona coated NPs (and not pristine coated ones). Therefore, the previously obtained data on NPs effects on the fibrillation process should be modified to achieve a more reliable and predictable in vivo results. Herein, we probed the effects of various gold NPs (with different sizes and shapes) on the fibrillation process of Aβ in the presence and absence of protein sources (i.e., serum and plasma). We found that the protein corona formed a shell at the surface of gold NPs, regardless of their size and shape, reducing the access of Aβ to the gold inhibitory surface and, therefore, affecting the rate of Aβ fibril formation. More specifically, the anti-fibrillation potencies of various corona coated gold NPs were strongly dependent on the protein source and their concentrations (10% serum/plasma (simulation of an in vitro milieu) and 100% serum/plasma (simulation of an in vivo milieu)).Protein fibrillation process (e.g., from amyloid beta (Aβ) and α-synuclein) is the main cause of several catastrophic neurodegenerative diseases such as Alzheimer's and Parkinson diseases. During the past few decades

  5. Homeotic Gene teashirt (tsh has a neuroprotective function in amyloid-beta 42 mediated neurodegeneration.

    Directory of Open Access Journals (Sweden)

    Michael T Moran

    Full Text Available BACKGROUND: Alzheimer's disease (AD is a debilitating age related progressive neurodegenerative disorder characterized by the loss of cognition, and eventual death of the affected individual. One of the major causes of AD is the accumulation of Amyloid-beta 42 (Aβ42 polypeptides formed by the improper cleavage of amyloid precursor protein (APP in the brain. These plaques disrupt normal cellular processes through oxidative stress and aberrant signaling resulting in the loss of synaptic activity and death of the neurons. However, the detailed genetic mechanism(s responsible for this neurodegeneration still remain elusive. METHODOLOGY/ PRINCIPLE FINDINGS: We have generated a transgenic Drosophila eye model where high levels of human Aβ42 is misexpressed in the differentiating photoreceptor neurons of the developing eye, which phenocopy Alzheimer's like neuropathology in the neural retina. We have utilized this model for a gain of function screen using members of various signaling pathways involved in the development of the fly eye to identify downstream targets or modifiers of Aβ42 mediated neurodegeneration. We have identified the homeotic gene teashirt (tsh as a suppressor of the Aβ42 mediated neurodegenerative phenotype. Targeted misexpression of tsh with Aβ42 in the differentiating retina can significantly rescue neurodegeneration by blocking cell death. We found that Tsh protein is absent/ downregulated in the neural retina at this stage. The structure function analysis revealed that the PLDLS domain of Tsh acts as an inhibitor of the neuroprotective function of tsh in the Drosophila eye model. Lastly, we found that the tsh paralog, tiptop (tio can also rescue Aβ42 mediated neurodegeneration. CONCLUSIONS/SIGNIFICANCE: We have identified tsh and tio as new genetic modifiers of Aβ42 mediated neurodegeneration. Our studies demonstrate a novel neuroprotective function of tsh and its paralog tio in Aβ42 mediated neurodegeneration. The

  6. A Simulation Model of Periarterial Clearance of Amyloid-beta from the Brain

    Directory of Open Access Journals (Sweden)

    Alexandra Katharina Diem

    2016-02-01

    Full Text Available The accumulation of soluble and insoluble amyloid-beta (A-beta in the brain indicates failure of elimination of A-beta from the brain with age and Alzheimer's disease. There is a variety of mechanisms for elimination of A-beta from the brain. They include the action of microglia and enzymes together with receptor-mediated absorption of A-beta into the blood and periarterial lymphatic drainage of A-beta. Although the brain possesses no conventional lymphatics, experimental studies have shown that fluid and solutes, such as A-beta, are eliminated from the brain along 100 nm wide basement membranes in the walls of cerebral capillaries and arteries. This lymphatic drainage pathway is reflected in the deposition of A-beta in the walls of human arteries with age and Alzheimer's disease as cerebral amyloid angiopathy (CAA. Initially, A-beta diffuses through the extracellular spaces of grey matter in the brain and then enters basement membranes in capillaries and arteries to flow out of the brain. Although diffusion through the extracellular spaces of the brain has been well characterised, the exact mechanism whereby perivascular elimination of A-beta occurs has not been resolved. Here we use a computational model to describe the process of periarterial drainage in the context of diffusion in the brain, demonstrating that periarterial drainage along basement membranes is very rapid compared with diffusion. Our results are a validation of experimental data and are significant in the context of failure of periarterial drainage as a mechanism underlying the pathogenesis of AD as well as complications associated with its immunotherapy.

  7. A genome-wide association meta-analysis of plasma Aβ peptides concentrations in the elderly

    NARCIS (Netherlands)

    V. Chouraki (Vincent); R.F.A.G. de Bruijn (Renée); J. Chapuis; J.C. Bis (Joshua); C. Reitz (Christiane); S. Schraen (Susanna); C.A. Ibrahim-Verbaas (Carla); B. Grenier-Boley (Benjamin); C. Delay; R. Rogers; F. Demiautte; A. Mounier; A.L. Fitzpatrick (Annette); C. Berr (Claudine); J.-F. Dartigues; A.G. Uitterlinden (André); A. Hofman (Albert); M.M.B. Breteler (Monique); J.T. Becker; M. Lathrop (Mark); N. Schupf; A. Alperovitch (Annick); R. Mayeux (Richard); C.M. van Duijn (Cornelia M.); L. Buee (Luc); P. Amouyel (Philippe); O.L. Lopez (Oscar); M.A. Ikram (Arfan); C. Tzourio (Christophe); J.-C. Lambert (J.)

    2014-01-01

    textabstractAmyloid beta (Aβ) peptides are the major components of senile plaques, one of the main pathological hallmarks of Alzheimer disease (AD). However, Aβ peptides' functions are not fully understood and seem to be highly pleiotropic. We hypothesized that plasma Aβ peptides concentrations coul

  8. Mercury induced the Accumulation of Amyloid Beta (Aβ) in PC12 Cells: The Role of Production and Degradation of Aβ

    OpenAIRE

    Song, Ji-Won; Choi, Byung-Sun

    2013-01-01

    Extracellular accumulation of amyloid beta protein (Aβ) plays a central role in Alzheimer’s disease (AD). Some metals, such as copper, lead, and aluminum can affect the Aβ accumulation in the brain. However, the effect of mercury on Aβ accumulation in the brain is not clear. Thus, this study was proposed to estimate whether mercury concentration affects Aβ accumulation in PC12 cells. We treated 10, 100, and 1000 nM HgCl2 (Hg) or CH3HgCl2 (MeHg) for 48 hr in PC12 cells. After treatment, Aβ40 i...

  9. Protective effects of components of the Chinese herb grassleaf sweetlfag rhizome on PC12 cells incubated with amyloid-beta42

    Institute of Scientific and Technical Information of China (English)

    Zi-hao Liang; Xiao-hui Cheng; Zhi-gang Ruan; Han Wang; Shan-shan Li; Jing Liu; Guo-ying Li; Su-min Tian

    2015-01-01

    The major ingredients of grassleaf sweetlfag rhizome areβ-asarone and eugenol, which can cross the blood-brain barrier and protect neurons. This study aimed to observe the neuroprotective effects and mechanisms ofβ-asarone and eugenol, components of the Chinese herb grassleaf sweetlfag rhizome, on PC12 cells. First, PC12 cells were cultured with different concentrations (between 1 × 10–10 M and 1 × 10–5 M) ofβ-asarone and eugenol. Survival rates of PC12 cells were not significantly affected. Second, PC12 cells incubated with amyloid-beta42, which reduced cell survival, were cultured under the same conditions (1 × 10–6 Mβ-asarone and eugenol). The survival rates of PC12 cells significantly increased, while expression levels of the mRNAs for the pro-apoptotic protein Bax decreased, and those for the anti-apoptotic protein Bcl mRNA increased. In addition, the combination ofβ-asarone with eugenol achieved better results than either component alone. Our experimental ifndings indicate that bothβ-asarone and eugenol protect PC12 cells through inhibiting apoptosis, and that the combination of the two is better than either alone.

  10. Protective effects of components of the Chinese herb grassleaf sweetflag rhizome on PC12 cells incubated with amyloid-beta42

    Directory of Open Access Journals (Sweden)

    Zi-hao Liang

    2015-01-01

    Full Text Available The major ingredients of grassleaf sweetflag rhizome are β-asarone and eugenol, which can cross the blood-brain barrier and protect neurons. This study aimed to observe the neuroprotective effects and mechanisms of β-asarone and eugenol, components of the Chinese herb grassleaf sweetflag rhizome, on PC12 cells. First, PC12 cells were cultured with different concentrations (between 1 × 10 -10 M and 1 × 10 -5 M of β-asarone and eugenol. Survival rates of PC12 cells were not significantly affected. Second, PC12 cells incubated with amyloid-beta42, which reduced cell survival, were cultured under the same conditions (1 × 10 -6 M β-asarone and eugenol. The survival rates of PC12 cells significantly increased, while expression levels of the mRNAs for the pro-apoptotic protein Bax decreased, and those for the anti-apoptotic protein Bcl mRNA increased. In addition, the combination of β-asarone with eugenol achieved better results than either component alone. Our experimental findings indicate that both β-asarone and eugenol protect PC12 cells through inhibiting apoptosis, and that the combination of the two is better than either alone.

  11. Association between IgM anti-herpes simplex virus and plasma amyloid-beta levels.

    Directory of Open Access Journals (Sweden)

    Catherine Féart

    Full Text Available OBJECTIVE: Herpes simplex virus (HSV reactivation has been identified as a possible risk factor for Alzheimer's disease (AD and plasma amyloid-beta (Aβ levels might be considered as possible biomarkers of the risk of AD. The aim of our study was to investigate the association between anti-HSV antibodies and plasma Aβ levels. METHODS: The study sample consisted of 1222 subjects (73.9 y in mean from the Three-City cohort. IgM and IgG anti-HSV antibodies were quantified using an ELISA kit, and plasma levels of Aβ(1-40 and Aβ(1-42 were measured using an xMAP-based assay technology. Cross-sectional analyses of the associations between anti-HSV antibodies and plasma Aβ levels were performed by multi-linear regression. RESULTS: After adjustment for study center, age, sex, education, and apolipoprotein E-e4 polymorphism, plasma Aβ(1-42 and Aβ(1-40 levels were specifically inversely associated with anti-HSV IgM levels (β = -20.7, P=0.001 and β = -92.4, P=0.007, respectively. In a sub-sample with information on CLU- and CR1-linked SNPs genotyping (n=754, additional adjustment for CR1 or CLU markers did not modify these associations (adjustment for CR1 rs6656401, β = -25.6, P=0.002 for Aβ(1-42 and β = -132.7, P=0.002 for Aβ(1-40; adjustment for CLU rs2279590, β = -25.6, P=0.002 for Aβ(1-42 and β = -134.8, P=0.002 for Aβ(1-40. No association between the plasma Aβ(1-42-to-Aβ(1-40 ratio and anti-HSV IgM or IgG were evidenced. CONCLUSION: High anti-HSV IgM levels, markers of HSV reactivation, are associated with lower plasma Aβ(1-40 and Aβ(1-42 levels, which suggest a possible involvement of the virus in the alterations of the APP processing and potentially in the pathogenesis of AD in human.

  12. The Role of Neutrophil Proteins on the Amyloid Beta-RAGE Axis.

    Science.gov (United States)

    Stock, Amanda J; Kasus-Jacobi, Anne; Wren, Jonathan D; Sjoelund, Virginie H; Prestwich, Glenn D; Pereira, H Anne

    We previously showed an elevated expression of the neutrophil protein, cationic antimicrobial protein of 37kDa (CAP37), in brains of patients with Alzheimer's disease (AD), suggesting that CAP37 could be involved in AD pathogenesis. The first step in determining how CAP37 might contribute to AD pathogenesis was to identify the receptor through which it induces cell responses. To identify a putative receptor, we performed GAMMA analysis to determine genes that positively correlated with CAP37 in terms of expression. Positive correlations with ligands for the receptor for advanced glycation end products (RAGE) were observed. Additionally, CAP37 expression positively correlated with two other neutrophil proteins, neutrophil elastase and cathepsin G. Enzyme-linked immunosorbent assays (ELISAs) demonstrated an interaction between CAP37, neutrophil elastase, and cathepsin G with RAGE. Amyloid beta 1-42 (Aβ1-42), a known RAGE ligand, accumulates in AD brains and interacts with RAGE, contributing to Aβ1-42 neurotoxicity. We questioned whether the binding of CAP37, neutrophil elastase and/or cathepsin G to RAGE could interfere with Aβ1-42 binding to RAGE. Using ELISAs, we determined that CAP37 and neutrophil elastase inhibited binding of Aβ1-42 to RAGE, and this effect was reversed by protease inhibitors in the case of neutrophil elastase. Since neutrophil elastase and cathepsin G have enzymatic activity, mass spectrometry was performed to determine the proteolytic activity of all three neutrophil proteins on Aβ1-42. All three neutrophil proteins bound to Aβ1-42 with different affinities and cleaved Aβ1-42 with different kinetics and substrate specificities. We posit that these neutrophil proteins could modulate neurotoxicity in AD by cleaving Aβ1-42 and influencing the Aβ1-42 -RAGE interaction. Further studies will be required to determine the biological significance of these effects and their relevance in neurodegenerative diseases such as AD. Our findings

  13. Investigation on apoptosis of neuronal cells induced by Amyloid beta-Protein

    Institute of Scientific and Technical Information of China (English)

    罗本燕; 徐增斌; 陈智; 陈峰; 唐敏

    2004-01-01

    Objective: To construct a PC12 cell strain with neuronal differentiation, and observe the apoptosis and pro-liferation activity effects induced these cells by Amyloid beta-Protein (Aβ3-43). Methods: 1) PC12 cells in logarithmic growth phase were subcultured for 24 h. After the culture fluid was changed, the cells were treated with Rat-β-NGF and cultured for 9 days. 2) Neuronal differentiation of PC 12 cells in logarithmic growth phase were divided into four groups:control group (0), experimental group (1), experimental group (2) and experimental group (3). The concentrations of Aβ in the four groups were 0 μmol/L, 1.25 μmol/L, 2.5 μmol/L and 5 μmol/L, respectively. The cells were harvested at 24, 48 and 72 h later and stained with AnnexinV-FITC/PI after centrifugation and washing. Then flow cytometry was conducted to examine the apoptosis percentage. 3) NGF-induced PC12 cells were selected and Aβ with different concentrations was added. The final concentrations of Aβ were 0 μmol/L, 1.25 μmol/L, 2.5 μmol/L and 5 μmol/L, respectively. After the cells were incubated in an atmosphere of 5% CO2 at 37 ℃ in an incubator for 72 h, the OD values were examined. Results: 1)Neuronal differentiated PC12 cell lines were successfully established. 2) Flow cytometric examination indicated that Aβ(1.25, 2.5, and 5.0 μmol/L) could effectively induce apoptosis of neuronal-differented cells at the 24 h, 48 h and 72 h time points. 3) Aβ (0-5.00 μmol/L) had no obvious effect on proliferation or restraining of the neuronal differentiation of the PC 12 cells after a 72 h interacting process. Conclusion: This investigation revealed successful neuronal differentiation of the PC12 cell strain. The induction of apoptosis of the neurocytes by various concentrations of Aβ was observed and the in-fluence of Aβ on induced proliferation of PC 12 cells by Rat-β-NGF was revealed. This study may provide basis for future research on the molecular cure of AD and interdiction of AD

  14. HIV-1 stimulates nuclear entry of amyloid beta via dynamin dependent EEA1 and TGF-β/Smad signaling

    Energy Technology Data Exchange (ETDEWEB)

    András, Ibolya E., E-mail: iandras@med.miami; Toborek, Michal, E-mail: mtoborek@med.miami.edu

    2014-04-15

    Clinical evidence indicates increased amyloid deposition in HIV-1-infected brains, which contributes to neurocognitive dysfunction in infected patients. Here we show that HIV-1 exposure stimulates amyloid beta (Aβ) nuclear entry in human brain endothelial cells (HBMEC), the main component of the blood–brain barrier (BBB). Treatment with HIV-1 and/or Aβ resulted in concurrent increase in early endosomal antigen-1 (EEA1), Smad, and phosphorylated Smad (pSmad) in nuclear fraction of HBMEC. A series of inhibition and silencing studies indicated that Smad and EEA1 closely interact by influencing their own nuclear entry; the effect that was attenuated by dynasore, a blocker of GTP-ase activity of dynamin. Importantly, inhibition of dynamin, EEA1, or TGF-β/Smad effectively attenuated HIV-1-induced Aβ accumulation in the nuclei of HBMEC. The present study indicates that nuclear uptake of Aβ involves the dynamin-dependent EEA1 and TGF-β/Smad signaling pathways. These results identify potential novel targets to protect against HIV-1-associated dysregulation of amyloid processes at the BBB level. - Highlights: • HIV-1 induces nuclear accumulation of amyloid beta (Aβ) in brain endothelial cells. • EEA-1 and TGF-Β/Smad act in concert to regulate nuclear entry of Aβ. • Dynamin appropriates the EEA-1 and TGF-Β/Smad signaling. • Dynamin serves as a master regulator of HIV-1-induced nuclear accumulation of Aβ.

  15. An integrated multi-study analysis of intra-subject variability in cerebrospinal fluid amyloid-beta concentrations collected by lumbar puncture and indwelling lumbar catheter

    NARCIS (Netherlands)

    Lucey, B.P.; Gonzales, C.; Das, U.; Li, J.; Siemers, E.R.; Slemmon, J.R.; Bateman, R.J.; Huang, Y.; Fox, G.B.; Claassen, J.A.; Slats, D.; Verbeek, M.M.; Tong, G.; Soares, H.; Savage, M.J.; Kennedy, M.; Forman, M.; Sjogren, M.; Margolin, R.; Chen, X.; Farlow, M.R.; Dean, R.A.; Waring, J.F.

    2015-01-01

    INTRODUCTION: Amyloid-beta (Abeta) has been investigated as a diagnostic biomarker and therapeutic drug target. Recent studies found that cerebrospinal fluid (CSF) Abeta fluctuates over time, including as a diurnal pattern, and increases in absolute concentration with serial collection. It is

  16. Amyloid beta1–42 and the phoshorylated tau threonine 231 in brains of aged cynomolgus monkeys (Macaca fascicularis)

    DEFF Research Database (Denmark)

    Darusman, Huda Shalahudin; Gjedde, Albert; Sajuthi, Dondin

    2014-01-01

    Pathological hallmarks indicative of Alzheimer's disease (AD), which are the plaques of amyloid beta1-42 and neurofibrillary tangles, were found in brain of aged cynomolgus monkey. The aim of this study was to investigate if aged monkeys exhibiting spatial memory impairment and levels of biomarke...

  17. Forebrain microglia from wild-type but not adult 5xFAD mice prevent amyloid-beta plaque formation in organotypic hippocampal slice cultures

    NARCIS (Netherlands)

    Hellwig, Sabine; Masuch, Annette; Nestel, Sigrun; Katzmarski, Natalie; Meyer-Luehmann, Melanie; Biber, Knut

    2015-01-01

    The role of microglia in amyloid-beta (A beta) deposition is controversial. In the present study, an organotypic hippocampal slice culture (OHSC) system with an in vivo-like microglial-neuronal environment was used to investigate the potential contribution of microglia to A beta plaque formation. We

  18. Simvastatin improves cerebrovascular function and counters soluble amyloid-beta, inflammation and oxidative stress in aged APP mice.

    Science.gov (United States)

    Tong, Xin-Kang; Nicolakakis, Nektaria; Fernandes, Priscilla; Ongali, Brice; Brouillette, Jonathan; Quirion, Rémi; Hamel, Edith

    2009-09-01

    Cerebrovascular dysfunctions appear to contribute to Alzheimer's disease (AD) pathogenesis and the associated cognitive decline. Recently, it has been suggested that statins could be beneficial to AD patients independently from their cholesterol-lowering effects. Using 10 month-old amyloid precursor protein transgenic mice (APP mice), we sought to reverse cerebrovascular, neuronal and memory impairments with simvastatin (20 mg/kg/day, 8 weeks). Simvastatin improved reactivity of cerebral arteries, rescued the blood flow response to neuronal activation, attenuated oxidative stress and inflammation, and reduced cortical soluble amyloid-beta (Abeta) levels and the number of Abeta plaque-related dystrophic neurites. However, at such an advanced stage of the pathology, it failed to reduce Abeta plaque load and normalize cholinergic and memory deficits. These findings demonstrate that low-dose simvastatin treatment in aged APP mice largely salvages cerebrovascular function and has benefits on several AD landmarks, which could explain some of the positive effects of statins reported in AD patients.

  19. Amyloid Beta and Tau Proteins as Therapeutic Targets for Alzheimer’s Disease Treatment: Rethinking the Current Strategy

    Directory of Open Access Journals (Sweden)

    Siddhartha Mondragón-Rodríguez

    2012-01-01

    Full Text Available Alzheimer’s disease (AD is defined by the concurrence of accumulation of abnormal aggregates composed of two proteins: Amyloid beta (Aβ and tau, and of cellular changes including neurite degeneration and loss of neurons and cognitive functions. Based on their strong association with disease, genetically and pathologically, it is not surprising that there has been a focus towards developing therapies against the aggregated structures. Unfortunately, current therapies have but mild benefit. With this in mind we will focus on the relationship of synaptic plasticity with Aβ and tau protein and their role as potential targets for the development of therapeutic drugs. Finally, we will provide perspectives in developing a multifactorial strategy for AD treatment.

  20. Amyloid beta protein inhibits cellular MTT reduction not by suppression of mitochondrial succinate dehydrogenase but by acceleration of MTT formazan exocytosis in cultured rat cortical astrocytes.

    Science.gov (United States)

    Abe, K; Saito, H

    1998-08-01

    Alzheimer's disease amyloid beta protein (Abeta) inhibits cellular reduction of the dye 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT). Kaneko et al. have previously hypothesized that Abeta works by suppressing mitochondrial succinate dehydrogenase (SDH), but Liu and Schubert have recently demonstrated that Abeta decreases cellular MTT reduction by accelerating the exocytosis of MTT formazan in neuronal cells. To ask which is the case in astrocytes, we compared the effects of Abeta and 3-nitropropionic acid (3-NP), a specific SDH inhibitor, on MTT reduction in cultured rat cortical astrocytes. Treatment with 3-NP (10 mM) decreased cellular activity of MTT reduction, regardless of the time of incubation with MTT. On the other hand. Abeta-induced inhibition of cellular MTT reduction was dependent on the time of incubation with MTT. The cells treated with Abeta (0.1-1000 nM) exhibited normal capacity for MTT reduction at an early stage of incubation ( 1 h). Microscopic examination revealed that Abeta treatment accelerated the appearance of needle-like MTT formazan crystals at the cell surface. These observations support that Abeta accelerates the exocytosis of MTT formazan in astrocytes. In addition to inhibition of MTT reduction, Abeta is known to induce morphological changes in astrocytes. Following addition of Abeta (20 microM), polygonal astrocytes changed into process-bearing stellate cells. To explore a possible linkage between these two effects of Abeta, we tested if astrocyte stellation is induced by agents that mimic the effect of Abeta on MTT reduction. Cholesterol (5 5000 nM) and lysophosphatidic acid (0.2-20 microg/ml) were found to accelerate the exocytosis of MTT formazan in a similar manner to Abeta, but failed to induce astrocyte stellation. Therefore, Abeta-induced inhibition of MTT reduction is unlikely to be directly linked to its effect on astrocyte morphology.

  1. The amyloid-beta25-35 injection into the CA1 region of the neonatal rat hippocampus impairs the long-term memory because of an increase of nitric oxide.

    Science.gov (United States)

    Díaz, Alfonso; De Jesús, Luis; Mendieta, Liliana; Calvillo, Minerva; Espinosa, Blanca; Zenteno, Edgar; Guevara, Jorge; Limón, Ilhuicamina Daniel

    2010-01-04

    Alzheimer's disease (AD) is characterized by the amyloid-beta (Abeta) aggregation but it is unclear when this process begins. Previously, we showed that amyloid-beta(25-35) (Abeta(25-35)) increases the nitric oxide (NO) pathways and causes neurodegenerative effects in rats. The excessive increase of NO during brain development can promote a persistent oxidative stress, but the role of the Abeta(25-35) in the neonatal age and its effects over the long term is unclear. Our aim was to evaluate if the Abeta(25-35) injection on postnatal day 7 causes loss in spatial memory by NO pathways in adult rats. Our results showed that neonatal-Abeta(25-35) injection into the hippocampus (Hp) causes significant impairments in the spatial memory after 90 days. The NO levels were found increased and argynophilic in the Hp. Other evidence of neuronal damage was an increase of the immunoreactivity for 3-nitrotyrosine (3-NT) and the glial-fibrilar acid protein (GFAP) in the Hp of the Abeta(25-35) group. In contrast, these effects were blocked by the administration of L-NAME (inhibitor of nitric oxide synthase) before the injection of Abeta(25-35). The L-NAME plus Abeta(25-35) group showed a better performance in the spatial memory compared to the Abeta(25-35) group. In addition in this group we found a decrease of NO, 3-NT and neurodegeneration in the Hp compared to the Abeta(25-35) group. This finding is a novel result about the role of Abeta(25-35) during the neonatal stage that enhances the NO production, which appears to impair the spatial memory in adult rats.

  2. Dual Targeting of Amyloid-beta Clearance and Neuroinflammation as a Novel Therapeutic Approach against Alzheimer's Disease

    Science.gov (United States)

    Batarseh, Yazan S.

    Amyloid-beta (Abeta) cascade hypothesis suggests that Alzheimer's disease (AD) is related to an imbalance between the production and clearance of Abeta peptide. Sporadic AD has been related to faulty clearance of Abeta. Accumulation of Abeta oligomers (Abetao) has been linked to several downstream toxic effects including neuroinflammation, synaptic loss, and cellular death. Abeta transport across the blood-brain barrier (BBB) is one of the primary pathways for reducing Abeta load in the brain, which work hand in hand with other parenchymal mechanisms to reduce Abeta levels including intra and extracellular degradation by a family of Abeta degrading enzymes. Established AD drugs, such as the cholinesterase inhibitor donepezil, have been reported to have several additional non-cholinergic effects that alter Abeta pathology; reduce Abeta load, anti-inflammatory response, and attenuate synaptic loss. However, their limited effect only lead to minor improvements in AD symptoms without improving the prognosis of the disease. The lack of effective medical treatment for AD led to several studies focusing on establishing new therapeutic approaches to reduce Abeta pathology. We aimed to identify and characterize natural products that are capable of enhancing the BBB clearance of Abeta in addition to reducing neuroinflammation. Our first project was to investigate the role of oleocanthal (one of the active ingredients in extra-virgin olive oil; EVOO) on attenuating Abeta toxic effects on neurons and astrocytes. We developed Abeta oligomers (Abetao) induced inflammatory environment by exposing neurons and astrocytes to accumulative doses of Abetao to investigate oleocanthal effect on modulating Abetao pathological changes in neurons and astrocytes. Our findings demonstrated oleocanthal prevented Abetao-induced synaptic proteins, SNAP-25 and PSD-95, down-regulation in neurons, attenuated Abetao-induced inflammation, and restored glutamine transporter (GLT1) and glucose

  3. Amyloid-beta Isoform Metabolism Quantitation by Stable Isotope Labeled Kinetics

    OpenAIRE

    Mawuenyega, Kwasi G.; Kasten, Tom; Sigurdson, Wendy; Bateman, Randall J.

    2013-01-01

    Abundant evidence suggests a central role for the amyloid-β (Aβ) peptide in Alzheimer’s disease (AD) pathogenesis. Production and clearance of different Aβ isoforms have been established as targets of proposed disease-modifying therapeutic treatments of AD. However, previous studies used multiple sequential purification steps to isolate the isoforms individually and quantitate them based on a common mid-domain peptide. We created a method to simultaneously purify Aβ isoforms and quantitate th...

  4. Aging and amyloid beta-induced oxidative DNA damage and mitochondrial dysfunction in Alzheimer's disease: implications for early intervention and therapeutics.

    Science.gov (United States)

    Mao, Peizhong; Reddy, P Hemachandra

    2011-11-01

    Alzheimer's disease (AD) is an age-related progressive neurodegenerative disease affecting thousands of people in the world and effective treatment is still not available. Over two decades of intense research using AD postmortem brains, transgenic mouse and cell models of amyloid precursor protein and tau revealed that amyloid beta (Aβ) and hyperphosphorylated tau are synergistically involved in triggering disease progression. Accumulating evidence also revealed that aging and amyloid beta-induced oxidative DNA damage and mitochondrial dysfunction initiate and contributes to the development and progression of the disease. The purpose of this article is to summarize the latest progress in aging and AD, with a special emphasis on the mitochondria, oxidative DNA damage including methods of its measurement. It also discusses the therapeutic approaches against oxidative DNA damage and treatment strategies in AD.

  5. Effects of macromolecular crowding on amyloid beta (16-22) aggregation using coarse-grained simulations.

    Science.gov (United States)

    Latshaw, David C; Cheon, Mookyung; Hall, Carol K

    2014-11-26

    To examine the effect of crowding on protein aggregation, discontinuous molecular dynamics (DMD) simulations combined with an intermediate resolution protein model, PRIME20, were applied to a peptide/crowder system. The systems contained 192 Aβ(16-22) peptides and crowders of diameters 5, 20, and 40 Å, represented here by simple hard spheres, at crowder volume fractions of 0.00, 0.10, and 0.20. Results show that both crowder volume fraction and crowder diameter have a large impact on fibril and oligomer formation. The addition of crowders to a system of peptides increases the rate of oligomer formation, shifting from a slow ordered formation of oligomers in the absence of crowders, similar to nucleated polymerization, to a fast collapse of peptides and subsequent rearrangement characteristic of nucleated conformational conversion with a high maximum in the number of peptides in oligomers as the total crowder surface area increases. The rate of conversion from oligomers to fibrils also increases with increasing total crowder surface area, giving rise to an increased rate of fibril growth. In all cases, larger volume fractions and smaller crowders provide the greatest aggregation enhancement effects. We also show that the size of the crowders influences the formation of specific oligomer sizes. In our simulations, the 40 Å crowders enhance the number of dimers relative to the numbers of trimers, hexamers, pentamers, and hexamers, while the 5 Å crowders enhance the number of hexamers relative to the numbers of dimers, trimers, tetramers, and pentamers. These results are in qualitative agreement with previous experimental and theoretical work.

  6. Astrocytes containing amyloid beta-protein (Abeta)-positive granules are associated with Abeta40-positive diffuse plaques in the aged human brain.

    OpenAIRE

    Funato, H.; Yoshimura, M.; T. Yamazaki; Saido, T C; Ito, Y; Yokofujita, J.; Okeda, R.; Ihara, Y.

    1998-01-01

    Amyloid beta-protein (Abeta) is the major component of senile plaques that emerge in the cortex during aging and appear most abundantly in Alzheimer's disease. In the course of our immunocytochemical study on a large number of autopsy cases, we noticed, in many aged nondemented cases, the presence of unique diffuse plaques in the cortex distinct from ordinary diffuse plaques by immunocytochemistry. The former were amorphous, very faintly Abeta-immunoreactive plaques resembling diffuse plaques...

  7. ApoE mimetic peptide decreases Aβ production in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Pak Daniel TS

    2010-04-01

    Full Text Available Abstract Background Apolipoprotein E (apoE is postulated to affect brain Aβ levels through multiple mechanisms--by altering amyloid precursor protein (APP processing, Aβ degradation, and Aβ clearance. We previously showed that an apoE-derived peptide containing a double repeat of the receptor-binding region was similarly effective in increasing APP processing in vivo. Here, we further examined whether peptides containing tandem repeats of the apoE receptor-binding region (amino acids 141-149 affected APP trafficking, APP processing, and Aβ production. Results We found that peptides containing a double or triple tandem repeat of the apoE receptor-binding region, LRKLRKRLL, increased cell surface APP and decreased Aβ levels in PS1-overexpressing PS70 cells and in primary neurons. This effect was potentiated by a sequential increase in the number of apoE receptor-binding domain repeats (trimer > dimer > monomer. We previously showed that the apoE dimer increased APP CTF in vivo; to determine whether the dimer also affected secreted APP or Aβ levels, we performed a single hippocampal injection of the apoE dimer in wild-type mice and analyzed its effect on APP processing. We found increased sAPPα and decreased Aβ levels at 24 hrs after treatment, suggesting that the apoE dimer may increase α-secretase cleavage. Conclusions These data suggest that small peptides consisting of tandem repeats of the apoE receptor-binding region are sufficient to alter APP trafficking and processing. The potency of these peptides increased with increasing repeats of the receptor binding domain of apoE. In addition, in vivo administration of the apoE peptide (dimer increased sAPPα and decreased Aβ levels in wild-type mice. Overall, these findings contribute to our understanding of the effects of apoE on APP processing and Aβ production both in vitro and in vivo.

  8. Cholesterol enhances amyloid {beta} deposition in mouse retina by modulating the activities of A{beta}-regulating enzymes in retinal pigment epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jiying [Department of Ophthalmology and Visual Science, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519 (Japan); Ohno-Matsui, Kyoko, E-mail: k.ohno.oph@tmd.ac.jp [Department of Ophthalmology and Visual Science, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519 (Japan); Morita, Ikuo [Section of Cellular Physiological Chemistry, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519 (Japan)

    2012-08-10

    Highlights: Black-Right-Pointing-Pointer Cholesterol-treated RPE produces more A{beta} than non-treated RPE. Black-Right-Pointing-Pointer Neprilysin expression and activity decreased in cholesterol-treated RPE. Black-Right-Pointing-Pointer {alpha}-Secretase expression and activity decreased in cholesterol-treated RPE. Black-Right-Pointing-Pointer Cholesterol-enriched diet induced subRPE deposits in aged mice. Black-Right-Pointing-Pointer A{beta} were present in cholesterol-enriched-diet-induced subRPE deposits in aged mice. -- Abstract: Subretinally-deposited amyloid {beta} (A{beta}) is a main contributor of developing age-related macular degeneration (AMD). However, the mechanism causing A{beta} deposition in AMD eyes is unknown. Hypercholesterolemia is a significant risk for developing AMD. Thus, we investigated the effects of cholesterol on A{beta} production in retinal pigment epithelial (RPE) cells in vitro and in the mouse retina in vivo. RPE cells isolated from senescent (12-month-old) C57BL/6 mice were treated with 10 {mu}g/ml cholesterol for 48 h. A{beta} amounts in culture supernatants were measured by ELISA. Activity and expression of enzymes and proteins that regulate A{beta} production were examined by activity assay and real time PCR. The retina of mice fed cholesterol-enriched diet was examined by transmission electron microscopy. Cholesterol significantly increased A{beta} production in cultured RPE cells. Activities of A{beta} degradation enzyme; neprilysin (NEP) and anti-amyloidogenic secretase; {alpha}-secretase were significantly decreased in cell lysates of cholesterol-treated RPE cells compared to non-treated cells, but there was no change in the activities of {beta}- or {gamma}-secretase. mRNA levels of NEP and {alpha}-secretase (ADAM10 and ADAM17) were significantly lower in cholesterol-treated RPE cells than non-treated cells. Senescent (12-month-old) mice fed cholesterol-enriched chow developed subRPE deposits containing A{beta}, whereas

  9. The Peptide Vaccine Combined with Prior Immunization of a Conventional Diphtheria-Tetanus Toxoid Vaccine Induced Amyloid β Binding Antibodies on Cynomolgus Monkeys and Guinea Pigs

    Directory of Open Access Journals (Sweden)

    Akira Yano

    2015-01-01

    Full Text Available The reduction of brain amyloid beta (Aβ peptides by anti-Aβ antibodies is one of the possible therapies for Alzheimer’s disease. We previously reported that the Aβ peptide vaccine including the T-cell epitope of diphtheria-tetanus combined toxoid (DT induced anti-Aβ antibodies, and the prior immunization with conventional DT vaccine enhanced the immunogenicity of the peptide. Cynomolgus monkeys were given the peptide vaccine subcutaneously in combination with the prior DT vaccination. Vaccination with a similar regimen was also performed on guinea pigs. The peptide vaccine induced anti-Aβ antibodies in cynomolgus monkeys and guinea pigs without chemical adjuvants, and excessive immune responses were not observed. Those antibodies could preferentially recognize Aβ40, and Aβ42 compared to Aβ fibrils. The levels of serum anti-Aβ antibodies and plasma Aβ peptides increased in both animals and decreased the brain Aβ40 level of guinea pigs. The peptide vaccine could induce a similar binding profile of anti-Aβ antibodies in cynomolgus monkeys and guinea pigs. The peptide vaccination could be expected to reduce the brain Aβ peptides and their toxic effects via clearance of Aβ peptides by generated antibodies.

  10. Metabolic changes precede proteostatic dysfunction in a Drosophila model of Abeta peptide toxicity

    DEFF Research Database (Denmark)

    Ott, Stanislav; Vishnivetskaya, Anastasia; Malmendal, Anders

    2016-01-01

    Amyloid beta (Aβ) peptide aggregation is linked to the initiation of Alzheimer's disease; accordingly, aggregation-prone isoforms of Aβ, expressed in the brain, shorten the lifespan of Drosophila melanogaster. However, the lethal effects of Aβ are not apparent until after day 15. We used shibireT...

  11. The effect of iron in MRI and transverse relaxation of amyloid-beta plaques in Alzheimer's disease.

    Science.gov (United States)

    Meadowcroft, Mark D; Peters, Douglas G; Dewal, Rahul P; Connor, James R; Yang, Qing X

    2015-03-01

    Dysregulation of neural iron is known to occur during the progression of Alzheimer's disease. The visualization of amyloid-beta (Aβ) plaques with MRI has largely been credited to rapid proton relaxation in the vicinity of plaques as a result of focal iron deposition. The goal of this work was to determine the relationship between local relaxation and related focal iron content associated with Aβ plaques. Alzheimer's disease (n=5) and control tissue (n=3) sample slices from the entorhinal cortex were treated overnight with the iron chelator deferoxamine or saline, and microscopic gradient-echo MRI datasets were taken. Subsequent to imaging, the same slices were stained for Aβ and iron, and then compared with regard to parametric R2 * relaxation maps and gradient-echo-weighted MR images. Aβ plaques in both chelated and unchelated tissue generated MR hypo-intensities and showed relaxation rates significantly greater than the surrounding tissue. The transverse relaxation rate associated with amyloid plaques was determined not to be solely a result of iron load, as much of the relaxation associated with Aβ plaques remained following iron chelation. The data indicate a dual relaxation mechanism associated with Aβ plaques, such that iron and plaque composition synergistically produce transverse relaxation.

  12. IFN-gamma promotes complement expression and attenuates amyloid plaque deposition in amyloid beta precursor protein transgenic mice.

    Science.gov (United States)

    Chakrabarty, Paramita; Ceballos-Diaz, Carolina; Beccard, Amanda; Janus, Christopher; Dickson, Dennis; Golde, Todd E; Das, Pritam

    2010-05-01

    Reactive gliosis surrounding amyloid beta (Abeta) plaques is an early feature of Alzheimer's disease pathogenesis and has been postulated to represent activation of the innate immune system in an apparently ineffective attempt to clear or neutralize Abeta aggregates. To evaluate the role of IFN-gamma-mediated neuroinflammation on the evolution of Abeta pathology in transgenic (Tg) mice, we have expressed murine IFN-gamma (mIFN-gamma) in the brains of Abeta precursor protein (APP) Tg mice using recombinant adeno-associated virus serotype 1. Expression of mIFN-gamma in brains of APP TgCRND8 mice results in robust noncell autonomous activation of microglia and astrocytes, and a concomitant significant suppression of Abeta deposition. In these mice, mIFN-gamma expression upregulated multiple glial activation markers, early components of the complement cascade as well as led to infiltration of Ly-6c positive peripheral monocytes but no significant effects on APP levels, APP processing or steady-state Abeta levels were noticed in vivo. Taken together, these results suggest that mIFN-gamma expression in the brain suppresses Abeta accumulation through synergistic effects of activated glia and components of the innate immune system that enhance Abeta aggregate phagocytosis.

  13. [Compensatory mechanisms to heal neuroplasticity impairment under Alzheiemer's disease neurodegeneration. I: The role of amyloid beta and its' precursor protein].

    Science.gov (United States)

    Kudinov, A R; Kudinova, N V; Kezlia, E V; Kozyrev, K M; Medvedev, A E; Berezov, T T

    2012-01-01

    In-depth scholar literature analysis of Alzheimer's disease neurodegenerative features of amyloid beta protein neurochemistry modification and excessive phosphorylation of tau protein (and associated neuronal cytoskeleton rearrangements) are secondary phenomena. At early disease stage these neurobiochemical mechanisms are reversible and serve to heal an impairment of biophysical properties of neuronal membranes, neurotransmission, basic neuronal function and neuroplasticity, while preserving anatomical and functional brain fields. Abeta and tau could well serve to biochemically restore physico-chemical properties of neual membranes due to a role these proteins play in lipid metabolism. Under such scenario therapeutic block of aggregation and plaque formation of Abeta and inhibition of tau phosphorylation, as well as pharmaceutical modification of other secondary neurodegenerative features (such as a cascade of oxidative stress reactions) are unable to provide an effective cure of Alzheimer's disease and related pathologies of the Central and peripheral nervous systems, because they are not arraying primary pathagenetic cause. We review the role of Abeta in compensatory mechanisms of neuroplasticity restoration under normal physiological condition and Alzheimer's disease.

  14. Metabolic Characterization of Intact Cells Reveals Intracellular Amyloid Beta but Not Its Precursor Protein to Reduce Mitochondrial Respiration

    Science.gov (United States)

    Schaefer, Patrick M.; von Einem, Bjoern; Walther, Paul; Calzia, Enrico; von Arnim, Christine A. F.

    2016-01-01

    One hallmark of Alzheimer´s disease are senile plaques consisting of amyloid beta (Aβ), which derives from the processing of the amyloid precursor protein (APP). Mitochondrial dysfunction has been linked to the pathogenesis of Alzheimer´s disease and both Aβ and APP have been reported to affect mitochondrial function in isolated systems. However, in intact cells, considering a physiological localization of APP and Aβ, it is pending what triggers the mitochondrial defect. Thus, the aim of this study was to dissect the impact of APP versus Aβ in inducing mitochondrial alterations with respect to their subcellular localization. We performed an overexpression of APP or beta-site amyloid precursor protein cleaving enzyme 1 (BACE1), increasing APP and Aβ levels or Aβ alone, respectively. Conducting a comprehensive metabolic characterization we demonstrate that only APP overexpression reduced mitochondrial respiration, despite lower extracellular Aβ levels compared to BACE overexpression. Surprisingly, this could be rescued by a gamma secretase inhibitor, oppositionally indicating an Aβ-mediated mitochondrial toxicity. Analyzing Aβ localization revealed that intracellular levels of Aβ and an increased spatial association of APP/Aβ with mitochondria are associated with reduced mitochondrial respiration. Thus, our data provide marked evidence for a prominent role of intracellular Aβ accumulation in Alzheimer´s disease associated mitochondrial dysfunction. Thereby it highlights the importance of the localization of APP processing and intracellular transport as a decisive factor for mitochondrial function, linking two prominent hallmarks of neurodegenerative diseases. PMID:28005987

  15. A systematic review of amyloid-beta peptides as putative mediators of the association between affective disorders and Alzheimer's disease

    DEFF Research Database (Denmark)

    Abbasowa, L.; Heegaard, N. H. H.

    2014-01-01

    Background: Affective disorders are associated with an increased occurrence of cognitive deficits and have been linked to cognitive impairment and Alzheimer's disease. The putative molecular mechanisms involved in these associations are however not clear. The aim of this systematic review was to ...

  16. Metabolic changes may precede proteostatic dysfunction in a Drosophila model of amyloid beta peptide toxicity

    DEFF Research Database (Denmark)

    Ott, Stanislav; Vishnivetskaya, Anastasia; Malmendal, Anders;

    2016-01-01

    in flies expressing Aβ in their brains. We observed 2 genotype-linked metabolomic signals, the first reported the presence of any Aβ isoform and the second the effects of the lethal Arctic Aβ. Lethality was specifically associated with signs of oxidative respiration dysfunction and oxidative stress....

  17. Ab initio molecular simulations on specific interactions between amyloid beta and monosaccharides

    Science.gov (United States)

    Nomura, Kazuya; Okamoto, Akisumi; Yano, Atsushi; Higai, Shin'ichi; Kondo, Takashi; Kamba, Seiji; Kurita, Noriyuki

    2012-09-01

    Aggregation of amyloid β (Aβ) peptides, which is a key pathogenetic event in Alzheimer's disease, can be caused by cell-surface saccharides. We here investigated stable structures of the solvated complexes of Aβ with some types of monosaccharides using molecular simulations based on protein-ligand docking and classical molecular mechanics methods. Moreover, the specific interactions between Aβ and the monosaccharides were elucidated at an electronic level by ab initio fragment molecular orbital calculations. Based on the results, we proposed which type of monosaccharide prefers to have large binding affinity to Aβ and inhibit the Aβ aggregation.

  18. Lipopolysaccharide impairs amyloid beta efflux from brain: altered vascular sequestration, cerebrospinal fluid reabsorption, peripheral clearance and transporter function at the blood–brain barrier

    Directory of Open Access Journals (Sweden)

    Erickson Michelle A

    2012-06-01

    Full Text Available Abstract Background Defects in the low density lipoprotein receptor-related protein-1 (LRP-1 and p-glycoprotein (Pgp clearance of amyloid beta (Aβ from brain are thought to contribute to Alzheimer’s disease (AD. We have recently shown that induction of systemic inflammation by lipopolysaccharide (LPS results in impaired efflux of Aβ from the brain. The same treatment also impairs Pgp function. Here, our aim is to determine which physiological routes of Aβ clearance are affected following systemic inflammation, including those relying on LRP-1 and Pgp function at the blood–brain barrier. Methods CD-1 mice aged between 6 and 8 weeks were treated with 3 intraperitoneal injections of 3 mg/kg LPS at 0, 6, and 24 hours and studied at 28 hours. 125I-Aβ1-42 or 125I-alpha-2-macroglobulin injected into the lateral ventricle of the brain (intracerebroventricular (ICV or into the jugular vein (intravenous (IV was used to quantify LRP-1-dependent partitioning between the brain vasculature and parenchyma and peripheral clearance, respectively. Disappearance of ICV-injected 14 C-inulin from brain was measured to quantify bulk flow of cerebrospinal fluid (CSF. Brain microvascular protein expression of LRP-1 and Pgp was measured by immunoblotting. Endothelial cell localization of LRP-1 was measured by immunofluorescence microscopy. Oxidative modifications to LRP-1 at the brain microvasculature were measured by immunoprecipitation of LRP-1 followed by immunoblotting for 4-hydroxynonenal and 3-nitrotyrosine. Results We found that LPS: caused an LRP-1-dependent redistribution of ICV-injected Aβ from brain parenchyma to brain vasculature and decreased entry into blood; impaired peripheral clearance of IV-injected Aβ; inhibited reabsorption of CSF; did not significantly alter brain microvascular protein levels of LRP-1 or Pgp, or oxidative modifications to LRP-1; and downregulated LRP-1 protein levels and caused LRP-1 mislocalization in cultured brain

  19. Effects of sodium ferulate on amyloid-beta-induced MKK3/MKK6-p38 MAPK-Hsp27 signal pathway and apoptosis in rat hippocampus

    Institute of Scientific and Technical Information of China (English)

    Ying JIN; Ying FAN; En-zhi YAN; Zhuo LIU; Zhi-hong ZONG; Zhi-min QI

    2006-01-01

    Aim: To observe the effects of sodium ferulate (SF) on amyloid beta (Aβ)1-40-induced p38 mitogen-activated protein kinase (MAPK) signal transduction pathway and the neuroprotective effects of SF. Methods: Rats were injected intracerebroventricularly with Aβ1-40. Six hours after injection, Western blotting was used to determine the expressions of phosphorylated mitogen-activated protein kinase kinase (MKK) 3/MKK6, phospho-p38 MAPK, interleukin (IL)-lβ, phospho-MAPK activating protein kinase 2 (MAPKAPK-2), the 27 kDa heat shock protein (Hsp27), procaspase-9, -3, and -7 cleavage, and poly (ADP-ribose) poly-merase (PARP) cleavage. Seven days after injection, Nissl staining was used to observe the morphological change in hippocampal CA1 regions. Results: Intracerebroventricular injection of Aβ1-40 induced an increase in phosphorylated MKK3/MKK6 and p38 MAPK expressions in hippocampal tissue. These increases, in combination with enhanced interleukin (IL)-lβ protein expression and reduced phospho-MAPKAPK2 and phospho-Hsp27 expression, mediate the Aβ-induced activation of cell death events as assessed by cleavage of procaspase-9, -3, and -7 and caspase-3 substrate PARP cleavage. Pretreatment with SF (100 mg/kg and 200 mg/kg daily, 3 weeks) significantly prevented Aβ1-40-induced increases in phosphorylated MKK3/MKK6 and p38 MAPK expression. The Aβ1-40-induced increase in IL-1β protein level was attenuated by pretreatment with SF. In addition, Aβ1-40-induced decreases in phosphorylated MAPKAPK2 and Hsp27 expression were abrogated by administration of SF. In parallel with these findings, Aβ1-40-induced changes in activation of caspase-9, caspase-7, and caspase-3 were inhibited by pretreatment with SF. Conclusion: SF prevents Aβ1-40-induced neurotoxicity through suppression of MKK3/MKK6-p38 MAPK activity and IL-lβ expression and upregulation of phospho-Hsp27 expression.

  20. Effect of combination of extracts of ginseng and ginkgo biloba on acetylcholine in amyloid beta-protein-treated rats determined by an improved HPLC

    Institute of Scientific and Technical Information of China (English)

    Jian-xun LIU; Wei-hong CONG; Li XU; Jian-nong WANG

    2004-01-01

    AIM: To determine the concentration of acetylcholine (ACh) in amyloid beta-protein (Aβ) treated rats and offer a method determining ACh as well. METHODS: A 1-month combination of extrats of ginseng and ginkgo biloba(Naoweikang) ig administration to rats was performed daily after bilateral injection of Aβ1-40 (4 g/L, 1 μL for each side) into hippocampus. After decollation, homogenizing, and centrifuging and extracting, a high pressure liquid chromatographic (HPLC) method using electrochemical detection (ECD) combined with two immobilized enzyme reactors was used to determine ACh in rat whole brain. RESULTS: With a mobile phase consisting of disodium hydrogen orthophosphate, tetramethylammonium chloride (TMAC1), octanesulfonic acid sodium salt (OSA) and"Reagent MB" at a final pH of 8.0, ACh was determined while removing the interfering choline in less than 10 min at a flow rate of 0.35 mL/min on a platinum (Pt) working electrode at a potential of +300 mV vs a solid-state palladium (Pd) reference electrode. Linear regression analysis of peak area vs concentration demonstrated linearity in the 28.01 to 1400.06 μg/L injection range. The r-value was 0.9978. The limit of detection (LOD) is 0.28 ng on column. ACh in whole brain decreased by 20.34 % (from 162.1±32.7 to 134.7±14.0 μg/L, P<0.05) after bilateral injection of Aβ into rat hippocampus. After Naoweikang administration (31 and 15.5 mg/kg, respectively), ACh increased by 19.97 % (from 134.7+14.0 to 161.6+26.2 μg/L, P<0.05) and 18.56 % (from 134.7+14.0 to 159.7+22.9 μg/L, P<0.05), respectively. CONCLUSION: Naoweikang significantly increased the level of ACh in whole brain of Aβ treated rats. And a sensitive, selective and reliable method for routinely determining ACh in rat whole brain was established in this study.

  1. Low background and high contrast PET imaging of amyloid-{beta} with [{sup 11}C]AZD2995 and [{sup 11}C]AZD2184 in Alzheimer's disease patients

    Energy Technology Data Exchange (ETDEWEB)

    Forsberg, Anton; Andersson, Jan; Varnaes, Katarina; Halldin, Christer [Karolinska Institutet, Centre for Psychiatry Research, Department of Clinical Neuroscience, Stockholm (Sweden); Jureus, Anders; Swahn, Britt-Marie; Sandell, Johan; Julin, Per; Svensson, Samuel [AstraZeneca Research and Development, Neuroscience Research and Therapy Area, Soedertaelje (Sweden); Cselenyi, Zsolt; Schou, Magnus; Johnstroem, Peter; Farde, Lars [Karolinska Institutet, Centre for Psychiatry Research, Department of Clinical Neuroscience, Stockholm (Sweden); Karolinska Hospital, AstraZeneca Translational Sciences Centre, PET CoE, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm (Sweden); Eriksdotter, Maria; Freund-Levi, Yvonne [Karolinska Institutet, Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Stockholm (Sweden); Karolinska University Hospital, Department of Geriatric Medicine, Stockholm (Sweden); Jeppsson, Fredrik [AstraZeneca Research and Development, Neuroscience Research and Therapy Area, Soedertaelje (Sweden); Karolinska Institutet, Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Stockholm (Sweden)

    2013-04-15

    The aim of this study was to evaluate AZD2995 side by side with AZD2184 as novel PET radioligands for imaging of amyloid-{beta} in Alzheimer's disease (AD). In vitro binding of tritium-labelled AZD2995 and AZD2184 was studied and compared with that of the established amyloid-{beta} PET radioligand PIB. Subsequently, a first-in-human in vivo PET study was performed using [{sup 11}C]AZD2995 and [{sup 11}C]AZD2184 in three healthy control subjects and seven AD patients. AZD2995, AZD2184 and PIB were found to share the same binding site to amyloid-{beta}. [{sup 3}H]AZD2995 had the highest signal-to-background ratio in brain tissue from patients with AD as well as in transgenic mice. However, [{sup 11}C]AZD2184 had superior imaging properties in PET, as shown by larger effect sizes comparing binding potential values in cortical regions of AD patients and healthy controls. Nevertheless, probably due to a lower amount of nonspecific binding, the group separation of the distribution volume ratio values of [{sup 11}C]AZD2995 was greater in areas with lower amyloid-{beta} load, e.g. the hippocampus. Both AZD2995 and AZD2184 detect amyloid-{beta} with high affinity and specificity and also display a lower degree of nonspecific binding than that reported for PIB. Overall [{sup 11}C]AZD2184 seems to be an amyloid-{beta} radioligand with higher uptake and better group separation when compared to [{sup 11}C]AZD2995. However, the very low nonspecific binding of [{sup 11}C]AZD2995 makes this radioligand potentially interesting as a tool to study minute levels of amyloid-{beta}. This sensitivity may be important in investigating, for example, early prodromal stages of AD or in the longitudinal study of a disease modifying therapy. (orig.)

  2. 大鼠海马内注射β淀粉样蛋白1-40抑制铜蓝蛋白表达%Decreasing ceruloplasmin expression induced by amyloid β-peptide (1-40)injection in rat hippocampus

    Institute of Scientific and Technical Information of China (English)

    李艳伟; 赵晋英; 周泽江; 黄泽智; 李琳

    2013-01-01

    0bjective:To explore the effects of amyloid beta-peptide 1-40 (Aβ1-40) on ceruloplasmin (Cp) expression in the hippocampus of rats.Methods:Male SD rats (290 ± 10 g) were injected Aβ1-40 in the hippocampus and their hippocampuses were obtained after injection 1 week,2 weeks,3 weeks and 4 weeks,respectively.The expression of GPI-Cp mRNA was measured by reverse transcription polymerase chain reaction (RT-PCR).The expression of GPI-Cp protein was examined by immunohistochemistry.Results:The expression of GPI-Cp mRNA and protein was shown in the hippocampus of rats,including epithelial cell of choroid plexus,ependymal cell,astrocyte of hippocampus and vascular endothelial cell,but mild in pyramidal cell and not in granulosa cell.The time-dependent decrease of GPI-Cp mRNA and protein expression were shown in the hippocampus of rats injected Aβ1-40 (P < 0.01).Conclusion:In the hippocampus of rats,the Aβ1-40 injection induced the decrease of GPI-Cp expression,which may result in increase of iron concentration of hippocampus and may be involved in the pathogenesis of AD.%目的:通过检测阿尔茨海默病(Alzheimer disease,AD)模型大鼠海马铜蓝蛋白(glycan-phosphatidylinositol ceruloplasmin,GPI-Cp)的变化,探讨AD时脑铁增高的机制.方法:取雄性(290±10)g SD大鼠,经海马内注射(amyloid beta-peptide 1-40,Aβ1-40)建立AD模型,于1、2、3和4周取各组大鼠脑组织,分离海马,用RT-PCR检测GPI-Cp mRNA表达情况,免疫组织化学染色检测GPI-Cp蛋白表达情况.结果:海马的星形胶质细胞、血管内皮细胞、室管膜细胞均有GPI-Cp的mRNA和蛋白表达;而海马的锥体细胞仅轻度表达,颗粒细胞不表达.注射Aβ1-40后,模型组海马GPI-Cp mRNA和蛋白表达均随着时间延长逐渐降低,具有统计学意义(P<0.01).结论:海马内注射Aβ1-40可引起大鼠海马GPI-Cp表达减少,GPI-Cp表达减少可能是AD时脑铁增高的原因.

  3. Inhibitory effects of Eleutherococcus senticosus extracts on amyloid beta(25-35)-induced neuritic atrophy and synaptic loss.

    Science.gov (United States)

    Tohda, Chihiro; Ichimura, Mahoko; Bai, Yanjing; Tanaka, Ken; Zhu, Shu; Komatsu, Katsuko

    2008-07-01

    Neurons with atrophic neurites may remain alive and therefore may have the potential to regenerate even when neuronal death has occurred in some parts of the brain. This study aimed to explore effects of drugs that can facilitate the regeneration of neurites and the reconstruction of synapses even in severely damaged neurons. We investigated the effects of Eleutherococcus senticosus extracts on the regeneration of neurites and the reconstruction of synapses in rat cultured cortical neurons damaged by amyloid beta (Abeta)(25-35). Treatment with Abeta(25-35) (10 microM) induced axonal and dendritic atrophies and synaptic loss in cortical neurons. Subsequent treatment with the methanol extract and the water extract of E. senticosus (10 - 1000 ng/ml) resulted in significant axonal and dendritic regenerations and reconstruction of neuronal synapses. Co-application of the extract and Abeta(25-35) attenuated Abeta(25-35)-induced neuronal death. We investigated neurite outgrowth activities of eleutherosides B and E and isoflaxidin, which are known as major compounds in E. senticosus. Although eleutheroside B protected against Abeta(25-35)-induced dendritic and axonal atrophies, the activities of eleutheroside E and isofraxidin were less than that of eleutheroside B. Although the contents of these three compounds in the water extract were less than in the methanol extract, restoring activities against neuronal damages were not different between the two extracts. In conclusion, extracts of E. senticosus protect against neuritic atrophy and cell death under Abeta treatment, and one of active constituents may be eleutheroside B.

  4. Alzheimer’s Toxic Amyloid Beta Oligomers: Unwelcome Visitors to the Na/K ATPase alpha3 Docking Station

    Science.gov (United States)

    DiChiara, Thomas; DiNunno, Nadia; Clark, Jeffrey; Bu, Riana Lo; Cline, Erika N.; Rollins, Madeline G.; Gong, Yuesong; Brody, David L.; Sligar, Stephen G.; Velasco, Pauline T.; Viola, Kirsten L.; Klein, William L.

    2017-01-01

    Toxic amyloid beta oligomers (AβOs) are known to accumulate in Alzheimer’s disease (AD) and in animal models of AD. Their structure is heterogeneous, and they are found in both intracellular and extracellular milieu. When given to CNS cultures or injected ICV into non-human primates and other non-transgenic animals, AβOs have been found to cause impaired synaptic plasticity, loss of memory function, tau hyperphosphorylation and tangle formation, synapse elimination, oxidative and ER stress, inflammatory microglial activation, and selective nerve cell death. Memory loss and pathology in transgenic models are prevented by AβO antibodies, while Aducanumab, an antibody that targets AβOs as well as fibrillar Aβ, has provided cognitive benefit to humans in early clinical trials. AβOs have now been investigated in more than 3000 studies and are widely thought to be the major toxic form of Aβ. Although much has been learned about the downstream mechanisms of AβO action, a major gap concerns the earliest steps: How do AβOs initially interact with surface membranes to generate neuron-damaging transmembrane events? Findings from Ohnishi et al (PNAS 2005) combined with new results presented here are consistent with the hypothesis that AβOs act as neurotoxins because they attach to particular membrane protein docks containing Na/K ATPase-α3, where they inhibit ATPase activity and pathologically restructure dock composition and topology in a manner leading to excessive Ca++ build-up. Better understanding of the mechanism that makes attachment of AβOs to vulnerable neurons a neurotoxic phenomenon should open the door to therapeutics and diagnostics targeting the first step of a complex pathway that leads to neural damage and dementia. PMID:28356893

  5. Cerebrospinal fluid levels of amyloid beta 1-43 in patients with amnestic mild cognitive impairment or early Alzheimer’s disease: a 2-year follow-up study

    Directory of Open Access Journals (Sweden)

    Camilla eLauridsen

    2016-03-01

    Full Text Available Abstract IntroductionBiomarkers that will reliably predict the onset of Alzheimer’s disease (AD are urgently needed. Although cerebrospinal fluid (CSF amyloid beta 1-42 (Aβ42, total tau and phosphorylated tau can be used to complement the clinical diagnosis of AD, amnestic mild cognitive impairment (aMCI, the prodromal phase of AD, is heterogeneous. Biomarkers should be able to determine which patients with aMCI are at greatest risk of AD. Histological studies and animal models indicate that amyloid beta 1-43 (Aβ43 aggregates early, and may play a role in the pathological process of AD. We have examined levels of CSF Aβ43 in a two-year longitudinal study of aMCI and early AD. Materials and methodsCSF was collected at baseline, and after one and two years from patients with AD (n=19, and patients with aMCI (n=42. Of these, 21 progressed to AD during the two years of study, whereas 21 did not. Controls (n=32 were lumbar punctured at baseline only. CSF analyses of Aβ43, Aβ42 and total tau were carried out with ELISA.ResultsAt baseline, CSF Aβ43, CSF Aβ42 and ratios with total tau could be used to separate controls from all three patient groups. CSF Aβ43, but not Aβ42, could separate patients with aMCI who progressed to AD during the two years of follow-up, from those that did not. The CSF total tau/Aβ43 ratio had a slightly but significantly larger area under the receiver operating characteristic curve when compared to the CSF total tau/Aβ42 ratio. CSF Aβ43 levels, but not Aβ42 levels, decreased from baseline to two years in the AD group.Discussion and conclusionCSF Aβ43 was demonstrated to be significantly reduced in patients already by the time that aMCI or AD was diagnosed, compared to controls, and this change must have occurred during the preclinical period. Since our results suggested that CSF Aβ43 distinguishes between subgroups of patients with aMCI better than CSF Aβ42, it may prove to be a useful additional biomarker for

  6. Peptide YY and glucagon-like peptide-1 contribute to decreased food intake after Roux-en-Y gastric bypass surgery

    DEFF Research Database (Denmark)

    Svane, M S; Jørgensen, N B; Bojsen-Møller, K N;

    2016-01-01

    BACKGROUND/OBJECTIVES: Exaggerated postprandial secretion of glucagon-like peptide-1 (GLP-1) and peptide YY (PYY) may explain appetite reduction and weight loss after Roux-en-Y gastric bypass (RYGB), but causality has not been established. We hypothesized that food intake decreases after surgery...

  7. Protective effect of Wnt-5a against amyloid beta-induced memory impairment in rats

    Institute of Scientific and Technical Information of China (English)

    Guili Zhang; Lu Lu; Yaping Ge; Fang Deng; Ying Zhang; Jiachun Feng

    2011-01-01

    Recent studies suggest that the activation of the Wnt signaling pathway improves memory function in rats. This study investigated the effects of Wnt-5a on amyloid β (Aβ)-induced cognitive impairment. Aβ25-35 was injected into the rat right lateral ventricle to induce Alzheimer's disease-associated pathology, and Wnt-5a was injected as a potential therapeutic treatment. Immunofluorescence staining showed that compared with normal rats, Aβ25-35 significantly decreased postsynaptic density-95 protein expression in the rat hippocampal CA1 region, but Wnt-5a pretreatment blocked this decrease. This study shows that Wnt-5a can reduce Aβ-induced cognitive impairment, and that it has the potential to be a new therapeutic strategy for the treatment of Alzheimer's disease.

  8. Brain-derived neurotrophic factor and TrkB expression in the "oldest-old," the 90+ Study: correlation with cognitive status and levels of soluble amyloid-beta.

    Science.gov (United States)

    Michalski, Bernadeta; Corrada, Maria M; Kawas, Claudia H; Fahnestock, Margaret

    2015-12-01

    Factors associated with maintaining good cognition into old age are unclear. Decreased brain-derived neurotrophic factor (BDNF) contributes to memory loss in Alzheimer's disease (AD), and soluble assemblies of amyloid-beta (Aβ) and tau contribute to neurodegeneration. However, it is unknown whether AD-type neuropathology, soluble Aβ and tau, or levels of BDNF and its receptor tropomyosin-related kinase B (TrkB) correlate with dementia in the oldest-old. We examined these targets in postmortem Brodmann's areas 7 and 9 (BA7 and BA9) in 4 groups of subjects >90 years old: (1) no dementia/no AD pathology, (2) no dementia/AD pathology, (3) dementia/no AD pathology, (4) dementia/AD pathology. In BA7, BDNF messenger RNA correlated with Mini-Mental State Examination scores and was decreased in demented versus nondemented subjects, regardless of pathology. Soluble Aβ42 was increased in both groups with AD pathology, demented or not, compared to no dementia/no AD pathology subjects. Groups did not differ in TrkB isoform levels or in levels of total soluble tau, individual tau isoforms, threonine-181 tau phosphorylation, or ratio of phosphorylated 3R-4R isoforms. In BA9, soluble Aβ42 correlated with Mini-Mental State Examination scores and with BDNF messenger RNA expression. Thus, soluble Aβ42 and BDNF, but not TrkB or soluble tau, correlate with dementia in the oldest-old.

  9. New Alzheimer amyloid beta responsive genes identified in human neuroblastoma cells by hierarchical clustering.

    Directory of Open Access Journals (Sweden)

    Markus Uhrig

    Full Text Available Alzheimer's disease (AD is characterized by neuronal degeneration and cell loss. Abeta(42, in contrast to Abeta(40, is thought to be the pathogenic form triggering the pathological cascade in AD. In order to unravel overall gene regulation we monitored the transcriptomic responses to increased or decreased Abeta(40 and Abeta(42 levels, generated and derived from its precursor C99 (C-terminal fragment of APP comprising 99 amino acids in human neuroblastoma cells. We identified fourteen differentially expressed transcripts by hierarchical clustering and discussed their involvement in AD. These fourteen transcripts were grouped into two main clusters each showing distinct differential expression patterns depending on Abeta(40 and Abeta(42 levels. Among these transcripts we discovered an unexpected inverse and strong differential expression of neurogenin 2 (NEUROG2 and KIAA0125 in all examined cell clones. C99-overexpression had a similar effect on NEUROG2 and KIAA0125 expression as a decreased Abeta(42/Abeta(40 ratio. Importantly however, an increased Abeta(42/Abeta(40 ratio, which is typical of AD, had an inverse expression pattern of NEUROG2 and KIAA0125: An increased Abeta(42/Abeta(40 ratio up-regulated NEUROG2, but down-regulated KIAA0125, whereas the opposite regulation pattern was observed for a decreased Abeta(42/Abeta(40 ratio. We discuss the possibilities that the so far uncharacterized KIAA0125 might be a counter player of NEUROG2 and that KIAA0125 could be involved in neurogenesis, due to the involvement of NEUROG2 in developmental neural processes.

  10. Cerebrospinal Fluid Amyloid Beta and Tau Concentrations Are Not Modulated by 16 Weeks of Moderate- to High-Intensity Physical Exercise in Patients with Alzheimer Disease

    DEFF Research Database (Denmark)

    Jensen, Camilla Steen; Portelius, Erik; Siersma, Volkert

    2016-01-01

    Background: Physical exercise may have some effect on cognition in patients with Alzheimer disease (AD). However, the underlying biochemical effects are unclear. Animal studies have shown that amyloid beta (Aβ), one of the pathological hallmarks of AD, can be altered with high levels of physical...... of Life, Physical Health and Functional Ability in Alzheimer's Disease: The Effect of Physical Exercise (ADEX) study we analyzed cerebrospinal fluid samples for Aβ species, total tau (t-tau), phosphorylated tau (p-tau) and soluble amyloid precursor protein (sAPP) species. We also assessed the patients...

  11. Protective effects of berberine against amyloid beta-induced toxicity in cultured rat cortical neurons

    Institute of Scientific and Technical Information of China (English)

    Jing Wang; Yanjun Zhang; Shuai Du; Mixia Zhang

    2011-01-01

    Berberine, a major constituent of Coptidis rhizoma, exhibits neural protective effects. The present study analyzed the potential protective effect of berberine against amyloid G-induced cytotoxicity in rat cerebral cortical neurons. Alzheimer's disease cell models were treated with 0.5 and 2 μmol/Lberberine for 36 hours to inhibit amyloid G-induced toxicity. Methyl thiazolyl tetrazolium assay and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling staining results showed that berberine significantly increased cell viability and reduced cell apoptosis in primary cultured rat cortical neurons. In addition, western blot analysis revealed a protective effect of berberine against amyloid β-induced toxicity in cultured cortical neurons, which coincided with significantly decreased abnormal up-regulation of activated caspase-3. These results showed that berberine exhibited a protective effect against amyloid 13-induced cytotoxicity in cultured rat cortical neurons.

  12. Amyloid-β peptide binds to cytochrome C oxidase subunit 1.

    Directory of Open Access Journals (Sweden)

    Luis Fernando Hernandez-Zimbron

    Full Text Available Extracellular and intraneuronal accumulation of amyloid-beta aggregates has been demonstrated to be involved in the pathogenesis of Alzheimer's disease (AD. However, the precise mechanism of amyloid-beta neurotoxicity is not completely understood. Previous studies suggest that binding of amyloid-beta to a number of macromolecules has deleterious effects on cellular functions. Mitochondria were found to be the target for amyloid-beta, and mitochondrial dysfunction is well documented in AD. In the present study we have shown for the first time that Aβ 1-42 bound to a peptide comprising the amino-terminal region of cytochrome c oxidase subunit 1. Phage clone, selected after screening of a human brain cDNA library expressed on M13 phage and bearing a 61 amino acid fragment of cytochrome c oxidase subunit 1, bound to Aβ 1-42 in ELISA as well as to Aβ aggregates present in AD brain. Aβ 1-42 and cytochrome c oxidase subunit 1 co-immunoprecipitated from mitochondrial fraction of differentiated human neuroblastoma cells. Likewise, molecular dynamics simulation of the cytochrome c oxidase subunit 1 and the Aβ 1-42 peptide complex resulted in a reliable helix-helix interaction, supporting the experimental results. The interaction between Aβ 1-42 and cytochrome c oxidase subunit 1 may explain, in part, the diminished enzymatic activity of respiratory chain complex IV and subsequent neuronal metabolic dysfunction observed in AD.

  13. Amyloid-β peptide binds to cytochrome C oxidase subunit 1.

    Science.gov (United States)

    Hernandez-Zimbron, Luis Fernando; Luna-Muñoz, Jose; Mena, Raul; Vazquez-Ramirez, Ricardo; Kubli-Garfias, Carlos; Cribbs, David H; Manoutcharian, Karen; Gevorkian, Goar

    2012-01-01

    Extracellular and intraneuronal accumulation of amyloid-beta aggregates has been demonstrated to be involved in the pathogenesis of Alzheimer's disease (AD). However, the precise mechanism of amyloid-beta neurotoxicity is not completely understood. Previous studies suggest that binding of amyloid-beta to a number of macromolecules has deleterious effects on cellular functions. Mitochondria were found to be the target for amyloid-beta, and mitochondrial dysfunction is well documented in AD. In the present study we have shown for the first time that Aβ 1-42 bound to a peptide comprising the amino-terminal region of cytochrome c oxidase subunit 1. Phage clone, selected after screening of a human brain cDNA library expressed on M13 phage and bearing a 61 amino acid fragment of cytochrome c oxidase subunit 1, bound to Aβ 1-42 in ELISA as well as to Aβ aggregates present in AD brain. Aβ 1-42 and cytochrome c oxidase subunit 1 co-immunoprecipitated from mitochondrial fraction of differentiated human neuroblastoma cells. Likewise, molecular dynamics simulation of the cytochrome c oxidase subunit 1 and the Aβ 1-42 peptide complex resulted in a reliable helix-helix interaction, supporting the experimental results. The interaction between Aβ 1-42 and cytochrome c oxidase subunit 1 may explain, in part, the diminished enzymatic activity of respiratory chain complex IV and subsequent neuronal metabolic dysfunction observed in AD.

  14. Alterations in amyloid beta-protein and apolipoprotein E in cerebrospinal fluid after subarachnoid hemorrhage

    Institute of Scientific and Technical Information of China (English)

    Xinzhong Wen; Yonghong Zhang; Leiming Huo

    2007-01-01

    handled through Pearson correlation analysis between Aβ and ApoE. The relationship between Aβ, ApoE concentration with pathogenetic condition and prognosis of the patients was handled through Spearman ranking correlation analysis.MAIN OUTCOME MEASURES: ① The concentration of ApoE, Aβ and S100B after SAH in contrast to the control group in CSF by different Hunt-Hess and Glasgow Outcome Scale (GOS) grades; ② The level of correlation between ApoE and Aβ; ③ Correlation between ApoE and Aβ in pathogenetic condition and prognosis of the patients.RESULTS: All 25 SAH patients and 15 controls were involved in the final analysis. ① The concentration of ApoE, Aβ and S100B in CSF: The concentration of ApoE decreased after SAH in contrast to the control group [(0.46±0.007), (0.85±0.11) μ g/L, P < 0.01], the concentration of ApoE decreased after SAH in contrast to the control group [(5.36± 1.19), (8.41 ±1.60) μ g/L, P < 0.01 ], and the concentration of S100B increased after SAH in contrast to the control group [(18.60±7.31), (6.56± 1.02) pg/L, P < 0.01]. ② The concentration of ApoE, Aβ and S100B in CSF after SAH on different Hunt-Hess and GOS grades: The concentration of Aβ in Hunt-Hess Ⅰ -Ⅲ grade was higher than Hunt-Hess Ⅳ, Ⅴ grade [(6.63 ± 1.25),(3.35± 1.02) μ g/L, P < 0.01], and the concentration of ApoE in Hunt-Hess Ⅰ - Ⅲ grade was higher than Hunt-Hess Ⅳ, Ⅴ grade [(0.56±0.07), (0.38±0.04) μ g/L, P < 0.05], the concentration of S100B in Hunt-Hess Ⅰ - Ⅲ grade was lower than Hunt-Hess Ⅳ - Ⅴ grade [(16.32±5.58), (22.85±8.10) pg/L, P< 0.01]; the concentration of Aβ in GOS Ⅰ - Ⅲ grade was lower than GOS Ⅳ, Ⅴ grade [(3.76± 1.04),(5.89± 1.20) μ g/L, P < 0.01], and the concentration of ApoE in GOS Ⅰ - Ⅲ grade was lower than GOS Ⅳ, Ⅴ grade [(0.32±0.02), (0.58±0.07) μ g/L, P < 0.01], and the concentration of S100B in GOS Ⅰ -Ⅲ grade was higher than GOS Ⅳ, Ⅴ grade [(25.36±9.70), (14.33±6

  15. Lycopene Prevents Amyloid [Beta]-Induced Mitochondrial Oxidative Stress and Dysfunctions in Cultured Rat Cortical Neurons.

    Science.gov (United States)

    Qu, Mingyue; Jiang, Zheng; Liao, Yuanxiang; Song, Zhenyao; Nan, Xinzhong

    2016-06-01

    Brains affected by Alzheimer's disease (AD) show a large spectrum of mitochondrial alterations at both morphological and genetic level. The causal link between β-amyloid (Aβ) and mitochondrial dysfunction has been established in cellular models of AD. We observed previously that lycopene, a member of the carotenoid family of phytochemicals, could counteract neuronal apoptosis and cell damage induced by Aβ and other neurotoxic substances, and that this neuroprotective action somehow involved the mitochondria. The present study aims to investigate the effects of lycopene on mitochondria in cultured rat cortical neurons exposed to Aβ. It was found that lycopene attenuated Aβ-induced oxidative stress, as evidenced by the decreased intracellular reactive oxygen species generation and mitochondria-derived superoxide production. Additionally, lycopene ameliorated Aβ-induced mitochondrial morphological alteration, opening of the mitochondrial permeability transition pores and the consequent cytochrome c release. Lycopene also improved mitochondrial complex activities and restored ATP levels in Aβ-treated neuron. Furthermore, lycopene prevented mitochondrial DNA damages and improved the protein level of mitochondrial transcription factor A in mitochondria. Those results indicate that lycopene protects mitochondria against Aβ-induced damages, at least in part by inhibiting mitochondrial oxidative stress and improving mitochondrial function. These beneficial effects of lycopene may account for its protection against Aβ-induced neurotoxicity.

  16. Amyloid-beta neurotoxicity and clearance are both regulated by glial group II metabotropic glutamate receptors.

    Science.gov (United States)

    Durand, Daniela; Carniglia, Lila; Turati, Juan; Ramírez, Delia; Saba, Julieta; Caruso, Carla; Lasaga, Mercedes

    2017-09-01

    Astrocytes are now fully endorsed as key players in CNS functionality and plasticity. We recently showed that metabotropic glutamate receptor 3 (mGlu3R) activation by LY379268 promotes non-amyloidogenic cleavage of amyloid precursor protein (APP) in cultured astrocytes, leading to increased release of neuroprotective sAPPα. Furthermore, mGlu3R expression is reduced in hippocampal astrocytes from PDAPP-J20 mice, suggesting a role for these receptors in Alzheimer's disease. The present study enquires into the role of astroglial-derived neurotrophins induced by mGlu3R activation in neurotoxicity triggered by amyloid β (Aβ). Conditioned medium from LY379268-treated astrocytes protected hippocampal neurons from Aβ-induced cell death. Immunodepletion of sAPPα from the conditioned medium prevented its protective effect. LY379268 induced brain-derived neurotrophic factor (BDNF) expression in astrocytes, and neutralizing BDNF from conditioned medium also prevented its neuroprotective effect on Aβ neurotoxicity. LY379268 was also able to decrease Aβ-induced neuron death by acting directly on neuronal mGlu3R. On the other hand, LY379268 increased Aβ uptake in astrocytes and microglia. Indeed, and more importantly, a reduction in Aβ-induced neuron death was observed when co-cultured with LY379268-pretreated astrocytes, suggesting a link between neuroprotection and increased glial phagocytic activity. Altogether, these results indicate a double function for glial mGlu3R activation against Aβ neurotoxicity: (i) it increases the release of protective neurotrophins such as sAPPα and BDNF, and (ii) it induces amyloid removal from extracellular space by glia-mediated phagocytosis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Synaptotrophic effects of human amyloid beta protein precursors in the cortex of transgenic mice.

    Science.gov (United States)

    Mucke, L; Masliah, E; Johnson, W B; Ruppe, M D; Alford, M; Rockenstein, E M; Forss-Petter, S; Pietropaolo, M; Mallory, M; Abraham, C R

    1994-12-15

    The amyloid precursor protein (APP) is involved in Alzheimer's disease (AD) because its degradation products accumulate abnormally in AD brains and APP mutations are associated with early onset AD. However, its role in health and disease appears to be complex, with different APP derivatives showing either neurotoxic or neurotrophic effects in vitro. To elucidate the effects APP has on the brain in vivo, cDNAs encoding different forms of human APP (hAPP) were placed downstream of the neuron-specific enolase (NSE) promoter. In multiple lines of NSE-hAPP transgenic mice neuronal overexpression of hAPP was accompanied by an increase in the number of synaptophysin immunoreactive (SYN-IR) presynaptic terminals and in the expression of the growth-associated marker GAP-43. In lines expressing moderate levels of hAPP751 or hAPP695, this effect was more prominent in homozygous than in heterozygous transgenic mice. In contrast, a line with several-fold higher levels of hAPP695 expression showed less increase in SYN-IR presynaptic terminals per amount of hAPP expressed than the lower expressor lines and a decrease in synaptotrophic effects in homozygous compared with heterozygous offspring. Transgenic mice (2-24 months of age) showed no evidence for amyloid deposits or neurodegeneration. These findings suggest that APP may be important for the formation/maintenance of synapses in vivo and that its synaptotrophic effects may be critically dependent on the expression levels of different APP isoforms. Alterations in APP expression, processing or function could contribute to the synaptic pathology seen in AD.

  18. Amyloid beta dimers/trimers potently induce cofilin-actin rods that are inhibited by maintaining cofilin-phosphorylation

    Directory of Open Access Journals (Sweden)

    Podlisny Marcia

    2011-01-01

    Full Text Available Abstract Background Previously we reported 1 μM synthetic human amyloid beta1-42 oligomers induced cofilin dephosphorylation (activation and formation of cofilin-actin rods within rat hippocampal neurons primarily localized to the dentate gyrus. Results Here we demonstrate that a gel filtration fraction of 7PA2 cell-secreted SDS-stable human Aβ dimers and trimers (Aβd/t induces maximal neuronal rod response at ~250 pM. This is 4,000-fold more active than traditionally prepared human Aβ oligomers, which contain SDS-stable trimers and tetramers, but are devoid of dimers. When incubated under tyrosine oxidizing conditions, synthetic human but not rodent Aβ1-42, the latter lacking tyrosine, acquires a marked increase (620 fold for EC50 in rod-inducing activity. Gel filtration of this preparation yielded two fractions containing SDS-stable dimers, trimers and tetramers. One, eluting at a similar volume to 7PA2 Aβd/t, had maximum activity at ~5 nM, whereas the other, eluting at the void volume (high-n state, lacked rod inducing activity at the same concentration. Fractions from 7PA2 medium containing Aβ monomers are not active, suggesting oxidized SDS-stable Aβ1-42 dimers in a low-n state are the most active rod-inducing species. Aβd/t-induced rods are predominantly localized to the dentate gyrus and mossy fiber tract, reach significance over controls within 2 h of treatment, and are reversible, disappearing by 24 h after Aβd/t washout. Overexpression of cofilin phosphatases increase rod formation when expressed alone and exacerbate rod formation when coupled with Aβd/t, whereas overexpression of a cofilin kinase inhibits Aβd/t-induced rod formation. Conclusions Together these data support a mechanism by which Aβd/t alters the actin cytoskeleton via effects on cofilin in neurons critical to learning and memory.

  19. Phosphorylated tau/amyloid beta 1-42 ratio in ventricular cerebrospinal fluid reflects outcome in idiopathic normal pressure hydrocephalus

    Directory of Open Access Journals (Sweden)

    Patel Sunil

    2012-03-01

    Full Text Available Abstract Background Idiopathic normal pressure hydrocephalus (iNPH is a potentially reversible cause of dementia and gait disturbance that is typically treated by operative placement of a ventriculoperitoneal shunt. The outcome from shunting is variable, and some evidence suggests that the presence of comorbid Alzheimer's disease (AD may impact shunt outcome. Evidence also suggests that AD biomarkers in cerebrospinal fluid (CSF may predict the presence of AD. The aim of this study was to investigate the relationship between the phosphorylated tau/amyloid beta 1-42 (ptau/Aβ1-42 ratio in ventricular CSF and shunt outcome in patients with iNPH. Methods We conducted a prospective trial with a cohort of 39 patients with suspected iNPH. Patients were clinically and psychometrically assessed prior to and approximately 4 months after ventriculoperitoneal shunting. Lumbar and ventricular CSF obtained intraoperatively, and tissue from intraoperative cortical biopsies were analyzed for AD biomarkers. Outcome measures included performance on clinical symptom scales, supplementary gait measures, and standard psychometric tests. We investigated relationships between the ptau/Aβ1-42 ratio in ventricular CSF and cortical AD pathology, initial clinical features, shunt outcome, and lumbar CSF ptau/Aβ1-42 ratios in the patients in our cohort. Results We found that high ptau/Aβ1-42 ratios in ventricular CSF correlated with the presence of cortical AD pathology. At baseline, iNPH patients with ratio values most suggestive of AD presented with better gait performance but poorer cognitive performance. Patients with high ptau/Aβ1-42 ratios also showed a less robust response to shunting on both gait and cognitive measures. Finally, in a subset of 18 patients who also underwent lumbar puncture, ventricular CSF ratios were significantly correlated with lumbar CSF ratios. Conclusions Levels of AD biomarkers in CSF correlate with the presence of cortical AD pathology

  20. Kinetics of the neuroinflammation-oxidative stress correlation in rat brain following the injection of fibrillar amyloid-beta onto the hippocampus in vivo.

    Science.gov (United States)

    Rosales-Corral, Sergio; Tan, Dun-Xian; Reiter, Russel J; Valdivia-Velázquez, Miguel; Acosta-Martínez, J Pablo; Ortiz, Genaro G

    2004-05-01

    The purpose of this study was to describe-following the injection of a single intracerebral dose of fibrillar amyloid-beta(1-40) in vivo-some correlations between proinflammatory cytokines and oxidative stress indicators in function of time, as well as how these variables fit in a regression model. We found a positive, significant correlation between interleukin (IL)-1beta or IL-6 and the activity of the glutathione peroxidase enzyme (GSH-Px), but IL-1beta or IL-6 maintained a strong, negative correlation with the lipid peroxidation (LPO). The first 12 h marked a positive correlation between IL-6 and tumor necrosis factor-alpha (TNF-alpha), but starting from the 36 h, this relationship became negative. We found also particular patterns of behavior through the time for IL-1beta, nitrites and IL-6, with parallel or sequential interrelationships. Results shows clearly that, in vivo, the fibrillar amyloid-beta (Abeta) disrupts the oxidative balance and initiate a proinflammatory response, which in turn feeds the oxidative imbalance in a coordinated, sequential way. This work contributes to our understanding of the positive feedbacks, focusing the "cytokine cycle" along with the oxidative stress mediators in a complex, multicellular, and interactive environment.

  1. Transgenic expression of the amyloid-beta precursor protein-intracellular domain does not induce Alzheimer's Disease-like traits in vivo.

    Directory of Open Access Journals (Sweden)

    Luca Giliberto

    Full Text Available BACKGROUND: Regulated intramembranous proteolysis of the amyloid-beta precursor protein by the gamma-secretase yields amyloid-beta, which is the major component of the amyloid plaques found in Alzheimer's disease (AD, and the APP intracellular domain (AID. In vitro studies have involved AID in apoptosis and gene transcription. In vivo studies, which utilize transgenic mice expressing AID in the forebrain, only support a role for AID in apoptosis but not gene transcription. METHODOLOGY/PRINCIPAL FINDINGS: Here, we have further characterized several lines of AID transgenic mice by crossing them with human Tau-bearing mice, to determine whether over-expression of AID in the forebrain provokes AD-like pathologic features in this background. We have found no evidence that AID overexpression induces AD-like characteristics, such as activation of GSK-3beta, hyperphosphorylation of Tau and formation of neurofibrillary pathology. CONCLUSIONS/SIGNIFICANCE: Overall, these data suggest that AID transgenic mice do not represent a model that reproduces the overt biochemical and anatomo-pathologic lesions observed in AD patients. They can still be a valuable tool to understand the role of AID in enhancing the cell sensitivity to apoptotic stimuli, whose pathways still need to be characterized.

  2. Enoxaparin treatment administered at both early and late stages of amyloid beta deposition improves cognition of APPswe/PS1dE9 mice with differential effects on brain A beta levels.

    NARCIS (Netherlands)

    Timmer, N.M.; Dijk, L. van; Zee, C.E.E.M. van der; Kiliaan, A.J.; Waal, R.M.W. de; Verbeek, M.M.

    2010-01-01

    Enoxaparin (Enox), a low molecular weight heparin, has been shown to lower brain amyloid beta (A beta) load in a mouse model for Alzheimer's disease. However, the effect of Enox on cognition was not studied. Therefore, we examined the effect of peripheral Enox treatment on cognition and brain A beta

  3. Inhibitory modulation of CART peptides in accumbal neuron through decreasing interaction of CaMKIIα with dopamine D3 receptors.

    Science.gov (United States)

    Cai, Zhenyu; Zhang, Dalei; Ying, Ying; Yan, Min; Yang, Jianhua; Xu, Fangyun; Oh, Kiwan; Hu, Zhenzhen

    2014-04-04

    Previous studies in rats have shown that microinjections of cocaine- and amphetamine-regulated transcript (CART) peptide into the nucleus accumbens (NAc; the area of the brain that mediates drug reward and reinforcement) attenuate the locomotor effects of psychostimulants. CART peptide has also been shown to induce decreased intracellular concentrations of calcium (Ca(2+)) in primary cultures of hippocampus neurons. The purpose of this study was to characterize the interaction of Ca(2+)/calmodulin-dependent kinases (CaMKIIα) with dopamine D3 (D3) receptors (R) in primary cultures of accumbal neurons. This interaction is involved in inhibitory modulation of CART peptides. In vitro, CART (55-102) peptide (0.1, 0.5 or 1μM) was found to dose-dependently inhibit K(+) depolarization-elicited Ca(2+) influx and CaMKIIα phosphorylation in accumbal neurons. Moreover, CART peptides were also found to block cocaine (1μM)-induced Ca(2+) influx, CaMKIIα phosphorylation, CaMKIIα-D3R interaction, and CREB phosphorylation. In vivo, repeated microinjections of CART (55-102) peptide (2μg/1μl/side) into the NAc over a 5-day period had no effect on behavioral activity but blocked cocaine-induced locomotor activity. These results indicate that D3R function in accumbal neurons is a target of CART (55-102) peptide and suggest that CART peptide by dephosphorylating limbic D3Rs may have potential as a treatment for cocaine abuse.

  4. 二十二碳六烯酸降低β淀粉样蛋白25-35致大鼠皮质神经元损伤%Ducosahexaenoic acid reduces the cerebral cortical neurons injury induced by amyloid beta protein 25-35 in rats

    Institute of Scientific and Technical Information of China (English)

    刘丽莉; 王永; 胡为民; 李世芳; 张记君

    2011-01-01

    目的 观察二十二碳六烯酸(DHA)对β淀粉样蛋白25-35(Aβ25-35)致原代培养大鼠皮质神经元损伤的保护作用.方法 原代培养Wistar大鼠皮质神经元,先后给予不同剂量的DHA(20、50和100μmol/L)及Aβ25-35(25 μmol/L),用CCK-8比色法观察神经元存活率,用激光扫描共聚焦显微镜观察细胞内游离钙离子浓度.结果 1)与对照组相比,Aβ25-35使细胞存活率明显下降(31%±6%,P<0 05);使细胞内游离钙离子浓度明显升高( 249%±12%,P<0 05);2)孵育DHA可降低Aβ25-35引起的神经元存活率明显下降及细胞内游离钙离子浓度升高.结论 Aβ致细胞内钙超载是Aβ产生神经毒作用的一个方面,而DHA可部分拮抗Aβ25-35的神经毒作用.%Objective To observe the protection of Ducosahexaenoic acid ( DHA) on primary culture cortical neurons exposed to amyloid beta protein 25-35. Methods Newborn Wistar rat cortical neurons were primarily cultured, then treated with DHA of different dose(20,50,100 μmol/L) and aggregated Aβ25-35(25μmol/L). CCK-8 ( Cell Counting Kit-8 ) staining was used to detect the survival rate of cortical neurons, and LSCM (laser-scanning confocal imaging system) was used to detect the changes of intracellular free calcium concentration in neurons labeled with the fluorescent dye Fluo-3/AM. Results 1) Compared with control group, the survival rate of cortical neurons was decreased in Aβ group (31% ±6% ,P <0. 05) , intracellular free calcium concentration in Aβ group was elevated(249% ±12% ,P <0. 05 ) ; 2) incubation with DHA attenuated the decrease in the survival rate of cortical neurons and the increase in intracellular free calcium concentration induced by amyloid beta protein 25-35. Conclusions 1) Calcium overloading induced by amyloid beta protein 25-35 might be the main neurotoxicity effect; 2)DHA could partly decrease calcium overloading induced by amyloid beta protein 25-35, which might be the important mechanism of DHA

  5. Mitofusin-2 knockdown increases ER-mitochondria contact and decreases amyloid β-peptide production.

    Science.gov (United States)

    Leal, Nuno Santos; Schreiner, Bernadette; Pinho, Catarina Moreira; Filadi, Riccardo; Wiehager, Birgitta; Karlström, Helena; Pizzo, Paola; Ankarcrona, Maria

    2016-09-01

    Mitochondria are physically and biochemically in contact with other organelles including the endoplasmic reticulum (ER). Such contacts are formed between mitochondria-associated ER membranes (MAM), specialized subregions of ER, and the outer mitochondrial membrane (OMM). We have previously shown increased expression of MAM-associated proteins and enhanced ER to mitochondria Ca(2+) transfer from ER to mitochondria in Alzheimer's disease (AD) and amyloid β-peptide (Aβ)-related neuronal models. Here, we report that siRNA knockdown of mitofusin-2 (Mfn2), a protein that is involved in the tethering of ER and mitochondria, leads to increased contact between the two organelles. Cells depleted in Mfn2 showed increased Ca(2+) transfer from ER to mitchondria and longer stretches of ER forming contacts with OMM. Interestingly, increased contact resulted in decreased concentrations of intra- and extracellular Aβ40 and Aβ42 . Analysis of γ-secretase protein expression, maturation and activity revealed that the low Aβ concentrations were a result of impaired γ-secretase complex function. Amyloid-β precursor protein (APP), β-site APP-cleaving enzyme 1 and neprilysin expression as well as neprilysin activity were not affected by Mfn2 siRNA treatment. In summary, our data shows that modulation of ER-mitochondria contact affects γ-secretase activity and Aβ generation. Increased ER-mitochondria contact results in lower γ-secretase activity suggesting a new mechanism by which Aβ generation can be controlled. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  6. Understanding Formation and Structure of Peptide Nanofibers via Steered MD Simulations

    OpenAIRE

    Engin, Özge; Özgür, Beytullah; Sayar, Mehmet

    2012-01-01

    We suggest that antiparallel b-sheet structure might represent a distinctive sig-nature of amyloid oligomers (Cerf et al, Biochem J, 2009, 421:415-23) under-lying their common pathogenic action. 2236-Pos Board B6 Amyloid Beta Peptide: The Influence of Intrinsic Factors on Fibril Formation Risto Cukalevski1, Birgitta Frohm1, Barry Boland2, Sara Linse1. 1Lund University, Lund, Sweden, 2University College Dublin, Dublin, Ireland. Alzheimer’s disease (AD) is the most co...

  7. Curcumin revitalizes Amyloid beta (25-35)-induced and organophosphate pesticides pestered neurotoxicity in SH-SY5Y and IMR-32 cells via activation of APE1 and Nrf2.

    Science.gov (United States)

    Sarkar, Bibekananda; Dhiman, Monisha; Mittal, Sunil; Mantha, Anil K

    2017-08-31

    Amyloid beta (Aβ) peptide deposition is the primary cause of neurodegeneration in Alzheimer's disease (AD) pathogenesis. Several reports point towards the role of pesticides in the AD pathogenesis, especially organophosphate pesticides (OPPs). Monocrotophos (MCP) and Chlorpyrifos (CP) are the most widely used OPPs. In this study, the role of MCP and CP in augmenting the Aβ-induced oxidative stress associated with the neurodegeneration in AD has been assessed in human neuroblastoma IMR-32 and SH-SY5Y cell lines. From the cell survival assay, it was observed that MCP and CP reduced cell survival both dose- and time-dependently. Nitro blue tetrazolium (NBT) based assay for determination of intracellular reactive oxygen species (ROS) demonstrated that Aβ(25-35), MCP or CP produce significant oxidative stress alone or synergistically in IMR-32 and SH-SY5Y cells, while pretreatment of curcumin reduced ROS levels significantly in all treatment combinations. In this study, we also demonstrate that treatment of Aβ(25-35) and MCP upregulated inducible nitric oxide synthase (iNOS/NOS2) whereas, no change was observed in neuronal nitric oxide synthase (nNOS/NOS1), but down-regulation of the nuclear factor erythroid 2-related factor 2 (Nrf2) level was observed. While curcumin pretreatment resulted in upregulation of iNOS and Nrf2 proteins. Also, the expression of key DNA repair enzymes APE1, DNA polymerase beta (Pol β), and PARP1 were found to be downregulated upon treatment with MCP, Aβ(25-35) and their combinations at 24 h and 48 h time points. In this study, pretreatment of curcumin to the SH-SY5Y cells enhanced the expression of DNA repair enzymes APE1, pol β, and PARP1 enzymes to counter the oxidative DNA base damage via base excision repair (BER) pathway, and also activated the antioxidant element (ARE) via Nrf2 upregulation. Furthermore, the immunofluorescent confocal imaging studies in SH-SY5Y and IMR-32 cells treated with Aβ(25-35) and MCP-mediated oxidative

  8. Decreased Hypothalamic Glucagon-Like Peptide-1 Receptor Expression in Type 2 Diabetes Patients

    NARCIS (Netherlands)

    Ten Kulve, Jennifer S; van Bloemendaal, Liselotte; Balesar, Rawien; IJzerman, Richard G; Swaab, Dick F; Diamant, Michaela; la Fleur, Susanne E; Alkemade, Anneke

    2016-01-01

    CONTEXT: Glucagon-like peptide-1 (GLP-1) and GLP-1 receptor agonist treatment in type 2 diabetes (T2DM) reduce blood glucose and food intake. It has been suggested that these effects are partly mediated through central GLP-1 receptors (GLP-1Rs). The rodent and nonhuman primate hypothalamus show clea

  9. Telencephalin protects PAJU cells from amyloid beta protein-induced apoptosis by activating the ezrin/radixin/moesin protein family/phosphatidylinositol-3-kinase/protein kinase B pathway

    Institute of Scientific and Technical Information of China (English)

    Heping Yang; Dapeng Wu; Xiaojie Zhang; Xiang Wang; Yi Peng; Zhiping Hu

    2012-01-01

    Telencephalin is a neural glycoprotein that reduces apoptosis induced by amyloid beta protein in the human neural tumor cell line PAJU.In this study,we examined the role of the ezrin/radixin/moesin protein family/phosphatidylinositol-3-kinase/protein kinase B pathway in this process.Western blot analysis demonstrated that telencephalin,phosphorylated ezrin/radixin/moesin and phosphatidylinositol-3-kinase/protein kinase B were not expressed in PAJU cells transfected with empty plasmid,while they were expressed in PAJU cells transfected with a telencephalin expression plasmid.After treatment with 1.0 nM amyloid beta protein 42,expression of telencephalin and phosphorylated phosphatidylinositol-3-kinase/protein kinase B in the transfected cells gradually diminished,while levels of phosphorylated ezrin/radixin/moesin increased.In addition,the high levels of telencephalin,phosphorylated ezrin/radixin/moesin and phosphatidylinositol-3-kinase/protein kinase B expression in PAJU cells transfected with a telencephalin expression plasmid could be suppressed by the phosphatidylinositol-3-kinase inhibitor LY294002.These findings indicate that telencephalin activates the ezrin/radixin/moesin family/phosphatidylinositol-3-kinase/protein kinase B pathway and protects PAJU cells from amyloid beta protein-induced apoptosis.

  10. Intracellular accumulation of amyloid-beta - a predictor for synaptic dysfunction and neuron loss in Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Thomas A Bayer

    2010-03-01

    Full Text Available Despite of long-standing evidence that beta-amyloid (Aβ peptides have detrimental effects on synaptic function, the relationship between Aβ, synaptic and neuron loss is largely unclear. During the last years there is growing evidence that early intraneuronal accumulation of Aβ peptides is one of the key events leading to synaptic and neuronal dysfunction. Many studies have been carried out using transgenic mouse models of Alzheimer’s disease (AD which have been proven to be valuable model system in modern AD research. The present review discusses the impact of intraneuronal Aβ accumulation on synaptic impairment and neuron loss and provides an overview of currently available AD mouse models showing these pathological alterations.

  11. Antiamnesic Effect of Broccoli (Brassica oleracea var. italica) Leaves on Amyloid Beta (Aβ)1-42-Induced Learning and Memory Impairment.

    Science.gov (United States)

    Park, Seon Kyeong; Ha, Jeong Su; Kim, Jong Min; Kang, Jin Yong; Lee, Du Sang; Guo, Tian Jiao; Lee, Uk; Kim, Dae-Ok; Heo, Ho Jin

    2016-05-04

    To examine the antiamnesic effects of broccoli (Brassica oleracea var. italica) leaves, we performed in vitro and in vivo tests on amyloid beta (Aβ)-induced neurotoxicity. The chloroform fraction from broccoli leaves (CBL) showed a remarkable neuronal cell-protective effect and an inhibition against acetylcholinesterase (AChE). The ameliorating effect of CBL on Aβ1-42-induced learning and memory impairment was evaluated by Y-maze, passive avoidance, and Morris water maze tests. The results indicated improving cognitive function in the CBL group. After the behavioral tests, antioxidant effects were detected by superoxide dismutase (SOD), oxidized glutathione (GSH)/total GSH, and malondialdehyde (MDA) assays, and inhibition against AChE was also presented in the brain. Finally, oxo-dihydroxy-octadecenoic acid (oxo-DHODE) and trihydroxy-octadecenoic acid (THODE) as main compounds were identified by quadrupole time-of-flight ultraperformance liquid chromatography (Q-TOF UPLC-MS) analysis. Therefore, our studies suggest that CBL could be used as a natural resource for ameliorating Aβ1-42-induced learning and memory impairment.

  12. Amyloid beta 25-35 impairs reconsolidation of object recognition memory in rats and this effect is prevented by lithium carbonate.

    Science.gov (United States)

    Álvarez-Ruíz, Yarummy; Carrillo-Mora, Paul

    2013-08-26

    Previous studies in transgenic mice models of Alzheimer's disease (AD) have demonstrated an age dependent memory reconsolidation failure, suggesting that this may be an additional mechanism that contributes to the memory impairment observed in AD. However, so far it is unknown whether this effect can be caused by exogenous administration of amyloid beta (Aβ). The purpose was to determine the effects of soluble Aβ 25-35 on reconsolidation of object recognition memory (ORM) in rats, and assess whether these effects can be prevented by lithium carbonate (LiCa). In this study, male Wistar rats were used and the following groups were formed (N=6-13): (a) control, given saline solution; (b) [NMDA antagonist] MK-801 (0.1 mg/kg); (c) LiCa (350 mg/kg); (d) Aβ 25-35 (100 μM) injected into both hippocampi; and (e) Aβ 25-35+LiCa. In all cases, treatments were administered with or without reactivation of memory. The results showed that soluble Aβ 25-35 produces ORM impairment similar to MK-801 when given shortly after memory reactivation, and this effect is prevented by prior administration of LiCa.

  13. Amyloidosis in Alzheimer’s Disease: The Toxicity of Amyloid Beta (Aβ, Mechanisms of Its Accumulation and Implications of Medicinal Plants for Therapy

    Directory of Open Access Journals (Sweden)

    Anchalee Prasansuklab

    2013-01-01

    Full Text Available Alzheimer’s disease (AD is a progressive neurodegenerative disorder that leads to memory deficits and death. While the number of individuals with AD is rising each year due to the longer life expectancy worldwide, current therapy can only somewhat relieve the symptoms of AD. There is no proven medication to cure or prevent the disease, possibly due to a lack of knowledge regarding the molecular mechanisms underlying disease pathogenesis. Most previous studies have accepted the “amyloid hypothesis,” in which the neuropathogenesis of AD is believed to be triggered by the accumulation of the toxic amyloid beta (Aβ protein in the central nervous system (CNS. Lately, knowledge that may be critical to unraveling the hidden pathogenic pathway of AD has been revealed. This review concentrates on the toxicity of Aβ and the mechanism of accumulation of this toxic protein in the brain of individuals with AD and also summarizes recent advances in the study of these accumulation mechanisms together with the role of herbal medicines that could facilitate the development of more effective therapeutic and preventive strategies.

  14. 7.0T nuclear magnetic resonance evaluation of the amyloid beta (1-40) animal model of Alzheimer’s disease:comparison of cytology veriifcation

    Institute of Scientific and Technical Information of China (English)

    Lei Zhang; Shuai Dong; Guixiang Zhao; Yu Ma

    2014-01-01

    3.0T magnetic resonance spectroscopic imaging is a commonly used method in the research of brain function in Alzheimer’s disease. However, the role of 7.0T high-ifeld magnetic resonance spectroscopic imaging in brain function of Alzheimer’s disease remains unclear. In this study, 7.0T magnetic resonance spectroscopy showed that in the hippocampus of Alzheimer’s disease rats, the N-acetylaspartate wave crest was reduced, and the creatine and choline wave crest was elevated. This ifnding was further supported by hematoxylin-eosin staining, which showed a loss of hippocampal neurons and more glial cells. Moreover, electron microscopy showed neuronal shrinkage and mitochondrial rupture, and scanning electron microscopy revealed small size hippocampal synaptic vesicles, incomplete synaptic structure, and reduced number. Overall, the results revealed that 7.0T high-ifeld nuclear magnetic resonance spectroscopy detected the lesions and functional changes in hippocampal neurons of Alzheimer’s disease rats in vivo, allowing the possibility for assessing the success rate and grading of the amyloid beta (1-40) animal model of Alzheimer’s disease.

  15. Cyanidin suppresses amyloid beta-induced neurotoxicity by inhibiting reactive oxygen species-mediated DNA damage and apoptosis in PC12 cells

    Institute of Scientific and Technical Information of China (English)

    Yi Wang; Nam Chun Cho; Xiao-ting Fu; Da-wei Li; Kun Wang; Xin-zhi Wang; Yuan Li; Bao-liang Sun; Xiao-yi Yang; Zun-cheng Zheng

    2016-01-01

    Amyloid beta (Aβ)-induced oxidative stress is a major pathologic hallmark of Alzheimer’s disease. Cyan-idin, a natural lfavonoid compound, is neuroprotective against oxidative damage-mediated degeneration. However, its molecular mechanism remains unclear. Here, we investigated the effects of cyanidin pretreat-ment against Aβ-induced neurotoxicity in PC12 cells, and explored the underlying mechanisms. Cyanidin pretreatment signiifcantly attenuated Aβ-induced cell mortality and morphological changes in PC12 cells. Mechanistically, cyanidin effectively blocked apoptosis induced by Aβ, by restoring the mitochondrial mem-brane potentialvia upregulation of Bcl-2 protein expression. Moreover, cyanidin markedly protected PC12 cells from Aβ-induced DNA damage by blocking reactive oxide species and superoxide accumulation. These results provide evidence that cyanidin suppresses Aβ-induced cytotoxicity, by preventing oxidative damage mediated by reactive oxide species, which in turn inhibits mitochondrial apoptosis. Our study demonstrates the therapeutic potential of cyanidin in the prevention of oxidative stress-mediated Aβ neurotoxicity.

  16. Discovery of DNA dyes Hoechst 34580 and 33342 as good candidates for inhibiting amyloid beta formation: in silico and in vitro study

    Science.gov (United States)

    Thai, Nguyen Quoc; Tseng, Ning-Hsuan; Vu, Mui Thi; Nguyen, Tin Trung; Linh, Huynh Quang; Hu, Chin-Kun; Chen, Yun-Ru; Li, Mai Suan

    2016-08-01

    Combining Lipinski's rule with the docking and steered molecular dynamics simulations and using the PubChem data base of about 1.4 million compounds, we have obtained DNA dyes Hoechst 34580 and Hoechst 33342 as top-leads for the Alzheimer's disease. The binding properties of these ligands to amyloid beta (Aβ) fibril were thoroughly studied by in silico and in vitro experiments. Hoechst 34580 and Hoechst 33342 prefer to locate near hydrophobic regions with binding affinity mainly governed by the van der Waals interaction. By the Thioflavin T assay, it was found that the inhibition constant IC50 ≈ 0.86 and 0.68 μM for Hoechst 34580 and Hoechst 33342, respectively. This result qualitatively agrees with the binding free energy estimated using the molecular mechanic-Poisson Boltzmann surface area method and all-atom simulations with the AMBER-f99SB-ILDN force field and water model TIP3P. In addition, DNA dyes have the high capability to cross the blood brain barrier. Thus, both in silico and in vitro experiments have shown that Hoechst 34580 and 33342 are good candidates for treating the Alzheimer's disease by inhibiting Aβ formation.

  17. Pelargonidin Improves Passive Avoidance Task Performance in a Rat Amyloid Beta25-35 Model of Alzheimer’s Disease Via Estrogen Receptor Independent Pathways

    Directory of Open Access Journals (Sweden)

    Hamid Sohanaki

    2016-05-01

    Full Text Available Alzheimer’s disease (AD is a disorder with multiple pathophysiological causes, destructive outcomes, and no available definitive cure. Pelargonidin (Pel, an anthocyanin derivative, is an estrogen receptor agonist with little estrogen side effects. This study was designed to assess Pel memory enhancing effects on the a rat Amyloid Beta25-35 (Aβ intrahippocampal microinjections model of AD in the passive avoidance task performance paradigm and further evaluate the potential estrogen receptor role on the memory-evoking compound. Equally divided rats were assigned to 5 groups of sham, Aβ intrahippocampal microinjected, Pel pretreated (10 mg/kg; P.O, α estrogen antagonist intra-cerebrovascular (i.c.v. microinjected, and β estrogen antagonist (i.c.v microinjected animals. Intrahippocampal microinjections of Aβ were adopted to provoke AD model. Passive avoidance task test was also used to assess memory performance. Pel pretreatment prior to Aβ microinjections significantly improved step-through latency (P<0.001 in passive avoidance test. In α and β estrogen, antagonists received animals, passive avoidance task performance was not statistically changed (P=0.11 & P=0.41 respectively compared to Pel pretreated and sham animals. Our results depicted that Pel improves Aβ induced memory dysfunction in passive avoidance test performance through estrogen receptor independently related pathways.

  18. Cholesterol does not affect the toxicity of amyloid beta fragment but mimics its effect on MTT formazan exocytosis in cultured rat hippocampal neurons.

    Science.gov (United States)

    Abe, K; Saito, H

    1999-12-01

    It has recently been reported that methyl-beta-cyclodextrin-solubilized cholesterol protects PC12 cells from amyloid beta protein (Abeta) toxicity. To ask if this is the case in brain neurons, we investigated its effect in primary cultured rat hippocampal neurons. In basal culture conditions with no addition of Abeta, methyl-beta-cyclodextrin-solubilized cholesterol at concentrations of 30-100 microM was toxic to neurons, but at concentrations of 1-10 microM promoted neuronal survival. Methyl-beta-cyclodextrin-solubilized cholesterol at 1-10 microM was also effective in protecting neurons from toxicity of 20 microM Abeta. However, these effects were all mimicked by methyl-beta-cyclodextrin alone, but not by cholesterol solubilized by dimethylsulfoxide or ethanol. The effects of methyl-beta-cyclodextrin-solubilized cholesterol on neuronal survival and Abeta toxicity are probably attributed to the action of methyl-beta-cyclodextrin, but not cholesterol. Alternatively, we found that methyl-beta-cyclodextrin-solubilized cholesterol at lower concentrations ( > 10 nM) inhibited cellular reduction of 3-(4,5-dimethylthiazol-2-yl)-2.5-diphenyltetrazolium bromide (MTT) by promoting the exocytosis of MTT formazan. This effect was shared by dimethylsulfoxide- or ethanol-solubilized cholesterol, but not by methyl-beta-cyclodextrin, supporting that it is attributed to the action of cholesterol. These results suggest that cholesterol does not protect neurons from Abeta toxicity, or rather inhibits cellular MTT reduction in a similar manner to Abeta.

  19. Amyloid peptide Aβ40 inhibits aggregation of Aβ42: Evidence from molecular dynamics simulations

    Science.gov (United States)

    Viet, Man Hoang; Li, Mai Suan

    2012-06-01

    Effects of amyloid beta (Aβ) peptide Aβ40 on secondary structures of Aβ42 are studied by all-atom simulations using the GROMOS96 43a1 force field with explicit water. It is shown that in the presence of Aβ40 the beta-content of monomer Aβ42 is reduced. Since the fibril-prone conformation N* of full-length Aβ peptides has the shape of beta strand-loop-beta strand this result suggests that Aβ40 decreases the probability of observing N* of Aβ42 in monomer state. Based on this and the hypothesis that the higher is the population of N* the higher fibril formation rates, one can expect that, in agreement with the recent experiment, Aβ40 inhibit fibril formation of Aβ42. It is shown that the presence of Aβ40 makes the salt bridge D23-K28 and fragment 18-33 of Aβ42 more flexible providing additional support for this experimental fact. Our estimation of the binding free energy by the molecular mechanics-Poisson-Boltzmann surface area method reveals the inhibition mechanism that Aβ40 binds to Aβ42 modifying its morphology.

  20. Do proteomics analyses provide insights into reduced oxidative stress in the brain of an Alzheimer disease transgenic mouse model with an M631L amyloid precursor protein substitution and thereby the importance of amyloid-beta-resident methionine 35 in Alzheimer disease pathogenesis?

    Science.gov (United States)

    Sultana, Rukhsana; Robinson, Renã A S; Lange, Miranda Bader; Fiorini, Ada; Galvan, Veronica; Fombonne, Joanna; Baker, Austin; Gorostiza, Olivia; Zhang, Junli; Cai, Jian; Pierce, William M; Bredesen, Dale E; Butterfield, D Allan

    2012-12-01

    The single methionine (Met/M) residue of amyloid-beta (Aβ) peptide, at position 35 of the 42-mer, has important relevance for Aβ-induced oxidative stress and neurotoxicity. Recent in vivo brain studies in a transgenic (Tg) Alzheimer disease (AD) mouse model with Swedish and Indiana familial AD mutations in human amyloid precursor protein (APP) (referred to as the J20 Tg mouse) demonstrated increased levels of oxidative stress. However, the substitution of the Met631 residue of APP to leucine (Leu/L) (M631L in human APP numbering, referred to as M631L Tg and corresponding to residue 35 of Aβ1-42) resulted in no significant in vivo oxidative stress levels, thereby supporting the hypothesis that Met-35 of Aβ contributes to oxidative insult in the AD brain. It is conceivable that oxidative stress mediated by Met-35 of Aβ is important in regulating numerous downstream effects, leading to differential levels of relevant biochemical pathways in AD. Therefore, in the current study using proteomics, we tested the hypothesis that several brain proteins involved in pathways such as energy and metabolism, antioxidant activity, proteasome degradation, and pH regulation are altered in J20Tg versus M631L Tg AD mice.

  1. The role of mutated amyloid beta 1-42 stimulating dendritic cells in a PDAPP transgenic mouse%突变型Aβ1~42致敏树突状细胞疫苗治疗阿尔茨海默病转基因鼠作用机制探讨

    Institute of Scientific and Technical Information of China (English)

    李家林; 罗仲秋; 徐新女; 曹传海; 王金环

    2012-01-01

    associated with detrimental effects. To avoid severe adverse effects such as memngoencephalitis induced by amyloid beta vaccine with adjuvant, and take advantage of amyloid beta antibody's therapeutic effect on Alzheimer's disease sufficiently, our group has developed a new Alzheimer vaccine with mutated amyloid beta 1-42 peptide stimulating dendritic cells (DC). Our previous work has confirmed that DC vaccine can induce adequate anti-amyloid beta antibody in PDAPP Tg mice safely and efficiently. The DC vaccine can improve impaired learning and memory in the Alzheimer's animal model, and did not cause microvasculitis, microhemorrhage or memngoencephalitis in the animal model. However, the exact mechanism of immunotherapy which reduces Aβ deposition remains unknown. In this report, we studied the mechanism of the vaccine, thinking that this may have implications for better understanding of the pathogenesis of Alzheimer's disease. Methods A new Alzheimer vaccine with mutated amyloid beta 1-42 peptide stimulating DC which were obtained from C57/B6 mouse bone marrow was developed. Amyloid beta with Freund's adjuvant was inoculated at the same time to act as positive control. After the treatment was done, the samples of brains were collected, fixed, cut. Immunohistochemical staining was performed to observe the expression of the nuclear hormone liver X receptor (LXR), membrane - bound protein tyrosine phosphatase (CD45), the ATP-binding cassette family of active transporters (ABCA1), receptor for advanced glycation end products (RAGE), β-site APP-cleaving enzyme (BACE) and Aβ in mouse brain tissue. Semi-quantitative analysis was used to defect CA1, CA2, CA3, DG, Rad in hippocampus region and positive neuron in cortex region. Results A β was significantly reduced in the experimental group and the positive control group (P = 0.000), but no changes were seen in the negative control group. The levels of LXR, ABCA1, CD45, BACE expression were significantly higher in the PFDM group

  2. Control of Alzheimer's amyloid beta toxicity by the high molecular weight immunophilin FKBP52 and copper homeostasis in Drosophila.

    Directory of Open Access Journals (Sweden)

    Reiko Sanokawa-Akakura

    Full Text Available FK506 binding proteins (FKBPs, also called immunophilins, are prolyl-isomerases (PPIases that participate in a wide variety of cellular functions including hormone signaling and protein folding. Recent studies indicate that proteins that contain PPIase activity can also alter the processing of Alzheimer's Amyloid Precursor Protein (APP. Originally identified in hematopoietic cells, FKBP52 is much more abundantly expressed in neurons, including the hippocampus, frontal cortex, and basal ganglia. Given the fact that the high molecular weight immunophilin FKBP52 is highly expressed in CNS regions susceptible to Alzheimer's, we investigated its role in Abeta toxicity. Towards this goal, we generated Abeta transgenic Drosophila that harbor gain of function or loss of function mutations of FKBP52. FKBP52 overexpression reduced the toxicity of Abeta and increased lifespan in Abeta flies, whereas loss of function of FKBP52 exacerbated these Abeta phenotypes. Interestingly, the Abeta pathology was enhanced by mutations in the copper transporters Atox1, which interacts with FKBP52, and Ctr1A and was suppressed in FKBP52 mutant flies raised on a copper chelator diet. Using mammalian cultures, we show that FKBP52 (-/- cells have increased intracellular copper and higher levels of Abeta. This effect is reversed by reconstitution of FKBP52. Finally, we also found that FKBP52 formed stable complexes with APP through its FK506 interacting domain. Taken together, these studies identify a novel role for FKBP52 in modulating toxicity of Abeta peptides.

  3. Amyloid beta deposition and phosphorylated tau accumulation are key features in aged choroidal vessels in the complement factor H knock out model of retinal degeneration.

    Science.gov (United States)

    Aboelnour, Asmaa; Kam, Jaimie Hoh; Elnasharty, M A; Sayed-Ahmed, Ahmed; Jeffery, Glen

    2016-06-01

    Extra-cellular deposition including amyloid beta (Aβ) is a feature of retinal ageing. It has been documented for Bruch's membrane (BM) where Aβ is elevated in complement factor H knockout mice (Cfh(-/-)) proposed as a model for age related macular degeneration. However, arterial deposition in choroidal vessels prior to perfusion across BM has not been examined. Aβ is associated with tau phosphorylation and these are linked in blood vessels in Alzheimers Disease where they can drive perivascular pathology. Here we ask if Aβ, tau and phosphorylated tau are features of ageing in choroidal vessels in 12 month C57 BL/6 and Cfh(-/-) mice, using immune staining and Western blot analysis. Greater levels of Aβ and phosphorylated tau are found in choroidal vessels in Cfh(-/-) mice. Western blot revealed a 40% increase in Aβ in Cfh(-/-) over C57 BL/6 mice. Aβ deposits coat around 55% of the luminal wall in Cfh(-/-) compared to only about 40% in C57 BL/6. Total tau was similar in both groups, but phosphorylated tau increased by >100% in Cfh(-/-) compared to C57 BL/6 and covered >75% of the luminal wall compared to 50% in C57 BL/6. Hence, phosphorylated tau is a marked choroidal feature in this mouse model. Aβ deposition was clumped in Cfh(-/-) mice and likely to influence blood flow dynamics. Disturbed flow is associated with atherogenesis and may be related to the accumulation of membrane attack complex recently identified between choroidal vessels in those at high risk of macular degeneration due to complement factor H polymorphisms.

  4. Regional Fluid-Attenuated Inversion Recovery (FLAIR at 7 Tesla correlates with Amyloid beta in Hippocampus and Brainstem of cognitively normal elderly subjects.

    Directory of Open Access Journals (Sweden)

    Simon J Schreiner

    2014-09-01

    Full Text Available Background: Accumulation of amyloid beta (Aβ may occur during healthy aging and is a risk factor for Alzheimer Disease (AD. While individual Aβ-accumulation can be measured non-invasively using Pittsburgh compound-B positron-emission-tomography (PiB-PET, Fluid-Attenuated Inversion Recovery (FLAIR is a Magnetic Resonance Imaging (MRI sequence, capable of indicating heterogeneous age-related brain pathologies associated with tissue-edema. In the current study cognitively normal elderly subjects were investigated for regional correlation of PiB- and FLAIR- intensity. Methods: 14 healthy elderly subjects without known history of cognitive impairment received 11C-PiB-PET for estimation of regional Aβ-load. In addition, whole brain T1-MPRAGE and FLAIR-MRI sequences were acquired at high field strength of 7 Tesla (7T. Volume-normalized intensities of brain regions were assessed by applying an automated subcortical segmentation algorithm for spatial definition of brain structures. Statistical dependence between FLAIR- and PiB-PET intensities was tested using Spearman's rank correlation coefficient (rho, followed by Holm-Bonferroni correction for multiple testing. Results: Neuropsychological testing revealed normal cognitive performance levels in all participants. Mean regional PiB-PET and FLAIR intensities were normally distributed and independent. Significant correlation between volume-normalized PiB-PET signals and FLAIR intensities resulted for Hippocampus (right:rho=0.86; left:rho=0.84, Brainstem (rho=0.85 and left Basal Ganglia vessel region (rho=0.82. Conclusions: Our finding of a significant relationship between PiB- and FLAIR-intensity mainly observable in the Hippocampus and Brainstem, indicates regional Aβ associated tissue-edema in cognitively normal elderly subjects. Further studies including clinical populations are necessary to clarify the relevance of our findings for estimating individual risk for age-related neurodegenerative

  5. Administrations of human adult ischemia-tolerant mesenchymal stem cells and factors reduce amyloid beta pathology in a mouse model of Alzheimer's disease.

    Science.gov (United States)

    Harach, Taoufiq; Jammes, Fabien; Muller, Charles; Duthilleul, Nicolas; Cheatham, Victoria; Zufferey, Valentin; Cheatham, David; Lukasheva, Yelizaveta A; Lasser, Theo; Bolmont, Tristan

    2017-03-01

    The impact of human adult ischemia-tolerant mesenchymal stem cells (hMSCs) and factors (stem cell factors) on cerebral amyloid beta (Aβ) pathology was investigated in a mouse model of Alzheimer's disease (AD). To this end, hMSCs were administered intravenously to APPPS1 transgenic mice that normally develop cerebral Aβ. Quantitative reverse transcriptase polymerase chain reaction biodistribution revealed that intravenously delivered hMSCs were readily detected in APPPS1 brains 1 hour following administration, and dropped to negligible levels after 1 week. Notably, intravenously injected hMSCs that migrated to the brain region were localized in the cerebrovasculature, but they also could be observed in the brain parenchyma particularly in the hippocampus, as revealed by immunohistochemistry. A single hMSC injection markedly reduced soluble cerebral Aβ levels in APPPS1 mice after 1 week, although increasing several Aβ-degrading enzymes and modulating a panel of cerebral cytokines, suggesting an amyloid-degrading and anti-inflammatory impact of hMSCs. Furthermore, 10 weeks of hMSC treatment significantly reduced cerebral Aβ plaques and neuroinflammation in APPPS1 mice, without increasing cerebral amyloid angiopathy or microhemorrhages. Notably, a repeated intranasal delivery of soluble factors secreted by hMSCs in culture, in the absence of intravenous hMSC injection, was also sufficient to diminish cerebral amyloidosis in the mice. In conclusion, this preclinical study strongly underlines that cerebral amyloidosis is amenable to therapeutic intervention based on peripheral applications of hMSC or hMSC factors, paving the way for a novel therapy for Aβ amyloidosis and associated pathologies observed in AD. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Regional Fluid-Attenuated Inversion Recovery (FLAIR) at 7 Tesla correlates with amyloid beta in hippocampus and brainstem of cognitively normal elderly subjects

    Science.gov (United States)

    Schreiner, Simon J.; Liu, Xinyang; Gietl, Anton F.; Wyss, Michael; Steininger, Stefanie C.; Gruber, Esmeralda; Treyer, Valerie; Meier, Irene B.; Kälin, Andrea M.; Leh, Sandra E.; Buck, Alfred; Nitsch, Roger M.; Pruessmann, Klaas P.; Hock, Christoph; Unschuld, Paul G.

    2014-01-01

    Background: Accumulation of amyloid beta (Aβ) may occur during healthy aging and is a risk factor for Alzheimer Disease (AD). While individual Aβ-accumulation can be measured non-invasively using Pittsburgh Compund-B positron emission tomography (PiB-PET), Fluid-attenuated inversion recovery (FLAIR) is a Magnetic Resonance Imaging (MRI) sequence, capable of indicating heterogeneous age-related brain pathologies associated with tissue-edema. In the current study cognitively normal elderly subjects were investigated for regional correlation of PiB- and FLAIR intensity. Methods: Fourteen healthy elderly subjects without known history of cognitive impairment received 11C-PiB-PET for estimation of regional Aβ-load. In addition, whole brain T1-MPRAGE and FLAIR-MRI sequences were acquired at high field strength of 7 Tesla (7T). Volume-normalized intensities of brain regions were assessed by applying an automated subcortical segmentation algorithm for spatial definition of brain structures. Statistical dependence between FLAIR- and PiB-PET intensities was tested using Spearman's rank correlation coefficient (rho), followed by Holm–Bonferroni correction for multiple testing. Results: Neuropsychological testing revealed normal cognitive performance levels in all participants. Mean regional PiB-PET and FLAIR intensities were normally distributed and independent. Significant correlation between volume-normalized PiB-PET signals and FLAIR intensities resulted for Hippocampus (right: rho = 0.86; left: rho = 0.84), Brainstem (rho = 0.85) and left Basal Ganglia vessel region (rho = 0.82). Conclusions: Our finding of a significant relationship between PiB- and FLAIR intensity mainly observable in the Hippocampus and Brainstem, indicates regional Aβ associated tissue-edema in cognitively normal elderly subjects. Further studies including clinical populations are necessary to clarify the relevance of our findings for estimating individual risk for age-related neurodegenerative

  7. Viewing ageing eyes: diverse sites of amyloid Beta accumulation in the ageing mouse retina and the up-regulation of macrophages.

    Directory of Open Access Journals (Sweden)

    Jaimie Hoh Kam

    Full Text Available BACKGROUND: Amyloid beta (Aβ accumulates in the ageing central nervous system and is associated with a number of age-related diseases, including age-related macular degeneration (AMD in the eye. AMD is characterised by accumulation of extracellular deposits called drusen in which Aβ is a key constituent. Aβ activates the complement cascade and its deposition is associated with activated macrophages. So far, little is known about the quantitative measurements of Aβ accumulation and definitions of its relative sites of ocular deposition in the normal ageing mouse. METHODOLOGY/PRINCIPAL FINDINGS: We have traced Aβ accumulation quantitatively in the ageing mouse retina using immunohistochemistry and Western blot analysis. We reveal that it is not only deposited at Bruch's membrane and along blood vessels, but unexpectedly, it also coats photoreceptor outer segments. While Aβ is present at all sites of deposition from 3 months of age, it increases markedly from 6 months onward. Progressive accumulation of deposits on outer segments was confirmed with scanning electron microscopy, revealing age-related changes in their morphology. Such progress of accumulation of Aβ on photoreceptor outer segments with age was also confirmed in human retinae using immunohistochemistry. We also chart the macrophage response to increases in Aβ showing up-regulation in their numbers using both confocal laser imaging of the eye in vivo followed by in vitro immunostaining. With age macrophages become bloated with cellular debris including Aβ, however, their increasing numbers fail to stop Aβ accumulation. CONCLUSIONS: Increasing Aβ deposition in blood vessels and Bruch's membrane will impact upon retinal perfusion and clearance of cellular waste products from the outer retina, a region of very high metabolic activity. This accumulation of Aβ may contribute to the 30% reduction of photoreceptors found throughout life and the shortening of those that remain. The

  8. Complement C3 deficiency leads to accelerated amyloid beta plaque deposition and neurodegeneration and modulation of the microglia/macrophage phenotype in amyloid precursor protein transgenic mice.

    Science.gov (United States)

    Maier, Marcel; Peng, Ying; Jiang, Liying; Seabrook, Timothy J; Carroll, Michael C; Lemere, Cynthia A

    2008-06-18

    Complement factor C3 is the central component of the complement system and a key inflammatory protein activated in Alzheimer's disease (AD). Previous studies demonstrated that inhibition of C3 by overexpression of soluble complement receptor-related protein y in an AD mouse model led to reduced microgliosis, increased amyloid beta (Abeta) plaque burden, and neurodegeneration. To further address the role of C3 in AD pathology, we generated a complement C3-deficient amyloid precursor protein (APP) transgenic AD mouse model (APP;C3(-/-)). Brains were analyzed at 8, 12, and 17 months of age by immunohistochemical and biochemical methods and compared with age-matched APP transgenic mice. At younger ages (8-12 months), no significant neuropathological differences were observed between the two transgenic lines. In contrast, at 17 months of age, APP;C3(-/-) mice showed significant changes of up to twofold increased total Abeta and fibrillar amyloid plaque burden in midfrontal cortex and hippocampus, which correlated with (1) significantly increased Tris-buffered saline (TBS)-insoluble Abeta(42) levels and reduced TBS-soluble Abeta(42) and Abeta(40) levels in brain homogenates, (2) a trend for increased Abeta levels in the plasma, (3) a significant loss of neuronal-specific nuclear protein-positive neurons in the hippocampus, and (4) differential activation of microglia toward a more alternative phenotype (e.g., significantly increased CD45-positive microglia, increased brain levels of interleukins 4 and 10, and reduced levels of CD68, F4/80, inducible nitric oxide synthase, and tumor necrosis factor). Our results suggest a beneficial role for complement C3 in plaque clearance and neuronal health as well as in modulation of the microglia phenotype.

  9. Droplet-based magnetic bead immunoassay using microchannel-connected multiwell plates (μCHAMPs) for the detection of amyloid beta oligomers.

    Science.gov (United States)

    Park, Min Cheol; Kim, Moojong; Lim, Gun Taek; Kang, Sung Min; An, Seong Soo A; Kim, Tae Song; Kang, Ji Yoon

    2016-06-21

    Multiwell plates are regularly used in analytical research and clinical diagnosis but often require laborious washing steps and large sample or reagent volumes (typically, 100 μL per well). To overcome such drawbacks in the conventional multiwell plate, we present a novel microchannel-connected multiwell plate (μCHAMP) that can be used for automated disease biomarker detection in a small sample volume by performing droplet-based magnetic bead immunoassay inside the plate. In this μCHAMP-based immunoassay platform, small volumes (30-50 μL) of aqueous-phase working droplets are stably confined within each well by the simple microchannel structure (200-300 μm in height and 0.5-1 mm in width), and magnetic beads are exclusively transported into an adjacent droplet through the oil-filled microchannels assisted by a magnet array aligned beneath and controlled by a XY-motorized stage. Using this μCHAMP-based platform, we were able to perform parallel detection of synthetic amyloid beta (Aβ) oligomers as a model analyte for the early diagnosis of Alzheimer's disease (AD). This platform easily simplified the laborious and consumptive immunoassay procedure by achieving automated parallel immunoassay (32 assays per operation in 3-well connected 96-well plate) within 1 hour and at low sample consumption (less than 10 μL per assay) with no cumbersome manual washing step. Moreover, it could detect synthetic Aβ oligomers even below 10 pg mL(-1) concentration with a calculated detection limit of ∼3 pg mL(-1). Therefore, the μCHAMP and droplet-based magnetic bead immunoassay, with the combination of XY-motorized magnet array, would be a useful platform in the diagnosis of human disease, including AD, which requires low consumption of the patient's body fluid sample and automation of the entire immunoassay procedure for high processing capacity.

  10. Neurodegeneration in an Animal Model of Chronic Amyloid-beta Oligomer Infusion Is Counteracted by Antibody Treatment Infused with Osmotic Pumps.

    Science.gov (United States)

    Sajadi, Ahmadali; Provost, Chloé; Pham, Brendon; Brouillette, Jonathan

    2016-08-14

    Decline in hippocampal-dependent explicit memory (memory for facts and events) is one of the earliest clinical symptom of Alzheimer's disease (AD). It is well established that synapse loss and ensuing neurodegeneration are the best predictors for memory impairments in AD. Latest studies have emphasized the neurotoxic role of soluble amyloid-beta oligomers (Aβo) that begin to accumulate in the human brain approximately 10 to 15 yr before the clinical symptoms become apparent. Many reports indicate that soluble Aβo correlate with memory deficits in AD models and humans. The Aβo-induced neurodegeneration observed in neuronal and brain slice cultures has been more challenging to reproduce in many animal models. The model of repeated Aβo infusions shown here overcome this issue and allow addressing two key domains for developing new disease modifying therapies: identify biological markers to diagnose early AD, and determine the molecular mechanisms underpinning Aβo-induced memory deficits at the onset of AD. Since soluble Aβo aggregate relatively fast into insoluble Aβ fibrils that correlate poorly with the clinical state of patients, soluble Aβo are prepared freshly and injected once per day during six days to produce marked cell death in the hippocampus. We used cannula specially design for simultaneous infusions of Aβo and continuous infusion of Aβo antibody (6E10) in the hippocampus using osmotic pumps. This innovative in vivo method can now be used in preclinical studies to validate the efficiency of new AD therapies that might prevent the deposition and neurotoxicity of Aβo in pre-dementia patients.

  11. The anti-tumor histone deacetylase inhibitor SAHA and the natural flavonoid curcumin exhibit synergistic neuroprotection against amyloid-beta toxicity.

    Directory of Open Access Journals (Sweden)

    Jia Meng

    Full Text Available With the trend of an increasing aged population worldwide, Alzheimer's disease (AD, an age-related neurodegenerative disorder, as one of the major causes of dementia in elderly people is of growing concern. Despite the many hard efforts attempted during the past several decades in trying to elucidate the pathological mechanisms underlying AD and putting forward potential therapeutic strategies, there is still a lack of effective treatments for AD. The efficacy of many potential therapeutic drugs for AD is of main concern in clinical practice. For example, large bodies of evidence show that the anti-tumor histone deacetylase (HDAC inhibitor, suberoylanilidehydroxamic acid (SAHA, may be of benefit for the treatment of AD; however, its extensive inhibition of HDACs makes it a poor therapeutic. Moreover, the natural flavonoid, curcumin, may also have a potential therapeutic benefit against AD; however, it is plagued by low bioavailability. Therefore, the integrative effects of SAHA and curcumin were investigated as a protection against amyloid-beta neurotoxicity in vitro. We hypothesized that at low doses their synergistic effect would improve therapeutic selectivity, based on experiments that showed that at low concentrations SAHA and curcumin could provide comprehensive protection against Aβ25-35-induced neuronal damage in PC12 cells, strongly implying potent synergism. Furthermore, network analysis suggested that the possible mechanism underlying their synergistic action might be derived from restoration of the damaged functional link between Akt and the CBP/p300 pathway, which plays a crucial role in the pathological development of AD. Thus, our findings provided a feasible avenue for the application of a synergistic drug combination, SAHA and curcumin, in the treatment of AD.

  12. Alzheimer's therapeutics targeting amyloid beta 1-42 oligomers II: Sigma-2/PGRMC1 receptors mediate Abeta 42 oligomer binding and synaptotoxicity.

    Science.gov (United States)

    Izzo, Nicholas J; Xu, Jinbin; Zeng, Chenbo; Kirk, Molly J; Mozzoni, Kelsie; Silky, Colleen; Rehak, Courtney; Yurko, Raymond; Look, Gary; Rishton, Gilbert; Safferstein, Hank; Cruchaga, Carlos; Goate, Alison; Cahill, Michael A; Arancio, Ottavio; Mach, Robert H; Craven, Rolf; Head, Elizabeth; LeVine, Harry; Spires-Jones, Tara L; Catalano, Susan M

    2014-01-01

    Amyloid beta (Abeta) 1-42 oligomers accumulate in brains of patients with Mild Cognitive Impairment (MCI) and disrupt synaptic plasticity processes that underlie memory formation. Synaptic binding of Abeta oligomers to several putative receptor proteins is reported to inhibit long-term potentiation, affect membrane trafficking and induce reversible spine loss in neurons, leading to impaired cognitive performance and ultimately to anterograde amnesia in the early stages of Alzheimer's disease (AD). We have identified a receptor not previously associated with AD that mediates the binding of Abeta oligomers to neurons, and describe novel therapeutic antagonists of this receptor capable of blocking Abeta toxic effects on synapses in vitro and cognitive deficits in vivo. Knockdown of sigma-2/PGRMC1 (progesterone receptor membrane component 1) protein expression in vitro using siRNA results in a highly correlated reduction in binding of exogenous Abeta oligomers to neurons of more than 90%. Expression of sigma-2/PGRMC1 is upregulated in vitro by treatment with Abeta oligomers, and is dysregulated in Alzheimer's disease patients' brain compared to age-matched, normal individuals. Specific, high affinity small molecule receptor antagonists and antibodies raised against specific regions on this receptor can displace synthetic Abeta oligomer binding to synaptic puncta in vitro and displace endogenous human AD patient oligomers from brain tissue sections in a dose-dependent manner. These receptor antagonists prevent and reverse the effects of Abeta oligomers on membrane trafficking and synapse loss in vitro and cognitive deficits in AD mouse models. These findings suggest sigma-2/PGRMC1 receptors mediate saturable oligomer binding to synaptic puncta on neurons and that brain penetrant, small molecules can displace endogenous and synthetic oligomers and improve cognitive deficits in AD models. We propose that sigma-2/PGRMC1 is a key mediator of the pathological effects of

  13. Alzheimer's therapeutics targeting amyloid beta 1-42 oligomers II: Sigma-2/PGRMC1 receptors mediate Abeta 42 oligomer binding and synaptotoxicity.

    Directory of Open Access Journals (Sweden)

    Nicholas J Izzo

    Full Text Available Amyloid beta (Abeta 1-42 oligomers accumulate in brains of patients with Mild Cognitive Impairment (MCI and disrupt synaptic plasticity processes that underlie memory formation. Synaptic binding of Abeta oligomers to several putative receptor proteins is reported to inhibit long-term potentiation, affect membrane trafficking and induce reversible spine loss in neurons, leading to impaired cognitive performance and ultimately to anterograde amnesia in the early stages of Alzheimer's disease (AD. We have identified a receptor not previously associated with AD that mediates the binding of Abeta oligomers to neurons, and describe novel therapeutic antagonists of this receptor capable of blocking Abeta toxic effects on synapses in vitro and cognitive deficits in vivo. Knockdown of sigma-2/PGRMC1 (progesterone receptor membrane component 1 protein expression in vitro using siRNA results in a highly correlated reduction in binding of exogenous Abeta oligomers to neurons of more than 90%. Expression of sigma-2/PGRMC1 is upregulated in vitro by treatment with Abeta oligomers, and is dysregulated in Alzheimer's disease patients' brain compared to age-matched, normal individuals. Specific, high affinity small molecule receptor antagonists and antibodies raised against specific regions on this receptor can displace synthetic Abeta oligomer binding to synaptic puncta in vitro and displace endogenous human AD patient oligomers from brain tissue sections in a dose-dependent manner. These receptor antagonists prevent and reverse the effects of Abeta oligomers on membrane trafficking and synapse loss in vitro and cognitive deficits in AD mouse models. These findings suggest sigma-2/PGRMC1 receptors mediate saturable oligomer binding to synaptic puncta on neurons and that brain penetrant, small molecules can displace endogenous and synthetic oligomers and improve cognitive deficits in AD models. We propose that sigma-2/PGRMC1 is a key mediator of the pathological

  14. Blood amyloid beta levels in healthy, mild cognitive impairment and Alzheimer's disease individuals: replication of diastolic blood pressure correlations and analysis of critical covariates.

    Directory of Open Access Journals (Sweden)

    Agustín Ruiz

    Full Text Available Plasma amyloid beta (Aβ levels are being investigated as potential biomarkers for Alzheimer's disease. In AB128 cross-sectional study, a number of medical relevant correlates of blood Aβ40 or Aβ42 were analyzed in 140 subjects (51 Alzheimer's disease patients, 53 healthy controls and 36 individuals diagnosed with mild cognitive impairment. We determined the association between multiple variables with Aβ40 and Aβ42 levels measured in three different blood compartments called i Aβ directly accessible (DA in the plasma, ii Aβ recovered from the plasma matrix (RP after diluting the plasma sample in a formulated buffer, and iii associated with the remaining cellular pellet (CP. We confirmed that diastolic blood pressure (DBP is consistently correlated with blood DA Aβ40 levels (r=-0.19, P=0.032. These results were consistent in the three phenotypic groups studied. Importantly, the observation resisted covariation with age, gender or creatinine levels. Observed effect size and direction of Aβ40 levels/DBP correlation are in accordance with previous reports. Of note, DA Aβ40 and the RP Aβ40 were also strongly associated with creatinine levels (r=0.599, P<<0.001 and to a lesser extent to urea, age, hematocrit, uric acid and homocysteine (p<0.001. DBP and the rest of statistical significant correlates identified should be considered as potential confounder factors in studies investigating blood Aβ levels as potential AD biomarker. Remarkably, the factors affecting Aβ levels in plasma (DA, RP and blood cell compartments (CP seem completely different.

  15. Exploring the contribution of estrogen to amyloid-beta regulation:a novel multifactorial computational modeling approach

    Directory of Open Access Journals (Sweden)

    Thomas J. Anastasio

    2013-03-01

    Full Text Available According to the amyloid hypothesis, Alzheimer Disease results from the accumulation beyond normative levels of the peptide amyloid-β (Aβ. Perhaps because of its pathological potential, Aβ and the enzymes that produce it are heavily regulated by the molecular interactions occurring within cells, including neurons. This regulation involves a highly complex system of intertwined normative and pathological processes, and the sex hormone estrogen contributes to it by influencing the Aβ-regulation system at many different points. Owing to its high complexity, Aβ regulation and the contribution of estrogen are very difficult to reason about. This report describes a computational model of the contribution of estrogen to Aβ regulation that provides new insights and generates experimentally testable and therapeutically relevant predictions. The computational model is written in the declarative programming language known as Maude, which allows not only simulation but also analysis of the system using temporal logic. The model illustrates how the various effects of estrogen could work together to reduce Aβ levels, or prevent them from rising, in the presence of pathological triggers. The model predicts that estrogen itself should be more effective in reducing Aβ than agonists of estrogen receptor α (ERα, and that agonists of ERβ should be ineffective. The model shows how estrogen itself could dramatically reduce Aβ, and predicts that NSAIDs should provide a small additional benefit. It also predicts that certain compounds, but not others, could augment the reduction in Aβ due to estrogen. The model is intended as a starting point for a computational/experimental interaction in which model predictions are tested experimentally, the results are used to confirm, correct, and expand the model, new predictions are generated, and the process continues, producing a model of ever increasing explanatory power and predictive value.

  16. Proteomic study of amyloid beta (25-35) peptide exposure to neuronal cells: Impact on APE1/Ref-1's protein-protein interaction.

    Science.gov (United States)

    Mantha, Anil K; Dhiman, Monisha; Taglialatela, Giulio; Perez-Polo, Regino J; Mitra, Sankar

    2012-06-01

    The genotoxic, extracellular accumulation of amyloid β (Aβ) protein and subsequent neuronal cell death are associated with Alzheimer's disease (AD). APE1/Ref-1, the predominant apurinic/apyrimidinic (AP) endonuclease and essential in eukaryotic cells, plays a central role in the base excision repair (BER) pathway for repairing oxidized and alkylated bases and single-strand breaks (SSBs) in DNA. APE1/Ref-1 is also involved in the redox activation of several trans-acting factors (TFs) in various cell types, but little is known about its role in neuronal functions. There is emerging evidence for APE1/Ref-1's role in neuronal cells vulnerable in AD and other neurodegenerative disorders, as reflected in its nuclear accumulation in AD brains. An increase in APE1/Ref-1 has been shown to enhance neuronal survival after oxidative stress. To address whether APE1/Ref-1 level or its association with other proteins is responsible for this protective effect, we used 2-D proteomic analyses and identified cytoskeleton elements (i.e., tropomodulin 3, tropomyosin alpha-3 chain), enzymes involved in energy metabolism (i.e., pyruvate kinase M2, N-acetyl transferase, sulfotransferase 1c), proteins involved in stress response (i.e., leucine-rich and death domain, anti-NGF30), and heterogeneous nuclear ribonucleoprotien-H (hnRNP-H) as being associated with APE1/Ref-1 in Aβ(25-35)-treated rat pheochromocytoma PC12 and human neuroblastoma SH-SY5Y cell lines, two common neuronal precursor lines used in Aβ neurotoxicity studies. Because the levels of some of these proteins are affected in the brains of AD patients, our study suggests a neuroprotective role for APE1/Ref-1 via its association with those proteins and modulating their cellular functions during Aβ-mediated neurotoxicity.

  17. Stabilization of the cyclin-dependent kinase 5 activator, p35, by paclitaxel decreases beta-amyloid toxicity in cortical neurons.

    Science.gov (United States)

    Li, Guibin; Faibushevich, Alexander; Turunen, Brandon J; Yoon, Sung Ok; Georg, Gunda; Michaelis, Mary L; Dobrowsky, Rick T

    2003-01-01

    One hallmark of Alzheimer's disease (AD) is the formation of neurofibrillary tangles, aggregated paired helical filaments composed of hyperphosphorylated tau. Amyloid-beta (Abeta) induces tau hyperphosphorylation, decreases microtubule (MT) stability and induces neuronal death. MT stabilizing agents have been proposed as potential therapeutics that may minimize Abeta toxicity and here we report that paclitaxel (taxol) prevents cell death induced by Abeta peptides, inhibits Abeta-induced activation of cyclin-dependent kinase 5 (cdk5) and decreases tau hyperphosphorylation. Taxol did not inhibit cdk5 directly but significantly blocked Abeta-induced calpain activation and decreased formation of the cdk5 activator, p25, from p35. Taxol specifically inhibited the Abeta-induced activation of the cytosolic cdk5-p25 complex, but not the membrane-associated cdk5-p35 complex. MT-stabilization was necessary for neuroprotection and inhibition of cdk5 but was not sufficient to prevent cell death induced by overexpression of p25. As taxol is not permeable to the blood-brain barrier, we assessed the potential of taxanes to attenuate Abeta toxicity in adult animals using a succinylated taxol analog (TX67) permeable to the blood-brain barrier. TX67, but not taxol, attenuated the magnitude of both basal and Abeta-induced cdk5 activation in acutely dissociated cortical cultures prepared from drug treated adult mice. These results suggest that MT-stabilizing agents may provide a therapeutic approach to decrease Abeta toxicity and neurofibrillary pathology in AD and other tauopathies.

  18. Erythropoietin improves memory function with reducing endothelial dysfunction and amyloid-beta burden in Alzheimer's disease models.

    Science.gov (United States)

    Lee, Soon-Tae; Chu, Kon; Park, Jung-Eun; Jung, Keun-Hwa; Jeon, Daejong; Lim, Ji-Youn; Lee, Sang Kun; Kim, Manho; Roh, Jae-Kyu

    2012-01-01

    Neurovascular degeneration contributes to the pathogenesis of Alzheimer's disease (AD). Because erythropoietin (EPO) promotes endothelial regeneration, we investigated the therapeutic effects of EPO in animal models of AD. In aged Tg2576 mice, EPO receptors (EPORs) were expressed in the cortex and hippocampus. Tg2576 mice were treated with daily injection of EPO (5000 IU/kg/day) for 5 days. At 14 days, EPO improved contextual memory as measured by fear-conditioning test. EPO enhanced endothelial proliferation and the level of synaptophysin expression in the brain. EPO also increased capillary density, and decreased the level of the receptor for advanced glycation endproducts (RAGE) in the brain, while decreasing in the amount of amyloid plaque and amyloid-β (Aβ). In cultured human endothelial cells, EPO enhanced angiogenesis and suppressed the expression of the RAGE. These results show that EPO improves memory and ameliorates endothelial degeneration induced by Aβ in AD models. This pre-clinical evidence suggests that EPO may be useful for the treatment of AD.

  19. Advances in the therapy of Alzheimer's disease: targeting amyloid beta and tau and perspectives for the future.

    Science.gov (United States)

    Hampel, Harald; Schneider, Lon S; Giacobini, Ezio; Kivipelto, Miia; Sindi, Shireen; Dubois, Bruno; Broich, Karl; Nisticò, Robert; Aisen, Paul S; Lista, Simone

    2015-01-01

    Worldwide multidisciplinary translational research has led to a growing knowledge of the genetics and molecular pathogenesis of Alzheimer's disease (AD) indicating that pathophysiological brain alterations occur decades before clinical signs and symptoms of cognitive decline can be diagnosed. Consequently, therapeutic concepts and targets have been increasingly focused on early-stage illness before the onset of dementia; and distinct classes of compounds are now being tested in clinical trials. At present, there is a growing consensus that therapeutic progress in AD delaying disease progression would significantly decrease the expanding global burden. The evolving hypothesis- and evidence-based generation of new diagnostic research criteria for early-stage AD has positively impacted the development of clinical trial designs and the characterization of earlier and more specific target populations for trials in prodromal as well as in pre- and asymptomatic at-risk stages of AD.

  20. Peptides and aging: Their role in anorexia and memory.

    Science.gov (United States)

    Morley, John E

    2015-10-01

    The rapid aging of the world's population has led to a need to increase our understanding of the pathophysiology of the factors leading to frailty and cognitive decline. Peptides have been shown to be involved in the pathophysiology of frailty and cognitive decline. Weight loss is a major component of frailty. In this review, we demonstrate a central role for both peripheral peptides (e.g., cholecystokinin and ghrelin) and neuropeptides (e.g., dynorphin and alpha-MSH) in the pathophysiology of the anorexia of aging. Similarly, peripheral peptides (e.g., ghrelin, glucagon-like peptide 1, and cholecystokinin) are modulators of memory. A number of centrally acting neuropeptides have also been shown to modulate cognitive processes. Amyloid-beta peptide in physiological levels is a memory enhancer, while in high (pathological) levels, it plays a key role in the development of Alzheimer's disease.

  1. α-Iso-cubebenol inhibits inflammation-mediated neurotoxicity and amyloid beta 1-42 fibril-induced microglial activation.

    Science.gov (United States)

    Park, Sun Young; Park, Tae Gyeong; Lee, Sang-Joon; Bae, Yoe-Sik; Ko, Min J; Choi, Young-Whan

    2014-01-01

    To examine the antineuroinflammatory and neuroprotective activity of α-iso-cubebenol and its molecular mechanism of action in amyloid β (Aβ) 1-42 fibril-stimulated microglia. Aβ 1-42 fibrils were used to induce a neuroinflammatory response in murine primary microglia and BV-2 murine microglia cell lines. Cell viability was monitored by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, protein expression and phosphorylation were determined by Western blot analysis, and matrix metalloproteinase-9 (MMP-9) activity was determined by gelatin zymography assay. In addition, prostaglandin E2 (PGE2), pro-inflammatory cytokines and chemokines were measured by ELISA, and the transactivity of nuclear factor (NF)-κB was determined by a reporter assay. α-Iso-cubebenol significantly inhibited Aβ 1-42 fibril-induced MMP-9, inducible nitric oxide synthase and cyclooxygenase-2 expressions and activity, without affecting cell viability. α-Iso-cubebenol also suppressed the production of tumour necrosis factor-α, IL-1β, IL-6, monocyte chemoattractant protein-1 and reactive oxygen species in a dose-dependent manner, while decreasing the nuclear translocation and transactivity of NF-κB by inhibiting the phosphorylation and degradation of the inhibitor of κB (IκB)α. α-Iso-cubebenol suppressed the phosphorylation of mitogen-activated protein kinase (MAPK) in Aβ 1-42 fibril-stimulated microglia. Primary cortical neurons were protected by the inhibitory effect of α-iso-cubebenol on Aβ 1-42 fibril-induced neuroinflammatory response. α-Iso-cubebenol suppresses Aβ 1-42 fibril-induced neuroinflammatory molecules in primary microglia via the suppression of NF-κB/inhibitor of κBα and MAPK. Importantly, the antineuroinflammatory potential of α-iso-cubebenol is critical for neuroprotection. © 2013 Royal Pharmaceutical Society.

  2. Peptide YY and glucagon-like peptide-1 contribute to decreased food intake after Roux-en-Y gastric bypass surgery.

    Science.gov (United States)

    Svane, M S; Jørgensen, N B; Bojsen-Møller, K N; Dirksen, C; Nielsen, S; Kristiansen, V B; Toräng, S; Wewer Albrechtsen, N J; Rehfeld, J F; Hartmann, B; Madsbad, S; Holst, J J

    2016-11-01

    Exaggerated postprandial secretion of glucagon-like peptide-1 (GLP-1) and peptide YY (PYY) may explain appetite reduction and weight loss after Roux-en-Y gastric bypass (RYGB), but causality has not been established. We hypothesized that food intake decreases after surgery through combined actions from GLP-1 and PYY. GLP-1 actions can be blocked using the GLP-1 receptor antagonist Exendin 9-39 (Ex-9), whereas PYY actions can be inhibited by the administration of a dipeptidyl peptidase-4 (DPP-4) inhibitor preventing the formation of PYY3-36. Appetite-regulating gut hormones and appetite ratings during a standard mixed-meal test and effects on subsequent ad libitum food intake were evaluated in two studies: in study 1, nine patients with type 2 diabetes were examined prospectively before and 3 months after RYGB with and without Ex-9. In study 2, 12 RYGB-operated patients were examined in a randomized, placebo-controlled, crossover design on four experimental days with: (1) placebo, (2) Ex-9, (3) the DPP-4 inhibitor, sitagliptin, to reduce formation of PYY3-36 and (4) Ex-9/sitagliptin combined. In study 1, food intake decreased by 35% following RYGB compared with before surgery. Before surgery, GLP-1 receptor blockage increased food intake but no effect was seen postoperatively, whereas PYY secretion was markedly increased. In study 2, combined GLP-1 receptor blockage and DPP-4 inhibitor mediated lowering of PYY3-36 increased food intake by ~20% in RYGB patients, whereas neither GLP-1 receptor blockage nor DPP-4 inhibition alone affected food intake, perhaps because of concomitant marked increases in the unblocked hormone. Blockade of actions from only one of the two L-cell hormones, GLP-1 and PYY3-36, resulted in concomitant increased secretion of the other, probably explaining the absent effect on food intake on these experimental days. Combined blockade of GLP-1 and PYY actions increased food intake after RYGB, supporting that these hormones have a role in

  3. In silico and in vitro studies to elucidate the role of Cu2+ and galanthamine as the limiting step in the amyloid beta (1-42) fibrillation process.

    Science.gov (United States)

    Hernández-Rodríguez, Maricarmen; Correa-Basurto, José; Benitez-Cardoza, Claudia G; Resendiz-Albor, Aldo Arturo; Rosales-Hernández, Martha C

    2013-10-01

    The formation of fibrils and oligomers of amyloid beta (Aβ) with 42 amino acid residues (Aβ 1-42 ) is the most important pathophysiological event associated with Alzheimer's disease (AD). The formation of Aβ fibrils and oligomers requires a conformational change from an α-helix to a β-sheet conformation, which is encouraged by the formation of a salt bridge between Asp 23 or Glu 22 and Lys 28. Recently, Cu(2+) and various drugs used for AD treatment, such as galanthamine (Reminyl(®) ), have been reported to inhibit the formation of Aβ fibrils. However, the mechanism of this inhibition remains unclear. Therefore, the aim of this work was to explore how Cu(2+) and galanthamine prevent the formation of Aβ1-42 fibrils using molecular dynamics (MD) simulations (20 ns) and in vitro studies using fluorescence and circular dichroism (CD) spectroscopies. The MD simulations revealed that Aβ1-42 acquires a characteristic U-shape before the α-helix to β-sheet conformational change. The formation of a salt bridge between Asp 23 and Lys 28 was also observed beginning at 5 ns. However, the MD simulations of Aβ 1-42 in the presence of Cu(2+) or galanthamine demonstrated that both ligands prevent the formation of the salt bridge by either binding to Glu 22 and Asp 23 (Cu(2+) ) or to Lys 28 (galanthamine), which prevents Aβ 1-42 from adopting the U-characteristic conformation that allows the amino acids to transition to a β-sheet conformation. The docking results revealed that the conformation obtained by the MD simulation of a monomer from the 1Z0Q structure can form similar interactions to those obtained from the 2BGE structure in the oligomers. The in vitro studies demonstrated that Aβ remains in an unfolded conformation when Cu(2+) and galanthamine are used. Then, ligands that bind Asp 23 or Glu 22 and Lys 28 could therefore be used to prevent β turn formation and, consequently, the formation of Aβ fibrils.

  4. [{sup 18}F]Flutemetamol amyloid-beta PET imaging compared with [{sup 11}C]PIB across the spectrum of Alzheimer's disease

    Energy Technology Data Exchange (ETDEWEB)

    Hatashita, Shizuo; Yamasaki, Hidetomo [Shonan-Atsugi Hospital, Neurology, PET Center, Atsugi (Japan); Suzuki, Yutaka; Wakebe, Daichi; Hayakawa, Hideki [Shonan-Atsugi Hospital, Radiology, PET Center, Atsugi (Japan); Tanaka, Kumiko [Shonan-Atsugi Hospital, Pharmacology, PET Center, Atsugi (Japan)

    2014-02-15

    The aim was to identify the amyloid beta (Aβ) deposition by positron emission tomography (PET) imaging with the {sup 18}F-labeled Pittsburgh compound B (PIB) derivative [{sup 18}F]flutemetamol (FMM) across a spectrum of Alzheimer's disease (AD) and to compare Aβ deposition between [{sup 18}F]FMM and [{sup 11}C]PIB PET imaging. The study included 36 patients with AD, 68 subjects with mild cognitive impairment (MCI), 41 older healthy controls (HC) (aged ≥56), 11 young HC (aged ≤45), and 10 transitional HC (aged 46-55). All 166 subjects underwent 30-min static [{sup 18}F]FMM PET 85 min after injection, 60-min dynamic [{sup 11}C]PIB PET, and cognitive testing. [{sup 18}F]FMM scans were assessed visually, and standardized uptake value ratios (SUVR) were defined quantitatively in regions of interest identified on coregistered MRI (cerebellar cortex as a reference region). The PIB distribution volume ratios (DVR) were determined in the same regions. Of 36 AD patients, 35 had positive scans, while 36 of 41 older HC subjects had negative scans. [{sup 18}F]FMM scans had a sensitivity of 97.2 % and specificity of 85.3 % in distinguishing AD patients from older HC subjects, and a specificity of 100 % for young and transitional HC subjects. The [{sup 11}C]PIB scan had the same results. Interreader agreement was excellent (kappa score = 0.81). The cortical FMM SUVR in AD patients was significantly greater than in older HC subjects (1.76 ± 0.23 vs 1.30 ± 0.26, p < 0.01). Of the MCI patients, 68 had a bimodal distribution of SUVR, and 29 of them (42.6 %) had positive scans. Cortical FMM SUVR values were strongly correlated with PIB DVR (r = 0.94, n = 145, p < 0.001). [{sup 18}F]FMM PET imaging detects Aβ deposition in patients along the continuum from normal cognitive status to dementia of AD and discriminates AD patients from HC subjects, similar to [{sup 11}C]PIB PET. (orig.)

  5. Copper(II) ions and the Alzheimer's amyloid-β peptide: Affinity and stoichiometry of binding

    Science.gov (United States)

    Tõugu, Vello; Friedemann, Merlin; Tiiman, Ann; Palumaa, Peep

    2014-10-01

    Deposition of amyloid beta (Aβ) peptides into amyloid plaques is the hallmark of Alzheimer's disease. According to the amyloid cascade hypothesis this deposition is an early event and primary cause of the disease, however, the mechanisms that cause this deposition remain elusive. An increasing amount of evidence shows that the interactions of biometals can contribute to the fibrillization and amyloid formation by amyloidogenic peptides. From different anions the copper ions deserve the most attention since it can contribute not only toamyloid formation but also to its toxicity due to the generation of ROS. In this thesis we focus on the affinity and stoichiometry of copper(II) binding to the Aβ molecule.

  6. Application of shock waves to rat skin decreases calcitonin gene-related peptide immunoreactivity in dorsal root ganglion neurons.

    Science.gov (United States)

    Takahashi, Norimasa; Wada, Yuichi; Ohtori, Seiji; Saisu, Takashi; Moriya, Hideshige

    2003-09-30

    There have been several reports on the use of extracorporeal shock waves in the treatment of pseudarthrosis, calcifying tendinitis, and tendinopathies of the elbow. However, the pathomechanism of pain relief has not been clarified. To investigate the analgesic properties of shock wave application, we analyzed changes in calcitonin gene-related peptide (CGRP)-immunoreactive (ir) dorsal root ganglion (DRG) neurons. In the nontreated group, fluorogold-labeled dorsal root ganglion neurons innervating the most middle foot pad of hind paw were distributed in the L4 and L5 dorsal root ganglia. Of these neurons, 61% were CGRP-ir. However, in the shock wave-treated group, the percentage of FG-labeled CGRP-ir DRG neurons decreased to 18%. These data show that relief of clinical pain after shock wave application may result from reduced CGRP expression in DRG neurons.

  7. Grape-seed procyanidins prevent the cafeteria-diet-induced decrease of glucagon-like peptide-1 production.

    Science.gov (United States)

    González-Abuín, Noemi; Martínez-Micaelo, Neus; Blay, Mayte; Ardévol, Anna; Pinent, Montserrat

    2014-02-05

    Grape-seed procyanidin extract (GSPE) has been reported to improve insulin resistance in cafeteria rats. Because glucagon-like peptide-1 (GLP-1) is involved in glucose homeostasis, the preventive effects of GSPE on GLP-1 production, secretion, and elimination were evaluated in a model of diet-induced insulin resistance. Rats were fed a cafeteria diet for 12 weeks, and 25 mg of GSPE/kg of body weight was administered concomitantly. Vehicle-treated cafeteria-fed rats and chow-fed rats were used as controls. The cafeteria diet decreased active GLP-1 plasma levels, which is attributed to a decreased intestinal GLP-1 production, linked to reduced colonic enteroendocrine cell populations. Such effects were prevented by GSPE. In the same context, GSPE avoided the decrease on intestinal dipeptidyl-peptidase 4 (DPP4) activity and modulated the gene expression of GLP-1 and its receptor in the hypothalamus. In conclusion, the preventive treatment with GSPE abrogates the effects of the cafeteria diet on intestinal GLP-1 production and DPP4 activity.

  8. Statins decrease expression of the proinflammatory neuropeptides calcitonin gene-related peptide and substance P in sensory neurons.

    Science.gov (United States)

    Bucelli, Robert C; Gonsiorek, Eugene A; Kim, Woo-Yang; Bruun, Donald; Rabin, Richard A; Higgins, Dennis; Lein, Pamela J

    2008-03-01

    Clinical and experimental observations suggest that statins may be useful for treating diseases presenting with predominant neurogenic inflammation, but the mechanism(s) mediating this potential therapeutic effect are poorly understood. In this study, we tested the hypothesis that statins act directly on sensory neurons to decrease expression of proinflammatory neuropeptides that trigger neurogenic inflammation, specifically calcitonin gene-related peptide (CGRP) and substance P. Reverse transcriptase-polymerase chain reaction, radioimmunoassay, and immunocytochemistry were used to quantify CGRP and substance P expression in dorsal root ganglia (DRG) harvested from adult male rats and in primary cultures of sensory neurons derived from embryonic rat DRG. Systemic administration of statins at pharmacologically relevant doses significantly reduced CGRP and substance P levels in DRG in vivo. In cultured sensory neurons, statins blocked bone morphogenetic protein (BMP)-induced CGRP and substance P expression and decreased expression of these neuropeptides in sensory neurons pretreated with BMPs. These effects were concentration-dependent and occurred independent of effects on cell survival or axon growth. Statin inhibition of neuropeptide expression was reversed by supplementation with mevalonate and cholesterol, but not isoprenoid precursors. BMPs signal via Smad activation, and cholesterol depletion by statins inhibited Smad1 phosphorylation and nuclear translocation. These findings identify a novel action of statins involving down-regulation of proinflammatory neuropeptide expression in sensory ganglia via cholesterol depletion and decreased Smad1 activation and suggest that statins may be effective in attenuating neurogenic inflammation.

  9. Evaluation of the Expression of Amyloid Precursor Protein and the Ratio of Secreted Amyloid Beta 42 to Amyloid Beta 40 in SH-SY5Y Cells Stably Transfected with Wild-Type, Single-Mutant and Double-Mutant Forms of the APP Gene for the Study of Alzheimer's Disease Pathology.

    Science.gov (United States)

    Pahrudin Arrozi, Aslina; Shukri, Siti Nur Syazwani; Wan Ngah, Wan Zurinah; Mohd Yusof, Yasmin Anum; Ahmad Damanhuri, Mohd Hanafi; Makpol, Suzana

    2017-04-17

    Neuroblastoma cell lines such as SH-SY5Y are the most frequently utilized models in neurodegenerative research, and their use has advanced the understanding of the pathology of neurodegeneration over the past few decades. In Alzheimer's disease (AD), several pathogenic mutations have been described, all of which cause elevated levels of pathological hallmarks such as amyloid-beta (Aβ). Although the genetics of Alzheimer's disease is well known, familial AD only accounts for a small number of cases in the population, with the rest being sporadic AD, which contains no known mutations. Currently, most of the in vitro models used to study AD pathogenesis only examine the level of Aβ42 as a confirmation of successful model generation and only perform comparisons between wild-type APP and single mutants of the APP gene. Recent findings have shown that the Aβ42/40 ratio in cerebrospinal fluid (CSF) is a better diagnostic indicator for AD patients than is Aβ42 alone and that more extensive Aβ formation, such as accumulation of intraneuronal Aβ, Aβ plaques, soluble oligomeric Aβ (oAβ), and insoluble fibrillar Aβ (fAβ) occurs in TgCRND8 mice expressing a double-mutant form (Swedish and Indiana) of APP, later leading to greater progressive impairment of the brain. In this study, we generated SH-SY5Y cells stably transfected separately with wild-type APP, the Swedish mutation of APP, and the Swedish and Indiana mutations of APP and evaluated the APP expression as well as the Aβ42/40 ratio in those cells. The double-mutant form of APP (Swedish/Indiana) expressed markedly high levels of APP protein and showed a high Aβ2/40 ratio compared to wild-type and single-mutant cells.

  10. Increased B-type natriuretic peptide and decreased proteinuria might reflect decreased capillary leakage and is associated with a better outcome in patients with severe burns

    NARCIS (Netherlands)

    de Leeuw, Karina; Nieuwenhuis, Marianne K; Niemeijer, Anuschka S; Eshuis, Hans; Beerthuizen, Gerard I J M; Janssen, Wilbert M

    2011-01-01

    INTRODUCTION: It is difficult to adjust fluid balance adequately in patients with severe burns due to various physical changes. B-type natriuretic peptide (BNP) is emerging as a potential marker of hydration state. Proteinuria is used as a predictor of outcome in severe illness and might correlate t

  11. Reduction of hippocampal apoptosis by intracerebroventricular administration of extracellular signal-regulated protein kinase and/or p38 inhibitors in amyloid beta rat model of Alzheimer's disease: involvement of nuclear-related factor-2 and nuclear factor-κB.

    Science.gov (United States)

    Ashabi, Ghorbangol; Alamdary, Shabnam Zeighamy; Ramin, Mahmoudreza; Khodagholi, Fariba

    2013-03-01

    In the present study, we examined the effects of intracerebroventricular administration of extracellular signal-regulated protein kinase- (ERK) and p38-specific inhibitors, U0126 and PD169316, respectively, on apoptosis induced by amyloid beta (Aβ) in rats. To investigate the effects of these compounds, we evaluated intracellular signalling pathways of apoptosis, as well as inflammatory and antioxidant pathways, 7 and 20 days after Aβ injection. We found that caspase-3 and Bax/Bcl-2 ratio, two hallmarks of apoptosis, were significantly decreased in the rats pre-treated with U0126 and PD169316, 7 days after Aβ injection. This observation was in agreement with the results of immunostaining analysis of the hippocampus that showed decreased levels of terminal transferase dUTP nick end labelling positive cells in the hippocampus of U0126 and PD169316 pre-treated rats, compared with the Aβ-injected group. We also chased the changes in the levels of calpain-2 and caspase-12, two ER factors, in the Aβ-injected and treatment groups. Decreased levels of calpain-2 and caspase-12 in U0126 and PD169316 pre-treated rats confirmed the protective effects of these inhibitors. Furthermore, we studied the effect of two stress-sensing transcription factors, nuclear-related factor-2 (Nrf2) and nuclear factor-кB (NF-кB), in Aβ-injected as wells as U0126 and PD169316 pre-treated rats. U0126 and PD169316 activated Nrf2 and suppressed NF-кB pathways, 7 days after Aβ injection. These antioxidant and inflammatory pathways restored to the vehicle level within 20 days. Taken together, our findings reinforce and extend the notion of the potential neuroprotective role of ERK and/or p38 inhibitors against the neuronal toxicity induced by Aβ.

  12. Long-term air pollution exposure is associated with neuroinflammation, an altered innate immune response, disruption of the blood-brain barrier, ultrafine particulate deposition, and accumulation of amyloid beta-42 and alpha-synuclein in children and young adults.

    Science.gov (United States)

    Calderón-Garcidueñas, Lilian; Solt, Anna C; Henríquez-Roldán, Carlos; Torres-Jardón, Ricardo; Nuse, Bryan; Herritt, Lou; Villarreal-Calderón, Rafael; Osnaya, Norma; Stone, Ida; García, Raquel; Brooks, Diane M; González-Maciel, Angelica; Reynoso-Robles, Rafael; Delgado-Chávez, Ricardo; Reed, William

    2008-02-01

    Air pollution is a serious environmental problem. We investigated whether residency in cities with high air pollution is associated with neuroinflammation/neurodegeneration in healthy children and young adults who died suddenly. We measured mRNA cyclooxygenase-2, interleukin-1beta, and CD14 in target brain regions from low (n = 12) or highly exposed residents (n = 35) aged 25.1 +/- 1.5 years. Upregulation of cyclooxygenase-2, interleukin-1beta, and CD14 in olfactory bulb, frontal cortex, substantia nigrae and vagus nerves; disruption of the blood-brain barrier; endothelial activation, oxidative stress, and inflammatory cell trafficking were seen in highly exposed subjects. Amyloid beta42 (Abeta42) immunoreactivity was observed in 58.8% of apolipoprotein E (APOE) 3/3 Parkinson's diseases, and carriers of the APOE 4 allele could have a higher risk of developing Alzheimer's disease if they reside in a polluted environment.

  13. Predictors of Left Ventricle Remodeling: Combined Plasma B-type Natriuretic Peptide Decreasing Ratio and Peak Creatine Kinase-MB.

    Science.gov (United States)

    Hsu, Jen-Te; Chung, Chang-Min; Chu, Chi-Ming; Lin, Yu-Shen; Pan, Kuo-Li; Chang, Jung-Jung; Wang, Po-Chang; Chang, Shih-Tai; Yang, Teng-Yao; Jang, Shih-Jung; Yang, Tsung-Han; Hsiao, Ju-Feng

    2017-01-01

    Background: Previous studies reported that patients who had an acute myocardial infarction (AMI) have found that measuring B-type natriuretic peptide (BNP) during the subacute phase of left ventricular (LV) remodeling can predict the possible course of LV remodeling. This study assessed the use of serial BNP serum levels combined with early creatine kinase-MB (CK-MB) to predict the development of significant LV remodeling in AMI patients. Methods: Nighty-seven patients with new onset AMI were assessed using serial echocardiographic studies and serial measurements of BNP levels, both performed on day-2 (BNP1), day-7 (BNP2), day-90 (BNP3), and day-180 (BNP4) after admission. LV remodeling was defined as >20% increase in biplane LV end-diastolic volume on day-180 compared to baseline (day-2). Results: Patients were divided into LV remodeling [LVR(+)] and non LV remodeling [LVR(-)] groups. No first-week BNP level was found to predict remodeling. However, the two groups had significantly different day-90 BNP level (208.1 ± 263.7 pg/ml vs. 82.4 ± 153.7 pg/ml, P = 0.039) and significantly different 3-month BNP decrease ratios ( R BNP13) (14.4 ± 92.2% vs. 69.4 ± 25.9%, P MB (cut-off 48.2 ng/ml; AUC = 0.672; P = 0.014) was another independent predictor of remodeling. Additionally, combining peak CK-MB and R BNP13 offered an excellent discrimination for half-year remodeling when assessed by ROC curve (AUC = 0.818, P MB additionally offered an incremental power to the predictions derived from serial BNP examinations.

  14. In silico studies of the early stages of aggregation of Aβ₄₂ peptides

    Indian Academy of Sciences (India)

    PRABIR KHATUA; SANJOY BANDYOPADHYAY

    2017-07-01

    Accumulation of amyloid beta (Aβ) peptide in the brain is responsible for debilitating neurodegenerative disease, namely, Alzheimer’s disease. We have carried out atomistic molecular dynamics simulation to study the early stages of the aggregation process of five full-length Aβ₄₂ peptide monomers with varying secondary structural contents in aqueous solution. Attempts have been made to study the conformational modifications of the Aβ peptide monomers and their dynamical features during the oligomer formation. Inparticular, specific molecular interactions that drive the association process leading to the formation of the stable oligomer have been identified. The calculations revealed that the helix–helix linkage plays an important role forbringing the unstructured regions of the monomers closer for self-assembly. Importantly, it is demonstrated that the contribution originating from the nonpolar interactions between the peptides and the corresponding nonpolarsolvation more than compensates the weakening effect of unfavorable inter-peptide electrostatic interactions, thereby stabilizing the nucleated oligomer.

  15. Increase in the β-Sheet Character of an Amyloidogenic Peptide upon Adsorption onto Gold and Silver Surfaces.

    Science.gov (United States)

    Soltani, Nima; Gholami, Mohammad Reza

    2017-03-03

    Fibrillation of amyloid beta (Aβ) peptide is the hallmark of Alzheimer's disease. Given that interactions at the bio-nano interface affect the fibrillation tendency of this peptide, an understanding of the interactions at Aβ peptide-inorganic surfaces on the microscopic level can help to determine the possible neurotoxicity of nanoparticles. Here, the interactions between a fibril-forming peptide, Aβ25-35 , and (111) and (100) facets of gold and silver surfaces have been studied by conducting atomistic molecular dynamics simulations. The obtained results indicate that the adsorption onto gold and silver surfaces force the peptide into the β-sheet-rich conformations, which is prone to aggregation, suggesting a new mechanism for the acceleration of fibril formation upon interaction with nanoparticles. To quantify the β-sheet content for a single peptide, a new metrics based on the Ramachandran probability distribution is introduced.

  16. Predictors of Left Ventricle Remodeling: Combined Plasma B-type Natriuretic Peptide Decreasing Ratio and Peak Creatine Kinase-MB

    Science.gov (United States)

    Hsu, Jen-Te; Chung, Chang-Min; Chu, Chi-Ming; Lin, Yu-Shen; Pan, Kuo-Li; Chang, Jung-Jung; Wang, Po-Chang; Chang, Shih-Tai; Yang, Teng-Yao; Jang, Shih-Jung; Yang, Tsung-Han; Hsiao, Ju-Feng

    2017-01-01

    Background: Previous studies reported that patients who had an acute myocardial infarction (AMI) have found that measuring B-type natriuretic peptide (BNP) during the subacute phase of left ventricular (LV) remodeling can predict the possible course of LV remodeling. This study assessed the use of serial BNP serum levels combined with early creatine kinase-MB (CK-MB) to predict the development of significant LV remodeling in AMI patients. Methods: Nighty-seven patients with new onset AMI were assessed using serial echocardiographic studies and serial measurements of BNP levels, both performed on day-2 (BNP1), day-7 (BNP2), day-90 (BNP3), and day-180 (BNP4) after admission. LV remodeling was defined as >20% increase in biplane LV end-diastolic volume on day-180 compared to baseline (day-2). Results: Patients were divided into LV remodeling [LVR(+)] and non LV remodeling [LVR(-)] groups. No first-week BNP level was found to predict remodeling. However, the two groups had significantly different day-90 BNP level (208.1 ± 263.7 pg/ml vs. 82.4 ± 153.7 pg/ml, P = 0.039) and significantly different 3-month BNP decrease ratios (RBNP13) (14.4 ± 92.2% vs. 69.4 ± 25.9%, P < 0.001). The appropriate cut-off value for RBNP13 was 53.2% (AUC = 0.764, P < 0.001). Early peak CK-MB (cut-off 48.2 ng/ml; AUC = 0.672; P = 0.014) was another independent predictor of remodeling. Additionally, combining peak CK-MB and RBNP13 offered an excellent discrimination for half-year remodeling when assessed by ROC curve (AUC = 0.818, P < 0.001). Conclusion: RBNP13 is a significant independent predictor of 6-month LV remodeling. The early peak CK-MB additionally offered an incremental power to the predictions derived from serial BNP examinations. PMID:28138312

  17. Plasma and cerebrospinal fluid amyloid beta for the diagnosis of Alzheimer's disease dementia and other dementias in people with mild cognitive impairment (MCI).

    Science.gov (United States)

    Ritchie, Craig; Smailagic, Nadja; Noel-Storr, Anna H; Takwoingi, Yemisi; Flicker, Leon; Mason, Sam E; McShane, Rupert

    2014-06-10

    According to the latest revised National Institute of Neurological and Communicative Disorders and Stroke and the Alzheimer's Disease and Related Disorders Association (now known as the Alzheimer's Association) (NINCDS-ADRDA) diagnostic criteria for Alzheimer's disease dementia of the National Institute on Aging and Alzheimer Association, the confidence in diagnosing mild cognitive impairment (MCI) due to Alzheimer's disease dementia is raised with the application of biomarkers based on measures in the cerebrospinal fluid (CSF) or imaging. These tests, added to core clinical criteria, might increase the sensitivity or specificity of a testing strategy. However, the accuracy of biomarkers in the diagnosis of Alzheimer's disease dementia and other dementias has not yet been systematically evaluated. A formal systematic evaluation of sensitivity, specificity, and other properties of plasma and CSF amyloid beta (Aß) biomarkers was performed. To determine the accuracy of plasma and CSF Aß levels for detecting those patients with MCI who would convert to Alzheimer's disease dementia or other forms of dementia over time. The most recent search for this review was performed on 3 December 2012. We searched MEDLINE (OvidSP), EMBASE (OvidSP), BIOSIS Previews (ISI Web of Knowledge), Web of Science and Conference Proceedings (ISI Web of Knowledge), PsycINFO (OvidSP), and LILACS (BIREME). We also requested a search of the Cochrane Register of Diagnostic Test Accuracy Studies (managed by the Cochrane Renal Group).No language or date restrictions were applied to the electronic searches and methodological filters were not used so as to maximise sensitivity. We selected those studies that had prospectively well defined cohorts with any accepted definition of cognitive decline, but no dementia, with baseline CSF or plasma Aß levels, or both, documented at or around the time the above diagnoses were made. We also included studies which looked at data from those cohorts

  18. Decreased specific CD8+ T cell cross-reactivity of antigen recognition following vaccination with Melan-A peptide.

    Science.gov (United States)

    Appay, Victor; Speiser, Daniel E; Rufer, Nathalie; Reynard, Severine; Barbey, Catherine; Cerottini, Jean-Charles; Leyvraz, Serge; Pinilla, Clemencia; Romero, Pedro

    2006-07-01

    The aim of T cell vaccines is the expansion of antigen-specific T cells able to confer immune protection against pathogens or tumors. Although increase in absolute cell numbers, effector functions and TCR repertoire of vaccine-induced T cells are often evaluated, their reactivity for the cognate antigen versus their cross-reactive potential is rarely considered. In fact, little information is available regarding the influence of vaccines on T cell fine specificity of antigen recognition despite the impact that this feature may have in protective immunity. To shed light on the cross-reactive potential of vaccine-induced cells, we analyzed the reactivity of CD8(+) T cells following vaccination of HLA-A2(+) melanoma patients with Melan-A peptide, incomplete Freund's adjuvant and CpG-oligodeoxynucleotide adjuvant, which was shown to induce strong expansion of Melan-A-reactive CD8(+) T cells in vivo. A collection of predicted Melan-A cross-reactive peptides, identified from a combinatorial peptide library, was used to probe functional antigen recognition of PBMC ex vivo and Melan-A-reactive CD8(+) T cell clones. While Melan-A-reactive CD8(+) T cells prior to vaccination are usually constituted of widely cross-reactive naive cells, we show that peptide vaccination resulted in expansion of memory T cells displaying a reactivity predominantly restricted to the antigen of interest. Importantly, these cells are tumor-reactive.

  19. Cognitive improvement of compound danshen in an Aβ25-35 peptide-induced rat model of Alzheimer's disease.

    Science.gov (United States)

    Liu, Min; Guo, Haibiao; Li, Chuyuan; Wang, Deqin; Wu, Jingang; Wang, Canmao; Xu, Jiangping; Qin, Ren-An

    2015-10-23

    Senile dementia mainly includes Alzheimer' s disease (AD) and vascular dementia (VD). AD is a progressive and irreversible neurodegenerative disorder that is accompanied with a great deal of social burden. The aim of this study was to investigate the effect of Compound Danshen (CDS) on learning and memory of alzheimer's disease (AD) rat model, as well as to explore the possible connection between CDS and the associated molecules of amyloid beta (Aβ). Rats were injected with Aβ25-35 peptide intracerebroventricularly and CDS were subsequently administered once daily for 23 days. Rats' behavior was monitored using Morris water maze and passive avoidance. Real time PCR and Western blotting were used in determining amyloid precursor protein (APP), β-site APP cleaved enzyme-1(BACE1), Presenilin-1 (PS1), Insulin-degrading enzyme (IDE) and neprilysin (NEP) in hippocampus. The AD model group presented with spatial learning and memory impairments. CDS and donepezil administration significantly ameliorated the Aβ25-35 peptide-induced memory impairment in both Morris water maze (P < 0.05) and passive avoidance task (P < 0.01) compared to the AD model group. Real time PCR results suggested that CDS significantly decreased APP mRNA, PS1 mRNA and increased IDE and NEP mRNA levels. Western blotting analyses showed that CDS decreased the protein expression of APP and PS1 and increased IDE expression. CDS improved spatial learning and memory by down-regulating APP, PS1 levels and up-regulating IDE. In future, CDS may have significant therapeutic potential in the treatment of AD patients.

  20. Keampferol-3-O-rhamnoside abrogates amyloid beta toxicity by modulating monomers and remodeling oligomers and fibrils to non-toxic aggregates

    Directory of Open Access Journals (Sweden)

    Sharoar Md

    2012-12-01

    Full Text Available Abstract Background Aggregation of soluble, monomeric β- amyloid (Aβ to oligomeric and then insoluble fibrillar Aβ is a key pathogenic feature in development of Alzheimer’s disease (AD. Increasing evidence suggests that toxicity is linked to diffusible Aβ oligomers, rather than to insoluble fibrils. The use of naturally occurring small molecules for inhibition of Aβ aggregation has recently attracted significant interest for development of effective therapeutic strategies against the disease. A natural polyphenolic flavone, Kaempferol-3-O-rhamnoside (K-3-rh, was utilized to investigate its effects on aggregation and cytotoxic effects of Aβ42 peptide. Several biochemical techniques were used to determine the conformational changes and cytotoxic effect of the peptide in the presence and absence of K-3-rh. Results K-3-rh showed a dose-dependent effect against Aβ42 mediated cytotoxicity. Anti-amyloidogenic properties of K-3-rh were found to be efficient in inhibiting fibrilogenesis and secondary structural transformation of the peptide. The consequence of these inhibitions was the accumulation of oligomeric structural species. The accumulated aggregates were smaller, soluble, non-β-sheet and non-toxic aggregates, compared to preformed toxic Aβ oligomers. K-3-rh was also found to have the remodeling properties of preformed soluble oligomers and fibrils. Both of these conformers were found to remodel into non-toxic aggregates. The results showed that K-3-rh interacts with different Aβ conformers, which affects fibril formation, oligomeric maturation and fibrillar stabilization. Conclusion K-3-rh is an efficient molecule to hinder the self assembly and to abrogate the cytotoxic effects of Aβ42 peptide. Hence, K-3-rh and small molecules with similar structure might be considered for therapeutic development against AD.

  1. Astrocytes protect neurons from Aβ1-42 peptide-induced neurotoxicity increasing TFAM and PGC-1 and decreasing PPAR-γ and SIRT-1.

    Science.gov (United States)

    Aguirre-Rueda, Diana; Guerra-Ojeda, Sol; Aldasoro, Martin; Iradi, Antonio; Obrador, Elena; Ortega, Angel; Mauricio, M Dolores; Vila, Jose Ma; Valles, Soraya L

    2015-01-01

    One of the earliest neuropathological events in Alzheimer's disease is accumulation of astrocytes at sites of Aβ1-42 depositions. Our results indicate that Aβ1-42 toxic peptide increases lipid peroxidation, apoptosis and cell death in neurons but not in astrocytes in primary culture. Aβ1-42-induced deleterious neuronal effects are not present when neurons and astrocytes are mixed cultured. Stimulation of astrocytes with toxic Aβ1-42 peptide increased p-65 and decreased IκB resulting in inflammatory process. In astrocytes Aβ1-42 decreases protein expressions of sirtuin 1 (SIRT-1) and peroxisome proliferator-activated receptor γ (PPAR-γ) and over-expresses peroxisome proliferator-activated receptor γ coactivator 1 (PGC-1) and mitochondrial transcription factor A (TFAM), protecting mitochondria against Aβ1-42-induced damage and promoting mitochondrial biogenesis. In summary our data suggest that astrocytes may have a key role in protecting neurons, increasing neural viability and mitochondrial biogenesis, acquiring better oxidative stress protection and perhaps modulating inflammatory processes against Aβ1-42 toxic peptide. This might be a sign of a complex epigenetic process in Alzheimer's disease development.

  2. Mo polyoxometalate nanoclusters capable of inhibiting the aggregation of Aβ-peptide associated with Alzheimer's disease

    Science.gov (United States)

    Chen, Qingchang; Yang, Licong; Zheng, Chuping; Zheng, Wenjing; Zhang, Jingnan; Zhou, Yunshan; Liu, Jie

    2014-05-01

    A neuropathological hallmark of Alzheimer's disease (AD) is aggregation of a forty-residue peptide known as amyloid beta forty (Aβ40). While past work has indicated that blocking Aβ40 aggregation could be an effective strategy for the treatment of AD, developing therapies with this goal has been met with limited success. Polyoxometalates (POMs) have been previously investigated for their anti-viral and anti-tumoral properties and we report here that three representative POM nanoclusters have been synthesized for use against Aβ40 aggregation. Through the use of thioflavin T fluorescence, turbidity, circular dichroism spectroscopy, and transmission electron microscopy (TEM), we found that all three POM complexes can significantly inhibit both natural Aβ40 self-aggregation and metal-ion induced Aβ40 aggregation. We also evaluated the protective effect of POM complexes on Aβ40-induced neurotoxicity in cultured PC12 cells and found that treatment with POM complexes can elevate cell viability, decrease levels of intracellular reactive oxygen species, and stabilize mitochondrial membrane potential. These findings indicate that all three representative POM complexes are capable of inhibiting Aβ40 aggregation and subsequent neurotoxicity. While a complete mechanistic understanding remains to be elucidated, the synthesized POM complexes may work through a synergistic interaction with metal ions and Aβ40. These data indicate that POM complexes have high therapeutic potential for use against one of the primary neuropathological features of AD.A neuropathological hallmark of Alzheimer's disease (AD) is aggregation of a forty-residue peptide known as amyloid beta forty (Aβ40). While past work has indicated that blocking Aβ40 aggregation could be an effective strategy for the treatment of AD, developing therapies with this goal has been met with limited success. Polyoxometalates (POMs) have been previously investigated for their anti-viral and anti-tumoral properties

  3. Glucagon-like peptide-1 decreases intracerebral glucose content by activating hexokinase and changing glucose clearance during hyperglycemia

    DEFF Research Database (Denmark)

    Jensen, Michael Gejl; Egefjord, Lærke; Lerche, Susanne

    2012-01-01

    and stroke: Although the mechanism is unclear, glucose homeostasis appears to be important. We conducted a randomized, double-blinded, placebo-controlled crossover study in nine healthy males. Positron emission tomography was used to determine the effect of GLP-1 on cerebral glucose transport and metabolism...... across the blood–brain barrier remained unchanged (P=0.099) in all regions, while the unidirectional clearance and the phosphorylation rate increased (P=0.013 and 0.017), leading to increased net clearance of the glucose tracer (P=0.006). We show that GLP-1 plays a role in a regulatory mechanism involved......Type 2 diabetes and hyperglycemia with the resulting increase of glucose concentrations in the brain impair the outcome of ischemic stroke, and may increase the risk of developing Alzheimer's disease (AD). Reports indicate that glucagon-like peptide-1 (GLP-1) may be neuroprotective in models of AD...

  4. Structural Transformation and Aggregation of cc-beta Peptides Into Amyloid Proto-fibrils

    Science.gov (United States)

    Bhandari, Yuba; Steckmann, Timothy; Chapagain, Prem; Gerstman, Bernard

    2013-03-01

    The study of amyloid fibrils has important implications in understanding and treatment of various neurodegenerative diseases such as Alzheimer's and Parkinson's. During the formation of amyloid fibrils, peptide polymers manifest fascinating physical behavior by undergoing complicated structural transformations. We examine the behavior of a small engineered peptide called cc-beta, that was designed to mimic the structural changes of the much larger, naturally occurring amyloid beta proteins. Molecular dynamics (MD) simulations are performed to uncover the underlying physics that is responsible for the large scale structural transformations. By using implicit solvent replica exchange MD simulations, we examined the behavior of 12 peptides, initially arranged in four different cc-beta alpha helix trimers. We observed various intermediate stages of aggregation, as well as an organized proto-fibril beta aggregate. We discuss the time evolution and the various interactions involved in the structural transformation.

  5. An altered gp100 peptide ligand with decreased binding by TCR and CD8alpha dissects T cell cytotoxicity from production of cytokines and activation of NFAT

    Directory of Open Access Journals (Sweden)

    Niels eSchaft

    2013-09-01

    Full Text Available Altered peptide ligands (APLs provide useful tools to study T cell activation and potentially direct immune responses to improve treatment of cancer patients. To better understand and exploit APLs, we studied the relationship between APLs and T cell function in more detail. Here, we tested a broad panel of gp100(280-288 APLs with respect to T cell cytotoxicity, production of cytokines and activation of Nuclear Factor of Activated T cells (NFAT by human T cells gene-engineered with a gp100-HLA-A2-specific TCRalpha/beta. We demonstrated that gp100-specific cytotoxicity, production of cytokines, and activation of NFAT were not affected by APLs with single amino acid substitutions, except for an APL with an amino acid substitution at position 3 (APL A3, which did not elicit any T cell response. A gp100 peptide with a double amino acid mutation (APL S4S6 elicited T cell cytotoxicity and production of IFNgamma, and to a lesser extent TNFalpha, IL-4, and IL-5, but not production of IL-2 and IL-10, or activation of NFAT. Notably, TCR-mediated functions showed decreases in sensitivities for S4S6 versus gp100 wt peptide, which were minor for cytotoxicity but at least a 1000-fold more prominent for the production of cytokines. TCR-engineered T cells did not bind A3-HLA-A2, but did bind S4S6-HLA-A2 although to a lowered extent compared to wt peptide-HLA-A2. Moreover, S4S6-induced T cell function demonstrated an enhanced dependency on CD8alpha. Taken together, most gp100 APLs functioned as agonists, but A3 and S4S6 peptides acted as a null ligand and partial agonist, respectively. Our results further suggest that TCR-mediated cytotoxicity can be dissected from production of cytokines and activation of NFAT, and that the agonist potential of peptide mutants relates to the extent of binding by TCR and CD8alpha. These findings may facilitate the design of APLs to advance the study of T cell activation and their use for therapeutic applications.

  6. Cyclisation Increases the Stability of the Sea Anemone Peptide APETx2 but Decreases Its Activity at Acid-Sensing Ion Channel 3

    Directory of Open Access Journals (Sweden)

    Lachlan D. Rash

    2012-07-01

    Full Text Available APETx2 is a peptide isolated from the sea anemone Anthopleura elegantissima. It is the most potent and selective inhibitor of acid-sensing ion channel 3 (ASIC3 and it is currently in preclinical studies as a novel analgesic for the treatment of chronic inflammatory pain. As a peptide it faces many challenges in the drug development process, including the potential lack of stability often associated with therapeutic peptides. In this study we determined the susceptibility of wild-type APETx2 to trypsin and pepsin and tested the applicability of backbone cyclisation as a strategy to improve its resistance to enzymatic degradation. Cyclisation with either a six-, seven- or eight-residue linker vastly improved the protease resistance of APETx2 but substantially decreased its potency against ASIC3. This suggests that either the N- or C-terminus of APETx2 is involved in its interaction with the channel, which we confirmed by making N- and C-terminal truncations. Truncation of either terminus, but especially the N-terminus, has detrimental effects on the ability of APETx2 to inhibit ASIC3. The current work indicates that cyclisation is unlikely to be a suitable strategy for stabilising APETx2, unless linkers can be engineered that do not interfere with binding to ASIC3.

  7. Effects of oxidation on redox and cytotoxic properties of copper complex of Aβ1-16 peptide.

    Science.gov (United States)

    Ramteke, S N; Walke, G R; Joshi, B N; Rapole, S; Kulkarni, P P

    2014-12-01

    The effect of oxidation on redox and cytotoxic properties of copper complex of amyloid beta (Aβ) peptide was studied by gamma radiolysis. The oxidation of Aβ1-16 and Aβ1-16/Cu(II) complex was carried out using hydroxyl ((•)OH) radicals produced by gamma radiolysis and the products were analyzed using mass spectrometry. The presence of Cu(II) was found to enhance the oxidation of Aβ1-16 peptide. The oxidation of residues Asp1, His6, and His13 was enhanced due to their involvement in copper binding. The oxidation of His residues of Aβ1-16 peptide, which are chiefly responsible for copper binding, resulted in altered redox properties and subsequently in higher cytotoxicity of the Aβ1-16 peptide in SH-SY5Y cells.

  8. Amyloid–β peptides time-dependent structural modifications: AFM and voltammetric characterization

    Energy Technology Data Exchange (ETDEWEB)

    Enache, Teodor Adrian; Chiorcea-Paquim, Ana-Maria; Oliveira-Brett, Ana Maria, E-mail: brett@ci.uc.pt

    2016-07-05

    The human amyloid beta (Aβ) peptides, Aβ{sub 1-40} and Aβ{sub 1-42}, structural modifications, from soluble monomers to fully formed fibrils through intermediate structures, were investigated, and the results were compared with those obtained for the inverse Aβ{sub 40-1} and Aβ{sub 42-1}, mutant Aβ{sub 1-40}Phe{sup 10} and Aβ{sub 1-40}Nle{sup 35}, and rat Aβ{sub 1-40}Rat peptide sequences. The aggregation was followed at a slow rate, in chloride free media and room temperature, and revealed to be a sequence-structure process, dependent on the physicochemical properties of each Aβ peptide isoforms, and occurring at different rates and by different pathways. The fibrilization process was investigated by atomic force microscopy (AFM), via changes in the adsorption morphology from: (i) initially random coiled structures of ∼0.6 nm height, corresponding to the Aβ peptide monomers in random coil or in α-helix conformations, to (ii) aggregates and protofibrils of 1.5–6.0 nm height and (iii) two types of fibrils, corresponding to the Aβ peptide in a β-sheet configuration. The reactivity of the carbon electrode surface was considered. The hydrophobic surface induced rapid changes of the Aβ peptide conformations, and differences between the adsorbed fibrils, formed at the carbon surface (beaded, thin, <2.0 nm height) or in solution (long, smooth, thick, >2.0 nm height), were detected. Differential pulse voltammetry showed that, according to their primary structure, the Aβ peptides undergo oxidation in one or two steps, the first step corresponding to the tyrosine amino acids oxidation, and the second one to the histidine and methionine amino acids oxidation. The fibrilization process was electrochemically detected via the decrease of the Aβ peptide oxidation peak currents that occurred in a time dependent manner. - Highlights: • The Aβ peptide fibrilization process was followed by AFM and DP voltammetry. • The human Aβ{sub 1-40} and Aβ{sub 1

  9. Oligomeric amyloid-{beta} inhibits the proteolytic conversion of brain-derived neurotrophic factor (BDNF), AMPA receptor trafficking, and classical conditioning.

    Science.gov (United States)

    Zheng, Zhaoqing; Sabirzhanov, Boris; Keifer, Joyce

    2010-11-01

    Amyloid-β (Aβ) peptide is thought to have a significant role in the progressive memory loss observed in patients with Alzheimer disease and inhibits synaptic plasticity in animal models of learning. We previously demonstrated that brain-derived neurotrophic factor (BDNF) is critical for synaptic AMPA receptor delivery in an in vitro model of eyeblink classical conditioning. Here, we report that acquisition of conditioned responses was significantly attenuated by bath application of oligomeric (200 nm), but not fibrillar, Aβ peptide. Western blotting revealed that BDNF protein expression during conditioning is significantly reduced by treatment with oligomeric Aβ, as were phosphorylation levels of cAMP-response element-binding protein (CREB), Ca(2+)/calmodulin-dependent protein kinase II (CaMKII), Ca(2+)/calmodulin-dependent protein kinase IV (CaMKIV), and ERK. However, levels of PKA and PKCζ/λ were unaffected, as was PDK-1. Protein localization studies using confocal imaging indicate that oligomeric Aβ, but not fibrillar or scrambled forms, suppresses colocalization of GluR1 and GluR4 AMPA receptor subunits with synaptophysin, indicating that trafficking of these subunits to synapses during the conditioning procedure is blocked. In contrast, coapplication of BDNF with oligomeric Aβ significantly reversed these findings. Interestingly, a tolloid-like metalloproteinase in turtle, tTLLs (turtle tolloid-like protein), which normally processes the precursor proBDNF into mature BDNF, was found to degrade oligomeric Aβ into small fragments. These data suggest that an Aβ-induced reduction in BDNF, perhaps due to interference in the proteolytic conversion of proBDNF to BDNF, results in inhibition of synaptic AMPA receptor delivery and suppression of the acquisition of conditioning.

  10. Cytotoxic amyloid peptides inhibit cellular 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction by enhancing MTT formazan exocytosis.

    Science.gov (United States)

    Liu, Y; Schubert, D

    1997-12-01

    Amyloid beta peptide (A beta) neurotoxicity is believed to play a central role in the pathogenesis of Alzheimer's disease. An early indicator of A beta toxicity is the inhibition of cellular 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction to MTT formazan, a widely used assay for measuring cell viability. In this report we show that A beta and other cytotoxic amyloid peptides such as human amylin dramatically enhance MTT formazan exocytosis, resulting in the inhibition of cellular MTT reduction. Only the amyloid peptides that are known to be cytotoxic enhanced MTT formazan exocytosis. Basal MTT formazan exocytosis and amyloid peptide-enhanced MTT formazan exocytosis are blocked by several drugs with diverse known effects. These and other data suggest that MTT formazan exocytosis is a multistep process and that cytotoxic amyloid peptides enhance MTT formazan exocytosis through an intracellular signal transduction pathway.

  11. 应用酵母双杂交筛选系统从药用植物中发现Aβ聚集抑制剂%Application of a yeast two-hybrid based screening system in the identification of amyloid-beta aggregation inhibitors in pharmaceutical plants

    Institute of Scientific and Technical Information of China (English)

    王丽威; 杨雁芳; 张英涛

    2011-01-01

    研究证据表明,β淀粉样肽即Aβ的自我聚集是阿尔兹海默病(AD)重要的发病因素.因此,Aβ聚集抑制剂被认为是潜在的AD治疗候选药物.在本研究中,我们建立了一个基于酵母双杂交技术的Aβ聚集抑制剂筛选系统.通过采用拼接PCR技术(assembly PCR),克隆了人源A342的cDNA并将其插入到分别含有酵母转录因子GAL4转录激活区(GAL4AD)与DNA结合区(GAL4BD)的两个表达载体中.通过以上两个载体的共转化实现了两个融合蛋白GAL4AD-Aβ42与GAL4BD-Aβ42在AH109酵母菌株中的共表达.由于Aβ42片段在酵母中的自我相互作用使GAL4转录因子的活性在酵母中得到重建,从而激活了依赖于GAL4活性的四个报告基因HIS3,ADE2,lacZ与MELI的转录与表达.以上报告基因的正常表达使具有多种营养缺陷表型的AH109酵母获得了在缺乏组氨酸与腺嘌呤的合成选择培养基上正常生长的能力.通过采用生长抑制作为筛选标记,应用本系统对红景天属植物的Aβ聚集抑制活性进行了分析,进而发现本属植物很可能成为Aβ聚集抑制剂发现的重要资源.%The aggregation of amyloid-beta (Aβ) peptide,has been demonstrated to be critical for the development of Alzheimer's disease (AD).Aβ aggregation inhibitors are thus considered to be drug candidates for AD therapy.In the present study,we developed a novel screening tool based on the yeast two-hybrid system to screen Aβ aggregation inhibitors.The human Aβ42 peptide cDNA was cloned using assembly PCR and inserted into each of the yeast expression plasmids containing either the GAL4 activation domain (GAL4AD) or the DNA-binding domain (GAL4BD).Co-transformation of the above plasmids led to the expression of the fusion proteins GAL4AD-Aβ42 and GAL4BD-Aβ42 in the AH 109 yeast strain.The self interaction of Aβ42 fragments reconstructed the GAL4 transcriptor and thus activated the GAL4 responsive transcription of four reporter genes

  12. Acute intracerebral treatment with amyloid-beta (1–42) alters the profile of neuronal oscillations that accompany LTP induction and results in impaired LTP in freely behaving rats

    Science.gov (United States)

    Kalweit, Alexander Nikolai; Yang, Honghong; Colitti-Klausnitzer, Jens; Fülöp, Livia; Bozsó, Zsolt; Penke, Botond; Manahan-Vaughan, Denise

    2015-01-01

    Accumulation of amyloid plaques comprises one of the major hallmarks of Alzheimer’s disease (AD). In rodents, acute treatment with amyloid-beta (Aβ; 1–42) elicits immediate debilitating effects on hippocampal long-term potentiation (LTP). Whereas LTP contributes to synaptic information storage, information is transferred across neurons by means of neuronal oscillations. Furthermore, changes in theta-gamma oscillations, that appear during high-frequency stimulation (HFS) to induce LTP, predict whether successful LTP will occur. Here, we explored if intra-cerebral treatment with Aβ(1–42), that prevents LTP, also results in alterations of hippocampal oscillations that occur during HFS of the perforant path-dentate gyrus synapse in 6-month-old behaving rats. HFS resulted in LTP that lasted for over 24 h. In Aβ-treated animals, LTP was significantly prevented. During HFS, spectral power for oscillations below 100 Hz (δ, θ, α, β and γ) was significantly higher in Aβ-treated animals compared to controls. In addition, the trough-to-peak amplitudes of theta and gamma cycles were higher during HFS in Aβ-treated animals. We also observed a lower amount of envelope-to-signal correlations during HFS in Aβ-treated animals. Overall, the characteristic profile of theta-gamma oscillations that accompany successful LTP induction was disrupted. These data indicate that alterations in network oscillations accompany Aβ-effects on hippocampal LTP. This may comprise an underlying mechanism through which disturbances in synaptic information storage and hippocampus-dependent memory occurs in AD. PMID:25999827

  13. Evidence that the Amyloid beta Precursor Protein-intracellular domain lowers the stress threshold of neurons and has a "regulated" transcriptional role

    Directory of Open Access Journals (Sweden)

    De Luca Pasquale

    2008-09-01

    Full Text Available Abstract Background Regulated intramembrane proteolysis of the β-amyloid precursor protein by the γ-secretase yields two peptides. One, amyloid-β, is the major component of the amyloid plaques found in Alzheimer's disease patients. The other, APP IntraCellular Domain, has been involved in regulation of apoptosis, calcium flux and gene transcription. To date, a few potential target genes transcriptionally controlled by AID, alone or complexed with Fe65/Tip60, have been described. Although the reports are controversial: these include KAI1, Neprilysin, p53, EGFR, LRP and APP itself. Furthermore, p53 has been implicated in AID mediated susceptibility to apoptosis. To extend these findings, and assess their in vivo relevance, we have analyzed the expression of the putative target genes and of the total brain basal transriptoma in transgenic mice expressing AID in the forebrain. Also, we have studied the susceptibility of primary neurons from such mice to stress and pro-apoptotic agents. Results We found that AID-target genes and the mouse brain basal transcriptoma are not influenced by transgenic expression of AID alone, in the absence of Fe65 over-expression. Also, experiments conducted on primary neurons from AID transgenic mice, suggest a role for AID in sensitizing these cells to toxic stimuli. Overall, these findings hint that a role for AID, in regulating gene transcription, could be induced by yet undefined, and possibly stressful, stimuli in vivo. Conclusion Overall, these data suggest that the release of the APP intracellular domain may modulate the sensitivity of neuronal cells to toxic stimuli, and that a transcriptional role of AID could be inscribed in signaling pathways thatare not activated in basal conditions.

  14. Iodine treatment in children with subclinical hypothyroidism due to chronic iodine deficiency decreases thyrotropin and C-peptide concentrations and improves the lipid profile.

    Science.gov (United States)

    Zimmermann, Michael B; Aeberli, Isabelle; Melse-Boonstra, Alida; Grimci, Lindita; Bridson, John; Chaouki, Noureddine; Mbhenyane, Xikombiso; Jooste, Pieter L

    2009-10-01

    Chronic iodine deficiency (ID) increases thyrotropin (TSH) concentrations and produces a thyroid hormone pattern consistent with subclinical hypothyroidism (ScH). ScH may be associated with cardiovascular disease risk factors. Thus, the study aim was to determine if iodine treatment of children with elevated TSH concentrations due to ID would affect their lipid profile, insulin (C-peptide) levels, and/or subclinical inflammation. In controlled intervention trials of oral iodized oil or iodized salt, 5-14-year-old children from Morocco, Albania, and South Africa with TSH concentrations > or = 2.5 mU/L (n = 262) received 400 mg iodine as oral iodized oil or household distribution of iodized salt containing 25 microg iodine/g salt. At baseline and after 5 or 6 months, urinary iodine (UI) and blood concentrations of total thyroxine, TSH, C-reactive protein (CRP), C-peptide, and lipids were measured. Median (range) UI at baseline was 46 (2-601) microg/L. Compared to the control group, iodine treatment significantly increased UI and total thyroxine and decreased TSH, C-peptide, and total and low-density lipoprotein cholesterol. The mean low-density lipoprotein/high-density lipoprotein cholesterol ratio fell from 3.3 to 2.4 after iodine treatment (p Iodine treatment had no significant effect on concentrations of high-density lipoprotein cholesterol, triglycerides, or C-reactive protein. Correction of ID-associated ScH improves the insulin and lipid profile and may thereby reduce risk for cardiovascular disease. This previously unrecognized benefit of iodine prophylaxis may be important because ID remains common in rapidly developing countries with increasing rates of obesity and cardiovascular disease.

  15. Dietary unsaturated fatty acids increase plasma glucagon-like peptide-1 and cholecystokinin and may decrease premeal ghrelin in lactating dairy cows.

    Science.gov (United States)

    Bradford, B J; Harvatine, K J; Allen, M S

    2008-04-01

    Previous reports have indicated that dietary unsaturated fat can decrease energy intake of lactating dairy cattle. However, the mechanism for this response is unclear. To evaluate the potential role of gut peptides, periprandial concentrations of cholecystokinin (CCK), glucagon-like peptide 1 (GLP-1), and ghrelin were measured. From a replicated 4 x 4 Latin square experiment, 4 cows from a single square were selected for analysis of responses to 3 treatments: a control diet (5.5% total fatty acids, 65% unsaturated), a diet with added saturated fat (SAT, 8.3% fatty acids, 47% unsaturated), and a diet with added unsaturated fat (UNS, 7.8% fatty acids, 63% unsaturated). The SAT treatment increased duodenal flow of saturated fatty acids compared with UNS and control and, despite the fact that ruminal biohydrogenation altered fatty acid profiles of digesta, UNS increased duodenal flow of unsaturated fatty acids compared with SAT and control. Blood samples were collected at 8-min intervals through the first 2 meals of the day and analyzed by commercial radioimmunoassays. The UNS treatment increased plasma CCK concentration relative to SAT and control, and increased plasma GLP-1 concentration compared with control. Furthermore, fat treatments tended to suppress the prandial ghrelin surge that was evident for control. Suppression of feed intake by unsaturated fats is likely mediated in part by increased secretion of CCK and GLP-1, and dietary fat may also inhibit ghrelin release before conditioned meals.

  16. Association thermodynamics and conformational stability of beta-sheet amyloid beta(17-42) oligomers: effects of E22Q (Dutch) mutation and charge neutralization.

    Science.gov (United States)

    Blinov, Nikolay; Dorosh, Lyudmyla; Wishart, David; Kovalenko, Andriy

    2010-01-20

    Amyloid fibrils are associated with many neurodegenerative diseases. It was found that amyloidogenic oligomers, not mature fibrils, are neurotoxic agents related to these diseases. Molecular mechanisms of infectivity, pathways of aggregation, and molecular structure of these oligomers remain elusive. Here, we use all-atom molecular dynamics, molecular mechanics combined with solvation analysis by statistical-mechanical, three-dimensional molecular theory of solvation (also known as 3D-RISM-KH) in a new MM-3D-RISM-KH method to study conformational stability, and association thermodynamics of small wild-type Abeta(17-42) oligomers with different protonation states of Glu(22), as well the E22Q (Dutch) mutants. The association free energy of small beta-sheet oligomers shows near-linear trend with the dimers being thermodynamically more stable relative to the larger constructs. The linear (within statistical uncertainty) dependence of the association free energy on complex size is a consequence of the unilateral stacking of monomers in the beta-sheet oligomers. The charge reduction of the wild-type Abeta(17-42) oligomers upon protonation of the solvent-exposed Glu(22) at acidic conditions results in lowering the association free energy compared to the wild-type oligomers at neutral pH and the E22Q mutants. The neutralization of the peptides because of the E22Q mutation only marginally affects the association free energy, with the reduction of the direct electrostatic interactions mostly compensated by the unfavorable electrostatic solvation effects. For the wild-type oligomers at acidic conditions such compensation is not complete, and the electrostatic interactions, along with the gas-phase nonpolar energetic and the overall entropic effects, contribute to the lowering of the association free energy. The differences in the association thermodynamics between the wild-type Abeta(17-42) oligomers at neutral pH and the Dutch mutants, on the one hand, and the Abeta(17

  17. Iron: a pathological mediator of Alzheimer disease?

    Science.gov (United States)

    Bishop, Glenda M; Robinson, Stephen R; Liu, Quan; Perry, George; Atwood, Craig S; Smith, Mark A

    2002-01-01

    Brains from patients with Alzheimer disease (AD) show a disruption in the metabolism of iron, such that there is an accumulation of iron in senile plaques, and an altered distribution of iron transport and storage proteins. One of the earliest events in AD is the generation of oxidative stress, which may be related to the generation of free radicals by the excess iron that is observed in the disease. Iron has also been shown to mediate the in vitro toxicity of amyloid-beta peptide, and the presence of iron in most in vitro systems could underlie the toxicity that is normally attributed to amyloid-beta in these studies. In contrast, several recent studies have suggested that amyloid-beta may decrease oxidative stress and decrease the toxicity of iron. Continued examination of the complex interactions that occur between iron and amyloid-beta may assist in the elucidation of the mechanisms that underlie the neurodegeneration that leads to dementia in AD.

  18. Emerging roles for the amyloid precursor protein and derived peptides in the regulation of cellular and systemic metabolism.

    Science.gov (United States)

    Czeczor, Juliane K; McGee, Sean L

    2017-03-28

    The amyloid precursor protein (APP) is a transmembrane protein that can be cleaved by proteases through two different pathways to yield a number of small peptides, each with distinct physiological properties and functions. It has been extensively studied in the context of Alzheimer's disease, with the APP-derived amyloid beta (Aβ) peptide being a major constituent of the amyloid plaques observed in this disease. It has been known for some time that APP can regulate neuronal metabolism, however this review will examine evidence that APP and its peptides can also regulate key metabolic processes such as insulin action, lipid synthesis and storage and mitochondrial function in peripheral tissues. This review will present a hypothesis that amyloidogenic processing of APP in peripheral tissues plays a key role in the response to nutrient excess and that this could contribute to the pathogenesis of metabolic diseases such as obesity and type 2 diabetes (T2D). This article is protected by copyright. All rights reserved.

  19. Amyloid beta(1-40-induced astrogliosis and the effect of genistein treatment in rat: a three-dimensional confocal morphometric and proteomic study.

    Directory of Open Access Journals (Sweden)

    Maryam Bagheri

    Full Text Available Astrocytes are highly involved in regulation and homeostasis of the extracellular environment in the healthy brain. In pathological conditions, these cells play a major role in the inflammatory response seen in CNS tissues, which is called reactive astrogliosis and includes hypertrophy and proliferation of astrocytes. Here, we performed 3D confocal microscopy to evaluate the morphological response of reactive astrocytes positive for glial fibrillary acidic protein (GFAP in rats, to the presence of Aβ(1-40 in the rat brain before and after treatment with genistein. In 50 astrocytes per animal, we measured the volume and surface area for the nucleus, cell body, the entire cell, the tissue covered by single astrocytes and quantified the number and length of branches, the density of the astrocytes and the intensity of GFAP immunoreactivity. Injecting Aβ(1-40 into the brain of rats caused astrogliosis indicated by increased values for all measured parameters. Mass spectrometric analysis of hippocampal tissue in Aβ(1-40-injected brain showed decreased amounts of tubulins, enolases and myelin basic protein, and increased amounts of dihydropyrimidinase-related protein 2. In Aβ(1-40-injected rats pretreated with genistein, GFAP intensity was decreased to the sham-operated group level, and Aβ(1-40-induced astrogliosis was significantly ameliorated.

  20. β-淀粉样蛋白和载脂蛋白E4降低神经元膜流动性%Amyloid beta protein and apolipoprotein E4 decrease neuronal mem-brane fluidity

    Institute of Scientific and Technical Information of China (English)

    田映红; 周丽华; 谢瑶; 姚志彬

    2000-01-01

    了研究Aβ和ApoE对神经元膜流动性的影响,探索Aβ和ApoE的神经毒性机制,制备急性分离的新生SD大鼠海马和皮质神经元细胞悬液,采用显微准弹性激光散射技术,分析单个神经元散射光强度的自相关函数(ACF),通过公式由ACF拟合出反映细胞膜流动性的频移线宽Г.结果发现Aβ25~35和ApoE4作用5 min和35 min后均降低海马和皮质神经元ACF的衰减速率及频移线宽Г,而ApoE3对两者无影响,提示Aβ和ApoE4均可降低神经元膜流动性.

  1. Increased CSF-BACE1 activity associated with decreased hippocampus volume in Alzheimer's disease.

    LENUS (Irish Health Repository)

    Ewers, Michael

    2012-02-01

    The enzyme beta-secretase (BACE1) is essentially involved in the production of cerebral amyloidogenic pathology in Alzheimer\\'s disease (AD). The measurement of BACE1 activity in cerebrospinal fluid (CSF) has been reported, which may render CSF measurement of BACE1 a potential biomarker candidate of AD. In order to investigate whether BACE1 protein activity is correlated with regional brain atrophy in AD, we investigated the association between CSF levels of BACE1 and MRI-assessed hippocampus volume in patients with AD (n = 30). An increase in CSF-BACE1 activity was associated with decreased left and right hippocampus volume corrected for global head volume in the AD patients. Boot-strapped regression analysis showed that increased CSF levels of BACE1 activity were associated with increased CSF concentration of total tau but not amyloid-beta1-42 in AD. White matter hyperintensities did not influence the results. BACE1 activity and protein levels were significantly increased in AD compared to 19 elderly healthy controls. Thus, the CSF biomarker candidate of BACE1 activity was associated with hippocampus atrophy in AD in a robust manner and may reflect neurotoxic amyloid-beta-related processes.

  2. Protective effects of baicalin on amyloid beta 25-35- induced apoptosis in human neuroblastoma SH-SY5Y cells

    Institute of Scientific and Technical Information of China (English)

    Miao Geng; Hongyan Chen; Jianhua Wang; Yazhuo Hu; Jianwei Liu; Jing Liu; Jingkun Pan; Yuhong Gao

    2010-01-01

    Baicalin, a type of flavanoid, effectively prevents cellular apoptosis induced by various factors. However, little evidence is available regarding its role on amyloid β (Aβ) -induced neuronal apoptosis. The present study investigated the protective mechanisms of baicalin on Aβ-induced neuronal apoptosis. Flow cytometry and cation dye 5, 5', 6, 6'-tetrachloro-1, 1', 3, 3'-tetraethyl- benzimidazoly lcarbocyanine iodide (JC-1) were employed to measure mitochondrial membrane potential, and nitric oxide secretion and apoptotic-related factors, such as caspase-3, were comprehensively analyzed. Results demonstrated a protective effect of baicalin on Aβ-treated SH-SY5Y cell viability; the rate of apoptosis decreased, nitric oxide generation and expression of caspase-3 were effectively inhibited, and mitochondrial membrane potential was effectively protected. Baicalin inhibited Aβ-induced neuronal apoptosis via multiple targets and multiple pathways, such as the inhibition of free radical damage, reduction of caspase-3 expression, and protection of normal mitochondrial functions.

  3. Atorvastatin prevents age-related and amyloid-beta-induced microglial activation by blocking interferon-gamma release from natural killer cells in the brain

    LENUS (Irish Health Repository)

    Lyons, Anthony

    2011-03-31

    Abstract Background Microglial function is modulated by several factors reflecting the numerous receptors expressed on the cell surface, however endogenous factors which contribute to the age-related increase in microglial activation remain largely unknown. One possible factor which may contribute is interferon-γ (IFNγ). IFNγ has been shown to increase in the aged brain and potently activates microglia, although its endogenous cell source in the brain remains unidentified. Methods Male Wistar rats were used to assess the effect of age and amyloid-β (Aβ) on NK cell infiltration into the brain. The effect of the anti-inflammatory compound, atorvastatin was also assessed under these conditions. We measured cytokine and chemokine (IFNγ, IL-2, monocyte chemoattractant protein-1 (MCP-1) and IFNγ-induced protein 10 kDa (IP-10)), expression in the brain by appropriate methods. We also looked at NK cell markers, CD161, NKp30 and NKp46 using flow cytometry and western blot. Results Natural killer (NK) cells are a major source of IFNγ in the periphery and here we report the presence of CD161+ NKp30+ cells and expression of CD161 and NKp46 in the brain of aged and Aβ-treated rats. Furthermore, we demonstrate that isolated CD161+ cells respond to interleukin-2 (IL-2) by releasing IFNγ. Atorvastatin, the HMG-CoA reductase inhibitor, attenuates the increase in CD161 and NKp46 observed in hippocampus of aged and Aβ-treated rats. This was paralleled by a decrease in IFNγ, markers of microglial activation and the chemokines, MCP-1 and IP-10 which are chemotactic for NK cells. Conclusions We propose that NK cells contribute to the age-related and Aβ-induced neuroinflammatory changes and demonstrate that these changes can be modulated by atorvastatin treatment.

  4. Effects of natural-cerebrolysin-containing serum on neurotoxicity and synaptogenesis in amyloid-beta 1-40-induced Alzheimer's disease in vitro models

    Institute of Scientific and Technical Information of China (English)

    Yinghong Li; Zhengzhi Wu; Andrew C. J. HuangO; Ming Li; XiaoLi Zhang; Jiguo Wang

    2009-01-01

    morphology and neurite growth were observed, neurite length was measured, and the percentage of neurite-positive cells was calculated. Cell proliferation rate was determined by MTT assay, and MAP 2 expression was detected by fluorescent immunocytochemistry.RESULTS: Following Aβ1-40 treatments, some PC12 cells were apoptotic/dying, and only a few short neurites were observed. Following interventions with natural-cerebrolysin-containing serum, the PC12 cells proliferated, there was an increased number of neurites, and neurite length was enhanced. After middle- and high-dose natural-cerebrolysin treatments, the percentage of neurite-positive cells, as well as the average length of neurites, was significantly greater than the normal blank serum-treated PC12 cells (P < 0.05 or P < 0.01). Compared with the blank control group, MAP2 expression in the Aβ1-40-treated PC12 cells was significantly inhibited, and the cell proliferation rate was significantly decreased (P < 0.01). Following incubations with natural-cerebrolysin-containing serum, MAP2 expression and cell proliferation rate in the PC12 cells were significantly increased in a dose-dependent manner, compared with treatments with blank control serum (P< 0.05 or P< 0.01).CONCLUSION: Natural-cerebrolysin exhibited antagonistic effects on neurotoxicity in Aβ1-40-induced Alzheimer's disease in vitro models. These effects were likely related to cell proliferation and the upregulation of intracellular MAP2 expression.

  5. Enhanced cytotoxicity and decreased CD8 dependence of human cancer-specific cytotoxic T lymphocytes after vaccination with low peptide dose.

    Science.gov (United States)

    Lövgren, Tanja; Baumgaertner, Petra; Wieckowski, Sébastien; Devêvre, Estelle; Guillaume, Philippe; Luescher, Immanuel; Rufer, Nathalie; Speiser, Daniel E

    2012-06-01

    In mice, vaccination with high peptide doses generates higher frequencies of specific CD8+ T cells, but with lower avidity compared to vaccination with lower peptide doses. To investigate the impact of peptide dose on CD8+ T cell responses in humans, melanoma patients were vaccinated with 0.1 or 0.5 mg Melan-A/MART-1 peptide, mixed with CpG 7909 and Incomplete Freund's adjuvant. Neither the kinetics nor the amplitude of the Melan-A-specific CD8+ T cell responses differed between the two vaccination groups. Also, CD8+ T cell differentiation and cytokine production ex vivo were similar in the two groups. Interestingly, after low peptide dose vaccination, Melan-A-specific CD8+ T cells showed enhanced degranulation upon peptide stimulation, as assessed by CD107a upregulation and perforin release ex vivo. In accordance, CD8+ T cell clones derived from low peptide dose-vaccinated patients showed significantly increased degranulation and stronger cytotoxicity. In parallel, Melan-A-specific CD8+ T cells and clones from low peptide dose-vaccinated patients expressed lower CD8 levels, despite similar or even stronger binding to tetramers. Furthermore, CD8+ T cell clones from low peptide dose-vaccinated patients bound CD8 binding-deficient tetramers more efficiently, suggesting that they may express higher affinity TCRs. We conclude that low peptide dose vaccination generated CD8+ T cell responses with stronger cytotoxicity and lower CD8 dependence.

  6. Impact of decreased serum albumin levels on acute kidney injury in patients with acute decompensated heart failure: a potential association of atrial natriuretic peptide.

    Science.gov (United States)

    Takaya, Yoichi; Yoshihara, Fumiki; Yokoyama, Hiroyuki; Kanzaki, Hideaki; Kitakaze, Masafumi; Goto, Yoichi; Anzai, Toshihisa; Yasuda, Satoshi; Ogawa, Hisao; Kawano, Yuhei; Kangawa, Kenji

    2017-02-07

    Although hypoalbuminemia at admission is a risk for acute kidney injury (AKI) and mortality in patients with acute decompensated heart failure (ADHF), the clinical significance of decreased serum albumin levels (DAL) during ADHF therapy has not been elucidated. This study aimed to evaluate whether DAL was associated with AKI, and whether intravenous atrial natriuretic peptide (ANP) administration, which provides an effective treatment for ADHF but promotes albumin extravasation, was associated with DAL and AKI. A total of 231 consecutive patients with ADHF were enrolled. AKI was defined as ≥0.3 mg/dl absolute or 1.5-fold increase in serum creatinine levels within 48 h. AKI occurred in 73 (32%) of the 231 patients during ADHF therapy. The median value of decreases in serum albumin levels was 0.3 g/dl at 7 days after admission. When DAL was defined as ≥0.3 g/dl decrease in serum albumin levels, DAL occurred in 113 patients, and was independently associated with AKI. Of the 231 patients, 73 (32%) were treated with intravenous ANP. DAL occurred more frequently in patients receiving ANP than in those not receiving ANP (77 vs. 36%, p < 0.001), and ANP was independently associated with DAL. The incidence of AKI was higher in patients receiving ANP than in those not receiving ANP (48 vs. 24%, p < 0.001). ANP was independently associated with AKI. In conclusion, DAL is associated with AKI. Intravenous ANP administration may be one of the promoting factors of DAL, which leads to AKI, indicating a possible novel mechanism of AKI.

  7. Apoptosis of PC12 cell Induced by Amyloid Beta-peptide Fragment 25-35%β-淀粉样蛋白25-35片段诱导PC12细胞凋亡

    Institute of Scientific and Technical Information of China (English)

    罗蔓; 谢瑞满

    2004-01-01

    目的探讨β-淀粉样蛋白25-35片段(Aβ25-35)对体外培养的PC12细胞的毒性作用机制.方法用四甲基偶氮唑蓝(MTT)代谢率检测,光镜吖啶橙荧光染色术,透射电镜以及流式细胞仪技术研究Aβ25-35损伤PC12细胞的途径.结果用Aβ25-35处理PC12细胞24 h,Aβ25-35剂量依赖性地引起PC12细胞的MTT代谢率减少,荧光染色及电镜观察发现经Aβ25-35处理的PC12细胞表现出凋亡细胞的特征,流式细胞仪检测发现,对照组20μmol/L及50 μmol/L的Aβ25-35组PC12细胞的凋亡率分别为0.08%±0.01%,14.8%±1.13%,25.9%±2.34%.结论Aβ对PC12细胞的损伤主要通过细胞凋亡的途径.

  8. Copernicus revisited: amyloid beta in Alzheimer's disease.

    Science.gov (United States)

    Joseph, J; Shukitt-Hale, B; Denisova, N A; Martin, A; Perry, G; Smith, M A

    2001-01-01

    The beta-amyloid hypothesis of Alzheimer's Disease (AD) has dominated the thinking and research in this area for over a decade and a half. While there has been a great deal of effort in attempting to prove its centrality in this devastating disease, and while an enormous amount has been learned about its properties (e.g., putative toxicity, processing and signaling), Abeta has not proven to be both necessary and sufficient for the development, neurotoxicity, and cognitive deficits associated with this disease. Instead, the few treatments that are available have emerged from aging research and are primarily directed toward modification of acetylcholine levels. Clearly, it is time to rethink this position and to propose instead that future approaches should focus upon altering the age-related sensitivity of the neuronal environment to insults involving such factors as inflammation and oxidative stress. In other words "solve the problems of aging and by extension those of AD will also be reduced." This review is being submitted as a rather Lutherian attempt to "nail an alternative thesis" to the gate of the Church of the Holy Amyloid to open its doors to the idea that aging is the most pervasive element in this disease and Abeta is merely one of the planets.

  9. Insulin-like growth factor-I peptides act centrally to decrease depression-like behavior of mice treated intraperitoneally with lipopolysaccharide

    Directory of Open Access Journals (Sweden)

    Park Sook-Eun

    2011-12-01

    Full Text Available Abstract Centrally administered insulin-like growth factor (IGF-I has anti-depressant activity in several rodent models, including lipopolysaccharide (LPS-induced depression. In this study we tested the ability of IGF-I and GPE (the N-terminal tri-peptide derived from IGF-I to alter depression-like behavior induced by intraperitoneal (i.p. administration of LPS in a preventive and curative manner. In the first case, IGF-I (1 μg or GPE (5 μg was administered i.c.v. to CD-1 mice followed 30 min later by 330 μg/kg body weight i.p. LPS. In the second case, 830 μg/kg body weight LPS was given 24 h prior to either IGF-I or GPE. When administered i.p., LPS induced full-blown sickness assessed as a loss of body weight, decrease in food intake and sickness behavior. None of these indices were affected by IGF-I or GPE. LPS also induced depression-like behavior; assessed as an increased duration of immobility in the tail suspension and forced swim tests. When administered before or after LPS, IGF-I and GPE abrogated the LPS response; attenuating induction of depression-like behaviors and blocking preexistent depression-like behaviors. Similar to previous work with IGF-I, GPE decreased brain expression of cytokines in response to LPS although unlike IGF-I, GPE did not induce the expression of brain-derived neurotrophic factor (BDNF. LPS induced expression of tryptophan dioxygenases, IDO1, IDO2 and TDO2, but expression of these enzymes was not altered by GPE. Thus, both IGF-I and GPE elicit specific improvement in depression-like behavior independent of sickness, an action that could be due to their anti-inflammatory properties.

  10. Amplified voltammetric characterization of cleavage of the biotinylated peptide by BACE1 and screening of BACE1 inhibitors.

    Science.gov (United States)

    Yi, Xinyao; Han, Hongxing; Zhang, Yu; Wang, Jianxiu; Zhang, Yi; Zhou, Feimeng

    2013-12-15

    Cleavage of amyloid precursor protein (APP) by the β-site APP cleaving enzyme 1 (BACE1) is a key step in the formation of amyloid beta (Aβ) peptide, the main component of amyloid plaques in Alzheimer's disease (AD). Suppression of BACE1 activity has thus become an efficient way for the treatment of AD. In this study, BACE1 in the absence or presence of BACE1 inhibitors was exposed to the biotinylated peptide substrate-modified electrode. This step was followed by the attachment of ferrocene (Fc)-capped gold nanoparticle/streptavidin conjugates. Due to the blockage of the BACE1 activity by select inhibitors, well-defined voltammetric peaks of high signal intensity were obtained. However, featureless voltammogram was obtained upon initiating the cleavage reaction. The proposed method is simple, sensitive, and suitable for monitoring of BACE1 activity and screening of BACE1 inhibitors.

  11. Neurochemical evidence that cocaine- and amphetamine-regulated transcript (CART) 55-102 peptide modulates the dopaminergic reward system by decreasing the dopamine release in the mouse nucleus accumbens.

    Science.gov (United States)

    Rakovska, Angelina; Baranyi, Maria; Windisch, Katalin; Petkova-Kirova, Polina; Gagov, Hristo; Kalfin, Reni

    2017-08-09

    CART (Cocaine- and Amphetamine-Regulated Transcript) peptide is a neurotransmitter naturally occurring in the CNS and found mostly in nucleus accumbens, ventrotegmental area, ventral pallidum, amygdalae and striatum, brain regions associated with drug addiction. In the nucleus accumbens, known for its significant role in motivation, pleasure, reward and reinforcement learning, CART peptide inhibits cocaine and amphetamine-induced dopamine-mediated increases in locomotor activity and behavior, suggesting a CART peptide interaction with the dopaminergic system. Thus in the present study, we examined the effect of CART (55-102) peptide on the basal, electrical field stimulation-evoked (EFS-evoked) (30V, 2Hz, 120 shocks) and returning basal dopamine (DA) release and on the release of the DA metabolites 3,4-dihydroxyphenyl acetaldehyde (DOPAL), 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), 3,4-dihydroxyphenylethanol (DOPET), 3-methoxytyramine (3-MT) as well as on norepinephrine (NE) and dopamine-o-quinone (Daq) in isolated mouse nucleus accumbens, in a preparation, in which any CART peptide effects on the dendrites or soma of ventral tegmental projection neurons have been excluded. We further extended our study to assess the effect of CART (55-102) peptide on basal cocaine-induced release of dopamine and its metabolites DOPAL, DOPAC, HVA, DOPET and 3-MT as well as on NE and Daq. To analyze the amount of [(3)H]dopamine, dopamine metabolites, Daq and NE in the nucleus accumbens superfusate, a high-pressure liquid chromatography (HPLC), coupled with electrochemical, UV and radiochemical detections was used. CART (55-102) peptide, 0.1μM, added alone, exerted: (i) a significant decrease in the basal and EFS-evoked levels of extracellular dopamine (ii) a significant increase in the EFS-evoked and returning basal levels of the dopamine metabolites DOPAC and HVA, major products of dopamine degradation and (iii) a significant decrease in the returning basal

  12. Successful adjuvant-free vaccination of BALB/c mice with mutated amyloid β peptides

    Directory of Open Access Journals (Sweden)

    Wahi Monika M

    2008-02-01

    Full Text Available Abstract Background A recent human clinical trial of an Alzheimer's disease (AD vaccine using amyloid beta (Aβ 1–42 plus QS-21 adjuvant produced some positive results, but was halted due to meningoencephalitis in some participants. The development of a vaccine with mutant Aβ peptides that avoids the use of an adjuvant may result in an effective and safer human vaccine. Results All peptides tested showed high antibody responses, were long-lasting, and demonstrated good memory response. Epitope mapping indicated that peptide mutation did not lead to epitope switching. Mutant peptides induced different inflammation responses as evidenced by cytokine profiles. Ig isotyping indicated that adjuvant-free vaccination with peptides drove an adequate Th2 response. All anti-sera from vaccinated mice cross-reacted with human Aβ in APP/PS1 transgenic mouse brain tissue. Conclusion Our study demonstrated that an adjuvant-free vaccine with different Aβ peptides can be an effective and safe vaccination approach against AD. This study represents the first report of adjuvant-free vaccines utilizing Aβ peptides carrying diverse mutations in the T-cell epitope. These largely positive results provide encouragement for the future of the development of human vaccinations for AD.

  13. A novel apolipoprotein C-II mimetic peptide that activates lipoprotein lipase and decreases serum triglycerides in apolipoprotein E-knockout mice.

    Science.gov (United States)

    Amar, Marcelo J A; Sakurai, Toshihiro; Sakurai-Ikuta, Akiko; Sviridov, Denis; Freeman, Lita; Ahsan, Lusana; Remaley, Alan T

    2015-02-01

    Apolipoprotein A-I (apoA-I) mimetic peptides are currently being developed as possible new agents for the treatment of cardiovascular disease based on their ability to promote cholesterol efflux and their other beneficial antiatherogenic properties. Many of these peptides, however, have been reported to cause transient hypertriglyceridemia due to inhibition of lipolysis by lipoprotein lipase (LPL). We describe a novel bihelical amphipathic peptide (C-II-a) that contains an amphipathic helix (18A) for binding to lipoproteins and stimulating cholesterol efflux as well as a motif based on the last helix of apolipoprotein C-II (apoC-II) that activates lipolysis by LPL. The C-II-a peptide promoted cholesterol efflux from ATP-binding cassette transporter ABCA1-transfected BHK cells similar to apoA-I mimetic peptides. Furthermore, it was shown in vitro to be comparable to the full-length apoC-II protein in activating lipolysis by LPL. When added to serum from a patient with apoC-II deficiency, it restored normal levels of LPL-induced lipolysis and also enhanced lipolysis in serum from patients with type IV and V hypertriglyceridemia. Intravenous injection of C-II-a (30 mg/kg) in apolipoprotein E-knockout mice resulted in a significant reduction of plasma cholesterol and triglycerides of 38 ± 6% and 85 ± 7%, respectively, at 4 hours. When coinjected with the 5A peptide (60 mg/kg), the C-II-a (30 mg/kg) peptide was found to completely block the hypertriglyceridemic effect of the 5A peptide in C57Bl/6 mice. In summary, C-II-a is a novel peptide based on apoC-II, which promotes cholesterol efflux and lipolysis and may therefore be useful for the treatment of apoC-II deficiency and other forms of hypertriglyceridemia. U.S. Government work not protected by U.S. copyright.

  14. A Novel Apolipoprotein C-II Mimetic Peptide That Activates Lipoprotein Lipase and Decreases Serum Triglycerides in Apolipoprotein E–Knockout Mice

    Science.gov (United States)

    Sakurai, Toshihiro; Sakurai-Ikuta, Akiko; Sviridov, Denis; Freeman, Lita; Ahsan, Lusana; Remaley, Alan T.

    2015-01-01

    Apolipoprotein A-I (apoA-I) mimetic peptides are currently being developed as possible new agents for the treatment of cardiovascular disease based on their ability to promote cholesterol efflux and their other beneficial antiatherogenic properties. Many of these peptides, however, have been reported to cause transient hypertriglyceridemia due to inhibition of lipolysis by lipoprotein lipase (LPL). We describe a novel bihelical amphipathic peptide (C-II-a) that contains an amphipathic helix (18A) for binding to lipoproteins and stimulating cholesterol efflux as well as a motif based on the last helix of apolipoprotein C-II (apoC-II) that activates lipolysis by LPL. The C-II-a peptide promoted cholesterol efflux from ATP-binding cassette transporter ABCA1-transfected BHK cells similar to apoA-I mimetic peptides. Furthermore, it was shown in vitro to be comparable to the full-length apoC-II protein in activating lipolysis by LPL. When added to serum from a patient with apoC-II deficiency, it restored normal levels of LPL-induced lipolysis and also enhanced lipolysis in serum from patients with type IV and V hypertriglyceridemia. Intravenous injection of C-II-a (30 mg/kg) in apolipoprotein E–knockout mice resulted in a significant reduction of plasma cholesterol and triglycerides of 38 ± 6% and 85 ± 7%, respectively, at 4 hours. When coinjected with the 5A peptide (60 mg/kg), the C-II-a (30 mg/kg) peptide was found to completely block the hypertriglyceridemic effect of the 5A peptide in C57Bl/6 mice. In summary, C-II-a is a novel peptide based on apoC-II, which promotes cholesterol efflux and lipolysis and may therefore be useful for the treatment of apoC-II deficiency and other forms of hypertriglyceridemia. PMID:25395590

  15. Bactericidal effect of bovine lactoferrin and synthetic peptide lactoferrin chimera in Streptococcus pneumoniae and the decrease in luxS gene expression by lactoferrin

    NARCIS (Netherlands)

    N. León-Sicairos; U.A. Angulo-Zamudio; J.E. Vidal; C.A. López-Torres; J.G.M. Bolscher; K. Nazmi; R. Reyes-Cortes; M. Reyes-López; M. de la Garza; A. Canizalez-Román

    2014-01-01

    Streptococcus pneumoniae (pneumococcus) is responsible for nearly one million child deaths annually. Pneumococcus causes infections such as pneumonia, otitis media, meningitis, and sepsis. The human immune system includes antibacterial peptides and proteins such as lactoferrin (LF), but its activity

  16. The glucagon-like peptide 1 (GLP-1) analogue, exendin-4, decreases the rewarding value of food: a new role for mesolimbic GLP-1 receptors.

    Science.gov (United States)

    Dickson, Suzanne L; Shirazi, Rozita H; Hansson, Caroline; Bergquist, Filip; Nissbrandt, Hans; Skibicka, Karolina P

    2012-04-04

    The glucagon-like peptide 1 (GLP-1) system is a recently established target for type 2 diabetes treatment. In addition to regulating glucose homeostasis, GLP-1 also reduces food intake. Previous studies demonstrate that the anorexigenic effects of GLP-1 can be mediated through hypothalamic and brainstem circuits which regulate homeostatic feeding. Here, we demonstrate an entirely novel neurobiological mechanism for GLP-1-induced anorexia in rats, involving direct effects of a GLP-1 agonist, Exendin-4 (EX4) on food reward that are exerted at the level of the mesolimbic reward system. We assessed the impact of peripheral, central, and intramesolimbic EX4 on two models of food reward: conditioned place preference (CPP) and progressive ratio operant-conditioning. Food-reward behavior was reduced in the CPP test by EX4, as rats no longer preferred an environment previously paired to chocolate pellets. EX4 also decreased motivated behavior for sucrose in a progressive ratio operant-conditioning paradigm when administered peripherally. We show that this effect is mediated centrally, via GLP-1 receptors (GLP-1Rs). GLP-1Rs are expressed in several key nodes of the mesolimbic reward system; however, their function remains unexplored. Thus we sought to determine the neurobiological substrates underlying the food-reward effect. We found that the EX4-mediated inhibition of food reward could be driven from two key mesolimbic structures-ventral tegmental area and nucleus accumbens-without inducing concurrent malaise or locomotor impairment. The current findings, that activation of central GLP-1Rs strikingly suppresses food reward/motivation by interacting with the mesolimbic system, indicate an entirely novel mechanism by which the GLP-1R stimulation affects feeding-oriented behavior.

  17. Amyloid β Peptide-Induced Changes in Prefrontal Cortex Activity and Its Response to Hippocampal Input

    Directory of Open Access Journals (Sweden)

    Ernesto Flores-Martínez

    2017-01-01

    Full Text Available Alterations in prefrontal cortex (PFC function and abnormalities in its interactions with other brain areas (i.e., the hippocampus have been related to Alzheimer Disease (AD. Considering that these malfunctions correlate with the increase in the brain’s amyloid beta (Aβ peptide production, here we looked for a causal relationship between these pathognomonic signs of AD. Thus, we tested whether or not Aβ affects the activity of the PFC network and the activation of this cortex by hippocampal input stimulation in vitro. We found that Aβ application to brain slices inhibits PFC spontaneous network activity as well as PFC activation, both at the population and at the single-cell level, when the hippocampal input is stimulated. Our data suggest that Aβ can contribute to AD by disrupting PFC activity and its long-range interactions throughout the brain.

  18. Amyloid β Peptide-Induced Changes in Prefrontal Cortex Activity and Its Response to Hippocampal Input

    Science.gov (United States)

    Flores-Martínez, Ernesto

    2017-01-01

    Alterations in prefrontal cortex (PFC) function and abnormalities in its interactions with other brain areas (i.e., the hippocampus) have been related to Alzheimer Disease (AD). Considering that these malfunctions correlate with the increase in the brain's amyloid beta (Aβ) peptide production, here we looked for a causal relationship between these pathognomonic signs of AD. Thus, we tested whether or not Aβ affects the activity of the PFC network and the activation of this cortex by hippocampal input stimulation in vitro. We found that Aβ application to brain slices inhibits PFC spontaneous network activity as well as PFC activation, both at the population and at the single-cell level, when the hippocampal input is stimulated. Our data suggest that Aβ can contribute to AD by disrupting PFC activity and its long-range interactions throughout the brain. PMID:28127312

  19. The antiarrhythmic peptide analog rotigaptide (ZP123) stimulates gap junction intercellular communication in human osteoblasts and prevents decrease in femoral trabecular bone strength in ovariectomized rats

    DEFF Research Database (Denmark)

    Jørgensen, Niklas Rye; Teilmann, Stefan Cuoni; Henriksen, Zanne

    2005-01-01

    and strength in vivo. Cell coupling and calcium signaling were assessed in vitro on human, primary, osteoblastic cells. In vivo effects of rotigaptide on bone strength and density were determined 4 wk after ovariectomy in rats treated with either vehicle, sc injection twice daily (300 nmol per kilogram body......Gap junctions play an important role in bone development and function, but the lack of pharmacological tools has hampered the gap junction research. The antiarrhythmic peptides stimulate gap junction communication between cardiomyocytes, but effects in noncardiac tissue are unknown. The purpose...... of this study was to examine whether antiarrhythmic peptides, which are small peptides increasing gap junctional conductivity, show specific binding to osteoblasts and investigate the effect of the stable analog rotigaptide (ZP123) on gap junctional intercellular communication in vitro and on bone mass...

  20. Transthyretin knockout mice display decreased susceptibility to AMPA-induced neurodegeneration

    DEFF Research Database (Denmark)

    Nunes, Ana Filipa; Montero, Maria; Franquinho, Filipa;

    2009-01-01

    Transthyretin (TTR) has been regarded as a neuroprotective protein given that TTR knockout (KO) mice display increased susceptibility for amyloid beta deposition and memory deficits during aging. In parallel, TTR KO mice have increased levels of neuropeptide Y (NPY), which promotes neuroprotection...... and neuroproliferation. In this work, we aimed at evaluating TTR neuroprotective effect against an excitotoxic insult that is known to be prevented by NPY action. We show that despite a putative neuroprotective role of TTR, hippocampal slice cultures from TTR KO mice display a decreased susceptibility to AMPA......-induced neurodegeneration. We also suggest that increased NPY levels in TTR KO mice are not associated with increased cell proliferation in the dentate gyrus or subventricular zone. In summary, the alleged neuroprotective role of TTR in the nervous system should be regarded with caution and should not be generalized to all...

  1. Decreased Caffeine-Induced Locomotor Activity via Microinjection of CART Peptide into the Nucleus Accumbens Is Linked to Inhibition of the pCaMKIIa-D3R Interaction.

    Directory of Open Access Journals (Sweden)

    Qiang Fu

    Full Text Available The purpose of this study was to characterize the inhibitory modulation of cocaine- and amphetamine-regulated transcript (CART peptides, particularly with respect to the function of the D3 dopamine receptor (D3R, which is activated by its interaction with phosphorylated CaMKIIα (pCaMKIIα in the nucleus accumbens (NAc. After repeated oral administration of caffeine (30 mg/kg for five days, microinjection of CART peptide (0.08 μM/0.5 μl/hemisphere into the NAc affected locomotor behavior. The pCaMKIIα-D3R interaction, D3R phosphorylation and cAMP/PKA/phosphorylated CREB (pCREB signaling pathway activity were measured in NAc tissues, and Ca2+ influx and pCaMKIIα levels were measured in cultured NAc neurons. We found that CART attenuated the caffeine-mediated enhancement of depolarization-induced Ca2+ influx and CaMKIIα phosphorylation in cultured NAc neurons. Repeated microinjection of CART peptides into the NAc decreased the caffeine-induced enhancement of Ca2+ channels activity, pCaMKIIα levels, the pCaMKIIα-D3R interaction, D3R phosphorylation, cAMP levels, PKA activity and pCREB levels in the NAc. Furthermore, behavioral sensitization was observed in rats that received five-day administration of caffeine following microinjection of saline but not in rats that were treated with caffeine following microinjection of CART peptide. These results suggest that caffeine-induced CREB phosphorylation in the NAc was ameliorated by CART peptide due to its inhibition of D3R phosphorylation. These effects of CART peptides may play a compensatory role by inhibiting locomotor behavior in rats.

  2. Iodine Treatment in Children with Subclinical Hypothyroidism Due to Chronic Iodine Deficiency Decreases Thyrotropin and C-Peptide Concentrations and Improves the Lipid Profile

    OpenAIRE

    M.B. Zimmermann; Aeberli, I; Boonstra, A.; Grimci, L.; Bridson, J; Chaouki, N.; Mbhenyane, X.; Jooste, P L

    2009-01-01

    Background: Chronic iodine deficiency (ID) increases thyrotropin (TSH) concentrations and produces a thyroid hormone pattern consistent with subclinical hypothyroidism (ScH). ScH may be associated with cardiovascular disease risk factors. Thus, the study aim was to determine if iodine treatment of children with elevated TSH concentrations due to ID would affect their lipid profile, insulin (C-peptide) levels, and/or subclinical inflammation. Methods: In controlled intervention trials of oral ...

  3. Decrease in formalin-inactivated respiratory syncytial virus (FI-RSV enhanced disease with RSV G glycoprotein peptide immunization in BALB/c mice.

    Directory of Open Access Journals (Sweden)

    Gertrud U Rey

    Full Text Available Respiratory syncytial virus (RSV is a high priority target for vaccine development. One concern in RSV vaccine development is that a non-live virus vaccine would predispose for enhanced disease similar to that seen with the formalin inactivated RSV (FI-RSV vaccine. Since a mAb specific to RSV G protein can reduce pulmonary inflammation and eosinophilia seen after RSV infection of FI-RSV vaccinated mice, we hypothesized that RSV G peptides that induce antibodies with similar reactivity may limit enhanced disease after subunit or other non-live RSV vaccines. In support of this hypothesis, we show that FI-RSV vaccinated mice administered RSV G peptide vaccines had a significant reduction in enhanced disease after RSV challenge. These data support the importance of RSV G during infection to RSV disease pathogenesis and suggest that use of appropriately designed G peptide vaccines to reduce the risk of enhanced disease with non-live RSV vaccines merits further study.

  4. Increasing Growth Yield and Decreasing Acetylation in Escherichia coli by Optimizing the Carbon-to-Magnesium Ratio in Peptide-Based Media.

    Science.gov (United States)

    Christensen, David G; Orr, James S; Rao, Christopher V; Wolfe, Alan J

    2017-03-15

    Complex media are routinely used to cultivate diverse bacteria. However, this complexity can obscure the factors that govern cell growth. While studying protein acetylation in buffered tryptone broth supplemented with glucose (TB7-glucose), we observed that Escherichia coli did not fully consume glucose prior to stationary phase. However, when we supplemented this medium with magnesium, the glucose was completely consumed during exponential growth, with concomitant increases in cell number and biomass but reduced cell size. Similar results were observed with other sugars and other peptide-based media, including lysogeny broth. Magnesium also limited cell growth for Vibrio fischeri and Bacillus subtilis in TB7-glucose. Finally, magnesium supplementation reduced protein acetylation. Based on these results, we conclude that growth in peptide-based media is magnesium limited. We further conclude that magnesium supplementation can be used to tune protein acetylation without genetic manipulation. These results have the potential to reduce potentially deleterious acetylated isoforms of recombinant proteins without negatively affecting cell growth.IMPORTANCE Bacteria are often grown in complex media. These media are thought to provide the nutrients necessary to grow bacteria to high cell densities. In this work, we found that peptide-based media containing a sugar are magnesium limited for bacterial growth. In particular, magnesium supplementation is necessary for the bacteria to use the sugar for cell growth. Interestingly, in the absence of magnesium supplementation, the bacteria still consume the sugar. However, rather than use it for cell growth, the bacteria instead use the sugar to acetylate lysines on proteins. As lysine acetylation may alter the activity of proteins, this work demonstrates how lysine acetylation can be tuned through magnesium supplementation. These findings may be useful for recombinant protein production, when acetylated isoforms are to be avoided

  5. Correlation between Cognitive Impairment and CSF Biomarkers in Amnesic MCI, non-Amnesic MCI, and Alzheimer's Disease

    NARCIS (Netherlands)

    Haldenwanger, A.; Eling, P.A.T.M.; Kastrup, A.; Hildebrandt, H.

    2010-01-01

    Decreased delayed recall, decreased amyloid-beta peptides (A beta(1-42)), and increased tau protein concentration in cerebrospinal fluid (CSF) are generally regarded to be valid neuropsychological and biological markers for Alzheimer's disease (AD). Previous studies failed to demonstrate clear-cut c

  6. Identification of distinct physiochemical properties of toxic prefibrillar species formed by A{beta} peptide variants

    Energy Technology Data Exchange (ETDEWEB)

    Goeransson, Anna-Lena, E-mail: anngo@ifm.liu.se [Division of Molecular Biotechnology, Department of Physics, Chemistry and Biology, Linkoeping University (Sweden); Nilsson, K. Peter R., E-mail: petni@ifm.liu.se [Division of Organic Chemistry, Department of Physics, Chemistry and Biology, Linkoeping University (Sweden); Kagedal, Katarina, E-mail: katarina.kagedal@liu.se [Department of Clinical and Experimental Medicine, Linkoeping University (Sweden); Brorsson, Ann-Christin, E-mail: anki@ifm.liu.se [Division of Molecular Biotechnology, Department of Physics, Chemistry and Biology, Linkoeping University (Sweden)

    2012-04-20

    Highlights: Black-Right-Pointing-Pointer Identification of toxic prefibrillar A{beta} species. Black-Right-Pointing-Pointer Fluorescence measurements using a combined set of fluorophores. Black-Right-Pointing-Pointer Morphology studies using transmission electron microscopy. -- Abstract: The formation of amyloid-{beta} peptide (A{beta}) aggregates at an early stage during the self-assembly process is an important factor in the development of Alzheimer's disease. The toxic effect is believed to be exerted by prefibrillar species of A{beta}. It is therefore important to identify which prefibrillar species are toxic and characterize their distinct properties. In the present study, we investigated the in vitro aggregation behavior of A{beta}-derived peptides possessing different levels of neurotoxic activity, using fluorescence spectroscopy in combination with transmission electron microscopy. The toxicity of various A{beta} aggregates was assessed by using cultures of human neuroblastoma cells. Through combined use of the fluorescence probe 8-anilino-1-napthalenesulfonate (ANS) and the novel luminescent probe pentamer formyl thiophene acetic acid (p-FTAA), we were able to identify those A{beta} peptide-derived prefibrillar species which exhibited cellular toxicity. In particular, species, which formed early during the aggregation process and showed strong p-FTAA and ANS fluorescence, were the species that possessed toxic activities. Moreover, by manipulating the aggregation conditions, it was possible to change the capacity of the A{beta} peptide to form nontoxic versus toxic species.

  7. Glucagon-like peptide 1 receptor activation regulates cocaine actions and dopamine homeostasis in the lateral septum by decreasing arachidonic acid levels

    DEFF Research Database (Denmark)

    Reddy, I A; Pino, J A; Weikop, P

    2016-01-01

    Agonism of the glucagon-like peptide 1 (GLP-1) receptor (GLP-1R) has been effective at treating aspects of addictive behavior for a number of abused substances, including cocaine. However, the molecular mechanisms and brain circuits underlying the therapeutic effects of GLP-1R signaling on cocaine...... plasma membrane expression and function. These results support a mechanism in which postsynaptic septal GLP-1R activation regulates 2-AG levels to alter presynaptic DA homeostasis and cocaine actions through AA....... actions remain elusive. Recent evidence has revealed that endogenous signaling at the GLP-1R within the forebrain lateral septum (LS) acts to reduce cocaine-induced locomotion and cocaine conditioned place preference, both considered dopamine (DA)-associated behaviors. DA terminals project from...

  8. A neuroligin-1-derived peptide stimulates phosphorylation of the NMDA receptor NR1 subunit and rescues MK-801-induced decrease in long-term potentiation and memory impairment

    DEFF Research Database (Denmark)

    Korshunova, Irina; Gjørlund, Michelle D; Jacobsen, Sylwia Owczarek

    2015-01-01

    neurolide-1 effects on short- and long-term social and spatial memory in social recognition, Morris water-maze, and Y-maze tests. We found that subcutaneous neurolide-1 administration, restored hippocampal LTP compromised by NMDA receptor inhibitor MK-801. It counteracted MK-801-induced memory deficit...... in the water-maze and Y-maze tests after long-term treatment (24 h and 1-2 h before the test), but not after short-term exposure (1-2 h). Long-term exposure to neurolide-1 also facilitated social recognition memory. In addition, neurolide-1-induced phosphorylation of the NMDA receptor NR1 subunit on a site...... receptor phosphorylation after treatment with NL1 or a mimetic peptide, neurolide-1, was quantified by immunoblotting. Subsequently, we investigated effects of neurolide-1 on long-term potentiation (LTP) induction in hippocampal slices compromised by NMDA receptor inhibitor MK-801. Finally, we investigated...

  9. Thermodynamics and dynamics of amyloid peptide oligomerization are sequence dependent.

    Science.gov (United States)

    Lu, Yan; Derreumaux, Philippe; Guo, Zhi; Mousseau, Normand; Wei, Guanghong

    2009-06-01

    Aggregation of the full-length amyloid-beta (Abeta) and beta2-microglobulin (beta2m) proteins is associated with Alzheimer's disease and dialysis-related amyloidosis, respectively. This assembly process is not restricted to full-length proteins, however, many short peptides also assemble into amyloid fibrils in vitro. Remarkably, the kinetics of amyloid-fibril formation of all these molecules is generally described by a nucleation-polymerization process characterized by a lag phase associated with the formation of a nucleus, after which fibril elongation occurs rapidly. In this study, we report using long molecular dynamics simulations with the OPEP coarse-grained force field, the thermodynamics and dynamics of the octamerization for two amyloid 7-residue peptides: the beta2m83-89 NHVTLSQ and Abeta16-22 KLVFFAE fragments. Based on multiple trajectories run at 310 K, totaling 2.2 mus (beta2m83-89) and 4.8 mus (Abeta16-22) and starting from random configurations and orientations of the chains, we find that the two peptides not only share common but also very different aggregation properties. Notably, an increase in the hydrophobic character of the peptide, as observed in Abeta16-22 with respect to beta2m83-89 impacts the thermodynamics by reducing the population of bilayer beta-sheet assemblies. Higher hydrophobicity is also found to slow down the dynamics of beta-sheet formation by enhancing the averaged lifetime of all configuration types (CT) and by reducing the complexity of the CT transition probability matrix. Proteins 2009. (c) 2008 Wiley-Liss, Inc.

  10. pH-Dependent In-Cell Self-Assembly of Peptide Inhibitors Increases the Anti-Prion Activity While Decreasing the Cytotoxicity.

    Science.gov (United States)

    Waqas, Muhammad; Jeong, Woo-Jin; Lee, Young-Joo; Kim, Dae-Hwan; Ryou, Chongsuk; Lim, Yong-Beom

    2017-02-13

    The first step in the conventional approach to self-assembled biomaterials is to develop well-defined nanostructures in vitro, which is followed by disruption of the preformed nanostructures at the inside of the cell to achieve bioactivity. Here, we propose an inverse strategy to develop in-cell gain-of-function self-assembled nanostructures. In this approach, the supramolecular building blocks exist in a unimolecular/unordered state in vitro or at the outside of the cell and assemble into well-defined nanostructures after cell internalization. We used block copolypeptides of an oligoarginine and a self-assembling peptide as building blocks and investigated correlations among the nanostructural state, antiprion bioactivity, and cytotoxicity. The optimal bioactivity (i.e., the highest antiprion activity and lowest cytotoxicity) was obtained when the building blocks existed in a unimolecular/unordered state in vitro and during the cell internalization process, exerting minimal cytotoxic damage to cell membranes, and were subsequently converted into high-charge-density vesicles in the low pH endosome/lysosomes in vivo, thus, resulting in the significantly enhanced antiprion activity. In particular, the in-cell self-assembly concept presents a feasible approach to developing therapeutics against protein misfolding diseases. In general, the in-cell self-assembly provides a novel inverse methodology to supramolecular bionanomaterials.

  11. The glucagon-like peptide 1 receptor agonist exendin-4 improves reference memory performance and decreases immobility in the forced swim test.

    Science.gov (United States)

    Isacson, Ruben; Nielsen, Elisabet; Dannaeus, Karin; Bertilsson, Göran; Patrone, Cesare; Zachrisson, Olof; Wikström, Lilian

    2011-01-10

    We have earlier shown that the glucagon-like peptide 1 receptor agonist exendin-4 stimulates neurogenesis in the subventricular zone and excerts anti-parkinsonian behavior. The aim of this study was to assess the effects of exendin-4 treatment on hippocampus-associated cognitive and mood-related behavior in adult rodents. To investigate potential effects of exendin-4 on hippocampal function, radial maze and forced swim test were employed. The time necessary to solve a radial maze task and the duration of immobility in the forced swim test were significantly reduced compared to respective vehicle groups if the animals had received exendin-4 during 1-2weeks before testing. In contrast to the positive control imipramine, single administration of exendin-4 1h before the challenge in the forced swim test had no effect. Immunohistochemical analysis showed that the incorporation of bromodeoxyuridine, a marker for DNA synthesis, as well as doublecortin expression was increased in the hippocampal dentate gyrus following chronic treatment with exendin-4 compared to vehicle-treated controls. The neurogenic effect of exendin-4 on hippocampus was confirmed by quantitative PCR showing an upregulation of mRNA expression for Ki-67, doublecortin and Mash-1. Since exendin-4 significantly improves hippocampus-associated behavior in adult rodents, it may be a candidate for alleviation of mood and cognitive disorders.

  12. Decreased glycation and structural protection properties of γ-glutamyl-S-allyl-cysteine peptide isolated from fresh garlic scales (Allium sativum L.).

    Science.gov (United States)

    Tan, Dehong; Zhang, Yao; Chen, Lulu; Liu, Ling; Zhang, Xuan; Wu, Zhaoxia; Bai, Bing; Ji, Shujuan

    2015-01-01

    The antiglycative effect of γ-glutamyl-S-allyl-cysteine (GSAC) peptide isolated from fresh garlic scales was investigated in the bovine serum albumin (BSA)/glucose system. GSAC inhibited the increase of fluorescence intensity at about 440 nm in a concentration-dependent manner and reduced reacted free lysine side chains by 10.9%, 24.7% and 37.7%, as the GSAC concentrations increased from 0.1 to 2.5 mg mL(-1). Glycation-specific decline in BSA α-helix content (from 61.3% to 55.6%) and increase in β-sheet (from 2.1% to 5.4%) were prevented by GSAC (2.5 mg mL(-1)) in vitro, implying its stabilisation effect. GSAC treatment (2.5 mg mL(-1)) suppressed protein crosslinking to form polymers. Additionally, GSAC (10, 40, and 160 μg mL(-1)) showed radical-scavenging and metal-chelating capacities. In conclusion, GSAC has an antiglycative effect, which may involve its radical-scavenging and metal-chelating capacities.

  13. Decrease of plasma N-terminal pro β-type natriuretic peptide as a predictor of clinical improvement after cardiac resynchronization therapy for heart failure

    Institute of Scientific and Technical Information of China (English)

    DING Li-gang; HUA Wei; ZHANG Shu; CHU Jian-min; CHEN Ke-ping; WANG Yang; WANG Fang-zheng; CHEN Xin

    2009-01-01

    Background N-terminal pro β-type natriuretic peptide (NT pro BNP) has been shown to predict the prognosis and could guide the treatment of heart failure. We aimed to investigate the values of NT pro BNP in predicting the clinical response to cardiac resynchronization therapy (CRT).Methods A total of 44 patients with chronic heart failure (34 male and 10 female, mean age of (58±13) years, New York Heart Association (NYHA) class 3.3±0.5, QRS duration (150±14) milliseconds) who underwent successful implantation of a CRT system were enrolled in this study. Pharmacotherapy remained stable during the first 3 months of follow-up. Plasma levels of NT pro BNP were evaluated before and 3 months after implantation. Clinical, echocardiographic and exercise parameters were monitored at each clinical visit after CRT implantation. Receiver operating characteristic analysis and a paired ttest were performed to analyze the data.Results After a mean of (16.3±5.5) months of follow-up, 11 nonresponders were identified. CRT resulted in a significant reduction in NT pro BNP ((1.70±1.28) vs (1.07±0.88) pmol/ml, P <0.001) in responders. Percentage change in NT pro BNP level (△BNP%) was a statistically significant predictor of long term clinical improvement at 3 months of follow-up.Conclusions △BNP% from baseline to 3 months of follow-up is a predictor of long term response to CRT. NT pro BNP may be a simple method for monitoring the effects of CRT.

  14. Increased peptide YY blood concentrations, not decreased acyl-ghrelin, are associated with reduced hunger and food intake in healthy older women: Preliminary evidence.

    Science.gov (United States)

    Hickson, Mary; Moss, Charlotte; Dhillo, Waljit S; Bottin, Jeanne; Frost, Gary

    2016-10-01

    With ageing there is frequently a loss of appetite, termed anorexia of ageing, which can result in under-nutrition. We do not know how appetite control alters with ageing. The objective of this study was to investigate whether differences in the release of, and response to, gastrointestinal appetite hormones is altered in young compared to old healthy volunteers. We hypothesised that an increase in PYY and GLP-1 or a decrease ghrelin may result in a decreased appetite. A comparative experimental design, using a cross-sectional sample of ages from a healthy population, matched for sex and BMI was used. The study compared total ghrelin, acyl-ghrelin, PYY, GLP-1 and subjective appetite responses to ingestion of a standardised 2781kj (660 kcal) test meal. 31 female volunteers aged between 21 and 92yrs took part. Multiple linear regression showed that both age and sex had an independent effect on energy intake. Subjective appetite scores showed that hunger, pleasantness to eat, and prospective food intake were significantly lower in the older age groups. PYY incremental area under the curve (IAUC) was greater in the oldest old compared to younger ages f(3,27) = 2.9, p = 0.05. No differences in GLP-1, ghrelin or acyl-ghrelin were observed in the older compared to younger age groups. Our data suggest that there may be increases in postprandial PYY(3-36) levels in female octogenarians, potentially resulting in reduced appetite. There does not appear to be any change in ghrelin or acyl-ghrelin concentrations with ageing.

  15. Antimicrobial Peptides in 2014

    Directory of Open Access Journals (Sweden)

    Guangshun Wang

    2015-03-01

    Full Text Available This article highlights new members, novel mechanisms of action, new functions, and interesting applications of antimicrobial peptides reported in 2014. As of December 2014, over 100 new peptides were registered into the Antimicrobial Peptide Database, increasing the total number of entries to 2493. Unique antimicrobial peptides have been identified from marine bacteria, fungi, and plants. Environmental conditions clearly influence peptide activity or function. Human α-defensin HD-6 is only antimicrobial under reduced conditions. The pH-dependent oligomerization of human cathelicidin LL-37 is linked to double-stranded RNA delivery to endosomes, where the acidic pH triggers the dissociation of the peptide aggregate to release its cargo. Proline-rich peptides, previously known to bind to heat shock proteins, are shown to inhibit protein synthesis. A model antimicrobial peptide is demonstrated to have multiple hits on bacteria, including surface protein delocalization. While cell surface modification to decrease cationic peptide binding is a recognized resistance mechanism for pathogenic bacteria, it is also used as a survival strategy for commensal bacteria. The year 2014 also witnessed continued efforts in exploiting potential applications of antimicrobial peptides. We highlight 3D structure-based design of peptide antimicrobials and vaccines, surface coating, delivery systems, and microbial detection devices involving antimicrobial peptides. The 2014 results also support that combination therapy is preferred over monotherapy in treating biofilms.

  16. L655,240, acting as a competitive BACE1 inhibitor,efficiently decreases β-amyloid peptide production in HEK293-APPswe cells

    Institute of Scientific and Technical Information of China (English)

    Qin LU; Wu-yan CHEN; Zhi-yuan ZHU; Jing CHEN; Ye-chun XU; Morakot KAEWPET; Vatcharin RUKACHAISIRIKUL; Li-li CHEN; Xu SHEN

    2012-01-01

    Aim: To identify a small molecule L655,240 as a novel β-secretase (BACE1) inhibitor and to investigate its effects on β-amyloid (Aβ)generation in vitro.Methods: Fluorescence resonance energy transfer (FRET) was used to characterize the inhibitory effect of L655,240 on BACE1.Surface plasmon resonance (SPR) technology-based assay was performed to study the binding affinity of L655,240 for BACE1.The selectivity of L655,240 toward BACE1 over other aspartic proteases was determined with enzymatic assay.The effects of L655,240 on Aβ40,Aβ42,and sAPPβ production were studied in HEK293 cells stably expressing APP695 Swedish mutantK595N/M596L (HEK293-APPswe cells).The activities of BACE1,ν-secretase and α-secretase were assayed,and both the mRNA and protein levels of APP and BACE1 were evaluated using real-time PCR (RT-PCR) and Western blot analysis.Results: L655,240 was determined to be a competitive,selective BACE1 inhibitor (IC50=4.47±1.37 μmol/L),which bound to BACE1 directly (KD=17.9±0.72 μmol/L).L655,240 effectively reduced Aβ40,Aβ42,and sAPPβ production by inhibiting BACE1 without affecting the activities of y-secretase and α-secretase in HEK293-APPswe cells.L655,240 has no effect on APP and BACE1 mRNA or protein levels in HEK293-APPswe cells.Conclusion: The small molecule L655,240 is a novel BACE1 inhibitor that can effectively decreases Aβ production in vitro,thereby highlighting its therapeutic potential for the treatment of Alzheimer's disease.

  17. Transthyretin protects against A-beta peptide toxicity by proteolytic cleavage of the peptide: a mechanism sensitive to the Kunitz protease inhibitor.

    Directory of Open Access Journals (Sweden)

    Rita Costa

    Full Text Available Alzheimer's disease (AD is a neurodegenerative disorder characterized by the deposition of amyloid beta-peptide (A-Beta in the brain. Transthyretin (TTR is a tetrameric protein of about 55 kDa mainly produced in the liver and choroid plexus of the brain. The known physiological functions of TTR are the transport of thyroid hormone T(4 and retinol, through binding to the retinol binding protein. TTR has also been established as a cryptic protease able to cleave ApoA-I in vitro. It has been described that TTR is involved in preventing A-Beta fibrilization, both by inhibiting and disrupting A-Beta fibrils, with consequent abrogation of toxicity. We further characterized the nature of the TTR/A-Beta interaction and found that TTR, both recombinant or isolated from human sera, was able to proteolytically process A-Beta, cleaving the peptide after aminoacid residues 1, 2, 3, 10, 13, 14,16, 19 and 27, as determined by mass spectrometry, and reversed phase chromatography followed by N-terminal sequencing. A-Beta peptides (1-14 and (15-42 showed lower amyloidogenic potential than the full length counterpart, as assessed by thioflavin binding assay and ultrastructural analysis by transmission electron microscopy. A-Beta cleavage by TTR was inhibited in the presence of an alphaAPP peptide containing the Kunitz Protease Inhibitor (KPI domain but not in the presence of the secreted alphaAPP derived from the APP isoform 695 without the KPI domain. TTR was also able to degrade aggregated forms of A-Beta peptide. Our results confirmed TTR as a protective molecule in AD, and prompted A-Beta proteolysis by TTR as a protective mechanism in this disease. TTR may prove to be a useful therapeutic agent for preventing or retarding the cerebral amyloid plaque formation implicated in AD pathology.

  18. Lipopolysaccharide (LPS) and tumor necrosis factor alpha (TNFα) blunt the response of Neuropeptide Y/Agouti-related peptide (NPY/AgRP) glucose inhibited (GI) neurons to decreased glucose.

    Science.gov (United States)

    Hao, Lihong; Sheng, Zhenyu; Potian, Joseph; Deak, Adam; Rohowsky-Kochan, Christine; Routh, Vanessa H

    2016-10-01

    A population of Neuropeptide Y (NPY) neurons which co-express Agouti-related peptide (AgRP) in the arcuate nucleus of the hypothalamus (ARC) are inhibited at physiological levels of brain glucose and activated when glucose levels decline (e.g. glucose-inhibited or GI neurons). Fasting enhances the activation of NPY/AgRP-GI neurons by low glucose. In the present study we tested the hypothesis that lipopolysaccharide (LPS) inhibits the enhanced activation of NPY/AgRP-GI neurons by low glucose following a fast. Mice which express green fluorescent protein (GFP) on their NPY promoter were used to identify NPY/AgRP neurons. Fasting for 24h and LPS injection decreased blood glucose levels. As we have found previously, fasting increased c-fos expression in NPY/AgRP neurons and increased the activation of NPY/AgRP-GI neurons by decreased glucose. As we predicted, LPS blunted these effects of fasting at the 24h time point. Moreover, the inflammatory cytokine tumor necrosis factor alpha (TNFα) blocked the activation of NPY/AgRP-GI neurons by decreased glucose. These data suggest that LPS and TNFα may alter glucose and energy homeostasis, in part, due to changes in the glucose sensitivity of NPY/AgRP neurons. Interestingly, our findings also suggest that NPY/AgRP-GI neurons use a distinct mechanism to sense changes in extracellular glucose as compared to our previous studies of GI neurons in the adjacent ventromedial hypothalamic nucleus.

  19. Aβ对小胶质细胞中IL-1β及iNOS mRNA水平的影响%The changes of IL-1β and iNOS mRNA in cultured hippocampal microglia of rats exposed to amyloid beta-protein

    Institute of Scientific and Technical Information of China (English)

    贾丽艳; 拓西平; 朱嘉琦; 周俊

    2005-01-01

    目的观察β-淀粉样蛋白(amyloid beta-protein, Aβ)对原代培养的大鼠海马小胶质细胞中白细胞介素-1β(interleukin-1 beta ,IL-1β)及诱导型一氧化氮合酶(inducible nitric oxide synthase, iNOS)mRNA 水平的影响,探讨Aβ诱导的氧化应激和炎症反应在阿尔茨海默病(Alzheimer's disease, AD)发病机制中的作用. 方法采用Aβ25-35孵育原代培养的新生大鼠海马小胶质细胞的方法建立Aβ诱导损伤的神经细胞模型,用半定量逆转录-聚合酶链反应(reverse transcription-polymerase chain reaction, RT-PCR)方法观察体外条件下Aβ25-35对小胶质细胞中IL-1β及iNOS mRNA 水平的影响. 结果 1 μmol/L Aβ25-35作用于原代培养的新生大鼠海马小胶质细胞 48 h后,IL-1β及iNOS mRNA 水平较空白对照组显著升高(P<0.01). 结论 Aβ25-35诱导的氧化应激和炎症反应在AD的发病机制中具有重要作用.

  20. Acylation of Therapeutic Peptides

    DEFF Research Database (Denmark)

    Trier, Sofie; Henriksen, Jonas Rosager; Jensen, Simon Bjerregaard

    peptides are similar in size and structure, but oppositely charged at physiological pH. Both peptides were acylated with linear acyl chains of systematically increasing length, where sCT was furthermore acylated at two different positions on the peptide backbone. For GLP-2, we found that increasing acyl...... stems from a synergy between the positive peptide charge and membrane-active acyl moiety, supported by its pH-dependency, whereby the effect increased with decreasing pH and concomitant charge increase. The extent of permeation enhancing effect was highly dependent on acylation chain length and position...

  1. Aspartate-bond isomerization affects the major conformations of synthetic peptides.

    Science.gov (United States)

    Szendrei, G I; Fabian, H; Mantsch, H H; Lovas, S; Nyéki, O; Schön, I; Otvos, L

    1994-12-15

    The aspartic acid bond changes to an beta-aspartate bond frequently as a side-reaction during peptide synthesis and often as a post-translational modification of proteins. The formation of beta-asparate bonds is reported to play a major role not only in protein metabolism, activation and deactivation, but also in pathological processes such as deposition of the neuritic plaques of Alzheimer's disease. Recently, we reported how conformational changes following the aspartic-acid-bond isomerization may help the selective aggregation and retention of the amyloid beta peptide in affected brains (Fabian et al., 1994). In the current study we used circular dichroism, Fourier-transform infrared spectroscopy, and molecular modeling to characterize the general effect of the beta-aspartate-bond formation on the conformation of five sets of synthetic model peptides. Each of the non-modified, parent peptides has one of the major secondary structures as the dominant spectroscopically determined conformation: a type I beta turn, a type II beta turn, short segments of alpha or 3(10) helices, or extended beta strands. We found that both types of turn structures are stabilized by the aspartic acid-bond isomerization. The isomerization at a terminal position did not affect the helix propensity, but placing it in mid-chain broke both the helix and the beta-pleated sheet with the formation of reverse turns. The alteration of the geometry of the lowest energy reverse turn was also supported by molecular dynamics calculations. The tendency of the aspartic acid-bond isomerization to stabilize turns is very similar to the effect of incorporating sugars into synthetic peptides and suggests a common feature of these post-translational modifications in defining the secondary structure of protein fragments.

  2. Preclinical Pharmacokinetic Studies of the Tritium Labelled D-Enantiomeric Peptide D3 Developed for the Treatment of Alzheimer´s Disease.

    Science.gov (United States)

    Jiang, Nan; Leithold, Leonie H E; Post, Julia; Ziehm, Tamar; Mauler, Jörg; Gremer, Lothar; Cremer, Markus; Schartmann, Elena; Shah, N Jon; Kutzsche, Janine; Langen, Karl-Josef; Breitkreutz, Jörg; Willbold, Dieter; Willuweit, Antje

    2015-01-01

    Targeting toxic amyloid beta (Aβ) oligomers is currently a very attractive drug development strategy for treatment of Alzheimer´s disease. Using mirror-image phage display against Aβ1-42, we have previously identified the fully D-enantiomeric peptide D3, which is able to eliminate Aβ oligomers and has proven therapeutic potential in transgenic Alzheimer´s disease animal models. However, there is little information on the pharmacokinetic behaviour of D-enantiomeric peptides in general. Therefore, we conducted experiments with the tritium labelled D-peptide D3 (3H-D3) in mice with different administration routes to study its distribution in liver, kidney, brain, plasma and gastrointestinal tract, as well as its bioavailability by i.p. and p.o. administration. In addition, we investigated the metabolic stability in liver microsomes, mouse plasma, brain, liver and kidney homogenates, and estimated the plasma protein binding. Based on its high stability and long biological half-life, our pharmacokinetic results support the therapeutic potential of D-peptides in general, with D3 being a new promising drug candidate for Alzheimer´s disease treatment.

  3. Preclinical Pharmacokinetic Studies of the Tritium Labelled D-Enantiomeric Peptide D3 Developed for the Treatment of Alzheimer´s Disease.

    Directory of Open Access Journals (Sweden)

    Nan Jiang

    Full Text Available Targeting toxic amyloid beta (Aβ oligomers is currently a very attractive drug development strategy for treatment of Alzheimer´s disease. Using mirror-image phage display against Aβ1-42, we have previously identified the fully D-enantiomeric peptide D3, which is able to eliminate Aβ oligomers and has proven therapeutic potential in transgenic Alzheimer´s disease animal models. However, there is little information on the pharmacokinetic behaviour of D-enantiomeric peptides in general. Therefore, we conducted experiments with the tritium labelled D-peptide D3 (3H-D3 in mice with different administration routes to study its distribution in liver, kidney, brain, plasma and gastrointestinal tract, as well as its bioavailability by i.p. and p.o. administration. In addition, we investigated the metabolic stability in liver microsomes, mouse plasma, brain, liver and kidney homogenates, and estimated the plasma protein binding. Based on its high stability and long biological half-life, our pharmacokinetic results support the therapeutic potential of D-peptides in general, with D3 being a new promising drug candidate for Alzheimer´s disease treatment.

  4. Sodium ferulate prevents amyloid-beta-induced neurotoxicity through suppression of p38 MAPK and upregulation of ERK-1/2 and Akt/protein kinase B in rat hippocampus

    Institute of Scientific and Technical Information of China (English)

    Ying JIN; En-zhi YAN; Ying FAN; Zhi-hong ZONG; Zhi-min QI; Zhi LI

    2005-01-01

    Aim: To observe whether an amyloid β (Aβ)-induced increase in interleukin (IL)1 β was accompanied by an increase in the p38 mitogen-activated protein kinase (MAPK) pathway and a decrease in the cell survival pathway, and whether sodium ferulate (SF) treatment was effective in preventing these Aβ-induced changes.Methods: Rats were injected intracerebroventricularly with Aβ25-35. Seven days after injection, immunohistochemical techniques for glial fibrillary acidic protein (GFAP) were used to determine the astrocyte infiltration and activation in hippocampal CA1 areas. The expression of IL-1 β, extracellular signal-regulated kinase (ERK), p38 MAPK, Akt/protein kinase B (PKB), Fas ligand and caspase-3 were determined by Western blotting. The caspase-3 activity was measured by cleavage of the caspase-3 substrate (Ac-DEVD-pNA). Reverse transcriptionpolymerase chain reaction was used to analyze the changes in IL- 1 βmRNA levels.Results:Intracerebroventricular injection of Aβ25-35 elicited astrocyte activation and infiltration and caused a strong inflammatory reaction characterized by increased IL-1 β production and elevated levels of IL-1 β mRNA. Increased IL-1 β synthesis was accompanied by increased activation of p38 MAPK and downregulation of phospho-ERK and phospho-Akt/PKB in hippocampal CA regions prepared from Aβ-treated rats, leading to cell death as assessed by activation of caspase-3. SF significantly prevented Aβ-induced increases in IL-1 β and p38 MAPK activation and also Aβ-induced changes in phospho-ERK and phospho-Akt/PKB expression levels. Conclusion: SF prevents Aβ-induced neurotoxicity through suppression of p38 MAPK activation and upregulation of phospho-ERK and phospho-Akt/PKB expression.survival signals ERK and Akt/PKB may contribute to the demise of the cells. These are significantly abrogated by SF treatment, which also attenuates Aβ-induced increase in caspase-3 activity and FasL expression.

  5. Identification and characterization of Aβ peptide interactors in Alzheimer’s disease by structural approaches

    Directory of Open Access Journals (Sweden)

    Keith D Philibert

    2014-10-01

    Full Text Available Currently, there are very limited pharmaceutical interventions for Alzheimer’s disease (AD to alleviate the amyloid burden implicated in the pathophysiology of the disease. AD is characterized immunohistologically by the accumulation of senile plaques in the brain with afflicted patients progressively losing short-term memory and, ultimately, cognition. Although significant improvements in clinical diagnosis and care for AD patients have been made, effective treatments for this devastating disease remain elusive. A key component of the amyloid burden of AD comes from accumulation of the amyloid-beta (Aβ peptide which comes from processing of the amyloid precursor protein (APP by enzymes termed secretases, leading to production of these toxic Aβ peptides of 40-42 amino acids. New therapeutic approaches for reducing Aβ are warranted after the most logical avenues of inhibiting secretase activity appear less than optimal in ameliorating the progression of AD.Novel therapeutics may be gleaned from proteomics biomarker initiatives to yield detailed molecular interactions of enzymes and their potential substrates. Explicating the APPome by deciphering protein complexes forming in cells is a complementary approach to unveil novel molecular interactions with the amyloidogenic peptide precursor to both understand the biology and develop potential upstream drug targets.Utilizing these strategies we have identified EC3.4.24.15 (EP24.15, a zinc metalloprotease related to neprilysin, with the ability to catabolize Aβ 1-42 by examining first potential in silico docking and then verification by mass spectrometry. In addition, a hormone carrier protein, transthyreitin (TTR, was identified and with its abundance in cerebrospinal fluid, found to clear Aβ by inhibiting formation of oligomeric forms of Aβ peptide. The confluence of complementary strategies may allow new therapeutic avenues as well as biomarkers for AD that will aid in diagnosis, prognosis

  6. CRMP-2 peptide mediated decrease of high and low voltage-activated calcium channels, attenuation of nociceptor excitability, and anti-nociception in a model of AIDS therapy-induced painful peripheral neuropathy

    Directory of Open Access Journals (Sweden)

    Piekarz Andrew D

    2012-07-01

    Full Text Available Abstract Background The ubiquity of protein-protein interactions in biological signaling offers ample opportunities for therapeutic intervention. We previously identified a peptide, designated CBD3, that suppressed inflammatory and neuropathic behavioral hypersensitivity in rodents by inhibiting the ability of collapsin response mediator protein 2 (CRMP-2 to bind to N-type voltage-activated calcium channels (CaV2.2 [Brittain et al. Nature Medicine 17:822–829 (2011]. Results and discussion Here, we utilized SPOTScan analysis to identify an optimized variation of the CBD3 peptide (CBD3A6K that bound with greater affinity to Ca2+ channels. Molecular dynamics simulations demonstrated that the CBD3A6K peptide was more stable and less prone to the unfolding observed with the parent CBD3 peptide. This mutant peptide, conjugated to the cell penetrating motif of the HIV transduction domain protein TAT, exhibited greater anti-nociception in a rodent model of AIDS therapy-induced peripheral neuropathy when compared to the parent TAT-CBD3 peptide. Remarkably, intraperitoneal administration of TAT-CBD3A6K produced none of the minor side effects (i.e. tail kinking, body contortion observed with the parent peptide. Interestingly, excitability of dissociated small diameter sensory neurons isolated from rats was also reduced by TAT-CBD3A6K peptide suggesting that suppression of excitability may be due to inhibition of T- and R-type Ca2+ channels. TAT-CBD3A6K had no effect on depolarization-evoked calcitonin gene related peptide (CGRP release compared to vehicle control. Conclusions Collectively, these results establish TAT-CBD3A6K as a peptide therapeutic with greater efficacy in an AIDS therapy-induced model of peripheral neuropathy than its parent peptide, TAT-CBD3. Structural modifications of the CBD3 scaffold peptide may result in peptides with selectivity against a particular subset of voltage-gated calcium channels resulting in a multipharmacology of

  7. Penetratin Peptide-Functionalized Gold Nanostars: Enhanced BBB Permeability and NIR Photothermal Treatment of Alzheimer's Disease Using Ultralow Irradiance.

    Science.gov (United States)

    Yin, Tiantian; Xie, Wenjie; Sun, Jing; Yang, Licong; Liu, Jie

    2016-08-03

    The structural changes of amyloid-beta (Aβ) from nontoxic monomers into neurotoxic aggregates are implicated with pathogenesis of Alzheimer's disease (AD). Over the past decades, weak disaggregation ability and low permeability to the blood-brain barrier (BBB) may be the main obstacles for major Aβ aggregation blockers. Here, we synthesized penetratin (Pen) peptide loaded poly(ethylene glycol) (PEG)-stabilized gold nanostars (AuNS) modified with ruthenium complex (Ru@Pen@PEG-AuNS), and Ru(II) complex as luminescent probes for tracking drug delivery. We revealed that Ru@Pen@PEG-AuNS could obviously inhibit the formation of Aβ fibrils as well as dissociate preformed fibrous Aβ under the irradiation of near-infrared (NIR) due to the NIR absorption characteristic of AuNS. More importantly, this novel design could be applied in medicine as an appropriate nanovehicle, being highly biocompatible and hemocompatible. In addition, Ru@Pen@PEG-AuNS had excellent neuroprotective effect on the Aβ-induced cellular toxicity by applying NIR irradiation. Meanwhile, Pen peptide could effectively improve the delivery of nanoparticles to the brain in vitro and in vivo, which overcame the major limitation of Aβ aggregation blockers. These consequences illustrated that the enhanced BBB permeability and efficient photothermolysis of Ru@Pen@PEG-AuNS are promising agents in AD therapy.

  8. The role of metallobiology and amyloid-β peptides in Alzheimer's disease.

    Science.gov (United States)

    Roberts, Blaine R; Ryan, Timothy M; Bush, Ashley I; Masters, Colin L; Duce, James A

    2012-01-01

    The biggest risk factor for Alzheimer's disease is the process of ageing, but the mechanisms that lead to the manifestation of the disease remain to be elucidated. Why age triggers the disease is unclear but an emerging theme is the inability for a cell to efficiently maintain many key processes such as energy production, repair, and regenerative mechanisms. Metal ions are essential to the metabolic function of every cell. This review will explore the role and reported changes in metal ions in Alzheimer disease, particularly the brain, blood and cerebral spinal fluid, emphasizing how iron, copper and zinc may be involved through the interactions with amyloid precursor protein, the proteolytically cleaved peptide amyloid-beta (Aβ), and other related metalloproteins. Finally, we explore the monomeric makeup of possible Aβ dimers, what a dimeric Aβ species from Alzheimer's disease brain tissue is likely to be composed of, and discuss how metals may influence Aβ production and toxicity via a copper catalyzed dityrosine cross-link.

  9. Energy landscapes of the monomer and dimer of the Alzheimer's peptide Abeta(1-28).

    Science.gov (United States)

    Dong, Xiao; Chen, Wei; Mousseau, Normand; Derreumaux, Philippe

    2008-03-28

    The cytotoxicity of Alzheimer's disease has been linked to the self-assembly of the 4042 amino acid of the amyloid-beta (Abeta) peptide into oligomers. To understand the assembly process, it is important to characterize the very first steps of aggregation at an atomic level of detail. Here, we focus on the N-terminal fragment 1-28, known to form fibrils in vitro. Circular dichroism and NMR experiments indicate that the monomer of Abeta(1-28) is alpha-helical in a membranelike environment and random coil in aqueous solution. Using the activation-relaxation technique coupled with the OPEP coarse grained force field, we determine the structures of the monomer and of the dimer of Abeta(1-28). In agreement with experiments, we find that the monomer is predominantly random coil in character, but displays a non-negligible beta-strand probability in the N-terminal region. Dimerization impacts the structure of each chain and leads to an ensemble of intertwined conformations with little beta-strand content in the region Leu17-Ala21. All these structural characteristics are inconsistent with the amyloid fibril structure and indicate that the dimer has to undergo significant rearrangement en route to fibril formation.

  10. The hydrophobic environment of Met35 of Alzheimer's Abeta(1-42) is important for the neurotoxic and oxidative properties of the peptide.

    Science.gov (United States)

    Kanski, Jaroslaw; Aksenova, Marina; Butterfield, D Allan

    2002-05-01

    In Alzheimer's disease (AD) brain increased lipid peroxidation is found. Amyloid beta-peptide [Abeta(1-42)] induces oxidative stress (including lipid peroxidation) and neurotoxicity, and the single methionine residue (Met35) is important for these properties. In the current study, we tested the hypothesis that removal of Met35 from lipid bilayer would abrogate the oxidative stress and neurotoxic properties of Abeta(1-42), i.e. we tested the hypothesis and found that lipid peroxidation initiated by oxidation of the Met35 is an early event in Abeta(1-42) neurotoxicity. Substitution of negatively charged aspartic acid for glycine residue 37 is not predicted to bring the Met35 residue out of the hydrophobic lipid bilayer. In this study, we showed that G37D substitution in Abeta(1-42) completely abolishes neurotoxic and oxidative processes associated with the parent peptide. This is demonstrated by the lack of cell toxicity and protein oxidation in contrast to the treatment with native Abeta(1-42). Additionally, the G37D peptide does not display the aggregation properties that are associated with native Abeta as seen in the thioflavin T (ThT) assay and fibril morphology. The results presented in this work are thus consistent with the notion of the importance of methionine 35 of Abeta(1-42) in the lipid-initiated oxidative cascade and subsequent neurotoxicity in AD brain.

  11. Homozygous carriers of the G allele of rs4664447 of the glucagon gene (GCG) are characterised by decreased fasting and stimulated levels of insulin, glucagon and glucagon-like peptide (GLP)-1

    DEFF Research Database (Denmark)

    Torekov, S S; Ma, L; Grarup, N;

    2011-01-01

    The glucagon gene (GCG) encodes several hormones important for energy metabolism: glucagon, oxyntomodulin and glucagon-like peptide (GLP)-1 and -2. Variants in GCG may associate with type 2 diabetes, obesity and/or related metabolic traits.......The glucagon gene (GCG) encodes several hormones important for energy metabolism: glucagon, oxyntomodulin and glucagon-like peptide (GLP)-1 and -2. Variants in GCG may associate with type 2 diabetes, obesity and/or related metabolic traits....

  12. Apolipoprotein E genotype regulates amyloid-beta cytotoxicity.

    NARCIS (Netherlands)

    Wilhelmus, M.M.; Otte-Holler, I.; Davis, J.; Nostrand, W.E. van; Waal, R.M.W. de; Verbeek, M.M.

    2005-01-01

    The epsilon4 allele of apolipoprotein E (ApoE) is a risk factor for Alzheimer's disease (AD), whereas the epsilon2 allele may be relatively protective. Both alleles are risk factors for cerebral amyloid angiopathy (CAA)-related hemorrhages. CAA is associated with degeneration of smooth muscle cells

  13. Neuroprotective effect of peptides extracted from walnut (Juglans Sigilata Dode) proteins on Aβ25-35-induced memory impairment in mice.

    Science.gov (United States)

    Zou, Juan; Cai, Pei-shan; Xiong, Chao-mei; Ruan, Jin-lan

    2016-02-01

    Alzheimer's disease (AD) is one of the major neurodegenerative disorders of the elderly, which is characterized by the accumulation and deposition of amyloid-beta (Aβ) peptide in human brains. Oxidative stress and neuroinflammation induced by Aβ in brain are increasingly considered to be responsible for the pathogenesis of AD. The present study aimed to determine the protective effects of walnut peptides against the neurotoxicity induced by Aβ25-35 in vivo. Briefly, the AD model was induced by injecting Aβ25-35 into bilateral hippocampi of mice. The animals were treated with distilled water or walnut peptides (200, 400 and 800 mg/kg, p.o.) for five consecutive weeks. Spatial learning and memory abilities of mice were investigated by Morris water maze test and step-down avoidance test. To further explore the underlying mechanisms of the neuroprotectivity of walnut peptides, the activities of superoxide dismutase (SOD), glutathione (GSH), acetylcholine esterase (AChE), and the content of malondialdehyde (MDA) as well as the level of nitric oxide (NO) in the hippocampus of mice were measured by spectrophotometric method. In addition, the levels of 8-hydroxy-2'-deoxyguanosine (8-OHdG), tumor necrosis factor-α (TNF-α), interleukin 1β (IL-1β) and IL-6 in the samples were determined using ELISA. The hippocampal expressions of inducible nitric oxide synthase (iNOS) and nuclear factor κB (NF-κB) were evaluated by Western blot analysis. The results showed that walnut peptides supplementation effectively ameliorated the cognitive deficits and memory impairment of mice. Meanwhile, our study also revealed effective restoration of levels of antioxidant enzymes as well as inflammatory mediators with supplementation of walnut peptides (400 or 800 mg/kg). All the above findings suggested that walnut peptides may have a protective effect on AD by reducing inflammatory responses and modulating antioxidant system.

  14. Advanced Time-Resolved Fluorescence Microscopy Techniques for the Investigation of Peptide Self-Assembly

    Science.gov (United States)

    Anthony, Neil R.

    The ubiquitous cross beta sheet peptide motif is implicated in numerous neurodegenerative diseases while at the same time offers remarkable potential for constructing isomorphic high-performance bionanomaterials. Despite an emerging understanding of the complex folding landscape of cross beta structures in determining disease etiology and final structure, we lack knowledge of the critical initial stages of nucleation and growth. In this dissertation, I advance our understanding of these key stages in the cross-beta nucleation and growth pathways using cutting-edge microscopy techniques. In addition, I present a new combined time-resolved fluorescence analysis technique with the potential to advance our current understanding of subtle molecular level interactions that play a pivotal role in peptide self-assembly. Using the central nucleating core of Alzheimer's Amyloid-beta protein, Abeta(16 22), as a model system, utilizing electron, time-resolved, and non-linear microscopy, I capture the initial and transient nucleation stages of peptide assembly into the cross beta motif. In addition, I have characterized the nucleation pathway, from monomer to paracrystalline nanotubes in terms of morphology and fluorescence lifetime, corroborating the predicted desolvation process that occurs prior to cross-beta nucleation. Concurrently, I have identified unique heterogeneous cross beta domains contained within individual nanotube structures, which have potential bionanomaterials applications. Finally, I describe a combined fluorescence theory and analysis technique that dramatically increases the sensitivity of current time-resolved techniques. Together these studies demonstrate the potential for advanced microscopy techniques in the identification and characterization of the cross-beta folding pathway, which will further our understanding of both amyloidogenesis and bionanomaterials.

  15. Small heat shock proteins inhibit amyloid-beta protein aggregation and cerebrovascular amyloid-beta protein toxicity.

    NARCIS (Netherlands)

    Wilhelmus, M.M.; Boelens, W.C.; Otte-Holler, I.; Kamps, B.; Waal, R.M.W. de; Verbeek, M.M.

    2006-01-01

    Small heat shock proteins Hsp20 and HspB2/B3 co-localize with Abeta deposition in senile plaques and cerebral amyloid angiopathy in Alzheimer's disease brains, respectively. It was the aim of our study to investigate if these and other sHsps bind to wild-type Abeta1-42 or the more toxic Abeta1-40

  16. Human anti-Aβ IgGs target conformational epitopes on synthetic dimer assemblies and the AD brain-derived peptide.

    Directory of Open Access Journals (Sweden)

    Alfred T Welzel

    Full Text Available Soluble non-fibrillar assemblies of amyloid-beta (Aβ and aggregated tau protein are the proximate synaptotoxic species associated with Alzheimer's disease (AD. Anti-Aβ immunotherapy is a promising and advanced therapeutic strategy, but the precise Aβ species to target is not yet known. Previously, we and others have shown that natural human IgGs (NAbs target diverse Aβ conformers and have therapeutic potential. We now demonstrate that these antibodies bound with nM avidity to conformational epitopes on plate-immobilized synthetic Aβ dimer assemblies, including synaptotoxic protofibrils, and targeted these conformers in solution. Importantly, NAbs also recognized Aβ extracted from the water-soluble phase of human AD brain, including species that migrated on denaturing PAGE as SDS-stable dimers. The critical reliance on Aβ's conformational state for NAb binding, and not a linear sequence epitope, was confirmed by the antibody's nM reactivity with plate-immobilized protofibrills, and weak uM binding to synthetic Aβ monomers and peptide fragments. The antibody's lack of reactivity against a linear sequence epitope was confirmed by our ability to isolate anti-Aβ NAbs from intravenous immunoglobulin using affinity matrices, immunoglobulin light chain fibrils and Cibacron blue, which had no sequence similarity with the peptide. These findings suggest that further investigations on the molecular basis and the therapeutic/diagnostic potential of anti-Aβ NAbs are warranted.

  17. Human Anti-Aβ IgGs Target Conformational Epitopes on Synthetic Dimer Assemblies and the AD Brain-Derived Peptide

    Science.gov (United States)

    Welzel, Alfred T.; Williams, Angela D.; McWilliams-Koeppen, Helen P.; Acero, Luis; Weber, Alfred; Blinder, Veronika; Mably, Alex; Bunk, Sebastian; Hermann, Corinna; Farrell, Michael A.; Ehrlich, Hartmut J.; Schwarz, Hans P.; Walsh, Dominic M.; Solomon, Alan; O’Nuallain, Brian

    2012-01-01

    Soluble non-fibrillar assemblies of amyloid-beta (Aβ) and aggregated tau protein are the proximate synaptotoxic species associated with Alzheimer’s disease (AD). Anti-Aβ immunotherapy is a promising and advanced therapeutic strategy, but the precise Aβ species to target is not yet known. Previously, we and others have shown that natural human IgGs (NAbs) target diverse Aβ conformers and have therapeutic potential. We now demonstrate that these antibodies bound with nM avidity to conformational epitopes on plate-immobilized synthetic Aβ dimer assemblies, including synaptotoxic protofibrils, and targeted these conformers in solution. Importantly, NAbs also recognized Aβ extracted from the water-soluble phase of human AD brain, including species that migrated on denaturing PAGE as SDS-stable dimers. The critical reliance on Aβ’s conformational state for NAb binding, and not a linear sequence epitope, was confirmed by the antibody’s nM reactivity with plate-immobilized protofibrills, and weak uM binding to synthetic Aβ monomers and peptide fragments. The antibody’s lack of reactivity against a linear sequence epitope was confirmed by our ability to isolate anti-Aβ NAbs from intravenous immunoglobulin using affinity matrices, immunoglobulin light chain fibrils and Cibacron blue, which had no sequence similarity with the peptide. These findings suggest that further investigations on the molecular basis and the therapeutic/diagnostic potential of anti-Aβ NAbs are warranted. PMID:23209707

  18. Human anti-Aβ IgGs target conformational epitopes on synthetic dimer assemblies and the AD brain-derived peptide.

    Science.gov (United States)

    Welzel, Alfred T; Williams, Angela D; McWilliams-Koeppen, Helen P; Acero, Luis; Weber, Alfred; Blinder, Veronika; Mably, Alex; Bunk, Sebastian; Hermann, Corinna; Farrell, Michael A; Ehrlich, Hartmut J; Schwarz, Hans P; Walsh, Dominic M; Solomon, Alan; O'Nuallain, Brian

    2012-01-01

    Soluble non-fibrillar assemblies of amyloid-beta (Aβ) and aggregated tau protein are the proximate synaptotoxic species associated with Alzheimer's disease (AD). Anti-Aβ immunotherapy is a promising and advanced therapeutic strategy, but the precise Aβ species to target is not yet known. Previously, we and others have shown that natural human IgGs (NAbs) target diverse Aβ conformers and have therapeutic potential. We now demonstrate that these antibodies bound with nM avidity to conformational epitopes on plate-immobilized synthetic Aβ dimer assemblies, including synaptotoxic protofibrils, and targeted these conformers in solution. Importantly, NAbs also recognized Aβ extracted from the water-soluble phase of human AD brain, including species that migrated on denaturing PAGE as SDS-stable dimers. The critical reliance on Aβ's conformational state for NAb binding, and not a linear sequence epitope, was confirmed by the antibody's nM reactivity with plate-immobilized protofibrills, and weak uM binding to synthetic Aβ monomers and peptide fragments. The antibody's lack of reactivity against a linear sequence epitope was confirmed by our ability to isolate anti-Aβ NAbs from intravenous immunoglobulin using affinity matrices, immunoglobulin light chain fibrils and Cibacron blue, which had no sequence similarity with the peptide. These findings suggest that further investigations on the molecular basis and the therapeutic/diagnostic potential of anti-Aβ NAbs are warranted.

  19. Amyloid β Peptide Enhances RANKL-Induced Osteoclast Activation through NF-κB, ERK, and Calcium Oscillation Signaling

    Directory of Open Access Journals (Sweden)

    Shangfu Li

    2016-10-01

    Full Text Available Osteoporosis and Alzheimer’s disease (AD are common chronic degenerative disorders which are strongly associated with advanced age. We have previously demonstrated that amyloid beta peptide (Aβ, one of the pathological hallmarks of AD, accumulated abnormally in osteoporotic bone specimens in addition to having an activation effect on osteoclast (Bone 2014,61:164-75. However, the underlying molecular mechanisms remain unclear. Activation of NF-κB, extracellular signal-regulated kinase (ERK phosphorylates, and calcium oscillation signaling pathways by receptor activator NF-κB ligand (RANKL plays a pivotal role in osteoclast activation. Targeting this signaling to modulate osteoclast function has been a promising strategy for osteoclast-related diseases. In this study, we investigated the effects of Aβ on RANKL-induced osteoclast signaling pathways in vitro. In mouse bone marrow monocytes (BMMs, Aβ exerted no effect on RANKL-induced osteoclastogenesis but promoted osteoclastic bone resorption. In molecular levels, Aβ enhanced NF-κB activity and IκB-α degradation, activated ERK phosphorylation and stimulated calcium oscillation, thus leading to upregulation of NFAT-c1 expression during osteoclast activation. Taken together, our data demonstrate that Aβ enhances RANKL-induced osteoclast activation through IκB-α degradation, ERK phosphorylation, and calcium oscillation signaling pathways and that Aβ may be a promising agent in the treatment of osteoclast-related disease such as osteoporosis.

  20. Substitution of the Lys linker with the β-Ala linker dramatically decreased the renal uptake of 99mTc-labeled Arg-X-Asp-conjugated and X-Ala-Asp-conjugated α-melanocyte stimulating hormone peptides.

    Science.gov (United States)

    Flook, Adam M; Yang, Jianquan; Miao, Yubin

    2014-11-13

    The purpose of this study was to examine whether the substitution of the Lys linker with the β-Ala could reduce the renal uptake of (99m)Tc-labeled Arg-X-Asp-conjugated and X-Ala-Asp-conjugated α-melanocyte stimulating hormone (α-MSH) peptides. RSD-β-Ala-(Arg(11))CCMSH (1) {c[Arg-Ser-Asp-dTyr-Asp]-β-Ala-Cys-Cys-Glu-His-dPhe-Arg-Trp-Cys-Arg-Pro-Val-NH2}, RTD-β-Ala-(Arg(11))CCMSH (2), RVD-β-Ala-(Arg(11))CCMSH (3), RAD-β-Ala-(Arg(11))CCMSH (4), NAD-β-Ala-(Arg(11))CCMSH (5), and EAD-β-Ala-(Arg(11))CCMSH (6) peptides were synthesized and evaluated for their melanocortin 1 (MC1) receptor binding affinities in B16/F1 melanoma cells. The biodistribution of their (99m)Tc-conjugates were determined in B16/F1 melanoma-bearing C57 mice. The substitution of the Lys linker with β-Ala linker dramatically reduced the renal uptake of all six (99m)Tc-peptides. (99m)Tc-4 exhibited the highest melanoma uptake (15.66 ± 6.19% ID/g) and the lowest kidney uptake (20.18 ± 3.86% ID/g) among these (99m)Tc-peptides at 2 h postinjection. The B16/F1 melanoma lesions could be clearly visualized by single photon emission computed tomography (SPECT)/CT using (99m)Tc-4 as an imaging probe.

  1. Liposome-siRNA-peptide complexes cross the blood-brain barrier and significantly decrease PrP on neuronal cells and PrP in infected cell cultures.

    Directory of Open Access Journals (Sweden)

    Bruce Pulford

    Full Text Available BACKGROUND: Recent advances toward an effective therapy for prion diseases employ RNA interference to suppress PrP(C expression and subsequent prion neuropathology, exploiting the phenomenon that disease severity and progression correlate with host PrP(C expression levels. However, delivery of lentivirus encoding PrP shRNA has demonstrated only modest efficacy in vivo. METHODOLOGY/PRINCIPAL FINDINGS: Here we describe a new siRNA delivery system incorporating a small peptide that binds siRNA and acetylcholine receptors (AchRs, acting as a molecular messenger for delivery to neurons, and cationic liposomes that protect siRNA-peptide complexes from serum degradation. CONCLUSIONS/SIGNIFICANCE: Liposome-siRNA-peptide complexes (LSPCs delivered PrP siRNA specifically to AchR-expressing cells, suppressed PrP(C expression and eliminated PrP(RES formation in vitro. LSPCs injected intravenously into mice resisted serum degradation and delivered PrP siRNA throughout the brain to AchR and PrP(C-expressing neurons. These data promote LSPCs as effective vehicles for delivery of PrP and other siRNAs specifically to neurons to treat prion and other neuropathological diseases.

  2. 康复训练对血管性痴呆大鼠胰岛素抵抗及海马胰岛素降解酶的影响%Effect of rehabilitation training on insulin-resistance and hippocampus amyloid-beta peptide in rats with vascular dementia

    Institute of Scientific and Technical Information of China (English)

    王红卫; 叶青; 黄雁; 廖慧颖; 黄海芬; 游咏

    2013-01-01

    目的:研究康复训练对血管性痴呆(vascular dementia,VD)大鼠胰岛素抵抗及海马胰岛素降解酶(IDE)的影响。方法:采用结扎双侧颈总动脉法制作VD大鼠模型,将45只SD大鼠随机分为康复组、制动组、假手术组。术后4周评估大鼠学习记忆能力。采用ELISA法检测大鼠脑缺血不同时间点血浆胰岛素水平,免疫组织化学技术检测大鼠IDE的表达。结果:行为学评估提示康复组学习记忆能力强于制动组(P Results:hTe rats in the rehabilitation group showed signiifcantly better learning ability than that in the immobilization group (P Conclusion:Rehabilitation can accelerate the recovery of learning and memory in rats with vascular dementia, and the mechanism is possibly related to the amelioration of insulin resistance and increase of IDE expression in the hippocampus.

  3. 运动训练对血管性痴呆大鼠海马β淀粉样蛋白及β分泌酶的影响%Effect of exercise training on amyloid-beta peptide and β-secretase in the hippocampus of the rats with vascular dementia

    Institute of Scientific and Technical Information of China (English)

    叶青; 王红卫; 游咏; 黄海芬; 廖慧颖; 潘思; 黄雁

    2012-01-01

    Objective To study the effect of exercise training on β-amyloid polypeptide (Aβ) and β-secretase(BACE) in the hippocampus of the rats with vascular dementia (VD).Methods 30 Sprague-Dawley (SD) rats were carried out to an exercise group (n =10 ),a model group (n =10 ),and a sham-operation group ( n =10 ).VD rat models were made by the ligation of bilateral common carotid arteries.Morris water maze test were carried out 4 weeks after the operation to assess the ability in learning and memory of the rats and Aβ and β-secretase (BACE) expression was detected in the hippocampus of the rats using immunohistochemical techniques.Results In the Morris water maze test,the model group showed reduction in the learning and memorizing ability,with obvious longer escape latencies ( ( 101.34 ± 19.67 ) s,(95.42 ± 23.89 ) s,( 89.39 ± 22.67 ) s,( 90.12 ± 19.77 ) s,respective-ly) than that of sham-operation group ( ( 62.13 ± 11.38 ) s,( 24.84 ± 13.69 ) s,( 16.98 ± 12.51 )s,( 11.41 ± 8.93 ) s,correspond-dingly) (P < 0.05 ),and the exercise group was improved in the learning and memorizing ability ( corresponding to ( 80.15 ± 21.56 ) s,( 51.24 ± 20.91 ) s,( 43.78 ± 22.36) s,( 45.67 ± 20.87 ) s ),compared with the model group(P<0.05).The grey values of Aβ in the hippocampus of the rats for the exercise group was ( 130.12 ± 19.01 ),( 116.77 ± 23.67 ) for the model group and ( 148.44 ± 17.67 ) for the sham-operation group(P< 0.05).The grey values of BACE in the hippocampus of the ratsfor the exercise group were( 131.21± 25.25 ),( 120.53± 10.21 ) for the model group(P< 0.05 ) and ( 162.38 ± 28.11 ) for the sham-operation group (P < 0.05).Conclusion Exercise training can lower the expression of BACE and Aβ in the hippocampus of rats with VD,therefore improving the learning and memory ability of rats with VD.%目的 研究运动训练对血管性痴呆(VD)大鼠海马β-淀粉样多肽(Aβ)及β分泌酶(BACE)的影响.方法 将30只SD大鼠数字随机表分为运动组,模型组和假手术组,采用结扎双侧颈总动脉法制做VD大鼠模型,术后4周后行水迷宫检测评估大鼠学习记忆能力.采用免疫组化技术检测大鼠海马Aβ,BACE表达.结果 Morris水迷宫实验中,模型组学习记能力下降,逃避潜伏期[分别为(101.34±19.67)s,(95.42±23.89)s,(89.39±22.67)s,(90.12±19.77)s]明显长于假手术组[对应为(62.13±11.38)s,(24.84±13.69)s,(16.98±12.51)s,(11.41±8.93)s] (P<0.05),运动组较模型组学习记能力增强[对应为(80.15 ±21.56)s,(51.24±20.91)s,(43.78±22.36)s,(45.67±20.87)s],差异有统计学意义(P<0.05).运动组大鼠海马Aβ灰度值(130.12±19.01),模型动组为(116.77±23.67),假手术组为(148.44±17.67),各组之间差异有统计学意义(P< 0.05).运动组大鼠海马BACE灰度值(131.21±25.25),模型组为(120.53±10.21),假手术组为(162.38 ±28.11),各组之间差异有统计学意义(P<0.05).结论 运动训练可下调VD大鼠海马BACE及Aβ的表达,进而改善VD大鼠学习记忆能力.

  4. Bioactive Peptides

    Directory of Open Access Journals (Sweden)

    Eric Banan-Mwine Daliri

    2017-04-01

    Full Text Available The increased consumer awareness of the health promoting effects of functional foods and nutraceuticals is the driving force of the functional food and nutraceutical market. Bioactive peptides are known for their high tissue affinity, specificity and efficiency in promoting health. For this reason, the search for food-derived bioactive peptides has increased exponentially. Over the years, many potential bioactive peptides from food have been documented; yet, obstacles such as the need to establish optimal conditions for industrial scale production and the absence of well-designed clinical trials to provide robust evidence for proving health claims continue to exist. Other important factors such as the possibility of allergenicity, cytotoxicity and the stability of the peptides during gastrointestinal digestion would need to be addressed. This review discusses our current knowledge on the health effects of food-derived bioactive peptides, their processing methods and challenges in their development.

  5. Bioactive Peptides.

    Science.gov (United States)

    Daliri, Eric Banan-Mwine; Oh, Deog H; Lee, Byong H

    2017-04-26

    The increased consumer awareness of the health promoting effects of functional foods and nutraceuticals is the driving force of the functional food and nutraceutical market. Bioactive peptides are known for their high tissue affinity, specificity and efficiency in promoting health. For this reason, the search for food-derived bioactive peptides has increased exponentially. Over the years, many potential bioactive peptides from food have been documented; yet, obstacles such as the need to establish optimal conditions for industrial scale production and the absence of well-designed clinical trials to provide robust evidence for proving health claims continue to exist. Other important factors such as the possibility of allergenicity, cytotoxicity and the stability of the peptides during gastrointestinal digestion would need to be addressed. This review discusses our current knowledge on the health effects of food-derived bioactive peptides, their processing methods and challenges in their development.

  6. Free cholesterol induces higher β-sheet content in Aβ peptide oligomers by aromatic interaction with Phe19.

    Directory of Open Access Journals (Sweden)

    Xiaolin Zhou

    Full Text Available Accumulating experimental evidence support an enhancing effect of free cholesterol on amyloid-beta (Aβ aggregation. To probe the mechanisms of cholesterol-mediated Aβ aggregation, we applied all-atom molecular dynamic simulations on Aβ42 peptides in presence of free cholesterol. Several control systems were also designed to examine the specificity of cholesterol-residue interactions, including mutation on aromatic residue, substitution of cholesterol with sphingomyelin (SM and DPPC bilayer, and a mixing SM and cholesterol. Each system was performed 4 independent simulations, with a total time of 560 ns. It was found that cholesterol increased β-sheet formation by 4 folds, but the Phe19→Ser mutation on Aβ42 peptide totally eliminated cholesterol's effect. A stable contact was recognized between the steroid group of cholesterol and the Benzyl group of Phe19. Interestingly, our simulation revealed a regular 1 ns time interval between the establishment of cholesterol-phenylalanine contact and consequent β-sheet formation, suggesting an important role of steroid-benzyl interaction in cholesterol-mediated aggregation. The presence of SM slightly increased β-sheet formation, but the mixture of cholesterol and SM had a strong induction effect. Also, the measurement of Phe19-lipid distance indicates that aromatic side chains of peptides prone to bind to cholesterol on the surface of the mixed micelle. In the DPPC system, polar chains were attracted to the surface of membrane, yielding moderate increase of β-sheet formation. These results shed light on the mechanism of cholesterol-mediated fibrillogenesis, and help to differentiate the effects of cholesterol and other lipids on β-sheet formation process.

  7. Peptide identification

    Science.gov (United States)

    Jarman, Kristin H [Richland, WA; Cannon, William R [Richland, WA; Jarman, Kenneth D [Richland, WA; Heredia-Langner, Alejandro [Richland, WA

    2011-07-12

    Peptides are identified from a list of candidates using collision-induced dissociation tandem mass spectrometry data. A probabilistic model for the occurrence of spectral peaks corresponding to frequently observed partial peptide fragment ions is applied. As part of the identification procedure, a probability score is produced that indicates the likelihood of any given candidate being the correct match. The statistical significance of the score is known without necessarily having reference to the actual identity of the peptide. In one form of the invention, a genetic algorithm is applied to candidate peptides using an objective function that takes into account the number of shifted peaks appearing in the candidate spectrum relative to the test spectrum.

  8. Voluntary exercise decreases amyloid load in a transgenic model of Alzheimer's disease.

    Science.gov (United States)

    Adlard, Paul A; Perreau, Victoria M; Pop, Viorela; Cotman, Carl W

    2005-04-27

    Alzheimer's disease (AD) is a progressive neurodegenerative disorder for which there are few therapeutics that affect the underlying disease mechanism. Recent epidemiological studies, however, suggest that lifestyle changes may slow the onset/progression of AD. Here we have used TgCRND8 mice to examine directly the interaction between exercise and the AD cascade. Five months of voluntary exercise resulted in a decrease in extracellular amyloid-beta (Abeta) plaques in the frontal cortex (38%; p = 0.018), the cortex at the level of the hippocampus (53%; p = 0.0003), and the hippocampus (40%; p = 0.06). This was associated with decreased cortical Abeta1-40 (35%; p = 0.005) and Abeta1-42 (22%; p = 0.04) (ELISA). The mechanism appears to be mediated by a change in the processing of the amyloid precursor protein (APP) after short-term exercise, because 1 month of activity decreased the proteolytic fragments of APP [for alpha-C-terminal fragment (alpha-CTF), 54% and p = 0.04; for beta-CTF, 35% and p = 0.03]. This effect was independent of mRNA/protein changes in neprilysin and insulin-degrading enzyme and, instead, may involve neuronal metabolism changes that are known to affect APP processing and to be regulated by exercise. Long-term exercise also enhanced the rate of learning of TgCRND8 animals in the Morris water maze, with significant (p exercise is a simple behavioral intervention sufficient to inhibit the normal progression of AD-like neuropathology in the TgCRND8 mouse model.

  9. Urinary Peptide Levels in Patients with Chronic Renal Failure

    Directory of Open Access Journals (Sweden)

    Mungli Prakash

    2010-10-01

    Full Text Available Introduction: Peptide levels in urine are found to be decreased in renal failure. In the current study urinary peptide levels were determined in chronic renal failure (CRF patients. Method: 86 CRF patients and 80 healthy controls were selected for the study. Urinary proteins and peptide levels were determined by spectrophotometer based Lowry and Bradford methods. Urinary creatinine levels were determined by clinical chemistry analyzer. Results: There was significant decrease in urinary peptide levels in CRF patients and Urinary % peptides were significantly decreased in CRF patients as compared to healthy controls. Urinary % peptides correlated negatively with proteinuria. Conclusion: we have found decrease in urinary peptides and % urinary peptides in CRF patients and possibly measurement of % urinary peptides may possibly serve as better indicator in early detection of impairment in renal function.

  10. Molecular structures of quiescently grown and brain-derived polymorphic fibrils of the Alzheimer amyloid abeta9-40 peptide: a comparison to agitated fibrils.

    Directory of Open Access Journals (Sweden)

    Chun Wu

    2010-03-01

    Full Text Available The presence of amyloid deposits consisting primarily of Amyloid-beta (Abeta fibril in the brain is a hallmark of Alzheimer's disease (AD. The morphologies of these fibrils are exquisitely sensitive to environmental conditions. Using molecular dynamics simulations combined with data from previously published solid-state NMR experiments, we propose the first atomically detailed structures of two asymmetric polymorphs of the Abeta(9-40 peptide fibril. The first corresponds to synthetic fibrils grown under quiescent conditions and the second to fibrils derived from AD patients' brain-extracts. Our core structure in both fibril structures consists of a layered structure in which three cross-beta subunits are arranged in six tightly stacked beta-sheet layers with an antiparallel hydrophobic-hydrophobic and an antiparallel polar-polar interface. The synthetic and brain-derived structures differ primarily in the side-chain orientation of one beta-strand. The presence of a large and continually exposed hydrophobic surface (buried in the symmetric agitated Abeta fibrils may account for the higher toxicity of the asymmetric fibrils. Our model explains the effects of external perturbations on the fibril lateral architecture as well as the fibrillogenesis inhibiting action of amphiphilic molecules.

  11. Association between amylin and amyloid-β peptides in plasma in the context of apolipoprotein E4 allele.

    Science.gov (United States)

    Qiu, Wei Qiao; Wallack, Max; Dean, Michael; Liebson, Elizabeth; Mwamburi, Mkaya; Zhu, Haihao

    2014-01-01

    Amylin, a pancreatic peptide that readily crosses the blood brain barrier (BBB), and amyloid-beta peptide (Aβ), the main component of amyloid plaques and a major component of Alzheimer's disease (AD) pathology in the brain, share several features. These include having similar β-sheet secondary structures, binding to the same receptor, and being degraded by the same protease. Thus, amylin may be associated with Aβ, but the nature of their relationship remains unclear. In this study, we used human samples to study the relationship between plasma amylin and Aβ in the context of the apolipoprotein E alleles (ApoE). We found that concentrations of Aβ1-42 (PApoE4, BMI, diabetes, stroke, kidney function and lipid profile. This positive association between amylin and Aβ1-42 in plasma was found regardless of the ApoE genotype. In contrast, the relationship between amylin and Aβ1-40 in plasma seen in ApoE4 non-carriers disappeared in the presence of ApoE4. Using AD mouse models, our recent study demonstrates that intraperitoneal (i.p.) injection of synthetic amylin enhances the removal of Aβ from the brain into blood, thus resulting in increased blood levels of both amylin and Aβ. The positive association between amylin and Aβ, especially Aβ1-42, in human blood samples is probably relevant to the findings in the AD mouse models. The presence of ApoE4 may attenuate amylin's capacity to remove Aβ, especially Aβ1-40, from the AD brain.

  12. C-Peptide Test

    Science.gov (United States)

    ... AACC products and services. Advertising & Sponsorship: Policy | Opportunities C-peptide Share this page: Was this page helpful? Also known as: Insulin C-peptide; Connecting Peptide Insulin; Proinsulin C-peptide Formal ...

  13. Factors Affecting Peptide Interactions with Surface-Bound Microgels

    OpenAIRE

    2016-01-01

    Effects of electrostatics and peptide size on peptide interactions with surface-bound microgels were investigated with ellipsometry, confocal microscopy, and atomic force microscopy (AFM). Results show that binding of cationic poly-L-lysine (pLys) to anionic, covalently immobilized, poly(ethyl acrylate-co-methacrylic acid) microgels increased with increasing peptide net charge and microgel charge density. Furthermore, peptide release was facilitated by decreasing either microgel or peptide ch...

  14. Effects ofBushen Yizhi Decoction on Alzheimer’s disease model rats induced by D-galactose combined with amyloid-beta 25-35 and the underlying mechanism%补肾益智方对D-半乳糖联合β-淀粉样蛋白25-35致老年痴呆模型大鼠的作用及机制

    Institute of Scientific and Technical Information of China (English)

    王改凤

    2016-01-01

    BACKGROUND:Traditional Chinese medicine compound has the characteristics of multiple targets, which can regulate the central nervous system through a plurality of links, and can effectively improve the cognitive function of patients.Bushen YizhiDecoction has been proven to improve the symptoms of patients with Alzheimer’s disease, thereby improving the quality of life. OBJECTIVE: To explore the effects ofBushen Yizhi Decoction on learning and memory abilities in seniledementia rats induced by D-galactose combined with amyloid-beta 25-35 and the underlying mechanism. METHODS:Healthy adult Sprague-Dawley rats were equivalently randomized into groups of control, model, positive drug (0.3 g/kg donepezil), high-dose drug (20 g/kg Bushen Yizhi Decoction) and low-dose drug (5 g/kg Bushen Yizhi Decoction). Model rats with Alzheimer's disease were established by subcutaneous injection of D-galactose and bilateral hippocampuses injected with amyloid-beta 25-35. After 8-week treatment with intragastric administration ofBushen YizhiDecoction, the spatial learning and memory capacity were examined by the Morris water maze. High frequency stimulation was given on CA3 Schaffer colateral-commissural pathway, and long-term potentiation in hippocampal CA1 region was recorded to detect the change of synaptic plasticity in rat’s hippocampal neurons, and the levels of superoxide dismutase, malondiadehyde, monoamine oxidase B, choline acetyltransferase, acetylcholin esterase, tumor necrosis factor-α and interleukin-1 were detected. RESULTS AND CONCLUSION: (1) Morris water maze tests showed that the groups ofBushen Yizhi Decoction could remarkably improve the spatial learning and memory capacity of rats. Compared with the control group, the long-term potentiation in hippocampal CA1 region was significantly suppressed in model rats (P   目的:探讨补肾益智方对D-半乳糖联合β-淀粉样蛋白25-35致老年痴呆模型大鼠的作用及其机制。  方法:选

  15. Peptide arrays for screening cancer specific peptides.

    Science.gov (United States)

    Ahmed, Sahar; Mathews, Anu Stella; Byeon, Nara; Lavasanifar, Afsaneh; Kaur, Kamaljit

    2010-09-15

    In this paper, we describe a novel method to screen peptides for specific recognition by cancer cells. Seventy peptides were synthesized on a cellulose membrane in an array format, and a direct method to study the peptide-whole cell interaction was developed. The relative binding affinity of the cells for different peptides with respect to a lead 12-mer p160 peptide, identified by phage display, was evaluated using the CyQUANT fluorescence of the bound cells. Screening allowed identification of at least five new peptides that displayed higher affinity (up to 3-fold) for MDA-MB-435 and MCF-7 human cancer cells compared to the p160 peptide. These peptides showed very little binding to the control (noncancerous) human umbilical vein endothelial cells (HUVECs). Three of these peptides were synthesized separately and labeled with fluorescein isothiocyanate (FITC) to study their uptake and interaction with the cancer and control cells using confocal laser scanning microscopy and flow cytometry. The results confirmed the high and specific affinity of an 11-mer peptide 11 (RGDPAYQGRFL) and a 10-mer peptide 18 (WXEAAYQRFL) for the cancer cells versus HUVECs. Peptide 11 binds different receptors on target cancer cells as its sequence contains multiple recognition motifs, whereas peptide 18 binds mainly to the putative p160 receptor. The peptide array-whole cell binding assay reported here is a complementary method to phage display for further screening and optimization of cancer targeting peptides for cancer therapy and diagnosis.

  16. Alzheimer's beta-amyloid peptides can activate the early components of complement classical pathway in a C1q-independent manner.

    Science.gov (United States)

    Bergamaschini, L; Canziani, S; Bottasso, B; Cugno, M; Braidotti, P; Agostoni, A

    1999-03-01

    beta-Amyloid (beta-A) accumulates in the brain of patients with Alzheimer's disease (AD) and is presumably involved in the pathogenesis of this disease, on account of its neurotoxicity and complement-activating ability. Although assembly of beta-A in particular aggregates seems to be crucial, soluble non-fibrillar beta-A may also be involved. Non-fibrillar beta-A does not bind C1q, so we investigated alternative mechanisms of beta-A-dependent complement activation in vitro. On incubation with normal human plasma, non-fibrillar beta-A 1-42, and truncated peptide 1-28, induced dose-dependent activation of C1s and C4, sparing C3, as assessed by densitometric analysis of immunostained membrane after SDS-PAGE and Western blotting. The mechanism of C4 activation was not dependent on C1q, because non-fibrillar beta-A can still activate C1s and C4 in plasma genetically deficient in C1q (C1qd). In Factor XII-deficient plasma (F.XIId) the amount of cleaved C4 was about 5-10% less that in C1qd and in normal EDTA plasma; the reconstitution of F.XIId plasma with physiologic concentrations of F.XII resulted in an increased (8-15%) beta-A-dependent cleavage of C4. Thus our results indicate that the C1q-independent activation of C1 and C4 can be partially mediated by the activation products of contact system. Since the activation of contact system and of C4 leads to generation of several humoral inflammatory peptides, non-fibrillar beta-A might play a role in initiating the early inflammatory reactions leading to a multistep cascade contributing to neuronal and clinical dysfunction of AD brain.

  17. Hemolysis Affects C-Peptide Immunoassay.

    Science.gov (United States)

    Wu, Zhi-Qi; Lu, Ju; Xu, Hua-Guo

    2016-11-01

    C-peptide is used widely as a marker of insulin secretion, and it participates in the inflammatory response and contributes to the development of coronary artery disease (CAD) in patients with type 2 diabetes mellitus (T2DM). Previous studies have reported that C-peptide measurement was unaffected by hemolysis. However, we found that hemolysis negatively affected C-peptide assay in routine laboratory practice. We further established and validated an individualized hemolysis correction equation to correct and report accurate serum C-peptide results for hemolyzed samples. We studied the effects of hemolysis on C-peptide assay by adding lysed self red blood cells (self-RBCs) to serum. An individualized correction equation was derived. Further, we evaluated the performance of this individualized correction equation by artificially hemolyzed samples. C-peptide concentration decreased with increasing degree and exposure time of hemolysis. The individualized hemolysis correction equation derived: C-Pcorr = C-Pmeas /(0.969-1.5Hbserum/plasma -5.394 ×10(-5) Time), which can correct bias in C-peptide measurement caused by hemolysis. Hemolysis negatively affects C-peptide measurement. We can correct and report accurate serum C-peptide results for a wide range of degrees of sample hemolysis by individualized hemolysis correction equation for C-peptide assay. This correction would improve diagnostic accuracy and reduce inappropriate therapeutic decisions. © 2016 Wiley Periodicals, Inc.

  18. Chemical Methods for Peptide and Protein Production

    Directory of Open Access Journals (Sweden)

    Istvan Toth

    2013-04-01

    Full Text Available Since the invention of solid phase synthetic methods by Merrifield in 1963, the number of research groups focusing on peptide synthesis has grown exponentially. However, the original step-by-step synthesis had limitations: the purity of the final product decreased with the number of coupling steps. After the development of Boc and Fmoc protecting groups, novel amino acid protecting groups and new techniques were introduced to provide high quality and quantity peptide products. Fragment condensation was a popular method for peptide production in the 1980s, but unfortunately the rate of racemization and reaction difficulties proved less than ideal. Kent and co-workers revolutionized peptide coupling by introducing the chemoselective reaction of unprotected peptides, called native chemical ligation. Subsequently, research has focused on the development of novel ligating techniques including the famous click reaction, ligation of peptide hydrazides, and the recently reported a-ketoacid-hydroxylamine ligations with 5-oxaproline. Several companies have been formed all over the world to prepare high quality Good Manufacturing Practice peptide products on a multi-kilogram scale. This review describes the advances in peptide chemistry including the variety of synthetic peptide methods currently available and the broad application of peptides in medicinal chemistry.

  19. Crystallization and preliminary X-ray diffraction analysis of the Fab fragment of WO2, an antibody specific for the A[beta] peptides associated with Alzheimer's disease

    Energy Technology Data Exchange (ETDEWEB)

    Wun, Kwok S.; Miles, Luke A.; Crespi, Gabriela A.N.; Wycherley, Kaye; Ascher, David B.; Barnham, Kevin J.; Cappai, Roberto; Beyreuther, Konrad; Masters, Colin L.; Parker, Michael W.; McKinstry, William J. (SVIMR-A); (HeidelbergU); (WEHI); (Melbourne)

    2008-05-28

    The murine monoclonal antibody WO2 specifically binds the N-terminal region of the amyloid {beta} peptide (A{beta}) associated with Alzheimer's disease. This region of A{beta} has been shown to be the immunodominant B-cell epitope of the peptide and hence is considered to be a basis for the development of immunotherapeutic strategies against this prevalent cause of dementia. Structural studies have been undertaken in order to characterize the molecular basis for antibody recognition of this important epitope. Here, details of the crystallization and X-ray analysis of the Fab fragment of the unliganded WO2 antibody in two crystal forms and of the complexes that it forms with the truncated Az{beta} peptides A{beta}{sub 1-16} and A{beta}{sub 1-28} are presented. These crystals were all obtained using the hanging-drop vapour-diffusion method at 295 K. Crystals of WO2 Fab were grown in polyethylene glycol solutions containing ZnSO{sub 4}; they belonged to the orthorhombic space group P2{sub 1}2{sub 1}2{sub 1} and diffracted to 1.6 {angstrom} resolution. The complexes of WO2 Fab with either A{beta}{sub 1-16} or A{beta}{sub 1-28} were cocrystallized from polyethylene glycol solutions. These two complex crystals grew in the same space group, P2{sub 1}2{sub 1}2{sub 1}, and diffracted to 1.6 {angstrom} resolution. A second crystal form of WO2 Fab was grown in the presence of the sparingly soluble A{beta}{sub 1-42} in PEG 550 MME. This second form belonged to space group P2{sub 1} and diffracted to 1.9 {angstrom} resolution.

  20. Human peptide transporters

    DEFF Research Database (Denmark)

    Nielsen, Carsten Uhd; Brodin, Birger; Jørgensen, Flemming Steen

    2002-01-01

    Peptide transporters are epithelial solute carriers. Their functional role has been characterised in the small intestine and proximal tubules, where they are involved in absorption of dietary peptides and peptide reabsorption, respectively. Currently, two peptide transporters, PepT1 and PepT2, wh...

  1. Human peptide transporters

    DEFF Research Database (Denmark)

    Nielsen, Carsten Uhd; Brodin, Birger; Jørgensen, Flemming Steen;

    2002-01-01

    Peptide transporters are epithelial solute carriers. Their functional role has been characterised in the small intestine and proximal tubules, where they are involved in absorption of dietary peptides and peptide reabsorption, respectively. Currently, two peptide transporters, PepT1 and PepT2...

  2. Antimicrobial Peptides from Marine Proteobacteria

    Directory of Open Access Journals (Sweden)

    Yannick Fleury

    2013-09-01

    Full Text Available After years of inadequate use and the emergence of multidrug resistant (MDR strains, the efficiency of “classical” antibiotics has decreased significantly. New drugs to fight MDR strains are urgently needed. Bacteria hold much promise as a source of unusual bioactive metabolites. However, the potential of marine bacteria, except for Actinomycetes and Cyanobacteria, has been largely underexplored. In the past two decades, the structures of several antimicrobial compounds have been elucidated in marine Proteobacteria. Of these compounds, polyketides (PKs, synthesised by condensation of malonyl-coenzyme A and/or acetyl-coenzyme A, and non-ribosomal peptides (NRPs, obtained through the linkage of (unusual amino acids, have recently generated particular interest. NRPs are good examples of naturally modified peptides. Here, we review and compile the data on the antimicrobial peptides isolated from marine Proteobacteria, especially NRPs.

  3. Urinary Peptide Levels in Patients with Chronic Renal Failure

    OpenAIRE

    Mungli Prakash; Nagaraj M Phani; Kavya R; Supriya M

    2010-01-01

    Introduction: Peptide levels in urine are found to be decreased in renal failure. In the current study urinary peptide levels were determined in chronic renal failure (CRF) patients. Method: 86 CRF patients and 80 healthy controls were selected for the study. Urinary proteins and peptide levels were determined by spectrophotometer based Lowry and Bradford methods. Urinary creatinine levels were determined by clinical chemistry analyzer. Results: There was significant decrease in urinary pepti...

  4. Peptides and Food Intake

    Science.gov (United States)

    Sobrino Crespo, Carmen; Perianes Cachero, Aránzazu; Puebla Jiménez, Lilian; Barrios, Vicente; Arilla Ferreiro, Eduardo

    2014-01-01

    The mechanisms for controlling food intake involve mainly an interplay between gut, brain, and adipose tissue (AT), among the major organs. Parasympathetic, sympathetic, and other systems are required for communication between the brain satiety center, gut, and AT. These neuronal circuits include a variety of peptides and hormones, being ghrelin the only orexigenic molecule known, whereas the plethora of other factors are inhibitors of appetite, suggesting its physiological relevance in the regulation of food intake and energy homeostasis. Nutrients generated by food digestion have been proposed to activate G-protein-coupled receptors on the luminal side of enteroendocrine cells, e.g., the L-cells. This stimulates the release of gut hormones into the circulation such as glucagon-like peptide-1 (GLP-1), oxyntomodulin, pancreatic polypeptides, peptide tyrosine tyrosine, and cholecystokinin, which inhibit appetite. Ghrelin is a peptide secreted from the stomach and, in contrast to other gut hormones, plasma levels decrease after a meal and potently stimulate food intake. Other circulating factors such as insulin and leptin relay information regarding long-term energy stores. Both hormones circulate at proportional levels to body fat content, enter the CNS proportionally to their plasma levels, and reduce food intake. Circulating hormones can influence the activity of the arcuate nucleus (ARC) neurons of the hypothalamus, after passing across the median eminence. Circulating factors such as gut hormones may also influence the nucleus of the tractus solitarius (NTS) through the adjacent circumventricular organ. On the other hand, gastrointestinal vagal afferents converge in the NTS of the brainstem. Neural projections from the NTS, in turn, carry signals to the hypothalamus. The ARC acts as an integrative center, with two major subpopulations of neurons influencing appetite, one of them coexpressing neuropeptide Y and agouti-related protein (AgRP) that increases food

  5. Reversible peptide oligomerization over nanoscale gold surfaces

    Directory of Open Access Journals (Sweden)

    Kazushige Yokoyama

    2015-11-01

    Full Text Available A selective oligomeric formation of amyloid beta 1-40 (Ab1-40 monomers over a nanogold colloidal surface was investigated. An unfolded Ab1-40 monomer is considered to construct a dimer or trimer based oligomeric form with its hydrophobic segment placing outward under an acidic condition. Under a basic condition, a conformation of Ab is expected to take a folded monomeric form with its hydrophilic segment folded inward, avoiding the networking with residual colloidal particles. The most probable oligomeric form constructed over a 20 nm gold colloidal surface within a 25 ℃ to 65 ℃ temperature range is a dimer based unit and that over 30 or 40 nm gold colloidal surface below 15 ℃ is concluded to be a trimer based unit. However, selective oligomerization was not successfully reproduced under the rest of the conditions. A dipole-induced dipole interaction must cause a flexible structural change between folded and unfolded forms.

  6. PeptideAtlas

    Data.gov (United States)

    U.S. Department of Health & Human Services — PeptideAtlas is a multi-organism, publicly accessible compendium of peptides identified in a large set of tandem mass spectrometry proteomics experiments. Mass...

  7. Influence of C-Peptide on Glucose Utilisation

    Directory of Open Access Journals (Sweden)

    B. Wilhelm

    2008-01-01

    Full Text Available During the recent years, multiple studies demonstrated that C-peptide is not an inert peptide, but exerts important physiological effects. C-peptide binds to cell membranes, stimulates the Na,K-ATPase and the endothelial nitric oxide (NO synthase. Moreover, there is evidence that C-peptide decreases glomerular hyperfiltration and increases glucose utilisation. Nevertheless, there is still limited knowledge concerning mechanisms leading to an increased glucose utilisation either in rats or in humans. The aim of this paper is to give an overview over the published studies regarding C-peptide and glucose metabolism from in vitro studies to longer lasting studies in humans.

  8. Decrease of high voltage Ca(2+) currents in the dentate gyrus granule cells by entorhinal amyloidopathy is reversed by calcium channel blockade.

    Science.gov (United States)

    Pourbadie, Hamid Gholami; Naderi, Nima; Delavar, Hadi Mirzapour; Hosseinzadeh, Mahshid; Mehranfard, Nasrin; Khodagholi, Fariba; Janahmadi, Mahyar; Motamedi, Fereshteh

    2017-01-05

    In the Alzheimer's disease (AD), entorhinal-hippocampal circuit is one of the earliest affected networks. There are some evidences indicating abnormal neuronal excitability and impaired synaptic plasticity in the dentate gyrus (DG) of AD animal model. However, the underlying mechanism leading to DG dysfunction particularly in the early phase of AD is not known. Since calcium dyshomeostasis has a critical role in the etiology of AD, it is possible that this phenomenon precedes electrophysiological alteration in the DG. Here, the effect of the amyloid pathogenesis in the entorhinal cortex (EC) on high activated Ca(2+) currents in the DG granule cells was investigated. One week after bilaterally injection of amyloid beta (Aβ) 1-42 into the EC, Ca(2+) currents in the DG granule cells were assessed by whole cell patch clamp. Voltage clamp recording showed the amplitude of high voltage calcium currents in the DG granule cells was decreased following EC amyloidopathy. However, the Ca(2+) current decay was slower than control. Double-pulse recording revealed that Ca(2+)-dependent inactivation of calcium current (CDI) was more pronounced in the EC-Aβ group compared to the control group. However, chronic treatment by calcium channel blocker (CCBs), isradipine or nimodipine, reverse the Ca(2+) currents toward the control level. On the other hand, there was no significant difference in the calbindin level in the DG of different groups. In conclusion, our results suggest that Aβ in the EC independent of calbindin level triggers a decreased Ca(2+) currents along with increased CDI in the DG granule cells which may lead to further electrophysiological alterations in these cells, and treatment by CCBs could preserve normal calcium current and may ultimately normal function against the Aβ toxicity. Copyright © 2016. Published by Elsevier B.V.

  9. Peptide Nucleic Acids (PNA)

    DEFF Research Database (Denmark)

    2002-01-01

    A novel class of compounds, known as peptide nucleic acids, bind complementary ssDNA and RNA strands more strongly than a corresponding DNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  10. Peptide Nucleic Acids

    DEFF Research Database (Denmark)

    1998-01-01

    A novel class of compounds, known as peptide nucleic acids, bind complementary ssDNA and RNA strands more strongly than a corresponding DNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  11. Peptide Nucleic Acids

    DEFF Research Database (Denmark)

    2003-01-01

    A novel class of compounds, known as peptide nucleic acids, bind complementary ssDNA and RNA strands more strongly than a corresponding DNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  12. Peptide Nucleic Acid Synthons

    DEFF Research Database (Denmark)

    2004-01-01

    A novel class of compounds, known as peptide nucleic acids, bind complementary ssDNA and RNA strands more strongly than a corresponding DNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  13. Peptide-Carrier Conjugation

    DEFF Research Database (Denmark)

    Hansen, Paul Robert

    2015-01-01

    To produce antibodies against synthetic peptides it is necessary to couple them to a protein carrier. This chapter provides a nonspecialist overview of peptide-carrier conjugation. Furthermore, a protocol for coupling cysteine-containing peptides to bovine serum albumin is outlined....

  14. PH dependent adhesive peptides

    Science.gov (United States)

    Tomich, John; Iwamoto, Takeo; Shen, Xinchun; Sun, Xiuzhi Susan

    2010-06-29

    A novel peptide adhesive motif is described that requires no receptor or cross-links to achieve maximal adhesive strength. Several peptides with different degrees of adhesive strength have been designed and synthesized using solid phase chemistries. All peptides contain a common hydrophobic core sequence flanked by positively or negatively charged amino acids sequences.

  15. Association between amylin and amyloid-β peptides in plasma in the context of apolipoprotein E4 allele.

    Directory of Open Access Journals (Sweden)

    Wei Qiao Qiu

    Full Text Available Amylin, a pancreatic peptide that readily crosses the blood brain barrier (BBB, and amyloid-beta peptide (Aβ, the main component of amyloid plaques and a major component of Alzheimer's disease (AD pathology in the brain, share several features. These include having similar β-sheet secondary structures, binding to the same receptor, and being degraded by the same protease. Thus, amylin may be associated with Aβ, but the nature of their relationship remains unclear. In this study, we used human samples to study the relationship between plasma amylin and Aβ in the context of the apolipoprotein E alleles (ApoE. We found that concentrations of Aβ1-42 (P<0.0001 and Aβ1-40 (P<0.0001 increased with each quartile increase of amylin. Using multivariate regression analysis, the study sample showed that plasma amylin was associated with Aβ1-42 (β = +0.149, SE = 0.025, P<0.0001 and Aβ1-40 (β = +0.034, SE = 0.016, P = 0.04 as an outcome after adjusting for age, gender, ethnicity, ApoE4, BMI, diabetes, stroke, kidney function and lipid profile. This positive association between amylin and Aβ1-42 in plasma was found regardless of the ApoE genotype. In contrast, the relationship between amylin and Aβ1-40 in plasma seen in ApoE4 non-carriers disappeared in the presence of ApoE4. Using AD mouse models, our recent study demonstrates that intraperitoneal (i.p. injection of synthetic amylin enhances the removal of Aβ from the brain into blood, thus resulting in increased blood levels of both amylin and Aβ. The positive association between amylin and Aβ, especially Aβ1-42, in human blood samples is probably relevant to the findings in the AD mouse models. The presence of ApoE4 may attenuate amylin's capacity to remove Aβ, especially Aβ1-40, from the AD brain.

  16. Age-dependent accumulation of soluble amyloid beta (Abeta) oligomers reverses the neuroprotective effect of soluble amyloid precursor protein-alpha (sAPP(alpha)) by modulating phosphatidylinositol 3-kinase (PI3K)/Akt-GSK-3beta pathway in Alzheimer mouse model.

    Science.gov (United States)

    Jimenez, Sebastian; Torres, Manuel; Vizuete, Marisa; Sanchez-Varo, Raquel; Sanchez-Mejias, Elisabeth; Trujillo-Estrada, Laura; Carmona-Cuenca, Irene; Caballero, Cristina; Ruano, Diego; Gutierrez, Antonia; Vitorica, Javier

    2011-05-27

    Neurotrophins, activating the PI3K/Akt signaling pathway, control neuronal survival and plasticity. Alterations in NGF, BDNF, IGF-1, or insulin signaling are implicated in the pathogenesis of Alzheimer disease. We have previously characterized a bigenic PS1×APP transgenic mouse displaying early hippocampal Aβ deposition (3 to 4 months) but late (17 to 18 months) neurodegeneration of pyramidal cells, paralleled to the accumulation of soluble Aβ oligomers. We hypothesized that PI3K/Akt/GSK-3β signaling pathway could be involved in this apparent age-dependent neuroprotective/neurodegenerative status. In fact, our data demonstrated that, as compared with age-matched nontransgenic controls, the Ser-9 phosphorylation of GSK-3β was increased in the 6-month PS1×APP hippocampus, whereas in aged PS1×APP animals (18 months), GSK-3β phosphorylation levels displayed a marked decrease. Using N2a and primary neuronal cell cultures, we demonstrated that soluble amyloid precursor protein-α (sAPPα), the predominant APP-derived fragment in young PS1×APP mice, acting through IGF-1 and/or insulin receptors, activated the PI3K/Akt pathway, phosphorylated the GSK-3β activity, and in consequence, exerted a neuroprotective action. On the contrary, several oligomeric Aβ forms, present in the soluble fractions of aged PS1×APP mice, inhibited the induced phosphorylation of Akt/GSK-3β and decreased the neuronal survival. Furthermore, synthetic Aβ oligomers blocked the effect mediated by different neurotrophins (NGF, BDNF, insulin, and IGF-1) and sAPPα, displaying high selectivity for NGF. In conclusion, the age-dependent appearance of APP-derived soluble factors modulated the PI3K/Akt/GSK-3β signaling pathway through the major neurotrophin receptors. sAPPα stimulated and Aβ oligomers blocked the prosurvival signaling. Our data might provide insights into the selective vulnerability of specific neuronal groups in Alzheimer disease.

  17. Mycobacteria attenuate nociceptive responses by formyl peptide receptor triggered opioid peptide release from neutrophils.

    Directory of Open Access Journals (Sweden)

    Heike L Rittner

    2009-04-01

    Full Text Available In inflammation, pain is regulated by a balance of pro- and analgesic mediators. Analgesic mediators include opioid peptides which are secreted by neutrophils at the site of inflammation, leading to activation of opioid receptors on peripheral sensory neurons. In humans, local opioids and opioid peptides significantly downregulate postoperative as well as arthritic pain. In rats, inflammatory pain is induced by intraplantar injection of heat inactivated Mycobacterium butyricum, a component of complete Freund's adjuvant. We hypothesized that mycobacterially derived formyl peptide receptor (FPR and/or toll like receptor (TLR agonists could activate neutrophils, leading to opioid peptide release and inhibition of inflammatory pain. In complete Freund's adjuvant-induced inflammation, thermal and mechanical nociceptive thresholds of the paw were quantified (Hargreaves and Randall-Selitto methods, respectively. Withdrawal time to heat was decreased following systemic neutrophil depletion as well as local injection of opioid receptor antagonists or anti-opioid peptide (i.e. Met-enkephalin, beta-endorphin antibodies indicating an increase in pain. In vitro, opioid peptide release from human and rat neutrophils was measured by radioimmunoassay. Met-enkephalin release was triggered by Mycobacterium butyricum and formyl peptides but not by TLR-2 or TLR-4 agonists. Mycobacterium butyricum induced a rise in intracellular calcium as determined by FURA loading and calcium imaging. Opioid peptide release was blocked by intracellular calcium chelation as well as phosphoinositol-3-kinase inhibition. The FPR antagonists Boc-FLFLF and cyclosporine H reduced opioid peptide release in vitro and increased inflammatory pain in vivo while TLR 2/4 did not appear to be involved. In summary, mycobacteria activate FPR on neutrophils, resulting in tonic secretion of opioid peptides from neutrophils and in a decrease in inflammatory pain. Future therapeutic strategies may aim

  18. 5-aminoimidazole-4-carboxamide-1-beta-4-ribofuranoside (AICAR attenuates the expression of LPS- and Aβ peptide-induced inflammatory mediators in astroglia

    Directory of Open Access Journals (Sweden)

    Giri Shailendra

    2005-09-01

    Full Text Available Abstract Background Alzheimer's disease (AD pathology shows characteristic 'plaques' rich in amyloid beta (Aβ peptide deposits. Inflammatory process-related proteins such as pro-inflammatory cytokines have been detected in AD brain suggesting that an inflammatory immune reaction also plays a role in the pathogenesis of AD. Glial cells in culture respond to LPS and Aβ stimuli by upregulating the expression of cytokines TNF-α, IL-1β, and IL-6, and also the expression of proinflammatory genes iNOS and COX-2. We have earlier reported that LPS/Aβ stimulatio