WorldWideScience

Sample records for amyloid peptide aggregation

  1. Specific binding of DNA to aggregated forms of Alzheimer's disease amyloid peptides.

    Science.gov (United States)

    Camero, Sergio; Ayuso, Jose M; Barrantes, Alejandro; Benítez, María J; Jiménez, Juan S

    2013-04-01

    Anomalous protein aggregation is closely associated to age-related mental illness. Extraneuronal plaques, mainly composed of aggregated amyloid peptides, are considered as hallmarks of Alzheimer's disease. According to the amyloid cascade hypothesis, this disease starts as a consequence of an abnormal processing of the amyloid precursor protein resulting in an excess of amyloid peptides. Nuclear localization of amyloid peptide aggregates together with amyloid-DNA interaction, have been repeatedly reported. In this paper we have used surface plasmon resonance and electron microscopy to study the structure and behavior of different peptides and proteins, including β-lactoglobulin, bovine serum albumin, myoglobin, histone, casein and the amyloidpeptides related to Alzheimer's disease Aβ25-35 and Aβ1-40. The main purpose of this study is to investigate whether proneness to DNA interaction is a general property displayed by aggregated forms of proteins, or it is an interaction specifically related to the aggregated forms of those particular proteins and peptides related to neurodegenerative diseases. Our results reveal that those aggregates formed by amyloid peptides show a particular proneness to interact with DNA. They are the only aggregated structures capable of binding DNA, and show more affinity for DNA than for other polyanions like heparin and polyglutamic acid, therefore strengthening the hypothesis that amyloid peptides may, by means of interaction with nuclear DNA, contribute to the onset of Alzheimer's disease.

  2. A comparative analysis of the aggregation behavior of amyloid-beta peptide variants

    NARCIS (Netherlands)

    Vandersteen, A.; Hubin, E.; Sarroukh, R.; Baets, G. de; Schymkowitz, J.; Rousseau, F.; Subramaniam, V.; Raussens, V.; Wenschuh, H.; Wildemann, D.; Broersen, K.

    2012-01-01

    Aggregated forms of the amyloid-beta peptide are hypothesized to act as the prime toxic agents in Alzheimer disease (AD). The in vivo amyloid-beta peptide pool consists of both C- and N-terminally truncated or mutated peptides, and the composition thereof significantly determines AD risk. Other vari

  3. Inhibition of aggregation of amyloid peptides by beta-sheet breaker peptides and their binding affinity.

    Science.gov (United States)

    Viet, Man Hoang; Ngo, Son Tung; Lam, Nguyen Sy; Li, Mai Suan

    2011-06-01

    The effects of beta-sheet breaker peptides KLVFF and LPFFD on the oligomerization of amyloid peptides were studied by all-atom simulations. It was found that LPFFD interferes the aggregation of Aβ(16-22) peptides to a greater extent than does KLVFF. Using the molecular mechanics-Poisson-Boltzmann surface area (MM-PBSA) method, we found that the former binds more strongly to Aβ(16-22). Therefore, by simulations, we have clarified the relationship between aggregation rates and binding affinity: the stronger the ligand binding, the slower the oligomerization process. The binding affinity of pentapeptides to full-length peptide Aβ(1-40) and its mature fibrils has been considered using the Autodock and MM-PBSA methods. The hydrophobic interaction between ligands and receptors plays a more important role for association than does hydrogen bonding. The influence of beta-sheet breaker peptides on the secondary structures of monomer Aβ(1-40) was studied in detail, and it turns out that, in their presence, the total beta-sheet content can be enhanced. However, the aggregation can be slowed because the beta-content is reduced in fibril-prone regions. Both pentapeptides strongly bind to monomer Aβ(1-40), as well as to mature fibrils, but KLVFF displays a lower binding affinity than LPFFD. Our findings are in accord with earlier experiments that both of these peptides can serve as prominent inhibitors. In addition, we predict that LPFFD inhibits/degrades the fibrillogenesis of full-length amyloid peptides better than KLVFF. This is probably related to a difference in their total hydrophobicities in that the higher the hydrophobicity, the lower the inhibitory capacity. The GROMOS96 43a1 force field with explicit water and the force field proposed by Morris et al. (Morris et al. J. Comput. Chem. 1998, 19, 1639 ) were employed for all-atom molecular dynamics simulations and Autodock experiments, respectively. PMID:21563780

  4. Structural Transformation and Aggregation of cc-beta Peptides Into Amyloid Proto-fibrils

    Science.gov (United States)

    Bhandari, Yuba; Steckmann, Timothy; Chapagain, Prem; Gerstman, Bernard

    2013-03-01

    The study of amyloid fibrils has important implications in understanding and treatment of various neurodegenerative diseases such as Alzheimer's and Parkinson's. During the formation of amyloid fibrils, peptide polymers manifest fascinating physical behavior by undergoing complicated structural transformations. We examine the behavior of a small engineered peptide called cc-beta, that was designed to mimic the structural changes of the much larger, naturally occurring amyloid beta proteins. Molecular dynamics (MD) simulations are performed to uncover the underlying physics that is responsible for the large scale structural transformations. By using implicit solvent replica exchange MD simulations, we examined the behavior of 12 peptides, initially arranged in four different cc-beta alpha helix trimers. We observed various intermediate stages of aggregation, as well as an organized proto-fibril beta aggregate. We discuss the time evolution and the various interactions involved in the structural transformation.

  5. Action of Caffeine as an Amyloid Inhibitor in the Aggregation of Aβ16-22 Peptides.

    Science.gov (United States)

    Sharma, Bhanita; Paul, Sandip

    2016-09-01

    Alzheimer's disease (AD) is a neurodegenerative disease caused due to aggregation of Aβ peptides in the brain tissues. Recently, several studies on AD transgenic mice have shown the effect of caffeine in significantly reducing the Aβ amyloid level in their brains. However, the mechanism and mode of caffeine action on amyloid aggregation are not known. Therefore, in this study, we have carried out molecular dynamics simulations of five amyloid-forming Aβ16-22 peptides in pure water and in a regime of caffeine solutions, with different caffeine/peptide stoichiometric ratios. The secondary structure analyses of peptides in pure water show the formation of β-sheet conformations, whereas on addition of caffeine, these ordered conformations become negligible. The radial distribution function, contact map, nonbonding interaction energy, hydrogen bonding, potential of mean force, and hydration analyses show that there is less interpeptide interaction in the presence of caffeine, and the effect is greater with an increasing caffeine ratio. The interaction of aromatic phenylalanine residues of peptides with caffeine restricts the interpeptide interaction tendency. Upon increasing the number of caffeine molecules, interaction of caffeine with other hydrophobic residues also increases. Thus, the hydrophobic core-recognition motif of amyloid formation of peptides is physically blocked by caffeine, thereby abolishing the self-assembly formation. PMID:27487451

  6. Surface plasmon resonance for the label-free detection of Alzheimer's β-amyloid peptide aggregation.

    Science.gov (United States)

    Palladino, Pasquale; Aura, Angela M; Spoto, Giuseppe

    2016-01-01

    Amyloid peptide oligomers and fibrils are studied as targets for therapy and diagnosis of Alzheimer's disease. They are usually detected by amyloid incubation, but such method is necessarily associated with Aβ1-42 depletion and dye binding or conjugation, which have a complex influence on fibril growth, provide information about fibril elongation over long time periods only, and might lead to false-positive results in amyloid inhibition assay. Surface plasmon resonance (SPR) is used to study with no labelling and in real time the aggregation of Aβ1-42 amyloid on specific antibodies. SPR data show, for the first time by using SPR, a multi-phase association behavior for Aβ1-42 oligomers accounting for a sigmoidal growth of amyloid as a function of time, with two antibody-dependent aggregation patterns. The new method represents an advantageous alternative to traditional procedures for investigating amyloid self-assembly and inhibition from early-stage oligomer association, on the time scale of seconds to minutes, to long-term polymerization, on the time scale of hours to days. PMID:26558762

  7. Hydrodynamic effects on β-amyloid (16-22) peptide aggregation

    Science.gov (United States)

    Chiricotto, Mara; Melchionna, Simone; Derreumaux, Philippe; Sterpone, Fabio

    2016-07-01

    Computer simulations based on simplified representations are routinely used to explore the early steps of amyloid aggregation. However, when protein models with implicit solvent are employed, these simulations miss the effect of solvent induced correlations on the aggregation kinetics and lifetimes of metastable states. In this work, we apply the multi-scale Lattice Boltzmann Molecular Dynamics technique (LBMD) to investigate the initial aggregation phases of the amyloid Aβ16-22 peptide. LBMD includes naturally hydrodynamic interactions (HIs) via a kinetic on-lattice representation of the fluid kinetics. The peptides are represented by the flexible OPEP coarse-grained force field. First, we have tuned the essential parameters that control the coupling between the molecular and fluid evolutions in order to reproduce the experimental diffusivity of elementary species. The method is then deployed to investigate the effect of HIs on the aggregation of 100 and 1000 Aβ16-22 peptides. We show that HIs clearly impact the aggregation process and the fluctuations of the oligomer sizes by favouring the fusion and exchange dynamics of oligomers between aggregates. HIs also guide the growth of the leading largest cluster. For the 100 Aβ16-22 peptide system, the simulation of ˜300 ns allowed us to observe the transition from ellipsoidal assemblies to an elongated and slightly twisted aggregate involving almost the totality of the peptides. For the 1000 Aβ16-22 peptides, a system of unprecedented size at quasi-atomistic resolution, we were able to explore a branched disordered fibril-like structure that has never been described by other computer simulations, but has been observed experimentally.

  8. Exploring the early steps of aggregation of amyloid-forming peptide KFFE

    Energy Technology Data Exchange (ETDEWEB)

    Wei Guanghong [Departement de Physique and Regroupement Quebecois sur les Materiaux de Pointe, Universite de Montreal, CP 6128, succursale centre-ville, Montreal, QC, H3C 3J7 (Canada); Mousseau, Normand [Departement de Physique and Regroupement Quebecois sur les Materiaux de Pointe, Universite de Montreal, CP 6128, succursale centre-ville, Montreal, QC, H3C 3J7 (Canada); Derreumaux, Philippe [Laboratoire de Biochimie, Theorique, UPR 9080 CNRS, IBPC, Universite Paris 7 Denis-Diderot, 13 rue Pierre et Marie Curie, 75005 Paris (France)

    2004-11-10

    It has been shown recently that even a tetrapeptide can form amyloid fibrils sharing all the characteristics of amyloid fibrils built from large proteins. Recent experimental studies also suggest that the toxicity observed in several neurodegenerative diseases, such as Alzheimer's disease and Creutzfeldt-Jakob disease, is not only related to the mature fibrils themselves, but also to the soluble oligomers formed early in the process of fibrillogenesis. This raises the interest in studying the early steps of the aggregation process. Although fibril formation follows the nucleation-condensation process, characterized by the presence of lag phase, the exact pathways remain to be determined. In this study, we used the activation-relaxation technique and a generic energy model to explore the process of self-assembly and the structures of the resulting aggregates of eight KFFE peptides. Our simulations show, starting from different states with a preformed antiparallel dimer, that eight chains can self-assemble to adopt, with various orientations, four possible distant oligomeric well-aligned structures of similar energy. Two of these structures show a double-layer {beta}-sheet organization, in agreement with the structure of amyloid fibrils as observed by x-ray diffraction; another two are mixtures of dimers and trimers. Our results also suggest that octamers are likely to be below the critical size for nucleation of amyloid fibrils for small peptides.

  9. Effect of osmolytes on the conformation and aggregation of some amyloid peptides: CD spectroscopic data.

    Science.gov (United States)

    Inayathullah, Mohammed; Rajadas, Jayakumar

    2016-06-01

    Protein misfolding and aggregation are responsible for a large number of diseases called protein conformational diseases or disorders that include Alzheimer׳s disease, Huntington׳s diseases, Prion related encephalopathies and type-II diabetes (http://dx.doi.org/10.1038/35041139) (Kopito and Ron, 2000) [1]. A variety of studies have shown that some small organic molecules, known as osmolytes have the ability to stabilize native conformation of proteins and prevent misfolding and aggregation (http://www.la-press.com/article.php?article_id=447) (Zhao et al., 2008) [2]. It has been shown that certain short segment or fragment of respective proteins can also form amyloids, and the segments also promote the aggregation in the full-length protein (http://dx.doi.org/10.2174/0929867023369187) (Gazit, 2002) [3]. This article presents circular dichroism spectroscopic data on conformational analysis and effect of osmolytes on Aβ peptide fragments, different lengths of polyglutamine peptide and the amyloidogenic segment of islet amyloid polypeptide. PMID:27222868

  10. Platinum-coordinated graphitic carbon nitride nanosheet used for targeted inhibition of amyloid β-peptide aggregation

    Institute of Scientific and Technical Information of China (English)

    Meng Li; Yijia Guan; Zhaowei Chen; Nan Gao; Jinsong Ren; Kai Dong; Xiaogang Qu

    2016-01-01

    Amyloid β-peptide (Aβ) aggregation is a critical step in the pathogenesis of Alzheimer's disease (AD).Inhibition of Aβ production,dissolution of existing aggregates and clearance of Aβ represent valid therapeutic strategies against AD.Herein,a novel platinum(Ⅱ)-coordinated graphitic carbon nitride (g-C3N4)nanosheet (g-C3N4@Pt) has been designed to covalently bind to Aβ and modulate the peptide's aggregation and toxicity.Furthermore,g-C3N4@Pt nanosheets possess high photocatalytic activity and can oxygenate Aβ upon visible light irradiation,remarkably attenuating both the aggregation potency and neurotoxidty of Aβ.Due to its ability to cross the blood-brain barrier (BBB) and its good biocompatibility,g-C3N4@Pt nanosheet is a promising inhibitor of Aβ aggregation.This study may serve as a model for the engineering of novel multifunctional nanomaterials used for the treatment of AD.

  11. Molecular dynamics studies of the inhibitory mechanism of copper(Ⅱ) on aggregation of amyloid β-peptide

    Institute of Scientific and Technical Information of China (English)

    Yong Jiao; Pin Yang

    2007-01-01

    The inhibitory mechanism of copper(Ⅱ) on the aggregation of amyloid β-peptide (Aβ) was investigated by molecular dynamics simulations. The binding mode of copper(Ⅱ) with Aβ is characterized by the imidazole nitrogen atom, Nπ, of the histidine residue H13,acting as the anchoring site, and the backbone's deprotoned amide nitrogen atoms as the main binding sites. Drove by the coordination bonds and their induced hydrogen bond net, the conformations of Aβ converted from β-sheet non-β-sheet conformations, which destabilized the aggregation of Aβ into fibrils.

  12. Soluble aggregates of the amyloidpeptide are trapped by serum albumin to enhance amyloid-β activation of endothelial cells

    Directory of Open Access Journals (Sweden)

    Gonzalez-Velasquez Francisco J

    2009-04-01

    Full Text Available Abstract Background Self-assembly of the amyloidpeptide (Aβ has been implicated in the pathogenesis of Alzheimer's disease (AD. As a result, synthetic molecules capable of inhibiting Aβ self-assembly could serve as therapeutic agents and endogenous molecules that modulate Aβ self-assembly may influence disease progression. However, increasing evidence implicating a principal pathogenic role for small soluble Aβ aggregates warns that inhibition at intermediate stages of Aβ self-assembly may prove detrimental. Here, we explore the inhibition of Aβ1–40 self-assembly by serum albumin, the most abundant plasma protein, and the influence of this inhibition on Aβ1–40 activation of endothelial cells for monocyte adhesion. Results It is demonstrated that serum albumin is capable of inhibiting in a dose-dependent manner both the formation of Aβ1–40 aggregates from monomeric peptide and the ongoing growth of Aβ1–40 fibrils. Inhibition of fibrillar Aβ1–40 aggregate growth is observed at substoichiometric concentrations, suggesting that serum albumin recognizes aggregated forms of the peptide to prevent monomer addition. Inhibition of Aβ1–40 monomer aggregation is observed down to stoichiometric ratios with partial inhibition leading to an increase in the population of small soluble aggregates. Such partial inhibition of Aβ1–40 aggregation leads to an increase in the ability of resulting aggregates to activate endothelial cells for adhesion of monocytes. In contrast, Aβ1–40 activation of endothelial cells for monocyte adhesion is reduced when more complete inhibition is observed. Conclusion These results demonstrate that inhibitors of Aβ self-assembly have the potential to trap small soluble aggregates resulting in an elevation rather than a reduction of cellular responses. These findings provide further support that small soluble aggregates possess high levels of physiological activity and underscore the importance of

  13. Proteolytically inactive insulin-degrading enzyme inhibits amyloid formation yielding non-neurotoxic aβ peptide aggregates.

    Directory of Open Access Journals (Sweden)

    Matias B de Tullio

    Full Text Available Insulin-degrading enzyme (IDE is a neutral Zn(2+ peptidase that degrades short peptides based on substrate conformation, size and charge. Some of these substrates, including amyloid β (Aβ are capable of self-assembling into cytotoxic oligomers. Based on IDE recognition mechanism and our previous report of the formation of a stable complex between IDE and intact Aβ in vitro and in vivo, we analyzed the possibility of a chaperone-like function of IDE. A proteolytically inactive recombinant IDE with Glu111 replaced by Gln (IDEQ was used. IDEQ blocked the amyloidogenic pathway of Aβ yielding non-fibrillar structures as assessed by electron microscopy. Measurements of the kinetics of Aβ aggregation by light scattering showed that 1 IDEQ effect was promoted by ATP independent of its hydrolysis, 2 end products of Aβ-IDEQ co-incubation were incapable of "seeding" the assembly of monomeric Aβ and 3 IDEQ was ineffective in reversing Aβ aggregation. Moreover, Aβ aggregates formed in the presence of IDEQ were non-neurotoxic. IDEQ had no conformational effects upon insulin (a non-amyloidogenic protein under physiological conditions and did not disturb insulin receptor activation in cultured cells. Our results suggest that IDE has a chaperone-like activity upon amyloid-forming peptides. It remains to be explored whether other highly conserved metallopeptidases have a dual protease-chaperone function to prevent the formation of toxic peptide oligomers from bacteria to mammals.

  14. Amorphous Aggregation of Amyloid Beta 1-40 Peptide in Confined Space.

    Science.gov (United States)

    Foschi, Giulia; Albonetti, Cristiano; Liscio, Fabiola; Milita, Silvia; Greco, Pierpaolo; Biscarini, Fabio

    2015-11-16

    The amorphous aggregation of Aβ1-40 peptide is addressed by using micromolding in capillaries. Both the morphology and the size of the aggregates are modulated by changing the contact angle of the sub-micrometric channel walls. Upon decreasing the hydrophilicity of the channels, the aggregates change their morphology from small aligned drops to discontinuous lines, thereby keeping their amorphous structure. Aβ1-40 fibrils are observed at high contact angles.

  15. Aggregation properties of a short peptide that mediates amyloid fibril formation in model proteins unrelated to disease

    Indian Academy of Sciences (India)

    Nitin Chaudhary; Shashi Singh; Ramakrishnan Nagaraj

    2011-09-01

    Short peptides have been identified from amyloidogenic proteins that form amyloid fibrils in isolation. The hexapeptide stretch 21DIDLHL26 has been shown to be important in the self-assembly of the Src homology 3 (SH3) domain of p85 subunit of bovine phosphatidylinositol-3-kinase (PI3-SH3). The SH3 domain of chicken brain -spectrin, which is otherwise non-amyloidogenic, is rendered amyloidogenic if 22EVTMKK27 is replaced by DIDLHL. In this article, we describe the aggregation behaviour of DIDLHL-COOH and DIDLHL-CONH2. Our results indicate that DIDLHL-COOH and DIDLHL-CONH2 aggregate to form spherical structures at pH 5 and 6. At pH 5, in the presence of mica, DIDLHL-CONH2 forms short fibrous structures. The presence of NaCl along with mica results in fibrillar structures. At pH 6, DIDLHL-CONH2 forms largely spherical aggregates. Both the peptides are unstructured in solution but adopt -conformation on drying. The aggregates formed by DIDLHL-COOH and DIDLHL-CONH2 are formed during drying process and their structures are modulated by the presence of mica and salt. Our study suggests that a peptide need not have intrinsic amyloidogenic propensity to facilitate the selfassembly of the full-length protein. The propensity of peptides to form self-assembled structures that are non-amyloidogenic could be important in potentiating the self-assembly of full-length proteins into amyloid fibrils.

  16. Proposal for an inhibitor of Alzheimer's disease blocking aggregation of amyloidpeptides: ab initio molecular simulations

    International Nuclear Information System (INIS)

    Aggregation of amyloid-β (Aβ) peptides is believed to play a key role in the mechanism of molecular pathogenesis of Alzheimer's disease (AD). To inhibit the aggregation and prevent AD, numerous compounds have been synthesized. A previous experimental study elucidated that a triazine derivative AA3E2 has anti-amyloidogenic ability, while a triazine derivative AA3D2 having a different substituent has no inhibitory effect. However, the reason for this remarkable difference in the ability cannot be explained by the chemical structures of these derivatives. In the present study, we present stable structures of the solvated complexes with Aβ and AA3E2/AA3D2 obtained by classical molecular mechanics method. The specific interactions between Aβ and AA3E2/AA3D2 in the complexes are investigated by ab initio fragment molecular orbital calculations. Based on the results obtained, we attempt to propose new potent inhibitors for the Aβ aggregation.

  17. Molecular modeling on Zn(Ⅱ) binding modes of Alzheimer's amyloid β-peptide in insoluble aggregates and soluble complexes

    Institute of Scientific and Technical Information of China (English)

    HAN Daxiong; YANG Pin

    2004-01-01

    Aggregation of the amyloid β-peptide (A β) into insoluble fibrils is a key pathological event in Alzheimer's disease. Zn(Ⅱ) ion induces significant Aβ aggregation at nearly physiological concentrations in vitro. In order to explore the induce mechanism, the possible binding modes of Zn(Ⅱ) in Aβ peptide are studied by molecular modeling method. First, the Aβ species containing 1,2,4 and 12 peptides are established respectively. And next a Zn(Ⅱ) ion is manually hold the different sits of the Aβ species based on the experimental data and subsequently the coordinate atom and number are assigned. Finally, the optimum binding site is found by the system energy minimization. Modeling results show that in soluble Zn(Ⅱ) complex, Nτ of imidazole ring of His14, O of carbonyl of main-chain, and two O of water occupy the four ligand positions of the tetrahedral complex; in the aggregation of Aβ, the His13(Nτ)-Zn(Ⅱ)-His14(Nτ)bridges are formed by Zn(Ⅱ) cross-linking action. Therefore, the possible Zn(Ⅱ) binding mode obtained by the studies will be helpful to reveal the form mechanism of pathogenic aggregates in brain.

  18. Molecular modeling of the inhibitory mechanism of copper(II) on aggregation of amyloid β-peptide

    Institute of Scientific and Technical Information of China (English)

    JIAO Yong; HAN Daxiong; YANG Pin

    2005-01-01

    Aggregation of amyloid β-peptide (Aβ) into insoluble fibrils is a key pathological event in Alzheimer's disease (AD). Under certain conditions, Cu(Ⅱ) exhibits strong inhibitory effect on the Zn(Ⅱ)-induced aggregation, which occurs significantly even at nearly physiological concentrations of zinc ion in vitro. Cu(Ⅱ) is considered as a potential factor in the normal brain preventing Aβ from aggregating. The possible mechanism of the inhibitory effect of Cu(Ⅱ) is investigated for the first time by molecular modeling method. In the mono-ring mode, the Y10 residue promotes typical quasi-helix conformations of Aβ. Specially, [Cu-H13(Nπ)-Y10(OH)] complex forms a local 3.010 helix conformation. In the multi-ring mode, the side chains of Q15 and E11 residues collaborate harmoniously with other chelating ligands producing markedly low energies and quasi-helix conformations. [Cu-3N-Q15(O)-E11(O1)] and [Cu-H13(Nπ)-Y10(OH)] complex with quasi-helix conformations may prefer soluble forms in solution. In addition, hydrogen-bond interactions may be the main driving force for Aβaggregation. All the results will provide helpful clues for an improved understanding of the role of Cu(Ⅱ) in the pathogenesis of AD and contribute to the development of an "anti-amyloid" therapeutic strategy.

  19. Stoichiometric inhibition of amyloid beta-protein aggregation with peptides containing alternating alpha,alpha-disubstituted amino acids.

    Science.gov (United States)

    Etienne, Marcus A; Aucoin, Jed P; Fu, Yanwen; McCarley, Robin L; Hammer, Robert P

    2006-03-22

    We have prepared two peptides based on the hydrophobic core (Lys-Leu-Val-Phe-Phe) of amyloid beta-protein (Abeta) that contain alpha,alpha-disubstituted amino acids at alternating positions, but differ in the positioning of the oligolysine chain (AMY-1, C-terminus; AMY-2, N-terminus). We have studied the effects of AMY-1 and AMY-2 on the aggregation of Abeta and find that, at stoichiometric concentrations, both peptides completely stop Abeta fibril growth. Equimolar mixtures of AMY-1 and Abeta form only globular aggregates as imaged by scanning force microscopy and transmission electron microscopy. These samples show no signs of protofibrillar or fibrillar material even after prolonged periods of time (4.5 months). Also, 10 mol % of AMY-1 prevents Abeta self-assembly for long periods of time; aged samples (4.5 months) show only a few protofibrillar or fibrillar aggregates. Circular dichroism spectroscopy of equimolar mixtures of AMY-1 and Abeta show that the secondary structure of the mixture changes over time and progresses to a predominantly beta-sheet structure, which is consistent with the design of these inhibitors preferring a sheet-like conformation. Changing the position of the charged tail on the peptide, AMY-2 interacts with Abeta differently in that equimolar mixtures form large ( approximately 1 mum) globular aggregates which do not progress to fibrils, but precipitate out of solution. The differences in the aggregation mediated by the two peptides is discussed in terms of a model where the inhibitors act as cosurfactants that interfere with the native ability of Abeta to self-assemble by disrupting hydrophobic interactions either at the C-terminus or N-terminus of Abeta. PMID:16536517

  20. Surface Plasmon Resonance Based Biosensors for Exploring the Influence of Alkaloids on Aggregation of AmyloidPeptide

    Directory of Open Access Journals (Sweden)

    Hanna Radecka

    2011-04-01

    Full Text Available The main objective of the presented study was the development of a simple analytical tool for exploring the influence of naturally occurring compounds on the aggregation of amyloidpeptide (Aβ40 in order to find potential anti-neurodegenerative drugs. The gold discs used for surface plasmon resonance (SPR measurements were modified with thioaliphatic acid. The surface functionalized with carboxylic groups was used for covalent attaching of Aβ40 probe by creation of amide bonds in the presence of EDC/NHS. The modified SPR gold discs were used for exploring the Aβ40 aggregation process in the presence of selected alkaloids: arecoline hydrobromide, pseudopelletierine hydrochloride, trigonelline hydrochloride and α-lobeline hydrochloride. The obtained results were discussed with other parameters which govern the phenomenon studied such as lipophilicity/ hydrophilicy and Aβ40-alkaloid association constants.

  1. The aggregation kinetics of Alzheimer’s β-amyloid peptide is controlled by stochastic nucleation

    OpenAIRE

    Hortschansky, Peter; Schroeckh, Volker; Christopeit, Tony; Zandomeneghi, Giorgia; Fändrich, Marcus

    2005-01-01

    We report here a recombinant expression system that allows production of large quantities of Alzheimer’s Aβ(1–40) peptide. The material is competent to dissolve in water solutions with “random-coil properties,” although its conformation and factual oligomerization state are determined by the physico-chemical solution conditions. When dissolved in 50 mM sodium phosphate buffer (pH 7.4) at 37°C, the peptide is able to undergo a nucleated polymerization reaction. The aggregation profile is chara...

  2. The inhibitory mechanism of a fullerene derivative against amyloidpeptide aggregation: an atomistic simulation study.

    Science.gov (United States)

    Sun, Yunxiang; Qian, Zhenyu; Wei, Guanghong

    2016-05-14

    Alzheimer's disease (AD) is associated with the pathological self-assembly of amyloid-β (Aβ) peptides into β-sheet enriched fibrillar aggregates. Aβ dimers formed in the initial step of Aβ aggregation were reported to be the smallest toxic species. Inhibiting the formation of β-sheet-rich oligomers and fibrils is considered as the primary therapeutic strategy for AD. Previous studies reported that fullerene derivatives strongly inhibit Aβ fibrillation. However, the underlying inhibitory mechanism remains elusive. As a first step to understand fullerene-modulated full-length Aβ aggregation, we investigated the conformational ensemble of the Aβ1-42 dimer with and without 1,2-(dimethoxymethano)fullerene (DMF) - a more water-soluble fullerene derivative - by performing a 340 ns explicit-solvent replica exchange molecular dynamics simulation. Our simulations show that although disordered states are the most abundant conformations of the Aβ1-42 dimer, conformations containing diverse extended β-hairpins are also populated. The first most-populated β-hairpins involving residues L17-D23 and A30-V36 strongly resemble the engineered β-hairpin which is a building block of toxic Aβ oligomers. We find that the interaction of DMFs with Aβ peptides greatly impedes the formation of such β-hairpins and inter-peptide β-sheets. Binding energy analyses demonstrate that DMF preferentially binds not only to the central hydrophobic motif LVFFA of the Aβ peptide as suggested experimentally, but also to the aromatic residues including F4 and Y10 and the C-terminal hydrophobic region I31-V40. This study reveals a complete picture of the inhibitory mechanism of full-length Aβ1-42 aggregation by fullerenes, providing theoretical insights into the development of drug candidates against AD. PMID:27091578

  3. Hydrogen peroxide is generated during the very early stages of aggregation of the amyloid peptides implicated in Alzheimer disease and familial British dementia.

    Science.gov (United States)

    Tabner, Brian J; El-Agnaf, Omar M A; Turnbull, Stuart; German, Matthew J; Paleologou, Katerina E; Hayashi, Yoshihito; Cooper, Leanne J; Fullwood, Nigel J; Allsop, David

    2005-10-28

    Alzheimer disease and familial British dementia are neurodegenerative diseases that are characterized by the presence of numerous amyloid plaques in the brain. These lesions contain fibrillar deposits of the beta-amyloid peptide (Abeta) and the British dementia peptide (ABri), respectively. Both peptides are toxic to cells in culture, and there is increasing evidence that early "soluble oligomers" are the toxic entity rather than mature amyloid fibrils. The molecular mechanisms responsible for this toxicity are not clear, but in the case of Abeta, one prominent hypothesis is that the peptide can induce oxidative damage via the formation of hydrogen peroxide. We have developed a reliable method, employing electron spin resonance spectroscopy in conjunction with the spin-trapping technique, to detect any hydrogen peroxide generated during the incubation of Abeta and other amyloidogenic peptides. Here, we monitored levels of hydrogen peroxide accumulation during different stages of aggregation of Abeta-(1-40) and ABri and found that in both cases it was generated as a short "burst" early on in the aggregation process. Ultrastructural studies with both peptides revealed that structures resembling "soluble oligomers" or "protofibrils" were present during this early phase of hydrogen peroxide formation. Mature amyloid fibrils derived from Abeta-(1-40) did not generate hydrogen peroxide. We conclude that hydrogen peroxide formation during the early stages of protein aggregation may be a common mechanism of cell death in these (and possibly other) neurodegenerative diseases.

  4. Amyloid Aggregation and Membrane Disruption by Amyloid Proteins

    Science.gov (United States)

    Ramamoorthy, Ayyalusamy

    2013-03-01

    Amyloidogenesis has been the focus of intense basic and clinical research, as an increasing number of amyloidogenic proteins have been linked to common and incurable degenerative diseases including Alzheimer's, type II diabetes, and Parkinson's. Recent studies suggest that the cell toxicity is mainly due to intermediates generated during the assembly process of amyloid fibers, which have been proposed to attack cells in a variety of ways. Disruption of cell membranes is believed to be one of the key components of amyloid toxicity. However, the mechanism by which this occurs is not fully understood. Our research in this area is focused on the investigation of the early events in the aggregation and membrane disruption of amyloid proteins, Islet amyloid polypeptide protein (IAPP, also known as amylin) and amyloid-beta peptide, on the molecular level. Structural insights into the mechanisms of membrane disruption by these amyloid proteins and the role of membrane components on the membrane disruption will be presented.

  5. Amyloid peptide Aβ40 inhibits aggregation of Aβ42: Evidence from molecular dynamics simulations

    Science.gov (United States)

    Viet, Man Hoang; Li, Mai Suan

    2012-06-01

    Effects of amyloid beta (Aβ) peptide Aβ40 on secondary structures of Aβ42 are studied by all-atom simulations using the GROMOS96 43a1 force field with explicit water. It is shown that in the presence of Aβ40 the beta-content of monomer Aβ42 is reduced. Since the fibril-prone conformation N* of full-length Aβ peptides has the shape of beta strand-loop-beta strand this result suggests that Aβ40 decreases the probability of observing N* of Aβ42 in monomer state. Based on this and the hypothesis that the higher is the population of N* the higher fibril formation rates, one can expect that, in agreement with the recent experiment, Aβ40 inhibit fibril formation of Aβ42. It is shown that the presence of Aβ40 makes the salt bridge D23-K28 and fragment 18-33 of Aβ42 more flexible providing additional support for this experimental fact. Our estimation of the binding free energy by the molecular mechanics-Poisson-Boltzmann surface area method reveals the inhibition mechanism that Aβ40 binds to Aβ42 modifying its morphology.

  6. Effect of curcumin and Cu 2+/Zn 2+ ions on the fibrillar aggregates formed by the amyloid peptide and other peptides at the organic-aqueous interface

    Science.gov (United States)

    Sanghamitra, Nusrat J. M.; Varghese, Neenu; Rao, C. N. R.

    2010-08-01

    Characteristic features of a perilous neuro-degenerative disease such as the Alzhiemer's disease is fibrillar plaque formation by the amyloid (Aβ) peptide. We have modelled the formation and disintegration of fibrils by studying the aggregate structures formed by Aβ structural motif diphenylalanine as well as insulin and bovine serum albumin at the organic-aqueous interface. Even small concentrations of curcumin in the organic medium or Cu 2+ and Zn 2+ ions in the aqueous medium are found to break down the fibrillar structures.

  7. High-affinity Anticalins with aggregation-blocking activity directed against the Alzheimer β-amyloid peptide

    Science.gov (United States)

    Rauth, Sabine; Hinz, Dominik; Börger, Michael; Uhrig, Markus; Mayhaus, Manuel; Riemenschneider, Matthias; Skerra, Arne

    2016-01-01

    Amyloid beta (Aβ) peptides, in particular Aβ42 and Aβ40, exert neurotoxic effects and their overproduction leads to amyloid deposits in the brain, thus constituting an important biomolecular target for treatments of Alzheimer's disease (AD). We describe the engineering of cognate Anticalins as a novel type of neutralizing protein reagent based on the human lipocalin scaffold. Phage display selection from a genetic random library comprising variants of the human lipocalin 2 (Lcn2) with mutations targeted at 20 exposed amino acid positions in the four loops that form the natural binding site was performed using both recombinant and synthetic target peptides and resulted in three different Anticalins. Biochemical characterization of the purified proteins produced by periplasmic secretion in Escherichia coli revealed high folding stability in a monomeric state, with Tm values ranging from 53.4°C to 74.5°C, as well as high affinities for Aβ40, between 95 pM and 563 pM, as measured by real-time surface plasmon resonance analysis. The central linear VFFAED epitope within the Aβ sequence was mapped using a synthetic peptide array on membranes and was shared by all three Anticalins, despite up to 13 mutual amino acid differences in their binding sites. All Anticalins had the ability–with varying extent–to inhibit Aβ aggregation in vitro according to the thioflavin-T fluorescence assay and, furthermore, they abolished Aβ42-mediated toxicity in neuronal cell culture. Thus, these Anticalins provide not only useful protein reagents to study the molecular pathology of AD but they also show potential as alternative drug candidates compared with antibodies. PMID:27029347

  8. Self-assembly of a nine-residue amyloid-forming peptide fragment of SARS corona virus E-protein: mechanism of self aggregation and amyloid-inhibition of hIAPP.

    Science.gov (United States)

    Ghosh, Anirban; Pithadia, Amit S; Bhat, Jyotsna; Bera, Supriyo; Midya, Anupam; Fierke, Carol A; Ramamoorthy, Ayyalusamy; Bhunia, Anirban

    2015-04-01

    Molecular self-assembly, a phenomenon widely observed in nature, has been exploited through organic molecules, proteins, DNA, and peptides to study complex biological systems. These self-assembly systems may also be used in understanding the molecular and structural biology which can inspire the design and synthesis of increasingly complex biomaterials. Specifically, use of these building blocks to investigate protein folding and misfolding has been of particular value since it can provide tremendous insights into peptide aggregation related to a variety of protein misfolding diseases, or amyloid diseases (e.g., Alzheimer's disease, Parkinson's disease, type-II diabetes). Herein, the self-assembly of TK9, a nine-residue peptide of the extra membrane C-terminal tail of the SARS corona virus envelope, and its variants were characterized through biophysical, spectroscopic, and simulated studies, and it was confirmed that the structure of these peptides influences their aggregation propensity, hence, mimicking amyloid proteins. TK9, which forms a beta-sheet rich fibril, contains a key sequence motif that may be critical for beta-sheet formation, thus making it an interesting system to study amyloid fibrillation. TK9 aggregates were further examined through simulations to evaluate the possible intra- and interpeptide interactions at the molecular level. These self-assembly peptides can also serve as amyloid inhibitors through hydrophobic and electrophilic recognition interactions. Our results show that TK9 inhibits the fibrillation of hIAPP, a 37 amino acid peptide implicated in the pathology of type-II diabetes. Thus, biophysical and NMR experimental results have revealed a molecular level understanding of peptide folding events, as well as the inhibition of amyloid-protein aggregation are reported.

  9. High-affinity Anticalins with aggregation-blocking activity directed against the Alzheimer β-amyloid peptide

    OpenAIRE

    Rauth, Sabine; Hinz, Dominik; Börger, Michael; Uhrig, Markus; Mayhaus, Manuel; Riemenschneider, Matthias; Skerra, Arne

    2016-01-01

    Amyloid beta (Aβ) peptides, in particular Aβ42 and Aβ40, exert neurotoxic effects and their overproduction leads to amyloid deposits in the brain, thus constituting an important biomolecular target for treatments of Alzheimer's disease (AD). We describe the engineering of cognate Anticalins as a novel type of neutralizing protein reagent based on the human lipocalin scaffold. Phage display selection from a genetic random library comprising variants of the human lipocalin 2 (Lcn2) with mutatio...

  10. Amyloid fibrils compared to peptide nanotubes.

    Science.gov (United States)

    Zganec, Matjaž; Zerovnik, Eva

    2014-09-01

    Prefibrillar oligomeric states and amyloid fibrils of amyloid-forming proteins qualify as nanoparticles. We aim to predict what biophysical and biochemical properties they could share in common with better researched peptide nanotubes. We first describe what is known of amyloid fibrils and prefibrillar aggregates (oligomers and protofibrils): their structure, mechanisms of formation and putative mechanism of cytotoxicity. In distinction from other neuronal fibrillar constituents, amyloid fibrils are believed to cause pathology, however, some can also be functional. Second, we give a review of known biophysical properties of peptide nanotubes. Finally, we compare properties of these two macromolecular states side by side and discuss which measurements that have already been done with peptide nanotubes could be done with amyloid fibrils as well.

  11. Mutation-based structural modification and dynamics study of amyloid beta peptide (1–42: An in-silico-based analysis to cognize the mechanism of aggregation

    Directory of Open Access Journals (Sweden)

    Pritam Kumar Panda

    2016-03-01

    Full Text Available Alzheimer's disease is the prevalent cause of premature senility, a progressive mental disorder due to degeneration in brain and deposition of amyloid β peptide (1–42, a misfolded protein in the form of aggregation that prevails for a prolonged time and obstructs every aspect of life. One of the primary hallmarks of the neuropathological disease is the accretion of amyloid β peptide in the brain that leads to Alzheimer's disease, but the mechanism is still a mystery. Several investigations have shown that mutations at specific positions have a significant impact in stability of the peptide as predicted from aggregation profiles. Here in our study, we have analyzed the mutations by substituting residues at position A22G, E22G, E22K, E22Q, D23N, L34V and molecular dynamics have been performed to check the deviation in stability and conformation of the peptide. The results validated that the mutations at specific positions lead to instability and the proline substitution at E22P and L34P stalled the aggregation of the peptide.

  12. A role for amyloid in cell aggregation and biofilm formation.

    Directory of Open Access Journals (Sweden)

    Melissa C Garcia

    Full Text Available Cell adhesion molecules in Saccharomyces cerevisiae and Candida albicans contain amyloid-forming sequences that are highly conserved. We have now used site-specific mutagenesis and specific peptide perturbants to explore amyloid-dependent activity in the Candida albicans adhesin Als5p. A V326N substitution in the amyloid-forming region conserved secondary structure and ligand binding, but abrogated formation of amyloid fibrils in soluble Als5p and reduced cell surface thioflavin T fluorescence. When displayed on the cell surface, Als5p with this substitution prevented formation of adhesion nanodomains and formation of large cellular aggregates and model biofilms. In addition, amyloid nanodomains were regulated by exogenous peptides. An amyloid-forming homologous peptide rescued aggregation and biofilm activity of Als5p(V326N cells, and V326N substitution peptide inhibited aggregation and biofilm activity in Als5p(WT cells. Therefore, specific site mutation, inhibition by anti-amyloid peturbants, and sequence-specificity of pro-amyloid and anti-amyloid peptides showed that amyloid formation is essential for nanodomain formation and activation.

  13. Investigation of the inhibitory effects of TiO{sub 2} on the β-amyloid peptide aggregation

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Mukhtar H., E-mail: ahmed-m@email.ulster.ac.uk [School of Chemical Science, National Centre for Sensor Research, Dublin City University, Dublin 9 (Ireland); Nanotechnology Integrated Bioengineering Centre, University of Ulster, Jordanstown, BT37 0QB Belfast (United Kingdom); Byrne, John A. [Nanotechnology Integrated Bioengineering Centre, University of Ulster, Jordanstown, BT37 0QB Belfast (United Kingdom); Keyes, Tia E. [School of Chemical Science, National Centre for Sensor Research, Dublin City University, Dublin 9 (Ireland)

    2014-06-01

    TiO{sub 2} thin films are of great interest as biocompatible coatings and also as photocatalytic self-cleaning and antimicrobial coatings. In this work we used β-amyloid as a model for infectious protein to investigate the attachment and photocatalytic degradation. TiO{sub 2} films were prepared on stainless steel substrates using magnetron sputtering. The films were characterised before and after exposure to β-amyloid (1–42), using XRD, Raman spectroscopy, XPS and AFM. The TiO{sub 2} film was mostly composed of the anatase phase with a relatively high surface roughness. The presence of Raman peaks at 1668 cm{sup −1} and 1263 cm{sup −1}, with the XPS spectral feature for nitrogen at 400 eV, confirmed the adsorption of amyloid on surface. Following exposure of the β-amyloid contaminated TiO{sub 2} to UV-B irradiation a slight shift of amide modes was observed. Furthermore, the amide I spectra show an overall decrease in α-helix content with presence of a minor peak around 1591 cm{sup −1}, which is related to tryptophanyl and tyrosinyl radicals, which can lead to conformational change of β-amyloid. The C1s band at 292.2 eV suggests the formation of free carboxylic acid. The loss in the crucial structure of β-amyloid leads to reduce the fibril formation, thought to be induced through a photocatalytic process. - Highlights: • TiO{sub 2} thin films synthesised and characterised • Absorption study using β-amyloid (1–42) • Investigation of peptide configuration via Raman, AFM and XPS spectroscopies • β-Amyloid was subsequently degraded by photocatalytic activity of TiO{sub 2}.

  14. Influence of genetic variability and external regulating factors on amyloid-beta peptide aggregation

    NARCIS (Netherlands)

    Hubin, Ellen Sofie

    2014-01-01

    Protein aggregation has been associated with a wide range of highly debilitating and increasingly prevalent human diseases, ranging from neurodegenerative disorders to non-neuropathic amyloidoises. One of the most widespread neurodegenerative diseases is Alzheimer’s disease (AD), which is the leadin

  15. Rational design and identification of a non-peptidic aggregation inhibitor of amyloid-β based on a pharmacophore motif obtained from cyclo[-Lys-Leu-Val-Phe-Phe-].

    Science.gov (United States)

    Arai, Tadamasa; Araya, Takushi; Sasaki, Daisuke; Taniguchi, Atsuhiko; Sato, Takeshi; Sohma, Youhei; Kanai, Motomu

    2014-07-28

    Inhibition of pathogenic protein aggregation may be an important and straightforward therapeutic strategy for curing amyloid diseases. Small-molecule aggregation inhibitors of Alzheimer's amyloid-β (Aβ) are extremely scarce, however, and are mainly restricted to dye- and polyphenol-type compounds that lack drug-likeness. Based on the structure-activity relationship of cyclic Aβ16-20 (cyclo-[KLVFF]), we identified unique pharmacophore motifs comprising side-chains of Leu(2), Val(3), Phe(4), and Phe(5) residues without involvement of the backbone amide bonds to inhibit Aβ aggregation. This finding allowed us to design non-peptidic, small-molecule aggregation inhibitors that possess potent activity. These molecules are the first successful non-peptidic, small-molecule aggregation inhibitors of amyloids based on rational molecular design. PMID:24931598

  16. Rational design and identification of a non-peptidic aggregation inhibitor of amyloid-β based on a pharmacophore motif obtained from cyclo[-Lys-Leu-Val-Phe-Phe-].

    Science.gov (United States)

    Arai, Tadamasa; Araya, Takushi; Sasaki, Daisuke; Taniguchi, Atsuhiko; Sato, Takeshi; Sohma, Youhei; Kanai, Motomu

    2014-07-28

    Inhibition of pathogenic protein aggregation may be an important and straightforward therapeutic strategy for curing amyloid diseases. Small-molecule aggregation inhibitors of Alzheimer's amyloid-β (Aβ) are extremely scarce, however, and are mainly restricted to dye- and polyphenol-type compounds that lack drug-likeness. Based on the structure-activity relationship of cyclic Aβ16-20 (cyclo-[KLVFF]), we identified unique pharmacophore motifs comprising side-chains of Leu(2), Val(3), Phe(4), and Phe(5) residues without involvement of the backbone amide bonds to inhibit Aβ aggregation. This finding allowed us to design non-peptidic, small-molecule aggregation inhibitors that possess potent activity. These molecules are the first successful non-peptidic, small-molecule aggregation inhibitors of amyloids based on rational molecular design.

  17. Sulindac Sulfide Induces the Formation of Large Oligomeric Aggregates of the Alzheimer's Disease AmyloidPeptide Which Exhibit Reduced Neurotoxicity.

    Science.gov (United States)

    Prade, Elke; Barucker, Christian; Sarkar, Riddhiman; Althoff-Ospelt, Gerhard; Lopez del Amo, Juan Miguel; Hossain, Shireen; Zhong, Yifei; Multhaup, Gerd; Reif, Bernd

    2016-03-29

    Alzheimer's disease is characterized by deposition of the amyloid β-peptide (Aβ) in brain tissue of affected individuals. In recent years, many potential lead structures have been suggested that can potentially be used for diagnosis and therapy. However, the mode of action of these compounds is so far not understood. Among these small molecules, the nonsteroidal anti-inflammatory drug (NSAID) sulindac sulfide received a lot of attention. In this manuscript, we characterize the interaction between the monomeric Aβ peptide and the NSAID sulindac sulfide. We find that sulindac sulfide efficiently depletes the pool of toxic oligomers by enhancing the rate of fibril formation. In vitro, sulindac sulfide forms colloidal particles which catalyze the formation of fibrils. Aggregation is immediate, presumably by perturbing the supersaturated Aβ solution. We find that sulindac sulfide induced Aβ aggregates are structurally homogeneous. The C-terminal part of the peptide adopts a β-sheet structure, whereas the N-terminus is disordered. The salt bridge between D23 and K28 is present, similar as in wild type fibril structures. (13)C-(19)F transferred echo double resonance experiments suggest that sulindac sulfide colocalizes with the Aβ peptide in the aggregate. PMID:26900939

  18. A novel inhibitor of amyloid β (Aβ) peptide aggregation: from high throughput screening to efficacy in an animal model of Alzheimer disease.

    Science.gov (United States)

    McKoy, Angela Fortner; Chen, Jermont; Schupbach, Trudi; Hecht, Michael H

    2012-11-01

    Compelling evidence indicates that aggregation of the amyloid β (Aβ) peptide is a major underlying molecular culprit in Alzheimer disease. Specifically, soluble oligomers of the 42-residue peptide (Aβ42) lead to a series of events that cause cellular dysfunction and neuronal death. Therefore, inhibiting Aβ42 aggregation may be an effective strategy for the prevention and/or treatment of disease. We describe the implementation of a high throughput screen for inhibitors of Aβ42 aggregation on a collection of 65,000 small molecules. Among several novel inhibitors isolated by the screen, compound D737 was most effective in inhibiting Aβ42 aggregation and reducing Aβ42-induced toxicity in cell culture. The protective activity of D737 was most significant in reducing the toxicity of high molecular weight oligomers of Aβ42. The ability of D737 to prevent Aβ42 aggregation protects against cellular dysfunction and reduces the production/accumulation of reactive oxygen species. Most importantly, treatment with D737 increases the life span and locomotive ability of flies in a Drosophila melanogaster model of Alzheimer disease.

  19. Amyloid β-sheet mimics that antagonize protein aggregation and reduce amyloid toxicity

    Science.gov (United States)

    Cheng, Pin-Nan; Liu, Cong; Zhao, Minglei; Eisenberg, David; Nowick, James S.

    2012-11-01

    The amyloid protein aggregation associated with diseases such as Alzheimer's, Parkinson's and type II diabetes (among many others) features a bewildering variety of β-sheet-rich structures in transition from native proteins to ordered oligomers and fibres. The variation in the amino-acid sequences of the β-structures presents a challenge to developing a model system of β-sheets for the study of various amyloid aggregates. Here, we introduce a family of robust β-sheet macrocycles that can serve as a platform to display a variety of heptapeptide sequences from different amyloid proteins. We have tailored these amyloid β-sheet mimics (ABSMs) to antagonize the aggregation of various amyloid proteins, thereby reducing the toxicity of amyloid aggregates. We describe the structures and inhibitory properties of ABSMs containing amyloidogenic peptides from the amyloidpeptide associated with Alzheimer's disease, β2-microglobulin associated with dialysis-related amyloidosis, α-synuclein associated with Parkinson's disease, islet amyloid polypeptide associated with type II diabetes, human and yeast prion proteins, and Tau, which forms neurofibrillary tangles.

  20. Oligomer Formation of Toxic and Functional Amyloid Peptides Studied with Atomistic Simulations.

    Science.gov (United States)

    Carballo-Pacheco, Martín; Ismail, Ahmed E; Strodel, Birgit

    2015-07-30

    Amyloids are associated with diseases, including Alzheimer's, as well as functional roles such as storage of peptide hormones. It is still unclear what differences exist between aberrant and functional amyloids. However, it is known that soluble oligomers formed during amyloid aggregation are more toxic than the final fibrils. Here, we perform molecular dynamics simulations to study the aggregation of the amyloidpeptide Aβ25-35, associated with Alzheimer's disease, and two functional amyloid-forming tachykinin peptides: kassinin and neuromedin K. Although the three peptides have similar primary sequences, tachykinin peptides, in contrast to Aβ25-35, form nontoxic amyloids. Our simulations reveal that the charge of the C-terminus is essential to controlling the aggregation process. In particular, when the kassinin C-terminus is not amidated, the aggregation kinetics decreases considerably. In addition, we observe that the monomeric peptides in extended conformations aggregate faster than those in collapsed hairpin-like conformations. PMID:26130191

  1. A multiscale approach to characterize the early aggregation steps of the amyloid-forming peptide GNNQQNY from the yeast prion sup-35.

    Directory of Open Access Journals (Sweden)

    Jessica Nasica-Labouze

    2011-05-01

    Full Text Available The self-organization of peptides into amyloidogenic oligomers is one of the key events for a wide range of molecular and degenerative diseases. Atomic-resolution characterization of the mechanisms responsible for the aggregation process and the resulting structures is thus a necessary step to improve our understanding of the determinants of these pathologies. To address this issue, we combine the accelerated sampling properties of replica exchange molecular dynamics simulations based on the OPEP coarse-grained potential with the atomic resolution description of interactions provided by all-atom MD simulations, and investigate the oligomerization process of the GNNQQNY for three system sizes: 3-mers, 12-mers and 20-mers. Results for our integrated simulations show a rich variety of structural arrangements for aggregates of all sizes. Elongated fibril-like structures can form transiently in the 20-mer case, but they are not stable and easily interconvert in more globular and disordered forms. Our extensive characterization of the intermediate structures and their physico-chemical determinants points to a high degree of polymorphism for the GNNQQNY sequence that can be reflected at the macroscopic scale. Detailed mechanisms and structures that underlie amyloid aggregation are also provided.

  2. Difference in aggregation between functional and toxic amyloids studied by atomistic simulations

    Science.gov (United States)

    Carballo Pacheco, Martin; Ismail, Ahmed E.; Strodel, Birgit

    Amyloids are highly structured protein aggregates, normally associated with neurodegenerative diseases such as Alzheimer's disease. In recent years, a number of nontoxic amyloids with physiologically normal functions, called functional amyloids, have been found. It is known that soluble small oligomers are more toxic than large fibrils. Thus, we study with atomistic explicit-solvent molecular dynamics simulations the oligomer formation of the amyloid- β peptide Aβ25 - 35, associated with Alzheimer's disease, and two functional amyloid-forming tachykinin peptides: kassinin and neuromedin K. Our simulations show that monomeric peptides in extended conformations aggregate faster than those in collapsed hairpin-like conformations. In addition, we observe faster aggregation by functional amyloids than toxic amyloids, which could explain their lack of toxicity.

  3. In vivo amyloid aggregation kinetics tracked by time-lapse confocal microscopy in real-time.

    Science.gov (United States)

    Villar-Piqué, Anna; Espargaró, Alba; Ventura, Salvador; Sabate, Raimon

    2016-01-01

    Amyloid polymerization underlies an increasing number of human diseases. Despite this process having been studied extensively in vitro, aggregation is a difficult process to track in vivo due to methodological limitations and the slow kinetics of aggregation reactions in cells and tissues. Herein we exploit the amyloid properties of the inclusions bodies (IBs) formed by amyloidogenic proteins in bacteria to address the kinetics of in vivo amyloid aggregation. To this aim we used time-lapse confocal microscopy and a fusion of the amyloid-beta peptide (A β42) with a fluorescent reporter. This strategy allowed us to follow the intracellular kinetics of amyloid-like aggregation in real-time and to discriminate between variants exhibiting different in vivo aggregation propensity. Overall, the approach opens the possibility to assess the impact of point mutations as well as potential anti-aggregation drugs in the process of amyloid formation in living cells.

  4. Solvent exposure of Tyr10 as a probe of structural differences between monomeric and aggregated forms of the amyloidpeptide

    Science.gov (United States)

    Aran Terol, Pablo; Kumita, Janet R.; Hook, Sharon C.; Dobson, Christopher M.; Esbjörner, Elin K.

    2015-01-01

    Aggregation of amyloid-β (Aβ) peptides is a characteristic pathological feature of Alzheimer's disease. We have exploited the relationship between solvent exposure and intrinsic fluorescence of a single tyrosine residue, Tyr10, in the Aβ sequence to probe structural features of the monomeric, oligomeric and fibrillar forms of the 42-residue Aβ1-42. By monitoring the quenching of Tyr10 fluorescence upon addition of water-soluble acrylamide, we show that in Aβ1-42 oligomers this residue is solvent-exposed to a similar extent to that found in the unfolded monomer. By contrast, Tyr10 is significantly shielded from acrylamide quenching in Aβ1-42 fibrils, consistent with its proximity to the fibrillar cross-β core. Furthermore, circular dichroism measurements reveal that Aβ1-42 oligomers have a considerably lower β-sheet content than the Aβ1-42 fibrils, indicative of a less ordered molecular arrangement in the former. Taken together these findings suggest significant differences in the structural assembly of oligomers and fibrils that are consistent with differences in their biological effects. PMID:26551456

  5. Crowding alone cannot account for cosolute effect on amyloid aggregation.

    Directory of Open Access Journals (Sweden)

    Shahar Sukenik

    Full Text Available Amyloid fiber formation is a specific form of protein aggregation, often resulting from the misfolding of native proteins. Aimed at modeling the crowded environment of the cell, recent experiments showed a reduction in fibrillation halftimes for amyloid-forming peptides in the presence of cosolutes that are preferentially excluded from proteins and peptides. The effect of excluded cosolutes has previously been attributed to the large volume excluded by such inert cellular solutes, sometimes termed "macromolecular crowding". Here, we studied a model peptide that can fold to a stable monomeric β-hairpin conformation, but under certain solution conditions aggregates in the form of amyloid fibrils. Using Circular Dichroism spectroscopy (CD, we found that, in the presence of polyols and polyethylene glycols acting as excluded cosolutes, the monomeric β-hairpin conformation was stabilized with respect to the unfolded state. Stabilization free energy was linear with cosolute concentration, and grew with molecular volume, as would also be predicted by crowding models. After initiating the aggregation process with a pH jump, fibrillation in the presence and absence of cosolutes was followed by ThT fluorescence, transmission electron microscopy, and CD spectroscopy. Polyols (glycerol and sorbitol increased the lag time for fibril formation and elevated the amount of aggregated peptide at equilibrium, in a cosolute size and concentration dependent manner. However, fibrillation rates remained almost unaffected by a wide range of molecular weights of soluble polyethylene glycols. Our results highlight the importance of other forces beyond the excluded volume interactions responsible for crowding that may contribute to the cosolute effects acting on amyloid formation.

  6. New Cyclolignans from Origanumglandulosum Active Against b -amyloid Aggregation

    Directory of Open Access Journals (Sweden)

    Abdelkader Basli

    2014-05-01

    Full Text Available Origanum glandulosum Desf is an endemic flavoring herb widely distributed in North Africa that is commonly used in traditional medicine. This oregano species is rich in essential oils but little is known about its phenolic composition. In the present study, a crude extract of O. glandulosum was prepared in order to isolate and investigate its neuroprotective potential to inhibit β-amyloid peptide (Aβ aggregation. The three major compounds of the extract were isolated: rosmarinic acid and two cyclolignans in Origanum genus, globoidnan A and a new derivative named globoidnan B. Rosmarinic acid and globoidnan A showed significant anti-aggregative activity against β amyloid aggregation (IC50 7.0 and 12.0 µM, respectively. In contrast, globoidnan B was found to be less active.

  7. Influence of hydrophobic Teflon particles on the structure of amyloid beta-peptide

    NARCIS (Netherlands)

    Giacomelli, CE; Norde, W

    2003-01-01

    The amyloid beta-protein (Abeta) constitutes the major peptide component of the amyloid plaque deposits of Alzheimer's disease in humans. The Abeta changes from a nonpathogenic to a pathogenic conformation resulting in self-aggregation and deposition of the peptide. It has been established that dena

  8. Alzheimer's disease amyloid peptides interact with DNA, as proved by surface plasmon resonance.

    Science.gov (United States)

    Barrantes, Alejandro; Camero, Sergio; Garcia-Lucas, Angel; Navarro, Pedro J; Benitez, María J; Jiménez, Juan S

    2012-10-01

    According to the amyloid hypothesis, abnormal processing of the β-amyloid precursor protein in Alzheimer's disease patients increases the production of β-amyloid toxic peptides, which, after forming highly aggregated fibrillar structures, lead to extracellular plaques formation, neuronal loss and dementia. However, a great deal of evidence has point to intracellular small oligomers of amyloid peptides, probably transient intermediates in the process of fibrillar structures formation, as the most toxic species. In order to study the amyloid-DNA interaction, we have selected here three different forms of the amyloid peptide: Aβ1-40, Aβ25-35 and a scrambled form of Aβ25-35. Surface Plasmon Resonance was used together with UV-visible spectroscopy, Electrophoresis and Electronic Microscopy to carry out this study. Our results prove that, similarly to the full length Aβ1-42, all conformations of toxic amyloid peptides, Aβ1-40 and Aβ25-35, may bind DNA. In contrast, the scrambled form of Aβ25-35, a non-aggregating and nontoxic form of this peptide, could not bind DNA. We conclude that although the amyloid-DNA interaction is closely related to the amyloid aggregation proneness, this cannot be the only factor which determines the interaction, since small oligomers of amyloid peptides may also bind DNA if their predominant negatively charged amino acid residues are previously neutralized.

  9. Investigating the structural changes of β-amyloid peptide aggregation using attenuated-total-reflection surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Chiu, K.-C.; Yu, L.-Y.; Yih, J.-N.; Chen, S.-J.

    2007-02-01

    This study utilizes a surface-enhanced Raman spectroscopy (SERS) based on the attenuated-total-reflection (ATR) method to investigate that the structural information of the biomolecular monolayer on sensing surface can be dynamically observed with a higher signal-to-noise ratio signal. The secondary structures of long oligonucleotides and their influence on the DNA hybridization on the sensing surface are investigated. The SERS spectrum provides the structural information of the oligonucleotides with the help of a silver colloidal nanoparticle monolayer by control of the size and distribution of the nanoparticles adapted as a Raman active substrate. It is found that the ring-breathing modes of adenine, thymine, guanine, and cytosine in Raman fingerprint associated with three 60mer oligonucleotides with prominent secondary structures are lower than those observed for the two oligonucleotides with no obvious secondary structures. It is also determined that increasing the DNA hybridization temperature from 35°C to 45°C reduces secondary structure effects. The ATR-SERS biosensing technique will be used to provide valuable structural information regarding the short-term reversible interactions and long-term polymerization events in the Aβ aggregates on the sensing surface.

  10. The novel amyloid-beta peptide aptamer inhibits intracellular amyloid-beta peptide toxicity

    Institute of Scientific and Technical Information of China (English)

    Xu Wang; Yi Yang; Mingyue Jia; Chi Ma; Mingyu Wang; Lihe Che; Yu Yang; Jiang Wu

    2013-01-01

    Amyloid β peptide binding alcohol dehydrogenase (ABAD) decoy peptide (DP) can competitively antagonize binding of amyloid β peptide to ABAD and inhibit the cytotoxic effects of amyloid β peptide. Based on peptide aptamers, the present study inserted ABAD-DP into the disulfide bond of human thioredoxin (TRX) using molecular cloning technique to construct a fusion gene that can express the TRX1-ABAD-DP-TRX2 aptamer. Moreover, adeno-associated virus was used to allow its stable expression. Immunofluorescent staining revealed the co-expression of the transduced fusion gene TRX1-ABAD-DP-TRX2 and amyloid β peptide in NIH-3T3 cells, indicating that the TRX1-ABAD-DP-TRX2 aptamer can bind amyloid β peptide within cells. In addition, cell morphology and MTT results suggested that TRX1-ABAD-DP-TRX2 attenuated amyloid β peptide-induced SH-SY5Y cell injury and improved cell viability. These findings confirmed the possibility of constructing TRX-based peptide aptamer using ABAD-DP. Moreover, TRX1-ABAD-DP-TRX2 inhibited the cytotoxic effect of amyloid β peptide.

  11. Interaction of amyloid inhibitor proteins with amyloid beta peptides: insight from molecular dynamics simulations.

    Directory of Open Access Journals (Sweden)

    Payel Das

    Full Text Available Knowledge of the detailed mechanism by which proteins such as human αB- crystallin and human lysozyme inhibit amyloid beta (Aβ peptide aggregation is crucial for designing treatment for Alzheimer's disease. Thus, unconstrained, atomistic molecular dynamics simulations in explicit solvent have been performed to characterize the Aβ17-42 assembly in presence of the αB-crystallin core domain and of lysozyme. Simulations reveal that both inhibitor proteins compete with inter-peptide interaction by binding to the peptides during the early stage of aggregation, which is consistent with their inhibitory action reported in experiments. However, the Aβ binding dynamics appear different for each inhibitor. The binding between crystallin and the peptide monomer, dominated by electrostatics, is relatively weak and transient due to the heterogeneous amino acid distribution of the inhibitor surface. The crystallin-bound Aβ oligomers are relatively long-lived, as they form more extensive contact surface with the inhibitor protein. In contrast, a high local density of arginines from lysozyme allows strong binding with Aβ peptide monomers, resulting in stable complexes. Our findings not only illustrate, in atomic detail, how the amyloid inhibitory mechanism of human αB-crystallin, a natural chaperone, is different from that of human lysozyme, but also may aid de novo design of amyloid inhibitors.

  12. NNanomechanical characteristics of proteins and peptides in amyloid

    OpenAIRE

    Boayue, Nya Mehnwolo

    2012-01-01

    ......The understanding of the aggregation of amyloid fibrils is essential as they are linked to a number of diseases such as Alzheimer and Parkston’s disease. Amy- loids from different proteins or peptides have common characteristics such as core β-sheet structure, green birefringence upon binding to Congo red, and fibrillar mor- phology. In this thesis, I report single molecule analysis of TTR105−115 a fragment of transthyretin, a serum and cerebrospinal fluid carrier of ...

  13. Medicinal Chemistry Focusing on Aggregation of Amyloid-β.

    Science.gov (United States)

    Sohma, Youhei

    2016-01-01

    The aggregation of peptides/proteins is intimately related to a number of human diseases. More than 20 have been identified which aggregate into fibrils containing extensive β-sheet structures, and species generated in the aggregation processes (i.e., oligomers and fibrils) contribute to disease development. Amyloidpeptide (designated Aβ), related to Alzheimer's disease (AD), is the representative example. The intensive aggregation property of Aβ also leads to difficulty in its synthesis. To improve the synthetic problem, we developed an O-acyl isopeptide of Aβ1-42, in which the N-acyl linkage (amide bond) of Ser(26) was replaced with an O-acyl linkage (ester bond) at the side chain. The O-acyl isopeptide demonstrated markedly higher water-solubility than that of Aβ1-42, while it quickly converted to intact monomer Aβ1-42 via an O-to-N acyl rearrangement under physiological conditions. Inhibition of the pathogenic aggregation of Aβ1-42 might be a therapeutic strategy for curing AD. We succeeded in the rational design and identification of a small molecule aggregation inhibitor based on a pharmacophore motif obtained from cyclo[-Lys-Leu-Val-Phe-Phe-]. Moreover, the inhibition of Aβ aggregation was achieved via oxygenation (i.e., incorporation of oxygen atoms to Aβ) using an artificial catalyst. We identified a selective, cell-compatible photo-oxygenation catalyst of Aβ, a flavin catalyst attached to an Aβ-binding peptide, which markedly decreased the aggregation potency and neurotoxicity of Aβ. PMID:26726739

  14. Medicinal Chemistry Focusing on Aggregation of Amyloid-β.

    Science.gov (United States)

    Sohma, Youhei

    2016-01-01

    The aggregation of peptides/proteins is intimately related to a number of human diseases. More than 20 have been identified which aggregate into fibrils containing extensive β-sheet structures, and species generated in the aggregation processes (i.e., oligomers and fibrils) contribute to disease development. Amyloidpeptide (designated Aβ), related to Alzheimer's disease (AD), is the representative example. The intensive aggregation property of Aβ also leads to difficulty in its synthesis. To improve the synthetic problem, we developed an O-acyl isopeptide of Aβ1-42, in which the N-acyl linkage (amide bond) of Ser(26) was replaced with an O-acyl linkage (ester bond) at the side chain. The O-acyl isopeptide demonstrated markedly higher water-solubility than that of Aβ1-42, while it quickly converted to intact monomer Aβ1-42 via an O-to-N acyl rearrangement under physiological conditions. Inhibition of the pathogenic aggregation of Aβ1-42 might be a therapeutic strategy for curing AD. We succeeded in the rational design and identification of a small molecule aggregation inhibitor based on a pharmacophore motif obtained from cyclo[-Lys-Leu-Val-Phe-Phe-]. Moreover, the inhibition of Aβ aggregation was achieved via oxygenation (i.e., incorporation of oxygen atoms to Aβ) using an artificial catalyst. We identified a selective, cell-compatible photo-oxygenation catalyst of Aβ, a flavin catalyst attached to an Aβ-binding peptide, which markedly decreased the aggregation potency and neurotoxicity of Aβ.

  15. Surface Mediated Self-Assembly of Amyloid Peptides

    Science.gov (United States)

    Fakhraai, Zahra

    2015-03-01

    Amyloid fibrils have been considered as causative agents in many neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, type II diabetes and amyloidosis. Amyloid fibrils form when proteins or peptides misfold into one dimensional crystals of stacked beta-sheets. In solution, amyloid fibrils form through a nucleation and growth mechanism. The rate limiting nucleation step requires a critical concentration much larger than those measured in physiological conditions. As such the exact origins of the seeds or oligomers that result in the formation of fully mature fibrils in the body remain topic intense studies. It has been suggested that surfaces and interfaces can enhance the fibrillization rate. However, studies of the mechanism and kinetics of the surface-mediated fibrillization are technologically challenging due to the small size of the oligomer and protofibril species. Using smart sample preparation technique to dry the samples after various incubation times we are able to study the kinetics of fibril formation both in solution and in the vicinity of various surfaces using high-resolution atomic force microscopy. These studies elucidate the role of surfaces in catalyzing amyloid peptide formation through a nucleation-free process. The nucleation free self-assembly is rapid and requires much smaller concentrations of peptides or proteins. We show that this process resembles diffusion limited aggregation and is governed by the peptide adhesion rate, two -dimensional diffusion of the peptides on the surface, and preferential interactions between the peptides. These studies suggest an alternative pathway for amyloid formation may exist, which could lead to new criteria for disease prevention and alternative therapies. Research was partially supported by a seed grant from the National Institute of Aging of the National Institutes of Health (NIH) under Award Number P30AG010124 (PI: John Trojanowski) and the University of Pennsylvania.

  16. Aggregate geometry in amyloid fibril nucleation

    CERN Document Server

    Irbäck, A; Linnemann, N; Linse, B; Wallin, S; 10.1103/PhysRevLett.110.058101

    2013-01-01

    We present and study a minimal structure-based model for the self-assembly of peptides into ordered beta-sheet-rich fibrils. The peptides are represented by unit-length sticks on a cubic lattice and interact by hydrogen bonding and hydrophobicity forces. By Monte Carlo simulations with >100,000 peptides, we show that fibril formation occurs with sigmoidal kinetics in the model. To determine the mechanism of fibril nucleation, we compute the joint distribution in length and width of the aggregates at equilibrium, using an efficient cluster move and flat-histogram techniques. This analysis, based on simulations with 256 peptides in which aggregates form and dissolve reversibly, shows that the main free-energy barriers that a nascent fibril has to overcome are associated with changes in width.

  17. Exploring new biological functions of amyloids: bacteria cell agglutination mediated by host protein aggregation.

    Directory of Open Access Journals (Sweden)

    Marc Torrent

    Full Text Available Antimicrobial proteins and peptides (AMPs are important effectors of the innate immune system that play a vital role in the prevention of infections. Recent advances have highlighted the similarity between AMPs and amyloid proteins. Using the Eosinophil Cationic Protein as a model, we have rationalized the structure-activity relationships between amyloid aggregation and antimicrobial activity. Our results show how protein aggregation can induce bacteria agglutination and cell death. Using confocal and total internal reflection fluorescence microscopy we have tracked the formation in situ of protein amyloid-like aggregates at the bacteria surface and on membrane models. In both cases, fibrillar aggregates able to bind to amyloid diagnostic dyes were detected. Additionally, a single point mutation (Ile13 to Ala can suppress the protein amyloid behavior, abolishing the agglutinating activity and impairing the antimicrobial action. The mutant is also defective in triggering both leakage and lipid vesicle aggregation. We conclude that ECP aggregation at the bacterial surface is essential for its cytotoxicity. Hence, we propose here a new prospective biological function for amyloid-like aggregates with potential biological relevance.

  18. Interactions driving the collapse of islet amyloid polypeptide: Implications for amyloid aggregation

    Science.gov (United States)

    Cope, Stephanie M.

    Human islet amyloid polypeptide (hIAPP), also known as amylin, is a 37-residue intrinsically disordered hormone involved in glucose regulation and gastric emptying. The aggregation of hIAPP into amyloid fibrils is believed to play a causal role in type 2 diabetes. To date, not much is known about the monomeric state of hIAPP or how it undergoes an irreversible transformation from disordered peptide to insoluble aggregate. IAPP contains a highly conserved disulfide bond that restricts hIAPP(1-8) into a short ring-like structure: N_loop. Removal or chemical reduction of N_loop not only prevents cell response upon binding to the CGRP receptor, but also alters the mass per length distribution of hIAPP fibers and the kinetics of fibril formation. The mechanism by which N_loop affects hIAPP aggregation is not yet understood, but is important for rationalizing kinetics and developing potential inhibitors. By measuring end-to-end contact formation rates, Vaiana et al. showed that N_loop induces collapsed states in IAPP monomers, implying attractive interactions between N_loop and other regions of the disordered polypeptide chain . We show that in addition to being involved in intra-protein interactions, the N_loop is involved in inter-protein interactions, which lead to the formation of extremely long and stable beta-turn fibers. These non-amyloid fibers are present in the 10 muM concentration range, under the same solution conditions in which hIAPP forms amyloid fibers. We discuss the effect of peptide cyclization on both intra- and inter-protein interactions, and its possible implications for aggregation. Our findings indicate a potential role of N_loop-N_loop interactions in hIAPP aggregation, which has not previously been explored. Though our findings suggest that N_loop plays an important role in the pathway of amyloid formation, other naturally occurring IAPP variants that contain this structural feature are incapable of forming amyloids. For example, hIAPP readily

  19. Inhibition of amyloid fibril formation of human amylin by N-alkylated amino acid and alpha-hydroxy acid residue containing peptides

    NARCIS (Netherlands)

    Rijkers, DTS; Hoppener, JWM; Posthuma, G; Lips, CJM; Liskamp, RMJ

    2002-01-01

    Amyloid deposits are formed as a result of uncontrolled aggregation of (poly)peptides or proteins. Today several diseases are known, for example Alzheimer's disease, Creutzfeldt-Jakob disease, mad cow disease, in which amyloid formation is involved. Amyloid fibrils are large aggregates of beta-pleat

  20. Small molecule agents that target amyloidaggregation in Alzheimer's disease

    OpenAIRE

    Jones, Michael Roy

    2015-01-01

    Alzheimer’s disease (AD) is the most common form of dementia and currently there is no cure. AD is characterized by the formation of two pathological hallmarks; aggregated forms of the amyloid-β (Aβ) peptide called Aβ plaques and hyperphosphorylated tau proteins, called neurofibrillary tangles (NFT). Aβ is enzymatically cleaved from the amyloid precursor protein (APP) to afford a 38-43 amino acid residue peptide with Aβ1-40 and Aβ1-42 being the most common. Plaque deposits have been shown to ...

  1. Study of β-amyloid adsorption and aggregation on graphite by STM and AFM

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The scanning tunneling microscopy (STM) and the atomic force microscopy (AFM) have been applied to the direct study of the adsorption and aggregation of β-amyloid(1-42)(Aβ42) on the hydrophobic graphite surface. It was found that Aβ42 were preferentially adsorbed on graphite defects such as the edges. Aβ42 peptides self-assembled into intermediate protofibrils, which in turn self-associated to form fibrils. Usually, two or more fibrils intertwined to form the helical structure. These results will provide an important clue to studying the aggregation process of β-amyloid.

  2. Destruction of amyloid fibrils by graphene through penetration and extraction of peptides.

    Science.gov (United States)

    Yang, Zaixing; Ge, Cuicui; Liu, Jiajia; Chong, Yu; Gu, Zonglin; Jimenez-Cruz, Camilo A; Chai, Zhifang; Zhou, Ruhong

    2015-11-28

    Current therapies for Alzheimer's disease (AD) can provide a moderate symptomatic reduction or delay progression at various stages of the disease, but such treatments ultimately do not arrest the advancement of AD. As such, novel approaches for AD treatment and prevention are urgently needed. We here provide both experimental and computational evidence that pristine graphene and graphene-oxide nanosheets can inhibit Aβ peptide monomer fibrillation and clear mature amyloid fibrils, thus impacting the central molecular superstructures correlated with AD pathogenesis. Our molecular dynamics simulations for the first time reveal that graphene nanosheets can penetrate and extract a large number of peptides from pre-formed amyloid fibrils; these effects seem to be related to exceptionally strong dispersion interactions between peptides and graphene that are further enhanced by strong π-π stacking between the aromatic residues of extracted Aβ peptides and the graphene surface. Atomic force microscopy images confirm these predictions by demonstrating that mature amyloid fibrils can be cut into pieces and cleared by graphene oxides. Thioflavin fluorescence assays further illustrate the detailed dynamic processes by which graphene induces inhibition of monomer aggregation and clearance of mature amyloid fibrils, respectively. Cell viability and ROS assays indicate that graphene oxide can indeed mitigate cytotoxicity of Aβ peptide amyloids. Our findings provide new insights into the underlying molecular mechanisms that define graphene-amyloid interaction and suggest that further research on nanotherapies for Alzheimer's and other protein aggregation-related diseases is warranted.

  3. Amyloid Beta-peptide (25-35) changes (Ca2+) in hippocampal neurons

    DEFF Research Database (Denmark)

    Mogensen, Helle Smidt; Beatty, Diane; Morris, Stephen;

    1998-01-01

    neuroscience, Alzheimer, calcium ion, hippocampal neurons, amyloid-beta-peptide, hydrogen ion, rat......neuroscience, Alzheimer, calcium ion, hippocampal neurons, amyloid-beta-peptide, hydrogen ion, rat...

  4. First selective dual inhibitors of tau phosphorylation and Beta-amyloid aggregation, two major pathogenic mechanisms in Alzheimer's disease.

    Science.gov (United States)

    Mariano, Marica; Schmitt, Christian; Miralinaghi, Parisa; Catto, Marco; Hartmann, Rolf W; Carotti, Angelo; Engel, Matthias

    2014-12-17

    In Alzheimer's disease (AD), multiple factors account for the accumulation of neurocellular changes, which may begin several years before symptoms appear. The most important pathogenic brain changes that are contributing to the development of AD are the formation of the cytotoxic β-amyloid aggregates and of the neurofibrillary tangles, which originate from amyloidpeptides and hyperphosphorylated tau protein, respectively. New therapeutic agents that target both major pathogenic mechanisms may be particularly efficient. In this study, we introduce bis(hydroxyphenyl)-substituted thiophenes as a novel class of selective, dual inhibitors of the tau kinase Dyrk1A and of the amyloidaggregation. PMID:25247807

  5. Molecular Structure of Aggregated Amyloid-β: Insights from Solid-State Nuclear Magnetic Resonance.

    Science.gov (United States)

    Tycko, Robert

    2016-01-01

    Amyloid-β (Aβ) peptides aggregate to form polymorphic amyloid fibrils and a variety of intermediate assemblies, including oligomers and protofibrils, both in vitro and in human brain tissue. Since the beginning of the 21st century, considerable progress has been made to characterize the molecular structures of Aβ aggregates. Full molecular structural models based primarily on data from measurements using solid-state nuclear magnetic resonance (ssNMR) have been developed for several in vitro Aβ fibrils and one metastable protofibril. Partial structural characterization of other aggregation intermediates has been achieved. One full structural model for fibrils derived from brain tissue has also been reported. Future work is likely to focus on additional structures from brain tissue and on further clarification of nonfibrillar Aβ aggregates. PMID:27481836

  6. Methionine oxidation of amyloid peptides by peroxovanadium complexes: inhibition of fibril formation through a distinct mechanism.

    Science.gov (United States)

    He, Lei; Wang, Xuesong; Zhu, Dengsen; Zhao, Cong; Du, Weihong

    2015-12-01

    Fibril formation of amyloid peptides is linked to a number of pathological states. The prion protein (PrP) and amyloid-β (Aβ) are two remarkable examples that are correlated with prion disorders and Alzheimer's disease, respectively. Metal complexes, such as those formed by platinum and ruthenium compounds, can act as inhibitors against peptide aggregation primarily through metal coordination. This study revealed the inhibitory effect of two peroxovanadium complexes, (NH4)[VO(O2)2(bipy)]·4H2O (1) and (NH4)[VO(O2)2(phen)]·2H2O (2), on amyloid fibril formation of PrP106-126 and Aβ1-42via site-specific oxidation of methionine residues, besides direct binding of the complexes with the peptides. Complexes 1 and 2 showed higher anti-amyloidogenic activity on PrP106-126 aggregation than on Aβ1-42, though their regulation on the cytotoxicity induced by the two peptides could not be differentiated. The action efficacy may be attributed to the different molecular structures of the vanadium complex and the peptide sequence. Results reflected that methionine oxidation may be a crucial action mode in inhibiting amyloid fibril formation. This study offers a possible application value for peroxovanadium complexes against amyloid proteins.

  7. Methionine oxidation of amyloid peptides by peroxovanadium complexes: inhibition of fibril formation through a distinct mechanism.

    Science.gov (United States)

    He, Lei; Wang, Xuesong; Zhu, Dengsen; Zhao, Cong; Du, Weihong

    2015-12-01

    Fibril formation of amyloid peptides is linked to a number of pathological states. The prion protein (PrP) and amyloid-β (Aβ) are two remarkable examples that are correlated with prion disorders and Alzheimer's disease, respectively. Metal complexes, such as those formed by platinum and ruthenium compounds, can act as inhibitors against peptide aggregation primarily through metal coordination. This study revealed the inhibitory effect of two peroxovanadium complexes, (NH4)[VO(O2)2(bipy)]·4H2O (1) and (NH4)[VO(O2)2(phen)]·2H2O (2), on amyloid fibril formation of PrP106-126 and Aβ1-42via site-specific oxidation of methionine residues, besides direct binding of the complexes with the peptides. Complexes 1 and 2 showed higher anti-amyloidogenic activity on PrP106-126 aggregation than on Aβ1-42, though their regulation on the cytotoxicity induced by the two peptides could not be differentiated. The action efficacy may be attributed to the different molecular structures of the vanadium complex and the peptide sequence. Results reflected that methionine oxidation may be a crucial action mode in inhibiting amyloid fibril formation. This study offers a possible application value for peroxovanadium complexes against amyloid proteins. PMID:26444976

  8. The Effect of Glycosaminoglycans (GAGs on Amyloid Aggregation and Toxicity

    Directory of Open Access Journals (Sweden)

    Clara Iannuzzi

    2015-02-01

    Full Text Available Amyloidosis is a protein folding disorder in which normally soluble proteins are deposited extracellularly as insoluble fibrils, impairing tissue structure and function. Charged polyelectrolytes such as glycosaminoglycans (GAGs are frequently found associated with the proteinaceous deposits in tissues of patients affected by amyloid diseases. Experimental evidence indicate that they can play an active role in favoring amyloid fibril formation and stabilization. Binding of GAGs to amyloid fibrils occurs mainly through electrostatic interactions involving the negative polyelectrolyte charges and positively charged side chains residues of aggregating protein. Similarly to catalyst for reactions, GAGs favor aggregation, nucleation and amyloid fibril formation functioning as a structural templates for the self-assembly of highly cytotoxic oligomeric precursors, rich in β-sheets, into harmless amyloid fibrils. Moreover, the GAGs amyloid promoting activity can be facilitated through specific interactions via consensus binding sites between amyloid polypeptide and GAGs molecules. We review the effect of GAGs on amyloid deposition as well as proteins not strictly related to diseases. In addition, we consider the potential of the GAGs therapy in amyloidosis.

  9. Vitamin k3 inhibits protein aggregation: Implication in the treatment of amyloid diseases

    Science.gov (United States)

    Alam, Parvez; Chaturvedi, Sumit Kumar; Siddiqi, Mohammad Khursheed; Rajpoot, Ravi Kant; Ajmal, Mohd Rehan; Zaman, Masihuz; Khan, Rizwan Hasan

    2016-01-01

    Protein misfolding and aggregation have been associated with several human diseases such as Alzheimer’s, Parkinson’s and familial amyloid polyneuropathy etc. In this study, anti-fibrillation activity of vitamin k3 and its effect on the kinetics of amyloid formation of hen egg white lysozyme (HEWL) and Aβ-42 peptide were investigated. Here, in combination with Thioflavin T (ThT) fluorescence assay, circular dichroism (CD), transmission electron microscopy and cell cytotoxicity assay, we demonstrated that vitamin k3 significantly inhibits fibril formation as well as the inhibitory effect is dose dependent manner. Our experimental studies inferred that vitamin k3 exert its neuro protective effect against amyloid induced cytotoxicity through concerted pathway, modifying the aggregation formation towards formation of nontoxic aggregates. Molecular docking demonstrated that vitamin k3 mediated inhibition of HEWL and Aβ-42 fibrillogenesis may be initiated by interacting with proteolytic resistant and aggregation prone regions respectively. This work would provide an insight into the mechanism of protein aggregation inhibition by vitamin k3; pave the way for discovery of other small molecules that may exert similar effect against amyloid formation and its associated neurodegenerative diseases. PMID:27230476

  10. Modeling Amyloid Beta Peptide Insertion into Lipid Bilayers

    CERN Document Server

    Mobley, D L; Singh, R R P; Maddox, M W; Longo, M J; Mobley, David L.; Cox, Daniel L.; Singh, Rajiv R. P.; Maddox, Michael W.; Longo, Marjorie L.

    2003-01-01

    Inspired by recent suggestions that the Alzheimer's amyloid beta peptide (A-beta), can insert into cell membranes and form harmful ion channels, we model insertion of the peptide into cell membranes using a Monte Carlo code which is specific at the amino acid level. We examine insertion of the regular A-beta peptide as well as mutants causing familial Alzheimer's disease. We present our results and develop the hypothesis that partial insertion into the membrane, leaving the peptide in one leaflet, increases the probability of harmful channel formation. This hypothesis can partly explain why these mutations are neurotoxic simply due to peptide insertion behavior, and also explains why, normally, A-beta 42 is more toxic to some cultured cells than A-beta 40, but the E22Q mutation reverses this effect. We further apply this model to various artificial A-beta mutants which have been examined experimentally, and offer testable experimental predictions contrasting the roles of aggregation and insertion with regard ...

  11. CPAD, Curated Protein Aggregation Database: A Repository of Manually Curated Experimental Data on Protein and Peptide Aggregation.

    Science.gov (United States)

    Thangakani, A Mary; Nagarajan, R; Kumar, Sandeep; Sakthivel, R; Velmurugan, D; Gromiha, M Michael

    2016-01-01

    Accurate distinction between peptide sequences that can form amyloid-fibrils or amorphous β-aggregates, identification of potential aggregation prone regions in proteins, and prediction of change in aggregation rate of a protein upon mutation(s) are critical to research on protein misfolding diseases, such as Alzheimer's and Parkinson's, as well as biotechnological production of protein based therapeutics. We have developed a Curated Protein Aggregation Database (CPAD), which has collected results from experimental studies performed by scientific community aimed at understanding protein/peptide aggregation. CPAD contains more than 2300 experimentally observed aggregation rates upon mutations in known amyloidogenic proteins. Each entry includes numerical values for the following parameters: change in rate of aggregation as measured by fluorescence intensity or turbidity, name and source of the protein, Uniprot and Protein Data Bank codes, single point as well as multiple mutations, and literature citation. The data in CPAD has been supplemented with five different types of additional information: (i) Amyloid fibril forming hexa-peptides, (ii) Amorphous β-aggregating hexa-peptides, (iii) Amyloid fibril forming peptides of different lengths, (iv) Amyloid fibril forming hexa-peptides whose crystal structures are available in the Protein Data Bank (PDB) and (v) Experimentally validated aggregation prone regions found in amyloidogenic proteins. Furthermore, CPAD is linked to other related databases and resources, such as Uniprot, Protein Data Bank, PUBMED, GAP, TANGO, WALTZ etc. We have set up a web interface with different search and display options so that users have the ability to get the data in multiple ways. CPAD is freely available at http://www.iitm.ac.in/bioinfo/CPAD/. The potential applications of CPAD have also been discussed. PMID:27043825

  12. CPAD, Curated Protein Aggregation Database: A Repository of Manually Curated Experimental Data on Protein and Peptide Aggregation.

    Directory of Open Access Journals (Sweden)

    A Mary Thangakani

    Full Text Available Accurate distinction between peptide sequences that can form amyloid-fibrils or amorphous β-aggregates, identification of potential aggregation prone regions in proteins, and prediction of change in aggregation rate of a protein upon mutation(s are critical to research on protein misfolding diseases, such as Alzheimer's and Parkinson's, as well as biotechnological production of protein based therapeutics. We have developed a Curated Protein Aggregation Database (CPAD, which has collected results from experimental studies performed by scientific community aimed at understanding protein/peptide aggregation. CPAD contains more than 2300 experimentally observed aggregation rates upon mutations in known amyloidogenic proteins. Each entry includes numerical values for the following parameters: change in rate of aggregation as measured by fluorescence intensity or turbidity, name and source of the protein, Uniprot and Protein Data Bank codes, single point as well as multiple mutations, and literature citation. The data in CPAD has been supplemented with five different types of additional information: (i Amyloid fibril forming hexa-peptides, (ii Amorphous β-aggregating hexa-peptides, (iii Amyloid fibril forming peptides of different lengths, (iv Amyloid fibril forming hexa-peptides whose crystal structures are available in the Protein Data Bank (PDB and (v Experimentally validated aggregation prone regions found in amyloidogenic proteins. Furthermore, CPAD is linked to other related databases and resources, such as Uniprot, Protein Data Bank, PUBMED, GAP, TANGO, WALTZ etc. We have set up a web interface with different search and display options so that users have the ability to get the data in multiple ways. CPAD is freely available at http://www.iitm.ac.in/bioinfo/CPAD/. The potential applications of CPAD have also been discussed.

  13. Design of non-aggregating variants of Aβ peptide

    Energy Technology Data Exchange (ETDEWEB)

    Caine, Joanne M., E-mail: jo.caine@csiro.au [CSIRO Materials Science and Engineering, 343 Royal Parade, Parkville, Victoria 3052 (Australia); Preventative Health Flagship, 343 Royal Parade, Parkville, Victoria 3052 (Australia); CRC for Mental Health, Level 2, 161 Barry Street, Carlton South, Victoria 3053 (Australia); Churches, Quentin; Waddington, Lynne [CSIRO Materials Science and Engineering, 343 Royal Parade, Parkville, Victoria 3052 (Australia); Preventative Health Flagship, 343 Royal Parade, Parkville, Victoria 3052 (Australia); Nigro, Julie; Breheney, Kerry [CSIRO Materials Science and Engineering, 343 Royal Parade, Parkville, Victoria 3052 (Australia); Preventative Health Flagship, 343 Royal Parade, Parkville, Victoria 3052 (Australia); CRC for Mental Health, Level 2, 161 Barry Street, Carlton South, Victoria 3053 (Australia); Masters, Colin L. [CRC for Mental Health, Level 2, 161 Barry Street, Carlton South, Victoria 3053 (Australia); Florey Institute for Neuroscience and Mental Health, 30 Royal Parade, Parkville, Victoria 3052 (Australia); Nuttall, Stewart D. [CSIRO Materials Science and Engineering, 343 Royal Parade, Parkville, Victoria 3052 (Australia); Preventative Health Flagship, 343 Royal Parade, Parkville, Victoria 3052 (Australia); CRC for Mental Health, Level 2, 161 Barry Street, Carlton South, Victoria 3053 (Australia); Streltsov, Victor A., E-mail: victor.streltsov@csiro.au [CSIRO Materials Science and Engineering, 343 Royal Parade, Parkville, Victoria 3052 (Australia); Preventative Health Flagship, 343 Royal Parade, Parkville, Victoria 3052 (Australia); CRC for Mental Health, Level 2, 161 Barry Street, Carlton South, Victoria 3053 (Australia)

    2014-10-24

    Highlights: • Non-aggregating, non-toxic variants of Aβ peptide were designed using Aβ structure. • Mutations reduce aggregation by stabilising Aβ into small non-toxic oligomers. • Identification of these residues will assist the design of future therapeutic peptides. - Abstract: Self association of the amyloid-β (Aβ{sub 42}) peptide into oligomers, high molecular weight forms, fibrils and ultimately neuritic plaques, has been correlated with progressive cognitive decline in Alzheimer’s disease. Thus, insights into the drivers of the aggregation pathway have the capacity to significantly contribute to our understanding of disease mechanism. Functional assays and a three-dimensional crystal structure of the P3 amyloidogenic region 18–41 of Aβ were used to identify residues important in self-association and to design novel non-aggregating variants of the peptide. Biophysical studies (gel filtration, SDS–PAGE, dynamic light scattering, thioflavin T assay, and electron microscopy) demonstrate that in contrast to wild type Aβ these targeted mutations lose the ability to self-associate. Loss of aggregation also correlates with reduced neuronal toxicity. Our results highlight residues and regions of the Aβ peptide important for future targeting agents aimed at the amelioration of Alzheimer’s disease.

  14. Monte Carlo simulations of protein amyloid formation reveal origin of sigmoidal aggregation kinetics.

    Science.gov (United States)

    Linse, Björn; Linse, Sara

    2011-07-01

    Severe conditions and lack of cure for many amyloid diseases make it highly desired to understand the underlying principles of formation of fibrillar aggregates (amyloid). Here, amyloid formation from peptides was studied using Monte Carlo simulations. Systems of 20, 50, 100, 200 or 500 hexapeptides were simulated. Association kinetics were modeled equal for fibrillar and other (inter- and intra-peptide) contacts and assumed to be faster the lower the effective contact order, which represents the distance in space. Attempts to form contacts were thus accepted with higher probability the lower the effective contact order, whereby formation of new contacts next to preexisting ones is favored by shorter physical separation. Kinetic discrimination was invoked by using two different life-times for formed contacts. Contacts within amyloid fibrils were assumed to have on average longer life-time than other contacts. We find that the model produces fibrillation kinetics with a distinct lag phase, and that the fibrillar contacts need to dissociate on average 5-20 times slower than all other contacts for the fibrillar structure to dominate at equilibrium. Analysis of the species distribution along the aggregation process shows that no other intermediate is ever more populated than the dimer. Instead of a single nucleation event there is a concomitant increase in average aggregate size over the whole system, and the occurrence of multiple parallel processes makes the process more reproducible the larger the simulated system. The sigmoidal shape of the aggregation curves arises from cooperativity among multiple interactions within each pair of peptides in a fibril. A governing factor is the increasing probability as the aggregation process proceeds of neighboring reinforcing contacts. The results explain the very strong bias towards cross β-sheet fibrils in which the possibilities for cooperativity among interactions involving neighboring residues and the repetitive use of

  15. Catechins and procyanidins of Ginkgo biloba show potent activities towards the inhibition of β-amyloid peptide aggregation and destabilization of preformed fibrils.

    Science.gov (United States)

    Xie, Haiyan; Wang, Jing-Rong; Yau, Lee-Fong; Liu, Yong; Liu, Liang; Han, Quan-Bin; Zhao, Zhongzhen; Jiang, Zhi-Hong

    2014-04-22

    Catechins and procyanidins, together with flavonoid glycosides and terpene trilactones, are three important categories of components in the standard extract of Ginkgo biloba leaves (EGb761). In this research, catechins and proanthocyanidins were found to exist in both the extract of Ginkgo leaves and Ginkgo products. By comparing with reference compounds, six of them were identified as (+)-catechin, (-)-epicatechin, (-)-gallocatechin, (-)-epigallocatechin and procyanidins B1 and B3. The activities of these polyphenols in the inhibition of Aβ42 aggregation and the destabilization of preformed fibrils were evaluated using biochemical assays, which showed that all six of the polyphenols, as well as a fraction of the extract of Ginkgo biloba leaves (EGb) containing catechins and procyanidins, exerted potent inhibitory activities towards Aβ42 aggregation and could also destabilize the performed fibrils. Catechins and procyanidins can therefore be regarded as the potent active constituents of EGb761 in terms of their inhibition of Aβ42 aggregation and destabilization of the fibrils. Although quantitative mass spectroscopic analysis revealed that the catechins and procyanidins are only present in low concentrations in EGb761, these components should be studied in greater detail because of their potent inhibitory effects towards Aβ42 aggregation and their ability to destabilize preformed fibrils, especially during the quality control of Ginkgo leaves and the manufacture of Ginkgo products.

  16. Catechins and Procyanidins of Ginkgo biloba Show Potent Activities towards the Inhibition of β-Amyloid Peptide Aggregation and Destabilization of Preformed Fibrils

    Directory of Open Access Journals (Sweden)

    Haiyan Xie

    2014-04-01

    Full Text Available Catechins and procyanidins, together with flavonoid glycosides and terpene trilactones, are three important categories of components in the standard extract of Ginkgo biloba leaves (EGb761. In this research, catechins and proanthocyanidins were found to exist in both the extract of Ginkgo leaves and Ginkgo products. By comparing with reference compounds, six of them were identified as (+-catechin, (−-epicatechin, (−-gallocatechin, (−-epigallocatechin and procyanidins B1 and B3. The activities of these polyphenols in the inhibition of Aβ42 aggregation and the destabilization of preformed fibrils were evaluated using biochemical assays, which showed that all six of the polyphenols, as well as a fraction of the extract of Ginkgo biloba leaves (EGb containing catechins and procyanidins, exerted potent inhibitory activities towards Aβ42 aggregation and could also destabilize the performed fibrils. Catechins and procyanidins can therefore be regarded as the potent active constituents of EGb761 in terms of their inhibition of Aβ42 aggregation and destabilization of the fibrils. Although quantitative mass spectroscopic analysis revealed that the catechins and procyanidins are only present in low concentrations in EGb761, these components should be studied in greater detail because of their potent inhibitory effects towards Aβ42 aggregation and their ability to destabilize preformed fibrils, especially during the quality control of Ginkgo leaves and the manufacture of Ginkgo products.

  17. Lipid rafts participate in aberrant degradative autophagic-lysosomal pathway of amyloid-beta peptide in Alzheimer’s disease

    Institute of Scientific and Technical Information of China (English)

    Xin Zhou; Chun Yang; Yufeng Liu; Peng Li; Huiying Yang; Jingxing Dai; Rongmei Qu; Lin Yuan

    2014-01-01

    Amyloid-beta peptide is the main component of amyloid plaques, which are found in Alzhei-mer’s disease. The generation and deposition of amyloid-beta is one of the crucial factors for the onset and progression of Alzheimer’s disease. Lipid rafts are glycolipid-rich liquid domains of the plasma membrane, where certain types of protein tend to aggregate and intercalate. Lipid rafts are involved in the generation of amyloid-beta oligomers and the formation of amyloid-beta peptides. In this paper, we review the mechanism by which lipid rafts disturb the aberrant deg-radative autophagic-lysosomal pathway of amyloid-beta, which plays an important role in the pathological process of Alzheimer’s disease. Moreover, we describe this mechanism from the view of the Two-system Theory of fasciology and thus, suggest that lipid rafts may be a new target of Alzheimer’s disease treatment.

  18. Tau/Amyloid Beta 42 Peptide Test (Alzheimer Biomarkers)

    Science.gov (United States)

    ... helpful? Also known as: Alzheimer Biomarkers Formal name: Tau Protein and Amyloid Beta 42 Peptide Related tests: Phosporylated ... should know? How is it used? Tests for Tau protein and Aß42 may be used as supplemental tests ...

  19. Destruction of amyloid fibrils by graphene through penetration and extraction of peptides

    Science.gov (United States)

    Yang, Zaixing; Ge, Cuicui; Liu, Jiajia; Chong, Yu; Gu, Zonglin; Jimenez-Cruz, Camilo A.; Chai, Zhifang; Zhou, Ruhong

    2015-11-01

    Current therapies for Alzheimer's disease (AD) can provide a moderate symptomatic reduction or delay progression at various stages of the disease, but such treatments ultimately do not arrest the advancement of AD. As such, novel approaches for AD treatment and prevention are urgently needed. We here provide both experimental and computational evidence that pristine graphene and graphene-oxide nanosheets can inhibit Aβ peptide monomer fibrillation and clear mature amyloid fibrils, thus impacting the central molecular superstructures correlated with AD pathogenesis. Our molecular dynamics simulations for the first time reveal that graphene nanosheets can penetrate and extract a large number of peptides from pre-formed amyloid fibrils; these effects seem to be related to exceptionally strong dispersion interactions between peptides and graphene that are further enhanced by strong π-π stacking between the aromatic residues of extracted Aβ peptides and the graphene surface. Atomic force microscopy images confirm these predictions by demonstrating that mature amyloid fibrils can be cut into pieces and cleared by graphene oxides. Thioflavin fluorescence assays further illustrate the detailed dynamic processes by which graphene induces inhibition of monomer aggregation and clearance of mature amyloid fibrils, respectively. Cell viability and ROS assays indicate that graphene oxide can indeed mitigate cytotoxicity of Aβ peptide amyloids. Our findings provide new insights into the underlying molecular mechanisms that define graphene-amyloid interaction and suggest that further research on nanotherapies for Alzheimer's and other protein aggregation-related diseases is warranted.Current therapies for Alzheimer's disease (AD) can provide a moderate symptomatic reduction or delay progression at various stages of the disease, but such treatments ultimately do not arrest the advancement of AD. As such, novel approaches for AD treatment and prevention are urgently needed. We

  20. ToF-SIMS analysis of amyloid beta aggregation on different lipid membranes.

    Science.gov (United States)

    Yokoyama, Yuta; Aoyagi, Satoka; Shimanouchi, Toshinori; Iwamura, Miki; Iwai, Hideo

    2016-06-01

    Amyloid beta (Aβ) peptides are considered to be strongly related to Alzheimer's disease. Aβ peptides form a β-sheet structure on hard lipid membranes and it would aggregate to form amyloid fibrils, which are toxic to cells. However, the aggregation mechanism of Aβ is not fully understood. To evaluate the influence of the lipid membrane condition for Aβ aggregation, the adsorption forms of Aβ (1-40) on mixture membranes of lipid 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and cholesterol β-d-glucoside (β-CG) were investigated by time-of-flight secondary ion mass spectrometry. As a result, Aβ adsorbed along the localized DMPC lipid on the mixture lipid membranes, whereas it was adsorbed homogeneously on the pure DMPC and β-CG membranes. Moreover, amino acid fragments that mainly existed in the n-terminal of Aβ (1-40) peptide were strongly detected on the localized DMPC region. These results suggested that the Aβ was adsorbed along the localized DMPC lipid with a characteristic orientation. These findings suggest that the hardness of the membrane is very sensitive to coexisting materials and that surface hardness is important for aggregation of Aβ. PMID:26822505

  1. Structure, orientation, and surface interaction of Alzheimer amyloidpeptides on the graphite.

    Science.gov (United States)

    Yu, Xiang; Wang, Qiuming; Lin, Yinan; Zhao, Jun; Zhao, Chao; Zheng, Jie

    2012-04-24

    The misfolding and aggregation of amyloid-β (Aβ) peptides into amyloid fibrils in solution and on the cell membrane has been linked to the pathogenesis of Alzheimer's disease. Although it is well-known that the presence of different surfaces can accelerate the aggregation of Aβ peptides into fibrils, surface-induced conformation, orientation, aggregation, and adsorption of Aβ peptides have not been well understood at the atomic level. Here, we perform all-atom explicit-water molecular dynamics (MD) simulations to study the orientation change, conformational dynamics, surface interaction of small Aβ aggregates with different sizes (monomer to tetramer), and conformations (α-helix and β-hairpin) upon adsorption on the graphite surface, in comparison with Aβ structures in bulk solution. Simulation results show that hydrophobic graphite induces the quick adsorption of Aβ peptides regardless of their initial conformations and sizes. Upon the adsorption, Aβ prefers to adopt random structure for monomers and to remain β-rich-structure for small oligomers, but not helical structures. More importantly, due to the amphiphilic sequence of Aβ and the hydrophobic nature of graphite, hydrophobic C-terminal residues of higher-order Aβ oligomers appear to have preferential interactions with the graphite surface for facilitating Aβ fibril formation and fibril growth. In combination of atomic force microscopy (AFM) images and MD simulation results, a postulated mechanism is proposed to describe the structure and kinetics of Aβ aggregation from aqueous solution to the graphite surface, providing parallel insights into Aβ aggregation on biological cell membranes.

  2. Aggregation prone amyloid-β⋅CuII Species formed on the millisecond timescale at mildly acidic conditions

    DEFF Research Database (Denmark)

    Pedersen, Jeppe Trudslev; Borg, Christian Bernsen; Michaels, Thomas C. T.;

    2015-01-01

    Metal ions and their interaction with the amyloid beta (Aβ) peptide might be key elements in the development of Alzheimer's disease. In this work the effect of CuII on the aggregation of Aβ is explored on a timescale from milliseconds to days, both at physiological pH and under mildly acidic...

  3. PH-controlled aggregation polymorphism of amyloidogenic Aβ (16-22) : Insights for obtaining peptide tapes and peptide nanotubes, as function of the N -terminal capping moiety

    NARCIS (Netherlands)

    Elgersma, Ronald C.; Kroon - Batenburg, Louise; Posthuma, George; Meeldijk, Johannes D.; Rijkers, Dirk T S; Liskamp, Rob M J

    2014-01-01

    Peptide and protein self-assembly resulting in the formation of amyloidogenic aggregates is generally thought of as a pathological event associated with severe diseases. However, amyloid formation may also provide a basis for advanced bionanomaterials, since amyloid fibrils combine unique material-l

  4. AMYLOIDPEPTIDE BINDS TO MICROTUBULE-ASSOCIATED PROTEIN 1B (MAP1B)

    Science.gov (United States)

    Gevorkian, Goar; Gonzalez-Noriega, Alfonso; Acero, Gonzalo; Ordoñez, Jorge; Michalak, Colette; Munguia, Maria Elena; Govezensky, Tzipe; Cribbs, David H.; Manoutcharian, Karen

    2008-01-01

    Extracellular and intraneuronal formation of amyloid-beta aggregates have been demonstrated to be involved in the pathogenesis of Alzheimer’s disease. However, the precise mechanism of amyloid-beta neurotoxicity is not completely understood. Previous studies suggest that binding of amyloid-beta to a number of targets have deleterious effects on cellular functions. In the present study we have shown for the first time that amyloid-beta 1-42 bound to a peptide comprising the microtubule binding domain of the heavy chain of microtubule-associated protein 1B by the screening of a human brain cDNA library expressed on M13 phage. This interaction may explain, in part, the loss of neuronal cytoskeletal integrity, impairment of microtubule-dependent transport and synaptic dysfunction observed previously in Alzheimer’s disease. PMID:18079022

  5. Nanoparticles in relation to peptide and protein aggregation

    Directory of Open Access Journals (Sweden)

    Zaman M

    2014-02-01

    Full Text Available Masihuz Zaman, Ejaz Ahmad, Atiyatul Qadeer, Gulam Rabbani, Rizwan Hasan Khan Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India Abstract: Over the past two decades, there has been considerable research interest in the use of nanoparticles in the study of protein and peptide aggregation, and of amyloid-related diseases. The influence of nanoparticles on amyloid formation yields great interest due to its small size and high surface area-to-volume ratio. Targeting nucleation kinetics by nanoparticles is one of the most searched for ways to control or induce this phenomenon. The observed effect of nanoparticles on the nucleation phase is determined by particle composition, as well as the amount and nature of the particle's surface. Various thermodynamic parameters influence the interaction of proteins and nanoparticles in the solution, and regulate the protein assembly into fibrils, as well as the disaggregation of preformed fibrils. Metals, organic particles, inorganic particles, amino acids, peptides, proteins, and so on are more suitable candidates for nanoparticle formulation. In the present review, we attempt to explore the effects of nanoparticles on protein and peptide fibrillation processes from both perspectives (ie, as inducers and inhibitors on nucleation kinetics and in the disaggregation of preformed fibrils. Their formulation and characterization by different techniques have been also addressed, along with their toxicological effects, both in vivo and in vitro. Keywords: amyloid formation, inducer, inhibitor, nanoparticle, nucleation, toxicity

  6. Identification of a Novel Parallel beta-Strand Conformation within Molecular Monolayer of Amyloid Peptide

    DEFF Research Database (Denmark)

    Liu, Lei; Li, Qiang; Zhang, Shuai;

    2016-01-01

    technique with force controlled in pico-Newton range, combining with molecular dynamic simulation. The identified parallel beta-strand-like structure of molecular monolayer is distinct from the antiparallel beta-strand structure of A beta(33-42) amyloid fibril. This finding enriches the molecular structures....... In this work, the early A beta(33-42) aggregates forming the molecular monolayer at hydrophobic interface are investigated. The molecular monolayer of amyloid peptide A beta(33-42) consisting of novel parallel beta-strand-like structure is further revealed by means of a quantitative nanomechanical spectroscopy......The differentiation of protein properties and biological functions arises from the variation in the primary and secondary structure. Specifically, in abnormal assemblies of protein, such as amyloid peptide, the secondary structure is closely correlated with the stable ensemble and the cytotoxicity...

  7. Modeling the Aggregation Propensity and Toxicity of Amyloid-β Variants

    DEFF Research Database (Denmark)

    Tiwari, Manish Kumar; Kepp, Kasper Planeta

    2015-01-01

    Protein aggregation is a hallmark of many neurodegenerative disorders. Alzheimer’s disease (AD) is directly linked to deposits of amyloid-β (Aβ) derived from the amyloid-β protein precursor (AβPP), and multiple experimental studies have investigated the aggregation behavior of these amyloids...

  8. All-atom molecular dynamics studies of the full-length {beta}-amyloid peptides

    Energy Technology Data Exchange (ETDEWEB)

    Luttmann, Edgar [Department of Chemistry, Faculty of Science, University of Paderborn, Warburgerstr. 100, 33098 Paderborn (Germany); Fels, Gregor [Department of Chemistry, Faculty of Science, University of Paderborn, Warburgerstr. 100, 33098 Paderborn (Germany)], E-mail: fels@uni-paderborn.de

    2006-03-31

    {beta}-Amyloid peptides are believed to play an essential role in Alzheimer's disease (AD), due to their sedimentation in the form of {beta}-amyloid aggregates in the brain of AD-patients, and the in vitro neurotoxicity of oligomeric aggregates. The monomeric peptides come in different lengths of 39-43 residues, of which the 42 alloform seems to be most strongly associated with AD-symptoms. Structural information on these peptides to date comes from NMR studies in acidic solutions, organic solvents, or on shorter fragments of the peptide. In addition X-ray and solid-state NMR investigations of amyloid fibrils yield insight into the structure of the final aggregate and therefore define the endpoint of any conformational change of an A{beta}-monomer along the aggregation process. The conformational changes necessary to connect the experimentally known conformations are not yet understood and this process is an active field of research. In this paper, we report results from all-atom molecular dynamics simulations based on experimental data from four different peptides of 40 amino acids and two peptides consisting of 42 amino acids. The simulations allow for the analysis of intramolecular interactions and the role of structural features. In particular, they show the appearance of {beta}-turn in the region between amino acid 21 and 33, forming a hook-like shape as it is known to exist in the fibrillar A{beta}-structures. This folding does not depend on the formation of a salt bridge between Asp-23 and Lys-28 but requires the A{beta}(1-42) as such structure was not observed in the shorter system A{beta}(1-40)

  9. Amyloidaggregation with gold nanoparticles on brain lipid bilayer.

    Science.gov (United States)

    Lee, Hyojin; Kim, Yuna; Park, Anna; Nam, Jwa-Min

    2014-05-14

    Understanding and manipulating amyloid-β (Aβ) aggregation provide key knowledge and means for the diagnosis and cure of Alzheimer's disease (AD) and the applications of Aβ-based aggregation systems. Here, we studied the formation of various Aβ aggregate structures with gold nanoparticles (AuNPs) and brain total lipid extract-based supported lipid bilayer (brain SLB). The roles of AuNPs and brain SLB in forming Aβ aggregates were studied in real time, and the structural details of Aβ aggregates were monitored and analyzed with the dark-field imaging of plasmonic AuNPs that allows for long-term in situ imaging of Aβ aggregates with great structural details without further labeling. It was shown that the fluid brain SLB platform provides the binding sites for Aβ and drives the fast and efficient formation of Aβ aggregate structures and, importantly, large Aβ plaque structures (>15 μm in diameter), a hallmark for AD, were formed without going through fibril structures when Aβ peptides were co-incubated with AuNPs on the brain SLB. The dark-field scattering and circular dichroism-correlation data suggest that AuNPs were heavily involved with Aβ aggregation on the brain SLB and less α-helix, less β-sheet and more random coil structures were found in large plaque-like Aβ aggregates.

  10. Molecular Level Insights into Thermally Induced [alpha]-Chymotrypsinogen A Amyloid Aggregation Mechanism and Semiflexible Protofibril Morphology

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Aming; Jordan, Jacob L.; Ivanova, Magdalena I.; Weiss, IV., William F.; Roberts, Christopher J.; Fernandez, Erik J. (UCLA); (Delaware); (UV)

    2010-12-07

    Understanding nonnative protein aggregation is critical not only to a number of amyloidosis disorders but also for the development of effective and safe biopharmaceuticals. In a series of previous studies [Weiss et al. (2007) Biophys. J. 93, 4392-4403; Andrews et al. (2007) Biochemistry 46, 7558-7571; Andrews et al. (2008) Biochemistry 47, 2397-2403], {alpha}-chymotrypsinogen A (aCgn) and bovine granulocyte colony stimulating factor (bG-CSF) have been shown to exhibit the kinetic and morphological features of other nonnative aggregating proteins at low pH and ionic strength. In this study, we investigated the structural mechanism of aCgn aggregation. The resultant aCgn aggregates were found to be soluble and exhibited semiflexible filamentous aggregate morphology under transmission electron microscopy. In addition, the filamentous aggregates were demonstrated to possess amyloid characteristics by both Congo red binding and X-ray diffraction. Peptide level hydrogen exchange (HX) analysis suggested that a buried native {beta}-sheet comprised of three peptide segments (39-46, 51-64, and 106-114) reorganizes into the cross-{beta} amyloid core of aCgn aggregates and that at least 50% of the sequence adopts a disordered structure in the aggregates. Furthermore, the equimolar, bimodal HX labeling distribution observed for three reported peptides (65-102, 160-180, and 229-245) suggested a heterogeneous assembly of two molecular conformations in aCgn aggregates. This demonstrates that extended {beta}-sheet interactions typical of the amyloid are sufficiently strong that a relatively small fraction of polypeptide sequence can drive formation of filamentous aggregates even under conditions favoring colloidal stability.

  11. Thioflavin T templates amyloid β(1-40) conformation and aggregation pathway

    DEFF Research Database (Denmark)

    Di Carlo, Maria Giovanna; Minicozzi, Velia; Foderà, Vito;

    2015-01-01

    in turn rests on the reliability of the probe/labels involved. Here we present evidences of the effect of Thioflavin T (ThT), a worldwide used fluorescent dye to monitor amyloid growth, on the Aβ(1-40) conformation, stability and aggregation. By combining experimental information and Molecular Dynamics...... simulation results, we show that the presence of ThT in solution affects peptide conformation inducing peculiar supramolecular association. In particular ThT interactions with specific Aβ(1-40) residues promote a rigid partially-folded conformation which shifts the balance between different species...

  12. Human Islet Amyloid Polypeptide N-Terminus Fragment Self-Assembly: Effect of Conserved Disulfide Bond on Aggregation Propensity

    Science.gov (United States)

    Ilitchev, Alexandre I.; Giammona, Maxwell J.; Do, Thanh D.; Wong, Amy G.; Buratto, Steven K.; Shea, Joan-Emma; Raleigh, Daniel P.; Bowers, Michael T.

    2016-06-01

    Amyloid formation by human islet amyloid polypeptide (hIAPP) has long been implicated in the pathogeny of type 2 diabetes mellitus (T2DM) and failure of islet transplants, but the mechanism of IAPP self-assembly is still unclear. Numerous fragments of hIAPP are capable of self-association into oligomeric aggregates, both amyloid and non-amyloid in structure. The N-terminal region of IAPP contains a conserved disulfide bond between cysteines at position 2 and 7, which is important to hIAPP's in vivo function and may play a role in in vitro aggregation. The importance of the disulfide bond in this region was probed using a combination of ion mobility-based mass spectrometry experiments, molecular dynamics simulations, and high-resolution atomic force microscopy imaging on the wildtype 1-8 hIAPP fragment, a reduced fragment with no disulfide bond, and a fragment with both cysteines at positions 2 and 7 mutated to serine. The results indicate the wildtype fragment aggregates by a different pathway than either comparison peptide and that the intact disulfide bond may be protective against aggregation due to a reduction of inter-peptide hydrogen bonding.

  13. Amyloidpeptide binds to cytochrome C oxidase subunit 1.

    Science.gov (United States)

    Hernandez-Zimbron, Luis Fernando; Luna-Muñoz, Jose; Mena, Raul; Vazquez-Ramirez, Ricardo; Kubli-Garfias, Carlos; Cribbs, David H; Manoutcharian, Karen; Gevorkian, Goar

    2012-01-01

    Extracellular and intraneuronal accumulation of amyloid-beta aggregates has been demonstrated to be involved in the pathogenesis of Alzheimer's disease (AD). However, the precise mechanism of amyloid-beta neurotoxicity is not completely understood. Previous studies suggest that binding of amyloid-beta to a number of macromolecules has deleterious effects on cellular functions. Mitochondria were found to be the target for amyloid-beta, and mitochondrial dysfunction is well documented in AD. In the present study we have shown for the first time that Aβ 1-42 bound to a peptide comprising the amino-terminal region of cytochrome c oxidase subunit 1. Phage clone, selected after screening of a human brain cDNA library expressed on M13 phage and bearing a 61 amino acid fragment of cytochrome c oxidase subunit 1, bound to Aβ 1-42 in ELISA as well as to Aβ aggregates present in AD brain. Aβ 1-42 and cytochrome c oxidase subunit 1 co-immunoprecipitated from mitochondrial fraction of differentiated human neuroblastoma cells. Likewise, molecular dynamics simulation of the cytochrome c oxidase subunit 1 and the Aβ 1-42 peptide complex resulted in a reliable helix-helix interaction, supporting the experimental results. The interaction between Aβ 1-42 and cytochrome c oxidase subunit 1 may explain, in part, the diminished enzymatic activity of respiratory chain complex IV and subsequent neuronal metabolic dysfunction observed in AD.

  14. Amyloidpeptide binds to cytochrome C oxidase subunit 1.

    Directory of Open Access Journals (Sweden)

    Luis Fernando Hernandez-Zimbron

    Full Text Available Extracellular and intraneuronal accumulation of amyloid-beta aggregates has been demonstrated to be involved in the pathogenesis of Alzheimer's disease (AD. However, the precise mechanism of amyloid-beta neurotoxicity is not completely understood. Previous studies suggest that binding of amyloid-beta to a number of macromolecules has deleterious effects on cellular functions. Mitochondria were found to be the target for amyloid-beta, and mitochondrial dysfunction is well documented in AD. In the present study we have shown for the first time that Aβ 1-42 bound to a peptide comprising the amino-terminal region of cytochrome c oxidase subunit 1. Phage clone, selected after screening of a human brain cDNA library expressed on M13 phage and bearing a 61 amino acid fragment of cytochrome c oxidase subunit 1, bound to Aβ 1-42 in ELISA as well as to Aβ aggregates present in AD brain. Aβ 1-42 and cytochrome c oxidase subunit 1 co-immunoprecipitated from mitochondrial fraction of differentiated human neuroblastoma cells. Likewise, molecular dynamics simulation of the cytochrome c oxidase subunit 1 and the Aβ 1-42 peptide complex resulted in a reliable helix-helix interaction, supporting the experimental results. The interaction between Aβ 1-42 and cytochrome c oxidase subunit 1 may explain, in part, the diminished enzymatic activity of respiratory chain complex IV and subsequent neuronal metabolic dysfunction observed in AD.

  15. Effect of Curcumin on the metal ion induced fibrillization of Amyloidpeptide

    Science.gov (United States)

    Banerjee, Rona

    2014-01-01

    The effect of Curcumin on Cu(II) and Zn(II) induced oligomerization and protofibrillization of the amyloid-beta (Aβ) peptide has been studied by spectroscopic and microscopic methods. Curcumin could significantly reduce the β-sheet content of the peptide in a time dependent manner. It also plays an antagonistic role in β-sheet formation that is promoted by metal ions like Cu(II) and Zn(II) as observed by Circular Dichroism (CD) spectroscopy. Atomic force microscopic (AFM) images show that spontaneous fibrillization of the peptide occurs in presence of Cu(II) and Zn(II) but is inhibited on incubation of the peptide with Curcumin indicating the beneficial role of Curcumin in preventing the aggregation of Aβ peptide.

  16. Graphene quantum dots for the inhibition of β amyloid aggregation

    Science.gov (United States)

    Liu, Yibiao; Xu, Li-Ping; Dai, Wenhao; Dong, Haifeng; Wen, Yongqiang; Zhang, Xueji

    2015-11-01

    The aggregation of Aβ peptides is a crucial factor leading to Alzheimer's disease (AD). Inhibiting the Aβ peptide aggregation has become one of the most essential strategies to treat AD. In this work, efficient and low-cytotoxicity inhibitors, graphene quantum dots (GQDs) are reported for their application in inhibiting the aggregation of Aβ peptides. Compared to other carbon materials, the low cytotoxicity and great biocompatibility of GQDs give an advantage to the clinical research for AD. In addition, the GQDs may cross the blood-brain barrier (BBB) because of the small size. It is believed that GQDs may be therapeutic agents against AD. This work provides a novel insight into the development of Alzheimer's drugs.The aggregation of Aβ peptides is a crucial factor leading to Alzheimer's disease (AD). Inhibiting the Aβ peptide aggregation has become one of the most essential strategies to treat AD. In this work, efficient and low-cytotoxicity inhibitors, graphene quantum dots (GQDs) are reported for their application in inhibiting the aggregation of Aβ peptides. Compared to other carbon materials, the low cytotoxicity and great biocompatibility of GQDs give an advantage to the clinical research for AD. In addition, the GQDs may cross the blood-brain barrier (BBB) because of the small size. It is believed that GQDs may be therapeutic agents against AD. This work provides a novel insight into the development of Alzheimer's drugs. Electronic supplementary information (ESI) available: Dose-dependent inhibition of Aβ1-42 fibrillization by GQDs; the photoluminescence spectra of all five GQDs with different charges in water/ethanol; TEM images of other four GQDs with different charges. See DOI: 10.1039/c5nr06282a

  17. Protein/Peptide Aggregation and Amyloidosis on Biointerfaces

    Directory of Open Access Journals (Sweden)

    Qi Lu

    2016-08-01

    Full Text Available Recently, studies of protein/peptide aggregation, particularly the amyloidosis, have attracted considerable attention in discussions of the pathological mechanisms of most neurodegenerative diseases. The protein/peptide aggregation processes often occur at the membrane–cytochylema interface in vivo and behave differently from those occurring in bulk solution, which raises great interest to investigate how the interfacial properties of artificial biomaterials impact on protein aggregation. From the perspective of bionics, current progress in this field has been obtained mainly from four aspects: (1 hydrophobic–hydrophilic interfaces; (2 charged surface; (3 chiral surface; and (4 biomolecule-related interfaces. The specific physical and chemical environment provided by these interfaces is reported to strongly affect the adsorption of proteins, transition of protein conformation, and diffusion of proteins on the biointerface, all of which are ultimately related to protein assembly. Meanwhile, these compelling results of in vitro experiments can greatly promote the development of early diagnostics and therapeutics for the relevant neurodegenerative diseases. This paper presents a brief review of these appealing studies, and particular interests are placed on weak interactions (i.e., hydrogen bonding and stereoselective interactions that are also non-negligible in driving amyloid aggregation at the interfaces. Moreover, this paper also proposes the future perspectives, including the great opportunities and challenges in this field as well.

  18. Differential Activation of Innate Immune Pathways by Distinct Islet Amyloid Polypeptide (IAPP) Aggregates.

    Science.gov (United States)

    Westwell-Roper, Clara; Denroche, Heather C; Ehses, Jan A; Verchere, C Bruce

    2016-04-22

    Aggregation of islet amyloid polypeptide (IAPP) contributes to beta cell dysfunction in type 2 diabetes and islet transplantation. Like other amyloidogenic peptides, human IAPP induces macrophage IL-1β secretion by stimulating both the synthesis and processing of proIL-1β, a pro-inflammatory cytokine that (when chronically elevated) impairs beta cell insulin secretion. We sought to determine the specific mechanism of IAPP-induced proIL-1β synthesis. Soluble IAPP species produced early during IAPP aggregation provided a Toll-like-receptor-2- (TLR2-) dependent stimulus for NF-κB activation in HEK 293 cells and bone marrow-derived macrophages (BMDMs). Non-amyloidogenic rodent IAPP and thioflavin-T-positive fibrillar amyloid produced by human IAPP aggregation failed to activate TLR2. Blockade of TLR6 but not TLR1 prevented hIAPP-induced TLR2 activation, consistent with stimulation of a TLR2/6 heterodimer. TLR2 and its downstream adaptor protein MyD88 were required for IAPP-induced cytokine production by BMDMs, a process that is partially dependent on autoinduction by IL-1. BMDMs treated with soluble but not fibrillar IAPP provided a TLR2-dependent priming stimulus for ATP-induced IL-1β secretion, whereas late IAPP aggregates induced NLRP3-dependent IL-1β secretion by LPS-primed macrophages. Moreover, inhibition of TLR2 and depletion of islet macrophages prevented up-regulation of Il1b and Tnf expression in human IAPP-expressing transgenic mouse islets. These data suggest participation by both soluble and fibrillar aggregates in IAPP-induced islet inflammation. IAPP-induced activation of TLR2 and secretion of IL-1 may be important therapeutic targets to prevent amyloid-associated beta cell dysfunction. PMID:26786104

  19. Prediction of Peptide and Protein Propensity for Amyloid Formation.

    Science.gov (United States)

    Família, Carlos; Dennison, Sarah R; Quintas, Alexandre; Phoenix, David A

    2015-01-01

    Understanding which peptides and proteins have the potential to undergo amyloid formation and what driving forces are responsible for amyloid-like fiber formation and stabilization remains limited. This is mainly because proteins that can undergo structural changes, which lead to amyloid formation, are quite diverse and share no obvious sequence or structural homology, despite the structural similarity found in the fibrils. To address these issues, a novel approach based on recursive feature selection and feed-forward neural networks was undertaken to identify key features highly correlated with the self-assembly problem. This approach allowed the identification of seven physicochemical and biochemical properties of the amino acids highly associated with the self-assembly of peptides and proteins into amyloid-like fibrils (normalized frequency of β-sheet, normalized frequency of β-sheet from LG, weights for β-sheet at the window position of 1, isoelectric point, atom-based hydrophobic moment, helix termination parameter at position j+1 and ΔG° values for peptides extrapolated in 0 M urea). Moreover, these features enabled the development of a new predictor (available at http://cran.r-project.org/web/packages/appnn/index.html) capable of accurately and reliably predicting the amyloidogenic propensity from the polypeptide sequence alone with a prediction accuracy of 84.9 % against an external validation dataset of sequences with experimental in vitro, evidence of amyloid formation. PMID:26241652

  20. Prediction of Peptide and Protein Propensity for Amyloid Formation.

    Directory of Open Access Journals (Sweden)

    Carlos Família

    Full Text Available Understanding which peptides and proteins have the potential to undergo amyloid formation and what driving forces are responsible for amyloid-like fiber formation and stabilization remains limited. This is mainly because proteins that can undergo structural changes, which lead to amyloid formation, are quite diverse and share no obvious sequence or structural homology, despite the structural similarity found in the fibrils. To address these issues, a novel approach based on recursive feature selection and feed-forward neural networks was undertaken to identify key features highly correlated with the self-assembly problem. This approach allowed the identification of seven physicochemical and biochemical properties of the amino acids highly associated with the self-assembly of peptides and proteins into amyloid-like fibrils (normalized frequency of β-sheet, normalized frequency of β-sheet from LG, weights for β-sheet at the window position of 1, isoelectric point, atom-based hydrophobic moment, helix termination parameter at position j+1 and ΔG° values for peptides extrapolated in 0 M urea. Moreover, these features enabled the development of a new predictor (available at http://cran.r-project.org/web/packages/appnn/index.html capable of accurately and reliably predicting the amyloidogenic propensity from the polypeptide sequence alone with a prediction accuracy of 84.9 % against an external validation dataset of sequences with experimental in vitro, evidence of amyloid formation.

  1. Plasma amyloid beta peptides and oligomers antibodies in Alzheimer's disease

    OpenAIRE

    Zhou, L.; Chu, LW; Kwan, JSC; Ho, JWM; Lam, KSL; Ho, PWL; Chan, KH

    2011-01-01

    INTRODUCTION: Various forms of amyloid beta (Aβ) including Aβ peptides, oligomers, protofibrils and fibrils are thought to be pathogenic in Alzheimer’s disease (AD). The exact pathophysiological role of endogenous Aβ autoantibodies (Ab) in healthy subjects and AD patients are uncertain. Potential protective role ...

  2. Bifunctional compounds for controlling metal-mediated aggregation of the aβ42 peptide.

    Science.gov (United States)

    Sharma, Anuj K; Pavlova, Stephanie T; Kim, Jaekwang; Finkelstein, Darren; Hawco, Nicholas J; Rath, Nigam P; Kim, Jungsu; Mirica, Liviu M

    2012-04-18

    Abnormal interactions of Cu and Zn ions with the amyloid β (Aβ) peptide are proposed to play an important role in the pathogenesis of Alzheimer's disease (AD). Disruption of these metal-peptide interactions using chemical agents holds considerable promise as a therapeutic strategy to combat this incurable disease. Reported herein are two bifunctional compounds (BFCs) L1 and L2 that contain both amyloid-binding and metal-chelating molecular motifs. Both L1 and L2 exhibit high stability constants for Cu(2+) and Zn(2+) and thus are good chelators for these metal ions. In addition, L1 and L2 show strong affinity toward Aβ species. Both compounds are efficient inhibitors of the metal-mediated aggregation of the Aβ(42) peptide and promote disaggregation of amyloid fibrils, as observed by ThT fluorescence, native gel electrophoresis/Western blotting, and transmission electron microscopy (TEM). Interestingly, the formation of soluble Aβ(42) oligomers in the presence of metal ions and BFCs leads to an increased cellular toxicity. These results suggest that for the Aβ(42) peptide-in contrast to the Aβ(40) peptide-the previously employed strategy of inhibiting Aβ aggregation and promoting amyloid fibril dissagregation may not be optimal for the development of potential AD therapeutics, due to formation of neurotoxic soluble Aβ(42) oligomers.

  3. Synthetic peptide homologous to β protein from Alzheimer's disease forms amyloid-like fibrils in vitro

    International Nuclear Information System (INIS)

    Progressive amyloid deposition in senile plaques and cortical blood vessels may play a central role in the pathogenesis of Alzheimer's disease. The authors have used x-ray diffraction and electron microscopy to study the molecular organization and morphology of macromolecular assemblies formed by three synthetic peptides homologous to β protein of brain amyloid: β-(1-28), residues 1-28 of the β protein; [Ala1-β-(1-28), β-(1-28) with alanine substituted for lysine at position 16; and β-(18-28), residues 18-28 of the β protein. β-(1-28) readily formed fibrils in vitro that were similar in ultrastructure to the in vivo amyloid and aggregated into large bundles resembling those of senile plaque cores. X-ray patterns from partially dried, oriented pellets showed a cross-β-conformation. [Ala16]β-(1-28) formed β-pleated sheet assemblies that were dissimilar to in vivo fibrils. The width of the 10-A spacing indicated stacks of about six sheets. Thus, substitution of the uncharged alanine for the positively charged lysine in the β-strand region enhances the packing of the sheets and dramatically alters the type of macromolecular aggregate formed. Β-(18-28) formed assemblies that had even a greater number of stacked sheets. The findings on these homologous synthetic assemblies help to define the specific sequence that is required to form Alzheimer's-type amyloid fibrils, thus providing an in vitro model of age-related cerebral amyloidogenesis

  4. A peptide study of the relationship between the collagen triple-helix and amyloid

    OpenAIRE

    Parmar, Avanish S.; Nunes, Ana Monica; Baum, Jean; Brodsky, Barbara

    2012-01-01

    Type XXV collagen, or Collagen-Like Amyloidogenic Component (CLAC), is a component of amyloid plaques, and recent studies suggest this collagen affects amyloid fibril elongation and has a genetic association with Alzheimer’s disease. The relationship between the collagen triple helix and amyloid fibrils was investigated by studying peptide models, including a very stable triple helical peptide (Pro-Hyp-Gly)10; an amyloidogenic peptide GNNQQNY; and a hybrid peptide where the GNNQQNY sequence w...

  5. The Physics of Amyloid Aggregation and Templating in Prions

    Science.gov (United States)

    Cox, Daniel

    2012-02-01

    The problem of self-assembled amyloid aggregation of proteins in structures with beta-strands perpendicular to a one dimensional grown axis is interesting at a fundamental level (is this the most generic end state of proteins?), from a biological level (if the self-assembly can be regulated it is of use in contexts like spider silk and bacterial colony formation), for human public health (aggregation unregulated induces diseases like mad cow and Alzheimer's), and for possible materials applications (e.g., in tissue scaffolding). In this presentation, I will review the work of my group in examining the possibility that the left-handed beta helix (LHBH) structure can be the building block of the aggregates of mammalian prion and yeast prion proteins. I will also discuss our efforts to assess the possibility of a novel pH driven structural switch between LHBH and alpha-helical forms in the ordered half of the mammalian prion protein, and now the possibly pH stabilized LHBH structure can template aggregate growth of the disordered half of the protein, identified in numerous experimental studies as most relevant to disease.

  6. Rapid exchange of metal between Zn(7)-metallothionein-3 and amyloidpeptide promotes amyloid-related structural changes.

    Science.gov (United States)

    Pedersen, Jeppe T; Hureau, Christelle; Hemmingsen, Lars; Heegaard, Niels H H; Østergaard, Jesper; Vašák, Milan; Faller, Peter

    2012-02-28

    Metal ions, especially Zn(2+) and Cu(2+), are implemented in the neuropathogenesis of Alzheimer's disease (AD) by modulating the aggregation of amyloidpeptides (Aβ). Also, Cu(2+) may promote AD neurotoxicity through production of reactive oxygen species (ROS). Impaired metal ion homeostasis is most likely the underlying cause of aberrant metal-Aβ interaction. Thus, focusing on the body's natural protective mechanisms is an attractive therapeutic strategy for AD. The metalloprotein metallothionein-3 (MT-3) prevents Cu-Aβ-mediated cytotoxicity by a Zn-Cu exchange that terminates ROS production. Key questions about the metal exchange mechanisms remain unanswered, e.g., whether an Aβ-metal-MT-3 complex is formed. We studied the exchange of metal between Aβ and Zn(7)-MT-3 by a combination of spectroscopy (absorption, fluorescence, thioflavin T assay, and nuclear magnetic resonance) and transmission electron microscopy. We found that the metal exchange occurs via free Cu(2+) and that an Aβ-metal-MT-3 complex is not formed. This means that the metal exchange does not require specific recognition between Aβ and Zn(7)-MT-3. Also, we found that the metal exchange caused amyloid-related structural and morphological changes in the resulting Zn-Aβ aggregates. A detailed model of the metal exchange mechanism is presented. This model could potentially be important in developing therapeutics with metal-protein attenuating properties in AD.

  7. Spectroscopic investigation of Ginkgo biloba terpene trilactones and their interaction with amyloid peptide Aβ(25-35)

    Science.gov (United States)

    He, Jiangtao; Petrovic, Ana G.; Dzyuba, Sergei V.; Berova, Nina; Nakanishi, Koji; Polavarapu, Prasad L.

    2008-04-01

    The beneficial effects of Ginkgo biloba extract in the "treatment" of dementia are attributed to its terpene trilactone (TTL) constituents. The interactions between TTLs and amyloid peptide are believed to be responsible in preventing the aggregation of peptide. These interactions have been investigated using infrared vibrational absorption (VA) and circular dichroism (VCD) spectra. Four TTLs, namely ginkgolide A (GA), ginkgolide B (GB), ginkgolide C (GC) and bilobalide (BB) and amyloid Aβ(25-35) peptide, as a model for the full length peptide, are used in this study. GA-monoether and GA-diether have also been synthesized and investigated to help understand the role of individual carbonyl groups in these interactions. The precipitation and solubility issues encountered with the mixture of ginkgolide + Aβ peptide for VA and VCD studies were overcome using binary ethanol-D 2O solvent mixture. The experimental VA and VCD spectra of GA, GB, GC and BB, GA-monoether and GA-diether have been analyzed using the corresponding spectra predicted with density functional theory. The time-dependent experimental VA and VCD spectra of Aβ(25-35) peptide and the corresponding experimental spectra in the presence of TTLs indicated that the effect of the TTLs in modulating the aggregation of Aβ(25-35) peptide is relatively small. Such small effects might indicate the absence of a specific interaction between the TTLs and Aβ(25-35) peptide as a major force leading to the reduced aggregation of amyloid peptides. It is possible that the therapeutic effect of G. biloba extract does not originate from direct interactions between TTLs and the Aβ(25-35) peptide and is more complex.

  8. Rapid aggregation and assembly in aqueous solution of A (25-35) peptide

    Indian Academy of Sciences (India)

    Lia Millucci; Roberto Raggiaschi; Davide Franceschini; Georg Terstappen; Annalisa Santucci

    2009-06-01

    The highly toxic A(25-35) is a peculiar peptide that differs from all the other commonly studied -amyloid peptides because of its extremely rapid aggregation properties and enhanced neurotoxicity. We investigated A(25-35) aggregation in H2O at pH 3.0 and at pH 7.4 by means of in-solution analyses. Adopting UV spectroscopy, Congo red spectrophotometry and thioflavin T fluorimetry, we were able to quantify, in water, the very fast assembling time necessary for A(25-35) to form stable insoluble aggregates and their ability to seed or not seed fibril growth. Our quantitative results, which confirm a very rapid assembly leading to stable insoluble aggregates of A(25-35) only when incubated at pH 7.4, might be helpful for designing novel aggregation inhibitors and to shed light on the in vivo environment in which fibril formation takes place.

  9. Effect of agitation on the peptide fibrillization: Alzheimer's amyloidpeptide 1-42 but not amylin and insulin fibrils can grow under quiescent conditions.

    Science.gov (United States)

    Tiiman, Ann; Noormägi, Andra; Friedemann, Merlin; Krishtal, Jekaterina; Palumaa, Peep; Tõugu, Vello

    2013-06-01

    Many peptides and proteins can form fibrillar aggregates in vitro, but only a limited number of them are forming pathological amyloid structures in vivo. We studied the fibrillization of four peptides--Alzheimer's amyloid-β (Aβ) 1-40 and 1-42, amylin and insulin. In all cases, intensive mechanical agitation of the solution initiated fast fibrillization. However, when the mixing was stopped during the fibril growth phase, the fibrillization of amylin and insulin was practically stopped, and the rate for Aβ40 substantially decreased, whereas the fibrillization of Aβ42 peptide continued to proceed with almost the same rate as in the agitated conditions. The reason for the different sensitivity of the in vitro fibrillization of these peptides towards agitation in the fibril growth phase remains elusive. PMID:23609985

  10. Catalytic antibodies to amyloid β peptide in defense against Alzheimer disease

    Science.gov (United States)

    Taguchi, Hiroaki; Planque, Stephanie; Nishiyama, Yasuhiro; Szabo, Paul; Weksler, Marc E.; Friedland, Robert P.; Paul, Sudhir

    2008-01-01

    Immunoglobulins (Igs) that bind amyloid β peptide (Aβ) are under clinical trials for immunotherapy of Alzheimer disease (AD). We have identified IgMs and recombinant Ig fragments that hydrolyze Aβ. Hydrolysis of peripheral Aβ by the IgMs may induce increased Aβ release from the brain. The catalytic IgMs are increased in AD patients, presumably reflecting a protective autoimmune response. Reduced Aβ aggregation and neurotoxicity attributable to the catalytic function were evident. These findings provide a foundation for development of catalytic Igs for AD immunotherapy. PMID:18486927

  11. Aliphatic peptides show similar self-assembly to amyloid core sequences, challenging the importance of aromatic interactions in amyloidosis.

    Science.gov (United States)

    Lakshmanan, Anupama; Cheong, Daniel W; Accardo, Angelo; Di Fabrizio, Enzo; Riekel, Christian; Hauser, Charlotte A E

    2013-01-01

    The self-assembly of abnormally folded proteins into amyloid fibrils is a hallmark of many debilitating diseases, from Alzheimer's and Parkinson diseases to prion-related disorders and diabetes type II. However, the fundamental mechanism of amyloid aggregation remains poorly understood. Core sequences of four to seven amino acids within natural amyloid proteins that form toxic fibrils have been used to study amyloidogenesis. We recently reported a class of systematically designed ultrasmall peptides that self-assemble in water into cross-β-type fibers. Here we compare the self-assembly of these peptides with natural core sequences. These include core segments from Alzheimer's amyloid-β, human amylin, and calcitonin. We analyzed the self-assembly process using circular dichroism, electron microscopy, X-ray diffraction, rheology, and molecular dynamics simulations. We found that the designed aliphatic peptides exhibited a similar self-assembly mechanism to several natural sequences, with formation of α-helical intermediates being a common feature. Interestingly, the self-assembly of a second core sequence from amyloid-β, containing the diphenylalanine motif, was distinctly different from all other examined sequences. The diphenylalanine-containing sequence formed β-sheet aggregates without going through the α-helical intermediate step, giving a unique fiber-diffraction pattern and simulation structure. Based on these results, we propose a simplified aliphatic model system to study amyloidosis. Our results provide vital insight into the nature of early intermediates formed and suggest that aromatic interactions are not as important in amyloid formation as previously postulated. This information is necessary for developing therapeutic drugs that inhibit and control amyloid formation. PMID:23267112

  12. Mathematical aspects of the kinetics of formation and degradation of linear peptide or protein aggregates.

    Science.gov (United States)

    Zhdanov, Vladimir P

    2016-08-01

    In cells, peptides and proteins are sometimes prone to aggregation. In neurons, for example, amyloid β peptides form plaques related to Alzheimer's disease (AD). The corresponding kinetic models either ignore or do not pay attention to degradation of these species. Here, the author proposes a generic kinetic model describing formation and degradation of linear aggregates. The process is assumed to occur via reversible association of monomers and attachment of monomers to or detachment from terminal parts of aggregates. Degradation of monomers is described as a first-order process. Degradation of aggregates is considered to occur at their terminal and internal parts with different rates and these steps are described by first-order equations as well. Irrespective of the choice of the values of the rate constants, the model predicts that eventually the system reaches a stable steady state with the aggregate populations rapidly decreasing with increasing size at large sizes. The corresponding steady-state size distributions of aggregates are illustrated in detail. The transient kinetics are also shown. The observation of AD appears, however, to indicate that the peptide production becomes eventually unstable, i.e., the growth of the peptide population is not properly limited. This is expected to be related to the specifics of the genetic networks controlling the peptide production. Following this line, two likely general networks with, respectively, global negative and positive feedbacks in the peptide production are briefly discussed. PMID:27132946

  13. Transmission electron microscopy characterization of fluorescently labelled amyloid β 1-40 and α-synuclein aggregates

    Directory of Open Access Journals (Sweden)

    Anderson Valerie L

    2011-12-01

    Full Text Available Abstract Background Fluorescent tags, including small organic molecules and fluorescent proteins, enable the localization of protein molecules in biomedical research experiments. However, the use of these labels may interfere with the formation of larger-scale protein structures such as amyloid aggregates. Therefore, we investigate the effects of some commonly used fluorescent tags on the morphologies of fibrils grown from the Alzheimer's disease-associated peptide Amyloid β 1-40 (Aβ40 and the Parkinson's disease-associated protein α-synuclein (αS. Results Using transmission electron microscopy (TEM, we verify that N-terminal labeling of Aβ40 with AMCA, TAMRA, and Hilyte-Fluor 488 tags does not prevent the formation of protofibrils and amyloid fibrils of various widths. We also measure the two-photon action cross-section of Aβ40 labelled with Hilyte Fluor 488 and demonstrate that this tag is suitable for use with two-photon fluorescence techniques. Similarly, we find that Alexa Fluor 488 labelling of αS variant proteins near either the N or C terminus (position 9 or 130 does not interfere with the formation of amyloid and other types of αS fibrils. We also present TEM images of fibrils grown from αS C-terminally labelled with enhanced green fluorescent protein (EGFP. Near neutral pH, two types of αS-EGFP fibrils are observed via TEM, while denaturation of the EGFP tag leads to the formation of additional species. Conclusions We demonstrate that several small extrinsic fluorescent tags are compatible with studies of amyloid protein aggregation. However, although fibrils can be grown from αS labelled with EGFP, the conformation of the fluorescent protein tag affects the observed aggregate morphologies. Thus, our results should assist researchers with label selection and optimization of solution conditions for aggregation studies involving fluorescence techniques.

  14. Dual Effect of (LK)nL Peptides on the Onset of Insulin Amyloid Fiber Formation at Hydrophobic Surfaces.

    Science.gov (United States)

    Chouchane, Karim; Vendrely, Charlotte; Amari, Myriam; Moreaux, Katie; Bruckert, Franz; Weidenhaupt, Marianne

    2015-08-20

    Soluble proteins are constantly in contact with material or cellular surfaces, which can trigger their aggregation and therefore have a serious impact on the development of stable therapeutic proteins. In contact with hydrophobic material surfaces, human insulin aggregates readily into amyloid fibers. The kinetics of this aggregation can be accelerated by small peptides, forming stable beta-sheets on hydrophobic surfaces. Using a series of (LK)nL peptides with varying length, we show that these peptides, at low, substoichiometric concentrations, have a positive, cooperative effect on insulin aggregation. This effect is based on a cooperative adsorption of (LK)nL peptides at hydrophobic surfaces, where they form complexes that help the formation of aggregation nuclei. At higher concentrations, they interfere with the formation of an aggregative nucleus. These effects are strictly dependent on the their adsorption on hydrophobic material surfaces and highlight the importance of the impact of materials on protein stability. (LK)nL peptides prove to be valuable tools to investigate the mechanism of HI aggregation nuclei formation on hydrophobic surfaces.

  15. Lipid Rafts: Linking Alzheimer's Amyloid-β Production, Aggregation, and Toxicity at Neuronal Membranes

    Directory of Open Access Journals (Sweden)

    Jo V. Rushworth

    2011-01-01

    Full Text Available Lipid rafts are membrane microdomains, enriched in cholesterol and sphingolipids, into which specific subsets of proteins and lipids partition, creating cell-signalling platforms that are vital for neuronal functions. Lipid rafts play at least three crucial roles in Alzheimer's Disease (AD, namely, in promoting the generation of the amyloid-β (Aβ peptide, facilitating its aggregation upon neuronal membranes to form toxic oligomers and hosting specific neuronal receptors through which the AD-related neurotoxicity and memory impairments of the Aβ oligomers are transduced. Recent evidence suggests that Aβ oligomers may exert their deleterious effects through binding to, and causing the aberrant clustering of, lipid raft proteins including the cellular prion protein and glutamate receptors. The formation of these pathogenic lipid raft-based platforms may be critical for the toxic signalling mechanisms that underlie synaptic dysfunction and neuropathology in AD.

  16. Inhibitory Effect of Curcumin-Cu(II) and Curcumin-Zn(II) Complexes on Amyloid-Beta Peptide Fibrillation

    OpenAIRE

    Rona Banerjee

    2014-01-01

    Mononuclear complexes of Curcumin with Cu(II) and Zn(II) have been synthesized and, characterized and their effects on the fibrillization and aggregation of amyloid-beta (Aβ) peptide have been studied. FTIR spectroscopy and atomic force microscopy (AFM) observations demonstrate that the complexes can inhibit the transition from less structured oligomers to β-sheet rich protofibrils which act as seeding factors for further fibrillization. The metal complexes also impart more improved inhibitor...

  17. Effects of secondary metabolite extract from Phomopsis occulta on β-amyloid aggregation.

    Directory of Open Access Journals (Sweden)

    Haiqiang Wu

    Full Text Available Inhibition of β-amyloid (Aβ aggregation is an attractive therapeutic and preventive strategy for the discovery of disease-modifying agents in Alzheimer's disease (AD. Phomopsis occulta is a new, salt-tolerant fungus isolated from mangrove Pongamia pinnata (L. Pierre. We report here the inhibitory effects of secondary metabolites from Ph. occulta on the aggregation of Aβ42. It was found that mycelia extracts (MEs from Ph. occulta cultured with 0, 2, and 3 M NaCl exhibited inhibitory activity in an E. coli model of Aβ aggregation. A water-soluble fraction, ME0-W-F1, composed of mainly small peptides, was able to reduce aggregation of an Aβ42-EGFP fusion protein and an early onset familial mutation Aβ42E22G-mCherry fusion protein in transfected HEK293 cells. ME0-W-F1 also antagonized the cytotoxicity of Aβ42 in the neural cell line SH-SY5Y in dose-dependent manner. Moreover, SDS-PAGE and FT-IR analysis confirmed an inhibitory effect of ME0-W-F1 on the aggregation of Aβ42 in vitro. ME0-W-F1 blocked the conformational transition of Aβ42 from α-helix/random coil to β-sheet, and thereby inhibited formation of Aβ42 tetramers and high molecular weight oligomers. ME0-W-F1 and other water-soluble secondary metabolites from Ph. occulta therefore represent new candidate natural products against aggregation of Aβ42, and illustrate the potential of salt tolerant fungi from mangrove as resources for the treatment of AD and other diseases.

  18. Anti-amyloid Aggregation Activity of Natural Compounds: Implications for Alzheimer's Drug Discovery.

    Science.gov (United States)

    Bu, Xian-Le; Rao, Praveen P N; Wang, Yan-Jiang

    2016-08-01

    Several plant-derived natural compounds are known to exhibit anti-amyloid aggregation activity which makes them attractive as potential therapies to treat Alzheimer's disease. The mechanisms of their anti-amyloid activity are not well known. In this regard, many natural compounds are known to exhibit direct binding to various amyloid species including oligomers and fibrils, which in turn can lead to conformational change in the beta-sheet assembly to form nontoxic aggregates. This review discusses the mechanism of anti-amyloid activity of 16 natural compounds and gives structural details on their direct binding interactions with amyloid aggregates. Our computational investigations show that the physicochemical properties of natural products do fit Lipinski's criteria and that catechol and catechol-type moieties present in natural compounds act as lysine site-specific inhibitors of amyloid aggregation. Based on these observations, we propose a structural template to design novel small molecules containing site-specific ring scaffolds, planar aromatic and nonaromatic linkers with suitably substituted hydrogen bond acceptors and donors. These studies will have significant implications in the design and development of novel amyloid aggregation inhibitors with superior metabolic stability and blood-brain barrier penetration as potential agents to treat Alzheimer's disease.

  19. Effect of graphene oxide on the conformational transitions of amyloid beta peptide: A molecular dynamics simulation study.

    Science.gov (United States)

    Baweja, Lokesh; Balamurugan, Kanagasabai; Subramanian, Venkatesan; Dhawan, Alok

    2015-09-01

    The interactions between nanomaterials (NMs) and amyloid proteins are central to the nanotechnology-based diagnostics and therapy in neurodegenerative disorders such as Alzheimer's and Parkinson's. Graphene oxide (GO) and its derivatives have shown to modulate the aggregation pattern of disease causing amyloid beta (Aβ) peptide. However, the mechanism is still not well understood. Using molecular dynamics simulations, the effect of graphene oxide (GO) and reduced graphene oxide (rGO) having carbon:oxygen ratio of 4:1 and 10:1, respectively, on the conformational transitions (alpha-helix to beta-sheet) and the dynamics of the peptide was investigated. GO and rGO decreased the beta-strand propensity of amino acid residues in Aβ. The peptide displayed different modes of adsorption on GO and rGO. The adsorption on GO was dominated by electrostatic interactions, whereas on rGO, both van der Waals and electrostatic interactions contributed in the adsorption of the peptide. Our study revealed that the slight increase in the hydrophobic patches on rGO made it more effective inhibitor of conformational transitions in the peptide. Alpha helix-beta sheet transition in Aβ peptide could be one of the plausible mechanism by which graphene oxide may inhibit amyloid fibrillation.

  20. Amyloid Beta Peptides Differentially Affect Hippocampal Theta Rhythms In Vitro

    Directory of Open Access Journals (Sweden)

    Armando I. Gutiérrez-Lerma

    2013-01-01

    Full Text Available Soluble amyloid beta peptide (Aβ is responsible for the early cognitive dysfunction observed in Alzheimer's disease. Both cholinergically and glutamatergically induced hippocampal theta rhythms are related to learning and memory, spatial navigation, and spatial memory. However, these two types of theta rhythms are not identical; they are associated with different behaviors and can be differentially modulated by diverse experimental conditions. Therefore, in this study, we aimed to investigate whether or not application of soluble Aβ alters the two types of theta frequency oscillatory network activity generated in rat hippocampal slices by application of the cholinergic and glutamatergic agonists carbachol or DHPG, respectively. Due to previous evidence that oscillatory activity can be differentially affected by different Aβ peptides, we also compared Aβ25−35 and Aβ1−42 for their effects on theta rhythms in vitro at similar concentrations (0.5 to 1.0 μM. We found that Aβ25−35 reduces, with less potency than Aβ1−42, carbachol-induced population theta oscillatory activity. In contrast, DHPG-induced oscillatory activity was not affected by a high concentration of Aβ25−35 but was reduced by Aβ1−42. Our results support the idea that different amyloid peptides might alter specific cellular mechanisms related to the generation of specific neuronal network activities, instead of exerting a generalized inhibitory effect on neuronal network function.

  1. In vitro fibrillization of Alzheimer's amyloidpeptide (1-42)

    Science.gov (United States)

    Tiiman, Ann; Krishtal, Jekaterina; Palumaa, Peep; Tõugu, Vello

    2015-09-01

    The amyloid deposition in the form of extracellular fibrillar aggregates of amyloid-β (Aβ) peptide is a critical pathological event in Alzheimer's disease. Here, we report a systematic investigation of the effects of environmental factors on the kinetics of Aβ fibrillization in vitro. The effects of Aβ42 peptide concentration, temperature, pH, added solvents and the ratio of Aβ40 and Aβ42 on the peptide fibrillization under agitated conditions was studied. The analysis show that the rate of fibril growth by monomer addition is not limited by diffusion but by rearrangement in the monomer structure, which is enhanced by low concentrations of fluorinated alcohols and characterized by the activation energy of 12 kcal/mol. Fibrillization rate decreases at pH values below 7.0 where simultaneous protonation of His 13 and 14 inhibits fibril formation. The lag period for Aβ42 was only twofold shorter and the fibril growth rate twofold faster than those of Aβ40. Lag period was shortened and the fibrillization rate was increased only at 90% content of Aβ42.

  2. In vitro fibrillization of Alzheimer’s amyloidpeptide (1-42

    Directory of Open Access Journals (Sweden)

    Ann Tiiman

    2015-09-01

    Full Text Available The amyloid deposition in the form of extracellular fibrillar aggregates of amyloid-β (Aβ peptide is a critical pathological event in Alzheimer’s disease. Here, we report a systematic investigation of the effects of environmental factors on the kinetics of Aβ fibrillization in vitro. The effects of Aβ42 peptide concentration, temperature, pH, added solvents and the ratio of Aβ40 and Aβ42 on the peptide fibrillization under agitated conditions was studied. The analysis show that the rate of fibril growth by monomer addition is not limited by diffusion but by rearrangement in the monomer structure, which is enhanced by low concentrations of fluorinated alcohols and characterized by the activation energy of 12 kcal/mol. Fibrillization rate decreases at pH values below 7.0 where simultaneous protonation of His 13 and 14 inhibits fibril formation. The lag period for Aβ42 was only twofold shorter and the fibril growth rate twofold faster than those of Aβ40. Lag period was shortened and the fibrillization rate was increased only at 90% content of Aβ42.

  3. Indexing amyloid peptide diffraction from serial femtosecond crystallography: new algorithms for sparse patterns

    Energy Technology Data Exchange (ETDEWEB)

    Brewster, Aaron S. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Sawaya, Michael R. [University of California, Los Angeles, CA 90095-1570 (United States); University of California, Los Angeles, CA 90095-1570 (United States); University of California, Los Angeles, CA 90095-1570 (United States); Rodriguez, Jose [University of California, Los Angeles, CA 90095-1570 (United States); University of California, Los Angeles, CA 90095-1570 (United States); Hattne, Johan; Echols, Nathaniel [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); McFarlane, Heather T. [University of California, Los Angeles, CA 90095-1570 (United States); University of California, Los Angeles, CA 90095-1570 (United States); Cascio, Duilio [University of California, Los Angeles, CA 90095-1570 (United States); University of California, Los Angeles, CA 90095-1570 (United States); University of California, Los Angeles, CA 90095-1570 (United States); Adams, Paul D. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); University of California, Berkeley, CA 94720 (United States); Eisenberg, David S. [University of California, Los Angeles, CA 90095-1570 (United States); University of California, Los Angeles, CA 90095-1570 (United States); University of California, Los Angeles, CA 90095-1570 (United States); Sauter, Nicholas K., E-mail: nksauter@lbl.gov [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2015-02-01

    Special methods are required to interpret sparse diffraction patterns collected from peptide crystals at X-ray free-electron lasers. Bragg spots can be indexed from composite-image powder rings, with crystal orientations then deduced from a very limited number of spot positions. Still diffraction patterns from peptide nanocrystals with small unit cells are challenging to index using conventional methods owing to the limited number of spots and the lack of crystal orientation information for individual images. New indexing algorithms have been developed as part of the Computational Crystallography Toolbox (cctbx) to overcome these challenges. Accurate unit-cell information derived from an aggregate data set from thousands of diffraction patterns can be used to determine a crystal orientation matrix for individual images with as few as five reflections. These algorithms are potentially applicable not only to amyloid peptides but also to any set of diffraction patterns with sparse properties, such as low-resolution virus structures or high-throughput screening of still images captured by raster-scanning at synchrotron sources. As a proof of concept for this technique, successful integration of X-ray free-electron laser (XFEL) data to 2.5 Å resolution for the amyloid segment GNNQQNY from the Sup35 yeast prion is presented.

  4. Dimensionality of carbon nanomaterial impacting on the modulation of amyloid peptide assembly

    Science.gov (United States)

    Wang, J.; Zhu, Z.; Bortolini, C.; Hoffmann, S. V.; Amari, A.; Zhang, H. X.; Liu, L.; Dong, M. D.

    2016-07-01

    A wide variety of inorganic nanomaterials have been exploited so far for their great potential for biological applications. Some of these materials could be valid candidates to modulate the assembly of amyloid peptides, which is relevant to amyloid-related diseases. In this work, we reveal that a carbon nanomaterial can indeed modulate the assembly of amyloid peptides and, additionally, we show that this modulating effect is closely related to the dimensionality of the nanomaterials.

  5. Dimensionality of carbon nanomaterial impacting on the modulation of amyloid peptide assembly

    DEFF Research Database (Denmark)

    Wang, J.; Zhu, Z.; Bortolini, C.;

    2016-01-01

    A wide variety of inorganic nanomaterials have been exploited so far for their great potential for biological applications. Some of these materials could be valid candidates to modulate the assembly of amyloid peptides, which is relevant to amyloid-related diseases. In this work, we reveal...... that a carbon nanomaterial can indeed modulate the assembly of amyloid peptides and, additionally, we show that this modulating effect is closely related to the dimensionality of the nanomaterials....

  6. Aggregation of peptides in the tube model with correlated sidechain orientations

    Science.gov (United States)

    Hung, Nguyen Ba; Hoang, Trinh Xuan

    2015-06-01

    The ability of proteins and peptides to aggregate and form toxic amyloid fibrils is associated with a range of diseases including BSE (or mad cow), Alzheimer's and Parkinson's Diseases. In this study, we investigate the the role of amino acid sequence in the aggregation propensity by using a modified tube model with a new procedure for hydrophobic interaction. In this model, the amino acid sidechains are not considered explicitly, but their orientations are taken into account in the formation of hydrophobic contact. Extensive Monte Carlo simulations for systems of short peptides are carried out with the use of parallel tempering technique. Our results show that the propensity to form and the structures of the aggregates strongly depend on the amino acid sequence and the number of peptides. Some sequences may not aggregate at all at a presumable physiological temperature while other can easily form fibril-like, β-sheet struture. Our study provides an insight into the principles of how the formation of amyloid can be governed by amino acid sequence.

  7. Polymorphism of amyloid fibrils formed by a peptide from the yeast prion protein Sup35: AFM and Tip-Enhanced Raman Scattering studies.

    Science.gov (United States)

    Krasnoslobodtsev, Alexey V; Deckert-Gaudig, Tanja; Zhang, Yuliang; Deckert, Volker; Lyubchenko, Yuri L

    2016-06-01

    Aggregation of prion proteins is the cause of various prion related diseases. The infectious form of prions, amyloid aggregates, exist as multiple strains. The strains are thought to represent structurally different prion protein molecules packed into amyloid aggregates, but the knowledge on the structure of different types of aggregates is limited. Here we report on the use of AFM (Atomic Force Microscopy) and TERS (Tip-Enhanced Raman Scattering) to study morphological heterogeneity and access underlying conformational features of individual amyloid aggregates. Using AFM we identified the morphology of amyloid fibrils formed by the peptide (CGNNQQNY) from the yeast prion protein Sup35 that is critically involved in the aggregation of the full protein. TERS results demonstrate that morphologically different amyloid fibrils are composed of a distinct set of conformations. Fibrils formed at pH 5.6 are composed of a mixture of peptide conformations (β-sheets, random coil and α-helix) while fibrils formed in pH~2 solution primarily have β-sheets. Additionally, peak positions in the amide III region of the TERS spectra suggested that peptides have parallel arrangement of β-sheets for pH~2 fibrils and antiparallel arrangement for fibrils formed at pH 5.6. We also developed a methodology for detailed analysis of the peptide secondary structure by correlating intensity changes of Raman bands in different regions of TERS spectra. Such correlation established that structural composition of peptides is highly localized with large contribution of unordered secondary structures on a fibrillar surface. PMID:27060278

  8. Cytochrome c peroxidase activity of heme bound amyloid β peptides.

    Science.gov (United States)

    Seal, Manas; Ghosh, Chandradeep; Basu, Olivia; Dey, Somdatta Ghosh

    2016-09-01

    Heme bound amyloid β (Aβ) peptides, which have been associated with Alzheimer's disease (AD), can catalytically oxidize ferrocytochrome c (Cyt c(II)) in the presence of hydrogen peroxide (H2O2). The rate of catalytic oxidation of Cyt(II) c has been found to be dependent on several factors, such as concentration of heme(III)-Aβ, Cyt(II) c, H2O2, pH, ionic strength of the solution, and peptide chain length of Aβ. The above features resemble the naturally occurring enzyme cytochrome c peroxidase (CCP) which is known to catalytically oxidize Cyt(II) c in the presence of H2O2. In the absence of heme(III)-Aβ, the oxidation of Cyt(II) c is not catalytic. Thus, heme-Aβ complex behaves as CCP. PMID:27270708

  9. Cytochrome c peroxidase activity of heme bound amyloid β peptides.

    Science.gov (United States)

    Seal, Manas; Ghosh, Chandradeep; Basu, Olivia; Dey, Somdatta Ghosh

    2016-09-01

    Heme bound amyloid β (Aβ) peptides, which have been associated with Alzheimer's disease (AD), can catalytically oxidize ferrocytochrome c (Cyt c(II)) in the presence of hydrogen peroxide (H2O2). The rate of catalytic oxidation of Cyt(II) c has been found to be dependent on several factors, such as concentration of heme(III)-Aβ, Cyt(II) c, H2O2, pH, ionic strength of the solution, and peptide chain length of Aβ. The above features resemble the naturally occurring enzyme cytochrome c peroxidase (CCP) which is known to catalytically oxidize Cyt(II) c in the presence of H2O2. In the absence of heme(III)-Aβ, the oxidation of Cyt(II) c is not catalytic. Thus, heme-Aβ complex behaves as CCP.

  10. Common benzothiazole and benzoxazole fluorescent DNA intercalators for studying Alzheimer Aβ1-42 and prion amyloid peptides.

    Science.gov (United States)

    Stefansson, Steingrimur; Adams, Daniel L; Tang, Cha-Mei

    2012-05-01

    Amyloids are fibrillar protein aggregates associated with a number of neurodegenerative pathologies including Alzheimer and Creutzfeldt-Jakob disease. The study of amyloids is usually based on fluorescence with the dye thioflavin-T. Although a number of amyloid binding compounds have been synthesized, many are nonfluorescent or not readily available for research use. Here we report on a class of commercial benzothiazole/benzoxazole containing fluorescent DNA intercalators from Invitrogen that possess the ability to bind amyloid Aβ1-42 peptide and hamster prion. These dyes fluoresce from 500-750 nm and are available as dimers or monomers. We demonstrate that these dyes can be used as acceptors for thioflavin-T fluorescence resonance energy transfer as well as reporter groups for binding studies with Congo red and chrysamine G. As more potential therapeutic compounds for these diseases are generated, there is a need for simple and inexpensive methods to monitor their interactions with amyloids. The fluorescent dyes reported here are readily available and can be used as tools for biochemical studies of amyloid structures and in vitro screening of potential therapeutics.

  11. PARP-1 modulates amyloid beta peptide-induced neuronal damage.

    Directory of Open Access Journals (Sweden)

    Sara Martire

    Full Text Available Amyloid beta peptide (Aβ causes neurodegeneration by several mechanisms including oxidative stress, which is known to induce DNA damage with the consequent activation of poly (ADP-ribose polymerase (PARP-1. To elucidate the role of PARP-1 in the neurodegenerative process, SH-SY5Y neuroblastoma cells were treated with Aβ25-35 fragment in the presence or absence of MC2050, a new PARP-1 inhibitor. Aβ25-35 induces an enhancement of PARP activity which is prevented by cell pre-treatment with MC2050. These data were confirmed by measuring PARP-1 activity in CHO cells transfected with amylod precursor protein and in vivo in brains specimens of TgCRND8 transgenic mice overproducing the amyloid peptide. Following Aβ25-35 exposure a significant increase in intracellular ROS was observed. These data were supported by the finding that Aβ25-35 induces DNA damage which in turn activates PARP-1. Challenge with Aβ25-35 is also able to activate NF-kB via PARP-1, as demonstrated by NF-kB impairment upon MC2050 treatment. Moreover, Aβ25-35 via PARP-1 induces a significant increase in the p53 protein level and a parallel decrease in the anti-apoptotic Bcl-2 protein. These overall data support the hypothesis of PARP-1 involvment in cellular responses induced by Aβ and hence a possible rationale for the implication of PARP-1 in neurodegeneration is discussed.

  12. Trifluoroethanol modulates α-synuclein amyloid-like aggregate formation, stability and dissolution.

    Science.gov (United States)

    Di Carlo, Maria Giovanna; Vetri, Valeria; Buscarino, Gianpiero; Leone, Maurizio; Vestergaard, Bente; Foderà, Vito

    2016-09-01

    The conversion of proteins into amyloid fibrils and other amyloid-like aggregates is closely connected to the onset of a series of age-related pathologies. Upon changes in environmental conditions, amyloid-like aggregates may also undergo disassembly into oligomeric aggregates, the latter being recognized as key effectors in toxicity. This indicates new possible routes for in vivo accumulation of toxic species. In the light of the recognized implication of α-Synuclein (αSN) in Parkinson's disease, we present an experimental study on supramolecular assembly of αSN with a focus on stability and disassembly paths of such supramolecular aggregate species. Using spectroscopic techniques, two-photon microscopy, small-angle X-ray scattering and atomic force microscopy, we report evidences on how the stability of αSN amyloid-like aggregates can be altered by changing solution conditions. We show that amyloid-like aggregate formation can be induced at high temperature in the presence of trifluoroethanol (TFE). Moreover, sudden disassembly or further structural reorganisation toward higher hierarchical species can be induced by varying TFE concentration. Our results may contribute in deciphering fundamental mechanisms and interactions underlying supramolecular clustering/dissolution of αSN oligomers in cells. PMID:27372900

  13. Physiopathological modulators of amyloid aggregation and novel pharmacological approaches in Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    DEFELICE FERNANDA G.

    2002-01-01

    Full Text Available The biological mechanisms underlying the neuropathology of Alzheimer's disease (AD are complex, as several factors likely contribute to the development of the disease. Therefore, it is not surprising that a number of different possible therapeutic approaches addressing distinct aspects of this disease are currently being investigated. Among these are ways to prevent amyloid aggregation and/or deposition, to prevent neuronal degeneration, and to increase brain neurotransmitter levels. Here, we discuss possible roles of endogenous modulators of Abeta aggregation in the physiopathology of AD and some of the strategies currently under consideration to interfere with brain levels of beta-amyloid, its aggregation and neurotoxicity.

  14. Reduction and degradation of amyloid aggregates by a pulsed radio-frequency cold atmospheric plasma jet

    Energy Technology Data Exchange (ETDEWEB)

    Bayliss, D L; Walsh, J L; Iza, F; Kong, M G [Department of Electronic and Electrical Engineering, Loughborough University, Leicestershire LE11 3TU (United Kingdom); Shama, G [Department of Chemical Engineering, Loughborough University, Leicestershire LE11 3TU (United Kingdom)], E-mail: m.g.kong@lboro.ac.uk

    2009-11-15

    Surface-borne amyloid aggregates with mature fibrils are used as a non-infectious prion model to evaluate cold atmospheric plasmas (CAPs) as a prion inactivation strategy. Using a helium-oxygen CAP jet with pulsed radio-frequency (RF) excitation, amyloid aggregates deposited on freshly cleaved mica discs are reduced substantially leaving only a few spherical fragments of sub-micrometer sizes in areas directly treated by the CAP jet. Outside the light-emitting part of the CAP jet, plasma treatment results in a 'skeleton' of much reduced amyloid stacks with clear evidence of fibril fragmentation. Analysis of possible plasma species and the physical configuration of the jet-sample interaction suggests that the skeleton structures observed are unlikely to have arisen as a result of physical forces of detachment, but instead by progressive diffusion of oxidizing plasma species into porous amyloid aggregates. Composition of chemical bonds of this reduced amyloid sample is very different from that of intact amyloid aggregates. These suggest the possibility of on-site degradation by CAP treatment with little possibility of spreading contamination elsewhere , thus offering a new reaction chemistry route to protein infectivity control with desirable implications for the practical implementation of CAP-based sterilization systems.

  15. Reduction and degradation of amyloid aggregates by a pulsed radio-frequency cold atmospheric plasma jet

    Science.gov (United States)

    Bayliss, D. L.; Walsh, J. L.; Shama, G.; Iza, F.; Kong, M. G.

    2009-11-01

    Surface-borne amyloid aggregates with mature fibrils are used as a non-infectious prion model to evaluate cold atmospheric plasmas (CAPs) as a prion inactivation strategy. Using a helium-oxygen CAP jet with pulsed radio-frequency (RF) excitation, amyloid aggregates deposited on freshly cleaved mica discs are reduced substantially leaving only a few spherical fragments of sub-micrometer sizes in areas directly treated by the CAP jet. Outside the light-emitting part of the CAP jet, plasma treatment results in a 'skeleton' of much reduced amyloid stacks with clear evidence of fibril fragmentation. Analysis of possible plasma species and the physical configuration of the jet-sample interaction suggests that the skeleton structures observed are unlikely to have arisen as a result of physical forces of detachment, but instead by progressive diffusion of oxidizing plasma species into porous amyloid aggregates. Composition of chemical bonds of this reduced amyloid sample is very different from that of intact amyloid aggregates. These suggest the possibility of on-site degradation by CAP treatment with little possibility of spreading contamination elsewhere , thus offering a new reaction chemistry route to protein infectivity control with desirable implications for the practical implementation of CAP-based sterilization systems.

  16. Reduction and degradation of amyloid aggregates by a pulsed radio-frequency cold atmospheric plasma jet

    International Nuclear Information System (INIS)

    Surface-borne amyloid aggregates with mature fibrils are used as a non-infectious prion model to evaluate cold atmospheric plasmas (CAPs) as a prion inactivation strategy. Using a helium-oxygen CAP jet with pulsed radio-frequency (RF) excitation, amyloid aggregates deposited on freshly cleaved mica discs are reduced substantially leaving only a few spherical fragments of sub-micrometer sizes in areas directly treated by the CAP jet. Outside the light-emitting part of the CAP jet, plasma treatment results in a 'skeleton' of much reduced amyloid stacks with clear evidence of fibril fragmentation. Analysis of possible plasma species and the physical configuration of the jet-sample interaction suggests that the skeleton structures observed are unlikely to have arisen as a result of physical forces of detachment, but instead by progressive diffusion of oxidizing plasma species into porous amyloid aggregates. Composition of chemical bonds of this reduced amyloid sample is very different from that of intact amyloid aggregates. These suggest the possibility of on-site degradation by CAP treatment with little possibility of spreading contamination elsewhere , thus offering a new reaction chemistry route to protein infectivity control with desirable implications for the practical implementation of CAP-based sterilization systems.

  17. Indexing amyloid peptide diffraction from serial femtosecond crystallography: new algorithms for sparse patterns.

    Science.gov (United States)

    Brewster, Aaron S; Sawaya, Michael R; Rodriguez, Jose; Hattne, Johan; Echols, Nathaniel; McFarlane, Heather T; Cascio, Duilio; Adams, Paul D; Eisenberg, David S; Sauter, Nicholas K

    2015-02-01

    Still diffraction patterns from peptide nanocrystals with small unit cells are challenging to index using conventional methods owing to the limited number of spots and the lack of crystal orientation information for individual images. New indexing algorithms have been developed as part of the Computational Crystallography Toolbox (cctbx) to overcome these challenges. Accurate unit-cell information derived from an aggregate data set from thousands of diffraction patterns can be used to determine a crystal orientation matrix for individual images with as few as five reflections. These algorithms are potentially applicable not only to amyloid peptides but also to any set of diffraction patterns with sparse properties, such as low-resolution virus structures or high-throughput screening of still images captured by raster-scanning at synchrotron sources. As a proof of concept for this technique, successful integration of X-ray free-electron laser (XFEL) data to 2.5 Å resolution for the amyloid segment GNNQQNY from the Sup35 yeast prion is presented.

  18. Amyloid beta-peptide worsens cognitive impairment following cerebral ischemia-reperfusion injury*****

    Institute of Scientific and Technical Information of China (English)

    Bo Song; Qiang Ao; Ying Niu; Qin Shen; Huancong Zuo; Xiufang Zhang; Yandao Gong

    2013-01-01

    Amyloid β-peptide, a major component of senile plaques in Alzheimer’s disease, has been impli-cated in neuronal cel death and cognitive impairment. Recently, studies have shown that the pathogenesis of cerebral ischemia is closely linked with Alzheimer’s disease. In this study, a rat model of global cerebral ischemia-reperfusion injury was established via occlusion of four arteries;meanwhile, fibril ar amyloid β-peptide was injected into the rat lateral ventricle. The Morris water maze test and histological staining revealed that administration of amyloid β-peptide could further aggravate impairments to learning and memory and neuronal cel death in the hippocampus of rats subjected to cerebral ischemia-reperfusion injury. Western blot showed that phosphorylation of tau protein and the activity of glycogen synthase kinase 3β were significantly stronger in cerebral is-chemia-reperfusion injury rats subjected to amyloidβ-peptide administration than those undergoing cerebral ischemia-reperfusion or amyloidβ-peptide administration alone. Conversely, the activity of protein phosphatase 2A was remarkably reduced in rats with cerebral ischemia-reperfusion injury fol owing amyloidβ-peptide administration. These findings suggest that amyloidβ-peptide can po-tentiate tau phosphorylation induced by cerebral ischemia-reperfusion and thereby aggravate cog-nitive impairment.

  19. Iron and aluminum interaction with amyloid-beta peptides associated with Alzheimer’s disease

    International Nuclear Information System (INIS)

    An elevation in the concentration of heavy metal ions in Alzheimer’s disease (AD) brain has been demonstrated in many studies. Aβ precipitation and toxicity in AD brains seem to be caused by abnormal interactions with neocortical metal ions, especially iron, copper, zinc, and aluminum [1–3]. There is increasing evidence that iron and aluminum ions are involved in the mechanisms that underlie the neurodegenerative diseases [4,5]. However, evidence was brought to demonstrate that some Aβ fragments, at physiological pH, are not able to form binary complexes with Fe(III) ions of sufficient stability to compete with metal hydroxide precipitation [6]. On the contrary, multiple metal ions are known to interact with Aβ peptides [7]. Consequently, we investigated here the interaction of Fe(II/III) and Al(III) ions with some amyloidpeptides and fragments that results in peptide aggregation and fibrillation [8,9]. Infrared spectroscopy, atomic force microscopy, scanning electron microscopy, electrophoresis and mass spectrometry demonstrated conformational changes of peptides in the presence of such metals

  20. Iron and aluminum interaction with amyloid-beta peptides associated with Alzheimer’s disease

    Energy Technology Data Exchange (ETDEWEB)

    Drochioiu, Gabi; Ion, Laura [Alexandru Ioan Cuza University of Iasi, 11 Carol I, Iasi 700506 (Romania); Murariu, Manuela; Habasescu, Laura [Petru Poni Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, Iasi 700487 (Romania)

    2014-10-06

    An elevation in the concentration of heavy metal ions in Alzheimer’s disease (AD) brain has been demonstrated in many studies. Aβ precipitation and toxicity in AD brains seem to be caused by abnormal interactions with neocortical metal ions, especially iron, copper, zinc, and aluminum [1–3]. There is increasing evidence that iron and aluminum ions are involved in the mechanisms that underlie the neurodegenerative diseases [4,5]. However, evidence was brought to demonstrate that some Aβ fragments, at physiological pH, are not able to form binary complexes with Fe(III) ions of sufficient stability to compete with metal hydroxide precipitation [6]. On the contrary, multiple metal ions are known to interact with Aβ peptides [7]. Consequently, we investigated here the interaction of Fe(II/III) and Al(III) ions with some amyloidpeptides and fragments that results in peptide aggregation and fibrillation [8,9]. Infrared spectroscopy, atomic force microscopy, scanning electron microscopy, electrophoresis and mass spectrometry demonstrated conformational changes of peptides in the presence of such metals.

  1. Force generation by the growth of amyloid aggregates.

    Science.gov (United States)

    Herling, Therese W; Garcia, Gonzalo A; Michaels, Thomas C T; Grentz, Wolfgang; Dean, James; Shimanovich, Ulyana; Gang, Hongze; Müller, Thomas; Kav, Batuhan; Terentjev, Eugene M; Dobson, Christopher M; Knowles, Tuomas P J

    2015-08-01

    The generation of mechanical forces are central to a wide range of vital biological processes, including the function of the cytoskeleton. Although the forces emerging from the polymerization of native proteins have been studied in detail, the potential for force generation by aberrant protein polymerization has not yet been explored. Here, we show that the growth of amyloid fibrils, archetypical aberrant protein polymers, is capable of unleashing mechanical forces on the piconewton scale for individual filaments. We apply microfluidic techniques to measure the forces released by amyloid growth for two systems: insulin and lysozyme. The level of force measured for amyloid growth in both systems is comparable to that observed for actin and tubulin, systems that have evolved to generate force during their native functions and, unlike amyloid growth, rely on the input of external energy in the form of nucleotide hydrolysis for maximum force generation. Furthermore, we find that the power density released from growing amyloid fibrils is comparable to that of high-performance synthetic polymer actuators. These findings highlight the potential of amyloid structures as active materials and shed light on the criteria for regulation and reversibility that guide molecular evolution of functional polymers.

  2. Antimicrobial peptide (Cn-AMP2) from liquid endosperm of Cocos nucifera forms amyloid-like fibrillar structure.

    Science.gov (United States)

    Gour, Shalini; Kaushik, Vibha; Kumar, Vijay; Bhat, Priyanka; Yadav, Subhash C; Yadav, Jay K

    2016-04-01

    Cn-AMP2 is an antimicrobial peptide derived from liquid endosperm of coconut (Cocos nucifera). It consists of 11 amino acid residues and predicted to have high propensity for β-sheet formation that disposes this peptide to be amyloidogenic. In the present study, we have examined the amyloidogenic propensities of Cn-AMP2 in silico and then tested the predictions under in vitro conditions. The in silico study revealed that the peptide possesses high amyloidogenic propensity comparable with Aβ. Upon solubilisation and agitation in aqueous buffer, Cn-AMP2 forms visible aggregates that display bathochromic shift in the Congo red absorbance spectra, strong increase in thioflavin T fluorescence and fibrillar morphology under transmission electron microscopy. All these properties are typical of an amyloid fibril derived from various proteins/peptides including Aβ. PMID:27028204

  3. Designed amyloid beta peptide fibril - a tool for high-throughput screening of fibril inhibitors.

    Science.gov (United States)

    Dolphin, Gunnar T; Ouberai, Myriam; Dumy, Pascal; Garcia, Julian

    2007-11-01

    Amyloid beta peptide (Abeta) fibril formation is widely believed to be the causative event of Alzheimer's disease pathogenesis. Therapeutic approaches are therefore in development that target various sites in the production and aggregation of Abeta. Herein we present a high-throughput screening tool to generate novel hit compounds that block Abeta fibril formation. This tool is an application for our fibril model (Abeta(16-37)Y(20)K(22)K(24))(4), which is a covalent assembly of four Abeta fragments. With this tool, screening studies are complete within one hour, as opposed to days with native Abeta(1-40). A Z' factor of 0.84+/-0.03 was determined for fibril formation and inhibition, followed by the reporter molecule thioflavin T. Herein we also describe the analysis of a broad range of reported inhibitors and non-inhibitors of Abeta fibril formation to test the validity of the system. PMID:17876751

  4. Common molecular mechanism of amyloid pore formation by Alzheimer’s β-amyloid peptide and α-synuclein

    Science.gov (United States)

    Di Scala, Coralie; Yahi, Nouara; Boutemeur, Sonia; Flores, Alessandra; Rodriguez, Léa; Chahinian, Henri; Fantini, Jacques

    2016-01-01

    Calcium-permeable pores formed by small oligomers of amyloid proteins are the primary pathologic species in Alzheimer’s and Parkinson’s diseases. However, the molecular mechanisms underlying the assembly of these toxic oligomers in the plasma membrane of brain cells remain unclear. Here we have analyzed and compared the pore-forming capability of a large panel of amyloid proteins including wild-type, variant and truncated forms, as well as synthetic peptides derived from specific domains of Aβ1-42 and α-synuclein. We show that amyloid pore formation involves two membrane lipids, ganglioside and cholesterol, that physically interact with amyloid proteins through specific structural motifs. Mutation or deletion of these motifs abolished pore formation. Moreover, α-synuclein (Parkinson) and Aβ peptide (Alzheimer) did no longer form Ca2+-permeable pores in presence of drugs that target either cholesterol or ganglioside or both membrane lipids. These results indicate that gangliosides and cholesterol cooperate to favor the formation of amyloid pores through a common molecular mechanism that can be jammed at two different steps, suggesting the possibility of a universal therapeutic approach for neurodegenerative diseases. Finally we present the first successful evaluation of such a new therapeutic approach (coined “membrane therapy”) targeting amyloid pores formed by Aβ1-42 and α-synuclein. PMID:27352802

  5. Common molecular mechanism of amyloid pore formation by Alzheimer's β-amyloid peptide and α-synuclein.

    Science.gov (United States)

    Di Scala, Coralie; Yahi, Nouara; Boutemeur, Sonia; Flores, Alessandra; Rodriguez, Léa; Chahinian, Henri; Fantini, Jacques

    2016-01-01

    Calcium-permeable pores formed by small oligomers of amyloid proteins are the primary pathologic species in Alzheimer's and Parkinson's diseases. However, the molecular mechanisms underlying the assembly of these toxic oligomers in the plasma membrane of brain cells remain unclear. Here we have analyzed and compared the pore-forming capability of a large panel of amyloid proteins including wild-type, variant and truncated forms, as well as synthetic peptides derived from specific domains of Aβ1-42 and α-synuclein. We show that amyloid pore formation involves two membrane lipids, ganglioside and cholesterol, that physically interact with amyloid proteins through specific structural motifs. Mutation or deletion of these motifs abolished pore formation. Moreover, α-synuclein (Parkinson) and Aβ peptide (Alzheimer) did no longer form Ca(2+)-permeable pores in presence of drugs that target either cholesterol or ganglioside or both membrane lipids. These results indicate that gangliosides and cholesterol cooperate to favor the formation of amyloid pores through a common molecular mechanism that can be jammed at two different steps, suggesting the possibility of a universal therapeutic approach for neurodegenerative diseases. Finally we present the first successful evaluation of such a new therapeutic approach (coined "membrane therapy") targeting amyloid pores formed by Aβ1-42 and α-synuclein. PMID:27352802

  6. HP-β-cyclodextrin as an inhibitor of amyloidaggregation and toxicity.

    Science.gov (United States)

    Ren, Baiping; Jiang, Binbo; Hu, Rundong; Zhang, Mingzhen; Chen, Hong; Ma, Jie; Sun, Yan; Jia, Lingyun; Zheng, Jie

    2016-07-27

    Amyloid deposits of misfolded amyloid-β protein (Aβ) on neuronal cells are a pathological hallmark of Alzheimer's disease (AD). Prevention of the abnormal Aβ aggregation has been considered as a promising therapeutic strategy for AD treatment. To prevent reinventing the wheel, we proposed to search the existing drug database for other diseases to identify potential Aβ inhibitors. Herein, we reported the inhibitory activity of HP-β-cyclodextrin (HP-β-CD), a well-known sugar used in drug delivery, genetic vector, environmental protection and treatment of Niemann-Pick disease type C1 (NPC1), against Aβ1-42 aggregation and Aβ-induced toxicity, with the aim of adding a new function as a sugar-based Aβ inhibitor. Experimental data showed that HP-β-CD molecules were not only nontoxic to cells, but also greatly inhibited Aβ fibrillization and reduced Aβ-induced toxicity in a concentration-dependent manner. At an optimal molar ratio of Aβ : HP-β-CD = 1 : 2, HP-β-CD enabled the reduction of 60% of Aβ fibrils and increased the cell viability to 92%. Such concentration-dependent inhibitor capacity of HP-β-CD was likely attributed to several combined effects, including the enhancement of Aβ-HP-β-CD interactions, prevention of structural transition of Aβ peptides towards β-sheet structures, and reduction of self-aggregation of HP-β-CD. In parallel, molecular simulations further revealed the atomic details of HP-β-CD interacting with the Aβ oligomer, showing that HP-β-CD had a high tendency to interact with hydrophobic residues of Aβ in two β-strands and the N-terminal tail. More importantly, we identified that the inner hydrophobic cavity of HP-β-CD was a key active site for Aβ inhibition. Once the inner cavity of HP-β-CD was blocked by a small hydrophobic molecule of ferulic acid, HP-β-CD completely lost its inhibition capacity against Aβ. Given the already established pharmaceutical functions of HP-β-CD in drug delivery, our findings

  7. Templated Aggregation of TAR DNA-binding Protein of 43 kDa (TDP-43) by Seeding with TDP-43 Peptide Fibrils.

    Science.gov (United States)

    Shimonaka, Shotaro; Nonaka, Takashi; Suzuki, Genjiro; Hisanaga, Shin-Ichi; Hasegawa, Masato

    2016-04-22

    TAR DNA-binding protein of 43 kDa (TDP-43) has been identified as the major component of ubiquitin-positive neuronal and glial inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Aggregation of TDP-43 to amyloid-like fibrils and spreading of the aggregates are suggested to account for the pathogenesis and progression of these diseases. To investigate the molecular mechanisms of TDP-43 aggregation, we attempted to identify the amino acid sequence required for the aggregation. By expressing a series of deletion mutants lacking 20 amino acid residues in the C-terminal region in SH-SY5Y cells, we established that residues 274-313 in the glycine-rich region are essential for aggregation. In vitro aggregation experiments using synthetic peptides of 40 amino acids from this sequence and adjacent regions showed that peptides 274-313 and 314-353 formed amyloid-like fibrils. Transduction of these fibrils induced seed-dependent aggregation of TDP-43 in cells expressing wild-type TDP-43 or TDP-43 lacking nuclear localization signal. These cells showed different phosphorylated C-terminal fragments of TDP-43 and different trypsin-resistant bands. These results suggest that residues 274-353 are responsible for the conversion of TDP-43 to amyloid-like fibrils and that templated aggregation of TDP-43 by seeding with different peptides induces various types of TDP-43 pathologies, i.e. the peptides appear to act like prion strains.

  8. New insights into side effect of solvents on the aggregation of human islet amyloid polypeptide 11-20.

    Science.gov (United States)

    Mao, Yexuan; Yu, Lanlan; Yang, Ran; Ma, Chuanguo; Qu, Ling-bo; Harrington, Peter de B

    2016-02-01

    The formation of highly ordered fibrils for the human islet amyloid polypeptide (hIAPP) is considered as one of the precipitating factors of type 2 diabetes mellitus. In this study, an emerging new approach microscale thermophoresis and conventional ThT fluorescence assay were utilized to investigate the aggregation behavior of hIAPP(11-20), giving a new insight of the solvent effect on the aggregation of hIAPP(11-20). hIAPP(11-20) displayed different aggregation behaviors in various buffers, revealing that hIAPP(11-20) not only self-aggregates but also binds to solvent components. hIAPP(11-20) had a higher binding affinity for Tris than other selected buffers because multiple hydrogen bonds form, resulting in weaker self-aggregation of hIAPP(11-20) at the early stage of aggregation and prolonging the fibril formation process. hIAPP(11-20) displayed similar self-aggregation in both HEPES and pure water. Negatively charged phosphate ions in the PBS solution 'neutralize' the charges carried by hIAPP(11-20) itself to some extent, causing rapid aggregation of hIAPP(11-20), and leading to a shorter fibrillation process of hIAPP(11-20). These results revealed that solvents contribute to the aggregation of hIAPP(11-20) and demonstrated the affect of solvents on the activity of biomolecules. Additionally, as a new technique, microscale thermophoresis offers a powerful and promising approach to study the early stages of aggregation of peptides or proteins. PMID:26653463

  9. Morphology-Specific Inhibition of β-Amyloid Aggregates by 17β-Hydroxysteroid Dehydrogenase Type 10.

    Science.gov (United States)

    Aitken, Laura; Quinn, Steven D; Perez-Gonzalez, Cibran; Samuel, Ifor D W; Penedo, J Carlos; Gunn-Moore, Frank J

    2016-06-01

    A major hallmark of Alzheimer's disease (AD) is the formation of toxic aggregates of the β-amyloid peptide (Aβ). Given that Aβ peptides are known to localise within mitochondria and interact with 17β-HSD10, a mitochondrial protein expressed at high levels in AD brains, we investigated the inhibitory potential of 17β-HSD10 against Aβ aggregation under a range of physiological conditions. Fluorescence self-quenching (FSQ) of Aβ(1-42) labelled with HiLyte Fluor 555 was used to evaluate the inhibitory effect under conditions established to grow distinct Aβ morphologies. 17β-HSD10 preferentially inhibits the formation of globular and fibrillar-like structures but has no effect on the growth of amorphous plaque-like aggregates at endosomal pH 6. This work provides insights into the dependence of the Aβ-17β-HSD10 interaction with the morphology of Aβ aggregates and how this impacts enzymatic function. PMID:26991863

  10. Neurotrophic effects of amyloid precursor protein peptide 165 in vitro.

    Science.gov (United States)

    Yao, Jie; Ma, Lina; Wang, Rong; Sheng, Shuli; Ji, Zhijuan; Zhang, Jingyan

    2016-01-01

    Diabetic encephalopathy is one of the risk factors for Alzheimer's disease. Our previous findings indicated that animals with diabetic encephalopathy exhibit learning and memory impairment in addition to hippocampal neurodegeneration, both of which are ameliorated with amyloid precursor protein (APP) 17-mer (APP17) peptide treatment. Although APP17 is neuroprotective, it is susceptible to enzymatic degradation. Derived from the active sequence structure of APP17, we have previously structurally transformed and modified several APP5-mer peptides (APP328-332 [RERMS], APP 5). We have developed seven different derivatives of APP5, including several analogs. Results from the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay on human neuroblastoma SH-SY5Y cells in the present study showed that P165 was the most neuroprotective APP5 derivative. Furthermore, we tested the effects of APP5 and P165 on the number of cells and the release of lactate dehydrogenase. Western immunoblot analyses were also performed. The digestion rates of P165 and APP5 were determined by the pepsin digestion test. P165 resisted pepsin digestion significantly more than APP5. Therefore, P165 may be optimal for oral administration. Overall, these findings suggest that P165 may be a potential drug for the treatment of diabetic encephalopathy. PMID:26551064

  11. Salts drive controllable multilayered upright assembly of amyloid-like peptides at mica/water interface.

    Science.gov (United States)

    Dai, Bin; Kang, Seung-gu; Huynh, Tien; Lei, Haozhi; Castelli, Matteo; Hu, Jun; Zhang, Yi; Zhou, Ruhong

    2013-05-21

    Surface-assisted self-assembly of amyloid-like peptides has received considerable interest in both amyloidosis research and nanotechnology in recent years. Despite extensive studies, some controlling factors, such as salts, are still not well understood, even though it is known that some salts can promote peptide self-assemblies through the so-called "salting-out" effect. However, they are usually noncontrollable, disordered, amorphous aggregates. Here, we show via a combined experimental and theoretical approach that a conserved consensus peptide NH2-VGGAVVAGV-CONH2 (GAV-9) (from representative amyloidogenic proteins) can self-assemble into highly ordered, multilayered nanofilaments, with surprising all-upright conformations, under high-salt concentrations. Our atomic force microscopy images also demonstrate that the vertical stacking of multiple layers is highly controllable by tuning the ionic strength, such as from 0 mM (monolayer) to 100 mM (mainly double layer), and to 250 mM MgCl2 (double, triple, quadruple, and quintuple layers). Our atomistic molecular dynamics simulations then reveal that these individual layers have very different internal nanostructures, with parallel β-sheets in the first monolayer but antiparallel β-sheets in the subsequent upper layers due to their different microenvironment. Further studies show that the growth of multilayered, all-upright nanostructures is a common phenomenon for GAV-9 at the mica/water interface, under a variety of salt types and a wide range of salt concentrations. PMID:23650355

  12. A look into amyloid formation by transthyretin: aggregation pathway and a novel kinetic model.

    Science.gov (United States)

    Faria, Tiago Q; Almeida, Zaida L; Cruz, Pedro F; Jesus, Catarina S H; Castanheira, Pedro; Brito, Rui M M

    2015-03-21

    The aggregation of proteins into insoluble amyloid fibrils is the hallmark of many, highly debilitating, human pathologies such as Alzheimer's or Parkinson's disease. Transthyretin (TTR) is a homotetrameric protein implicated in several amyloidoses like Senile Systemic Amyloidosis (SSA), Familial Amyloid Polyneuropathy (FAP), Familial Amyloid Cardiomyopathy (FAC), and the rare Central Nervous System selective Amyloidosis (CNSA). In this work, we have investigated the kinetics of TTR aggregation into amyloid fibrils produced by the addition of NaCl to acid-unfolded TTR monomers and we propose a mathematically simple kinetic mechanism to analyse the aggregation kinetics of TTR. We have conducted circular dichroism, intrinsic tryptophan fluorescence and thioflavin-T emission experiments to follow the conformational changes accompanying amyloid formation at different TTR concentrations. Kinetic traces were adjusted to a two-step model with the first step being second-order and the second being unimolecular. The molecular species present in the pathway of TTR oligomerization were characterized by size exclusion chromatography coupled to multi-angle light scattering and by transmission electron microscopy. The results show the transient accumulation of oligomers composed of 6 to 10 monomers in agreement with reports suggesting that these oligomers may be the causative agent of cell toxicity. The results obtained may prove to be useful in understanding the mode of action of different compounds in preventing fibril formation and, therefore, in designing new drugs against TTR amyloidosis. PMID:25694367

  13. Tyrosine- and tryptophan-coated gold nanoparticles inhibit amyloid aggregation of insulin.

    Science.gov (United States)

    Dubey, Kriti; Anand, Bibin G; Badhwar, Rahul; Bagler, Ganesh; Navya, P N; Daima, Hemant Kumar; Kar, Karunakar

    2015-12-01

    Here, we have strategically synthesized stable gold (AuNPs(Tyr), AuNPs(Trp)) and silver (AgNPs(Tyr)) nanoparticles which are surface functionalized with either tyrosine or tryptophan residues and have examined their potential to inhibit amyloid aggregation of insulin. Inhibition of both spontaneous and seed-induced aggregation of insulin was observed in the presence of AuNPs(Tyr), AgNPs(Tyr), and AuNPs(Trp) nanoparticles. These nanoparticles also triggered the disassembly of insulin amyloid fibrils. Surface functionalization of amino acids appears to be important for the inhibition effect since isolated tryptophan and tyrosine molecules did not prevent insulin aggregation. Bioinformatics analysis predicts involvement of tyrosine in H-bonding interactions mediated by its C=O, -NH2, and aromatic moiety. These results offer significant opportunities for developing nanoparticle-based therapeutics against diseases related to protein aggregation.

  14. Stability of Iowa mutant and wild type Aβ-peptide aggregates

    Science.gov (United States)

    Alred, Erik J.; Scheele, Emily G.; Berhanu, Workalemahu M.; Hansmann, Ulrich H. E.

    2014-11-01

    Recent experiments indicate a connection between the structure of amyloid aggregates and their cytotoxicity as related to neurodegenerative diseases. Of particular interest is the Iowa Mutant, which causes early-onset of Alzheimer's disease. While wild-type Amyloid β-peptides form only parallel beta-sheet aggregates, the mutant also forms meta-stable antiparallel beta sheets. Since these structural variations may cause the difference in the pathological effects of the two Aβ-peptides, we have studied in silico the relative stability of the wild type and Iowa mutant in both parallel and antiparallel forms. We compare regular molecular dynamics simulations with such where the viscosity of the samples is reduced, which, we show, leads to higher sampling efficiency. By analyzing and comparing these four sets of all-atom molecular dynamics simulations, we probe the role of the various factors that could lead to the structural differences. Our analysis indicates that the parallel forms of both wild type and Iowa mutant aggregates are stable, while the antiparallel aggregates are meta-stable for the Iowa mutant and not stable for the wild type. The differences result from the direct alignment of hydrophobic interactions in the in-register parallel oligomers, making them more stable than the antiparallel aggregates. The slightly higher thermodynamic stability of the Iowa mutant fibril-like oligomers in its parallel organization over that in antiparallel form is supported by previous experimental measurements showing slow inter-conversion of antiparallel aggregates into parallel ones. Knowledge of the mechanism that selects between parallel and antiparallel conformations and determines their relative stability may open new avenues for the development of therapies targeting familial forms of early-onset Alzheimer's disease.

  15. Stability of Iowa mutant and wild type Aβ-peptide aggregates

    Energy Technology Data Exchange (ETDEWEB)

    Alred, Erik J.; Scheele, Emily G.; Berhanu, Workalemahu M.; Hansmann, Ulrich H. E., E-mail: uhansmann@ou.edu [Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019 (United States)

    2014-11-07

    Recent experiments indicate a connection between the structure of amyloid aggregates and their cytotoxicity as related to neurodegenerative diseases. Of particular interest is the Iowa Mutant, which causes early-onset of Alzheimer's disease. While wild-type Amyloid β-peptides form only parallel beta-sheet aggregates, the mutant also forms meta-stable antiparallel beta sheets. Since these structural variations may cause the difference in the pathological effects of the two Aβ-peptides, we have studied in silico the relative stability of the wild type and Iowa mutant in both parallel and antiparallel forms. We compare regular molecular dynamics simulations with such where the viscosity of the samples is reduced, which, we show, leads to higher sampling efficiency. By analyzing and comparing these four sets of all-atom molecular dynamics simulations, we probe the role of the various factors that could lead to the structural differences. Our analysis indicates that the parallel forms of both wild type and Iowa mutant aggregates are stable, while the antiparallel aggregates are meta-stable for the Iowa mutant and not stable for the wild type. The differences result from the direct alignment of hydrophobic interactions in the in-register parallel oligomers, making them more stable than the antiparallel aggregates. The slightly higher thermodynamic stability of the Iowa mutant fibril-like oligomers in its parallel organization over that in antiparallel form is supported by previous experimental measurements showing slow inter-conversion of antiparallel aggregates into parallel ones. Knowledge of the mechanism that selects between parallel and antiparallel conformations and determines their relative stability may open new avenues for the development of therapies targeting familial forms of early-onset Alzheimer's disease.

  16. Incorporation of peptides in phospholipid aggregates using ultrasound

    OpenAIRE

    Silva, Raquel; Little, Collin; Ferreira, Helena; Paulo, Artur Cavaco

    2008-01-01

    This study presents the highlights of ultrasonic effects on peptides incorporated on phospholipid aggregates (liposomes). These liposomes or vesicles are known as transport agents in skin drug delivery and for hair treatment. They might be a good model to deliver larger peptides into hair to restore fibre strength after hair coloration, modelling, permanent wave and/or straightening. The preparation of liposomes 1,2-dipalmitoyl-sn-glycerol-3-phosphocholine (DPPC) with peptides (LLLLK LLLLK LL...

  17. A Robust and Efficient Production and Purification Procedure of Recombinant Alzheimers Disease Methionine-Modified AmyloidPeptides

    Science.gov (United States)

    Hoarau, Marie; Hureau, Christelle; Faller, Peter; Gras, Emmanuel; André, Isabelle; Remaud-Siméon, Magali

    2016-01-01

    An improved production and purification method for Alzheimer’s disease related methionine-modified amyloid-β 1–40 and 1–42 peptides is proposed, taking advantage of the formation of inclusion body in Escherichia coli. A Thioflavin-S assay was set-up to evaluate inclusion body formation during growth and optimize culture conditions for amyloidpeptides production. A simple and fast purification protocol including first the isolation of the inclusion bodies and second, two cycles of high pH denaturation/ neutralization combined with an ultrafiltration step on 30-kDa cut-off membrane was established. Special attention was paid to purity monitoring based on a rational combination of UV spectrophotometry and SDS-PAGE analyses at the various stages of the process. It revealed that this chromatography-free protocol affords good yield of high quality peptides in term of purity. The resulting peptides were fully characterized and are appropriate models for highly reproducible in vitro aggregation studies. PMID:27532547

  18. Amyloid Beta Peptide Slows Down Sensory-Induced Hippocampal Oscillations

    Directory of Open Access Journals (Sweden)

    Fernando Peña-Ortega

    2012-01-01

    Full Text Available Alzheimer’s disease (AD progresses with a deterioration of hippocampal function that is likely induced by amyloid beta (Aβ oligomers. Hippocampal function is strongly dependent on theta rhythm, and disruptions in this rhythm have been related to the reduction of cognitive performance in AD. Accordingly, both AD patients and AD-transgenic mice show an increase in theta rhythm at rest but a reduction in cognitive-induced theta rhythm. We have previously found that monomers of the short sequence of Aβ (peptide 25–35 reduce sensory-induced theta oscillations. However, considering on the one hand that different Aβ sequences differentially affect hippocampal oscillations and on the other hand that Aβ oligomers seem to be responsible for the cognitive decline observed in AD, here we aimed to explore the effect of Aβ oligomers on sensory-induced theta rhythm. Our results show that intracisternal injection of Aβ1–42 oligomers, which has no significant effect on spontaneous hippocampal activity, disrupts the induction of theta rhythm upon sensory stimulation. Instead of increasing the power in the theta band, the hippocampus of Aβ-treated animals responds to sensory stimulation (tail pinch with an increase in lower frequencies. These findings demonstrate that Aβ alters induced theta rhythm, providing an in vivo model to test for therapeutic approaches to overcome Aβ-induced hippocampal and cognitive dysfunctions.

  19. Microglial responses to amyloid β peptide opsonization and indomethacin treatment

    Directory of Open Access Journals (Sweden)

    Leonard Brian

    2005-08-01

    Full Text Available Abstract Background Recent studies have suggested that passive or active immunization with anti-amyloid β peptide (Aβ antibodies may enhance microglial clearance of Aβ deposits from the brain. However, in a human clinical trial, several patients developed secondary inflammatory responses in brain that were sufficient to halt the study. Methods We have used an in vitro culture system to model the responses of microglia, derived from rapid autopsies of Alzheimer's disease patients, to Aβ deposits. Results Opsonization of the deposits with anti-Aβ IgG 6E10 enhanced microglial chemotaxis to and phagocytosis of Aβ, as well as exacerbated microglial secretion of the pro-inflammatory cytokines TNF-α and IL-6. Indomethacin, a common nonsteroidal anti-inflammatory drug (NSAID, had no effect on microglial chemotaxis or phagocytosis, but did significantly inhibit the enhanced production of IL-6 after Aβ opsonization. Conclusion These results are consistent with well known, differential NSAID actions on immune cell functions, and suggest that concurrent NSAID administration might serve as a useful adjunct to Aβ immunization, permitting unfettered clearance of Aβ while dampening secondary, inflammation-related adverse events.

  20. Mechanisms and Kinetics of Amyloid Aggregation Investigated by a Phenomenological Coarse-Grained Model

    Science.gov (United States)

    Magno, Andrea; Pellarin, Riccardo; Caflisch, Amedeo

    Amyloid fibrils are ordered polypeptide aggregates that have been implicated in several neurodegenerative pathologies, such as Alzheimer's, Parkinson's, Huntington's, and prion diseases, [1, 2] and, more recently, also in biological functionalities. [3, 4, 5] These findings have paved the way for a wide range of experimental and computational studies aimed at understanding the details of the fibril-formation mechanism. Computer simulations using low-resolution models, which employ a simplified representation of protein geometry and energetics, have provided insights into the basic physical principles underlying protein aggregation in general [6, 7, 8] and ordered amyloid aggregation. [9, 10, 11, 12, 13, 14, 15] For example, Dokholyan and coworkers have used the Discrete Molecular Dynamics method [16, 17] to shed light on the mechanisms of protein oligomerization [18] and the conformational changes that take place in proteins before the aggregation onset. [19, 20] One challenging observation, which is difficult to observe by computer simulations, is the wide range of aggregation scenarios emerging from a variety of biophysical measurements. [21, 22] Atomistic models have been employed to study the conformational space of amyloidogenic polypeptides in the monomeric state, [23, 24, 25] the very initial steps of amyloid formation, [26, 27, 28, 29, 30, 31, 32] and the structural stability of fibril models. [33, 34, 35) However, all-atom simulations of the kinetics of fibril formation are beyond what can be done with modern computers.

  1. Specific interactions between amyloidpeptide and curcumin derivatives: Ab initio molecular simulations

    Science.gov (United States)

    Ishimura, Hiromi; Kadoya, Ryushi; Suzuki, Tomoya; Murakawa, Takeru; Shulga, Sergiy; Kurita, Noriyuki

    2015-07-01

    Alzheimer's disease is caused by accumulation of amyloid-β (Aβ) peptides in a brain. To suppress the production of Aβ peptides, it is effective to inhibit the cleavage of amyloid precursor protein (APP) by secretases. However, because the secretases also play important roles to produce vital proteins for human body, inhibitors for the secretases may have side effects. To propose new agents for protecting the cleavage site of APP from the attacking of the γ-secretase, we have investigated here the specific interactions between a short APP peptide and curcumin derivatives, using protein-ligand docking as well as ab initio molecular simulations.

  2. The architecture of amyloid-like peptide fibrils revealed by X-ray scattering, diffraction and electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Langkilde, Annette E., E-mail: annette.langkilde@sund.ku.dk [University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen (Denmark); Morris, Kyle L.; Serpell, Louise C. [University of Sussex, Falmer, Brighton (United Kingdom); Svergun, Dmitri I. [European Molecular Biology Laboratory, Hamburg Outstation, 22607 Hamburg (Germany); Vestergaard, Bente [University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen (Denmark)

    2015-04-01

    The aggregation process and the fibril state of an amyloidogenic peptide suggest monomer addition to be the prevailing mechanism of elongation and a model of the peptide packing in the fibrils has been obtained. Structural analysis of protein fibrillation is inherently challenging. Given the crucial role of fibrils in amyloid diseases, method advancement is urgently needed. A hybrid modelling approach is presented enabling detailed analysis of a highly ordered and hierarchically organized fibril of the GNNQQNY peptide fragment of a yeast prion protein. Data from small-angle X-ray solution scattering, fibre diffraction and electron microscopy are combined with existing high-resolution X-ray crystallographic structures to investigate the fibrillation process and the hierarchical fibril structure of the peptide fragment. The elongation of these fibrils proceeds without the accumulation of any detectable amount of intermediate oligomeric species, as is otherwise reported for, for example, glucagon, insulin and α-synuclein. Ribbons constituted of linearly arranged protofilaments are formed. An additional hierarchical layer is generated via the pairing of ribbons during fibril maturation. Based on the complementary data, a quasi-atomic resolution model of the protofilament peptide arrangement is suggested. The peptide structure appears in a β-sheet arrangement reminiscent of the β-zipper structures evident from high-resolution crystal structures, with specific differences in the relative peptide orientation. The complexity of protein fibrillation and structure emphasizes the need to use multiple complementary methods.

  3. Small stress molecules inhibit aggregation and neurotoxicity of prion peptide 106-126

    International Nuclear Information System (INIS)

    In prion diseases, the posttranslational modification of host-encoded prion protein PrPc yields a high β-sheet content modified protein PrPsc, which further polymerizes into amyloid fibrils. PrP106-126 initiates the conformational changes leading to the conversion of PrPc to PrPsc. Molecules that can defunctionalize such peptides can serve as a potential tool in combating prion diseases. In microorganisms during stressed conditions, small stress molecules (SSMs) are formed to prevent protein denaturation and maintain protein stability and function. The effect of such SSMs on PrP106-126 amyloid formation is explored in the present study using turbidity, atomic force microscopy (AFM), and cellular toxicity assay. Turbidity and AFM studies clearly depict that the SSMs-ectoine and mannosylglyceramide (MGA) inhibit the PrP106-126 aggregation. Our study also connotes that ectoine and MGA offer strong resistance to prion peptide-induced toxicity in human neuroblastoma cells, concluding that such molecules can be potential inhibitors of prion aggregation and toxicity

  4. Active protein aggregates induced by terminally attached self-assembling peptide ELK16 in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Zhou Bihong

    2011-02-01

    Full Text Available Abstract Background In recent years, it has been gradually realized that bacterial inclusion bodies (IBs could be biologically active. In particular, several proteins including green fluorescent protein, β-galactosidase, β-lactamase, alkaline phosphatase, D-amino acid oxidase, polyphosphate kinase 3, maltodextrin phosphorylase, and sialic acid aldolase have been successfully produced as active IBs when fused to an appropriate partner such as the foot-and-mouth disease virus capsid protein VP1, or the human β-amyloid peptide Aβ42(F19D. As active IBs may have many attractive advantages in enzyme production and industrial applications, it is of considerable interest to explore them further. Results In this paper, we report that an ionic self-assembling peptide ELK16 (LELELKLK2 was able to effectively induce the formation of cytoplasmic inclusion bodies in Escherichia coli (E. coli when attached to the carboxyl termini of four model proteins including lipase A, amadoriase II, β-xylosidase, and green fluorescent protein. These aggregates had a general appearance similar to the usually reported cytoplasmic inclusion bodies (IBs under transmission electron microscopy or fluorescence confocal microscopy. Except for lipase A-ELK16 fusion, the three other fusion protein aggregates retained comparable specific activities with the native counterparts. Conformational analyses by Fourier transform infrared spectroscopy revealed the existence of newly formed antiparallel beta-sheet structures in these ELK16 peptide-induced inclusion bodies, which is consistent with the reported assembly of the ELK16 peptide. Conclusions This has been the first report where a terminally attached self-assembling β peptide ELK16 can promote the formation of active inclusion bodies or active protein aggregates in E. coli. It has the potential to render E. coli and other recombinant hosts more efficient as microbial cell factories for protein production. Our observation might

  5. Lattice model for amyloid peptides: OPEP force field parametrization and applications to the nucleus size of Alzheimer's peptides

    Science.gov (United States)

    Tran, Thanh Thuy; Nguyen, Phuong H.; Derreumaux, Philippe

    2016-05-01

    Coarse-grained protein lattice models approximate atomistic details and keep the essential interactions. They are, therefore, suitable for capturing generic features of protein folding and amyloid formation at low computational cost. As our aim is to study the critical nucleus sizes of two experimentally well-characterized peptide fragments Aβ16-22 and Aβ37-42 of the full length Aβ1-42 Alzheimer's peptide, it is important that simulations with the lattice model reproduce all-atom simulations. In this study, we present a comprehensive force field parameterization based on the OPEP (Optimized Potential for Efficient protein structure Prediction) force field for an on-lattice protein model, which incorporates explicitly the formation of hydrogen bonds and directions of side-chains. Our bottom-up approach starts with the determination of the best lattice force parameters for the Aβ16-22 dimer by fitting its equilibrium parallel and anti-parallel β-sheet populations to all-atom simulation results. Surprisingly, the calibrated force field is transferable to the trimer of Aβ16-22 and the dimer and trimer of Aβ37-42. Encouraged by this finding, we characterized the free energy landscapes of the two decamers. The dominant structure of the Aβ16-22 decamer matches the microcrystal structure. Pushing the simulations for aggregates between 4-mer and 12-mer suggests a nucleus size for fibril formation of 10 chains. In contrast, the Aβ37-42 decamer is largely disordered with mixed by parallel and antiparallel chains, suggesting that the nucleus size is >10 peptides. Our refined force field coupled to this on-lattice model should provide useful insights into the critical nucleation number associated with neurodegenerative diseases.

  6. Peptide p5 binds both heparinase-sensitive glycosaminoglycans and fibrils in patient-derived AL amyloid extracts

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Emily B.; Williams, Angela [Department of Medicine, University of Tennessee Graduate School of Medicine, 1924 Alcoa Highway, Knoxville, TN 37922 (United States); Heidel, Eric [Department of Surgery, University of Tennessee Graduate School of Medicine, 1924 Alcoa Highway, Knoxville, TN 37922 (United States); Macy, Sallie [Department of Medicine, University of Tennessee Graduate School of Medicine, 1924 Alcoa Highway, Knoxville, TN 37922 (United States); Kennel, Stephen J. [Department of Medicine, University of Tennessee Graduate School of Medicine, 1924 Alcoa Highway, Knoxville, TN 37922 (United States); Department of Radiology, University of Tennessee Graduate School of Medicine, 1924 Alcoa Highway, Knoxville, TN 37922 (United States); Wall, Jonathan S., E-mail: jwall@utmck.edu [Department of Medicine, University of Tennessee Graduate School of Medicine, 1924 Alcoa Highway, Knoxville, TN 37922 (United States); Department of Radiology, University of Tennessee Graduate School of Medicine, 1924 Alcoa Highway, Knoxville, TN 37922 (United States)

    2013-06-21

    Highlights: •Polybasic peptide p5 binds human light chain amyloid extracts. •The binding of p5 with amyloid involves both glycosaminoglycans and fibrils. •Heparinase treatment led to a correlation between p5 binding and fibril content. •p5 binding to AL amyloid requires electrostatic interactions. -- Abstract: In previously published work, we have described heparin-binding synthetic peptides that preferentially recognize amyloid deposits in a mouse model of reactive systemic (AA) amyloidosis and can be imaged by using positron and single photon emission tomographic imaging. We wanted to extend these findings to the most common form of visceral amyloidosis, namely light chain (AL); however, there are no robust experimental animal models of AL amyloidosis. To further define the binding of the lead peptide, p5, to AL amyloid, we characterized the reactivity in vitro of p5 with in situ and patient-derived AL amyloid extracts which contain both hypersulfated heparan sulfate proteoglycans as well as amyloid fibrils. Histochemical staining demonstrated that the peptide specifically localized with tissue-associated AL amyloid deposits. Although we anticipated that p5 would undergo electrostatic interactions with the amyloid-associated glycosaminoglycans expressing heparin-like side chains, no significant correlation between peptide binding and glycosaminoglycan content within amyloid extracts was observed. In contrast, following heparinase I treatment, although overall binding was reduced, a positive correlation between peptide binding and amyloid fibril content became evident. This interaction was further confirmed using synthetic light chain fibrils that contain no carbohydrates. These data suggest that p5 can bind to both the sulfated glycosaminoglycans and protein fibril components of AL amyloid. Understanding these complex electrostatic interactions will aid in the optimization of synthetic peptides for use as amyloid imaging agents and potentially as

  7. A yeast model for amyloidaggregation exemplifies the role of membrane trafficking and PICALM in cytotoxicity

    Directory of Open Access Journals (Sweden)

    Fabien D’Angelo

    2013-01-01

    Alzheimer’s disease is the most common neurodegenerative disease, associated with aggregation of amyloid-β (Aβ peptides. The exact mechanism of neuronal cell dysfunction in Alzheimer’s disease is poorly understood and numerous models have been used to decipher the mechanisms leading to cellular death. Yeast cells might be a good model to understand the intracellular toxicity triggered by Aβ peptides. Indeed, yeast has been used as a model to examine protein functions or cellular pathways that mediate the secretion, aggregation and subsequent toxicity of proteins associated with human neurodegenerative disorders. In the present study, we use the yeast Saccharomyces cerevisiae as a model system to study the effects of intracellular Aβ in fusion with green fluorescent protein. We sent this fusion protein into the secretory pathway and showed that intracellular traffic pathways are necessary for the generation of toxic species. Yeast PICALM orthologs are involved in cellular toxicity, indicating conservation of the mechanisms of toxicity from mammals to yeast. Finally, our model demonstrates the capacity for intracellular Aβ to cross intracellular membranes and target mitochondrial organelles.

  8. Amyloid Beta Aggregation in the Presence of Temperature-Sensitive Polymers

    Directory of Open Access Journals (Sweden)

    Sebastian Funtan

    2016-05-01

    Full Text Available The formation of amyloid fibrils is considered to be one of the main causes for many neurodegenerative diseases, such as Alzheimer’s, Parkinson’s or Huntington’s disease. Current knowledge suggests that amyloid-aggregation represents a nucleation-dependent aggregation process in vitro, where a sigmoidal growth phase follows an induction period. Here, we studied the fibrillation of amyloid β 1-40 (Aβ40 in the presence of thermoresponsive polymers, expected to alter the Aβ40 fibrillation kinetics due to their lower critical solution behavior. To probe the influence of molecular weight and the end groups of the polymer on its lower critical solution temperature (LCST, also considering its concentration dependence in the presence of buffer-salts needed for the aggregation studies of the amyloids, poly(oxazolines (POx with LCSTs ranging from 14.2–49.8 °C and poly(methoxy di(ethylene glycolacrylates with LCSTs ranging from 34.4–52.7 °C were synthesized. The two different polymers allowed the comparison of the influence of different molecular structures onto the fibrillation process. Mixtures of Aβ40 with these polymers in varying concentrations were studied via time-dependent measurements of the thioflavin T (ThT fluorescence. The studies revealed that amyloid fibrillation was accelerated in, accompanied by an extension of the lag phase of Aβ40 fibrillation from 18.3 h in the absence to 19.3 h in the presence of the poly(methoxy di(ethylene glycolacrylate (3600 g/mol.

  9. Reverse engineering an amyloid aggregation pathway with dimensional analysis and scaling

    International Nuclear Information System (INIS)

    Human islet amyloid polypeptide (hIAPP) is a cytotoxic protein that aggregates into oligomers and fibrils that kill pancreatic β-cells. Here we analyze hIAPP aggregation in vitro, measured via thioflavin-T fluorescence. We use mass-action kinetics and scaling analysis to reconstruct the aggregation pathway, and find that the initiation step requires four hIAPP monomers. After this step, monomers join the nucleus in pairs, until the first stable nucleus (of size approximately 20 monomers) is formed. This nucleus then elongates by successive addition of single monomers. We find that the best-fit of our data is achieved when we include a secondary fibril-dependent nucleation pathway in the reaction scheme. We predict how interventions that change rates of fibril elongation or nucleation rates affect the accumulation of potentially cytotoxic oligomer species. Our results demonstrate the power of scaling analysis in reverse engineering biochemical aggregation pathways

  10. Thiosemicarbazone modification of 3-acetyl coumarin inhibits Aβ peptide aggregation and protect against Aβ-induced cytotoxicity.

    Science.gov (United States)

    Ranade, Dnyanesh S; Bapat, Archika M; Ramteke, Shefali N; Joshi, Bimba N; Roussel, Pascal; Tomas, Alain; Deschamps, Patrick; Kulkarni, Prasad P

    2016-10-01

    Aggregation of amyloid β peptide (Aβ) is an important event in the progression of Alzheimer's disease. Therefore, among the available therapeutic approaches to fight with disease, inhibition of Aβ aggregation is widely studied and one of the promising approach for the development of treatments for Alzheimer's disease. Thiosemicarbazone compounds are known for their variety of biological activities. However, the potential of thiosemicarbazone compounds towards inhibition of Aβ peptide aggregation and the subsequent toxicity is little explored. Herein, we report synthesis and x-ray crystal structure of novel compound 3-acetyl coumarin thiosemicarbazone and its efficacy toward inhibition of Aβ(1-42) peptide aggregation. Our results indicate that 3-acetyl coumarin thiosemicarbazone inhibits Aβ(1-42) peptide aggregation up to 80% compared to the parent 3-acetyl coumarin which inhibits 52%. Further, 3-acetyl coumarin thiosemicarbazone provides neuroprotection against Aβ-induced cytotoxicity in SH-SY5Y cell line. These findings indicate that thiosemicarbazone modification renders 3-acetyl coumarin neuroprotective properties.

  11. Multiscale MD Simulations of Folding Dynamics and Mobility of Beta-Amyloid Peptide on Lipid Bilayer Surfaces

    Science.gov (United States)

    van Tilburg, Scott; Cheng, Kelvin

    2013-03-01

    Early interaction events of beta-amyloid peptides with the neuronal membranes play a key role in the pathogenesis of Alzheimer's disease. We have used multiscale Molecular Dynamics (MD) simulations to study the protein folding dynamics and lateral mobility of beta-amyloid protein on the cholesterol-enriched and -depleted lipid nano-domains. Several independent simulation replicates of all-atom and coarse-grained MD simulations of beta-amyloid on different lipid bilayer nano-domains have been generated. Using Define Secondary Structure of Proteins (DSSP) algorithm and mean-square-distance (MSD) analysis, the protein conformation and the lateral diffusion coefficients of protein, as well as the lipid and water, were calculated as a function of simulation time up to 200 nanoseconds for atomistic and 2 microseconds for coarse-grained simulations per replicate in different bilayer systems. Subtle differences in the conformation and mobility of the protein were observed in lipid bilayers with and without cholesterol. The structural dynamics information obtained from this work will provide useful insights into understanding the role of protein/lipid interactions in the membrane-associated aggregation of protein on neuronal membranes. HHMI-Trinity University and NIH RC1-GM090897-02

  12. Nasal administration of amyloid-beta peptide decreases cerebral amyloid burden in a mouse model of Alzheimer's disease

    DEFF Research Database (Denmark)

    Weiner, H L; Lemere, C A; Maron, R;

    2000-01-01

    -implicated proteins can induce antigen-specific anti-inflammatory immune responses in mucosal lymphoid tissue which then act systemically. We hypothesized that chronic mucosal administration of Abeta peptide might induce an anti-inflammatory process in AD brain tissue that could beneficially affect......Progressive cerebral deposition of amyloid-beta (Abeta) peptide, an early and essential feature of Alzheimer's disease (AD), is accompanied by an inflammatory reaction marked by microgliosis, astrocytosis, and the release of proinflammatory cytokines. Mucosal administration of disease......-Abeta antibodies of the IgG1 and IgG2b classes, and mononuclear cells in the brain expressing the anti-inflammatory cytokines interleukin-4, interleukin-10, and tumor growth factor-beta. Our results demonstrate that chronic nasal administration of Abeta peptide can induce an immune response to Abeta that decreases...

  13. Copper in Alzheimer's disease: Implications in amyloid aggregation and neurotoxicity

    Science.gov (United States)

    Gamez, Patrick; Caballero, Ana B.

    2015-09-01

    The relationship of copper dyshomeostasis with neurodegenerative diseases has become evident in the last years. Because of the major role that this metal ion plays in biological processes, most of which being located in the brain, it is not surprising that changes in its distribution are closely related with the advent of neurodegenerative disorders such as Alzheimer's disease (AD). An increasing number of works have dealt with this subject in the last years, and opened an intense debate in some points while raising new questions that still remain unanswered. This revision work puts together and discusses the latest findings and insights on how copper ions are involved in AD progression, including its interaction with Aβ and its consequently induced aggregation.

  14. MALDI, AP/MALDI and ESI techniques for the MS detection of amyloid [beta]-peptides

    Science.gov (United States)

    Grasso, Giuseppe; Mineo, Placido; Rizzarelli, Enrico; Spoto, Giuseppe

    2009-04-01

    Amyloid [beta]-peptides (A[beta]s) are involved in several neuropathological conditions such as Alzheimer's disease and considerable experimental evidences have emerged indicating that different proteases play a major role in regulating the accumulation of A[beta]s in the brain. Particularly, insulin-degrading enzyme (IDE) has been shown to degrade A[beta]s at different cleavage sites, but the experimental results reported in the literature and obtained by mass spectrometry methods are somehow fragmentary. The detection of A[beta]s is often complicated by solubility issues, oxidation artifacts and spontaneous aggregation/cleavage and, in order to rationalize the different reported results, we analyzed A[beta]s solutions by three different MS approaches: matrix assisted laser desorption ionization-time of flight (MALDI-TOF), atmospheric pressure (AP) MALDI ion trap and electrospray ionization (ESI) ion trap. Differences in the obtained results are discussed and ESI is chosen as the most suitable MS method for A[beta]s detection. Finally, cleavage sites produced by interaction of A[beta]s with IDE are identified, two of which had never been reported in the literature.

  15. Metal-amyloidpeptide interactions: a preliminary investigation of molecular mechanisms for Alzheimer's disease

    Institute of Scientific and Technical Information of China (English)

    JIAO Yong; YANG Pin

    2007-01-01

    Although humans have spent exactly 100 years combating Alzheimer's disease (AD), the molecular mechanisms of AD remain unclear. Owing to the rapid growth of the oldest age groups of the population and the continuous increase of the incidence of AD, it has become one of the crucial problems to modern sciences. It would be impossible to prevent or reverse AD at the root without elucidating its molecular mechanisms. From the point of view of metal-amyloidpeptide (Aβ) interactions, we review the molecular mechanisms of AD, mainly including Cu2+ and Zn2+ inducing the aggregation of Aβ, catalysing the production of active oxygen species from Aβ, as well as interacting with the ion-channel-like structures of Aβ. Moreover, the development of therapeutic drugs on the basis of metal-Aβ interactions is also briefly introduced. With the increasingly rapid progress of the molecular mechanisms of AD, we are now entering a new dawn that promises the delivery of revolutionary developments for the control of dementias.

  16. Assembly of naphthalenediimide conjugated peptides: aggregation induced changes in fluorescence.

    Science.gov (United States)

    Basak, Shibaji; Nanda, Jayanta; Banerjee, Arindam

    2013-08-01

    Naphthalenediimide appended peptide based self-assembly was studied. Interestingly, an aggregation induced drastic change in the fluorescence property and gel formation were observed depending on the solvent composition (chloroform : methylcyclohexane) at a fixed concentration of 1.6 mM at room temperature. PMID:23799544

  17. AFM-based force spectroscopy measurements of mature amyloid fibrils of the peptide glucagon

    Energy Technology Data Exchange (ETDEWEB)

    Dong Mingdong; Hovgaard, Mads Bruun; Mamdouh, Wael; Xu Sailong; Otzen, Daniel Erik; Besenbacher, Flemming [Interdisciplinary Nanoscience Center (iNANO), University of Aarhus, DK-8000 Aarhus C (Denmark)], E-mail: dao@inano.dk, E-mail: fbe@inano.dk

    2008-09-24

    We report on the mechanical characterization of individual mature amyloid fibrils by atomic force microscopy (AFM) and AFM-based single-molecule force spectroscopy (SMFS). These self-assembling materials, formed from the 29-residue amphiphatic peptide hormone glucagon, were found to display a reversible elastic behaviour. Based on AFM morphology and SMFS studies, we suggest that the observed elasticity is due to a force-induced conformational transition which is reversible due to the {beta}-helical conformation of protofibrils, allowing a high degree of extension. The elastic properties of such mature fibrils contribute to their high stability, suggesting that the internal hydrophobic interactions of amyloid fibrils are likely to be of fundamental importance in the assembly of amyloid fibrils and therefore for the understanding of the progression of their associated pathogenic disorders. In addition, such biological amyloid fibril structures with highly stable mechanical properties can potentially be used to produce nanofibres (nanowires) that may be suitable for nanotechnological applications.

  18. Acetylcholinesterase, a senile plaque component, affects the fibrillogenesis of amyloid-beta-peptides.

    Science.gov (United States)

    Alvarez, A; Bronfman, F; Pérez, C A; Vicente, M; Garrido, J; Inestrosa, N C

    1995-12-01

    Acetylcholinesterase (AChE) colocalizes with amyloid-beta peptide (A beta) deposits present in the brain of Alzheimer's patients. Recent studies showed that A beta 1-40 can adopt two different conformational states in solution (an amyloidogenic conformer, A beta ac, and a non-amyloidogenic conformer, A beta nac) which have distinct abilities to form amyloid fibrils. We report here that AChE binds A beta nac and accelerates amyloid formation by the same peptide. No such effect was observed with A beta ac, the amyloidogenic conformer, suggesting that AChE acts as a 'pathological chaperone' inducing a conformational transition from A beta nac into A beta ac in vitro.

  19. Beta-amyloid peptides undergo regulated co-secretion with neuropeptide and catecholamine neurotransmitters

    OpenAIRE

    Toneff, Thomas; Funkelstein, Lydiane; Mosier, Charles; Abagyan, Armen; Ziegler, Michael; Hook, Vivian

    2013-01-01

    Beta-amyloid (Aβ) peptides are secreted from neurons, resulting in extracellular accumulation of Aβ and neurodegeneration of Alzheimer's disease. Because neuronal secretion is fundamental for the release of neurotransmitters, this study assessed the hypothesis that Aβ undergoes co-release with neurotransmitters. Model neuronal-like chromaffin cells were investigated, and results illustrate regulated, co-secretion of Aβ(1–40) and Aβ(1–42) with peptide neurotransmitters (galanin, enkephalin, an...

  20. TLR2 is a primary receptor for Alzheimer's amyloid beta peptide to trigger neuroinflammatory activation.

    NARCIS (Netherlands)

    Liu, S.; Liu, Y.; Hao, W.; Wolf, L.; Kiliaan, A.J.; Penke, B.; Rube, C.E.; Walter, J.; Heneka, M.T.; Hartmann, T.; Menger, M.D.; Fassbender, K.

    2012-01-01

    Microglia activated by extracellularly deposited amyloid beta peptide (Abeta) act as a two-edged sword in Alzheimer's disease pathogenesis: on the one hand, they damage neurons by releasing neurotoxic proinflammatory mediators (M1 activation); on the other hand, they protect neurons by triggering an

  1. Manipulation of self-assembly amyloid peptide nanotubes by dielectrophoresis (DEP)

    DEFF Research Database (Denmark)

    Castillo, Jaime; Tanzi, Simone; Dimaki, Maria;

    2008-01-01

    Self-assembled amyloid peptide nanotubes (SAPNT) were manipulated and immobilized using dielectrophoresis. Micro-patterned electrodes of Au were fabricated by photolithography and lifted off on a silicon dioxide layer. SAPNT were manipulated by adjusting the amplitude and frequency of the applied...

  2. PEGylated nanoparticles bind to and alter amyloid-beta peptide conformation

    DEFF Research Database (Denmark)

    Brambilla, Davide; Verpillot, Romain; Le Droumaguet, Benjamin;

    2012-01-01

    We have demonstrated that the polyethylene glycol (PEG) corona of long-circulating polymeric nanoparticles (NPs) favors interaction with the amyloid-beta (Aß(1-42)) peptide both in solution and in serum. The influence of PEGylation of poly(alkyl cyanoacrylate) and poly(lactic acid) NPs...

  3. Quantitative Analysis of the Flavonoid Glycosides and Terpene Trilactones in the Extract of Ginkgo biloba and Evaluation of Their Inhibitory Activity towards Fibril Formation of β-Amyloid Peptide

    OpenAIRE

    Haiyan Xie; Jing-Rong Wang; Lee-Fong Yau; Yong Liu; Liang Liu; Quan-Bin Han; Zhongzhen Zhao; Zhi-Hong Jiang

    2014-01-01

    The standard extract of Ginkgo biloba leaves (EGb761) is used clinically in Europe for the symptomatic treatment of impaired cerebral function in primary degenerative dementia syndromes, and the results of numerous in vivo and in vitro studies have supported such clinical use. The abnormal production and aggregation of amyloid β peptide (Aβ) and the deposition of fibrils in the brain are regarded as key steps in the onset of Alzheimer’s Disease (AD), and the inhibition of Aβ aggregation and d...

  4. A binding-site barrier affects imaging efficiency of high affinity amyloid-reactive peptide radiotracers in vivo.

    Directory of Open Access Journals (Sweden)

    Jonathan S Wall

    Full Text Available Amyloid is a complex pathology associated with a growing number of diseases including Alzheimer's disease, type 2 diabetes, rheumatoid arthritis, and myeloma. The distribution and extent of amyloid deposition in body organs establishes the prognosis and can define treatment options; therefore, determining the amyloid load by using non-invasive molecular imaging is clinically important. We have identified a heparin-binding peptide designated p5 that, when radioiodinated, was capable of selectively imaging systemic visceral AA amyloidosis in a murine model of the disease. The p5 peptide was posited to bind effectively to amyloid deposits, relative to similarly charged polybasic heparin-reactive peptides, because it adopted a polar α helix secondary structure. We have now synthesized a variant, p5R, in which the 8 lysine amino acids of p5 have been replaced with arginine residues predisposing the peptide toward the α helical conformation in an effort to enhance the reactivity of the peptide with the amyloid substrate. The p5R peptide had higher affinity for amyloid and visualized AA amyloid in mice by using SPECT/CT imaging; however, the microdistribution, as evidenced in micro-autoradiographs, was dramatically altered relative to the p5 peptide due to its increased affinity and a resultant "binding site barrier" effect. These data suggest that radioiodinated peptide p5R may be optimal for the in vivo detection of discreet, perivascular amyloid, as found in the brain and pancreatic vasculature, by using molecular imaging techniques; however, peptide p5, due to its increased penetration, may yield more quantitative imaging of expansive tissue amyloid deposits.

  5. pH-controlled aggregation polymorphism of amyloidogenic Aβ(16-22): insights for obtaining peptide tapes and peptide nanotubes, as function of the N-terminal capping moiety.

    Science.gov (United States)

    Elgersma, Ronald C; Kroon-Batenburg, Loes M J; Posthuma, George; Meeldijk, Johannes D; Rijkers, Dirk T S; Liskamp, Rob M J

    2014-12-17

    Peptide and protein self-assembly resulting in the formation of amyloidogenic aggregates is generally thought of as a pathological event associated with severe diseases. However, amyloid formation may also provide a basis for advanced bionanomaterials, since amyloid fibrils combine unique material-like properties that make them very useful for design of new types of conducting nanowires, bioactive ligands, and biodegradable coatings as drug-encapsulating materials. The morphology of the supramolecular aggregates determines the properties and application range of these bionanomaterials. An important parameter to control the supramolecular morphology, is the overall charge of the peptide, which is related to the pH of the environment. Herein, we describe the design, synthesis and morphological analysis of a series of N-terminally functionalized Aβ(16-22) peptides (∼Lys-Leu-Val-Phe-Phe-Ala-Glu-OH), that underwent a pH-induced polymorphism, ranging from lamellar sheets, helical tapes, peptide nanotubes, and amyloid fibrils as was observed by transmission electron microscopy. Infrared spectroscopy and wide angle X-ray scattering studies showed that peptide self-assembly was driven by β-sheet formation, and that the supramolecular morphology was directed by subtle variations in electrostatic interactions. Finally, a structural model and hierarchy of self-assembly of a peptide nanotube, assembled at pH 1, is proposed. PMID:25087966

  6. Associating a negatively charged GdDOTA-derivative to the Pittsburgh compound B for targeting Aβ amyloid aggregates.

    Science.gov (United States)

    Martins, André F; Oliveira, Alexandre C; Morfin, Jean-François; Laurents, Douglas V; Tóth, Éva; Geraldes, Carlos F G C

    2016-03-01

    We have conjugated the tetraazacyclododecane-tetraacetate (DOTA) chelator to Pittsburgh compound B (PiB) forming negatively charged lanthanide complexes, Ln(L4), with targeting capabilities towards aggregated amyloid peptides. The amphiphilic Gd(L4) chelate undergoes micellar aggregation in aqueous solution, with a critical micellar concentration of 0.68 mM, lower than those for the neutral complexes of similar structure. A variable temperature (17)O NMR and NMRD study allowed the assessment of the water exchange rate, k ex (298) = 9.7 × 10(6) s(-1), about the double of GdDOTA, and for the description of the rotational dynamics for both the monomeric and the micellar forms of Gd(L4). With respect to the analogous neutral complexes, the negative charge induces a significant rigidity of the micelles formed, which is reflected by slower and more restricted local motion of the Gd(3+) centers as evidenced by higher relaxivities at 20-60 MHz. Surface Plasmon Resonance results indicate that the charge does not affect significantly the binding strength to Aβ1-40 [K d = 194 ± 11 μM for La(L4)], but it does enhance the affinity constant to human serum albumin [K a = 6530 ± 68 M(-1) for Gd(L4)], as compared to neutral counterparts. Protein-based NMR points to interaction of Gd(L4) with Aβ1-40 in the monomer state as well, in contrast to neutral complexes interacting only with the aggregated form. Circular dichroism spectroscopy monitored time- and temperature-dependent changes of the Aβ1-40 secondary structure, indicating that Gd(L4) stabilizes the random coil relative to the α-helix and β-sheet. TEM images confirm that the Gd(L4) complex reduces the formation of aggregated fibrils. PMID:26613605

  7. Interactions of laminin with the amyloid ß peptide: Implications for Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Morgan C.

    2001-01-01

    Full Text Available Extensive neuronal cell loss is observed in Alzheimer's disease. Laminin immunoreactivity colocalizes with senile plaques, the characteristic extracellular histopathological lesions of Alzheimer brain, which consist of the amyloid ß (Aß peptide polymerized into amyloid fibrils. These lesions have neurotoxic effects and have been proposed to be a main cause of neurodegeneration. In order to understand the pathological significance of the interaction between laminin and amyloid, we investigated the effect of laminin on amyloid structure and toxicity. We found that laminin interacts with the Aß1-40 peptide, blocking fibril formation and even inducing depolymerization of preformed fibrils. Protofilaments known to be intermediate species of Aß fibril formation were also detected as intermediate species of laminin-induced Aß fibril depolymerization. Moreover, laminin-amyloid interactions inhibited the toxic effects on rat primary hippocampal neurons. As a whole, our results indicate a putative anti-amyloidogenic role of laminin which may be of biological and therapeutic interest for controlling amyloidosis, such as those observed in cerebral angiopathy and Alzheimer's disease.

  8. Acetylcholinesterase accelerates assembly of amyloid-beta-peptides into Alzheimer's fibrils: possible role of the peripheral site of the enzyme.

    Science.gov (United States)

    Inestrosa, N C; Alvarez, A; Pérez, C A; Moreno, R D; Vicente, M; Linker, C; Casanueva, O I; Soto, C; Garrido, J

    1996-04-01

    Acetylcholinesterase (AChE), an important component of cholinergic synapses, colocalizes with amyloid-beta peptide (A beta) deposits of Alzheimer's brain. We report here that bovine brain AChE, as well as the human and mouse recombinant enzyme, accelerates amyloid formation from wild-type A beta and a mutant A beta peptide, which alone produces few amyloid-like fibrils. The action of AChE was independent of the subunit array of the enzyme, was not affected by edrophonium, an active site inhibitor, but it was affected by propidium, a peripheral anionic binding site ligand. Butyrylcholinesterase, an enzyme that lacks the peripheral site, did not affect amyloid formation. Furthermore, AChE is a potent amyloid-promoting factor when compared with other A beta-associated proteins. Thus, in addition to its role in cholinergic synapses, AChE may function by accelerating A beta formation and could play a role during amyloid deposition in Alzheimer's brain.

  9. Mo polyoxometalate nanoclusters capable of inhibiting the aggregation of Aβ-peptide associated with Alzheimer's disease

    Science.gov (United States)

    Chen, Qingchang; Yang, Licong; Zheng, Chuping; Zheng, Wenjing; Zhang, Jingnan; Zhou, Yunshan; Liu, Jie

    2014-05-01

    A neuropathological hallmark of Alzheimer's disease (AD) is aggregation of a forty-residue peptide known as amyloid beta forty (Aβ40). While past work has indicated that blocking Aβ40 aggregation could be an effective strategy for the treatment of AD, developing therapies with this goal has been met with limited success. Polyoxometalates (POMs) have been previously investigated for their anti-viral and anti-tumoral properties and we report here that three representative POM nanoclusters have been synthesized for use against Aβ40 aggregation. Through the use of thioflavin T fluorescence, turbidity, circular dichroism spectroscopy, and transmission electron microscopy (TEM), we found that all three POM complexes can significantly inhibit both natural Aβ40 self-aggregation and metal-ion induced Aβ40 aggregation. We also evaluated the protective effect of POM complexes on Aβ40-induced neurotoxicity in cultured PC12 cells and found that treatment with POM complexes can elevate cell viability, decrease levels of intracellular reactive oxygen species, and stabilize mitochondrial membrane potential. These findings indicate that all three representative POM complexes are capable of inhibiting Aβ40 aggregation and subsequent neurotoxicity. While a complete mechanistic understanding remains to be elucidated, the synthesized POM complexes may work through a synergistic interaction with metal ions and Aβ40. These data indicate that POM complexes have high therapeutic potential for use against one of the primary neuropathological features of AD.A neuropathological hallmark of Alzheimer's disease (AD) is aggregation of a forty-residue peptide known as amyloid beta forty (Aβ40). While past work has indicated that blocking Aβ40 aggregation could be an effective strategy for the treatment of AD, developing therapies with this goal has been met with limited success. Polyoxometalates (POMs) have been previously investigated for their anti-viral and anti-tumoral properties

  10. Aliphatic peptides show similar self-assembly to amyloid core sequences, challenging the importance of aromatic interactions in amyloidosis

    OpenAIRE

    Lakshmanan, Anupama; Cheong, Daniel W.; Accardo, Angelo; Di Fabrizio, Enzo; Riekel, Christian; Hauser, Charlotte A. E.

    2012-01-01

    The self-assembly of abnormally folded proteins into amyloid fibrils is a hallmark of many debilitating diseases, from Alzheimer’s and Parkinson diseases to prion-related disorders and diabetes type II. However, the fundamental mechanism of amyloid aggregation remains poorly understood. Core sequences of four to seven amino acids within natural amyloid proteins that form toxic fibrils have been used to study amyloidogenesis. We recently reported a class of systematically designed ultrasmall p...

  11. Insights into the molecular interactions between aminopeptidase and amyloid beta peptide using molecular modeling techniques.

    Science.gov (United States)

    Dhanavade, Maruti J; Sonawane, Kailas D

    2014-08-01

    Amyloid beta (Aβ) peptides play a central role in the pathogenesis of Alzheimer's disease. The accumulation of Aβ peptides in AD brain was caused due to overproduction or insufficient clearance and defects in the proteolytic degradation of Aβ peptides. Hence, Aβ peptide degradation could be a promising therapeutic approach in AD treatment. Recent experimental report suggests that aminopeptidase from Streptomyces griseus KK565 (SGAK) can degrade Aβ peptides but the interactive residues are yet to be known in detail at the atomic level. Hence, we developed the three-dimensional model of aminopeptidase (SGAK) using SWISS-MODEL, Geno3D and MODELLER. Model built by MODELLER was used for further studies. Molecular docking was performed between aminopeptidase (SGAK) with wild-type and mutated Aβ peptides. The docked complex of aminopeptidase (SGAK) and wild-type Aβ peptide (1IYT.pdb) shows more stability than the other complexes. Molecular docking and MD simulation results revealed that the residues His93, Asp105, Glu139, Glu140, Asp168 and His255 are involved in the hydrogen bonding with Aβ peptide and zinc ions. The interactions between carboxyl oxygen atoms of Glu139 of aminopeptidase (SGAK) with water molecule suggest that the Glu139 may be involved in the nucleophilic attack on Ala2-Glu3 peptide bond of Aβ peptide. Hence, amino acid Glu139 of aminopeptidase (SGAK) might play an important role to degrade Aβ peptides, a causative agent of Alzheimer's disease.

  12. Incorporation of peptides in phospholipid aggregates using ultrasound.

    Science.gov (United States)

    Silva, Raquel; Little, Collin; Ferreira, Helena; Cavaco-Paulo, Artur

    2008-09-01

    This study presents the highlights of ultrasonic effects on peptides incorporated on phospholipid aggregates (liposomes). These liposomes or vesicles are known as transport agents in skin drug delivery and for hair treatment. They might be a good model to deliver larger peptides into hair to restore fibre strength after hair coloration, modelling, permanent wave and/or straightening. The preparation of liposomes 1,2-dipalmitoyl-sn-glycerol-3-phosphocholine (DPPC) with peptides (LLLLK LLLLK LLLLK LLLLK; LLLLL LCLCL LLKAK AK) was made by the thin film hydration method. The LUVs (uni-lamellar vesicles) were obtained by sonication, applying different experimental conditions, such as depth (mm) and power intensity (%). Photon-correlation spectroscopy (PCS) and electronic microscopy (EM) results confirmed that the incorporation of these peptides, with different sequence of amino acids, presented differences on the diameter, zeta-potential of membrane surface and shape of liposomes. The liposomes that included peptide LLLLK LLLLK LLLLK LLLLK present an increased in zeta-potential values after using ultrasound and an "amorphous" aspect. Conversely, the liposomes that incorporated the peptide LLLLL LCLCL LLKAK AK presented a define shape (rod shape) and the potential surface of liposome did not change significantly by the use of ultrasound. PMID:18467154

  13. Comparison of the amyloid pore forming properties of rat and human Alzheimer's beta-amyloid peptide 1-42: Calcium imaging data.

    Science.gov (United States)

    Di Scala, Coralie; Yahi, Nouara; Flores, Alessandra; Boutemeur, Sonia; Kourdougli, Nazim; Chahinian, Henri; Fantini, Jacques

    2016-03-01

    The data here consists of calcium imaging of human neuroblastoma SH-SY5Y cells treated with the calcium-sensitive dye Fluo-4AM and then incubated with nanomolar concentrations of either human or rat Alzheimer's β-amyloid peptide Aβ1-42. These data are both of a qualitative (fluorescence micrographs) and semi-quantitative nature (estimation of intracellular calcium concentrations of cells probed by Aβ1-42 peptides vs. control untreated cells). Since rat Aβ1-42 differs from its human counterpart at only three amino acid positions, this comparative study is a good assessment of the specificity of the amyloid pore forming assay. The interpretation of this dataset is presented in the accompanying study "Broad neutralization of calcium-permeable amyloid pore channels with a chimeric Alzheimer/Parkinson peptide targeting brain gangliosides" [1]. PMID:26909380

  14. Loss of metal ions, disulfide reduction and mutations related to familial ALS promote formation of amyloid-like aggregates from superoxide dismutase.

    Directory of Open Access Journals (Sweden)

    Zeynep A Oztug Durer

    Full Text Available Mutations in the gene encoding Cu-Zn superoxide dismutase (SOD1 are one of the causes of familial amyotrophic lateral sclerosis (FALS. Fibrillar inclusions containing SOD1 and SOD1 inclusions that bind the amyloid-specific dye thioflavin S have been found in neurons of transgenic mice expressing mutant SOD1. Therefore, the formation of amyloid fibrils from human SOD1 was investigated. When agitated at acidic pH in the presence of low concentrations of guanidine or acetonitrile, metalated SOD1 formed fibrillar material which bound both thioflavin T and Congo red and had circular dichroism and infrared spectra characteristic of amyloid. While metalated SOD1 did not form amyloid-like aggregates at neutral pH, either removing metals from SOD1 with its intramolecular disulfide bond intact or reducing the intramolecular disulfide bond of metalated SOD1 was sufficient to promote formation of these aggregates. SOD1 formed amyloid-like aggregates both with and without intermolecular disulfide bonds, depending on the incubation conditions, and a mutant SOD1 lacking free sulfhydryl groups (AS-SOD1 formed amyloid-like aggregates at neutral pH under reducing conditions. ALS mutations enhanced the ability of disulfide-reduced SOD1 to form amyloid-like aggregates, and apo-AS-SOD1 formed amyloid-like aggregates at pH 7 only when an ALS mutation was also present. These results indicate that some mutations related to ALS promote formation of amyloid-like aggregates by facilitating the loss of metals and/or by making the intramolecular disulfide bond more susceptible to reduction, thus allowing the conversion of SOD1 to a form that aggregates to form resembling amyloid. Furthermore, the occurrence of amyloid-like aggregates per se does not depend on forming intermolecular disulfide bonds, and multiple forms of such aggregates can be produced from SOD1.

  15. Aβ-40 Y10F Increases βfibrils Formation but Attenuates the Neurotoxicity of AmyloidPeptide

    Directory of Open Access Journals (Sweden)

    Zhaofeng Jiang

    2012-04-01

    Full Text Available Alzheimer’s disease (AD is characterized by the abnormal aggregation of amyloidpeptide (Aβ in extracellular deposits known as senile plaques. The tyrosine residue (Tyr-10 is believed to be important in Aβ-induced neurotoxicity due to the formation of tyrosyl radicals. To reduce the likelihood of cross-linking, here we designed an Aβ-40 analogue (Aβ-40 Y10F in which the tyrosine residue was substituted by a structurally similar residue, phenylalanine. The aggregation rate was determined by the Thioflavin T (ThT assay, in which Aβ-40 Y10F populated an ensemble of folded conformations much quicker and stronger than the wild type Aβ. Biophysical tests subsequently confirmed the results of the ThT assay, suggesting the measured increase of β-aggregation may arise predominantly from enhancement of hydrophobicity upon substitution and thus the propensity of intrinsic β-sheet formation. Nevertheless, Aβ-40 Y10F exhibited remarkably decreased neurotoxicity compared to Aβ-40 which could be partly due to the reduced generation of hydrogen peroxide. These findings may lead to further understanding of the structural perturbation of Aβ to its fibrillation.

  16. The Slowly Aggregating Salmon Calcitonin: A Useful Tool for the Study of the Amyloid Oligomers Structure and Activity

    Directory of Open Access Journals (Sweden)

    Marco Diociaiuti

    2011-12-01

    Full Text Available Amyloid proteins of different aminoacidic composition share the tendency to misfold and aggregate in a similar way, following common aggregation steps. The process includes the formation of dimers, trimers, and low molecular weight prefibrillar oligomers, characterized by the typical morphology of globules less than 10 nm diameter. The globules spontaneously form linear or annular structures and, eventually, mature fibers. The rate of this process depends on characteristics intrinsic to the different proteins and to environmental conditions (i.e., pH, ionic strength, solvent composition, temperature. In the case of neurodegenerative diseases, it is now generally agreed that the pathogenic aggregates are not the mature fibrils, but the intermediate, soluble oligomers. However, the molecular mechanism by which these oligomers trigger neuronal damage is still unclear. Inparticular, it is not clear if there is a peculiar structure at the basis of the neurotoxic effect and how this structure interacts with neurons. This review will focus on the results we obtained using salmon Calcitonin, an amyloid protein characterized by a very slow aggregation rate, which allowed us to closely monitor the aggregation process. We used it as a tool to investigate the characteristics of amyloid oligomers formation and their interactions with neuronal cells. Our results indicate that small globules of about 6 nm could be the responsible for the neurotoxic effects. Moreover, our data suggest that the rich content in lipid rafts of neuronal cell plasma membrane may render neurons particularly vulnerable to the amyloid protein toxic effect.

  17. Control the aggregation of model amyloid insulin protein under ac-electric fields

    Science.gov (United States)

    Zheng, Zhongli; Jing, Benxin; Zhu, Y. Elaine

    2013-03-01

    In vitro experiments have been widely used to characterize the misfolding/unfolding pathway characteristic of amylodogenic proteins. Conversion from natively folded amyloidogenic proteins to oligomers via nucleation is the accepted path to fibril formation upon heating over a certain lag time period. In an alternative engineering approach to manipulate and control protein aggregation, we have investigated the aggregation kinetics of insulin, a well-established amyloid model protein, under applied ac-electric fields of varied ac-frequency and voltage at room temperature. Using fluorescence correlation spectroscopy and fluorescence imaging, we have observed that the insulin aggregation can occur at much shortened lag time under applied ac-electric fields, when a critical ac-voltage is exceeded. The strong dependence of lag time on ac-frequency over a narrow range of 500 Hz-5 kHz indicates the effect of ac-electroosmosis on the diffusion controlled process of insulin nucleation. Yet, no difference of conformational structure is detected with insulin under applied ac-fields, suggesting the equivalence of ac-polarization to the conventional thermal activation process for insulin aggregation.

  18. Low molecular weight oligomers of amyloid peptides display β-barrel conformations: A replica exchange molecular dynamics study in explicit solvent

    Science.gov (United States)

    De Simone, Alfonso; Derreumaux, Philippe

    2010-04-01

    The self-assembly of proteins and peptides into amyloid fibrils is connected to over 40 pathological conditions including neurodegenerative diseases and systemic amyloidosis. Diffusible, low molecular weight protein and peptide oligomers that form in the early steps of aggregation appear to be the harmful cytotoxic species in the molecular etiology of these diseases. So far, the structural characterization of these oligomers has remained elusive owing to their transient and dynamic features. We here address, by means of full atomistic replica exchange molecular dynamics simulations, the energy landscape of heptamers of the amyloidogenic peptide NHVTLSQ from the beta-2 microglobulin protein. The simulations totaling 5 μs show that low molecular weight oligomers in explicit solvent consist of β-barrels in equilibrium with amorphous states and fibril-like assemblies. The results, also accounting for the influence of the pH on the conformational properties, provide a strong evidence of the formation of transient β-barrel assemblies in the early aggregation steps of amyloid-forming systems. Our findings are discussed in terms of oligomers cytotoxicity.

  19. Confocal fluorescence anisotropy and FRAP imaging of α-synuclein amyloid aggregates in living cells.

    Directory of Open Access Journals (Sweden)

    M Julia Roberti

    Full Text Available We assessed the intracellular association states of the Parkinson's disease related protein α-synuclein (AS in living cells by transfection with a functional recombinant mutant protein (AS-C4 bearing a tetracysteine tag binding the fluorogenic biarsenical ligands FlAsH and ReAsH, The aggregation states of AS-C4 were assessed by in situ microscopy of molecular translational mobility with FRAP (fluorescence recovery after photobleaching and of local molecular density with confocal fluorescence anisotropy (CFA. FRAP recovery was quantitative and rapid in regions of free protein, whereas AS in larger aggregates was>80% immobile. A small 16% recovery characterized by an apparent diffusion constant of 0.03-0.04 µm(2/s was attributed to the dynamics of smaller, associated forms of AS-C4 and the exchange of mobile species with the larger immobile aggregates. By CFA, the larger aggregates exhibited high brightness and very low anisotropy, consistent with homoFRET between closely packed AS, for which a Förster distance (R(o of 5.3 nm was calculated. Other bright regions had high anisotropy values, close to that of monomeric AS, and indicative of membrane-associated protein with both low mobility and low degree of association. The anisotropy-fluorescence intensity correlations also revealed regions of free protein or of small aggregates, undetectable by conventional fluorescence imaging alone. The combined strategy (FRAP+CFA provides a highly sensitive means for elucidating both the dynamics and structural features of protein aggregates and other intracellular complexes in living cells, and can be extended to other amyloid systems and to drug screening protocols.

  20. Role of amyloid peptides in vascular dysfunction and platelet dysregulation in Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Ilaria eCanobbio

    2015-03-01

    Full Text Available Alzheimer’s disease (AD is the most common neurodegenerative cause of dementia in the elderly. AD is accompanied by the accumulation of amyloid peptides in the brain parenchyma and in the cerebral vessels. The sporadic form of the AD accounts for about 95% of all cases. It is characterized by a late onset, typically after the age of 65, with a complex and still poorly understood aetiology. Several observations point towards a central role of cerebrovascular dysfunction in the onset of sporadic AD. According to the vascular hypothesis, AD may be initiated by vascular dysfunctions that precede and promote the neurodegenerative process. In accordance to this, AD patients show increased hemorragic or ischemic stroke risks. It is now clear that multiple bidirectional connections exist between AD and cerebrovascular disease, and in this new scenario, the effect of amyloid peptides on vascular cells and blood platelets appear to be central to AD. In this review we analyse the effect of amyloid peptides on vascular function and platelet activation and its contribution to the cerebrovascular pathology associated with AD and the progression of this disease.

  1. Local atomic structure and oxidation processes of Cu(I) binding site in amyloid beta peptide: XAS Study

    Science.gov (United States)

    Kremennaya, M. A.; Soldatov, M. A.; Stretsov, V. A.; Soldatov, A. V.

    2016-05-01

    There are two different motifs of X-ray absorption spectra for Cu(I) K-edge in amyloidpeptide which could be due to two different configurations of local Cu(I) environment. Two or three histidine ligands can coordinate copper ion in varying conformations. On the other hand, oxidation of amyloidpeptide could play an additional role in local copper environment. In order to explore the peculiarities of local atomic and electronic structure of Cu(I) binding sites in amyloidpeptide the x-ray absorption spectra were simulated for various Cu(I) environments including oxidized amyloid-β and compared with experimental data.

  2. Binding, conformational transition and dimerization of amyloidpeptide on GM1-containing ternary membrane: insights from molecular dynamics simulation.

    Directory of Open Access Journals (Sweden)

    Moutusi Manna

    Full Text Available Interactions of amyloid-β (Aβ with neuronal membrane are associated with the progression of Alzheimer's disease (AD. Ganglioside GM1 has been shown to promote the structural conversion of Aβ and increase the rate of peptide aggregation; but the exact nature of interaction driving theses processes remains to be explored. In this work, we have carried out atomistic-scale computer simulations (totaling 2.65 µs to investigate the behavior of Aβ monomer and dimers in GM1-containing raft-like membrane. The oligosaccharide head-group of GM1 was observed to act as scaffold for Aβ-binding through sugar-specific interactions. Starting from the initial helical peptide conformation, a β-hairpin motif was formed at the C-terminus of the GM1-bound Aβ-monomer; that didn't appear in absence of GM1 (both in fluid POPC and liquid-ordered cholesterol/POPC bilayers and also in aqueous medium within the simulation time span. For Aβ-dimers, the β-structure was further enhanced by peptide-peptide interactions, which might influence the propensity of Aβ to aggregate into higher-ordered structures. The salt-bridges and inter-peptide hydrogen bonds were found to account for dimer stability. We observed spontaneous formation of intra-peptide D(23-K(28 salt-bridge and a turn at V(24GSN(27 region - long been accepted as characteristic structural-motifs for amyloid self-assembly. Altogether, our results provide atomistic details of Aβ-GM1 and Aβ-Aβ interactions and demonstrate their importance in the early-stages of GM1-mediated Aβ-oligomerisation on membrane surface.

  3. Lysosomal dysfunction in a mouse model of Sandhoff disease leads to accumulation of ganglioside-bound amyloidpeptide.

    Science.gov (United States)

    Keilani, Serene; Lun, Yi; Stevens, Anthony C; Williams, Hadis N; Sjoberg, Eric R; Khanna, Richie; Valenzano, Kenneth J; Checler, Frederic; Buxbaum, Joseph D; Yanagisawa, Katsuhiko; Lockhart, David J; Wustman, Brandon A; Gandy, Sam

    2012-04-11

    Alterations in the lipid composition of endosomal-lysosomal membranes may constitute an early event in Alzheimer's disease (AD) pathogenesis. In this study, we investigated the possibility that GM2 ganglioside accumulation in a mouse model of Sandhoff disease might be associated with the accumulation of intraneuronal and extracellular proteins commonly observed in AD. Our results show intraneuronal accumulation of amyloidpeptide (Aβ)-like, α-synuclein-like, and phospho-tau-like immunoreactivity in the brains of β-hexosaminidase knock-out (HEXB KO) mice. Biochemical and immunohistochemical analyses confirmed that at least some of the intraneuronal Aβ-like immunoreactivity (iAβ-LIR) represents amyloid precursor protein C-terminal fragments (APP-CTFs) and/or Aβ. In addition, we observed increased levels of Aβ40 and Aβ42 peptides in the lipid-associated fraction of HEXB KO mouse brains, and intraneuronal accumulation of ganglioside-bound Aβ (GAβ) immunoreactivity in a brain region-specific manner. Furthermore, α-synuclein and APP-CTFs and/or Aβ were found to accumulate in different regions of the substantia nigra, indicating different mechanisms of accumulation or turnover pathways. Based on the localization of the accumulated iAβ-LIR to endosomes, lysosomes, and autophagosomes, we conclude that a significant accumulation of iAβ-LIR may be associated with the lysosomal-autophagic turnover of Aβ and fragments of APP-containing Aβ epitopes. Importantly, intraneuronal GAβ immunoreactivity, a proposed prefibrillar aggregate found in AD, was found to accumulate throughout the frontal cortices of postmortem human GM1 gangliosidosis, Sandhoff disease, and Tay-Sachs disease brains. Together, these results establish an association between the accumulation of gangliosides, autophagic vacuoles, and the intraneuronal accumulation of proteins associated with AD. PMID:22496568

  4. High-speed atomic force microscopy reveals structural dynamics of amyloid β1-42 aggregates.

    Science.gov (United States)

    Watanabe-Nakayama, Takahiro; Ono, Kenjiro; Itami, Masahiro; Takahashi, Ryoichi; Teplow, David B; Yamada, Masahito

    2016-05-24

    Aggregation of amyloidogenic proteins into insoluble amyloid fibrils is implicated in various neurodegenerative diseases. This process involves protein assembly into oligomeric intermediates and fibrils with highly polymorphic molecular structures. These structural differences may be responsible for different disease presentations. For this reason, elucidation of the structural features and assembly kinetics of amyloidogenic proteins has been an area of intense study. We report here the results of high-speed atomic force microscopy (HS-AFM) studies of fibril formation and elongation by the 42-residue form of the amyloid β-protein (Aβ1-42), a key pathogenetic agent of Alzheimer's disease. Our data demonstrate two different growth modes of Aβ1-42, one producing straight fibrils and the other producing spiral fibrils. Each mode depends on initial fibril nucleus structure, but switching from one growth mode to another was occasionally observed, suggesting that fibril end structure fluctuated between the two growth modes. This switching phenomenon was affected by buffer salt composition. Our findings indicate that polymorphism in fibril structure can occur after fibril nucleation and is affected by relatively modest changes in environmental conditions. PMID:27162352

  5. Interleukin-3 prevents neuronal death induced by amyloid peptide

    Directory of Open Access Journals (Sweden)

    Otth Carola

    2007-10-01

    Full Text Available Abstract Background Interleukin-3 (IL-3 is an important glycoprotein involved in regulating biological responses such as cell proliferation, survival and differentiation. Its effects are mediated via interaction with cell surface receptors. Several studies have demonstrated the expression of IL-3 in neurons and astrocytes of the hippocampus and cortices in normal mouse brain, suggesting a physiological role of IL-3 in the central nervous system. Although there is evidence indicating that IL-3 is expressed in some neuronal populations, its physiological role in these cells is poorly known. Results In this study, we demonstrated the expression of IL-3 receptor in cortical neurons, and analyzed its influence on amyloid β (Aβ-treated cells. In these cells, IL-3 can activate at least three classical signalling pathways, Jak/STAT, Ras/MAP kinase and the PI 3-kinase. Viability assays indicated that IL-3 might play a neuroprotective role in cells treated with Aβ fibrils. It is of interest to note that our results suggest that cell survival induced by IL-3 required PI 3-kinase and Jak/STAT pathway activation, but not MAP kinase. In addition, IL-3 induced an increase of the anti-apoptotic protein Bcl-2. Conclusion Altogether these data strongly suggest that IL-3 neuroprotects neuronal cells against neurodegenerative agents like Aβ.

  6. Unfolding, aggregation, and seeded amyloid formation of lysine-58-cleaved beta(2)-microglobulin

    DEFF Research Database (Denmark)

    Heegaard, N.H.H.; Jørgensen, T.J.D.; Rozlosnik, N.;

    2005-01-01

    . Using amide hydrogen/deuterium exchange monitored by mass spectrometry, we show that Delta K58-beta(2)m has increased unfolding rates compared to wt-beta(2)m and that unfolding is highly temperature dependent. The unfolding rate is I order of magnitude faster in Delta K58-beta(2)M than in wt-beta(2)m....... After a few days at 37 degrees C, in contrast to wt-beta(2)M, Delta K-58-beta(2)M forms well-defined high molecular weight aggregates that are detected by size-exclusion chromatography. Atomic force microscopy after seeding with amyloid-beta(2)m fibrils under conditions that induce minimal fibrillation...

  7. Aβ42-oligomer Interacting Peptide (AIP) neutralizes toxic amyloid-β42 species and protects synaptic structure and function.

    Science.gov (United States)

    Barucker, Christian; Bittner, Heiko J; Chang, Philip K-Y; Cameron, Scott; Hancock, Mark A; Liebsch, Filip; Hossain, Shireen; Harmeier, Anja; Shaw, Hunter; Charron, François M; Gensler, Manuel; Dembny, Paul; Zhuang, Wei; Schmitz, Dietmar; Rabe, Jürgen P; Rao, Yong; Lurz, Rudi; Hildebrand, Peter W; McKinney, R Anne; Multhaup, Gerhard

    2015-01-01

    The amyloid-β42 (Aβ42) peptide is believed to be the main culprit in the pathogenesis of Alzheimer disease (AD), impairing synaptic function and initiating neuronal degeneration. Soluble Aβ42 oligomers are highly toxic and contribute to progressive neuronal dysfunction, loss of synaptic spine density, and affect long-term potentiation (LTP). We have characterized a short, L-amino acid Aβ-oligomer Interacting Peptide (AIP) that targets a relatively well-defined population of low-n Aβ42 oligomers, rather than simply inhibiting the aggregation of Aβ monomers into oligomers. Our data show that AIP diminishes the loss of Aβ42-induced synaptic spine density and rescues LTP in organotypic hippocampal slice cultures. Notably, the AIP enantiomer (comprised of D-amino acids) attenuated the rough-eye phenotype in a transgenic Aβ42 fly model and significantly improved the function of photoreceptors of these flies in electroretinography tests. Overall, our results indicate that specifically "trapping" low-n oligomers provides a novel strategy for toxic Aβ42-oligomer recognition and removal. PMID:26510576

  8. Metabolic changes may precede proteostatic dysfunction in a Drosophila model of amyloid beta peptide toxicity.

    Science.gov (United States)

    Ott, Stanislav; Vishnivetskaya, Anastasia; Malmendal, Anders; Crowther, Damian C

    2016-05-01

    Amyloid beta (Aβ) peptide aggregation is linked to the initiation of Alzheimer's disease; accordingly, aggregation-prone isoforms of Aβ, expressed in the brain, shorten the lifespan of Drosophila melanogaster. However, the lethal effects of Aβ are not apparent until after day 15. We used shibire(TS) flies that exhibit a temperature-sensitive paralysis phenotype as a reporter of proteostatic robustness. In this model, we found that increasing age but not Aβ expression lowered the flies' permissive temperature, suggesting that Aβ did not exert its lethal effects by proteostatic disruption. Instead, we observed that chemical challenges, in particular oxidative stressors, discriminated clearly between young (robust) and old (sensitive) flies. Using nuclear magnetic resonance spectroscopy in combination with multivariate analysis, we compared water-soluble metabolite profiles at various ages in flies expressing Aβ in their brains. We observed 2 genotype-linked metabolomic signals, the first reported the presence of any Aβ isoform and the second the effects of the lethal Arctic Aβ. Lethality was specifically associated with signs of oxidative respiration dysfunction and oxidative stress. PMID:27103517

  9. Successful adjuvant-free vaccination of BALB/c mice with mutated amyloid β peptides

    Directory of Open Access Journals (Sweden)

    Wahi Monika M

    2008-02-01

    Full Text Available Abstract Background A recent human clinical trial of an Alzheimer's disease (AD vaccine using amyloid beta (Aβ 1–42 plus QS-21 adjuvant produced some positive results, but was halted due to meningoencephalitis in some participants. The development of a vaccine with mutant Aβ peptides that avoids the use of an adjuvant may result in an effective and safer human vaccine. Results All peptides tested showed high antibody responses, were long-lasting, and demonstrated good memory response. Epitope mapping indicated that peptide mutation did not lead to epitope switching. Mutant peptides induced different inflammation responses as evidenced by cytokine profiles. Ig isotyping indicated that adjuvant-free vaccination with peptides drove an adequate Th2 response. All anti-sera from vaccinated mice cross-reacted with human Aβ in APP/PS1 transgenic mouse brain tissue. Conclusion Our study demonstrated that an adjuvant-free vaccine with different Aβ peptides can be an effective and safe vaccination approach against AD. This study represents the first report of adjuvant-free vaccines utilizing Aβ peptides carrying diverse mutations in the T-cell epitope. These largely positive results provide encouragement for the future of the development of human vaccinations for AD.

  10. Influence of pH and sequence in peptide aggregation via molecular simulation

    International Nuclear Information System (INIS)

    We employ a recently developed coarse-grained model for peptides and proteins where the effect of pH is automatically included. We explore the effect of pH in the aggregation process of the amyloidogenic peptide KTVIIE and two related sequences, using three different pH environments. Simulations using large systems (24 peptides chains per box) allow us to describe the formation of realistic peptide aggregates. We evaluate the thermodynamic and kinetic implications of changes in sequence and pH upon peptide aggregation, and we discuss how a minimalistic coarse-grained model can account for these details

  11. A Microliter-Scale High-throughput Screening System with Quantum-Dot Nanoprobes for AmyloidAggregation Inhibitors

    OpenAIRE

    Yukako Ishigaki; Hiroyuki Tanaka; Hiroaki Akama; Toshiki Ogara; Koji Uwai; Kiyotaka Tokuraku

    2013-01-01

    The aggregation of amyloid β protein (Aβ) is a key step in the pathogenesis of Alzheimer’s disease (AD), and therefore inhibitory substances for Aβ aggregation may have preventive and/or therapeutic potential for AD. Here we report a novel microliter-scale high-throughput screening system for Aβ aggregation inhibitors based on fluorescence microscopy-imaging technology with quantum-dot Nanoprobes. This screening system could be analyzed with a 5-µl sample volume when a 1536-well plate was use...

  12. Effects of macromolecular crowding on amyloid beta (16-22) aggregation using coarse-grained simulations.

    Science.gov (United States)

    Latshaw, David C; Cheon, Mookyung; Hall, Carol K

    2014-11-26

    To examine the effect of crowding on protein aggregation, discontinuous molecular dynamics (DMD) simulations combined with an intermediate resolution protein model, PRIME20, were applied to a peptide/crowder system. The systems contained 192 Aβ(16-22) peptides and crowders of diameters 5, 20, and 40 Å, represented here by simple hard spheres, at crowder volume fractions of 0.00, 0.10, and 0.20. Results show that both crowder volume fraction and crowder diameter have a large impact on fibril and oligomer formation. The addition of crowders to a system of peptides increases the rate of oligomer formation, shifting from a slow ordered formation of oligomers in the absence of crowders, similar to nucleated polymerization, to a fast collapse of peptides and subsequent rearrangement characteristic of nucleated conformational conversion with a high maximum in the number of peptides in oligomers as the total crowder surface area increases. The rate of conversion from oligomers to fibrils also increases with increasing total crowder surface area, giving rise to an increased rate of fibril growth. In all cases, larger volume fractions and smaller crowders provide the greatest aggregation enhancement effects. We also show that the size of the crowders influences the formation of specific oligomer sizes. In our simulations, the 40 Å crowders enhance the number of dimers relative to the numbers of trimers, hexamers, pentamers, and hexamers, while the 5 Å crowders enhance the number of hexamers relative to the numbers of dimers, trimers, tetramers, and pentamers. These results are in qualitative agreement with previous experimental and theoretical work.

  13. Fibrils from designed non-amyloid-related synthetic peptides induce AA-amyloidosis during inflammation in an animal model.

    Directory of Open Access Journals (Sweden)

    Per Westermark

    Full Text Available BACKGROUND: Mouse AA-amyloidosis is a transmissible disease by a prion-like mechanism where amyloid fibrils act by seeding. Synthetic peptides with no amyloid relationship can assemble into amyloid-like fibrils and these may have seeding capacity for amyloid proteins. PRINCIPAL FINDINGS: Several synthetic peptides, designed for nanotechnology, have been examined for their ability to produce fibrils with Congo red affinity and concomitant green birefringence, affinity for thioflavin S and to accelerate AA-amyloidosis in mice. It is shown that some amphiphilic fibril-forming peptides not only produced Congo red birefringence and showed affinity for thioflavin S, but they also shortened the lag phase for systemic AA-amyloidosis in mice when they were given intravenously at the time of inflammatory induction with silver nitride. Peptides, not forming amyloid-like fibrils, did not have such properties. CONCLUSIONS: These observations should caution researchers and those who work with synthetic peptides and their derivatives to be aware of the potential health concerns.

  14. Cholesterol Depletion Reduces the Internalization of β-Amyloid Peptide in SH-SY5Y Cells

    Institute of Scientific and Technical Information of China (English)

    ZHOU Qinghua; HE Li; SUI Senfang

    2006-01-01

    Deposition of amyloid in the brain is a critical step in the pathogenesis of Alzheimer's disease. The endocytosis of β-amyloid peptide (Aβ) is an important factor among the many factors that contribute to the genesis of amyloid deposits. Since cholesterol participates in many important physiological processes, the present work investigated the relationship between the cellular cholesterol content and the endocytosis of the exogenic Aβ, and found that reduction of the cholesterol content by methyl-β-cyclodextrin could reduce the endocytosis of Aβ. The study indicates that the endocytosis of Aβ is partly mediated by cholesterol.

  15. Effects of Amyloid Precursor Protein 17 Peptide on the Protection of Diabetic Encephalopathy and Improvement of Glycol Metabolism in the Diabetic Rat

    OpenAIRE

    Heng Meng; Duo Zhang; Haishan Yang

    2013-01-01

    Researchers have proposed that amyloid precursor protein 17 peptide (APP17 peptide), an active fragment of amyloid precursor protein (APP) in the nervous system, has therapeutic effects on neurodegeneration. Diabetic encephalopathy (DE) is a neurological disease caused by diabetes. Here we use multiple experimental approaches to investigate the effect of APP17 peptide on changes in learning behavior and glycol metabolism in rats. It was found that rats with DE treated by APP17 peptide showed ...

  16. Impairment of context memory by β-amyloid peptide in terrestrial snail

    Directory of Open Access Journals (Sweden)

    2008-09-01

    Full Text Available We examined influence of the β-amyloid peptide (25-35 neurotoxic fragment (βAP on Helix lucorum food-aversion learning. Testing with aversively conditioned carrot showed that 2, 5, and 14 days after training the βAP-injected group responded in a significantly larger number of cases and with a significantly smaller latency than the sham-injected control group. The results demonstrate that the amyloid peptide partially impairs the learning process. In an attempt to specify what component of memory is impaired we compared responses in a context in which the snails were aversively trained, and in a neutral context. It was found that the sham-injected learned snails significantly less frequently took the aversively conditioned food in the context in which the snails were shocked, while the βAP-injected snails remembered the aversive context 2 days after associative training, but were not able to distinguish two contexts 5, and 14 days after training. In a separate series of experiments a specific context was associated with electric shock, and changes in general responsiveness were tested in two contexts several days later. It was found that the βAP-injected snails significantly increased withdrawal responses in all tested contexts, while the sham-injected control animals selectively increased responsiveness only in the context in which they were reinforced with electric shocks. These results demonstrate that the β-amyloid peptide (25-35 interferes with the learning process, and may play a significant role in behavioral plasticity and memory by selectively impairing only one

  17. Protective effects of Lingguizhugan decoction on amyloid-beta peptide (25-35)-induced cell injury Anti-inflammatory effects

    Institute of Scientific and Technical Information of China (English)

    Feifei Xi; Feng Sang; Chunxiang Zhou; Yun Ling

    2012-01-01

    In the present study, a human neuroblastoma cell line (SH-SY5Y) and BV-2 microglia were treated with amyloidpeptide (25-35), as a model of Alzheimer's disease, to evaluate the protective effects of 10-3-10-8 g/mL Lingguizhugan decoction and to examine the underlying anti-inflammatory mechanism. Lingguizhugan decoction significantly enhanced the viability of SH-SY5Y cells with amyloidpeptide-induced injury, and lowered levels of interleukin-1β, interleukin-6, tumor necrosis factor-α and nitric oxide in the culture supernatant of activated BV-2 microglia. The effects of 10-3 g/mL Lingguizhugan decoction were more significant. These results suggest that Lingguizhugan decoction can protect SH-SY5Y cells against amyloidpeptide (25-35)-induced injury in a dose-dependent manner by inhibiting overexpression of inflammatory factors by activated microglia.

  18. Broad neutralization of calcium-permeable amyloid pore channels with a chimeric Alzheimer/Parkinson peptide targeting brain gangliosides.

    Science.gov (United States)

    Di Scala, Coralie; Yahi, Nouara; Flores, Alessandra; Boutemeur, Sonia; Kourdougli, Nazim; Chahinian, Henri; Fantini, Jacques

    2016-02-01

    Growing evidence supports a role for brain gangliosides in the pathogenesis of neurodegenerative diseases including Alzheimer's and Parkinson's. Recently we deciphered the ganglioside-recognition code controlling specific ganglioside binding to Alzheimer's β-amyloid (Aβ1-42) peptide and Parkinson's disease-associated protein α-synuclein. Cracking this code allowed us to engineer a short chimeric Aβ/α-synuclein peptide that recognizes all brain gangliosides. Here we show that ganglioside-deprived neural cells do no longer sustain the formation of zinc-sensitive amyloid pore channels induced by either Aβ1-42 or α-synuclein, as assessed by single-cell Ca(2+) fluorescence microscopy. Thus, amyloid channel formation, now considered a key step in neurodegeneration, is a ganglioside-dependent process. Nanomolar concentrations of chimeric peptide competitively inhibited amyloid pore formation induced by Aβ1-42 or α-synuclein in cultured neural cells. Moreover, this peptide abrogated the intracellular calcium increases induced by Parkinson's-associated mutant forms of α-synuclein (A30P, E46K and A53T). The chimeric peptide also prevented the deleterious effects of Aβ1-42 on synaptic vesicle trafficking and decreased the Aβ1-42-induced impairment of spontaneous activity in rat hippocampal slices. Taken together, these data show that the chimeric peptide has broad anti-amyloid pore activity, suggesting that a common therapeutic strategy based on the prevention of amyloid-ganglioside interactions is a reachable goal for both Alzheimer's and Parkinson's diseases. PMID:26655601

  19. Hydrolysis of Whey Protein Isolate with Bacillus licheniformis Protease: Fractionation and Identification of Aggregating Peptides

    NARCIS (Netherlands)

    Creusot, N.P.; Gruppen, H.

    2007-01-01

    The objective of this work was to identify the dominant aggregating peptides from a whey protein hydrolysate (degree of hydrolysis of 6.8%) obtained with Bacillus licheniformis protease. The aggregating peptides were fractionated with preparative reversed-phase chromatography and identified with liq

  20. Zinc-induced interaction of the metal-binding domain of amyloidpeptide with DNA.

    Science.gov (United States)

    Khmeleva, Svetlana A; Mezentsev, Yuri V; Kozin, Sergey A; Tsvetkov, Philipp O; Ivanov, Alexis S; Bodoev, Nikolay V; Makarov, Alexander A; Radko, Sergey P

    2013-01-01

    The interaction of the 16-mer synthetic peptide (Aβ16), which represents the metal-binding domain of the amyloid-β with DNA, was studied employing the surface plasmon resonance technique. It has been shown that Aβ16 binds to the duplex DNA in the presence of zinc ions and thus the metal-binding domain can serve as a zinc-dependent DNA-binding site of the amyloid-β. The interaction of Aβ16 with DNA most probably depends on oligomerization of the peptide and is dominated by interaction with phosphates of the DNA backbone.

  1. Protective effects of Lingguizhugan decoction on amyloid-beta peptide (25-35)-induced cell injury: Anti-inflammatory effects☆

    OpenAIRE

    Xi, Feifei; Sang, Feng; Zhou, Chunxiang; Ling, Yun

    2012-01-01

    In the present study, a human neuroblastoma cell line (SH-SY5Y) and BV-2 microglia were treated with amyloidpeptide (25–35), as a model of Alzheimer’s disease, to evaluate the protective effects of 10-3–10-8 g/mL Lingguizhugan decoction and to examine the underlying anti-inflammatory mechanism. Lingguizhugan decoction significantly enhanced the viability of SH-SY5Y cells with amyloidpeptide-induced injury, and lowered levels of interleukin-1β, interleukin-6, tumor necrosis factor-α and ...

  2. Modeling the Interaction between β-Amyloid Aggregates and Choline Acetyltransferase Activity and Its Relation with Cholinergic Dysfunction through Two-Enzyme/Two-Compartment Model

    Directory of Open Access Journals (Sweden)

    Hedia Fgaier

    2015-01-01

    Full Text Available The effect of β-amyloid aggregates on activity of choline acetyltransferase (ChAT which is responsible for synthesizing acetylcholine (ACh in human brain is investigated through the two-enzyme/two-compartment (2E2C model where the presynaptic neuron is considered as compartment 1 while both the synaptic cleft and the postsynaptic neuron are considered as compartment 2 through suggesting three different kinetic mechanisms for the inhibition effect. It is found that the incorporation of ChAT inhibition by β-amyloid aggregates into the 2E2C model is able to yield dynamic solutions for concentrations of generated β-amyloid, ACh, choline, acetate, and pH in addition to the rates of ACh synthesis and ACh hydrolysis in compartments 1 and 2. It is observed that ChAT activity needs a high concentration of β-amyloid aggregates production rate. It is found that ChAT activity is reduced significantly when neurons are exposed to high levels of β-amyloid aggregates leading to reduction in levels of ACh which is one of the most significant physiological symptoms of AD. Furthermore, the system of ACh neurocycle is dominated by the oscillatory behavior when ChAT enzyme is completely inhibited by β-amyloid. It is observed that the direct inactivation of ChAT by β-amyloid aggregates may be a probable mechanism contributing to the development of AD.

  3. Tuning calcium carbonate growth through physical confinement and templating with amyloid-like polypeptide aggregates

    Science.gov (United States)

    Colaco, Martin Francis

    that this methodology does not extend to three-dimensional confined systems, as the water has no method of escape. Through the addition of an insoluble hydroscopic polymer to our microreactors, amorphous calcium carbonate of controllable sizes can be grown. However, crystalline calcium carbonate cannot be grown without some type of templating. Studies of calcium carbonate templating have predominantly been performed on SAMs or in poorly characterized gels or protein films. The use of ordered protein or polypeptide aggregates for templating permits both geometry and charge surface density to be varied. We have studied the kinetics and final morphology of ordered aggregates of poly-L-glutamic acid and a copolymer of glutamic acid and alanine through experiments and simulations. Electrostatics, not structure, of the monomer appeared to be the dominating factor in the aggregation, as pH and salt concentration changes led to dramatic changes in the kinetics. Examining our experimental with existing models provided inconsistent results, so we developed a new model that yielded physically realistic rate constants, while generating better fits with longer lag phases and faster growths. However, despite the similarity of aggregation conditions, the two polypeptides yielded vastly different morphologies, with the PEA forming typical amyloid-like fibrils and PE forming larger, twisted lamellar aggregates. Templating with these aggregates also yielded dramatically different patterns. Polycrystalline rhombohedral calcite with smooth faces and edges grew on PEA fibrils, with minimal templating in evidence. However, on PE, numerous calcite crystals with triangular projections tracked the surface of the aggregate. The PE lamellae are characterized by extensive beta-sheet structure. In this conformation, the glutamic acid spacings on the surface of the aggregates can mimic the spacings of the carboxylates in the calcite lattice. In addition, the high negative charge density on the

  4. A cocoa peptide protects Caenorhabditis elegans from oxidative stress and β-amyloid peptide toxicity.

    Directory of Open Access Journals (Sweden)

    Patricia Martorell

    Full Text Available BACKGROUND: Cocoa and cocoa-based products contain different compounds with beneficial properties for human health. Polyphenols are the most frequently studied, and display antioxidant properties. Moreover, protein content is a very interesting source of antioxidant bioactive peptides, which can be used therapeutically for the prevention of age-related diseases. METHODOLOGY/PRINCIPAL FINDINGS: A bioactive peptide, 13L (DNYDNSAGKWWVT, was obtained from a hydrolyzed cocoa by-product by chromatography. The in vitro inhibition of prolyl endopeptidase (PEP was used as screening method to select the suitable fraction for peptide identification. Functional analysis of 13L peptide was achieved using the transgenic Caenorhabditis elegans strain CL4176 expressing the human Aβ₁₋₄₂ peptide as a pre-clinical in vivo model for Alzheimer's disease. Among the peptides isolated, peptide 13L (1 µg/mL showed the highest antioxidant activity (P≤0.001 in the wild-type strain (N2. Furthermore, 13L produced a significant delay in body paralysis in strain CL4176, especially in the 24-47 h period after Aβ₁₋₄₂ peptide induction (P≤0.0001. This observation is in accordance with the reduction of Aβ deposits in CL4176 by western blot. Finally, transcriptomic analysis in wild-type nematodes treated with 13L revealed modulation of the proteosomal and synaptic functions as the main metabolic targets of the peptide. CONCLUSIONS/SIGNIFICANCE: These findings suggest that the cocoa 13L peptide has antioxidant activity and may reduce Aβ deposition in a C. elegans model of Alzheimer's disease; and therefore has a putative therapeutic potential for prevention of age-related diseases. Further studies in murine models and humans will be essential to analyze the effectiveness of the 13L peptide in higher animals.

  5. Stability of transmembrane amyloid β-peptide and membrane integrity tested by molecular modeling of site-specific Aβ42 mutations.

    Directory of Open Access Journals (Sweden)

    Chetan Poojari

    Full Text Available Interactions of the amyloid β-protein (Aβ with neuronal cell membranes, leading to the disruption of membrane integrity, are considered to play a key role in the development of Alzheimer's disease. Natural mutations in Aβ42, such as the Arctic mutation (E22G have been shown to increase Aβ42 aggregation and neurotoxicity, leading to the early-onset of Alzheimer's disease. A correlation between the propensity of Aβ42 to form protofibrils and its effect on neuronal dysfunction and degeneration has been established. Using rational mutagenesis of the Aβ42 peptide it was further revealed that the aggregation of different Aβ42 mutants in lipid membranes results in a variety of polymorphic aggregates in a mutation dependent manner. The mutant peptides also have a variable ability to disrupt bilayer integrity. To further test the connection between Aβ42 mutation and peptide-membrane interactions, we perform molecular dynamics simulations of membrane-inserted Aβ42 variants (wild-type and E22G, D23G, E22G/D23G, K16M/K28M and K16M/E22G/D23G/K28M mutants as β-sheet monomers and tetramers. The effects of charged residues on transmembrane Aβ42 stability and membrane integrity are analyzed at atomistic level. We observe an increased stability for the E22G Aβ42 peptide and a decreased stability for D23G compared to wild-type Aβ42, while D23G has the largest membrane-disruptive effect. These results support the experimental observation that the altered toxicity arising from mutations in Aβ is not only a result of the altered aggregation propensity, but also originates from modified Aβ interactions with neuronal membranes.

  6. Patterning nanofibrils through the templated growth of multiple modified amyloid peptides

    Science.gov (United States)

    Sakai, Hiroki; Watanabe, Ken; Kudoh, Fuki; Kamada, Rui; Chuman, Yoshiro; Sakaguchi, Kazuyasu

    2016-08-01

    There has been considerable interest in the patterning of functionalized nanowires because of the potential applications of these materials to the construction of nanodevices. A variety of biomolecular building blocks containing amyloid peptides have been used to functionalize nanowires. However, the patterning of self-assembled nanowires can be challenging because of the difficulties associated with controlling the self-assembly of these functionalized building blocks. Herein, we present a versatile approach for the patterning of nanowires based on the combination of templated fibril growth with a versatile functionalization method using our structure-controllable amyloid peptides (SCAPs). Using this approach, we have succeeded in the formation of multi-type nanowires with tandem domain structures in high yields. Given that the mixing-SCAP method can lead to the formation of tandem fibrils, it is noteworthy that our method allowed us to control the initiation of fibril formation from the gold nanoparticles, which were attached to a short fibril as initiation points. This approach could be used to prepare a wide variety of fibril patterns, and therefore holds great potential for the development of novel self-assembled nanodevices.

  7. Intravenous immunglobulin binds beta amyloid and modifies its aggregation, neurotoxicity and microglial phagocytosis in vitro.

    Directory of Open Access Journals (Sweden)

    Susann Cattepoel

    Full Text Available Intravenous Immunoglobulin (IVIG has been proposed as a potential therapeutic for Alzheimer's disease (AD and its efficacy is currently being tested in mild-to-moderate AD. Earlier studies reported the presence of anti-amyloid beta (Aβ antibodies in IVIG. These observations led to clinical studies investigating the potential role of IVIG as a therapeutic agent in AD. Also, IVIG is known to mediate beneficial effects in chronic inflammatory and autoimmune conditions by interfering with various pathological processes. Therefore, we investigated the effects of IVIG and purified polyclonal Aβ-specific antibodies (pAbs-Aβ on aggregation, toxicity and phagocytosis of Aβ in vitro, thus elucidating some of the potential mechanisms of action of IVIG in AD patients. We report that both IVIG and pAbs-Aβ specifically bound to Aβ and inhibited its aggregation in a dose-dependent manner as measured by Thioflavin T assay. Additionally, IVIG and the purified pAbs-Aβ inhibited Aβ-induced neurotoxicity in the SH-SY5Y human neuroblastoma cell line and prevented Aβ binding to rat primary cortical neurons. Interestingly, IVIG and pAbs-Aβ also increased the number of phagocytosing cells as well as the amount of phagocytosed fibrillar Aβ by BV-2 microglia. Phagocytosis of Aβ depended on receptor-mediated endocytosis and was accompanied by upregulation of CD11b expression. Importantly, we could also show that Privigen dose-dependently reversed Aβ-mediated LTP inhibition in mouse hippocampal slices. Therefore, our in vitro results suggest that IVIG may have an impact on different processes involved in AD pathogenesis, thereby promoting further understanding of the effects of IVIG observed in clinical studies.

  8. Interplay between the hydrophobic effect and dipole interactions in peptide aggregation at interfaces.

    Science.gov (United States)

    Ganesan, Sai J; Matysiak, Silvina

    2016-01-28

    Protein misfolding is an intrinsic property of polypeptides, and misfolded conformations have a propensity to aggregate. In the past decade, the development of various coarse-grained models for proteins has provided key insights into the driving forces in folding and aggregation. We recently developed a low resolution Water Explicit Polarizable PROtein coarse-grained Model (WEPPROM) by adding oppositely charged dummy particles inside protein backbone beads. With this model, we were able to achieve significant α/β secondary structure content, without any added bias. We now extend the model to study peptide aggregation at hydrophobic-hydrophilic interfaces and draw comparisons to aggregation in explicit water solvent. Elastin-like octapeptides (GV)4 are used as a model system for this study. A condensation-ordering mechanism of aggregation is observed in water. Our results suggest that backbone interpeptide dipolar interactions, not hydrophobicity, plays a more significant role in fibril-like peptide aggregation. We observe a cooperative effect in hydrogen bonding or dipolar interactions, with an increase in aggregate size in water and at interfaces. Based on this cooperative effect, we provide a potential explanation for the observed nucleus size in peptide aggregation pathways. The presence of a hydrophobic-hydrophilic interface increases both (a) order of aggregates formed, and (b) rate of the aggregation process. Without dipolar particles, peptide aggregation is not observed at the hydrophilic-hydrophobic interface. Thus, the presence of dipoles, not hydrophobicity, plays a key role in aggregation observed at hydrophobic interfaces. PMID:26698374

  9. Effects of hydroxylated carbon nanotubes on the aggregation of Aβ16-22 peptides: a combined simulation and experimental study.

    Science.gov (United States)

    Xie, Luogang; Lin, Dongdong; Luo, Yin; Li, Huiyu; Yang, Xinju; Wei, Guanghong

    2014-10-21

    The pathogenesis of Alzheimer's disease (AD) is associated with the aggregation of amyloid-β (Aβ) peptides into toxic aggregates with ?-sheet character. In a previous computational study, we showed that pristine single-walled carbon nanotubes (SWCNTs) can inhibit the formation of β-sheet-rich oligomers in the central hydrophobic core fragment of Aβ (Aβ16-22). However, the poor solubility of SWCNTs in water hinders their use in biomedical applications and nanomedicine. Here, we investigate the influence of hydroxylated SWCNT, a water-soluble SWCNT derivative, on the aggregation of Aβ16-22 peptides using all-atom explicit-water replica exchange molecular dynamics simulations. Our results show that hydroxylated SWCNTs can significantly inhibit β-sheet formation and shift the conformations of Aβ16-22 oligomers from ordered β-sheet-rich structures toward disordered coil aggregates. Detailed analyses of the SWCNT-Aβ interaction reveal that the inhibition of β-sheet formation by hydroxylated SWCNTs mainly results from strong electrostatic interactions between the hydroxyl groups of SWCNTs and the positively charged residue K16 of Aβ16-22 and hydrophobic and aromatic stacking interactions between SWCNTs and F19 and F20. In addition, our atomic force microscopy and thioflavin T fluorescence experiments confirm the inhibitory effect of both pristine and hydroxylated SWCNTs on Aβ16-22 fibrillization, in support of our previous and present replica exchange molecular dynamics simulation results. These results demonstrate that hydroxylated SWCNTs efficiently inhibit the aggregation of Aβ16-22; in addition, they offer molecular insight into the inhibition mechanism, thus providing new clues for the design of therapeutic drugs against amyloidosis.

  10. Novel Nuclear Factor-KappaB Targeting Peptide Suppresses β-Amyloid Induced Inflammatory and Apoptotic Responses in Neuronal Cells

    Science.gov (United States)

    Srinivasan, Mythily; Bayon, Baindu; Chopra, Nipun; Lahiri, Debomoy K.

    2016-01-01

    In the central nervous system (CNS), activation of the transcription factor nuclear factor-kappa B (NF-κβ) is associated with both neuronal survival and increased vulnerability to apoptosis. The mechanisms underlying these dichotomous effects are attributed to the composition of NF-κΒ dimers. In Alzheimer’s disease (AD), β-amyloid (Aβ) and other aggregates upregulate activation of p65:p50 dimers in CNS cells and enhance transactivation of pathological mediators that cause neuroinflammation and neurodegeneration. Hence selective targeting of activated p65 is an attractive therapeutic strategy for AD. Here we report the design, structural and functional characterization of peptide analogs of a p65 interacting protein, the glucocorticoid induced leucine zipper (GILZ). By virtue of binding the transactivation domain of p65 exposed after release from the inhibitory IκΒ proteins in activated cells, the GILZ analogs can act as highly selective inhibitors of activated p65 with minimal potential for off-target effects. PMID:27764084

  11. Metal-amyloidpeptide interactions: a preliminary investigation of molecular mechanisms for Alzheimer’s disease

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Although humans have spent exactly 100 years combating Alzheimer’s disease (AD), the molecular mechanisms of AD remain unclear. Owing to the rapid growth of the oldest age groups of the popula-tion and the continuous increase of the incidence of AD, it has become one of the crucial problems to modern sciences. It would be impossible to prevent or reverse AD at the root without elucidating its molecular mechanisms. From the point of view of metal-amyloidpeptide (Aβ) interactions, we review the molecular mechanisms of AD, mainly including Cu2+ and Zn2+ inducing the aggregation of Aβ, cata-lysing the production of active oxygen species from Aβ, as well as interacting with the ion-channel-like structures of Aβ. Moreover, the development of therapeutic drugs on the basis of metal-Aβ interactions is also briefly introduced. With the increasingly rapid progress of the molecular mechanisms of AD, we are now entering a new dawn that promises the delivery of revolutionary developments for the control of dementias.

  12. Expression of secreted human single-chain fragment variable antibody against human amyloid beta peptide in Pichia pastoris

    Institute of Scientific and Technical Information of China (English)

    Jiong Cai; Fang Li; Shizhen Wang

    2008-01-01

    BACKGROUND: Studies have shown that monoclonal or polyclonal antibody injections ofamyloid β peptide arc effective in removing amyloid β peptide overload in the brain.OBJECTIVE: Based on successful screening of a human single-chain fragment variable antibody specific to amyloid β peptide, this paper aimed to express recombinant human single-chain variable antibody against amyloid β peptide.DESIGN, TIME AND SETTING: A single sample experiment was performed at the Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Hospital (Beijing, China) from January to July 2006.MATERIALS: Human single-chain fragment variable antibody gene against amyloid β peptide was screened from a human phage-display antibody library.METHODS: Human single-chain fragment variable antibody gene was mutated to eliminate a BamHI restriction site and cloned into a Teasy plasmid for pT-seFvAβ construction, which was identified by PCR amplification and endonuclease digestion. Plasmid pT-scFvA β was cut by EcoRl and Notl endonucleases, and the antibody gene was cloned into pPIC9K plasmid to construct pPIC9K-scFvA β expression vector, which was confirmed by gene sequencing. Linearized pPICgK-scFvA β was used to transform a Pichia pastoris GS115 cell line, and the recombinant was induced by 0.5 % methanol to express human single-chain fragment variable antibody specific to amyloid β peptide.MAIN OUTCOME MEASURES: Protein electrophoresis was used to identify PCR products, gene sequencing was uscd to verify the pPIC9K-scFvA sequence, and SDS-PAGE was used to detect recombinant expression of human single-chain fragment variable antibody specific to amyloid β peptide in Pichia pastoris.RESULTS: Gene sequencing confirmed pPICgK-scFvA β orientation. Rccomhinants were obtained by lineadzed pPIC9K-scFvA β transformation. After induction with 0.5% methanol, the recombinant yeast cells secreted proteins of 33-ku size

  13. Monomeric Amyloid Beta Peptide in Hexafluoroisopropanol Detected by Small Angle Neutron Scattering.

    Directory of Open Access Journals (Sweden)

    Bo Zhang-Haagen

    Full Text Available Small proteins like amyloid beta (Aβ monomers are related to neurodegenerative disorders by aggregation to insoluble fibrils. Small angle neutron scattering (SANS is a nondestructive method to observe the aggregation process in solution. We show that SANS is able to resolve monomers of small molecular weight like Aβ for aggregation studies. We examine Aβ monomers after prolonged storing in d-hexafluoroisopropanol (dHFIP by using SANS and dynamic light scattering (DLS. We determined the radius of gyration from SANS as 1.0±0.1 nm for Aβ1-40 and 1.6±0.1 nm for Aβ1-42 in agreement with 3D NMR structures in similar solvents suggesting a solvent surface layer with 5% increased density. After initial dissolution in dHFIP Aβ aggregates sediment with a major component of pure monomers showing a hydrodynamic radius of 1.8±0.3 nm for Aβ1-40 and 3.2±0.4 nm for Aβ1-42 including a surface layer of dHFIP solvent molecules.

  14. Monomeric Amyloid Beta Peptide in Hexafluoroisopropanol Detected by Small Angle Neutron Scattering

    Science.gov (United States)

    Zhang-Haagen, Bo; Biehl, Ralf; Nagel-Steger, Luitgard; Radulescu, Aurel; Richter, Dieter; Willbold, Dieter

    2016-01-01

    Small proteins like amyloid beta (Aβ) monomers are related to neurodegenerative disorders by aggregation to insoluble fibrils. Small angle neutron scattering (SANS) is a nondestructive method to observe the aggregation process in solution. We show that SANS is able to resolve monomers of small molecular weight like Aβ for aggregation studies. We examine Aβ monomers after prolonged storing in d-hexafluoroisopropanol (dHFIP) by using SANS and dynamic light scattering (DLS). We determined the radius of gyration from SANS as 1.0±0.1 nm for Aβ1–40 and 1.6±0.1 nm for Aβ1–42 in agreement with 3D NMR structures in similar solvents suggesting a solvent surface layer with 5% increased density. After initial dissolution in dHFIP Aβ aggregates sediment with a major component of pure monomers showing a hydrodynamic radius of 1.8±0.3 nm for Aβ1–40 and 3.2±0.4 nm for Aβ1–42 including a surface layer of dHFIP solvent molecules. PMID:26919121

  15. Dynamic behavior of small heat shock protein inhibition on amyloid fibrillization of a small peptide (SSTSAA) from RNase A

    International Nuclear Information System (INIS)

    Highlights: ► Mechanism of small heat shock protein inhibition on fibril formation was studied. ► Peptide SSTSAA with modified ends was used for amyloid fibril formation. ► FRET signal was followed during the fibril formation. ► Mj HSP16.5 inhibits fibril formation when introduced in the lag phase. ► Mj HSP16.5 slows down fibril formation when introduced after the lag phase. -- Abstract: Small heat shock proteins, a class of molecular chaperones, are reported to inhibit amyloid fibril formation in vitro, while the mechanism of inhibition remains unknown. In the present study, we investigated the mechanism by which Mj HSP16.5 inhibits amyloid fibril formation of a small peptide (SSTSAA) from RNase A. A model peptide (dansyl-SSTSAA-W) was designed by introducing a pair of fluorescence resonance energy transfer (FRET) probes into the peptide, allowing for the monitoring of fibril formation by this experimental model. Mj HSP16.5 completely inhibited fibril formation of the model peptide at a molar ratio of 1:120. The dynamic process of fibril formation, revealed by FRET, circular dichroism, and electron microscopy, showed a lag phase of about 2 h followed by a fast growth period. The effect of Mj HSP16.5 on amyloid fibril formation was investigated by adding it into the incubation solution during different growth phases. Adding Mj HSP16.5 to the incubating peptide before or during the lag phase completely inhibited fibril formation. However, introducing Mj HSP16.5 after the lag phase only slowed down the fibril formation process by adhering to the already formed fibrils. These findings provide insight into the inhibitory roles of small heat shock proteins on amyloid fibril formation at the molecular level.

  16. Regulation of adenosine triphosphate-sensitive potassium channels suppresses the toxic effects of amyloid-beta peptide (25-35)

    Institute of Scientific and Technical Information of China (English)

    Min Kong; Maowen Ba; Hui Liang; Peng Shao; Tianxia Yu; Ying Wang

    2013-01-01

    In this study, we treated PC12 cells with 0-20 μM amyloidpeptide (25-35) for 24 hours to induce cytotoxicity, and found that 5-20 μM amyloidpeptide (25-35) decreased PC12 cell viability, but adenosine triphosphate-sensitive potassium channel activator diazoxide suppressed the decrease reactive oxygen species levels. These protective effects were reversed by the selective mitochondrial adenosine triphosphate-sensitive potassium channel blocker 5-hydroxydecanoate. An inducible nitric oxide synthase inhibitor, Nω-nitro-L-arginine, also protected PC12 cells from intracellular reactive oxygen species levels. However, the H2O2-degrading enzyme catalase could that the increases in both mitochondrial membrane potential and reactive oxygen species levels adenosine triphosphate-sensitive potassium channels and nitric oxide. Regulation of adenosine triphosphate-sensitive potassium channels suppresses PC12 cell cytotoxicity induced by amyloid

  17. How Do the Size, Charge and Shape of Nanoparticles Affect Amyloid β Aggregation on Brain Lipid Bilayer?

    Science.gov (United States)

    Kim, Yuna; Park, Ji-Hyun; Lee, Hyojin; Nam, Jwa-Min

    2016-01-01

    Here, we studied the effect of the size, shape, and surface charge of Au nanoparticles (AuNPs) on amyloid beta (Aβ) aggregation on a total brain lipid-based supported lipid bilayer (brain SLB), a fluid platform that facilitates Aβ-AuNP aggregation process. We found that larger AuNPs induce large and amorphous aggregates on the brain SLB, whereas smaller AuNPs induce protofibrillar Aβ structures. Positively charged AuNPs were more strongly attracted to Aβ than negatively charged AuNPs, and the stronger interactions between AuNPs and Aβ resulted in fewer β-sheets and more random coil structures. We also compared spherical AuNPs, gold nanorods (AuNRs), and gold nanocubes (AuNCs) to study the effect of nanoparticle shape on Aβ aggregation on the brain SLB. Aβ was preferentially bound to the long axis of AuNRs and fewer fibrils were formed whereas all the facets of AuNCs interacted with Aβ to produce the fibril networks. Finally, it was revealed that different nanostructures induce different cytotoxicity on neuroblastoma cells, and, overall, smaller Aβ aggregates induce higher cytotoxicity. The results offer insight into the roles of NPs and brain SLB in Aβ aggregation on the cell membrane and can facilitate the understanding of Aβ-nanostructure co-aggregation mechanism and tuning Aβ aggregate structures.

  18. Determining the Effect of Aluminum Oxide Nanoparticles on the Aggregation of Amyloid-Beta in Transgenic Caenorhabditis elegans

    Science.gov (United States)

    Patel, Suhag; Matticks, John; Howell, Carina

    2014-03-01

    The cause of Alzheimer's disease has been linked partially to genetic factors but the predicted environmental components have yet to be determined. In Alzheimer's, accumulation of amyloid-beta protein in the brain forms plaques resulting in neurodegeneration and loss of mental functions. It has been postulated that aluminum influences the aggregation of amyloid-beta. To test this hypothesis, transgenic Caenorhabditis elegans, CL2120, was used as a model organism to observe neurodegeneration in nematodes exposed to aluminum oxide nanoparticles. Behavioral testing, fluorescent staining, and fluorescence microscopy were used to test the effects of aggregation of amyloid-beta in the nervous systems of effected nematodes exposed to aluminum oxide nanoparticles. Energy-dispersive x-ray spectroscopy was used to quantify the total concentration of aluminum oxide that the worms were exposed to during the experiment. Exposure of transgenic and wild type worms to a concentration of 4 mg mL-1 aluminum oxide showed a decrease in the sinusoidal motion, as well as an infirmity of transgenic worms when compared to control worms. These results support the hypothesis that aluminum may play a role in neurodegeneration in C. elegans, and may influence and increase the progression of Alzheimer's disease. This work was supported by National Science Foundation grants DUE-1058829, DMR-0923047 DUE-0806660 and Lock Haven FPDC grants.

  19. Scutellaria baicalensis stem-leaf total flavonoid reduces neuronal apoptosis induced by amyloid beta-peptide (25-35)

    Institute of Scientific and Technical Information of China (English)

    Ruiting Wang; Xingbin Shen; Enhong Xing; Lihua Guan; Lisheng Xin

    2013-01-01

    Scutellaria baicalensis stem-leaf total flavonoid might attenuate learning/memory impairment and neuronal loss in rats induced by amyloid beta-peptide. This study aimed to explore the effects of Scutellaria baicalensis stem-leaf total flavonoid on amyloid beta-peptide-induced neuronal apoptosis and the expression of apoptosis-related proteins in the rat hippocampus. Male Wistar rats were given intragastric administration of Scutellaria baicalensis stem-leaf total flavonoid, 50 or 100 mg/kg, once per day. On day 8 after administration, 10 μg amyloid beta-peptide (25–35) was injected into the bilateral hippocampus of rats to induce neuronal apoptosis. On day 20, hippocampal tissue was harvested and probed with the terminal deoxyribonucleotidyl transferase-mediated biotin-16-dUTP nick-end labeling assay. Scutellaria baicalensis stem-leaf total flavonoid at 50 and 100 mg/kg reduced neuronal apoptosis induced by amyloid beta-peptide (25–35) in the rat hippocampus. Immunohistochemistry and western blot assay revealed that expression of the pro-apoptotic protein Bax, cytochrome c and caspase-3 was significantly diminished by 50 and 100 mg/kg Scutellaria baicalensis stem-leaf total flavonoid, while expression of the anti-apoptotic protein Bcl-2 was increased. Moreover, 100 mg/kg Scutellaria baicalensis stem-leaf total flavonoid had a more dramatic effect than the lower dosage. These experimental findings indicate that Scutellaria baicalensis stem-leaf total flavonoid dose-dependently attenuates neuronal apoptosis induced by amyloid beta-peptide in the hippocampus, and it might mediate this by regulating the expression of Bax, cytochrome c, caspase-3 and Bcl-2.

  20. Between Amyloids and Aggregation Lies a Connection with Strength and Adhesion

    Directory of Open Access Journals (Sweden)

    Peter N. Lipke

    2014-01-01

    Full Text Available We tell of a journey that led to discovery of amyloids formed by yeast cell adhesins and their importance in biofilms and host immunity. We begin with the identification of the adhesin functional amyloid-forming sequences that mediate fiber formation in vitro. Atomic force microscopy and confocal microscopy show 2-dimensional amyloid “nanodomains” on the surface of cells that are activated for adhesion. These nanodomains are arrays of adhesin molecules that bind multivalent ligands with high avidity. Nanodomains form when adhesin molecules are stretched in the AFM or under laminar flow. Treatment with anti-amyloid perturbants or mutation of the amyloid sequence prevents adhesion nanodomain formation and activation. We are now discovering biological consequences. Adhesin nanodomains promote formation and maintenance of biofilms, which are microbial communities. Also, in abscesses within candidiasis patients, we find adhesin amyloids on the surface of the fungi. In both human infection and a Caenorhabditis elegans infection model, the presence of fungal surface amyloids elicits anti-inflammatory responses. Thus, this is a story of how fungal adhesins respond to extension forces through formation of cell surface amyloid nanodomains, with key consequences for biofilm formation and host responses.

  1. In silico analysis of the apolipoprotein E and the amyloid beta peptide interaction: misfolding induced by frustration of the salt bridge network.

    Directory of Open Access Journals (Sweden)

    Jinghui Luo

    2010-02-01

    Full Text Available The relationship between Apolipoprotein E (ApoE and the aggregation processes of the amyloid beta (A beta peptide has been shown to be crucial for Alzheimer's disease (AD. The presence of the ApoE4 isoform is considered to be a contributing risk factor for AD. However, the detailed molecular properties of ApoE4 interacting with the A beta peptide are unknown, although various mechanisms have been proposed to explain the physiological and pathological role of this relationship. Here, computer simulations have been used to investigate the process of A beta interaction with the N-terminal domain of the human ApoE isoforms (ApoE2, ApoE3 and ApoE4. Molecular docking combined with molecular dynamics simulations have been undertaken to determine the A beta peptide binding sites and the relative stability of binding to each of the ApoE isoforms. Our results show that from the several ApoE isoforms investigated, only ApoE4 presents a misfolded intermediate when bound to A beta. Moreover, the initial alpha-helix used as the A beta peptide model structure also becomes unstructured due to the interaction with ApoE4. These structural changes appear to be related to a rearrangement of the salt bridge network in ApoE4, for which we propose a model. It seems plausible that ApoE4 in its partially unfolded state is incapable of performing the clearance of A beta, thereby promoting amyloid forming processes. Hence, the proposed model can be used to identify potential drug binding sites in the ApoE4-A beta complex, where the interaction between the two molecules can be inhibited.

  2. Elevation in sphingomyelin synthase activity is associated with increases in amyloid-beta peptide generation.

    Directory of Open Access Journals (Sweden)

    Jen-Hsiang T Hsiao

    Full Text Available A pathological hallmark of Alzheimer's disease (AD is the presence of amyloid-beta peptide (Aβ plaques in the brain. Aβ is derived from a sequential proteolysis of the transmenbrane amyloid precursor protein (APP, a process which is dependent on the distribution of lipids present in the plasma membrane. Sphingomyelin is a major membrane lipid, however its role in APP processing is unclear. Here, we assessed the expression of sphingomyelin synthase (SGMS1; the gene responsible for sphingomyelin synthesis in human brain and found that it was significantly elevated in the hippocampus of AD brains, but not in the cerebellum. Secondly, we assessed the impact of altering SGMS activity on Aβ generation. Inhibition of SGMS activity significantly reduced the level of Aβ in a dose- and time dependent manner. The decrease in Aβ level occurred without changes in APP expression or cell viability. These results when put together indicate that SGMS activity impacts on APP processing to produce Aβ and it could be a contributing factor in Aβ pathology associated with AD.

  3. Molecular modeling of the ion channel-like nanotube structure of amyloid β-peptide

    Institute of Scientific and Technical Information of China (English)

    JIAO Yong; YANG Pin

    2007-01-01

    The ion channel-like nanotube structure of the oligomers of amyloid β-peptide (Aβ) was first investigated by molecular modeling. The results reveal that the hydrogen bond net is one of the key factors to stabilize the structure. The hydrophobicity distribution mode of the side chains is in favor of the structure inserting into the bilayers and forming a hydrophilic pore. The lumen space is under the control of the negative potential, weaker but spreading continuously, to which the cation selectivity attributes; meanwhile, the alternate distribution of the stronger positive and negative potentials makes the electrostatic distribution of the structure framework balance, which is also one of the key factors stabilizing the structure. The results lay the theoretical foundation for illuminating the structure stability and the ion permeability, and give a clue to elucidating the molecular mechanism of Alzheimer's disease (AD) and designing novel drugs to prevent or reverse AD at the root.

  4. Alzheimer's disease and amyloid beta-peptide deposition in the brain: a matter of 'aging'?

    DEFF Research Database (Denmark)

    Moro, Maria Luisa; Collins, Matthew J; Cappellini, Enrico

    2010-01-01

    event in AD (Alzheimer's disease) synaptic dysfunctions. Structural alterations introduced by site-specific modifications linked to protein aging may affect Abeta production, polymerization and clearance, and therefore play a pivotal role in the pathogenesis of sporadic and genetic forms of AD. Early......Biomolecules can experience aging processes that limit their long-term functionality in organisms. Typical markers of protein aging are spontaneous chemical modifications, such as AAR (amino acid racemization) and AAI (amino acid isomerization), mainly involving aspartate and asparagine residues....... Since these modifications may affect folding and turnover, they reduce protein functionality over time and may be linked to pathological conditions. The present mini-review describes evidence of AAR and AAI involvement in the misfolding and brain accumulation of Abeta (amyloid beta-peptide), a central...

  5. NADPH oxidase mediates β-amyloid peptide-induced activation of ERK in hippocampal organotypic cultures

    Science.gov (United States)

    Serrano, Faridis; Chang, Angela; Hernandez, Caterina; Pautler, Robia G; Sweatt, J David; Klann, Eric

    2009-01-01

    Background Previous studies have shown that beta amyloid (Aβ) peptide triggers the activation of several signal transduction cascades in the hippocampus, including the extracellular signal-regulated kinase (ERK) cascade. In this study we sought to characterize the cellular localization of phosphorylated, active ERK in organotypic hippocampal cultures after acute exposure to either Aβ (1-42) or nicotine. Results We observed that Aβ and nicotine increased the levels of active ERK in distinct cellular localizations. We also examined whether phospho-ERK was regulated by redox signaling mechanisms and found that increases in active ERK induced by Aβ and nicotine were blocked by inhibitors of NADPH oxidase. Conclusion Our findings indicate that NADPH oxidase-dependent redox signaling is required for Aβ-induced activation of ERK, and suggest a similar mechanism may occur during early stages of Alzheimer's disease. PMID:19804648

  6. Virtual Screening for Dipeptide Aggregation: Toward Predictive Tools for Peptide Self-Assembly

    OpenAIRE

    Frederix, Pim W. J. M.; Ulijn, Rein V.; Hunt, Neil T.; Tuttle, Tell

    2011-01-01

    Several short peptide sequences are known to self-assemble into supramolecular nanostructures with interesting properties. In this study, coarse-grained molecular dynamics is employed to rapidly screen all 400 dipeptide combinations and predict their ability to aggregate as a potential precursor to their self-assembly. The simulation protocol and scoring method proposed allows a rapid determination of whether a given peptide sequence is likely to aggregate (an indicator for the ability to sel...

  7. A microliter-scale high-throughput screening system with quantum-dot nanoprobes for amyloidaggregation inhibitors.

    Directory of Open Access Journals (Sweden)

    Yukako Ishigaki

    Full Text Available The aggregation of amyloid β protein (Aβ is a key step in the pathogenesis of Alzheimer's disease (AD, and therefore inhibitory substances for Aβ aggregation may have preventive and/or therapeutic potential for AD. Here we report a novel microliter-scale high-throughput screening system for Aβ aggregation inhibitors based on fluorescence microscopy-imaging technology with quantum-dot Nanoprobes. This screening system could be analyzed with a 5-µl sample volume when a 1536-well plate was used, and the inhibitory activity could be estimated as half-maximal effective concentrations (EC50. We attempted to comprehensively screen Aβ aggregation inhibitors from 52 spices using this system to assess whether this novel screening system is actually useful for screening inhibitors. Screening results indicate that approximately 90% of the ethanolic extracts from the spices showed inhibitory activity for Aβ aggregation. Interestingly, spices belonging to the Lamiaceae, the mint family, showed significantly higher activity than the average of tested spices. Furthermore, we tried to isolate the main inhibitory compound from Saturejahortensis, summer savory, a member of the Lamiaceae, using this system, and revealed that the main active compound was rosmarinic acid. These results demonstrate that this novel microliter-scale high-throughput screening system could be applied to the actual screening of Aβ aggregation inhibitors. Since this system can analyze at a microscopic scale, it is likely that further minimization of the system would easily be possible such as protein microarray technology.

  8. Electrostatic Binding and Hydrophobic Collapse of Peptide-Nucleic Acid Aggregates Quantified Using Force Spectroscopy

    CERN Document Server

    Camunas-Soler, Joan; Bizarro, Cristiano V; de Loreno, Sara; Fuentes-Perez, Maria Eugenia; Ramsch, Roland; Vilchez, Susana; Solans, Conxita; Moreno-Herrero, Fernando; Albericio, Fernando; Eritja, Ramon; Giralt, Ernest; Dev, Sukhendu B; Ritort, Felix

    2014-01-01

    Knowledge of the mechanisms of interaction between self-aggregating peptides and nucleic acids or other polyanions is key to the understanding of many aggregation processes underlying several human diseases (e.g. Alzheimer's and Parkinson's diseases). Determining the affinity and kinetic steps of such interactions is challenging due to the competition between hydrophobic self-aggregating forces and electrostatic binding forces. Kahalalide F (KF) is an anticancer hydrophobic peptide which contains a single positive charge that confers strong aggregative properties with polyanions. This makes KF an ideal model to elucidate the mechanisms by which self-aggregation competes with binding to a strongly charged polyelectrolyte such as DNA. We use optical tweezers to apply mechanical forces to single DNA molecules and show that KF and DNA interact in a two-step kinetic process promoted by the electrostatic binding of DNA to the aggregate surface followed by the stabilization of the complex due to hydrophobic interact...

  9. DCP-LA neutralizes mutant amyloid beta peptide-induced impairment of long-term potentiation and spatial learning.

    Science.gov (United States)

    Nagata, Tetsu; Tomiyama, Takami; Tominaga, Takemi; Mori, Hiroshi; Yaguchi, Takahiro; Nishizaki, Tomoyuki

    2010-01-01

    Long-term potentiation (LTP) was monitored from the CA1 region of the intact rat hippocampus by delivering high frequency stimulation (HFS) to the Schaffer collateral commissural pathway. Intraventricular injection with mutant amyloid beta(1-42) peptide lacking glutamate-22 (Abeta(1-42)E22Delta), favoring oligomerization, 10 min prior to HFS, inhibited expression of LTP, with the potency more than wild-type amyloid beta(1-42) peptide. Intraperitoneal injection with the linoleic acid derivative 8-[2-(2-pentyl-cyclopropylmethyl)-cyclopropyl]-octanoic acid (DCP-LA) 70 min prior to HFS neutralized mutant Abeta(1-42)E22Delta peptide-induced LTP inhibition. In the water maze test, continuous intraventricular injection with mutant Abeta(1-42)E22Delta peptide for 14 days prolonged the acquisition latency as compared with that for control, with the potency similar to wild-type Abeta(1-42) peptide, and intraperitoneal injection with DCP-LA shortened the prolonged latency to control levels. The results of the present study indicate that DCP-LA neutralizes mutant Abeta(1-42)E22Delta peptide-induced impairment of LTP and spatial learning. PMID:19716848

  10. DCP-LA neutralizes mutant amyloid beta peptide-induced impairment of long-term potentiation and spatial learning.

    Science.gov (United States)

    Nagata, Tetsu; Tomiyama, Takami; Tominaga, Takemi; Mori, Hiroshi; Yaguchi, Takahiro; Nishizaki, Tomoyuki

    2010-01-01

    Long-term potentiation (LTP) was monitored from the CA1 region of the intact rat hippocampus by delivering high frequency stimulation (HFS) to the Schaffer collateral commissural pathway. Intraventricular injection with mutant amyloid beta(1-42) peptide lacking glutamate-22 (Abeta(1-42)E22Delta), favoring oligomerization, 10 min prior to HFS, inhibited expression of LTP, with the potency more than wild-type amyloid beta(1-42) peptide. Intraperitoneal injection with the linoleic acid derivative 8-[2-(2-pentyl-cyclopropylmethyl)-cyclopropyl]-octanoic acid (DCP-LA) 70 min prior to HFS neutralized mutant Abeta(1-42)E22Delta peptide-induced LTP inhibition. In the water maze test, continuous intraventricular injection with mutant Abeta(1-42)E22Delta peptide for 14 days prolonged the acquisition latency as compared with that for control, with the potency similar to wild-type Abeta(1-42) peptide, and intraperitoneal injection with DCP-LA shortened the prolonged latency to control levels. The results of the present study indicate that DCP-LA neutralizes mutant Abeta(1-42)E22Delta peptide-induced impairment of LTP and spatial learning.

  11. Mechanisms of plastein formation, and prospective food and nutraceutical applications of the peptide aggregates

    Directory of Open Access Journals (Sweden)

    Min Gong

    2015-03-01

    Full Text Available Plastein is a protease-induced peptide aggregate with prospective application in enhancing the nutritional quality of proteins and debittering protein hydrolysates. These properties are yet to be applied in product development possibly due to economic considerations (production cost vs. product yields. This paper reviews currently proposed mechanisms of plastein formation including condensation, transpeptidation and physical interaction of aggregating peptides. Emerging findings indicate that plastein possesses bioactivities, thereby expanding its prospective application. The role of proteases in inducing peptide interaction in plastein remains unclear. Understanding the protease function will facilitate the development of efficient proteases and scalable industrial processes for plastein production.

  12. Influence of the solvent on the self-assembly of a modified amyloid beta peptide fragment. II. NMR and computer simulation investigation.

    Science.gov (United States)

    Hamley, I W; Nutt, D R; Brown, G D; Miravet, J F; Escuder, B; Rodríguez-Llansola, F

    2010-01-21

    The conformation of a model peptide AAKLVFF based on a fragment of the amyloid beta peptide Abeta16-20, KLVFF, is investigated in methanol and water via solution NMR experiments and molecular dynamics computer simulations. In previous work, we have shown that AAKLVFF forms peptide nanotubes in methanol and twisted fibrils in water. Chemical shift measurements were used to investigate the solubility of the peptide as a function of concentration in methanol and water. This enabled the determination of critical aggregation concentrations. The solubility was lower in water. In dilute solution, diffusion coefficients revealed the presence of intermediate aggregates in concentrated solution, coexisting with NMR-silent larger aggregates, presumed to be beta-sheets. In water, diffusion coefficients did not change appreciably with concentration, indicating the presence mainly of monomers, coexisting with larger aggregates in more concentrated solution. Concentration-dependent chemical shift measurements indicated a folded conformation for the monomers/intermediate aggregates in dilute methanol, with unfolding at higher concentration. In water, an antiparallel arrangement of strands was indicated by certain ROESY peak correlations. The temperature-dependent solubility of AAKLVFF in methanol was well described by a van't Hoff analysis, providing a solubilization enthalpy and entropy. This pointed to the importance of solvophobic interactions in the self-assembly process. Molecular dynamics simulations constrained by NOE values from NMR suggested disordered reverse turn structures for the monomer, with an antiparallel twisted conformation for dimers. To model the beta-sheet structures formed at higher concentration, possible model arrangements of strands into beta-sheets with parallel and antiparallel configurations and different stacking sequences were used as the basis for MD simulations; two particular arrangements of antiparallel beta-sheets were found to be stable, one

  13. Mycoplasma hyorhinis markedly degrades β-amyloid peptides in vitro and ex vivo: a novel biological approach for treating Alzheimer’s disease?

    Science.gov (United States)

    Habib, Ahsan; Deng, Juan; Hou, Huayan; Zou, Qiang; Giunta, Brian; Wang, Yan-Jiang; Obregon, Demian; Sawmiller, Darrell; Li, Song; Mori, Takashi; Tan, Jun

    2013-01-01

    Accumulation of amyloid-β (Aβ) peptides (predominantly Aβ40, 42) and their aggregation into plaques in the brain are thought to be the one of the major causes of Alzheimer’s disease (AD). Originally discovered in our Chinese hamster ovary (CHO) cell line stably expressing human wild-type amyloid precursor protein (APP) (CHO/APPwt) cultures devoid of Aβ production, we found that Mycoplasma selectively degrades soluble Aβ in a time and dose (colony forming unit) dependent manner. Moreover, we fully characterized the Mycoplasma species as Mycoplasma hyorhinis (M. hyorhinis) by genetic and colony morphological analyses by light microscopy. Most interestingly, we attenuated the pathogenicity of M. hyorhinis by γ irradiation (3.5 Gy), and found that its ability to degrade Aβ was retained. On the other hand, heated and sonicated M. hyorhinis failed to retain this ability to degrade Aβ, suggesting that this degradation requires viable cells and likely a biologically active signaling pathway. In addition, we found that M. hyorhinis can degrade Aβ produced in AD model mice (PSAPP mice) ex vivo. Finally, we found that irradiated (non-pathogenic) M. hyorhinis also can degrade Aβ produced in PSAPP mice in vivo. These studies suggest that irradiated (non-pathogenic) M. hyorhinis can be a novel and alternative biological strategy for AD treatment. PMID:24093060

  14. Aloe arborescens Extract Protects IMR-32 Cells against Alzheimer Amyloid Beta Peptide via Inhibition of Radical Peroxide Production.

    Science.gov (United States)

    Clementi, Maria Elisabetta; Tringali, Giuseppe; Triggiani, Doriana; Giardina, Bruno

    2015-11-01

    Aloe arborescens is commonly used as a pharmaceutical ingredient for its effect in burn treatment and ability to increase skin wound healing properties. Besides, it is well known to have beneficial phytotherapeutic, anticancer, and radio-protective properties. In this study, we first provided evidence that A. arborescens extract protects IMR32, a neuroblastoma human cellular line, from toxicity induced by beta amyloid, the peptide responsible for Alzheimer's disease. In particular, pretreatment with A. arborescens maintains an elevated cell viability and exerts a protective effect on mitochondrial functionality, as evidenced by oxygen consumption experiments. The protective mechanism exerted by A. arborescens seems be related to lowering of oxidative potential of the cells, as demonstrated by the ROS measurement compared with the results obtained in the presence of amyloid beta (1-42) peptide alone. Based on these preliminary observations we suggest that use ofA. arborescens extract could be developed as agents for the management of AD. PMID:26749845

  15. Hypocretin and brain β-amyloid peptide interactions in cognitive disorders and narcolepsy

    Directory of Open Access Journals (Sweden)

    Yves A Dauvilliers

    2014-06-01

    Full Text Available Objective: To examine relationships between cerebrospinal fluid (CSF Alzheimer’ disease (AD biomarkers and hypocretin-1 levels in patients with cognitive abnormalities and hypocretin-deficient narcolepsy-cataplexy (NC, estimate diagnostic accuracy, and determine correlations with sleep disturbances. Background: Sleep disturbances are frequent in AD. Interactions between brain β-amyloid (Aβ aggregation and a wake-related neurotransmitter hypocretin have been reported in a mouse model of AD. Methods: Ninety-one cognitive patients (37 AD, 16 mild cognitive impairment – MCI that converts to AD, 38 other dementias and 15 elderly patients with NC were recruited. Patients were diagnosed blind to CSF results. CSF A42, total tau, ptau181, and hypocretin-1 were measured. Sleep disturbances were assessed with questionnaires in 32 cognitive patients. Results: Lower CSF Aβ42 but higher tau and P-tau levels were found in AD and MCI compared to other dementias. CSF hypocretin-1 levels were higher in patients with MCI due to AD compared to other dementias, with a similar tendency for patients with advanced AD. CSF hypocretin-1 was significantly and independently associated with AD/MCI due to AD, with an OR of 2.70 after full adjustment, exceeding that for Aβ42. Aβ42 correlated positively with hypocretin-1 levels in advanced stage AD. No association was found between sleep disturbances and CSF biomarkers. No patients with NC achieved pathological cutoffs for Aβ42, with respectively one and four patients with NC above tau and P-tau cutoffs and no correlations between hypocretin-1 and other biomarkers. Conclusions: Our results suggest a pathophysiological relationship between Aβ42 and hypocretin-1 in the AD process, with higher CSF hypocretin-1 levels in early disease stages. Further longitudinal studies are needed to validate these biomarker interactions and to determine the cause-effect relationship and the role of wake/sleep behavior in amyloid

  16. Amyloid-Beta Peptide, Oxidative Stress and Inflammation in Alzheimer's Disease: Potential Neuroprotective Effects of Omega-3 Polyunsaturated Fatty Acids

    OpenAIRE

    S. C. Dyall

    2010-01-01

    Alzheimer's disease is the most common form of dementia in the elderly and is a progressive neurodegenerative disorder characterised by a decline in cognitive function and also profound alterations in mood and behaviour. The pathology of the disease is characterised by the presence of extracellular amyloid peptide deposits and intracellular neurofibrillary tangles in the brain. Although many hypotheses have been put forward for the aetiology of the disease, increased inflammation and oxidativ...

  17. Molecular cloning and characterization of a cDNA encoding the cerebrovascular and the neuritic plaque amyloid peptides

    Energy Technology Data Exchange (ETDEWEB)

    Robakis, N.K.; Ramakrishna, N.; Wolfe, G.; Wisniewski, H.M.

    1987-06-01

    Deposits of amyloid fibers are found in large numbers in the walls of blood vessels and in neuritic plaques in the brains of patients with Alzheimer disease and adults with Down syndrome. The authors used the amino acid sequence of the amyloid peptide to synthesize oligonucleotide probes specific for the gene encoding this peptide. When a human brain cDNA library was screened with this probe, a clone was found with a 1.7-kilobase insert that contains a long open reading frame coding for 412 amino acid residues including the 28 amino acids of the amyloid peptide. RNA gel blots revealed that a 3.3-kilobase mRNA species was present in the brains of individuals with Alzheimer disease, with Down syndrome, or with not apparent neurological disorders. Southern blots showed that homologous genes are present in the genomic DNA of humans, rabbits, sheep, hamsters, and mice, suggesting that this gene has been conserved through mammalian evolution. Localization of the corresponding genomic sequences on human chromosome 21 suggest a genetic relationship between Alzheimer disease and Down syndrome, and it may explain the early appearance of large numbers of neuritic plaques in adult Down syndrome patients.

  18. Aggregation of peptides in soy protein isolate hydrolysates : the individual contributions of glycinin- and ß-conglycinin-derived peptides

    NARCIS (Netherlands)

    Kuipers, B.J.H.

    2007-01-01

    Keywords: Soy proteins, glycinin, β-conglycinin, enzymatic hydrolysis, peptides, aggregation, gelation, identification, mass-spectrometry, mappingThe aim of the work presented in this thesis is to understand howlimited e

  19. Label-free detection of ApoE4-mediated β-amyloid aggregation on single nanoparticle uncovering Alzheimer's disease.

    Science.gov (United States)

    Kang, Min Kyung; Lee, Jeewon; Nguyen, Anh H; Sim, Sang Jun

    2015-10-15

    Beta amyloid (Aβ) deposition is a pathological milestone of Alzheimer's disease (AD). This is facilitated by an isoform of Apolipoprotein E4 (ApoE4), which is a dominant risk factor for AD. However, current in vitro Aβ aggregation assays were performed in extreme conditions not linked to physiological conditions, to understand the mechanism of Aβ induced neurotoxicity. Here, we present a simple method for the ApoE4-mediated Aβ aggregation at physiological conditions using single gold nanoparticle based on localized surface plasmon resonance (LSPR). It can be directly observed by dark-field microscope or even by the naked eye. Following LSPR principles, we used ApoE4 inducing Aβ42 self-assemblies on gold nanoparticles (AuNPs) surface via their surface charge interaction. Using physiologically mimic cerebrospinal fluid, we determined a detection limit of 1.5 pM for Aβ42 corresponding to the ~2.9 nm LSPR-peak shift under ApoE4. Interestingly, the result also shows that ApoE4 induces the aggregation of Aβ42 more specifically and rapidly than that of Aβ40. This is the first biomimetic platform for real-time detection of Aβ aggregation, mimicking biological conditions, which can be used to investigate AD directly.

  20. Molecular Dynamics Study on the Inhibition Mechanisms of Drugs CQ1-3 for Alzheimer Amyloid-β40 Aggregation Induced by Cu(2.).

    Science.gov (United States)

    Dong, Mingyan; Li, Haoyue; Hu, Dingkun; Zhao, Wei; Zhu, Xueying; Ai, Hongqi

    2016-05-18

    The aggregation of amyloid-β (Aβ) peptide induced by Cu(2+) is a key factor in development of Alzheimer's disease (AD), and metal ion chelation therapy enables treatment of AD. Three CQi (i = 1, 2, and 3 with R = H, Cl, and NO2, respectively) drugs had been verified experimentally to be much stronger inhibitors than the pioneer clioquinol (CQ) in both disaggregation of Aβ40 aggregate and reduction of toxicity induced by Cu(2+) binding at low pH. Due to the multiple morphologies of Cu(2+)-Aβ40 complexes produced at different pH states, we performed a series of molecular dynamics simulations to explain the structural changes and morphology characteristics as well as intrinsic disaggregation mechanisms of three Cu(2+)-Aβ40 models in the presence of any of the three CQi drugs at both low and high pH states. Three inhibition mechanisms for CQi were proposed as "insertion", "semi-insertion", and "surface" mechanisms, based on the morphologies of CQi-model x (CQi-x, x = 1, 2, and 3) and the strengths of binding between CQi and the corresponding model x. The insertion mechanism was characterized by the morphology with binding strength of more than 100 kJ/mol and by CQi being inserted or embedded into the hydrophobic cavity of model x. In those CQi-x morphologies with lower binding strength, CQi only attaches on the surface or inserts partly into Aβ peptide. Given the evidence that the binding strength is correlated positively with the effectiveness of drug to inhibit Aβ aggregation and thus to reduce toxicity, the data of binding strength presented here can provide a reference for one to screen drugs. From the point of view of binding strength, CQ2 is the best drug. Because of the special role of Asp23 in both Aβ aggregation and stabilizing the Aβ fibril, the generation of a H-bond between CQ3 and Asp23 of the Aβ40 peptide is believed to be responsible for CQ3 having the strongest disaggregation capacity. Therefore, besides strong binding, stronger propensity to

  1. Synthesis and structure-activity relationship of 2,6-disubstituted pyridine derivatives as inhibitors of β-amyloid-42 aggregation.

    Science.gov (United States)

    Kroth, Heiko; Sreenivasachary, Nampally; Hamel, Anne; Benderitter, Pascal; Varisco, Yvan; Giriens, Valérie; Paganetti, Paolo; Froestl, Wolfgang; Pfeifer, Andrea; Muhs, Andreas

    2016-07-15

    It is assumed that amyloidaggregation is a crucial event in the pathogenesis of Alzheimer's disease. Novel 2,6-disubstituted pyridine derivatives were designed to interact with the β-sheet conformation of Aβ via donor-acceptor-donor hydrogen bond formation. A series of pyridine derivatives were synthesized and tested regarding their potential to inhibit the aggregation of Aβ. The 2,6-diaminopyridine moiety was identified as a key component to inhibit Aβ aggregation. Overall, compounds having three 2,6-disubstituted pyridine units separated by at least one C2- or C3-linker displayed the most potent inhibition of Aβ aggregation. PMID:27256911

  2. Effect of electrostatics on aggregation of prion protein Sup35 peptide

    International Nuclear Information System (INIS)

    Self-assembly of misfolded proteins into ordered fibrillar structures is a fundamental property of a wide range of proteins and peptides. This property is also linked with the development of various neurodegenerative diseases such as Alzheimer’s and Parkinson’s. Environmental conditions modulate the misfolding and aggregation processes. We used a peptide, CGNNQQNY, from yeast prion protein Sup35, as a model system to address effects of environmental conditions on aggregate formation. The GNNQQNY peptide self-assembles in fibrils with structural features that are similar to amyloidogenic proteins. Atomic force microscopy (AFM) and thioflavin T (ThT) fluorescence assay were employed to follow the aggregation process at various pHs and ionic strengths. We also used single molecule AFM force spectroscopy to probe interactions between the peptides under various conditions. The ThT fluorescence data showed that the peptide aggregates fast at pH values approaching the peptide isoelectric point (pI = 5.3) and the kinetics is 10 times slower at acidic pH (pH 2.0), suggesting that electrostatic interactions contribute to the peptide self-assembly into aggregates. This hypothesis was tested by experiments performed at low (11 mM) and high (150 mM) ionic strengths. Indeed, the aggregation lag time measured at pH 2 at low ionic strength (11 mM) is 195 h, whereas the lag time decreases ∼5 times when the ionic strength is increased to 150 mM. At conditions close to the pI value, pH 5.6, the aggregation lag time is 12 ± 6 h under low ionic strength, and there is minimal change to the lag time at 150 mM NaCl. The ionic strength also influences the morphology of aggregates visualized with AFM. In pH 2.0 and at high ionic strength, the aggregates are twofold taller than those formed at low ionic strength. In parallel, AFM force spectroscopy studies revealed minimal contribution of electrostatics to dissociation of transient peptide dimers. (paper)

  3. Effect of electrostatics on aggregation of prion protein Sup35 peptide

    Science.gov (United States)

    Portillo, Alexander M.; Krasnoslobodtsev, Alexey V.; Lyubchenko, Yuri L.

    2012-04-01

    Self-assembly of misfolded proteins into ordered fibrillar structures is a fundamental property of a wide range of proteins and peptides. This property is also linked with the development of various neurodegenerative diseases such as Alzheimer’s and Parkinson’s. Environmental conditions modulate the misfolding and aggregation processes. We used a peptide, CGNNQQNY, from yeast prion protein Sup35, as a model system to address effects of environmental conditions on aggregate formation. The GNNQQNY peptide self-assembles in fibrils with structural features that are similar to amyloidogenic proteins. Atomic force microscopy (AFM) and thioflavin T (ThT) fluorescence assay were employed to follow the aggregation process at various pHs and ionic strengths. We also used single molecule AFM force spectroscopy to probe interactions between the peptides under various conditions. The ThT fluorescence data showed that the peptide aggregates fast at pH values approaching the peptide isoelectric point (pI = 5.3) and the kinetics is 10 times slower at acidic pH (pH 2.0), suggesting that electrostatic interactions contribute to the peptide self-assembly into aggregates. This hypothesis was tested by experiments performed at low (11 mM) and high (150 mM) ionic strengths. Indeed, the aggregation lag time measured at pH 2 at low ionic strength (11 mM) is 195 h, whereas the lag time decreases ˜5 times when the ionic strength is increased to 150 mM. At conditions close to the pI value, pH 5.6, the aggregation lag time is 12 ± 6 h under low ionic strength, and there is minimal change to the lag time at 150 mM NaCl. The ionic strength also influences the morphology of aggregates visualized with AFM. In pH 2.0 and at high ionic strength, the aggregates are twofold taller than those formed at low ionic strength. In parallel, AFM force spectroscopy studies revealed minimal contribution of electrostatics to dissociation of transient peptide dimers.

  4. Viscoelastic response of neural cells governed by the deposition of amyloidpeptides (Aβ)

    Science.gov (United States)

    Gong, Ze; You, Ran; Chang, Raymond Chuen-Chung; Lin, Yuan

    2016-06-01

    Because of its intimate relation with Alzheimer's disease (AD), the question of how amyloidpeptide (Aβ) deposition alters the membrane and cytoskeltal structure of neural cells and eventually their mechanical response has received great attention. In this study, the viscoelastic properties of primary neurons subjected to various Aβ treatments were systematically characterized using atomic force microrheology. It was found that both the storage ( G ') and loss ( G ″) moduli of neural cells are rate-dependent and grow by orders of magnitude as the driving frequency ω varies from 1 to 100 Hz. However, a much stronger frequency dependence was observed in the loss moduli (with a scaling exponent of ˜0.96) than that in G ' ( ˜ ω 0.2 ). Furthermore, both cell moduli increase gradually within the first 6 h of Aβ treatment before steady-state values are reached, with a higher dosage of Aβ leading to larger changes in cell properties. Interestingly, we showed that the measured neuron response can be well-explained by a power law structural damping model. Findings here establish a quantitative link between Aβ accumulation and the physical characteristics of neural cells and hence could provide new insights into how disorders like AD affect the progression of different neurological processes from a mechanics point of view.

  5. The Alzheimer's disease-associated amyloid beta-protein is an antimicrobial peptide.

    Directory of Open Access Journals (Sweden)

    Stephanie J Soscia

    Full Text Available BACKGROUND: The amyloid beta-protein (Abeta is believed to be the key mediator of Alzheimer's disease (AD pathology. Abeta is most often characterized as an incidental catabolic byproduct that lacks a normal physiological role. However, Abeta has been shown to be a specific ligand for a number of different receptors and other molecules, transported by complex trafficking pathways, modulated in response to a variety of environmental stressors, and able to induce pro-inflammatory activities. METHODOLOGY/PRINCIPAL FINDINGS: Here, we provide data supporting an in vivo function for Abeta as an antimicrobial peptide (AMP. Experiments used established in vitro assays to compare antimicrobial activities of Abeta and LL-37, an archetypical human AMP. Findings reveal that Abeta exerts antimicrobial activity against eight common and clinically relevant microorganisms with a potency equivalent to, and in some cases greater than, LL-37. Furthermore, we show that AD whole brain homogenates have significantly higher antimicrobial activity than aged matched non-AD samples and that AMP action correlates with tissue Abeta levels. Consistent with Abeta-mediated activity, the increased antimicrobial action was ablated by immunodepletion of AD brain homogenates with anti-Abeta antibodies. CONCLUSIONS/SIGNIFICANCE: Our findings suggest Abeta is a hitherto unrecognized AMP that may normally function in the innate immune system. This finding stands in stark contrast to current models of Abeta-mediated pathology and has important implications for ongoing and future AD treatment strategies.

  6. Methyllycaconitine alleviates amyloidpeptides-induced cytotoxicity in SH-SY5Y cells.

    Directory of Open Access Journals (Sweden)

    XiaoLei Zheng

    Full Text Available Alzheimer's disease (AD is a chronic progressive neurodegenerative disorder. As the most common form of dementia, it affects more than 35 million people worldwide and is increasing. Excessive extracellular deposition of amyloidpeptide (Aβ is a pathologic feature of AD. Accumulating evidence indicates that macroautophagy is involved in the pathogenesis of AD, but its exact role is still unclear. Although major findings on the molecular mechanisms have been reported, there are still no effective treatments to prevent, halt, or reverse Alzheimer's disease. In this study, we investigated whether Aβ25-35 could trigger an autophagy process and inhibit the growth of SH-SY5Y cells. Furthermore, we examined the effect of methyllycaconitine (MLA on the cytotoxity of Aβ25-35. MLA had a protective effect against cytotoxity of Aβ, which may be related to its inhibition of Aβ-induced autophagy and the involvement of the mammalian target of rapamycin pathway. Moreover, MLA had a good safety profile. MLA treatment may be a promising therapeutic tool for AD.

  7. Apolipoprotein E, especially apolipoprotein E4, increases the oligomerization of amyloid β peptide.

    Science.gov (United States)

    Hashimoto, Tadafumi; Serrano-Pozo, Alberto; Hori, Yukiko; Adams, Kenneth W; Takeda, Shuko; Banerji, Adrian Olaf; Mitani, Akinori; Joyner, Daniel; Thyssen, Diana H; Bacskai, Brian J; Frosch, Matthew P; Spires-Jones, Tara L; Finn, Mary Beth; Holtzman, David M; Hyman, Bradley T

    2012-10-24

    Alzheimer's disease (AD) is the most common progressive neurodegenerative disorder causing dementia. Massive deposition of amyloid β peptide (Aβ) as senile plaques in the brain is the pathological hallmark of AD, but oligomeric, soluble forms of Aβ have been implicated as the synaptotoxic component. The apolipoprotein E ε 4 (apoE ε4) allele is known to be a genetic risk factor for developing AD. However, it is still unknown how apoE impacts the process of Aβ oligomerization. Here, we found that the level of Aβ oligomers in APOE ε4/ε4 AD patient brains is 2.7 times higher than those in APOE ε3/ε3 AD patient brains, matched for total plaque burden, suggesting that apoE4 impacts the metabolism of Aβ oligomers. To test this hypothesis, we examined the effect of apoE on Aβ oligomer formation. Using both synthetic Aβ and a split-luciferase method for monitoring Aβ oligomers, we observed that apoE increased the level of Aβ oligomers in an isoform-dependent manner (E2 apoE4, increases Aβ oligomers in the brain. Higher levels of Aβ oligomers in the brains of APOE ε4/ε4 carriers compared with APOE ε3/ε3 carriers may increase the loss of dendritic spines and accelerate memory impairments, leading to earlier cognitive decline in AD.

  8. Amyloid at the nanoscale: AFM and single-molecule investigations of early steps of aggregation and mature fibril growth, structure, and mechanics

    Science.gov (United States)

    Subramaniam, Vinod

    2013-03-01

    Misfolding and aggregation of proteins into nanometer-scale fibrillar assemblies is a hallmark of many neurodegenerative diseases. We have investigated the self-assembly of the human intrinsically disordered protein alpha-synuclein, involved in Parkinson's disease, into amyloid fibrils. A particularly relevant question is the role of early oligomeric aggregates in modulating the dynamics of protein nucleation and aggregation. We have used single molecule fluorescence spectroscopy to characterize conformational transitions of alpha-synuclein, and to gain insights into the structure and composition of oligomeric aggregates of alpha-synuclein. Quantitative atomic force microscopy and nanomechanical investigations provide information on amyloid fibril polymorphism and on nanoscale mechanical properties of mature fibrillar species, while conventional optical and super-resolution imaging have yielded insights into the growth of fibrils and into the assembly of suprafibrillar structures. We thank the Foundation for Fundamental Research on Matter (FOM), the Netherlands Organisation for Scientific Research (NWO), and the MESA+ Institute for Nanotechnology for support.

  9. Amyloidpeptides act as allosteric modulators of cholinergic signalling through formation of soluble BAβACs.

    Science.gov (United States)

    Kumar, Rajnish; Nordberg, Agneta; Darreh-Shori, Taher

    2016-01-01

    Amyloidpeptides, through highly sophisticated enzymatic machinery, are universally produced and released in an action potential synchronized manner into the interstitial fluids in the brain. Yet no native functions are attributed to amyloid-β. The amyloid-β hypothesis ascribes just neurotoxicity properties through build-up of soluble homomeric amyloid-β oligomers or fibrillar deposits. Apolipoprotein-ε4 (APOE4) allele is the only confirmed genetic risk factor of sporadic Alzheimer's disease; once more it is unclear how it increases the risk of Alzheimer's disease. Similarly, central cholinergic signalling is affected selectively and early in the Alzheimer's disease brain, again why cholinergic neurons show this sensitivity is still unclear. However, the three main known Alzheimer's disease risk factors, advancing age, female gender and APOE4, have been linked to a high apolipoprotein-E and accumulation of the acetylcholine degrading enzyme, butyrylcholinesterase in cerebrospinal fluids of patients. Furthermore, numerous reports indicate that amyloid-β interacts with butyrylcholinesterase and apolipoprotein-E. We have proposed that this interaction leads to formation of soluble ultrareactive acetylcholine-hydrolyzing complexes termed BAβACs, to adjust at demand both synaptic and extracellular acetylcholine signalling. This hypothesis predicted presence of acetylcholine-synthesizing enzyme, choline acetyltransferase in extracellular fluids to allow maintenance of equilibrium between breakdown and synthesis of acetylcholine through continuous in situ syntheses. A recent proof-of-concept study led to the discovery of this enzyme in the human extracellular fluids. We report here that apolipoprotein-E, in particular ε4 isoprotein acts as one of the strongest endogenous anti-amyloid-β fibrillization agents reported in the literature. At biological concentrations, apolipoprotein-E prevented amyloid-β fibrillization for at least 65 h. We show that amyloid

  10. α-Casein Inhibits Insulin Amyloid Formation by Preventing the Onset of Secondary Nucleation Processes.

    Science.gov (United States)

    Librizzi, Fabio; Carrotta, Rita; Spigolon, Dario; Bulone, Donatella; San Biagio, Pier Luigi

    2014-09-01

    α-Casein is known to inhibit the aggregation of several proteins, including the amyloid β-peptide, by mechanisms that are not yet completely clear. We studied its effects on insulin, a system extensively used to investigate the properties of amyloids, many of which are common to all proteins and peptides. In particular, as for other proteins, insulin aggregation is affected by secondary nucleation pathways. We found that α-casein strongly delays insulin amyloid formation, even at extremely low doses, when the aggregation process is characterized by secondary nucleation. At difference, it has a vanishing inhibitory effect on the initial oligomer formation, which is observed at high concentration and does not involve any secondary nucleation pathway. These results indicate that an efficient inhibition of amyloid formation can be achieved by chaperone-like systems, by sequestering the early aggregates, before they can trigger the exponential proliferation brought about by secondary nucleation mechanisms. PMID:26278257

  11. Virtual Screening for Dipeptide Aggregation: Toward Predictive Tools for Peptide Self-Assembly

    Science.gov (United States)

    2011-01-01

    Several short peptide sequences are known to self-assemble into supramolecular nanostructures with interesting properties. In this study, coarse-grained molecular dynamics is employed to rapidly screen all 400 dipeptide combinations and predict their ability to aggregate as a potential precursor to their self-assembly. The simulation protocol and scoring method proposed allows a rapid determination of whether a given peptide sequence is likely to aggregate (an indicator for the ability to self-assemble) under aqueous conditions. Systems that show strong aggregation tendencies in the initial screening are selected for longer simulations, which result in good agreement with the known self-assembly or aggregation of dipeptides reported in the literature. Our extended simulations of the diphenylalanine system show that the coarse-grain model is able to reproduce salient features of nanoscale systems and provide insight into the self-assembly process for this system. PMID:23795243

  12. Virtual Screening for Dipeptide Aggregation: Toward Predictive Tools for Peptide Self-Assembly.

    Science.gov (United States)

    Frederix, Pim W J M; Ulijn, Rein V; Hunt, Neil T; Tuttle, Tell

    2011-10-01

    Several short peptide sequences are known to self-assemble into supramolecular nanostructures with interesting properties. In this study, coarse-grained molecular dynamics is employed to rapidly screen all 400 dipeptide combinations and predict their ability to aggregate as a potential precursor to their self-assembly. The simulation protocol and scoring method proposed allows a rapid determination of whether a given peptide sequence is likely to aggregate (an indicator for the ability to self-assemble) under aqueous conditions. Systems that show strong aggregation tendencies in the initial screening are selected for longer simulations, which result in good agreement with the known self-assembly or aggregation of dipeptides reported in the literature. Our extended simulations of the diphenylalanine system show that the coarse-grain model is able to reproduce salient features of nanoscale systems and provide insight into the self-assembly process for this system. PMID:23795243

  13. "Prion-proof" for [PIN+]: infection with in vitro-made amyloid aggregates of Rnq1p-(132-405) induces [PIN+].

    Science.gov (United States)

    Patel, Basant K; Liebman, Susan W

    2007-01-19

    Prions are self-propagating, infectious protein conformations. The mammalian prion, PrP(Sc), responsible for neurodegenerative diseases like bovine spongiform encephalopathy (BSE; "mad cow" disease) and Creutzfeldt-Jakob's disease, appears to be a beta-sheet-rich amyloid conformation of PrP(c) that converts PrP(c) into PrP(Sc). However, an unequivocal demonstration of "protein-only" infection by PrP(Sc) is still lacking. So far, protein only infection has been proven for three prions, [PSI(+)], [URE3] and [Het-s], all of fungal origin. Considerable evidence supports the hypothesis that another protein, the yeast Rnq1p, can form a prion, [PIN(+)]. While Rnq1p does not lose any known function upon prionization, [PIN(+)] has interesting positive phenotypes: facilitating the appearance and destabilization of other prions as well as the aggregation of polyglutamine extensions of the Huntingtin protein. Here, we polymerize a Gln/Asn-rich recombinant fragment of Rnq1p into beta-sheet-rich amyloid-like aggregates. While the method used for [PSI(+)] and [URE3] infectivity assays did not yield protein-only infection for the Rnq1p aggregates, we did successfully obtain protein-only infection by modifying the protocol. This work proves that [PIN(+)] is a prion mediated by amyloid-like aggregates of Rnq1p, and supports the hypothesis that heterologous prions affect each other's appearance and propagation through interaction of their amyloid-like regions. PMID:17097676

  14. Conversion of green fluorescent protein into a toxic, aggregation-prone protein by C-terminal addition of a short peptide.

    Science.gov (United States)

    Link, Christopher D; Fonte, Virginia; Hiester, Brian; Yerg, John; Ferguson, Jmil; Csontos, Susan; Silverman, Michael A; Stein, Gretchen H

    2006-01-20

    A non-natural 16-residue "degron" peptide has been reported to convey proteasome-dependent degradation when fused to proteins expressed in yeast (Gilon, T., Chomsky, O., and Kulka, R. (2000) Mol. Cell. Biol. 20, 7214-7219) or when fused to green fluorescent protein (GFP) and expressed in mammalian cells (Bence, N. F., Sampat, R. M., and Kopito, R. R. (2001) Science 292, 1552-1555). We find that expression of the GFP::degron in Caenorhabditis elegans muscle or neurons results in the formation of stable perinuclear deposits. Similar perinuclear deposition of GFP::degron was also observed upon transfection of primary rat hippocampal neurons or mouse Neuro2A cells. The generality of this observation was supported by transfection of HEK 293 cells with both GFP::degron and DsRed(monomer)::degron constructs. GFP::degron expressed in C. elegans is less soluble than unmodified GFP and induces the small chaperone protein HSP-16, which co-localizes and co-immunoprecipitates with GFP::degron deposits. Induction of GFP::degron in C. elegans muscle leads to rapid paralysis, demonstrating the in vivo toxicity of this aggregating variant. This paralysis is suppressed by co-expression of HSP-16, which dramatically alters the subcellular distribution of GFP::degron. Our results suggest that in C. elegans, and perhaps in mammalian cells, the degron peptide is not a specific proteasome-targeting signal but acts instead by altering GFP secondary or tertiary structure, resulting in an aggregation-prone form recognized by the chaperone system. This altered form of GFP can form toxic aggregates if its expression level exceeds the capacity of chaperone-based degradation pathways. GFP::degron may serve as an instructive "generic" aggregating control protein for studies of disease-associated aggregating proteins, such as huntingtin, alpha-synuclein, and the beta-amyloid peptide. PMID:16239215

  15. Individual aggregates of amyloid beta induce temporary calcium influx through the cell membrane of neuronal cells

    Science.gov (United States)

    Drews, Anna; Flint, Jennie; Shivji, Nadia; Jönsson, Peter; Wirthensohn, David; De Genst, Erwin; Vincke, Cécile; Muyldermans, Serge; Dobson, Chris; Klenerman, David

    2016-01-01

    Local delivery of amyloid beta oligomers from the tip of a nanopipette, controlled over the cell surface, has been used to deliver physiological picomolar oligomer concentrations to primary astrocytes or neurons. Calcium influx was observed when as few as 2000 oligomers were delivered to the cell surface. When the dosing of oligomers was stopped the intracellular calcium returned to basal levels or below. Calcium influx was prevented by the presence in the pipette of the extracellular chaperone clusterin, which is known to selectively bind oligomers, and by the presence a specific nanobody to amyloid beta. These data are consistent with individual oligomers larger than trimers inducing calcium entry as they cross the cell membrane, a result supported by imaging experiments in bilayers, and suggest that the initial molecular event that leads to neuronal damage does not involve any cellular receptors, in contrast to work performed at much higher oligomer concentrations. PMID:27553885

  16. Conformational dynamics and aggregation behavior of piezoelectric diphenylalanine peptides in an external electric field

    OpenAIRE

    Kelly, Catherine M; Northey, Thomas; Ryan, Kate; Brooks, Bernard R.; Kholkin, Andrei; Rodriguez, Brian J.; Buchete, Nicolae-Viorel

    2014-01-01

    Aromatic peptides such as diphenylalanine (FF) have the characteristic capacity to self-assemble into ordered nanostructures such as peptide nanotubes, which are biocompatible, thermally and chemically stable, and have strong piezoelectric activity and high mechanical strength. The physical properties of FF aggregates open up a variety of potential biomedical applications. Electric fields are commonly applied to align FF nanotubes, yet little is known about the effect of the electric field on...

  17. Effect of amyloid peptides on serum withdrawal-induced cell differentiation and cell viability

    Institute of Scientific and Technical Information of China (English)

    Yi Peng WANG; Ze Fen WANG; Ying Chun ZHANG; Qing TIAN; Jian Zhi WANG

    2004-01-01

    Abnormal deposition of amyloid-β(Aβ) peptides and formation of neuritic plaques are recognized as pathological processes in Alzheimer's disease (AD) brain. By using amyloid precursor protein (APP) transfected cells, this study aims to investigate the effect of overproduction of Aβ on cell differentiation and cell viability. It was shown that after serum withdrawal, untransfected cell (N2a/Wt) and vector transfected cells (N2a/vector) extended long and branched cell processes, whereas no neurites was induced in wild type APP (N2a/APP695) and Swedish mutant APP (N2a/APPswe) transfected N2a cells. After differentiation by serum withdrawal, the localization of APP/Aβ and neurofilament was extended to neurites, whereas those of APP-transfected cells were still restricted within the cell body. Levels of both APP and Aβ were significantly higher in N2a/APP695 and N2a/APPswe than in N2a/Wt, as determined by Western blot and Sandwich ELISA, respectively. To further investigate the effect of Aβ on the inhibition of cell differentiation,we added exogenously the similar level or about 10-times of the Aβ level produced by N2a/APP695 and N2a/APPswe to the culture medium and co-cultured with N2a/Wt for 12 h, and we found that the inhibition of serum withdrawalinduced differentiation observed in N2a/APP695 and N2a/APPswe could not be reproduced by exogenous administration of Aβ into N2a/Wt. We also observed that neither endogenous production nor exogenous addition of Aβ1-40 or Aβ1-42, even to hundreds fold of the physiological concentration, affected obviously the cell viability. These results suggest that the overproduction of Aβ could not arrest cell differentiation induced by serum deprivation and that, at least to a certain degree and in a limited time period, is not toxic to cell viability.

  18. Effects of pH on aggregation kinetics of the repeat domain of a functional amyloid, Pmel17

    Science.gov (United States)

    Pfefferkorn, Candace M.; McGlinchey, Ryan P.; Lee, Jennifer C.

    2010-01-01

    Pmel17 is a functional amyloidogenic protein whose fibrils act as scaffolds for pigment deposition in human skin and eyes. We have used the repeat domain (RPT, residues 315–444), an essential luminal polypeptide region of Pmel17, as a model system to study conformational changes from soluble unstructured monomers to β-sheet-containing fibrils. Specifically, we report on the effects of solution pH (4 → 7) mimicking pH conditions of melanosomes, acidic organelles where Pmel17 fibrils are formed. Local, secondary, and fibril structure were monitored via intrinsic Trp fluorescence, circular dichroism spectroscopy, and transmission electron microscopy, respectively. We find that W423 is a highly sensitive probe of amyloid assembly with spectral features reflecting local conformational and fibril morphological changes. A critical pH regime (5 ± 0.5) was identified for fibril formation suggesting the involvement of at least three carboxylic acids in the structural rearrangement necessary for aggregation. Moreover, we demonstrate that RPT fibril morphology can be transformed directly by changing solution pH. Based on these results, we propose that intramelanosomal pH regulates Pmel17 amyloid formation and its subsequent dissolution in vivo. PMID:21106765

  19. MMPBSA decomposition of the binding energy throughout a molecular dynamics simulation of amyloid-beta (Abeta(10-35)) aggregation.

    Science.gov (United States)

    Campanera, Josep M; Pouplana, Ramon

    2010-04-15

    Recent experiments with amyloid-beta (Abeta) peptides indicate that the formation of toxic oligomers may be an important contribution to the onset of Alzheimer's disease. The toxicity of Abeta oligomers depend on their structure, which is governed by assembly dynamics. However, a detailed knowledge of the structure of at the atomic level has not been achieved yet due to limitations of current experimental techniques. In this study, replica exchange molecular dynamics simulations are used to identify the expected diversity of dimer conformations of Abeta(10-35) monomers. The most representative dimer conformation has been used to track the dimer formation process between both monomers. The process has been characterized by means of the evolution of the decomposition of the binding free energy, which provides an energetic profile of the interaction. Dimers undergo a process of reorganization driven basically by inter-chain hydrophobic and hydrophilic interactions and also solvation/desolvation processes.

  20. MMPBSA Decomposition of the Binding Energy throughout a Molecular Dynamics Simulation of Amyloid-Beta (Aß10−35 Aggregation

    Directory of Open Access Journals (Sweden)

    Josep M. Campanera

    2010-04-01

    Full Text Available Recent experiments with amyloid-beta (Aβ peptides indicate that the formation of toxic oligomers may be an important contribution to the onset of Alzheimer’s disease. The toxicity of Aβ oligomers depend on their structure, which is governed by assembly dynamics. However, a detailed knowledge of the structure of at the atomic level has not been achieved yet due to limitations of current experimental techniques. In this study, replica exchange molecular dynamics simulations are used to identify the expected diversity of dimer conformations of Aβ10−35 monomers. The most representative dimer conformation has been used to track the dimer formation process between both monomers. The process has been characterized by means of the evolution of the decomposition of the binding free energy, which provides an energetic profile of the interaction. Dimers undergo a process of reorganization driven basically by inter-chain hydrophobic and hydrophilic interactions and also solvation/desolvation processes.

  1. Immunosensor for diagnosis of Alzheimer disease using amyloid-β 1-40 peptide and silk fibroin thin films.

    Science.gov (United States)

    Gonçalves, J M; Lima, L R; Moraes, M L; Ribeiro, S J L

    2016-11-01

    Layer-by-Layer (LbL) films containing silk fibroin (SF) and the 40 aminoacid-long amyloidpeptide (Aβ1-40) were prepared with the purpose of developing a new prototype of an electrochemical immunosensor. The film showed a satisfactory growth in quartz substrate and screen-printed carbon electrodes, as observed by UV-vis spectroscopy and cyclic voltammetric, respectively. The peptide immobilized in LbL films in junction with SF shows secondary structure induced, as shown by circular dichroism measurements, favoring the interaction SF/peptide LbL film with the specific antibody. Immunosensor showed a linear response in the presence of the antibody with concentrations from 0 to 10ngmL(-1) both analyzed by current changes in 0.3V and voltammogram area. This system can be applied as a new prototype for preliminary diagnosis of Alzheimer's disease. PMID:27524028

  2. The architecture of amyloid-like peptide fibrils revealed by X-ray scattering, diffraction and electron microscopy

    DEFF Research Database (Denmark)

    Langkilde, Annette Eva; Morris, Kyle L; Serpell, Louise C;

    2015-01-01

    Structural analysis of protein fibrillation is inherently challenging. Given the crucial role of fibrils in amyloid diseases, method advancement is urgently needed. A hybrid modelling approach is presented enabling detailed analysis of a highly ordered and hierarchically organized fibril...... of the GNNQQNY peptide fragment of a yeast prion protein. Data from small-angle X-ray solution scattering, fibre diffraction and electron microscopy are combined with existing high-resolution X-ray crystallographic structures to investigate the fibrillation process and the hierarchical fibril structure...... hierarchical layer is generated via the pairing of ribbons during fibril maturation. Based on the complementary data, a quasi-atomic resolution model of the protofilament peptide arrangement is suggested. The peptide structure appears in a β-sheet arrangement reminiscent of the β-zipper structures evident from...

  3. Electrochemical quantification of the Alzheimer’s disease amyloid-β (1–40 using amyloid-β fibrillization promoting peptide

    Directory of Open Access Journals (Sweden)

    Satoshi Fujii

    2015-12-01

    Full Text Available Amyloidpeptide (Aβ is believed to be an important biomarker for the early diagnosis of Alzheimer’s disease. Therefore, practical and reliable methods to assay Aβ levels have been coveted. In this study, a rapid, sensitive, and selective electrochemical method for Aβ(1–40 detection using Cu2+ redox cycling on peptide-modified gold electrodes was developed. A 19-residue peptide that can promote Aβ fibrillization (AFPP was immobilized onto a gold electrode. After incubating an Aβ solution with the modified electrode for 1 h, a Cu2+ solution was added and cyclic voltammetry measurements were conducted. The voltammetric response was found to be proportional to the Aβ(1–40 concentration in the 0.1–5 μM range, and a detection limit of 18 nM was achieved. Washing with sodium hydroxide and ethylenediaminetetraacetate solutions easily reinitialized the modified electrode. Results obtained using the reinitialized electrode showed good reproducibility. Furthermore, when another amyloidogenic and Cu2+-binding protein amylin was used as the target, no voltammetric response was observed. These results indicate that the AFPP-modified electrode provides a promising, label-free, sensitive, selective, cost-effective, and easy method for the quantification of Aβ.

  4. A mechanistic model of tau amyloid aggregation based on direct observation of oligomers

    Science.gov (United States)

    Shammas, Sarah L.; Garcia, Gonzalo A.; Kumar, Satish; Kjaergaard, Magnus; Horrocks, Mathew H.; Shivji, Nadia; Mandelkow, Eva; Knowles, Tuomas P. J.; Mandelkow, Eckhard; Klenerman, David

    2015-04-01

    Protein aggregation plays a key role in neurodegenerative disease, giving rise to small oligomers that may become cytotoxic to cells. The fundamental microscopic reactions taking place during aggregation, and their rate constants, have been difficult to determine due to lack of suitable methods to identify and follow the low concentration of oligomers over time. Here we use single-molecule fluorescence to study the aggregation of the repeat domain of tau (K18), and two mutant forms linked with familial frontotemporal dementia, the deletion mutant ΔK280 and the point mutant P301L. Our kinetic analysis reveals that aggregation proceeds via monomeric assembly into small oligomers, and a subsequent slow structural conversion step before fibril formation. Using this approach, we have been able to quantitatively determine how these mutations alter the aggregation energy landscape.

  5. Green tea aroma fraction reduces β-amyloid peptide-induced toxicity in Caenorhabditis elegans transfected with human β-amyloid minigene.

    Science.gov (United States)

    Takahashi, Atsushi; Watanabe, Tatsuro; Fujita, Takashi; Hasegawa, Toshio; Saito, Michio; Suganuma, Masami

    2014-01-01

    Green tea is a popular world-wide beverage with health benefits that include preventive effects on cancer as well as cardiovascular, liver and Alzheimer's diseases (AD). This study will examine the preventive effects on AD of a unique aroma of Japanese green tea. First, a transgenic Caenorhabditis elegans (C. elegans) CL4176 expressing human β-amyloid peptide (Aβ) was used as a model of AD. A hexane extract of processed green tea was further fractionated into volatile and non-volatile fractions, named roasty aroma and green tea aroma fractions depending on their aroma, by microscale distillation. Both hexane extract and green tea aroma fraction were found to inhibit Aβ-induced paralysis, while only green tea aroma fraction extended lifespan in CL4176. We also found that green tea aroma fraction has antioxidant activity. This paper indicates that the green tea aroma fraction is an additional component for prevention of AD. PMID:25229860

  6. AFM-based force spectroscopy measurements of mature amyloid fibrils of the peptide glucagon

    DEFF Research Database (Denmark)

    Dong, M. D.; Hovgaard, M. B.; Mamdouh, W.;

    2008-01-01

    of such mature fibrils contribute to their high stability, suggesting that the internal hydrophobic interactions of amyloid fibrils are likely to be of fundamental importance in the assembly of amyloid fibrils and therefore for the understanding of the progression of their associated pathogenic disorders...

  7. alpha-Synuclein enhances secretion and toxicity of amyloid beta peptides in PC12 cells

    NARCIS (Netherlands)

    Kazmierczak, Anna; Strosznajder, Joanna B.; Adamczyk, Agata

    2008-01-01

    alpha-Synuclein is the fundamental component of Lewy bodies which occur in the brain of 60% of sporadic and familial Alzheimer's disease patients. Moreover, a proteolytic fragment of alpha-synuclein, the so-called non-amyloid component of Alzheimer's disease amyloid, was found to be an integral part

  8. Cilostazol Upregulates Autophagy via SIRT1 Activation: Reducing AmyloidPeptide and APP-CTFβ Levels in Neuronal Cells.

    Directory of Open Access Journals (Sweden)

    Hye Rin Lee

    Full Text Available Autophagy is a vital pathway for the removal of β-amyloid peptide (Aβ and the aggregated proteins that cause Alzheimer's disease (AD. We previously found that cilostazol induced SIRT1 expression and its activity in neuronal cells, and thus, we hypothesized that cilostazol might stimulate clearances of Aβ and C-terminal APP fragment β subunit (APP-CTFβ by up-regulating autophagy.When N2a cells were exposed to soluble Aβ1-42, protein levels of beclin-1, autophagy-related protein5 (Atg5, and SIRT1 decreased significantly. Pretreatment with cilostazol (10-30 μM or resveratrol (20 μM prevented these Aβ1-42 evoked suppressions. LC3-II (a marker of mammalian autophagy levels were significantly increased by cilostazol, and this increase was reduced by 3-methyladenine. To evoke endogenous Aβ overproduction, N2aSwe cells (N2a cells stably expressing human APP containing the Swedish mutation were cultured in medium with or without tetracycline (Tet+ for 48 h and then placed in Tet- condition. Aβ and APP-CTFβ expressions were increased after 12~24 h in Tet- condition, and these increased expressions were significantly reduced by pretreating cilostazol. Cilostazol-induced reductions in the expressions of Aβ and APP-CTFβ were blocked by bafilomycin A1 (a blocker of autophagosome to lysosome fusion. After knockdown of the SIRT1 gene (to ~40% in SIRT1 protein, cilostazol failed to elevate the expressions of beclin-1, Atg5, and LC3-II, indicating that cilostazol increases these expressions by up-regulating SIRT1. Further, decreased cell viability induced by Aβ was prevented by cilostazol, and this inhibition was reversed by 3-methyladenine, indicating that the protective effect of cilostazol against Aβ induced neurotoxicity is, in part, ascribable to the induction of autophagy. In conclusion, cilostazol modulates autophagy by increasing the activation of SIRT1, and thereby enhances Aβ clearance and increases cell viability.

  9. Molecular dynamics simulation and molecular docking studies of Angiotensin converting enzyme with inhibitor lisinopril and amyloid Beta Peptide.

    Science.gov (United States)

    Jalkute, Chidambar Balbhim; Barage, Sagar Hindurao; Dhanavade, Maruti Jayram; Sonawane, Kailas Dasharath

    2013-06-01

    Angiotensin converting enzyme (ACE) cleaves amyloid beta peptide. So far this cleavage mechanism has not been studied in detail at atomic level. Keeping this view in mind, we performed molecular dynamics simulation of crystal structure complex of testis truncated version of ACE (tACE) and its inhibitor lisinopril along with Zn(2+) to understand the dynamic behavior of active site residues of tACE. Root mean square deviation results revealed the stability of tACE throughout simulation. The residues Ala 354, Glu 376, Asp 377, Glu 384, His 513, Tyr 520 and Tyr 523 of tACE stabilized lisinopril by hydrogen bonding interactions. Using this information in subsequent part of study, molecular docking of tACE crystal structure with Aβ-peptide has been made to investigate the interactions of Aβ-peptide with enzyme tACE. The residues Asp 7 and Ser 8 of Aβ-peptide were found in close contact with Glu 384 of tACE along with Zn(2+). This study has demonstrated that the residue Glu 384 of tACE might play key role in the degradation of Aβ-peptide by cleaving peptide bond between Asp 7 and Ser 8 residues. Molecular basis generated by this attempt could provide valuable information towards designing of new therapies to control Aβ concentration in Alzheimer's patient.

  10. Transmissible amyloid.

    Science.gov (United States)

    Tjernberg, L O; Rising, A; Johansson, J; Jaudzems, K; Westermark, P

    2016-08-01

    There are around 30 human diseases associated with protein misfolding and amyloid formation, each one caused by a certain protein or peptide. Many of these diseases are lethal and together they pose an enormous burden to society. The prion protein has attracted particular interest as being shown to be the pathogenic agent in transmissible diseases such as kuru, Creutzfeldt-Jakob disease and bovine spongiform encephalopathy. Whether similar transmission could occur also in other amyloidoses such as Alzheimer's disease, Parkinson's disease and serum amyloid A amyloidosis is a matter of intense research and debate. Furthermore, it has been suggested that novel biomaterials such as artificial spider silk are potentially amyloidogenic. Here, we provide a brief introduction to amyloid, prions and other proteins involved in amyloid disease and review recent evidence for their potential transmission. We discuss the similarities and differences between amyloid and silk, as well as the potential hazards associated with protein-based biomaterials. PMID:27002185

  11. Effect of cholesterol and amyloidpeptide on structure and function of mixed-lipid films and pulmonary surfactant BLES: an atomic force microscopy study.

    Science.gov (United States)

    Hane, Francis; Drolle, Elizabeth; Leonenko, Zoya

    2010-12-01

    Pulmonary surfactant forms a thin molecular film inside mammalian lung alveoli and lowers the surface tension of the air/fluid interface to reduce the work of breathing. Upon compression functional surfactant forms characteristic multilayer structures, which indicate surfactant surface activity. We showed that cholesterol adversely affects both structural and surface-active properties of BLES surfactant and DPPC/DOPG lipid films. Incorporation of small concentrations of fibril-forming peptide amyloid-β 1-40 helps to counteract the distractive effect of cholesterol by improving characteristic multilayer formation that occurs upon compression. In contrast to many negative effects of amyloid-forming peptides reported earlier, we report a positive effect of amyloidpeptide on surfactant function, which may aid in the designing of novel surfactant formulations. PMID:20493966

  12. The new β amyloid-derived peptide Aβ1-6A2V-TAT(D) prevents Aβ oligomer formation and protects transgenic C. elegans from Aβ toxicity.

    Science.gov (United States)

    Diomede, Luisa; Romeo, Margherita; Cagnotto, Alfredo; Rossi, Alessandro; Beeg, Marten; Stravalaci, Matteo; Tagliavini, Fabrizio; Di Fede, Giuseppe; Gobbi, Marco; Salmona, Mario

    2016-04-01

    One attractive pharmacological strategy for Alzheimer's disease (AD) is to design small peptides to interact with amyloid-β (Aβ) protein reducing its aggregation and toxicity. Starting from clinical observations indicating that patients coding a mutated Aβ variant (AβA2V) in the heterozygous state do not develop AD, we developed AβA2V synthetic peptides, as well as a small peptide homologous to residues 1-6. These hindered the amyloidogenesis of Aβ and its neurotoxicity in vitro, suggesting a basis for the design of a new small peptide in D-isomeric form, linked to the arginine-rich TAT sequence [Aβ1-6A2V-TAT(D)], to allow translocation across biological membranes and the blood-brain barrier. Aβ1-6A2V-TAT(D) was resistant to protease degradation, stable in serum and specifically able to interfere with Aβ aggregation in vitro, reducing the appearance of toxic soluble species and protecting transgenic C. elegans from toxicity related to the muscular expression of human Aβ. These observations offer a proof of concept for future pharmacological studies in mouse models of AD, providing a foundation for the design of AβA2V-based peptidomimetic molecules for therapeutic purposes. PMID:26792398

  13. Cryogenic solid state NMR studies of fibrils of the Alzheimer’s disease amyloidpeptide: perspectives for DNP

    International Nuclear Information System (INIS)

    Dynamic Nuclear Polarization solid-state NMR holds the potential to enable a dramatic increase in sensitivity by exploiting the large magnetic moment of the electron. However, applications to biological solids are hampered in uniformly isotopically enriched biomacromolecules due to line broadening which yields a limited spectral resolution at cryogenic temperatures. We show here that high magnetic fields allow to overcome the broadening of resonance lines often experienced at liquid nitrogen temperatures. For a fibril sample of the Alzheimer’s disease β-amyloid peptide, we find similar line widths at low temperature and at room temperature. The presented results open new perspectives for structural investigations in the solid-state

  14. Depression and Plasma Amyloid β Peptides in the Elderly with and without the Apolipoprotein E4 Allele

    OpenAIRE

    Sun, Xiaoyan; Chiu, Chi Chia; Liebson, Elizabeth; Crivello, Natalia A.; Wang, Lixia; Caunch, Joshua; Folstein, Marshal; Rosenberg, Irwin; Mwamburi, D. Mkaya; Peter, Inga; Qiu, Wei Qiao

    2009-01-01

    Depression associated with low plasma Amyloidpeptide 42 (Aβ42) leading to a high ratio of Aβ40/Aβ42, a biomarker of Alzheimer’s disease (AD), may represent a unique depression subtype. The relationship between low plasma Aβ42 in depression and the major risk factor of AD, Apolipoprotein E4 (ApoE4), is unknown. With the goal of clarifying this relationship, we analyzed 1060 homebound elders with ApoE characterization and depression status in a cross-sectional study. Plasma Aβ40 and Aβ42 wer...

  15. Dependence pH and proposed mechanism for aggregation of Alzheimer's disease-related amyloid-β(1-42) protein

    Science.gov (United States)

    Kobayashi, Shigeki; Tanaka, Yhuki; Kiyono, Mituhiro; Chino, Masahiro; Chikuma, Toshiyuki; Hoshi, Keiko; Ikeshima, Hideaki

    2015-08-01

    It is shown that the aggregation and oligomerization of β-amyloid protein (Aβ1-42) are strongly dependent on solution pH. Ionic forms of the side bands of Aβ1-42 were generated by adjusting the pH using different buffer solutions. As a result, it was possible to establish a relationship between the aggregation of Aβ1-42 and the pH. In addition, to gain insight into the mechanism of Aβ1-42 aggregation, aggregation models for Aβ17-42 (2-13 mer prepared at pH 7-8) were computed using a MMFF (molecular mechanics) method. When the pH was greater than the isoelectric point (IP) of Aβ17-42, the aggregation of Aβ17-42 was accelerated by intermolecular ion bridge relay binding of Asp23 with Lys28. Such binding of Asp23 with Lys28 can explain the high level of stability of Aβ fibrils and oligomers (plastic-like biopolymers found in the amyloid plaques observed in the brains of patients with Alzheimer's disease) produced as the result of Aβ aggregation. At pH 9.5, Aβ1-42 aggregation was not observed experimentally, because the side chain of Lys28 contained unprotonated amino groups (-NH2, not -NH3+). This result was also confirmed using the MMFF method.

  16. Mild exposure of RIN-5F β-cells to human islet amyloid polypeptide aggregates upregulates antioxidant enzymes via NADPH oxidase-RAGE: An hormetic stimulus

    Directory of Open Access Journals (Sweden)

    Elisabetta Borchi

    2014-01-01

    Full Text Available The presence of amyloid aggregates of human islet amyloid polypeptide (hIAPP, a hallmark of type 2 diabetes, contributes to pancreatic β-cell impairment, where oxidative stress plays a key role. A contribution of NADPH oxidase to reactive oxygen species (ROS generation after cell exposure to micromolar concentrations of hIAPP aggregates has been suggested. However, little is known about β-cells exposure to lower amounts of hIAPP aggregates, similar to those found in human pancreas. Thus, we aimed to investigate the events resulting from RIN-5F cells exposure to nanomolar concentrations of toxic hIAPP aggregates. We found an early and transient rise of NADPH oxidase activity resulting from increased Nox1 expression following the engagement of receptor for advanced glycation end-products (RAGE by hIAPP aggregates. Unexpectedly, NADPH oxidase activation was not accompanied by a significant ROS increase and the lipoperoxidation level was significantly reduced. Indeed, cell exposure to hIAPP aggregates affected the antioxidant defences, inducing a significant increase of the expression and activity of catalase and glutathione peroxidase. We conclude that exposure of pancreatic β-cells to nanomolar concentrations of hIAPP aggregates for a short time induces an hormetic response via the RAGE-Nox1 axis; the latter stimulates the enzymatic antioxidant defences that preserve the cells against oxidative stress damage.

  17. Substitution of isoleucine-31 by helical-breaking proline abolishes oxidative stress and neurotoxic properties of Alzheimer's amyloid beta-peptide.

    Science.gov (United States)

    Kanski, Jaroslaw; Aksenova, Marina; Schöneich, Christian; Butterfield, D Allan

    2002-06-01

    Alzheimer's disease (AD) brain is characterized by excess deposition of the 42-amino acid amyloid beta-peptide [A(beta)(1-42)]. AD brain is under intense oxidative stress, and we have previously suggested that A(beta)(1-42) was associated with this increased oxidative stress. In addition, we previously demonstrated that the single methionine residue of A(beta)(1-42), residue 35, was critical for the oxidative stress and neurotoxic properties of this peptide. Others have shown that the C-terminal region of A(beta)(1-42) is helical in aqueous micellar solutions, including that part of the protein containing Met35. Importantly, Cu(II)-binding induces alpha-helicity in A(beta) in aqueous solution. Invoking the i + 4 rule of helices, we hypothesized that the carbonyl oxygen of Ile31 would interact with the S atom of Met35 to change the electronic environment of the sulfur such that molecular oxygen could lead to the production of a sulfuramyl free radical on Met35. If this hypothesis is correct, a prediction would be that breaking the helical interaction of Ile31 and Met35 would abrogate the oxidative stress and neurotoxic properties of A(beta)(1-42). Accordingly, we investigated A(beta)(1-42) in which the Ile31 residue was replaced with the helix-breaking amino acid, proline. The alpha-helical environment around Met35 was completely abolished as indicated by circular dichroism (CD)-spectroscopy. As a consequence, the aggregation, oxidative stress, Cu(II) reduction, and neurotoxic properties of A(beta)(1-42)I31P were completely altered compared to native A(beta)(1-42). The results presented here are consistent with the notion that interaction of Ile31 with Met35 may play an important role in the oxidative processes of Met35 contributing to the toxicity of the peptide.

  18. Human stefin B normal and patho-physiological role: molecular and cellular aspects of amyloid-type aggregation of certain EPM1 mutants.

    Directory of Open Access Journals (Sweden)

    Mira ePolajnar

    2012-08-01

    Full Text Available Epilepsies are characterised by abnormal electrophysiological activity of the brain. Among various types of inherited epilepsies different epilepsy syndromes, among them progressive myoclonus epilepsies with features of ataxia and neurodegeneration, are counted. The progressive myoclonus epilepsy of type 1 (EPM1, also known as Unverricht-Lundborg disease presents with features of cerebellar atrophy and increased oxidative stress. It has been found that EPM1 is caused by mutations in human cystatin B gene (human stefin B. We first describe the role of protein aggregation in other neurodegenerative conditions. Protein aggregates appear intraneurally but are also excreted, such as is the case with senile plaques of amyloid- β (Aβ that accumulate in the brain parenchyma and vessel walls. A common characteristic of such diseases is the change of the protein conformation towards β secondary structure that accounts for the strong tendency of such proteins to aggregate and form amyloid fibrils. Second, we describe the patho-physiology of EPM1 and the normal and aberrant roles of stefin B in a mouse model of the disease. Furthermore, we discuss how the increased protein aggregation observed with some of the mutants of human stefin B may relate to the neurodegeneration that occurs in rare EPM1 patients. Our hypothesis (Ceru et al., 2005 states that some of the EPM1 mutants of human stefin B may undergo aggregation in neural cells, thus gaining additional toxic function (apart from loss of normal function. Our in vitro experiments thus far have confirmed that 4 mutants undergo increased aggregation relative to the wild-type protein. It has been shown that the R68X mutant forms amyloid-fibrils very rapidly, even at neutral pH and forms perinuclear inclusions, whereas the G4R mutant exhibits a prolonged lag phase, during which the toxic prefibrillar aggregates accumulate and are scattered more diffusely over the cytoplasm. Initial experiments on the G50E

  19. Conformational dynamics and aggregation behavior of piezoelectric diphenylalanine peptides in an external electric field.

    Science.gov (United States)

    Kelly, Catherine M; Northey, Thomas; Ryan, Kate; Brooks, Bernard R; Kholkin, Andrei L; Rodriguez, Brian J; Buchete, Nicolae-Viorel

    2015-01-01

    Aromatic peptides including diphenylalanine (FF) have the capacity to self-assemble into ordered, biocompatible nanostructures with piezoelectric properties relevant to a variety of biomedical applications. Electric fields are commonly applied to align FF nanotubes, yet little is known about the effect of the electric field on the assembly process. Using all-atom molecular dynamics with explicit water molecules, we examine the response of FF monomers to the application of a constant external electric field over a range of intensities. We probe the aggregation mechanism of FF peptides, and find that the presence of even relatively weak fields can accelerate ordered aggregation, primarily by facilitating the alignment of individual molecular dipole moments. This is modulated by the conformational response of individual FF peptides (e.g., backbone stretching) and by the cooperative alignment of neighboring FF and water molecules. These observations may facilitate future studies on the controlled formation of nanostructured aggregates of piezoelectric peptides and the understanding of their electro-mechanical properties. PMID:25240398

  20. Direct Observation of Aggregation-Induced Backbone Conformational Changes in Tau Peptides.

    Science.gov (United States)

    Jiji, A C; Shine, A; Vijayan, Vinesh

    2016-09-12

    In tau proteins, the hexapeptides in the R2 and R3 repeats are known to initiate tau fibril formation, which causes a class of neurodegenerative diseases called the taupathies. We show that in R3, in addition to the presence of the hexapeptides, the correct turn conformation upstream to it is also essential for producing prion-like fibrils that are capable of propagation. A time-dependent NMR aggregation assay of a slow fibril forming R3-S316P peptide revealed a trans to cis equilibrium shift in the peptide-bond conformation preceding P316 during the growth phase of the aggregation process. S316 was identified as the key residue in the turn that confers templating capacity on R3 fibrils to accelerate the aggregation of the R3-S316P peptide. These results on the specific interactions and conformational changes responsible for tau aggregation could prove useful for developing an efficient therapeutic intervention in Alzheimer's disease. PMID:27513615

  1. Differential modulation of Alzheimer's disease amyloid beta-peptide accumulation by diverse classes of metal ligands.

    Science.gov (United States)

    Caragounis, Aphrodite; Du, Tai; Filiz, Gulay; Laughton, Katrina M; Volitakis, Irene; Sharples, Robyn A; Cherny, Robert A; Masters, Colin L; Drew, Simon C; Hill, Andrew F; Li, Qiao-Xin; Crouch, Peter J; Barnham, Kevin J; White, Anthony R

    2007-11-01

    Biometals have an important role in AD (Alzheimer's disease) and metal ligands have been investigated as potential therapeutic agents for treatment of AD. In recent studies the 8HQ (8-hydroxyquinoline) derivative CQ (clioquinol) has shown promising results in animal models and small clinical trials; however, the actual mode of action in vivo is still being investigated. We previously reported that CQ-metal complexes up-regulated MMP (matrix metalloprotease) activity in vitro by activating PI3K (phosphoinositide 3-kinase) and JNK (c-jun N-terminal kinase), and that the increased MMP activity resulted in enhanced degradation of secreted Abeta (amyloid beta) peptide. In the present study, we have further investigated the biochemical mechanisms by which metal ligands affect Abeta metabolism. To achieve this, we measured the effects of diverse metal ligands on cellular metal uptake and secreted Abeta levels in cell culture. We report that different classes of metal ligands including 8HQ and phenanthroline derivatives and the sulfur compound PDTC (pyrrolidine dithiocarbamate) elevated cellular metal levels (copper and zinc), and resulted in substantial loss of secreted Abeta. Generally, the ability to inhibit Abeta levels correlated with a higher lipid solubility of the ligands and their capacity to increase metal uptake. However, we also identified several ligands that potently inhibited Abeta levels while only inducing minimal change to cellular metal levels. Metal ligands that inhibited Abeta levels [e.g. CQ, 8HQ, NC (neocuproine), 1,10-phenanthroline and PDTC] induced metal-dependent activation of PI3K and JNK, resulting in JNK-mediated up-regulation of metalloprotease activity and subsequent loss of secreted Abeta. The findings in the present study show that diverse metal ligands with high lipid solubility can elevate cellular metal levels resulting in metalloprotease-dependent inhibition of Abeta. Given that a structurally diverse array of ligands was assessed, the

  2. First and second generation γ-secretase modulators (GSMs) modulate amyloid-β (Aβ) peptide production through different mechanisms.

    Science.gov (United States)

    Borgegard, Tomas; Juréus, Anders; Olsson, Fredrik; Rosqvist, Susanne; Sabirsh, Alan; Rotticci, Didier; Paulsen, Kim; Klintenberg, Rebecka; Yan, Hongmei; Waldman, Magnus; Stromberg, Kia; Nord, Johan; Johansson, Jonas; Regner, Anna; Parpal, Santiago; Malinowsky, David; Radesater, Ann-Cathrin; Li, Tingsheng; Singh, Rajeshwar; Eriksson, Hakan; Lundkvist, Johan

    2012-04-01

    γ-Secretase-mediated cleavage of amyloid precursor protein (APP) results in the production of Alzheimer disease-related amyloid-β (Aβ) peptides. The Aβ42 peptide in particular plays a pivotal role in Alzheimer disease pathogenesis and represents a major drug target. Several γ-secretase modulators (GSMs), such as the nonsteroidal anti-inflammatory drugs (R)-flurbiprofen and sulindac sulfide, have been suggested to modulate the Alzheimer-related Aβ production by targeting the APP. Here, we describe novel GSMs that are selective for Aβ modulation and do not impair processing of Notch, EphB2, or EphA4. The GSMs modulate Aβ both in cell and cell-free systems as well as lower amyloidogenic Aβ42 levels in the mouse brain. Both radioligand binding and cellular cross-competition experiments reveal a competitive relationship between the AstraZeneca (AZ) GSMs and the established second generation GSM, E2012, but a noncompetitive interaction between AZ GSMs and the first generation GSMs (R)-flurbiprofen and sulindac sulfide. The binding of a (3)H-labeled AZ GSM analog does not co-localize with APP but overlaps anatomically with a γ-secretase targeting inhibitor in rodent brains. Combined, these data provide compelling evidence of a growing class of in vivo active GSMs, which are selective for Aβ modulation and have a different mechanism of action compared with the original class of GSMs described.

  3. Effects of Amyloid Precursor Protein 17 Peptide on the Protection of Diabetic Encephalopathy and Improvement of Glycol Metabolism in the Diabetic Rat

    Directory of Open Access Journals (Sweden)

    Heng Meng

    2013-01-01

    Full Text Available Researchers have proposed that amyloid precursor protein 17 peptide (APP17 peptide, an active fragment of amyloid precursor protein (APP in the nervous system, has therapeutic effects on neurodegeneration. Diabetic encephalopathy (DE is a neurological disease caused by diabetes. Here we use multiple experimental approaches to investigate the effect of APP17 peptide on changes in learning behavior and glycol metabolism in rats. It was found that rats with DE treated by APP17 peptide showed reversed behavioral alternation. The [18F]-FDG-PET images and other results all showed that the APP17 peptide could promote glucose metabolism in the brain of the DE rat model. Meanwhile, the insulin signaling was markedly increased as shown by increased phosphorylation of Akt and enhanced GLUT4 activation. Compared with the DE group, the activities of SOD, GSH-Px, and CAT in the rat hippocampal gyrus were increased, while MDA decreased markedly in the DE + APP17 peptide group. No amyloid plaques in the cortex and the hippocampus were detected in either group, indicating that the experimental animals in the current study were not suffering from Alzheimer’s disease. These results indicate that APP17 peptide could be used to treat DE effectively.

  4. Carbon nanotube inhibits the formation of β-sheet-rich oligomers of the Alzheimer's amyloid-β(16-22) peptide.

    Science.gov (United States)

    Li, Huiyu; Luo, Yin; Derreumaux, Philippe; Wei, Guanghong

    2011-11-01

    Alzheimer's disease is associated with the abnormal self-assembly of the amyloid-β (Aβ) peptide into toxic β-rich aggregates. Experimental studies have shown that hydrophobic nanoparticles retard Aβ fibrillation by slowing down the nucleation process; however, the effects of nanoparticles on Aβ oligomeric structures remain elusive. In this study, we investigate the conformations of Aβ(16-22) octamers in the absence and presence of a single-walled carbon nanotube (SWCNT) by performing extensive all-atom replica exchange molecular-dynamics simulations in explicit solvent. Our simulations starting from eight random chains demonstrate that the addition of SWCNT into Aβ(16-22) solution prevents β-sheet formation. Simulation starting from a prefibrillar β-sheet octamer shows that SWCNT destabilizes the β-sheet structure. A detailed analysis of the Aβ(16-22)/SWCNT/water interactions reveals that both the inhibition of β-sheet formation and the destabilization of prefibrillar β-sheets by SWCNT result from the same physical forces: hydrophobic and π-stacking interactions (with the latter playing a more important role). By analyzing the stacking patterns between the Phe aromatic rings and the SWCNT carbon rings, we find that short ring-centroid distances mostly favor parallel orientation, whereas large distances allow all other orientations to be populated. Overall, our computational study provides evidence that SWCNT is likely to inhibit Aβ(16-22) and full-length Aβ fibrillation.

  5. Prediction of “Aggregation-Prone” Peptides with Hybrid Classification Approach

    Directory of Open Access Journals (Sweden)

    Bo Liu

    2015-01-01

    Full Text Available Protein aggregation is a biological phenomenon caused by misfolding proteins aggregation and is associated with a wide variety of diseases, such as Alzheimer’s, Parkinson’s, and prion diseases. Many studies indicate that protein aggregation is mediated by short “aggregation-prone” peptide segments. Thus, the prediction of aggregation-prone sites plays a crucial role in the research of drug targets. Compared with the labor-intensive and time-consuming experiment approaches, the computational prediction of aggregation-prone sites is much desirable due to their convenience and high efficiency. In this study, we introduce two computational approaches Aggre_Easy and Aggre_Balance for predicting aggregation residues from the sequence information; here, the protein samples are represented by the composition of k-spaced amino acid pairs (CKSAAP. And we use the hybrid classification approach to predict aggregation-prone residues, which integrates the naïve Bayes classification to reduce the number of features, and two undersampling approaches EasyEnsemble and BalanceCascade to deal with samples imbalance problem. The Aggre_Easy achieves a promising performance with a sensitivity of 79.47%, a specificity of 80.70% and a MCC of 0.42; the sensitivity, specificity, and MCC of Aggre_Balance reach 70.32%, 80.70% and 0.42. Experimental results show that the performance of Aggre_Easy and Aggre_Balance predictor is better than several other state-of-the-art predictors. A user-friendly web server is built for prediction of aggregation-prone which is freely accessible to public at the website.

  6. Paradoxical Condensation of Copper with Elevated β-Amyloid in Lipid Rafts under Cellular Copper Deficiency Conditions: IMPLICATIONS FOR ALZHEIMER DISEASE*

    OpenAIRE

    Hung, Ya Hui; Robb, Elysia L.; Volitakis, Irene; Ho, Michael; Evin, Genevieve; Li, Qiao-Xin; Janetta G Culvenor; Masters, Colin L.; Cherny, Robert A.; Ashley I. Bush

    2009-01-01

    Redox-active copper is implicated in the pathogenesis of Alzheimer disease (AD), β-amyloid peptide (Aβ) aggregation, and amyloid formation. Aβ·copper complexes have been identified in AD and catalytically oxidize cholesterol and lipid to generate H2O2 and lipid peroxides. The site and mechanism of this abnormality is not known. Growing evidence suggests that amyloidogenic processing of the β-amyloid precursor protein (APP) occurs in lipid rafts, membrane microdomains enriched in cholesterol. ...

  7. Ratiometric fluorescence sensing of sugars via a reversible disassembly and assembly of the peptide aggregates mediated by sugars.

    Science.gov (United States)

    Neupane, Lok Nath; Han, Song Yee; Lee, Keun-Hyeung

    2014-06-01

    An amphiphilic dipeptide (1) bearing pyrene and phenylboronic acid was demonstrated as a unique example of a ratiometric sensing system for sugars by reversibly converting the peptide aggregates into the monomer form of the complex with sugars in aqueous solutions.

  8. Oligomeric AmyloidPeptide on Sialylic Lewisx–Selectin Bonding at Cerebral Endothelial Surface

    Directory of Open Access Journals (Sweden)

    Sholpan Askarova

    2014-12-01

    Full Text Available Introduction: Alzheimer’s disease (AD is a chronic neurodegenerative disorder, which affects approximately 10% of the population aged 65 and 40% of people over the age 80. Currently, AD is on the list of diseases with no effective treatment. Thus, the study of molecular and cellular mechanisms of AD progression is of high scientific and practical importance. In fact, dysfunction of the blood-brain barrier (BBB plays an important role in the onset and progression of the disease. Increased deposition of amyloid b peptide (Aβ in cerebral vasculature and enhanced transmigration of monocytes across the BBB are frequently observed in AD brains and are some of the pathological hallmarks of the diseases. Since the transmigration of monocytes across the BBB is both a mechanical and a biochemical process, the expression of adhesion molecules and mechanical properties of endothelial cells are the critical factors that require investigation.Methods: Because of recent advances in the biological applications of atomic force microscopy (AFM, we applied AFM with cantilever tips bio-functionalized by sLex in combination with the advanced immunofluorescent microscopy (QIM to study the direct effects of Aβ42 oligomers on the selectins expression, actin polymerization, and cellular mechanical and adhesion properties in cerebral endothelial cells (mouse bEnd3 line and primary human CECs and find a possible way to attenuate these effects. Results: QIM results showed that Aβ42 increased the expressions of P-selectin on the cell surface and enhanced actin polymerization. Consistent with our QIM results, AFM data showed that Aβ42 increased the probability of cell adhesion with sLex-coated cantilever and cell stiffness. These effects were counteracted by lovstatin, a cholesterol-lowering drug.  Surprisingly, the apparent rupture force of sLex-selectin bonding was significantly lower after treatment with Aβ42, as compared with the control (i.e. no treatment

  9. Protective spin-labeled fluorenes maintain amyloid beta peptide in small oligomers and limit transitions in secondary structure

    Energy Technology Data Exchange (ETDEWEB)

    Altman, Robin [Univ. of California, Davis, CA (United States). Dept. of Biochemistry and Molecular Medicine; Ly, Sonny [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Physical and Life Science Directorate; Hilt, Silvia [Univ. of California, Davis, CA (United States). Dept. of Biochemistry and Molecular Medicine; Petrlova, Jitka [Univ. of California, Davis, CA (United States). Dept. of Biochemistry and Molecular Medicine; Maezawa, Izumi [Univ. of California Davis, Sacramento, CA (United States). MIND Inst. and Dept. of Pathology and Laboratory Medicine; Kálai, Tamás [Univ. of Pecs (Hungary). Inst. of Organic and Medicinal Chemistry; Hideg, Kálmán [Univ. of Pecs (Hungary). Inst. of Organic and Medicinal Chemistry; Jin, Lee-Way [Univ. of California Davis, Sacramento, CA (United States). MIND Inst. and Dept. of Pathology and Laboratory Medicine; Laurence, Ted A. [Univ. of California, Davis, CA (United States). Dept. of Biochemistry and Molecular Medicine; Voss, John C. [Univ. of California, Davis, CA (United States). Dept. of Biochemistry and Molecular Medicine

    2015-12-01

    Alzheimer’s disease is characterized by the presence of extracellular plaques comprised of amyloid beta (Aβ) peptides. Soluble oligomers of the Aβ peptide underlie a cascade of neuronal loss and dysfunction associated with Alzheimer's disease. Single particle analyses of Aβ oligomers in solution by fluorescence correlation spectroscopy (FCS) were used to provide real-time descriptions of how spin-labeled fluorenes (SLFs; bi-functional small molecules that block the toxicity of Aβ) prevent and disrupt oligomeric assemblies of Aβ in solution. The FCS results, combined with electron paramagnetic resonance spectroscopy and circular dichroism spectroscopy, demonstrate SLFs can inhibit the growth of Aβ oligomers and disrupt existing oligomers while retaining Aβ in a largely disordered state. Furthermore, while the ability of SLF to block Aβ toxicity correlates with a reduction in oligomer size, our results suggest the conformation of Aβ within the oligomer determines the toxicity of the species. Attenuation of Aβ toxicity, which has been associated primarily with the soluble oligomeric form, can be achieved through redistribution of the peptides into smaller oligomers and arrest of the fractional increase in beta secondary structure.

  10. Distinct cerebrospinal fluid amyloid β peptide signatures in sporadic and PSEN1 A431E-associated familial Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Galasko Douglas

    2010-01-01

    Full Text Available Abstract Background Alzheimer's disease (AD is associated with deposition of amyloid β (Aβ in the brain, which is reflected by low concentration of the Aβ1-42 peptide in the cerebrospinal fluid (CSF. There are at least 15 additional Aβ peptides in human CSF and their relative abundance pattern is thought to reflect the production and degradation of Aβ. Here, we test the hypothesis that AD is characterized by a specific CSF Aβ isoform pattern that is distinct when comparing sporadic AD (SAD and familial AD (FAD due to different mechanisms underlying brain amyloid pathology in the two disease groups. Results We measured Aβ isoform concentrations in CSF from 18 patients with SAD, 7 carriers of the FAD-associated presenilin 1 (PSEN1 A431E mutation, 17 healthy controls and 6 patients with depression using immunoprecipitation-mass spectrometry. Low CSF levels of Aβ1-42 and high levels of Aβ1-16 distinguished SAD patients and FAD mutation carriers from healthy controls and depressed patients. SAD and FAD were characterized by similar changes in Aβ1-42 and Aβ1-16, but FAD mutation carriers exhibited very low levels of Aβ1-37, Aβ1-38 and Aβ1-39. Conclusion SAD patients and PSEN1 A431E mutation carriers are characterized by aberrant CSF Aβ isoform patterns that hold clinically relevant diagnostic information. PSEN1 A431E mutation carriers exhibit low levels of Aβ1-37, Aβ1-38 and Aβ1-39; fragments that are normally produced by γ-secretase, suggesting that the PSEN1 A431E mutation modulates γ-secretase cleavage site preference in a disease-promoting manner.

  11. Association between amylin and amyloidpeptides in plasma in the context of apolipoprotein E4 allele.

    Science.gov (United States)

    Qiu, Wei Qiao; Wallack, Max; Dean, Michael; Liebson, Elizabeth; Mwamburi, Mkaya; Zhu, Haihao

    2014-01-01

    Amylin, a pancreatic peptide that readily crosses the blood brain barrier (BBB), and amyloid-beta peptide (Aβ), the main component of amyloid plaques and a major component of Alzheimer's disease (AD) pathology in the brain, share several features. These include having similar β-sheet secondary structures, binding to the same receptor, and being degraded by the same protease. Thus, amylin may be associated with Aβ, but the nature of their relationship remains unclear. In this study, we used human samples to study the relationship between plasma amylin and Aβ in the context of the apolipoprotein E alleles (ApoE). We found that concentrations of Aβ1-42 (PApoE4, BMI, diabetes, stroke, kidney function and lipid profile. This positive association between amylin and Aβ1-42 in plasma was found regardless of the ApoE genotype. In contrast, the relationship between amylin and Aβ1-40 in plasma seen in ApoE4 non-carriers disappeared in the presence of ApoE4. Using AD mouse models, our recent study demonstrates that intraperitoneal (i.p.) injection of synthetic amylin enhances the removal of Aβ from the brain into blood, thus resulting in increased blood levels of both amylin and Aβ. The positive association between amylin and Aβ, especially Aβ1-42, in human blood samples is probably relevant to the findings in the AD mouse models. The presence of ApoE4 may attenuate amylin's capacity to remove Aβ, especially Aβ1-40, from the AD brain.

  12. Current and future treatment of amyloid diseases.

    Science.gov (United States)

    Ankarcrona, M; Winblad, B; Monteiro, C; Fearns, C; Powers, E T; Johansson, J; Westermark, G T; Presto, J; Ericzon, B-G; Kelly, J W

    2016-08-01

    There are more than 30 human proteins whose aggregation appears to cause degenerative maladies referred to as amyloid diseases or amyloidoses. These disorders are named after the characteristic cross-β-sheet amyloid fibrils that accumulate systemically or are localized to specific organs. In most cases, current treatment is limited to symptomatic approaches and thus disease-modifying therapies are needed. Alzheimer's disease is a neurodegenerative disorder with extracellular amyloid β-peptide (Aβ) fibrils and intracellular tau neurofibrillary tangles as pathological hallmarks. Numerous clinical trials have been conducted with passive and active immunotherapy, and small molecules to inhibit Aβ formation and aggregation or to enhance Aβ clearance; so far such clinical trials have been unsuccessful. Novel strategies are therefore required and here we will discuss the possibility of utilizing the chaperone BRICHOS to prevent Aβ aggregation and toxicity. Type 2 diabetes mellitus is symptomatically treated with insulin. However, the underlying pathology is linked to the aggregation and progressive accumulation of islet amyloid polypeptide as fibrils and oligomers, which are cytotoxic. Several compounds have been shown to inhibit islet amyloid aggregation and cytotoxicity in vitro. Future animal studies and clinical trials have to be conducted to determine their efficacy in vivo. The transthyretin (TTR) amyloidoses are a group of systemic degenerative diseases compromising multiple organ systems, caused by TTR aggregation. Liver transplantation decreases the generation of misfolded TTR and improves the quality of life for a subgroup of this patient population. Compounds that stabilize the natively folded, nonamyloidogenic, tetrameric conformation of TTR have been developed and the drug tafamidis is available as a promising treatment. PMID:27165517

  13. Protection of the blood-brain barrier by pentosan against amyloid-β-induced toxicity.

    Science.gov (United States)

    Deli, Mária A; Veszelka, Szilvia; Csiszár, Boglárka; Tóth, Andrea; Kittel, Agnes; Csete, Mária; Sipos, Aron; Szalai, Anikó; Fülöp, Lívia; Penke, Botond; Abrahám, Csongor S; Niwa, Masami

    2010-01-01

    Endothelial cells of brain capillaries forming the blood-brain barrier play an important role in the pathogenesis and therapy of Alzheimer's disease. Amyloid-β (Aβ) peptides are key pathological elements in the development of the disease. A blood-brain barrier model, based on primary rat brain endothelial cells was used in which the barrier properties were induced by glial cells. The effects of amyloid peptides have been tested on cell viability and barrier functions. Aβ showed toxic effects on primary rat brain endothelial cells measured by MTT dye conversion and the lactate dehydrogenase release. Morphologically cytoplasmic vacuolization, disruption of the structure of cytoplasmic organelles and tight junctions could be observed in brain endothelial cells. Treatment with Aβ1-42 decreased the electrical resistance, and increased the permeability of brain endothelial cell monolayers for both fluorescein and albumin. Serum amyloid P component which stabilizes Aβ fibrils in cortical amyloid plaques and cerebrovascular amyloid deposits significantly potentiated the barrier-weakening effect of Aβ1-42. Sulfated polysaccharide pentosan could decrease the toxic effects of Aβ peptides in brain endothelial cells. It could also significantly protect the barrier integrity of monolayers from damaging actions of peptides. Pentosan modified the size, and significantly decreased the number of amyloid aggregates demonstrated by atomic force microscopy. The present data further support the toxic effects of amyloid peptides on brain endothelial cells, and can contribute to the development of molecules protecting the blood-brain barrier in Alzheimer's disease.

  14. Employing in vitro analysis to test the potency of methylglyoxal in inducing the formation of amyloid-like aggregates of caprine brain cystatin.

    Science.gov (United States)

    Bhat, Waseem Feeroze; Bhat, Sheraz Ahmad; Khaki, Peerzada Shariq Shaheen; Bano, Bilqees

    2015-01-01

    Thiol protease inhibitors (cystatins) are implicated in various disease states from cancer to neurodegenerative conditions and immune responses. Cystatins have high amyloidogenic propensity and they are prone to form fibrillar aggregates leading to amyloidosis. Particularly challenging examples of such disorders occur in type 2 diabetes, Alzheimer's and Parkinson's diseases. The aim of the present study is to find an interaction between the compound methylglyoxal (MG) which is particularly elevated in type 2 diabetes with caprine brain cystatin (CBC). Results have shown that elevated concentration of MG forms amyloid aggregates of CBC. This was achieved by allowing slow growth in a solution containing moderate to high concentrations of MG. When analysed with microscopy, the protein aggregate present in the sample after incubation consisted of extended filaments with ordered structures. This fibrillar material possesses extensive β-sheet structure as revealed by far-UV CD and IR spectroscopy. Furthermore, the fibrils exhibit increased Thioflavin T fluorescence.

  15. Aggregation, impaired degradation and immunization targeting of amyloid-beta dimers in Alzheimer’s disease: a stochastic modelling approach

    Directory of Open Access Journals (Sweden)

    Proctor Carole J

    2012-07-01

    Full Text Available Abstract Background Alzheimer’s disease (AD is the most frequently diagnosed neurodegenerative disorder affecting humans, with advanced age being the most prominent risk factor for developing AD. Despite intense research efforts aimed at elucidating the precise molecular underpinnings of AD, a definitive answer is still lacking. In recent years, consensus has grown that dimerisation of the polypeptide amyloid-beta (Aß, particularly Aß42, plays a crucial role in the neuropathology that characterise AD-affected post-mortem brains, including the large-scale accumulation of fibrils, also referred to as senile plaques. This has led to the realistic hope that targeting Aß42 immunotherapeutically could drastically reduce plaque burden in the ageing brain, thus delaying AD onset or symptom progression. Stochastic modelling is a useful tool for increasing understanding of the processes underlying complex systems-affecting disorders such as AD, providing a rapid and inexpensive strategy for testing putative new therapies. In light of the tool’s utility, we developed computer simulation models to examine Aß42 turnover and its aggregation in detail and to test the effect of immunization against Aß dimers. Results Our model demonstrates for the first time that even a slight decrease in the clearance rate of Aß42 monomers is sufficient to increase the chance of dimers forming, which could act as instigators of protofibril and fibril formation, resulting in increased plaque levels. As the process is slow and levels of Aβ are normally low, stochastic effects are important. Our model predicts that reducing the rate of dimerisation leads to a significant reduction in plaque levels and delays onset of plaque formation. The model was used to test the effect of an antibody mediated immunological response. Our results showed that plaque levels were reduced compared to conditions where antibodies are not present. Conclusion Our model supports the current

  16. Involvement of insulin-degrading enzyme in insulin- and atrial natriuretic peptide-sensitive internalization of amyloidpeptide in mouse brain capillary endothelial cells.

    Science.gov (United States)

    Ito, Shingo; Ohtsuki, Sumio; Murata, Sho; Katsukura, Yuki; Suzuki, Hiroya; Funaki, Miho; Tachikawa, Masanori; Terasaki, Tetsuya

    2014-01-01

    Cerebral clearance of amyloidpeptide (Aβ), which is implicated in Alzheimer's disease, involves elimination across the blood-brain barrier (BBB), and we previously showed that an insulin-sensitive process is involved in the case of Aβ1-40. The purpose of this study was to clarify the molecular mechanism of the insulin-sensitive Aβ1-40 elimination across mouse BBB. An in vivo cerebral microinjection study demonstrated that [125I]hAβ1-40 elimination from mouse brain was inhibited by human natriuretic peptide (hANP), and [125I]hANP elimination was inhibited by hAβ1-40, suggesting that hAβ1-40 and hANP share a common elimination process. Internalization of [125I]hAβ1-40 into cultured mouse brain capillary endothelial cells (TM-BBB4) was significantly inhibited by either insulin, hANP, other natriuretic peptides or insulin-degrading enzyme (IDE) inhibitors, but was not inhibited by phosphoramidon or thiorphan. Although we have reported the involvement of natriuretic peptide receptor C (Npr-C) in hANP internalization, cells stably expressing Npr-C internalized [125I]hANP but not [125I]hAβ1-40, suggesting that there is no direct interaction between Npr-C and hAβ1-40. IDE was detected in plasma membrane of TM-BBB4 cells, and internalization of [125I]hAβ1-40 by TM-BBB4 cells was reduced by IDE-targeted siRNAs. We conclude that elimination of hAβ1-40 from mouse brain across the BBB involves an insulin- and ANP-sensitive process, mediated by IDE expressed in brain capillary endothelial cells.

  17. Sulfonated dyes attenuate the toxic effects of beta-amyloid in a structure-specific fashion.

    Science.gov (United States)

    Pollack, S J; Sadler, I I; Hawtin, S R; Tailor, V J; Shearman, M S

    1995-09-15

    We recently reported that several sulfate-containing glycosaminoglycans, a class of compounds associated with the beta-amyloid plaques of Alzheimer's disease, attenuate the toxic effects of beta-amyloid fragments beta 25-35 and beta 1-40. The amyloid-binding sulfonated dye Congo Red was shown to have a similar effect. Using two clonal cell lines, we now demonstrate that several sulfonated dyes attenuate beta-amyloid toxicity and that the protective effect appears specific for compounds whose sulfonate groups can interact with the beta-pleated structure of aggregated amyloid. These results suggest that by binding beta-amyloid these compounds may prevent toxic interactions of the peptide with cells.

  18. Acute stress increases interstitial fluid amyloid-β via corticotropin-releasing factor and neuronal activity

    OpenAIRE

    Kang, Jae-Eun; Cirrito, John R.; Dong, Hongxin; John G. Csernansky; Holtzman, David M.

    2007-01-01

    Aggregation of the amyloid-β (Aβ) peptide in the extracellular space of the brain is critical in the pathogenesis of Alzheimer's disease. Aβ is produced by neurons and released into the brain interstitial fluid (ISF), a process regulated by synaptic activity. To determine whether behavioral stressors can regulate ISF Aβ levels, we assessed the effects of chronic and acute stress paradigms in amyloid precursor protein transgenic mice. Isolation stress over 3 months increased Aβ levels by 84%. ...

  19. Gold Nanoparticles and Microwave Irradiation Inhibit Beta-Amyloid Amyloidogenesis

    Directory of Open Access Journals (Sweden)

    Bastus Neus

    2008-01-01

    Full Text Available Abstract Peptide-Gold nanoparticles selectively attached to β-amyloid protein (Aβ amyloidogenic aggregates were irradiated with microwave. This treatment produces dramatic effects on the Aβ aggregates, inhibiting both the amyloidogenesis and the restoration of the amyloidogenic potential. This novel approach offers a new strategy to inhibit, locally and remotely, the amyloidogenic process, which could have application in Alzheimer’s disease therapy. We have studied the irradiation effect on the amyloidogenic process in the presence of conjugates peptide-nanoparticle by transmission electronic microscopy observations and by Thioflavine T assays to quantify the amount of fibrils in suspension. The amyloidogenic aggregates rather than the amyloid fibrils seem to be better targets for the treatment of the disease. Our results could contribute to the development of a new therapeutic strategy to inhibit the amyloidogenic process in Alzheimer’s disease.

  20. New mimetic peptides inhibitors of Αβ aggregation. Molecular guidance for rational drug design.

    Science.gov (United States)

    Barrera Guisasola, Exequiel E; Andujar, Sebastián A; Hubin, Ellen; Broersen, Kerensa; Kraan, Ivonne M; Méndez, Luciana; Delpiccolo, Carina M L; Masman, Marcelo F; Rodríguez, Ana M; Enriz, Ricardo D

    2015-05-01

    A new series of mimetic peptides possessing a significant Aβ aggregation modulating effect was reported here. These compounds were obtained based on a molecular modelling study which allowed us to perform a structural-based virtual selection. Monitoring Aβ aggregation by thioflavin T fluorescence and transmission electron microscopy revealed that fibril formation was significantly decreased upon prolonged incubation in presence of the active compounds. Dot blot analysis suggested a decrease of soluble oligomers strongly associated with cognitive decline in Alzheimer's disease. For the molecular dynamics simulations, we used an Aβ42 pentameric model where the compounds were docked using a blind docking technique. To analyze the dynamic behaviour of the complexes, extensive molecular dynamics simulations were carried out in explicit water. We also measured parameters or descriptors that allowed us to quantify the effect of these compounds as potential inhibitors of Aβ aggregation. Thus, significant alterations in the structure of our Aβ42 protofibril model were identified. Among others we observed the destruction of the regular helical twist, the loss of a stabilizing salt bridge and the loss of a stabilizing hydrophobic interaction in the β1 region. Our results may be helpful in the structural identification and understanding of the minimum structural requirements for these molecules and might provide a guide in the design of new aggregation modulating ligands.

  1. Accumulation of murine amyloid-β mimics early Alzheimer's disease.

    Science.gov (United States)

    Krohn, Markus; Bracke, Alexander; Avchalumov, Yosef; Schumacher, Toni; Hofrichter, Jacqueline; Paarmann, Kristin; Fröhlich, Christina; Lange, Cathleen; Brüning, Thomas; von Bohlen Und Halbach, Oliver; Pahnke, Jens

    2015-08-01

    Amyloidosis mouse models of Alzheimer's disease are generally established by transgenic approaches leading to an overexpression of mutated human genes that are known to be involved in the generation of amyloid-β in Alzheimer's families. Although these models made substantial contributions to the current knowledge about the 'amyloid hypothesis' of Alzheimer's disease, the overproduction of amyloidpeptides mimics only inherited (familiar) Alzheimer's disease, which accounts for mild cognitive impairment. Using behavioural tests, electrophysiology and morphological analyses, we compared different ABC transporter-deficient animals and found that alterations are most prominent in neprilysin × ABCC1 double-deficient mice. We show that these mice have a reduced probability to survive, show increased anxiety in new environments, and have a reduced working memory performance. Furthermore, we detected morphological changes in the hippocampus and amygdala, e.g. astrogliosis and reduced numbers of synapses, leading to defective long-term potentiation in functional measurements. Compared to human, murine amyloid-β is poorly aggregating, due to changes in three amino acids at N-terminal positions 5, 10, and 13. Interestingly, our findings account for the action of early occurring amyloid-β species/aggregates, i.e. monomers and small amyloid-β oligomers. Thus, neprilysin × ABCC1 double-deficient mice present a new model for early effects of amyloid-β-related mild cognitive impairment that allows investigations without artificial overexpression of inherited Alzheimer's disease genes. PMID:25991605

  2. The Structure of the Amyloid-[beta] Peptide High-Affinity Copper II Binding Site in Alzheimer Disease

    Energy Technology Data Exchange (ETDEWEB)

    Streltsov, Victor A.; Titmuss, Stephen J.; Epa, V. Chandana; Barnham, Kevin J.; Masters, Colin L.; Varghese, Joseph N. (CSIRO/MHT)

    2008-11-03

    Neurodegeneration observed in Alzheimer disease (AD) is believed to be related to the toxicity from reactive oxygen species (ROS) produced in the brain by the amyloid-{beta} (A{beta}) protein bound primarily to copper ions. The evidence for an oxidative stress role of A{beta}-Cu redox chemistry is still incomplete. Details of the copper binding site in A{beta} may be critical to the etiology of AD. Here we present the structure determined by combining x-ray absorption spectroscopy (XAS) and density functional theory analysis of A{beta} peptides complexed with Cu{sup 2+} in solution under a range of buffer conditions. Phosphate-buffered saline buffer salt (NaCl) concentration does not affect the high-affinity copper binding mode but alters the second coordination sphere. The XAS spectra for truncated and full-length A{beta}-Cu{sup 2+} peptides are similar. The novel distorted six-coordinated (3N3O) geometry around copper in the A{beta}-Cu{sup 2+} complexes include three histidines: glutamic, or/and aspartic acid, and axial water. The structure of the high-affinity Cu{sup 2+} binding site is consistent with the hypothesis that the redox activity of the metal ion bound to A{beta} can lead to the formation of dityrosine-linked dimers found in AD.

  3. Influence of dendrimer's structure on its activity against amyloid fibril formation

    International Nuclear Information System (INIS)

    Inhibition of fibril assembly is a potential therapeutic strategy in neurodegenerative disorders such as prion and Alzheimer's diseases. Highly branched, globular polymers-dendrimers-are novel promising inhibitors of fibril formation. In this study, the effect of polyamidoamine (PAMAM) dendrimers (generations 3rd, 4th, and 5th) on amyloid aggregation of the prion peptide PrP 185-208 and the Alzheimer's peptide Aβ 1-28 was examined. Amyloid fibrils were produced in vitro and their formation was monitored using the dye thioflavin T (ThT). Fluorescence studies were complemented with electron microscopy. The results show that the higher the dendrimer generation, the larger the degree of inhibition of the amyloid aggregation process and the more effective are dendrimers in disrupting the already existing fibrils. A hypothesis on dendrimer-peptide interaction mechanism is presented based on the dendrimers' molecular structure

  4. Switchable photooxygenation catalysts that sense higher-order amyloid structures

    Science.gov (United States)

    Taniguchi, Atsuhiko; Shimizu, Yusuke; Oisaki, Kounosuke; Sohma, Youhei; Kanai, Motomu

    2016-10-01

    Proteins can misfold into amyloid structures that are associated with diseases; however, the same proteins often have important biological roles. To degrade selectively the amyloid form without affecting the fraction of functional protein is, therefore, an attractive goal. Here we report target-state-dependent photooxygenation catalysts that are active only when bound to the cross-β-sheet structure that is characteristic of pathogenic aggregated amyloid proteins. We show these catalysts can selectively oxygenate the amyloid form of amyloid β-protein (Aβ) 1-42 in the presence of non-amyloid off-target substrates. Furthermore, photooxygenation with a catalyst that bears an Aβ-binding peptide attenuated the Aβ pathogenicity in the presence of cells. We also show that selective photooxygenation is generally applicable to other amyloidogenic proteins (amylin, insulin, β2-microglobulin, transthyretin and α-synuclein) and does not affect the physiologically functional non-aggregate states of these proteins. This is the first report of an artificial catalyst that can be selectively and reversibly turned on and off depending on the structure and aggregation state of the substrate protein.

  5. Progress in the development of therapeutic antibodies targeting prion proteins and β-amyloid peptides

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Prion diseases and Alzheimer’s disease (AD) are characterized by protein misfolding, and can lead to dementia. However, prion diseases are infectious and transmissible, while AD is not. The similarities and differences between these diseases have led researchers to perform comparative studies. In the last 2 decades, progress has been made in immunotherapy using anti-prion protein and anti-β-amyloid antibodies. In this study, we review new ideas and strategies for therapeutic antibodies targeting prion diseases and AD through conformation dependence.

  6. The Peptide Vaccine Combined with Prior Immunization of a Conventional Diphtheria-Tetanus Toxoid Vaccine Induced Amyloid β Binding Antibodies on Cynomolgus Monkeys and Guinea Pigs

    Directory of Open Access Journals (Sweden)

    Akira Yano

    2015-01-01

    Full Text Available The reduction of brain amyloid beta (Aβ peptides by anti-Aβ antibodies is one of the possible therapies for Alzheimer’s disease. We previously reported that the Aβ peptide vaccine including the T-cell epitope of diphtheria-tetanus combined toxoid (DT induced anti-Aβ antibodies, and the prior immunization with conventional DT vaccine enhanced the immunogenicity of the peptide. Cynomolgus monkeys were given the peptide vaccine subcutaneously in combination with the prior DT vaccination. Vaccination with a similar regimen was also performed on guinea pigs. The peptide vaccine induced anti-Aβ antibodies in cynomolgus monkeys and guinea pigs without chemical adjuvants, and excessive immune responses were not observed. Those antibodies could preferentially recognize Aβ40, and Aβ42 compared to Aβ fibrils. The levels of serum anti-Aβ antibodies and plasma Aβ peptides increased in both animals and decreased the brain Aβ40 level of guinea pigs. The peptide vaccine could induce a similar binding profile of anti-Aβ antibodies in cynomolgus monkeys and guinea pigs. The peptide vaccination could be expected to reduce the brain Aβ peptides and their toxic effects via clearance of Aβ peptides by generated antibodies.

  7. Expression of Fap amyloids in Pseudomonas aeruginosa, P. fluorescens, and P. putida results in aggregation and increased biofilm formation

    DEFF Research Database (Denmark)

    Dueholm, Morten S.; Søndergaard, Mads T; Nilsson, Martin;

    2013-01-01

    The fap operon, encoding functional amyloids in Pseudomonas (Fap), is present in most pseudomonads, but so far the expression and importance for biofilm formation has only been investigated for P. fluorescens strain UK4. In this study, we demonstrate the capacity of P. aeruginosa PAO1, P. fluorescens...... Pf-5, and P. putida F1 to express Fap fibrils, and investigated the effect of Fap expression on aggregation and biofilm formation. The fap operon in all three Pseudomonas species conferred the ability to express Fap fibrils as shown using a recombinant approach. This Fap overexpression consistently...

  8. A novel antagonistic role of natural compound icariin on neurotoxicity of amyloid β peptide

    Directory of Open Access Journals (Sweden)

    Jianhui Liu

    2015-01-01

    Interpretation & conclusions: The results indicated a novel antagonistic role of icariin in the neurotoxicity of Aβ1-42 via inhibiting its aggregation, suggesting that icariin might have potential therapeutic benefits to delay or modify the progression of AD.

  9. Amyloid-beta peptide degradation in cell cultures by mycoplasma contaminants

    Directory of Open Access Journals (Sweden)

    Davies Peter

    2008-06-01

    Full Text Available Abstract Background Cell cultures have become an indispensable tool in Alzheimer's disease research for studying amyloid-β (Aβ metabolism. It is estimated that up to 35% of cell cultures in current use are infected with various mycoplasma species. In contrast with common bacterial and fungal infections, contaminations of cell cultures with mycoplasmas represent a challenging issue in terms of detectability and prevention. Mycoplasmas are the smallest and simplest self-replicating bacteria and the consequences of an infection for the host cells are variable, ranging from no apparent effect to induction of apoptosis. Findings Here we present evidence that mycoplasmas from a cell culture contamination are able to efficiently and rapidly degrade extracellular Aβ. As a result, we observed no accumulation of Aβ in the conditioned medium of mycoplasma-positive cells stably transfected with the amyloid-β precursor protein (APP. Importantly, eradication of the mycoplasma contaminant – identified as M. hyorhinis – by treatments with a quinolone-based antibiotic, restored extracellular Aβ accumulation in the APP-transfected cells. Conclusion These data show that mycoplasmas degrade Aβ and thus may represent a significant source of variability when comparing extracellular Aβ levels in different cell lines. On the basis of these results, we recommend assessment of mycoplasma contaminations prior to extracellular Aβ level measurements in cultured cells.

  10. Evaluation of the effects of amyloid β aggregation from seaweed extracts by a microliter-scale high-throughput screening system with a quantum dot nanoprobe.

    Science.gov (United States)

    Ogara, Toshiki; Takahashi, Tomohito; Yasui, Hajime; Uwai, Koji; Tokuraku, Kiyotaka

    2015-07-01

    Inhibitors of amyloid β (Aβ) aggregation have the potential to serve as lead compounds for anti-Alzheimer's disease (AD) agents because Aβ aggregation is a key step in AD pathogenesis. Recently, we developed a novel microliter-scale high-throughput screening (MSHTS) system for Aβ aggregation inhibitors that applied fluorescence microscopic analysis with quantum dot nanoprobes, and attempted to comprehensively screen the inhibitors from spices using this system (Ishigaki et al., PLoS One, 8, e72992, 2013). In this study, we tried to evaluate the inhibitory activities of 11 seaweed extracts on Aβ aggregation using the MSHTS system. The half-maximal effective concentration (EC50) of the ethanolic extracts from all seaweeds exceeded 4.9 mg/ml, indicating that the extracts inhibit Aβ aggregation although this activity was significantly lower than that displayed by members of the Lamiaceae, a family of herbal spices that showed highest activity among 52 spices tested in our 2013 study. On the other hand, the EC50 of boiling water extracts was 0.013-0.42 mg/ml which was comparable with the EC50 of the extracts from the Lamiaceae family. These results suggest that the extraction efficiency of the inhibitors by boiling water extraction was higher than that by ethanolic extraction. Moreover, analysis of fluorescence micrographs, which were obtained from the MSHTS system, revealed that the morphology of the Aβ aggregates coincubated with boiling water extracts differed from control aggregates, suggesting that the MSHTS system is also useful for screening substances that affect the morphology of aggregates. PMID:25534595

  11. Membrane aggregation and perturbation induced by antimicrobial peptide of S-thanatin

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Guoqiu, E-mail: guoqiuwu@163.com [Center of Clinical Laboratory Medicine of Zhongda Hospital, Southeast University, Nanjing (China); Wu, Hongbin; Li, Linxian; Fan, Xiaobo; Ding, Jiaxuan; Li, Xiaofang; Xi, Tao [Biotechnology Center, Department of Life Science and Biotechnology, China Pharmaceutical University, Nanjing 210009 (China); Shen, Zilong, E-mail: Zilongshen@sina.com [Biotechnology Center, Department of Life Science and Biotechnology, China Pharmaceutical University, Nanjing 210009 (China)

    2010-04-23

    Thanatin, a 21-residue peptide, is an inducible insect peptide. In our previous study, we have identified a novel thanatin analog of S-thanatin, which exhibited a broad antimicrobial activity against bacteria and fungi with low hemolytic activity. This study was aimed to delineate the antimicrobial mechanism of S-thanatin and identify its interaction with bacterial membranes. In this study, membrane phospholipid was found to be the target for S-thanatin. In the presence of vesicles, S-thanatin interestingly led to the aggregation of anionic vesicles and sonicated bacteria. Adding S-thanatin to Escherichia coli suspension would result in the collapse of membrane and kill bacteria. The sensitivity assay of protoplast elucidated the importance of outer membrane (OM) for S-thanatin's antimicrobial activity. Compared with other antimicrobial peptide, S-thanatin produced chaotic membrane morphology and cell debris in electron microscopic appearance. These results supported our hypothesis that S-thanatin bound to negatively charged LPS and anionic lipid, impeded membrane respiration, exhausted the intracellular potential, and released periplasmic material, which led to cell death.

  12. Association between amylin and amyloidpeptides in plasma in the context of apolipoprotein E4 allele.

    Directory of Open Access Journals (Sweden)

    Wei Qiao Qiu

    Full Text Available Amylin, a pancreatic peptide that readily crosses the blood brain barrier (BBB, and amyloid-beta peptide (Aβ, the main component of amyloid plaques and a major component of Alzheimer's disease (AD pathology in the brain, share several features. These include having similar β-sheet secondary structures, binding to the same receptor, and being degraded by the same protease. Thus, amylin may be associated with Aβ, but the nature of their relationship remains unclear. In this study, we used human samples to study the relationship between plasma amylin and Aβ in the context of the apolipoprotein E alleles (ApoE. We found that concentrations of Aβ1-42 (P<0.0001 and Aβ1-40 (P<0.0001 increased with each quartile increase of amylin. Using multivariate regression analysis, the study sample showed that plasma amylin was associated with Aβ1-42 (β = +0.149, SE = 0.025, P<0.0001 and Aβ1-40 (β = +0.034, SE = 0.016, P = 0.04 as an outcome after adjusting for age, gender, ethnicity, ApoE4, BMI, diabetes, stroke, kidney function and lipid profile. This positive association between amylin and Aβ1-42 in plasma was found regardless of the ApoE genotype. In contrast, the relationship between amylin and Aβ1-40 in plasma seen in ApoE4 non-carriers disappeared in the presence of ApoE4. Using AD mouse models, our recent study demonstrates that intraperitoneal (i.p. injection of synthetic amylin enhances the removal of Aβ from the brain into blood, thus resulting in increased blood levels of both amylin and Aβ. The positive association between amylin and Aβ, especially Aβ1-42, in human blood samples is probably relevant to the findings in the AD mouse models. The presence of ApoE4 may attenuate amylin's capacity to remove Aβ, especially Aβ1-40, from the AD brain.

  13. Complement activation by the amyloid proteins A beta peptide and beta 2-microglobulin

    DEFF Research Database (Denmark)

    Nybo, Mads; Nielsen, E H; Svehag, S E

    1999-01-01

    Complement activation (CA) has been reported to play a role in the pathogenesis of Alzheimer's disease (AD). To investigate whether CA may contribute to amyloidogenesis in general, the CA potential of different amyloid fibril proteins was tested. CA induced by A beta preparations containing soluble...... protein, protofilaments and some fibrils or only fibrils in a solid phase system (ELISA) was modest with a slow kinetics compared to the positive delta IgG control. Soluble A beta induced no detectable CA in a liquid phase system (complement consumption assay) while fibrillar A beta caused CA at 200 mg....../ml and higher concentrations. Soluble beta 2-microglobulin (beta 2M) purified from peritoneal dialysates was found to be as potent a complement activator as A beta in both solid and liquid phase systems while beta 2M purified from urine exhibited lower activity, a difference which may be explained...

  14. Recent progress in the study of intracellular toxicity of amyloid β peptide in Alzheimer's disease

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yan; YU Longchuan

    2007-01-01

    Amyloid β (Aβ) deposition is one of the major pathological markers of Alzheimer's disease (AD). Extracellular Aβ toxicity has been studied for a long time in AD research field. However, controversial data show that extracellular Aβ load does not correlate with the dementia levels of AD patients and extracellular Aβ only induces significant cell death at non-physiological high concentrations.With the evolvement of Aβ hypothesis, considerable attention has been devoted to the study of intracellular Aβ toxicity recently. Intracellular Aβ induces dramatic cell loss in AD transgenic models and in human primary neurons (at pM concentrations) through p53, Bax and caspase-6 pathways. Here, we review the generation, toxicity and possible pathways of intracellular Aβ toxicity, and discuss the implication and current knowledge of intracellular Aβ in neuronal cell loss in neurodegenerative diseases.

  15. Dipolar recoupling NMR of biomolecular self-assemblies : determining inter- and intrastrand distances in fibrilized Alzheimer's {betta}-amyloid peptide.

    Energy Technology Data Exchange (ETDEWEB)

    Gregory, D. M.; Senzinger, T. L. S.; Burkoth, T. S.; Miller-Auer, H.; Lynn, D. G.; Meredith, S. C.; Botto, R. E.; Chemistry; Univ. of Chicago

    1998-12-01

    We demonstrate a new method for investigating the structure of self-associating biopolymers using dipolar recoupling NMR techniques. This approach was applied to the study of fibrillar {beta}-amyloid (A{beta}) peptides (the primary component of the plaques of Alzheimer's disease) containing only a single isotopic spin label ({sup 13}C), by employing the DRAWS (dipolar recoupling with a windowless sequence) technique to measure {sup 13}C-{sup 13}C distances. The 'single-label' approach simplified analysis of DRAWS data, since only interstrand contacts are present, without the possibility of any intrastrand contacts. As previously reported [T.L.S. Benzinger, D.M. Gregory, T.S. Burkoth, H. Miller-Auer, D.G. Lynn, R.E. Botto, S.C. Meredith, Proc. Natl. Acad. Sci. 95 (1998) 13407.], contacts of approximately 5 {angstrom} were observed at all residues studied, consistent with an extended parallel {beta}-sheet structure with each amino acid in exact register. Here, we propose that our strategy is completely generalizable, and provides a new approach for characterizing any iterative, self-associating biopolymer. Towards the end of generalizing and refining our approach, in this paper we evaluate several issues raised by our previous analyses. First, we consider the effects of double-quantum (DQ) transverse relaxation processes. Next, we discuss the effects of various multiple-spin geometries on modeling of DRAWS data. Several practical issues are also discussed: these include (1) the use of DQ filtering experiments, either to corroborate DRAWS data, or as a rapid screening assessment of the proper placement of isotopic spin labels; and (2) the comparison of solid samples prepared by either lyophilization or freezing. Finally, data obtained from the use of single labels is compared with that obtained in doubly {sup 13}C-labeled model compounds of known crystal structure. It is shown that such data are obtainable in far more complex peptide molecules. These

  16. Guarana (Paullinia cupana Mart.) prevents β-amyloid aggregation, generation of advanced glycation-end products (AGEs), and acrolein-induced cytotoxicity on human neuronal-like cells.

    Science.gov (United States)

    Bittencourt, Leonardo da Silva; Zeidán-Chuliá, Fares; Yatsu, Francini Kiyono Jorge; Schnorr, Carlos Eduardo; Moresco, Karla Suzana; Kolling, Eduardo Antônio; Gelain, Daniel Pens; Bassani, Valquiria Linck; Moreira, José Cláudio Fonseca

    2014-11-01

    Advanced glycation end-products (AGEs) are considered potent molecules capable of promoting neuronal cell death and participating in the development of neurodegenerative disorders such as Alzheimer's disease (AD). Previous studies have shown that AGEs exacerbate β-amyloid (Aβ) aggregation and AGE-related cross-links are also detected in senile plaques. Acrolein (ACR) is an α, β-unsaturated aldehyde found in the environment and thermally processed foods, which can additionally be generated through endogenous metabolism. The role of ACR in AD is widely accepted in the literature. Guarana (Paullinia cupana Mart.) is popularly consumed by the population in Brazil, mainly for its stimulant activity. In the present study, we showed that guarana (10, 100, and 1000 µg/mL) is able to prevent protein glycation, β-amyloid aggregation, in vitro methylglyoxal, glyoxal, and ACR (20 μM)-induced toxicity on neuronal-like cells (SH-SY5Y). Since these are considered typical AD pathological hallmarks, we propose that guarana may deserve further research as a potential therapeutic agent in such a neurodegenerative disease. PMID:24840232

  17. Biological and biophysics aspects of metformin-induced effects: cortex mitochondrial dysfunction and promotion of toxic amyloid pre-fibrillar aggregates

    Science.gov (United States)

    Picone, Pasquale; Vilasi, Silvia; Librizzi, Fabio; Contardi, Marco; Nuzzo, Domenico; Caruana, Luca; Baldassano, Sara; Amato, Antonella; Mulè, Flavia; San Biagio, Pier Luigi; Giacomazza, Daniela; Di Carlo, Marta

    2016-01-01

    The onset of Alzheimer disease (AD) is influenced by several risk factors comprising diabetes. Within this context, antidiabetic drugs, including metformin, are investigated for their effect on AD. We report that in the C57B6/J mice, metformin is delivered to the brain where activates AMP-activated kinase (AMPK), its molecular target. This drug affects the levels of β-secretase (BACE1) and β-amyloid precursor protein (APP), promoting processing and aggregation of β-amyloid (Aβ), mainly in the cortex region. Moreover, metformin induces mitochondrial dysfunction and cell death by affecting the level and conformation of Translocase of the Outer Membrane 40 (TOM40), voltage-dependent anion-selective channels 1 (VDAC1) and hexokinase I (HKI), proteins involved in mitochondrial transport of molecules, including Aβ. By using biophysical techniques we found that metformin is able to directly interact with Aβ influencing its aggregation kinetics and features. These findings indicate that metformin induces different adverse effects, leading to an overall increase of the risk of AD onset. PMID:27509335

  18. Kinetic partitioning between aggregation and vesicle permeabilization by modified ADan

    DEFF Research Database (Denmark)

    Nesgaard, Lise W.; Vad, Brian; Christiansen, Gunna;

    2009-01-01

    changed to serines to emulate the reduced peptide. SerADan aggregates rapidly at pH 5.0 and 7.5 in a series of conformational transitions to form beta-sheet rich fibril-like structures, which nevertheless do not bind amyloid-specific dyes, probably due to the absence of organized beta-sheet contacts...

  19. Amyloidpeptides and tau protein as biomarkers in cerebrospinal and interstitial fluid following traumatic brain injury: A review of experimental and clinical studies

    Directory of Open Access Journals (Sweden)

    Parmenion P. Tsitsopoulos

    2013-06-01

    Full Text Available Traumatic brain injury (TBI survivors frequently suffer from life-long deficits in cognitive functions and a reduced quality of life. Axonal injury, observed in most severe TBI patients, results in accumulation of amyloid precursor protein (APP. Post-injury enzymatic cleavage of APP can generate amyloid-β (Aβ peptides, a hallmark finding in Alzheimer’s disease (AD. At autopsy, brains of AD and a subset of TBI victims display some similarities including accumulation of Aβ peptides and neurofibrillary tangles of hyperphosphorylated tau proteins. Most epidemiological evidence suggests a link between TBI and AD, implying that TBI has neurodegenerative sequelae. Aβ peptides and tau may be used as biomarkers in interstitial fluid (ISF using cerebral microdialysis and/or cerebrospinal fluid (CSF following clinical TBI. In the present review, the available clinical and experimental literature on Aβ peptides and tau as potential biomarkers following TBI is comprehensively analyzed. Elevated CSF and ISF tau protein levels have been observed following severe TBI and suggested to correlate with clinical outcome. Although Aβ peptides are produced by normal neuronal metabolism, high levels of long and/or fibrillary Aβ peptides may be neurotoxic. Increased CSF and/or ISF Aβ levels post-injury may be related to neuronal activity and/or the presence of axonal injury. The heterogeneity of animal models, clinical cohorts, analytical techniques and the complexity of TBI in available studies make the clinical value of tau and Aβ as biomarkers uncertain at present. Additionally, the link between early post-injury changes in tau and Aβ peptides and the future risk of developing AD remains unclear. Future studies using e.g. rapid biomarker sampling combined with enhanced analytical techniques and/or novel pharmacological tools could provide additional information on the importance of Aβ peptides and tau protein in both the acute pathophysiology and long

  20. A synthetic peptide with the putative iron binding motif of amyloid precursor protein (APP does not catalytically oxidize iron.

    Directory of Open Access Journals (Sweden)

    Kourosh Honarmand Ebrahimi

    Full Text Available The β-amyloid precursor protein (APP, which is a key player in Alzheimer's disease, was recently reported to possess an Fe(II binding site within its E2 domain which exhibits ferroxidase activity [Duce et al. 2010, Cell 142: 857]. The putative ligands of this site were compared to those in the ferroxidase site of ferritin. The activity was indirectly measured using transferrin, which scavenges the Fe(III product of the reaction. A 22-residue synthetic peptide, named FD1, with the putative ferroxidase site of APP, and the E2 domain of APP were each reported to exhibit 40% of the ferroxidase activity of APP and of ceruloplasmin. It was also claimed that the ferroxidase activity of APP is inhibited by Zn(II just as in ferritin. We measured the ferroxidase activity indirectly (i by the incorporation of the Fe(III product of the ferroxidase reaction into transferrin and directly (ii by monitoring consumption of the substrate molecular oxygen. The results with the FD1 peptide were compared to the established ferroxidase activities of human H-chain ferritin and of ceruloplasmin. For FD1 we observed no activity above the background of non-enzymatic Fe(II oxidation by molecular oxygen. Zn(II binds to transferrin and diminishes its Fe(III incorporation capacity and rate but it does not specifically bind to a putative ferroxidase site of FD1. Based on these results, and on comparison of the putative ligands of the ferroxidase site of APP with those of ferritin, we conclude that the previously reported results for ferroxidase activity of FD1 and - by implication - of APP should be re-evaluated.

  1. Effects of tanshinone on neuropathological changes induced by amyloid β-peptide1-40 injection in rat hippocampus

    Institute of Scientific and Technical Information of China (English)

    Long-xuan LI; Jia-pei DAI; Li-qiang RU; Guang-fu YIN; Bin ZHAO

    2004-01-01

    AIM: To investigate the effect of tanshinone (Tan) on the neuropathological changes induced by amyloid β-peptide1-40 (Aβ-40) injection in hippocampus in rats. METHODS: Aβ1-40 10 μg was injected bilaterally into the dorsal blade of the dentate gyrus in the hippocampus. The level of acetylcholinesterase (AChE) in hippocampus was evaluated by histochemistry. The expressions of neuronal nitric oxide synthase (nNOS) and inducible form of NOS (iNOS) were detected by immunohistochemistry and Western blot. Aβ-40-injected rats were treated ig with Tan, the major active ingredient from Salvia miltiorrhiza of Chinese herb extract. RESULTS: The level of AChE positive fibers of each subfield in Aβ1-40-injected hippocampus decreased significantly compared with those of control (P<0.01). The expression of nNOS was down-regulated whereas the iNOS was up-regulated. After treatment with Tan (50 mg/kg, ig), the changes mentioned above were significantly improved. Moreover, the correlation analysis revealed a significant negative correlation between the area percentage of AChE positive fibers and the number of iNOS positive neural cells in CA 1, CA2 to CA3 (CA2-3), and dentate gyrus (DG) subfields (P<0.01). CONCLUSION:Tan can protect the neuropathological changes induced by Aβ-40 injection in hippocampus.

  2. Role of Notch-1 signaling pathway in PC12 cell apoptosis induced by amyloid beta-peptide (25-35)

    Institute of Scientific and Technical Information of China (English)

    Huimin Liang; Yaozhou Zhang; Xiaoyan Shi; Tianxiang Wei; Jiyu Lou

    2014-01-01

    Recent studies have demonstrated that Notch-1 expression is increased in the hippocampus of Alzheimer’s disease patients. We speculate that Notch-1 signaling may be involved in PC12 cell apoptosis induced by amyloid beta-peptide (25-35) (Aβ25-35). In the present study, PC12 cells were cultured with different doses (0, 0.1, 1.0, 10 and 100 nmol/L) of N-[N-(3,5-Dilfuorophen-acetyl)-L-alanyl]-S-phenylglycine t-butyl ester, a Notch-1 signaling pathway inhibitor, for 30 minutes. Then cultured cells were induced with Aβ25-35 for 48 hours. Pretreatment of PC12 cells with high doses of N-[N-(3,5-Dilfuorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (> 10 nmol/L) prolonged the survival of PC12 cells after Aβ25-35 induction, decreased the expression of apoptosis-related proteins caspase-3, -8, -9, increased the activity of oxidative stress-related su-peroxide dismutase and catalase, inhibited the production of active oxygen, and reduced nuclear factor kappa B expression. This study indicates that the Notch-1 signaling pathway plays a pivotal role in Aβ25-35-induced PC12 apoptosis.

  3. Amyloid β Peptide Enhances RANKL-Induced Osteoclast Activation through NF-κB, ERK, and Calcium Oscillation Signaling

    Directory of Open Access Journals (Sweden)

    Shangfu Li

    2016-10-01

    Full Text Available Osteoporosis and Alzheimer’s disease (AD are common chronic degenerative disorders which are strongly associated with advanced age. We have previously demonstrated that amyloid beta peptide (Aβ, one of the pathological hallmarks of AD, accumulated abnormally in osteoporotic bone specimens in addition to having an activation effect on osteoclast (Bone 2014,61:164-75. However, the underlying molecular mechanisms remain unclear. Activation of NF-κB, extracellular signal-regulated kinase (ERK phosphorylates, and calcium oscillation signaling pathways by receptor activator NF-κB ligand (RANKL plays a pivotal role in osteoclast activation. Targeting this signaling to modulate osteoclast function has been a promising strategy for osteoclast-related diseases. In this study, we investigated the effects of Aβ on RANKL-induced osteoclast signaling pathways in vitro. In mouse bone marrow monocytes (BMMs, Aβ exerted no effect on RANKL-induced osteoclastogenesis but promoted osteoclastic bone resorption. In molecular levels, Aβ enhanced NF-κB activity and IκB-α degradation, activated ERK phosphorylation and stimulated calcium oscillation, thus leading to upregulation of NFAT-c1 expression during osteoclast activation. Taken together, our data demonstrate that Aβ enhances RANKL-induced osteoclast activation through IκB-α degradation, ERK phosphorylation, and calcium oscillation signaling pathways and that Aβ may be a promising agent in the treatment of osteoclast-related disease such as osteoporosis.

  4. Designed Trpzip-3 β-Hairpin Inhibits Amyloid Formation in Two Different Amyloid Systems.

    Science.gov (United States)

    Hopping, Gene; Kellock, Jackson; Caughey, Byron; Daggett, Valerie

    2013-09-12

    The trpzip peptides are small, monomeric, and extremely stable β-hairpins that have become valuable tools for studying protein folding. Here, we show that trpzip-3 inhibits aggregation in two very different amyloid systems: transthyretin and Aβ(1-42). Interestingly, Trp → Leu mutations renders the peptide ineffective against transthyretin, but Aβ inhibition remains. Computational docking was used to predict the interactions between trpzip-3 and transthyretin, suggesting that inhibition occurs via binding to the outer region of the thyroxine-binding site, which is supported by dye displacement experiments. PMID:24900756

  5. Biological evaluation of synthetic α,β-unsaturated carbonyl based cyclohexanone derivatives as neuroprotective novel inhibitors of acetylcholinesterase, butyrylcholinesterase and amyloidaggregation.

    Science.gov (United States)

    Zha, Gao-Feng; Zhang, Cheng-Pan; Qin, Hua-Li; Jantan, Ibrahim; Sher, Muhammad; Amjad, Muhammad Wahab; Hussain, Muhammad Ajaz; Hussain, Zahid; Bukhari, Syed Nasir Abbas

    2016-05-15

    A series of new α,β-unsaturated carbonyl-based cyclohexanone derivatives was synthesized by simple condensation method and all compounds were characterized by using various spectroscopic techniques. New compounds were evaluated for their effects on acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). These compounds were also screened for in vitro cytotoxicity and for inhibitory activity for self-induced Aβ1-42 aggregation. The effect of these compounds against amyloid β-induced cytotoxicity was also investigated. The findings of in vitro experiment revealed that most of these compounds exhibited potent inhibitory activity against AChE and self-induced Aβ1-42 aggregation. The compound 3o exhibited best AChE (IC50=0.037μM) inhibitory potential. Furthermore, compound 3o disassembled the Aβ fibrils produced by self-induced Aβ aggregation by 76.6%. Compounds containing N-methyl-4-piperidone linker, showed high acetylcholinesterase and self-induced Aβ aggregation inhibitory activities as compared to reference drug donepezil. The pre-treatment of cells with synthetic compounds protected them against Aβ-induced cell death by up to 92%. Collectively, these findings suggest that some compounds from this series have potential to be promising multifunctional agents for AD treatment and our study suggest the cyclohexanone derivatives as promising new inhibitors for AChE and BuChE, potentially useful to treat neurodegenerative diseases.

  6. Accumulation of Exogenous Amyloid-Beta Peptide in Hippocampal Mitochondria Causes Their Dysfunction: A Protective Role for Melatonin

    Science.gov (United States)

    Rosales-Corral, Sergio; Acuna-Castroviejo, Dario; Tan, Dun Xian; López-Armas, Gabriela; Cruz-Ramos, José; Munoz, Rubén; Melnikov, Valery G.; Manchester, Lucien C.; Reiter, Russel J.

    2012-01-01

    Amyloid-beta (Aβ) pathology is related to mitochondrial dysfunction accompanied by energy reduction and an elevated production of reactive oxygen species (ROS). Monomers and oligomers of Aβ have been found inside mitochondria where they accumulate in a time-dependent manner as demonstrated in transgenic mice and in Alzheimer's disease (AD) brain. We hypothesize that the internalization of extracellular Aβ aggregates is the major cause of mitochondrial damage and here we report that following the injection of fibrillar Aβ into the hippocampus, there is severe axonal damage which is accompanied by the entrance of Aβ into the cell. Thereafter, Aβ appears in mitochondria where it is linked to alterations in the ionic gradient across the inner mitochondrial membrane. This effect is accompanied by disruption of subcellular structure, oxidative stress, and a significant reduction in both the respiratory control ratio and in the hydrolytic activity of ATPase. Orally administrated melatonin reduced oxidative stress, improved the mitochondrial respiratory control ratio, and ameliorated the energy imbalance. PMID:22666521

  7. Accumulation of Exogenous Amyloid-Beta Peptide in Hippocampal Mitochondria Causes Their Dysfunction: A Protective Role for Melatonin

    Directory of Open Access Journals (Sweden)

    Sergio Rosales-Corral

    2012-01-01

    Full Text Available Amyloid-beta (Aβ pathology is related to mitochondrial dysfunction accompanied by energy reduction and an elevated production of reactive oxygen species (ROS. Monomers and oligomers of Aβ have been found inside mitochondria where they accumulate in a time-dependent manner as demonstrated in transgenic mice and in Alzheimer’s disease (AD brain. We hypothesize that the internalization of extracellular Aβ aggregates is the major cause of mitochondrial damage and here we report that following the injection of fibrillar Aβ into the hippocampus, there is severe axonal damage which is accompanied by the entrance of Aβ into the cell. Thereafter, Aβ appears in mitochondria where it is linked to alterations in the ionic gradient across the inner mitochondrial membrane. This effect is accompanied by disruption of subcellular structure, oxidative stress, and a significant reduction in both the respiratory control ratio and in the hydrolytic activity of ATPase. Orally administrated melatonin reduced oxidative stress, improved the mitochondrial respiratory control ratio, and ameliorated the energy imbalance.

  8. Scorpion Venom Heat-Resistant Peptide Protects Transgenic Caenorhabditis elegans from β-Amyloid Toxicity

    Science.gov (United States)

    Zhang, Xiao-Gang; Wang, Xi; Zhou, Ting-Ting; Wu, Xue-Fei; Peng, Yan; Zhang, Wan-Qin; Li, Shao; Zhao, Jie

    2016-01-01

    Scorpion venom heat-resistant peptide (SVHRP) is a component purified from Buthus martensii Karsch scorpion venom. Our previous studies found SVHRP could enhance neurogenesis and inhibit microglia-mediated neuroinflammation in vivo. Here, we use the transgenic CL4176, CL2006, and CL2355 strains of Caenorhabditis elegans which express the human Aβ1-42 to investigate the effects and the possible mechanisms of SVHRP mediated protection against Aβ toxicity in vivo. The results showed that SVHRP-fed worms displayed remarkably decreased paralysis, less abundant toxic Aβ oligomers, reduced Aβ plaque deposition with respect to untreated animals. SVHRP also suppressed neuronal Aβ expression-induced defects in chemotaxis behavior and attenuated levels of ROS in the transgenic C. elegans. Taken together, these results suggest SVHRP could protect against Aβ-induced toxicity in C. elegans. Further studies need to be conducted in murine models and humans to analyze the effectiveness of the peptide. PMID:27507947

  9. Initial stages of beta-amyloid Aβ1-40 and Aβ1-42 oligomerization observed using fluorescence decay and molecular dynamics analyses of tyrosine

    Science.gov (United States)

    Amaro, Mariana; Kubiak-Ossowska, Karina; Birch, David J. S.; Rolinski, Olaf J.

    2013-03-01

    The development of Alzheimer’s disease is associated with the aggregation of the beta-amyloid peptides Aβ1-40 and Aβ1-42. It is believed that the small oligomers formed during the early stages of the aggregation are neurotoxic and involved in the process of neurodegeneration. In this paper we use fluorescence decay measurements of beta-amyloid intrinsic fluorophore tyrosine (Tyr) and molecular dynamics (MD) simulations to study the early stages of oligomer formation for the Aβ1-40 and Aβ1-42 peptides in vitro. We demonstrate that the lifetime distributions of the amyloid fluorescence decay efficiently describe changes in the complex Tyr photophysics during the peptide aggregation and highlight the differences in aggregation performance of the two amyloids. Tyr fluorescence decay is found to be a more sensitive sensor of Aβ1-40 aggregation than Aβ1-42 aggregation. The MD simulation of the peptide aggregation is compared with the experimental data and supports a four-rotamer model of Tyr.

  10. Weak glycolipid binding of a microdomain-tracer peptide correlates with aggregation and slow diffusion on cell membranes.

    Directory of Open Access Journals (Sweden)

    Tim Lauterbach

    Full Text Available Organized assembly or aggregation of sphingolipid-binding ligands, such as certain toxins and pathogens, has been suggested to increase binding affinity of the ligand to the cell membrane and cause membrane reorganization or distortion. Here we show that the diffusion behavior of the fluorescently tagged sphingolipid-interacting peptide probe SBD (Sphingolipid Binding Domain is altered by modifications in the construction of the peptide sequence that both result in a reduction in binding to ganglioside-containing supported lipid membranes, and at the same time increase aggregation on the cell plasma membrane, but that do not change relative amounts of secondary structural features. We tested the effects of modifying the overall charge and construction of the SBD probe on its binding and diffusion behavior, by Surface Plasmon Resonance (SPR; Biacore analysis on lipid surfaces, and by Fluorescence Correlation Spectroscopy (FCS on live cells, respectively. SBD binds preferentially to membranes containing the highly sialylated gangliosides GT1b and GD1a. However, simple charge interactions of the peptide with the negative ganglioside do not appear to be a critical determinant of binding. Rather, an aggregation-suppressing amino acid composition and linker between the fluorophore and the peptide are required for optimum binding of the SBD to ganglioside-containing supported lipid bilayer surfaces, as well as for interaction with the membrane. Interestingly, the strength of interactions with ganglioside-containing artificial membranes is mirrored in the diffusion behavior by FCS on cell membranes, with stronger binders displaying similar characteristic diffusion profiles. Our findings indicate that for aggregation-prone peptides, aggregation occurs upon contact with the cell membrane, and rather than giving a stronger interaction with the membrane, aggregation is accompanied by weaker binding and complex diffusion profiles indicative of heterogeneous

  11. Mechanism of fiber assembly; treatment of Aβ-peptide aggregation with a coarse-grained united-residue force field

    OpenAIRE

    Rojas, Ana; Liwo, Adam; Browne, Dana; Scheraga, Harold A.

    2010-01-01

    The mechanism of growth of fibrils of the β-amyloid peptide (Aβ) was studied by means of a physics-based coarse-grained united-residue (UNRES) model and molecular dynamics (MD) simulations. To identify the mechanism of monomer addition to an Aβ1–40 fibril, an unstructured monomer was placed at a 20 Å distance from a fibril template, and allowed to interact freely with it. The monomer was not biased towards the fibril conformation, by either the force field or the MD algorithm. By using a coar...

  12. Colorimetric assay for protein detection based on "nano-pumpkin" induced aggregation of peptide-decorated gold nanoparticles.

    Science.gov (United States)

    Wei, Luming; Wang, Xiaoying; Li, Chao; Li, Xiaoxi; Yin, Yongmei; Li, Genxi

    2015-09-15

    Small peptide can be used as an effective biological recognition element and provide an alternative tool for protein detection. However, the development of peptide-based detecting strategy still remains elusive due to the difficulty of signal transduction. Herein, we report a peptide-based colorimetric strategy for the detection of disease biomarker by using vascular endothelial growth factor receptor 1 (Flt-1) as an example. In this strategy, N-terminal aromatic residue-containing peptide modified gold nanoparticles (GNPs) can form bulky aggregate by the introduction of cucurbit[8]uril (CB[8]) that can selectively accommodate two N-terminal aromatic residue of peptides simultaneously regardless of their sequences. However, in the presence of Flt-1, the peptide can specifically bind to the protein molecule and the N-terminal aromatic residue will be occupied, resulting in little aggregation of GNPs. By taking advantage of the highly affinitive peptide and efficiency cross-linking effect of CB[8] to GNPs, colorimetric assay for protein detection can be achieved with a detection limit of 0.2 nM, which is comparable with traditional methods. The feasibility of our method has also been demonstrated in spiked serum sample, indicating potential application in the future. PMID:25932793

  13. A Comparative Interaction between Copper Ions with Alzheimer's β Amyloid Peptide and Human Serum Albumin

    OpenAIRE

    G. Rezaei Behbehani; L. Barzegar; Mohebbian, M.; A. A. Saboury

    2012-01-01

    The interaction of Cu2+ with the first 16 residues of the Alzheimer's amyliod β peptide, Aβ (1–16), and human serum albumin (HSA) were studied in vitro by isothermal titration calorimetry at pH 7.2 and 310 K in aqueous solution. The solvation parameters recovered from the extended solvation model indicate that HSA is involved in the transport of copper ion. Complexes between Aβ (1–16) and copper ions have been proposed to be an aberrant interaction in the development of Alzheimer's disease, w...

  14. Self-assembly of diphenylalanine peptides into microtubes with "turn on" fluorescence using an aggregation-induced emission molecule.

    Science.gov (United States)

    Na, Na; Mu, Xiaoyan; Liu, Qiuling; Wen, Jiying; Wang, Fangfang; Ouyang, Jin

    2013-10-01

    The self-assembly of diphenylalanine peptides (l-Phe-l-Phe) into microtubes with "turn on" bright yellow green fluorescence was described, which was achieved using an aggregation-induced emission (AIE) molecule of 9,10-bis[4-(3-sulfonatopropoxyl)-styryl] anthracene (BSPSA) sodium. PMID:24045462

  15. Experimental and computational investigation of the effect of hydrophobicity on aggregation and osteoinductive potential of BMP-2-derived peptide in a hydrogel matrix.

    Science.gov (United States)

    Moeinzadeh, Seyedsina; Barati, Danial; Sarvestani, Samaneh K; Karimi, Tahereh; Jabbari, Esmaiel

    2015-01-01

    An attractive approach to reduce the undesired side effects of bone morphogenetic proteins (BMPs) in regenerative medicine is to use osteoinductive peptide sequences derived from BMPs. Although the structure and function of BMPs have been studied extensively, there is limited data on structure and activity of BMP-derived peptides immobilized in hydrogels. The objective of this work was to investigate the effect of concentration and hydrophobicity of the BMP-2 peptide, corresponding to residues 73-92 of the knuckle epitope of BMP-2 protein, on peptide aggregation and osteogenic differentiation of human mesenchymal stem cells encapsulated in a polyethylene glycol (PEG) hydrogel. The peptide hydrophobicity was varied by capping PEG chain ends with short lactide segments. The BMP-2 peptide with a positive index of hydrophobicity had a critical micelle concentration (CMC) and formed aggregates in aqueous solution. Based on simulation results, there was a slight increase in the concentration of free peptide in solution with 1000-fold increase in peptide concentration. The dose-osteogenic response curve of the BMP-2 peptide was in the 0.0005-0.005 mM range, and osteoinductive potential of the BMP-2 peptide was significantly less than that of BMP-2 protein even at 1000-fold higher concentrations, which was attributed to peptide aggregation. Further, the peptide or PEG-peptide aggregates had significantly higher interaction energy with the cell membrane compared with the free peptide, which led to a higher nonspecific interaction with the cell membrane and loss of osteoinductive potential. Conjugation of the BMP-2 peptide to PEG increased CMC and osteoinductive potential of the peptide whereas conjugation to lactide-capped PEG reduced CMC and osteoinductive potential of the peptide. Experimental and simulation results revealed that osteoinductive potential of the BMP-2 peptide is correlated with its CMC and the free peptide concentration in aqueous medium and not the

  16. Experimental and computational investigation of the effect of hydrophobicity on aggregation and osteoinductive potential of BMP-2-derived peptide in a hydrogel matrix.

    Science.gov (United States)

    Moeinzadeh, Seyedsina; Barati, Danial; Sarvestani, Samaneh K; Karimi, Tahereh; Jabbari, Esmaiel

    2015-01-01

    An attractive approach to reduce the undesired side effects of bone morphogenetic proteins (BMPs) in regenerative medicine is to use osteoinductive peptide sequences derived from BMPs. Although the structure and function of BMPs have been studied extensively, there is limited data on structure and activity of BMP-derived peptides immobilized in hydrogels. The objective of this work was to investigate the effect of concentration and hydrophobicity of the BMP-2 peptide, corresponding to residues 73-92 of the knuckle epitope of BMP-2 protein, on peptide aggregation and osteogenic differentiation of human mesenchymal stem cells encapsulated in a polyethylene glycol (PEG) hydrogel. The peptide hydrophobicity was varied by capping PEG chain ends with short lactide segments. The BMP-2 peptide with a positive index of hydrophobicity had a critical micelle concentration (CMC) and formed aggregates in aqueous solution. Based on simulation results, there was a slight increase in the concentration of free peptide in solution with 1000-fold increase in peptide concentration. The dose-osteogenic response curve of the BMP-2 peptide was in the 0.0005-0.005 mM range, and osteoinductive potential of the BMP-2 peptide was significantly less than that of BMP-2 protein even at 1000-fold higher concentrations, which was attributed to peptide aggregation. Further, the peptide or PEG-peptide aggregates had significantly higher interaction energy with the cell membrane compared with the free peptide, which led to a higher nonspecific interaction with the cell membrane and loss of osteoinductive potential. Conjugation of the BMP-2 peptide to PEG increased CMC and osteoinductive potential of the peptide whereas conjugation to lactide-capped PEG reduced CMC and osteoinductive potential of the peptide. Experimental and simulation results revealed that osteoinductive potential of the BMP-2 peptide is correlated with its CMC and the free peptide concentration in aqueous medium and not the

  17. Polymorphic structures of Alzheimer's β-amyloid globulomers.

    Directory of Open Access Journals (Sweden)

    Xiang Yu

    Full Text Available BACKGROUND: Misfolding and self-assembly of Amyloid-β (Aβ peptides into amyloid fibrils is pathologically linked to the development of Alzheimer's disease. Polymorphic Aβ structures derived from monomers to intermediate oligomers, protofilaments, and mature fibrils have been often observed in solution. Some aggregates are on-pathway species to amyloid fibrils, while the others are off-pathway species that do not evolve into amyloid fibrils. Both on-pathway and off-pathway species could be biologically relevant species. But, the lack of atomic-level structural information for these Aβ species leads to the difficulty in the understanding of their biological roles in amyloid toxicity and amyloid formation. METHODS AND FINDINGS: Here, we model a series of molecular structures of Aβ globulomers assembled by monomer and dimer building blocks using our peptide-packing program and explicit-solvent molecular dynamics (MD simulations. Structural and energetic analysis shows that although Aβ globulomers could adopt different energetically favorable but structurally heterogeneous conformations in a rugged energy landscape, they are still preferentially organized by dynamic dimeric subunits with a hydrophobic core formed by the C-terminal residues independence of initial peptide packing and organization. Such structural organizations offer high structural stability by maximizing peptide-peptide association and optimizing peptide-water solvation. Moreover, curved surface, compact size, and less populated β-structure in Aβ globulomers make them difficult to convert into other high-order Aβ aggregates and fibrils with dominant β-structure, suggesting that they are likely to be off-pathway species to amyloid fibrils. These Aβ globulomers are compatible with experimental data in overall size, subunit organization, and molecular weight from AFM images and H/D amide exchange NMR. CONCLUSIONS: Our computationally modeled Aβ globulomers provide useful

  18. An in vivo platform for identifying inhibitors of protein aggregation

    OpenAIRE

    Saunders, JC; Young, LM; Mahood, RA; Jackson, MP; Revill, CH; Foster, RJ; Smith, DA; Ashcroft, AE; Brockwell, DJ; Radford, SE

    2016-01-01

    Protein aggregation underlies an array of human diseases, yet only one small molecule therapeutic has been successfully developed to date. Here, we introduce an in vivo system, based on a β-lactamase tripartite fusion construct, capable of identifying aggregation-prone sequences in the periplasm of Escherichia coli and inhibitors that prevent their aberrant self-assembly. We demonstrate the power of the system using a range of proteins, from small unstructured peptides (islet amyloid polypept...

  19. Aggregation process of Aβ1-40 with non-Aβ amyloid component of α-synuclein

    Science.gov (United States)

    Eugene, Cindie; Mousseau, Normand

    2015-09-01

    Many neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases, are characterized by the presence of amyloid fibers. Recently, attention has turned from the fibers to the early stages of oligomerization where toxicity could be highest. Here, we focus on the interactions between non-Aβ amyloid component of a-synuclein (NAC) and Aβ1-40, two proteins found in amyloid fibrils associated with Alzheimer's disease. We combine the coarse-grained OPEP potential with a Hamiltonian and temperature replica exchange molecular dynamics simulation (HT-REMD) to identify mechanisms leading to the formation of secondary structures promoting fibrillation. We observe that the propensity to form beta-sheet remains the same for Aβ1-40 whereas is decreases significantly for NAC. In particular, the 25-35 region of Aβ1-40 is a significant area of secondary structure stabilization with NAC. The ionic interactions between salt-bridge D23 and K28 in Aβ1-40 and K20 and E23 in NAC of the heterogeneous dimer are consistent with the salt-bridges found in NAC and Aβ1-40 homogenous dimers and allow us to see that these interactions don't necessarily dominate the interchain stabilizations. Our numerical simulation also show the formation of interaction between the early oligomer of NAC and Aβ1-40.

  20. Calcium binding to beta-2-microglobulin at physiological pH drives the occurrence of conformational changes which cause the protein to precipitate into amorphous forms that subsequently transform into amyloid aggregates.

    Directory of Open Access Journals (Sweden)

    Sukhdeep Kumar

    Full Text Available Using spectroscopic, calorimetric and microscopic methods, we demonstrate that calcium binds to beta-2-microglobulin (β2m under physiological conditions of pH and ionic strength, in biological buffers, causing a conformational change associated with the binding of up to four calcium atoms per β2m molecule, with a marked transformation of some random coil structure into beta sheet structure, and culminating in the aggregation of the protein at physiological (serum concentrations of calcium and β2m. We draw attention to the fact that the sequence of β2m contains several potential calcium-binding motifs of the DXD and DXDXD (or DXEXD varieties. We establish (a that the microscopic aggregation seen at physiological concentrations of β2m and calcium turns into actual turbidity and visible precipitation at higher concentrations of protein and β2m, (b that this initial aggregation/precipitation leads to the formation of amorphous aggregates, (c that the formation of the amorphous aggregates can be partially reversed through the addition of the divalent ion chelating agent, EDTA, and (d that upon incubation for a few weeks, the amorphous aggregates appear to support the formation of amyloid aggregates that bind to the dye, thioflavin T (ThT, resulting in increase in the dye's fluorescence. We speculate that β2m exists in the form of microscopic aggregates in vivo and that these don't progress to form larger amyloid aggregates because protein concentrations remain low under normal conditions of kidney function and β2m degradation. However, when kidney function is compromised and especially when dialysis is performed, β2m concentrations probably transiently rise to yield large aggregates that deposit in bone joints and transform into amyloids during dialysis related amyloidosis.

  1. Progressive effect of beta amyloid peptides accumulation on CA1 pyramidal neurons: a model study suggesting possible treatments

    Directory of Open Access Journals (Sweden)

    Viviana eCulmone

    2012-07-01

    Full Text Available Several independent studies show that accumulation of β-amyloid (Aβ peptides , one of the characteristic hallmark of Alzheimer’s Disease (AD, can affect normal neuronal activity in different ways. However, in spite of intense experimental work to explain the possible underlying mechanisms of action, a comprehensive and congruent understanding is still lacking. Part of the problem might be the opposite ways in which Aβ have been experimentally found to affect the normal activity of a neuron; for example, making a neuron more excitable (by reducing the A- or DR-type K+ currents or less excitable (by reducing synaptic transmission and Na+ current. The overall picture is therefore confusing, since the interplay of many mechanisms makes it difficult to link individual experimental findings with the more general problem of understanding the progression of the disease. This is an important issue, especially for the development of new drugs trying to ameliorate the effects of the disease. We addressed these paradoxes through computational models. We first modeled the different stages of AD by progressively modifying the intrinsic membrane and synaptic properties of a realistic model neuron, while accounting for multiple and different experimental findings and by evaluating the contribution of each mechanism to the overall modulation of the cell’s excitability. We then tested a number of manipulations of channel and synaptic activation properties that could compensate for the effects of Aβ. The model predicts possible therapeutic treatments in terms of pharmacological manipulations of channels’ kinetic and activation properties. The results also suggest how and which mechanisms can be targeted by a drug to restore the original firing conditions.

  2. Induction of serine racemase expression and D-serine release from microglia by amyloid β-peptide

    Directory of Open Access Journals (Sweden)

    Griffin W Sue T

    2004-04-01

    Full Text Available Abstract Background Roles for excitotoxicity and inflammation in Alzheimer's disease have been hypothesized. Proinflammatory stimuli, including amyloid β-peptide (Aβ, elicit a release of glutamate from microglia. We tested the possibility that a coagonist at the NMDA class of glutamate receptors, D-serine, could respond similarly. Methods Cultured microglial cells were exposed to Aβ. The culture medium was assayed for levels of D-serine by HPLC and for effects on calcium and survival on primary cultures of rat hippocampal neurons. Microglial cell lysates were examined for the levels of mRNA and protein for serine racemase, the enzyme that forms D-serine from L-serine. The racemase mRNA was also assayed in Alzheimer hippocampus and age-matched controls. A microglial cell line was transfected with a luciferase reporter construct driven by the putative regulatory region of human serine racemase. Results Conditioned medium from Aβ-treated microglia contained elevated levels of D-serine. Bioassays of hippocampal neurons with the microglia-conditioned medium indicated that Aβ elevated a NMDA receptor agonist that was sensitive to an antagonist of the D-serine/glycine site (5,7-dicholorokynurenic acid; DCKA and to enzymatic degradation of D-amino acids by D-amino acid oxidase (DAAOx. In the microglia, Aβ elevated steady-state levels of dimeric serine racemase, the apparent active form of the enzyme. Promoter-reporter and mRNA analyses suggest that serine racemase is transcriptionally induced by Aβ. Finally, the levels of serine racemase mRNA were elevated in Alzheimer's disease hippocampus, relative to age-matched controls. Conclusions These data suggest that Aβ could contribute to neurodegeneration through stimulating microglia to release cooperative excitatory amino acids, including D-serine.

  3. Activation of PKR causes amyloid ß-peptide accumulation via de-repression of BACE1 expression.

    Directory of Open Access Journals (Sweden)

    Gerard Ill-Raga

    Full Text Available BACE1 is a key enzyme involved in the production of amyloid ß-peptide (Aß in Alzheimer's disease (AD brains. Normally, its expression is constitutively inhibited due to the presence of the 5'untranslated region (5'UTR in the BACE1 promoter. BACE1 expression is activated by phosphorylation of the eukaryotic initiation factor (eIF2-alpha, which reverses the inhibitory effect exerted by BACE1 5'UTR. There are four kinases associated with different types of stress that could phosphorylate eIF2-alpha. Here we focus on the double-stranded (ds RNA-activated protein kinase (PKR. PKR is activated during viral infection, including that of herpes simplex virus type 1 (HSV1, a virus suggested to be implicated in the development of AD, acting when present in brains of carriers of the type 4 allele of the apolipoprotein E gene. HSV1 is a dsDNA virus but it has genes on both strands of the genome, and from these genes complementary RNA molecules are transcribed. These could activate BACE1 expression by the PKR pathway. Here we demonstrate in HSV1-infected neuroblastoma cells, and in peripheral nervous tissue from HSV1-infected mice, that HSV1 activates PKR. Cloning BACE1 5'UTR upstream of a luciferase (luc gene confirmed its inhibitory effect, which can be prevented by salubrinal, an inhibitor of the eIF2-alpha phosphatase PP1c. Treatment with the dsRNA analog poly (I∶C mimicked the stimulatory effect exerted by salubrinal over BACE1 translation in the 5'UTR-luc construct and increased Aß production in HEK-APPsw cells. Summarizing, our data suggest that PKR activated in brain by HSV1 could play an important role in the development of AD.

  4. IgG Conformer's Binding to Amyloidogenic Aggregates.

    Directory of Open Access Journals (Sweden)

    Monichan Phay

    Full Text Available Amyloid-reactive IgGs isolated from pooled blood of normal individuals (pAbs have demonstrated clinical utility for amyloid diseases by in vivo targeting and clearing amyloidogenic proteins and peptides. We now report the following three novel findings on pAb conformer's binding to amyloidogenic aggregates: 1 pAb aggregates have greater activity than monomers (HMW species > dimers > monomers, 2 pAbs interactions with amyloidogenic aggregates at least partially involves unconventional (non-CDR interactions of F(ab regions, and 3 pAb's activity can be easily modulated by trace aggregates generated during sample processing. Specifically, we show that HMW aggregates and dimeric pAbs present in commercial preparations of pAbs, intravenous immunoglobulin (IVIg, had up to ~200- and ~7-fold stronger binding to aggregates of Aβ and transthyretin (TTR than the monomeric antibody. Notably, HMW aggregates were primarily responsible for the enhanced anti-amyloid activities of Aβ- and Cibacron blue-isolated IVIg IgGs. Human pAb conformer's binding to amyloidogenic aggregates was retained in normal human sera, and mimicked by murine pAbs isolated from normal pooled plasmas. An unconventional (non-CDR component to pAb's activity was indicated from control human mAbs, generated against non-amyloid targets, binding to aggregated Aβ and TTR. Similar to pAbs, HMW and dimeric mAb conformers bound stronger than their monomeric forms to amyloidogenic aggregates. However, mAbs had lower maximum binding signals, indicating that pAbs were required to saturate a diverse collection of binding sites. Taken together, our findings strongly support further investigations on the physiological function and clinical utility of the inherent anti-amyloid activities of monomeric but not aggregated IgGs.

  5. Microscopic factors that control beta-sheet registry in amyloid fibrils formed by fragment 11-25 of amyloid beta peptide: insights from computer simulations.

    Science.gov (United States)

    Negureanu, Lacramioara; Baumketner, Andrij

    2009-06-26

    Short fragments of amyloidogenic proteins are widely used as model systems in studies of amyloid formation. Fragment 11-25 of the amyloid beta protein involved in Alzheimer's disease (Abeta11-25) was recently shown to form amyloid fibrils composed of anti-parallel beta-sheets. Interestingly, fibrils grown under neutral and acidic conditions were seen to possess different registries of their inter-beta-strand hydrogen bonds. In an effort to explain the microscopic origin of this pH dependence, we studied Abeta11-25 fibrils using methods of theoretical modeling. Several structural models were built for fibrils at low and neutral pH levels and these were examined in short molecular dynamics simulations in explicit water. The models that displayed the lowest free energy, as estimated using an implicit solvent model, were selected as representative of the true fibrillar structure. It was shown that the registry of these models agrees well with the experimental results. At neutral pH, the main contribution to the free energy difference between the two registries comes from the electrostatic interactions. The charge group of the carboxy terminus makes a large contribution to these interactions and thus appears to have a critical role in determining the registry.

  6. Does aluminium bind to histidine? An NMR investigation of amyloid β12 and amyloid β16 fragments.

    Science.gov (United States)

    Narayan, Priya; Krishnarjuna, Bankala; Vishwanathan, Vinaya; Jagadeesh Kumar, Dasappa; Babu, Sudhir; Ramanathan, Krishna Venkatachala; Easwaran, Kalpathy Ramaier Katchap; Nagendra, Holenarasipur Gundurao; Raghothama, Srinivasarao

    2013-07-01

    Aluminium and zinc are known to be the major triggering agents for aggregation of amyloid peptides leading to plaque formation in Alzheimer's disease. While zinc binding to histidine in Aβ (amyloid β) fragments has been implicated as responsible for aggregation, not much information is available on the interaction of aluminium with histidine. In the NMR study of the N-terminal Aβ fragments, DAEFRHDSGYEV (Aβ12) and DAEFRHDSGYEVHHQK (Aβ16) presented here, the interactions of the fragments with aluminium have been investigated. Significant chemical shifts were observed for few residues near the C-terminus when aluminium chloride was titrated with Aβ12 and Aβ16 peptides. Surprisingly, it is nonhistidine residues which seem to be involved in aluminium binding. Based on NMR constrained structure obtained by molecular modelling, aluminium-binding pockets in Aβ12 were around charged residues such as Asp, Glu. The results are discussed in terms of native structure propagation, and the relevance of histidine residues in the sequences for metal-binding interactions. We expect that the study of such short amyloid peptide fragments will not only provide clues for plaque formation in aggregated conditions but also facilitate design of potential drugs for these targets. PMID:23464626

  7. Docking Studies of Plant Polyphenols with Aβ Fragments Suggests Determinants That Enable Design of Inhibitors towards Preventing Aggregation Events during Alzheimer’s

    Directory of Open Access Journals (Sweden)

    N. Shruthila

    2013-10-01

    Full Text Available The aggregation of Amyloid beta peptides is considered as one of the causative events in the pathogenesis of Alzheimer’s disease (AD. Polyphenols present in different plant sources, which have acclaimed therapeutic values, are known to inhibit the formation of Amyloid fibrils. Hence, docking studies with different polyphenols were carried out to appreciate their binding modes and plausible molecular interactions. The results reveal a consensus pattern of association, exhibiting that all the ligands preferentially dock to the metal coordinating residues in the peptide fragments. In fact, the metal interacting geometries in the Aβ segments are known to be implicated in aggregation events. Further, due to non-specific binding, these polyphenols are expected to have a competitive inhibitory efficacy over a range of amyloid peptide fragments. Thus, these findings suggest that the polyphenolic compounds could become promising lead molecules that aid in the development of inhibitors and neuroprotectors towards prevention of amyloid fibril formations and AD.

  8. Cryogenic solid state NMR studies of fibrils of the Alzheimer's disease amyloid-{beta} peptide: perspectives for DNP

    Energy Technology Data Exchange (ETDEWEB)

    Lopez del Amo, Juan-Miguel [CIC Energigune (Spain); Schneider, Dennis [Bruker BioSpin (Germany); Loquet, Antoine; Lange, Adam [Max-Planck-Institut fuer Biophysikalische Chemie (Germany); Reif, Bernd, E-mail: reif@tum.de [Deutsches Forschungszentrum fuer Gesundheit und Umwelt, Helmholtz-Zentrum Muenchen (HMGU) (Germany)

    2013-08-15

    Dynamic Nuclear Polarization solid-state NMR holds the potential to enable a dramatic increase in sensitivity by exploiting the large magnetic moment of the electron. However, applications to biological solids are hampered in uniformly isotopically enriched biomacromolecules due to line broadening which yields a limited spectral resolution at cryogenic temperatures. We show here that high magnetic fields allow to overcome the broadening of resonance lines often experienced at liquid nitrogen temperatures. For a fibril sample of the Alzheimer's disease {beta}-amyloid peptide, we find similar line widths at low temperature and at room temperature. The presented results open new perspectives for structural investigations in the solid-state.

  9. CD147 is a regulatory subunit of the gamma-secretase complex inAlzheimer's disease amyloid beta-peptide production

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Shuxia; Zhou, Hua; Walian, Peter J.; Jap, Bing K.

    2005-04-06

    {gamma}-secretase is a membrane protein complex that cleaves the {beta}-amyloid precursor protein (APP) within the transmembrane region, following prior processing by {beta}-secretase, producing amyloid {beta}-peptides (A{beta}{sub 40} and A{beta}{sub 42}). Errant production of A{beta}-peptides that substantially increases A{beta}{sub 42} production has been associated with the formation of amyloid plaques in Alzheimer's disease patients. Biophysical and genetic studies indicate that presenilin-1 (Psn-1), which contains the proteolytic active site, and three other membrane proteins, nicastrin (Nct), APH-1, and PEN-2 are required to form the core of the active {gamma}-secretase complex. Here, we report the purification of the native {gamma}-secretase complexes from HeLa cell membranes and the identification of an additional {gamma}-secretase complex subunit, CD147, a transmembrane glycoprotein with two immunoglobulin-like domains. The presence of this subunit as an integral part of the complex itself was confirmed through co-immunoprecipitation studies of the purified protein from HeLa cells and solubilized complexes from other cell lines such as neural cell HCN-1A and HEK293. Depletion of CD147 by RNA interference was found to increase the production of A{beta} peptides without changing the expression level of the other {gamma}-secretase components or APP substrates while CD147 overexpression had no statistically significant effect on amyloid {beta}-peptide production, other {gamma}-secretase components or APP substrates, indicating that the presence of the CD147 subunit within the {gamma}-secretase complex directly down-modulates the production of A{beta}-peptides. {gamma}-secretase was first recognized through its role in the production of the A{beta} peptides that are pathogenic in Alzheimer's disease (AD) (1). {gamma}-secretase is a membrane protein complex with unusual aspartyl protease activity that cleaves a variety of type I membrane proteins

  10. Early oligomerization stages for the non-amyloid component of α-synuclein amyloid

    Science.gov (United States)

    Eugene, Cindie; Laghaei, Rozita; Mousseau, Normand

    2014-10-01

    In recent years, much effort has focused on the early stages of aggregation and the formation of amyloid oligomers. Aggregation processes for these proteins are complex and their non-equilibrium nature makes any experimental study very difficult. Under these conditions, simulations provide a useful alternative for understanding the dynamics of the early stages of oligomerization. Here, we focus on the non-Aβ amyloid component (NAC) of the monomer, dimer, and trimer of α-synuclein, an important 35-residue sequence involved in the aggregation and fibrillation of this protein associated with Parkinson's disease. Using Hamiltonian and temperature replica exchange molecular dynamics simulations combined with the coarse grained Optimized Potential for Efficient peptide structure Prediction potential, we identify the role of the various regions and the secondary structures for the onset of oligomerization. For this sequence, we clearly observe the passage from α-helix to β-sheet, a characteristic transition of amyloid proteins. More precisely, we find that the NAC monomer is highly structured with two α-helical regions, between residues 2-13 and 19-25. As the dimer and trimer form, β-sheet structures between residues 2-14 and 26-34 appear and rapidly structure the system. The resulting conformations are much more structured than similar dimers and trimers of β-amyloid and amylin proteins and yet display a strong polymorphism at these early stages of aggregation. In addition to its inherent experimental interest, comparison with other sequences shows that NAC could be a very useful numerical model for understanding the onset of aggregation.

  11. Lipophilicity of amyloid β-peptide 12-28 and 25-35 to unravel their ability to promote hydrophobic and electrostatic interactions.

    Science.gov (United States)

    Ermondi, G; Catalano, F; Vallaro, M; Ermondi, I; Camacho Leal, M P; Rinaldi, L; Visentin, S; Caron, G

    2015-11-10

    The growing interest for peptide therapeutics calls for new strategies to determine the physico-chemical properties responsible for the interactions of peptides with the environment. This study reports about the lipophilicity of two fragments of the amyloid β-peptide, Aβ 25-35 and Aβ 12-28. Firstly, computational studies showed the limits of log D(7.4)oct in describing the lipophilicity of medium-sized peptides. Chromatographic lipophilicity indexes (expressed as log k', the logarithm of the retention factor) were then measured in three different systems to highlight the different skills of Aβ 25-35 and Aβ 12-28 in giving interactions with polar and apolar environments. CD studies were also performed to validate chromatographic experimental conditions. Results show that Aβ 12-28 has a larger skill in promoting hydrophobic and electrostatic interactions than Aβ 25-35. This finding proposes a strategy to determine the lipophilicity of peptides for drug discovery purposes but also gives insights in unraveling the debate about the aminoacidic region of Aβ responsible for its neurotoxicity.

  12. The Luminescent Oligothiophene p-FTAA Converts Toxic Aβ1-42 Species into Nontoxic Amyloid Fibers with Altered Properties.

    Science.gov (United States)

    Civitelli, Livia; Sandin, Linnea; Nelson, Erin; Khattak, Sikander Iqbal; Brorsson, Ann-Christin; Kågedal, Katarina

    2016-04-22

    Aggregation of the amyloidpeptide (Aβ) in the brain leads to the formation of extracellular amyloid plaques, which is one of the pathological hallmarks of Alzheimer disease (AD). It is a general hypothesis that soluble prefibrillar assemblies of the Aβ peptide, rather than mature amyloid fibrils, cause neuronal dysfunction and memory impairment in AD. Thus, reducing the level of these prefibrillar species by using molecules that can interfere with the Aβ fibrillation pathway may be a valid approach to reduce Aβ cytotoxicity. Luminescent-conjugated oligothiophenes (LCOs) have amyloid binding properties and spectral properties that differ when they bind to protein aggregates with different morphologies and can therefore be used to visualize protein aggregates. In this study, cell toxicity experiments and biophysical studies demonstrated that the LCO p-FTAA was able to reduce the pool of soluble toxic Aβ species in favor of the formation of larger insoluble nontoxic amyloid fibrils, there by counteracting Aβ-mediated cytotoxicity. Moreover, p-FTAA bound to early formed Aβ species and induced a rapid formation of β-sheet structures. These p-FTAA generated amyloid fibrils were less hydrophobic and more resistant to proteolysis by proteinase K. In summary, our data show that p-FTAA promoted the formation of insoluble and stable Aβ species that were nontoxic which indicates that p-FTAA might have therapeutic potential. PMID:26907684

  13. Monodisperse carboxyl-functionalized poly(ethylene glycol)-coated magnetic poly(glycidyl methacrylate) microspheres: application to the immunocapture of β-amyloid peptides.

    Science.gov (United States)

    Horák, Daniel; Hlídková, Helena; Hiraoui, Mohamed; Taverna, Myriam; Proks, Vladimír; Mázl Chánová, Eliška; Smadja, Claire; Kučerová, Zdenka

    2014-11-01

    Identification and evaluation of small changes in β-amyloid peptide (Aβ) levels in cerebrospinal fluid is of crucial importance for early detection of Alzheimer's disease. Microfluidic detection methods enable effective preconcentration of Aβ using magnetic microparticles coated with Aβ antibodies. Poly(glycidyl methacrylate) microspheres are coated with α-amino-ω-methoxy-PEG5000 /α-amino-ω-Boc-NH-PEG5000 Boc groups deprotected and NH2 succinylated to introduce carboxyl groups. Capillary electrophoresis with laser-induced fluorescence detection confirms the efficient capture of Aβ 1-40 peptides on the microspheres with immobilized monoclonal anti-Aβ 6E10. The capture specificity is confirmed by comparing Aβ 1-40 levels on the anti-IgG-immobilized particles used as a control. PMID:25142028

  14. Serum amyloid A-derived peptides, present in human rheumatic synovial fluids, induce the secretion of interferon-gamma by human CD(4)(+) T-lymphocytes.

    Science.gov (United States)

    Yavin, E J; Preciado-Patt, L; Rosen, O; Yaron, M; Suessmuth, R D; Levartowsky, D; Jung, G; Lider, O; Fridkin, M

    2000-04-28

    Serum amyloid A (SAA) is a major acute-phase protein whose biochemical functions remain largely obscure. Human rheumatic synovial fluids were screened by high performance liquid chromatography mass spectrometry for SAA-derived peptides, specifically the sequence AGLPEKY (SAA(98-104)) which was previously shown to modulate various leukocyte functions. Two such fluids were found to contain a truncated version of SAA(98-104). Synthetic SAA(98-104) and several of its analogs were shown capable of binding isolated human CD(4)(+) T-lymphocytes and stimulating them to produce interferon-gamma. Given the high acute-phase serum level of SAA and its massive proteolysis by inflammatory related enzymes, SAA-derived peptides may be involved in host defense mechanisms. PMID:10788622

  15. A synthetic peptide derived from the sequence of a type I collagen receptor inhibits type I collagen-mediated platelet aggregation.

    OpenAIRE

    Chiang, T M; Kang, A H

    1997-01-01

    A synthetic peptide-1, an 18 amino acid residue peptide derived from a hydrophilic domain of a cloned platelet type I collagen receptor, was used to study the role of the receptor on types I and III collagen-induced platelet aggregation and the release of ATP. The peptide inhibits the type I, but not the type III, collagen-induced platelet aggregation and the release of ATP in a dose-dependent manner. The [125I]peptide-1 specifically binds to type I collagen-coated microtiter wells in a dose-...

  16. Effect of nanoparticles binding ß-amyloid peptide on nitric oxide production by cultured endothelial cells and macrophages

    Directory of Open Access Journals (Sweden)

    Orlando A

    2013-04-01

    Full Text Available Antonina Orlando,1 Francesca Re,1 Silvia Sesana,1 Ilaria Rivolta,1 Alice Panariti,1 Davide Brambilla,2 Julien Nicolas,2 Patrick Couvreur,2 Karine Andrieux,2 Massimo Masserini,1 Emanuela Cazzaniga1 1Department of Health Sciences, University of Milano-Bicocca, Monza, Italy; 2Institut Galien Paris Sud, University Paris-Sud, Châtenay-Malabry, France Background: As part of a project designing nanoparticles for the treatment of Alzheimer’s disease, we have synthesized and characterized a small library of nanoparticles binding with high affinity to the β-amyloid peptide and showing features of biocompatibility in vitro, which are important properties for administration in vivo. In this study, we focused on biocompatibility issues, evaluating production of nitric oxide by cultured human umbilical vein endothelial cells and macrophages, used as models of cells which would be exposed to nanoparticles after systemic administration. Methods: The nanoparticles tested were liposomes and solid lipid nanoparticles carrying phosphatidic acid or cardiolipin, and PEGylated poly(alkyl cyanoacrylate nanoparticles (PEG-PACA. We measured nitric oxide production using the Griess method as well as phosphorylation of endothelial nitric oxide synthase and intracellular free calcium, which are biochemically related to nitric oxide production. MTT viability tests and caspase-3 detection were also undertaken. Results: Exposure to liposomes did not affect the viability of endothelial cells at any concentration tested. Increased production of nitric oxide was detected only with liposomes carrying phosphatidic acid or cardiolipin at the highest concentration (120 µg/mL, together with increased synthase phosphorylation and intracellular calcium levels. Macrophages exposed to liposomes showed a slightly dose-dependent decrease in viability, with no increase in production of nitric oxide. Exposure to solid lipid nanoparticles carrying phosphatidic acid decreased viability in

  17. Cilostazol Modulates Autophagic Degradation of β-Amyloid Peptide via SIRT1-Coupled LKB1/AMPKα Signaling in Neuronal Cells

    Science.gov (United States)

    Lee, Won Suk; Shin, Hwa Kyoung; Kim, Hye Young; Hong, Ki Whan; Kim, Chi Dae

    2016-01-01

    A neuroprotective role of autophagy mediates the degradation of β-amyloid peptide (Aβ) in Alzheimer’s disease (AD). The previous study showed cilostazol modulates autophagy by increasing beclin1, Atg5 and LC3-II expressions, and depletes intracellular Aβ accumulation. This study elucidated the mechanisms through which cilostazol modulates the autophagic degradation of Aβ in neurons. In N2a cells, cilostazol (10–30 μM), significantly increased the expression of P-AMPKα (Thr 172) and downstream P-ACC (acetyl-CoA carboxylase) (Ser 79) as did resveratrol (SIRT1 activator), or AICAR (AMPK activator), which were blocked by KT5720, compound C (AMPK inhibitor), or sirtinol. Furthermore, phosphorylated-mTOR (Ser 2448) and phosphorylated-P70S6K (Thr 389) expressions were suppressed, and LC3-II levels were elevated in association with decreased P62/Sqstm1 by cilostazol. Cilostazol increased cathepsin B activity and decreased p62/SQSTM 1, consequently decreased accumulation of Aβ1–42 in the activated N2aSwe cells, and these results were blocked by sirtinol, compound C and bafilomycin A1 (autophagosome blocker), suggesting enhanced autophagosome formation by cilostazol. In SIRT1 gene-silenced N2a cells, cilostazol failed to increase the expressions of P-LKB1 (Ser 428) and P-AMPKα, which contrasted with its effect in negative control cells transfected with scrambled siRNA duplex. Further, N2a cells transfected with expression vectors encoding pcDNA SIRT1 showed increased P-AMPKα expression, which mimicked the effect of cilostazol in N2a cells; suggesting cilostazol-stimulated expressions of P-LKB1 and P-AMPKα were SIRT1-dependent. Unlike their effects in N2a cells, in HeLa cells, which lack LKB1, cilostazol and resveratrol did not elevate SIRT1 or P-AMPKα expression, indicating cilostazol and resveratrol-stimulated expressions of SIRT1 and P-AMPKα are LKB1-dependent. In conclusion, cilostazol upregulates autophagy by activating SIRT1-coupled P-LKB1/P-AMPKα and

  18. Effects of Yizhi Capsule (益智胶囊) on Learning and Memory Disorder and β-amyloid Peptide Induced Neurotoxicity in Rats

    Institute of Scientific and Technical Information of China (English)

    WU Hang-yu; XU Jiang-ping; LI Lin; ZHU Bai-hua

    2006-01-01

    Objective: To explore the effects of Yizhi Capsule (益智胶囊, YZC) on learning and memory disorder and β-amyloid peptide induced neurotoxicity in rats. Methods: Various doses of YZC were administered to Sprague-Dawley (SD) rats for 8 consecutive days, twice a day. On the 8th day of the experiment,scopolamine hydrobromide was intraperitoneally injected to every rat and Morris water maze test and shuttle dark avoidance test were carried out respectively to explore the changes of learning and memory capacities in the rats. Besides, after the cerebral cortical neurons of newborn SD rats aged within 3 days were cultured in vitro for 7 days, drug serum containing YZC was added to the cultured neurons before or after β amyloid peptide25-35 (Aβ25-35) intoxication to observe the protective effect of YZC on neurotoxicity by MTT assay and to determine the LDH content in the supernatant. Results: Compared with those untreated with YZC, the rats having received YZC treatment got superiority in shorter time of platform seeking in Morris water maze test,as well as elongated latent period and less times of error in shuttle dark avoidance test. On the cultured neurons, YZC drug serum could effectively increase the survival rate of Aβ25-35 intoxicated neurons and reduce the LDH contents in cultured supernatant. Conclusion: YZC has an action of improving learning and memory disorder, and good protective effect on Aβ25-35 induced neurotoxicity in SD rats.

  19. Curcumin Binding to Beta Amyloid: A Computational Study.

    Science.gov (United States)

    Rao, Praveen P N; Mohamed, Tarek; Teckwani, Karan; Tin, Gary

    2015-10-01

    Curcumin, a chemical constituent present in the spice turmeric, is known to prevent the aggregation of amyloid peptide implicated in the pathophysiology of Alzheimer's disease. While curcumin is known to bind directly to various amyloid aggregates, no systematic investigations have been carried out to understand its ability to bind to the amyloid aggregates including oligomers and fibrils. In this study, we constructed computational models of (i) Aβ hexapeptide (16) KLVFFA(21) octamer steric-zipper β-sheet assembly and (ii) full-length Aβ fibril β-sheet assembly. Curcumin binding in these models was evaluated by molecular docking and molecular dynamics (MD) simulation studies. In both the models, curcumin was oriented in a linear extended conformation parallel to fiber axis and exhibited better stability in the Aβ hexapeptide (16) KLVFFA(21) octamer steric-zipper model (Ebinding  = -10.05 kcal/mol) compared to full-length Aβ fibril model (Ebinding  = -3.47 kcal/mol). Analysis of MD trajectories of curcumin bound to full-length Aβ fibril shows good stability with minimum Cα-atom RMSD shifts. Interestingly, curcumin binding led to marked fluctuations in the (14) HQKLVFFA(21) region that constitute the fibril spine with RMSF values ranging from 1.4 to 3.6 Å. These results show that curcumin binding to Aβ shifts the equilibrium in the aggregation pathway by promoting the formation of non-toxic aggregates.

  20. Amyloid β Oligomeric Species Present in the Lag Phase of Amyloid Formation.

    Directory of Open Access Journals (Sweden)

    Martin Wolff

    Full Text Available Alzheimer's disease (AD-associated amyloid β peptide (Aβ is one of the main actors in AD pathogenesis. Aβ is characterized by its high tendency to self-associate, leading to the generation of oligomers and amyloid fibrils. The elucidation of pathways and intermediates is crucial for the understanding of protein assembly mechanisms in general and in conjunction with neurodegenerative diseases, e.g., for the identification of new therapeutic targets. Our study focused on Aβ42 and its oligomeric assemblies in the lag phase of amyloid formation, as studied by sedimentation velocity (SV centrifugation. The assembly state of Aβ during the lag phase, the time required by an Aβ solution to reach the exponential growth phase of aggregation, was characterized by a dominant monomer fraction below 1 S and a population of oligomeric species between 4 and 16 S. From the oligomer population, two major species close to a 12-mer and an 18-mer with a globular shape were identified. The recurrence of these two species at different initial concentrations and experimental conditions as the smallest assemblies present in solution supports the existence of distinct, energetically favored assemblies in solution. The sizes of the two species suggest an Aβ42 aggregation pathway that is based on a basic hexameric building block. The study demonstrates the potential of SV analysis for the evaluation of protein aggregation pathways.

  1. Study of the interaction of unaggregated and aggregated amyloid β protein (10-21) with outward potassium channel

    Institute of Scientific and Technical Information of China (English)

    ZHANG; ChaoFeng; FAN; Li; YANG; Pin

    2007-01-01

    Metal ion-induced aggregation of Aβinto insoluble plaques is a central factor in Alzheimer's disease. Zn2+ is the only physiologically available transition metal ion responsible for aggregating Aβ at pH 7.4. To make it clear that the neurotoxicity of Zn2+-induced aggregation of Aβ on neurons is the key to understand Aβ mechanism of action further. In this paper, we choose Aβ (10-21) as the model fragment to research hippocampal CA1 pyramidal neurons. For the first time, we adopt the combination of spectral analysis with patch-clamp technique for the preliminary study of the mutual relations of Zn2+, Aβ and ion channel from the cell level. The following expounds upon the effects and mode of action of two forms (unaggregated and aggregated) of Aβ (10-21) on hippocampus outward potassium channel three processes (activation, inactivation and reactivation). It also shows the molecular mechanics of AD from the channel level. These results are significant for the further study of Aβ nosogenesis and the development of new types of target drugs for the treatment of AD.

  2. Introduction of d-Glutamate at a Critical Residue of Aβ42 Stabilizes a Prefibrillary Aggregate with Enhanced Toxicity.

    Science.gov (United States)

    Warner, Christopher J A; Dutta, Subrata; Foley, Alejandro R; Raskatov, Jevgenij A

    2016-08-16

    The amyloid beta peptide 42 (Aβ42) is an aggregation-prone peptide that plays a pivotal role in Alzheimer's disease. We report that a subtle perturbation to the peptide through a single chirality change at glutamate 22 leads to a pronounced delay in the β-sheet adoption of the peptide. This was accompanied by an attenuated propensity of the peptide to form fibrils, which was correlated with changes at the level of the fibrillary architecture. Strikingly, the incorporation of d-glutamate was found to stabilize a soluble, ordered macromolecular assembly with enhanced cytotoxicity to PC12 cells, highlighting the importance of advanced prefibrillary Aβ aggregates in neurotoxicity.

  3. 游离氨基酸对Аβ多肽异常聚集作用的影响%Effect of Free Amino Acids on the Abnormal Accumulation of AmyloidPeptides

    Institute of Scientific and Technical Information of China (English)

    连智慧; 王海燕; 王中奎; 韩大雄

    2012-01-01

    阿尔兹海默氏病的主要病因之一,是病人大脑的海马区和皮质区中Аβ多肽异常聚集形成了老年脑斑.本工作通过质谱方法研究游离氨基酸存在下铜离子和Аβ多肽的相互作用,发现由于其侧链极性和强配位能力,天冬氨酸、谷氨酸、亮氨酸、酪氨酸、苏氨酸和组氨酸6种氨基酸能够在较低浓度下明显抑制铜离子和Аβ多肽的结合,由此推测游离氨基酸可能是一种新的与Аβ多肽异常聚集相关的微环境因素.%A major hallmark of Alzheimer’s disease is the senile plaques in cerebral cortex and hippocampus,mainly composed of the abnormal accumulation of amyloid-β(Aβ) peptides.It was suggested that metal ions(such as copper ions) would be a possible key mediating factor for the formation of amyloid deposits by binding to Aβ peptides and triggering the involved aggregation process.Some previous studies have uncovered that the concentration levels of free amino acids(aa) in the brain of AD patients are different from that of normal controls.So we investigated the interactions between copper ions and Aβ peptides in the presence of free amino acids.The effects of sixteen amino acids on the copper-Aβ complexes were examined by electrospray-ionization mass spectrometry(ESI-MS).Firstly,the mixture solution of Aβ(10-21) peptide(10 μmol/L) and Cu(Gly)2(40 μmol/L) was incubated for 1 h at 37 ℃ in 10 mmol/L ammonium acetate buffer(pH=6.5).Then stock solution of each amino acid was added yielding Aβ/Cu2+/aa mixture solution at the final concentration of 1∶4∶x(x= 0,1,2,3,4,5,10) for 200 μL total volume.After 1 h incubation,the samples were analyzed by ESI-MS.Different effects of these amino acids have been observed by comparing the mass spectrum of Aβ/Cu2+/aa mixture solution with the spectrum of Aβ/Cu2+mixture solution.Because of their side chain polarity and stronger coordination ability

  4. Plug-Based Microfluidics with Defined Surface Chemistry to Miniaturize and Control Aggregation of Amyloidogenic Peptides**

    OpenAIRE

    Meier, Matthias; Kennedy-Darling, Julia; Choi, Se Hoon; Norstrom, Eric M.; Sisodia, Sangram S; Ismagilov, Rustem F.

    2009-01-01

    Small with control: For miniaturization of protein aggregation experiments the interfacial chemistry must be controlled to avoid protein aggregation caused by interfacial adsorption. Plug-based microfluidics with defined surface chemistry (see schematic picture) can then be used to perform hundreds of aggregation experiments with volume-limited samples, such as cerebrospinal fluid from mice.

  5. Silibinin attenuates amyloid beta(25-35) peptide-induced memory impairments: implication of inducible nitric-oxide synthase and tumor necrosis factor-alpha in mice.

    Science.gov (United States)

    Lu, P; Mamiya, T; Lu, L L; Mouri, A; Niwa, M; Hiramatsu, M; Zou, L B; Nagai, T; Ikejima, T; Nabeshima, T

    2009-10-01

    In Alzheimer's disease (AD), the deposition of amyloid peptides is invariably associated with oxidative stress and inflammatory responses. Silibinin (silybin), a flavonoid derived from the herb milk thistle, has potent anti-inflammatory and antioxidant activities. However, it remains unclear whether silibinin improves amyloid beta (Abeta) peptide-induced neurotoxicity. In this study, we examined the effect of silibinin on the fear-conditioning memory deficits, inflammatory response, and oxidative stress induced by the intracerebroventricular injection of Abeta peptide(25-35) (Abeta(25-35)) in mice. Mice were treated with silibinin (2, 20, and 200 mg/kg p.o., once a day for 8 days) from the day of the Abeta(25-35) injection (day 0). Memory function was evaluated in cued and contextual fear-conditioning tests (day 6). Nitrotyrosine levels in the hippocampus and amygdala were examined (day 8). The mRNA expression of inducible nitric-oxide synthase (iNOS) and tumor necrosis factor-alpha (TNF-alpha) in the hippocampus and amygdala was measured 2 h after the Abeta(25-35) injection. We found that silibinin significantly attenuated memory deficits caused by Abeta(25-35) in the cued and contextual fear-conditioning test. Silibinin significantly inhibited the increase in nitrotyrosine levels in the hippocampus and amygdala induced by Abeta(25-35). Nitrotyrosine levels in these regions were negatively correlated with memory performance. Moreover, real-time RT-PCR revealed that silibinin inhibited the overexpression of iNOS and TNF-alpha mRNA in the hippocampus and amygdala induced by Abeta(25-35). These findings suggest that silibinin (i) attenuates memory impairment through amelioration of oxidative stress and inflammatory response induced by Abeta(25-35) and (ii) may be a potential candidate for an AD medication. PMID:19638571

  6. A fast and specific method to screen for intracellular amyloid inhibitors using bacterial model systems.

    Science.gov (United States)

    Navarro, Susanna; Carija, Anita; Muñoz-Torrero, Diego; Ventura, Salvador

    2016-10-01

    The aggregation of a large variety of amyloidogenic proteins is linked to the onset of devastating human disorders. Therefore, there is an urgent need for effective molecules able to modulate the aggregative properties of these polypeptides in their natural environment, in order to prevent, delay or halt the progression of such diseases. On the one hand, the complexity and cost of animal models make them inefficient at early stages of drug discovery, where large chemical libraries are usually screened. On the other hand, in vitro aggregation assays in aqueous solutions hardly reproduce (patho)physiological conditions. In this context, because the formation of insoluble aggregates in bacteria shares mechanistic and functional properties with amyloid self-assembly in higher organisms, they have emerged as a promising system to model aggregation in the cell. Here we show that bacteria provide a powerful and cost-effective system to screen for amyloid inhibitors using fluorescence spectroscopy and flow cytometry, thanks to the ability of the novel red fluorescent ProteoStat dye to detect specifically intracellular amyloid-like aggregates. We validated the approach using the Alzheimer's linked Aβ40 and Aβ42 peptides and tacrine- and huprine-based aggregation inhibitors. Overall, the present method bears the potential to replace classical in vitro anti-aggregation assays. PMID:26608003

  7. Quantitative analysis of the flavonoid glycosides and terpene trilactones in the extract of Ginkgo biloba and evaluation of their inhibitory activity towards fibril formation of β-amyloid peptide.

    Science.gov (United States)

    Xie, Haiyan; Wang, Jing-Rong; Yau, Lee-Fong; Liu, Yong; Liu, Liang; Han, Quan-Bin; Zhao, Zhongzhen; Jiang, Zhi-Hong

    2014-04-10

    The standard extract of Ginkgo biloba leaves (EGb761) is used clinically in Europe for the symptomatic treatment of impaired cerebral function in primary degenerative dementia syndromes, and the results of numerous in vivo and in vitro studies have supported such clinical use. The abnormal production and aggregation of amyloid β peptide (Aβ) and the deposition of fibrils in the brain are regarded as key steps in the onset of Alzheimer's Disease (AD), and the inhibition of Aβ aggregation and destabilization of the preformed fibrils represent viable approaches for the prevention and treatment of AD. Flavonoid glycosides and terpene trilactones (TTLs) are the two main components of EGb761 which represent 24 and 6% of the overall content, respectively. In our research, seven abundant flavonoid glycosides 1-7 were isolated from the extract of Ginkgo biloba leaves and characterized by spectroscopic analysis. Furthermore, an ultra-high performance liquid chromatography method was established for the simultaneous quantification of these seven flavonoids. The inhibitory activities of these flavonoids, as well as four TTLs, i.e., ginkgolides A, B, and C and bilobalide (compounds 8-11), were evaluated towards Aβ42 fibril formation using a thioflavin T fluorescence assay. It was found that three flavonoids 1, 3 and 4 exhibited moderate inhibitory activities, whereas the other four flavonoids 2, 5, 6 and 7, as well as the four terpene trilactones, showed poor activity. This is the first report of the inhibition of Aβ fibril formation of two characteristic acylated flavonoid glycosides 6, 7 in Ginkgo leaves, on the basis of which the structure-activity relationship of these flavonoids 1-7 was discussed.

  8. Quantitative Analysis of the Flavonoid Glycosides and Terpene Trilactones in the Extract of Ginkgo biloba and Evaluation of Their Inhibitory Activity towards Fibril Formation of β-Amyloid Peptide

    Directory of Open Access Journals (Sweden)

    Haiyan Xie

    2014-04-01

    Full Text Available The standard extract of Ginkgo biloba leaves (EGb761 is used clinically in Europe for the symptomatic treatment of impaired cerebral function in primary degenerative dementia syndromes, and the results of numerous in vivo and in vitro studies have supported such clinical use. The abnormal production and aggregation of amyloid β peptide (Aβ and the deposition of fibrils in the brain are regarded as key steps in the onset of Alzheimer’s Disease (AD, and the inhibition of Aβ aggregation and destabilization of the preformed fibrils represent viable approaches for the prevention and treatment of AD. Flavonoid glycosides and terpene trilactones (TTLs are the two main components of EGb761 which represent 24 and 6% of the overall content, respectively. In our research, seven abundant flavonoid glycosides 1–7 were isolated from the extract of Ginkgo biloba leaves and characterized by spectroscopic analysis. Furthermore, an ultra-high performance liquid chromatography method was established for the simultaneous quantification of these seven flavonoids. The inhibitory activities of these flavonoids, as well as four TTLs, i.e., ginkgolides A, B, and C and bilobalide (compounds 8–11, were evaluated towards Aβ42 fibril formation using a thioflavin T fluorescence assay. It was found that three flavonoids 1, 3 and 4 exhibited moderate inhibitory activities, whereas the other four flavonoids 2, 5, 6 and 7, as well as the four terpene trilactones, showed poor activity. This is the first report of the inhibition of Aβ fibril formation of two characteristic acylated flavonoid glycosides 6, 7 in Ginkgo leaves, on the basis of which the structure-activity relationship of these flavonoids 1–7 was discussed.

  9. Hydrogen sulfide inhibits beta-amyloid peptide-induced apoptosis in PC12 cells and the underlying mechanisms

    Institute of Scientific and Technical Information of China (English)

    Xiuqin Chen; Jingtian Li; Jinhui Zou; Bailing Li; Meng Wang

    2008-01-01

    BACKGROUND: Studies have demonstrated that hydrogen sulfide (H2S) levels are 55% lower in brains of Alzheimer's disease (AD) patients than in age-matched normal individuals, which suggests that H2S might be involved in some aspects of AD pathogenesis.OBJECTIVE: To observe the protective mechanisms of varied concentrations of H2S against β -amyloid-peptide (A β) induced apoptosis in pheochromoytoma (PC12) cells, and to analyze the pathway of action.DESIGN, TIME AND SETTING: A controlled, observational, in vitro experiment was performed at Nenrophysiology Laboratory in Zhougshan Medical School, Sun Yat-sen University between July 2006 and May 2007.MATERIALS: PC12 cells were provided by the Animal Experimental Center of Medical School of Sun Yat-sen University. Glybenclamide, rhodamine123, and dihydrorhodamine123 were purchased from Sigma (USA).METHODS: PCI2 cells were incubated at 37℃ in a 5% CO2-enriched incubator with RPMI-1640 medium, supplemented with 5% horse-serum and 10% fetal bovine serum. Cells in logarithmic growth curves received different treatment: The PC12 cells were maintains at 37℃ with the original medium, then incubated in A β 25-35, sodium hydrosulfide (NariS), glybenclamide, NailS+ A β 25-35, or pretreated with glybenelamide 30 minutes prior to administration of and A β 25-35, respectively. MAIN OUTCOME MEASURES: (1) The survival rate of PC12 cells was detected by MTT assay and Hoechst staining. (2) The apoptosis rate of PC12 cells was detected utilizing flow cytometry with propidium iodide staining, and morphological changes of apoptotic cells were observed. (3) The mitochondrial membrane potential was detected by Rhodamine 123-combined flow cytometry. (4) The intracellular reactive oxygen species content was detected by dihydrorhodamine123-combined flow cytometry. RESULTS: A β 25-35 induced significantly decreased viability and increased percentage of apoptosis in PC 12 cells, as well as dissipated mitochondrial membrane potential

  10. Structural Transitions and Aggregation in Amyloidogenic Proteins

    Science.gov (United States)

    Steckmann, Timothy; Chapagain, Prem; Gerstman, Bernard; Computational and Theoretical Biophysics Group at Florida International University Team

    2014-03-01

    Amyloid fibrils are a common component in many debilitating human neurological diseases such as Alzheimer's and Parkinson's. A detailed molecular-level understanding of the formation process of amyloid fibrils is crucial for developing methods to slow down or prevent these horrific diseases. Alpha-helix to beta-sheet structural transformation is commonly observed in the process of fibril formation. We performed replica-exchange molecular dynamics simulations of structural transformations in an engineered model peptide cc-beta. Several sets of simulations with different number of cc-beta monomers were considered. Conversion of alpha-helix monomers to beta strands and the aggregation of beta strand monomers into sheets were analyzed as a function of the system size. Hydrogen bond analysis was performed and the beta-aggregate structures were characterized by a nematic order parameter.

  11. The formation, function and regulation of amyloids: insights from structural biology.

    Science.gov (United States)

    Landreh, M; Sawaya, M R; Hipp, M S; Eisenberg, D S; Wüthrich, K; Hartl, F U

    2016-08-01

    Amyloid diseases are characterized by the accumulation of insoluble, β-strand-rich aggregates. The underlying structural conversions are closely associated with cellular toxicity, but can also drive the formation of functional protein assemblies. In recent years, studies in the field of structural studies have revealed astonishing insights into the origins, mechanisms and implications of amyloid formation. Notably, high-resolution crystal structures of peptides in amyloid-like fibrils and prefibrillar oligomers have become available despite their challenging chemical nature. Nuclear magnetic resonance spectroscopy has revealed that dynamic local polymorphisms in the benign form of the prion protein affect the transformation into amyloid fibrils and the transmissibility of prion diseases. Studies of the structures and interactions of chaperone proteins help us to understand how the cellular proteostasis network is able to recognize different stages of aberrant protein folding and prevent aggregation. In this review, we will focus on recent developments that connect the different aspects of amyloid biology and discuss how understanding the process of amyloid formation and the associated defence mechanisms can reveal targets for pharmacological intervention that may become the first steps towards clinically viable treatment strategies. PMID:27237473

  12. Key Points Concerning Amyloid Infectivity and Prion-Like Neuronal Invasion

    Science.gov (United States)

    Espargaró, Alba; Busquets, Maria Antònia; Estelrich, Joan; Sabate, Raimon

    2016-01-01

    Amyloid aggregation has been related to an increasing number of human illnesses, from Alzheimer’s and Parkinson’s diseases (AD/PD) to Creutzfeldt-Jakob disease. Commonly, only prions have been considered as infectious agents with a high capacity of propagation. However, recent publications have shown that many amyloid proteins, including amyloid β-peptide, α-synuclein (α-syn) and tau protein, also propagate in a “prion-like” manner. Meanwhile, no link between propagation of pathological proteins and neurotoxicity has been demonstrated. The extremely low infectivity under natural conditions of most non-prion amyloids is far below the capacity to spread exhibited by prions. Nonetheless, it is important to elucidate the key factors that cause non-prion amyloids to become infectious agents. In recent years, important advances in our understanding of the amyloid processes of amyloid-like proteins and unrelated prions (i.e., yeast and fungal prions) have yielded essential information that can shed light on the prion phenomenon in mammals and humans. As shown in this review, recent evidence suggests that there are key factors that could dramatically modulate the prion capacity of proteins in the amyloid conformation. The concentration of nuclei, the presence of oligomers, and the toxicity, resistance and localization of these aggregates could all be key factors affecting their spread. In short, those factors that favor the high concentration of extracellular nuclei or oligomers, characterized by small size, with a low toxicity could dramatically increase prion propensity; whereas low concentrations of highly toxic intracellular amyloids, with a large size, would effectively prevent infectivity. PMID:27147962

  13. Key points concerning amyloid infectivity and prion-like neuronal invasion

    Directory of Open Access Journals (Sweden)

    Alba eEspargaró

    2016-04-01

    Full Text Available Amyloid aggregation has been related to an increasing number of human illnesses, from Alzheimer and Parkinson’s diseases to Creutzfeldt-Jakob disease. Traditionally only prions have been considered as infectious agents with a high capacity of propagation. Although recent publications have showed that many amyloid proteins, including amyloid β-peptide, α-synuclein and tau protein, also propagate in a prion-like manner, the link between propagation of pathological proteins and neurotoxicity has not been evidenced. The extremely low infectivity in natural conditions of the most of non-prion amyloids is far from the spreading capacity displayed by the prions. However, it is important to elucidate the key factors that cause non-prion amyloids become infectious agents. In recent years, important advances in the understanding of the amyloid processes of amyloid-like proteins and unrelated prions (i.e., yeast and fungal prions have yielded essential information that can be applied to shed light on the prion phenomenon in mammals and humans. As shown in this review, recent evidences suggest that there are key factors that could dramatically modulate the prion capacity of proteins in the amyloid conformation. The concentration of nuclei, the presence of oligomers, and the toxicity, resistance and localization of these aggregates could be key factors affecting their spreading. In short, those factors that favor the high concentration of extracellular nuclei or oligomers, characterized by a small size, with a low toxicity could dramatically increase prion propensity; whereas low concentrations of highly toxic intracellular amyloids, with a large size, would prevent infectivity.

  14. Key Points Concerning Amyloid Infectivity and Prion-Like Neuronal Invasion.

    Science.gov (United States)

    Espargaró, Alba; Busquets, Maria Antònia; Estelrich, Joan; Sabate, Raimon

    2016-01-01

    Amyloid aggregation has been related to an increasing number of human illnesses, from Alzheimer's and Parkinson's diseases (AD/PD) to Creutzfeldt-Jakob disease. Commonly, only prions have been considered as infectious agents with a high capacity of propagation. However, recent publications have shown that many amyloid proteins, including amyloid β-peptide, α-synuclein (α-syn) and tau protein, also propagate in a "prion-like" manner. Meanwhile, no link between propagation of pathological proteins and neurotoxicity has been demonstrated. The extremely low infectivity under natural conditions of most non-prion amyloids is far below the capacity to spread exhibited by prions. Nonetheless, it is important to elucidate the key factors that cause non-prion amyloids to become infectious agents. In recent years, important advances in our understanding of the amyloid processes of amyloid-like proteins and unrelated prions (i.e., yeast and fungal prions) have yielded essential information that can shed light on the prion phenomenon in mammals and humans. As shown in this review, recent evidence suggests that there are key factors that could dramatically modulate the prion capacity of proteins in the amyloid conformation. The concentration of nuclei, the presence of oligomers, and the toxicity, resistance and localization of these aggregates could all be key factors affecting their spread. In short, those factors that favor the high concentration of extracellular nuclei or oligomers, characterized by small size, with a low toxicity could dramatically increase prion propensity; whereas low concentrations of highly toxic intracellular amyloids, with a large size, would effectively prevent infectivity. PMID:27147962

  15. Rescue of amyloid-Beta-induced inhibition of nicotinic acetylcholine receptors by a peptide homologous to the nicotine binding domain of the alpha 7 subtype.

    Directory of Open Access Journals (Sweden)

    Arthur A Nery

    Full Text Available Alzheimer's disease (AD is characterized by brain accumulation of the neurotoxic amyloidpeptide (Aβ and by loss of cholinergic neurons and nicotinic acetylcholine receptors (nAChRs. Recent evidence indicates that memory loss and cognitive decline in AD correlate better with the amount of soluble Aβ than with the extent of amyloid plaque deposits in affected brains. Inhibition of nAChRs by soluble Aβ40 is suggested to contribute to early cholinergic dysfunction in AD. Using phage display screening, we have previously identified a heptapeptide, termed IQ, homologous to most nAChR subtypes, binding with nanomolar affinity to soluble Aβ40 and blocking Aβ-induced inhibition of carbamylcholine-induced currents in PC12 cells expressing α7 nAChRs. Using alanine scanning mutagenesis and whole-cell current recording, we have now defined the amino acids in IQ essential for reversal of Aβ40 inhibition of carbamylcholine-induced responses in PC12 cells, mediated by α7 subtypes and other endogenously expressed nAChRs. We further investigated the effects of soluble Aβ, IQ and analogues of IQ on α3β4 nAChRs recombinantly expressed in HEK293 cells. Results show that nanomolar concentrations of soluble Aβ40 potently inhibit the function of α3β4 nAChRs, and that subsequent addition of IQ or its analogues does not reverse this effect. However, co-application of IQ makes the inhibition of α3β4 nAChRs by Aβ40 reversible. These findings indicate that Aβ40 inhibits different subtypes of nAChRs by interacting with specific receptor domains homologous to the IQ peptide, suggesting that IQ may be a lead for novel drugs to block the inhibition of cholinergic function in AD.

  16. Photoprotective effect of the N-terminal 5-mer peptide analog P165 of amyloid precursor protein in human dermal fibroblasts

    Institute of Scientific and Technical Information of China (English)

    Wang Ying; Chen Hui; Lin Yuying; Wang Wen; Wang Rong; Lian Shi; Zhu Wei

    2014-01-01

    Background We showed in our previous study that the N-terminal 17-mer peptide of amyloid precursor protein (APP17-mer peptide),an active peptide segment with trophic and antioxidative effects,protects skin fibroblasts against ultraviolet (UV) damage and downregulates matrix metalloproteinase 1 (MMP-1) expression.The aim of the current study was to explore the protective effects of P165,the N-terminal 5-mer peptide analog of amyloid precursor protein that is resistant to enzymolysis,on UVA-induced damage in human dermal fibroblasts (HDFs).Methods HDFs were cultured in Dulbecco's modified Eagle's medium without and with P165 (concentrations were 1,10,and 100 μJmol/L).Then,15 J/cm2 UVA irradiation was used to obtain the UV-irradiated model.Cell proliferation was analyzed using MTT kit.The collagen type Ⅰ and MMP-1 contents in cell lysate were determined by enzyme-linked immunosorbent assay (ELISA).Fluorometric assays were performed to detect the formation of intracellular reactive oxygen species (ROS) in the cells.Results P165 significantly protected the HDFs against UVA-induced cytotoxicity.Compared with the UVA-irradiated control,1,10,and 100 μmol/L P165 elevated cell proliferation by 14.98% (P<0.05),17.52% (P<0.01) and 28.34% (P<0.001),respectively.Simultaneously,10 and 100 μmol/L P165 increased collagen type Ⅰ content (both P<0.05).Moreover,P165 treatment (all concentrations) also markedly suppressed the UVA-induced MMP-1 expression (all P<0.001).P165 at 1,10,and 100 μmol/L also reduced UVA-induced ROS generation by 11.27%,13.69% (both P<0.05),and 25.48% (P<0.001),respectively.Conclusions P165 could protect the HDFs against UVA-induced photodamage,including cytotoxicity,and MMP-1 generation.Furthermore,it also increased the collagen type Ⅰ content in the cells.The inhibitory effect on intracellular ROS generation might be involved in these photoprotective effects.Thus,P165 may be a useful candidate in the prevention and

  17. A systematic review of amyloid-beta peptides as putative mediators of the association between affective disorders and Alzheimer's disease

    DEFF Research Database (Denmark)

    Abbasowa, L.; Heegaard, N. H. H.

    2014-01-01

    to the application of different assay formats, study results indicate a potentially altered amyloid-beta metabolism in affective disorder. Limitations: Since most studies used a cross-sectional design, causality is difficult to establish. Moreover, methodological rigor of included studies varied and several studies......-beta concentrations change over time and are associated with cognition as well as affective symptomatology, future research should include prospective, longitudinal studies, implemented in large study populations, where peripheral and central amyloid-p ratios are quantified concomitantly and continuously across...... various affective phases. Also, to enable inter survey comparisons, the use of standardized pre-analytical/analytical procedures is crucial. (C) 2014 Elsevier B.V. All rights reserved....

  18. Curcumin Improves Amyloid β-Peptide (1-42) Induced Spatial Memory Deficits through BDNF-ERK Signaling Pathway

    OpenAIRE

    Lu Zhang; Yu Fang; Yuming Xu; Yajun Lian; Nanchang Xie; Tianwen Wu; Haifeng Zhang; Limin Sun; Ruifang Zhang; Zhenhua Wang

    2015-01-01

    Curcumin, the most active component of turmeric, has various beneficial properties, such as antioxidant, anti-inflammatory, and antitumor effects. Previous studies have suggested that curcumin reduces the levels of amyloid and oxidized proteins and prevents memory deficits and thus is beneficial to patients with Alzheimer's disease (AD). However, the molecular mechanisms underlying curcumin's effect on cognitive functions are not well-understood. In the present study, we examined the working ...

  19. Transfer of Copper from an Amyloid to a Natural Copper-Carrier Peptide with a Specific Mediating Ligand.

    Science.gov (United States)

    Nguyen, Michel; Bijani, Christian; Martins, Nathalie; Meunier, Bernard; Robert, Anne

    2015-11-16

    The oxidative stress that arises from the catalytic reduction of dioxygen by Cu(II/I)-loaded amyloids is the major pathway for neuron death that occurs in Alzheimer's disease. In this work, we show that bis-8(aminoquinoline) ligands, copper(II) specific chelators, are able to catalytically extract Cu(II) from Cu-Aβ1-16 and then completely release Cu(I) in the presence of glutathione to provide a Cu(I)-glutathione complex, a biological intermediate that is able to deliver copper to apo forms of copper-protein complexes. These data demonstrate that bis-8(aminoquinolines) can perform the transfer of copper ions from the pathological Cu-amyloid complexes to regular copper-protein complexes. These copper-specific ligands assist GSH to recycle Cu(I) in an AD brain and consequently slow down oxidative damage that is due to copper dysregulation in Alzheimer's disease. Under the same conditions, we have shown that the copper complex of PBT2, a mono(8-hydroxyquinoline) previously used as a drug candidate, does not efficiently release copper in the presence of GSH. In addition, we report that GSH itself was unable to fully abstract copper ions from Cu-β-amyloid complexes.

  20. DNA aptamers detecting generic amyloid epitopes

    OpenAIRE

    Mitkevich, Olga V.; Kochneva-Pervukhova, Natalia V; Surina, Elizaveta R.; Benevolensky, Sergei V.; Kushnirov, Vitaly V.; Ter-Avanesyan, Michael D.

    2012-01-01

    Amyloids are fibrillar protein aggregates resulting from non-covalent autocatalytic polymerization of various structurally and functionally unrelated proteins. Previously we have selected DNA aptamers, which bind specifically to the in vitro assembled amyloid fibrils of the yeast prionogenic protein Sup35. Here we show that such DNA aptamers can be used to detect SDS-insoluble amyloid aggregates of the Sup35 protein, and of some other amyloidogenic proteins, including mouse PrP, formed in yea...

  1. Human Islet Amyloid Polypeptide

    DEFF Research Database (Denmark)

    Kosicka, Iga

    2014-01-01

    Diabetes mellitus type II is a metabolic disease affecting millions of people worldwide. The disease is associated with occurence of insoluble, fibrillar, protein aggregates in islets of Langerhans in the pancreas - islet amyloid. The main constituent of these protein fibers is the human islet...

  2. Role of glycine-33 and methionine-35 in Alzheimer's amyloid beta-peptide 1-42-associated oxidative stress and neurotoxicity.

    Science.gov (United States)

    Kanski, Jaroslaw; Varadarajan, Sridhar; Aksenova, Marina; Butterfield, D Allan

    2002-03-16

    Recent theoretical calculations predicted that Gly33 of one molecule of amyloid beta-peptide (1-42) (Abeta(1-42)) is attacked by a putative sulfur-based free radical of methionine residue 35 of an adjacent peptide. This would lead to a carbon-centered free radical on Gly33 that would immediately bind oxygen to form a peroxyl free radical. Such peroxyl free radicals could contribute to the reported Abeta(1-42)-induced lipid peroxidation, protein oxidation, and neurotoxicity, all of which are prevented by the chain-breaking antioxidant vitamin E. In the theoretical calculations, it was shown that no other amino acid, only Gly, could undergo such a reaction. To test this prediction we studied the effects of substitution of Gly33 of Abeta(1-42) on protein oxidation and neurotoxicity of hippocampal neurons and free radical formation in synaptosomes and in solution. Gly33 of Abeta(1-42) was substituted by Val (Abeta(1-42G33V)). The substituted peptide showed almost no neuronal toxicity compared to the native Abeta(1-42) as well as significantly lowered levels of oxidized proteins. In addition, synaptosomes subjected to Abeta(1-42G33V) showed considerably lower dichlorofluorescein-dependent fluorescence - a measure of reactive oxygen species (ROS) - in comparison to native Abeta(1-42) treatment. The ability of the peptides to generate ROS was also evaluated by electron paramagnetic resonance (EPR) spin trapping methods using the ultrapure spin trap N-tert-butyl-alpha-phenylnitrone (PBN). While Abeta(1-42) gave a strong mixture of four- and six-line PBN-derived spectra, the intensity of the EPR signal generated by Abeta(1-42G33V) was far less. Finally, the ability of the peptides to form fibrils was evaluated by electron microscopy. Abeta(1-42G33V) does not form fibrils nearly as well as Abeta(1-42) after 48 h of incubation. The results suggest that Gly33 may be a possible site of free radical propagation processes that are initiated on Met35 of Abeta(1-42) and that

  3. An in vivo platform for identifying inhibitors of protein aggregation.

    Science.gov (United States)

    Saunders, Janet C; Young, Lydia M; Mahood, Rachel A; Jackson, Matthew P; Revill, Charlotte H; Foster, Richard J; Smith, D Alastair; Ashcroft, Alison E; Brockwell, David J; Radford, Sheena E

    2016-02-01

    Protein aggregation underlies an array of human diseases, yet only one small-molecule therapeutic targeting this process has been successfully developed to date. Here, we introduce an in vivo system, based on a β-lactamase tripartite fusion construct, that is capable of identifying aggregation-prone sequences in the periplasm of Escherichia coli and inhibitors that prevent their aberrant self-assembly. We demonstrate the power of the system using a range of proteins, from small unstructured peptides (islet amyloid polypeptide and amyloid β) to larger, folded immunoglobulin domains. Configured in a 48-well format, the split β-lactamase sensor readily differentiates between aggregation-prone and soluble sequences. Performing the assay in the presence of 109 compounds enabled a rank ordering of inhibition and revealed a new inhibitor of islet amyloid polypeptide aggregation. This platform can be applied to both amyloidogenic and other aggregation-prone systems, independent of sequence or size, and can identify small molecules or other factors able to ameliorate or inhibit protein aggregation. PMID:26656088

  4. Structural and pathway complexity of beta-strand reorganization within aggregates of human transthyretin(105-115) peptide.

    Science.gov (United States)

    Li, Da-Wei; Han, Li; Huo, Shuanghong

    2007-05-17

    Interstrand conformational rearrangements of human transthyretin peptide (TTR(105-115)) within dimeric aggregates were simulated by means of molecular dynamics (MD) with implicit solvation model for a total length of 48 micros. The conformations sampled in the MD simulations were clustered to identify free energy minima without any projections of free energy surface. A connected graph was constructed with nodes (=clusters) and edges corresponding to free energy minima and transitions between nodes, respectively. This connected graph which reflects the complexity of the free energy surface was used to extract the transition disconnectivity graph, which reflects the overall free energy barriers between pairs of free energy minima but does not contain information on transition paths. The routes of transitions between important free energy minima were obtained by further processing the original graph and the MD data. We have found that both parallel and antiparallel aggregates are populated. The parallel aggregates with different alignment patterns are separated by nonnegligible free energy barriers. Multiroutes exist in the interstrand conformational reorganization. Most visited routes do not dominant the kinetics, while less visited routes contribute a little each but they are numerous and their total contributions are actually dominant. There are various kinds of reptation motions, including those through a beta-bulge, side-chain aided reptation, and flipping or rotation of a hairpin formed by one strand.

  5. Proinsulin C-peptide interferes with insulin fibril formation

    Energy Technology Data Exchange (ETDEWEB)

    Landreh, Michael [Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 77 Stockholm (Sweden); Stukenborg, Jan-Bernd [Department of Women' s and Children' s Health, Astrid Lindgren Children' s Hospital, Pediatric Endocrinology Unit, Karolinska Institutet and University Hospital, S-17176 Stockholm (Sweden); Willander, Hanna [KI-Alzheimer' s Disease Research Center, NVS Department, Karolinska Institutet, S-141 86 Stockholm (Sweden); Soeder, Olle [Department of Women' s and Children' s Health, Astrid Lindgren Children' s Hospital, Pediatric Endocrinology Unit, Karolinska Institutet and University Hospital, S-17176 Stockholm (Sweden); Johansson, Jan [KI-Alzheimer' s Disease Research Center, NVS Department, Karolinska Institutet, S-141 86 Stockholm (Sweden); Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, S-751 23 Uppsala (Sweden); Joernvall, Hans, E-mail: Hans.Jornvall@ki.se [Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 77 Stockholm (Sweden)

    2012-02-17

    Highlights: Black-Right-Pointing-Pointer Insulin and C-peptide can interact under insulin fibril forming conditions. Black-Right-Pointing-Pointer C-peptide is incorporated into insulin aggregates and alters aggregation lag time. Black-Right-Pointing-Pointer C-peptide changes insulin fibril morphology and affects backbone accessibility. Black-Right-Pointing-Pointer C-peptide may be a regulator of fibril formation by {beta}-cell granule proteins. -- Abstract: Insulin aggregation can prevent rapid insulin uptake and cause localized amyloidosis in the treatment of type-1 diabetes. In this study, we investigated the effect of C-peptide, the 31-residue peptide cleaved from proinsulin, on insulin fibrillation at optimal conditions for fibrillation. This is at low pH and high concentration, when the fibrils formed are regular and extended. We report that C-peptide then modulates the insulin aggregation lag time and profoundly changes the fibril appearance, to rounded clumps of short fibrils, which, however, still are Thioflavine T-positive. Electrospray ionization mass spectrometry also indicates that C-peptide interacts with aggregating insulin and is incorporated into the aggregates. Hydrogen/deuterium exchange mass spectrometry further reveals reduced backbone accessibility in insulin aggregates formed in the presence of C-peptide. Combined, these effects are similar to those of C-peptide on islet amyloid polypeptide fibrillation and suggest that C-peptide has a general ability to interact with amyloidogenic proteins from pancreatic {beta}-cell granules. Considering the concentrations, these peptide interactions should be relevant also during physiological secretion, and even so at special sites post-secretory or under insulin treatment conditions in vivo.

  6. Proinsulin C-peptide interferes with insulin fibril formation

    International Nuclear Information System (INIS)

    Highlights: ► Insulin and C-peptide can interact under insulin fibril forming conditions. ► C-peptide is incorporated into insulin aggregates and alters aggregation lag time. ► C-peptide changes insulin fibril morphology and affects backbone accessibility. ► C-peptide may be a regulator of fibril formation by β-cell granule proteins. -- Abstract: Insulin aggregation can prevent rapid insulin uptake and cause localized amyloidosis in the treatment of type-1 diabetes. In this study, we investigated the effect of C-peptide, the 31-residue peptide cleaved from proinsulin, on insulin fibrillation at optimal conditions for fibrillation. This is at low pH and high concentration, when the fibrils formed are regular and extended. We report that C-peptide then modulates the insulin aggregation lag time and profoundly changes the fibril appearance, to rounded clumps of short fibrils, which, however, still are Thioflavine T-positive. Electrospray ionization mass spectrometry also indicates that C-peptide interacts with aggregating insulin and is incorporated into the aggregates. Hydrogen/deuterium exchange mass spectrometry further reveals reduced backbone accessibility in insulin aggregates formed in the presence of C-peptide. Combined, these effects are similar to those of C-peptide on islet amyloid polypeptide fibrillation and suggest that C-peptide has a general ability to interact with amyloidogenic proteins from pancreatic β-cell granules. Considering the concentrations, these peptide interactions should be relevant also during physiological secretion, and even so at special sites post-secretory or under insulin treatment conditions in vivo.

  7. 仪器分析研究β淀粉样蛋白和金属离子相互作用进展%Progress in Interactions of Peptide Amyloid-β and Metal ions

    Institute of Scientific and Technical Information of China (English)

    姚付军; 李向军; 袁倬斌

    2012-01-01

    大脑皮质中β淀粉样蛋白的聚集以及纤维的生成被认为与阿尔茨海默病存在密切的关系,很多证据表明过渡金属离子如铜、锌和铁在β淀粉样蛋白沉淀和神经毒性的产生过程中有着非常重要的作用。因此,研究金属离子与β淀粉样蛋白的相互作用、对Aβ的结构以及其聚集过程的影响对了解阿尔茨海默病的神经生理学特征有着非常重要的意义。此外,对Aβ蛋白与金属离子结合位点的研究亦为阿尔茨海默病的新疗法提供了一个非常广阔的前景。%The aggregation of the peptide amyloid-β(Aβ) into fibrils is considered to be closely related to the cause of Alzheimer disease(AD).A large body of evidence suggests that metallic ions such as copper,zinc and iron play an important role in the Aβ precipitation and toxicity.Therefore,the investation of how these metallic ions interact with Aβ,their influence on structure and oligomerization is very useful for understanding the neuropathological feaatures of AD.Furthermore,the understanding to the metal-ion binding sites on Aβ will provide a very promising target for the development of new therapeutics.

  8. Curcumin Improves Amyloid β-Peptide (1-42 Induced Spatial Memory Deficits through BDNF-ERK Signaling Pathway.

    Directory of Open Access Journals (Sweden)

    Lu Zhang

    Full Text Available Curcumin, the most active component of turmeric, has various beneficial properties, such as antioxidant, anti-inflammatory, and antitumor effects. Previous studies have suggested that curcumin reduces the levels of amyloid and oxidized proteins and prevents memory deficits and thus is beneficial to patients with Alzheimer's disease (AD. However, the molecular mechanisms underlying curcumin's effect on cognitive functions are not well-understood. In the present study, we examined the working memory and spatial reference memory in rats that received a ventricular injection of amyloid-β1-42 (Aβ1-42, representing a rodent model of Alzheimer's disease (AD. The rats treated with Aβ1-42 exhibited obvious cognitive deficits in behavioral tasks. Chronic (seven consecutive days, once per day but not acute (once a day curcumin treatments (50, 100, and 200 mg/kg improved the cognitive functions in a dose-dependent manner. In addition, the beneficial effect of curcumin is accompanied by increased BDNF levels and elevated levels of phosphorylated ERK in the hippocampus. Furthermore, the cognition enhancement effect of curcumin could be mimicked by the overexpression of BDNF in the hippocampus and blocked by either bilateral hippocampal injections with lentiviruses that express BDNF shRNA or a microinjection of ERK inhibitor. These findings suggest that chronic curcumin ameliorates AD-related cognitive deficits and that upregulated BDNF-ERK signaling in the hippocampus may underlie the cognitive improvement produced by curcumin.

  9. Antiaggregation Potential of Padina gymnospora against the Toxic Alzheimer's Beta-Amyloid Peptide 25-35 and Cholinesterase Inhibitory Property of Its Bioactive Compounds.

    Directory of Open Access Journals (Sweden)

    Balakrishnan Shanmuganathan

    Full Text Available Inhibition of β-amyloid (Aβ aggregation in the cerebral cortex of the brain is a promising therapeutic and defensive strategy in identification of disease modifying agents for Alzheimer's disease (AD. Since natural products are considered as the current alternative trend for the discovery of AD drugs, the present study aims at the evaluation of anti-amyloidogenic potential of the marine seaweed Padina gymnospora. Prevention of aggregation and disaggregation of the mature fibril formation of Aβ 25-35 by acetone extracts of P. gymnospora (ACTPG was evaluated in two phases by Thioflavin T assay. The results were further confirmed by confocal laser scanning microscopy (CLSM analysis and Fourier transform infrared (FTIR spectroscopic analysis. The results of antiaggregation and disaggregation assay showed that the increase in fluorescence intensity of aggregated Aβ and the co-treatment of ACTPG (250 μg/ml with Aβ 25-35, an extensive decrease in the fluorescence intensity was observed in both phases, which suggests that ACTPG prevents the oligomers formation and disaggregation of mature fibrils. In addition, ACTPG was subjected to column chromatography and the bioactivity was screened based on the cholinesterase inhibitory activity. Finally, the active fraction was subjected to LC-MS/MS analysis for the identification of bioactive compounds. Overall, the results suggest that the bioactive compound alpha bisabolol present in the alga might be responsible for the observed cholinesterase inhibition with the IC50 value < 10 μg/ml for both AChE and BuChE when compared to standard drug donepezil (IC50 value < 6 μg/ml and support its use for the treatment of neurological disorders.

  10. Role of sequence and structural polymorphism on the mechanical properties of amyloid fibrils.

    Directory of Open Access Journals (Sweden)

    Gwonchan Yoon

    Full Text Available Amyloid fibrils playing a critical role in disease expression, have recently been found to exhibit the excellent mechanical properties such as elastic modulus in the order of 10 GPa, which is comparable to that of other mechanical proteins such as microtubule, actin filament, and spider silk. These remarkable mechanical properties of amyloid fibrils are correlated with their functional role in disease expression. This suggests the importance in understanding how these excellent mechanical properties are originated through self-assembly process that may depend on the amino acid sequence. However, the sequence-structure-property relationship of amyloid fibrils has not been fully understood yet. In this work, we characterize the mechanical properties of human islet amyloid polypeptide (hIAPP fibrils with respect to their molecular structures as well as their amino acid sequence by using all-atom explicit water molecular dynamics (MD simulation. The simulation result suggests that the remarkable bending rigidity of amyloid fibrils can be achieved through a specific self-aggregation pattern such as antiparallel stacking of β strands (peptide chain. Moreover, we have shown that a single point mutation of hIAPP chain constituting a hIAPP fibril significantly affects the thermodynamic stability of hIAPP fibril formed by parallel stacking of peptide chain, and that a single point mutation results in a significant change in the bending rigidity of hIAPP fibrils formed by antiparallel stacking of β strands. This clearly elucidates the role of amino acid sequence on not only the equilibrium conformations of amyloid fibrils but also their mechanical properties. Our study sheds light on sequence-structure-property relationships of amyloid fibrils, which suggests that the mechanical properties of amyloid fibrils are encoded in their sequence-dependent molecular architecture.

  11. Amyloid-β-Anti-Amyloid-β Complex Structure Reveals an Extended Conformation in the Immunodominant B-Cell Epitope

    Energy Technology Data Exchange (ETDEWEB)

    Miles, Luke A; Wun, Kwok S; Crespi, Gabriela A.N.; Fodero-Tavoletti, Michelle T; Galatis, Denise; Bagley, Christopher J; Beyreuther, Konrad; Masters, Colin L; Cappai, Roberto; McKinstry, William J; Barnham, Kevin J; Parker, Michael W [SVIMR-A; (Hanson); (Heidelberg); (Melbourne)

    2012-04-17

    Alzheimer's disease (AD) is the most common form of dementia. Amyloid-β (Aβ) peptide, generated by proteolytic cleavage of the amyloid precursor protein, is central to AD pathogenesis. Most pharmaceutical activity in AD research has focused on Aβ, its generation and clearance from the brain. In particular, there is much interest in immunotherapy approaches with a number of anti-Aβ antibodies in clinical trials. We have developed a monoclonal antibody, called WO2, which recognises the Aβ peptide. To this end, we have determined the three-dimensional structure, to near atomic resolution, of both the antibody and the complex with its antigen, the Aβ peptide. The structures reveal the molecular basis for WO2 recognition and binding of Aβ. The Aβ peptide adopts an extended, coil-like conformation across its major immunodominant B-cell epitope between residues 2 and 8. We have also studied the antibody-bound Aβ peptide in the presence of metals known to affect its aggregation state and show that WO2 inhibits these interactions. Thus, antibodies that target the N-terminal region of Aβ, such as WO2, hold promise for therapeutic development.

  12. Involvement of formyl peptide receptors in receptor for advanced glycation end products (RAGE - and amyloid beta 1-42-induced signal transduction in glial cells

    Directory of Open Access Journals (Sweden)

    Slowik Alexander

    2012-11-01

    Full Text Available Abstract Background Recent studies suggest that the chemotactic G-protein-coupled-receptor (GPCR formyl-peptide-receptor-like-1 (FPRL1 and the receptor-for-advanced-glycation-end-products (RAGE play an important role in the inflammatory response involved in neurodegenerative disorders such as Alzheimer’s disease (AD. Therefore, the expression and co-localisation of mouse formyl peptide receptor (mFPR 1 and 2 as well as RAGE in an APP/PS1 transgenic mouse model using immunofluorescence and real-time RT-PCR were analysed. The involvement of rat or human FPR1/FPRL1 (corresponds to mFPR1/2 and RAGE in amyloid-β 1–42 (Aβ1-42-induced signalling were investigated by extracellular signal regulated kinase 1/2 (ERK1/2 phosphorylation. Furthermore, the cAMP level in primary rat glial cells (microglia and astrocytes and transfected HEK 293 cells was measured. Formyl peptide receptors and RAGE were inhibited by a small synthetic antagonist WRW4 and an inactive receptor variant delta-RAGE, lacking the intracytoplasmatic domains. Results We demonstrated a strong increase of mFPR1/2 and RAGE expression in the cortex and hippocampus of APP/PS1 transgenic mice co-localised to the glial cells. In addition, the Aβ1-42-induced signal transduction is dependant on FPRL1, but also on FPR1. For the first time, we have shown a functional interaction between FPRL1/FPR1 and RAGE in RAGE ligands S100B- or AGE-mediated signalling by ERK1/2 phosphorylation and cAMP level measurement. In addition a possible physical interaction between FPRL1 as well as FPR1 and RAGE was shown with co-immunoprecipitation and fluorescence microscopy. Conclusions The results suggest that both formyl peptide receptors play an essential role in Aβ1-42-induced signal transduction in glial cells. The interaction with RAGE could explain the broad ligand spectrum of formyl peptide receptors and their important role for inflammation and the host defence against infections.

  13. The DNAJB6 and DNAJB8 Protein Chaperones Prevent Intracellular Aggregation of Polyglutamine Peptides

    NARCIS (Netherlands)

    Gillis, Judith; Schipper-Krom, Sabine; Juenemann, Katrin; Gruber, Anna; Coolen, Silvia; van den Nieuwendijk, Rian; van Veen, Henk; Overkleeft, Hermen; Goedhart, Joachim; Kampinga, Harm H.; Reits, Eric A.

    2013-01-01

    Fragments of proteins containing an expanded polyglutamine (polyQ) tract are thought to initiate aggregation and toxicity in at least nine neurodegenerative diseases, including Huntington's disease. Because proteasomes appear unable to digest the polyQ tract, which can initiate intracellular protein

  14. {beta} - amyloid imaging probes

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Jae Min [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2007-04-15

    Imaging distribution of {beta} - amyloid plaques in Alzheimer's disease is very important for early and accurate diagnosis. Early trial of the {beta} -amyloid plaques includes using radiolabeled peptides which can be only applied for peripheral {beta} - amyloid plaques due to limited penetration through the blood brain barrier (BBB). Congo red or Chrysamine G derivatives were labeled with Tc-99m for imaging {beta} - amyloid plaques of Alzheimer patient's brain without success due to problem with BBB penetration. Thioflavin T derivatives gave breakthrough for {beta} - amyloid imaging in vivo, and a benzothiazole derivative [C-11]6-OH-BTA-1 brought a great success. Many other benzothiazole, benzoxazole, benzofuran, imidazopyridine, and styrylbenzene derivatives have been labeled with F-18 and I-123 to improve the imaging quality. However, [C-11]6-OH-BTA-1 still remains as the best. However, short half-life of C-11 is a limitation of wide distribution of this agent. So, it is still required to develop an Tc-99m, F-18 or I-123 labeled agent for {beta} - amyloid imaging agent.

  15. β-淀粉样肽对线粒体的损伤及其在阿尔茨海默病中的作用%Mitochondria injury by amyloidpeptide and it's function in Alzheimer's disease

    Institute of Scientific and Technical Information of China (English)

    杨秀明

    2012-01-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disease, which characterized by extracellular amyloidpeptide (Aβ) plaques and intracellular neurofibrillary tangles(NFTs). The etiological factors and pathogenesis are still unclear. Amyloidpeptide locates in mitochondria and it can induce a series of disorders in mitochondrial function, such as decreasing in ATP production, promoting oxidative stress, brokening the balance of mitochondrial fission/fusion and enhancing cellular apoptosis, and so on.%阿尔茨海默病(Alzheimer′s disease,AD)是以老年斑(senile plaque,SP)和神经纤维缠结(neurofibrillary tangles,NFTs)为主要病理特征的中枢神经系统退行性疾病,其病因及发病机制至今仍不明确.AD的病变产物β-淀粉样肽(amyloidpeptide,Aβ)在线粒体内沉积导致线粒体功能障碍,如ATP产生减少、氧化应激增强、细胞凋亡增强以及线粒体分裂/融合异常等,进而引起AD的一系列病理变化.

  16. Density functional theory of equilibrium random copolymers: application to surface adsorption of aggregating peptides

    Science.gov (United States)

    Wang, Haiqiang; Forsman, Jan; Woodward, Clifford E.

    2016-06-01

    We generalize a recently developed polymer density functional theory (PDFT) for polydisperse polymer fluids to the case of equilibrium random copolymers. We show that the generalization of the PDFT to these systems allows us to obtain a remarkable simplification compared to the monodispersed polymers. The theory is used to treat a model for protein aggregation into linear filaments in the presence of surfaces. Here we show that, for attractive surfaces, there is evidence of significant enhancement of protein aggregation. This behaviour is a consequence of a surface phase transition, which has been shown to occur with ideal equilibrium polymers in the presence of sufficiently attractive surfaces. For excluding monomers, this transition is suppressed, though an echo of the underlying ideal transition is present in the sudden change in the excess adsorption.

  17. Self-assembling DNA-peptide hybrids: morphological consequences of oligonucleotide grafting to a pathogenic amyloid fibrils forming dipeptide.

    Science.gov (United States)

    Gour, Nidhi; Kedracki, Dawid; Safir, Ilyès; Ngo, Kien Xuan; Vebert-Nardin, Corinne

    2012-06-01

    For the very first time, highly efficient synthesis of DNA-peptide hybrids to scaffold self-assembled nanostructures is described. Oligonucleotide conjugation to the diphenylalanine dipeptide triggers a morphological transition from fibrillar to vesicular structures which may potentially be used as delivery vehicles, since they exhibit pH triggered release. PMID:22534735

  18. Activation of phospholipase A2 by temporin B: Formation of antimicrobial peptide-enzyme amyloid-type cofibrils

    NARCIS (Netherlands)

    Code, Christian; Domanov, Y.A.; Killian, J.A.; Kinnunen, P.K.J.

    2009-01-01

    Phospholipases A2 have been shown to be activated in a concentration dependent manner by a number of antimicrobial peptides, including melittin, magainin 2, indolicidin, and temporins B and L. Here we used fluorescently labelled bee venom PLA2 (PLA2D) and the saturated phospholipid substrate 1,2-dip

  19. Sugar microarray via click chemistry: molecular recognition with lectins and amyloid β (1-42)

    Science.gov (United States)

    Matsumoto, Erino; Yamauchi, Takahiro; Fukuda, Tomohiro; Miura, Yoshiko

    2009-06-01

    Sugar microarrays were fabricated on various substrates via click chemistry. Acetylene-terminated substrates were prepared by forming self-assembled monolayers (SAMs) on a gold substrate with alkyl-disulfide and on silicon, quartz and glass substrates with a silane-coupling reagent. The gold substrates were subjected to surface plasmon resonance measurements, and the quartz and glass substrates were subjected to spectroscopy measurements and optical microscopy observation. The saccharide-immobilized substrate on the gold substrate showed specific interaction with the corresponding lectin, and the saccharides showed inert surface properties to other proteins with a high signal-to-noise ratio. We also focused on the saccharide-protein interaction on protein amyloidosis of Alzheimer amyloid β. Amyloid β peptide showed conformation transition on the saccharide-immobilization substrate into a β-sheet, and fibril formation and amyloid aggregates were found on the specific saccharides.

  20. Tabersonine inhibits amyloid fibril formation and cytotoxicity of Aβ(1-42).

    Science.gov (United States)

    Kai, Tianhan; Zhang, Lin; Wang, Xiaoying; Jing, Aihua; Zhao, Bingqing; Yu, Xiang; Zheng, Jie; Zhou, Feimeng

    2015-06-17

    The misfolding and aggregation of amyloid beta (Aβ) peptides into amyloid fibrils are key events in the amyloid cascade hypothesis for the etiology of Alzheimer's disease (AD). Using thioflavin-T (ThT) fluorescence assay, atomic force microscopy, circular dichroism, size exclusion chromatography, surface plasmon resonance (SPR), and cytotoxicity tests, we demonstrate that tabersonine, an ingredient extracted from the bean of Voacanga africana, disrupts Aβ(1-42) aggregation and ameliorates Aβ aggregate-induced cytotoxicity. A small amount of tabersonine (e.g., 10 μM) can effectively inhibit the formation of Aβ(1-42) (e.g., 80 μM) fibrils or convert mature fibrils into largely innocuous amorphous aggregates. SPR results indicate that tabersonine binds to Aβ(1-42) oligomers in a dose-dependent way. Molecular dynamics (MD) simulations further confirm that tabersonine can bind to oligomers such as the pentamer of Aβ(1-42). Tabersonine preferentially interact with the β-sheet grooves of Aβ(1-42) containing aromatic and hydrophobic residues. The various binding sites and modes explain the diverse inhibitory effects of tabersonine on Aβ aggregation. Given that tabersonine is a natural product and a precursor for vincristine used in cancer chemotherapy, the biocompatibility and small size essential for permeating the blood-brain barrier make it a potential therapeutic drug candidate for treating AD.

  1. Amyloid-beta induced CA1 pyramidal cell loss in young adult rats is alleviated by systemic treatment with FGL, a neural cell adhesion molecule-derived mimetic peptide.

    Directory of Open Access Journals (Sweden)

    Nicola J Corbett

    Full Text Available Increased levels of neurotoxic amyloid-beta in the brain are a prominent feature of Alzheimer's disease. FG-Loop (FGL, a neural cell adhesion molecule-derived peptide that corresponds to its second fibronectin type III module, has been shown to provide neuroprotection against a range of cellular insults. In the present study impairments in social recognition memory were seen 24 days after a 5 mg/15 µl amyloid-beta(25-35 injection into the right lateral ventricle of the young adult rat brain. This impairment was prevented if the animal was given a systemic treatment of FGL. Unbiased stereology was used to investigate the ability of FGL to alleviate the deleterious effects on CA1 pyramidal cells of the amyloid-beta(25-35 injection. NeuN, a neuronal marker (for nuclear staining was used to identify pyramidal cells, and immunocytochemistry was also used to identify inactive glycogen synthase kinase 3beta (GSK3β and to determine the effects of amyloid-beta(25-35 and FGL on the activation state of GSK3β, since active GSK3β has been shown to cause a range of AD pathologies. The cognitive deficits were not due to hippocampal atrophy as volume estimations of the entire hippocampus and its regions showed no significant loss, but amyloid-beta caused a 40% loss of pyramidal cells in the dorsal CA1 which was alleviated partially by FGL. However, FGL treatment without amyloid-beta was also found to cause a 40% decrease in CA1 pyramidal cells. The action of FGL may be due to inactivation of GSK3β, as an increased proportion of CA1 pyramidal neurons contained inactive GSK3β after FGL treatment. These data suggest that FGL, although potentially disruptive in non-pathological conditions, can be neuroprotective in disease-like conditions.

  2. Ab initio molecular simulations on specific interactions between amyloid beta and monosaccharides

    Science.gov (United States)

    Nomura, Kazuya; Okamoto, Akisumi; Yano, Atsushi; Higai, Shin'ichi; Kondo, Takashi; Kamba, Seiji; Kurita, Noriyuki

    2012-09-01

    Aggregation of amyloid β (Aβ) peptides, which is a key pathogenetic event in Alzheimer's disease, can be caused by cell-surface saccharides. We here investigated stable structures of the solvated complexes of Aβ with some types of monosaccharides using molecular simulations based on protein-ligand docking and classical molecular mechanics methods. Moreover, the specific interactions between Aβ and the monosaccharides were elucidated at an electronic level by ab initio fragment molecular orbital calculations. Based on the results, we proposed which type of monosaccharide prefers to have large binding affinity to Aβ and inhibit the Aβ aggregation.

  3. Neutron Scattering Studies of the Interplay of Amyloid β Peptide(1-40) and An Anionic Lipid 1,2-dimyristoyl-sn-glycero-3-phosphoglycerol.

    Science.gov (United States)

    Rai, Durgesh K; Sharma, Veerendra K; Anunciado, Divina; O'Neill, Hugh; Mamontov, Eugene; Urban, Volker; Heller, William T; Qian, Shuo

    2016-01-01

    The interaction between lipid bilayers and Amyloid β peptide (Aβ) plays a critical role in proliferation of Alzheimer's disease (AD). AD is expected to affect one in every 85 humans by 2050, and therefore, deciphering the interplay of Aβ and lipid bilayers at the molecular level is of profound importance. In this work, we applied an array of neutron scattering methods to study the structure and dynamics of Aβ(1-40) interacting 1,2-dimyristoyl-sn-glycero-3-phosphoglycerol (DMPG) bilayers. In the structural investigations of lipid bilayer's response to Aβ binding, Small Angle Neutron Scattering and Neutron Membrane Diffraction revealed that the Aβ anchors firmly to the highly charged DMPG bilayers in the interfacial region between water and hydrocarbon chain, and it doesn't penetrate deeply into the bilayer. This association mode is substantiated by the dynamics studies with high resolution Quasi-Elastic Neutron Scattering experiments, showing that the addition of Aβ mainly affects the slower lateral motion of lipid molecules, especially in the fluid phase, but not the faster internal motion. The results revealed that Aβ associates with the highly charged membrane in surface with limited impact on the structure, but the altered membrane dynamics could have more influence on other membrane processes. PMID:27503057

  4. Methionine residue 35 is critical for the oxidative stress and neurotoxic properties of Alzheimer's amyloid beta-peptide 1-42.

    Science.gov (United States)

    Butterfield, D Allan; Kanski, Jaroslaw

    2002-07-01

    Amyloid beta-peptide 1-42 [Abeta(1-42)] is central to the pathogenesis of Alzheimer's disease (AD), and the AD brain is under intense oxidative stress. Our laboratory combined these two aspects of AD into the Abeta-associated free radical oxidative stress model for neurodegeneration in AD brain. Abeta(1-42) caused protein oxidation, lipid peroxidation, reactive oxygen species formation, and cell death in neuronal and synaptosomal systems, all of which could be inhibited by free radical antioxidants. Recent studies have been directed at discerning molecular mechanisms by which Abeta(1-42)-associated free radical oxidative stress and neurotoxicity arise. The single methionine located in residue 35 of Abeta(1-42) is critical for these properties. This review presents the evidence supporting the role of methionine in Abeta(1-42)-associated free radical oxidative stress and neurotoxicity. This work is of obvious relevance to AD and provides a coupling between the centrality of Abeta(1-42) in the pathogenesis of AD and the oxidative stress under which the AD brain exists.

  5. Increased amyloid β-peptide uptake in skeletal muscle is induced by hyposialylation and may account for apoptosis in GNE myopathy

    Science.gov (United States)

    Bosch-Morató, Mònica; Iriondo, Cinta; Guivernau, Biuse; Valls-Comamala, Victòria; Vidal, Noemí; Olivé, Montse; Querfurth, Henry; Muñoz, Francisco J.

    2016-01-01

    GNE myopathy is an autosomal recessive muscular disorder of young adults characterized by progressive skeletal muscle weakness and wasting. It is caused by a mutation in the UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE) gene, which encodes a key enzyme in sialic acid biosynthesis. The mutated hypofunctional GNE is associated with intracellular accumulation of amyloid β-peptide (Aβ) in patient muscles through as yet unknown mechanisms. We found here for the first time that an experimental reduction in sialic acid favors Aβ1-42 endocytosis in C2C12 myotubes, which is dependent on clathrin and heparan sulfate proteoglycan. Accordingly, Aβ1-42 internalization in myoblasts from a GNE myopathy patient was enhanced. Next, we investigated signal changes triggered by Aβ1-42 that may underlie toxicity. We observed that p-Akt levels are reduced in step with an increase in apoptotic markers in GNE myopathy myoblasts compared to control myoblasts. The same results were experimentally obtained when Aβ1-42 was overexpressed in myotubes. Hence, we propose a novel disease mechanism whereby hyposialylation favors Aβ1-42 internalization and the subsequent apoptosis in myotubes and in skeletal muscle from GNE myopathy patients. PMID:26968811

  6. Effects of Low-Dose Pioglitazone on Serum Levels of Adiponectin, Dehydroepiandrosterone, Amyloid Beta Peptide, and Lipid Profile in Elderly Japanese People with Type 2 Diabetes

    Directory of Open Access Journals (Sweden)

    Yuji Aoki

    2015-01-01

    Full Text Available This study was performed to see how pioglitazone at low doses could affect blood biomarkers related to atherosclerosis and aging. The effects of an add-on treatment with pioglitazone (15 mg for males and 7.5 mg for females for 6 months were assessed in 24 outpatients (12 males, 12 females with type 2 diabetes aged ≥ 70 years. As doses of sulfonylurea were reduced in 10 patients, no significant differences in HbA1c and glucose levels were seen. After the treatment, serum levels of HDL cholesterol, arachidonic acid (predominant in males, and high-molecular-weight adiponectin significantly increased. The level of dehydroepiandrosterone sulfate significantly decreased. No significant changes were seen in those of small dense LDL cholesterol, high-sensitivity C-reactive protein, and amyloid beta peptides 1–40 and 1–42. There was a slight but significant increase in body weight, but apparent adverse effects were not observed. In conclusion, pioglitazone at low doses increased serum adiponectin, HDL cholesterol, and arachidonic acid levels but decreased serum dehydroepiandrosterone level, not associated with glycemia, in elderly Japanese people with type 2 diabetes. An optimal dose of pioglitazone should be sought for to minimize its adverse effects and to fully exert its pleiotropic effects such as antiatherosclerotic and antiaging effects.

  7. Some commonly used brominated flame retardants cause Ca2+-ATPase inhibition, beta-amyloid peptide release and apoptosis in SH-SY5Y neuronal cells.

    Directory of Open Access Journals (Sweden)

    Fawaz Al-Mousa

    Full Text Available Brominated flame retardants (BFRs are chemicals commonly used to reduce the flammability of consumer products and are considered pollutants since they have become widely dispersed throughout the environment and have also been shown to bio-accumulate within animals and man. This study investigated the cytotoxicity of some of the most commonly used groups of BFRs on SH-SY5Y human neuroblastoma cells. The results showed that of the BFRs tested, hexabromocyclododecane (HBCD, tetrabromobisphenol-A (TBBPA and decabromodiphenyl ether (DBPE, all are cytotoxic at low micromolar concentrations (LC(50 being 2.7 ± 0.7 µM, 15 ± 4 µM and 28 ± 7 µM, respectively. They induced cell death, at least in part, by apoptosis through activation of caspases. They also increased intracellular [Ca(2+] levels and reactive-oxygen-species within these neuronal cells. Furthermore, these BFRs also caused rapid depolarization of the mitochondria and cytochrome c release in these neuronal cells. Elevated intracellular [Ca(2+] levels appear to occur through a mechanism involving microsomal Ca(2+-ATPase inhibition and this maybe responsible for Ca(2+-induced mitochondrial dysfunction. In addition, µM levels of these BFRs caused β-amyloid peptide (Aβ-42 processing and release from these cells with a few hours of exposure. These results therefore shows that these pollutants are both neurotoxic and amyloidogenic in-vitro.

  8. Validation of a Commercial Chemiluminescence Immunoassay for the Simultaneous Measurement of Three Different AmyloidPeptides in Human Cerebrospinal Fluid and Application to a Clinical Cohort.

    Science.gov (United States)

    Klafki, Hans-W; Hafermann, Henning; Bauer, Chris; Haussmann, Ute; Kraus, Inga; Schuchhardt, Johannes; Muck, Stephan; Scherbaum, Norbert; Wiltfang, Jens

    2016-09-01

    A comprehensive assay validation campaign of a commercially available chemiluminescence multiplex immunoassay for the simultaneous measurement of the amyloidpeptides Aβ38, Aβ40, and Aβ42 in human cerebrospinal fluid (CSF) is presented. The assay quality parameters we addressed included impact of sample dilution, parallelism, lower limits of detection, lower limits of quantification, intra- and inter-assay repeatability, analytical spike recoveries, and between laboratory reproducibility of the measurements. The assay performed well in our hands and fulfilled a number of predefined acceptance criteria. The CSF levels of Aβ40 and Aβ42 determined in a clinical cohort (n = 203) were statistically significantly correlated with available ELISA data of Aβ1-40 (n = 158) and Aβ1-42 (n = 179) from a different laboratory. However, Bland-Altman method comparison indicated systematic differences between the assays. The data presented here furthermore indicate that the CSF concentration of Aβ40 can surrogate total CSF Aβ and support the hypothesis that the Aβ42/Aβ40 ratio outperforms CSF Aβ42 alone as a biomarker for Alzheimer's disease due to a normalization to total Aβ levels. PMID:27567847

  9. Identification of an amyloidogenic peptide from the Bap protein of Staphylococcus epidermidis.

    Science.gov (United States)

    Lembré, Pierre; Vendrely, Charlotte; Martino, Patrick Di

    2014-01-01

    Biofilm associated proteins (Bap) are involved in the biofilm formation process of several bacterial species. The sequence STVTVT is present in Bap proteins expressed by many Staphylococcus species, Acinetobacter baumanii and Salmonella enterica. The peptide STVTVTF derived from the C-repeat of the Bap protein from Staphylococcus epidermidis was selected through the AGGRESCAN, PASTA, and TANGO software prediction of protein aggregation and formation of amyloid fibers. We characterized the self-assembly properties of the peptide STVTVTF by different methods: in the presence of the peptide, we observed an increase in the fluorescence intensity of Thioflavin T; many intermolecular β-sheets and fibers were spontaneously formed in peptide preparations as observed by infrared spectroscopy and atomic force microscopy analyses. In conclusion, a 7 amino acids peptide derived from the C-repeat of the Bap protein was sufficient for the spontaneous formation of amyloid fibers. The possible involvement of this amyloidogenic sequence in protein-protein interactions is discussed.

  10. Identification of an amyloidogenic peptide from the Bap protein of Staphylococcus epidermidis.

    Science.gov (United States)

    Lembré, Pierre; Vendrely, Charlotte; Martino, Patrick Di

    2014-01-01

    Biofilm associated proteins (Bap) are involved in the biofilm formation process of several bacterial species. The sequence STVTVT is present in Bap proteins expressed by many Staphylococcus species, Acinetobacter baumanii and Salmonella enterica. The peptide STVTVTF derived from the C-repeat of the Bap protein from Staphylococcus epidermidis was selected through the AGGRESCAN, PASTA, and TANGO software prediction of protein aggregation and formation of amyloid fibers. We characterized the self-assembly properties of the peptide STVTVTF by different methods: in the presence of the peptide, we observed an increase in the fluorescence intensity of Thioflavin T; many intermolecular β-sheets and fibers were spontaneously formed in peptide preparations as observed by infrared spectroscopy and atomic force microscopy analyses. In conclusion, a 7 amino acids peptide derived from the C-repeat of the Bap protein was sufficient for the spontaneous formation of amyloid fibers. The possible involvement of this amyloidogenic sequence in protein-protein interactions is discussed. PMID:24354773

  11. Amyloid Fibril Solubility

    CERN Document Server

    Rizzi, L G

    2015-01-01

    It is well established that amyloid fibril solubility is protein specific, but how solubility depends on the interactions between the fibril building blocks is not clear. Here we use a simple protein model and perform Monte Carlo simulations to directly measure the solubility of amyloid fibrils as a function of the interaction between the fibril building blocks. Our simulations confirms that the fibril solubility depends on the fibril thickness and that the relationship between the interactions and the solubility can be described by a simple analytical formula. The results presented in this study reveal general rules how side-chain side-chain interactions, backbone hydrogen bonding and temperature affect amyloid fibril solubility, which might prove a powerful tool to design protein fibrils with desired solubility and aggregation properties in general.

  12. Protective Effects of Testosterone on Presynaptic Terminals against Oligomeric β-Amyloid Peptide in Primary Culture of Hippocampal Neurons

    Directory of Open Access Journals (Sweden)

    Chi-Fai Lau

    2014-01-01

    Full Text Available Increasing lines of evidence support that testosterone may have neuroprotective effects. While observational studies reported an association between higher bioavailable testosterone or brain testosterone levels and reduced risk of Alzheimer’s disease (AD, there is limited understanding of the underlying neuroprotective mechanisms. Previous studies demonstrated that testosterone could alleviate neurotoxicity induced by β-amyloid (Aβ, but these findings mainly focused on neuronal apoptosis. Since synaptic dysfunction and degeneration are early events during the pathogenesis of AD, we aim to investigate the effects of testosterone on oligomeric Aβ-induced synaptic changes. Our data suggested that exposure of primary cultured hippocampal neurons to oligomeric Aβ could reduce the length of neurites and decrease the expression of presynaptic proteins including synaptophysin, synaptotagmin, and synapsin-1. Aβ also disrupted synaptic vesicle recycling and protein folding machinery. Testosterone preserved the integrity of neurites and the expression of presynaptic proteins. It also attenuated Aβ-induced impairment of synaptic exocytosis. By using letrozole as an aromatase antagonist, we further demonstrated that the effects of testosterone on exocytosis were unlikely to be mediated through the estrogen receptor pathway. Furthermore, we showed that testosterone could attenuate Aβ-induced reduction of HSP70, which suggests a novel mechanism that links testosterone and its protective function on Aβ-induced synaptic damage. Taken together, our data provide further evidence on the beneficial effects of testosterone, which may be useful for future drug development for AD.

  13. DHPC strongly affects the structure and oligomerization propensity of Alzheimer's Aβ(1-40) peptide.

    Science.gov (United States)

    Dahse, Kirsten; Garvey, Megan; Kovermann, Michael; Vogel, Alexander; Balbach, Jochen; Fändrich, Marcus; Fahr, Alfred

    2010-11-01

    Alzheimer's disease (AD) is thought to depend on the deleterious action of amyloid fibrils or oligomers derived from β-amyloid (Aβ) peptide. Out of various known Aβ alloforms, the 40-residue peptide Aβ(1-40) occurs at highest concentrations inside the brains of AD patients. Its aggregation properties critically depend on lipids, and it was thus proposed that lipids could play a major role in AD. To better understand their possible effects on the structure of Aβ and on the ability of this peptide to form potentially detrimental amyloid structures, we here analyze the interactions between Aβ(1-40) and 1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC). DHPC has served, due to its controlled properties, as a major model system for studying general lipid properties. Here, we show that DHPC concentrations of 8 mM or higher exert dramatic effects on the conformation of soluble Aβ(1-40) peptide and induce the formation of β-sheet structure at high levels. By contrast, we find that DHPC concentrations well below the critical micelle concentration present no discernible effect on the conformation of soluble Aβ, although they substantially affect the peptide's oligomerization and fibrillation kinetics. These data imply that subtle lipid-peptide interactions suffice in controlling the overall aggregation properties and drastically accelerate, or delay, the fibrillation kinetics of Aβ peptide in near-physiological buffer solutions.

  14. Characterization of insulin-degrading enzyme-mediated cleavage of Aβ in distinct aggregation states.

    Science.gov (United States)

    Hubin, Ellen; Cioffi, Federica; Rozenski, Jef; van Nuland, Nico A J; Broersen, Kerensa

    2016-06-01

    To enhance our understanding of the potential therapeutic utility of insulin-degrading enzyme (IDE) in Alzheimer's disease (AD), we studied in vitro IDE-mediated degradation of different amyloid-beta (Aβ) peptide aggregation states. Our findings show that IDE activity is driven by the dynamic equilibrium between Aβ monomers and higher ordered aggregates. We identify Met(35)-Val(36) as a novel IDE cleavage site in the Aβ sequence and show that Aβ fragments resulting from IDE cleavage form non-toxic amorphous aggregates. These findings need to be taken into account in therapeutic strategies designed to increase Aβ clearance in AD patients by modulating IDE activity.

  15. Amyloid fibrils nucleated and organized by DNA origami constructions

    Science.gov (United States)

    Udomprasert, Anuttara; Bongiovanni, Marie N.; Sha, Ruojie; Sherman, William B.; Wang, Tong; Arora, Paramjit S.; Canary, James W.; Gras, Sally L.; Seeman, Nadrian C.

    2014-07-01

    Amyloid fibrils are ordered, insoluble protein aggregates that are associated with neurodegenerative conditions such as Alzheimer's disease. The fibrils have a common rod-like core structure, formed from an elongated stack of β-strands, and have a rigidity similar to that of silk (Young's modulus of 0.2-14 GPa). They also exhibit high thermal and chemical stability and can be assembled in vitro from short synthetic non-disease-related peptides. As a result, they are of significant interest in the development of self-assembled materials for bionanotechnology applications. Synthetic DNA molecules have previously been used to form intricate structures and organize other materials such as metal nanoparticles and could in principle be used to nucleate and organize amyloid fibrils. Here, we show that DNA origami nanotubes can sheathe amyloid fibrils formed within them. The fibrils are built by modifying the synthetic peptide fragment corresponding to residues 105-115 of the amyloidogenic protein transthyretin and a DNA origami construct is used to form 20-helix DNA nanotubes with sufficient space for the fibrils inside. Once formed, the fibril-filled nanotubes can be organized onto predefined two-dimensional platforms via DNA-DNA hybridization interactions.

  16. Oligomer stability of Amyloid- β (A β) 25-35: A Dissipative Particle Dynamics study

    Science.gov (United States)

    Pivkin, Igor; Peter, Emanuel

    Alzheimer's disease is strongly associated with an accumulation of Amyloid- β (A β) peptide plaques in the human brain. A β is a 43 residues long intrinsically disordered peptide and has a strong tendency to form aggregates. Evidence accumulates that A β acts toxic to the neurons in the brain through the formation of small soluble oligomers. A β 25-35 is the smallest fragment of A β which still retains its toxicity and its ability to form extended fibrils. In this talk we will present the results from simulations of aggregation of up to 100 A β 25-35 peptides using a novel polarizable coarse-grained protein model in combination with Dissipative Particle Dynamics.

  17. Take five—BACE and the γ-secretase quartet conduct Alzheimer's amyloid β-peptide generation

    OpenAIRE

    Haass, Christian

    2004-01-01

    In 1959, Dave Brubeck and Paul Desmond revolutionized modern jazz music by composing their unforgettable Take Five in 5/4, one of the most defiant time signatures in all music. Of similar revolutionary importance for biomedical and basic biochemical research is the identification of the minimal set of genes required to obtain a deadly time bomb ticking in all of us: Alzheimer's disease. It now appears that one needs to Take Five genes to produce a deadly peptide by a proteolytic mechanism, wh...

  18. Neuropathology and biochemistry of Aβ and its aggregates in Alzheimer's disease.

    Science.gov (United States)

    Thal, Dietmar Rudolf; Walter, Jochen; Saido, Takaomi C; Fändrich, Marcus

    2015-02-01

    Alzheimer's disease (AD) is characterized by β-amyloid plaques and intraneuronal τ aggregation usually associated with cerebral amyloid angiopathy (CAA). Both β-amyloid plaques and CAA deposits contain fibrillar aggregates of the amyloid β-peptide (Aβ). Aβ plaques and CAA develop first in neocortical areas of preclinical AD patients and, then, expand in a characteristic sequence into further brain regions with end-stage pathology in symptomatic AD patients. Aβ aggregates are not restricted to amyloid plaques and CAA. Soluble and several types of insoluble non-plaque- and non-CAA-associated Aβ aggregates have been described. Amyloid fibrils are products of a complex self-assembly process that involves different types of transient intermediates. Amongst these intermediate species are protofibrils and oligomers. Different variants of Aβ peptides may result from alternative processing or from mutations that lead to rare forms of familial AD. These variants can exhibit different self-assembly and aggregation properties. In addition, several post-translational modifications of Aβ have been described that result, for example, in the production of N-terminal truncated Aβ with pyroglutamate modification at position 3 (AβN3pE) or of Aβ phosphorylated at serine 8 (pSer8Aβ). Both AβN3pE and pSer8Aβ show enhanced aggregation into oligomers and fibrils. However, the earliest detectable soluble and insoluble Aβ aggregates in the human brain exhibit non-modified Aβ, whereas AβN3pE and pSer8Aβ are detected in later stages. This finding indicates the existence of different biochemical stages of Aβ aggregate maturation with pSer8Aβ being related mainly to cases with symptomatic AD. The conversion from preclinical to symptomatic AD could thereby be related to combined effects of increased Aβ concentration, maturation of aggregates and spread of deposits into additional brain regions. Thus, the inhibition of Aβ aggregation and maturation before entering the

  19. Amyloid formation: functional friend or fearful foe?

    Science.gov (United States)

    Bergman, P; Roan, N R; Römling, U; Bevins, C L; Münch, J

    2016-08-01

    Amyloid formation has been most studied in the context of neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease, as well as in amyloidosis. However, it is becoming increasingly clear that amyloid is also present in the healthy setting; for example nontoxic amyloid formation is important for melanin synthesis and in innate immunity. Furthermore, bacteria have mechanisms to produce functional amyloid structures with important roles in bacterial physiology and interaction with host cells. Here, we will discuss some novel aspects of fibril-forming proteins in humans and bacteria. First, the amyloid-forming properties of the antimicrobial peptide human defensin 6 (HD6) will be considered. Intriguingly, unlike other antimicrobial peptides, HD6 does not kill bacteria. However, recent data show that HD6 can form amyloid structures at the gut mucosa with strong affinity for bacterial surfaces. These so-called nanonets block bacterial invasion by entangling the bacteria in net-like structures. Next, the role of functional amyloid fibrils in human semen will be discussed. These fibrils were discovered through their property to enhance HIV infection but they may also have other yet unknown functions. Finally, the role of amyloid formation in bacteria will be reviewed. The recent finding that bacteria can make amyloid in a controlled fashion without toxic effects is of particular interest and may have implications for human disease. The role of amyloid in health and disease is beginning to be unravelled, and here, we will review some of the most recent findings in this exciting area. PMID:27151743

  20. Mechanism of fiber assembly: treatment of Aβ peptide aggregation with a coarse-grained united-residue force field.

    Science.gov (United States)

    Rojas, Ana; Liwo, Adam; Browne, Dana; Scheraga, Harold A

    2010-12-01

    The growth mechanism of β-amyloid (Aβ) peptide fibrils was studied by a physics-based coarse-grained united-residue model and molecular dynamics (MD) simulations. To identify the mechanism of monomer addition to an Aβ(1-40) fibril, we placed an unstructured monomer at a distance of 20 Å from a fibril template and allowed it to interact freely with the latter. The monomer was not biased towards fibril conformation by either the force field or the MD algorithm. With the use of a coarse-grained model with replica-exchange molecular dynamics, a longer timescale was accessible, making it possible to observe how the monomers probe different binding modes during their search for the fibril conformation. Although different assembly pathways were seen, they all follow a dock-lock mechanism with two distinct locking stages, consistent with experimental data on fibril elongation. Whereas these experiments have not been able to characterize the conformations populating the different stages, we have been able to describe these different stages explicitly by following free monomers as they dock onto a fibril template and to adopt the fibril conformation (i.e., we describe fibril elongation step by step at the molecular level). During the first stage of the assembly ("docking"), the monomer tries different conformations. After docking, the monomer is locked into the fibril through two different locking stages. In the first stage, the monomer forms hydrogen bonds with the fibril template along one of the strands in a two-stranded β-hairpin; in the second stage, hydrogen bonds are formed along the second strand, locking the monomer into the fibril structure. The data reveal a free-energy barrier separating the two locking stages. The importance of hydrophobic interactions and hydrogen bonds in the stability of the Aβ fibril structure was examined by carrying out additional canonical MD simulations of oligomers with different numbers of chains (4-16 chains), with the fibril

  1. Indoleamine-2,3-dioxygenase mediates neurobehavioral alterations induced by an intracerebroventricular injection of amyloid-β1-42 peptide in mice.

    Science.gov (United States)

    Souza, Leandro Cattelan; Jesse, Cristiano R; Antunes, Michelle S; Ruff, Jossana Rodrigues; de Oliveira Espinosa, Dieniffer; Gomes, Nathalie Savedra; Donato, Franciele; Giacomeli, Renata; Boeira, Silvana Peterini

    2016-08-01

    Alzheimer's disease (AD) is a neurodegenerative disorder that is characterized by a progressive cognitive decline along with various neuropsychiatric symptoms, including depression and anxiety. Increasing evidence has been proposed the activation of the tryptophan-degrading indoleamine-2,3-dyoxigenase (IDO), the rate-limiting enzyme of kynurerine pathway (KP), as a pathogenic factor of amyloid-beta (Aβ)-related inflammation in AD. In the current study, the effects of an intracerebroventricular (i.c.v.) injection of Aβ1-42 peptide (400pmol/mice; 3μl/site) on the regulation of KP biomarkers (IDO activity, tryptophan and kynurerine levels) and the impact of Aβ1-42 on neurotrophic factors levels were investigated as potential mechanisms linking neuroinflammation to cognitive/emotional disturbances in mice. Our results demonstrated that Aβ1-42 induced memory impairment in the object recognition test. Aβ1-42 also induced emotional alterations, such as depressive and anxiety-like behaviors, as evaluated in the tail suspension and elevated-plus maze tests, respectively. We observed an increase in levels of proinflammatory cytokines in the Aβ1-42-treated mice, which led to an increase in IDO activity in the prefrontal cortex (PFC) and the hippocampus (HC). The IDO activation subsequently increased kynurerine production and the kynurenine/tryptophan ratio and decreased the levels of neurotrophic factors in the PFC and HC, which contributed to Aβ-associated behavioral disturbances. The inhibition of IDO activation by IDO inhibitor 1-methyltryptophan (1-MT), prevented the development of behavioral and neurochemical alterations. These data demonstrate that brain IDO activation plays a key role in mediating the memory and emotional disturbances in an experimental model based on Aβ-induced neuroinflammation. PMID:26965653

  2. The ability of apolipoprotein E fragments to promote intraneuronal accumulation of amyloid beta peptide 42 is both isoform and size-specific

    Science.gov (United States)

    Dafnis, Ioannis; Argyri, Letta; Sagnou, Marina; Tzinia, Athina; Tsilibary, Effie C.; Stratikos, Efstratios; Chroni, Angeliki

    2016-01-01

    The apolipoprotein (apo) E4 isoform is the strongest risk factor for late-onset Alzheimer’s disease (AD). ApoE4 is more susceptible to proteolysis than apoE2 and apoE3 isoforms and carboxyl-terminal truncated apoE4 forms have been found in AD patients’ brain. We have previously shown that a specific apoE4 fragment, apoE4-165, promotes amyloid-peptide beta 42 (Aβ42) accumulation in human neuroblastoma SK-N-SH cells and increased intracellular reactive oxygen species formation, two events considered to occur early in AD pathogenesis. Here, we show that these effects are allele-dependent and absolutely require the apoE4 background. Furthermore, the exact length of the fragment is critical since longer or shorter length carboxyl-terminal truncated apoE4 forms do not elicit the same effects. Structural and thermodynamic analyses showed that apoE4-165 has a compact structure, in contrast to other carboxyl-terminal truncated apoE4 forms that are instead destabilized. Compared however to other allelic backgrounds, apoE4-165 is structurally distinct and less thermodynamically stable suggesting that the combination of a well-folded structure with structural plasticity is a unique characteristic of this fragment. Overall, our findings suggest that the ability of apoE fragments to promote Aβ42 intraneuronal accumulation is specific for both the apoE4 isoform and the particular structural and thermodynamic properties of the fragment. PMID:27476701

  3. Protective effect of cyclophilin A against Alzheimer's amyloid beta-peptide (25-35)-induced oxidative stress in PC12 cells

    Institute of Scientific and Technical Information of China (English)

    GE Yu-song; TENG Wei-yu; ZHANG Chao-dong

    2009-01-01

    Background β-amyloid peptide (Aβ) is considered responsible for the pathogenesis of Alzheimer's disease (AD). Possible mechanisms underlying Aβ-induced neuronal cytotoxicity include excessive production of reactive oxidative species (ROS) and apoptosis. Cyclophilin A (CypA), exhibits antioxidant properties and protects neurons against oxidative stress induced injury. This study was conducted to demonstrate whether CyPA added to cultured PC12 cells could alleviate Aβ-induced oxidative stress and protect them from apoptosis.Methods PC12 cells were pre-incubated for 30 minutes with recombinant human cyclophilin A (rhCyPA) in 0.1 nmol/L, 1.0 nmol/L, 10 nmol/L and 100 nmol/L and then incubated with 10 umol/L Aβ25-35. In every group, cell viability, apoptotic morphology, apoptotic rate, intracellular ROS accumulation, the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) of PC12 cells and mitochondrial transmembrane potential were detected. Subsequently, the expression of the active form of caspase-3 was determined by Western blotting.Results It was shown that cultures treated with 1.0 nmol/L, 10 nmol/L or 100 nmol/L rhCyPA + Aβ25-35 had significantly higher cell viability and a lower rate of apoptosis compared with the cultures exposed only to Aβ25-35. In addition, rhCyPA attenuated Aβ25-35-induced overproduction of intracellular ROS and Aβ25-35-induced a decrease in activity of the key antioxidant enzymes SOD and GSH-Px. Furthermore, rhCyPA also attenuated Aβ25-35-induced mitochondrial dysfunction and the activation of caspase-3.Conclusion CyPA may act as an ROS scavenger, and prevent Aβ25-35-induced neurotoxicity through attenuating oxidative stress induced by Aβ25-35.

  4. Degradation and aggregation of delta sleep-inducing peptide (DSIP) and two analogs in plasma and serum

    Energy Technology Data Exchange (ETDEWEB)

    Graf, M.V.; Saegesser, B.; Schoenenberger, G.A.

    1987-07-01

    The biostability of DSIP (delta sleep-inducing peptide) and two analogs in blood was investigated in order to determine if rates of inactivation contribute to variable effects in vivo. Incubation of DSIP in human or rat blood led to release of products having retention times on a gel filtration column equivalent to Trp. Formation of products was dependent on temperature, time, and species. Incubation of /sup 125/I-N-Tyr-DSIP and /sup 125/I-N-Tyr-P-DSIP, a phosphorylated analog, revealed slower degradation and, in contrast to DSIP, produced complex formation. An excess of unlabeled material did not displace the radioactivity supporting the assumption of non-specific binding/aggregation. It was concluded that the rapid disappearance of injected DSIP in blood was due to degradation, whereas complex formation together with slower degradation resulted in longer persistence of apparently intact analogs. Whether this could explain the sometimes stronger and more consistent effects of DSIP-analogs remains to be examined.

  5. Calcium-enhanced aggregation of serum amyloid P component and its inhibition by the ligands heparin and heparan sulphate. An electron microscopic and immunoelectrophoretic study

    DEFF Research Database (Denmark)

    Nielsen, EH; Sørensen, Inge Juul; Vilsgaard, K;

    1994-01-01

    -like structures were formed already at 2 mM calcium. At 25 mM calcium, large aggregates with a crystalline array occasionally exhibiting cylinders predominated. Binding of the ligands heparin and heparan sulphate to SAP completely abolished the calcium-enhanced aggregation, but the distribution of the SAP...... in the absence of calcium ions. However, aggregation is greatly enhanced even at low concentrations (2 mM) of calcium. SAP's tendency to self-aggregation is abolished after its binding to heparin or heparin sulphate. Furthermore, our TEM studies indicate that purified human SAP freed of its natural ligands has...

  6. Functional Amyloid Formation within Mammalian Tissue.

    Directory of Open Access Journals (Sweden)

    2005-11-01

    Full Text Available Amyloid is a generally insoluble, fibrous cross-beta sheet protein aggregate. The process of amyloidogenesis is associated with a variety of neurodegenerative diseases including Alzheimer, Parkinson, and Huntington disease. We report the discovery of an unprecedented functional mammalian amyloid structure generated by the protein Pmel17. This discovery demonstrates that amyloid is a fundamental nonpathological protein fold utilized by organisms from bacteria to humans. We have found that Pmel17 amyloid templates and accelerates the covalent polymerization of reactive small molecules into melanin-a critically important biopolymer that protects against a broad range of cytotoxic insults including UV and oxidative damage. Pmel17 amyloid also appears to play a role in mitigating the toxicity associated with melanin formation by sequestering and minimizing diffusion of highly reactive, toxic melanin precursors out of the melanosome. Intracellular Pmel17 amyloidogenesis is carefully orchestrated by the secretory pathway, utilizing membrane sequestration and proteolytic steps to protect the cell from amyloid and amyloidogenic intermediates that can be toxic. While functional and pathological amyloid share similar structural features, critical differences in packaging and kinetics of assembly enable the usage of Pmel17 amyloid for normal function. The discovery of native Pmel17 amyloid in mammals provides key insight into the molecular basis of both melanin formation and amyloid pathology, and demonstrates that native amyloid (amyloidin may be an ancient, evolutionarily conserved protein quaternary structure underpinning diverse pathways contributing to normal cell and tissue physiology.

  7. Effects of AmyloidPeptides on Voltage-Gated L-Type CaV1.2 and CaV1.3 Ca2+ Channels

    OpenAIRE

    Kim, Sunoh; Rhim, Hyewhon

    2011-01-01

    Overload of intracellular Ca2+ has been implicated in the pathogenesis of neuronal disorders, such as Alzheimer’s disease. Various mechanisms produce abnormalities in intracellular Ca2+ homeostasis systems. L-type Ca2+ channels have been known to be closely involved in the mechanisms underlying the neurodegenerative properties of amyloid-β (Aβ) peptides. However, most studies of L-type Ca2+ channels in Aβ-related mechanisms have been limited to CaV1.2, and surprisingly little is known about t...

  8. Dissecting the contribution of Staphylococcus aureus α-phenol-soluble modulins to biofilm amyloid structure

    Science.gov (United States)

    Marinelli, Patrizia; Pallares, Irantzu; Navarro, Susanna; Ventura, Salvador

    2016-01-01

    The opportunistic pathogen Staphylococcus aureus is recognized as one of the most frequent causes of biofilm-associated infections. The recently discovered phenol soluble modulins (PSMs) are small α-helical amphipathic peptides that act as the main molecular effectors of staphylococcal biofilm maturation, promoting the formation of an extracellular fibril structure with amyloid-like properties. Here, we combine computational, biophysical and in cell analysis to address the specific contribution of individual PSMs to biofilm structure. We demonstrate that despite their highly similar sequence and structure, contrary to what it was previously thought, not all PSMs participate in amyloid fibril formation. A balance of hydrophobic/hydrophilic forces and helical propensity seems to define the aggregation propensity of PSMs and control their assembly and function. This knowledge would allow to target specifically the amyloid properties of these peptides. In this way, we show that Epigallocatechin-3-gallate (EGCG), the principal polyphenol in green tea, prevents the assembly of amyloidogenic PSMs and disentangles their preformed amyloid fibrils. PMID:27708403

  9. High plasma levels of islet amyloid polypeptide in young with new-onset of type 1 diabetes mellitus.

    Directory of Open Access Journals (Sweden)

    Johan F Paulsson

    Full Text Available AIMS/HYPOTHESIS: Islet amyloid polypeptide (IAPP is a beta cell hormone secreted together with insulin upon glucose stimulation. IAPP participates in normal glucose regulation, but IAPP is also known for its ability to misfold and form islet amyloid. Amyloid fibrils form through smaller cell toxic intermediates and deposited amyloid disrupts normal islet architecture. Even though IAPP and amyloid formation are much discussed in type 2 diabetes, our aim was to study the significance of IAPP in type 1 diabetes. RESULTS: Plasma IAPP levels in children and adolescents with newly diagnosed type 1 diabetes (n = 224 were analysed and concentrations exceeding 100 pmol/L (127.2-888.7 pmol/L were found in 11% (25/224. The IAPP increase did not correlate with C-peptide levels. CONCLUSIONS/INTERPRETATION: Plasma levels of IAPP and insulin deviate in a subpopulation of young with newly-diagnosed type 1 diabetes. The determined elevated levels of IAPP might increase the risk for IAPP misfolding and formation of cell toxic amyloid in beta cells. This finding add IAPP-aggregation to the list over putative pathological factors causing type 1 diabetes.

  10. Calcium dysregulation and membrane disruption as a ubiquitous neurotoxic mechanism of soluble amyloid oligomers.

    Science.gov (United States)

    Demuro, Angelo; Mina, Erene; Kayed, Rakez; Milton, Saskia C; Parker, Ian; Glabe, Charles G

    2005-04-29

    Increasing evidence suggests that amyloid peptides associated with a variety of degenerative diseases induce neurotoxicity in their intermediate oligomeric state, rather than as monomers or fibrils. To test this hypothesis and investigate the possible involvement of Ca2+ signaling disruptions in amyloid-induced cytotoxicity, we made homogeneous preparations of disease-related amyloids (Abeta, prion, islet amyloid polypeptide, polyglutamine, and lysozyme) in various aggregation states and tested their actions on fluo-3-loaded SH-SY5Y cells. Application of oligomeric forms of all amyloids tested (0.6-6 microg ml-1) rapidly (approximately 5 s) elevated intracellular Ca2+, whereas equivalent amounts of monomers and fibrils did not. Ca2+ signals evoked by Abeta42 oligomers persisted after depletion of intracellular Ca2+ stores, and small signals remained in Ca2+-free medium, indicating contributions from both extracellular and intracellular Ca2+ sources. The increased membrane permeability to Ca2+ cannot be attributed to activation of endogenous Ca2+ channels, because responses were unaffected by the potent Ca2+-channel blocker cobalt (20 microm). Instead, observations that Abeta42 and other oligomers caused rapid cellular leakage of anionic fluorescent dyes point to a generalized increase in membrane permeability. The resulting unregulated flux of ions and molecules may provide a common mechanism for oligomer-mediated toxicity in many amyloidogenic diseases, with dysregulation of Ca2+ ions playing a crucial role because of their strong trans-membrane concentration gradient and involvement in cell dysfunction and death. PMID:15722360

  11. Imaging Alzheimer's disease-related protein aggregates in human cells using a selenium label

    International Nuclear Information System (INIS)

    The aberrant folding and subsequent aggregation of proteins and peptides is associated with a range of pathological conditions from the systemic amyloidoses to neurodegenerative diseases such as Alzheimer's and Parkinson's diseases. While this link is well established there is a lack of understanding of the exact role protein aggregates play in disease pathogenesis. Part of the reason for this is that it has proved extremely challenging to characterise the localisation and structure of amyloid fibrils within the cellular environment due to a lack of contrast between the carbon rich protein aggregates and the carbon rich cell. We report a novel method for visualising Alzheimer's disease-related amyloid fibrils inside human cells without the use of invasive or unreliable stains or tags. The naturally occurring sulfur atom in the amyloidpeptide is replaced with a selenium atom, a heavier element in the same group of the periodic table of elements. Using high angle annular dark field (HAADF) in a scanning transmission electron microscopy (STEM) the selenium-labelled aggregates can be identified within the cellular environment.

  12. Alzheimer's disease amyloid-beta links lens and brain pathology in Down syndrome.

    Directory of Open Access Journals (Sweden)

    Juliet A Moncaster

    Full Text Available Down syndrome (DS, trisomy 21 is the most common chromosomal disorder and the leading genetic cause of intellectual disability in humans. In DS, triplication of chromosome 21 invariably includes the APP gene (21q21 encoding the Alzheimer's disease (AD amyloid precursor protein (APP. Triplication of the APP gene accelerates APP expression leading to cerebral accumulation of APP-derived amyloid-beta peptides (Abeta, early-onset AD neuropathology, and age-dependent cognitive sequelae. The DS phenotype complex also includes distinctive early-onset cerulean cataracts of unknown etiology. Previously, we reported increased Abeta accumulation, co-localizing amyloid pathology, and disease-linked supranuclear cataracts in the ocular lenses of subjects with AD. Here, we investigate the hypothesis that related AD-linked Abeta pathology underlies the distinctive lens phenotype associated with DS. Ophthalmological examinations of DS subjects were correlated with phenotypic, histochemical, and biochemical analyses of lenses obtained from DS, AD, and normal control subjects. Evaluation of DS lenses revealed a characteristic pattern of supranuclear opacification accompanied by accelerated supranuclear Abeta accumulation, co-localizing amyloid pathology, and fiber cell cytoplasmic Abeta aggregates (approximately 5 to 50 nm identical to the lens pathology identified in AD. Peptide sequencing, immunoblot analysis, and ELISA confirmed the identity and increased accumulation of Abeta in DS lenses. Incubation of synthetic Abeta with human lens protein promoted protein aggregation, amyloid formation, and light scattering that recapitulated the molecular pathology and clinical features observed in DS lenses. These results establish the genetic etiology of the distinctive lens phenotype in DS and identify the molecular origin and pathogenic mechanism by which lens pathology is expressed in this common chromosomal disorder. Moreover, these findings confirm increased Abeta

  13. Amyloid-associated nucleic acid hybridisation.

    Directory of Open Access Journals (Sweden)

    Sebastian Braun

    Full Text Available Nucleic acids promote amyloid formation in diseases including Alzheimer's and Creutzfeldt-Jakob disease. However, it remains unclear whether the close interactions between amyloid and nucleic acid allow nucleic acid secondary structure to play a role in modulating amyloid structure and function. Here we have used a simplified system of short basic peptides with alternating hydrophobic and hydrophilic amino acid residues to study nucleic acid - amyloid interactions. Employing biophysical techniques including X-ray fibre diffraction, circular dichroism spectroscopy and electron microscopy we show that the polymerized charges of nucleic acids concentrate and enhance the formation of amyloid from short basic peptides, many of which would not otherwise form fibres. In turn, the amyloid component binds nucleic acids and promotes their hybridisation at concentrations below their solution K(d, as shown by time-resolved FRET studies. The self-reinforcing interactions between peptides and nucleic acids lead to the formation of amyloid nucleic acid (ANA fibres whose properties are distinct from their component polymers. In addition to their importance in disease and potential in engineering, ANA fibres formed from prebiotically-produced peptides and nucleic acids may have played a role in early evolution, constituting the first entities subject to Darwinian evolution.

  14. Nanoparticulate Radiolabelled Quinolines Detect Amyloid Plaques in Mouse Models of Alzheimer's Disease

    Directory of Open Access Journals (Sweden)

    Celeste A. Roney

    2009-01-01

    Full Text Available Detecting aggregated amyloid peptides (Aβ plaques presents targets for developing biomarkers of Alzheimer's disease (AD. Polymeric n-butyl-2-cyanoacrylate (PBCA nanoparticles (NPs were encapsulated with radiolabelled amyloid affinity I125-clioquinol (CQ, 5-chloro-7-iodo-8-hydroxyquinoline as in vivo probes. I125-CQ-PBCA NPs crossed the BBB (2.3±0.9 ID/g (P<.05 in the WT mouse (N = 210, compared to I125-CQ (1.0±0.4 ID/g. I125-CQ-PBCA NP brain uptake increased in AD transgenic mice (APP/PS1 versus WT (N = 38; 2.54×105±5.31×104 DLU/mm2; versus 1.98×105±2.22×104 DLU/mm2 and in APP/PS1/Tau. Brain increases were in mice intracranially injected with aggregated Aβ42 peptide (N = 17; 7.19×105±1.25×105 DLU/mm2, versus WT (6.07×105±7.47×104 DLU/mm2. Storage phosphor imaging and histopathological staining of the plaques, Fe2+ and Cu2+, validated results. I125-CQ-PBCA NPs have specificity for Aβ in vitro and in vivo and are promising as in vivo SPECT (I123, or PET (I124 amyloid imaging agents.

  15. Role of Prion Protein Aggregation in Neurotoxicity

    Directory of Open Access Journals (Sweden)

    Tullio Florio

    2012-07-01

    Full Text Available In several neurodegenerative diseases, such as Parkinson, Alzheimer’s, Huntington, and prion diseases, the deposition of aggregated misfolded proteins is believed to be responsible for the neurotoxicity that characterizes these diseases. Prion protein (PrP, the protein responsible of prion diseases, has been deeply studied for the peculiar feature of its misfolded oligomers that are able to propagate within affected brains, inducing the conversion of the natively folded PrP into the pathological conformation. In this review, we summarize the available experimental evidence concerning the relationship between aggregation status of misfolded PrP and neuronal death in the course of prion diseases. In particular, we describe the main findings resulting from the use of different synthetic (mainly PrP106-126 and recombinant PrP-derived peptides, as far as mechanisms of aggregation and amyloid formation, and how these different spatial conformations can affect neuronal death. In particular, most data support the involvement of non-fibrillar oligomers rather than actual amyloid fibers as the determinant of neuronal death.

  16. Acetylcholinesterase triggers the aggregation of PrP 106-126

    International Nuclear Information System (INIS)

    Acetylcholinesterase (AChE), a senile plaque component, promotes amyloid-β-protein (Aβ) fibril formation in vitro. The presence of prion protein (PrP) in Alzheimer's disease (AD) senile plaques prompted us to assess if AChE could trigger the PrP peptides aggregation as well. Consequently, the efficacy of AChE on the PrP peptide spanning-residues 106-126 aggregation containing a coumarin fluorescence probe (coumarin-PrP 106-126) was studied. Kinetics of coumarin-PrP 106-126 aggregation showed a significant increase of maximum size of aggregates (MSA), which was dependent on AChE concentration. AChE-PrP 106-126 aggregates showed the tinctorial and optical amyloid properties as determined by polarized light and electronic microscopy analysis. A remarkable inhibition of MSA was obtained with propidium iodide, suggesting that AChE triggers PrP 106-126 and Aβ aggregation through a similar mechanism. Huprines (AChE inhibitors) also significantly decreased MSA induced by AChE as well, unveiling the potential interest for some AChE inhibitors as a novel class of potential anti-prion drugs

  17. Computational selection of inhibitors of Abeta aggregation and neuronal toxicity.

    Science.gov (United States)

    Chen, Deliang; Martin, Zane S; Soto, Claudio; Schein, Catherine H

    2009-07-15

    Alzheimer's disease (AD) is characterized by the cerebral accumulation of misfolded and aggregated amyloid-beta protein (Abeta). Disease symptoms can be alleviated, in vitro and in vivo, by 'beta-sheet breaker' pentapeptides that reduce plaque load. However the peptide nature of these compounds, made them biologically unstable and unable to penetrate membranes with high efficiency. The main goal of this study was to use computational methods to identify small molecule mimetics with better drug-like properties. For this purpose, the docked conformations of the active peptides were used to identify compounds with similar activities. A series of related beta-sheet breaker peptides were docked to solid state NMR structures of a fibrillar form of Abeta. The lowest energy conformations of the active peptides were used to design three dimensional (3D)-pharmacophores, suitable for screening the NCI database with Unity. Small molecular weight compounds with physicochemical features and a conformation similar to the active peptides were selected, ranked by docking and biochemical parameters. Of 16 diverse compounds selected for experimental screening, 2 prevented and reversed Abeta aggregation at 2-3microM concentration, as measured by Thioflavin T (ThT) fluorescence and ELISA assays. They also prevented the toxic effects of aggregated Abeta on neuroblastoma cells. Their low molecular weight and aqueous solubility makes them promising lead compounds for treating AD.

  18. Automated Ex Situ Assays of Amyloid Formation on a Microfluidic Platform.

    Science.gov (United States)

    Saar, Kadi-Liis; Yates, Emma V; Müller, Thomas; Saunier, Séverine; Dobson, Christopher M; Knowles, Tuomas P J

    2016-02-01

    Increasingly prevalent neurodegenerative diseases are associated with the formation of nanoscale amyloid aggregates from normally soluble peptides and proteins. A widely used strategy for following the aggregation process and defining its kinetics involves the use of extrinsic dyes that undergo a spectral shift when bound to β-sheet-rich aggregates. An attractive route to carry out such studies is to perform ex situ assays, where the dye molecules are not present in the reaction mixture, but instead are only introduced into aliquots taken from the reaction at regular time intervals to avoid the possibility that the dye molecules interfere with the aggregation process. However, such ex situ measurements are time-consuming to perform, require large sample volumes, and do not provide for real-time observation of aggregation phenomena. To overcome these limitations, here we have designed and fabricated microfluidic devices that offer continuous and automated real-time ex situ tracking of the protein aggregation process. This device allows us to improve the time resolution of ex situ aggregation assays relative to conventional assays by more than one order of magnitude. The availability of an automated system for tracking the progress of protein aggregation reactions without the presence of marker molecules in the reaction mixtures opens up the possibility of routine noninvasive study of protein aggregation phenomena. PMID:26840721

  19. Nonequilibrium and generalized-ensemble molecular dynamics simulations for amyloid fibril

    International Nuclear Information System (INIS)

    Amyloids are insoluble and misfolded fibrous protein aggregates and associated with more than 20 serious human diseases. We perform all-atom molecular dynamics simulations of amyloid fibril assembly and disassembly

  20. Nonequilibrium and generalized-ensemble molecular dynamics simulations for amyloid fibril

    Science.gov (United States)

    Okumura, Hisashi

    2015-12-01

    Amyloids are insoluble and misfolded fibrous protein aggregates and associated with more than 20 serious human diseases. We perform all-atom molecular dynamics simulations of amyloid fibril assembly and disassembly.

  1. Nonequilibrium and generalized-ensemble molecular dynamics simulations for amyloid fibril

    Energy Technology Data Exchange (ETDEWEB)

    Okumura, Hisashi [Research Center for Computational Science, Institute for Molecular Science, Okazaki, Aichi 444-8585 (Japan); Department of Structural Molecular Science, The Graduate University for Advanced Studies, Okazaki, Aichi 444-8585 (Japan)

    2015-12-31

    Amyloids are insoluble and misfolded fibrous protein aggregates and associated with more than 20 serious human diseases. We perform all-atom molecular dynamics simulations of amyloid fibril assembly and disassembly.

  2. Calcium signaling and amyloid toxicity in Alzheimer disease.

    Science.gov (United States)

    Demuro, Angelo; Parker, Ian; Stutzmann, Grace E

    2010-04-23

    Intracellular Ca(2+) signaling is fundamental to neuronal physiology and viability. Because of its ubiquitous roles, disruptions in Ca(2+) homeostasis are implicated in diverse disease processes and have become a major focus of study in multifactorial neurodegenerative diseases such as Alzheimer disease (AD). A hallmark of AD is the excessive production of beta-amyloid (Abeta) and its massive accumulation in amyloid plaques. In this minireview, we highlight the pathogenic interactions between altered cellular Ca(2+) signaling and Abeta in its different aggregation states and how these elements coalesce to alter the course of the neurodegenerative disease. Ca(2+) and Abeta intersect at several functional levels and temporal stages of AD, thereby altering neurotransmitter receptor properties, disrupting membrane integrity, and initiating apoptotic signaling cascades. Notably, there are reciprocal interactions between Ca(2+) pathways and amyloid pathology; altered Ca(2+) signaling accelerates Abeta formation, whereas Abeta peptides, particularly in soluble oligomeric forms, induce Ca(2+) disruptions. A degenerative feed-forward cycle of toxic Abeta generation and Ca(2+) perturbations results, which in turn can spin off to accelerate more global neuropathological cascades, ultimately leading to synaptic breakdown, cell death, and devastating memory loss. Although no cause or cure is currently known, targeting Ca(2+) dyshomeostasis as an underlying and integral component of AD pathology may result in novel and effective treatments for AD.

  3. MetAmyl: a METa-predictor for AMYLoid proteins.

    Directory of Open Access Journals (Sweden)

    Mathieu Emily

    Full Text Available The aggregation of proteins or peptides in amyloid fibrils is associated with a number of clinical disorders, including Alzheimer's, Huntington's and prion diseases, medullary thyroid cancer, renal and cardiac amyloidosis. Despite extensive studies, the molecular mechanisms underlying the initiation of fibril formation remain largely unknown. Several lines of evidence revealed that short amino-acid segments (hot spots, located in amyloid precursor proteins act as seeds for fibril elongation. Therefore, hot spots are potential targets for diagnostic/therapeutic applications, and a current challenge in bioinformatics is the development of methods to accurately predict hot spots from protein sequences. In this paper, we combined existing methods into a meta-predictor for hot spots prediction, called MetAmyl for METapredictor for AMYLoid proteins. MetAmyl is based on a logistic regression model that aims at weighting predictions from a set of popular algorithms, statistically selected as being the most informative and complementary predictors. We evaluated the performances of MetAmyl through a large scale comparative study based on three independent datasets and thus demonstrated its ability to differentiate between amyloidogenic and non-amyloidogenic polypeptides. Compared to 9 other methods, MetAmyl provides significant improvement in prediction on studied datasets. We further show that MetAmyl is efficient to highlight the effect of point mutations involved in human amyloidosis, so we suggest this program should be a useful complementary tool for the diagnosis of these diseases.

  4. 应用酵母双杂交筛选系统从药用植物中发现Aβ聚集抑制剂%Application of a yeast two-hybrid based screening system in the identification of amyloid-beta aggregation inhibitors in pharmaceutical plants

    Institute of Scientific and Technical Information of China (English)

    王丽威; 杨雁芳; 张英涛

    2011-01-01

    研究证据表明,β淀粉样肽即Aβ的自我聚集是阿尔兹海默病(AD)重要的发病因素.因此,Aβ聚集抑制剂被认为是潜在的AD治疗候选药物.在本研究中,我们建立了一个基于酵母双杂交技术的Aβ聚集抑制剂筛选系统.通过采用拼接PCR技术(assembly PCR),克隆了人源A342的cDNA并将其插入到分别含有酵母转录因子GAL4转录激活区(GAL4AD)与DNA结合区(GAL4BD)的两个表达载体中.通过以上两个载体的共转化实现了两个融合蛋白GAL4AD-Aβ42与GAL4BD-Aβ42在AH109酵母菌株中的共表达.由于Aβ42片段在酵母中的自我相互作用使GAL4转录因子的活性在酵母中得到重建,从而激活了依赖于GAL4活性的四个报告基因HIS3,ADE2,lacZ与MELI的转录与表达.以上报告基因的正常表达使具有多种营养缺陷表型的AH109酵母获得了在缺乏组氨酸与腺嘌呤的合成选择培养基上正常生长的能力.通过采用生长抑制作为筛选标记,应用本系统对红景天属植物的Aβ聚集抑制活性进行了分析,进而发现本属植物很可能成为Aβ聚集抑制剂发现的重要资源.%The aggregation of amyloid-beta (Aβ) peptide,has been demonstrated to be critical for the development of Alzheimer's disease (AD).Aβ aggregation inhibitors are thus considered to be drug candidates for AD therapy.In the present study,we developed a novel screening tool based on the yeast two-hybrid system to screen Aβ aggregation inhibitors.The human Aβ42 peptide cDNA was cloned using assembly PCR and inserted into each of the yeast expression plasmids containing either the GAL4 activation domain (GAL4AD) or the DNA-binding domain (GAL4BD).Co-transformation of the above plasmids led to the expression of the fusion proteins GAL4AD-Aβ42 and GAL4BD-Aβ42 in the AH 109 yeast strain.The self interaction of Aβ42 fragments reconstructed the GAL4 transcriptor and thus activated the GAL4 responsive transcription of four reporter genes

  5. Restraint stress and repeated CRF receptor activation in the amygdala both increase amyloid β precursor protein (APP) and amyloid-β (Aβ) peptide but have divergent effects on BDNF and pre-synaptic proteins in the prefrontal cortex of rats

    OpenAIRE

    Ray, Balmiki; Gaskins, Denise L.; Sajdyk, Tammy J.; Spence, John P.; Fitz, Stephanie D.; Shekhar, Anantha; Lahiri, Debomoy K.

    2011-01-01

    Both environmental stress and anxiety may represent important risk factors for Alzheimer's disease (AD) pathogenesis. Previous studies demonstrate that restraint stress is associated with increased amyloid beta (Aβ) and decreased brain-derived neurotrophic factor (BDNF) levels in the brain. Aβ deposition, synaptic loss, and neurodegeneration define major hallmarks of AD, and BDNF is responsible for the maintenance of neurons. In contrast to restraint stress, repeated injections of sub-anxioge...

  6. NMR WaterLOGSY Reveals Weak Binding of Bisphenol A with Amyloid Fibers of a Conserved 11 Residue Peptide from Androgen Receptor.

    Science.gov (United States)

    Asencio-Hernández, Julia; Kieffer, Bruno; Delsuc, Marc-André

    2016-01-01

    There is growing evidence that bisphenol A (BPA), a molecule largely released in the environment, has detrimental effects on ecosystems and on human health. It acts as an endocrine disruptor targeting steroid hormone receptors, such as the estrogen receptor (ER), estrogen-related receptor (ERR) and androgen receptor (AR). BPA-derived molecules have recently been shown to interact with the AR N-terminal domain (AR-NTD), which is known to be largely intrinsically disordered. This N-terminal domain contains an 11 residue conserved domain that forms amyloid fibers upon oxidative dimerisation through its strictly conserved Cys240 residue. We investigate here the interaction of BPA, and other potential endocrine disruptors, with AR-NTD amyloid fibers using the WaterLOGSY NMR experiment. We observed a selective binding of these compounds to the amyloid fibers formed by the AR-NTD conserved region and glutamine homopolymers. This observation suggests that the high potency of endocrine disruptors may result, in part, from their ability to bind amyloid forms of nuclear receptors in addition to their cognate binding sites. This property may be exploited to design future therapeutic strategies targeting AR related diseases such as the spinal bulbar muscular atrophy or prostate cancer. The ability of NMR WaterLOGSY experiments to detect weak interactions between small ligands and amyloid fibers may prove to be of particular interest for identifying promising hit molecules. PMID:27583469

  7. NMR WaterLOGSY Reveals Weak Binding of Bisphenol A with Amyloid Fibers of a Conserved 11 Residue Peptide from Androgen Receptor

    Science.gov (United States)

    Asencio-Hernández, Julia; Kieffer, Bruno

    2016-01-01

    There is growing evidence that bisphenol A (BPA), a molecule largely released in the environment, has detrimental effects on ecosystems and on human health. It acts as an endocrine disruptor targeting steroid hormone receptors, such as the estrogen receptor (ER), estrogen-related receptor (ERR) and androgen receptor (AR). BPA-derived molecules have recently been shown to interact with the AR N-terminal domain (AR-NTD), which is known to be largely intrinsically disordered. This N-terminal domain contains an 11 residue conserved domain that forms amyloid fibers upon oxidative dimerisation through its strictly conserved Cys240 residue. We investigate here the interaction of BPA, and other potential endocrine disruptors, with AR-NTD amyloid fibers using the WaterLOGSY NMR experiment. We observed a selective binding of these compounds to the amyloid fibers formed by the AR-NTD conserved region and glutamine homopolymers. This observation suggests that the high potency of endocrine disruptors may result, in part, from their ability to bind amyloid forms of nuclear receptors in addition to their cognate binding sites. This property may be exploited to design future therapeutic strategies targeting AR related diseases such as the spinal bulbar muscular atrophy or prostate cancer. The ability of NMR WaterLOGSY experiments to detect weak interactions between small ligands and amyloid fibers may prove to be of particular interest for identifying promising hit molecules. PMID:27583469

  8. Looking for a generic inhibitor of amyloid-like fibril formation among flavone derivatives

    OpenAIRE

    Šneideris, Tomas; Baranauskienė, Lina; Jonathan G Cannon; Rutkienė, Rasa; Meškys, Rolandas; Smirnovas, Vytautas

    2015-01-01

    A range of diseases is associated with amyloid fibril formation. Despite different proteins being responsible for each disease, all of them share similar features including beta-sheet-rich secondary structure and fibril-like protein aggregates. A number of proteins can form amyloid-like fibrils in vitro, resembling structural features of disease-related amyloids. Given these generic structural properties of amyloid and amyloid-like fibrils, generic inhibitors of fibril formation would be of i...

  9. beta-Sheet Aggregation of Kisspeptin-10 is Stimulated by Heparin but Inhibited by Amphiphiles

    DEFF Research Database (Denmark)

    Nielsen, Søren Bang; Franzmann, Magnus; Basaiawmoit, Rajiv Vaid;

    2010-01-01

    determined. The peptide's conformational versatility raises the question whether it is also able to form ordered aggregates under physiological conditions, which might be relevant as a storage mechanism. Here we show that heparin induces kisspeptin to form beta-sheet rich amyloid aggregates both at neutral...... (pH 7.0) and slightly acidic (pH 5.2) conditions. Addition of heparin leads to aggregation after a certain lag phase, irrespective of the time of addition of heparin, indicating that heparin is needed to facilitate the formation of fibrillation nuclei. Aggregation is completely inhibited...... by submicellar concentrations of zwitterionic and anionic surfactants. Unlike previous reports, our NMR data do not indicate persistent structure in the presence of zwitterionic surfactant micelles. Thus kisspeptin can aggregate under physiologically relevant conditions provided heparin is present...

  10. A chemical analog of curcumin as an improved inhibitor of amyloid Abeta oligomerization.

    Directory of Open Access Journals (Sweden)

    Robert A Orlando

    Full Text Available Amyloid-like plaques are characteristic lesions defining the neuropathology of Alzheimer's disease (AD. The size and density of these plaques are closely associated with cognitive decline. To combat this disease, the few therapies that are available rely on drugs that increase neurotransmission; however, this approach has had limited success as it has simply slowed an imminent decline and failed to target the root cause of AD. Amyloid-like deposits result from aggregation of the Aβ peptide, and thus, reducing amyloid burden by preventing Aβ aggregation represents an attractive approach to improve the therapeutic arsenal for AD. Recent studies have shown that the natural product curcumin is capable of crossing the blood-brain barrier in the CNS in sufficient quantities so as to reduce amyloid plaque burden. Based upon this bioactivity, we hypothesized that curcumin presents molecular features that make it an excellent lead compound for the development of more effective inhibitors of Aβ aggregation. To explore this hypothesis, we screened a library of curcumin analogs and identified structural features that contribute to the anti-oligomerization activity of curcumin and its analogs. First, at least one enone group in the spacer between aryl rings is necessary for measureable anti-Aβ aggregation activity. Second, an unsaturated carbon spacer between aryl rings is essential for inhibitory activity, as none of the saturated carbon spacers showed any margin of improvement over that of native curcumin. Third, methoxyl and hydroxyl substitutions in the meta- and para-positions on the aryl rings appear necessary for some measure of improved inhibitory activity. The best lead inhibitors have either their meta- and para-substituted methoxyl and hydroxyl groups reversed from that of curcumin or methoxyl or hydroxyl groups placed in both positions. The simple substitution of the para-hydroxy group on curcumin with a methoxy substitution improved

  11. Characterization of Amyloid Cores in Prion Domains

    Science.gov (United States)

    Sant’Anna, Ricardo; Fernández, Maria Rosario; Batlle, Cristina; Navarro, Susanna; de Groot, Natalia S.; Serpell, Louise; Ventura, Salvador

    2016-01-01

    Amyloids consist of repetitions of a specific polypeptide chain in a regular cross-β-sheet conformation. Amyloid propensity is largely determined by the protein sequence, the aggregation process being nucleated by specific and short segments. Prions are special amyloids that become self-perpetuating after aggregation. Prions are responsible for neuropathology in mammals, but they can also be functional, as in yeast prions. The conversion of these last proteins to the prion state is driven by prion forming domains (PFDs), which are generally large, intrinsically disordered, enriched in glutamines/asparagines and depleted in hydrophobic residues. The self-assembly of PFDs has been thought to rely mostly on their particular amino acid composition, rather than on their sequence. Instead, we have recently proposed that specific amyloid-prone sequences within PFDs might be key to their prion behaviour. Here, we demonstrate experimentally the existence of these amyloid stretches inside the PFDs of the canonical Sup35, Swi1, Mot3 and Ure2 prions. These sequences self-assemble efficiently into highly ordered amyloid fibrils, that are functionally competent, being able to promote the PFD amyloid conversion in vitro and in vivo. Computational analyses indicate that these kind of amyloid stretches may act as typical nucleating signals in a number of different prion domains. PMID:27686217

  12. Severe In Vivo Hyper-Homocysteinemia is not Associated with Elevation of AmyloidPeptides in the Tg2576 Mice

    OpenAIRE

    Zhuo, Jia-Min; Praticò, Domenico

    2010-01-01

    Since hyper-homocysteinemia (HHcy) was recognized as a risk factor for Alzheimer’s disease (AD), many studies tried to induce HHcy in animal models to investigate its effect on amyloid-β protein precursor (AβPP) metabolism. Previous reports found that HHcy induced in AD transgenic mouse models, by either feeding a methionine-enriched diet or vitamin Bs deficient diet, is associated with elevation of amyloid-β (Aβ) levels. However, there is no data available on the effect of dietary interventi...

  13. Inhibition of smooth muscle contraction and platelet aggregation by peptide 204–212 of lipocortin 5: an attempt to define some structure requirements

    Directory of Open Access Journals (Sweden)

    K. G. Mugridge

    1993-01-01

    Full Text Available Peptide 204–212 of lipocortin (LC 5 inhibited porcine pancreatic phospholipase A2 (PLA2 induced rat stomach strip contractions and ADP induced rabbit platelet aggregation in a concentration dependent manner (IC30 of 10 μM and 400 μM, respectively. The first two amino acids are not necessary since the eptapeptide 206–212 was equipotent in both assays (IC30 of 12.5 μM and 420 μM. Of the two pentapeptides 204–208 and 208–212 only the latter showed inhibitory activity in both models although the potency was much reduced (IC30 of 170 μM and 630 μM compared with that of the parent nonapeptide. Comparison of peptide 204–212 effects with those of its analogues on LC1 and LC2 indicate that lysine 208 and aspartic acid 211 are essential in order to maintain a fully active nonapeptide.

  14. Energy interactions in amyloid-like fibrils from NNQQNY.

    Science.gov (United States)

    Cuesta, Inmaculada García; Sánchez de Merás, Alfredo M J

    2014-03-01

    We use large-scale MP2 calculations to analyze the interactions appearing in amyloid fibers, which are difficult to determine experimentally. To this end, dimers and trimers of the hexapeptide NNQQNY from the yeast prion-like protein Sup35 were considered as model systems. We studied the energy interactions present in the three levels of organization in which the formation of amyloid fibrils is structured. The structural changes in the hydrogen bonds were studied too. It was found that the most energetic process is the formation of the β-sheet, which is equally due to both hydrogen bonds and van der Waals interactions. The aromatic rings help stabilize these aggregates through stacking of the aromatic rings of tyrosine, the stability produced by the aromatics residues increasing with their aromaticity. The formation of the basic unit of the assembled proto-fiber, the steric zipper, is less energetic and is associated to both dispersion forces and hydrogen bonds. The interactions between pair of β-sheets across the peptide-to-peptide contact through the tyrosine rings are cooperative and due to dispersion effects. Moreover, the strength of this interaction can rationalize the variation of mobility of the aromatic ring in the tyrosine units found in solid NMR experiments. PMID:24458317

  15. Surface aggregation of urinary proteins and aspartic acid-rich peptides on the faces of calcium oxalate monohydrate investigated by in situ force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, M L; Qiu, S R; Hoyer, J R; Casey, W H; Nancollas, G H; De Yoreo, J J

    2008-05-28

    The growth of calcium oxalate monohydrate in the presence of Tamm-Horsfall protein (THP), osteopontin (OPN), and the 27-residue synthetic peptides (DDDS){sub 6}DDD and (DDDG){sub 6}DDD [where D = aspartic acid and X = S (serine) or G (glycine)] was investigated via in situ atomic force microscopy (AFM). The results show that these three growth modulators create extensive deposits on the crystal faces. Depending on the modulator and crystal face, these deposits can occur as discrete aggregates, filamentary structures, or uniform coatings. These proteinaceous films can lead to either the inhibition or increase of the step speeds (with respect to the impurity-free system) depending on a range of factors that include peptide or protein concentration, supersaturation and ionic strength. While THP and the linear peptides act, respectively, to exclusively increase and inhibit growth on the (-101) face, both exhibit dual functionality on the (010) face, inhibiting growth at low supersaturation or high modulator concentration and accelerating growth at high supersaturation or low modulator concentration. Based on analyses of growth morphologies and dependencies of step speeds on supersaturation and protein or peptide concentration, we argue for a picture of growth modulation that accounts for the observations in terms of the strength of binding to the surfaces and steps and the interplay of electrostatic and solvent-induced forces at crystal surface.

  16. Imaging Alzheimer's disease-related protein aggregates in human cells using a selenium label

    Energy Technology Data Exchange (ETDEWEB)

    McGuire, E K; McComb, D W; Porter, A E [Department of Materials, Imperial College, Exhibition Rd, London SW7 2AZ (United Kingdom); Motskin, M [Department of Anatomy, University of Cambridge, Downing St, Cambridge CB2 3DY (United Kingdom); Knowles, T P J [Nanoscience Centre, University of Cambridge, JJ Thomson Ave, Cambridge, CB3 0FF (United Kingdom); Dobson, C M, E-mail: e.mcguire07@imperial.ac.u [Department of Chemistry, University of Cambridge, Lensfield Rd, Cambridge CB2 1EW (United Kingdom)

    2010-07-01

    The aberrant folding and subsequent aggregation of proteins and peptides is associated with a range of pathological conditions from the systemic amyloidoses to neurodegenerative diseases such as Alzheimer's and Parkinson's diseases. While this link is well established there is a lack of understanding of the exact role protein aggregates play in disease pathogenesis. Part of the reason for this is that it has proved extremely challenging to characterise the localisation and structure of amyloid fibrils within the cellular environment due to a lack of contrast between the carbon rich protein aggregates and the carbon rich cell. We report a novel method for visualising Alzheimer's disease-related amyloid fibrils inside human cells without the use of invasive or unreliable stains or tags. The naturally occurring sulfur atom in the amyloid-{beta} peptide is replaced with a selenium atom, a heavier element in the same group of the periodic table of elements. Using high angle annular dark field (HAADF) in a scanning transmission electron microscopy (STEM) the selenium-labelled aggregates can be identified within the cellular environment.

  17. Inhibition of IAPP Aggregation and Toxicity by Natural Products and Derivatives

    Directory of Open Access Journals (Sweden)

    Amit Pithadia

    2016-01-01

    Full Text Available Fibrillar aggregates of human islet amyloid polypeptide, hIAPP, a pathological feature seen in some diabetes patients, are a likely causative agent for pancreatic beta-cell toxicity, leading to a transition from a state of insulin resistance to type II diabetes through the loss of insulin producing beta-cells by hIAPP induced toxicity. Because of the probable link between hIAPP and the development of type II diabetes, there has been strong interest in developing reagents to study the aggregation of hIAPP and possible therapeutics to block its toxic effects. Natural products are a class of compounds with interesting pharmacological properties against amyloids which have made them interesting targets to study hIAPP. Specifically, the ability of polyphenolic natural products, EGCG, curcumin, and resveratrol, to modulate the aggregation of hIAPP is discussed. Furthermore, we have outlined possible mechanistic discoveries of the interaction of these small molecules with the peptide and how they may mitigate toxicity associated with peptide aggregation. These abundantly found agents have been long used to combat diseases for many years and may serve as useful templates toward developing therapeutics against hIAPP aggregation and toxicity.

  18. Probing amyloid-β pathology in transgenic Alzheimer's disease (tgArcSwe) mice using MALDI imaging mass spectrometry.

    Science.gov (United States)

    Carlred, Louise; Michno, Wojciech; Kaya, Ibrahim; Sjövall, Peter; Syvänen, Stina; Hanrieder, Jörg

    2016-08-01

    The pathological mechanisms underlying Alzheimer's disease (AD) are still not understood. The disease pathology is characterized by the accumulation and aggregation of amyloid-β (Aβ) peptides into extracellular plaques, however the factors that promote neurotoxic Aβ aggregation remain elusive. Imaging mass spectrometry (IMS) is a powerful technique to comprehensively elucidate the spatial distribution patterns of lipids, peptides and proteins in biological tissues. In the present study, matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS)-based imaging was used to study Aβ deposition in transgenic mouse brain tissue and to elucidate the plaque-associated chemical microenvironment. The imaging experiments were performed in brain sections of transgenic Alzheimer's disease mice carrying the Arctic and Swedish mutation of amyloid-beta precursor protein (tgArcSwe). Multivariate image analysis was used to interrogate the IMS data for identifying pathologically relevant, anatomical features based on their chemical identity. This include cortical and hippocampal Aβ deposits, whose amyloid peptide content was further verified using immunohistochemistry and laser microdissection followed by MALDI MS analysis. Subsequent statistical analysis on spectral data of regions of interest revealed brain region-specific differences in Aβ peptide aggregation. Moreover, other plaque-associated protein species were identified including macrophage migration inhibitory factor suggesting neuroinflammatory processes and glial cell reactivity to be involved in AD pathology. The presented data further highlight the potential of IMS as a powerful approach in neuropathology. Hanrieder et al. described an imaging mass spectrometry based study on comprehensive spatial profiling of C-terminally truncated Aβ species within individual plaques in tgArcSwe mice. Here, brain region-dependent differences in Aβ truncation and other plaque-associated proteins, such as

  19. Multifunctional coumarin derivatives: monoamine oxidase B (MAO-B) inhibition, anti-β-amyloid (Aβ) aggregation and metal chelation properties against Alzheimer's disease.

    Science.gov (United States)

    Huang, Ming; Xie, Sai-Sai; Jiang, Neng; Lan, Jin-Shuai; Kong, Ling-Yi; Wang, Xiao-Bing

    2015-02-01

    A series of coumarin derivatives were designed, synthesized, and evaluated as novel multifunctional agents against Alzheimer's disease (AD). In vitro studies showed that most of these compounds exhibited significant potency to inhibit hMAO-B selectively and self-induced Aβ1-42 aggregation. In particular, compound 13 presented the greatest potential to inhibit hMAO-B (IC50=0.081μM, SI >1234) and good inhibition of Aβ1-42 aggregation (52.9% at 20μM). Moreover, compound 13 could function as a metal-chelator, penetrate the blood-brain barrier (BBB) and show low cell toxicity in rat pheochromocytoma (PC12) and SH-SY5Y cells. Taken together, these results suggested that compound 13 might be a promising multifunctional agent for AD treatment.

  20. Potent anticholinesterasic and neuroprotective pyranotacrines as inhibitors of beta-amyloid aggregation, oxidative stress and tau-phosphorylation for Alzheimer's disease.

    Science.gov (United States)

    García-Font, Nuria; Hayour, Hasna; Belfaitah, Ali; Pedraz, Jorge; Moraleda, Ignacio; Iriepa, Isabel; Bouraiou, Abdelmalek; Chioua, Mourad; Marco-Contelles, José; Oset-Gasque, María Jesús

    2016-08-01

    Herein we describe the synthesis and in vitro biological evaluation of thirteen new, racemic, diversely functionalized 2-chloroquinolin-3-yl substituted PyranoTacrines (PTs) as multipotent tacrine analogues for Alzheimer's disease (AD) therapy. Among these compounds, 1-(5-amino-4-(2-chloro-7-methoxyquinolin-3-yl)-2-methyl-6,7,8,9-tetrahydro-4H-pyrano [2,3-b]quinolin-3-yl)éthanone (9) and ethyl 5-amino-4-(2-chloroquinolin-3-yl)-2-methyl-6,7,8,9-tetrahydro-4H-pyrano[2,3-b]quinoline-3-carboxylate (4) were found to be non-neurotoxic agents in human neuroblastoma SHSY5Y cells. Compounds 9 (IC50 = 0.47 ± 0.13 μM) and 4 (IC50 = 0.48 ± 0.05 μM) are potent, mixed-type (9: Ki = 0.0142 ± 0.003 μM), and selective EeAChE inhibitors, binding at the both catalytic and peripheral anionic site of the enzyme. Compounds 9 and 4 are neuroprotective agents at low μM concentrations upon decreased viability of SHSY5Y cells induced by oxidative stress, and stimulators of GSK3β-dependent tau phosphorylation. In addition, molecules 9 and 4 effectively counteract Aβ-aggregation on exposure to Aβ1-40, as well as Aβ1-40 aggregation-dependent tau-oligomerization and phosphorylation in (396)Ser, which could be ascribed to the anti-aggregating properties shown in vitro. Thus, a new family of tacrine analogues, whose potent AChEI activity is linked to both their Aβ-aggregating and tau-phosphorylation inhibitory capacities, has been discovered for the potential treatment of AD. PMID:27128182

  1. NMR Studies of Lipid Lateral Diffusion in the DMPC/Gramicidin D/Water System: Peptide Aggregation and Obstruction Effects

    OpenAIRE

    Orädd, Greger; Lindblom, Göran

    2004-01-01

    The PFG-NMR method has been used in macroscopically oriented bilayers to investigate the effect of the peptide gramicidin D on the lateral diffusion of dimyristoylphosphatidylcholine. By varying both the temperature (21–35°C) and the gramicidin content (0–5 mol %) we have introduced solid obstacles into the lipid liquid crystalline bilayer. It was shown that the obstruction effect exerted by the peptide can be described with several different theoretical models, each based on different premis...

  2. Lactic acid induces aberrant amyloid precursor protein processing by promoting its interaction with endoplasmic reticulum chaperone proteins.

    Directory of Open Access Journals (Sweden)

    Yiwen Xiang

    Full Text Available BACKGROUND: Lactic acid, a natural by-product of glycolysis, is produced at excess levels in response to impaired mitochondrial function, high-energy demand, and low oxygen availability. The enzyme involved in the production of β-amyloid peptide (Aβ of Alzheimer's disease, BACE1, functions optimally at lower pH, which led us to investigate a potential role of lactic acid in the processing of amyloid precursor protein (APP. METHODOLOGY/PRINCIPAL FINDINGS: Lactic acid increased levels of Aβ40 and 42, as measured by ELISA, in culture medium of human neuroblastoma cells (SH-SY5Y, whereas it decreased APP metabolites, such as sAPPα. In cell lysates, A