WorldWideScience

Sample records for amyloid ligand 11cpib

  1. Ligand-binding sites in human serum amyloid P component

    DEFF Research Database (Denmark)

    Heegaard, N.H.H.; Heegaard, Peter M. H.; Roepstorff, P.;

    1996-01-01

    Amyloid P component (AP) is a naturally occurring glycoprotein that is found in serum and basement membranes, AP is also a component of all types of amyloid, including that found in individuals who suffer from Alzheimer's disease and Down's syndrome. Because AP has been found to bind strongly...... of 25 mu M, while the IC50 of AP-(27-38)-peptide and AP-(33-38)-peptide are 10 mu M and 2 mu M, respectively, The understanding of the structure and function of active AP peptides will be useful for development of amyloid-targeted diagnostics and therapeutics....

  2. Transfer of Copper from an Amyloid to a Natural Copper-Carrier Peptide with a Specific Mediating Ligand.

    Science.gov (United States)

    Nguyen, Michel; Bijani, Christian; Martins, Nathalie; Meunier, Bernard; Robert, Anne

    2015-11-16

    The oxidative stress that arises from the catalytic reduction of dioxygen by Cu(II/I)-loaded amyloids is the major pathway for neuron death that occurs in Alzheimer's disease. In this work, we show that bis-8(aminoquinoline) ligands, copper(II) specific chelators, are able to catalytically extract Cu(II) from Cu-Aβ1-16 and then completely release Cu(I) in the presence of glutathione to provide a Cu(I)-glutathione complex, a biological intermediate that is able to deliver copper to apo forms of copper-protein complexes. These data demonstrate that bis-8(aminoquinolines) can perform the transfer of copper ions from the pathological Cu-amyloid complexes to regular copper-protein complexes. These copper-specific ligands assist GSH to recycle Cu(I) in an AD brain and consequently slow down oxidative damage that is due to copper dysregulation in Alzheimer's disease. Under the same conditions, we have shown that the copper complex of PBT2, a mono(8-hydroxyquinoline) previously used as a drug candidate, does not efficiently release copper in the presence of GSH. In addition, we report that GSH itself was unable to fully abstract copper ions from Cu-β-amyloid complexes.

  3. Small organic probes as amyloid specific ligands--past and recent molecular scaffolds.

    Science.gov (United States)

    Nilsson, K Peter R

    2009-08-20

    Molecular probes for selective staining and imaging of protein aggregates, such as amyloid, are important to advance our understanding of the molecular mechanisms underlying protein misfolding diseases and also for obtaining an early and accurate clinical diagnosis of these disorders. Since normal immunohistochemical reagents, such as antibodies have shown limitation for identifying protein aggregates both in vitro and in vivo, small organic probes have been utilized as amyloid specific markers. In this review, past and recent molecular scaffolds that have been utilized for the development of small organic amyloid imaging agents are discussed.

  4. Nature-Inspired Multifunctional Ligands: Focusing on Amyloid-Based Molecular Mechanisms of Alzheimer's Disease.

    Science.gov (United States)

    Simoni, Elena; Serafini, Melania M; Bartolini, Manuela; Caporaso, Roberta; Pinto, Antonella; Necchi, Daniela; Fiori, Jessica; Andrisano, Vincenza; Minarini, Anna; Lanni, Cristina; Rosini, Michela

    2016-06-20

    The amyloidogenic pathway is a prominent feature of Alzheimer's disease (AD). However, growing evidence suggests that a linear disease model based on β-amyloid peptide (Aβ) alone is not likely to be realistic, which therefore calls for further investigations on the other actors involved in the play. The pro-oxidant environment induced by Aβ in AD pathology is well established, and a correlation among Aβ, oxidative stress, and conformational changes in p53 has been suggested. In this study, we applied a multifunctional approach to identify allyl thioesters of variously substituted trans-cinnamic acids for which the pharmacological profile was strategically tuned by hydroxy substituents on the aromatic moiety. Indeed, only catechol derivative 3 [(S)-allyl (E)-3-(3,4-dihydroxyphenyl)prop-2-enethioate] inhibited Aβ fibrilization. Conversely, albeit to different extents, all compounds were able to decrease the formation of reactive oxygen species in SH-SY5Y neuroblastoma cells and to prevent alterations in the conformation of p53 and its activity mediated by soluble sub-lethal concentrations of Aβ. This may support an involvement of oxidative stress in Aβ function, with p53 emerging as a potential mediator of their functional interplay.

  5. X-Ray Structural Study of Amyloid-Like Fibrils of Tau Peptides Bound to Small-Molecule Ligands.

    Science.gov (United States)

    Tayeb-Fligelman, Einav; Landau, Meytal

    2017-01-01

    Atomic structures of Tau involved in Alzheimer's disease complexed with small molecule binders are the first step to define the Tau pharmacophore, leading the way to a structure-based design of improved diagnostics and therapeutics. Yet the partially disordered and polymorphic nature of Tau hinders structural analyses. Fortunately, short segments from amyloid proteins, which exhibit similar biophysical properties to the full-length proteins, also form fibrils and oligomers, and their atomic structures can be determined using X-ray microcrystallography. Such structures were successfully used to design amyloid inhibitors. This chapter describes experimental procedures used to determine crystal structures of Tau peptide segments in complex with small-molecule binders.

  6. Rigid Organization of Fluorescence-Active Ligands by Artificial Macrocyclic Receptor to Achieve the Thioflavin T-Amyloid Fibril Level Association.

    Science.gov (United States)

    Zhang, Ying-Ming; Zhang, Xu-Jie; Xu, Xiufang; Fu, Xiao-Ning; Hou, Hong-Biao; Liu, Yu

    2016-04-28

    The push-pull molecules with an intramolecular charge transfer from donor to acceptor sides upon excitation exhibit a wide variety of biological and electronic activities, as exemplified by the in vivo fluorescence imaging probes for amyloid fibrils in the diagnosis and treatment of amyloid diseases. Interestingly, the structurally much simpler bis(4,8-disulfonato-1,5-naphtho)-32-crown-8 (DNC), in keen contrast to the conventional macrocyclic receptors, was found to dramatically enhance the fluorescence of twisted intramolecular charge-transfer molecules possessing various benzothiazolium and stilbazolium fluorophores upon complexation. Spectroscopic and microcalorimetric titrations jointly demonstrated the complex structures and the interactions that promote the extremely strong complexation, revealing that the binding affinity in these artificial host-guest pairs could reach up to a nearly 10(7) M(-1) order of magnitude in water, and the sandwich-type complexation is driven by electrostatic, hydrophobic, π-stacking, and hydrogen-bonding interactions. Quantum chemical calculations on free molecules and their DNC-bound species in both the ground and excited states elucidated that the encapsulation by DNC could greatly deter the central single and double chemical bonds from free intramolecular rotation in the singlet excited state, thus leading to the unique and unprecedented fluorescence enhancement upon sandwich-type complexation. This complexation-induced structural reorganization mechanism may also apply to the binding of other small-molecule ligands by functional receptors and contribute to the molecular-level understanding of the receptor-ligand interactions in many biology-related systems.

  7. Transcriptional regulation of human FE65, a ligand of Alzheimer's disease amyloid precursor protein, by Sp1.

    LENUS (Irish Health Repository)

    Yu, Hoi-Tin

    2010-03-01

    FE65 is a neuronal-enriched adaptor protein that binds to the Alzheimer\\'s disease amyloid precursor protein (APP). FE65 forms a transcriptionally active complex with the APP intracellular domain (AICD). The precise gene targets for this complex are unclear but several Alzheimer\\'s disease-linked genes have been proposed. Additionally, evidence suggests that FE65 influences APP metabolism. The mechanism by which FE65 expression is regulated is as yet unknown. To gain insight into the regulatory mechanism, we cloned a 1.6 kb fragment upstream of the human FE65 gene and found that it possesses particularly strong promoter activity in neurones. To delineate essential regions in the human FE65 promoter, a series of deletion mutants were generated. The minimal FE65 promoter was located between -100 and +5, which contains a functional Sp1 site. Overexpression of the transcription factor Sp1 potentiates the FE65 promoter activity. Conversely, suppression of the FE65 promoter was observed in cells either treated with an Sp1 inhibitor or in which Sp1 was knocked down. Furthermore, reduced levels of Sp1 resulted in downregulation of endogenous FE65 mRNA and protein. These findings reveal that Sp1 plays a crucial role in transcriptional control of the human FE65 gene.

  8. Synthesis and evaluation of benzothiophene derivatives as ligands for imaging {beta}-amyloid plaques in Alzheimer's disease

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Young Soo [Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul 110-744 (Korea, Republic of); Cancer Research Institute, Seoul National University College of Medicine, Seoul 110-744 (Korea, Republic of)]|[Institute of Radiation Medicine, Medical Research Center, Seoul National University, Seoul 110-744 (Korea, Republic of); Jeong, Jae Min [Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul 110-744 (Korea, Republic of)]|[Cancer Research Institute, Seoul National University College of Medicine, Seoul 110-744 (Korea, Republic of) and Institute of Radiation Medicine, Medical Research Center, Seoul National University, Seoul 110-744 (Korea, Republic of)]. E-mail: jmjng@snu.ac.kr; Lee, Yun-Sang [Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul 110-744 (Korea, Republic of)]|[Institute of Radiation Medicine, Medical Research Center, Seoul National University, Seoul 110-744 (Korea, Republic of); Kim, Hyung Woo [Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul 110-744 (Korea, Republic of)]|[Institute of Radiation Medicine, Medical Research Center, Seoul National University, Seoul 110-744 (Korea, Republic of); Ganesha, Rai B.; Kim, Young Ju; Lee, Dong Soo [Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul 110-744 (Korea, Republic of); Chung, June-Key [Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul 110-744 (Korea, Republic of)]|[Cancer Research Institute, Seoul National University College of Medicine, Seoul 110-744 (Korea, Republic of); Lee, Myung Chul [Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul 110-744 (Korea, Republic of)

    2006-08-15

    The imaging of the distribution of {beta}-amyloid (A{beta}) plaques in the brain is becoming an important diagnostic modality in Alzheimer's disease (AD). Here, we synthesized novel benzothiophene derivatives and labeled them with {sup 18}F for the potential diagnostic imaging of AD patients using positron emission tomography. The K {sub i} values of benzothiophene derivatives were evaluated by competitive binding assay using 2-(3'-[{sup 125}I]iodo-4'-N-methylaminophenyl)benzothiazole as a radioligand and A{beta}(1-40) or A{beta}(1-42) aggregates as receptors. All synthesized benzothiophene derivatives showed high binding affinities (K {sub i}=0.28-6.50 nM) to both A{beta}(1-40) and A{beta}(1-42) aggregates. Binding affinities were increased by O-alkylation or N-alkylation of 2-(4'-hydroxyphenyl)benzothiophene or 2-(4'-aminophenyl)benzothiophene. Biodistribution studies of 2-(4'-O-(2''-[{sup 18}F]fluoroethyl)hydroxyphenyl)benzothiophene ([{sup 18}F]) and 2-(4'-O-(3''-[{sup 18}F]fluoropropyl)hydroxyphenyl)benzothiophene ([{sup 18}F]) in normal mice were performed after intravenous injection through the tail vein. In biodistribution data, [{sup 18}F] and [{sup 18}F] showed high initial brain uptakes at 2 min (5.2{+-}0.4% and 3.3{+-}0.2% ID/g, respectively), and brain activities washed out to 2.0{+-}0.2% and 0.5{+-}0.1% ID/g at 4 h, respectively. In conclusion, benzothiophene derivatives showed excellent binding affinities for A{beta} aggregates and high initial brain uptakes in normal mice.

  9. Overexpression of estrogen receptor beta alleviates the toxic effects of beta-amyloid protein on PC12 cells via non-hormonal ligands

    Institute of Scientific and Technical Information of China (English)

    Hui Wang; Lihui Si; Xiaoxi Li; Weiguo Deng; Haimiao Yang; Yuyan Yang; Yan Fu

    2012-01-01

    After binding to the estrogen receptor, estrogen can alleviate the toxic effects of beta-amyloid protein, and thereby exert a therapeutic effect on Alzheimer's disease patients. Estrogen can increase the incidence of breast carcinoma and endometrial cancer in post-menopausal women, so it is not suitable for clinical treatment of Alzheimer's disease. There is recent evidence that the estrogen receptor can exert its neuroprotective effects without estrogen dependence. Real-time quantitative PCR and flow cytometry results showed that, compared with non-transfected PC12 cells, adenovirus-mediated estrogen receptor β gene-transfected PC12 cells exhibited lower expression of tumor necrosis factor α and interleukin 1β under stimulation with beta-amyloid protein and stronger protection from apoptosis. The Akt-specific inhibitor Abi-2 decreased the anti-inflammatory and anti-apoptotic effects of estrogen receptor β gene-transfection. These findings suggest that overexpression of estrogen receptor β can alleviate the toxic effect of beta-amyloid protein on PC12 cells, without estrogen dependence. The Akt pathway is one of the potential means for the anti-inflammatory and anti-apoptotic effects of the estrogen receptor.

  10. Calcium-enhanced aggregation of serum amyloid P component and its inhibition by the ligands heparin and heparan sulphate. An electron microscopic and immunoelectrophoretic study

    DEFF Research Database (Denmark)

    Nielsen, EH; Sørensen, Inge Juul; Vilsgaard, K;

    1994-01-01

    -like structures were formed already at 2 mM calcium. At 25 mM calcium, large aggregates with a crystalline array occasionally exhibiting cylinders predominated. Binding of the ligands heparin and heparan sulphate to SAP completely abolished the calcium-enhanced aggregation, but the distribution of the SAP...... in the absence of calcium ions. However, aggregation is greatly enhanced even at low concentrations (2 mM) of calcium. SAP's tendency to self-aggregation is abolished after its binding to heparin or heparin sulphate. Furthermore, our TEM studies indicate that purified human SAP freed of its natural ligands has...

  11. Reproducibility of automated simplified voxel-based analysis of PET amyloid ligand [{sup 11}C]PIB uptake using 30-min scanning data

    Energy Technology Data Exchange (ETDEWEB)

    Aalto, Sargo [University of Turku and Turku University Hospital, Turku PET Centre, Turku (Finland); Aabo Akademi University, Department of Psychology, Turku (Finland); University of Turku, Turku PET Centre, P.O. Box 52, Turku (Finland); Scheinin, Noora M.; Naagren, Kjell; Rinne, Juha O. [University of Turku and Turku University Hospital, Turku PET Centre, Turku (Finland); Kemppainen, Nina M. [University of Turku and Turku University Hospital, Turku PET Centre, Turku (Finland); Turku University Hospital, Department of Neurology, Turku (Finland); Kailajaervi, Marita [University of Turku, Department of Pharmacology and Clinical Research Services Turku (CRST), Turku (Finland); GE Healthcare, Turku Imanet, Turku (Finland); Leinonen, Mika [4-Pharma Ltd, Turku (Finland); Scheinin, Mika [University of Turku, Department of Pharmacology and Clinical Research Services Turku (CRST), Turku (Finland)

    2009-10-15

    Positron emission tomography (PET) with {sup 11}C-labelled Pittsburgh compound B ([{sup 11}C]PIB) enables the quantitation of {beta}-amyloid accumulation in the brain of patients with Alzheimer's disease (AD). Voxel-based image analysis techniques conducted in a standard brain space provide an objective, rapid and fully automated method to analyze [{sup 11}C]PIB PET data. The purpose of this study was to evaluate both region- and voxel-level reproducibility of automated and simplified [{sup 11}C]PIB quantitation when using only 30 min of imaging data. Six AD patients and four healthy controls were scanned twice with an average interval of 6 weeks. To evaluate the feasibility of short scanning (convenient for AD patients), [{sup 11}C]PIB uptake was quantitated using 30 min of imaging data (60 to 90 min after tracer injection) for region-to-cerebellum ratio calculations. To evaluate the reproducibility, a test-retest design was used to derive absolute variability (VAR) estimates and intraclass correlation coefficients at both region-of-interest (ROI) and voxel level. The reproducibility both at the region level (VAR 0.9-5.5%) and at the voxel level (VAR 4.2-6.4%) was good to excellent. Based on the variability estimates obtained, power calculations indicated that 90% power to obtain statistically significant difference can be achieved using a sample size of five subjects per group when a 15% change from baseline (increase or decrease) in [{sup 11}C]PIB accumulation in the frontal cortex is anticipated in one group compared to no change in another group. Our results showed that an automated analysis method based on an efficient scanning protocol provides reproducible results for [{sup 11}C]PIB uptake and appears suitable for PET studies aiming at the quantitation of amyloid accumulation in the brain of AD patients for the evaluation of progression and treatment effects. (orig.)

  12. Differential Effects of Structural Modifications on the Competition of Chalcones for the PIB Amyloid Imaging Ligand-Binding Site in Alzheimer's Disease Brain and Synthetic Aβ Fibrils.

    Science.gov (United States)

    Fosso, Marina Y; McCarty, Katie; Head, Elizabeth; Garneau-Tsodikova, Sylvie; LeVine, Harry

    2016-02-17

    Alzheimer's disease (AD) is a complex brain disorder that still remains ill defined. In order to understand the significance of binding of different clinical in vivo imaging ligands to the polymorphic pathological features of AD brain, the molecular characteristics of the ligand interacting with its specific binding site need to be defined. Herein, we observed that tritiated Pittsburgh Compound B ((3)H-PIB) can be displaced from synthetic Aβ(1-40) and Aβ(1-42) fibrils and from the PIB binding complex purified from human AD brain (ADPBC) by molecules containing a chalcone structural scaffold. We evaluated how substitution on the chalcone scaffold alters its ability to displace (3)H-PIB from the synthetic fibrils and ADPBC. By comparing unsubstituted core chalcone scaffolds along with the effects of bromine and methyl substitution at various positions, we found that attaching a hydroxyl group on the ring adjacent to the carbonyl group (ring I) of the parent member of the chalcone family generally improved the binding affinity of chalcones toward ADPBC and synthetic fibrils F40 and F42. Furthermore, any substitution on ring I at the ortho-position of the carbonyl group greatly decreases the binding affinity of the chalcones, potentially as a result of steric hindrance. Together with the finding that neither our chalcones nor PIB interact with the Congo Red/X-34 binding site, these molecules provide new tools to selectively probe the PIB binding site that is found in human AD brain, but not in brains of AD pathology animal models. Our chalcone derivatives also provide important information on the effects of fibril polymorphism on ligand binding.

  13. A role for amyloid in cell aggregation and biofilm formation.

    Directory of Open Access Journals (Sweden)

    Melissa C Garcia

    Full Text Available Cell adhesion molecules in Saccharomyces cerevisiae and Candida albicans contain amyloid-forming sequences that are highly conserved. We have now used site-specific mutagenesis and specific peptide perturbants to explore amyloid-dependent activity in the Candida albicans adhesin Als5p. A V326N substitution in the amyloid-forming region conserved secondary structure and ligand binding, but abrogated formation of amyloid fibrils in soluble Als5p and reduced cell surface thioflavin T fluorescence. When displayed on the cell surface, Als5p with this substitution prevented formation of adhesion nanodomains and formation of large cellular aggregates and model biofilms. In addition, amyloid nanodomains were regulated by exogenous peptides. An amyloid-forming homologous peptide rescued aggregation and biofilm activity of Als5p(V326N cells, and V326N substitution peptide inhibited aggregation and biofilm activity in Als5p(WT cells. Therefore, specific site mutation, inhibition by anti-amyloid peturbants, and sequence-specificity of pro-amyloid and anti-amyloid peptides showed that amyloid formation is essential for nanodomain formation and activation.

  14. Amyloid plaque imaging in vivo: current achievement and future prospects

    Energy Technology Data Exchange (ETDEWEB)

    Nordberg, Agneta [Karolinska University Hospital Huddinge, Karolinska Institutet, Department of Neurobiology, Care Sciences and Society, Division of Alzheimer Neurobiology, Stockholm (Sweden); Karolinska University Hospital Huddinge, Department of Geriatric Medicine, Stockholm (Sweden)

    2008-03-15

    Alzheimer's disease (AD) is a very complex neurodegenerative disorder, the exact cause of which is still not known. The major histopathological features, amyloid plaques and neurofibrillary tangles, already described by Alois Alzheimer, have been the focus in research for decades. Despite a probable whole cascade of events in the brain leading to impairment of cognition, amyloid is still the target for diagnosis and treatment. The rapid development of molecular imaging techniques now allows imaging of amyloid plaques in vivo in Alzheimer patients by PET amyloid ligands such as Pittsburgh compound B (PIB). Studies so far have revealed high {sup 11}C-PIB retention in brain at prodromal stages of AD and a possibility to discriminate AD from other dementia disorders by {sup 11}C-PIB. Ongoing studies are focussing to understand the relationship between brain and CSF amyloid processes and cognitive processes. In vivo imaging of amyloid will be important for early diagnosis and evaluation of new anti-amyloid therapies in AD. (orig.)

  15. Modeling amyloids in bacteria

    Directory of Open Access Journals (Sweden)

    Villar-Piqué Anna

    2012-12-01

    Full Text Available Abstract An increasing number of proteins are being shown to assemble into amyloid structures, self-seeding fibrillar aggregates that may lead to pathological states or play essential biological functions in organisms. Bacterial cell factories have raised as privileged model systems to understand the mechanisms behind amyloid assembly and the cellular fitness cost associated to the formation of these aggregates. In the near future, these bacterial systems will allow implementing high-throughput screening approaches to identify effective modulators of amyloid aggregation.

  16. Cerebral amyloid angiopathy

    Science.gov (United States)

    ... needed for weakness or clumsiness. This can include physical, occupational, or speech therapy. Sometimes, medicines that help improve memory, such as those for Alzheimer disease, are used. Seizures, also called amyloid spells, may ...

  17. Human Islet Amyloid Polypeptide

    DEFF Research Database (Denmark)

    Kosicka, Iga

    2014-01-01

    Diabetes mellitus type II is a metabolic disease affecting millions of people worldwide. The disease is associated with occurence of insoluble, fibrillar, protein aggregates in islets of Langerhans in the pancreas - islet amyloid. The main constituent of these protein fibers is the human islet...... of diabetes type II, while revealing the structure(s) of islet amyloid fibrils is necessary for potential design of therapeutic agents....

  18. {beta} - amyloid imaging probes

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Jae Min [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2007-04-15

    Imaging distribution of {beta} - amyloid plaques in Alzheimer's disease is very important for early and accurate diagnosis. Early trial of the {beta} -amyloid plaques includes using radiolabeled peptides which can be only applied for peripheral {beta} - amyloid plaques due to limited penetration through the blood brain barrier (BBB). Congo red or Chrysamine G derivatives were labeled with Tc-99m for imaging {beta} - amyloid plaques of Alzheimer patient's brain without success due to problem with BBB penetration. Thioflavin T derivatives gave breakthrough for {beta} - amyloid imaging in vivo, and a benzothiazole derivative [C-11]6-OH-BTA-1 brought a great success. Many other benzothiazole, benzoxazole, benzofuran, imidazopyridine, and styrylbenzene derivatives have been labeled with F-18 and I-123 to improve the imaging quality. However, [C-11]6-OH-BTA-1 still remains as the best. However, short half-life of C-11 is a limitation of wide distribution of this agent. So, it is still required to develop an Tc-99m, F-18 or I-123 labeled agent for {beta} - amyloid imaging agent.

  19. Biotechnologically engineered protein binders for applications in amyloid diseases.

    Science.gov (United States)

    Haupt, Christian; Fändrich, Marcus

    2014-10-01

    The aberrant self-assembly of polypeptide chains into amyloid structures is a common phenomenon in several neurodegenerative diseases, systemic amyloidosis, and 'normal' aging. Improvements in laboratory-scale detection of these structures, their clinical diagnosis, and the treatment of disease likely depend on the advent of new molecules that recognize particular states or induce their clearance in vivo. This review will describe what biotechnology can do to generate proteinaceous amyloid-binders, explain their molecular recognition mechanisms, and summarize possibilities to functionalize further these ligands for specific applications.

  20. Characterization of amyloid in equine recurrent uveitis as AA amyloid.

    Science.gov (United States)

    Ostevik, L; de Souza, G A; Wien, T N; Gunnes, G; Sørby, R

    2014-01-01

    Two horses with chronic uveitis and histological lesions consistent with equine recurrent uveitis (ERU) were examined. Microscopical findings in the ciliary body included deposits of amyloid lining the non-pigmented epithelium, intracytoplasmic, rod-shaped, eosinophilic inclusions and intraepithelial infiltration of T lymphocytes. Ultrastructural examination of the ciliary body of one horse confirmed the presence of abundant extracellular deposits of non-branching fibrils (9-11 nm in diameter) consistent with amyloid. Immunohistochemistry revealed strong positive labelling for AA amyloid and mass spectrometry showed the amyloid to consist primarily of serum amyloid A1 in both cases. The findings suggest that localized, intraocular AA amyloidosis may occur in horses with ERU.

  1. Nanomaterials for reducing amyloid cytotoxicity.

    Science.gov (United States)

    Zhang, Min; Mao, Xiaobo; Yu, Yue; Wang, Chen-Xuan; Yang, Yan-Lian; Wang, Chen

    2013-07-26

    This review is intended to reflect the recent progress on therapeutic applications of nanomaterials in amyloid diseases. The progress on anti-amyloid functions of various nanomaterials including inorganic nanoparticles, polymeric nanoparticles, carbon nanomaterials and biomolecular aggregates, is reviewed and discussed. The main functionalization strategies for general nanoparticle modifications are reviewed for potential applications of targeted therapeutics. The interaction mechanisms between amyloid peptides and nanomaterials are discussed from the perspectives of dominant interactions and kinetics. The encapsulation of anti-amyloid drugs, targeted drug delivery, controlled drug release and drug delivery crossing blood brain barrier by application of nanomaterials would also improve the therapeutics of amyloid diseases.

  2. Acetylcholinesterase accelerates assembly of amyloid-beta-peptides into Alzheimer's fibrils: possible role of the peripheral site of the enzyme.

    Science.gov (United States)

    Inestrosa, N C; Alvarez, A; Pérez, C A; Moreno, R D; Vicente, M; Linker, C; Casanueva, O I; Soto, C; Garrido, J

    1996-04-01

    Acetylcholinesterase (AChE), an important component of cholinergic synapses, colocalizes with amyloid-beta peptide (A beta) deposits of Alzheimer's brain. We report here that bovine brain AChE, as well as the human and mouse recombinant enzyme, accelerates amyloid formation from wild-type A beta and a mutant A beta peptide, which alone produces few amyloid-like fibrils. The action of AChE was independent of the subunit array of the enzyme, was not affected by edrophonium, an active site inhibitor, but it was affected by propidium, a peripheral anionic binding site ligand. Butyrylcholinesterase, an enzyme that lacks the peripheral site, did not affect amyloid formation. Furthermore, AChE is a potent amyloid-promoting factor when compared with other A beta-associated proteins. Thus, in addition to its role in cholinergic synapses, AChE may function by accelerating A beta formation and could play a role during amyloid deposition in Alzheimer's brain.

  3. Amyloid-β inhibits No-cGMP signaling in a CD36- and CD47-dependent manner.

    Directory of Open Access Journals (Sweden)

    Thomas W Miller

    Full Text Available Amyloid-β interacts with two cell surface receptors, CD36 and CD47, through which the matricellular protein thrombospondin-1 inhibits soluble guanylate cyclase activation. Here we examine whether amyloid-β shares this inhibitory activity. Amyloid-β inhibited both drug and nitric oxide-mediated activation of soluble guanylate cyclase in several cell types. Known cGMP-dependent functional responses to nitric oxide in platelets and vascular smooth muscle cells were correspondingly inhibited by amyloid-β. Functional interaction of amyloid-β with the scavenger receptor CD36 was indicated by inhibition of free fatty acid uptake via this receptor. Both soluble oligomer and fibrillar forms of amyloid-β were active. In contrast, amyloid-β did not compete with the known ligand SIRPα for binding to CD47. However, both receptors were necessary for amyloid-β to inhibit cGMP accumulation. These data suggest that amyloid-β interaction with CD36 induces a CD47-dependent signal that inhibits soluble guanylate cyclase activation. Combined with the pleiotropic effects of inhibiting free fatty acid transport via CD36, these data provides a molecular mechanism through which amyloid-β can contribute to the nitric oxide signaling deficiencies associated with Alzheimer's disease.

  4. Between Amyloids and Aggregation Lies a Connection with Strength and Adhesion

    Directory of Open Access Journals (Sweden)

    Peter N. Lipke

    2014-01-01

    Full Text Available We tell of a journey that led to discovery of amyloids formed by yeast cell adhesins and their importance in biofilms and host immunity. We begin with the identification of the adhesin functional amyloid-forming sequences that mediate fiber formation in vitro. Atomic force microscopy and confocal microscopy show 2-dimensional amyloid “nanodomains” on the surface of cells that are activated for adhesion. These nanodomains are arrays of adhesin molecules that bind multivalent ligands with high avidity. Nanodomains form when adhesin molecules are stretched in the AFM or under laminar flow. Treatment with anti-amyloid perturbants or mutation of the amyloid sequence prevents adhesion nanodomain formation and activation. We are now discovering biological consequences. Adhesin nanodomains promote formation and maintenance of biofilms, which are microbial communities. Also, in abscesses within candidiasis patients, we find adhesin amyloids on the surface of the fungi. In both human infection and a Caenorhabditis elegans infection model, the presence of fungal surface amyloids elicits anti-inflammatory responses. Thus, this is a story of how fungal adhesins respond to extension forces through formation of cell surface amyloid nanodomains, with key consequences for biofilm formation and host responses.

  5. Pathogenesis of cerebral amyloid angiopathy.

    NARCIS (Netherlands)

    Rensink, A.A.M.; Waal, R.M.W. de; Kremer, H.P.H.; Verbeek, M.M.

    2003-01-01

    Cerebral amyloid angiopathy (CAA) is the result of the deposition of an amyloidogenic protein in cortical and leptomeningeal vessels. The most common type of CAA is caused by amyloid beta-protein (Abeta), which is particularly associated with Alzheimer's disease (AD). Excessive Abeta-CAA formation c

  6. Extraskeletal problems and amyloid.

    Science.gov (United States)

    Drüeke, T B

    1999-12-01

    The major clinical manifestations of dialysis-associated A beta 2M amyloidosis are chronic arthralgias, destructive arthropathy and the carpal tunnel syndrome. For dialysis patients who have been maintained on renal replacement therapy for more than 10-15 years, this complication may become a major physical handicap. It may even be life-threatening in some instances due to cervical cord compression. Amyloid deposits in joint areas precede clinical symptoms and signs by several years. Systemic deposits may also occur but their clinical manifestations are infrequent. The diagnosis of dialysis arthropathy associated with beta 2-microglobulin-associated (A beta 2M) amyloidosis mostly relies on indirect clinical and radiological evidence. Histologic proof is rarely obtained in vivo. The pathogenesis of the disease is complex. It includes reduced elimination of beta 2M and potentially also as impaired degradation of A beta 2M as well as enhanced production of A beta 2M amyloid fibrils. Non enzymatic modifications of beta 2M probably play a role, including beta 2M protein modification with advanced glycation end-products (AGE) and advanced oxidation protein products. Modified beta 2M, collagen and proteoglycans appear actively involved in the induction of a local inflammatory response and beta 2M amyloid formation. There is also evidence in favor of treatment-related factors such as the type of hemodialysis membrane and the purity of dialysis water. Hopefully, the translation of our improving knowledge of all the factors involved will lead to a better treatment and eventually to the prevention of this dramatic complication of dialysis.

  7. Hacking the code of amyloid formation: the amyloid stretch hypothesis.

    Science.gov (United States)

    Pastor, M Teresa; Esteras-Chopo, Alexandra; Serrano, Luis

    2007-01-01

    Many research efforts in the last years have been directed towards understanding the factors determining protein misfolding and amyloid formation. Protein stability and amino acid composition have been identified as the two major factors in vitro. The research of our group has been focused on understanding the relationship between amino acid sequence and amyloid formation. Our approach has been the design of simple model systems that reproduce the biophysical properties of natural amyloids. An amyloid sequence pattern was extracted that can be used to detect amyloidogenic hexapeptide stretches in proteins. We have added evidence supporting that these amyloidogenic stretches can trigger amyloid formation by nonamyloidogenic proteins. Some experimental results in other amyloid proteins will be analyzed under the conclusions obtained in these studies. Our conclusions together with evidences from other groups suggest that amyloid formation is the result of the interplay between a decrease of protein stability, and the presence of highly amyloidogenic regions in proteins. As many of these results have been obtained in vitro, the challenge for the next years will be to demonstrate their validity in in vivo systems.

  8. Familial amyloid polyneuropathy.

    Science.gov (United States)

    Planté-Bordeneuve, Violaine; Said, Gerard

    2011-12-01

    Familial amyloid polyneuropathies (FAPs) are a group of life-threatening multisystem disorders transmitted as an autosomal dominant trait. Nerve lesions are induced by deposits of amyloid fibrils, most commonly due to mutated transthyretin (TTR). Less often the precursor of amyloidosis is mutant apolipoprotein A-1 or gelsolin. The first identified cause of FAP-the TTR Val30Met mutation-is still the most common of more than 100 amyloidogenic point mutations identified worldwide. The penetrance and age at onset of FAP among people carrying the same mutation vary between countries. The symptomatology and clinical course of FAP can be highly variable. TTR FAP typically causes a nerve length-dependent polyneuropathy that starts in the feet with loss of temperature and pain sensations, along with life-threatening autonomic dysfunction leading to cachexia and death within 10 years on average. TTR is synthesised mainly in the liver, and liver transplantation seems to have a favourable effect on the course of neuropathy, but not on cardiac or eye lesions. Oral administration of tafamidis meglumine, which prevents misfolding and deposition of mutated TTR, is under evaluation in patients with TTR FAP. In future, patients with FAP might benefit from gene therapy; however, genetic counselling is recommended for the prevention of all types of FAP.

  9. Serum amyloid P component scintigraphy in familial amyloid polyneuropathy: regression of visceral amyloid following liver transplantation

    Energy Technology Data Exchange (ETDEWEB)

    Rydh, A.; Hietala, S.O.; Aahlstroem, K.R. [Department of Diagnostic Radiology, University Hospital of Northern Sweden, Umeaa (Sweden); Suhr, O. [Department of Internal Medicine, University Hospital of Northern Sweden, Umeaa (Sweden); Pepys, M.B.; Hawkins, P.N. [Immunological Medicine Unit, Department of Medicine, Imperial College School of Medicine, London (United Kingdom)

    1998-07-01

    Familial amyloid polyneuropathy (FAP) associated with transthyretin (TTR) mutations is the commonest type of hereditary amyloidosis. Plasma TTR is produced almost exclusively in the liver and orthotopic liver transplantation is the only available treatment, although the clinical outcome varies. Serum amyloid P component (SAP) scintigraphy is a method for identifying and quantitatively monitoring amyloid deposits in vivo, but it has not previously been used to study the outcome of visceral amyloid deposits in FAP following liver transplantation. Whole body scintigraphy following injection of iodine-123 labelled SAP was performed in 17 patients with FAP associated with TTR Met30 and in five asymptomatic gene carriers. Follow-up studies were performed in ten patients, eight of whom had undergone orthotopic liver transplantation 1-5 years beforehand. There was abnormal uptake of {sup 123}I-SAP in all FAP patients, including the kidneys in each case, the spleen in five cases and the adrenal glands in three cases. Renal amyloid deposits were also present in three of the asymptomatic carriers. Follow-up studies 1-5 years after liver transplantation showed that there had been substantial regression of the visceral amyloid deposits in two patients and modest improvement in three cases. The amyloid deposits were unchanged in two patients. In conclusion, {sup 123}I-SAP scintigraphy identified unsuspected visceral amyloid in each patient with FAP due to TTR Met30. The universal presence of renal amyloid probably underlies the high frequency of renal failure that occurs in FAP following liver transplantation. The variable capacity of patients to mobilise amyloid deposits following liver transplantation may contribute to their long-term clinical outcome. (orig.) With 2 figs., 2 tabs., 22 refs.

  10. Intravenous delivery of targeted liposomes to amyloid-β pathology in APP/PSEN1 transgenic mice.

    Directory of Open Access Journals (Sweden)

    Eric A Tanifum

    Full Text Available Extracellular amyloid-β (Aβ plaques and intracellular neurofibrillary tangles constitute the major neuropathological hallmarks of Alzheimer's disease (AD. It is now apparent that parenchymal Aβ plaque deposition precedes behavioral signs of disease by several years. The development of agents that can target these plaques may be useful as diagnostic or therapeutic tools. In this study, we synthesized an Aβ-targeted lipid conjugate, incorporated it in stealth liposomal nanoparticles and tested their ability to bind amyloid plaque deposits in an AD mouse model. The results show that the particles maintain binding profiles to synthetic Aβ aggregates comparable to the free ligand, and selectively bind Aβ plaque deposits in brain tissue sections of an AD mouse model (APP/PSEN1 transgenic mice with high efficiency. When administered intravenously, these long circulating nanoparticles appear to cross the blood-brain barrier and bind to Aβ plaque deposits, labeling parenchymal amyloid deposits and vascular amyloid characteristic of cerebral amyloid angiopathy.

  11. Diversity, biogenesis and function of microbial amyloids

    OpenAIRE

    2011-01-01

    Amyloid is a distinct β-sheet-rich fold that many proteins can acquire. Frequently associated with neurodegenerative diseases in humans, including Alzheimer’s, Parkinson’s and Huntington’s, amyloids are traditionally considered the product of protein misfolding. However, the amyloid fold is now recognized as a ubiquitous part of normal cellular biology. ‘Functional’ amyloids have been identified in nearly all facets of cellular life, with microbial functional amyloids leading the way. Unlike ...

  12. Towards a Pharmacophore for Amyloid

    Energy Technology Data Exchange (ETDEWEB)

    Landau, Meytal; Sawaya, Michael R.; Faull, Kym F.; Laganowsky, Arthur; Jiang, Lin; Sievers, Stuart A.; Liu, Jie; Barrio, Jorge R.; Eisenberg, David (UCLA)

    2011-09-16

    Diagnosing and treating Alzheimer's and other diseases associated with amyloid fibers remains a great challenge despite intensive research. To aid in this effort, we present atomic structures of fiber-forming segments of proteins involved in Alzheimer's disease in complex with small molecule binders, determined by X-ray microcrystallography. The fiber-like complexes consist of pairs of {beta}-sheets, with small molecules binding between the sheets, roughly parallel to the fiber axis. The structures suggest that apolar molecules drift along the fiber, consistent with the observation of nonspecific binding to a variety of amyloid proteins. In contrast, negatively charged orange-G binds specifically to lysine side chains of adjacent sheets. These structures provide molecular frameworks for the design of diagnostics and drugs for protein aggregation diseases. The devastating and incurable dementia known as Alzheimer's disease affects the thinking, memory, and behavior of dozens of millions of people worldwide. Although amyloid fibers and oligomers of two proteins, tau and amyloid-{beta}, have been identified in association with this disease, the development of diagnostics and therapeutics has proceeded to date in a near vacuum of information about their structures. Here we report the first atomic structures of small molecules bound to amyloid. These are of the dye orange-G, the natural compound curcumin, and the Alzheimer's diagnostic compound DDNP bound to amyloid-like segments of tau and amyloid-{beta}. The structures reveal the molecular framework of small-molecule binding, within cylindrical cavities running along the {beta}-spines of the fibers. Negatively charged orange-G wedges into a specific binding site between two sheets of the fiber, combining apolar binding with electrostatic interactions, whereas uncharged compounds slide along the cavity. We observed that different amyloid polymorphs bind different small molecules, revealing that a

  13. Porcine prion protein amyloid.

    Science.gov (United States)

    Hammarström, Per; Nyström, Sofie

    2015-01-01

    Mammalian prions are composed of misfolded aggregated prion protein (PrP) with amyloid-like features. Prions are zoonotic disease agents that infect a wide variety of mammalian species including humans. Mammals and by-products thereof which are frequently encountered in daily life are most important for human health. It is established that bovine prions (BSE) can infect humans while there is no such evidence for any other prion susceptible species in the human food chain (sheep, goat, elk, deer) and largely prion resistant species (pig) or susceptible and resistant pets (cat and dogs, respectively). PrPs from these species have been characterized using biochemistry, biophysics and neurobiology. Recently we studied PrPs from several mammals in vitro and found evidence for generic amyloidogenicity as well as cross-seeding fibril formation activity of all PrPs on the human PrP sequence regardless if the original species was resistant or susceptible to prion disease. Porcine PrP amyloidogenicity was among the studied. Experimentally inoculated pigs as well as transgenic mouse lines overexpressing porcine PrP have, in the past, been used to investigate the possibility of prion transmission in pigs. The pig is a species with extraordinarily wide use within human daily life with over a billion pigs harvested for human consumption each year. Here we discuss the possibility that the largely prion disease resistant pig can be a clinically silent carrier of replicating prions.

  14. Local atomic structure and oxidation processes of Cu(I) binding site in amyloid beta peptide: XAS Study

    Science.gov (United States)

    Kremennaya, M. A.; Soldatov, M. A.; Streltsov, V. A.; Soldatov, A. V.

    2016-05-01

    There are two different motifs of X-ray absorption spectra for Cu(I) K-edge in amyloid-β peptide which could be due to two different configurations of local Cu(I) environment. Two or three histidine ligands can coordinate copper ion in varying conformations. On the other hand, oxidation of amyloid-β peptide could play an additional role in local copper environment. In order to explore the peculiarities of local atomic and electronic structure of Cu(I) binding sites in amyloid-β peptide the x-ray absorption spectra were simulated for various Cu(I) environments including oxidized amyloid-β and compared with experimental data.

  15. Synthesis and evaluation of 18F-fluoroethylated benzothiazole derivatives for in vivo imaging of amyloid plaques in Alzheimer's disease.

    Science.gov (United States)

    Neumaier, B; Deisenhofer, S; Sommer, C; Solbach, C; Reske, S N; Mottaghy, F

    2010-06-01

    Amyloid aggregates play a major role in the development of Alzheimer's disease. Targeting these aggregates by PET probes enables non-invasively the detection and quantification of amyloid deposit distribution in human brains. Based on benzothiazole core structure a series of amyloid imaging agents were developed. Currently [(11)C]2-(4'-(methylamino)phenyl)-6-hydroxybenzothiazole (Pittsburgh Compound-B (PIB) is the most specific and widely used amyloid imaging ligand. But due to the short half life of (11)C, longer lived (18)F-labeled derivatives offer logistic advantages and higher contrast images. In this work, three different [(18)F]fluoroethoxy-substituted benzothiazole derivatives ([(18)F]2-(4'-(methylamino)phenyl)-6-(2-fluoroethoxy)benzothiazole, [(18)F]2-((2'-(2-fluoroethoxy)-4'-amino)phenyl)benzothiazole and [(18)F]2-(3'-((2-fluoroethoxy)-4'-amino)phenyl)benzothiazole) were synthesized via [(18)F]fluoroethylation. The latter two derivatives with fluoroethoxy-substitution on the aromatic amino group showed very low binding affinity for amyloid aggregates. In contrast [(18)F]2-(4'-(methylamino)phenyl)-6-(2-fluoroethoxy)benzothiazole with [(18)F]fluoroethoxy-substitution in 6-position showed excellent amyloid imaging properties with respect to lipophilicity, brain entry and brain clearance in normal SCID mice, amyloid plaque binding affinity and specificity.

  16. Quantitative Analyses of Force-Induced Amyloid Formation in Candida albicans Als5p: Activation by Standard Laboratory Procedures.

    Directory of Open Access Journals (Sweden)

    Cho X J Chan

    Full Text Available Candida albicans adhesins have amyloid-forming sequences. In Als5p, these amyloid sequences cluster cell surface adhesins to create high avidity surface adhesion nanodomains. Such nanodomains form after force is applied to the cell surface by atomic force microscopy or laminar flow. Here we report centrifuging and resuspending S. cerevisiae cells expressing Als5p led to 1.7-fold increase in initial rate of adhesion to ligand coated beads. Furthermore, mechanical stress from vortex-mixing of Als5p cells or C. albicans cells also induced additional formation of amyloid nanodomains and consequent activation of adhesion. Vortex-mixing for 60 seconds increased the initial rate of adhesion 1.6-fold. The effects of vortex-mixing were replicated in heat-killed cells as well. Activation was accompanied by increases in thioflavin T cell surface fluorescence measured by flow cytometry or by confocal microscopy. There was no adhesion activation in cells expressing amyloid-impaired Als5pV326N or in cells incubated with inhibitory concentrations of anti-amyloid dyes. Together these results demonstrated the activation of cell surface amyloid nanodomains in yeast expressing Als adhesins, and further delineate the forces that can activate adhesion in vivo. Consequently there is quantitative support for the hypothesis that amyloid forming adhesins act as both force sensors and effectors.

  17. Functional Amyloid Formation within Mammalian Tissue.

    Directory of Open Access Journals (Sweden)

    2005-11-01

    Full Text Available Amyloid is a generally insoluble, fibrous cross-beta sheet protein aggregate. The process of amyloidogenesis is associated with a variety of neurodegenerative diseases including Alzheimer, Parkinson, and Huntington disease. We report the discovery of an unprecedented functional mammalian amyloid structure generated by the protein Pmel17. This discovery demonstrates that amyloid is a fundamental nonpathological protein fold utilized by organisms from bacteria to humans. We have found that Pmel17 amyloid templates and accelerates the covalent polymerization of reactive small molecules into melanin-a critically important biopolymer that protects against a broad range of cytotoxic insults including UV and oxidative damage. Pmel17 amyloid also appears to play a role in mitigating the toxicity associated with melanin formation by sequestering and minimizing diffusion of highly reactive, toxic melanin precursors out of the melanosome. Intracellular Pmel17 amyloidogenesis is carefully orchestrated by the secretory pathway, utilizing membrane sequestration and proteolytic steps to protect the cell from amyloid and amyloidogenic intermediates that can be toxic. While functional and pathological amyloid share similar structural features, critical differences in packaging and kinetics of assembly enable the usage of Pmel17 amyloid for normal function. The discovery of native Pmel17 amyloid in mammals provides key insight into the molecular basis of both melanin formation and amyloid pathology, and demonstrates that native amyloid (amyloidin may be an ancient, evolutionarily conserved protein quaternary structure underpinning diverse pathways contributing to normal cell and tissue physiology.

  18. Functional amyloid formation within mammalian tissue.

    Directory of Open Access Journals (Sweden)

    Douglas M Fowler

    2006-01-01

    Full Text Available Amyloid is a generally insoluble, fibrous cross-beta sheet protein aggregate. The process of amyloidogenesis is associated with a variety of neurodegenerative diseases including Alzheimer, Parkinson, and Huntington disease. We report the discovery of an unprecedented functional mammalian amyloid structure generated by the protein Pmel17. This discovery demonstrates that amyloid is a fundamental nonpathological protein fold utilized by organisms from bacteria to humans. We have found that Pmel17 amyloid templates and accelerates the covalent polymerization of reactive small molecules into melanin-a critically important biopolymer that protects against a broad range of cytotoxic insults including UV and oxidative damage. Pmel17 amyloid also appears to play a role in mitigating the toxicity associated with melanin formation by sequestering and minimizing diffusion of highly reactive, toxic melanin precursors out of the melanosome. Intracellular Pmel17 amyloidogenesis is carefully orchestrated by the secretory pathway, utilizing membrane sequestration and proteolytic steps to protect the cell from amyloid and amyloidogenic intermediates that can be toxic. While functional and pathological amyloid share similar structural features, critical differences in packaging and kinetics of assembly enable the usage of Pmel17 amyloid for normal function. The discovery of native Pmel17 amyloid in mammals provides key insight into the molecular basis of both melanin formation and amyloid pathology, and demonstrates that native amyloid (amyloidin may be an ancient, evolutionarily conserved protein quaternary structure underpinning diverse pathways contributing to normal cell and tissue physiology.

  19. 18F-flutemetamol amyloid imaging in Alzheimer disease and mild cognitive impairment: a phase 2 trial

    DEFF Research Database (Denmark)

    Vandenberghe, Rik; Van Laere, Koen; Ivanoiu, Adrian

    2010-01-01

    The most widely studied positron emission tomography ligand for in vivo beta-amyloid imaging is (11)C-Pittsburgh compound B ((11)C-PIB). Its availability, however, is limited by the need for an on-site cyclotron. Validation of the (18)F-labeled PIB derivative (18)F-flutemetamol could significantl...

  20. 18F-flutemetamol amyloid imaging in Alzheimer disease and mild cognitive impairment: a phase 2 trial

    DEFF Research Database (Denmark)

    Vandenberghe, Rik; Van Laere, Koen; Ivanoiu, Adrian

    2010-01-01

    The most widely studied positron emission tomography ligand for in vivo beta-amyloid imaging is (11)C-Pittsburgh compound B ((11)C-PIB). Its availability, however, is limited by the need for an on-site cyclotron. Validation of the (18)F-labeled PIB derivative (18)F-flutemetamol could significantly...

  1. Serum amyloid P component bound to gram-negative bacteria prevents lipopolysaccharide-mediated classical pathway complement activation

    NARCIS (Netherlands)

    de Haas, CJC; van Leeuwen, EMM; van Bommel, T; Verhoef, J; van Kessel, KPM; van Strijp, JAG

    2000-01-01

    Although serum amyloid P component (SAP) is known to bind many ligands, its biological function is not yet clear. Recently, it was demonstrated that SAP binds to lipopolysaccharide (LPS), In the present study, SAP was shown to bind to gram-negative bacteria expressing short types of LPS or lipo-olig

  2. A Synthetic Peptide with the Putative Iron Binding Motif of Amyloid Precursor Protein (APP) Does Not Catalytically Oxidize Iron

    NARCIS (Netherlands)

    Honarmand Ebrahimi, K.; Hagedoorn, P.L.; Hagen, W.R.

    2012-01-01

    The β-amyloid precursor protein (APP), which is a key player in Alzheimer's disease, was recently reported to possess an Fe(II) binding site within its E2 domain which exhibits ferroxidase activity [Duce et al. 2010, Cell 142: 857]. The putative ligands of this site were compared to those in the fer

  3. Toward the discovery of functional transthyretin amyloid inhibitors: application of virtual screening methods.

    Science.gov (United States)

    Simões, Carlos J V; Mukherjee, Trishna; Brito, Rui M M; Jackson, Richard M

    2010-10-25

    Inhibition of amyloid fibril formation by stabilization of the native form of the protein transthyretin (TTR) is a viable approach for the treatment of familial amyloid polyneuropathy that has been gaining momentum in the field of amyloid research. The TTR stabilizer molecules discovered to date have shown efficacy at inhibiting fibrilization in vitro but display impairing issues of solubility, affinity for TTR in the blood plasma and/or adverse effects. In this study we present a benchmark of four protein- and ligand-based virtual screening (VS) methods for identifying novel TTR stabilizers: (i) two-dimensional (2D) similarity searches with chemical hashed, pharmacophore, and UNITY fingerprints, (ii) 3D searches based on shape, chemical, and electrostatic similarity, (iii) LigMatch, a new ligand-based method which uses multiple templates and combines 3D geometric hashing with a 2D preselection process, and (iv) molecular docking to consensus X-ray crystal structures of TTR. We illustrate the potential of the best-performing VS protocols to retrieve promising new leads by ranking a tailored library of 2.3 million commercially available compounds. Our predictions show that the top-scoring molecules possess distinctive features from the known TTR binders, holding better solubility, fraction of halogen atoms, and binding affinity profiles. To the best of our knowledge, this is the first attempt to rationalize the utilization of a large battery of in silico screening techniques toward the identification of a new generation of TTR amyloid inhibitors.

  4. Amyloid deposition in 2 feline thymomas.

    Science.gov (United States)

    Burrough, E R; Myers, R K; Hostetter, S J; Fox, L E; Bayer, B J; Felz, C L; Waller, K R; Whitley, E M

    2012-07-01

    Two cases of feline thymoma with amyloid deposition were encountered between 1982 and 2010. Neoplastic cells were separated by abundant, pale eosinophilic, homogeneous material that was congophilic and birefringent. Ultrastructurally, the neoplastic cells were connected by desmosomes, and the extracellular deposits were composed of nonbranching, hollow-cored fibrils, 8-10 nm in diameter. In the case with sufficient archived tissue for additional sections, the amyloid remained congophilic following potassium permanganate incubation, and the neoplastic cells were immunoreactive for pancytokeratin. The histologic, histochemical, ultrastructural, and immunohistochemical features of both neoplasms are consistent with epithelial-predominant thymoma with the unusual feature of intratumoral amyloid deposition. The affinity of the amyloid for Congo red following potassium permanganate incubation is consistent with non-AA amyloid. The ultrastructural findings were consistent with amyloid production by the neoplastic epithelial cells.

  5. Amyloid Goiter Secondary to Ulcerative Colitis

    Directory of Open Access Journals (Sweden)

    Bunyamin Aydin

    2016-01-01

    Full Text Available Diffuse amyloid goiter (AG is an entity characterized by the deposition of amyloid in the thyroid gland. AG may be associated with either primary or secondary amyloidosis. Secondary amyloidosis is rarely caused by inflammatory bowel diseases. Secondary amyloidosis is relatively more common in the patients with Crohn’s disease, whereas it is highly rare in patients with ulcerative colitis. Diffuse amyloid goiter caused by ulcerative colitis is also a rare condition. In the presence of amyloid in the thyroid gland, medullary thyroid cancer should be kept in mind in the differential diagnosis. Imaging techniques and biochemical tests are not very helpful in the diagnosis of secondary amyloid goiter and the definitive diagnosis is established based on the histopathologic analysis and histochemical staining techniques. In this report, we present a 35-year-old male patient with diffuse amyloid goiter caused by secondary amyloidosis associated with ulcerative colitis.

  6. Amyloid myopathy: a diagnostic challenge

    Directory of Open Access Journals (Sweden)

    Heli Tuomaala

    2009-08-01

    Full Text Available Amyloid myopathy (AM is a rare manifestation of primary systemic amyloidosis (AL. Like inflammatory myopathies, it presents with proximal muscle weakness and an increased creatine kinase level. We describe a case of AL with severe, rapidly progressive myopathy as the initial symptom. The clinical manifestation and muscle biopsy were suggestive of inclusion body myositis. AM was not suspected until amyloidosis was seen in the gastric mucosal biopsy. The muscle biopsy was then re-examined more specifically, and Congo red staining eventually showed vascular and interstitial amyloid accumulation, which led to a diagnosis of AM. The present case illustrates the fact that the clinical picture of AM can mimic that of inclusion body myositis.

  7. Surgical considerations about amyloid goiter.

    Science.gov (United States)

    García Villanueva, Augusto; García Villanueva, María Jesús; García Villanueva, Mercedes; Rojo Blanco, Roberto; Collado Guirao, María Vicenta; Cabañas Montero, Jacobo; Beni Pérez, Rafael; Moreno Montes, Irene

    2013-05-01

    Amyloidosis is an uncommon syndrome consisting of a number of disorders having in common an extracellular deposit of fibrillary proteins. This results in functional and structural changes in the affected organs, depending on deposit location and severity. Amyloid infiltration of the thyroid gland may occur in 50% and up to 80% of patients with primary and secondary amyloidosis respectively. Amyloid goiter (AG) is a true rarity, usually found associated to secondary amyloidosis. AG may require surgical excision, usually because of compressive symptoms. We report the case of a patient with a big AG occurring in the course of a secondary amyloidosis associated to polyarticular onset juvenile idiopathic arthritis who underwent total thyroidectomy. Current literature is reviewed, an attempt is made to provide action guidelines, and some surgical considerations on this rare condition are given.

  8. Atypical presentation of atypical amyloid.

    Science.gov (United States)

    Holanda, Danniele G; Acharya, Veena K; Dogan, Ahmet; Racusen, Lorraine C; Atta, Mohamed G

    2011-01-01

    Amyloidosis is a group of diseases categorized by precipitation of a group of protein aggregates (amyloid) in tissues, including the kidney, and proteinuria is usually the commonest, though not exclusive, hallmark of clinical presentation. AL and AA are the most commonly recognized forms of amyloidosis involving the kidney, but other forms have been described. We present a case of renal amyloidosis due to a novel amyloidogenic protein, leucocyte cell-derived chemotaxin 2, without proteinuria at presentation or on subsequent follow-up.

  9. Janus faces of amyloid proteins in neuroinflammation.

    Science.gov (United States)

    Steinman, Lawrence; Rothbard, Jonathan B; Kurnellas, Michael P

    2014-07-01

    Amyloid forming molecules are generally considered harmful. In Alzheimer's Disease two amyloid molecules Aβ A4 and tau vie for consideration as the main pathogenic culprit. But molecules obey the laws of chemistry and defy the way we categorize them as humans with our well-known proclivities to bias in our reasoning. We have been exploring the brains of multiple sclerosis patients to identify molecules that are associated with protection from inflammation and degeneration. In 2001 we noted that aB crystallin (cryab) was the most abundant transcript found in MS lesions, but not in healthy brains. Cryab can reverse paralysis and attenuate inflammation in several models of inflammation including experimental autoimmune encephalomyelitis (EAE), and various models of ischemia. Cryab is an amyloid forming molecule. We have identified a core structure common to many amyloids including amyloid protein Aβ A4, tau, amylin, prion protein, serum amyloid protein P, and cryab. The core hexapeptide structure is highly immune suppressive and can reverse paralysis in EAE when administered systemically. Administration of this amyloid forming hexapeptide quickly lowers inflammatory cytokines in plasma like IL-6 and IL-2. The hexapeptide bind a set of proinflammatory mediators in plasma, including acute phase reactants and complement components. The beneficial properties of amyloid forming hexapeptides provide a potential new therapeutic direction. These experiments indicate that amyloid forming molecules have Janus faces, providing unexpected benefit for neuroinflammatory conditions.

  10. Characterization of Amyloid Cores in Prion Domains

    Science.gov (United States)

    Sant’Anna, Ricardo; Fernández, Maria Rosario; Batlle, Cristina; Navarro, Susanna; de Groot, Natalia S.; Serpell, Louise; Ventura, Salvador

    2016-01-01

    Amyloids consist of repetitions of a specific polypeptide chain in a regular cross-β-sheet conformation. Amyloid propensity is largely determined by the protein sequence, the aggregation process being nucleated by specific and short segments. Prions are special amyloids that become self-perpetuating after aggregation. Prions are responsible for neuropathology in mammals, but they can also be functional, as in yeast prions. The conversion of these last proteins to the prion state is driven by prion forming domains (PFDs), which are generally large, intrinsically disordered, enriched in glutamines/asparagines and depleted in hydrophobic residues. The self-assembly of PFDs has been thought to rely mostly on their particular amino acid composition, rather than on their sequence. Instead, we have recently proposed that specific amyloid-prone sequences within PFDs might be key to their prion behaviour. Here, we demonstrate experimentally the existence of these amyloid stretches inside the PFDs of the canonical Sup35, Swi1, Mot3 and Ure2 prions. These sequences self-assemble efficiently into highly ordered amyloid fibrils, that are functionally competent, being able to promote the PFD amyloid conversion in vitro and in vivo. Computational analyses indicate that these kind of amyloid stretches may act as typical nucleating signals in a number of different prion domains. PMID:27686217

  11. Amyloid fibrils compared to peptide nanotubes.

    Science.gov (United States)

    Zganec, Matjaž; Zerovnik, Eva

    2014-09-01

    Prefibrillar oligomeric states and amyloid fibrils of amyloid-forming proteins qualify as nanoparticles. We aim to predict what biophysical and biochemical properties they could share in common with better researched peptide nanotubes. We first describe what is known of amyloid fibrils and prefibrillar aggregates (oligomers and protofibrils): their structure, mechanisms of formation and putative mechanism of cytotoxicity. In distinction from other neuronal fibrillar constituents, amyloid fibrils are believed to cause pathology, however, some can also be functional. Second, we give a review of known biophysical properties of peptide nanotubes. Finally, we compare properties of these two macromolecular states side by side and discuss which measurements that have already been done with peptide nanotubes could be done with amyloid fibrils as well.

  12. Natural polyphenols binding to amyloid: a broad class of compounds to treat different human amyloid diseases.

    Science.gov (United States)

    Ngoungoure, Viviane L Ndam; Schluesener, Jan; Moundipa, Paul F; Schluesener, Hermann

    2015-01-01

    Polyphenols are a large group of phytonutrients found in herbal beverages and foods. They have manifold biological activities, including antioxidative, antimicrobial, and anti-inflammatory properties. Interestingly, some polyphenols bind to amyloid and substantially ameliorate amyloid diseases. Misfolding, aggregation, and accumulation of amyloid fibrils in tissues or organs leads to a group of disorders, called amyloidoses. Prominent diseases are Alzheimer's, Parkinson's, and Huntington's disease, but there are other, less well-known diseases wherein accumulation of misfolded protein is a prominent feature. Amyloidoses are a major burden to public health. In particular, Alzheimer's disease shows a strong increase in patient numbers. Accelerated development of effective therapies for amyloidoses is a necessity. A viable strategy can be the prevention or reduction of protein misfolding, thus reducing amyloid build-up by restoring the cellular aggretome. Amyloid-binding polyphenols affect amyloid formation on various levels, e.g. by inhibiting fibril formation or steering oligomer formation into unstructured, nontoxic pathways. Consequently, preclinical studies demonstrate reduction of amyloid-formation by polyphenols. Amyloid-binding polyphenols might be suitable lead structures for development of imaging agents for early detection of disease and monitoring amyloid deposition. Intake of dietary polyphenols might be relevant to the prevention of amyloidoses. Nutraceutical strategies might be a way to reduce amyloid diseases.

  13. General amyloid inhibitors? A critical examination of the inhibition of IAPP amyloid formation by inositol stereoisomers.

    Directory of Open Access Journals (Sweden)

    Hui Wang

    Full Text Available Islet amyloid polypeptide (IAPP or amylin forms amyloid deposits in the islets of Langerhans; a process that is believed to contribute to the progression of type 2 diabetes and to the failure of islet transplants. An emerging theme in amyloid research is the hypothesis that the toxic species produced during amyloid formation by different polypeptides share common features and exert their effects by common mechanisms. If correct, this suggests that inhibitors of amyloid formation by one polypeptide might be effective against other amyloidogenic sequences. IAPP and Aβ, the peptide responsible for amyloid formation in Alzheimer's disease, are particularly interesting in this regard as they are both natively unfolded in their monomeric states and share some common characteristics. Comparatively little effort has been expended on the design of IAPP amyloid inhibitors, thus it is natural to inquire if Aβ inhibitors are effective against IAPP, especially since no IAPP inhibitors have been clinically approved. A range of compounds inhibit Aβ amyloid formation, including various stereoisomers of inositol. Myo-, scyllo-, and epi-inositol have been shown to induce conformational changes in Aβ and prevent Aβ amyloid fibril formation by stabilizing non-fibrillar β-sheet structures. We investigate the ability of inositol stereoisomers to inhibit amyloid formation by IAPP. The compounds do not induce a conformational change in IAPP and are ineffective inhibitors of IAPP amyloid formation, although some do lead to modest apparent changes in IAPP amyloid fibril morphology. Thus not all classes of Aβ inhibitors are effective against IAPP. This work provides a basis of comparison to work on polyphenol based inhibitors of IAPP amyloid formation and helps provide clues as to the features which render them effective. The study also helps provide information for further efforts in rational inhibitor design.

  14. Synthesis and evaluation of {sup 18}F-fluoroethylated benzothiazole derivatives for in vivo imaging of amyloid plaques in Alzheimer's disease

    Energy Technology Data Exchange (ETDEWEB)

    Neumaier, B. [Department of Nuclear Medicine, University of Ulm, Ulm (Germany); Max Planck Institute for Neurological Research, Klaus-Joachim-Zuelch Laboratories of the Max Planck Society and the Faculty of Medicine of the University of Cologne, Cologne (Germany)], E-mail: bernd.neumaier@nf.mpg.de; Deisenhofer, S. [Department of Nuclear Medicine, University of Ulm, Ulm (Germany); Sommer, C. [Department of Neuropathology, University of Mainz (Germany); Solbach, C.; Reske, S.N. [Department of Nuclear Medicine, University of Ulm, Ulm (Germany); Mottaghy, F. [Department of Nuclear Medicine, University of Ulm, Ulm (Germany); Department of Nuclear Medicine, RWTH Aachen, Aachen (Germany)

    2010-06-15

    Amyloid aggregates play a major role in the development of Alzheimer's disease. Targeting these aggregates by PET probes enables non-invasively the detection and quantification of amyloid deposit distribution in human brains. Based on benzothiazole core structure a series of amyloid imaging agents were developed. Currently [{sup 11}C]2-(4'-(methylamino)phenyl)-6-hydroxybenzothiazole (Pittsburgh Compound-B (PIB) is the most specific and widely used amyloid imaging ligand. But due to the short half life of {sup 11}C, longer lived {sup 18}F-labeled derivatives offer logistic advantages and higher contrast images. In this work, three different [{sup 18}F]fluoroethoxy-substituted benzothiazole derivatives ([{sup 18}F]2-(4'-(methylamino)phenyl)-6-(2-fluoroethoxy)benzothiazole, [{sup 18}F]2-((2'-(2-fluoroethoxy)-4'-amino)phenyl)benzothiazole and [{sup 18}F]2-(3'-((2-fluoroethoxy)-4'-amino)phenyl)benzothiazole) were synthesized via [{sup 18}F]fluoroethylation. The latter two derivatives with fluoroethoxy-substitution on the aromatic amino group showed very low binding affinity for amyloid aggregates. In contrast [{sup 18}F]2-(4'-(methylamino)phenyl)-6-(2-fluoroethoxy)benzothiazole with [{sup 18}F]fluoroethoxy-substitution in 6-position showed excellent amyloid imaging properties with respect to lipophilicity, brain entry and brain clearance in normal SCID mice, amyloid plaque binding affinity and specificity.

  15. Amyloid Beta as a Modulator of Synaptic Plasticity

    OpenAIRE

    Parihar, Mordhwaj S.; Gregory J. Brewer

    2010-01-01

    Alzheimer’s disease is associated with synapse loss, memory dysfunction and pathological accumulation of amyloid beta in plaques. However, an exclusively pathological role for amyloid beta is being challenged by new evidence for an essential function of amyloid beta at the synapse. Amyloid beta protein exists in different assembly states in the central nervous system and plays distinct roles ranging from synapse and memory formation to memory loss and neuronal cell death. Amyloid beta is pres...

  16. Hacking the Code of Amyloid Formation

    Science.gov (United States)

    Pastor, M Teresa; Esteras-Chopo, Alexandra

    2007-01-01

    Many research efforts in the last years have been directed towards understanding the factors determining protein misfolding and amyloid formation. Protein stability and amino acid composition have been identified as the two major factors in vitro. The research of our group has been focused on understanding the relationship between amino acid sequence and amyloid formation. Our approach has been the design of simple model systems that reproduce the biophysical properties of natural amyloids. An amyloid sequence pattern was extracted that can be used to detect amyloidogenic hexapeptide stretches in proteins. We have added evidence supporting that these amyloidogenic stretches can trigger amyloid formation by nonamyloidogenic proteins. Some experimental results in other amyloid proteins will be analyzed under the conclusions obtained in these studies. Our conclusions together with evidences from other groups suggest that amyloid formation is the result of the interplay between a decrease of protein stability, and the presence of highly amyloidogenic regions in proteins. As many of these results have been obtained in vitro, the challenge for the next years will be to demonstrate their validity in in vivo systems. PMID:19164912

  17. Neuroinflammation in Lyme neuroborreliosis affects amyloid metabolism

    Directory of Open Access Journals (Sweden)

    Anckarsäter Henrik

    2010-06-01

    Full Text Available Abstract Background The metabolism of amyloid precursor protein (APP and β-amyloid (Aβ is widely studied in Alzheimer's disease, where Aβ deposition and plaque development are essential components of the pathogenesis. However, the physiological role of amyloid in the adult nervous system remains largely unknown. We have previously found altered cerebral amyloid metabolism in other neuroinflammatory conditions. To further elucidate this, we investigated amyloid metabolism in patients with Lyme neuroborreliosis (LNB. Methods The first part of the study was a cross-sectional cohort study in 61 patients with acute facial palsy (19 with LNB and 42 with idiopathic facial paresis, Bell's palsy and 22 healthy controls. CSF was analysed for the β-amyloid peptides Aβ38, Aβ40 and Aβ42, and the amyloid precursor protein (APP isoforms α-sAPP and β-sAPP. CSF total-tau (T-tau, phosphorylated tau (P-tau and neurofilament protein (NFL were measured to monitor neural cell damage. The second part of the study was a prospective cohort-study in 26 LNB patients undergoing consecutive lumbar punctures before and after antibiotic treatment to study time-dependent dynamics of the biomarkers. Results In the cross-sectional study, LNB patients had lower levels of CSF α-sAPP, β-sAPP and P-tau, and higher levels of CSF NFL than healthy controls and patients with Bell's palsy. In the prospective study, LNB patients had low levels of CSF α-sAPP, β-sAPP and P-tau at baseline, which all increased towards normal at follow-up. Conclusions Amyloid metabolism is altered in LNB. CSF levels of α-sAPP, β-sAPP and P-tau are decreased in acute infection and increase after treatment. In combination with earlier findings in multiple sclerosis, cerebral SLE and HIV with cerebral engagement, this points to an influence of neuroinflammation on amyloid metabolism.

  18. Synthesis of Oxorhenium(V) and Oxotechnetium(V) Complexes That Bind to Amyloid-β Plaques.

    Science.gov (United States)

    Hayne, David J; White, Jonathan M; McLean, Catriona A; Villemagne, Victor L; Barnham, Kevin J; Donnelly, Paul S

    2016-08-15

    Alzheimer's disease is characterized by the presence of amyloid plaques in the brain. The primary constituents of the plaques are aggregated forms of the amyloid-β (Aβ) peptide. With the goal of preparing technetium-99(m) complexes that bind to Aβ plaques with the potential to be diagnostic imaging agents for Alzheimer's disease, new tetradentate ligands capable of forming neutral and lipophilic complexes with oxotechentium(V) and oxorhenium(V) were prepared. Nonradioactive isotopes of technetium are not available so rhenium was used as a surrogate for exploratory chemistry. Two planar tetradentate N3O ligands were prepared that form charge-neutral complexes with oxorhenium(v) as well as a ligand featuring a styrylpyridyl functional group designed to bind to Aβ plaques. All three ligands formed complexes with oxorhenium(V), and each complex was characterized by NMR spectroscopy, mass spectrometry, and X-ray crystallography. The oxorhenium(V) complex with a styrylpyridyl functional group binds to Aβ plaques present in post-mortem human brain tissue. The chemistry was extrapolated to technetium-99(m) at the tracer level for two of the ligands. The resulting oxotechnetium(V) complexes were sufficiently lipophilic and charge-neutral to suggest that they have the potential to cross the blood-brain barrier but exhibited modest stability with respect to exchange with histidine. The chemistry presented here identifies a strategy to integrate styrylpyridyl functional groups into tetradentate ligands capable of forming complexes with [M═O](3+) cores (M = Re or Tc).

  19. Mannose-Binding Lectin Binds to Amyloid Protein and Modulates Inflammation

    Directory of Open Access Journals (Sweden)

    Mykol Larvie

    2012-01-01

    Full Text Available Mannose-binding lectin (MBL, a soluble factor of the innate immune system, is a pattern recognition molecule with a number of known ligands, including viruses, bacteria, and molecules from abnormal self tissues. In addition to its role in immunity, MBL also functions in the maintenance of tissue homeostasis. We present evidence here that MBL binds to amyloid β peptides. MBL binding to other known carbohydrate ligands is calcium-dependent and has been attributed to the carbohydrate-recognition domain, a common feature of other C-type lectins. In contrast, we find that the features of MBL binding to Aβ are more similar to the reported binding characteristics of the cysteine-rich domain of the unrelated mannose receptor and therefore may involve the MBL cysteine-rich domain. Differences in MBL ligand binding may contribute to modulation of inflammatory response and may correlate with the function of MBL in processes such as coagulation and tissue homeostasis.

  20. Amyloid Imaging in Aging and Dementia: Testing the Amyloid Hypothesis In Vivo

    Directory of Open Access Journals (Sweden)

    G. D. Rabinovici

    2009-01-01

    Full Text Available Amyloid imaging represents a major advance in neuroscience, enabling the detection and quantification of pathologic protein aggregations in the brain. In this review we survey current amyloid imaging techniques, focusing on positron emission tomography (PET with ^{11}carbon-labelled Pittsburgh Compound-B (11C-PIB, the most extensively studied and best validated tracer. PIB binds specifically to fibrillar beta-amyloid (Aβ deposits, and is a sensitive marker for Aβ pathology in cognitively normal older individuals and patients with mild cognitive impairment (MCI and Alzheimer’s disease (AD. PIB-PET provides us with a powerful tool to examine in vivo the relationship between amyloid deposition, clinical symptoms, and structural and functional brain changes in the continuum between normal aging and AD. Amyloid imaging studies support a model in which amyloid deposition is an early event on the path to dementia, beginning insidiously in cognitively normal individuals, and accompanied by subtle cognitive decline and functional and structural brain changes suggestive of incipient AD. As patients progress to dementia, clinical decline and neurodegeneration accelerate and proceed independently of amyloid accumulation. In the future, amyloid imaging is likely to supplement clinical evaluation in selecting patients for anti-amyloid therapies, while MRI and FDG-PET may be more appropriate markers of clinical progression.

  1. Serum Amyloid P Component (SAP) Interactome in Human Plasma Containing Physiological Calcium Levels.

    Science.gov (United States)

    Poulsen, Ebbe Toftgaard; Pedersen, Kata Wolff; Marzeda, Anna Maria; Enghild, Jan J

    2017-02-14

    The pentraxin serum amyloid P component (SAP) is secreted by the liver and found in plasma at a concentration of approximately 30 mg/L. SAP is a 25 kDa homopentamer known to bind both protein and nonprotein ligands, all in a calcium-dependent manner. The function of SAP is unclear but likely involves the humoral innate immune system spanning the complement system, inflammation, and coagulation. Also, SAP is known to bind to the generic structure of amyloid deposits and possibly to protect them against proteolysis. In this study, we have characterized the SAP interactome in human plasma containing the physiological Ca(2+) concentration using SAP affinity pull-down and co-immunoprecipitation experiments followed by mass spectrometry analyses. The analyses resulted in the identification of 33 proteins, of which 24 were direct or indirect interaction partners not previously reported. The SAP interactome can be divided into categories that include apolipoproteins, the complement system, coagulation, and proteolytic regulation.

  2. Hybrid Amyloid Membranes for Continuous Flow Catalysis.

    Science.gov (United States)

    Bolisetty, Sreenath; Arcari, Mario; Adamcik, Jozef; Mezzenga, Raffaele

    2015-12-29

    Amyloid fibrils are promising nanomaterials for technological applications such as biosensors, tissue engineering, drug delivery, and optoelectronics. Here we show that amyloid-metal nanoparticle hybrids can be used both as efficient active materials for wet catalysis and as membranes for continuous flow catalysis applications. Initially, amyloid fibrils generated in vitro from the nontoxic β-lactoglobulin protein act as templates for the synthesis of gold and palladium metal nanoparticles from salt precursors. The resulting hybrids possess catalytic features as demonstrated by evaluating their activity in a model catalytic reaction in water, e.g., the reduction of 4-nitrophenol into 4-aminophenol, with the rate constant of the reduction increasing with the concentration of amyloid-nanoparticle hybrids. Importantly, the same nanoparticles adsorbed onto fibrils surface show improved catalytic efficiency compared to the same unattached particles, pointing at the important role played by the amyloid fibril templates. Then, filter membranes are prepared from the metal nanoparticle-decorated amyloid fibrils by vacuum filtration. The resulting membranes serve as efficient flow catalysis active materials, with a complete catalytic conversion achieved within a single flow passage of a feeding solution through the membrane.

  3. Islet Amyloid Polypeptide: Structure, Function, and Pathophysiology

    Directory of Open Access Journals (Sweden)

    Rehana Akter

    2016-01-01

    Full Text Available The hormone islet amyloid polypeptide (IAPP, or amylin plays a role in glucose homeostasis but aggregates to form islet amyloid in type-2 diabetes. Islet amyloid formation contributes to β-cell dysfunction and death in the disease and to the failure of islet transplants. Recent work suggests a role for IAPP aggregation in cardiovascular complications of type-2 diabetes and hints at a possible role in type-1 diabetes. The mechanisms of IAPP amyloid formation in vivo or in vitro are not understood and the mechanisms of IAPP induced β-cell death are not fully defined. Activation of the inflammasome, defects in autophagy, ER stress, generation of reactive oxygen species, membrane disruption, and receptor mediated mechanisms have all been proposed to play a role. Open questions in the field include the relative importance of the various mechanisms of β-cell death, the relevance of reductionist biophysical studies to the situation in vivo, the molecular mechanism of amyloid formation in vitro and in vivo, the factors which trigger amyloid formation in type-2 diabetes, the potential role of IAPP in type-1 diabetes, the development of clinically relevant inhibitors of islet amyloidosis toxicity, and the design of soluble, bioactive variants of IAPP for use as adjuncts to insulin therapy.

  4. Engineering tumor cell targeting in nanoscale amyloidal materials

    Science.gov (United States)

    Unzueta, Ugutz; Seras-Franzoso, Joaquin; Virtudes Céspedes, María; Saccardo, Paolo; Cortés, Francisco; Rueda, Fabián; Garcia-Fruitós, Elena; Ferrer-Miralles, Neus; Mangues, Ramon; Vázquez, Esther; Villaverde, Antonio

    2017-01-01

    Bacterial inclusion bodies are non-toxic, mechanically stable and functional protein amyloids within the nanoscale size range that are able to naturally penetrate into mammalian cells, where they deliver the embedded protein in a functional form. The potential use of inclusion bodies in protein delivery or protein replacement therapies is strongly impaired by the absence of specificity in cell binding and penetration, thus preventing targeting. To address this issue, we have here explored whether the genetic fusion of two tumor-homing peptides, the CXCR4 ligands R9 and T22, to an inclusion body-forming green fluorescent protein (GFP), would keep the interaction potential and the functionality of the fused peptides and then confer CXCR4 specificity in cell binding and further uptake of the materials. The fusion proteins have been well produced in Escherichia coli in their full-length form, keeping the potential for fluorescence emission of the partner GFP. By using specific inhibitors of CXCR4 binding, we have demonstrated that the engineered protein particles are able to penetrate CXCR4+ cells, in a receptor-mediated way, without toxicity or visible cytopathic effects, proving the availability of the peptide ligands on the surface of inclusion bodies. Since no further modification is required upon their purification, the biological production of genetically targeted inclusion bodies opens a plethora of cost-effective possibilities in the tissue-specific intracellular transfer of functional proteins through the use of structurally and functionally tailored soft materials.

  5. RAGE and its ligands in retinal disease.

    Science.gov (United States)

    Barile, Gaetano R; Schmidt, Ann M

    2007-12-01

    RAGE, the receptor for advanced glycation endproducts (AGEs), is a multiligand signal transduction receptor of the immunoglobulin superfamily of cell surface molecules that has been implicated in the pathogenesis of diabetic complications, neurodegenerative diseases, inflammatory disorders, and cancer. These diverse biologic disorders reflect the multiplicity of ligands capable of cellular interaction via RAGE that include, in addition to AGEs, amyloid-beta (Abeta) peptide, the S100/calgranulin family of proinflammatory cytokines, and amphoterin, a member of the High Mobility Group Box (HMGB) DNA-binding proteins. In the retina, RAGE expression is present in neural cells, the vasculature, and RPE cells, and it has also been detected in pathologic cellular retinal responses including epiretinal and neovascular membrane formation. Ligands for RAGE, in particular AGEs, have emerged as relevant to the pathogenesis of diabetic retinopathy and age-related macular disease. While the understanding of RAGE and its role in retinal dysfunction with aging, diabetes mellitus, and/or activation of pro-inflammatory pathways is less complete compared to other organ systems, increasing evidence indicates that RAGE can initiate and sustain significant cellular perturbations in the inner and outer retina. For these reasons, antagonism of RAGE interactions with its ligands may be a worthwhile therapeutic target in such seemingly disparate, visually threatening retinal diseases as diabetic retinopathy, age-related macular degeneration, and proliferative vitreoretinopathy.

  6. Amyloid β-sheet mimics that antagonize protein aggregation and reduce amyloid toxicity

    Science.gov (United States)

    Cheng, Pin-Nan; Liu, Cong; Zhao, Minglei; Eisenberg, David; Nowick, James S.

    2012-11-01

    The amyloid protein aggregation associated with diseases such as Alzheimer's, Parkinson's and type II diabetes (among many others) features a bewildering variety of β-sheet-rich structures in transition from native proteins to ordered oligomers and fibres. The variation in the amino-acid sequences of the β-structures presents a challenge to developing a model system of β-sheets for the study of various amyloid aggregates. Here, we introduce a family of robust β-sheet macrocycles that can serve as a platform to display a variety of heptapeptide sequences from different amyloid proteins. We have tailored these amyloid β-sheet mimics (ABSMs) to antagonize the aggregation of various amyloid proteins, thereby reducing the toxicity of amyloid aggregates. We describe the structures and inhibitory properties of ABSMs containing amyloidogenic peptides from the amyloid-β peptide associated with Alzheimer's disease, β2-microglobulin associated with dialysis-related amyloidosis, α-synuclein associated with Parkinson's disease, islet amyloid polypeptide associated with type II diabetes, human and yeast prion proteins, and Tau, which forms neurofibrillary tangles.

  7. The Role of the 14–20 Domain of the Islet Amyloid Polypeptide in Amyloid Formation

    Directory of Open Access Journals (Sweden)

    Sharon Gilead

    2008-01-01

    Full Text Available The molecular mechanism of amyloid formation by the islet amyloid polypeptide (IAPP has been intensively studied since its identification in the late 1980s. The IAPP(20–29 region is considered to be the central amyloidogenic module of the polypeptide. This assumption is mainly based on the amyloidogenic properties of the region and on the large sequence diversity within this region between the human and mouse IAPP, as the mouse IAPP does not form amyloids. A few years ago, another region within IAPP was identified that seems to be at least as important as IAPP(20–29 in facilitation of molecular recognition that leads to amyloid formation. Here, we reinforce our and others' previous findings by analyzing supporting evidence from the recent literature. Moreover, we provide new proofs to our hypothesis by comparing between the amyloidogenic properties of the two regions derived from the IAPP of cats, which is also known to form amyloid fibrils.

  8. Ab initio molecular simulations on specific interactions between amyloid beta and monosaccharides

    Science.gov (United States)

    Nomura, Kazuya; Okamoto, Akisumi; Yano, Atsushi; Higai, Shin'ichi; Kondo, Takashi; Kamba, Seiji; Kurita, Noriyuki

    2012-09-01

    Aggregation of amyloid β (Aβ) peptides, which is a key pathogenetic event in Alzheimer's disease, can be caused by cell-surface saccharides. We here investigated stable structures of the solvated complexes of Aβ with some types of monosaccharides using molecular simulations based on protein-ligand docking and classical molecular mechanics methods. Moreover, the specific interactions between Aβ and the monosaccharides were elucidated at an electronic level by ab initio fragment molecular orbital calculations. Based on the results, we proposed which type of monosaccharide prefers to have large binding affinity to Aβ and inhibit the Aβ aggregation.

  9. Chirality and chiroptical properties of amyloid fibrils.

    Science.gov (United States)

    Dzwolak, Wojciech

    2014-09-01

    Chirality of amyloid fibrils-linear beta-sheet-rich aggregates of misfolded protein chains-often manifests in morphological traits such as helical twist visible in atomic force microscopy and in chiroptical properties accessible to vibrational circular dichroism (VCD). According to recent studies the relationship between molecular chirality of polypeptide building blocks and superstructural chirality of amyloid fibrils may be more intricate and less deterministic than previously assumed. Several puzzling experimental findings have put into question earlier intuitive ideas on: 1) the bottom-up chirality transfer upon amyloidogenic self-assembly, and 2) the structural origins of chiroptical properties of protein aggregates. For example, removal of a single amino acid residue from an amyloidogenic all-L peptide was shown to reverse handedness of fibrils. On the other hand, certain types of amyloid aggregates revealed surprisingly strong VCD spectra with the sign and shape dependent on the conditions of fibrillation. Hence, microscopic and chiroptical studies have highlighted chirality as one more aspect of polymorphism of amyloid fibrils. This brief review is intended to outline the current state of research on amyloid-like fibrils from the perspective of their structural and superstructural chirality and chiroptical properties.

  10. Appropriate Use Criteria for Amyloid PET

    Science.gov (United States)

    Johnson, Keith A.; Minoshima, Satoshi; Bohnen, Nicolaas I.; Donohoe, Kevin J.; Foster, Norman L.; Herscovitch, Peter; Karlawish, Jason H.; Rowe, Christopher C.; Carrillo, Maria C.; Hartley, Dean M.; Hedrick, Saima; Mitchell, Kristi; Pappas, Virginia; Thies, William H.

    2013-01-01

    Positron Emission Tomography (PET) of brain amyloid-beta is a technology that is becoming more available, but its clinical utility in medical practice requires careful definition. In order to provide guidance to dementia care practitioners, patients and caregivers, the Alzheimer Association and the Society of Nuclear Medicine and Molecular Imaging convened the Amyloid Imaging Taskforce (AIT). The AIT considered a broad range of specific clinical scenarios in which amyloid PET could potentially be appropriately used. Peer-reviewed, published literature was searched to ascertain available evidence relevant to these scenarios, and the AIT developed a consensus of expert opinion. While empirical evidence of impact on clinical outcomes is not yet available, a set of specific Appropriate Use Criteria (AUC) were agreed upon that define the types of patients and clinical circumstances in which amyloid PET could be used. Both appropriate and inappropriate uses were considered and formulated, and are reported and discussed here. Because both dementia care and amyloid PET technology are in active development, these AUC will require periodic reassessment. Future research directions are also outlined, including diagnostic utility and patient-centered outcomes. PMID:23360977

  11. AL amyloid imaging and therapy with a monoclonal antibody to a cryptic epitope on amyloid fibrils.

    Directory of Open Access Journals (Sweden)

    Jonathan S Wall

    Full Text Available The monoclonal antibody 2A4 binds an epitope derived from a cleavage site of serum amyloid protein A (sAA containing a -Glu-Asp- amino acid pairing. In addition to its reactivity with sAA amyloid deposits, the antibody was also found to bind amyloid fibrils composed of immunoglobulin light chains. The antibody binds to synthetic fibrils and human light chain (AL amyloid extracts with high affinity even in the presence of soluble light chain proteins. Immunohistochemistry with biotinylated 2A4 demonstrated positive reaction with ALκ and ALλ human amyloid deposits in various organs. Surface plasmon resonance analyses using synthetic AL fibrils as a substrate revealed that 2A4 bound with a K(D of ∼10 nM. Binding was inhibited in the presence of the -Glu-Asp- containing immunogen peptide. Radiolabeled 2A4 specifically localized with human AL amyloid extracts implanted in mice (amyloidomas as evidenced by single photon emission (SPECT imaging. Furthermore, co-localization of the radiolabeled mAb with amyloid was shown in biodistribution and micro-autoradiography studies. Treatment with 2A4 expedited regression of ALκ amyloidomas in mice, likely mediated by the action of macrophages and neutrophils, relative to animals that received a control antibody. These data indicate that the 2A4 mAb might be of interest for potential imaging and immunotherapy in patients with AL amyloidosis.

  12. The novel amyloid-beta peptide aptamer inhibits intracellular amyloid-beta peptide toxicity

    Institute of Scientific and Technical Information of China (English)

    Xu Wang; Yi Yang; Mingyue Jia; Chi Ma; Mingyu Wang; Lihe Che; Yu Yang; Jiang Wu

    2013-01-01

    Amyloid β peptide binding alcohol dehydrogenase (ABAD) decoy peptide (DP) can competitively antagonize binding of amyloid β peptide to ABAD and inhibit the cytotoxic effects of amyloid β peptide. Based on peptide aptamers, the present study inserted ABAD-DP into the disulfide bond of human thioredoxin (TRX) using molecular cloning technique to construct a fusion gene that can express the TRX1-ABAD-DP-TRX2 aptamer. Moreover, adeno-associated virus was used to allow its stable expression. Immunofluorescent staining revealed the co-expression of the transduced fusion gene TRX1-ABAD-DP-TRX2 and amyloid β peptide in NIH-3T3 cells, indicating that the TRX1-ABAD-DP-TRX2 aptamer can bind amyloid β peptide within cells. In addition, cell morphology and MTT results suggested that TRX1-ABAD-DP-TRX2 attenuated amyloid β peptide-induced SH-SY5Y cell injury and improved cell viability. These findings confirmed the possibility of constructing TRX-based peptide aptamer using ABAD-DP. Moreover, TRX1-ABAD-DP-TRX2 inhibited the cytotoxic effect of amyloid β peptide.

  13. Amyloid-β positron emission tomography imaging probes

    DEFF Research Database (Denmark)

    Kepe, Vladimir; Moghbel, Mateen C; Långström, Bengt;

    2013-01-01

    The rapidly rising prevalence and cost of Alzheimer's disease in recent decades has made the imaging of amyloid-β deposits the focus of intense research. Several amyloid imaging probes with purported specificity for amyloid-β plaques are currently at various stages of FDA approval. However...

  14. Fibrillar dimer formation of islet amyloid polypeptides

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, Chi-cheng [Univ. of Chicago, IL (United States); Argonne National Lab. (ANL), Argonne, IL (United States); de Pablo, Juan J. [Univ. of Chicago, IL (United States); Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-05-08

    Amyloid deposits of human islet amyloid polypeptide (hIAPP), a 37-residue hormone co-produced with insulin, have been implicated in the development of type 2 diabetes. Residues 20 – 29 of hIAPP have been proposed to constitute the amyloidogenic core for the aggregation process, yet the segment is mostly unstructured in the mature fibril, according to solid-state NMR data. Here we use molecular simulations combined with bias-exchange metadynamics to characterize the conformational free energies of hIAPP fibrillar dimer and its derivative, pramlintide. We show that residues 20 – 29 are involved in an intermediate that exhibits transient β-sheets, consistent with recent experimental and simulation results. By comparing the aggregation of hIAPP and pramlintide, we illustrate the effects of proline residues on inhibition of the dimerization of IAPP. The mechanistic insights presented here could be useful for development of therapeutic inhibitors of hIAPP amyloid formation.

  15. Compressive deformation of ultralong amyloid fibrils

    Science.gov (United States)

    Paparcone, Raffaella; Cranford, Steven; Buehler, Markus J.

    2010-12-01

    Involved in various neurodegenerative diseases, amyloid fibrils and plaques feature a hierarchical structure, ranging from the atomistic to the micrometer scale. At the atomistic level, a dense and organized hydrogen bond network is resembled in a beta-sheet rich secondary structure, which drives a remarkable stiffness in the range of 10-20GPa, larger than many other biological nanofibrils, a result confirmed by both experiment and theory. However, the understanding of how these exceptional mechanical properties transfer from the atomistic to the nanoscale remains unknown. Here we report a multiscale analysis that, from the atomistic-level structure of a single fibril, extends to the mesoscale level, reaching size scales of hundreds of nanometers. We use parameters directly derived from full atomistic simulations of A β (1-40) amyloid fibrils to parameterize a mesoscopic coarse-grained model, which is used to reproduce the elastic properties of amyloid fibrils. We then apply our mesoscopic model in an analysis of the buckling behavior of amyloid fibrils with different lengths and report a comparison with predictions from continuum beam theory. An important implication of our results is a severe reduction of the effective modulus due to buckling, an effect that could be important to interpret experimental results of ultra-long amyloid fibrils. Our model represents a powerful tool to mechanically characterize molecular structures on the order of hundreds of nanometers to micrometers on the basis of the underlying atomistic behavior. The work provides insight into structural and mechanical properties of amyloid fibrils and may enable further analysis of larger-scale assemblies such as amyloidogenic bundles or plaques as found in disease states.

  16. Interaction of serum amyloid P component with hexanoyl bis(d-proline) (CPHPC)

    Energy Technology Data Exchange (ETDEWEB)

    Kolstoe, Simon E. [University College London, Rowland Hill Street, London NW3 2PF (United Kingdom); Jenvey, Michelle C. [University of Southampton, Southampton SO17 1BJ (United Kingdom); Purvis, Alan [Imperial College London, London SW7 2AZ (United Kingdom); Light, Mark E. [University of Southampton, Southampton SO17 1BJ (United Kingdom); Thompson, Darren [University of Sussex, Falmer, Brighton BN1 9RQ (United Kingdom); Hughes, Peter; Pepys, Mark B.; Wood, Stephen P., E-mail: s.wood@ucl.ac.uk [University College London, Rowland Hill Street, London NW3 2PF (United Kingdom)

    2014-08-01

    Serum amyloid P component is a pentameric plasma glycoprotein that recognizes and binds to amyloid fibres in a calcium-dependent fashion and is likely to contribute to their deposition and persistence in vivo. Five molecules of the drug CPHPC avidly cross-link pairs of protein pentamers and the decameric complex is rapidly cleared in vivo. Crystal structures of the protein in complex with a bivalent drug and cadmium ions, which improve crystal quality, allow the definition of the preferred bound drug isomers. Under physiological conditions, the pentameric human plasma protein serum amyloid P component (SAP) binds hexanoyl bis(d-proline) (R-1-(6-[R-2-carboxy-pyrrolidin-1-yl]-6-oxo-hexanoyl) pyrrolidine-2-carboxylic acid; CPHPC) through its d-proline head groups in a calcium-dependent interaction. Cooperative effects in binding lead to a substantial enhancement of affinity. Five molecules of the bivalent ligand cross-link and stabilize pairs of SAP molecules, forming a decameric complex that is rapidly cleared from the circulation by the liver. Here, it is reported that X-ray analysis of the SAP complex with CPHPC and cadmium ions provides higher resolution detail of the interaction than is observed with calcium ions. Conformational isomers of CPHPC observed in solution by HPLC and by X-ray analysis are compared with the protein-bound form. These are discussed in relation to the development of CPHPC to provide SAP depletion for the treatment of amyloidosis and other indications.

  17. Amyloids or prions? That is the question.

    Science.gov (United States)

    Sabate, Raimon; Rousseau, Frederic; Schymkowitz, Joost; Batlle, Cristina; Ventura, Salvador

    2015-01-01

    Despite major efforts devoted to understanding the phenomenon of prion transmissibility, it is still poorly understood how this property is encoded in the amino acid sequence. In recent years, experimental data on yeast prion domains allow to start at least partially decrypting the sequence requirements of prion formation. These experiments illustrate the need for intrinsically disordered sequence regions enriched with a particularly high proportion of glutamine and asparagine. Bioinformatic analysis suggests that these regions strike a balance between sufficient amyloid nucleation propensity on the one hand and disorder on the other, which ensures availability of the amyloid prone regions but entropically prevents unwanted nucleation and facilitates brittleness required for propagation.

  18. Quenched Hydrogen Exchange NMR of Amyloid Fibrils.

    Science.gov (United States)

    Alexandrescu, Andrei T

    2016-01-01

    Amyloid fibrils are associated with a number of human diseases. These aggregatively misfolded intermolecular β-sheet assemblies constitute some of the most challenging targets in structural biology because to their complexity, size, and insolubility. Here, protocols and controls are described for experiments designed to study hydrogen-bonding in amyloid fibrils indirectly, by transferring information about amide proton occupancy in the fibrils to the dimethyl sulfoxide-denatured state. Since the denatured state is amenable to solution NMR spectroscopy, the method can provide residue-level-resolution data on hydrogen exchange for the monomers that make up the fibrils.

  19. Designed amyloid fibers as materials for selective carbon dioxide capture.

    Science.gov (United States)

    Li, Dan; Furukawa, Hiroyasu; Deng, Hexiang; Liu, Cong; Yaghi, Omar M; Eisenberg, David S

    2014-01-07

    New materials capable of binding carbon dioxide are essential for addressing climate change. Here, we demonstrate that amyloids, self-assembling protein fibers, are effective for selective carbon dioxide capture. Solid-state NMR proves that amyloid fibers containing alkylamine groups reversibly bind carbon dioxide via carbamate formation. Thermodynamic and kinetic capture-and-release tests show the carbamate formation rate is fast enough to capture carbon dioxide by dynamic separation, undiminished by the presence of water, in both a natural amyloid and designed amyloids having increased carbon dioxide capacity. Heating to 100 °C regenerates the material. These results demonstrate the potential of amyloid fibers for environmental carbon dioxide capture.

  20. Involvement of receptor tyrosine kinase Tyro3 in amyloidogenic APP processing and β-amyloid deposition in Alzheimer's disease models.

    Directory of Open Access Journals (Sweden)

    Yan Zheng

    Full Text Available Alzheimer's disease (AD is the most common progressive neurodegenerative disease known to humankind. It is characterized by brain atrophy, extracellular amyloid plaques, and intracellular neurofibril tangles. β-Amyloid cascade is considered the major causative player in AD. Up until now, the mechanisms underlying the process of Aβ generation and accumulation in the brain have not been well understood. Tyro3 receptor belongs to the TAM receptor subfamily of receptor protein tyrosine kinases (RPTKs. It is specifically expressed in the neurons of the neocortex and hippocampus. In this study, we established a cell model stably expressing APPswe mutants and producing Aβ. We found that overexpression of Tyro3 receptor in the cell model significantly decreased Aβ generation and also down-regulated the expression of β-site amyloid precursor protein cleaving enzyme (BACE1. However, the effects of Tyro3 were inhibited by its natural ligand, Gas6, in a concentration-dependent manner. In order to confirm the role of Tyro3 in the progression of AD development, we generated an AD transgenic mouse model accompanied by Tyro3 knockdown. We observed a significant increase in the number of amyloid plaques in the hippocampus in the mouse model. More plaque-associated clusters of astroglia were also detected. The present study may help researchers determine the role of Tyro3 receptor in the neuropathology of AD.

  1. Islet amyloid polypeptide forms rigid lipid-protein amyloid fibrils on supported phospholipid bilayers.

    Science.gov (United States)

    Domanov, Yegor A; Kinnunen, Paavo K J

    2008-02-08

    Islet amyloid polypeptide (IAPP) forms fibrillar amyloid deposits in the pancreatic islets of Langerhans of patients with type 2 diabetes mellitus, and its misfolding and aggregation are thought to contribute to beta-cell death. Increasing evidence suggests that IAPP fibrillization is strongly influenced by lipid membranes and, vice versa, that the membrane architecture and integrity are severely affected by amyloid growth. Here, we report direct fluorescence microscopic observations of the morphological transformations accompanying IAPP fibrillization on the surface of supported lipid membranes. Within minutes of application in submicromolar concentrations, IAPP caused extensive remodeling of the membrane including formation of defects, vesiculation, and tubulation. The effects of IAPP concentration, ionic strength, and the presence of amyloid seeds on the bilayer perturbation and peptide aggregation were examined. Growth of amyloid fibrils was visualized using fluorescently labeled IAPP or thioflavin T staining. Two-color imaging of the peptide and membranes revealed that the fibrils were initially composed of the peptide only, and vesiculation occurred in the points where growing fibers touched the lipid membrane. Interestingly, after 2-5 h of incubation, IAPP fibers became "wrapped" by lipid membranes derived from the supported membrane. Progressive increase in molecular-level association between amyloid and membranes in the maturing fibers was confirmed by Förster resonance energy transfer spectroscopy.

  2. Bap: A New Type of Functional Amyloid.

    Science.gov (United States)

    Di Martino, Patrick

    2016-09-01

    Bacteria can build a biofilm matrix scaffold from exopolysaccharides or proteins, and DNA. In a recent report, Taglialegna and colleagues show that pathogenic Staphylococcus aureus produces a protein scaffold based on amyloid assembly of fragments from the biofilm-associated protein. Amyloidogenesis occurs in response to environmental signals.

  3. Serum amyloid P inhibits dermal wound healing

    Science.gov (United States)

    The repair of open wounds depends on granulation tissue formation and contraction, which is primarily mediated by myofibroblasts. A subset of myofibroblasts originates from bone-marrow-derived monocytes which differentiate into fibroblast-like cells called fibrocytes. Serum amyloid P (SAP) inhibits ...

  4. Calumenin interacts with serum amyloid P component

    DEFF Research Database (Denmark)

    Vorum, H; Jacobsen, Christian; Honoré, Bent

    2000-01-01

    with calumenin in the presence of Ca(2+). Amino acid sequencing identified this protein as serum amyloid P component (SAP). Furthermore, we verified and characterized the calumenin-SAP interaction by the surface plasmon resonance technique. The findings indicate that calumenin may participate...

  5. Fibrillar amyloid plaque formation precedes microglial activation.

    Directory of Open Access Journals (Sweden)

    Christian K E Jung

    Full Text Available In Alzheimer's disease (AD, hallmark β-amyloid deposits are characterized by the presence of activated microglia around them. Despite an extensive characterization of the relation of amyloid plaques with microglia, little is known about the initiation of this interaction. In this study, the detailed investigation of very small plaques in brain slices in AD transgenic mice of the line APP-PS1(dE9 revealed different levels of microglia recruitment. Analysing plaques with a diameter of up to 10 μm we find that only the half are associated with clear morphologically activated microglia. Utilizing in vivo imaging of new appearing amyloid plaques in double-transgenic APP-PS1(dE9xCX3CR1+/- mice further characterized the dynamic of morphological microglia activation. We observed no correlation of morphological microglia activation and plaque volume or plaque lifetime. Taken together, our results demonstrate a very prominent variation in size as well as in lifetime of new plaques relative to the state of microglia reaction. These observations might question the existing view that amyloid deposits by themselves are sufficient to attract and activate microglia in vivo.

  6. Graphene oxide strongly inhibits amyloid beta fibrillation

    NARCIS (Netherlands)

    Mahmoudi, Morteza; Akhavan, Omid; Ghavami, Mahdi; Rezaee, Farhad; Ghiasi, Seyyed Mohammad Amin

    2012-01-01

    Since amyloid beta fibrillation (AbF) plays an important role in the development of neurodegenerative diseases, we investigated the effect of graphene oxide (GO) and their protein-coated surfaces on the kinetics of Ab fibrillation in the aqueous solution. We showed that GO and their protein-covered

  7. NMR WaterLOGSY Reveals Weak Binding of Bisphenol A with Amyloid Fibers of a Conserved 11 Residue Peptide from Androgen Receptor

    Science.gov (United States)

    Asencio-Hernández, Julia; Kieffer, Bruno

    2016-01-01

    There is growing evidence that bisphenol A (BPA), a molecule largely released in the environment, has detrimental effects on ecosystems and on human health. It acts as an endocrine disruptor targeting steroid hormone receptors, such as the estrogen receptor (ER), estrogen-related receptor (ERR) and androgen receptor (AR). BPA-derived molecules have recently been shown to interact with the AR N-terminal domain (AR-NTD), which is known to be largely intrinsically disordered. This N-terminal domain contains an 11 residue conserved domain that forms amyloid fibers upon oxidative dimerisation through its strictly conserved Cys240 residue. We investigate here the interaction of BPA, and other potential endocrine disruptors, with AR-NTD amyloid fibers using the WaterLOGSY NMR experiment. We observed a selective binding of these compounds to the amyloid fibers formed by the AR-NTD conserved region and glutamine homopolymers. This observation suggests that the high potency of endocrine disruptors may result, in part, from their ability to bind amyloid forms of nuclear receptors in addition to their cognate binding sites. This property may be exploited to design future therapeutic strategies targeting AR related diseases such as the spinal bulbar muscular atrophy or prostate cancer. The ability of NMR WaterLOGSY experiments to detect weak interactions between small ligands and amyloid fibers may prove to be of particular interest for identifying promising hit molecules. PMID:27583469

  8. Yeast Two-Hybrid Screening for Proteins that Interact with the Extracellular Domain of Amyloid Precursor Protein.

    Science.gov (United States)

    Yu, You; Li, Yinan; Zhang, Yan

    2016-04-01

    Alzheimer's disease (AD) is a neurodegenerative disorder in which amyloid β plaques are a pathological characteristic. Little is known about the physiological functions of amyloid β precursor protein (APP). Based on its structure as a type I transmembrane protein, it has been proposed that APP might be a receptor, but so far, no ligand has been reported. In the present study, 9 proteins binding to the extracellular domain of APP were identified using a yeast two-hybrid system. After confirming the interactions in the mammalian system, mutated PLP1, members of the FLRT protein family, and KCTD16 were shown to interact with APP. These proteins have been reported to be involved in Pelizaeus-Merzbacher disease (PMD) and axon guidance. Therefore, our results shed light on the mechanisms of physiological function of APP in AD, PMD, and axon guidance.

  9. Ligand modeling and design

    Energy Technology Data Exchange (ETDEWEB)

    Hay, B.P. [Pacific Northwest National Lab., Richland, WA (United States)

    1997-10-01

    The purpose of this work is to develop and implement a molecular design basis for selecting organic ligands that would be used in the cost-effective removal of specific radionuclides from nuclear waste streams. Organic ligands with metal ion specificity are critical components in the development of solvent extraction and ion exchange processes that are highly selective for targeted radionuclides. The traditional approach to the development of such ligands involves lengthy programs of organic synthesis and testing, which in the absence of reliable methods for screening compounds before synthesis, results in wasted research effort. The author`s approach breaks down and simplifies this costly process with the aid of computer-based molecular modeling techniques. Commercial software for organic molecular modeling is being configured to examine the interactions between organic ligands and metal ions, yielding an inexpensive, commercially or readily available computational tool that can be used to predict the structures and energies of ligand-metal complexes. Users will be able to correlate the large body of existing experimental data on structure, solution binding affinity, and metal ion selectivity to develop structural design criteria. These criteria will provide a basis for selecting ligands that can be implemented in separations technologies through collaboration with other DOE national laboratories and private industry. The initial focus will be to select ether-based ligands that can be applied to the recovery and concentration of the alkali and alkaline earth metal ions including cesium, strontium, and radium.

  10. Atomic View of a Toxic Amyloid Small Oligomer

    Energy Technology Data Exchange (ETDEWEB)

    Laganowsky, Arthur; Liu, Cong; Sawaya, Michael R.; Whitelegge, Julian P.; Park, Jiyong; Zhao, Minglei; Pensalfini, Anna; Soriaga, Angela B.; Landau, Meytal; Teng, Poh K.; Cascio, Duilio; Glabe, Charles; Eisenberg, David (UCI); (UCLA)

    2012-04-30

    Amyloid diseases, including Alzheimer's, Parkinson's, and the prion conditions, are each associated with a particular protein in fibrillar form. These amyloid fibrils were long suspected to be the disease agents, but evidence suggests that smaller, often transient and polymorphic oligomers are the toxic entities. Here, we identify a segment of the amyloid-forming protein {alpha}{beta} crystallin, which forms an oligomeric complex exhibiting properties of other amyloid oligomers: {beta}-sheet-rich structure, cytotoxicity, and recognition by an oligomer-specific antibody. The x-ray-derived atomic structure of the oligomer reveals a cylindrical barrel, formed from six antiparallel protein strands, that we term a cylindrin. The cylindrin structure is compatible with a sequence segment from the {beta}-amyloid protein of Alzheimer's disease. Cylindrins offer models for the hitherto elusive structures of amyloid oligomers.

  11. Inhibition of insulin amyloid fibril formation by cyclodextrins.

    Science.gov (United States)

    Kitagawa, Keisuke; Misumi, Yohei; Ueda, Mitsuharu; Hayashi, Yuya; Tasaki, Masayoshi; Obayashi, Konen; Yamashita, Taro; Jono, Hirofumi; Arima, Hidetoshi; Ando, Yukio

    2015-01-01

    Localized insulin-derived amyloid masses occasionally form at the site of repeated insulin injections in patients with insulin-dependent diabetes and cause subcutaneous insulin resistance. Various kinds of insulin including porcine insulin, human insulin, and insulin analogues reportedly formed amyloid fibrils in vitro and in vivo, but the impact of the amino acid replacement in insulin molecules on amyloidogenicity is largely unknown. In the present study, we demonstrated the difference in amyloid fibril formation kinetics of human insulin and insulin analogues, which suggests an important role of the C-terminal domain of the insulin B chain in nuclear formation of amyloid fibrils. Furthermore, we determined that cyclodextrins, which are widely used as drug carriers in the pharmaceutical field, had an inhibitory effect on the nuclear formation of insulin amyloid fibrils. These findings have significant implications for the mechanism underlying insulin amyloid fibril formation and for developing optimal additives to prevent this subcutaneous adverse effect.

  12. Fold modulating function: Bacterial toxins to functional amyloids

    Directory of Open Access Journals (Sweden)

    Adnan Khawaja Syed

    2014-08-01

    Full Text Available Many bacteria produce cytolytic toxins that target host cells or other competing microbes. It is well known that environmental factors control toxin expression, however recent work suggests that some bacteria manipulate the fold of these protein toxins to control their function. The β-sheet rich amyloid fold is a highly stable ordered aggregate that many toxins form in response to specific environmental conditions. When in the amyloid state, toxins become inert, losing the cytolytic activity they display in the soluble form. Emerging evidence suggest that some amyloids function as toxin storage systems until they are again needed, while other bacteria utilize amyloids as a structural matrix component of biofilms. This amyloid matrix component facilitates resistance to biofilm disruptive challenges. The bacterial amyloids discussed in this review reveal an elegant system where changes in protein fold and solubility dictate the function of proteins in response to the environment.

  13. Ligand modeling and design

    Energy Technology Data Exchange (ETDEWEB)

    Hay, B. [Pacific Northwest Lab., Richland, WA (United States)

    1996-10-01

    The purpose of this work is to develop and implement a molecular design basis for selecting organic ligands that would be used tin applications for the cost-effective removal of specific radionuclides from nuclear waste streams.

  14. Copper Promotes the Trafficking of the Amyloid Precursor Protein*

    OpenAIRE

    Acevedo, Karla M.; Hung, Ya Hui; Dalziel, Andrew H.; Li, Qiao-Xin; Laughton, Katrina; Wikhe, Krutika; Rembach, Alan; Roberts, Blaine; Masters, Colin L.; Ashley I. Bush; Camakaris, James

    2010-01-01

    Accumulation of the amyloid β peptide in the cortical and hippocampal regions of the brain is a major pathological feature of Alzheimer disease. Amyloid β peptide is generated from the sequential protease cleavage of the amyloid precursor protein (APP). We reported previously that copper increases the level of APP at the cell surface. Here we report that copper, but not iron or zinc, promotes APP trafficking in cultured polarized epithelial cells and neuronal cells. In SH-SY5Y neuronal cells ...

  15. Anionic Oligothiophenes Compete for Binding of X‐34 but not PIB to Recombinant Aβ Amyloid Fibrils and Alzheimer's Disease Brain‐Derived Aβ

    Science.gov (United States)

    Bäck, Marcus; Appelqvist, Hanna; LeVine, Harry

    2016-01-01

    Abstract Deposits comprised of amyloid‐β (Aβ) are one of the pathological hallmarks of Alzheimer's disease (AD) and small hydrophobic ligands targeting these aggregated species are used clinically for the diagnosis of AD. Herein, we observed that anionic oligothiophenes efficiently displaced X‐34, a Congo Red analogue, but not Pittsburgh compound B (PIB) from recombinant Aβ amyloid fibrils and Alzheimer's disease brain‐derived Aβ. Overall, we foresee that the oligothiophene scaffold offers the possibility to develop novel high‐affinity ligands for Aβ pathology only found in human AD brain, targeting a different site than PIB. PMID:27767229

  16. Amyloid β oligomers in Alzheimer's disease pathogenesis, treatment, and diagnosis.

    Science.gov (United States)

    Viola, Kirsten L; Klein, William L

    2015-02-01

    Protein aggregation is common to dozens of diseases including prionoses, diabetes, Parkinson's and Alzheimer's. Over the past 15 years, there has been a paradigm shift in understanding the structural basis for these proteinopathies. Precedent for this shift has come from investigation of soluble Aβ oligomers (AβOs), toxins now widely regarded as instigating neuron damage leading to Alzheimer's dementia. Toxic AβOs accumulate in AD brain and constitute long-lived alternatives to the disease-defining Aβ fibrils deposited in amyloid plaques. Key experiments using fibril-free AβO solutions demonstrated that while Aβ is essential for memory loss, the fibrillar Aβ in amyloid deposits is not the agent. The AD-like cellular pathologies induced by AβOs suggest their impact provides a unifying mechanism for AD pathogenesis, explaining why early stage disease is specific for memory and accounting for major facets of AD neuropathology. Alternative ideas for triggering mechanisms are being actively investigated. Some research favors insertion of AβOs into membrane, while other evidence supports ligand-like accumulation at particular synapses. Over a dozen candidate toxin receptors have been proposed. AβO binding triggers a redistribution of critical synaptic proteins and induces hyperactivity in metabotropic and ionotropic glutamate receptors. This leads to Ca(2+) overload and instigates major facets of AD neuropathology, including tau hyperphosphorylation, insulin resistance, oxidative stress, and synapse loss. Because different species of AβOs have been identified, a remaining question is which oligomer is the major pathogenic culprit. The possibility has been raised that more than one species plays a role. Despite some key unknowns, the clinical relevance of AβOs has been established, and new studies are beginning to point to co-morbidities such as diabetes and hypercholesterolemia as etiological factors. Because pathogenic AβOs appear early in the disease, they

  17. An update on the amyloid hypothesis.

    Science.gov (United States)

    Eckman, Christopher B; Eckman, Elizabeth A

    2007-08-01

    Alzheimer's disease (AD) is a devastating neurodegenerative disease. To rationally develop novel therapeutic and/or preventative agents for AD, an understanding of the etiology and pathogenesis of this complex disease is necessary. This article examines the evidence for the amyloid hypothesis of AD pathogenesis and discusses how it relates to the neurological and neuropathological features of AD, the known genetic risk factors and causative mutations, and the heightened risk associated with advanced age.

  18. Traumatic Brain Injury, Microglia, and Beta Amyloid

    OpenAIRE

    Mannix, Rebekah C.; Whalen, Michael J

    2012-01-01

    Recently, there has been growing interest in the association between traumatic brain injury (TBI) and Alzheimer's Disease (AD). TBI and AD share many pathologic features including chronic inflammation and the accumulation of beta amyloid (A\\(\\beta\\)). Data from both AD and TBI studies suggest that microglia play a central role in A\\(\\beta\\) accumulation after TBI. This paper focuses on the current research on the role of microglia response to A\\(\\beta\\) after TBI.

  19. Contrasting effects of nanoparticle-protein attraction on amyloid aggregation.

    Science.gov (United States)

    Radic, Slaven; Davis, Thomas P; Ke, Pu Chun; Ding, Feng

    2015-01-01

    Nanoparticles (NPs) have been experimentally found to either promote or inhibit amyloid aggregation of proteins, but the molecular mechanisms for such complex behaviors remain unknown. Using coarse-grained molecular dynamics simulations, we investigated the effects of varying the strength of nonspecific NP-protein attraction on amyloid aggregation of a model protein, the amyloid-beta peptide implicated in Alzheimer's disease. Specifically, with increasing NP-peptide attraction, amyloid aggregation on the NP surface was initially promoted due to increased local protein concentration on the surface and destabilization of the folded state. However, further increase of NP-peptide attraction decreased the stability of amyloid fibrils and reduced their lateral diffusion on the NP surface necessary for peptide conformational changes and self-association, thus prohibiting amyloid aggregation. Moreover, we found that the relative concentration between protein and NPs also played an important role in amyloid aggregation. With a high NP/protein ratio, NPs that intrinsically promote protein aggregation may display an inhibitive effect by depleting the proteins in solution while having a low concentration of the proteins on each NP's surface. Our coarse-grained molecular dynamics simulation study offers a molecular mechanism for delineating the contrasting and seemingly conflicting effects of NP-protein attraction on amyloid aggregation and highlights the potential of tailoring anti-aggregation nanomedicine against amyloid diseases.

  20. Functional bacterial amyloid increases Pseudomonas biofilm hydrophobicity and stiffness

    DEFF Research Database (Denmark)

    Zeng, Guanghong; Vad, Brian Stougaard; Dueholm, Morten Simonsen

    2015-01-01

    The success of Pseudomonas species as opportunistic pathogens derives in great part from their ability to form stable biofilms that offer protection against chemical and mechanical attack. The extracellular matrix of biofilms contains numerous biomolecules, and it has recently been discovered...... that in Pseudomonas one of the components includes β-sheet rich amyloid fibrils (functional amyloid) produced by the fap operon. However, the role of the functional amyloid within the biofilm has not yet been investigated in detail. Here we investigate how the fap-based amyloid produced by Pseudomonas affects biofilm...

  1. Amyloid positron emission tomography and cognitive reserve

    Institute of Scientific and Technical Information of China (English)

    Matteo Bauckneht; Agnese Picco; Flavio Nobili; Silvia Morbelli

    2015-01-01

    Alzheimer’s disease(AD) is characterized by a nonlinear progressive course and several aspects influence the relationship between cerebral amount of AD pathology and the clinical expression of the disease. Brain cognitive reserve(CR) refers to the hypothesized capacity of an adult brain to cope with brain damage in order to minimize symptomatology. CR phenomenon contributed to explain the disjunction between the degree of neurodegeneration and the clinical phenotype of AD. The possibility to track brain amyloidosis(Aβ) in vivo has huge relevance for AD diagnosis and new therapeutic approaches. The clinical repercussions of positron emission tomography(PET)-assessed Aβ load are certainly mediated by CR thus potentially hampering the prognostic meaning of amyloid PET in selected groups of patients. Similarly, amyloid PET and cerebrospinal fluid amyloidosis biomarkers have recently provided new evidence for CR. The present review discusses the concept of CR in the framework of available neuroimaging studies and specifically deals with the reciprocal influences between amyloid PET and CR in AD patients and with the potential consequent interventional strategies for AD.

  2. Design and Construction of Large Amyloid Fibers

    Directory of Open Access Journals (Sweden)

    Devin M. Ridgley

    2015-04-01

    Full Text Available Mixtures of “template” and “adder” proteins self-assemble into large amyloid fibers of varying morphology and modulus. Fibers range from low modulus, rectangular cross-sectioned tapes to high modulus, circular cross-sectioned cylinders. Varying the proteins in the mixture can elicit “in-between” morphologies, such as elliptical cross-sectioned fibers and twisted tapes, both of which have moduli in-between rectangular tapes and cylindrical fibers. Experiments on mixtures of proteins of known amino acid sequence show that control of the large amyloid fiber morphology is dependent on the amount of glutamine repeats or “Q-blocks” relative to hydrophobic side chained amino acids such as alanine, isoleucine, leucine, and valine in the adder protein. Adder proteins with only hydrophobic groups form low modulus rectangular cross-sections and increasing the Q-block content allows excess hydrogen bonding on amide groups that results in twist and higher modulus. The experimental results show that large amyloid fibers of specific shape and modulus can be designed and controlled at the molecular level.

  3. Partial Volume Correction in Quantitative Amyloid Imaging

    Science.gov (United States)

    Su, Yi; Blazey, Tyler M.; Snyder, Abraham Z.; Raichle, Marcus E.; Marcus, Daniel S.; Ances, Beau M.; Bateman, Randall J.; Cairns, Nigel J.; Aldea, Patricia; Cash, Lisa; Christensen, Jon J.; Friedrichsen, Karl; Hornbeck, Russ C.; Farrar, Angela M.; Owen, Christopher J.; Mayeux, Richard; Brickman, Adam M.; Klunk, William; Price, Julie C.; Thompson, Paul M.; Ghetti, Bernardino; Saykin, Andrew J.; Sperling, Reisa A.; Johnson, Keith A.; Schofield, Peter R.; Buckles, Virginia; Morris, John C.; Benzinger, Tammie. LS.

    2014-01-01

    Amyloid imaging is a valuable tool for research and diagnosis in dementing disorders. As positron emission tomography (PET) scanners have limited spatial resolution, measured signals are distorted by partial volume effects. Various techniques have been proposed for correcting partial volume effects, but there is no consensus as to whether these techniques are necessary in amyloid imaging, and, if so, how they should be implemented. We evaluated a two-component partial volume correction technique and a regional spread function technique using both simulated and human Pittsburgh compound B (PiB) PET imaging data. Both correction techniques compensated for partial volume effects and yielded improved detection of subtle changes in PiB retention. However, the regional spread function technique was more accurate in application to simulated data. Because PiB retention estimates depend on the correction technique, standardization is necessary to compare results across groups. Partial volume correction has sometimes been avoided because it increases the sensitivity to inaccuracy in image registration and segmentation. However, our results indicate that appropriate PVC may enhance our ability to detect changes in amyloid deposition. PMID:25485714

  4. Regional brain hypometabolism is unrelated to regional amyloid plaque burden

    Science.gov (United States)

    Altmann, Andre; Ng, Bernard; Landau, Susan M.; Jagust, William J.

    2015-01-01

    See Sorg and Grothe (doi:10.1093/brain/awv302) for a scientific commentary on this article. In its original form, the amyloid cascade hypothesis of Alzheimer’s disease holds that fibrillar deposits of amyloid are an early, driving force in pathological events leading ultimately to neuronal death. Early clinicopathological investigations highlighted a number of inconsistencies leading to an updated hypothesis in which amyloid plaques give way to amyloid oligomers as the driving force in pathogenesis. Rather than focusing on the inconsistencies, amyloid imaging studies have tended to highlight the overlap between regions that show early amyloid plaque signal on positron emission tomography and that also happen to be affected early in Alzheimer’s disease. Recent imaging studies investigating the regional dependency between metabolism and amyloid plaque deposition have arrived at conflicting results, with some showing regional associations and other not. We extracted multimodal neuroimaging data from the Alzheimer’s disease neuroimaging database for 227 healthy controls and 434 subjects with mild cognitive impairment. We analysed regional patterns of amyloid deposition, regional glucose metabolism and regional atrophy using florbetapir (18F) positron emission tomography, 18F-fluordeoxyglucose positron emission tomography and T1-weighted magnetic resonance imaging, respectively. Specifically, we derived grey matter density and standardized uptake value ratios for both positron emission tomography tracers in 404 functionally defined regions of interest. We examined the relation between regional glucose metabolism and amyloid plaques using linear models. For each region of interest, correcting for regional grey matter density, age, education and disease status, we tested the association of regional glucose metabolism with (i) cortex-wide florbetapir uptake; (ii) regional (i.e. in the same region of interest) florbetapir uptake; and (iii) regional florbetapir uptake

  5. Cardiac resynchronization therapy in a patient with amyloid cardiomyopathy.

    Science.gov (United States)

    Zizek, David; Cvijić, Marta; Zupan, Igor

    2013-06-01

    Cardiac involvement in systemic light chain amyloidosis carries poor prognosis. Amyloid deposition in the myocardium can alter regional left ventricular contraction and cause dyssynchrony. Cardiac resynchronization therapy (CRT) is an effective treatment strategy for patients with advanced heart failure and echocardiographic dyssynchrony. We report a clinical and echocardiographic response of a patient with amyloid cardiomyopathy, treated with a combination of chemotherapy and CRT.

  6. The Effect of Glycosaminoglycans (GAGs on Amyloid Aggregation and Toxicity

    Directory of Open Access Journals (Sweden)

    Clara Iannuzzi

    2015-02-01

    Full Text Available Amyloidosis is a protein folding disorder in which normally soluble proteins are deposited extracellularly as insoluble fibrils, impairing tissue structure and function. Charged polyelectrolytes such as glycosaminoglycans (GAGs are frequently found associated with the proteinaceous deposits in tissues of patients affected by amyloid diseases. Experimental evidence indicate that they can play an active role in favoring amyloid fibril formation and stabilization. Binding of GAGs to amyloid fibrils occurs mainly through electrostatic interactions involving the negative polyelectrolyte charges and positively charged side chains residues of aggregating protein. Similarly to catalyst for reactions, GAGs favor aggregation, nucleation and amyloid fibril formation functioning as a structural templates for the self-assembly of highly cytotoxic oligomeric precursors, rich in β-sheets, into harmless amyloid fibrils. Moreover, the GAGs amyloid promoting activity can be facilitated through specific interactions via consensus binding sites between amyloid polypeptide and GAGs molecules. We review the effect of GAGs on amyloid deposition as well as proteins not strictly related to diseases. In addition, we consider the potential of the GAGs therapy in amyloidosis.

  7. Structural network alterations and neurological dysfunction in cerebral amyloid angiopathy

    NARCIS (Netherlands)

    Reijmer, Yael D.; Fotiadis, Panagiotis; Martinez-Ramirez, Sergi; Salat, David H.; Schultz, Aaron; Shoamanesh, Ashkan; Ayres, Alison M.; Vashkevich, Anastasia; Rosas, Diana; Schwab, Kristin; Leemans, Alexander; Biessels, Geert Jan; Rosand, Jonathan; Johnson, Keith A.; Viswanathan, Anand; Gurol, M. Edip; Greenberg, Steven M.

    2015-01-01

    Cerebral amyloid angiopathy is a common form of small-vessel disease and an important risk factor for cognitive impairment. The mechanisms linking small-vessel disease to cognitive impairment are not well understood. We hypothesized that in patients with cerebral amyloid angiopathy, multiple small s

  8. Native human serum amyloid P component is a single pentamer

    DEFF Research Database (Denmark)

    Sørensen, Inge Juul; Andersen, Ove; Nielsen, EH;

    1995-01-01

    Serum amyloid P component (SAP) and C-reactive protein (CRP) are members of the pentraxin protein family. SAP is the precursor protein to amyloid P component present in all forms of amyloidosis. The prevailing notion is that SAP in circulation has the form of a double pentameric molecule (decamer...

  9. Specific Triazine Herbicides Induce Amyloid-beta(42) Production

    NARCIS (Netherlands)

    Portelius, Erik; Durieu, Emilie; Bodin, Marion; Cam, Morgane; Pannee, Josef; Leuxe, Charlotte; Mabondzo, Aloise; Oumata, Nassima; Galons, Herve; Lee, Jung Yeol; Chang, Young-Tae; Stuber, Kathrin; Koch, Philipp; Fontaine, Gaelle; Potier, Marie-Claude; Manousopoulou, Antigoni; Garbis, Spiros D.; Covaci, Adrian; Van Dam, Debby; De Deyn, Peter; Karg, Frank; Flajolet, Marc; Omori, Chiori; Hata, Saori; Suzuki, Toshiharu; Blennow, Kaj; Zetterberg, Henrik; Meijer, Laurent

    2016-01-01

    Proteolytic cleavage of the amyloid-beta protein precursor (A beta PP) ecretases leads to extracellular release of amyloid-beta (A beta) peptides. Increased production of A beta(42) over A beta(40) and aggregation into oligomers and plaques constitute an Alzheimer's disease (AD) hallmark. Identifyin

  10. Unraveling the mystery of protein-amyloid binding mechanisms

    NARCIS (Netherlands)

    Beringer, D.

    2013-01-01

    There are several diseases which are caused by amyloid, a deposit of aggregated protein. Examples of these diseases are Alzheimer’s disease, caused by the aggregation of the peptide Aβ, and Diabetes type 2, caused by hIAPP aggregates. A large number of proteins interact with these amyloid fibrils, s

  11. Laser-induced propagation and destruction of amyloid beta fibrils.

    Science.gov (United States)

    Yagi, Hisashi; Ozawa, Daisaku; Sakurai, Kazumasa; Kawakami, Toru; Kuyama, Hiroki; Nishimura, Osamu; Shimanouchi, Toshinori; Kuboi, Ryoichi; Naiki, Hironobu; Goto, Yuji

    2010-06-18

    The amyloid deposition of amyloid beta (Abeta) peptides is a critical pathological event in Alzheimer disease (AD). Preventing the formation of amyloid deposits and removing preformed fibrils in tissues are important therapeutic strategies against AD. Previously, we reported the destruction of amyloid fibrils of beta(2)-microglobulin K3 fragments by laser irradiation coupled with the binding of amyloid-specific thioflavin T. Here, we studied the effects of a laser beam on Abeta fibrils. As was the case for K3 fibrils, extensive irradiation destroyed the preformed Abeta fibrils. However, irradiation during spontaneous fibril formation resulted in only the partial destruction of growing fibrils and a subsequent explosive propagation of fibrils. The explosive propagation was caused by an increase in the number of active ends due to breakage. The results not only reveal a case of fragmentation-induced propagation of fibrils but also provide insights into therapeutic strategies for AD.

  12. Prevalence of cerebral amyloid pathology in persons without dementia

    DEFF Research Database (Denmark)

    Jansen, Willemijn J; Ossenkoppele, Rik; Knol, Dirk L;

    2015-01-01

    IMPORTANCE: Cerebral amyloid-β aggregation is an early pathological event in Alzheimer disease (AD), starting decades before dementia onset. Estimates of the prevalence of amyloid pathology in persons without dementia are needed to understand the development of AD and to design prevention studies....... OBJECTIVE: To use individual participant data meta-analysis to estimate the prevalence of amyloid pathology as measured with biomarkers in participants with normal cognition, subjective cognitive impairment (SCI), or mild cognitive impairment (MCI). DATA SOURCES: Relevant biomarker studies identified...... for amyloid positivity. DATA EXTRACTION AND SYNTHESIS: Individual records were provided for 2914 participants with normal cognition, 697 with SCI, and 3972 with MCI aged 18 to 100 years from 55 studies. MAIN OUTCOMES AND MEASURES: Prevalence of amyloid pathology on positron emission tomography...

  13. Amyloid-like protein inclusions in tobacco transgenic plants.

    Directory of Open Access Journals (Sweden)

    Anna Villar-Piqué

    Full Text Available The formation of insoluble protein deposits in human tissues is linked to the onset of more than 40 different disorders, ranging from dementia to diabetes. In these diseases, the proteins usually self-assemble into ordered β-sheet enriched aggregates known as amyloid fibrils. Here we study the structure of the inclusions formed by maize transglutaminase (TGZ in the chloroplasts of tobacco transplastomic plants and demonstrate that they have an amyloid-like nature. Together with the evidence of amyloid structures in bacteria and fungi our data argue that amyloid formation is likely a ubiquitous process occurring across the different kingdoms of life. The discovery of amyloid conformations inside inclusions of genetically modified plants might have implications regarding their use for human applications.

  14. Preparation of Amyloid Fibrils Seeded from Brain and Meninges.

    Science.gov (United States)

    Scherpelz, Kathryn P; Lu, Jun-Xia; Tycko, Robert; Meredith, Stephen C

    2016-01-01

    Seeding of amyloid fibrils into fresh solutions of the same peptide or protein in disaggregated form leads to the formation of replicate fibrils, with close structural similarity or identity to the original fibrillar seeds. Here we describe procedures for isolating fibrils composed mainly of β-amyloid (Aβ) from human brain and from leptomeninges, a source of cerebral blood vessels, for investigating Alzheimer's disease and cerebral amyloid angiopathy. We also describe methods for seeding isotopically labeled, disaggregated Aβ peptide solutions for study using solid-state NMR and other techniques. These methods should be applicable to other types of amyloid fibrils, to Aβ fibrils from mice or other species, tissues other than brain, and to some non-fibrillar aggregates. These procedures allow for the examination of authentic amyloid fibrils and other protein aggregates from biological tissues without the need for labeling the tissue.

  15. Development of [F-18]-Labeled Amyloid Imaging Agents for PET

    Energy Technology Data Exchange (ETDEWEB)

    Mathis, CA

    2007-05-09

    The applicant proposes to design and synthesize a series of fluorine-18-labeled radiopharmaceuticals to be used as amyloid imaging agents for positron emission tomography (PET). The investigators will conduct comprehensive iterative in vitro and in vivo studies based upon well defined acceptance criteria in order to identify lead agents suitable for human studies. The long term goals are to apply the selected radiotracers as potential diagnostic agents of Alzheimer's disease (AD), as surrogate markers of amyloid in the brain to determine the efficacy of anti-amyloid therapeutic drugs, and as tools to help address basic scientific questions regarding the progression of the neuropathology of AD, such as testing the "amyloid cascade hypothesis" which holds that amyloid accumulation is the primary cause of AD.

  16. Predicting sites of new hemorrhage with amyloid imaging in cerebral amyloid angiopathy

    Science.gov (United States)

    Dierksen, Gregory; Betensky, Rebecca; Gidicsin, Christopher; Halpin, Amy; Becker, Alex; Carmasin, Jeremy; Ayres, Alison; Schwab, Kristin; Viswanathan, Anand; Salat, David; Rosand, Jonathan; Johnson, Keith A.; Greenberg, Steven M.

    2012-01-01

    Objective: We aimed to determine whether amyloid imaging can help predict the location and number of future hemorrhages in cerebral amyloid angiopathy (CAA). Methods: We performed a longitudinal cohort study of 11 patients with CAA without dementia who underwent serial brain MRIs after baseline amyloid imaging with Pittsburgh compound B (PiB). Mean distribution volume ratio (DVR) of PiB was determined at the sites of new micro/macrobleeds identified on follow-up MRI and compared with PiB retention at “simulated” hemorrhages, randomly placed in the same subjects using a probability distribution map of CAA-hemorrhage location. Mean PiB retention at the sites of observed new bleeds was also compared to that in shells concentrically surrounding the bleeds. Finally the association between number of incident bleeds and 3 regional amyloid measures were obtained. Results: Nine of 11 subjects had at least one new microbleed on follow-up MRI (median 4, interquartile range [IQR] 1–9) and 2 had 5 new intracerebral hemorrhages. Mean DVR was greater at the sites of incident bleeds (1.34, 95% confidence interval [CI] 1.23–1.46) than simulated lesions (1.14, 95% CI 1.07–1.22, p < 0.0001) in multivariable models. PiB retention decreased with increasing distance from sites of observed bleeds (p < 0.0001). Mean DVR in a superior frontal/parasagittal region of interest correlated independently with number of future hemorrhages after adjustment for relevant covariates (p = 0.003). Conclusions: Our results provide direct evidence that new CAA-related hemorrhages occur preferentially at sites of increased amyloid deposition and suggest that PiB-PET imaging may be a useful tool in prediction of incident hemorrhages in patients with CAA. PMID:22786597

  17. Estrogen stimulates release of secreted amyloid precursor protein from primary rat cortical neurons via protein kinase C pathway

    Institute of Scientific and Technical Information of China (English)

    Sun ZHANG; Ying HUANG; Yi-chun ZHU; Tai YAO

    2005-01-01

    Aim: To investigate the mechanism of the action of estrogen, which stimulates the release of secreted amyloid precursor protein α (sAPPα) and decreases the gen eration of amyloid-β protein (Aβ), a dominant component in senile plaques in the brains of Alzheimer's disease patients. Methods: Experiments were carried out inprimary rat cortical neurons, and Western blot was used to detect sAPPα in aculture medium and the total amount of cellular amyloid precursor protein (APP) in neurons. Results: 17β-Estradiol (but not 17α-estradiol) and β-estradiol 6-(Ocarboxymethyl) oxime: BSA increased the secretion of sAPPα and this effect was blocked by protein kinase C (PKC) inhibitor calphostin C, but not by the classical estrogen receptor antagonist ICI 182,780. Meanwhile, 17β-estradiol did not alter the synthesis of cellular APP. Conclusion: The effect of 17β-estradiol on sAPPα secretion is likely mediated through the membrane binding sites, and needs molecular configuration specificity of the ligand. Furthermore, the action of the PKC dependent pathway might be involved in estrogen-induced sAPPα secretion.

  18. Stability and cytotoxicity of crystallin amyloid nanofibrils

    Science.gov (United States)

    Kaur, Manmeet; Healy, Jackie; Vasudevamurthy, Madhusudan; Lassé, Moritz; Puskar, Ljiljana; Tobin, Mark J.; Valery, Celine; Gerrard, Juliet A.; Sasso, Luigi

    2014-10-01

    Previous work has identified crystallin proteins extracted from fish eye lenses as a cheap and readily available source for the self-assembly of amyloid nanofibrils. However, before exploring potential applications, the biophysical aspects and safety of this bionanomaterial need to be assessed so as to ensure that it can be effectively and safely used. In this study, crude crystallin amyloid fibrils are shown to be stable across a wide pH range, in a number of industrially relevant solvents, at both low and high temperatures, and in the presence of proteases. Crystallin nanofibrils were compared to well characterised insulin and whey protein fibrils using Thioflavin T assays and TEM imaging. Cell cytotoxicity assays suggest no adverse impact of both mature and fragmented crystallin fibrils on cell viability of Hec-1a endometrial cells. An IR microspectroscopy study supports long-term structural integrity of crystallin nanofibrils.Previous work has identified crystallin proteins extracted from fish eye lenses as a cheap and readily available source for the self-assembly of amyloid nanofibrils. However, before exploring potential applications, the biophysical aspects and safety of this bionanomaterial need to be assessed so as to ensure that it can be effectively and safely used. In this study, crude crystallin amyloid fibrils are shown to be stable across a wide pH range, in a number of industrially relevant solvents, at both low and high temperatures, and in the presence of proteases. Crystallin nanofibrils were compared to well characterised insulin and whey protein fibrils using Thioflavin T assays and TEM imaging. Cell cytotoxicity assays suggest no adverse impact of both mature and fragmented crystallin fibrils on cell viability of Hec-1a endometrial cells. An IR microspectroscopy study supports long-term structural integrity of crystallin nanofibrils. Electronic supplementary information (ESI) available: ThT fluorescence graphs of buffers and solvents used for

  19. Cholinergic Neurons - Keeping Check on Amyloid beta in the Cerebral Cortex

    Directory of Open Access Journals (Sweden)

    Saak V. Ovsepian

    2013-12-01

    Full Text Available The physiological relevance of the uptake of ligands with no apparent trophic functions via the p75 neurotrophin receptor (p75NTR remains unclear. Herein, we propose a homeostatic role for this in clearance of amyloid β (Aβ in the brain. We hypothesize that uptake of Aβ in conjunction with p75NTR followed by its degradation in lysosomes endows cholinergic basalo-cortical projections enriched in this receptor a facility for maintaining physiological levels of Aβ in target areas. Thus, in addition to the diffuse modulator influence and channeling of extra-thalamic signals, cholinergic innervations could supply the cerebral cortex with an elaborate system for Aβ drainage. Interpreting the emerging relationship of new molecular data with established role of cholinergic modulator system in regulating cortical network dynamics should provide new insights into the brain physiology and mechanisms of neuro-degenerative diseases.

  20. Ligand fitting with CCP4

    Science.gov (United States)

    2017-01-01

    Crystal structures of protein–ligand complexes are often used to infer biology and inform structure-based drug discovery. Hence, it is important to build accurate, reliable models of ligands that give confidence in the interpretation of the respective protein–ligand complex. This paper discusses key stages in the ligand-fitting process, including ligand binding-site identification, ligand description and conformer generation, ligand fitting, refinement and subsequent validation. The CCP4 suite contains a number of software tools that facilitate this task: AceDRG for the creation of ligand descriptions and conformers, Lidia and JLigand for two-dimensional and three-dimensional ligand editing and visual analysis, Coot for density interpretation, ligand fitting, analysis and validation, and REFMAC5 for macromolecular refinement. In addition to recent advancements in automatic carbohydrate building in Coot (LO/Carb) and ligand-validation tools (FLEV), the release of the CCP4i2 GUI provides an integrated solution that streamlines the ligand-fitting workflow, seamlessly passing results from one program to the next. The ligand-fitting process is illustrated using instructive practical examples, including problematic cases such as post-translational modifications, highlighting the need for careful analysis and rigorous validation. PMID:28177312

  1. Cutaneous Manifestations of Familial Transthyretin Amyloid Polyneuropathy.

    Science.gov (United States)

    Lanoue, Julien; Wei, Nancy; Gorevic, Peter; Phelps, Robert G

    2016-10-01

    Familial amyloid polyneuropathy (FAP) is a rare inherited autosomal dominant form of systemic amyloidosis, which classically presents with severe motor, sensory, and autonomic dysfunction. Cutaneous involvement does not become clinically apparent until late stage symptomatic disease and is rarely reported in modern literature. Here, the authors review the clinical and histologic cutaneous findings of FAP previously described in the literature and report on 3 patients with unique genetic mutations (Thr60Ala and Gly6Ser; Trp41Leu; Glu89Gln) for which cutaneous involvement has not previously been described. Histologically, our patients showed variable amyloid deposition in the subcutaneous adipose tissue, papillary dermis, and dermal blood vessel walls. A review of the literature suggests cutaneous transthyretin deposition is an underrecognized feature of FAP that occurs early on in disease, even before neural involvement and related symptoms as seen in one of our patients. As such, a cutaneous punch biopsy can serve as quick, easy, and relatively noninvasive diagnostic tool in suspected cases.

  2. Copernicus revisited: amyloid beta in Alzheimer's disease.

    Science.gov (United States)

    Joseph, J; Shukitt-Hale, B; Denisova, N A; Martin, A; Perry, G; Smith, M A

    2001-01-01

    The beta-amyloid hypothesis of Alzheimer's Disease (AD) has dominated the thinking and research in this area for over a decade and a half. While there has been a great deal of effort in attempting to prove its centrality in this devastating disease, and while an enormous amount has been learned about its properties (e.g., putative toxicity, processing and signaling), Abeta has not proven to be both necessary and sufficient for the development, neurotoxicity, and cognitive deficits associated with this disease. Instead, the few treatments that are available have emerged from aging research and are primarily directed toward modification of acetylcholine levels. Clearly, it is time to rethink this position and to propose instead that future approaches should focus upon altering the age-related sensitivity of the neuronal environment to insults involving such factors as inflammation and oxidative stress. In other words "solve the problems of aging and by extension those of AD will also be reduced." This review is being submitted as a rather Lutherian attempt to "nail an alternative thesis" to the gate of the Church of the Holy Amyloid to open its doors to the idea that aging is the most pervasive element in this disease and Abeta is merely one of the planets.

  3. Magnetite nanoparticle interactions with insulin amyloid fibrils

    Science.gov (United States)

    Chen, Yun-Wen; Chang, Chiung-Wen; Hung, Huey-Shan; Kung, Mei-Lang; Yeh, Bi-Wen; Hsieh, Shuchen

    2016-10-01

    Accumulation of amyloid fibrils is one of the likely key factors leading to the development of Alzheimer’s disease and other amyloidosis associated diseases. Magnetic nanoparticles (NPs) have been developed as promising medical materials for many medical applications. In this study, we have explored the effects of Fe3O4 NPs on the fibrillogenesis process of insulin fibrils. When Fe3O4 NPs were co-incubated with insulin, Fe3O4 NPs had no effect on the structural transformation into amyloid-like fibrils but had higher affinity toward insulin fibrils. We demonstrated that the zeta potential of insulin fibrils and Fe3O4 NPs were both positive, suggesting the binding forces between Fe3O4 NPs and insulin fibrils were van der Waals forces but not surface charge. Moreover, a different amount of Fe3O4 NPs added had no effect on secondary structural changes of insulin fibrils. These results propose the potential use of Fe3O4 NPs as therapeutic agents against diseases related to protein aggregation or contrast agents for magnetic resonance imaging.

  4. Immune functions of serum amyloid A.

    Science.gov (United States)

    Eklund, Kari K; Niemi, K; Kovanen, P T

    2012-01-01

    Serum amyloid A (SAA) is a highly conserved, acute-phase protein synthesized predominantly by the liver. After secretion into the circulation, it associates with high-density lipoprotein (HDL) particles. During acute inflammation, serum SAA levels may rise up to 1000-fold, and under these conditions, SAA displaces apolipoprotein A-I from HDL, thus becoming the major apolipoprotein of circulating HDL3. SAA exhibits significant immunological activity by, for example, inducing the synthesis of several cytokines and by being chemotactic for neutrophils and mast cells. It exerts many of its immunological activities by binding and activating cell-surface receptors, including Toll-like receptor (TLR) 2 and TLR4, formyl peptide receptor-like 1 (FPRL1), class B scavenger receptor CD36, and the ATP receptor P2X7. SAA also recently has been shown to activate the inflammasome cascade, which has a key role in immune activation, thus further stressing the unique role of SAA in immunomodulation. Traditionally, SAA has been considered to have a key role in the pathogenesis of amyloid A-type amyloidosis, but we now understand that it may also participate in the pathogenesis of chronic inflammatory diseases, such as rheumatoid arthritis and atherosclerosis. Thus, SAA is one potential target in the treatment of diseases associated with chronic inflammation. The purpose of this review is to shed light on SAA as an immunologically active protein. We also focus on the recent findings implicating SAA in the regulation of the inflammasome cascade.

  5. SERF Protein Is a Direct Modifier of Amyloid Fiber Assembly

    Directory of Open Access Journals (Sweden)

    S. Fabio Falsone

    2012-08-01

    Full Text Available The inherent cytotoxicity of aberrantly folded protein aggregates contributes substantially to the pathogenesis of amyloid diseases. It was recently shown that a class of evolutionary conserved proteins, called MOAG-4/SERF, profoundly alter amyloid toxicity via an autonomous but yet unexplained mode. We show that the biological function of human SERF1a originates from its atypical ability to specifically distinguish between amyloid and nonamyloid aggregation. This inherently unstructured protein directly affected the aggregation kinetics of a broad range of amyloidogenic proteins in vitro, while being inactive against nonamyloid aggregation. A representative biophysical analysis of the SERF1a:α-synuclein (aSyn complex revealed that the amyloid-promoting activity resulted from an early and transient interaction, which was sufficient to provoke a massive increase of soluble aSyn amyloid nucleation templates. Therefore, the autonomous amyloid-modifying activity of SERF1a observed in living organisms relies on a direct and dedicated manipulation of the early stages in the amyloid aggregation pathway.

  6. Using bacterial inclusion bodies to screen for amyloid aggregation inhibitors

    Directory of Open Access Journals (Sweden)

    Villar-Piqué Anna

    2012-05-01

    Full Text Available Abstract Background The amyloid-β peptide (Aβ42 is the main component of the inter-neuronal amyloid plaques characteristic of Alzheimer's disease (AD. The mechanism by which Aβ42 and other amyloid peptides assemble into insoluble neurotoxic deposits is still not completely understood and multiple factors have been reported to trigger their formation. In particular, the presence of endogenous metal ions has been linked to the pathogenesis of AD and other neurodegenerative disorders. Results Here we describe a rapid and high-throughput screening method to identify molecules able to modulate amyloid aggregation. The approach exploits the inclusion bodies (IBs formed by Aβ42 when expressed in bacteria. We have shown previously that these aggregates retain amyloid structural and functional properties. In the present work, we demonstrate that their in vitro refolding is selectively sensitive to the presence of aggregation-promoting metal ions, allowing the detection of inhibitors of metal-promoted amyloid aggregation with potential therapeutic interest. Conclusions Because IBs can be produced at high levels and easily purified, the method overcomes one of the main limitations in screens to detect amyloid modulators: the use of expensive and usually highly insoluble synthetic peptides.

  7. The amyloid stretch hypothesis: Recruiting proteins toward the dark side

    Science.gov (United States)

    Esteras-Chopo, Alexandra; Serrano, Luis; de la Paz, Manuela López

    2005-01-01

    A detailed understanding of the molecular events underlying the conversion and self-association of normally soluble proteins into amyloid fibrils is fundamental to the identification of therapeutic strategies to prevent or cure amyloid-related disorders. Recent investigations indicate that amyloid fibril formation is not just a general property of the polypeptide backbone depending on external factors, but that it is strongly modulated by amino acid side chains. Here, we propose and address the validation of the premise that the amyloidogenicity of a protein is indeed localized in short protein stretches (amyloid stretch hypothesis). We demonstrate that the conversion of a soluble nonamyloidogenic protein into an amyloidogenic prone molecule can be triggered by a nondestabilizing six-residue amyloidogenic insertion in a particular structural environment. Interestingly enough, although the inserted amyloid sequences clearly cause the process, the protease-resistant core of the fiber also includes short adjacent sequences from the otherwise soluble globular domain. Thus, short amyloid stretches accessible for intermolecular interactions trigger the self-assembly reaction and pull the rest of the protein into the fibrillar aggregate. The reliable identification of such amyloidogenic stretches in proteins opens the possibility of using them as targets for the inhibition of the amyloid fibril formation process. PMID:16263932

  8. Imaging β-amyloid using [{sup 18}F]flutemetamol positron emission tomography: from dosimetry to clinical diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Heurling, Kerstin; Lubberink, Mark [Uppsala University, Section of Nuclear Medicine and PET, Department of Surgical Sciences, Uppsala (Sweden); Leuzy, Antoine [Karolinska Institutet, Department NVS, Centre for Alzheimer Research, Division of Translational Alzheimer Neurobiology, Huddinge (Sweden); Zimmer, Eduardo R. [Pontifical Catholic University of Rio Grande do Sul (PUCRS), Brain Institute of Rio Grande do Sul (BraIns), Porto Alegre (Brazil); Federal University of Rio Grande do Sul (UFRGS), Department of Biochemistry, Porto Alegre (Brazil); Nordberg, Agneta [Karolinska Institutet, Department NVS, Centre for Alzheimer Research, Division of Translational Alzheimer Neurobiology, Huddinge (Sweden); Karolinska University Hospital Huddinge, Department of Geriatric Medicine, Stockholm (Sweden)

    2016-02-15

    In Alzheimer's disease (AD), the deposition of β-amyloid (Aβ) is hypothesized to result in a series of secondary neurodegenerative processes, leading ultimately to synaptic dysfunction and neuronal loss. Since the advent of the first Aβ-specific positron emission tomography (PET) ligand, {sup 11}C-Pittsburgh compound B ([{sup 11}C]PIB), several {sup 18}F ligands have been developed that circumvent the limitations of [{sup 11}C]PIB tied to its short half-life. To date, three such compounds have been approved for clinical use by the US and European regulatory bodies, including [{sup 18}F]AV-45 ([{sup 18}F]florbetapir; Amyvid trademark), [{sup 18}F]-BAY94-9172 ([{sup 18}F]florbetaben; Neuraceq trademark) and [{sup 18}F]3'-F-PIB ([{sup 18}F]flutemetamol; Vizamyl trademark). The present review aims to summarize and discuss the currently available knowledge on [{sup 18}F]flutemetamol PET. As the {sup 18}F analogue of [{sup 11}C]PIB, [{sup 18}F]flutemetamol may be of use in the differentiation of AD from related neurodegenerative disorders and may help with subject selection and measurement of target engagement in the context of clinical trials testing anti-amyloid therapeutics. We will also discuss its potential use in non-AD amyloidopathies. (orig.)

  9. LigandRNA: computational predictor of RNA-ligand interactions.

    Science.gov (United States)

    Philips, Anna; Milanowska, Kaja; Lach, Grzegorz; Bujnicki, Janusz M

    2013-12-01

    RNA molecules have recently become attractive as potential drug targets due to the increased awareness of their importance in key biological processes. The increase of the number of experimentally determined RNA 3D structures enabled structure-based searches for small molecules that can specifically bind to defined sites in RNA molecules, thereby blocking or otherwise modulating their function. However, as of yet, computational methods for structure-based docking of small molecule ligands to RNA molecules are not as well established as analogous methods for protein-ligand docking. This motivated us to create LigandRNA, a scoring function for the prediction of RNA-small molecule interactions. Our method employs a grid-based algorithm and a knowledge-based potential derived from ligand-binding sites in the experimentally solved RNA-ligand complexes. As an input, LigandRNA takes an RNA receptor file and a file with ligand poses. As an output, it returns a ranking of the poses according to their score. The predictive power of LigandRNA favorably compares to five other publicly available methods. We found that the combination of LigandRNA and Dock6 into a "meta-predictor" leads to further improvement in the identification of near-native ligand poses. The LigandRNA program is available free of charge as a web server at http://ligandrna.genesilico.pl.

  10. Mechanical deformation mechanisms and properties of amyloid fibrils.

    Science.gov (United States)

    Choi, Bumjoon; Yoon, Gwonchan; Lee, Sang Woo; Eom, Kilho

    2015-01-14

    Amyloid fibrils have recently received attention due to their remarkable mechanical properties, which are highly correlated with their biological functions. We have studied the mechanical deformation mechanisms and properties of amyloid fibrils as a function of their length scales by using atomistic simulations. It is shown that the length of amyloid fibrils plays a role in their deformation and fracture mechanisms in such a way that the competition between shear and bending deformations is highly dependent on the fibril length, and that as the fibril length increases, so does the bending strength of the fibril while its shear strength decreases. The dependence of rupture force for amyloid fibrils on their length is elucidated using the Bell model, which suggests that the rupture force of the fibril is determined from the hydrogen bond rupture mechanism that critically depends on the fibril length. We have measured the toughness of amyloid fibrils, which is shown to depend on the fibril length. In particular, the toughness of the fibril with its length of ∼3 nm is estimated to be ∼30 kcal mol(-1) nm(-3), comparable to that of a spider silk crystal with its length of ∼2 nm. Moreover, we have shown the important effect of the pulling rate on the mechanical deformation mechanisms and properties of amyloid fibril. It is found that as the pulling rate increases, so does the contribution of the shear effect to the elastic deformation of the amyloid fibril with its length of deformation mechanism of the amyloid fibril with its length of >15 nm is almost independent of the pulling rate. Our study sheds light on the role of the length scale of amyloid fibrils and the pulling rate in their mechanical behaviors and properties, which may provide insights into how the excellent mechanical properties of protein fibrils can be determined.

  11. Ligand-Receptor Interactions

    CERN Document Server

    Bongrand, Pierre

    2008-01-01

    The formation and dissociation of specific noncovalent interactions between a variety of macromolecules play a crucial role in the function of biological systems. During the last few years, three main lines of research led to a dramatic improvement of our understanding of these important phenomena. First, combination of genetic engineering and X ray cristallography made available a simultaneous knowledg of the precise structure and affinity of series or related ligand-receptor systems differing by a few well-defined atoms. Second, improvement of computer power and simulation techniques allowed extended exploration of the interaction of realistic macromolecules. Third, simultaneous development of a variety of techniques based on atomic force microscopy, hydrodynamic flow, biomembrane probes, optical tweezers, magnetic fields or flexible transducers yielded direct experimental information of the behavior of single ligand receptor bonds. At the same time, investigation of well defined cellular models raised the ...

  12. Aluminium, beta-amyloid and non-enzymatic glycosylation.

    Science.gov (United States)

    Exley, C; Schley, L; Murray, S; Hackney, C M; Birchall, J D

    1995-05-08

    The non-enzymatic glycosylation of beta-amyloid is implicated in the aetiology of Alzheimer's disease. However, controversy surrounds the nature of any involvement and a potential mechanism has not been fully elucidated. We present evidence of an aluminium-induced aggregation of the A beta P(25-35) peptide and speculate that the mechanism of formation of our ordered beta-amyloid aggregates might involve non-enzymatic glycosylation and/or site-specific crosslinking of beta-amyloid fibrils by atomic aluminium.

  13. Amyloid-β and Astrocytes Interplay in Amyloid-β Related Disorders

    Directory of Open Access Journals (Sweden)

    Yazan S. Batarseh

    2016-03-01

    Full Text Available Amyloid-β (Aβ pathology is known to promote chronic inflammatory responses in the brain. It was thought previously that Aβ is only associated with Alzheimer’s disease and Down syndrome. However, studies have shown its involvement in many other neurological disorders. The role of astrocytes in handling the excess levels of Aβ has been highlighted in the literature. Astrocytes have a distinctive function in both neuronal support and protection, thus its involvement in Aβ pathological process may tip the balance toward chronic inflammation and neuronal death. In this review we describe the involvement of astrocytes in Aβ related disorders including Alzheimer’s disease, Down syndrome, cerebral amyloid angiopathy, and frontotemporal dementia.

  14. Eugenol prevents amyloid formation of proteins and inhibits amyloid-induced hemolysis

    Science.gov (United States)

    Dubey, Kriti; Anand, Bibin G.; Shekhawat, Dolat Singh; Kar, Karunakar

    2017-02-01

    Eugenol has attracted considerable attention because of its potential for many pharmaceutical applications including anti-inflammatory, anti-tumorigenic and anti-oxidant properties. Here, we have investigated the effect of eugenol on amyloid formation of selected globular proteins. We find that both spontaneous and seed-induced aggregation processes of insulin and serum albumin (BSA) are significantly suppressed in the presence of eugenol. Isothermal titration calorimetric data predict a single binding site for eugenol-insulin complex confirming the affinity of eugenol for native soluble insulin species. We also find that eugenol suppresses amyloid-induced hemolysis. Our findings reveal the inherent ability of eugenol to stabilize native proteins and to delay the conversion of protein species of native conformation into β-sheet assembled mature fibrils, which seems to be crucial for its inhibitory effect.

  15. Interaction of amyloid inhibitor proteins with amyloid beta peptides: insight from molecular dynamics simulations.

    Directory of Open Access Journals (Sweden)

    Payel Das

    Full Text Available Knowledge of the detailed mechanism by which proteins such as human αB- crystallin and human lysozyme inhibit amyloid beta (Aβ peptide aggregation is crucial for designing treatment for Alzheimer's disease. Thus, unconstrained, atomistic molecular dynamics simulations in explicit solvent have been performed to characterize the Aβ17-42 assembly in presence of the αB-crystallin core domain and of lysozyme. Simulations reveal that both inhibitor proteins compete with inter-peptide interaction by binding to the peptides during the early stage of aggregation, which is consistent with their inhibitory action reported in experiments. However, the Aβ binding dynamics appear different for each inhibitor. The binding between crystallin and the peptide monomer, dominated by electrostatics, is relatively weak and transient due to the heterogeneous amino acid distribution of the inhibitor surface. The crystallin-bound Aβ oligomers are relatively long-lived, as they form more extensive contact surface with the inhibitor protein. In contrast, a high local density of arginines from lysozyme allows strong binding with Aβ peptide monomers, resulting in stable complexes. Our findings not only illustrate, in atomic detail, how the amyloid inhibitory mechanism of human αB-crystallin, a natural chaperone, is different from that of human lysozyme, but also may aid de novo design of amyloid inhibitors.

  16. Yeast and Fungal Prions: Amyloid-Handling Systems, Amyloid Structure, and Prion Biology.

    Science.gov (United States)

    Wickner, R B; Edskes, H K; Gorkovskiy, A; Bezsonov, E E; Stroobant, E E

    2016-01-01

    Yeast prions (infectious proteins) were discovered by their outré genetic properties and have become important models for an array of human prion and amyloid diseases. A single prion protein can become any of many distinct amyloid forms (called prion variants or strains), each of which is self-propagating, but with different biological properties (eg, lethal vs mild). The folded in-register parallel β sheet architecture of the yeast prion amyloids naturally suggests a mechanism by which prion variant information can be faithfully transmitted for many generations. The yeast prions rely on cellular chaperones for their propagation, but can be cured by various chaperone imbalances. The Btn2/Cur1 system normally cures most variants of the [URE3] prion that arise. Although most variants of the [PSI+] and [URE3] prions are toxic or lethal, some are mild in their effects. Even the most mild forms of these prions are rare in the wild, indicating that they too are detrimental to yeast. The beneficial [Het-s] prion of Podospora anserina poses an important contrast in its structure, biology, and evolution to the yeast prions characterized thus far.

  17. Interaction between amyloid beta peptide and an aggregation blocker peptide mimicking islet amyloid polypeptide.

    Directory of Open Access Journals (Sweden)

    Nasrollah Rezaei-Ghaleh

    Full Text Available Assembly of amyloid-beta peptide (Aβ into cytotoxic oligomeric and fibrillar aggregates is believed to be a major pathologic event in Alzheimer's disease (AD and interfering with Aβ aggregation is an important strategy in the development of novel therapeutic approaches. Prior studies have shown that the double N-methylated analogue of islet amyloid polypeptide (IAPP IAPP-GI, which is a conformationally constrained IAPP analogue mimicking a non-amyloidogenic IAPP conformation, is capable of blocking cytotoxic self-assembly of Aβ. Here we investigate the interaction of IAPP-GI with Aβ40 and Aβ42 using NMR spectroscopy. The most pronounced NMR chemical shift changes were observed for residues 13-20, while residues 7-9, 15-16 as well as the C-terminal half of Aβ--that is both regions of the Aβ sequence that are converted into β-strands in amyloid fibrils--were less accessible to solvent in the presence of IAPP-GI. At the same time, interaction of IAPP-GI with Aβ resulted in a concentration-dependent co-aggregation of Aβ and IAPP-GI that was enhanced for the more aggregation prone Aβ42 peptide. On the basis of the reduced toxicity of the Aβ peptide in the presence of IAPP-GI, our data are consistent with the suggestion that IAPP-GI redirects Aβ into nontoxic "off-pathway" aggregates.

  18. Tensile deformation and failure of amyloid and amyloid-like protein fibrils

    Science.gov (United States)

    Solar, Max; Buehler, Markus J.

    2014-03-01

    Here we report a series of full atomistic molecular dynamics simulations of six amyloid or amyloid-like protein fibrils in order to systematically understand the effect of different secondary structure motifs on the mechanical tensile and failure response of cross-\\beta protein fibrils. We find a similar failure behavior across the six structures; an initial failure event occurs at small strains involving cooperative rupture of a group of hydrogen bonds, followed by a slow one-by-one hydrogen bond rupture process as the remaining \\beta -sheets peel off with very low applied stress. We also find that the ultimate tensile strength of the protein fibrils investigated scales directly with the number of hydrogen bonds per unit area which break in the initial rupture event. Our results provide insights into structure-property relationships in protein fibrils important for disease and engineering applications and lay the groundwork for the development of materials selection criteria for the design of de novo amyloid-based functional biomaterials.

  19. Bapineuzumab alters aβ composition: implications for the amyloid cascade hypothesis and anti-amyloid immunotherapy.

    Directory of Open Access Journals (Sweden)

    Alex E Roher

    Full Text Available The characteristic neuropathological changes associated with Alzheimer's disease (AD and other lines of evidence support the amyloid cascade hypothesis. Viewing amyloid deposits as the prime instigator of dementia has now led to clinical trials of multiple strategies to remove or prevent their formation. We performed neuropathological and biochemical assessments of 3 subjects treated with bapineuzumab infusions. Histological analyses were conducted to quantify amyloid plaque densities, Braak stages and the extent of cerebral amyloid angiopathy (CAA. Amyloid-β (Aβ species in frontal and temporal lobe samples were quantified by ELISA. Western blots of amyloid-β precursor protein (AβPP and its C-terminal (CT fragments as well as tau species were performed. Bapineuzumab-treated (Bapi-AD subjects were compared to non-immunized age-matched subjects with AD (NI-AD and non-demented control (NDC cases. Our study revealed that Bapi-AD subjects exhibited overall amyloid plaque densities similar to those of NI-AD cases. In addition, CAA was moderate to severe in NI-AD and Bapi-AD patients. Although histologically-demonstrable leptomeningeal, cerebrovascular and neuroparenchymal-amyloid densities all appeared unaffected by treatment, Aβ peptide profiles were significantly altered in Bapi-AD subjects. There was a trend for reduction in total Aβ42 levels as well as an increase in Aβ40 which led to a corresponding significant decrease in Aβ42:Aβ40 ratio in comparison to NI-AD subjects. There were no differences in the levels of AβPP, CT99 and CT83 or tau species between Bapi-AD and NI-AD subjects. The remarkable alteration in Aβ profiles reveals a dynamic amyloid production in which removal and depositional processes were apparently perturbed by bapineuzumab therapy. Despite the alteration in biochemical composition, all 3 immunized subjects exhibited continued cognitive decline.

  20. Immunotherapy against amyloid pathology in Alzheimer's disease.

    Science.gov (United States)

    Galimberti, Daniela; Ghezzi, Laura; Scarpini, Elio

    2013-10-15

    The first drugs developed for Alzheimer's disease (AD), anticholinesterase inhibitors (AchEI), increase acetylcholine levels, previously demonstrated to be reduced in AD. To date, four AchEI are approved for the treatment of mild to moderate AD. A further therapeutic option available for moderate to severe AD is memantine. These treatments are symptomatic, whereas drugs under development are supposed to modify pathological steps leading to AD, thus acting on the evolution of the disease. For this reason they are currently termed "disease modifying" drugs. To block the progression of the disease, they have to interfere with pathogenic steps at the basis of clinical symptoms, including the deposition of extracellular amyloid beta (Aβ) plaques and of intracellular neurofibrillary tangles. The most innovative approach is represented by the vaccination and passive immunization against Aβ peptide. In this article, current knowledge about concluded and ongoing clinical trials with both vaccination with different antigens and passive immunization will be reviewed and discussed.

  1. Cerebral microvascular amyloid beta protein deposition induces vascular degeneration and neuroinflammation in transgenic mice expressing human vasculotropic mutant amyloid beta precursor protein.

    NARCIS (Netherlands)

    Miao, J.; Xu, F.; Davis, J.; Otte-Holler, I.; Verbeek, M.M.; Nostrand, W.E. van

    2005-01-01

    Cerebral vascular amyloid beta-protein (Abeta) deposition, also known as cerebral amyloid angiopathy, is a common pathological feature of Alzheimer's disease. Additionally, several familial forms of cerebral amyloid angiopathy exist including the Dutch (E22Q) and Iowa (D23N) mutations of Abeta. Incr

  2. Amyloid A amyloidosis secondary to rheumatoid arthritis: pathophysiology and treatments.

    Science.gov (United States)

    Nakamura, Tadashi

    2011-01-01

    The introduction of biological therapies targeting specific inflammatory mediators revolutionised the treatment of rheumatoid arthritis (RA). Targeting key components of the immune system allows efficient suppression of the pathological inflammatory cascade that leads to RA symptoms and subsequent joint destruction. Reactive amyloid A (AA) amyloidosis, one of the most severe complications of RA, is a serious, potentially life-threatening disorder caused by deposition of AA amyloid fibrils in multiple organs. These AA amyloid fibrils derive from the circulatory acute-phase reactant serum amyloid A protein (SAA), and may be controlled by treatment. New biologics may permit AA amyloidosis secondary to RA to become a treatable, manageable disease. Rheumatologists, when diagnosing and treating patients with AA amyloidosis secondary to RA, must understand the pathophysiology and clinical factors related to development and progression of the disease, including genetic predisposition and biological versatility of SAA.

  3. Amyloid detection using a Peltier-based device.

    Science.gov (United States)

    Cabrera, Miguel A; Ferreyra, Martin G; Cortez, Leonardo; Grupalli, Silvina A; Alvarez, L Leguina; Chehin, Rosana

    2012-01-01

    Amyloid aggregation of polypeptides is related to a growing number of pathologic states known as amyloid disorders. At present, it is clear that any proteins submitted to appropriate physicochemical environment can acquire fibrilar conformation. Fourier transform infrared spectroscopy (FTIR) has been a widely used technique to study temperature- induced amyloid-fibrils formation in vitro. In this way, strict changes and temperature controls are required to characterize the physicochemical basis of the amyloid-fibrils formation. In this article, the development of a highly efficient and accurate Peltier-based system to improve FTIR measurements is presented (see An Old Physics Phenomenon Applied to a Serious Biomedical Pathology. The accuracy of the thermostatic control was tested with biophysical parameters on biological samples probing its reproducibility. The design of the present device contributes to maintain the FTIR environment stable, which represents a real contribution to improve the spectral quality and thus, the reliability of the results.

  4. Tau/Amyloid Beta 42 Peptide Test (Alzheimer Biomarkers)

    Science.gov (United States)

    ... Was this page helpful? Also known as: Alzheimer Biomarkers Formal name: Tau Protein and Amyloid Beta 42 ... being researched for their potential use as AD biomarkers. If someone has symptoms of dementia , a health ...

  5. Phosphorylation modifies the molecular stability of β-amyloid deposits

    Science.gov (United States)

    Rezaei-Ghaleh, Nasrollah; Amininasab, Mehriar; Kumar, Sathish; Walter, Jochen; Zweckstetter, Markus

    2016-04-01

    Protein aggregation plays a crucial role in neurodegenerative diseases. A key feature of protein aggregates is their ubiquitous modification by phosphorylation. Little is known, however, about the molecular consequences of phosphorylation of protein aggregates. Here we show that phosphorylation of β-amyloid at serine 8 increases the stability of its pathogenic aggregates against high-pressure and SDS-induced dissociation. We further demonstrate that phosphorylation results in an elevated number of hydrogen bonds at the N terminus of β-amyloid, the region that is critically regulated by a variety of post-translational modifications. Because of the increased lifetime of phosphorylated β-amyloid aggregates, phosphorylation can promote the spreading of β-amyloid in Alzheimer pathogenesis. Our study suggests that regulation of the molecular stability of protein aggregates by post-translational modifications is a crucial factor for disease progression in the brain.

  6. Binuclear ruthenium(II) complexes for amyloid fibrils recognition

    Energy Technology Data Exchange (ETDEWEB)

    Hanczyc, Piotr, E-mail: piotr.hanczyc@chalmers.se

    2014-12-05

    Highlights: • Interactions of binuclear ruthenium(II) complexes with amyloid fibrils. • Dimer ruthenium(II) compounds are sensitive amyloid fibrils biomarkers. • Recognition of amyloid-chromophore adducts by two-photon excited emission. - Abstract: Metal–organic compounds represent a unique class of biomarkers with promising photophysical properties useful for imaging. Here interactions of insulin fibrils with two binuclear complexes [μ-(11,11′-bidppz)(phen){sub 4}Ru{sub 2}]{sup 4+} (1) and [μ-C4(cpdppz)(phen){sub 4}Ru{sub 2}]{sup 4+} (2) are studied by linear dichroism (LD) and fluorescence. These ruthenium(II) compounds could provide a new generation of amyloid binding chromophores with long lived lifetimes, good luminescence quantum yields for the bound molecules and photo-stability useful in multiphoton luminescence imaging.

  7. Prion Diseases of Yeast: Amyloid Structure and Biology

    OpenAIRE

    Reed B Wickner; Edskes, Herman K.; Kryndushkin, Dmitry; McGlinchey, Ryan; Bateman, David; Kelly, Amy

    2011-01-01

    Prion “variants” or “strains” are prions with the identical protein sequence, but different characteristics of the prion infection: e.g. different incubation period for scrapie strains or different phenotype intensity for yeast prion variants. We have shown that infectious amyloids of the yeast prions [PSI+], [URE3] and [PIN+] each have an in-register parallel β-sheet architecture. Moreover, we have pointed out that this amyloid architecture can explain how one protein can faithfully transmit...

  8. Bexarotene ligand pharmaceuticals.

    Science.gov (United States)

    Hurst, R E

    2000-12-01

    Bexarotene (LGD-1069), from Ligand, was the first retinoid X receptor (RXR)-selective, antitumor retinoid to enter clinical trials. The company launched the drug for the treatment of cutaneous T-cell lymphoma (CTCL), as Targretin capsules, in the US in January 2000 [359023]. The company filed an NDA for Targretin capsules in June 1999, and for topical gel in December 1999 [329011], [349982] specifically for once-daily oral administration for the treatment of patients with early-stage CTCL who have not tolerated other therapies, patients with refractory or persistent early stage CTCL and patients with refractory advanced stage CTCL. The FDA approved Targretin capsules at the end of December 1999 for once-daily oral treatment of all stages of CTCL in patients refractory to at least one prior systemic therapy, at an initial dose of 300 mg/m2/day. After an NDA was submitted in December 1999 for Targretin gel, the drug received Priority Review status for use as a treatment of cutaneous lesions in patients with stage IA, IB or IIA CTCL [354836]. The FDA issued an approvable letter in June 2000, and granted marketing clearance for CTCL in the same month [370687], [372768], [372769], [373279]. Ligand had received Orphan Drug designation for this indication [329011]. At the request of the FDA, Ligand agreed to carry out certain post-approval phase IV and pharmacokinetic studies [351604]. The company filed an MAA with the EMEA for Targretin Capsules to treat lymphoma in November 1999 [348944]. The NDA for Targretin gel is based on a multicenter phase III trial that was conducted in the US, Canada, Europe and Australia involving 50 patients and a multicenter phase I/II clinical program involving 67 patients. Targretin gel was evaluated for the treatment of patients with early stage CTCL (IA-IIA) who were refractory to, intolerant to, or reached a response plateau for at least 6 months on at least two prior therapies. Efficacy results exceeded the protocol-defined response

  9. Amyloid fibrils composed of hexameric peptides attenuate neuroinflammation.

    Science.gov (United States)

    Kurnellas, Michael P; Adams, Chris M; Sobel, Raymond A; Steinman, Lawrence; Rothbard, Jonathan B

    2013-04-03

    The amyloid-forming proteins tau, αB crystallin, and amyloid P protein are all found in lesions of multiple sclerosis (MS). Our previous work established that amyloidogenic peptides from the small heat shock protein αB crystallin (HspB5) and from amyloid β fibrils, characteristic of Alzheimer's disease, were therapeutic in experimental autoimmune encephalomyelitis (EAE), reflecting aspects of the pathology of MS. To understand the molecular basis for the therapeutic effect, we showed a set of amyloidogenic peptides composed of six amino acids, including those from tau, amyloid β A4, major prion protein (PrP), HspB5, amylin, serum amyloid P, and insulin B chain, to be anti-inflammatory and capable of reducing serological levels of interleukin-6 and attenuating paralysis in EAE. The chaperone function of the fibrils correlates with the therapeutic outcome. Fibrils composed of tau 623-628 precipitated 49 plasma proteins, including apolipoprotein B-100, clusterin, transthyretin, and complement C3, supporting the hypothesis that the fibrils are active biological agents. Amyloid fibrils thus may provide benefit in MS and other neuroinflammatory disorders.

  10. Structural properties of Gerstmann-Straussler-Scheinker disease amyloid protein.

    Science.gov (United States)

    Salmona, Mario; Morbin, Michela; Massignan, Tania; Colombo, Laura; Mazzoleni, Giulia; Capobianco, Raffaella; Diomede, Luisa; Thaler, Florian; Mollica, Luca; Musco, Giovanna; Kourie, Joseph J; Bugiani, Orso; Sharma, Deepak; Inouye, Hideyo; Kirschner, Daniel A; Forloni, Gianluigi; Tagliavini, Fabrizio

    2003-11-28

    Prion protein (PrP) amyloid formation is a central feature of genetic and acquired forms of prion disease such as Gerstmann-Sträussler-Scheinker disease (GSS) and variant Creutzfeldt-Jakob disease. The major component of GSS amyloid is a PrP fragment spanning residues approximately 82-146. To investigate the determinants of the physicochemical properties of this fragment, we synthesized PrP-(82-146) and variants thereof, including entirely and partially scrambled peptides. PrP-(82-146) readily formed aggregates that were partially resistant to protease digestion. Peptide assemblies consisted of 9.8-nm-diameter fibrils having a parallel cross-beta-structure. Second derivative of infrared spectra indicated that PrP-(82-146) aggregates are primarily composed of beta-sheet (54%) and turn (24%) which is consistent with their amyloid-like properties. The peptide induced a remarkable increase in plasma membrane microviscosity of primary neurons. Modification of the amino acid sequence 106-126 caused a striking increase in aggregation rate, with formation of large amount of protease-resistant amorphous material and relatively few amyloid fibrils. Alteration of the 127-146 region had even more profound effects, with the inability to generate amyloid fibrils. These data indicate that the intrinsic properties of PrP-(82-146) are dependent upon the integrity of the C-terminal region and account for the massive deposition of PrP amyloid in GSS.

  11. Complexation of amyloid fibrils with charged conjugated polymers.

    Science.gov (United States)

    Ghosh, Dhiman; Dutta, Paulami; Chakraborty, Chanchal; Singh, Pradeep K; Anoop, A; Jha, Narendra Nath; Jacob, Reeba S; Mondal, Mrityunjoy; Mankar, Shruti; Das, Subhadeep; Malik, Sudip; Maji, Samir K

    2014-04-01

    It has been suggested that conjugated charged polymers are amyloid imaging agents and promising therapeutic candidates for neurological disorders. However, very less is known about their efficacy in modulating the amyloid aggregation pathway. Here, we studied the modulation of Parkinson's disease associated α-synuclein (AS) amyloid assembly kinetics using conjugated polyfluorene polymers (PF, cationic; PFS, anionic). We also explored the complexation of these charged polymers with the various AS aggregated species including amyloid fibrils and oligomers using multidisciplinary biophysical techniques. Our data suggests that both polymers irrespective of their different charges in the side chains increase the fibrilization kinetics of AS and also remarkably change the morphology of the resultant amyloid fibrils. Both polymers were incorporated/aligned onto the AS amyloid fibrils as evident from electron microscopy (EM) and atomic force microscopy (AFM), and the resultant complexes were structurally distinct from their pristine form of both polymers and AS supported by FTIR study. Additionally, we observed that the mechanism of interactions between the polymers with different species of AS aggregates were markedly different.

  12. Amyloid diseases of yeast: prions are proteins acting as genes.

    Science.gov (United States)

    Wickner, Reed B; Edskes, Herman K; Bateman, David A; Kelly, Amy C; Gorkovskiy, Anton; Dayani, Yaron; Zhou, Albert

    2014-01-01

    The unusual genetic properties of the non-chromosomal genetic elements [URE3] and [PSI+] led to them being identified as prions (infectious proteins) of Ure2p and Sup35p respectively. Ure2p and Sup35p, and now several other proteins, can form amyloid, a linear ordered polymer of protein monomers, with a part of each molecule, the prion domain, forming the core of this β-sheet structure. Amyloid filaments passed to a new cell seed the conversion of the normal form of the protein into the same amyloid form. The cell's phenotype is affected, usually from the deficiency of the normal form of the protein. Solid-state NMR studies indicate that the yeast prion amyloids are in-register parallel β-sheet structures, in which each residue (e.g. Asn35) forms a row along the filament long axis. The favourable interactions possible for aligned identical hydrophilic and hydrophobic residues are believed to be the mechanism for propagation of amyloid conformation. Thus, just as DNA mediates inheritance by templating its own sequence, these proteins act as genes by templating their conformation. Distinct isolates of a given prion have different biological properties, presumably determined by differences between the amyloid structures. Many lines of evidence indicate that the Saccharomyces cerevisiae prions are pathological disease agents, although the example of the [Het-s] prion of Podospora anserina shows that a prion can have beneficial aspects.

  13. Switchable photooxygenation catalysts that sense higher-order amyloid structures

    Science.gov (United States)

    Taniguchi, Atsuhiko; Shimizu, Yusuke; Oisaki, Kounosuke; Sohma, Youhei; Kanai, Motomu

    2016-10-01

    Proteins can misfold into amyloid structures that are associated with diseases; however, the same proteins often have important biological roles. To degrade selectively the amyloid form without affecting the fraction of functional protein is, therefore, an attractive goal. Here we report target-state-dependent photooxygenation catalysts that are active only when bound to the cross-β-sheet structure that is characteristic of pathogenic aggregated amyloid proteins. We show these catalysts can selectively oxygenate the amyloid form of amyloid β-protein (Aβ) 1-42 in the presence of non-amyloid off-target substrates. Furthermore, photooxygenation with a catalyst that bears an Aβ-binding peptide attenuated the Aβ pathogenicity in the presence of cells. We also show that selective photooxygenation is generally applicable to other amyloidogenic proteins (amylin, insulin, β2-microglobulin, transthyretin and α-synuclein) and does not affect the physiologically functional non-aggregate states of these proteins. This is the first report of an artificial catalyst that can be selectively and reversibly turned on and off depending on the structure and aggregation state of the substrate protein.

  14. Force generation by the growth of amyloid aggregates.

    Science.gov (United States)

    Herling, Therese W; Garcia, Gonzalo A; Michaels, Thomas C T; Grentz, Wolfgang; Dean, James; Shimanovich, Ulyana; Gang, Hongze; Müller, Thomas; Kav, Batuhan; Terentjev, Eugene M; Dobson, Christopher M; Knowles, Tuomas P J

    2015-08-01

    The generation of mechanical forces are central to a wide range of vital biological processes, including the function of the cytoskeleton. Although the forces emerging from the polymerization of native proteins have been studied in detail, the potential for force generation by aberrant protein polymerization has not yet been explored. Here, we show that the growth of amyloid fibrils, archetypical aberrant protein polymers, is capable of unleashing mechanical forces on the piconewton scale for individual filaments. We apply microfluidic techniques to measure the forces released by amyloid growth for two systems: insulin and lysozyme. The level of force measured for amyloid growth in both systems is comparable to that observed for actin and tubulin, systems that have evolved to generate force during their native functions and, unlike amyloid growth, rely on the input of external energy in the form of nucleotide hydrolysis for maximum force generation. Furthermore, we find that the power density released from growing amyloid fibrils is comparable to that of high-performance synthetic polymer actuators. These findings highlight the potential of amyloid structures as active materials and shed light on the criteria for regulation and reversibility that guide molecular evolution of functional polymers.

  15. Toxic species in amyloid disorders: Oligomers or mature fibrils

    Directory of Open Access Journals (Sweden)

    Meenakshi Verma

    2015-01-01

    Full Text Available Protein aggregation is the hallmark of several neurodegenerative disorders. These protein aggregation (fibrillization disorders are also known as amyloid disorders. The mechanism of protein aggregation involves conformation switch of the native protein, oligomer formation leading to protofibrils and finally mature fibrils. Mature fibrils have long been considered as the cause of disease pathogenesis; however, recent evidences suggest oligomeric intermediates formed during fibrillization to be toxic. In this review, we have tried to address the ongoing debate for these toxic amyloid species. We did an extensive literature search and collated information from Pubmed (http://www.ncbi.nlm.nih.gov and Google search using various permutations and combinations of the following keywords: Neurodegeneration, amyloid disorders, protein aggregation, fibrils, oligomers, toxicity, Alzheimer′s Disease, Parkinson′s Disease. We describe different instances showing the toxicity of mature fibrils as well as oligomers in Alzheimer′s Disease and Parkinson′s Disease. Distinct structural framework and morphology of amyloid oligomers suggests difference in toxic effect between oligomers and fibrils. We highlight the difference in structure and proposed toxicity pathways for fibrils and oligomers. We also highlight the evidences indicating that intermediary oligomeric species can act as potential diagnostic biomarker. Since the formation of these toxic species follow a common structural switch among various amyloid disorders, the protein aggregation events can be targeted for developing broad-range therapeutics. The therapeutic trials based on the understanding of different protein conformers (monomers, oligomers, protofibrils and fibrils in amyloid cascade are also described.

  16. Insulin amyloid at injection sites of patients with diabetes.

    Science.gov (United States)

    Nilsson, Melanie R

    2016-09-01

    The formation of insulin amyloid can dramatically impact glycemic control in patients with diabetes, making it an important therapeutic consideration. In addition, the cost associated with the excess insulin required by patients with amyloid is estimated to be $3K per patient per year, which adds to the growing financial burden of this disease. Insulin amyloid has been observed with every mode of therapeutic insulin administration (infusion, injection and inhalation), and the number of reported cases has increased significantly since 2002. The new cases represent a much broader demographic, and include many patients who have used exclusively human insulin and human insulin analogs. The reason for the increase in case reports is unknown, but this review explores the possibility that changes in patient care, improved differential diagnosis and/or changes in insulin type and insulin delivery systems may be important factors. The goal of this review is to raise key questions that will inspire proactive measures to prevent, identify and treat insulin amyloid. Furthermore, this comprehensive examination of insulin amyloid can provide insight into important considerations for other injectable drugs that are prone to form amyloid deposits.

  17. Structural Studies of the Alzheimer's Amyloid Precursor Protein Copper-Binding Domain Reveal How It Binds Copper Ions

    Energy Technology Data Exchange (ETDEWEB)

    Kong, G.K.-W.; Adams, J.J.; Harris, H.H.; Boas, J.F.; Curtain, C.C.; Galatis, D.; Master, C.L.; Barnham, K.J.; McKinstry, W.J.; Cappai, R.; Parker, M.W.; /Sydney U.

    2007-07-09

    Alzheimer's disease (AD) is the major cause of dementia. Amyloid {beta} peptide (A {beta}), generated by proteolytic cleavage of the amyloid precursor protein (APP), is central to AD pathogenesis. APP can function as a metalloprotein and modulate copper (Cu) transport, presumably via its extracellular Cu-binding domain (CuBD). Cu binding to the CuBD reduces A{beta} levels, suggesting that a Cu mimetic may have therapeutic potential. We describe here the atomic structures of apo CuBD from three crystal forms and found they have identical Cu-binding sites despite the different crystal lattices. The structure of Cu[2+]-bound CuBD reveals that the metal ligands are His147, His151, Tyrl68 and two water molecules, which are arranged in a square pyramidal geometry. The site resembles a Type 2 non-blue Cu center and is supported by electron paramagnetic resonance and extended X-ray absorption fine structure studies. A previous study suggested that Met170 might be a ligand but we suggest that this residue plays a critical role as an electron donor in CuBDs ability to reduce Cu ions. The structure of Cu[+]-bound CuBD is almost identical to the Cu[2+]-bound structure except for the loss of one of the water ligands. The geometry of the site is unfavorable for Cu[+], thus providing a mechanism by which CuBD could readily transfer Cu ions to other proteins.

  18. Interactions between amyloid-β and hemoglobin: implications for amyloid plaque formation in Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Jia-Ying Chuang

    Full Text Available Accumulation of amyloid-β (Aβ peptides in the brain is one of the central pathogenic events in Alzheimer's disease (AD. However, why and how Aβ aggregates within the brain of AD patients remains elusive. Previously, we demonstrated hemoglobin (Hb binds to Aβ and co-localizes with the plaque and vascular amyloid deposits in post-mortem AD brains. In this study, we further characterize the interactions between Hb and Aβ in vitro and in vivo and report the following observations: 1 the binding of Hb to Aβ required iron-containing heme; 2 other heme-containing proteins, such as myoglobin and cytochrome C, also bound to Aβ; 3 hemin-induced cytotoxicity was reduced in neuroblastoma cells by low levels of Aβ; 4 Hb was detected in neurons and glial cells of post-mortem AD brains and was up-regulated in aging and APP/PS1 transgenic mice; 5 microinjection of human Hb into the dorsal hippocampi of the APP/PS1 transgenic mice induced the formation of an envelope-like structure composed of Aβ surrounding the Hb droplets. Our results reveal an enhanced endogenous expression of Hb in aging brain cells, probably serving as a compensatory mechanism against hypoxia. In addition, Aβ binds to Hb and other hemoproteins via the iron-containing heme moiety, thereby reducing Hb/heme/iron-induced cytotoxicity. As some of the brain Hb could be derived from the peripheral circulation due to a compromised blood-brain barrier frequently observed in aged and AD brains, our work also suggests the genesis of some plaques may be a consequence of sustained amyloid accretion at sites of vascular injury.

  19. Melatonin: functions and ligands.

    Science.gov (United States)

    Singh, Mahaveer; Jadhav, Hemant R

    2014-09-01

    Melatonin is a chronobiotic substance that acts as synchronizer by stabilizing bodily rhythms. Its synthesis occurs in various locations throughout the body, including the pineal gland, skin, lymphocytes and gastrointestinal tract (GIT). Its synthesis and secretion is controlled by light and dark conditions, whereby light decreases and darkness increases its production. Thus, melatonin is also known as the 'hormone of darkness'. Melatonin and analogs that bind to the melatonin receptors are important because of their role in the management of depression, insomnia, epilepsy, Alzheimer's disease (AD), diabetes, obesity, alopecia, migraine, cancer, and immune and cardiac disorders. In this review, we discuss the mechanism of action of melatonin in these disorders, which could aid in the design of novel melatonin receptor ligands.

  20. Cu K-edge X-ray Absorption Spectroscopy Reveals Differential Copper Coordimation Within Amyloid-beta Oligomers Compared to Amyloid-beta Monomers

    Energy Technology Data Exchange (ETDEWEB)

    J Shearer; P Callan; T Tran; V Szalai

    2011-12-31

    The fatal neurodegenerative disorder Alzheimer's disease (AD) has been linked to the formation of soluble neurotoxic oligomers of amyloid-{beta} (A{beta}) peptides. These peptides have high affinities for copper cations. Despite their potential importance in AD neurodegeneration few studies have focused on probing the Cu{sup 2+/1+} coordination environment within A{beta} oligomers. Herein we present a Cu K-edge X-ray absorption spectroscopic study probing the copper-coordination environment within oligomers of A{beta}(42) (sequence: DAEFRHDSGYEVHHQKLVFFAEDVGSNKGAIIGLMVGGVVIA). We find that the Cu{sup 2+} cation is contained within a square planar mixed N/O ligand environment within A{beta}(42) oligomers, which is similar to the copper coordination environment of the monomeric forms of {l_brace}Cu{sup II}A{beta}(40){r_brace} and {l_brace}Cu{sup II}A{beta}(16){r_brace}. Reduction of the Cu{sup 2+} cation within the A{beta}(42) oligomers to Cu{sup 1+} yields a highly dioxygen sensitive copper-species that contains Cu{sup 1+} in a tetrahedral coordination geometry. This can be contrasted with monomers of {l_brace}Cu{sup I}A{beta}(40){r_brace} and {l_brace}Cu{sup I}A{beta}(16){r_brace}, which contain copper in a dioxygen inert linear bis-histidine ligand environment [Shearer and Szalai, J. Am. Chem. Soc., 2008, 130, 17826]. The biological implications of these findings are discussed.

  1. Binding of complement proteins C1q and C4bp to serum amyloid P component (SAP) in solid contra liquid phase

    DEFF Research Database (Denmark)

    Sørensen, Inge Juul; Nielsen, EH; Andersen, Ove;

    1996-01-01

    Serum amyloid P component (SAP), a member of the conserved pentraxin family of plasma proteins, binds calcium dependently to its ligands. The authors investigated SAPs interaction with the complement proteins C4b binding protein (C4bp) and C1q by ELISA, immunoelectrophoresis and electron microscopy...... affinity, did not interfere with the subsequent binding of C4bp or C1q to SAP. In contrast, collagen I and IV showed partial competition with the binding of C1q to SAP. Using fresh serum, immobilized native SAP bound C4bp whereas binding of C1q/C1 could not be demonstrated. Altogether the results indicate...

  2. Endogenously generated amyloid β increases membrane fluidity in neural 2a cells

    Institute of Scientific and Technical Information of China (English)

    NIU Ying; SHENG BaiYang; SONG Bo; LIU LingLing; ZHANG XiuFang; ZHAO NanMing; GONG YanDao

    2009-01-01

    The effect of endogenously generated amyloid β on membrane fluidity was investigated in Neural 2a cells stably expressing Swedish mutant amyloid precursor protein (APPswe). Membrane fluidity was studied by fluorescence polarizability using 1,6-Diphenyl-1,3,5-Hexatriene (DPH) as the fluorescence probe. It was found that the membrane fluidity in APPswe cells was significantly higher than that in its wild type counterparts. Alleviating the effect of amyloid β either by y secretase activity inhibition or by amyloid antibody treatment decreased membrane fluidity, which indicated an important role of amyloid β in increasing membrane fluidity. Treatment using amyloid β channel blocker, tromethamine and NA4 suggested that channel formed by amyloid β on the cell membrane is a way through which amyloid β takes its membrane fluidizing effect.

  3. Identification of a Common Binding Mode for Imaging Agents to Amyloid Fibrils from Molecular Dynamics Simulations

    DEFF Research Database (Denmark)

    Skeby, Katrine Kirkeby; Sørensen, Jesper; Schiøtt, Birgit

    2013-01-01

    Amyloid diseases are characterized by the misfolding and deposition of proteins in the body in the form of insoluble amyloid fibrils. Alzheimer’s disease and type 2 diabetes mellitus are two examples of amyloid diseases which are closely related both with respect to the atomic structures of the a......Amyloid diseases are characterized by the misfolding and deposition of proteins in the body in the form of insoluble amyloid fibrils. Alzheimer’s disease and type 2 diabetes mellitus are two examples of amyloid diseases which are closely related both with respect to the atomic structures...... of the amyloid fibrils and the disease pathology. Alzheimer’s disease is very difficult to diagnose, and much research is being performed to develop noninvasive diagnostic methods, such as imaging with small-molecule agents. The interactions between amyloid fibrils and imaging agents are challenging to examine...

  4. Characterizing Structural Stability of Amyloid Motif Fibrils Mediated by Water Molecules.

    Science.gov (United States)

    Choi, Hyunsung; Chang, Hyun Joon; Lee, Myeongsang; Na, Sungsoo

    2017-02-04

    In biological systems, structural confinements of amyloid fibrils can be mediated by the role of water molecules. However, the underlying effect of the dynamic behavior of water molecules on structural stabilities of amyloid fibrils is still unclear. By performing molecular dynamics simulations, we investigate the dynamic features and the effect of interior water molecules on conformations and mechanical characteristics of various amyloid fibrils. We find that a specific mechanism induced by the dynamic properties of interior water molecules can affect diffusion of water molecules inside amyloid fibrils, inducing their different structural stabilities. The conformation of amyloid fibrils induced by interior water molecules show the fibrils' different mechanical features. We elucidate the role of confined and movable interior water molecules in structural stabilities of various amyloid fibrils. Our results offer insights not only in further understanding of mechanical features of amyloids as mediated by water molecules, but also in the fine-tuning of the functional abilities of amyloid fibrils for applications.

  5. Nonequilibrium and generalized-ensemble molecular dynamics simulations for amyloid fibril

    Energy Technology Data Exchange (ETDEWEB)

    Okumura, Hisashi [Research Center for Computational Science, Institute for Molecular Science, Okazaki, Aichi 444-8585 (Japan); Department of Structural Molecular Science, The Graduate University for Advanced Studies, Okazaki, Aichi 444-8585 (Japan)

    2015-12-31

    Amyloids are insoluble and misfolded fibrous protein aggregates and associated with more than 20 serious human diseases. We perform all-atom molecular dynamics simulations of amyloid fibril assembly and disassembly.

  6. Macrocyclic G-quadruplex ligands

    DEFF Research Database (Denmark)

    Nielsen, M C; Ulven, Trond

    2010-01-01

    G-quadruplex stabilizing compounds have recently received increased interest due to their potential application as anticancer therapeutics. A significant number of structurally diverse G-quadruplex ligands have been developed. Some of the most potent and selective ligands currently known are macr...

  7. Odontogenic fibroma, including amyloid and ossifying variants.

    Science.gov (United States)

    Eversole, Lewis R

    2011-12-01

    Sixty-five cases of odontogenic fibroma (OdonF) are herein presented having been segregated into peripheral, extra bony tumors (n = 40) and tumors arising in bone or centrally (n = 25). All cases were characterized microscopically by a fibrous proliferation that varied within and between cases in cellularity and collagen fibril diameter, with intermixed odontogenic epithelial islands and cords. All central lesions presented as well demarcated radiolucencies and resorption of contiguous tooth roots was a common finding. These intraosseous lesions were of the WHO type; the so-called nonWHO type was excluded as all lesions with this diagnosis were devoid of an epithelial component and could be reclassified as other soft tissue fibrogenic tumors. Neither the central tumors nor the peripheral lesions recurred following enucleation/curettage, with a mean follow-up of 4 and 3.4 years respectively. Three distinct microscopic variations were encountered in this series: (1) two cases of OdonF with giant cell reaction, (2) two instances of OdonF with ossifying fibroma; and (3) four instances of OdonF with odontogenic ameloblast-associated protein (ODAM), an amyloid-like protein found deposited adjacent to epithelial cords plus CD1a+/S-100+ Langerhans dendritic cells entwined around the epithelial element. A single instance of the odontogenic fibroma-like hamartoma/enamel hypoplasia syndrome has been included in this series.

  8. Amyloid PET in European and North American cohorts; and exploring age as a limit to clinical use of amyloid imaging

    Energy Technology Data Exchange (ETDEWEB)

    Chiotis, Konstantinos [Karolinska Institutet, Department of NVS, Center for Alzheimer Research, Translational Alzheimer Neurobiology, Stockholm (Sweden); Carter, Stephen F. [Karolinska Institutet, Department of NVS, Center for Alzheimer Research, Translational Alzheimer Neurobiology, Stockholm (Sweden); University of Manchester, Wolfson Molecular Imaging Centre, Institute of Brain, Behaviour and Mental Health, Manchester (United Kingdom); Farid, Karim [Karolinska Institutet, Department of NVS, Center for Alzheimer Research, Translational Alzheimer Neurobiology, Stockholm (Sweden); APHP, Hotel-Dieu Hospital, Department of Nuclear Medicine, Paris (France); Savitcheva, Irina [Karolinska University Hospital Huddinge, Department of Radiology, Stockholm (Sweden); Nordberg, Agneta [Karolinska Institutet, Department of NVS, Center for Alzheimer Research, Translational Alzheimer Neurobiology, Stockholm (Sweden); Karolinska University Hospital Huddinge, Department of Geriatric Medicine, Stockholm (Sweden); Collaboration: for the Diagnostic Molecular Imaging (DiMI) network and the Alzheimer' s Disease Neuroimaging Initiative

    2015-09-15

    Several radiotracers that bind to fibrillar amyloid-beta in the brain have been developed and used in various patient cohorts. This study aimed to investigate the comparability of two amyloid positron emission tomography (PET) tracers as well as examine how age affects the discriminative properties of amyloid PET imaging. Fifty-one healthy controls (HCs), 72 patients with mild cognitive impairment (MCI) and 90 patients with Alzheimer's disease (AD) from a European cohort were scanned with [11C]Pittsburgh compound-B (PIB) and compared with an age-, sex- and disease severity-matched population of 51 HC, 72 MCI and 84 AD patients from a North American cohort who were scanned with [18F]Florbetapir. An additional North American population of 246 HC, 342 MCI and 138 AD patients with a Florbetapir scan was split by age (55-75 vs 76-93 y) into groups matched for gender and disease severity. PET template-based analyses were used to quantify regional tracer uptake. The mean regional uptake patterns were similar and strong correlations were found between the two tracers across the regions of interest in HC (ρ = 0.671, p = 0.02), amyloid-positive MCI (ρ = 0.902, p < 0.001) and AD patients (ρ = 0.853, p < 0.001). The application of the Florbetapir cut-off point resulted in a higher proportion of amyloid-positive HC and a lower proportion of amyloid-positive AD patients in the older group (28 and 30 %, respectively) than in the younger group (19 and 20 %, respectively). These results illustrate the comparability of Florbetapir and PIB in unrelated but matched patient populations. The role of amyloid PET imaging becomes increasingly important with increasing age in the diagnostic assessment of clinically impaired patients. (orig.)

  9. Failure of perivascular drainage of β-amyloid in cerebral amyloid angiopathy.

    Science.gov (United States)

    Hawkes, Cheryl A; Jayakody, Nimeshi; Johnston, David A; Bechmann, Ingo; Carare, Roxana O

    2014-07-01

    In Alzheimer's disease, amyloid-β (Aβ) accumulates as insoluble plaques in the brain and deposits in blood vessel walls as cerebral amyloid angiopathy (CAA). The severity of CAA correlates with the degree of cognitive decline in dementia. The distribution of Aβ in the walls of capillaries and arteries in CAA suggests that Aβ is deposited in the perivascular pathways by which interstitial fluid drains from the brain. Soluble Aβ from the extracellular spaces of gray matter enters the basement membranes of capillaries and drains along the arterial basement membranes that surround smooth muscle cells toward the leptomeningeal arteries. The motive force for perivascular drainage is derived from arterial pulsations combined with the valve effect of proteins present in the arterial basement membranes. Physical and biochemical changes associated with arteriosclerosis, aging and possession of apolipoprotein E4 genotype lead to a failure of perivascular drainage of soluble proteins, including Aβ. Perivascular cells associated with arteries and the lymphocytes recruited in the perivenous spaces contribute to the clearance of Aβ. The failure of perivascular clearance of Aβ may be a major factor in the accumulation of Aβ in CAA and may have significant implications for the design of therapeutics for the treatment of Alzheimer's disease.

  10. CXCL1 contributes to β-amyloid-induced transendothelial migration of monocytes in Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Ke Zhang

    Full Text Available BACKGROUND: Bone marrow-derived microglia that originates in part from hematopoietic cells, and more particularly from monocytes preferentially attach to amyloid deposition in brains of Alzheimer's disease (AD. However, the mechanism of monocytes recruited into the amyloid plaques with an accelerated process in AD is unclear. METHODOLOGY/PRINCIPAL FINDINGS: Here we reported that monocytes from AD patients express significantly higher chemokine (C-X-C motif ligand 1 (CXCL1 compared to age-matched controls. AD patient's monocytes or CXCL1-overexpressing THP-1 cells had enhanced ability of β-amyloid (Aβ-induced transendothelial migration and Aβ-induced transendothelial migration for AD patient's monocytes or CXCL1-overexpressing THP-1 cells was almost abrogated by anti-CXCL1 antibody. Furthermore, monocytes derived from a transgenic mouse model of AD also expressed significantly higher CXCL1. CD11b⁺CD45(hi population of cells that were recruited from the peripheral blood were markedly bolcked in APP mouse brain by anti-CXCL1 antibody. Accordingly, in response to Aβ, human brain microvascular endothelial cells (HBMEC significantly up-regulated CXC chemokine receptor 2 (CXCR2 expression, which was the only identified receptor for CXCL1. In addition, a high level expression of CXCR2 in HBMEC significantly promoted the CXCL1-overexpressing THP-1 cells transendothelial migration, which could be was abrogated by anti-CXCR2 antibody. Further examination of possible mechanisms found that CXCL1-overexpressing THP-1 cells induced transendothelial electrical resistance decrease, horseradish peroxidase flux increase, ZO-1 discontinuous and occludin re-distribution from insoluble to soluble fraction through interacting with CXCR2. ROCK inhibitor, Y27632, could block CXCL1-overexpressing THP-1 cells transendothelial migration, whereas other inhibitors had no effects. CONCLUSIONS/SIGNIFICANCE: The present data indicate that monocytes derived from AD

  11. Polymerizing the fibre between bacteria and host cells: the biogenesis of functional amyloid fibres

    OpenAIRE

    2008-01-01

    Amyloid fibres are proteinaceous aggregates associated with several human diseases, including Alzheimer’s, Huntington’s and Creutzfeldt Jakob’s. Disease-associated amyloid formation is the result of proteins that misfold and aggregate into β sheet-rich fibre polymers. Cellular toxicity is readily associated with amyloidogenesis, although the molecular mechanism of toxicity remains unknown. Recently, a new class of ‘functional’ amyloid fibres was discovered that demonstrates that amyloids can ...

  12. Amyloid Structure and Assembly: Insights from Scanning Transmission Electron Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Goldsbury, C.; Wall, J.; Baxa, U.; Simon, M. N.; Steven, A. C.; Engel, A.; Aebi, U.; Muller, S. A.

    2011-01-01

    Amyloid fibrils are filamentous protein aggregates implicated in several common diseases such as Alzheimer's disease and type II diabetes. Similar structures are also the molecular principle of the infectious spongiform encephalopathies such as Creutzfeldt-Jakob disease in humans, scrapie in sheep, and of the so-called yeast prions, inherited non-chromosomal elements found in yeast and fungi. Scanning transmission electron microscopy (STEM) is often used to delineate the assembly mechanism and structural properties of amyloid aggregates. In this review we consider specifically contributions and limitations of STEM for the investigation of amyloid assembly pathways, fibril polymorphisms and structural models of amyloid fibrils. This type of microscopy provides the only method to directly measure the mass-per-length (MPL) of individual filaments. Made on both in vitro assembled and ex vivo samples, STEM mass measurements have illuminated the hierarchical relationships between amyloid fibrils and revealed that polymorphic fibrils and various globular oligomers can assemble simultaneously from a single polypeptide. The MPLs also impose strong constraints on possible packing schemes, assisting in molecular model building when combined with high-resolution methods like solid-state nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR).

  13. Prediction of Peptide and Protein Propensity for Amyloid Formation.

    Directory of Open Access Journals (Sweden)

    Carlos Família

    Full Text Available Understanding which peptides and proteins have the potential to undergo amyloid formation and what driving forces are responsible for amyloid-like fiber formation and stabilization remains limited. This is mainly because proteins that can undergo structural changes, which lead to amyloid formation, are quite diverse and share no obvious sequence or structural homology, despite the structural similarity found in the fibrils. To address these issues, a novel approach based on recursive feature selection and feed-forward neural networks was undertaken to identify key features highly correlated with the self-assembly problem. This approach allowed the identification of seven physicochemical and biochemical properties of the amino acids highly associated with the self-assembly of peptides and proteins into amyloid-like fibrils (normalized frequency of β-sheet, normalized frequency of β-sheet from LG, weights for β-sheet at the window position of 1, isoelectric point, atom-based hydrophobic moment, helix termination parameter at position j+1 and ΔG° values for peptides extrapolated in 0 M urea. Moreover, these features enabled the development of a new predictor (available at http://cran.r-project.org/web/packages/appnn/index.html capable of accurately and reliably predicting the amyloidogenic propensity from the polypeptide sequence alone with a prediction accuracy of 84.9 % against an external validation dataset of sequences with experimental in vitro, evidence of amyloid formation.

  14. Lipid raft disruption protects mature neurons against amyloid oligomer toxicity.

    Science.gov (United States)

    Malchiodi-Albedi, Fiorella; Contrusciere, Valentina; Raggi, Carla; Fecchi, Katia; Rainaldi, Gabriella; Paradisi, Silvia; Matteucci, Andrea; Santini, Maria Teresa; Sargiacomo, Massimo; Frank, Claudio; Gaudiano, Maria Cristina; Diociaiuti, Marco

    2010-04-01

    A specific neuronal vulnerability to amyloid protein toxicity may account for brain susceptibility to protein misfolding diseases. To investigate this issue, we compared the effects induced by oligomers from salmon calcitonin (sCTOs), a neurotoxic amyloid protein, on cells of different histogenesis: mature and immature primary hippocampal neurons, primary astrocytes, MG63 osteoblasts and NIH-3T3 fibroblasts. In mature neurons, sCTOs increased apoptosis and induced neuritic and synaptic damages similar to those caused by amyloid beta oligomers. Immature neurons and the other cell types showed no cytotoxicity. sCTOs caused cytosolic Ca(2+) rise in mature, but not in immature neurons and the other cell types. Comparison of plasma membrane lipid composition showed that mature neurons had the highest content in lipid rafts, suggesting a key role for them in neuronal vulnerability to sCTOs. Consistently, depletion in gangliosides protected against sCTO toxicity. We hypothesize that the high content in lipid rafts makes mature neurons especially vulnerable to amyloid proteins, as compared to other cell types; this may help explain why the brain is a target organ for amyloid-related diseases.

  15. On the adsorption of magnetite nanoparticles on lysozyme amyloid fibrils.

    Science.gov (United States)

    Majorosova, Jozefina; Petrenko, Viktor I; Siposova, Katarina; Timko, Milan; Tomasovicova, Natalia; Garamus, Vasil M; Koralewski, Marceli; Avdeev, Mikhail V; Leszczynski, Błażej; Jurga, Stefan; Gazova, Zuzana; Hayryan, Shura; Hu, Chin-Kun; Kopcansky, Peter

    2016-10-01

    An adsorption of magnetic nanoparticles (MNP) from electrostatically stabilized aqueous ferrofluids on amyloid fibrils of hen egg white lysozyme (HEWL) in 2mg/mL acidic dispersions have been detected for the MNP concentration range of 0.01-0.1vol.%. The association of the MNP with amyloid fibrils has been characterized by transmission electron microscopy (TEM), small-angle X-ray scattering (SAXS) and magneto-optical measurements. It has been observed that the extent of adsorption is determined by the MNP concentration. When increasing the MNP concentration the formed aggregates of magnetic particles repeat the general rod-like structure of the fibrils. The effect is not observed when MNP are mixed with the solution of lysozyme monomers. The adsorption has been investigated with the aim to clarify previously found disaggregation activity of MNP in amyloid fibrils dispersions and to get deeper insight into interaction processes between amyloids and MNP. The observed effect is also discussed with respect to potential applications for ordering lysozyme amyloid fibrils in a liquid crystal phase under external magnetic fields.

  16. New Insights in the Amyloid-Beta Interaction with Mitochondria

    Directory of Open Access Journals (Sweden)

    Carlos Spuch

    2012-01-01

    Full Text Available Biochemical and morphological alterations of mitochondria may play an important role in the pathogenesis of Alzheimer’s disease (AD. Particularly, mitochondrial dysfunction is a hallmark of amyloid-beta-induced neuronal toxicity in Alzheimer’s disease. The recent emphasis on the intracellular biology of amyloid-beta and its precursor protein (APP has led researchers to consider the possibility that mitochondria-associated and mitochondrial amyloid-beta may directly cause neurotoxicity. Both proteins are known to localize to mitochondrial membranes, block the transport of nuclear-encoded mitochondrial proteins to mitochondria, interact with mitochondrial proteins, disrupt the electron transport chain, increase reactive oxygen species production, cause mitochondrial damage, and prevent neurons from functioning normally. In this paper, we will outline current knowledge of the intracellular localization of amyloid-beta. Moreover, we summarize evidence from AD postmortem brain as well as animal AD models showing that amyloid-beta triggers mitochondrial dysfunction through a number of pathways such as impairment of oxidative phosphorylation, elevation of reactive oxygen species production, alteration of mitochondrial dynamics, and interaction with mitochondrial proteins. Thus, this paper supports the Alzheimer cascade mitochondrial hypothesis such as the most important early events in this disease, and probably one of the future strategies on the therapy of this neurodegenerative disease.

  17. Modeling the Aggregation Propensity and Toxicity of Amyloid-β Variants

    DEFF Research Database (Denmark)

    Tiwari, Manish Kumar; Kepp, Kasper Planeta

    2015-01-01

    Protein aggregation is a hallmark of many neurodegenerative disorders. Alzheimer’s disease (AD) is directly linked to deposits of amyloid-β (Aβ) derived from the amyloid-β protein precursor (AβPP), and multiple experimental studies have investigated the aggregation behavior of these amyloids...

  18. Amyloid-beta Positron Emission Tomography Imaging Probes : A Critical Review

    NARCIS (Netherlands)

    Kepe, Vladimir; Moghbel, Mateen C.; Langstrom, Bengt; Zaidi, Habib; Vinters, Harry V.; Huang, Sung-Cheng; Satyamurthy, Nagichettiar; Doudet, Doris; Mishani, Eyal; Cohen, Robert M.; Hoilund-Carlsen, Poul F.; Alavi, Abass; Barrio, Jorge R.

    2013-01-01

    The rapidly rising prevalence and cost of Alzheimer's disease in recent decades has made the imaging of amyloid-beta deposits the focus of intense research. Several amyloid imaging probes with purported specificity for amyloid-beta plaques are currently at various stages of FDA approval. However, a

  19. Trifluoroethanol modulates α-synuclein amyloid-like aggregate formation, stability and dissolution

    DEFF Research Database (Denmark)

    Di Carlo, Maria Giovanna; Vetri, Valeria; Buscarino, Gianpiero

    2016-01-01

    The conversion of proteins into amyloid fibrils and other amyloid-like aggregates is closely connected to the onset of a series of age-related pathologies. Upon changes in environmental conditions, amyloid-like aggregates may also undergo disassembly into oligomeric aggregates, the latter being r...

  20. Whole body amyloid deposition imaging by 123I-SAP scintigraphy

    NARCIS (Netherlands)

    van Rheenen, Ronald; Glaudemans, Andor; Hazenberg, Bouke

    2011-01-01

    Amyloidosis is the name of a group of diseases characterized by extracellular deposition of amyloid fibrils. Deposition of amyloid can be localized or systemic. The 123I-SAP-scan can be used to image extent and distribution of amyloid deposition in patients with systemic AA, AL and ATTR amyloidosis.

  1. Genetic determinants of white matter hyperintensities and amyloid angiopathy in familial Alzheimer's disease

    NARCIS (Netherlands)

    Ryan, Natalie S.; Biessels, Geert Jan; Kim, Lois; Nicholas, Jennifer M.; Barber, Philip A.; Walsh, Phoebe; Gami, Priya; Morris, Huw R.; Bastos-Leite, António J.; Schott, Jonathan M.; Beck, Jon; Mead, Simon; Chavez-Gutierrez, Lucia; de Strooper, Bart; Rossor, Martin N.; Revesz, Tamas; Lashley, Tammaryn; Fox, Nick C.

    2015-01-01

    Familial Alzheimer's disease (FAD) treatment trials raise interest in the variable occurrence of cerebral amyloid angiopathy (CAA); an emerging important factor in amyloid-modifying therapy. Previous pathological studies reported particularly severe CAA with postcodon 200 PSEN1 mutations and amyloid

  2. Analysis of amyloid fibrils in the cheetah (Acinonyx jubatus).

    Science.gov (United States)

    Bergström, Joakim; Ueda, Mitsuharu; Une, Yumi; Sun, Xuguo; Misumi, Shogo; Shoji, Shozo; Ando, Yukio

    2006-06-01

    Recently, a high prevalence of amyloid A (AA) amyloidosis has been documented among captive cheetahs worldwide. Biochemical analysis of amyloid fibrils extracted from the liver of a Japanese captive cheetah unequivocally showed that protein AA was the main fibril constituent. Further characterization of the AA fibril components by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and Western blot analysis revealed three main protein AA bands with approximate molecular weights of 8, 10 and 12 kDa. Mass spectrometry analysis of the 12-kDa component observed in SDS-PAGE and Western blotting confirmed the molecular weight of a 12,381-Da peak. Our finding of a 12-kDa protein AA component provides evidence that the cheetah SAA sequence is longer than the previously reported 90 amino acid residues (approximately 10 kDa), and hence SAA is part of the amyloid fibril.

  3. Alzheimer's disease: the amyloid hypothesis and the Inverse Warburg effect

    KAUST Repository

    Demetrius, Lloyd A.

    2015-01-14

    Epidemiological and biochemical studies show that the sporadic forms of Alzheimer\\'s disease (AD) are characterized by the following hallmarks: (a) An exponential increase with age; (b) Selective neuronal vulnerability; (c) Inverse cancer comorbidity. The present article appeals to these hallmarks to evaluate and contrast two competing models of AD: the amyloid hypothesis (a neuron-centric mechanism) and the Inverse Warburg hypothesis (a neuron-astrocytic mechanism). We show that these three hallmarks of AD conflict with the amyloid hypothesis, but are consistent with the Inverse Warburg hypothesis, a bioenergetic model which postulates that AD is the result of a cascade of three events—mitochondrial dysregulation, metabolic reprogramming (the Inverse Warburg effect), and natural selection. We also provide an explanation for the failures of the clinical trials based on amyloid immunization, and we propose a new class of therapeutic strategies consistent with the neuroenergetic selection model.

  4. Atomic-resolution structures of prion AGAAAAGA amyloid fibrils

    CERN Document Server

    Zhang, Jiapu

    2011-01-01

    To the best of the author's knowledge, there is little structural data available on the AGAAAAGA palindrome in the hydrophobic region (113-120) of prion proteins due to the unstable, noncrystalline and insoluble nature of the amyloid fibril, although many experimental studies have shown that this region has amyloid fibril forming properties and plays an important role in prion diseases. In view of this, the present study is devoted to address this problem from computational approaches such as local optimization steepest descent, conjugate gradient, discrete gradient and Newton methods, global optimization simulated annealing and genetic algorithms, canonical dual optimization theory, and structural bioinformatics. The optimal atomic-resolution structures of prion AGAAAAGA amyloid fibils reported in this Chapter have a value to the scientific community in its drive to find treatments for prion diseases or at least be useful for the goals of medicinal chemistry.

  5. Molecular dynamics simulations of amyloid fibrils: an in silico approach

    Institute of Scientific and Technical Information of China (English)

    Wei Ye; Wei Wang; Cheng Jiang; Qingfen Yu; Haifeng Chen

    2013-01-01

    Amyloid fibrils play causal roles in the pathogenesis of amyloid-related degenerative diseases such as Alzheimer's disease,type Ⅱ diabetes mellitus,and the prion-related transmissible spongiform encephalopathies.The mechanism of fibril formation and protein aggregation is still hotly debated and remains an important open question in order to develop therapeutic method of these diseases.However,traditional molecular biological and crystallographic experiments could hardly observe atomic details and aggregation process.Molecular dynamics (MD) simulations could provide explanations for experimental results and detailed pathway of protein aggregation.In this review,we focus on the applications of MD simulations on several amyloidogenic protein systems.Furthermore,MD simulations could help us to understand the mechanism of amyloid aggregation and how to design the inhibitors.

  6. Destroying activity of magnetoferritin on lysozyme amyloid fibrils

    Energy Technology Data Exchange (ETDEWEB)

    Kopcansky, Peter; Siposova, Katarina [Institute of Experimental Physics, SAS, Watsonova 47, 040 01 Kosice (Slovakia); Melnikova, Lucia, E-mail: melnikova@saske.sk [Institute of Experimental Physics, SAS, Watsonova 47, 040 01 Kosice (Slovakia); Bednarikova, Zuzana [Institute of Experimental Physics, SAS, Watsonova 47, 040 01 Kosice (Slovakia); Institute of Chemical Sciences, Faculty of Sciences, Safarik University, Kosice (Slovakia); Timko, Milan; Mitroova, Zuzana; Antosova, Andrea [Institute of Experimental Physics, SAS, Watsonova 47, 040 01 Kosice (Slovakia); Garamus, Vasil M. [Helmholtz-Zentrum Geesthacht: Centre for Materials and Coastal Research, Max-Planck-Street 1, 21502 Geesthacht (Germany); Petrenko, Viktor I. [Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna, 141980 Moscow Region (Russian Federation); Kyiv Taras Shevchenko National University, Volodymyrska Street 64, Kyiv 01033 (Ukraine); Avdeev, Mikhail V. [Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna, 141980 Moscow Region (Russian Federation); Gazova, Zuzana [Institute of Experimental Physics, SAS, Watsonova 47, 040 01 Kosice (Slovakia); Department of Medical and Clinical Biochemistry and LABMED, Tr. SNP 1, 040 11 Kosice (Slovakia)

    2015-03-01

    Presence of protein amyloid aggregates (oligomers, protofilaments, fibrils) is associated with many diseases as diabetes mellitus or Alzheimer's disease. The interaction between lysozyme amyloid fibrils and magnetoferritin loaded with different amount of iron atoms (168 or 532 atoms) has been investigated by small-angle X-rays scattering and thioflavin T fluorescence measurements. Results suggest that magnetoferritin caused an iron atom-concentration dependent reduction of lysozyme fibril size. - Highlights: • The interaction between lysozyme amyloid fibrils and magnetoferritin loaded with different amount of iron atoms (168 or 532 atoms) has been investigated by small-angle X-rays scattering and thioflavin T fluorescence measurements. • Results suggest that magnetoferritin caused an iron atom-concentration dependent reduction of lysozyme fibril size.

  7. Glutamate receptor ligands

    DEFF Research Database (Denmark)

    Guldbrandt, Mette; Johansen, Tommy N; Frydenvang, Karla Andrea;

    2002-01-01

    Homologation and substitution on the carbon backbone of (S)-glutamic acid [(S)-Glu, 1], as well as absolute stereochemistry, are structural parameters of key importance for the pharmacological profile of (S)-Glu receptor ligands. We describe a series of methyl-substituted 2-aminoadipic acid (AA......-ray crystallographic analyses, chemical correlation, and CD spectral analyses. The effects of the individual stereoisomers at ionotropic and metabotropic (S)-Glu receptors (iGluRs and mGluRs) were characterized. Compounds with S-configuration at the alpha-carbon generally showed mGluR2 agonist activity of similar...... limited effect on pharmacology. Structure-activity relationships at iGluRs in the rat cortical wedge preparation showed a complex pattern, some compounds being NMDA receptor agonists [e.g., EC(50) =110 microM for (2S,5RS)-5-methyl-AA (6a,b)] and some compounds showing NMDA receptor antagonist effects [e...

  8. Atomic Resolution Structure of Monomorphic Aβ42 Amyloid Fibrils.

    Science.gov (United States)

    Colvin, Michael T; Silvers, Robert; Ni, Qing Zhe; Can, Thach V; Sergeyev, Ivan; Rosay, Melanie; Donovan, Kevin J; Michael, Brian; Wall, Joseph; Linse, Sara; Griffin, Robert G

    2016-08-03

    Amyloid-β (Aβ) is a 39-42 residue protein produced by the cleavage of the amyloid precursor protein (APP), which subsequently aggregates to form cross-β amyloid fibrils that are a hallmark of Alzheimer's disease (AD). The most prominent forms of Aβ are Aβ1-40 and Aβ1-42, which differ by two amino acids (I and A) at the C-terminus. However, Aβ42 is more neurotoxic and essential to the etiology of AD. Here, we present an atomic resolution structure of a monomorphic form of AβM01-42 amyloid fibrils derived from over 500 (13)C-(13)C, (13)C-(15)N distance and backbone angle structural constraints obtained from high field magic angle spinning NMR spectra. The structure (PDB ID: 5KK3 ) shows that the fibril core consists of a dimer of Aβ42 molecules, each containing four β-strands in a S-shaped amyloid fold, and arranged in a manner that generates two hydrophobic cores that are capped at the end of the chain by a salt bridge. The outer surface of the monomers presents hydrophilic side chains to the solvent. The interface between the monomers of the dimer shows clear contacts between M35 of one molecule and L17 and Q15 of the second. Intermolecular (13)C-(15)N constraints demonstrate that the amyloid fibrils are parallel in register. The RMSD of the backbone structure (Q15-A42) is 0.71 ± 0.12 Å and of all heavy atoms is 1.07 ± 0.08 Å. The structure provides a point of departure for the design of drugs that bind to the fibril surface and therefore interfere with secondary nucleation and for other therapeutic approaches to mitigate Aβ42 aggregation.

  9. BETASCAN: probable beta-amyloids identified by pairwise probabilistic analysis.

    Directory of Open Access Journals (Sweden)

    Allen W Bryan

    2009-03-01

    Full Text Available Amyloids and prion proteins are clinically and biologically important beta-structures, whose supersecondary structures are difficult to determine by standard experimental or computational means. In addition, significant conformational heterogeneity is known or suspected to exist in many amyloid fibrils. Recent work has indicated the utility of pairwise probabilistic statistics in beta-structure prediction. We develop here a new strategy for beta-structure prediction, emphasizing the determination of beta-strands and pairs of beta-strands as fundamental units of beta-structure. Our program, BETASCAN, calculates likelihood scores for potential beta-strands and strand-pairs based on correlations observed in parallel beta-sheets. The program then determines the strands and pairs with the greatest local likelihood for all of the sequence's potential beta-structures. BETASCAN suggests multiple alternate folding patterns and assigns relative a priori probabilities based solely on amino acid sequence, probability tables, and pre-chosen parameters. The algorithm compares favorably with the results of previous algorithms (BETAPRO, PASTA, SALSA, TANGO, and Zyggregator in beta-structure prediction and amyloid propensity prediction. Accurate prediction is demonstrated for experimentally determined amyloid beta-structures, for a set of known beta-aggregates, and for the parallel beta-strands of beta-helices, amyloid-like globular proteins. BETASCAN is able both to detect beta-strands with higher sensitivity and to detect the edges of beta-strands in a richly beta-like sequence. For two proteins (Abeta and Het-s, there exist multiple sets of experimental data implying contradictory structures; BETASCAN is able to detect each competing structure as a potential structure variant. The ability to correlate multiple alternate beta-structures to experiment opens the possibility of computational investigation of prion strains and structural heterogeneity of amyloid

  10. [Carpal tunnel syndrome, amyloid tenosynovitis and periodic hemodialysis].

    Science.gov (United States)

    Clanet, M; Mansat, M; Durroux, R; Testut, M F; Guiraud, B; Rascol, A; Conte, J

    1981-01-01

    Since 1975, various entrapment neuropathies have been reported in patients undergoing periodic haemodialysis, the most frequent being the carpal tunnel syndrome. Ten patients on chronic haemodialysis developing 15 carpal tunnel syndromes (5 unilateral and 5 bilateral) are reported. Various causes for the renal failure were present and clinical signs of the carpal tunnel syndrome developed at a late stage. The arteriovenous fistula required for extrarenal epuration was antebrachial and of the laterolateral type, except in one case when it was lateroterminal. The carpal tunnel syndrome was always on the same side as the fistula, developing at a later stage on th contralateral side in the 5 cases of bilateral disorders. Lesions were severe, in 11 of the 15 cases. Some patients noted fluctuations in pain symptoms during haemodialysis, either improving or becoming worse. Gross pathological findings during operation (13 cases) were tenosynovitis with epineural hypervascularisation on the opposite side. In 9 cases, however, atypical hypertrophic tenosynovitis was observed. Histological examination in 12 cases demonstrated typical tenosynovitis in 3 patients, but granulomatous tenosynovitis with amyloid deposits was reported in 9 patients. Lesions were bilateral in 2 cases thus present, on the side opposite to the fistula. Ultrastructural study confirmed the amyloid nature of the deposits in 3 cases, the microfibrillary appearance (80 to 100 A) being characteristic of amyloid substance. This rare complication does not represent a common carpal tunnel syndrome, and three mechanisms may be involved in its induction : peripheral uraemic neuropathy, haemodynamic modifications resulting from the antebrachial arteriovenous shunt, and amyloid formation in the flexor synovial sheaths. In the latter case, the type of amyloid disease may be a primary systemic amyloidosis not previously detected, or an elective amyloid process localised to the tenosynovial and periarticular tissues.

  11. Quantitative amyloid imaging using image-derived arterial input function.

    Directory of Open Access Journals (Sweden)

    Yi Su

    Full Text Available Amyloid PET imaging is an indispensable tool widely used in the investigation, diagnosis and monitoring of Alzheimer's disease (AD. Currently, a reference region based approach is used as the mainstream quantification technique for amyloid imaging. This approach assumes the reference region is amyloid free and has the same tracer influx and washout kinetics as the regions of interest. However, this assumption may not always be valid. The goal of this work is to evaluate an amyloid imaging quantification technique that uses arterial region of interest as the reference to avoid potential bias caused by specific binding in the reference region. 21 participants, age 58 and up, underwent Pittsburgh compound B (PiB PET imaging and MR imaging including a time-of-flight (TOF MR angiography (MRA scan and a structural scan. FreeSurfer based regional analysis was performed to quantify PiB PET data. Arterial input function was estimated based on coregistered TOF MRA using a modeling based technique. Regional distribution volume (VT was calculated using Logan graphical analysis with estimated arterial input function. Kinetic modeling was also performed using the estimated arterial input function as a way to evaluate PiB binding (DVRkinetic without a reference region. As a comparison, Logan graphical analysis was also performed with cerebellar cortex as reference to obtain DVRREF. Excellent agreement was observed between the two distribution volume ratio measurements (r>0.89, ICC>0.80. The estimated cerebellum VT was in line with literature reported values and the variability of cerebellum VT in the control group was comparable to reported variability using arterial sampling data. This study suggests that image-based arterial input function is a viable approach to quantify amyloid imaging data, without the need of arterial sampling or a reference region. This technique can be a valuable tool for amyloid imaging, particularly in population where reference

  12. Quantitative amyloid imaging using image-derived arterial input function.

    Science.gov (United States)

    Su, Yi; Blazey, Tyler M; Snyder, Abraham Z; Raichle, Marcus E; Hornbeck, Russ C; Aldea, Patricia; Morris, John C; Benzinger, Tammie L S

    2015-01-01

    Amyloid PET imaging is an indispensable tool widely used in the investigation, diagnosis and monitoring of Alzheimer's disease (AD). Currently, a reference region based approach is used as the mainstream quantification technique for amyloid imaging. This approach assumes the reference region is amyloid free and has the same tracer influx and washout kinetics as the regions of interest. However, this assumption may not always be valid. The goal of this work is to evaluate an amyloid imaging quantification technique that uses arterial region of interest as the reference to avoid potential bias caused by specific binding in the reference region. 21 participants, age 58 and up, underwent Pittsburgh compound B (PiB) PET imaging and MR imaging including a time-of-flight (TOF) MR angiography (MRA) scan and a structural scan. FreeSurfer based regional analysis was performed to quantify PiB PET data. Arterial input function was estimated based on coregistered TOF MRA using a modeling based technique. Regional distribution volume (VT) was calculated using Logan graphical analysis with estimated arterial input function. Kinetic modeling was also performed using the estimated arterial input function as a way to evaluate PiB binding (DVRkinetic) without a reference region. As a comparison, Logan graphical analysis was also performed with cerebellar cortex as reference to obtain DVRREF. Excellent agreement was observed between the two distribution volume ratio measurements (r>0.89, ICC>0.80). The estimated cerebellum VT was in line with literature reported values and the variability of cerebellum VT in the control group was comparable to reported variability using arterial sampling data. This study suggests that image-based arterial input function is a viable approach to quantify amyloid imaging data, without the need of arterial sampling or a reference region. This technique can be a valuable tool for amyloid imaging, particularly in population where reference normalization may

  13. Computational Studies of Beta Amyloid (Aβ42 with p75NTR Receptor: A Novel Therapeutic Target in Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Shine Devarajan

    2014-01-01

    Full Text Available Alzheimer’s disease is a neurodegenerative disorder characterized by the accumulation of beta amyloid plaques (Aβ which can induce neurite degeneration and progressive dementia. It has been identified that neuronal apoptosis is induced by binding of Aβ42 to pan neurotrophin receptor (p75NTR and gave the possibility that beta amyloid oligomer is a ligand for p75NTR. However, the atomic contact point responsible for molecular interactions and conformational changes of the protein upon binding was not studied in detail. In view of this, we conducted a molecular docking and simulation study to investigate the binding behaviour of Aβ42 monomer with p75NTR ectodomain. Furthermore, we proposed a p75NTR-ectodomain-Aβ42 complex model. Our data revealed that, Aβ42 specifically recognizes CRD1 and CRD2 domains of the receptor and formed a “cap” like structure at the N-terminal of receptor which is stabilized by a network of hydrogen bonds. These findings are supported by molecular dynamics simulation that Aβ42 showed distinct structural alterations at N- and C-terminal regions due to the influence of the receptor binding site. Overall, the present study gives more structural insight on the molecular interactions of beta amyloid protein involved in the activation of p75NTR receptor.

  14. Serum amyloid a in clinical practice

    Directory of Open Access Journals (Sweden)

    Jovanović Dijana B.

    2004-01-01

    Full Text Available Serum amyloid A (SAA is an acute phase first class protein discovered a quarter of the century ago. Its concentration depends on clinical findings of the patient, illness activity and the therapy applied. SAA increases moderately to markedly (100-1000 mg/l in bacterial and fungal infections, invasive malignant diseases, tissue injuries in the acute myocardial infarction and autoimmune diseases such as rheumatoid arthritis and vasculitis. Mild elevation (10-100 mg/l is often seen in viral infections, systemic lupus erythematosus and localized inflammation or tissue injuries in cystitis and cerebral infarction. SAA as sensitive, non-invasive parameter is used in organ transplantation where early and correct diagnosis is needed as well as where prompt therapy is required. Besides acute kidney allograft rejection, SAA is used in the diagnosis of rejection after liver transplantation, simultaneous pancreas and kidney transplantation and also in bone marrow transplantation (acute „graft vs. host disease". Simultaneous determination of C-reactive protein (CRP and SAA may point to acute kidney allograft rejection. Standard immunosuppressive therapy with cyclosporine A and prednisolone significantly suppresses the acute phase CRP reaction both in operation itself and acute rejection, but not in infection. On the other hand, SAA rejection in operation, acute allograft rejection and infection is present in spite of cyclosporine A and steroids therapy. Different reaction of SAA and CRP in transplant patients to cyclosporine A therapy helps in differentiation between the infection and rejection. Although CRP and SAA are sensitive and acute phase reactants, their serum concentrations cannot be valued as prognostic and diagnostic criteria without creatinine serum concentration and clinical findings. In addition, they offer important information for clinical diagnosis as well as the kind of therapy.

  15. Molecular modeling of the inhibitory mechanism of copper(II) on aggregation of amyloid β-peptide

    Institute of Scientific and Technical Information of China (English)

    JIAO Yong; HAN Daxiong; YANG Pin

    2005-01-01

    Aggregation of amyloid β-peptide (Aβ) into insoluble fibrils is a key pathological event in Alzheimer's disease (AD). Under certain conditions, Cu(Ⅱ) exhibits strong inhibitory effect on the Zn(Ⅱ)-induced aggregation, which occurs significantly even at nearly physiological concentrations of zinc ion in vitro. Cu(Ⅱ) is considered as a potential factor in the normal brain preventing Aβ from aggregating. The possible mechanism of the inhibitory effect of Cu(Ⅱ) is investigated for the first time by molecular modeling method. In the mono-ring mode, the Y10 residue promotes typical quasi-helix conformations of Aβ. Specially, [Cu-H13(Nπ)-Y10(OH)] complex forms a local 3.010 helix conformation. In the multi-ring mode, the side chains of Q15 and E11 residues collaborate harmoniously with other chelating ligands producing markedly low energies and quasi-helix conformations. [Cu-3N-Q15(O)-E11(O1)] and [Cu-H13(Nπ)-Y10(OH)] complex with quasi-helix conformations may prefer soluble forms in solution. In addition, hydrogen-bond interactions may be the main driving force for Aβaggregation. All the results will provide helpful clues for an improved understanding of the role of Cu(Ⅱ) in the pathogenesis of AD and contribute to the development of an "anti-amyloid" therapeutic strategy.

  16. Postmortem Adult Human Microglia Proliferate in Culture to High Passage and Maintain Their Response to Amyloid

    Science.gov (United States)

    Guo, Ling; Rezvanian, Aras; Kukreja, Lokesh; Hoveydai, Ramez; Bigio, Eileen H.; Mesulam, M.-Marsel; El Khoury, Joseph; Geula, Changiz

    2016-01-01

    Microglia are immune cells of the brain that display a range of functions. Most of our knowledge about microglia biology and function is based on cells from the rodent brain. Species variation in the complexity of the brain and differences in microglia response in the primate when compared with the rodent, require use of adult human microglia in studies of microglia biology. While methods exist for isolation of microglia from postmortem human brains, none allow culturing cells to high passage. Thus cells from the same case could not be used in parallel studies and multiple conditions. Here we report a method, which includes use of growth factors such as granulocyte macrophage colony stimulating factor, for successful culturing of adult human microglia from postmortem human brains up to 28 passages without significant loss of proliferation. Such cultures maintained their phenotype, including uptake of the scavenger receptor ligand acetylated low density lipoprotein and response to the amyloid-β peptide, and were used to extend in vivo studies in the primate brain demonstrating that inhibition of microglia activation protects neurons from amyloid-β toxicity. Significantly, microglia cultured from brains with pathologically confirmed Alzheimer’s disease displayed the same characteristics as microglia cultured from normal aged brains. The method described here provides the scientific community with a new and reliable tool for mechanistic studies of human microglia function in health from childhood to old age, and in disease, enhancing the relevance of the findings to the human brain and neurodegenerative conditions. PMID:27567845

  17. Structural network alterations and neurological dysfunction in cerebral amyloid angiopathy

    Science.gov (United States)

    Reijmer, Yael D.; Fotiadis, Panagiotis; Martinez-Ramirez, Sergi; Salat, David H.; Schultz, Aaron; Shoamanesh, Ashkan; Ayres, Alison M.; Vashkevich, Anastasia; Rosas, Diana; Schwab, Kristin; Leemans, Alexander; Biessels, Geert-Jan; Rosand, Jonathan; Johnson, Keith A.; Viswanathan, Anand; Gurol, M. Edip

    2015-01-01

    Cerebral amyloid angiopathy is a common form of small-vessel disease and an important risk factor for cognitive impairment. The mechanisms linking small-vessel disease to cognitive impairment are not well understood. We hypothesized that in patients with cerebral amyloid angiopathy, multiple small spatially distributed lesions affect cognition through disruption of brain connectivity. We therefore compared the structural brain network in patients with cerebral amyloid angiopathy to healthy control subjects and examined the relationship between markers of cerebral amyloid angiopathy-related brain injury, network efficiency, and potential clinical consequences. Structural brain networks were reconstructed from diffusion-weighted magnetic resonance imaging in 38 non-demented patients with probable cerebral amyloid angiopathy (69 ± 10 years) and 29 similar aged control participants. The efficiency of the brain network was characterized using graph theory and brain amyloid deposition was quantified by Pittsburgh compound B retention on positron emission tomography imaging. Global efficiency of the brain network was reduced in patients compared to controls (0.187 ± 0.018 and 0.201 ± 0.015, respectively, P < 0.001). Network disturbances were most pronounced in the occipital, parietal, and posterior temporal lobes. Among patients, lower global network efficiency was related to higher cortical amyloid load (r = −0.52; P = 0.004), and to magnetic resonance imaging markers of small-vessel disease including increased white matter hyperintensity volume (P < 0.001), lower total brain volume (P = 0.02), and number of microbleeds (trend P = 0.06). Lower global network efficiency was also related to worse performance on tests of processing speed (r = 0.58, P < 0.001), executive functioning (r = 0.54, P = 0.001), gait velocity (r = 0.41, P = 0.02), but not memory. Correlations with cognition were independent of age, sex, education level, and other magnetic resonance imaging

  18. Native human serum amyloid P component is a single pentamer

    DEFF Research Database (Denmark)

    Sørensen, Inge Juul; Andersen, Ove; Nielsen, EH;

    1995-01-01

    Serum amyloid P component (SAP) and C-reactive protein (CRP) are members of the pentraxin protein family. SAP is the precursor protein to amyloid P component present in all forms of amyloidosis. The prevailing notion is that SAP in circulation has the form of a double pentameric molecule (decamer...... by rocket immunoelectrophoresis and electron microscopy. Thus, electron micrographs of purified SAP showed a predominance of decamers. However, the decamer form of SAP reversed to single pentamers when purified SAP was incorporated into SAP-depleted serum....

  19. [Salmon-pink colored conjunctival tumor with amyloid deposits].

    Science.gov (United States)

    Müller, P L; Loeffler, K U; Holz, F G; Fischer, H-P; Herwig, M C

    2016-07-01

    An 82-year-old male patient presented with a salmon-pink colored conjunctival tumor of the left eye. A circumscribed, dense and whitish portion was detected by clinical examination. The histophological and immunhistochemical examination of the biopsy tissue revealed a CD20+ marginal zone lymphoma of the conjunctiva with amyloid deposits. Extranodal marginal zone lymphoma at this site is the most common lymphoma of the ocular adnexa and accounts for 5-10% of malignant diseases. An association with amyloid production is very rare and according to the current state of knowledge has no known impact on the outcome.

  20. Reaction between the Pt(II)-complexes and the amino acids of the β-amyloid peptide

    Science.gov (United States)

    Novato, Willian T. G.; Stroppa, Pedro Henrique F.; Da Silva, Adilson D.; Botezine, Naiara P.; Machado, Flávia C.; Costa, Luiz Antônio S.; Dos Santos, Hélio F.

    2017-01-01

    Reaction between [Pt(ophen)Cl2] and HIS was monitored and the solvolysis (k1) and Cl/HIS ligand exchange (k2) rate constants obtained. The k1 and k2 were (6.2 ± 0.4) × 10-5 s-1 and 52.8 × 10-2 M-1 s-1, respectively. The corresponding calculated values were 47.5 × 10-5 s-1 and 52.2 × 10-2 M-1 s-1, in agreement with the experiment. Calculations were used to establish the reactivity order for a set of amino acids: MET ∼ LYS ∼ HIS(ε) > GLU ∼ ASP >> ASN ∼ GLN. In spite of the similar reactivity among MET, LYS and HIS, the thermodynamics suggests the reactions with LYS and HIS more favorable than with MET. Therefore, N-containing amino acids should be potential targets of Pt(II)-complexes in β-amyloid.

  1. Mirror Image of the Amyloid-β Species in Cerebrospinal Fluid and Cerebral Amyloid in Alzheimer's Disease.

    Science.gov (United States)

    Catania, Marcella; Di Fede, Giuseppe; Tonoli, Elisa; Benussi, Luisa; Pasquali, Claudio; Giaccone, Giorgio; Maderna, Emanuela; Ghidoni, Roberta; Tagliavini, Fabrizio

    2015-01-01

    Alzheimer's disease (AD) is characterized by amyloid-β (Aβ) accumulation in brain that is paralleled by Aβ(1-42) reduction in cerebrospinal fluid (CSF). We analyzed the pattern of Aβ peptides, including the N- and C-terminal truncated fragments, in brain and CSF from two familial and one sporadic AD cases. We found that (i) each patient is characterized by a distinct Aβ profile in CSF and brain deposits and (ii) the CSF Aβ pattern mirrors the Aβ profile of cerebral amyloid. These results suggest the existence of different molecular AD subtypes which can be recognized by CSF analysis, enabling patient stratification.

  2. The formation of bioactive amyloid species by prion proteins in vitro and in cells.

    Science.gov (United States)

    Liu, Yuanbin; Ritter, Christiane; Riek, Roland; Schubert, David

    2006-10-09

    Amyloid proteins are a group of proteins that can polymerize into cross beta-sheeted amyloid species. We have found that enhancing cellular 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) formazan exocytosis is a common property of bioactive amyloid species formed from all of the amyloid proteins tested to date. In this report, we show that the infectious amyloid species of the prion protein HET-s of the filamentous fungus Podospora anserina, like other amyloidogenic proteins, also enhances MTT formazan exocytosis. More strikingly, cellular MTT formazan exocytosis revealed the formation of bioactive amyloid species in prion-infected mouse N2a neuroblastoma cells. These findings suggest that cellular MTT formazan exocytosis can be useful for studying the roles of bioactive amyloid species in prion infectivity and prion-induced neurodegeneration.

  3. Aβ42 Is Essential for Parenchymal and Vascular Amyloid Deposition in Mice

    Science.gov (United States)

    McGowan, Eileen; Onstead, Luisa; Eriksen, Jason; Yu, Cindy; Skipper, Lisa; Murphy, M. Paul; Beard, Jenny; Das, Pritam; Jansen, Karen; DeLucia, Michael; Lin, Wen-Lang; Dolios, Georgia; Wang, Rong; Eckman, Christopher B.; Dickson, Dennis W.; Hutton, Mike; Hardy, John; Golde, Todd

    2005-01-01

    Summary Considerable circumstantial evidence suggests that Aβ42 is the initiating molecule in Alzheimer's disease (AD) pathogenesis. However, the absolute requirement for Aβ42 for amyloid deposition has never been demonstrated in vivo. We have addressed this by developing transgenic models that express Aβ1-40 or Aβ1-42 in the absence of human amyloid β protein precursor (APP) overexpression. Mice expressing high levels of Aβ1-40 do not develop overt amyloid pathology. In contrast, mice expressing lower levels of Aβ1-42 accumulate insoluble Aβ1-42 and develop compact amyloid plaques, congophilic amyloid angiopathy (CAA), and diffuse Aβ deposits. When mice expressing Aβ1-42 are crossed with mutant APP (Tg2576) mice, there is also a massive increase in amyloid deposition. These data establish that Aβ1-42 is essential for amyloid deposition in the parenchyma and also in vessels. PMID:16039562

  4. Multiple isoforms of the human pentraxin serum amyloid P component

    DEFF Research Database (Denmark)

    Sørensen, Inge Juul; Andersen, Ove; Nielsen, EH;

    1995-01-01

    Human serum amyloid P component (SAP) isolated from 20 healthy individuals was analyzed by anion exchange chromatography and isoelectric focusing (IEF) in order to investigate the existence of multiple forms of SAP and interindividual structural differences. Anion exchange chromatography showed one...

  5. Outcome markers for clinical trials in cerebral amyloid angiopathy

    NARCIS (Netherlands)

    S.M. Greenberg (Steven); R.A.S. Salman (Rustam Al-Shahi); G.J. Biessels (Geert Jan); M.A. van Buchem (Mark); C. Cordonnier (Charlotte); J.-M. Lee (Jin-Moo); J. Montaner (Joan); J.A. Schneider (Julie); E.E. Smith (Eric); M.W. Vernooij (Meike); D.J. Werring (David)

    2014-01-01

    textabstractEfforts are underway for early-phase trials of candidate treatments for cerebral amyloid angiopathy, an untreatable cause of haemorrhagic stroke and vascular cognitive impairment. A major barrier to these trials is the absence of consensus on measurement of treatment effectiveness. A ran

  6. Peptide concentration alters intermediate species in amyloid β fibrillation kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Garvey, M., E-mail: megan.garvey@molbiotech.rwth-aachen.de [Max-Planck Research Unit for Enzymology of Protein Folding, Weinbergweg 22, 06120 Halle (Saale) (Germany); Morgado, I., E-mail: immorgado@ualg.pt [Max-Planck Research Unit for Enzymology of Protein Folding, Weinbergweg 22, 06120 Halle (Saale) (Germany)

    2013-04-12

    Highlights: ► Aβ(1–40) aggregation in vitro has been monitored at different concentrations. ► Aβ(1–40) fibrillation does not always follow conventional kinetic mechanisms. ► We demonstrate non-linear features in the kinetics of Aβ(1–40) fibril formation. ► At high Aβ(1–40) concentrations secondary processes dictate fibrillation speed. ► Intermediate species may play significant roles on final amyloid fibril development. -- Abstract: The kinetic mechanism of amyloid aggregation remains to be fully understood. Investigations into the species present in the different kinetic phases can assist our comprehension of amyloid diseases and further our understanding of the mechanism behind amyloid β (Aβ) (1–40) peptide aggregation. Thioflavin T (ThT) fluorescence and transmission electron microscopy (TEM) have been used in combination to monitor Aβ(1–40) aggregation in vitro at both normal and higher than standard concentrations. The observed fibrillation behaviour deviates, in several respects, from standard concepts of the nucleation–polymerisation models and shows such features as concentration-dependent non-linear effects in the assembly mechanism. Aβ(1–40) fibrillation kinetics do not always follow conventional kinetic mechanisms and, specifically at high concentrations, intermediate structures become populated and secondary processes may further modify the fibrillation mechanism.

  7. Mechanisms of beta-amyloid neurotoxicity : Perspectives of pharmacotherapy

    NARCIS (Netherlands)

    Harkany, T; Abraham, [No Value; Konya, C; Nyakas, C; Zarandi, M; Penke, B; Luiten, PGM

    2000-01-01

    One of the characteristic neuropathological hallmarks of Alzheimer's disease (AD) is the extracellular accumulation of beta -amyloid peptides (A beta) in neuritic plaques, Experimental data indicate that different molecular forms of A beta affect a wide array of neuronal and glial functions and ther

  8. Functional amyloids as inhibitors of plasmid DNA replication

    Science.gov (United States)

    Molina-García, Laura; Gasset-Rosa, Fátima; Moreno-del Álamo, María; Fernández-Tresguerres, M. Elena; Moreno-Díaz de la Espina, Susana; Lurz, Rudi; Giraldo, Rafael

    2016-01-01

    DNA replication is tightly regulated to constrain the genetic material within strict spatiotemporal boundaries and copy numbers. Bacterial plasmids are autonomously replicating DNA molecules of much clinical, environmental and biotechnological interest. A mechanism used by plasmids to prevent over-replication is ‘handcuffing’, i.e. inactivating the replication origins in two DNA molecules by holding them together through a bridge built by a plasmid-encoded initiator protein (Rep). Besides being involved in handcuffing, the WH1 domain in the RepA protein assembles as amyloid fibres upon binding to DNA in vitro. The amyloid state in proteins is linked to specific human diseases, but determines selectable and epigenetically transmissible phenotypes in microorganisms. Here we have explored the connection between handcuffing and amyloidogenesis of full-length RepA. Using a monoclonal antibody specific for an amyloidogenic conformation of RepA-WH1, we have found that the handcuffed RepA assemblies, either reconstructed in vitro or in plasmids clustering at the bacterial nucleoid, are amyloidogenic. The replication-inhibitory RepA handcuff assembly is, to our knowledge, the first protein amyloid directly dealing with DNA. Built on an amyloid scaffold, bacterial plasmid handcuffs can bring a novel molecular solution to the universal problem of keeping control on DNA replication initiation. PMID:27147472

  9. BSE-associated prion-amyloid cardiomyopathy in primates.

    Science.gov (United States)

    Krasemann, Susanne; Mearini, Giulia; Krämer, Elisabeth; Wagenführ, Katja; Schulz-Schaeffer, Walter; Neumann, Melanie; Bodemer, Walter; Kaup, Franz-Josef; Beekes, Michael; Carrier, Lucie; Aguzzi, Adriano; Glatzel, Markus

    2013-06-01

    Prion amyloidosis occurred in the heart of 1 of 3 macaques intraperitoneally inoculated with bovine spongiform encephalopathy prions. This macaque had a remarkably long duration of disease and signs of cardiac distress. Variant Creutzfeldt-Jakob disease, caused by transmission of bovine spongiform encephalopathy to humans, may manifest with cardiac symptoms from prion-amyloid cardiomyopathy.

  10. Renal amyloid A amyloidosis as a complication of hidradenitis suppurativa

    DEFF Research Database (Denmark)

    Schandorff, Kristine D; Miller, Iben M; Krustrup, Dorrit;

    2016-01-01

    Rheumatic disease is the dominant cause of amyloid A (AA) amyloidosis, but other chronic inflammatory diseases may have similar consequences. Hidradenitis suppurativa (HS) is a relatively common, but little known skin disease characterized by chronic inflammation. Here we present a case of chroni...... HS leading to biopsy-verified severe renal AA amyloidosis and dialysis dependency....

  11. Two-Step Amyloid Aggregation: Sequential Lag Phase Intermediates

    Science.gov (United States)

    Castello, Fabio; Paredes, Jose M.; Ruedas-Rama, Maria J.; Martin, Miguel; Roldan, Mar; Casares, Salvador; Orte, Angel

    2017-01-01

    The self-assembly of proteins into fibrillar structures called amyloid fibrils underlies the onset and symptoms of neurodegenerative diseases, such as Alzheimer’s and Parkinson’s. However, the molecular basis and mechanism of amyloid aggregation are not completely understood. For many amyloidogenic proteins, certain oligomeric intermediates that form in the early aggregation phase appear to be the principal cause of cellular toxicity. Recent computational studies have suggested the importance of nonspecific interactions for the initiation of the oligomerization process prior to the structural conversion steps and template seeding, particularly at low protein concentrations. Here, using advanced single-molecule fluorescence spectroscopy and imaging of a model SH3 domain, we obtained direct evidence that nonspecific aggregates are required in a two-step nucleation mechanism of amyloid aggregation. We identified three different oligomeric types according to their sizes and compactness and performed a full mechanistic study that revealed a mandatory rate-limiting conformational conversion step. We also identified the most cytotoxic species, which may be possible targets for inhibiting and preventing amyloid aggregation.

  12. Stop-and-go kinetics in amyloid fibrillation

    DEFF Research Database (Denmark)

    Ferkinghoff-Borg, Jesper; Fonslet, Jesper; Andersen, Christian Beyschau;

    2010-01-01

    Many human diseases are associated with protein aggregation and fibrillation. We present experiments on in vitro glucagon fibrillation using total internal reflection fluorescence microscopy, providing real-time measurements of single-fibril growth. We find that amyloid fibrils grow in an intermi...

  13. Amyloid goiter in a child - US, CT and MR evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Perez Fontan, F.J.; Mosquera Oses, J.; Pombo Felipe, F. (Hospital Juan Canalejo, La Coruna (Spain). Dept. of Radiology); Rodriguez Sanchez, I.; Arnaiz Pena, S. (Hospital Juan Canalejo, La Coruna (Spain). Dept. of Pediatric Oncology)

    1992-09-01

    There are few radiological descriptions of amyloid goiter, basically in adult patients or oriental origin. We present a ten-year-old boy with Still's disease and secondary thyroid amyloidosis, describing the US, CT and MR findings. (orig.).

  14. Polymorphic structures of Alzheimer's β-amyloid globulomers.

    Directory of Open Access Journals (Sweden)

    Xiang Yu

    Full Text Available BACKGROUND: Misfolding and self-assembly of Amyloid-β (Aβ peptides into amyloid fibrils is pathologically linked to the development of Alzheimer's disease. Polymorphic Aβ structures derived from monomers to intermediate oligomers, protofilaments, and mature fibrils have been often observed in solution. Some aggregates are on-pathway species to amyloid fibrils, while the others are off-pathway species that do not evolve into amyloid fibrils. Both on-pathway and off-pathway species could be biologically relevant species. But, the lack of atomic-level structural information for these Aβ species leads to the difficulty in the understanding of their biological roles in amyloid toxicity and amyloid formation. METHODS AND FINDINGS: Here, we model a series of molecular structures of Aβ globulomers assembled by monomer and dimer building blocks using our peptide-packing program and explicit-solvent molecular dynamics (MD simulations. Structural and energetic analysis shows that although Aβ globulomers could adopt different energetically favorable but structurally heterogeneous conformations in a rugged energy landscape, they are still preferentially organized by dynamic dimeric subunits with a hydrophobic core formed by the C-terminal residues independence of initial peptide packing and organization. Such structural organizations offer high structural stability by maximizing peptide-peptide association and optimizing peptide-water solvation. Moreover, curved surface, compact size, and less populated β-structure in Aβ globulomers make them difficult to convert into other high-order Aβ aggregates and fibrils with dominant β-structure, suggesting that they are likely to be off-pathway species to amyloid fibrils. These Aβ globulomers are compatible with experimental data in overall size, subunit organization, and molecular weight from AFM images and H/D amide exchange NMR. CONCLUSIONS: Our computationally modeled Aβ globulomers provide useful

  15. Amyloid Precursor Protein Processing in Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Adwait BHADBHADE

    2012-03-01

    Full Text Available How to Cite this Article: Bhadbhade A, Cheng DW. Amyloid Precursor Protein Processing in Alzheimer’s Disease. Iranian Journal of Child Neurology2012;6(1:1-5.Alzheimer’s disease (AD is a progressive neurodegenerative disorder and a leading cause of dementia. The AD is characterized by presence of intraneuronal tangles and extracellular plaques in the brain. The plaques are composed of dense and mostly insoluble deposits of amyloid beta peptide (Aβ, formed by sequential cleavage of the Amyloid Precursor Protein (APP, by two pathways amyloidogenic and non-amyloidogenic. Tangles are composed of paired helical fragments, which aggregate to form, microtubular protein tau. Although Aβ plaques are established to be the cause of the disease, there exist genetic factors and other pathological identifications in addition to these which are an integral part of the disease. This article gives an overview into the mechanism of APP action, genetic factors and other pathological identifications contributing to Alzheimer’s disease formation.References Brookmeyer R, Gray S, Kawas C. Projections of Alzheimer’s disease in the United States and the public health impact of delaying disease onset. American Journal of Public Health 1998;88(9:1337. Hebert LE, Scherr PA, Bienias JL, Bennett DA, Evans DA. Alzheimer disease in the US population. Arch Neurol 2003;60(8:1119-22. Möller HJ, Graeber M. The case described by Alois Alzheimer in 1911. European Archives of Psychiatry and Clinical Neuroscience 1998:248(3:111-122. Selkoe D J. (2002. Deciphering the genesis and fate of amyloid beta-protein yields novel therapies for Alzheimer disease. J Clinic Investigat 2002;110(10: 1375-82. Wolfe MS. Tau mutations in neurodegenerative diseases. J Biolog Chem 2009;284(10:6021. Selkoe DJ. Alzheimer’s disease: genes, proteins, and therapy. Physiological reviews 2001;81(2:741. Selkoe DJ. The cell biology of [beta]-amyloid precursor protein and presenilin in Alzheimer

  16. Targeting amyloid-degrading enzymes as therapeutic strategies in neurodegeneration.

    Science.gov (United States)

    Turner, Anthony J; Fisk, Lilia; Nalivaeva, Natalia N

    2004-12-01

    The levels of amyloid beta-peptides (Abeta) in the brain represent a dynamic equilibrium state as a result of their biosynthesis from the amyloid precursor protein (APP) by beta- and gamma-secretases, their degradation by a team of amyloid-degrading enzymes, their subsequent oligomerization, and deposition into senile plaques. While most therapeutic attention has focused on developing inhibitors of secretases to prevent Abeta formation, enhancing the rate of Abeta degradation represents an alternative and viable strategy. Current evidence both in vivo and in vitro suggests that there are three major players in amyloid turnover: neprilysin, endothelin converting enzyme(s), and insulin-degrading enzyme, all of which are zinc metallopeptidases. Other proteases have also been implicated in amyloid metabolism, including angiotensin-converting enzyme, and plasmin but for these the evidence is less compelling. Neprilysin and endothelin converting enzyme(s) are homologous membrane proteins of the M13 peptidase family, which normally play roles in the biosynthesis and/or metabolism of regulatory peptides. Insulin-degrading enzyme is structurally and mechanistically distinct. The regional, cellular, and subcellular localizations of these enzymes differ, providing an efficient and diverse mechanism for protecting the brain against the normal accumulation of toxic Abeta peptides. Reduction in expression levels of some of these proteases following insults (e.g., hypoxia and ischemia) or aging might predispose to the development of Alzheimer's disease. Conversely, enhancement of their levels by gene delivery or pharmacological means could be neuroprotective. Even a relatively small enhancement of Abeta metabolism could slow the inexorable progression of the disease. The relative merits of targeting these enzymes for the treatment of Alzheimer's disease will be reviewed and possible side-effects of enhancing their activity evaluated.

  17. Amyloid and tau cerebrospinal fluid biomarkers in HIV infection

    Directory of Open Access Journals (Sweden)

    Rosengren Lars

    2009-12-01

    Full Text Available Abstract Background Because of the emerging intersections of HIV infection and Alzheimer's disease, we examined cerebrospinal fluid (CSF biomarkers related of amyloid and tau metabolism in HIV-infected patients. Methods In this cross-sectional study we measured soluble amyloid precursor proteins alpha and beta (sAPPα and sAPPβ, amyloid beta fragment 1-42 (Aβ1-42, and total and hyperphosphorylated tau (t-tau and p-tau in CSF of 86 HIV-infected (HIV+ subjects, including 21 with AIDS dementia complex (ADC, 25 with central nervous system (CNS opportunistic infections and 40 without neurological symptoms and signs. We also measured these CSF biomarkers in 64 uninfected (HIV- subjects, including 21 with Alzheimer's disease, and both younger and older controls without neurological disease. Results CSF sAPPα and sAPPβ concentrations were highly correlated and reduced in patients with ADC and opportunistic infections compared to the other groups. The opportunistic infection group but not the ADC patients had lower CSF Aβ1-42 in comparison to the other HIV+ subjects. CSF t-tau levels were high in some ADC patients, but did not differ significantly from the HIV+ neuroasymptomatic group, while CSF p-tau was not increased in any of the HIV+ groups. Together, CSF amyloid and tau markers segregated the ADC patients from both HIV+ and HIV- neuroasymptomatics and from Alzheimer's disease patients, but not from those with opportunistic infections. Conclusions Parallel reductions of CSF sAPPα and sAPPβ in ADC and CNS opportunistic infections suggest an effect of CNS immune activation or inflammation on neuronal amyloid synthesis or processing. Elevation of CSF t-tau in some ADC and CNS infection patients without concomitant increase in p-tau indicates neural injury without preferential accumulation of hyperphosphorylated tau as found in Alzheimer's disease. These biomarker changes define pathogenetic pathways to brain injury in ADC that differ from those

  18. Endocytosed 2-Microglobulin Amyloid Fibrils Induce Necrosis and Apoptosis of Rabbit Synovial Fibroblasts by Disrupting Endosomal/Lysosomal Membranes: A Novel Mechanism on the Cytotoxicity of Amyloid Fibrils.

    Directory of Open Access Journals (Sweden)

    Tadakazu Okoshi

    Full Text Available Dialysis-related amyloidosis is a major complication in long-term hemodialysis patients. In dialysis-related amyloidosis, β2-microglobulin (β2-m amyloid fibrils deposit in the osteoarticular tissue, leading to carpal tunnel syndrome and destructive arthropathy with cystic bone lesions, but the mechanism by which these amyloid fibrils destruct bone and joint tissue is not fully understood. In this study, we assessed the cytotoxic effect of β2-m amyloid fibrils on the cultured rabbit synovial fibroblasts. Under light microscopy, the cells treated with amyloid fibrils exhibited both necrotic and apoptotic changes, while the cells treated with β2-m monomers and vehicle buffer exhibited no morphological changes. As compared to β2-m monomers and vehicle buffer, β2-m amyloid fibrils significantly reduced cellular viability as measured by the lactate dehydrogenase release assay and the 3-(4,5-di-methylthiazol-2-yl-2,5-diphenyltetrazolium bromide reduction assay and significantly increased the percentage of apoptotic cells as measured by the terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling method. β2-m amyloid fibrils added to the medium adhered to cell surfaces, but did not disrupt artificial plasma membranes as measured by the liposome dye release assay. Interestingly, when the cells were incubated with amyloid fibrils for several hours, many endosomes/lysosomes filled with amyloid fibrils were observed under confocal laser microscopy and electron microscopy, Moreover, some endosomal/lysosomal membranes were disrupted by intravesicular fibrils, leading to the leakage of the fibrils into the cytosol and adjacent to mitochondria. Inhibition of actin-dependent endocytosis by cytochalasin D attenuated the toxicity of amyloid fibrils. These results suggest that endocytosed β2-m amyloid fibrils induce necrosis and apoptosis by disrupting endosomal/lysosomal membranes, and this novel mechanism on the cytotoxicity of amyloid

  19. The Alzheimer's disease-associated amyloid beta-protein is an antimicrobial peptide.

    Directory of Open Access Journals (Sweden)

    Stephanie J Soscia

    Full Text Available BACKGROUND: The amyloid beta-protein (Abeta is believed to be the key mediator of Alzheimer's disease (AD pathology. Abeta is most often characterized as an incidental catabolic byproduct that lacks a normal physiological role. However, Abeta has been shown to be a specific ligand for a number of different receptors and other molecules, transported by complex trafficking pathways, modulated in response to a variety of environmental stressors, and able to induce pro-inflammatory activities. METHODOLOGY/PRINCIPAL FINDINGS: Here, we provide data supporting an in vivo function for Abeta as an antimicrobial peptide (AMP. Experiments used established in vitro assays to compare antimicrobial activities of Abeta and LL-37, an archetypical human AMP. Findings reveal that Abeta exerts antimicrobial activity against eight common and clinically relevant microorganisms with a potency equivalent to, and in some cases greater than, LL-37. Furthermore, we show that AD whole brain homogenates have significantly higher antimicrobial activity than aged matched non-AD samples and that AMP action correlates with tissue Abeta levels. Consistent with Abeta-mediated activity, the increased antimicrobial action was ablated by immunodepletion of AD brain homogenates with anti-Abeta antibodies. CONCLUSIONS/SIGNIFICANCE: Our findings suggest Abeta is a hitherto unrecognized AMP that may normally function in the innate immune system. This finding stands in stark contrast to current models of Abeta-mediated pathology and has important implications for ongoing and future AD treatment strategies.

  20. Design of β-amyloid aggregation inhibitors from a predicted structural motif

    Science.gov (United States)

    Novick, Paul A.; Lopes, Dahabada H.; Branson, Kim M.; Esteras-Chopo, Alexandra; Graef, Isabella A.; Bitan, Gal; Pande, Vijay S.

    2012-01-01

    Drug design studies targeting one of the primary toxic agents in Alzheimer’s Disease, soluble oligomers of amyloid β-protein (Aβi), have been complicated by the rapid, heterogeneous aggregation of Aβ and the resulting difficulty to structurally characterize the peptide. To address this, we have developed [Nle35, D-Pro37]Aβ42, a substituted peptide inspired from molecular dynamics simulations which forms structures stable enough to be analyzed by NMR. We report herein that [Nle35, D-Pro37]Aβ42 stabilizes the trimer, and prevents mature fibril and β-sheet formation. Further, [Nle35, D-Pro37]Aβ42 interacts with WT Aβ42 and reduces aggregation levels and fibril formation in mixtures. Using ligand-based drug design based on [Nle35, D-Pro37]Aβ42, a lead compound was identified with effects on inhibition similar to the peptide. The ability of [Nle35, D-Pro37]Aβ42 and the compound to inhibit the aggregation of Aβ42 provides a novel tool to study the structure of Aβ oligomers. More broadly, our data demonstrate how molecular dynamics simulation can guide experiment for further research into AD. PMID:22420626

  1. Protective effects of Nitraria retusa extract and its constituent isorhamnetin against amyloid β-induced cytotoxicity and amyloid β aggregation.

    Science.gov (United States)

    Iida, Akihisa; Usui, Takeo; Zar Kalai, Feten; Han, Junkyu; Isoda, Hiroko; Nagumo, Yoko

    2015-01-01

    Nitraria retusa is a halophyte species that is distributed in North Africa and used as a traditional medicinal plant. In this study, N. retusa ethanol extract and its constituent isorhamnetin (IRA) protected against amyloid β (Aβ)-induced cytotoxicity in human neuroblastoma SH-SY5Y cells. An in vitro Aβ aggregation assay suggested that IRA destabilizes Aβ fibrils.

  2. Targeting vascular amyloid in arterioles of Alzheimer disease transgenic mice with amyloid β protein antibody-coated nanoparticles.

    Science.gov (United States)

    Poduslo, Joseph F; Hultman, Kristi L; Curran, Geoffry L; Preboske, Gregory M; Chamberlain, Ryan; Marjańska, Małgorzata; Garwood, Michael; Jack, Clifford R; Wengenack, Thomas M

    2011-08-01

    The relevance of cerebral amyloid angiopathy (CAA) to the pathogenesis of Alzheimer disease (AD) and dementia in general emphasizes the importance of developing novel targeting approaches for detecting and treating cerebrovascular amyloid (CVA) deposits. We developed a nanoparticle-based technology that uses a monoclonal antibody against fibrillar human amyloid-β42 that is surface coated onto a functionalized phospholipid monolayer. We demonstrate that this conjugated nanoparticle binds to CVA deposits in arterioles of AD transgenic mice (Tg2576) after infusion into the external carotid artery using 3 different approaches. The first 2 approaches use a blood vessel enrichment of homogenized brain and a leptomeningeal vessel preparation from thin tangential brain slices from the surface of the cerebral cortex. Targeting of CVA by the antibody-coated nanoparticle was visualized using fluorescent lissamine rhodamine-labeled phospholipids in the nanoparticles, which were compared with fluorescent staining of the endothelial cells and amyloid deposits using confocal laser scanning microscopy. The third approach used high-field strength magnetic resonance imaging of antibody-coated iron oxide nanoparticles after infusion into the external carotid artery. Dark foci of contrast enhancement in cortical arterioles were observed in T2*-weighted images of ex vivo AD mouse brains that correlated histologically with CVA deposits. The targeting ability of these nanoparticles to CVA provides opportunities for the prevention and treatment of CAA.

  3. Visualization of Metal-to-Ligand and Ligand-to-Ligand Charge Transfer in Metal-Ligand Complexes

    Institute of Scientific and Technical Information of China (English)

    Yong Ding; Jian-xiu Guo; Xiang-si Wang; Sha-sha Liu; Feng-cai Ma

    2009-01-01

    Three methods including the atomic resolved density of state, charge difference density, and the transition density matrix are used to visualize metal to ligand charge transfer (MLCT) in ruthenium(Ⅱ) ammine complex. The atomic resolved density of state shows that there is density of Ru on the HOMOs. All the density is localized on the ammine, which reveals that the excited electrons in the Ru complex are delocalized over the ammine ligand. The charge difference density shows that all the holes are localized on the Ru and the electrons on the ammine. The localization explains the MLCT on excitation. The transition density matrix shows that there is electron-hole coherence between Ru and ammine. These methods are also used to examine the MLCT in Os(bpy)(p0p)Cl ("Osp0p"; bpy=2,2'-bipyridyl; p0p=4,4'-bipyridyl) and the ligand-to-ligand charge transfer (LLCT) in Alq3. The calculated results show that these methods are powerful to examine MLCT and LLCT in the metal-ligand system.

  4. Protective properties of lysozyme on β-amyloid pathology: implications for Alzheimer disease.

    Science.gov (United States)

    Helmfors, Linda; Boman, Andrea; Civitelli, Livia; Nath, Sangeeta; Sandin, Linnea; Janefjord, Camilla; McCann, Heather; Zetterberg, Henrik; Blennow, Kaj; Halliday, Glenda; Brorsson, Ann-Christin; Kågedal, Katarina

    2015-11-01

    The hallmarks of Alzheimer disease are amyloid-β plaques and neurofibrillary tangles accompanied by signs of neuroinflammation. Lysozyme is a major player in the innate immune system and has recently been shown to prevent the aggregation of amyloid-β1-40 in vitro. In this study we found that patients with Alzheimer disease have increased lysozyme levels in the cerebrospinal fluid and lysozyme co-localized with amyloid-β in plaques. In Drosophila neuronal co-expression of lysozyme and amyloid-β1-42 reduced the formation of soluble and insoluble amyloid-β species, prolonged survival and improved the activity of amyloid-β1-42 transgenic flies. This suggests that lysozyme levels rise in Alzheimer disease as a compensatory response to amyloid-β increases and aggregation. In support of this, in vitro aggregation assays revealed that lysozyme associates with amyloid-β1-42 and alters its aggregation pathway to counteract the formation of toxic amyloid-β species. Overall, these studies establish a protective role for lysozyme against amyloid-β associated toxicities and identify increased lysozyme in patients with Alzheimer disease. Therefore, lysozyme has potential as a new biomarker as well as a therapeutic target for Alzheimer disease.

  5. Alzheimer's disease amyloid peptides interact with DNA, as proved by surface plasmon resonance.

    Science.gov (United States)

    Barrantes, Alejandro; Camero, Sergio; Garcia-Lucas, Angel; Navarro, Pedro J; Benitez, María J; Jiménez, Juan S

    2012-10-01

    According to the amyloid hypothesis, abnormal processing of the β-amyloid precursor protein in Alzheimer's disease patients increases the production of β-amyloid toxic peptides, which, after forming highly aggregated fibrillar structures, lead to extracellular plaques formation, neuronal loss and dementia. However, a great deal of evidence has point to intracellular small oligomers of amyloid peptides, probably transient intermediates in the process of fibrillar structures formation, as the most toxic species. In order to study the amyloid-DNA interaction, we have selected here three different forms of the amyloid peptide: Aβ1-40, Aβ25-35 and a scrambled form of Aβ25-35. Surface Plasmon Resonance was used together with UV-visible spectroscopy, Electrophoresis and Electronic Microscopy to carry out this study. Our results prove that, similarly to the full length Aβ1-42, all conformations of toxic amyloid peptides, Aβ1-40 and Aβ25-35, may bind DNA. In contrast, the scrambled form of Aβ25-35, a non-aggregating and nontoxic form of this peptide, could not bind DNA. We conclude that although the amyloid-DNA interaction is closely related to the amyloid aggregation proneness, this cannot be the only factor which determines the interaction, since small oligomers of amyloid peptides may also bind DNA if their predominant negatively charged amino acid residues are previously neutralized.

  6. Cerebrolysin decreases amyloid-beta production by regulating amyloid protein precursor maturation in a transgenic model of Alzheimer's disease.

    Science.gov (United States)

    Rockenstein, Edward; Torrance, Magdalena; Mante, Michael; Adame, Anthony; Paulino, Amy; Rose, John B; Crews, Leslie; Moessler, Herbert; Masliah, Eliezer

    2006-05-15

    Cerebrolysin is a peptide mixture with neurotrophic effects that might reduce the neurodegenerative pathology in Alzheimer's disease (AD). We have previously shown in an amyloid protein precursor (APP) transgenic (tg) mouse model of AD-like neuropathology that Cerebrolysin ameliorates behavioral deficits, is neuroprotective, and decreases amyloid burden; however, the mechanisms involved are not completely clear. Cerebrolysin might reduce amyloid deposition by regulating amyloid-beta (Abeta) degradation or by modulating APP expression, maturation, or processing. To investigate these possibilities, APP tg mice were treated for 6 months with Cerebrolysin and analyzed in the water maze, followed by RNA, immunoblot, and confocal microscopy analysis of full-length (FL) APP and its fragments, beta-secretase (BACE1), and Abeta-degrading enzymes [neprilysin (Nep) and insulin-degrading enzyme (IDE)]. Consistent with previous studies, Cerebrolysin ameliorated the performance deficits in the spatial learning portion of the water maze and reduced the synaptic pathology and amyloid burden in the brains of APP tg mice. These effects were associated with reduced levels of FL APP and APP C-terminal fragments, but levels of BACE1, Notch1, Nep, and IDE were unchanged. In contrast, levels of active cyclin-dependent kinase-5 (CDK5) and glycogen synthase kinase-3beta [GSK-3beta; but not stress-activated protein kinase-1 (SAPK1)], kinases that phosphorylate APP, were reduced. Furthermore, Cerebrolysin reduced the levels of phosphorylated APP and the accumulation of APP in the neuritic processes. Taken together, these results suggest that Cerebrolysin might reduce AD-like pathology in the APP tg mice by regulating APP maturation and transport to sites where Abeta protein is generated. This study clarifies the mechanisms through which Cerebrolysin might reduce Abeta production and deposition in AD and further supports the importance of this compound in the potential treatment of early AD.

  7. Goodpasture Antigen-binding Protein/Ceramide Transporter Binds to Human Serum Amyloid P-Component and Is Present in Brain Amyloid Plaques

    NARCIS (Netherlands)

    Mencarelli, Chiara; Bode, Gerard H.; Losen, Mario; Kulharia, Mahesh; Molenaar, Peter C.; Veerhuis, Robert; Steinbusch, Harry W. M.; De Baets, Marc H.; Nicolaes, Gerry A. F.; Martinez-Martinez, Pilar

    2012-01-01

    Serum amyloid P component (SAP) is a non-fibrillar glycoprotein belonging to the pentraxin family of the innate immune system. SAP is present in plasma, basement membranes, and amyloid deposits. This study demonstrates, for the first time, that the Goodpasture antigen-binding protein (GPBP) binds to

  8. Curcumin as the OO bidentate ligand in "2 + 1" complexes with the [M(CO)3]+ (M = Re, 99mTc) tricarbonyl core for radiodiagnostic applications.

    Science.gov (United States)

    Sagnou, Marina; Benaki, Dimitra; Triantis, Charalampos; Tsotakos, Theodoros; Psycharis, Vassilis; Raptopoulou, Catherine P; Pirmettis, Ioannis; Papadopoulos, Minas; Pelecanou, Maria

    2011-02-21

    The synthesis and characterization of "2 + 1" complexes of the [M(CO)(3)](+) (M = Re, (99m)Tc) core with the β-diketones acetylacetone (complexes 2, 8) and curcumin (complexes 5, 10 and 6, 11) as bidentate OO ligands, and imidazole or isocyanocyclohexane as monodentate ligands is reported. The complexes were synthesized by reacting the [NEt(4)](2)[Re(CO)(3)Br(3)] precursor with the β-diketone to generate the intermediate aqua complex fac-Re(CO)(3)(OO)(H(2)O) that was isolated and characterized, followed by replacement of the labile water by the monodentate ligand. All complexes were characterized by mass spectrometry, NMR and IR spectroscopies, and elemental analysis. In the case of complex 2, bearing imidazole as the monodentate ligand, X-ray analysis was possible. The chemistry was successfully transferred at (99m)Tc tracer level. The curcumin complexes 5 and 6, as well as their intermediate aqua complex 4, that bear potential for radiopharmaceutical applications due to the wide spectrum of pharmacological activity of curcumin, were successfully tested for selective staining of β-amyloid plaques of Alzheimer's disease. The fact that the complexes maintain the affinity of the mother compound curcumin for β-amyloid plaques prompts for further exploration of their chemistry and biological properties as radioimaging probes.

  9. Why mercury prefers soft ligands

    Energy Technology Data Exchange (ETDEWEB)

    Riccardi, Demian M [ORNL; Guo, Hao-Bo [ORNL; Gu, Baohua [ORNL; Parks, Jerry M [ORNL; Summers, Anne [University of Georgia, Athens, GA; Miller, S [University of California, San Francisco; Liang, Liyuan [ORNL; Smith, Jeremy C [ORNL

    2013-01-01

    Mercury (Hg) is a major global pollutant arising from both natural and anthropogenic sources. Defining the factors that determine the relative affinities of different ligands for the mercuric ion, Hg2+, is critical to understanding its speciation, transformation, and bioaccumulation in the environment. Here, we use quantum chemistry to dissect the relative binding free energies for a series of inorganic anion complexes of Hg2+. Comparison of Hg2+ ligand interactions in the gaseous and aqueous phases shows that differences in interactions with a few, local water molecules led to a clear periodic trend within the chalcogenide and halide groups and resulted in the well-known experimentally observed preference of Hg2+ for soft ligands such as thiols. Our approach establishes a basis for understanding Hg speciation in the biosphere.

  10. Molecular Recognition and Ligand Association

    Science.gov (United States)

    Baron, Riccardo; McCammon, J. Andrew

    2013-04-01

    We review recent developments in our understanding of molecular recognition and ligand association, focusing on two major viewpoints: (a) studies that highlight new physical insight into the molecular recognition process and the driving forces determining thermodynamic signatures of binding and (b) recent methodological advances in applications to protein-ligand binding. In particular, we highlight the challenges posed by compensating enthalpic and entropic terms, competing solute and solvent contributions, and the relevance of complex configurational ensembles comprising multiple protein, ligand, and solvent intermediate states. As more complete physics is taken into account, computational approaches increase their ability to complement experimental measurements, by providing a microscopic, dynamic view of ensemble-averaged experimental observables. Physics-based approaches are increasingly expanding their power in pharmacology applications.

  11. Association between Cerebral Amyloid Deposition and Clinical Factors Including Cognitive Function in Geriatric Depression: Pilot Study Using Amyloid Positron Emission Tomography

    Science.gov (United States)

    Kim, Hye-Geum; Kong, Eun-Jung; Cheon, Eun-Jin; Kim, Hae-Won; Koo, Bon-Hoon

    2016-01-01

    The purpose of this study was to explore the relationship between cerebral amyloid deposition and overall clinical factors including cognitive functions in geriatric depression by using 18F-florbetaben positron emission tomography. Thirteen subjects aged over 60 years who had a history of major depressive disorder and also had subjective memory complaint were included. Of all subjects, 3 subjects judged as amyloid positive, and the others judged as amyloid negative. Their memory, visuospatial functions and attention abilities were negatively correlated with amyloid deposition in specific brain regions, but their language and recognition abilities were not correlated with any region. The amyloid deposition of the whole brain region was significantly negatively correlated with immediate memory. PMID:27776391

  12. Effect of amyloid on memory and non-memory decline from preclinical to clinical Alzheimer's disease.

    Science.gov (United States)

    Lim, Yen Ying; Maruff, Paul; Pietrzak, Robert H; Ames, David; Ellis, Kathryn A; Harrington, Karra; Lautenschlager, Nicola T; Szoeke, Cassandra; Martins, Ralph N; Masters, Colin L; Villemagne, Victor L; Rowe, Christopher C

    2014-01-01

    High amyloid has been associated with substantial episodic memory decline over 18 and 36 months in healthy older adults and individuals with mild cognitive impairment. However, the nature and magnitude of amyloid-related memory and non-memory change from the preclinical to the clinical stages of Alzheimer's disease has not been evaluated over the same time interval. Healthy older adults (n = 320), individuals with mild cognitive impairment (n = 57) and individuals with Alzheimer's disease (n = 36) enrolled in the Australian Imaging, Biomarkers and Lifestyle study underwent at least one positron emission tomography neuroimaging scan for amyloid. Cognitive assessments were conducted at baseline, and 18- and 36-month follow-up assessments. Compared with amyloid-negative healthy older adults, amyloid-positive healthy older adults, and amyloid-positive individuals with mild cognitive impairment and Alzheimer's disease showed moderate and equivalent decline in verbal and visual episodic memory over 36 months (d's = 0.47-0.51). Relative to amyloid-negative healthy older adults, amyloid-positive healthy older adults showed no decline in non-memory functions, but amyloid-positive individuals with mild cognitive impairment showed additional moderate decline in language, attention and visuospatial function (d's = 0.47-1.12), and amyloid-positive individuals with Alzheimer's disease showed large decline in all aspects of memory and non-memory function (d's = 0.73-2.28). Amyloid negative individuals with mild cognitive impairment did not show any cognitive decline over 36 months. When non-demented individuals (i.e. healthy older adults and adults with mild cognitive impairment) were further dichotomized, high amyloid-positive non-demented individuals showed a greater rate of decline in episodic memory and language when compared with low amyloid positive non-demented individuals. Memory decline does not plateau with increasing disease severity, and decline in non

  13. Insights into the Interaction Mechanism of Ligands with Aβ42 Based on Molecular Dynamics Simulations and Mechanics: Implications of Role of Common Binding Site in Drug Design for Alzheimer's Disease.

    Science.gov (United States)

    Kundaikar, Harish S; Degani, Mariam S

    2015-10-01

    Aggregation of β-amyloid (Aβ) into oligomers and further into fibrils is hypothesized to be a key factor in pathology of Alzheimer's disease (AD). In this study, mapping and docking were used to study the binding of ligands to protofibrils. It was followed by molecular simulations to understand the differences in interactions of known therapeutic agents such as curcumin, fluorescence-based amyloid staining agents such as thioflavin T, and diagnostic agents such as florbetapir (AV45), with Aβ protofibrils. We show that therapeutic agents bind to and distort the protofibrils, thus causing destabilization or prevention of oligomerization, in contrast to diagnostic agents which bind to but do not distort such structures. This has implications in the rational design of ligands, both for diagnostics and therapeutics of AD.

  14. Kinetic studies with iodine-123-labeled serum amyloid P component in patients with systemic AA and AL amyloidosis and assessment of clinical value

    NARCIS (Netherlands)

    Jager, PL; Hazenberg, BPC; Franssen, EJF; Limburg, PC; van Rijswijk, MH; Piers, DA

    1998-01-01

    In systemic amyloidosis, widespread amyloid deposition interferes with organ function, frequently with fatal consequences. Diagnosis rests on demonstrating amyloid deposits in the tissues, traditionally with histology although scintigraphic imaging with radiolabeled serum amyloid P component (SAP) h

  15. Effect of Metals on Kinetic Pathways of Amyloid-β Aggregation

    Directory of Open Access Journals (Sweden)

    Francis Hane

    2014-01-01

    Full Text Available Metal ions, including copper and zinc, have been implicated in the pathogenesis of Alzheimer’s disease through a variety of mechanisms including increased amyloid-β affinity and redox effects. Recent reports have demonstrated that the amyloid-β monomer does not necessarily travel through a definitive intermediary en-route to a stable amyloid fibril structure. Rather, amyloid-β misfolding may follow a variety of pathways resulting in a fibrillar end-product or a variety of oligomeric end-products with a diversity of structures and sizes. The presence of metal ions has been demonstrated to alter the kinetic pathway of the amyloid-β peptide which may lead to more toxic oligomeric end-products. In this work, we review the contemporary literature supporting the hypothesis that metal ions alter the reaction pathway of amyloid-β misfolding leading to more neurotoxic species.

  16. Sulfonated dyes attenuate the toxic effects of beta-amyloid in a structure-specific fashion.

    Science.gov (United States)

    Pollack, S J; Sadler, I I; Hawtin, S R; Tailor, V J; Shearman, M S

    1995-09-15

    We recently reported that several sulfate-containing glycosaminoglycans, a class of compounds associated with the beta-amyloid plaques of Alzheimer's disease, attenuate the toxic effects of beta-amyloid fragments beta 25-35 and beta 1-40. The amyloid-binding sulfonated dye Congo Red was shown to have a similar effect. Using two clonal cell lines, we now demonstrate that several sulfonated dyes attenuate beta-amyloid toxicity and that the protective effect appears specific for compounds whose sulfonate groups can interact with the beta-pleated structure of aggregated amyloid. These results suggest that by binding beta-amyloid these compounds may prevent toxic interactions of the peptide with cells.

  17. Distinguishing the cross-beta spine arrangements in amyloid fibrils using FRET analysis.

    Science.gov (United States)

    Deng, Wei; Cao, Aoneng; Lai, Luhua

    2008-06-01

    The recently published microcrystal structures of amyloid fibrils from small peptides greatly enhanced our understanding of the atomic-level structure of the amyloid fibril. However, only a few amyloid fibrils can form microcrystals. The dansyl-tryptophan fluorescence resonance energy transfer (FRET) pair was shown to be able to detect the inter-peptide arrangement of the Transthyretin (105-115) amyloid fibril. In this study, we combined the known microcrystal structures with the corresponding FRET efficiencies to build a model for amyloid fibril structure classification. We found that fibrils with an antiparallel structural arrangement gave the largest FRET signal, those with a parallel arrangement gave the lowest FRET signal, and those with a mixed arrangement gave a moderate FRET signal. This confirms that the amyloid fibril structure patterns can be classified based on the FRET efficiency.

  18. In vivo amyloid aggregation kinetics tracked by time-lapse confocal microscopy in real-time.

    Science.gov (United States)

    Villar-Piqué, Anna; Espargaró, Alba; Ventura, Salvador; Sabate, Raimon

    2016-01-01

    Amyloid polymerization underlies an increasing number of human diseases. Despite this process having been studied extensively in vitro, aggregation is a difficult process to track in vivo due to methodological limitations and the slow kinetics of aggregation reactions in cells and tissues. Herein we exploit the amyloid properties of the inclusions bodies (IBs) formed by amyloidogenic proteins in bacteria to address the kinetics of in vivo amyloid aggregation. To this aim we used time-lapse confocal microscopy and a fusion of the amyloid-beta peptide (A β42) with a fluorescent reporter. This strategy allowed us to follow the intracellular kinetics of amyloid-like aggregation in real-time and to discriminate between variants exhibiting different in vivo aggregation propensity. Overall, the approach opens the possibility to assess the impact of point mutations as well as potential anti-aggregation drugs in the process of amyloid formation in living cells.

  19. Neurotrophic and Neurotoxic Effects of Amyloid |beta Protein: Reversal by Tachykinin Neuropeptides

    Science.gov (United States)

    Yankner, Bruce A.; Duffy, Lawrence K.; Kirschner, Daniel A.

    1990-10-01

    The amyloid β protein is deposited in the brains of patients with Alzheimer's disease but its pathogenic role is unknown. In culture, the amyloid β protein was neurotrophic to undifferentiated hippocampal neurons at low concentrations and neurotoxic to mature neurons at higher concentrations. In differentiated neurons, amyloid β protein caused dendritic and axonal retraction followed by neuronal death. A portion of the amyloid β protein (amino acids 25 to 35) mediated both the trophic and toxic effects and was homologous to the tachykinin neuropeptide family. The effects of the amyloid β protein were mimicked by tachykinin antagonists and completely reversed by specific tachykinin agonists. Thus, the amyloid β protein could function as a neurotrophic factor for differentiating neurons, but at high concentrations in mature neurons, as in Alzheimer's disease, could cause neuronal degeneration.

  20. Thermodynamics of amyloid formation and the role of intersheet interactions.

    Science.gov (United States)

    Irbäck, Anders; Wessén, Jonas

    2015-09-14

    The self-assembly of proteins into β-sheet-rich amyloid fibrils has been observed to occur with sigmoidal kinetics, indicating that the system initially is trapped in a metastable state. Here, we use a minimal lattice-based model to explore the thermodynamic forces driving amyloid formation in a finite canonical (NVT) system. By means of generalized-ensemble Monte Carlo techniques and a semi-analytical method, the thermodynamic properties of this model are investigated for different sets of intersheet interaction parameters. When the interactions support lateral growth into multi-layered fibrillar structures, an evaporation/condensation transition is observed, between a supersaturated solution state and a thermodynamically distinct state where small and large fibril-like species exist in equilibrium. Intermediate-size aggregates are statistically suppressed. These properties do not hold if aggregate growth is one-dimensional.

  1. Thermodynamics of amyloid formation and the role of intersheet interactions

    CERN Document Server

    Irbäck, Anders

    2016-01-01

    The self-assembly of proteins into $\\beta$-sheet-rich amyloid fibrils has been observed to occur with sigmoidal kinetics, indicating that the system initially is trapped in a metastable state. Here, we use a minimal lattice-based model to explore the thermodynamic forces driving amyloid formation in a finite canonical ($NVT$) system. By means of generalized-ensemble Monte Carlo techniques and a semi-analytical method, the thermodynamic properties of this model are investigated for different sets of intersheet interaction parameters. When the interactions support lateral growth into multi-layered fibrillar structures, an evaporation/condensation transition is observed, between a supersaturated solution state and a thermodynamically distinct state where small and large fibril-like species exist in equilibrium. Intermediate-size aggregates are statistically suppressed. These properties do not hold if aggregate growth is one-dimensional.

  2. Amyloid-like fibril elongation follows michaelis-menten kinetics.

    Science.gov (United States)

    Milto, Katazyna; Botyriute, Akvile; Smirnovas, Vytautas

    2013-01-01

    A number of proteins can aggregate into amyloid-like fibrils. It was noted that fibril elongation has similarities to an enzymatic reaction, where monomers or oligomers would play a role of substrate and nuclei/fibrils would play a role of enzyme. The question is how similar these processes really are. We obtained experimental data on insulin amyloid-like fibril elongation at the conditions where other processes which may impact kinetics of fibril formation are minor and fitted it using Michaelis-Menten equation. The correlation of the fit is very good and repeatable. It speaks in favour of enzyme-like model of fibril elongation. In addition, obtained [Formula: see text] and [Formula: see text] values at different conditions may help in better understanding influence of environmental factors on the process of fibril elongation.

  3. Gold Nanoparticles and Microwave Irradiation Inhibit Beta-Amyloid Amyloidogenesis

    Directory of Open Access Journals (Sweden)

    Bastus Neus

    2008-01-01

    Full Text Available Abstract Peptide-Gold nanoparticles selectively attached to β-amyloid protein (Aβ amyloidogenic aggregates were irradiated with microwave. This treatment produces dramatic effects on the Aβ aggregates, inhibiting both the amyloidogenesis and the restoration of the amyloidogenic potential. This novel approach offers a new strategy to inhibit, locally and remotely, the amyloidogenic process, which could have application in Alzheimer’s disease therapy. We have studied the irradiation effect on the amyloidogenic process in the presence of conjugates peptide-nanoparticle by transmission electronic microscopy observations and by Thioflavine T assays to quantify the amount of fibrils in suspension. The amyloidogenic aggregates rather than the amyloid fibrils seem to be better targets for the treatment of the disease. Our results could contribute to the development of a new therapeutic strategy to inhibit the amyloidogenic process in Alzheimer’s disease.

  4. Management of asymptomatic gene carriers of transthyretin familial amyloid polyneuropathy.

    Science.gov (United States)

    Schmidt, Hartmut H-J; Barroso, Fabio; González-Duarte, Alejandra; Conceição, Isabel; Obici, Laura; Keohane, Denis; Amass, Leslie

    2016-09-01

    Transthyretin familial amyloid polyneuropathy (TTR-FAP) is a rare, severe, and irreversible, adult-onset, hereditary disorder caused by autosomal-dominant mutations in the TTR gene that increase the intrinsic propensity of transthyretin protein to misfold and deposit systemically as insoluble amyloid fibrils in nerve tissues, the heart, and other organs. TTR-FAP is characterized by relentless, progressively debilitating polyneuropathy, and leads to death, on average, within 10 years of symptom onset without treatment. With increased availability of disease-modifying treatment options for a wider spectrum of patients with TTR-FAP, timely detection of the disease may offer substantial clinical benefits. This review discusses mutation-specific predictive genetic testing in first-degree relatives of index patients diagnosed with TTR-FAP and the structured clinical follow-up of asymptomatic gene carriers for prompt diagnosis and early therapeutic intervention before accumulation of substantial damage. Muscle Nerve 54: 353-360, 2016.

  5. Betaine suppressed Aβ generation by altering amyloid precursor protein processing.

    Science.gov (United States)

    Liu, Xiu-Ping; Qian, Xiang; Xie, Yue; Qi, Yan; Peng, Min-Feng; Zhan, Bi-Cui; Lou, Zheng-Qing

    2014-07-01

    Betaine was an endogenous catabolite of choline, which could be isolated from vegetables and marine products. Betaine could promote the metabolism of homocysteine in healthy subjects and was used for hyperlipidemia, coronary atherosclerosis, and fatty liver in clinic. Recent findings shown that Betaine rescued neuronal damage due to homocysteine induced Alzheimer's disease (AD) like pathological cascade, including tau hyperphosphorylation and amyloid-β (Aβ) deposition. Aβ was derived from amyloid precursor protein (APP) processing, and was a triggering factor for AD pathological onset. Here, we demonstrated that Betaine reduced Aβ levels by altering APP processing in N2a cells stably expressing Swedish mutant of APP. Betaine increased α-secretase activity, but decreased β-secretase activity. Our data indicate that Betaine might play a protective role in Aβ production.

  6. New Cyclolignans from Origanumglandulosum Active Against b -amyloid Aggregation

    Directory of Open Access Journals (Sweden)

    Abdelkader Basli

    2014-05-01

    Full Text Available Origanum glandulosum Desf is an endemic flavoring herb widely distributed in North Africa that is commonly used in traditional medicine. This oregano species is rich in essential oils but little is known about its phenolic composition. In the present study, a crude extract of O. glandulosum was prepared in order to isolate and investigate its neuroprotective potential to inhibit β-amyloid peptide (Aβ aggregation. The three major compounds of the extract were isolated: rosmarinic acid and two cyclolignans in Origanum genus, globoidnan A and a new derivative named globoidnan B. Rosmarinic acid and globoidnan A showed significant anti-aggregative activity against β amyloid aggregation (IC50 7.0 and 12.0 µM, respectively. In contrast, globoidnan B was found to be less active.

  7. Prevalence of amyloid PET positivity in dementia syndromes

    DEFF Research Database (Denmark)

    Ossenkoppele, Rik; Jansen, Willemijn J; Rabinovici, Gil D;

    2015-01-01

    IMPORTANCE: Amyloid-β positron emission tomography (PET) imaging allows in vivo detection of fibrillar plaques, a core neuropathological feature of Alzheimer disease (AD). Its diagnostic utility is still unclear because amyloid plaques also occur in patients with non-AD dementia. OBJECTIVE: To use...... on neurological or psychiatric diseases other than dementia were excluded. Corresponding authors of eligible cohorts were invited to provide individual participant data. DATA EXTRACTION AND SYNTHESIS: Data were provided for 1359 participants with clinically diagnosed AD and 538 participants with non-AD dementia...... years; n = 377) and to a lesser degree in APOE ε4 carriers (97% [95% CI, 92%-99%] at 50 years to 90% [95% CI, 83%-94%] at 90 years; n = 593; P non-AD dementias...

  8. How curcumin affords effective protection against amyloid fibrillation in insulin?

    DEFF Research Database (Denmark)

    Rabiee, Atefeh; Ebrahim Habibi, Azadeh; Ghasemi, Atiyeh Ghasemi;

    2013-01-01

    seems to be one of these compounds, possessing key structural components effective toward fibrillation prevention, and its anti-amyloidogenic property has been reported for a number of model and disease-related proteins such as lysozyme and alphasynuclein. In this study, insulin amyloid formation has......Since the formation of amyloid structures from proteins was recognized in numerous diseases, many efforts have been devoted to the task of finding effective anti-amyloidogenic compounds. In a number of these investigations, the existence of “generic” compounds is implicitly acknowledged. Curcumin...... been shown effectively influenced by micro molar concentrations of curcumin. Under amyloidogenic conditions (pH 2.5 and 37°C), the compound was observed to inhibit fibril formation of insulin in a dose-dependent manner. Moreover, addition of curcumin to the protein incubated in such conditions...

  9. Solitary osteosclerotic plasmacytoma: association with demyelinating polyneuropathy and amyloid deposition

    Energy Technology Data Exchange (ETDEWEB)

    Voss, S.D.; Hall, F.M. [Dept. of Radiology, Beth Israel Deaconess Medical Center, Boston, MA (United States); Harvard Medical School, Boston, MA (United States); Murphey, M.D. [Dept. of Radiologic Pathology, Armed Forces Institute of Pathology, Washington, DC (United States); Dept. of Radiology and Nuclear Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD (United States); Department of Radiology, University of Maryland School of Medicine, Baltimore, Maryland (United States)

    2001-09-01

    A 51-year-old man presented with a 1-year history of polyneuropathy necessitating the use of a wheelchair. Initial diagnosis was idiopathic chronic inflammatory demyelinating polyneuropathy (CIDP) and associated monoclonal gammopathy. Investigations for multiple myeloma, including bone marrow aspiration and biopsy, were negative. What was initially felt to be an incidental osteosclerotic focus noted on the radiographic bone survey was eventually shown to be a solitary osteosclereotic plasmacytoma with associated amyloid. This dramatically altered treatment. This case emphasizes the importance of including osteosclerotic plasmacytoma in the differential diagnosis of a focal sclerotic bone lesion in the clinical setting of polyneuropathy. These lesions are less likely to progress to multiple myeloma than lytic plasma cell neoplasms, and the presence of polyneuropathy often results in earlier diagnosis and treatment with enhanced prospect of cure. The finding of amyloid deposition within the osteosclerotic lesion may be of prognostic importance. (orig.)

  10. Melatonin attenuates β-amyloid-induced inhibition of neurofilament expression

    Institute of Scientific and Technical Information of China (English)

    Ying-chun ZHANG; Ze-fen WANG; Qun WANG; Yi-peng WANG; Jian-zhi WANG

    2004-01-01

    AIM: To explore the effect of β-amyloid (Aβ) on metabolism of cytoskeletal protein neurofilament, and search for effective cure to the lesion. METHODS: Wild type murine neuroblastoma N2a (N2awt) and N2a stably transfected with wild type amyloid precursor protein (N2aAPP) were cultured. Sandwich ELISA, immunocytochemistry, and Western blot were used respectively to measure the level of Aβ, the expression and phosphorylation of neurofilament proteins. RESULTS: The immunoreactivity of neurofilament protein was almost abolished in N2aAPP, which beard a significantly higher level of Aβ. Melatonin effectively decreased the level of Aβ, and restored partially the level of phosphorylated and non-phosphorylated neurofilament in N2aAPP. CONCLUSION: Overproduction of Aβ inhibits neurofilament expression, and melatonin attenuates the Aβ-induced lesion in cytoskeletal protein.

  11. Dimensionality of carbon nanomaterial impacting on the modulation of amyloid peptide assembly

    Science.gov (United States)

    Wang, J.; Zhu, Z.; Bortolini, C.; Hoffmann, S. V.; Amari, A.; Zhang, H. X.; Liu, L.; Dong, M. D.

    2016-07-01

    A wide variety of inorganic nanomaterials have been exploited so far for their great potential for biological applications. Some of these materials could be valid candidates to modulate the assembly of amyloid peptides, which is relevant to amyloid-related diseases. In this work, we reveal that a carbon nanomaterial can indeed modulate the assembly of amyloid peptides and, additionally, we show that this modulating effect is closely related to the dimensionality of the nanomaterials.

  12. Dimensionality of carbon nanomaterial impacting on the modulation of amyloid peptide assembly

    DEFF Research Database (Denmark)

    Wang, J.; Zhu, Z.; Bortolini, C.;

    2016-01-01

    A wide variety of inorganic nanomaterials have been exploited so far for their great potential for biological applications. Some of these materials could be valid candidates to modulate the assembly of amyloid peptides, which is relevant to amyloid-related diseases. In this work, we reveal...... that a carbon nanomaterial can indeed modulate the assembly of amyloid peptides and, additionally, we show that this modulating effect is closely related to the dimensionality of the nanomaterials....

  13. Rapid α-oligomer formation mediated by the Aβ C terminus initiates an amyloid assembly pathway

    OpenAIRE

    Misra, Pinaki; Kodali, Ravindra; Chemuru, Saketh; Kar, Karunakar; Wetzel, Ronald

    2016-01-01

    Since early oligomeric intermediates in amyloid assembly are often transient and difficult to distinguish, characterize and quantify, the mechanistic basis of the initiation of spontaneous amyloid growth is often opaque. We describe here an approach to the analysis of the Aβ aggregation mechanism that uses Aβ-polyglutamine hybrid peptides designed to retard amyloid maturation and an adjusted thioflavin intensity scale that reveals structural features of aggregation intermediates. The results ...

  14. Functionalization of multiwalled carbon nanotubes and their pH-responsive hydrogels with amyloid fibrils.

    Science.gov (United States)

    Li, Chaoxu; Mezzenga, Raffaele

    2012-07-10

    New biocompatible, pH-responsive, and fully fibrous hydrogels have been prepared based on amyloid fibrils hybridized and gelled by functionalized multiwalled carbon nanotubes (MWNTs) far below the gelling concentration of amyloid fibrils. Sulfonic functional groups were introduced on the surfaces of MWNTs either by a covalent diazonium reaction or by physical π-π interactions. The presence of the isoelectric point of amyloid fibrils allows a reversible gelling behavior through ionic interactions with functionalized MWNTs.

  15. Immunohistochemical identification and crossreactions of amyloid-A fibril protein in man and eleven other species

    OpenAIRE

    Gruys, E.; Linke, R.P.; Hol, P.R.; Geisel, O.; Nathrath, W.B.J.; Trautwein, G

    1984-01-01

    Antisera were prepared in rabbits, sheep or chicken against purified amyloid fibril protein AA from man, mouse, stone marten, dog, cow and hamster. These antisera were tested by immunodiffusion against all purified antigens and applied to tissue sections containing amyloid from man, mouse, hamster, guinea pig, rabbit, cat, dog, mink, stone marten, pine marten, cow and horse. The binding of the antibodies to amyloid in tissue sections was assessed by the indirect immunoperoxidase method. The s...

  16. Aβ42 Is Essential for Parenchymal and Vascular Amyloid Deposition in Mice

    OpenAIRE

    McGowan, Eileen; Pickford, Fiona; Kim, Jungsu; Onstead, Luisa; Eriksen, Jason; Yu, Cindy; Skipper, Lisa; Murphy, M. Paul; Beard, Jenny; Das, Pritam; Jansen,Karen; DeLucia, Michael; Lin, Wen-Lang; Dolios, Georgia; Wang, Rong

    2005-01-01

    Considerable circumstantial evidence suggests that Aβ42 is the initiating molecule in Alzheimer's disease (AD) pathogenesis. However, the absolute requirement for Aβ42 for amyloid deposition has never been demonstrated in vivo. We have addressed this by developing transgenic models that express Aβ1-40 or Aβ1-42 in the absence of human amyloid β protein precursor (APP) overexpression. Mice expressing high levels of Aβ1-40 do not develop overt amyloid pathology. In contrast, mice expressing low...

  17. A race for RAGE ligands.

    Science.gov (United States)

    Schleicher, Erwin D

    2010-08-01

    In experimental animals a causal involvement of the multiligand receptor for advanced glycation end products (RAGE) in the development of diabetic vascular complications has been demonstrated. However, the nature of RAGE ligands present in patients with diabetic nephropathy has not yet been defined; this leaves open the relevance of the RAGE system to the human disease.

  18. β-hairpin-mediated nucleation of polyglutamine amyloid formation

    Science.gov (United States)

    Kar, Karunakar; Hoop, Cody L.; Drombosky, Kenneth W.; Baker, Matthew A.; Kodali, Ravindra; Arduini, Irene; van der Wel, Patrick C. A.; Horne, W. Seth; Wetzel, Ronald

    2013-01-01

    The conformational preferences of polyglutamine (polyQ) sequences are of major interest because of their central importance in the expanded CAG repeat diseases that include Huntington’s disease (HD). Here we explore the response of various biophysical parameters to the introduction of β-hairpin motifs within polyQ sequences. These motifs (trpzip, disulfide, D-Pro-Gly, Coulombic attraction, L-Pro-Gly) enhance formation rates and stabilities of amyloid fibrils with degrees of effectiveness well-correlated with their known abilities to enhance β-hairpin formation in other peptides. These changes led to decreases in the critical nucleus for amyloid formation from a value of n* = 4 for a simple, unbroken Q23 sequence to approximate unitary n* values for similar length polyQs containing β-hairpin motifs. At the same time, the morphologies, secondary structures, and bioactivities of the resulting fibrils were essentially unchanged from simple polyQ aggregates. In particular, the signature pattern of SSNMR 13C Gln resonances that appears to be unique to polyQ amyloid is replicated exactly in fibrils from a β-hairpin polyQ. Importantly, while β-hairpin motifs do produce enhancements in the equilibrium constant for nucleation in aggregation reactions, these Kn* values remain quite low (~ 10−10) and there is no evidence for significant embellishment of β-structure within the monomer ensemble. The results indicate an important role for β-turns in the nucleation mechanism and structure of polyQ amyloid and have implications for the nature of the toxic species in expanded CAG repeat diseases. PMID:23353826

  19. β-hairpin-mediated nucleation of polyglutamine amyloid formation

    OpenAIRE

    Kar, Karunakar; Hoop, Cody L.; Drombosky, Kenneth W.; Baker, Matthew A.; Kodali, Ravindra; Arduini, Irene; van der Wel, Patrick C.A.; Horne, W. Seth; Wetzel, Ronald

    2013-01-01

    The conformational preferences of polyglutamine (polyQ) sequences are of major interest because of their central importance in the expanded CAG repeat diseases that include Huntington’s disease (HD). Here we explore the response of various biophysical parameters to the introduction of β-hairpin motifs within polyQ sequences. These motifs (trpzip, disulfide, D-Pro-Gly, Coulombic attraction, L-Pro-Gly) enhance formation rates and stabilities of amyloid fibrils with degrees of effectiveness well...

  20. The contrasting effect of macromolecular crowding on amyloid fibril formation.

    Directory of Open Access Journals (Sweden)

    Qian Ma

    Full Text Available BACKGROUND: Amyloid fibrils associated with neurodegenerative diseases can be considered biologically relevant failures of cellular quality control mechanisms. It is known that in vivo human Tau protein, human prion protein, and human copper, zinc superoxide dismutase (SOD1 have the tendency to form fibril deposits in a variety of tissues and they are associated with different neurodegenerative diseases, while rabbit prion protein and hen egg white lysozyme do not readily form fibrils and are unlikely to cause neurodegenerative diseases. In this study, we have investigated the contrasting effect of macromolecular crowding on fibril formation of different proteins. METHODOLOGY/PRINCIPAL FINDINGS: As revealed by assays based on thioflavin T binding and turbidity, human Tau fragments, when phosphorylated by glycogen synthase kinase-3β, do not form filaments in the absence of a crowding agent but do form fibrils in the presence of a crowding agent, and the presence of a strong crowding agent dramatically promotes amyloid fibril formation of human prion protein and its two pathogenic mutants E196K and D178N. Such an enhancing effect of macromolecular crowding on fibril formation is also observed for a pathological human SOD1 mutant A4V. On the other hand, rabbit prion protein and hen lysozyme do not form amyloid fibrils when a crowding agent at 300 g/l is used but do form fibrils in the absence of a crowding agent. Furthermore, aggregation of these two proteins is remarkably inhibited by Ficoll 70 and dextran 70 at 200 g/l. CONCLUSIONS/SIGNIFICANCE: We suggest that proteins associated with neurodegenerative diseases are more likely to form amyloid fibrils under crowded conditions than in dilute solutions. By contrast, some of the proteins that are not neurodegenerative disease-associated are unlikely to misfold in crowded physiological environments. A possible explanation for the contrasting effect of macromolecular crowding on these two sets of

  1. Thermodynamics and dynamics of amyloid peptide oligomerization are sequence dependent.

    Science.gov (United States)

    Lu, Yan; Derreumaux, Philippe; Guo, Zhi; Mousseau, Normand; Wei, Guanghong

    2009-06-01

    Aggregation of the full-length amyloid-beta (Abeta) and beta2-microglobulin (beta2m) proteins is associated with Alzheimer's disease and dialysis-related amyloidosis, respectively. This assembly process is not restricted to full-length proteins, however, many short peptides also assemble into amyloid fibrils in vitro. Remarkably, the kinetics of amyloid-fibril formation of all these molecules is generally described by a nucleation-polymerization process characterized by a lag phase associated with the formation of a nucleus, after which fibril elongation occurs rapidly. In this study, we report using long molecular dynamics simulations with the OPEP coarse-grained force field, the thermodynamics and dynamics of the octamerization for two amyloid 7-residue peptides: the beta2m83-89 NHVTLSQ and Abeta16-22 KLVFFAE fragments. Based on multiple trajectories run at 310 K, totaling 2.2 mus (beta2m83-89) and 4.8 mus (Abeta16-22) and starting from random configurations and orientations of the chains, we find that the two peptides not only share common but also very different aggregation properties. Notably, an increase in the hydrophobic character of the peptide, as observed in Abeta16-22 with respect to beta2m83-89 impacts the thermodynamics by reducing the population of bilayer beta-sheet assemblies. Higher hydrophobicity is also found to slow down the dynamics of beta-sheet formation by enhancing the averaged lifetime of all configuration types (CT) and by reducing the complexity of the CT transition probability matrix. Proteins 2009. (c) 2008 Wiley-Liss, Inc.

  2. Crowding alone cannot account for cosolute effect on amyloid aggregation.

    Directory of Open Access Journals (Sweden)

    Shahar Sukenik

    Full Text Available Amyloid fiber formation is a specific form of protein aggregation, often resulting from the misfolding of native proteins. Aimed at modeling the crowded environment of the cell, recent experiments showed a reduction in fibrillation halftimes for amyloid-forming peptides in the presence of cosolutes that are preferentially excluded from proteins and peptides. The effect of excluded cosolutes has previously been attributed to the large volume excluded by such inert cellular solutes, sometimes termed "macromolecular crowding". Here, we studied a model peptide that can fold to a stable monomeric β-hairpin conformation, but under certain solution conditions aggregates in the form of amyloid fibrils. Using Circular Dichroism spectroscopy (CD, we found that, in the presence of polyols and polyethylene glycols acting as excluded cosolutes, the monomeric β-hairpin conformation was stabilized with respect to the unfolded state. Stabilization free energy was linear with cosolute concentration, and grew with molecular volume, as would also be predicted by crowding models. After initiating the aggregation process with a pH jump, fibrillation in the presence and absence of cosolutes was followed by ThT fluorescence, transmission electron microscopy, and CD spectroscopy. Polyols (glycerol and sorbitol increased the lag time for fibril formation and elevated the amount of aggregated peptide at equilibrium, in a cosolute size and concentration dependent manner. However, fibrillation rates remained almost unaffected by a wide range of molecular weights of soluble polyethylene glycols. Our results highlight the importance of other forces beyond the excluded volume interactions responsible for crowding that may contribute to the cosolute effects acting on amyloid formation.

  3. Study of neurotoxic intracellular calcium signalling triggered by amyloids.

    Science.gov (United States)

    Villalobos, Carlos; Caballero, Erica; Sanz-Blasco, Sara; Núñez, Lucía

    2012-01-01

    Neurotoxicity in Alzheimer's disease (AD) is associated to dishomeostasis of intracellular Ca(2+) induced by amyloid β peptide (Aβ) species. Understanding of the effects of Aβ on intracellular Ca(2+) homeostasis requires preparation of the different Aβ assemblies including oligomers and fibrils and the testing of their effects on cytosolic and mitochondrial Ca(2+) in neurons. Procedures for cerebellar granule cell culture, preparation of Aβ species as well as fluorescence and bioluminescence imaging of cytosolic and mitochondrial Ca(2+) in neurons are described.

  4. An interaction of beta-amyloid with aluminium in vitro.

    Science.gov (United States)

    Exley, C; Price, N C; Kelly, S M; Birchall, J D

    1993-06-21

    We have used circular dichroism spectroscopy to confirm that, in a membrane-mimicking solvent, A beta P(1-40) adopts a partially helical conformation and we have demonstrated the loss of this structure in the presence of physiologically relevant concentrations of aluminium. This is the first evidence of a direct biochemical interaction between aluminium and beta-amyloid and may have important implications for the pathogenesis of Alzheimer's disease.

  5. Co-deposition of basement membrane components during the induction of murine splenic AA amyloid

    DEFF Research Database (Denmark)

    Lyon, A W; Narindrasorasak, S; Young, I D

    1991-01-01

    Past studies have demonstrated that during murine AA amyloid induction there is co-deposition of the AA amyloid peptide and the basement membrane form of heparan sulfate proteoglycan. The synthesis and accumulation of heparan sulfate proteoglycan does not usually occur in the absence of other bas...... enhancing factor induction of amyloid, the period when amyloid is first detected. These observations raise the possibility that an abnormality in basement membrane metabolism is a very early event, and potentially plays an integral part in the process of AA amyloidogenesis....

  6. Effect of Fe{sub 3}O{sub 4} magnetic nanoparticles on lysozyme amyloid aggregation

    Energy Technology Data Exchange (ETDEWEB)

    Bellova, Andrea; Koneracka, Martina; Kopcansky, Peter; Tomasovicova, Natalia; Timko, Milan; Bagelova, Jaroslava; Gazova, Zuzana [Department of Biophysics, Department of Magnetism, Institute of Experimental Physics, Slovak Academy of Science, Watsonova 47, 04001 Kosice (Slovakia); Bystrenova, Eva; Valle, Francesco; Biscarini, Fabio, E-mail: gazova@saske.sk [CNR-Instituto per lo Studio dei Materiali Nanostrutturati, via Gobetti 101, I-40129 Bologna (Italy)

    2010-02-10

    Peptide amyloid aggregation is a hallmark of several human pathologies termed amyloid diseases. We have investigated the effect of electrostatically stabilized magnetic nanoparticles of Fe{sub 3}O{sub 4} on the amyloid aggregation of lysozyme, as a prototypical amyloidogenic protein. Thioflavin T fluorescence assay and atomic force microscopy were used for monitoring the inhibiting and disassembly activity of magnetic nanoparticles of Fe{sub 3}O{sub 4}. We have found that magnetic Fe{sub 3}O{sub 4} nanoparticles are able to interact with lysozyme amyloids in vitro leading to a reduction of the amyloid aggregates, thus promoting depolymerization; the studied nanoparticles also inhibit lysozyme amyloid aggregation. The ability to inhibit lysozyme amyloid formation and promote lysozyme amyloid disassembly exhibit concentration-dependent characteristics with IC50 = 0.65 mg ml{sup -1} and DC50 = 0.16 mg ml{sup -1} indicating that nanoparticles interfere with lysozyme aggregation already at stoichiometric concentrations. These features make Fe{sub 3}O{sub 4} nanoparticles of potential interest as therapeutic agents against amyloid diseases and their non-risk exploitation in nanomedicine and nanodiagnostics.

  7. Copper(II) ions and the Alzheimer's amyloid-β peptide: Affinity and stoichiometry of binding

    Science.gov (United States)

    Tõugu, Vello; Friedemann, Merlin; Tiiman, Ann; Palumaa, Peep

    2014-10-01

    Deposition of amyloid beta (Aβ) peptides into amyloid plaques is the hallmark of Alzheimer's disease. According to the amyloid cascade hypothesis this deposition is an early event and primary cause of the disease, however, the mechanisms that cause this deposition remain elusive. An increasing amount of evidence shows that the interactions of biometals can contribute to the fibrillization and amyloid formation by amyloidogenic peptides. From different anions the copper ions deserve the most attention since it can contribute not only toamyloid formation but also to its toxicity due to the generation of ROS. In this thesis we focus on the affinity and stoichiometry of copper(II) binding to the Aβ molecule.

  8. Highly potent soluble amyloid-β seeds in human Alzheimer brain but not cerebrospinal fluid

    Science.gov (United States)

    Kaeser, Stephan A.; Maia, Luis F.; Portelius, Erik; Pinotsi, Dorothea; Kaminski, Clemens F.; Winkler, David T.; Maetzler, Walter; Keyvani, Kathy; Spitzer, Philipp; Wiltfang, Jens; Kaminski Schierle, Gabriele S.; Zetterberg, Henrik; Staufenbiel, Matthias; Jucker, Mathias

    2017-01-01

    The soluble fraction of brain samples from patients with Alzheimer’s disease contains highly biologically active amyloid-β seeds. In this study, we sought to assess the potency of soluble amyloid-β seeds derived from the brain and cerebrospinal fluid. Soluble Alzheimer’s disease brain extracts were serially diluted and then injected into the hippocampus of young, APP transgenic mice. Eight months later, seeded amyloid-β deposition was evident even when the hippocampus received subattomole amounts of brain-derived amyloid-β. In contrast, cerebrospinal fluid from patients with Alzheimer’s disease, which contained more than 10-fold higher levels of amyloid-β peptide than the most concentrated soluble brain extracts, did not induce detectable seeding activity in vivo. Similarly, cerebrospinal fluid from aged APP-transgenic donor mice failed to induce cerebral amyloid-β deposition. In comparison to the soluble brain fraction, cerebrospinal fluid largely lacked N-terminally truncated amyloid-β species and exhibited smaller amyloid-β-positive particles, features that may contribute to the lack of in vivo seeding by cerebrospinal fluid. Interestingly, the same cerebrospinal fluid showed at least some seeding activity in an in vitro assay. The present results indicate that the biological seeding activity of soluble amyloid-β species is orders of magnitude greater in brain extracts than in the cerebrospinal fluid. PMID:25212850

  9. Non-targeted identification of prions and amyloid-forming proteins from yeast and mammalian cells.

    Science.gov (United States)

    Kryndushkin, Dmitry; Pripuzova, Natalia; Burnett, Barrington G; Shewmaker, Frank

    2013-09-20

    The formation of amyloid aggregates is implicated both as a primary cause of cellular degeneration in multiple human diseases and as a functional mechanism for providing extraordinary strength to large protein assemblies. The recent identification and characterization of several amyloid proteins from diverse organisms argues that the amyloid phenomenon is widespread in nature. Yet identifying new amyloid-forming proteins usually requires a priori knowledge of specific candidates. Amyloid fibers can resist heat, pressure, proteolysis, and denaturation by reagents such as urea or sodium dodecyl sulfate. Here we show that these properties can be exploited to identify naturally occurring amyloid-forming proteins directly from cell lysates. This proteomic-based approach utilizes a novel purification of amyloid aggregates followed by identification by mass spectrometry without the requirement for special genetic tools. We have validated this technique by blind identification of three amyloid-based yeast prions from laboratory and wild strains and disease-related polyglutamine proteins expressed in both yeast and mammalian cells. Furthermore, we found that polyglutamine aggregates specifically recruit some stress granule components, revealing a possible mechanism of toxicity. Therefore, core amyloid-forming proteins as well as strongly associated proteins can be identified directly from cells of diverse origin.

  10. Specific binding of DNA to aggregated forms of Alzheimer's disease amyloid peptides.

    Science.gov (United States)

    Camero, Sergio; Ayuso, Jose M; Barrantes, Alejandro; Benítez, María J; Jiménez, Juan S

    2013-04-01

    Anomalous protein aggregation is closely associated to age-related mental illness. Extraneuronal plaques, mainly composed of aggregated amyloid peptides, are considered as hallmarks of Alzheimer's disease. According to the amyloid cascade hypothesis, this disease starts as a consequence of an abnormal processing of the amyloid precursor protein resulting in an excess of amyloid peptides. Nuclear localization of amyloid peptide aggregates together with amyloid-DNA interaction, have been repeatedly reported. In this paper we have used surface plasmon resonance and electron microscopy to study the structure and behavior of different peptides and proteins, including β-lactoglobulin, bovine serum albumin, myoglobin, histone, casein and the amyloid-β peptides related to Alzheimer's disease Aβ25-35 and Aβ1-40. The main purpose of this study is to investigate whether proneness to DNA interaction is a general property displayed by aggregated forms of proteins, or it is an interaction specifically related to the aggregated forms of those particular proteins and peptides related to neurodegenerative diseases. Our results reveal that those aggregates formed by amyloid peptides show a particular proneness to interact with DNA. They are the only aggregated structures capable of binding DNA, and show more affinity for DNA than for other polyanions like heparin and polyglutamic acid, therefore strengthening the hypothesis that amyloid peptides may, by means of interaction with nuclear DNA, contribute to the onset of Alzheimer's disease.

  11. Temporal trajectory and progression score estimation from voxelwise longitudinal imaging measures: Application to amyloid imaging

    Science.gov (United States)

    Bilgel, Murat; Jedynak, Bruno; Wong, Dean F.; Resnick, Susan M.; Prince, Jerry L.

    2015-01-01

    Cortical β-amyloid deposition begins in Alzheimer’s disease (AD) years before the onset of any clinical symptoms. It is therefore important to determine the temporal trajectories of amyloid deposition in these earliest stages in order to better understand their associations with progression to AD. A method for estimating the temporal trajectories of voxelwise amyloid as measured using longitudinal positron emission tomography (PET) imaging is presented. The method involves the estimation of a score for each subject visit based on the PET data that reflects their amyloid progression. This amyloid progression score allows subjects with similar progressions to be aligned and analyzed together. The estimation of the progression scores and the amyloid trajectory parameters are performed using an expectation-maximization algorithm. The correlations among the voxel measures of amyloid are modeled to reflect the spatial nature of PET images. Simulation results show that model parameters are captured well at a variety of noise and spatial correlation levels. The method is applied to longitudinal amyloid imaging data considering each cerebral hemisphere separately. The results are consistent across the hemispheres and agree with a global index of brain amyloid known as mean cortical DVR. Unlike mean cortical DVR, which depends on a priori defined regions, the progression score extracted by the method is data-driven and does not make assumptions about regional longitudinal changes. Compared to regressing on age at each voxel, the longitudinal trajectory slopes estimated using the proposed method show better localized longitudinal changes. PMID:26221692

  12. Apolipoprotein E: Essential Catalyst of the Alzheimer Amyloid Cascade

    Directory of Open Access Journals (Sweden)

    Huntington Potter

    2012-01-01

    Full Text Available The amyloid cascade hypothesis remains a robust model of AD neurodegeneration. However, amyloid deposits contain proteins besides Aβ, such as apolipoprotein E (apoE. Inheritance of the apoE4 allele is the strongest genetic risk factor for late-onset AD. However, there is no consensus on how different apoE isotypes contribute to AD pathogenesis. It has been hypothesized that apoE and apoE4 in particular is an amyloid catalyst or “pathological chaperone”. Alternatively it has been posited that apoE regulates Aβ clearance, with apoE4 been worse at this function compared to apoE3. These views seem fundamentally opposed. The former would indicate that removing apoE will reduce AD pathology, while the latter suggests increasing brain ApoE levels may be beneficial. Here we consider the scientific basis of these different models of apoE function and suggest that these seemingly opposing views can be reconciled. The optimal therapeutic target may be to inhibit the interaction of apoE with Aβ rather than altering apoE levels. Such an approach will not have detrimental effects on the many beneficial roles apoE plays in neurobiology. Furthermore, other Aβ binding proteins, including ACT and apo J can inhibit or promote Aβ oligomerization/polymerization depending on conditions and might be manipulated to effect AD treatment.

  13. Calcium signaling and amyloid toxicity in Alzheimer disease.

    Science.gov (United States)

    Demuro, Angelo; Parker, Ian; Stutzmann, Grace E

    2010-04-23

    Intracellular Ca(2+) signaling is fundamental to neuronal physiology and viability. Because of its ubiquitous roles, disruptions in Ca(2+) homeostasis are implicated in diverse disease processes and have become a major focus of study in multifactorial neurodegenerative diseases such as Alzheimer disease (AD). A hallmark of AD is the excessive production of beta-amyloid (Abeta) and its massive accumulation in amyloid plaques. In this minireview, we highlight the pathogenic interactions between altered cellular Ca(2+) signaling and Abeta in its different aggregation states and how these elements coalesce to alter the course of the neurodegenerative disease. Ca(2+) and Abeta intersect at several functional levels and temporal stages of AD, thereby altering neurotransmitter receptor properties, disrupting membrane integrity, and initiating apoptotic signaling cascades. Notably, there are reciprocal interactions between Ca(2+) pathways and amyloid pathology; altered Ca(2+) signaling accelerates Abeta formation, whereas Abeta peptides, particularly in soluble oligomeric forms, induce Ca(2+) disruptions. A degenerative feed-forward cycle of toxic Abeta generation and Ca(2+) perturbations results, which in turn can spin off to accelerate more global neuropathological cascades, ultimately leading to synaptic breakdown, cell death, and devastating memory loss. Although no cause or cure is currently known, targeting Ca(2+) dyshomeostasis as an underlying and integral component of AD pathology may result in novel and effective treatments for AD.

  14. Amyloid fibrils nucleated and organized by DNA origami constructions

    Science.gov (United States)

    Udomprasert, Anuttara; Bongiovanni, Marie N.; Sha, Ruojie; Sherman, William B.; Wang, Tong; Arora, Paramjit S.; Canary, James W.; Gras, Sally L.; Seeman, Nadrian C.

    2014-07-01

    Amyloid fibrils are ordered, insoluble protein aggregates that are associated with neurodegenerative conditions such as Alzheimer's disease. The fibrils have a common rod-like core structure, formed from an elongated stack of β-strands, and have a rigidity similar to that of silk (Young's modulus of 0.2-14 GPa). They also exhibit high thermal and chemical stability and can be assembled in vitro from short synthetic non-disease-related peptides. As a result, they are of significant interest in the development of self-assembled materials for bionanotechnology applications. Synthetic DNA molecules have previously been used to form intricate structures and organize other materials such as metal nanoparticles and could in principle be used to nucleate and organize amyloid fibrils. Here, we show that DNA origami nanotubes can sheathe amyloid fibrils formed within them. The fibrils are built by modifying the synthetic peptide fragment corresponding to residues 105-115 of the amyloidogenic protein transthyretin and a DNA origami construct is used to form 20-helix DNA nanotubes with sufficient space for the fibrils inside. Once formed, the fibril-filled nanotubes can be organized onto predefined two-dimensional platforms via DNA-DNA hybridization interactions.

  15. Curcumin Binding to Beta Amyloid: A Computational Study.

    Science.gov (United States)

    Rao, Praveen P N; Mohamed, Tarek; Teckwani, Karan; Tin, Gary

    2015-10-01

    Curcumin, a chemical constituent present in the spice turmeric, is known to prevent the aggregation of amyloid peptide implicated in the pathophysiology of Alzheimer's disease. While curcumin is known to bind directly to various amyloid aggregates, no systematic investigations have been carried out to understand its ability to bind to the amyloid aggregates including oligomers and fibrils. In this study, we constructed computational models of (i) Aβ hexapeptide (16) KLVFFA(21) octamer steric-zipper β-sheet assembly and (ii) full-length Aβ fibril β-sheet assembly. Curcumin binding in these models was evaluated by molecular docking and molecular dynamics (MD) simulation studies. In both the models, curcumin was oriented in a linear extended conformation parallel to fiber axis and exhibited better stability in the Aβ hexapeptide (16) KLVFFA(21) octamer steric-zipper model (Ebinding  = -10.05 kcal/mol) compared to full-length Aβ fibril model (Ebinding  = -3.47 kcal/mol). Analysis of MD trajectories of curcumin bound to full-length Aβ fibril shows good stability with minimum Cα-atom RMSD shifts. Interestingly, curcumin binding led to marked fluctuations in the (14) HQKLVFFA(21) region that constitute the fibril spine with RMSF values ranging from 1.4 to 3.6 Å. These results show that curcumin binding to Aβ shifts the equilibrium in the aggregation pathway by promoting the formation of non-toxic aggregates.

  16. AMYPdb: A database dedicated to amyloid precursor proteins

    Directory of Open Access Journals (Sweden)

    Delamarche Christian

    2008-06-01

    Full Text Available Abstract Background Misfolding and aggregation of proteins into ordered fibrillar structures is associated with a number of severe pathologies, including Alzheimer's disease, prion diseases, and type II diabetes. The rapid accumulation of knowledge about the sequences and structures of these proteins allows using of in silico methods to investigate the molecular mechanisms of their abnormal conformational changes and assembly. However, such an approach requires the collection of accurate data, which are inconveniently dispersed among several generalist databases. Results We therefore created a free online knowledge database (AMYPdb dedicated to amyloid precursor proteins and we have performed large scale sequence analysis of the included data. Currently, AMYPdb integrates data on 31 families, including 1,705 proteins from nearly 600 organisms. It displays links to more than 2,300 bibliographic references and 1,200 3D-structures. A Wiki system is available to insert data into the database, providing a sharing and collaboration environment. We generated and analyzed 3,621 amino acid sequence patterns, reporting highly specific patterns for each amyloid family, along with patterns likely to be involved in protein misfolding and aggregation. Conclusion AMYPdb is a comprehensive online database aiming at the centralization of bioinformatic data regarding all amyloid proteins and their precursors. Our sequence pattern discovery and analysis approach unveiled protein regions of significant interest. AMYPdb is freely accessible 1.

  17. The coarse-grained OPEP force field for non-amyloid and amyloid proteins.

    Science.gov (United States)

    Chebaro, Yassmine; Pasquali, Samuela; Derreumaux, Philippe

    2012-08-02

    Coarse-grained protein models with various levels of granularity and degrees of freedom offer the possibility to explore many phenomena including folding, assembly, and recognition in terms of dynamics and thermodynamics that are inaccessible to all-atom representations in explicit aqueous solution. Here, we present a refined version of the coarse-grained optimized potential for efficient protein structure prediction (OPEP) based on a six-bead representation. The OPEP version 4.0 parameter set, which uses a new analytical formulation for the nonbonded interactions and adds specific side-chain-side-chain interactions for α-helix, is subjected to three tests. First, we show that molecular dynamics simulations at 300 K preserve the experimental rigid conformations of 17 proteins with 37-152 amino acids within a root-mean-square deviation (RMSD) of 3.1 Å after 30 ns. Extending the simulation time to 100 ns for five proteins does not change the RMSDs. Second, replica exchange molecular dynamics (REMD) simulations recover the NMR structures of three prototypical β-hairpin and α-helix peptides and the NMR three-stranded β-sheet topology of a 37-residue WW domain, starting from randomly chosen states. Third, REMD simulations on the ccβ peptide show a temperature transition from a three-stranded coiled coil to amyloid-like aggregates consistent with experiments, while simulations on low molecular weight aggregates of the prion protein helix 1 do not. Overall, these studies indicate the effectiveness of our OPEP4 coarse-grained model for protein folding and aggregation, and report two future directions for improvement.

  18. In vivo detection of amyloid plaques by gadolinium-stained MRI can be used to demonstrate the efficacy of an anti-amyloid immunotherapy

    Directory of Open Access Journals (Sweden)

    Mathieu D. Santin

    2016-03-01

    Full Text Available Extracellular deposition of β amyloid plaques is an early event associated to Alzheimer's disease. Here we have used in vivo gadolinium-stained high resolution (29*29*117µm3 MRI to follow-up in a longitudinal way individual amyloid plaques in APP/PS1 mice and evaluate the efficacy of a new immunotherapy (SAR255952 directed against protofibrillar and fibrillary forms of Aβ. APP/PS1 mice were treated for 5 months between the age of 3.5 and 8.5 months. SAR255952 reduced amyloid load in 8.5-month-old animals, but not in 5.5-month animals compared to mice treated with a control antibody (DM4. Histological evaluation confirmed the reduction of amyloid load and revealed a lower density of amyloid plaques in 8.5-month SAR255952-treated animals. The longitudinal follow-up of individual amyloid plaques by MRI revealed that plaques that were visible at 5.5 months were still visible at 8.5 months in both SAR255952 and DM4-treated mice. This suggests that the amyloid load reduction induced by SAR255952 is related to a slowing down in the formation of new plaques rather than to the clearance of already formed plaques.

  19. Brain Endothelial Cells Produce Amyloid β from Amyloid Precursor Protein 770 and Preferentially Secrete the O-Glycosylated Form*

    Science.gov (United States)

    Kitazume, Shinobu; Tachida, Yuriko; Kato, Masaki; Yamaguchi, Yoshiki; Honda, Takashi; Hashimoto, Yasuhiro; Wada, Yoshinao; Saito, Takashi; Iwata, Nobuhisa; Saido, Takaomi; Taniguchi, Naoyuki

    2010-01-01

    Deposition of amyloid β (Aβ) in the brain is closely associated with Alzheimer disease (AD). Aβ is generated from amyloid precursor protein (APP) by the actions of β- and γ-secretases. In addition to Aβ deposition in the brain parenchyma, deposition of Aβ in cerebral vessel walls, termed cerebral amyloid angiopathy, is observed in more than 80% of AD individuals. The mechanism for how Aβ accumulates in blood vessels remains largely unknown. In the present study, we show that brain endothelial cells expressed APP770, a differently spliced APP mRNA isoform from neuronal APP695, and produced Aβ40 and Aβ42. Furthermore, we found that the endothelial APP770 had sialylated core 1 type O-glycans. Interestingly, Ο-glycosylated APP770 was preferentially processed by both α- and β-cleavage and secreted into the media, suggesting that O-glycosylation and APP processing involved related pathways. By immunostaining human brain sections with an anti-APP770 antibody, we found that APP770 was expressed in vascular endothelial cells. Because we were able to detect O-glycosylated sAPP770β in human cerebrospinal fluid, this unique soluble APP770β has the potential to serve as a marker for cortical dementias such as AD and vascular dementia. PMID:20952385

  20. Does aluminium bind to histidine? An NMR investigation of amyloid β12 and amyloid β16 fragments.

    Science.gov (United States)

    Narayan, Priya; Krishnarjuna, Bankala; Vishwanathan, Vinaya; Jagadeesh Kumar, Dasappa; Babu, Sudhir; Ramanathan, Krishna Venkatachala; Easwaran, Kalpathy Ramaier Katchap; Nagendra, Holenarasipur Gundurao; Raghothama, Srinivasarao

    2013-07-01

    Aluminium and zinc are known to be the major triggering agents for aggregation of amyloid peptides leading to plaque formation in Alzheimer's disease. While zinc binding to histidine in Aβ (amyloid β) fragments has been implicated as responsible for aggregation, not much information is available on the interaction of aluminium with histidine. In the NMR study of the N-terminal Aβ fragments, DAEFRHDSGYEV (Aβ12) and DAEFRHDSGYEVHHQK (Aβ16) presented here, the interactions of the fragments with aluminium have been investigated. Significant chemical shifts were observed for few residues near the C-terminus when aluminium chloride was titrated with Aβ12 and Aβ16 peptides. Surprisingly, it is nonhistidine residues which seem to be involved in aluminium binding. Based on NMR constrained structure obtained by molecular modelling, aluminium-binding pockets in Aβ12 were around charged residues such as Asp, Glu. The results are discussed in terms of native structure propagation, and the relevance of histidine residues in the sequences for metal-binding interactions. We expect that the study of such short amyloid peptide fragments will not only provide clues for plaque formation in aggregated conditions but also facilitate design of potential drugs for these targets.

  1. Molecular investigations of protriptyline as a multi-target directed ligand in Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Sneha B Bansode

    Full Text Available Alzheimer's disease (AD is a complex neurodegenerative disorder involving multiple cellular and molecular processes. The discovery of drug molecules capable of targeting multiple factors involved in AD pathogenesis would greatly facilitate in improving therapeutic strategies. The repositioning of existing non-toxic drugs could dramatically reduce the time and costs involved in developmental and clinical trial stages. In this study, preliminary screening of 140 FDA approved nervous system drugs by docking suggested the viability of the tricyclic group of antidepressants against three major AD targets, viz. Acetylcholinesterase (AChE, β-secretase (BACE-1, and amyloid β (Aβ aggregation, with one member, protriptyline, showing highest inhibitory activity. Detailed biophysical assays, together with isothermal calorimetry, fluorescence quenching experiments, kinetic studies and atomic force microscopy established the strong inhibitory activity of protriptyline against all three major targets. The molecular basis of inhibition was supported with comprehensive molecular dynamics simulations. Further, the drug inhibited glycation induced amyloid aggregation, another important causal factor in AD progression. This study has led to the discovery of protriptyline as a potent multi target directed ligand and established its viability as a promising candidate for AD treatment.

  2. Effect of creatine supplementation on cognitive performance and apoptosis in a rat model of amyloid-beta-induced Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Malek Alimohammadi-Kamalabadi

    2016-11-01

    Conclusion: Cr supplementation before and after β-amyloid injection into the CA1 area of hippocampus deteriorates the learning and memory impairment of rats and it does not protect neuronal apoptosis caused by β-amyloid.

  3. Amyloid-beta(29-42) dimer formations studied by a multicanonical-multioverlap molecular dynamics simulation.

    Science.gov (United States)

    Itoh, Satoru G; Okamoto, Yuko

    2008-03-13

    Amyloid-beta peptides are known to form amyloid fibrils and are considered to play an important role in Alzheimer's disease. Amyloid-beta(29-42) is a fragment of the amyloid-beta peptide and also has a tendency to form amyloid fibrils. In order to study the mechanism of amyloidogenesis of this fragment, we applied one of the generalized-ensemble algorithms, the multicanonical-multioverlap algorithm, to amyloid-beta(29-42) dimer in aqueous solution. We obtained a detailed free-energy landscape of the dimer system. From the detailed free-energy landscape, we examined monomer and dimer formations of amyloid-beta(29-42) and deduced dimerization processes, which correspond to seeding processes in the amyloidogenesis of amyloid-beta(29-42).

  4. Signal Transduction by a Fungal NOD-Like Receptor Based on Propagation of a Prion Amyloid Fold

    Science.gov (United States)

    Daskalov, Asen; Habenstein, Birgit; Martinez, Denis; Debets, Alfons J. M.; Sabaté, Raimon; Loquet, Antoine; Saupe, Sven J.

    2015-01-01

    In the fungus Podospora anserina, the [Het-s] prion induces programmed cell death by activating the HET-S pore-forming protein. The HET-s β-solenoid prion fold serves as a template for converting the HET-S prion-forming domain into the same fold. This conversion, in turn, activates the HET-S pore-forming domain. The gene immediately adjacent to het-S encodes NWD2, a Nod-like receptor (NLR) with an N-terminal motif similar to the elementary repeat unit of the β-solenoid fold. NLRs are immune receptors controlling cell death and host defense processes in animals, plants and fungi. We have proposed that, analogously to [Het-s], NWD2 can activate the HET-S pore-forming protein by converting its prion-forming region into the β-solenoid fold. Here, we analyze the ability of NWD2 to induce formation of the β-solenoid prion fold. We show that artificial NWD2 variants induce formation of the [Het-s] prion, specifically in presence of their cognate ligands. The N-terminal motif is responsible for this prion induction, and mutations predicted to affect the β-solenoid fold abolish templating activity. In vitro, the N-terminal motif assembles into infectious prion amyloids that display a structure resembling the β-solenoid fold. In vivo, the assembled form of the NWD2 N-terminal region activates the HET-S pore-forming protein. This study documenting the role of the β-solenoid fold in fungal NLR function further highlights the general importance of amyloid and prion-like signaling in immunity-related cell fate pathways. PMID:25671553

  5. Zn(II) ions substantially perturb Cu(II) ion coordination in amyloid-β at physiological pH.

    Science.gov (United States)

    Silva, K Ishara; Saxena, Sunil

    2013-08-15

    The interaction of Cu(II) and Zn(II) ions with amyloid-β (Aβ) plays an important role in the etiology of Alzheimer's disease. We describe the use of electron spin resonance (ESR) to measure metal-binding competition between Cu(II) and Zn(II) in amyloid-β at physiological pH. Continuous wave ESR measurements show that the affinity of Cu(II) toward Aβ(1-16) is significantly higher than that of Zn(II) at physiological pH. Importantly, of the two known Cu(II) coordination modes in Aβ, component I and component II, Zn(II) displaces Cu(II) only from component I. Our results indicate that at excess amounts of Zn(II) component II becomes the most dominant coordination mode. This observation is important as Aβ aggregates in the brain contain a high Zn(II) ion concentration. In order to determine details of the metal ion competition, electron spin echo envelope modulation experiments were carried out on Aβ variants that were systematically (15)N labeled. In the presence of Zn(II), most peptides use His 14 as an equatorial ligand to bind Cu(II) ions. Interestingly, Zn(II) ions completely substitute Cu(II) ions that are simultaneously coordinated to His 6 and His 13. Furthermore, in the presence of Zn(II), the proportion of Cu(II) ions that are simultaneously coordinated to His 13 and His 14 is increased. On the basis of our results we suggest that His 13 plays a critical role in modulating the morphology of Aβ aggregates.

  6. Natural Products based P-glycoprotein Activators for Improved β-amyloid Clearance in Alzheimer's Disease: An in silico Approach.

    Science.gov (United States)

    Shinde, Pravin; Vidyasagar, Nikhil; Dhulap, Sivakami; Dhulap, Abhijeet; Hirwani, Raj

    2015-01-01

    Alzheimer's disease is an age related disorder and is defined to be progressive, irreversible neurodegenerative disease. The potential targets which are associated with the Alzheimer's disease are cholinesterases, N-methyl-D-aspartate receptor, Beta secretase 1, Pregnane X receptor (PXR) and P-glycoprotein (Pgp). P-glycoprotein is a member of the ATP binding cassette (ABC) transporter family, which is an important integral of the blood-brain, blood-cerebrospinal fluid and the blood-testis barrier. Reports from the literature provide evidences that the up-regulation of the efflux pump is liable for a decrease in β -amyloid intracellular accumulation and is an important hallmark in Alzheimer's disease (AD). Thus, targeting β-amyloid clearance by stimulating Pgp could be a useful strategy to prevent Alzheimer's advancement. Currently available drugs provide limited effectiveness and do not assure to cure Alzheimer's disease completely. On the other hand, the current research is now directed towards the development of synthetic or natural based therapeutics which can delay the onset or progression of Alzheimer's disease. Since ancient time medicinal plants such as Withania somnifera, Bacopa monieri, Nerium indicum have been used to prevent neurological disorders including Alzheimer's disease. Till today around 125 Indian medicinal plants have been screened on the basis of ethnopharmacology for their activity against neurological disorders. In this paper, we report bioactives from natural sources which show binding affinity towards the Pgp receptor using ligand based pharmacophore development, virtual screening, molecular docking and molecular dynamics simulation studies for the bioactives possessing acceptable ADME properties. These bioactives can thus be useful to treat Alzheimer's disease.

  7. Controlled-deactivation cannabinergic ligands.

    Science.gov (United States)

    Sharma, Rishi; Nikas, Spyros P; Paronis, Carol A; Wood, Jodianne T; Halikhedkar, Aneetha; Guo, Jason Jianxin; Thakur, Ganesh A; Kulkarni, Shashank; Benchama, Othman; Raghav, Jimit Girish; Gifford, Roger S; Järbe, Torbjörn U C; Bergman, Jack; Makriyannis, Alexandros

    2013-12-27

    We report an approach for obtaining novel cannabinoid analogues with controllable deactivation and improved druggability. Our design involves the incorporation of a metabolically labile ester group at the 2'-position on a series of (-)-Δ(8)-THC analogues. We have sought to introduce benzylic substituents α to the ester group which affect the half-lives of deactivation through enzymatic activity while enhancing the affinities and efficacies of individual ligands for the CB1 and CB2 receptors. The 1'-(S)-methyl, 1'-gem-dimethyl, and 1'-cyclobutyl analogues exhibit remarkably high affinities for both CB receptors. The novel ligands are susceptible to enzymatic hydrolysis by plasma esterases in a controllable manner, while their metabolites are inactive at the CB receptors. In further in vitro and in vivo experiments key analogues were shown to be potent CB1 receptor agonists and to exhibit CB1-mediated hypothermic and analgesic effects.

  8. Privileged chiral ligands and catalysts

    CERN Document Server

    Zhou, Qi-Lin

    2011-01-01

    This ultimate ""must have"" and long awaited reference for every chemist working in the field of asymmetric catalysis starts with the core structure of the catalysts, explaining why a certain ligand or catalyst is so successful. It describes in detail the history, the basic structural characteristics, and the applications of these ""privileged catalysts"". A novel concept that gives readers a much deeper insight into the topic.

  9. Age-dependent neuroplasticity mechanisms in Alzheimer Tg2576 mice following modulation of brain amyloid-β levels.

    Directory of Open Access Journals (Sweden)

    Anna M Lilja

    Full Text Available The objective of this study was to investigate the effects of modulating brain amyloid-β (Aβ levels at different stages of amyloid pathology on synaptic function, inflammatory cell changes and hippocampal neurogenesis, i.e. processes perturbed in Alzheimer's disease (AD. Young (4- to 6-month-old and older (15- to 18-month-old APP(SWE transgenic (Tg2576 mice were treated with the AD candidate drug (+-phenserine for 16 consecutive days. We found significant reductions in insoluble Aβ1-42 levels in the cortices of both young and older transgenic mice, while significant reductions in soluble Aβ1-42 levels and insoluble Aβ1-40 levels were only found in animals aged 15-18 months. Autoradiography binding with the amyloid ligand Pittsburgh Compound B ((3H-PIB revealed a trend for reduced fibrillar Aβ deposition in the brains of older phenserine-treated Tg2576 mice. Phenserine treatment increased cortical synaptophysin levels in younger mice, while decreased interleukin-1β and increased monocyte chemoattractant protein-1 and tumor necrosis factor-alpha levels were detected in the cortices of older mice. The reduction in Aβ1-42 levels was associated with an increased number of bromodeoxyuridine-positive proliferating cells in the hippocampi of both young and older Tg2576 mice. To determine whether the increased cell proliferation was accompanied by increased neuronal production, the endogenous early neuronal marker doublecortin (DCX was examined in the dentate gyrus (DG using immunohistochemical detection. Although no changes in the total number of DCX(+-expressing neurons were detected in the DG in Tg2576 mice at either age following (+-phenserine treatment, dendritic arborization was increased in differentiating neurons in young Tg2576 mice. Collectively, these findings indicate that reducing Aβ1-42 levels in Tg2576 mice at an early pathological stage affects synaptic function by modulating the maturation and plasticity of newborn neurons in

  10. Nodular goiter with amyloid deposition in an elderly patient: fine-needle cytology diagnosis and review of the literature

    OpenAIRE

    Di Crescenzo, Vincenzo; Garzi, Alfredo; Petruzziello, Fara; Cinelli, Mariapia; Catalano, Lucio; Zeppa, Pio; Vitale, Mario

    2013-01-01

    Background Amyloidosis is a systemic disease characterized by the extracellular deposition of amyloid fibrils in different organs and tissues. The thyroid gland may be affected by diffuse or nodular amyloid deposits, along with multiple myeloma (MM) (Amyloid Light-Chain Amyloidosis, AL amyloidosis) or chronic inflammatory diseases (Amyloid A Amyloidosis, AA amyloidosis), but thyroid gland involvement rarely appears as the first clinical manifestation in both conditions. The present study repo...

  11. Complete Genome Sequence of Pseudomonas sp. UK4, a Model Organism for Studies of Functional Amyloids in Pseudomonas

    DEFF Research Database (Denmark)

    Dueholm, Morten Simonsen; Danielsen, Heidi Nolsøe; Nielsen, Per Halkjær

    2014-01-01

    Here, we present the complete genome of Pseudomonas sp. UK4. This bacterium was the first Pseudomonas strain shown to produce functional amyloids, and it represents a model organism for studies of functional amyloids in Pseudomonas (Fap).......Here, we present the complete genome of Pseudomonas sp. UK4. This bacterium was the first Pseudomonas strain shown to produce functional amyloids, and it represents a model organism for studies of functional amyloids in Pseudomonas (Fap)....

  12. Tumor targeting via integrin ligands

    Directory of Open Access Journals (Sweden)

    Udaya Kiran eMarelli

    2013-08-01

    Full Text Available Selective and targeted delivery of drugs to tumors is a major challenge for an effective cancer therapy and also to overcome the side effects associated with current treatments. Overexpression of various receptors on tumor cells is a characteristic structural and biochemical aspect of tumors and distinguishes them from physiologically normal cells. This abnormal feature is therefore suitable for selectively directing anticancer molecules to tumors by using ligands that can preferentially recognize such receptors. Several subtypes of integrin receptors that are crucial for cell adhesion, cell signaling, cell viability and motility have been shown to have an upregulated expression on cancer cells. Thus, ligands that recognize specific integrin subtypes represent excellent candidates to be conjugated to drugs or drug carrier systems and be targeted to tumors. In this regard, integrins recognizing the RGD cell adhesive sequence have been extensively targeted for tumor specific drug delivery. Here we review key recent examples on the presentation of RGD-based integrin ligands by means of distinct drug delivery systems, and discuss the prospects of such therapies to specifically target tumor cells.

  13. Serum amyloid A: an acute phase apolipoprotein and precursor of AA amyloid.

    Science.gov (United States)

    Marhaug, G; Dowton, S B

    1994-08-01

    Serum amyloid A is an acute phase protein complexed to HDL as an apoprotein. The molecular weight is 11.4-12.5 kDa in different species and the protein has from 104 to 112 amino acids, without or with an insertion of eight amino acids at position 72. The protein is very well conserved throughout evolution, indicating an important biological function. The N-terminal part of the molecule is hydrophobic and probably responsible for the lipid binding properties. The most conserved part is from position 38 to 52 and this part is therefore believed to be responsible for the until now unknown biological function. The protein is coded on chromosome 11p in man, and chromosome 7 in mice, and found in all mammals until now investigated, and also in the Peking duck. In the rat a truncated SAA mRNA has been demonstrated, but no equivalent serum protein has been reported. Acute phase SAA is first of all produced in hepatocytes after induction by cytokines, but extrahepatic expression of both acute phase and constitutive SAA proteins have been demonstrated. Several cytokines, first of all IL-1, IL-6 and TNF are involved in the induction of SAA synthesis, but the mutual importance of these cytokines seems to be cell-type specific and to vary in various experimental settings. The role of corticosteroids in SAA induction is somewhat confusing. In most in vitro studies corticosteroids show an enhancing or synergistic effect with cytokines on SAA production in cultured cell. However, in clinical studies and in vivo studies in animals an inhibitory effect of corticosteroids is evident, probably due to the all over anti-inflammatory effect of the drug. Until now no drug has been found that selectively inhibits SAA production by hepatocytes. Effective anti-inflammatory or antibacterial treatment is the only tool for reducing SAA concentration in serum and reducing the risk of developing secondary amyloidosis. The function of SAA is still unclear. Interesting theories, based on current

  14. Deposition of mouse amyloid beta in human APP/PS1 double and single AD model transgenic mice.

    NARCIS (Netherlands)

    Groen, T. van; Kiliaan, A.J.; Kadish, I.

    2006-01-01

    The deposition of amyloid beta (Abeta) peptides and neurofibrillary tangles are the two characteristic pathological features of Alzheimer's disease (AD). To investigate the relation between amyloid precursor protein (APP) production, amyloid beta deposition and the type of Abeta in deposits, i.e., h

  15. LRP-1 polymorphism is associated with global and regional amyloid load in Alzheimer's disease in humans in-vivo

    Directory of Open Access Journals (Sweden)

    Timo Grimmer

    2014-01-01

    Discussion: In conclusion, C667T polymorphism of LRP-1 is moderately but significantly associated with global and regional amyloid deposition in AD. The relationship appears to be independent of the ApoE genotype. This finding is compatible with the hypothesis that impaired amyloid clearance contributes to amyloid deposition in late-onset sporadic AD.

  16. Depletion of spleen macrophages delays AA amyloid development: a study performed in the rapid mouse model of AA amyloidosis.

    Directory of Open Access Journals (Sweden)

    Katarzyna Lundmark

    Full Text Available AA amyloidosis is a systemic disease that develops secondary to chronic inflammatory diseases Macrophages are often found in the vicinity of amyloid deposits and considered to play a role in both formation and degradation of amyloid fibrils. In spleen reside at least three types of macrophages, red pulp macrophages (RPM, marginal zone macrophages (MZM, metallophilic marginal zone macrophages (MMZM. MMZM and MZM are located in the marginal zone and express a unique collection of scavenger receptors that are involved in the uptake of blood-born particles. The murine AA amyloid model that resembles the human form of the disease has been used to study amyloid effects on different macrophage populations. Amyloid was induced by intravenous injection of amyloid enhancing factor and subcutaneous injections of silver nitrate and macrophages were identified with specific antibodies. We show that MZMs are highly sensitive to amyloid and decrease in number progressively with increasing amyloid load. Total area of MMZMs is unaffected by amyloid but cells are activated and migrate into the white pulp. In a group of mice spleen macrophages were depleted by an intravenous injection of clodronate filled liposomes. Subsequent injections of AEF and silver nitrate showed a sustained amyloid development. RPMs that constitute the majority of macrophages in spleen, appear insensitive to amyloid and do not participate in amyloid formation.

  17. Diagnostic performance and prognostic value of extravascular retention of I-123-labeled serum amyloid P component in systemic amyloidosis

    NARCIS (Netherlands)

    Hazenberg, Bouke P. C.; van Rijswijk, Martin H.; Lub-de Hooge, Marjolijn N.; Vellenga, Edo; Haagsma, Elizabeth B.; Posthumus, Marcel D.; Jager, Pieter L.

    2007-01-01

    Serum amyloid P component (SAP) binds to amyloid.I-123-SAP scintigraphy is used to evaluate the extent and distribution of amyloid in systemic amyloidosis and has great clinical value in the detection of systemic amyloidosis. The aim of the study was to assess during scintigraphy the diagnostic perf

  18. The Mitochondrial Peptidase Pitrilysin Degrades Islet Amyloid Polypeptide in Beta-Cells.

    Directory of Open Access Journals (Sweden)

    Hanjun Guan

    Full Text Available Amyloid formation and mitochondrial dysfunction are characteristics of type 2 diabetes. The major peptide constituent of the amyloid deposits in type 2 diabetes is islet amyloid polypeptide (IAPP. In this study, we found that pitrilysin, a zinc metallopeptidase of the inverzincin family, degrades monomeric, but not oligomeric, islet amyloid polypeptide in vitro. In insulinoma cells when pitrilysin expression was decreased to 5% of normal levels, there was a 60% increase in islet amyloid polypeptide-induced apoptosis. In contrast, overexpression of pitrilysin protects insulinoma cells from human islet amyloid polypeptide-induced apoptosis. Since pitrilysin is a mitochondrial protein, we used immunofluorescence staining of pancreases from human IAPP transgenic mice and Western blot analysis of IAPP in isolated mitochondria from insulinoma cells to provide evidence for a putative intramitochondrial pool of IAPP. These results suggest that pitrilysin regulates islet amyloid polypeptide in beta cells and suggest the presence of an intramitochondrial pool of islet amyloid polypeptide involved in beta-cell apoptosis.

  19. Amyloid Load in Fat Tissue Reflects Disease Severity and Predicts Survival in Amyloidosis

    NARCIS (Netherlands)

    Van Gameren, Ingrid I.; Hazenberg, Bouke P. C.; Bijzet, Johan; Haagsma, Elizabeth B.; Vellenga, Edo; Posthumus, Marcel D.; Jager, Pieter L.; Van Rijswijk, Martin H.

    2010-01-01

    Objective. The severity of systemic amyloidosis is thought to be related to the extent of amyloid deposition. We studied whether amyloid load in fat tissue reflects disease severity and predicts survival. Methods. We studied all consecutive patients with systemic amyloidosis seen between January 199

  20. alpha-Synuclein enhances secretion and toxicity of amyloid beta peptides in PC12 cells

    NARCIS (Netherlands)

    Kazmierczak, Anna; Strosznajder, Joanna B.; Adamczyk, Agata

    2008-01-01

    alpha-Synuclein is the fundamental component of Lewy bodies which occur in the brain of 60% of sporadic and familial Alzheimer's disease patients. Moreover, a proteolytic fragment of alpha-synuclein, the so-called non-amyloid component of Alzheimer's disease amyloid, was found to be an integral part

  1. AFM-based force spectroscopy measurements of mature amyloid fibrils of the peptide glucagon

    DEFF Research Database (Denmark)

    Dong, M. D.; Hovgaard, M. B.; Mamdouh, W.;

    2008-01-01

    of such mature fibrils contribute to their high stability, suggesting that the internal hydrophobic interactions of amyloid fibrils are likely to be of fundamental importance in the assembly of amyloid fibrils and therefore for the understanding of the progression of their associated pathogenic disorders...

  2. Generation of prion transmission barriers by mutational control of amyloid conformations.

    Science.gov (United States)

    Chien, Peter; DePace, Angela H; Collins, Sean R; Weissman, Jonathan S

    2003-08-21

    Self-propagating beta-sheet-rich protein aggregates are implicated in a wide range of protein-misfolding phenomena, including amyloid diseases and prion-based inheritance. Two properties have emerged as common features of amyloids. Amyloid formation is ubiquitous: many unrelated proteins form such aggregates and even a single polypeptide can misfold into multiple forms--a process that is thought to underlie prion strain variation. Despite this promiscuity, amyloid propagation can be highly sequence specific: amyloid fibres often fail to catalyse the aggregation of other amyloidogenic proteins. In prions, this specificity leads to barriers that limit transmission between species. Using the yeast prion [PSI+], we show in vitro that point mutations in Sup35p, the protein determinant of [PSI+], alter the range of 'infectious' conformations, which in turn changes amyloid seeding specificity. We generate a new transmission barrier in vivo by using these mutations to specifically disfavour subsets of prion strains. The ability of mutations to alter the conformations of amyloid states without preventing amyloid formation altogether provides a general mechanism for the generation of prion transmission barriers and may help to explain how mutations alter toxicity in conformational diseases.

  3. Neuroprotective Approaches in Experimental Models of β-Amyloid Neurotoxicity : Relevance to Alzheimer's Disease

    NARCIS (Netherlands)

    Harkany, Tibor; Hortobágyi, Tibor; Sasvári, Maria; Kónya, Csaba; Penke, Botond; Luiten, Paul G.M.; Nyakas, Csaba

    1999-01-01

    1. β-Amyloid peptides (Aβs) accumulate abundantly in the Alzheimer’s disease (AD) brain in areas subserving information acquisition and processing, and memory formation. Aβ fragments are produced in a process of abnormal proteolytic cleavage of their precursor, the amyloid precursor protein (APP). W

  4. Neuroprotective approaches in experimental models of beta-amyloid neurotoxicity : Relevance to Alzheimer's disease

    NARCIS (Netherlands)

    Harkany, T.; Hortobágyi, Tibor; Sasvari, M.; Konya, C.; Penke, B; Luiten, P.G.M.; Nyakas, C.

    1999-01-01

    1. beta-Amyloid peptides (A beta s) accumulate abundantly in the Alzheimer's disease (AD) brain in areas subserving information acquisition arid processing, and memory formation. A beta fragments are producedin a process of abnormal proteolytic cleavage of their precursor, the amyloid precursor prot

  5. ABCA7 Mediates Phagocytic Clearance of Amyloid-β in the Brain.

    Science.gov (United States)

    Fu, YuHong; Hsiao, Jen-Hsiang T; Paxinos, George; Halliday, Glenda M; Kim, Woojin Scott

    2016-09-06

    Alzheimer's disease (AD) is a neurodegenerative disorder characterized by dementia and abnormal deposits of aggregated amyloid-β in the brain. Recent genome-wide association studies have revealed that ABCA7 is strongly associated with AD. In vitro evidence suggests that the role of ABCA7 is related to phagocytic activity. Deletion of ABCA7 in a mouse model of AD exacerbates cerebral amyloid-β plaque load. However, the biological role of ABCA7 in AD brain pathogenesis is unknown. We show that ABCA7 is highly expressed in microglia and when monocytes are differentiated into macrophages. We hypothesized that ABCA7 plays a protective role in the brain that is related to phagocytic clearance of amyloid-β. We isolated microglia and macrophages from Abca7-/- and wild type mice and tested them for their capacity to phagocytose amyloid-β oligomers. We found that the phagocytic clearance of amyloid-β was substantially reduced in both microglia and macrophages from Abca7-/- mice compared to wild type mice. Consistent with these results, in vivo phagocytic clearance of amyloid-β oligomers in the hippocampus was reduced in Abca7-/- mice. Furthermore, ABCA7 transcription was upregulated in AD brains and in amyloidogenic mouse brains specifically in the hippocampus as a response to the amyloid-β pathogenic state. Together these results indicate that ABCA7 mediates phagocytic clearance of amyloid-β in the brain, and reveal a mechanism by which loss of function of ABCA7 increases the susceptibility to AD.

  6. Plasma beta amyloid and the risk of Alzheimer's disease in Down syndrome.

    NARCIS (Netherlands)

    Coppus, A.M.W.; Schuur, M.; Vergeer, J.; Janssens, A.C.; Oostra, B.A.; Verbeek, M.M.; Duijn, C.M. van

    2012-01-01

    Extracellular deposition of amyloid beta peptide (Abeta) has been implicated as a critical step in the pathogenesis of Alzheimer's disease (AD). In Down syndrome (DS), Alzheimer's disease is assumed to be caused by the triplication and overexpression of the gene for amyloid precursor protein (APP),

  7. Influence of hydrophobic Teflon particles on the structure of amyloid beta-peptide

    NARCIS (Netherlands)

    Giacomelli, C.E.; Norde, W.

    2003-01-01

    The amyloid beta-protein (Abeta) constitutes the major peptide component of the amyloid plaque deposits of Alzheimer's disease in humans. The Abeta changes from a nonpathogenic to a pathogenic conformation resulting in self-aggregation and deposition of the peptide. It has been established that dena

  8. Immunohistochemical identification and crossreactions of amyloid-A fibril protein in man and eleven other species

    NARCIS (Netherlands)

    Gruys, E.; Linke, R.P.; Hol, P.R.; Geisel, O.; Nathrath, W.B.J.; Trautwein, G.

    1984-01-01

    Antisera were prepared in rabbits, sheep or chicken against purified amyloid fibril protein AA from man, mouse, stone marten, dog, cow and hamster. These antisera were tested by immunodiffusion against all purified antigens and applied to tissue sections containing amyloid from man, mouse, hamster,

  9. Differential gene expression in human brain pericytes induced by amyloid-beta protein.

    NARCIS (Netherlands)

    Rensink, A.A.M.; Otte-Holler, I.; Donkelaar, H.J. ten; Waal, R.M.W. de; Kremer, H.P.H.; Verbeek, M.M.

    2004-01-01

    Cerebral amyloid angiopathy is one of the characteristics of Alzheimer's disease (AD) and this accumulation of fibrillar amyloid-beta (Alphabeta) in the vascular wall is accompanied by marked vascular damage. In vitro, Abeta1-40 carrying the 'Dutch' mutation (DAbeta1-40) induces degeneration of cult

  10. Familial Danish dementia: a novel form of cerebral amyloidosis associated with deposition of both amyloid-Dan and amyloid-beta

    DEFF Research Database (Denmark)

    Holton, J.L; Lashley, T.; Ghiso, J.;

    2002-01-01

    response using conventional techniques, immunohistochemistry, confocal microscopy, and immunoelectron microscopy. We showed that ADan is widely distributed in the central nervous system (CNS) in the leptomeninges, blood vessels, and parenchyma. A predominance of parenchymal pre-amyloid (non...

  11. CCR5 deficiency accelerates lipopolysaccharide-induced astrogliosis, amyloid-beta deposit and impaired memory function.

    Science.gov (United States)

    Hwang, Chul Ju; Park, Mi Hee; Hwang, Jae Yeon; Kim, Ju Hwan; Yun, Na Young; Oh, Sang Yeon; Song, Ju Kyung; Seo, Hyun Ok; Kim, Yun-Bae; Hwang, Dae Yeon; Oh, Ki-Wan; Han, Sang-Bae; Hong, Jin Tae

    2016-03-15

    Chemokine receptors are implicated in inflammation and immune responses. Neuro-inflammation is associated with activation of astrocyte and amyloid-beta (Aβ) generations that lead to pathogenesis of Alzheimer disease (AD). Previous our study showed that deficiency of CC chemokine receptor 5 (CCR5) results in activation of astrocytes and Aβ deposit, and thus memory dysfunction through increase of CC chemokine receptor 2 (CCR2) expression. CCR5 knockout mice were used as an animal model with memory dysfunction. For the purpose LPS was injected i.p. daily (0.25 mg/kg/day). The memory dysfunctions were much higher in LPS-injected CCR5 knockout mice compared to CCR5 wild type mice as well as non-injected CCR5 knockout mice. Associated with severe memory dysfuction in LPS injected CCR5 knockout mice, LPS injection significant increase expression of inflammatory proteins, astrocyte activation, expressions of β-secretase as well as Aβ deposition in the brain of CCR5 knockout mice as compared with that of CCR5 wild type mice. In CCR5 knockout mice, CCR2 expressions were high and co-localized with GFAP which was significantly elevated by LPS. Expression of monocyte chemoattractant protein-1 (MCP-1) which ligands of CCR2 also increased by LPS injection, and increment of MCP-1 expression is much higher in CCR5 knockout mice. BV-2 cells treated with CCR5 antagonist, D-ala-peptide T-amide (DAPTA) and cultured astrocytes isolated from CCR5 knockout mice treated with LPS (1 μg/ml) and CCR2 antagonist, decreased the NF-ĸB activation and Aβ level. These findings suggest that the deficiency of CCR5 enhances response of LPS, which accelerates to neuro-inflammation and memory impairment.

  12. Copper(I/II), α/β-Synuclein and Amyloid-β: Menage à Trois?

    Science.gov (United States)

    De Ricco, Riccardo; Valensin, Daniela; Dell'Acqua, Simone; Casella, Luigi; Hureau, Christelle; Faller, Peter

    2015-11-02

    Copper binding to α-synuclein (aS) and to amyloid-β (Ab) has been connected to Parkinson's and Alzheimer's disease (AD), respectively, because Cu ions can modulate the peptide aggregation, and these Cu ⋅ peptide complexes can catalyse the production of reactive oxygen species (ROS). In a significant proportion of AD brains, aggregation of aS and Ab has been detected, and it was proposed that Ab and aS interact with each other. Thus, we investigated the potential interactions of Ab and aS through their binding of copper(I) and copper(II). Additionally, β-synuclein (bS) was investigated, due to its additional methionine residue, a potential Cu(I) ligand. We found that: 1) the peptides containing the Cu-binding domains Ab1-16, aS1-15 and bS1-15 have similar affinities towards Cu(II) and towards Cu(I), with Ab1-16 being slightly stronger, 2) in the case of Cu(I), the additional Met residue in bS1-15 increased the affinity slightly, 3) the exchange of Cu(I/II) between the two peptides is rapid (≤ ms), 4) a/bS1-15 and Ab1-16 form a heterodimeric complex with Cu(II), 5) Cu(I) probably promotes a transient ternary complex, 6) the different Cu(I/II) coordination of Ab1-16, aS1-15 and bS1-15 impacts the capacity to produce ROS and to oxidise catechol, and 7) when Ab1-16, aS1-15 and Cu are present, the ROS production more closely resembles that by Ab1-16. The work gives insights into the coordination chemistry of these related peptides, and the relevance of coordination differences, the ternary complex and ROS production are discussed.

  13. Pre-amyloid oligomers budding:a metastatic mechanism of proteotoxicity

    Science.gov (United States)

    Bernini, Fabrizio; Malferrari, Daniele; Pignataro, Marcello; Bortolotti, Carlo Augusto; di Rocco, Giulia; Lancellotti, Lidia; Brigatti, Maria Franca; Kayed, Rakez; Borsari, Marco; Del Monte, Federica; Castellini, Elena

    2016-10-01

    The pathological hallmark of misfolded protein diseases and aging is the accumulation of proteotoxic aggregates. However, the mechanisms of proteotoxicity and the dynamic changes in fiber formation and dissemination remain unclear, preventing a cure. Here we adopted a reductionist approach and used atomic force microscopy to define the temporal and spatial changes of amyloid aggregates, their modes of dissemination and the biochemical changes that may influence their growth. We show that pre-amyloid oligomers (PAO) mature to form linear and circular protofibrils, and amyloid fibers, and those can break reforming PAO that can migrate invading neighbor structures. Simulating the effect of immunotherapy modifies the dynamics of PAO formation. Anti-fibers as well as anti-PAO antibodies fragment the amyloid fibers, however the fragmentation using anti-fibers antibodies favored the migration of PAO. In conclusion, we provide evidence for the mechanisms of misfolded protein maturation and propagation and the effects of interventions on the resolution and dissemination of amyloid pathology.

  14. Targeted pharmacological depletion of serum amyloid P component for treatment of human amyloidosis.

    Science.gov (United States)

    Pepys, M B; Herbert, J; Hutchinson, W L; Tennent, G A; Lachmann, H J; Gallimore, J R; Lovat, L B; Bartfai, T; Alanine, A; Hertel, C; Hoffmann, T; Jakob-Roetne, R; Norcross, R D; Kemp, J A; Yamamura, K; Suzuki, M; Taylor, G W; Murray, S; Thompson, D; Purvis, A; Kolstoe, S; Wood, S P; Hawkins, P N

    2002-05-16

    The normal plasma protein serum amyloid P component (SAP) binds to fibrils in all types of amyloid deposits, and contributes to the pathogenesis of amyloidosis. In order to intervene in this process we have developed a drug, R-1-[6-[R-2-carboxy-pyrrolidin-1-yl]-6-oxo-hexanoyl]pyrrolidine-2-carboxylic acid, that is a competitive inhibitor of SAP binding to amyloid fibrils. This palindromic compound also crosslinks and dimerizes SAP molecules, leading to their very rapid clearance by the liver, and thus produces a marked depletion of circulating human SAP. This mechanism of drug action potently removes SAP from human amyloid deposits in the tissues and may provide a new therapeutic approach to both systemic amyloidosis and diseases associated with local amyloid, including Alzheimer's disease and type 2 diabetes.

  15. Amyloid Fibrils as Building Blocks for Natural and Artificial Functional Materials.

    Science.gov (United States)

    Knowles, Tuomas P J; Mezzenga, Raffaele

    2016-08-01

    Proteinaceous materials based on the amyloid core structure have recently been discovered at the origin of biological functionality in a remarkably diverse set of roles, and attention is increasingly turning towards such structures as the basis of artificial self-assembling materials. These roles contrast markedly with the original picture of amyloid fibrils as inherently pathological structures. Here we outline the salient features of this class of functional materials, both in the context of the functional roles that have been revealed for amyloid fibrils in nature, as well as in relation to their potential as artificial materials. We discuss how amyloid materials exemplify the emergence of function from protein self-assembly at multiple length scales. We focus on the connections between mesoscale structure and material function, and demonstrate how the natural examples of functional amyloids illuminate the potential applications for future artificial protein based materials.

  16. Imaging amyloid in Parkinson's disease dementia and dementia with Lewy bodies with positron emission tomography.

    Science.gov (United States)

    Brooks, David J

    2009-01-01

    Although Parkinson's disease with later dementia (PDD) and dementia with Lewy bodies (DLB) are pathologically characterized by the presence of intraneuronal Lewy inclusion bodies, amyloid deposition is also associated to varying degrees with both these disorders. Fibrillar amyloid load can now be quantitated in vivo with positron emission tomography (PET) using imaging biomarkers. Here the reported findings of 11C-PIB PET studies concerning the amyloid load associated with PD and its influence on dementia are reviewed. It is concluded that the presence of amyloid acts to accelerate the dementia process in Lewy body disorders, though has little influence on its nature. Anti-amyloid strategies could be a relevant approach for slowing dementia in a number of DLB and PDD cases.

  17. Extracellular DNA facilitates the formation of functional amyloids in Staphylococcus aureus biofilms.

    Science.gov (United States)

    Schwartz, Kelly; Ganesan, Mahesh; Payne, David E; Solomon, Michael J; Boles, Blaise R

    2016-01-01

    Persistent staphylococcal infections often involve surface-associated communities called biofilms. Staphylococcus aureus biofilm development is mediated by the co-ordinated production of the biofilm matrix, which can be composed of polysaccharides, extracellular DNA (eDNA) and proteins including amyloid fibers. The nature of the interactions between matrix components, and how these interactions contribute to the formation of matrix, remain unclear. Here we show that the presence of eDNA in S. aureus biofilms promotes the formation of amyloid fibers. Conditions or mutants that do not generate eDNA result in lack of amyloids during biofilm growth despite the amyloidogeneic subunits, phenol soluble modulin peptides, being produced. In vitro studies revealed that the presence of DNA promotes amyloid formation by PSM peptides. Thus, this work exposes a previously unacknowledged interaction between biofilm matrix components that furthers our understanding of functional amyloid formation and S. aureus biofilm biology.

  18. Feasibility and acceptance of simultaneous amyloid PET/MRI

    Energy Technology Data Exchange (ETDEWEB)

    Schuetz, Lisa; Tiepolt, Solveig; Werner, Peter; Jochimsen, Thies; Rullmann, Michael; Sattler, Bernhard; Patt, Marianne; Barthel, Henryk [Leipzig University Hospital, Department of Nuclear Medicine, Leipzig (Germany); Lobsien, Donald; Fritzsch, Dominik; Hoffmann, Karl-Titus [Leipzig University Hospital, Department of Neuroradiology, Leipzig (Germany); Schroeter, Matthias L.; Villringer, Arno [Leipzig University Hospital and Max Planck Institute for Human Cognitive and Brain Sciences, Day Clinic for Cognitive Neurology, Leipzig (Germany); Leipzig University Hospital, IFB Adiposity Diseases, Leipzig (Germany); Berrouschot, Joerg [Clinical Centre Altenburger Land, Altenburg (Germany); Saur, Dorothee; Classen, Joseph [Leipzig University Hospital, Department of Neurology, Leipzig (Germany); Hesse, Swen; Sabri, Osama [Leipzig University Hospital, Department of Nuclear Medicine, Leipzig (Germany); Leipzig University Hospital, IFB Adiposity Diseases, Leipzig (Germany); Gertz, Hermann-Josef [Leipzig University Hospital, Department of Psychiatry, Leipzig (Germany)

    2016-11-15

    Established Alzheimer's disease (AD) biomarker concepts classify into amyloid pathology and neuronal injury biomarkers, while recent alternative concepts classify into diagnostic and progression AD biomarkers. However, combined amyloid positron emission tomography/magnetic resonance imaging (PET/MRI) offers the chance to obtain both biomarker category read-outs within one imaging session, with increased patient as well as referrer convenience. The aim of this pilot study was to investigate this matter for the first time. 100 subjects (age 70 ± 10 yrs, 46 female), n = 51 with clinically defined mild cognitive impairment (MCI), n = 44 with possible/probable AD dementia, and n = 5 with frontotemporal lobe degeneration, underwent simultaneous [{sup 18}F]florbetaben or [{sup 11}C]PIB PET/MRI (3 Tesla Siemens mMR). Brain amyloid load, mesial temporal lobe atrophy (MTLA) by means of the Scheltens scale, and other morphological brain pathologies were scored by respective experts. The patients/caregivers as well as the referrers were asked to assess on a five-point scale the convenience related to the one-stop-shop PET and MRI approach. In three subjects, MRI revealed temporal lobe abnormalities other than MTLA. According to the National Institute on Aging-Alzheimer's Association classification, the combined amyloid-beta PET/MRI evaluation resulted in 31 %, 45 %, and 24 % of the MCI subjects being categorized as ''MCI-unlikely due to AD'', ''MCI due to AD-intermediate likelihood'', and ''MCI due to AD-high likelihood'', respectively. 50 % of the probable AD dementia patients were categorized as ''High level of evidence of AD pathophysiological process'', and 56 % of the possible AD dementia patients as ''Possible AD dementia - with evidence of AD pathophysiological process''. With regard to the International Working Group 2 classification, 36 subjects had both

  19. The proteome response to amyloid protein expression in vivo.

    Directory of Open Access Journals (Sweden)

    Ricardo A Gomes

    Full Text Available Protein misfolding disorders such as Alzheimer, Parkinson and transthyretin amyloidosis are characterized by the formation of protein amyloid deposits. Although the nature and location of the aggregated proteins varies between different diseases, they all share similar molecular pathways of protein unfolding, aggregation and amyloid deposition. Most effects of these proteins are likely to occur at the proteome level, a virtually unexplored reality. To investigate the effects of an amyloid protein expression on the cellular proteome, we created a yeast expression system using human transthyretin (TTR as a model amyloidogenic protein. We used Saccharomyces cerevisiae, a living test tube, to express native TTR (non-amyloidogenic and the amyloidogenic TTR variant L55P, the later forming aggregates when expressed in yeast. Differential proteome changes were quantitatively analyzed by 2D-differential in gel electrophoresis (2D-DIGE. We show that the expression of the amyloidogenic TTR-L55P causes a metabolic shift towards energy production, increased superoxide dismutase expression as well as of several molecular chaperones involved in protein refolding. Among these chaperones, members of the HSP70 family and the peptidyl-prolyl-cis-trans isomerase (PPIase were identified. The latter is highly relevant considering that it was previously found to be a TTR interacting partner in the plasma of ATTR patients but not in healthy or asymptomatic subjects. The small ubiquitin-like modifier (SUMO expression is also increased. Our findings suggest that refolding and degradation pathways are activated, causing an increased demand of energetic resources, thus the metabolic shift. Additionally, oxidative stress appears to be a consequence of the amyloidogenic process, posing an enhanced threat to cell survival.

  20. In vivo amyloid imaging with PET in frontotemporal dementia

    Energy Technology Data Exchange (ETDEWEB)

    Engler, Henry [Uruguay University Hospital of Clinics and Faculty of Science, Department of Nuclear Medicine, Montevideo (Uruguay); Uppsala University Hospital, Department of Nuclear Medicine, Uppsala (Sweden); Uppsala University, Department of Medical Sciences, Uppsala (Sweden); GE Healthcare, Uppsala Imanet, Uppsala (Sweden); Santillo, Alexander F.; Lindau, Maria; Lannfelt, Lars; Kilander, Lena [Uppsala University, Department of Public Health and Caring Sciences/Geriatrics, Uppsala (Sweden); Wang, Shu Xia [Guangdong Provincial People' s Hospital, Weilun PET Centre, Guangzhou (China); Savitcheva, Irina [Uppsala University Hospital, Department of Nuclear Medicine, Uppsala (Sweden); Nordberg, Agneta [Karolinska Institute, Division of Molecular Neuropharmacology, Stockholm (Sweden); Karolinska University Hospital Huddinge, Department of Geriatric Medicine, Stockholm (Sweden); Laangstroem, Bengt [GE Healthcare, Uppsala Imanet, Uppsala (Sweden); Uppsala University, Departments of Biochemistry and Organic Chemistry, Uppsala (Sweden)

    2008-01-15

    N-methyl[11C]2-(4'methylaminophenyl)-6-hydroxy-benzothiazole (PIB) is a positron emission tomography (PET) tracer with amyloid binding properties which allows in vivo measurement of cerebral amyloid load in Alzheimer's disease (AD). Frontotemporal dementia (FTD) is a syndrome that can be clinically difficult to distinguish from AD, but in FTD amyloid deposition is not a characteristic pathological finding. The aim of this study is to investigate PIB retention in FTD. Ten patients with the diagnosis of FTD participated. The diagnosis was based on clinical and neuropsychological examination, computed tomography or magnetic resonance imaging scan, and PET with 18Fluoro-2-deoxy-d-glucose (FDG). The PIB retention, measured in regions of interest, was normalised to a reference region (cerebellum). The results were compared with PIB retention data previously obtained from 17 AD patients with positive PIB retention and eight healthy controls (HC) with negative PIB retention. Statistical analysis was performed with a students t-test with significance level set to 0.00625 after Bonferroni correction. Eight FTD patients showed significantly lower PIB retention compared to AD in frontal (p < 0.0001), parietal (p < 0.0001), temporal (p = 0.0001), and occipital (p = 0.0003) cortices as well as in putamina (p < 0.0001). The PIB uptake in these FTD patients did not differ significantly from the HC in any region. However, two of the 10 FTD patients showed PIB retention similar to AD patients. The majority of FTD patients displayed no PIB retention. Thus, PIB could potentially aid in differentiating between FTD and AD. (orig.)

  1. Butyrylcholinesterase in the life cycle of amyloid plaques.

    Science.gov (United States)

    Guillozet, A L; Smiley, J F; Mash, D C; Mesulam, M M

    1997-12-01

    Deposits of diffuse beta-amyloid (Abeta) may exist in the brain for many years before leading to neuritic degeneration and dementia. The factors that contribute to the putative transformation of the Abeta amyloid from a relatively inert to a pathogenic state remain unknown and may involve interactions with additional plaque constituents. Matching brain sections from 2 demented and 4 nondemented subjects were processed for the demonstration of Abeta immunoreactivity, butyrylcholinesterase (BChE) enzyme activity, and thioflavine S binding. Additional sections were processed for the concurrent demonstration of two or three of these markers. A comparative analysis of multiple cytoarchitectonic areas processed with each of these markers indicated that Abeta plaque deposits are likely to undergo three stages of maturation, ie, a "diffuse" thioflavine S-negative stage, a thioflavine S-positive (ie, compact) but nonneuritic stage, and a compact neuritic stage. A multiregional analysis showed that BChE-positive plaques were not found in cytoarchitectonic areas or cortical layers that contained only the thioflavine S-negative, diffuse type of Abeta plaques. The BChE-positive plaques were found only in areas containing thioflavine S-positive compact plaques, both neuritic and nonneuritic. Within such areas, almost all (>98%) BChE-containing plaques bound thioflavine S, and almost all (93%) thioflavine S plaques contained BChE. These results suggest that BChE becomes associated with amyloid plaques at approximately the same time that the Abeta deposit assumes a compact beta-pleated conformation. BChE may therefore participate in the transformation of Abeta from an initially benign form to an eventually malignant form associated with neuritic tissue degeneration and clinical dementia.

  2. Protein misfolding, congophilia, oligomerization, and defective amyloid processing in preeclampsia.

    Science.gov (United States)

    Buhimschi, Irina A; Nayeri, Unzila A; Zhao, Guomao; Shook, Lydia L; Pensalfini, Anna; Funai, Edmund F; Bernstein, Ira M; Glabe, Charles G; Buhimschi, Catalin S

    2014-07-16

    Preeclampsia is a pregnancy-specific disorder of unknown etiology and a leading contributor to maternal and perinatal morbidity and mortality worldwide. Because there is no cure other than delivery, preeclampsia is the leading cause of iatrogenic preterm birth. We show that preeclampsia shares pathophysiologic features with recognized protein misfolding disorders. These features include urine congophilia (affinity for the amyloidophilic dye Congo red), affinity for conformational state-dependent antibodies, and dysregulation of prototype proteolytic enzymes involved in amyloid precursor protein (APP) processing. Assessment of global protein misfolding load in pregnancy based on urine congophilia (Congo red dot test) carries diagnostic and prognostic potential for preeclampsia. We used conformational state-dependent antibodies to demonstrate the presence of generic supramolecular assemblies (prefibrillar oligomers and annular protofibrils), which vary in quantitative and qualitative representation with preeclampsia severity. In the first attempt to characterize the preeclampsia misfoldome, we report that the urine congophilic material includes proteoforms of ceruloplasmin, immunoglobulin free light chains, SERPINA1, albumin, interferon-inducible protein 6-16, and Alzheimer's β-amyloid. The human placenta abundantly expresses APP along with prototype APP-processing enzymes, of which the α-secretase ADAM10, the β-secretases BACE1 and BACE2, and the γ-secretase presenilin-1 were all up-regulated in preeclampsia. The presence of β-amyloid aggregates in placentas of women with preeclampsia and fetal growth restriction further supports the notion that this condition should join the growing list of protein conformational disorders. If these aggregates play a pathophysiologic role, our findings may lead to treatment for preeclampsia.

  3. Amyloid- and FDG-PET imaging in amyotrophic lateral sclerosis

    Energy Technology Data Exchange (ETDEWEB)

    Matias-Guiu, Jordi A.; Pytel, Vanesa; Galan, Lucia; Valles-Salgado, Maria; Guerrero, Antonio; Moreno-Ramos, Teresa; Matias-Guiu, Jorge [Hospital Clinico San Carlos, San Carlos Institute for Health Research (IdISSC), Universidad Complutense de Madrid, Department of Neurology, Madrid (Spain); Cabrera-Martin, Maria Nieves; Carreras, Jose Luis [Hospital Clinico San Carlos, San Carlos Institute for Health Research (IdISSC), Universidad Complutense de Madrid, Department of Nuclear Medicine, Madrid (Spain)

    2016-10-15

    We aimed to study brain metabolism and presence of beta-amyloid deposits using positron emission tomography (PET) in patients with amyotrophic lateral sclerosis (ALS). This prospective cross-sectional study included 18 patients with definite or probable ALS according to the revised El Escorial diagnostic criteria, and 24 healthy controls. Patients underwent neurological and neuropsychological assessments, PET with {sup 18}F-fluorodeoxyglucose (FDG), and amyloid-PET with {sup 18}F-florbetaben. Patients with ALS showed hypometabolism in the frontal area and hypermetabolism in the cerebellum compared to healthy controls. Four patients (22 %) displayed cognitive impairment and decreased metabolism in the frontal area extending bilaterally to the parietal regions, and increased metabolism in the posterior area of the cerebellum. In patients with no cognitive impairment, metabolism was lower in the left superior frontal gyrus and higher in the anterior and posterior lobes of the cerebellum. In the individual analysis, six patients (35 %) displayed more anterior involvement with hypometabolism affecting the superior frontal, medial, and inferior gyri; six patients (35 %) exhibited a more posterior pattern with hypometabolism in the precentral and postcentral gyri and in the superior and inferior parietal lobules; two patients (11 %) showed a mixed pattern; and three patients (17 %) showed no alterations in brain metabolism. Three (16 %) showed increased {sup 18}F-florbetaben uptake compared to controls. We have identified two main patterns of brain metabolism with an association to cognitive status. Only a subgroup of patients showed an increased uptake of the amyloid tracer. Our results suggest that ALS is heterogeneous from a clinical, metabolic, and molecular standpoint. (orig.)

  4. Depletion of CXCR2 inhibits γ-secretase activity and amyloid-β production in a murine model of Alzheimer's disease.

    Science.gov (United States)

    Bakshi, Pancham; Margenthaler, Elaina; Reed, Jon; Crawford, Fiona; Mullan, Michael

    2011-02-01

    Alzheimer's disease (AD) is a neurodegenerative disorder that leads to progressive cognitive decline. Recent studies from our group and others have suggested that certain G-protein coupled receptors (GPCRs) can influence the processing of the amyloid precursor protein (APP). Earlier, we demonstrated that stimulation of a chemokine receptor, CXCR2, results in enhanced γ-secretase activity and in increased amyloid-beta (Aβ) production. Taken together, results obtained from in vitro studies indicate that therapeutic targeting of CXCR2 might aid in lowering Aβ levels in the AD brain. To better understand the precise function and to predict the consequences of CXCR2 depletion in the AD brain, we have crossed CXCR2 knockout mice with mice expressing presenilin (PS1 M146L) and APPsw mutations (PSAPP). Our present study confirms that CXCR2 depletion results in reduction of Aβ with concurrent increases of γ-secretase substrates. At the mechanistic level, the effect of CXCR2 on γ-secretase was not found to occur via their direct interaction. Furthermore, we provide evidence that Aβ promotes endocytosis of CXCR2 via increasing levels of CXCR2 ligands. In conclusion, our current study confirms the regulatory role of CXCR2 in APP processing, and poses it as a potential target for developing novel therapeutics for intervention in AD.

  5. Effect of Metal Chelators on γ-Secretase Indicates That Calcium and Magnesium Ions Facilitate Cleavage of Alzheimer Amyloid Precursor Substrate

    Directory of Open Access Journals (Sweden)

    Michael Ho

    2011-01-01

    Full Text Available Gamma-secretase is involved in the production of Aβ amyloid peptides. It cleaves the transmembrane domain of the amyloid precursor protein (APP at alternative sites to produce Aβ and the APP intracellular domain (AICD. Metal ions play an important role in Aβ aggregation and metabolism, thus metal chelators and ligands represent potential therapeutic agents for AD treatment. A direct effect of metal chelators on γ-secretase has not yet been investigated. The authors used an in vitro  γ-secretase assay consisting of cleavage of APP C100-3XFLAG by endogenous γ-secretase from rodent brains and human neuroblastoma SH-SY5Y, and detected AICD production by western blotting. Adding metalloprotease inhibitors to the reaction showed that clioquinol, phosphoramidon, and zinc metalloprotease inhibitors had no significant effect on γ-secretase activity. In contrast, phenanthroline, EDTA, and EGTA markedly decreased γ-secretase activity that could be restored by adding back calcium and magnesium ions. Mg2+ stabilized a 1,000 kDa presenilin 1 complex through blue native gel electrophoresis and size-exclusion chromatography. Data suggest that Ca2+ and Mg2+ stabilize γ-secretase and enhance its activity.

  6. An Alzheimer Disease-linked Rare Mutation Potentiates Netrin Receptor Uncoordinated-5C-induced Signaling That Merges with Amyloid β Precursor Protein Signaling.

    Science.gov (United States)

    Hashimoto, Yuichi; Toyama, Yuka; Kusakari, Shinya; Nawa, Mikiro; Matsuoka, Masaaki

    2016-06-03

    A missense mutation (T835M) in the uncoordinated-5C (UNC5C) netrin receptor gene increases the risk of late-onset Alzheimer disease (AD) and also the vulnerability of neurons harboring the mutation to various insults. The molecular mechanisms underlying T835M-UNC5C-induced death remain to be elucidated. In this study, we show that overexpression of wild-type UNC5C causes low-grade death, which is intensified by an AD-linked mutation T835M. An AD-linked survival factor, calmodulin-like skin protein (CLSP), and a natural ligand of UNC5C, netrin1, inhibit this death. T835M-UNC5C-induced neuronal cell death is mediated by an intracellular death-signaling cascade, consisting of death-associated protein kinase 1/protein kinase D/apoptosis signal-regulating kinase 1 (ASK1)/JNK/NADPH oxidase/caspases, which merges at ASK1 with a death-signaling cascade, mediated by amyloid β precursor protein (APP). Notably, netrin1 also binds to APP and partially inhibits the death-signaling cascade, induced by APP. These results may provide new insight into the amyloid β-independent pathomechanism of AD.

  7. Novel effects of FCCP [carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone] on amyloid precursor protein processing.

    Science.gov (United States)

    Connop, B P; Thies, R L; Beyreuther, K; Ida, N; Reiner, P B

    1999-04-01

    Amyloidogenic processing of the beta-amyloid precursor protein (APP) has been implicated in the pathology of Alzheimer's disease. Because it has been suggested that catabolic processing of the APP holoprotein occurs in acidic intracellular compartments, we studied the effects of the protonophore carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone (FCCP) and the H+-ATPase inhibitor bafilomycin A1 on APP catabolism in human embryonic kidney 293 cells expressing either wild-type or "Swedish" mutant APP. Unlike bafilomycin A1, which inhibits beta-amyloid production in cells expressing mutant but not wild-type APP, FCCP inhibited beta-amyloid production in both cell types. Moreover, the effects of FCCP were independent of alterations in total cellular APP levels or APP maturation, and the concentrations used did not alter either cellular ATP levels or cell viability. Bafilomycin A1, which had no effect on beta-amyloid production in wild-type cells, inhibited endocytosis of fluorescent transferrin, whereas concentrations of FCCP that inhibited beta-amyloid production in these cells had no effect on endosomal function. Thus, in wild-type-expressing cells it appears that the beta-amyloid peptide is not produced in the classically defined endosome. Although bafilomycin A1 decreased beta-amyloid release from cells expressing mutant APP but not wild-type APP, it altered lysosomal function in both cell types, suggesting that in normal cells beta-amyloid is not produced in the lysosome. Although inhibition of beta-amyloid production by bafilomycin A1 in mutant cells may occur via changes in endosomal/lysosomal pH, our data suggest that FCCP inhibits wild-type beta-amyloid production by acting on a bafilomycin A1-insensitive acidic compartment that is distinct from either the endosome or the lysosome.

  8. Cerebral Amyloid Angiopathy Burden Associated with Leukoaraiosis:a PET/MRI Study

    Science.gov (United States)

    Gurol, M. Edip; Viswanathan, Anand; Gidicsin, Christopher; Hedden, Trey; Ramirez-Martinez, Sergi; Dumas, Andrew; Vashkevich, Anastasia; Ayres, Alison M.; Auriel, Eitan; van Etten, Ellis; Becker, Alex; Carmasin, Jeremy; Schwab, Kristin; Rosand, Jonathan; Johnson, Keith A.; Greenberg, Steven M.

    2013-01-01

    Objective We hypothesized that vascular amyloid contributes to chronic brain ischemia, therefore amyloid burden measured by Pittsburgh Compound B retention on PET (PiB-PET) would correlate with the extent of MRI white matter hyperintensities (WMHor leukoaraiosis) in patients with high vascular amyloid deposition (Cerebral Amyloid Angiopathy, CAA) but not high parenchymal amyloid deposition (Alzheimer’s Disease, AD; Mild Cognitive Impairment, MCI) or healthy elderly (HE). Methods Fourty-two non-demented CAA patients, 50 HE subjects and 43 AD/MCI patients had brain MRI and PiB-PET. Multivariate linear regression was used to assess the independent association between PiB retention and WMD volume controlling for age, gender, apolipoprotein E genotype, and vascular risk factors within each group. Results CAA patients were younger than HE and AD (68±10 vs 73.3±7 and 74±7.4, p<0.01) but had higher amounts of WMH (medians: 21ml vs 3.2ml and 10.8ml respectively, p<0.05 for both comparisons). Global PiB retention and WMH showed strong correlation (rho=0.52, p<0.001) in the CAA group but not in HE or AD. These associations did not change in the multivariate models. Lobar microbleed count, another marker of CAA severity also remained as an independent predictor of WMH volume. Interpretation Our results indicate that amyloid burden in CAA subjects (with primarily vascular amyloid) but not AD subjects (with primarily parenchymal amyloid) independently correlate with WMH volume. These findings support the idea that vascular amyloid burden directly contributes to chronic cerebral ischemia and highlights the possible utility of amyloid imaging as a marker of CAA severity. PMID:23424091

  9. Amyloid heart disease: genetics translated into disease-modifying therapy.

    Science.gov (United States)

    Sperry, Brett W; Tang, W H Wilson

    2017-03-02

    Given increased awareness and improved non-invasive diagnostic tools, cardiac amyloidosis has become an increasingly recognised aetiology of increased ventricular wall thickness and heart failure with preserved ejection fraction. Once considered a rare disease with no treatment options, translational research has harnessed novel pathways and led the way to promising treatment options. Gene variants that contribute to amyloid heart disease provide unique opportunities to explore potential disease-modifying therapeutic strategies. Amyloidosis has become the model disease through which gene therapy using small interfering RNAs and antisense oligonucleotides has evolved.

  10. Interaction of calreticulin with amyloid beta peptide 1-42.

    Science.gov (United States)

    Duus, K; Hansen, P R; Houen, G

    2008-01-01

    The interaction of calreticulin with amyloid beta (Abeta) was investigated using solid phase and solution binding assays. Calreticulin bound Abeta 1-42 in a time and concentration dependent fashion. The binding was optimal at pH 5 and was stimulated by Ca2+ and inhibited by Zn2+ at pH 7. Interaction took place through the hydrophobic C-terminus of Abeta 1-42 and the polypeptide binding site of calreticulin. The results are discussed in the light of a reported role of calreticulin as a cell surface scavenger receptor.

  11. Size-dependent neurotoxicity of β-amyloid oligomers

    OpenAIRE

    Cizas, Paulius; Budvytyte, Rima; Morkuniene, Ramune; Moldovan, Radu; Broccio, Matteo; Lösche, Mathias; Niaura, Gediminas; Valincius, Gintaras; Borutaite, Vilmante

    2010-01-01

    The link between the size of soluble amyloid β (Aβ) oligomers and their toxicity to rat cerebellar granule cells (CGC) was investigated. Variation in conditions during in vitro oligomerization of Aβ1-42 resulted in peptide assemblies with different particle size as measured by atomic force microscopy and confirmed by the dynamic light scattering and fluorescence correlation spectroscopy. Small oligomers of Aβ1-42 with a mean particle z-height of 1-2 nm exhibited propensity to bind to the phos...

  12. Minimal Zn2+ Binding Site of Amyloid

    Science.gov (United States)

    Tsvetkov, Philipp O.; Kulikova, Alexandra A.; Golovin, Andrey V.; Tkachev, Yaroslav V.; Archakov, Alexander I.; Kozin, Sergey A.; Makarov, Alexander A.

    2010-01-01

    Zinc-induced aggregation of amyloid-β peptide (Aβ) is a hallmark molecular feature of Alzheimer's disease. Here we provide direct thermodynamic evidence that elucidates the role of the Aβ region 6–14 as the minimal Zn2+ binding site wherein the ion is coordinated by His6, Glu11, His13, and His14. With the help of isothermal titration calorimetry and quantum mechanics/molecular mechanics simulations, the region 11–14 was determined as the primary zinc recognition site and considered an important drug-target candidate to prevent Zn2+-induced aggregation of Aβ. PMID:21081056

  13. Minimal Zn(2+) binding site of amyloid-β.

    Science.gov (United States)

    Tsvetkov, Philipp O; Kulikova, Alexandra A; Golovin, Andrey V; Tkachev, Yaroslav V; Archakov, Alexander I; Kozin, Sergey A; Makarov, Alexander A

    2010-11-17

    Zinc-induced aggregation of amyloid-β peptide (Aβ) is a hallmark molecular feature of Alzheimer's disease. Here we provide direct thermodynamic evidence that elucidates the role of the Aβ region 6-14 as the minimal Zn(2+) binding site wherein the ion is coordinated by His(6), Glu(11), His(13), and His(14). With the help of isothermal titration calorimetry and quantum mechanics/molecular mechanics simulations, the region 11-14 was determined as the primary zinc recognition site and considered an important drug-target candidate to prevent Zn(2+)-induced aggregation of Aβ.

  14. Multiple isoforms of the human pentraxin serum amyloid P component

    DEFF Research Database (Denmark)

    Sørensen, Inge Juul; Andersen, Ove; Nielsen, EH;

    1995-01-01

    Human serum amyloid P component (SAP) isolated from 20 healthy individuals was analyzed by anion exchange chromatography and isoelectric focusing (IEF) in order to investigate the existence of multiple forms of SAP and interindividual structural differences. Anion exchange chromatography showed one...... major and several minor subpopulations of SAP. IEF of all SAP isolates showed a previously unreported degree of heterogeneity with six isoelectric forms (pKi range 5.5-6.1) and with minor interindividual differences in respect of isoelectric points. Total enzymatic deglycosylation of SAP reduced...

  15. Serum amyloid A regulates monopoiesis in hyperlipidemic Ldlr(-/-) mice.

    Science.gov (United States)

    Krishack, Paulette A; Sontag, Timothy J; Getz, Godfrey S; Reardon, Catherine A

    2016-08-01

    We previously showed that feeding a Western-type diet (WTD) to Ldlr(-/-) mice lacking serum amyloid A (SAA) (Saa(-/-) Ldlr(-/-) mice), the level of total blood monocytes was higher than in Ldlr(-/-) mice. In this investigation we demonstrate that higher levels of bone marrow monocytes and macrophage-dendritic cell progenitor (MDP) cells were found in WTD-fed Saa(-/-) Ldlr(-/-) mice compared to Ldlr(-/-) mice and lower levels of GMP cells and CMP cells in Ldlr(-/-) mice. These data indicate that SAA regulates the level of bone marrow monocytes and their myeloid progenitors in hyperlipidemic Ldlr(-/-) mice.

  16. Following activation of the amyloid cascade, apolipoprotein E4 drives the in vivo oligomerization of amyloid-β resulting in neurodegeneration.

    Science.gov (United States)

    Belinson, Haim; Kariv-Inbal, Zehavit; Kayed, Rakez; Masliah, Eliezer; Michaelson, Daniel M

    2010-01-01

    According to the amyloid hypothesis, the accumulation of oligomerized amyloid-β (Aβ) is a primary event in the pathogenesis of Alzheimer's disease (AD). The trigger of the amyloid cascade and of Aβ oligomerization in sporadic AD, the most prevalent form of the disease, remains elusive. Here, we examined the hypothesis that apolipoprotein E4 (ApoE4), the most prevalent genetic risk factor for AD, triggers the accumulation of intraneuronal oligomerized Aβ following activation of the amyloid cascade. We investigated the intracellular organelles that are targeted by these processes and govern their pathological consequences. This revealed that activation of the amyloid cascade in vivo by inhibition of the Aβ degrading enzyme neprilysin specifically results in accumulation of Aβ and oligomerized Aβ and of ApoE4 in the CA1 neurons of ApoE4 mice. This was accompanied by lysosomal and mitochondrial pathology and the co-localization of Aβ, oligomerized Aβ, and ApoE4 with enlarged lysosomes and of Aβ and oligomerized Aβ with mitochondria. The time course of the lysosomal effects paralleled that of the loss of CA1 neurons, whereas the mitochondrial effects reached an earlier plateau. These findings suggest that ApoE4 potentiates the pathological effects of Aβ and the amyloid cascade by triggering the oligomerization of Aβ, which in turn, impairs intraneuronal mitochondria and lysosomes and drives neurodegeneration.

  17. Ligand placement based on prior structures: the guided ligand-replacement method

    Energy Technology Data Exchange (ETDEWEB)

    Klei, Herbert E. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Bristol-Myers Squibb, Princeton, NJ 08543-4000 (United States); Moriarty, Nigel W., E-mail: nwmoriarty@lbl.gov; Echols, Nathaniel [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Terwilliger, Thomas C. [Los Alamos National Laboratory, Los Alamos, NM 87545-0001 (United States); Baldwin, Eric T. [Bristol-Myers Squibb, Princeton, NJ 08543-4000 (United States); Natural Discovery LLC, Princeton, NJ 08542-0096 (United States); Pokross, Matt; Posy, Shana [Bristol-Myers Squibb, Princeton, NJ 08543-4000 (United States); Adams, Paul D. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); University of California at Berkeley, Berkeley, CA 94720-1762 (United States)

    2014-01-01

    A new module, Guided Ligand Replacement (GLR), has been developed in Phenix to increase the ease and success rate of ligand placement when prior protein-ligand complexes are available. The process of iterative structure-based drug design involves the X-ray crystal structure determination of upwards of 100 ligands with the same general scaffold (i.e. chemotype) complexed with very similar, if not identical, protein targets. In conjunction with insights from computational models and assays, this collection of crystal structures is analyzed to improve potency, to achieve better selectivity and to reduce liabilities such as absorption, distribution, metabolism, excretion and toxicology. Current methods for modeling ligands into electron-density maps typically do not utilize information on how similar ligands bound in related structures. Even if the electron density is of sufficient quality and resolution to allow de novo placement, the process can take considerable time as the size, complexity and torsional degrees of freedom of the ligands increase. A new module, Guided Ligand Replacement (GLR), was developed in Phenix to increase the ease and success rate of ligand placement when prior protein–ligand complexes are available. At the heart of GLR is an algorithm based on graph theory that associates atoms in the target ligand with analogous atoms in the reference ligand. Based on this correspondence, a set of coordinates is generated for the target ligand. GLR is especially useful in two situations: (i) modeling a series of large, flexible, complicated or macrocyclic ligands in successive structures and (ii) modeling ligands as part of a refinement pipeline that can automatically select a reference structure. Even in those cases for which no reference structure is available, if there are multiple copies of the bound ligand per asymmetric unit GLR offers an efficient way to complete the model after the first ligand has been placed. In all of these applications, GLR

  18. Nasal administration of amyloid-beta peptide decreases cerebral amyloid burden in a mouse model of Alzheimer's disease

    DEFF Research Database (Denmark)

    Weiner, H L; Lemere, C A; Maron, R;

    2000-01-01

    Progressive cerebral deposition of amyloid-beta (Abeta) peptide, an early and essential feature of Alzheimer's disease (AD), is accompanied by an inflammatory reaction marked by microgliosis, astrocytosis, and the release of proinflammatory cytokines. Mucosal administration of disease......-Abeta antibodies of the IgG1 and IgG2b classes, and mononuclear cells in the brain expressing the anti-inflammatory cytokines interleukin-4, interleukin-10, and tumor growth factor-beta. Our results demonstrate that chronic nasal administration of Abeta peptide can induce an immune response to Abeta that decreases...

  19. Mechanically functional amyloid fibrils in the adhesive of a marine invertebrate as revealed by Raman spectroscopy and atomic force microscopy.

    Science.gov (United States)

    S Mostaert, Anika; Crockett, Rowena; Kearn, Graham; Cherny, Izhack; Gazit, Ehud; C Serpell, Louise; P Jarvis, Suzanne

    2009-01-01

    Amyloid fibrils are primarily known in a pathogenic context for their association with a wide range of debilitating human diseases. Here we show a marine invertebrate (Entobdella soleae) utilizes functional amyloid fibrils comparable to those of a unicellular prokaryote (Escherichia coli). Thioflavin-T binding and Raman spectroscopy provided evidence for the presence of amyloid in the adhesive of Entobdella soleae. We elucidated that for these two very different organisms, amyloid fibrils provide adhesive and cohesive strength to their natural adhesives. Comparing the nanoscale mechanical responses of these fibrils with those of pathogenic amyloid by atomic force microscopy revealed that the molecular level origin of the cohesive strength was associated with the generic intermolecular β-sheet structure of amyloid fibrils. Functional adhesive residues were found only in the case of the functional amyloid. Atomic force microscopy provided a useful means to characterize the internal structural forces within individual amyloid fibrils and how these relate to the mechanical performance of both functional and pathogenic amyloid. The mechanistic link of amyloid-based cohesive and adhesive strength could be widespread amongst natural adhesives, irrespective of environment, providing a new strategy for biomimicry and a new source of materials for understanding the formation and stability of amyloid fibrils more generally.

  20. Differential mode of interaction of ThioflavinT with native β structural motif in human α 1-acid glycoprotein and cross beta sheet of its amyloid: Biophysical and molecular docking approach

    Science.gov (United States)

    Ajmal, Mohammad Rehan; Nusrat, Saima; Alam, Parvez; Zaidi, Nida; Badr, Gamal; Mahmoud, Mohamed H.; Rajpoot, Ravi Kant; Khan, Rizwan Hasan

    2016-08-01

    The present study details the interaction mechanism of Thioflavin T (ThT) to Human α1-acid glycoprotein (AAG) applying various spectroscopic and molecular docking methods. Fluorescence quenching data revealed the binding constant in the order of 104 M-1 and the standard Gibbs free energy change value, ΔG = -6.78 kcal mol-1 for the interaction between ThT and AAG indicating process is spontaneous. There is increase in absorbance of AAG upon the interaction of ThT that may be due to ground state complex formation between ThT and AAG. ThT impelled rise in β-sheet structure in AAG as observed from far-UV CD spectra while there are minimal changes in tertiary structure of the protein. DLS results suggested the reduction in AAG molecular size, ligand entry into the central binding pocket of AAG may have persuaded the molecular compaction in AAG. Isothermal titration calorimetric (ITC) results showed the interaction process to be endothermic with the values of standard enthalpy change ΔH0 = 4.11 kcal mol-1 and entropy change TΔS0 = 10.82 kcal.mol- 1. Moreover, docking results suggested hydrophobic interactions and hydrogen bonding played the important role in the binding process of ThT with F1S and A forms of AAG. ThT fluorescence emission at 485 nm was measured for properly folded native form and for thermally induced amyloid state of AAG. ThT fluorescence with native AAG was very low, while on the other hand with amyloid induced state of the protein AAG showed a positive emission peak at 485 nm upon the excitation at 440 nm, although it binds to native state as well. These results confirmed that ThT binding alone is not responsible for enhancement of ThT fluorescence but it also required beta stacked sheet structure found in protein amyloid to give proper signature signal for amyloid. This study gives the mechanistic insight into the differential interaction of ThT with beta structures found in native state of the proteins and amyloid forms, this study reinforce

  1. PARP-1 modulates amyloid beta peptide-induced neuronal damage.

    Directory of Open Access Journals (Sweden)

    Sara Martire

    Full Text Available Amyloid beta peptide (Aβ causes neurodegeneration by several mechanisms including oxidative stress, which is known to induce DNA damage with the consequent activation of poly (ADP-ribose polymerase (PARP-1. To elucidate the role of PARP-1 in the neurodegenerative process, SH-SY5Y neuroblastoma cells were treated with Aβ25-35 fragment in the presence or absence of MC2050, a new PARP-1 inhibitor. Aβ25-35 induces an enhancement of PARP activity which is prevented by cell pre-treatment with MC2050. These data were confirmed by measuring PARP-1 activity in CHO cells transfected with amylod precursor protein and in vivo in brains specimens of TgCRND8 transgenic mice overproducing the amyloid peptide. Following Aβ25-35 exposure a significant increase in intracellular ROS was observed. These data were supported by the finding that Aβ25-35 induces DNA damage which in turn activates PARP-1. Challenge with Aβ25-35 is also able to activate NF-kB via PARP-1, as demonstrated by NF-kB impairment upon MC2050 treatment. Moreover, Aβ25-35 via PARP-1 induces a significant increase in the p53 protein level and a parallel decrease in the anti-apoptotic Bcl-2 protein. These overall data support the hypothesis of PARP-1 involvment in cellular responses induced by Aβ and hence a possible rationale for the implication of PARP-1 in neurodegeneration is discussed.

  2. Isoforms of murine and human serum amyloid P component

    DEFF Research Database (Denmark)

    Nybo, Mads; Hackler, R; Kold, B;

    1998-01-01

    Isoelectric focusing (IEF) and immunofixation of murine serum amyloid P component (SAP), purified and in serum, showed a distinct and strain-dependent isoform pattern with up to seven bands (pI 5.1-5.7). Neuraminidase treatment caused a shift of the isoforms to more basic pI values, but did not a...... treatment caused a shift of the isoforms, but no reduction in isoform number. Two-dimensional gel electrophoresis confirmed the existence of multiple isoforms of human SAP monomers.......Isoelectric focusing (IEF) and immunofixation of murine serum amyloid P component (SAP), purified and in serum, showed a distinct and strain-dependent isoform pattern with up to seven bands (pI 5.1-5.7). Neuraminidase treatment caused a shift of the isoforms to more basic pI values, but did...... not affect their number. When the acute-phase response was analysed in three mouse strains, CBA/J and C3H/HeN initially showed seven SAP isoforms in serum and C57BL/6 J three or four. The responses in all three strains peaked at day 2 and were normalized within 14 days. On days 2 and 4, CBA/J and C3H...

  3. Microglia, neuroinflammation, and beta-amyloid protein in Alzheimer's disease.

    Science.gov (United States)

    Cai, Zhiyou; Hussain, M Delwar; Yan, Liang-Jun

    2014-05-01

    Compelling evidence from basic molecular biology has demonstrated the dual roles of microglia in the pathogenesis of Alzheimer's disease (AD). On one hand, microglia are involved in AD pathogenesis by releasing inflammatory mediators such as inflammatory cytokines, complement components, chemokines, and free radicals that are all known to contribute to beta-amyloid (Aβ) production and accumulation. On the other hand, microglia are also known to play a beneficial role in generating anti-Aβ antibodies and stimulating clearance of amyloid plaques. Aβ itself, an inducer of microglia activation and neuroinflammation, has been considered as an underlying and unifying factor in the development of AD. A vicious cycle of inflammation has been formed between Aβ accumulation, activated microglia, and microglial inflammatory mediators, which enhance Aβ deposition and neuroinflammation. Thus, inhibiting the vicious cycle seems to be a promising treatment to restrain further development of AD. With increasing research efforts on microglia in AD, intervention of microglia activation and neuroinflammation in AD may provide a potential target for AD therapy in spite of the provisional failure of nonsteroidal antiinflammatory drugs in clinical trials.

  4. Aspects of structural landscape of human islet amyloid polypeptide

    Science.gov (United States)

    He, Jianfeng; Dai, Jin; Li, Jing; Peng, Xubiao; Niemi, Antti J.

    2015-01-01

    The human islet amyloid polypeptide (hIAPP) co-operates with insulin to maintain glycemic balance. It also constitutes the amyloid plaques that aggregate in the pancreas of type-II diabetic patients. We have performed extensive in silico investigations to analyse the structural landscape of monomeric hIAPP, which is presumed to be intrinsically disordered. For this, we construct from first principles a highly predictive energy function that describes a monomeric hIAPP observed in a nuclear magnetic resonance experiment, as a local energy minimum. We subject our theoretical model of hIAPP to repeated heating and cooling simulations, back and forth between a high temperature regime where the conformation resembles a random walker and a low temperature limit where no thermal motions prevail. We find that the final low temperature conformations display a high level of degeneracy, in a manner which is fully in line with the presumed intrinsically disordered character of hIAPP. In particular, we identify an isolated family of α-helical conformations that might cause the transition to amyloidosis, by nucleation.

  5. Characterization of Amyloid-β Deposits in Bovine Brains.

    Science.gov (United States)

    Vallino Costassa, Elena; Fiorini, Michele; Zanusso, Gianluigi; Peletto, Simone; Acutis, Pierluigi; Baioni, Elisa; Maurella, Cristiana; Tagliavini, Fabrizio; Catania, Marcella; Gallo, Marina; Faro, Monica Lo; Chieppa, Maria Novella; Meloni, Daniela; D'Angelo, Antonio; Paciello, Orlando; Ghidoni, Roberta; Tonoli, Elisa; Casalone, Cristina; Corona, Cristiano

    2016-01-01

    Amyloid-β (Aβ) deposits are seen in aged individuals of many mammalian species that possess the same aminoacid sequence as humans. This study describes Aβ deposition in 102 clinically characterized cattle brains from animals aged 0 to 20 years. Extracellular and intracellular Aβ deposition was detected with 4G8 antibody in the cortex, hippocampus, and cerebellum. X-34 staining failed to stain Aβ deposits, indicating the non β-pleated nature of these deposits. Western blot analysis and surface-enhanced laser desorption/ionization time-of-flight (SELDI-TOF) mass spectrometry revealed in Tris, Triton, and formic acid fractions the presence of different Aβ peptides, characterized mainly by C-terminally truncated forms. Exploration of the genetic variability of APOE, PSEN1, and PSEN2 genes involved in Alzheimer's disease pathogenesis revealed several previously unreported polymorphisms. This study demonstrates certain similarities between Aβ deposition patterns exhibited in cattle brains and those in the human brain in early stages of aging. Furthermore, the identification of the same Aβ peptides reported in humans, but unable to form aggregates, supports the hypothesis that cattle may be protected against amyloid plaque formation.

  6. The butter flavorant, diacetyl, exacerbates β-amyloid cytotoxicity.

    Science.gov (United States)

    More, Swati S; Vartak, Ashish P; Vince, Robert

    2012-10-15

    Diacetyl (DA), an ubiquitous butter-flavoring agent, was found to influence several aspects of amyloid-β (Aβ) aggregation--one of the two primary pathologies associated with Alzheimer's disease. Thioflavin T fluorescence and circular dichroism spectroscopic measurements revealed that DA accelerates Aβ¹⁻⁴² aggregation into soluble and ultimately insoluble β-pleated sheet structures. DA was found to covalently bind to Arg⁵ of Aβ¹⁻⁴² through proteolytic digestion-mass spectrometric experiments. These biophysical and chemical effects translated into the potentiation of Aβ¹⁻⁴² cytotoxicity by DA toward SH-SY5Y cells in culture. DA easily traversed through a MDR1-MDCK cell monolayer, an in vitro model of the blood-brain barrier. Additionally, DA was found not only to be resistant to but also inhibitory toward glyoxalase I, the primary initiator of detoxification of amyloid-promoting reactive dicarbonyl species that are generated naturally in large amounts by neuronal tissue. In light of the chronic exposure of industry workers to DA, this study raises the troubling possibility of long-term neurological toxicity mediated by DA.

  7. Observation of spatial propagation of amyloid assembly from single nuclei.

    Science.gov (United States)

    Knowles, Tuomas P J; White, Duncan A; Abate, Adam R; Agresti, Jeremy J; Cohen, Samuel I A; Sperling, Ralph A; De Genst, Erwin J; Dobson, Christopher M; Weitz, David A

    2011-09-06

    The crucial early stages of amyloid growth, in which normally soluble proteins are converted into fibrillar nanostructures, are challenging to study using conventional techniques yet are critical to the protein aggregation phenomena implicated in many common pathologies. As with all nucleation and growth phenomena, it is difficult to track individual nuclei in traditional macroscopic experiments, which probe the overall temporal evolution of the sample, but do not yield detailed information on the primary nucleation step as they mix independent stochastic events into an ensemble measurement. To overcome this limitation, we have developed microdroplet assays enabling us to detect single primary nucleation events and to monitor their subsequent spatial as well as temporal evolution, both of which we find to be determined by secondary nucleation phenomena. By deforming the droplets to high aspect ratio, we visualize in real-time propagating waves of protein assembly emanating from discrete primary nucleation sites. We show that, in contrast to classical gelation phenomena, the primary nucleation step is characterized by a striking dependence on system size, and the filamentous protein self-assembly process involves a highly nonuniform spatial distribution of aggregates. These findings deviate markedly from the current picture of amyloid growth and uncover a general driving force, originating from confinement, which, together with biological quality control mechanisms, helps proteins remain soluble and therefore functional in nature.

  8. Cerebrospinal Fluid Biomarkers in Dementia Patients with Cerebral Amyloid Angiopathy

    Institute of Scientific and Technical Information of China (English)

    Yan-feng Li; Fang-fang Ge; Yong Zhang; Hui You; Zhen-xin Zhang

    2015-01-01

    Objective To study the changes of biomarkers in cerebrospinal fluid (CSF) in cerebral amyloid angiopathy (CAA) dementia and Alzheimer's disease. Methods Levels of amyloid proteinβ (Aβ42, Aβ40) and phosphorylated Tau-protein (P-tau) in CSF and ratio of Aβ42/Aβ40 were tested in 5 cases with CAA dementia and 20 cases with Alzheimer's disease collected at Peking Union Medical College Hospital from December 2001 to March 2011. Results The levels of Aβ42, Aβ40, and P-tau in CSF and ratio of Aβ42/Aβ40 were (660.4±265.2) ng/L, (7111.0±1033.4) ng/L, (71.8±51.5) ng/L, and 0.077±0.033, respectively in CAA dementia and (663.6±365.6) ng/L, (5115.0±2931.1) ng/L, (47.7±38.8) ng/L, and 0.192±0.140, respectively in Alzheimer's disease patients. There were no statistically significant differences between CAA dementia and Alzheimer's disease in terms of these CSF biomarkers (allP>0.05). Conclusion Measurements of CSF biomarkers may not be helpful in differential diagnosis of CAA and Alzheimer's disease.

  9. Yeast prions form infectious amyloid inclusion bodies in bacteria

    Directory of Open Access Journals (Sweden)

    Espargaró Alba

    2012-06-01

    Full Text Available Abstract Background Prions were first identified as infectious proteins associated with fatal brain diseases in mammals. However, fungal prions behave as epigenetic regulators that can alter a range of cellular processes. These proteins propagate as self-perpetuating amyloid aggregates being an example of structural inheritance. The best-characterized examples are the Sup35 and Ure2 yeast proteins, corresponding to [PSI+] and [URE3] phenotypes, respectively. Results Here we show that both the prion domain of Sup35 (Sup35-NM and the Ure2 protein (Ure2p form inclusion bodies (IBs displaying amyloid-like properties when expressed in bacteria. These intracellular aggregates template the conformational change and promote the aggregation of homologous, but not heterologous, soluble prionogenic molecules. Moreover, in the case of Sup35-NM, purified IBs are able to induce different [PSI+] phenotypes in yeast, indicating that at least a fraction of the protein embedded in these deposits adopts an infectious prion fold. Conclusions An important feature of prion inheritance is the existence of strains, which are phenotypic variants encoded by different conformations of the same polypeptide. We show here that the proportion of infected yeast cells displaying strong and weak [PSI+] phenotypes depends on the conditions under which the prionogenic aggregates are formed in E. coli, suggesting that bacterial systems might become useful tools to generate prion strain diversity.

  10. Amyloid-carbon hybrid membranes for universal water purification.

    Science.gov (United States)

    Bolisetty, Sreenath; Mezzenga, Raffaele

    2016-04-01

    Industrial development, energy production and mining have led to dramatically increased levels of environmental pollutants such as heavy metal ions, metal cyanides and nuclear waste. Current technologies for purifying contaminated waters are typically expensive and ion specific, and there is therefore a significant need for new approaches. Here, we report inexpensive hybrid membranes made from protein amyloid fibrils and activated porous carbon that can be used to remove heavy metal ions and radioactive waste from water. During filtration, the concentration of heavy metal ions drops by three to five orders of magnitude per passage and the process can be repeated numerous times. Notably, their efficiency remains unaltered when filtering several ions simultaneously. The performance of the membrane is enabled by the ability of the amyloids to selectively absorb heavy metal pollutants from solutions. We also show that our membranes can be used to recycle valuable heavy metal contaminants by thermally reducing ions trapped in saturated membranes, leading to the creation of elemental metal nanoparticles and films.

  11. Amyloid Beta Peptides Differentially Affect Hippocampal Theta Rhythms In Vitro

    Directory of Open Access Journals (Sweden)

    Armando I. Gutiérrez-Lerma

    2013-01-01

    Full Text Available Soluble amyloid beta peptide (Aβ is responsible for the early cognitive dysfunction observed in Alzheimer's disease. Both cholinergically and glutamatergically induced hippocampal theta rhythms are related to learning and memory, spatial navigation, and spatial memory. However, these two types of theta rhythms are not identical; they are associated with different behaviors and can be differentially modulated by diverse experimental conditions. Therefore, in this study, we aimed to investigate whether or not application of soluble Aβ alters the two types of theta frequency oscillatory network activity generated in rat hippocampal slices by application of the cholinergic and glutamatergic agonists carbachol or DHPG, respectively. Due to previous evidence that oscillatory activity can be differentially affected by different Aβ peptides, we also compared Aβ25−35 and Aβ1−42 for their effects on theta rhythms in vitro at similar concentrations (0.5 to 1.0 μM. We found that Aβ25−35 reduces, with less potency than Aβ1−42, carbachol-induced population theta oscillatory activity. In contrast, DHPG-induced oscillatory activity was not affected by a high concentration of Aβ25−35 but was reduced by Aβ1−42. Our results support the idea that different amyloid peptides might alter specific cellular mechanisms related to the generation of specific neuronal network activities, instead of exerting a generalized inhibitory effect on neuronal network function.

  12. Binding of fullerenes to amyloid beta fibrils: size matters.

    Science.gov (United States)

    Huy, Pham Dinh Quoc; Li, Mai Suan

    2014-10-01

    Binding affinity of fullerenes C20, C36, C60, C70 and C84 for amyloid beta fibrils is studied by docking and all-atom molecular dynamics simulations with the Amber force field and water model TIP3P. Using the molecular mechanic-Poisson Boltzmann surface area method one can demonstrate that the binding free energy linearly decreases with the number of carbon atoms of fullerene, i.e. the larger is the fullerene size, the higher is the binding affinity. Overall, fullerenes bind to Aβ9-40 fibrils stronger than to Aβ17-42. The number of water molecules trapped in the interior of 12Aβ9-40 fibrils was found to be lower than inside pentamer 5Aβ17-42. C60 destroys Aβ17-42 fibril structure to a greater extent compared to other fullerenes. Our study revealed that the van der Waals interaction dominates over the electrostatic interaction and non-polar residues of amyloid beta peptides play the significant role in interaction with fullerenes providing novel insight into the development of drug candidates against Alzheimer's disease.

  13. The Centiloid Project: Standardizing Quantitative Amyloid Plaque Estimation by PET

    Science.gov (United States)

    Klunk, William E.; Koeppe, Robert A.; Price, Julie C.; Benzinger, Tammie; Devous, Michael D.; Jagust, William; Johnson, Keith; Mathis, Chester A.; Minhas, Davneet; Pontecorvo, Michael J.; Rowe, Christopher C.; Skovronsky, Daniel; Mintun, Mark

    2014-01-01

    Although amyloid imaging with PiB-PET, and now with F-18-labelled tracers, has produced remarkably consistent qualitative findings across a large number of centers, there has been considerable variability in the exact numbers reported as quantitative outcome measures of tracer retention. In some cases this is as trivial as the choice of units, in some cases it is scanner dependent, and of course, different tracers yield different numbers. Our working group was formed to standardize quantitative amyloid imaging measures by scaling the outcome of each particular analysis method or tracer to a 0 to 100 scale, anchored by young controls (≤45 years) and typical Alzheimer’s disease patients. The units of this scale have been named “Centiloids.” Basically, we describe a “standard” method of analyzing PiB PET data and then a method for scaling any “non-standard” method of PiB PET analysis (or any other tracer) to the Centiloid scale. PMID:25443857

  14. Amyloid-carbon hybrid membranes for universal water purification

    Science.gov (United States)

    Bolisetty, Sreenath; Mezzenga, Raffaele

    2016-04-01

    Industrial development, energy production and mining have led to dramatically increased levels of environmental pollutants such as heavy metal ions, metal cyanides and nuclear waste. Current technologies for purifying contaminated waters are typically expensive and ion specific, and there is therefore a significant need for new approaches. Here, we report inexpensive hybrid membranes made from protein amyloid fibrils and activated porous carbon that can be used to remove heavy metal ions and radioactive waste from water. During filtration, the concentration of heavy metal ions drops by three to five orders of magnitude per passage and the process can be repeated numerous times. Notably, their efficiency remains unaltered when filtering several ions simultaneously. The performance of the membrane is enabled by the ability of the amyloids to selectively absorb heavy metal pollutants from solutions. We also show that our membranes can be used to recycle valuable heavy metal contaminants by thermally reducing ions trapped in saturated membranes, leading to the creation of elemental metal nanoparticles and films.

  15. Therapeutic Potential of Secreted Amyloid Precursor Protein APPsα

    Science.gov (United States)

    Mockett, Bruce G.; Richter, Max; Abraham, Wickliffe C.; Müller, Ulrike C.

    2017-01-01

    Cleavage of the amyloid precursor protein (APP) by α-secretase generates an extracellularly released fragment termed secreted APP-alpha (APPsα). Not only is this process of interest due to the cleavage of APP within the amyloid-beta sequence, but APPsα itself has many physiological properties that suggest its great potential as a therapeutic target. For example, APPsα is neurotrophic, neuroprotective, neurogenic, a stimulator of protein synthesis and gene expression, and enhances long-term potentiation (LTP) and memory. While most early studies have been conducted in vitro, effectiveness in animal models is now being confirmed. These studies have revealed that either upregulating α-secretase activity, acutely administering APPsα or chronic delivery of APPsα via a gene therapy approach can effectively treat mouse models of Alzheimer’s disease (AD) and other disorders such as traumatic head injury. Together these findings suggest the need for intensifying research efforts to harness the therapeutic potential of this multifunctional protein.

  16. Aspects of structural landscape of human islet amyloid polypeptide

    Energy Technology Data Exchange (ETDEWEB)

    He, Jianfeng, E-mail: hjf@bit.edu.cn; Dai, Jin, E-mail: daijing491@gmail.com [School of Physics, Beijing Institute of Technology, Beijing 100081 (China); Li, Jing, E-mail: jinglichina@139.com [Institute of Biopharmaceutical Research, Yangtze River Pharmaceutical Group Beijing Haiyan Pharmaceutical Co., Ltd, Beijing 102206 (China); Peng, Xubiao, E-mail: xubiaopeng@gmail.com [Department of Physics and Astronomy, Uppsala University, P.O. Box 803, S-75108 Uppsala (Sweden); Niemi, Antti J., E-mail: Antti.Niemi@physics.uu.se [School of Physics, Beijing Institute of Technology, Beijing 100081 (China); Department of Physics and Astronomy, Uppsala University, P.O. Box 803, S-75108 Uppsala (Sweden); Laboratoire de Mathematiques et Physique Theorique CNRS UMR 6083, Fédération Denis Poisson, Université de Tours, Parc de Grandmont, F37200 Tours (France)

    2015-01-28

    The human islet amyloid polypeptide (hIAPP) co-operates with insulin to maintain glycemic balance. It also constitutes the amyloid plaques that aggregate in the pancreas of type-II diabetic patients. We have performed extensive in silico investigations to analyse the structural landscape of monomeric hIAPP, which is presumed to be intrinsically disordered. For this, we construct from first principles a highly predictive energy function that describes a monomeric hIAPP observed in a nuclear magnetic resonance experiment, as a local energy minimum. We subject our theoretical model of hIAPP to repeated heating and cooling simulations, back and forth between a high temperature regime where the conformation resembles a random walker and a low temperature limit where no thermal motions prevail. We find that the final low temperature conformations display a high level of degeneracy, in a manner which is fully in line with the presumed intrinsically disordered character of hIAPP. In particular, we identify an isolated family of α-helical conformations that might cause the transition to amyloidosis, by nucleation.

  17. CB receptor ligands from plants.

    Science.gov (United States)

    Woelkart, Karin; Salo-Ahen, Outi M H; Bauer, Rudolf

    2008-01-01

    Advances in understanding the physiology and pharmacology of the endogenous cannabinoid system have potentiated the interest of cannabinoid receptors as potential therapeutic targets. Cannabinoids have been shown to modulate a variety of immune cell functions and have therapeutic implications on central nervous system (CNS) inflammation, chronic inflammatory conditions such as arthritis, and may be therapeutically useful in treating autoimmune conditions such as multiple sclerosis. Many of these drug effects occur through cannabinoid receptor signalling mechanisms and the modulation of cytokines and other gene products. Further, endocannabinoids have been found to have many physiological and patho-physiological functions, including mood alteration and analgesia, control of energy balance, gut motility, motor and co-ordination activities, as well as alleviation of neurological, psychiatric and eating disorders. Plants offer a wide range of chemical diversity and have been a growing domain in the search for effective cannabinoid ligands. Cannabis sativa L. with the known plant cannabinoid, Delta(9-)tetrahydrocannabinol (THC) and Echinacea species with the cannabinoid (CB) receptor-binding lipophilic alkamides are the best known herbal cannabimimetics. This review focuses on the state of the art in CB ligands from plants, as well their possible therapeutic and immunomodulatory effects.

  18. Ligand photo-isomerization triggers conformational changes in iGluR2 ligand binding domain.

    Directory of Open Access Journals (Sweden)

    Tino Wolter

    Full Text Available Neurological glutamate receptors bind a variety of artificial ligands, both agonistic and antagonistic, in addition to glutamate. Studying their small molecule binding properties increases our understanding of the central nervous system and a variety of associated pathologies. The large, oligomeric multidomain membrane protein contains a large and flexible ligand binding domains which undergoes large conformational changes upon binding different ligands. A recent application of glutamate receptors is their activation or inhibition via photo-switchable ligands, making them key systems in the emerging field of optochemical genetics. In this work, we present a theoretical study on the binding mode and complex stability of a novel photo-switchable ligand, ATA-3, which reversibly binds to glutamate receptors ligand binding domains (LBDs. We propose two possible binding modes for this ligand based on flexible ligand docking calculations and show one of them to be analogues to the binding mode of a similar ligand, 2-BnTetAMPA. In long MD simulations, it was observed that transitions between both binding poses involve breaking and reforming the T686-E402 protein hydrogen bond. Simulating the ligand photo-isomerization process shows that the two possible configurations of the ligand azo-group have markedly different complex stabilities and equilibrium binding modes. A strong but slow protein response is observed after ligand configuration changes. This provides a microscopic foundation for the observed difference in ligand activity upon light-switching.

  19. Multi-frequency, multi-technique pulsed EPR investigation of the copper binding site of murine amyloid β peptide.

    Science.gov (United States)

    Kim, Donghun; Bang, Jeong Kyu; Kim, Sun Hee

    2015-01-26

    Copper-amyloid peptides are proposed to be the cause of Alzheimer's disease, presumably by oxidative stress. However, mice do not produce amyloid plaques and thus do not suffer from Alzheimer's disease. Although much effort has been focused on the structural characterization of the copper- human amyloid peptides, little is known regarding the copper-binding mode in murine amyloid peptides. Thus, we investigated the structure of copper-murine amyloid peptides through multi-frequency, multi-technique pulsed EPR spectroscopy in conjunction with specific isotope labeling. Based on our pulsed EPR results, we found that Ala2, Glu3, His6, and His14 are directly coordinated with the copper ion in murine amyloid β peptides at pH 8.5. This is the first detailed structural characterization of the copper-binding mode in murine amyloid β peptides. This work may advance the knowledge required for developing inhibitors of Alzheimer's disease.

  20. Measurement of protein-ligand complex formation.

    Science.gov (United States)

    Lowe, Peter N; Vaughan, Cara K; Daviter, Tina

    2013-01-01

    Experimental approaches to detect, measure, and quantify protein-ligand binding, along with their theoretical bases, are described. A range of methods for detection of protein-ligand interactions is summarized. Specific protocols are provided for a nonequilibrium procedure pull-down assay, for an equilibrium direct binding method and its modification into a competition-based measurement and for steady-state measurements based on the effects of ligands on enzyme catalysis.

  1. Amyloid beta-peptide worsens cognitive impairment following cerebral ischemia-reperfusion injury*****

    Institute of Scientific and Technical Information of China (English)

    Bo Song; Qiang Ao; Ying Niu; Qin Shen; Huancong Zuo; Xiufang Zhang; Yandao Gong

    2013-01-01

    Amyloid β-peptide, a major component of senile plaques in Alzheimer’s disease, has been impli-cated in neuronal cel death and cognitive impairment. Recently, studies have shown that the pathogenesis of cerebral ischemia is closely linked with Alzheimer’s disease. In this study, a rat model of global cerebral ischemia-reperfusion injury was established via occlusion of four arteries;meanwhile, fibril ar amyloid β-peptide was injected into the rat lateral ventricle. The Morris water maze test and histological staining revealed that administration of amyloid β-peptide could further aggravate impairments to learning and memory and neuronal cel death in the hippocampus of rats subjected to cerebral ischemia-reperfusion injury. Western blot showed that phosphorylation of tau protein and the activity of glycogen synthase kinase 3β were significantly stronger in cerebral is-chemia-reperfusion injury rats subjected to amyloidβ-peptide administration than those undergoing cerebral ischemia-reperfusion or amyloidβ-peptide administration alone. Conversely, the activity of protein phosphatase 2A was remarkably reduced in rats with cerebral ischemia-reperfusion injury fol owing amyloidβ-peptide administration. These findings suggest that amyloidβ-peptide can po-tentiate tau phosphorylation induced by cerebral ischemia-reperfusion and thereby aggravate cog-nitive impairment.

  2. A peptide study of the relationship between the collagen triple-helix and amyloid.

    Science.gov (United States)

    Parmar, Avanish S; Nunes, Ana Monica; Baum, Jean; Brodsky, Barbara

    2012-10-01

    Type XXV collagen, or collagen-like amyloidogenic component, is a component of amyloid plaques, and recent studies suggest this collagen affects amyloid fibril elongation and has a genetic association with Alzheimer's disease. The relationship between the collagen triple helix and amyloid fibrils was investigated by studying peptide models, including a very stable triple helical peptide (Pro-Hyp-Gly)₁₀ , an amyloidogenic peptide GNNQQNY, and a hybrid peptide where the GNNQQNY sequence was incorporated between (GPO)(n) domains. Circular dichroism and nuclear magnetic resonance (NMR) spectroscopy showed the GNNQQNY peptide formed a random coil structure, whereas the hybrid peptide contained a central disordered GNNQQNY region transitioning to triple-helical ends. Light scattering confirmed the GNNQQNY peptide had a high propensity to form amyloid fibrils, whereas amyloidogenesis was delayed in the hybrid peptide. NMR data suggested the triple-helix constraints on the GNNQQNY sequence within the hybrid peptide may disfavor the conformational change necessary for aggregation. Independent addition of a triple-helical peptide to the GNNQQNY peptide under aggregating conditions delayed nucleation and amyloid fibril growth. The inhibition of amyloid nucleation depended on the Gly-Xaa-Yaa sequence and required the triple-helix conformation. The inhibitory effect of the collagen triple-helix on an amyloidogenic sequence, when in the same molecule or when added separately, suggests Type XXV collagen, and possibly other collagens, may play a role in regulating amyloid fibril formation.

  3. Is amyloid-β harmful to the brain? Insights from human imaging studies.

    Science.gov (United States)

    Jagust, William

    2016-01-01

    Although the amyloid-β protein associated with the Alzheimer's disease plaque has been detectable in living people for over a decade, its importance in the pathogenesis of Alzheimer's disease is still debated. The frequent presence of amyloid-β in the brains of cognitively healthy older people has been interpreted as evidence against a causative role. If amyloid-β is crucial to the development of Alzheimer's disease, it should be associated with other Alzheimer's disease-like neurological changes. This review examines whether amyloid-β is associated with other biomarkers indicative of early Alzheimer's disease in normal older people. The preponderance of evidence links amyloid-β to functional change, progressive brain atrophy, and cognitive decline. Individuals at greatest risk of decline seem to be those with evidence of both amyloid-β and findings suggestive of neurodegeneration. The crucial question is thus how amyloid-β is related to brain degeneration and how these two processes interact to cause cognitive decline and dementia.

  4. Amyloid-β colocalizes with apolipoprotein B in absorptive cells of the small intestine

    Directory of Open Access Journals (Sweden)

    Dhaliwal Satvinder S

    2009-10-01

    Full Text Available Abstract Background Amyloid-β is recognized as the major constituent of senile plaque found in subjects with Alzheimer's disease. However, there is increasing evidence that in a physiological context amyloid-β may serve as regulating apolipoprotein, primarily of the triglyceride enriched lipoproteins. To consider this hypothesis further, this study utilized an in vivo immunological approach to explore in lipogenic tissue whether amyloid-β colocalizes with nascent triglyceride-rich lipoproteins. Results In murine absorptive epithelial cells of the small intestine, amyloid-β had remarkable colocalization with chylomicrons (Manders overlap coefficient = 0.73 ± 0.03 (SEM, the latter identified as immunoreactive apolipoprotein B. A diet enriched in saturated fats doubled the abundance of both amyloid-β and apo B and increased the overlap coefficient of the two proteins (0.87 ± 0.02. However, there was no evidence that abundance of the two proteins was interdependent within the enterocytes (Pearson's Coefficient Conclusion The findings of this study are consistent with the possibility that amyloid-β is secreted by enterocytes as an apolipoprotein component of chylomicrons. However, secretion of amyloid-β appears to be independent of chylomicron biogenesis.

  5. Protection of the blood-brain barrier by pentosan against amyloid-β-induced toxicity.

    Science.gov (United States)

    Deli, Mária A; Veszelka, Szilvia; Csiszár, Boglárka; Tóth, Andrea; Kittel, Agnes; Csete, Mária; Sipos, Aron; Szalai, Anikó; Fülöp, Lívia; Penke, Botond; Abrahám, Csongor S; Niwa, Masami

    2010-01-01

    Endothelial cells of brain capillaries forming the blood-brain barrier play an important role in the pathogenesis and therapy of Alzheimer's disease. Amyloid-β (Aβ) peptides are key pathological elements in the development of the disease. A blood-brain barrier model, based on primary rat brain endothelial cells was used in which the barrier properties were induced by glial cells. The effects of amyloid peptides have been tested on cell viability and barrier functions. Aβ showed toxic effects on primary rat brain endothelial cells measured by MTT dye conversion and the lactate dehydrogenase release. Morphologically cytoplasmic vacuolization, disruption of the structure of cytoplasmic organelles and tight junctions could be observed in brain endothelial cells. Treatment with Aβ1-42 decreased the electrical resistance, and increased the permeability of brain endothelial cell monolayers for both fluorescein and albumin. Serum amyloid P component which stabilizes Aβ fibrils in cortical amyloid plaques and cerebrovascular amyloid deposits significantly potentiated the barrier-weakening effect of Aβ1-42. Sulfated polysaccharide pentosan could decrease the toxic effects of Aβ peptides in brain endothelial cells. It could also significantly protect the barrier integrity of monolayers from damaging actions of peptides. Pentosan modified the size, and significantly decreased the number of amyloid aggregates demonstrated by atomic force microscopy. The present data further support the toxic effects of amyloid peptides on brain endothelial cells, and can contribute to the development of molecules protecting the blood-brain barrier in Alzheimer's disease.

  6. Insights into the variability of nucleated amyloid polymerization by a minimalistic model of stochastic protein assembly

    Science.gov (United States)

    Eugène, Sarah; Xue, Wei-Feng; Robert, Philippe; Doumic, Marie

    2016-05-01

    Self-assembly of proteins into amyloid aggregates is an important biological phenomenon associated with human diseases such as Alzheimer's disease. Amyloid fibrils also have potential applications in nano-engineering of biomaterials. The kinetics of amyloid assembly show an exponential growth phase preceded by a lag phase, variable in duration as seen in bulk experiments and experiments that mimic the small volumes of cells. Here, to investigate the origins and the properties of the observed variability in the lag phase of amyloid assembly currently not accounted for by deterministic nucleation dependent mechanisms, we formulate a new stochastic minimal model that is capable of describing the characteristics of amyloid growth curves despite its simplicity. We then solve the stochastic differential equations of our model and give mathematical proof of a central limit theorem for the sample growth trajectories of the nucleated aggregation process. These results give an asymptotic description for our simple model, from which closed form analytical results capable of describing and predicting the variability of nucleated amyloid assembly were derived. We also demonstrate the application of our results to inform experiments in a conceptually friendly and clear fashion. Our model offers a new perspective and paves the way for a new and efficient approach on extracting vital information regarding the key initial events of amyloid formation.

  7. Anti-amyloid Aggregation Activity of Natural Compounds: Implications for Alzheimer's Drug Discovery.

    Science.gov (United States)

    Bu, Xian-Le; Rao, Praveen P N; Wang, Yan-Jiang

    2016-08-01

    Several plant-derived natural compounds are known to exhibit anti-amyloid aggregation activity which makes them attractive as potential therapies to treat Alzheimer's disease. The mechanisms of their anti-amyloid activity are not well known. In this regard, many natural compounds are known to exhibit direct binding to various amyloid species including oligomers and fibrils, which in turn can lead to conformational change in the beta-sheet assembly to form nontoxic aggregates. This review discusses the mechanism of anti-amyloid activity of 16 natural compounds and gives structural details on their direct binding interactions with amyloid aggregates. Our computational investigations show that the physicochemical properties of natural products do fit Lipinski's criteria and that catechol and catechol-type moieties present in natural compounds act as lysine site-specific inhibitors of amyloid aggregation. Based on these observations, we propose a structural template to design novel small molecules containing site-specific ring scaffolds, planar aromatic and nonaromatic linkers with suitably substituted hydrogen bond acceptors and donors. These studies will have significant implications in the design and development of novel amyloid aggregation inhibitors with superior metabolic stability and blood-brain barrier penetration as potential agents to treat Alzheimer's disease.

  8. Peptide p5 binds both heparinase-sensitive glycosaminoglycans and fibrils in patient-derived AL amyloid extracts

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Emily B.; Williams, Angela [Department of Medicine, University of Tennessee Graduate School of Medicine, 1924 Alcoa Highway, Knoxville, TN 37922 (United States); Heidel, Eric [Department of Surgery, University of Tennessee Graduate School of Medicine, 1924 Alcoa Highway, Knoxville, TN 37922 (United States); Macy, Sallie [Department of Medicine, University of Tennessee Graduate School of Medicine, 1924 Alcoa Highway, Knoxville, TN 37922 (United States); Kennel, Stephen J. [Department of Medicine, University of Tennessee Graduate School of Medicine, 1924 Alcoa Highway, Knoxville, TN 37922 (United States); Department of Radiology, University of Tennessee Graduate School of Medicine, 1924 Alcoa Highway, Knoxville, TN 37922 (United States); Wall, Jonathan S., E-mail: jwall@utmck.edu [Department of Medicine, University of Tennessee Graduate School of Medicine, 1924 Alcoa Highway, Knoxville, TN 37922 (United States); Department of Radiology, University of Tennessee Graduate School of Medicine, 1924 Alcoa Highway, Knoxville, TN 37922 (United States)

    2013-06-21

    Highlights: •Polybasic peptide p5 binds human light chain amyloid extracts. •The binding of p5 with amyloid involves both glycosaminoglycans and fibrils. •Heparinase treatment led to a correlation between p5 binding and fibril content. •p5 binding to AL amyloid requires electrostatic interactions. -- Abstract: In previously published work, we have described heparin-binding synthetic peptides that preferentially recognize amyloid deposits in a mouse model of reactive systemic (AA) amyloidosis and can be imaged by using positron and single photon emission tomographic imaging. We wanted to extend these findings to the most common form of visceral amyloidosis, namely light chain (AL); however, there are no robust experimental animal models of AL amyloidosis. To further define the binding of the lead peptide, p5, to AL amyloid, we characterized the reactivity in vitro of p5 with in situ and patient-derived AL amyloid extracts which contain both hypersulfated heparan sulfate proteoglycans as well as amyloid fibrils. Histochemical staining demonstrated that the peptide specifically localized with tissue-associated AL amyloid deposits. Although we anticipated that p5 would undergo electrostatic interactions with the amyloid-associated glycosaminoglycans expressing heparin-like side chains, no significant correlation between peptide binding and glycosaminoglycan content within amyloid extracts was observed. In contrast, following heparinase I treatment, although overall binding was reduced, a positive correlation between peptide binding and amyloid fibril content became evident. This interaction was further confirmed using synthetic light chain fibrils that contain no carbohydrates. These data suggest that p5 can bind to both the sulfated glycosaminoglycans and protein fibril components of AL amyloid. Understanding these complex electrostatic interactions will aid in the optimization of synthetic peptides for use as amyloid imaging agents and potentially as

  9. Key points concerning amyloid infectivity and prion-like neuronal invasion

    Directory of Open Access Journals (Sweden)

    Alba eEspargaró

    2016-04-01

    Full Text Available Amyloid aggregation has been related to an increasing number of human illnesses, from Alzheimer and Parkinson’s diseases to Creutzfeldt-Jakob disease. Traditionally only prions have been considered as infectious agents with a high capacity of propagation. Although recent publications have showed that many amyloid proteins, including amyloid β-peptide, α-synuclein and tau protein, also propagate in a prion-like manner, the link between propagation of pathological proteins and neurotoxicity has not been evidenced. The extremely low infectivity in natural conditions of the most of non-prion amyloids is far from the spreading capacity displayed by the prions. However, it is important to elucidate the key factors that cause non-prion amyloids become infectious agents. In recent years, important advances in the understanding of the amyloid processes of amyloid-like proteins and unrelated prions (i.e., yeast and fungal prions have yielded essential information that can be applied to shed light on the prion phenomenon in mammals and humans. As shown in this review, recent evidences suggest that there are key factors that could dramatically modulate the prion capacity of proteins in the amyloid conformation. The concentration of nuclei, the presence of oligomers, and the toxicity, resistance and localization of these aggregates could be key factors affecting their spreading. In short, those factors that favor the high concentration of extracellular nuclei or oligomers, characterized by a small size, with a low toxicity could dramatically increase prion propensity; whereas low concentrations of highly toxic intracellular amyloids, with a large size, would prevent infectivity.

  10. Depressive symptoms accelerate cognitive decline in amyloid-positive MCI patients

    Energy Technology Data Exchange (ETDEWEB)

    Brendel, Matthias; Xiong, Guoming; Delker, Andreas [University of Munich, Department of Nuclear Medicine, Munich (Germany); Pogarell, Oliver [University of Munich, Department of Psychiatry, Munich (Germany); Bartenstein, Peter; Rominger, Axel [University of Munich, Department of Nuclear Medicine, Munich (Germany); Munich Cluster for Systems Neurology (SyNergy), Munich (Germany); Collaboration: for the Alzheimer' s Disease Neuroimaging Initiative

    2015-04-01

    Late-life depression even in subsyndromal stages is strongly associated with Alzheimer's disease (AD). Furthermore, brain amyloidosis is an early biomarker in subjects who subsequently suffer from AD and can be sensitively detected by amyloid PET. Therefore, we aimed to compare amyloid load and glucose metabolism in subsyndromally depressed subjects with mild cognitive impairment (MCI). [{sup 18}F]AV45 PET, [{sup 18}F]FDG PET and MRI were performed in 371 MCI subjects from the Alzheimer's Disease Neuroimaging Initiative Subjects were judged β-amyloid-positive (Aβ+; 206 patients) or β-amyloid-negative (Aβ-; 165 patients) according to [{sup 18}F]AV45 PET. Depressive symptoms were assessed by the Neuropsychiatric Inventory Questionnaire depression item 4. Subjects with depressive symptoms (65 Aβ+, 41 Aβ-) were compared with their nondepressed counterparts. Conversion rates to AD were analysed (mean follow-up time 21.5 ± 9.1 months) with regard to coexisting depressive symptoms and brain amyloid load. Aβ+ depressed subjects showed large clusters with a higher amyloid load in the frontotemporal and insular cortices (p < 0.001) with coincident hypermetabolism (p < 0.001) in the frontal cortices than nondepressed subjects. Faster progression to AD was observed in subjects with depressive symptoms (p < 0.005) and in Aβ+ subjects (p < 0.001). Coincident depressive symptoms additionally shortened the conversion time in all Aβ+ subjects (p < 0.005) and to a greater extent in those with a high amyloid load (p < 0.001). Our results clearly indicate that Aβ+ MCI subjects with depressive symptoms have an elevated amyloid load together with relative hypermetabolism of connected brain areas compared with cognitively matched nondepressed individuals. MCI subjects with high amyloid load and coexistent depressive symptoms are at high risk of faster conversion to AD. (orig.)

  11. Independent information from cerebrospinal fluid amyloid-β and florbetapir imaging in Alzheimer's disease.

    Science.gov (United States)

    Mattsson, Niklas; Insel, Philip S; Donohue, Michael; Landau, Susan; Jagust, William J; Shaw, Leslie M; Trojanowski, John Q; Zetterberg, Henrik; Blennow, Kaj; Weiner, Michael W

    2015-03-01

    Reduced cerebrospinal fluid amyloid-β42 and increased retention of florbetapir positron emission tomography are biomarkers reflecting cortical amyloid load in Alzheimer's disease. However, these measurements do not always agree and may represent partly different aspects of the underlying Alzheimer's disease pathology. The goal of this study was therefore to test if cerebrospinal fluid and positron emission tomography amyloid-β biomarkers are independently related to other Alzheimer's disease markers, and to examine individuals who are discordantly classified by these two biomarker modalities. Cerebrospinal fluid and positron emission tomography amyloid-β were measured at baseline in 769 persons [161 healthy controls, 68 subjective memory complaints, 419 mild cognitive impairment and 121 Alzheimer's disease dementia, mean age 72 years (standard deviation 7 years), 47% females] and used to predict diagnosis, APOE ε4 carriage status, cerebral blood flow, cerebrospinal fluid total-tau and phosphorylated-tau levels (cross-sectionally); and hippocampal volume, fluorodeoxyglucose positron emission tomography results and Alzheimer's Disease Assessment Scale-cognitive subscale scores (longitudinally). Cerebrospinal fluid and positron emission tomography amyloid-β were highly correlated, but adjusting one of these predictors for the other revealed that they both provided partially independent information when predicting diagnosis, APOE ε4, hippocampal volume, metabolism, cognition, total-tau and phosphorylated-tau (the 95% confidence intervals of the adjusted effects did not include zero). Cerebrospinal fluid amyloid-β was more strongly related to APOE ε4 whereas positron emission tomography amyloid-β was more strongly related to tau levels (P Alzheimer's disease. Reduced cerebrospinal fluid amyloid-β may be more strongly related to early stage Alzheimer's disease, whereas increased positron emission tomography amyloid-β may be more strongly related to disease

  12. Cannabidiol promotes amyloid precursor protein ubiquitination and reduction of beta amyloid expression in SHSY5YAPP+ cells through PPARγ involvement.

    Science.gov (United States)

    Scuderi, Caterina; Steardo, Luca; Esposito, Giuseppe

    2014-07-01

    The amyloidogenic cascade is regarded as a key factor at the basis of Alzheimer's disease (AD) pathogenesis. The aberrant cleavage of amyloid precursor protein (APP) induces an increased production and a subsequent aggregation of beta amyloid (Aβ) peptide in limbic and association cortices. As a result, altered neuronal homeostasis and oxidative injury provoke tangle formation with consequent neuronal loss. Cannabidiol (CBD), a Cannabis derivative devoid of psychotropic effects, has attracted much attention because it may beneficially interfere with several Aβ-triggered neurodegenerative pathways, even though the mechanism responsible for such actions remains unknown. In the present research, the role of CBD was investigated as a possible modulating compound of APP processing in SHSY5Y(APP+) neurons. In addition, the putative involvement of peroxisome proliferator-activated receptor-γ (PPARγ) was explored as a candidate molecular site responsible for CBD actions. Results indicated the CBD capability to induce the ubiquitination of APP protein which led to a substantial decrease in APP full length protein levels in SHSY5Y(APP+) with the consequent decrease in Aβ production. Moreover, CBD promoted an increased survival of SHSY5Y(APP+) neurons, by reducing their long-term apoptotic rate. Obtained results also showed that all, here observed, CBD effects were dependent on the selective activation of PPARγ.

  13. Amyloid-β-Anti-Amyloid-β Complex Structure Reveals an Extended Conformation in the Immunodominant B-Cell Epitope

    Energy Technology Data Exchange (ETDEWEB)

    Miles, Luke A; Wun, Kwok S; Crespi, Gabriela A.N.; Fodero-Tavoletti, Michelle T; Galatis, Denise; Bagley, Christopher J; Beyreuther, Konrad; Masters, Colin L; Cappai, Roberto; McKinstry, William J; Barnham, Kevin J; Parker, Michael W [SVIMR-A; (Hanson); (Heidelberg); (Melbourne)

    2012-04-17

    Alzheimer's disease (AD) is the most common form of dementia. Amyloid-β (Aβ) peptide, generated by proteolytic cleavage of the amyloid precursor protein, is central to AD pathogenesis. Most pharmaceutical activity in AD research has focused on Aβ, its generation and clearance from the brain. In particular, there is much interest in immunotherapy approaches with a number of anti-Aβ antibodies in clinical trials. We have developed a monoclonal antibody, called WO2, which recognises the Aβ peptide. To this end, we have determined the three-dimensional structure, to near atomic resolution, of both the antibody and the complex with its antigen, the Aβ peptide. The structures reveal the molecular basis for WO2 recognition and binding of Aβ. The Aβ peptide adopts an extended, coil-like conformation across its major immunodominant B-cell epitope between residues 2 and 8. We have also studied the antibody-bound Aβ peptide in the presence of metals known to affect its aggregation state and show that WO2 inhibits these interactions. Thus, antibodies that target the N-terminal region of Aβ, such as WO2, hold promise for therapeutic development.

  14. Rapid exchange of metal between Zn(7)-metallothionein-3 and amyloid-β peptide promotes amyloid-related structural changes.

    Science.gov (United States)

    Pedersen, Jeppe T; Hureau, Christelle; Hemmingsen, Lars; Heegaard, Niels H H; Østergaard, Jesper; Vašák, Milan; Faller, Peter

    2012-02-28

    Metal ions, especially Zn(2+) and Cu(2+), are implemented in the neuropathogenesis of Alzheimer's disease (AD) by modulating the aggregation of amyloid-β peptides (Aβ). Also, Cu(2+) may promote AD neurotoxicity through production of reactive oxygen species (ROS). Impaired metal ion homeostasis is most likely the underlying cause of aberrant metal-Aβ interaction. Thus, focusing on the body's natural protective mechanisms is an attractive therapeutic strategy for AD. The metalloprotein metallothionein-3 (MT-3) prevents Cu-Aβ-mediated cytotoxicity by a Zn-Cu exchange that terminates ROS production. Key questions about the metal exchange mechanisms remain unanswered, e.g., whether an Aβ-metal-MT-3 complex is formed. We studied the exchange of metal between Aβ and Zn(7)-MT-3 by a combination of spectroscopy (absorption, fluorescence, thioflavin T assay, and nuclear magnetic resonance) and transmission electron microscopy. We found that the metal exchange occurs via free Cu(2+) and that an Aβ-metal-MT-3 complex is not formed. This means that the metal exchange does not require specific recognition between Aβ and Zn(7)-MT-3. Also, we found that the metal exchange caused amyloid-related structural and morphological changes in the resulting Zn-Aβ aggregates. A detailed model of the metal exchange mechanism is presented. This model could potentially be important in developing therapeutics with metal-protein attenuating properties in AD.

  15. Genome-wide association study of CSF levels of 59 alzheimer's disease candidate proteins: significant associations with proteins involved in amyloid processing and inflammation.

    Directory of Open Access Journals (Sweden)

    John S K Kauwe

    2014-10-01

    Full Text Available Cerebrospinal fluid (CSF 42 amino acid species of amyloid beta (Aβ42 and tau levels are strongly correlated with the presence of Alzheimer's disease (AD neuropathology including amyloid plaques and neurodegeneration and have been successfully used as endophenotypes for genetic studies of AD. Additional CSF analytes may also serve as useful endophenotypes that capture other aspects of AD pathophysiology. Here we have conducted a genome-wide association study of CSF levels of 59 AD-related analytes. All analytes were measured using the Rules Based Medicine Human DiscoveryMAP Panel, which includes analytes relevant to several disease-related processes. Data from two independently collected and measured datasets, the Knight Alzheimer's Disease Research Center (ADRC and Alzheimer's Disease Neuroimaging Initiative (ADNI, were analyzed separately, and combined results were obtained using meta-analysis. We identified genetic associations with CSF levels of 5 proteins (Angiotensin-converting enzyme (ACE, Chemokine (C-C motif ligand 2 (CCL2, Chemokine (C-C motif ligand 4 (CCL4, Interleukin 6 receptor (IL6R and Matrix metalloproteinase-3 (MMP3 with study-wide significant p-values (p<1.46×10-10 and significant, consistent evidence for association in both the Knight ADRC and the ADNI samples. These proteins are involved in amyloid processing and pro-inflammatory signaling. SNPs associated with ACE, IL6R and MMP3 protein levels are located within the coding regions of the corresponding structural gene. The SNPs associated with CSF levels of CCL4 and CCL2 are located in known chemokine binding proteins. The genetic associations reported here are novel and suggest mechanisms for genetic control of CSF and plasma levels of these disease-related proteins. Significant SNPs in ACE and MMP3 also showed association with AD risk. Our findings suggest that these proteins/pathways may be valuable therapeutic targets for AD. Robust associations in cognitively normal

  16. A synthetic peptide with the putative iron binding motif of amyloid precursor protein (APP does not catalytically oxidize iron.

    Directory of Open Access Journals (Sweden)

    Kourosh Honarmand Ebrahimi

    Full Text Available The β-amyloid precursor protein (APP, which is a key player in Alzheimer's disease, was recently reported to possess an Fe(II binding site within its E2 domain which exhibits ferroxidase activity [Duce et al. 2010, Cell 142: 857]. The putative ligands of this site were compared to those in the ferroxidase site of ferritin. The activity was indirectly measured using transferrin, which scavenges the Fe(III product of the reaction. A 22-residue synthetic peptide, named FD1, with the putative ferroxidase site of APP, and the E2 domain of APP were each reported to exhibit 40% of the ferroxidase activity of APP and of ceruloplasmin. It was also claimed that the ferroxidase activity of APP is inhibited by Zn(II just as in ferritin. We measured the ferroxidase activity indirectly (i by the incorporation of the Fe(III product of the ferroxidase reaction into transferrin and directly (ii by monitoring consumption of the substrate molecular oxygen. The results with the FD1 peptide were compared to the established ferroxidase activities of human H-chain ferritin and of ceruloplasmin. For FD1 we observed no activity above the background of non-enzymatic Fe(II oxidation by molecular oxygen. Zn(II binds to transferrin and diminishes its Fe(III incorporation capacity and rate but it does not specifically bind to a putative ferroxidase site of FD1. Based on these results, and on comparison of the putative ligands of the ferroxidase site of APP with those of ferritin, we conclude that the previously reported results for ferroxidase activity of FD1 and - by implication - of APP should be re-evaluated.

  17. A synthetic peptide with the putative iron binding motif of amyloid precursor protein (APP) does not catalytically oxidize iron.

    Science.gov (United States)

    Ebrahimi, Kourosh Honarmand; Hagedoorn, Peter-Leon; Hagen, Wilfred R

    2012-01-01

    The β-amyloid precursor protein (APP), which is a key player in Alzheimer's disease, was recently reported to possess an Fe(II) binding site within its E2 domain which exhibits ferroxidase activity [Duce et al. 2010, Cell 142: 857]. The putative ligands of this site were compared to those in the ferroxidase site of ferritin. The activity was indirectly measured using transferrin, which scavenges the Fe(III) product of the reaction. A 22-residue synthetic peptide, named FD1, with the putative ferroxidase site of APP, and the E2 domain of APP were each reported to exhibit 40% of the ferroxidase activity of APP and of ceruloplasmin. It was also claimed that the ferroxidase activity of APP is inhibited by Zn(II) just as in ferritin. We measured the ferroxidase activity indirectly (i) by the incorporation of the Fe(III) product of the ferroxidase reaction into transferrin and directly (ii) by monitoring consumption of the substrate molecular oxygen. The results with the FD1 peptide were compared to the established ferroxidase activities of human H-chain ferritin and of ceruloplasmin. For FD1 we observed no activity above the background of non-enzymatic Fe(II) oxidation by molecular oxygen. Zn(II) binds to transferrin and diminishes its Fe(III) incorporation capacity and rate but it does not specifically bind to a putative ferroxidase site of FD1. Based on these results, and on comparison of the putative ligands of the ferroxidase site of APP with those of ferritin, we conclude that the previously reported results for ferroxidase activity of FD1 and - by implication - of APP should be re-evaluated.

  18. D-polyglutamine amyloid recruits L-polyglutamine monomers and kills cells

    OpenAIRE

    Kar, Karunakar; Arduini, Irene; Drombosky, Kenneth W.; van der Wel, Patrick C.A.; Wetzel, Ronald

    2013-01-01

    Polyglutamine (polyQ) amyloid fibrils are observed in disease tissue and have been implicated as toxic agents responsible for neurodegeneration in expanded CAG repeat diseases like Huntington’s disease (HD). Despite intensive efforts, the mechanism of amyloid toxicity remains unknown. As a novel approach to probing polyQ toxicity, we investigate here how some cellular and physical properties of polyQ amyloid vary with the chirality of the glutamine residues in the polyQ. We challenged PC12 ce...

  19. The role of stable α-synuclein oligomers in the molecular events underlying amyloid formation

    DEFF Research Database (Denmark)

    Lorenzen, Nikolai; Nielsen, Søren Bang; Buell, Alexander K.;

    2014-01-01

    Studies of protein amyloid formation have revealed that potentially cytotoxic oligomers frequently accumulate during fibril formation. An important question in the context of mechanistic studies of this process is whether or not oligomers are intermediates in the process of amyloid fibril formation...... α-synuclein (αSN), whose aggregation is strongly implicated in the development of Parkinson’s disease (PD). The two types of oligomers are both formed under conditions where amyloid fibril formation is observed but differ in molecular weight by an order of magnitude. Both possess a degree of β...

  20. Frequency of pancreatic amyloid deposition in cats from south-eastern Queensland.

    Science.gov (United States)

    Lutz, T A; Ainscow, J; Rand, J S

    1994-08-01

    Stereological procedures were used to estimate the amount of amyloid deposition in the pancreatic islets of 83 cats from random sources in south-eastern Queensland. Most had only minor deposits of less than 20% of islet volume (median 9%), but deposits equal to more than 50% of the islet volume were found in 10% of the cats. Amyloid deposition in pancreatic islets was correlated with the age of the cat. Although similar observations have been made previously in cats from the USA, the frequency of amyloid deposition was higher in this population of cats from south-eastern Queensland.

  1. The Role of TNF Related Apoptosis-Inducing Ligand in Neurodegenerative Diseases

    Institute of Scientific and Technical Information of China (English)

    Y.Huang; N.Erdmann; H.Peng; Y.Zhao

    2005-01-01

    A hallmark of all forms of neurodegenerative diseases is impairment of neuronal functions, and in many cases neuronal cell death. Although the etiology of neurodegenerative diseases may be distinct, different diseases display a similar pathogenesis, for example abnormal immunity within the central nervous system (CNS), activation of macrophage/microglia and the involvement of proinflammatory cytokines. Recent studies show that neurons in a neurodegenerative state undergo a highly regulated programmed cell death, also called apoptosis. TNF-related apoptosis-inducing ligand (TRAIL), a member of the TNF family, has been shown to be involved in apoptosis during many diseases. As one member of a death ligand family, TRAIL was originally thought to target only tumor cells and was not present in CNS. However, recent data showed that TRAIL was unregulated in HIV-l-infected and immune-activated macrophages, a major disease inducing cell during HIV-l-associated dementia (HAD). TRAIL is also induced on neuron by [$-amyloid protein, an important pathogen for Alzheimer's disease. In this review, we summarize the possible common aspects that TRAIL involved those neurodegenerative diseases, TRAIL induced apoptosis signaling in the CNS cells, and specific role of TRAIL in individual diseases. Cellular & MolecularImmunology. 2005;2(2):113-122.

  2. The Role of TNF Related Apoptosis-Inducing Ligand in Neurodegenerative Diseases

    Institute of Scientific and Technical Information of China (English)

    Y.Huang; N.Erdmann; H.Peng; Y.Zhao; Jialin Zheng

    2005-01-01

    A hallmark of all forms of neurodegenerative diseases is impairment of neuronal functions, and in many cases neuronal cell death. Although the etiology of neurodegenerative diseases may be distinct, different diseases display a similar pathogenesis, for example abnormal immunity within the central nervous system (CNS), activation of macrophage/microglia and the involvement of proinflammatory cytokines. Recent studies show that neurons in a neurodegenerative state undergo a highly regulated programmed cell death, also called apoptosis. TNF-related apoptosis-inducing ligand (TRAIL), a member of the TNF family, has been shown to be involved in apoptosis during many diseases. As one member of a death ligand family, TRAIL was originally thought to target only tumor cells and was not present in CNS. However, recent data showed that TRAIL was unregulated in HIV-1-infected and immune-activated macrophages, a major disease inducing cell during HIV-1-associated dementia (HAD). TRAIL is also induced on neuron by β-amyloid protein, an important pathogen for Alzheimer's disease. In this review, we summarize the possible common aspects that TRAIL involved those neurodegenerative diseases, TRAIL induced apoptosis signaling in the CNS cells, and specific role of TRAIL in individual diseases. Cellular & Molecular Immunology. 2005;2(2):113-122.

  3. Atrophy, hypometabolism and clinical trajectories in patients with amyloid-negative Alzheimer's disease.

    Science.gov (United States)

    Chételat, Gaël; Ossenkoppele, Rik; Villemagne, Victor L; Perrotin, Audrey; Landeau, Brigitte; Mézenge, Florence; Jagust, William J; Dore, Vincent; Miller, Bruce L; Egret, Stéphanie; Seeley, William W; van der Flier, Wiesje M; La Joie, Renaud; Ames, David; van Berckel, Bart N M; Scheltens, Philip; Barkhof, Frederik; Rowe, Christopher C; Masters, Colin L; de La Sayette, Vincent; Bouwman, Femke; Rabinovici, Gil D

    2016-09-01

    See O'Sullivan and Vann (doi:10.1093/aww166) for a scientific commentary on this article.About 15% of patients clinically diagnosed with Alzheimer's disease do not show high tracer retention on amyloid positon emission tomography imaging. The present study investigates clinical and demographic features, patterns of brain atrophy and hypometabolism and longitudinal clinical trajectories of these patients. Forty amyloid-negative patients carrying a pre-scan diagnosis of Alzheimer's disease dementia from four centres were included (11/29 females/males; mean age = 67 ± 9). Detailed clinical histories, including the clinical diagnoses before and after the amyloid scan and at follow-up, were collected. Patients were classified according to their pre-scan clinical phenotype as amnestic (memory predominant), non-amnestic (predominant language, visuospatial or frontal symptoms), or non-specific (diffuse cognitive deficits). Demographic, clinical, neuropsychological, magnetic resonance imaging and (18)F-fluorodeoxyglucose positon emission tomography data were compared to 27 amyloid-positive typical Alzheimer's disease cases (14/13 females/males; mean age = 71 ± 10) and 29 amyloid-negative controls (15/14 females/males; mean age = 69 ± 12) matched for age, gender and education. There were 21 amnestic, 12 non-amnestic, and seven non-specific amyloid-negative Alzheimer's disease cases. Amyloid-negative subgroups did not differ in age, gender or education. After the amyloid scan, clinicians altered the diagnosis in 68% of amyloid-negative patients including 48% of amnestic versus 94% of non-amnestic and non-specific cases. Amnestic amyloid-negative cases were most often reclassified as frontotemporal dementia, non-amnestic as frontotemporal dementia or corticobasal degeneration, and non-specific as dementia with Lewy bodies or unknown diagnosis. The longer-term clinical follow-up was consistent with the post-scan diagnosis in most cases (90%), including in amnestic amyloid

  4. Amyloid β Peptide Enhances RANKL-Induced Osteoclast Activation through NF-κB, ERK, and Calcium Oscillation Signaling

    Directory of Open Access Journals (Sweden)

    Shangfu Li

    2016-10-01

    Full Text Available Osteoporosis and Alzheimer’s disease (AD are common chronic degenerative disorders which are strongly associated with advanced age. We have previously demonstrated that amyloid beta peptide (Aβ, one of the pathological hallmarks of AD, accumulated abnormally in osteoporotic bone specimens in addition to having an activation effect on osteoclast (Bone 2014,61:164-75. However, the underlying molecular mechanisms remain unclear. Activation of NF-κB, extracellular signal-regulated kinase (ERK phosphorylates, and calcium oscillation signaling pathways by receptor activator NF-κB ligand (RANKL plays a pivotal role in osteoclast activation. Targeting this signaling to modulate osteoclast function has been a promising strategy for osteoclast-related diseases. In this study, we investigated the effects of Aβ on RANKL-induced osteoclast signaling pathways in vitro. In mouse bone marrow monocytes (BMMs, Aβ exerted no effect on RANKL-induced osteoclastogenesis but promoted osteoclastic bone resorption. In molecular levels, Aβ enhanced NF-κB activity and IκB-α degradation, activated ERK phosphorylation and stimulated calcium oscillation, thus leading to upregulation of NFAT-c1 expression during osteoclast activation. Taken together, our data demonstrate that Aβ enhances RANKL-induced osteoclast activation through IκB-α degradation, ERK phosphorylation, and calcium oscillation signaling pathways and that Aβ may be a promising agent in the treatment of osteoclast-related disease such as osteoporosis.

  5. Selective amyloid β oligomer assay based on abasic site-containing molecular beacon and enzyme-free amplification.

    Science.gov (United States)

    Zhu, Linling; Zhang, Junying; Wang, Fengyang; Wang, Ya; Lu, Linlin; Feng, Chongchong; Xu, Zhiai; Zhang, Wen

    2016-04-15

    Amyloid-beta (Aβ) oligomers are highly toxic species in the process of Aβ aggregation and are regarded as potent therapeutic targets and diagnostic markers for Alzheimer's disease (AD). Herein, a label-free molecular beacon (MB) system integrated with enzyme-free amplification strategy was developed for simple and highly selective assay of Aβ oligomers. The MB system was constructed with abasic site (AP site)-containing stem-loop DNA and a fluorescent ligand 2-amino-5,6,7-trimethyl-1,8-naphyridine (ATMND), of which the fluorescence was quenched upon binding to the AP site in DNA stem. Enzyme-free amplification was realized by target-triggered continuous opening of two delicately designed MBs (MB1 and MB2). Target DNA hybridization with MB1 and then MB2 resulted in the release of two ATMND molecules in one binding event. Subsequent target recycling could greatly amplify the detection sensitivity due to the greatly enhanced turn-on emission of ATMND fluorescence. Combining with Aβ oligomers aptamers, the strategy was applied to analyze Aβ oligomers and the results showed that it could quantify Aβ oligomers with high selectivity and monitor the Aβ aggregation process. This novel method may be conducive to improve the diagnosis and pathogenic study of Alzheimer's disease.

  6. IMPY, a potential {beta}-amyloid imaging probe for detection of prion deposits in scrapie-infected mice

    Energy Technology Data Exchange (ETDEWEB)

    Song, P.-J. [INSERM, U619, F-37000 Tours (France); Universite Francois-Rabelais, F-37000 Tours (France); IFR135, F-37000 Tours (France); Bernard, Serge [IFR135, F-37000 Tours (France); INRA, UR1282, IASP, 37380 Nouzilly (France)], E-mail: bernard@tours.inra.fr; Sarradin, Pierre [INRA, UR1282, IASP, 37380 Nouzilly (France); Vergote, Jackie [INSERM, U619, F-37000 Tours (France); Universite Francois-Rabelais, F-37000 Tours (France); IFR135, F-37000 Tours (France); Barc, Celine [INRA, UR1282, IASP, 37380 Nouzilly (France); Chalon, Sylvie [INSERM, U619, F-37000 Tours (France); Universite Francois-Rabelais, F-37000 Tours (France); IFR135, F-37000 Tours (France); Kung, M.-P.; Kung, Hank F. [Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104 (United States); Department of Pharmacology, University of Pennsylvania, Philadelphia, PA 19104 (United States); Guilloteau, Denis [INSERM, U619, F-37000 Tours (France); Universite Francois-Rabelais, F-37000 Tours (France); IFR135, F-37000 Tours (France)

    2008-02-15

    Introduction: A potential single-photon emission computed tomography imaging agent for labeling of A{beta} plaques of Alzheimer's disease, IMPY (2-(4'-dimethylaminophenyl)-6-iodo-imidazo[1,2-a]pyridine), would be effective in detection of prion amyloid deposits in transmissible spongiform encephalopathies (TSEs). Methods: In vitro autoradiographic studies were carried out with [{sup 125}I]IMPY on brain sections from scrapie-infected mice and age-matched controls. Competition study was performed to evaluate the prion deposit binding specificity with nonradioactive IMPY. Results: Binding of [{sup 125}I]IMPY was observed in infected brain sections, while on age-matched control brain sections, there was no or very low labeling. Prion deposit binding was confirmed by histoblots with prion protein-specific monoclonal antibody 2D6. In the presence of nonradioactive IMPY, the binding of [{sup 125}I]IMPY was significantly inhibited in all regions studied. Conclusions: These findings indicate that IMPY can detect the prion deposits in vitro in scrapie-infected mice. Labeled with {sup 123}I, this ligand may be useful to quantitate prion deposit burdens in TSEs by in vivo imaging.

  7. Acute phase serum amyloid A induces proinflammatory cytokines and mineralization via toll-like receptor 4 in mesenchymal stem cells.

    Science.gov (United States)

    Ebert, Regina; Benisch, Peggy; Krug, Melanie; Zeck, Sabine; Meißner-Weigl, Jutta; Steinert, Andre; Rauner, Martina; Hofbauer, Lorenz; Jakob, Franz

    2015-07-01

    The role of serum amyloid A (SAA) proteins, which are ligands for toll-like receptors, was analyzed in human bone marrow-derived mesenchymal stem cells (hMSCs) and their osteogenic offspring with a focus on senescence, differentiation and mineralization. In vitro aged hMSC developed a senescence-associated secretory phenotype (SASP), resulting in enhanced SAA1/2, TLR2/4 and proinflammatory cytokine (IL6, IL8, IL1β, CXCL1, CXCL2) expression before entering replicative senescence. Recombinant human SAA1 (rhSAA1) induced SASP-related genes and proteins in MSC, which could be abolished by cotreatment with the TLR4-inhibitor CLI-095. The same pattern of SASP-resembling genes was stimulated upon induction of osteogenic differentiation, which is accompanied by autocrine SAA1/2 expression. In this context additional rhSAA1 enhanced the SASP-like phenotype, accelerated the proinflammatory phase of osteogenic differentiation and enhanced mineralization. Autocrine/paracrine and rhSAA1 via TLR4 stimulate a proinflammatory phenotype that is both part of the early phase of osteogenic differentiation and the development of senescence. This signaling cascade is tightly involved in bone formation and mineralization, but may also propagate pathological extraosseous calcification conditions such as calcifying inflammation and atherosclerosis.

  8. Rhodium olefin complexes of diiminate type ligands

    NARCIS (Netherlands)

    Willems, Sander Theodorus Hermanus

    2003-01-01

    The mono-anionic beta-diiminate ligand (ArNC(CH3)CHC(CH3)NAr) on several previous occasions proved useful in stabilising low coordination numbers for both early and late transition metals. In this thesis the reactivity of the rhodium olefin complexes of one of these beta-diiminate ligands (Ar = 2,6-

  9. Ligand sphere conversions in terminal carbide complexes

    DEFF Research Database (Denmark)

    Morsing, Thorbjørn Juul; Reinholdt, Anders; Sauer, Stephan P. A.

    2016-01-01

    Metathesis is introduced as a preparative route to terminal carbide complexes. The chloride ligands of the terminal carbide complex [RuC(Cl)2(PCy3)2] (RuC) can be exchanged, paving the way for a systematic variation of the ligand sphere. A series of substituted complexes, including the first exam...

  10. Flexible Ligand Docking Using Evolutionary Algorithms

    DEFF Research Database (Denmark)

    Thomsen, Rene

    2003-01-01

    The docking of ligands to proteins can be formulated as a computational problem where the task is to find the most favorable energetic conformation among the large space of possible protein–ligand complexes. Stochastic search methods such as evolutionary algorithms (EAs) can be used to sample large...

  11. Comparison of the aggregation of homologous β2-microglobulin variants reveals protein solubility as a key determinant of amyloid formation.

    Science.gov (United States)

    Pashley, Clare L; Hewitt, Eric W; Radford, Sheena E

    2016-02-13

    The mouse and human β2-microglobulin protein orthologs are 70% identical in sequence and share 88% sequence similarity. These proteins are predicted by various algorithms to have similar aggregation and amyloid propensities. However, whilst human β2m (hβ2m) forms amyloid-like fibrils in denaturing conditions (e.g. pH2.5) in the absence of NaCl, mouse β2m (mβ2m) requires the addition of 0.3M NaCl to cause fibrillation. Here, the factors which give rise to this difference in amyloid propensity are investigated. We utilise structural and mutational analyses, fibril growth kinetics and solubility measurements under a range of pH and salt conditions, to determine why these two proteins have different amyloid propensities. The results show that, although other factors influence the fibril growth kinetics, a striking difference in the solubility of the proteins is a key determinant of the different amyloidogenicity of hβ2m and mβ2m. The relationship between protein solubility and lag time of amyloid formation is not captured by current aggregation or amyloid prediction algorithms, indicating a need to better understand the role of solubility on the lag time of amyloid formation. The results demonstrate the key contribution of protein solubility in determining amyloid propensity and lag time of amyloid formation, highlighting how small differences in protein sequence can have dramatic effects on amyloid formation.

  12. Divalent cation tolerance protein binds to β-secretase and inhibits the processing of amyloid precursor protein

    Institute of Scientific and Technical Information of China (English)

    Runzhong Liu; Haibo Hou; Xuelian Yi; Shanwen Wu; Huan Zeng

    2013-01-01

    The deposition of amyloid-beta is a pathological hallmark of Alzheimer's disease. Amyloid-beta is derived from amyloid precursor protein through sequential proteolytic cleavages by β-secretase (beta-site amyloid precursor protein-cleaving enzyme 1) and γ-secretase. To further elucidate the roles of beta-site amyloid precursor protein-cleaving enzyme 1 in the development of Alzheimer's disease, a yeast two-hybrid system was used to screen a human embryonic brain cDNA library for proteins directly interacting with the intracellular domain of beta-site amyloid precursor protein-cleaving enzyme 1. A potential beta-site amyloid precursor protein-cleaving enzyme 1- interacting protein identified from the positive clones was divalent cation tolerance protein. Immunoprecipitation studies in the neuroblastoma cell line N2a showed that exogenous divalent cation tolerance protein interacts with endogenous beta-site amyloid precursor protein-cleaving enzyme 1. The overexpression of divalent cation tolerance protein did not affect beta-site amyloid precursor protein-cleaving enzyme 1 protein levels, but led to increased amyloid precursor protein levels in N2a/APP695 cells, with a concomitant reduction in the processing product amyloid precursor protein C-terminal fragment, indicating that divalent cation tolerance protein inhibits the processing of amyloid precursor protein. Our experimental findings suggest that divalent cation tolerance protein negatively regulates the function of beta-site amyloid precursor protein-cleaving enzyme 1. Thus, divalent cation tolerance protein could play a protective role in Alzheimer's disease.

  13. FAMILIAL AMYLOID POLYNEUROPATHY——CLINICAL REPORT OF A FAMILY

    Institute of Scientific and Technical Information of China (English)

    李延峰; 郭玉璞; 池田修一; 方定华

    1996-01-01

    This paper reports a familial amyloid polyneumpathy (FAP) family in China. This family being investigated had 69 members of five generations. From the third generation, there have been 16 patients. The age of onset was about 3 to 5 decades. The initial symptoms were autonomic nerve symptcans, such as impotence, dyspepaia and diarrhoea, associated with the sensory loss of lower extremities. As the disease progressed. the upper extremities and motor ability were also involved. The duration of disease course wasabout 8-10 years, most patients died of infection and cacbexia. Sural biopsy in 3 patients had showed positive Congo red staining. From the clinical view, this FAP family is similar to FAP I found in Japan. Thetrue classification, however, should be confirmed by further genetic analysis.

  14. Expression of serum amyloid a in equine wounds

    DEFF Research Database (Denmark)

    Sørensen, Mette Aamand; Jacobsen, Stine; Berg, Lise Charlotte

    2010-01-01

    higher (P healing with EGT formation than in body and limb wounds with normal healing. In body wounds and limb wounds with normal healing SAA expression was very low, in EGT SAA expression levels varied from low to very high. CONCLUSIONS SAA is a major equine acute phase protein......, which is produced in the liver and several extrahepatic tissues during inflammatory conditions. This study shows that cells in EGT derived from horses produce SAA. This may be related to the length of the inflammatory phase of the wound healing, which is short (approximately 3 days) in wounds......OBJECTIVES Aberrant wound healing with formation of exuberant granulation tissue (EGT) occurs frequently in horses and may affect their athletic career and quality of life. The objective of the study was to determine mRNA expression levels of serum amyloid A (SAA) in normal and aberrant wound...

  15. Amyloid precursor protein is trafficked and secreted via synaptic vesicles.

    Directory of Open Access Journals (Sweden)

    Teja W Groemer

    Full Text Available A large body of evidence has implicated amyloid precursor protein (APP and its proteolytic derivatives as key players in the physiological context of neuronal synaptogenesis and synapse maintenance, as well as in the pathology of Alzheimer's Disease (AD. Although APP processing and release are known to occur in response to neuronal stimulation, the exact mechanism by which APP reaches the neuronal surface is unclear. We now demonstrate that a small but relevant number of synaptic vesicles contain APP, which can be released during neuronal activity, and most likely represent the major exocytic pathway of APP. This novel finding leads us to propose a revised model of presynaptic APP trafficking that reconciles existing knowledge on APP with our present understanding of vesicular release and recycling.

  16. Amyloid protein unfolding and insertion kinetics on neuronal membrane mimics

    Science.gov (United States)

    Qiu, Liming; Buie, Creighton; Vaughn, Mark; Cheng, Kwan

    2010-03-01

    Atomistic details of beta-amyloid (Aβ ) protein unfolding and lipid interaction kinetics mediated by the neuronal membrane surface are important for developing new therapeutic strategies to prevent and cure Alzheimer's disease. Using all-atom MD simulations, we explored the early unfolding and insertion kinetics of 40 and 42 residue long Aβ in binary lipid mixtures with and without cholesterol that mimic the cholesterol-depleted and cholesterol-enriched lipid nanodomains of neurons. The protein conformational transition kinetics was evaluated from the secondary structure profile versus simulation time plot. The extent of membrane disruption was examined by the calculated order parameters of lipid acyl chains and cholesterol fused rings as well as the density profiles of water and lipid headgroups at defined regions across the lipid bilayer from our simulations. Our results revealed that both the cholesterol content and the length of the protein affect the protein-insertion and membrane stability in our model lipid bilayer systems.

  17. Amyloid Aggregates Arise from Amino Acid Condensations under Prebiotic Conditions.

    Science.gov (United States)

    Greenwald, Jason; Friedmann, Michael P; Riek, Roland

    2016-09-12

    Current theories on the origin of life reveal significant gaps in our understanding of the mechanisms that allowed simple chemical precursors to coalesce into the complex polymers that are needed to sustain life. The volcanic gas carbonyl sulfide (COS) is known to catalyze the condensation of amino acids under aqueous conditions, but the reported di-, tri-, and tetra-peptides are too short to support a regular tertiary structure. Here, we demonstrate that alanine and valine, two of the proteinogenic amino acids believed to have been among the most abundant on a prebiotic earth, can polymerize into peptides and subsequently assemble into ordered amyloid fibers comprising a cross-β-sheet quaternary structure following COS-activated continuous polymerization of as little as 1 mm amino acid. Furthermore, this spontaneous assembly is not limited to pure amino acids, since mixtures of glycine, alanine, aspartate, and valine yield similar structures.

  18. Nucleus factory on cavitation bubble for amyloid β fibril

    Science.gov (United States)

    Nakajima, Kichitaro; Ogi, Hirotsugu; Adachi, Kanta; Noi, Kentaro; Hirao, Masahiko; Yagi, Hisashi; Goto, Yuji

    2016-02-01

    Structural evolution from monomer to fibril of amyloid β peptide is related to pathogenic mechanism of Alzheimer disease, and its acceleration is a long-running problem in drug development. This study reveals that ultrasonic cavitation bubbles behave as catalysts for nucleation of the peptide: The nucleation reaction is highly dependent on frequency and pressure of acoustic wave, and we discover an optimum acoustical condition, at which the reaction-rate constant for nucleation is increased by three-orders-of magnitudes. A theoretical model is proposed for explaining highly frequency and pressure dependent nucleation reaction, where monomers are captured on the bubble surface during its growth and highly condensed by subsequent bubble collapse, so that they are transiently exposed to high temperatures. Thus, the dual effects of local condensation and local heating contribute to dramatically enhance the nucleation reaction. Our model consistently reproduces the frequency and pressure dependences, supporting its essential applicability.

  19. Molecular Dynamics Simulation of Amyloid Beta Dimer Formation

    CERN Document Server

    Urbanc, B; Ding, F; Sammond, D; Khare, S; Buldyrev, S V; Stanley, H E; Dokholyan, N V

    2004-01-01

    Recent experiments with amyloid-beta (Abeta) peptide suggest that formation of toxic oligomers may be an important contribution to the onset of Alzheimer's disease. The toxicity of Abeta oligomers depends on their structure, which is governed by assembly dynamics. Due to limitations of current experimental techniques, a detailed knowledge of oligomer structure at the atomic level is missing. We introduce a molecular dynamics approach to study Abeta dimer formation: (1) we use discrete molecular dynamics simulations of a coarse-grained model to identify a variety of dimer conformations, and (2) we employ all-atom molecular mechanics simulations to estimate the thermodynamic stability of all dimer conformations. Our simulations of a coarse-grained Abeta peptide model predicts ten different planar beta-strand dimer conformations. We then estimate the free energies of all dimer conformations in all-atom molecular mechanics simulations with explicit water. We compare the free energies of Abeta(1-42) and Abeta(1-40...

  20. Cytochrome c peroxidase activity of heme bound amyloid β peptides.

    Science.gov (United States)

    Seal, Manas; Ghosh, Chandradeep; Basu, Olivia; Dey, Somdatta Ghosh

    2016-09-01

    Heme bound amyloid β (Aβ) peptides, which have been associated with Alzheimer's disease (AD), can catalytically oxidize ferrocytochrome c (Cyt c(II)) in the presence of hydrogen peroxide (H2O2). The rate of catalytic oxidation of Cyt(II) c has been found to be dependent on several factors, such as concentration of heme(III)-Aβ, Cyt(II) c, H2O2, pH, ionic strength of the solution, and peptide chain length of Aβ. The above features resemble the naturally occurring enzyme cytochrome c peroxidase (CCP) which is known to catalytically oxidize Cyt(II) c in the presence of H2O2. In the absence of heme(III)-Aβ, the oxidation of Cyt(II) c is not catalytic. Thus, heme-Aβ complex behaves as CCP.

  1. Recurrent craniospinal subarachnoid hemorrhage in cerebral amyloid angiopathy

    Directory of Open Access Journals (Sweden)

    Mathew Alexander

    2013-01-01

    Full Text Available Cerebral amyloid angiopathy (CAA usually manifests as cerebral hemorrhage, especially as nontraumatic hemorrhages in normotensive elderly patients. Other manifestations are subarachnoid (SAH, subdural, intraventricular hemorrhage (IVH and superficial hemosiderosis. A 52-year-old hypertensive woman presented with recurrent neurological deficits over a period of 2 years. Her serial brain magnetic resonance imaging and computed tomography scans showed recurrent SAH hemorrhage, and also intracerebral, IVH and spinal hemorrhage, with superficial siderosis. Cerebral angiograms were normal. Right frontal lobe biopsy showed features of CAA. CAA can present with unexplained recurrent SAH hemorrhage, and may be the initial and prominent finding in the course of disease in addition to superficial cortical siderosis and intracerebal and spinal hemorrhages.

  2. The aluminium-amyloid cascade hypothesis and Alzheimer's disease.

    Science.gov (United States)

    Exley, Christopher

    2005-01-01

    Aluminium (Al) is found associated with beta-amyloid (Abeta) in the brain in Alzheimer's disease. Al precipitates Abeta in vitro as distinct fibrillar structures composed of beta-pleated sheets of peptide. The aetiology of their association in vivo is not known. Al is known to increase the brain Abeta burden in experimental animals and this might be due to a direct influence upon Abeta anabolism or direct or indirect affects upon Abeta catabolism. It is difficult to rationalise from an evolutionary perspective the precipitation and persistence of Abeta in vivo. However, Al has not been subject to the same evolutionary pressures as Abeta, it is a recent addition to the biotic environment, and its precipitation of Abeta may have only been subjected to natural selection in the recent past. Whether AD is also part of this ongoing selection process remains to be elucidated

  3. Ligand binding mechanics of maltose binding protein.

    Science.gov (United States)

    Bertz, Morten; Rief, Matthias

    2009-11-13

    In the past decade, single-molecule force spectroscopy has provided new insights into the key interactions stabilizing folded proteins. A few recent studies probing the effects of ligand binding on mechanical protein stability have come to quite different conclusions. While some proteins seem to be stabilized considerably by a bound ligand, others appear to be unaffected. Since force acts as a vector in space, it is conceivable that mechanical stabilization by ligand binding is dependent on the direction of force application. In this study, we vary the direction of the force to investigate the effect of ligand binding on the stability of maltose binding protein (MBP). MBP consists of two lobes connected by a hinge region that move from an open to a closed conformation when the ligand maltose binds. Previous mechanical experiments, where load was applied to the N and C termini, have demonstrated that MBP is built up of four building blocks (unfoldons) that sequentially detach from the folded structure. In this study, we design the pulling direction so that force application moves the two MBP lobes apart along the hinge axis. Mechanical unfolding in this geometry proceeds via an intermediate state whose boundaries coincide with previously reported MBP unfoldons. We find that in contrast to N-C-terminal pulling experiments, the mechanical stability of MBP is increased by ligand binding when load is applied to the two lobes and force breaks the protein-ligand interactions directly. Contour length measurements indicate that MBP is forced into an open conformation before unfolding even if ligand is bound. Using mutagenesis experiments, we demonstrate that the mechanical stabilization effect is due to only a few key interactions of the protein with its ligand. This work illustrates how varying the direction of the applied force allows revealing important details about the ligand binding mechanics of a large protein.

  4. Dynamin 1 regulates amyloid generation through modulation of BACE-1.

    Directory of Open Access Journals (Sweden)

    Li Zhu

    Full Text Available BACKGROUND: Several lines of investigation support the notion that endocytosis is crucial for Alzheimer's disease (AD pathogenesis. Substantial evidence have already been reported regarding the mechanisms underlying amyloid precursor protein (APP traffic, but the regulation of beta-site APP-Cleaving Enzyme 1 (BACE-1 distribution among endosomes, TGN and plasma membrane remains unclear. Dynamin, an important adaptor protein that controls sorting of many molecules, has recently been associated with AD but its functions remain controversial. Here we studied possible roles for dynamin 1 (dyn1 in Aβ biogenesis. PRINCIPAL FINDINGS: We found that genetic perturbation of dyn1 reduces both secreted and intracellular Aβ levels in cell culture. There is a dramatic reduction in BACE-1 cleavage products of APP (sAPPβ and βCTF. Moreover, dyn1 knockdown (KD leads to BACE-1 redistribution from the Golgi-TGN/endosome to the cell surface. There is an increase in the amount of surface holoAPP upon dyn1 KD, with resultant elevation of α-secretase cleavage products sAPPα and αCTF. But no changes are seen in the amount of nicastrin (NCT or PS1 N-terminal fragment (NTF at cell surface with dyn1 KD. Furthermore, treatment with a selective dynamin inhibitor Dynasore leads to similar reduction in βCTF and Aβ levels, comparable to changes with BACE inhibitor treatment. But combined inhibition of BACE-1 and dyn1 does not lead to further reduction in Aβ, suggesting that the Aβ-lowering effects of dynamin inhibition are mainly mediated through regulation of BACE-1 internalization. Aβ levels in dyn1(-/- primary neurons, as well as in 3-month old dyn1 haploinsufficient animals with AD transgenic background are consistently reduced when compared to their wildtype counterparts. CONCLUSIONS: In summary, these data suggest a previously unknown mechanism by which dyn1 affects amyloid generation through regulation of BACE-1 subcellular localization and therefore its

  5. AFM-based force spectroscopy measurements of mature amyloid fibrils of the peptide glucagon

    Energy Technology Data Exchange (ETDEWEB)

    Dong Mingdong; Hovgaard, Mads Bruun; Mamdouh, Wael; Xu Sailong; Otzen, Daniel Erik; Besenbacher, Flemming [Interdisciplinary Nanoscience Center (iNANO), University of Aarhus, DK-8000 Aarhus C (Denmark)], E-mail: dao@inano.dk, E-mail: fbe@inano.dk

    2008-09-24

    We report on the mechanical characterization of individual mature amyloid fibrils by atomic force microscopy (AFM) and AFM-based single-molecule force spectroscopy (SMFS). These self-assembling materials, formed from the 29-residue amphiphatic peptide hormone glucagon, were found to display a reversible elastic behaviour. Based on AFM morphology and SMFS studies, we suggest that the observed elasticity is due to a force-induced conformational transition which is reversible due to the {beta}-helical conformation of protofibrils, allowing a high degree of extension. The elastic properties of such mature fibrils contribute to their high stability, suggesting that the internal hydrophobic interactions of amyloid fibrils are likely to be of fundamental importance in the assembly of amyloid fibrils and therefore for the understanding of the progression of their associated pathogenic disorders. In addition, such biological amyloid fibril structures with highly stable mechanical properties can potentially be used to produce nanofibres (nanowires) that may be suitable for nanotechnological applications.

  6. Information-Selectivity of Beta-Amyloid Pathology in an Associative Memory Model

    Directory of Open Access Journals (Sweden)

    Mark eRowan

    2012-01-01

    Full Text Available This work updates Ruppin and Reggia's associative neural network model of Alzheimer's disease by simulating beta-amyloid pathology and modelling the progression of beta-amyloid throughout the network according to Small's synaptic scaling theory, leading to a self-reinforcing cascade of damage. Using an information theoretic approach, it is shown that the simulated beta-amyloid pathology initially selectively targets neurons with low contribution to the overall performance of the network, but that it targets neurons with increasingly higher significance to the network as the disease progresses. The results provide a possible explanation for the apparent low correlation between amyloid plaque density and cognitive decline in the early stages of Alzheimer's disease.

  7. Exons 16 and 17 of the amyloid precursor protein gene in familial inclusion body myopathy.

    Science.gov (United States)

    Sivakumar, K; Cervenáková, L; Dalakas, M C; Leon-Monzon, M; Isaacson, S H; Nagle, J W; Vasconcelos, O; Goldfarb, L G

    1995-08-01

    Accumulation of beta-amyloid protein (A beta) occurs in some muscle fibers of patients with inclusion body myopathy and resembles the type of amyloid deposits seen in the affected tissues of patients with Alzheimer's disease and cerebrovascular amyloidosis. Because mutations in exons 16 and 17 of the beta-amyloid precursor protein (beta APP) gene on chromosome 21 have been identified in patients with early-onset familial Alzheimer's disease and Dutch-type cerebrovascular amyloidosis, we searched for mutations of the same region in patients with familial inclusion body myopathy. Sequencing of both alleles in 8 patients from four unrelated families did not reveal any mutations in these exons. The amyloid deposition in familial forms of inclusion body myopathy may be either due to errors in other gene loci, or it is secondary reflecting altered beta APP metabolism or myocyte degeneration and cell membrane degradation.

  8. The cytotoxic Staphylococcus aureus PSMα3 reveals a cross-α amyloid-like fibril.

    Science.gov (United States)

    Tayeb-Fligelman, Einav; Tabachnikov, Orly; Moshe, Asher; Goldshmidt-Tran, Orit; Sawaya, Michael R; Coquelle, Nicolas; Colletier, Jacques-Philippe; Landau, Meytal

    2017-02-24

    Amyloids are ordered protein aggregates, found in all kingdoms of life, and are involved in aggregation diseases as well as in physiological activities. In microbes, functional amyloids are often key virulence determinants, yet the structural basis for their activity remains elusive. We determined the fibril structure and function of the highly toxic, 22-residue phenol-soluble modulin α3 (PSMα3) peptide secreted by Staphylococcus aureus PSMα3 formed elongated fibrils that shared the morphological and tinctorial characteristics of canonical cross-β eukaryotic amyloids. However, the crystal structure of full-length PSMα3, solved de novo at 1.45 angstrom resolution, revealed a distinctive "cross-α" amyloid-like architecture, in which amphipathic α helices stacked perpendicular to the fibril axis into tight self-associating sheets. The cross-α fibrillation of PSMα3 facilitated cytotoxicity, suggesting that this assembly mode underlies function in S. aureus.

  9. HIV Tat protein and amyloid-β peptide form multifibrillar structures that cause neurotoxicity.

    Science.gov (United States)

    Hategan, Alina; Bianchet, Mario A; Steiner, Joseph; Karnaukhova, Elena; Masliah, Eliezer; Fields, Adam; Lee, Myoung-Hwa; Dickens, Alex M; Haughey, Norman; Dimitriadis, Emilios K; Nath, Avindra

    2017-02-20

    Deposition of amyloid-β plaques is increased in the brains of HIV-infected individuals, and the HIV transactivator of transcription (Tat) protein affects amyloidogenesis through several indirect mechanisms. Here, we investigated direct interactions between Tat and amyloid-β peptide. Our in vitro studies showed that in the presence of Tat, uniform amyloid fibrils become double twisted fibrils and further form populations of thick unstructured filaments and aggregates. Specifically, Tat binding to the exterior surfaces of the Aβ fibrils increases β-sheet formation and lateral aggregation into thick multifibrillar structures, thus producing fibers with increased rigidity and mechanical resistance. Furthermore, Tat and Aβ aggregates in complex synergistically induced neurotoxicity both in vitro and in animal models. Increased rigidity and mechanical resistance of the amyloid-β-Tat complexes coupled with stronger adhesion due to the presence of Tat in the fibrils may account for increased damage, potentially through pore formation in membranes.

  10. On the origin of Alzheimer's disease. Trials and tribulations of the amyloid hypothesis.

    Science.gov (United States)

    Castello, Michael A; Soriano, Salvador

    2014-01-01

    The amyloid cascade hypothesis, which implicates the amyloid Aβ peptide as the pathological initiator of both familial and sporadic, late onset Alzheimer's disease (AD), continues to guide the majority of research. We believe that current evidence does not support the amyloid cascade hypothesis for late onset AD. Instead, we propose that Aβ is a key regulator of brain homeostasis. During AD, while Aβ accumulation may occur in the long term in parallel with disease progression, it does not contribute to primary pathogenesis. This view predicts that amyloid-centric therapies will continue to fail, and that progress in developing successful alternative therapies for AD will be slow until closer attention is paid to understanding the physiological function of Aβ and its precursor protein.

  11. Protective effects of berberine against amyloid beta-induced toxicity in cultured rat cortical neurons

    Institute of Scientific and Technical Information of China (English)

    Jing Wang; Yanjun Zhang; Shuai Du; Mixia Zhang

    2011-01-01

    Berberine, a major constituent of Coptidis rhizoma, exhibits neural protective effects. The present study analyzed the potential protective effect of berberine against amyloid G-induced cytotoxicity in rat cerebral cortical neurons. Alzheimer's disease cell models were treated with 0.5 and 2 μmol/Lberberine for 36 hours to inhibit amyloid G-induced toxicity. Methyl thiazolyl tetrazolium assay and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling staining results showed that berberine significantly increased cell viability and reduced cell apoptosis in primary cultured rat cortical neurons. In addition, western blot analysis revealed a protective effect of berberine against amyloid β-induced toxicity in cultured cortical neurons, which coincided with significantly decreased abnormal up-regulation of activated caspase-3. These results showed that berberine exhibited a protective effect against amyloid 13-induced cytotoxicity in cultured rat cortical neurons.

  12. Benzofuranone derivatives as effective small molecules related to insulin amyloid fibrillation: a structure-function study

    DEFF Research Database (Denmark)

    Rabiee, Atefeh; Ebrahim-Habibi, Azadeh; Navidpour, Latifeh;

    2011-01-01

    . In this study, the effects of five new synthetic benzofuranone derivatives were investigated on the insulin amyloid formation process. Protein fibrillation was analyzed by thioflavin-T fluorescence, Congo red binding, circular dichroism, and electron microscopy. Despite high structural similarity, one......Amyloids are protein fibrils of nanometer size resulting from protein self-assembly. They have been shown to be associated with a wide variety of diseases such as Alzheimer's and Parkinson's and may contribute to various other pathological conditions, known as amyloidoses. Insulin is prone to form...... amyloid fibrils under slightly destabilizing conditions in vitro and may form amyloid structures when subcutaneously injected into patients with diabetes. There is a great deal of interest in developing novel small molecule inhibitors of amyloidogenic processes, as potential therapeutic compounds...

  13. Serum amyloid A and protein AA: molecular mechanisms of a transmissible amyloidosis.

    Science.gov (United States)

    Westermark, Gunilla T; Westermark, Per

    2009-08-20

    Systemic AA-amyloidosis is a complication of chronic inflammatory diseases and the fibril protein AA derives from the acute phase reactant serum AA. AA-amyloidosis can be induced in mice by an inflammatory challenge. The lag phase before amyloid develops can be dramatically shortened by administration of a small amount of amyloid fibrils. Systemic AA-amyloidosis is transmissible in mice and may be so in humans. Since transmission can cross species barriers it is possible that AA-amyloidosis can be induced by amyloid in food, e.g. foie gras. In mice, development of AA-amyloidosis can also be accelerated by other components with amyloid-like properties. A new possible risk factor may appear with synthetically made fibrils from short peptides, constructed for tissue repair.

  14. AMYLOID-β PEPTIDE BINDS TO MICROTUBULE-ASSOCIATED PROTEIN 1B (MAP1B)

    Science.gov (United States)

    Gevorkian, Goar; Gonzalez-Noriega, Alfonso; Acero, Gonzalo; Ordoñez, Jorge; Michalak, Colette; Munguia, Maria Elena; Govezensky, Tzipe; Cribbs, David H.; Manoutcharian, Karen

    2008-01-01

    Extracellular and intraneuronal formation of amyloid-beta aggregates have been demonstrated to be involved in the pathogenesis of Alzheimer’s disease. However, the precise mechanism of amyloid-beta neurotoxicity is not completely understood. Previous studies suggest that binding of amyloid-beta to a number of targets have deleterious effects on cellular functions. In the present study we have shown for the first time that amyloid-beta 1-42 bound to a peptide comprising the microtubule binding domain of the heavy chain of microtubule-associated protein 1B by the screening of a human brain cDNA library expressed on M13 phage. This interaction may explain, in part, the loss of neuronal cytoskeletal integrity, impairment of microtubule-dependent transport and synaptic dysfunction observed previously in Alzheimer’s disease. PMID:18079022

  15. Altered β-Amyloid Precursor Protein Isoforms in Mexican Alzheimer’s Disease Patients

    Directory of Open Access Journals (Sweden)

    V. J. Sánchez-González

    2006-01-01

    Full Text Available Objective: To determine the β-amyloid precursor protein (βAPP isoforms ratio as a risk factor for Alzheimer’s Disease and to assess its relationship with demographic and genetic variables of the disease.

  16. THE EOSINOPHILIC MATERIAL IN ADENOMATOID ODONTOGENIC TUMOR ASSOCIATED WITH AMYLOID PROTEIN COMPONENT

    Institute of Scientific and Technical Information of China (English)

    SONG Bao-ping; LI Yong-mei; Haruo Okabe

    1999-01-01

    Objective: To investigate the relation between eosinophilic materials and amyloid P (AP) component in adenomatoid odontogenic tumor (AOT). Methods: The expression of amyloid proteins and basement membrane proteins, including type Ⅳ collagen, laminin and heparin sulfate proteoglycan (HSPG), in AOT were analyzed by immunohistochemical method. Results:Most eosinophilic droplets among tumor cells and some epithelial cells showed positive stain for AP component.The immunoreactions of type Ⅳ collagen and laminin were only found in blood vessels of this tumor. The tumor cells and eosinophilic materials in duct-like structures were constantly unstained for both amyloid and basement membrane proteins. Present results suggest that the nature and composition of eosinophilic droplets may differ from the eosinophilic layer in ductlike structures. This study first demonstrated that the amyloid-like deposition in AOT is associated with AP component by immunohistochemical method. It supported that AP component may be epithelial origin since the AP immunolocalization was found in tumor cells.

  17. Identification of key amino acid residues modulating intracellular and in vitro microcin E492 amyloid formation

    Directory of Open Access Journals (Sweden)

    Paulina eAguilera

    2016-01-01

    Full Text Available Microcin E492 (MccE492 is a pore-forming bacteriocin produced and exported by Klebsiella pneumoniae RYC492. Besides its antibacterial activity, excreted MccE492 can form amyloid fibrils in vivo as well as in vitro. It has been proposed that bacterial amyloids can be functional playing a biological role, and in the particular case of MccE492 it would control the antibacterial activity. MccE492 amyloid fibril’s morphology and formation kinetics in vitro have been well characterized, however it is not known which amino acid residues determine its amyloidogenic propensity, nor if it forms intracellular amyloid inclusions as has been reported for other bacterial amyloids. In this work we found the conditions in which MccE492 forms intracellular amyloids in E. coli cells, that were visualized as round-shaped inclusion bodies recognized by two amyloidophillic probes, 2-4´-methylaminophenyl benzothiazole and thioflavin-S. We used this property to perform a flow cytometry-based assay to evaluate the aggregation propensity of MccE492 mutants, that were designed using an in silico prediction of putative aggregation hotspots. We established that the predicted amino acid residues 54-63, effectively act as a pro-amyloidogenic stretch. As in the case of other amyloidogenic proteins, this region presented two gatekeeper residues (P57 and P59, which disfavor both intracellular and in vitro MccE492 amyloid formation, preventing an uncontrolled aggregation. Mutants in each of these gatekeeper residues showed faster in vitro aggregation and bactericidal inactivation kinetics, and the two mutants were accumulated as dense amyloid inclusions in more than 80% of E. coli cells expressing these variants. In contrast, the MccE492 mutant lacking residues 54-63 showed a significantly lower intracellular aggregation propensity and slower in vitro polymerization kinetics. Electron microscopy analysis of the amyloids formed in vitro by these mutants revealed that, although

  18. Spatial patterns of brain amyloid-beta burden and atrophy rate associations in mild cognitive impairment.

    Science.gov (United States)

    Tosun, Duygu; Schuff, Norbert; Mathis, Chester A; Jagust, William; Weiner, Michael W

    2011-04-01

    Amyloid-β accumulation in the brain is thought to be one of the earliest events in Alzheimer's disease, possibly leading to synaptic dysfunction, neurodegeneration and cognitive/functional decline. The earliest detectable changes seen with neuroimaging appear to be amyloid-β accumulation detected by (11)C-labelled Pittsburgh compound B positron emission tomography imaging. However, some individuals tolerate high brain amyloid-β loads without developing symptoms, while others progressively decline, suggesting that events in the brain downstream from amyloid-β deposition, such as regional brain atrophy rates, play an important role. The main purpose of this study was to understand the relationship between the regional distributions of increased amyloid-β and the regional distribution of increased brain atrophy rates in patients with mild cognitive impairment. To simultaneously capture the spatial distributions of amyloid-β and brain atrophy rates, we employed the statistical concept of parallel independent component analysis, an effective method for joint analysis of multimodal imaging data. Parallel independent component analysis identified significant relationships between two patterns of amyloid-β deposition and atrophy rates: (i) increased amyloid-β burden in the left precuneus/cuneus and medial-temporal regions was associated with increased brain atrophy rates in the left medial-temporal and parietal regions; and (ii) in contrast, increased amyloid-β burden in bilateral precuneus/cuneus and parietal regions was associated with increased brain atrophy rates in the right medial temporal regions. The spatial distribution of increased amyloid-β and the associated spatial distribution of increased brain atrophy rates embrace a characteristic pattern of brain structures known for a high vulnerability to Alzheimer's disease pathology, encouraging for the use of (11)C-labelled Pittsburgh compound B positron emission tomography measures as early indicators of

  19. B-Amyloid Precursor Protein Staining of the Brain in Sudden Infant and Early Childhood Death

    DEFF Research Database (Denmark)

    Jensen, Lisbeth Lund; Banner, Jytte; Ulhøi, Benedicte Parm

    2013-01-01

    To develop and validate a scoring method for assessing β-amyloid precursor protein (APP) staining in cerebral white matter and to investigate the occurrence, amount and deposition pattern based on the cause of death in infants and young children.......To develop and validate a scoring method for assessing β-amyloid precursor protein (APP) staining in cerebral white matter and to investigate the occurrence, amount and deposition pattern based on the cause of death in infants and young children....

  20. D-polyglutamine amyloid recruits L-polyglutamine monomers and kills cells

    Science.gov (United States)

    Kar, Karunakar; Arduini, Irene; Drombosky, Kenneth W.; van der Wel, Patrick C. A.; Wetzel, Ronald

    2014-01-01

    Polyglutamine (polyQ) amyloid fibrils are observed in disease tissue and have been implicated as toxic agents responsible for neurodegeneration in expanded CAG repeat diseases like Huntington’s disease (HD). Despite intensive efforts, the mechanism of amyloid toxicity remains unknown. As a novel approach to probing polyQ toxicity, we investigate here how some cellular and physical properties of polyQ amyloid vary with the chirality of the glutamine residues in the polyQ. We challenged PC12 cells with small amyloid fibrils composed of either L- or D-polyQ peptides and found that D-fibrils are as cytotoxic as L-fibrils. We also found using fluorescence microscopy that both aggregates effectively seed the aggregation of cell-produced L-polyQ proteins, suggesting a surprising lack of stereochemical restriction in seeded elongation of polyQ amyloid. To investigate this effect further, we studied chemically synthesized D- and L-polyQ in vitro. We found that, as expected, D-polyQ monomers are not recognized by proteins that recognize L-polyQ monomers. However, amyloid fibrils prepared from D-polyQ peptides can efficiently seed the aggregation of L-polyQ monomers in vitro, and vice versa. This result is consistent with our cell results on polyQ recruitment, but is inconsistent with previous literature reports on the chiral specificity of amyloid seeding. This chiral cross-seeding can be rationalized by a model for seeded elongation featuring a “rippled β-sheet” interface between seed fibril and docked monomers of opposite chirality. The lack of chiral discrimination in polyQ amyloid cytotoxicity is consistent with several toxicity mechanisms, including recruitment of cellular polyQ proteins. PMID:24291210

  1. Kinetics of local and systemic isoforms of serum amyloid A in bovine mastitic milk

    DEFF Research Database (Denmark)

    Jacobsen, Stine; Niewold, T.A.; Kornalijnslijper, E.

    2005-01-01

    The aim of the present study was to characterise the serum amyloid A (SAA) response to intramammary inoculation of Escherichia coli and to examine the distribution of hepatically and extrahepatically pruduced SAA isoforms in plasma and milk fra cows with mastitis.......The aim of the present study was to characterise the serum amyloid A (SAA) response to intramammary inoculation of Escherichia coli and to examine the distribution of hepatically and extrahepatically pruduced SAA isoforms in plasma and milk fra cows with mastitis....

  2. Amyloid-Beta Related Angiitis of the Central Nervous System: Case Report and Topic Review

    Directory of Open Access Journals (Sweden)

    Amre eNouh

    2014-02-01

    Full Text Available Amyloid-beta related angiitis (ABRA of the central nervous system (CNS is a rare disorder with overlapping features of primary angiits of the CNS (PACNS and cerebral amyloid angiopathy (CAA. We evaluated a 74-year-old man with intermittent left sided weakness and MRI findings of leptomeningeal enhancement, vasogenic edema and subcortical white matter disease proven to have ABRA. We discuss clinicopathological features and review the topic of ABRA.

  3. Absence of beta-amyloid in cortical cataracts of donors with and without Alzheimer's disease.

    Science.gov (United States)

    Michael, Ralph; Rosandić, Jurja; Montenegro, Gustavo A; Lobato, Elvira; Tresserra, Francisco; Barraquer, Rafael I; Vrensen, Gijs F J M

    2013-01-01

    Eye lenses from human donors with and without Alzheimer's disease (AD) were studied to evaluate the presence of amyloid in cortical cataract. We obtained 39 lenses from 21 postmortem donors with AD and 15 lenses from age-matched controls provided by the Banco de Ojos para Tratamientos de la Ceguera (Barcelona, Spain). For 17 donors, AD was clinically diagnosed by general physicians and for 4 donors the AD diagnosis was neuropathologically confirmed. Of the 21 donors with AD, 6 had pronounced bilateral cortical lens opacities and 15 only minor or no cortical opacities. As controls, 7 donors with pronounced cortical opacities and 8 donors with almost transparent lenses were selected. All lenses were photographed in a dark field stereomicroscope. Histological sections were analyzed using a standard and a more sensitive Congo red protocol, thioflavin staining and beta-amyloid immunohistochemistry. Brain tissue from two donors, one with cerebral amyloid angiopathy and another with advanced AD-related changes and one cornea with lattice dystrophy were used as positive controls for the staining techniques. Thioflavin, standard and modified Congo red staining were positive in the control brain tissues and in the dystrophic cornea. Beta-amyloid immunohistochemistry was positive in the brain tissues but not in the cornea sample. Lenses from control and AD donors were, without exception, negative after Congo red, thioflavin, and beta-amyloid immunohistochemical staining. The results of the positive control tissues correspond well with known observations in AD, amyloid angiopathy and corneas with lattice dystrophy. The absence of staining in AD and control lenses with the techniques employed lead us to conclude that there is no beta-amyloid in lenses from donors with AD or in control cortical cataracts. The inconsistency with previous studies of Goldstein et al. (2003) and Moncaster et al. (2010), both of which demonstrated positive Congo red, thioflavin, and beta-amyloid

  4. P206-M Understanding the Metabolism of Amyloid-Beta in Humans

    OpenAIRE

    2007-01-01

    The most common form of dementia is Alzheimer’s disease. According to the amyloid hypothesis, the disease is preceded by an accumulation of the amyloid-β (Aβ) protein, which leads to downstream events including activation of microglia, inflammation, synaptic dysfunction, and neuronal loss. The objective of this research is to address the physiology of Aβ in humans by measuring its in vivo metabolic rates.

  5. Manipulations of Amyloid Precursor Protein Cleavage Disrupt the Circadian Clock in Aging Drosophila

    OpenAIRE

    Blake, Matthew R.; Holbrook, Scott D.; Kotwica-Rolinska, Joanna; Chow, Eileen; Kretzschmar, Doris; Giebultowicz, Jadwiga M.

    2015-01-01

    Alzheimer’s disease (AD) is a neurodegenerative disease characterized by severe cognitive deterioration. While causes of AD pathology are debated, a large body of evidence suggests that increased cleavage of Amyloid Precursor Protein (APP) producing the neurotoxic Amyloid-β (Aβ) peptide plays a fundamental role in AD pathogenesis. One of the detrimental behavioral symptoms commonly associated with AD is the fragmentation of sleep-activity cycles with increased nighttime activity and daytime n...

  6. Cognitive profile of amyloid burden and white matter hyperintensities in cognitively normal older adults

    Science.gov (United States)

    Hedden, Trey; Mormino, Elizabeth C.; Amariglio, Rebecca E.; Younger, Alayna P.; Schultz, Aaron P.; Becker, J. Alex; Buckner, Randy L.; Johnson, Keith A.; Sperling, Reisa A.; Rentz, Dorene M.

    2012-01-01

    Amyloid burden and white matter hyperintensities (WMH) are two common markers of neurodegeneration present in advanced aging. Each represents a potential early indicator of an age-related neurological disorder that impacts cognition. The presence of amyloid is observed in a substantial subset of cognitively normal older adults, but the literature remains equivocal regarding whether amyloid in nondemented populations is deleterious to cognition. Similarly, WMH are detected in many nondemented older adults and there is a body of evidence indicating that WMH are associated with decreased executive function and other cognitive domains. The current study investigated amyloid burden and WMH in clinically normal older adult humans aged 65 to 86 (N=168) and examined each biomarker’s relation with cognitive domains of episodic memory, executive function, and speed of processing. Factors for each domain were derived from a neuropsychological battery on a theoretical basis without reference to the relation between cognition and the biomarkers. Amyloid burden and WMH were not correlated with one another. Age was associated with lower performance in all cognitive domains, while higher estimated verbal intelligence was associated with higher performance in all domains. Hypothesis-driven tests revealed that amyloid burden and WMH had distinct cognitive profiles, with amyloid burden having a specific influence on episodic memory and WMH being primarily associated with executive function but having broad (but lesser) effects on the other domains. These findings suggest that even prior to clinical impairment, amyloid burden and WMH likely represent neuropathological cascades with distinct etiologies and dissociable influences on cognition. PMID:23152607

  7. Role of sequence and structural polymorphism on the mechanical properties of amyloid fibrils.

    Directory of Open Access Journals (Sweden)

    Gwonchan Yoon

    Full Text Available Amyloid fibrils playing a critical role in disease expression, have recently been found to exhibit the excellent mechanical properties such as elastic modulus in the order of 10 GPa, which is comparable to that of other mechanical proteins such as microtubule, actin filament, and spider silk. These remarkable mechanical properties of amyloid fibrils are correlated with their functional role in disease expression. This suggests the importance in understanding how these excellent mechanical properties are originated through self-assembly process that may depend on the amino acid sequence. However, the sequence-structure-property relationship of amyloid fibrils has not been fully understood yet. In this work, we characterize the mechanical properties of human islet amyloid polypeptide (hIAPP fibrils with respect to their molecular structures as well as their amino acid sequence by using all-atom explicit water molecular dynamics (MD simulation. The simulation result suggests that the remarkable bending rigidity of amyloid fibrils can be achieved through a specific self-aggregation pattern such as antiparallel stacking of β strands (peptide chain. Moreover, we have shown that a single point mutation of hIAPP chain constituting a hIAPP fibril significantly affects the thermodynamic stability of hIAPP fibril formed by parallel stacking of peptide chain, and that a single point mutation results in a significant change in the bending rigidity of hIAPP fibrils formed by antiparallel stacking of β strands. This clearly elucidates the role of amino acid sequence on not only the equilibrium conformations of amyloid fibrils but also their mechanical properties. Our study sheds light on sequence-structure-property relationships of amyloid fibrils, which suggests that the mechanical properties of amyloid fibrils are encoded in their sequence-dependent molecular architecture.

  8. A is for Amylin and Amyloid in Type 2 Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    Hayden MR

    2001-07-01

    Full Text Available Amyloid deposits within the islet of the pancreas have been known for a century. In 1987, the islet amyloid precursor polypeptide (IAPP amylin (a 37 amino acid was discovered. Recently there has been an explosion of amylin's importance in the development of type 2 diabetes mellitus (T2DM. This review is intended to share what is understood about amylin derived amyloid and the role it plays in T2DM. Whether islet amyloid is an epiphenomenona, a tombstone, or a trigger it leaves an indelible footprint in greater that 70% of the patients with T2DM. There is current data supporting the damaging role of intermediate sized toxic amyloid particles to the beta cell resulting in a beta cell defect which contributes to a relative deficiency or loss of insulin secretion. Within the islet there is an intense redox stress which may be associated with the unfolding of amylin's native secondary structure compounding its amyloidogenic properties. In addition to the beta cell defect there may be an absorptive defect as a result of amyloid deposition in the basement membranes which form an envelope around the inta-islet capillary endothelium. We have an opportunity to change our current treatment modalities with newer medications and we should attempt to diagnose T2DM earlier and use these newer treatment strategies in combination to decrease glucotoxicity without elevating endogenous insulin and amylin. In the 21st century our goal should be to prevent remodeling, save the pancreatic islet, conquer islet amyloid, and amyloid diabetes.

  9. Anti-Aβ Autoantibodies in Amyloid Related Imaging Abnormalities (ARIA): Candidate Biomarker for Immunotherapy in Alzheimer’s Disease and Cerebral Amyloid Angiopathy

    Science.gov (United States)

    DiFrancesco, Jacopo C.; Longoni, Martina; Piazza, Fabrizio

    2015-01-01

    Amyloid-related imaging abnormalities (ARIA) represent the major severe side effect of amyloid-beta (Aβ) immunotherapy for Alzheimer’s disease (AD). Early biomarkers of ARIA represent an important challenge to ensure safe and beneficial effects of immunotherapies, given that different promising clinical trials in prodromal and subjects at risk for AD are underway. The recent demonstration that cerebrospinal fluid (CSF) anti-Aβ autoantibodies play a key role in the development of the ARIA-like events characterizing cerebral amyloid angiopathy-related inflammation generated great interest in the field of immunotherapy. Herein, we critically review the growing body of evidence supporting the monitoring of CSF anti-Aβ autoantibody as a promising candidate biomarker for ARIA in clinical trials. PMID:26441825

  10. Correcting ligands, metabolites, and pathways

    Directory of Open Access Journals (Sweden)

    Vriend Gert

    2006-11-01

    Full Text Available Abstract Background A wide range of research areas in bioinformatics, molecular biology and medicinal chemistry require precise chemical structure information about molecules and reactions, e.g. drug design, ligand docking, metabolic network reconstruction, and systems biology. Most available databases, however, treat chemical structures more as illustrations than as a datafield in its own right. Lack of chemical accuracy impedes progress in the areas mentioned above. We present a database of metabolites called BioMeta that augments the existing pathway databases by explicitly assessing the validity, correctness, and completeness of chemical structure and reaction information. Description The main bulk of the data in BioMeta were obtained from the KEGG Ligand database. We developed a tool for chemical structure validation which assesses the chemical validity and stereochemical completeness of a molecule description. The validation tool was used to examine the compounds in BioMeta, showing that a relatively small number of compounds had an incorrect constitution (connectivity only, not considering stereochemistry and that a considerable number (about one third had incomplete or even incorrect stereochemistry. We made a large effort to correct the errors and to complete the structural descriptions. A total of 1468 structures were corrected and/or completed. We also established the reaction balance of the reactions in BioMeta and corrected 55% of the unbalanced (stoichiometrically incorrect reactions in an automatic procedure. The BioMeta database was implemented in PostgreSQL and provided with a web-based interface. Conclusion We demonstrate that the validation of metabolite structures and reactions is a feasible and worthwhile undertaking, and that the validation results can be used to trigger corrections and improvements to BioMeta, our metabolite database. BioMeta provides some tools for rational drug design, reaction searches, and

  11. Passive immunotherapy against Aβ in aged APP-transgenic mice reverses cognitive deficits and depletes parenchymal amyloid deposits in spite of increased vascular amyloid and microhemorrhage

    Directory of Open Access Journals (Sweden)

    Gordon Marcia N

    2004-12-01

    Full Text Available Abstract Background Anti-Aβ immunotherapy in transgenic mice reduces both diffuse and compact amyloid deposits, improves memory function and clears early-stage phospho-tau aggregates. As most Alzheimer disease cases occur well past midlife, the current study examined adoptive transfer of anti-Aβ antibodies to 19- and 23-month old APP-transgenic mice. Methods We investigated the effects of weekly anti-Aβ antibody treatment on radial-arm water-maze performance, parenchymal and vascular amyloid loads, and the presence of microhemorrhage in the brain. 19-month-old mice were treated for 1, 2 or 3 months while 23-month-old mice were treated for 5 months. Only the 23-month-old mice were subject to radial-arm water-maze testing. Results After 3 months of weekly injections, this passive immunization protocol completely reversed learning and memory deficits in these mice, a benefit that was undiminished after 5 months of treatment. Dramatic reductions of diffuse Aβ immunostaining and parenchymal Congophilic amyloid deposits were observed after five months, indicating that even well-established amyloid deposits are susceptible to immunotherapy. However, cerebral amyloid angiopathy increased substantially with immunotherapy, and some deposits were associated with microhemorrhage. Reanalysis of results collected from an earlier time-course study demonstrated that these increases in vascular deposits were dependent on the duration of immunotherapy. Conclusions The cognitive benefits of passive immunotherapy persist in spite of the presence of vascular amyloid and small hemorrhages. These data suggest that clinical trials evaluating such treatments will require precautions to minimize potential adverse events associated with microhemorrhage.

  12. Canadian Consensus Guidelines on Use of Amyloid Imaging in Canada: Update and Future Directions from the Specialized Task Force on Amyloid imaging in Canada.

    Science.gov (United States)

    Laforce, Robert; Rosa-Neto, Pedro; Soucy, Jean-Paul; Rabinovici, Gil D; Dubois, Bruno; Gauthier, S

    2016-07-01

    Positron emission tomography (PET) imaging of brain amyloid beta is now clinically available in several countries including the United States and the United Kingdom, but not Canada. It has become an established technique in the field of neuroimaging of aging and dementia, with data incorporated in the new consensus guidelines for the diagnosis of Alzheimer disease and predementia Alzheimer's disease-related conditions. At this point, there are three US Food and Drug Administration- and European Union-approved tracers. Guided by appropriate use criteria developed in 2013 by the Alzheimer's Association and the Society of Nuclear Medicine and Molecular Imaging, the utility of amyloid imaging in medical practice is now supported by a growing body of research. In this paper, we aimed to provide an update on the 2012 Canadian consensus guidelines to dementia care practitioners on proper use of amyloid imaging. We also wished to generate momentum for the industry to submit a new drug proposal to Health Canada. A group of local, national, and international dementia experts and imaging specialists met to discuss scenarios in which amyloid PET could be used appropriately. Peer-reviewed and published literature between January 2004 and May 2015 was searched. Technical and regulatory considerations pertaining to Canada were considered. The results of a survey of current practices in Canadian dementia centers were considered. A set of specific clinical and research guidelines was agreed on that defines the types of patients and clinical circumstances in which amyloid PET could be used in Canada. Future research directions were also outlined, notably the importance of studies that would assess the pharmaco-economics of amyloid imaging.

  13. Hsp40 function in yeast prion propagation: Amyloid diversity necessitates chaperone functional complexity.

    Science.gov (United States)

    Sporn, Zachary A; Hines, Justin K

    2015-01-01

    Yeast prions are heritable protein-based elements, most of which are formed of amyloid aggregates that rely on the action of molecular chaperones for transmission to progeny. Prions can form distinct amyloid structures, known as 'strains' in mammalian systems, that dictate both pathological progression and cross-species infection barriers. In yeast these same amyloid structural polymorphisms, called 'variants', dictate the intensity of prion-associated phenotypes and stability in mitosis. We recently reported that [PSI(+)] prion variants differ in the fundamental domain requirements for one chaperone, the Hsp40/J-protein Sis1, which are mutually exclusive between 2 different yeast prions, demonstrating a functional plurality for Sis1. Here we extend that analysis to incorporate additional data that collectively support the hypothesis that Sis1 has multiple functional roles that can be accomplished by distinct sets of domains. These functions are differentially required by distinct prions and prion variants. We also present new data regarding Hsp104-mediated prion elimination and show that some Sis1 functions, but not all, are conserved in the human homolog Hdj1/DNAJB1. Importantly, of the 10 amyloid-based prions indentified to date in Saccharomyces cerevisiae, the chaperone requirements of only 4 are known, leaving a great diversity of amyloid structures, and likely modes of amyloid-chaperone interaction, largely unexplored.

  14. Inhibition of Insulin-Degrading Enzyme Does Not Increase Islet Amyloid Deposition in Vitro.

    Science.gov (United States)

    Hogan, Meghan F; Meier, Daniel T; Zraika, Sakeneh; Templin, Andrew T; Mellati, Mahnaz; Hull, Rebecca L; Leissring, Malcolm A; Kahn, Steven E

    2016-09-01

    Islet amyloid deposition in human type 2 diabetes results in β-cell loss. These amyloid deposits contain the unique amyloidogenic peptide human islet amyloid polypeptide (hIAPP), which is also a known substrate of the protease insulin-degrading enzyme (IDE). Whereas IDE inhibition has recently been demonstrated to improve glucose metabolism in mice, inhibiting it has also been shown to increase cell death when synthetic hIAPP is applied exogenously to a β-cell line. Thus, we wanted to determine whether a similar deleterious effect is observed when hIAPP is endogenously produced and secreted from islets. To address this issue, we cultured hIAPP transgenic mouse islets that have the propensity to form amyloid for 48 and 144 hours in 16.7 mM glucose in the presence and absence of the IDE inhibitor 1. At neither time interval did IDE inhibition increase amyloid formation or β-cell loss. Thus, the inhibition of IDE may represent an approach to improve glucose metabolism in human type 2 diabetes, without inducing amyloid deposition and its deleterious effects.

  15. Specific Inhibition of β-Secretase Processing of the Alzheimer Disease Amyloid Precursor Protein.

    Science.gov (United States)

    Ben Halima, Saoussen; Mishra, Sabyashachi; Raja, K Muruga Poopathi; Willem, Michael; Baici, Antonio; Simons, Kai; Brüstle, Oliver; Koch, Philipp; Haass, Christian; Caflisch, Amedeo; Rajendran, Lawrence

    2016-03-08

    Development of disease-modifying therapeutics is urgently needed for treating Alzheimer disease (AD). AD is characterized by toxic β-amyloid (Aβ) peptides produced by β- and γ-secretase-mediated cleavage of the amyloid precursor protein (APP). β-secretase inhibitors reduce Aβ levels, but mechanism-based side effects arise because they also inhibit β-cleavage of non-amyloid substrates like Neuregulin. We report that β-secretase has a higher affinity for Neuregulin than it does for APP. Kinetic studies demonstrate that the affinities and catalytic efficiencies of β-secretase are higher toward non-amyloid substrates than toward APP. We show that non-amyloid substrates are processed by β-secretase in an endocytosis-independent manner. Exploiting this compartmentalization of substrates, we specifically target the endosomal β-secretase by an endosomally targeted β-secretase inhibitor, which blocked cleavage of APP but not non-amyloid substrates in many cell systems, including induced pluripotent stem cell (iPSC)-derived neurons. β-secretase inhibitors can be designed to specifically inhibit the Alzheimer process, enhancing their potential as AD therapeutics without undesired side effects.

  16. Failure of Alzheimer's Aβ(1-40) amyloid nanofibrils under compressive loading

    Science.gov (United States)

    Paparcone, Raffaella; Buehler, Markus J.

    2010-04-01

    Amyloids are associated with severe degenerative diseases and show exceptional mechanical properties, in particular great stiffhess. Amyloid fibrils, forming protein nanotube structures, are elongated fibers with a diameter of ≈8 nm with a characteristic dense hydrogen-bond (H-bond)patterning in the form of beta-sheets (β-sheets). Here we report a series of molecular dynamics simulations to study mechanical failure properties of a twofold symmetric Aβ(l-40) amyloid fibril, a pathogen associated with Alzheimer’s disease. We carry out computational experiments to study the response of the amyloid fibril to compressive loading. Our investigations reveal atomistic details of the failure process, and confirm that the breakdown of H-bonds plays a critical role during the failure process of amyloid fibrils. We obtain a Young’s modulus of ≈12.43 GPa, in dose agreement with earlier experimental results. Our simulations show that failure by buck-ling and subsequent shearing in one of the layers initiates at ≈1% compressive strain, suggesting that amyloid fibrils can be rather brittle mechanical elements.

  17. Amyloid Deposition Is Linked to Aberrant Entorhinal Activity among Cognitively Normal Older Adults

    Science.gov (United States)

    Mormino, Elizabeth C.; Wigman, Sarah E.; Ward, Andrew M.; Vannini, Patrizia; McLaren, Donald G.; Becker, J. Alex; Schultz, Aaron P.; Hedden, Trey; Johnson, Keith A.; Sperling, Reisa A.

    2014-01-01

    Normal aging is often difficult to distinguish from the earliest stages of Alzheimer's disease. Years before clinical memory deficits manifest, amyloid-β deposits in the cortex in many older individuals. Neuroimaging studies indicate that a set of densely connected neocortical regions, referred to as the default network, is especially vulnerable to amyloid-β deposition. Yet, the impact of amyloid-β on age-related changes within the medial temporal lobe (MTL) memory system is less clear. Here we demonstrate that cognitively normal older humans, compared with young adults, show reduced ability to modulate hippocampal activations and entorhinal deactivations during an episodic memory task. Among older adults, amyloid-β deposition was associated with failure to modulate activity in entorhinal cortex, but not hippocampus. Furthermore, we show that entorhinal regions demonstrating amyloid-β-related dysfunction are directly connected to the neocortical regions of the default network. Together these findings link neocortical amyloid-β deposition to neuronal dysfunction specifically in entorhinal cortex, while aging is associated with more widespread functional changes across the MTL. PMID:24719099

  18. Reduction and degradation of amyloid aggregates by a pulsed radio-frequency cold atmospheric plasma jet

    Energy Technology Data Exchange (ETDEWEB)

    Bayliss, D L; Walsh, J L; Iza, F; Kong, M G [Department of Electronic and Electrical Engineering, Loughborough University, Leicestershire LE11 3TU (United Kingdom); Shama, G [Department of Chemical Engineering, Loughborough University, Leicestershire LE11 3TU (United Kingdom)], E-mail: m.g.kong@lboro.ac.uk

    2009-11-15

    Surface-borne amyloid aggregates with mature fibrils are used as a non-infectious prion model to evaluate cold atmospheric plasmas (CAPs) as a prion inactivation strategy. Using a helium-oxygen CAP jet with pulsed radio-frequency (RF) excitation, amyloid aggregates deposited on freshly cleaved mica discs are reduced substantially leaving only a few spherical fragments of sub-micrometer sizes in areas directly treated by the CAP jet. Outside the light-emitting part of the CAP jet, plasma treatment results in a 'skeleton' of much reduced amyloid stacks with clear evidence of fibril fragmentation. Analysis of possible plasma species and the physical configuration of the jet-sample interaction suggests that the skeleton structures observed are unlikely to have arisen as a result of physical forces of detachment, but instead by progressive diffusion of oxidizing plasma species into porous amyloid aggregates. Composition of chemical bonds of this reduced amyloid sample is very different from that of intact amyloid aggregates. These suggest the possibility of on-site degradation by CAP treatment with little possibility of spreading contamination elsewhere , thus offering a new reaction chemistry route to protein infectivity control with desirable implications for the practical implementation of CAP-based sterilization systems.

  19. Reduction and degradation of amyloid aggregates by a pulsed radio-frequency cold atmospheric plasma jet

    Science.gov (United States)

    Bayliss, D. L.; Walsh, J. L.; Shama, G.; Iza, F.; Kong, M. G.

    2009-11-01

    Surface-borne amyloid aggregates with mature fibrils are used as a non-infectious prion model to evaluate cold atmospheric plasmas (CAPs) as a prion inactivation strategy. Using a helium-oxygen CAP jet with pulsed radio-frequency (RF) excitation, amyloid aggregates deposited on freshly cleaved mica discs are reduced substantially leaving only a few spherical fragments of sub-micrometer sizes in areas directly treated by the CAP jet. Outside the light-emitting part of the CAP jet, plasma treatment results in a 'skeleton' of much reduced amyloid stacks with clear evidence of fibril fragmentation. Analysis of possible plasma species and the physical configuration of the jet-sample interaction suggests that the skeleton structures observed are unlikely to have arisen as a result of physical forces of detachment, but instead by progressive diffusion of oxidizing plasma species into porous amyloid aggregates. Composition of chemical bonds of this reduced amyloid sample is very different from that of intact amyloid aggregates. These suggest the possibility of on-site degradation by CAP treatment with little possibility of spreading contamination elsewhere , thus offering a new reaction chemistry route to protein infectivity control with desirable implications for the practical implementation of CAP-based sterilization systems.

  20. Automatic segmentation of amyloid plaques in MR images using unsupervised support vector machines.

    Science.gov (United States)

    Iordanescu, Gheorghe; Venkatasubramanian, Palamadai N; Wyrwicz, Alice M

    2012-06-01

    Deposition of the β-amyloid peptide (Aβ) is an important pathological hallmark of Alzheimer's disease (AD). However, reliable quantification of amyloid plaques in both human and animal brains remains a challenge. We present here a novel automatic plaque segmentation algorithm based on the intrinsic MR signal characteristics of plaques. This algorithm identifies plaque candidates in MR data by using watershed transform, which extracts regions with low intensities completely surrounded by higher intensity neighbors. These candidates are classified as plaque or nonplaque by an unsupervised learning method using features derived from the MR data intensity. The algorithm performance is validated by comparison with histology. We also demonstrate the algorithm's ability to detect age-related changes in plaque load ex vivo in amyloid precursor protein (APP) transgenic mice that coexpress five familial AD mutations (5xFAD mice). To our knowledge, this study represents the first quantitative method for characterizing amyloid plaques in MRI data. The proposed method can be used to describe the spatiotemporal progression of amyloid deposition, which is necessary for understanding the evolution of plaque pathology in mouse models of Alzheimer's disease and to evaluate the efficacy of emergent amyloid-targeting therapies in preclinical trials.

  1. The Protective Role of Carnosic Acid against Beta-Amyloid Toxicity in Rats

    Directory of Open Access Journals (Sweden)

    H. Rasoolijazi

    2013-01-01

    Full Text Available Oxidative stress is one of the pathological mechanisms responsible for the beta- amyloid cascade associated with Alzheimer’s disease (AD. Previous studies have demonstrated the role of carnosic acid (CA, an effective antioxidant, in combating oxidative stress. A progressive cognitive decline is one of the hallmarks of AD. Thus, we attempted to determine whether the administration of CA protects against memory deficit caused by beta-amyloid toxicity in rats. Beta-amyloid (1–40 was injected by stereotaxic surgery into the Ca1 region of the hippocampus of rats in the Amyloid beta (Aβ groups. CA was delivered intraperitoneally, before and after surgery in animals in the CA groups. Passive avoidance learning and spontaneous alternation behavior were evaluated using the shuttle box and the Y-maze, respectively. The degenerating hippocampal neurons were detected by fluoro-jade b staining. We observed that beta-amyloid (1–40 can induce neurodegeneration in the Ca1 region of the hippocampus by using fluoro-jade b staining. Also, the behavioral tests revealed that CA may recover the passive avoidance learning and spontaneous alternation behavior scores in the Aβ + CA group, in comparison with the Aβ group. We found that CA may ameliorate the spatial and learning memory deficits induced by the toxicity of beta-amyloid in the rat hippocampus.

  2. Destruction of amyloid fibrils by graphene through penetration and extraction of peptides.

    Science.gov (United States)

    Yang, Zaixing; Ge, Cuicui; Liu, Jiajia; Chong, Yu; Gu, Zonglin; Jimenez-Cruz, Camilo A; Chai, Zhifang; Zhou, Ruhong

    2015-11-28

    Current therapies for Alzheimer's disease (AD) can provide a moderate symptomatic reduction or delay progression at various stages of the disease, but such treatments ultimately do not arrest the advancement of AD. As such, novel approaches for AD treatment and prevention are urgently needed. We here provide both experimental and computational evidence that pristine graphene and graphene-oxide nanosheets can inhibit Aβ peptide monomer fibrillation and clear mature amyloid fibrils, thus impacting the central molecular superstructures correlated with AD pathogenesis. Our molecular dynamics simulations for the first time reveal that graphene nanosheets can penetrate and extract a large number of peptides from pre-formed amyloid fibrils; these effects seem to be related to exceptionally strong dispersion interactions between peptides and graphene that are further enhanced by strong π-π stacking between the aromatic residues of extracted Aβ peptides and the graphene surface. Atomic force microscopy images confirm these predictions by demonstrating that mature amyloid fibrils can be cut into pieces and cleared by graphene oxides. Thioflavin fluorescence assays further illustrate the detailed dynamic processes by which graphene induces inhibition of monomer aggregation and clearance of mature amyloid fibrils, respectively. Cell viability and ROS assays indicate that graphene oxide can indeed mitigate cytotoxicity of Aβ peptide amyloids. Our findings provide new insights into the underlying molecular mechanisms that define graphene-amyloid interaction and suggest that further research on nanotherapies for Alzheimer's and other protein aggregation-related diseases is warranted.

  3. The emergence of superstructural order in insulin amyloid fibrils upon multiple rounds of self-seeding

    Science.gov (United States)

    Surmacz-Chwedoruk, Weronika; Babenko, Viktoria; Dec, Robert; Szymczak, Piotr; Dzwolak, Wojciech

    2016-08-01

    Typically, elongation of an amyloid fibril entails passing conformational details of the mother seed to daughter generations of fibrils with high fidelity. There are, however, several factors that can potentially prevent such transgenerational structural imprinting from perpetuating, for example heterogeneity of mother seeds or so-called conformational switching. Here, we examine phenotypic persistence of bovine insulin amyloid ([BI]) upon multiple rounds of self-seeding under quiescent conditions. According to infrared spectroscopy, with the following passages of homologous seeding, daughter fibrils gradually depart from the mother seed’s spectral characteristics. We note that this transgenerational structural drift in [BI] amyloid leads toward fibrils with infrared, chiroptical, and morphological traits similar to those of the superstructural variant of fibrils which normally forms upon strong agitation of insulin solutions. However, in contrast to agitation-induced insulin amyloid, the superstructural assemblies of daughter fibrils isolated through self-seeding are sonication-resistant. Our results suggest that formation of single amyloid fibrils is not a dead-end of the amyloidogenic self-assembly. Instead, the process appears to continue toward the self-assembly of higher-order structures although on longer time-scales. From this perspective, the fast agitation-induced aggregation of insulin appears to be a shortcut to amyloid superstructures whose formation under quiescent conditions is slow.

  4. Multicomponent mixtures for cryoprotection and ligand solubilization

    Directory of Open Access Journals (Sweden)

    Lidia Ciccone

    2015-09-01

    Full Text Available Mixed cryoprotectants have been developed for the solubilization of ligands for crystallization of protein–ligand complexes and for crystal soaking. Low affinity lead compounds with poor solubility are problematic for structural studies. Complete ligand solubilization is required for co-crystallization and crystal soaking experiments to obtain interpretable electron density maps for the ligand. Mixed cryo-preserving compounds are needed prior to X-ray data collection to reduce radiation damage at synchrotron sources. Here we present dual-use mixes that act as cryoprotectants and also promote the aqueous solubility of hydrophobic ligands. Unlike glycerol that increases protein solubility and can cause crystal melting the mixed solutions of cryo-preserving compounds that include precipitants and solubilizers, allow for worry-free crystal preservation while simultaneously solubilizing relatively hydrophobic ligands, typical of ligands obtained in high-throughput screening. The effectiveness of these mixture has been confirmed on a human transthyretin crystals both during crystallization and in flash freezing of crystals.

  5. Small Molecule p75NTR Ligands Reduce Pathological Phosphorylation and Misfolding of Tau, Inflammatory Changes, Cholinergic Degeneration, and Cognitive Deficits in AβPPL/S Transgenic Mice

    Science.gov (United States)

    Nguyen, Thuy-Vi V.; Shen, Lin; Griend, Lilith Vander; Quach, Lisa N.; Belichenko, Nadia P.; Saw, Nay; Yang, Tao; Shamloo, Mehrdad; Wyss-Coray, Tony; Massa, Stephen M.; Longo, Frank M.

    2014-01-01

    The p75 neurotrophin receptor (p75NTR ) is involved in degenerative mechanisms related to Alzheimer’s disease (AD). In addition, p75NTR levels are increased in AD and the receptor is expressed by neurons that are particularly vulnerable in the disease. Therefore, modulating p75NTR function may be a significant disease-modifying treatment approach. Prior studies indicated that the non-peptide, small molecule p75NTR ligands LM11A-31, and chemically unrelated LM11A-24, could block amyloid-β-induced deleterious signaling and neurodegeneration in vitro, and LM11A-31 was found to mitigate neuritic degeneration and behavioral deficits in a mouse model of AD. In this study, we determined whether these in vivo findings represent class effects of p75NTR ligands by examining LM11A-24 effects. In addition, the range of compound effects was further examined by evaluating tau pathology and neuroinflammation. Following oral administration, both ligands reached brain concentrations known to provide neuroprotection in vitro. Compound induction of p75NTR cleavage provided evidence for CNS target engagement. LM11A-31 and LM11A-24 reduced excessive phosphorylation of tau, and LM11A-31 also inhibited its aberrant folding. Both ligands decreased activation of microglia, while LM11A-31 attenuated reactive astrocytes. Along with decreased inflammatory responses, both ligands reduced cholinergic neurite degeneration. In addition to the amelioration of neuropathology in AD model mice, LM11A-31, but not LM11A-24, prevented impairments in water maze performance, while both ligands prevented deficits in fear conditioning. These findings support a role for p75NTR ligands in preventing fundamental tau-related pathologic mechanisms in AD, and further validate the development of these small molecules as a new class of therapeutic compounds. PMID:24898660

  6. Lipid rafts participate in aberrant degradative autophagic-lysosomal pathway of amyloid-beta peptide in Alzheimer’s disease

    Institute of Scientific and Technical Information of China (English)

    Xin Zhou; Chun Yang; Yufeng Liu; Peng Li; Huiying Yang; Jingxing Dai; Rongmei Qu; Lin Yuan

    2014-01-01

    Amyloid-beta peptide is the main component of amyloid plaques, which are found in Alzhei-mer’s disease. The generation and deposition of amyloid-beta is one of the crucial factors for the onset and progression of Alzheimer’s disease. Lipid rafts are glycolipid-rich liquid domains of the plasma membrane, where certain types of protein tend to aggregate and intercalate. Lipid rafts are involved in the generation of amyloid-beta oligomers and the formation of amyloid-beta peptides. In this paper, we review the mechanism by which lipid rafts disturb the aberrant deg-radative autophagic-lysosomal pathway of amyloid-beta, which plays an important role in the pathological process of Alzheimer’s disease. Moreover, we describe this mechanism from the view of the Two-system Theory of fasciology and thus, suggest that lipid rafts may be a new target of Alzheimer’s disease treatment.

  7. [Amyloid typing from formalin-fixed paraffin-embedded tissues using LMD-LC-MS/MS system].

    Science.gov (United States)

    Tasaki, Masayoshi; Obayashi, Konen; Ueda, Mitsuharu; Ando, Yukio

    2014-03-01

    Amyloidosis is one of the protein conformational disorders in which normally soluble proteins accumulate insoluble amyloid fibrils, leading to severe organ dysfunction. To date, 30 different amyloidogenic proteins have been reported. Immunohistochemistry (IHC) is usually used to identify the amyloid precursor protein, but the results may be inconclusive owing to a loss of epitopes or small amounts of amyloid deposits, comprising unknown amyloidogenic protein. Recently, laser microdissection (LMD)-liquid chromatography tandem mass spectrometry (LC-MS/MS) has been used in a novel method to identify amyloid precursor protein from amyloid-laden formalin-fixed paraffin embedded (FFPE) tissues. We describe the usefulness of the system for amyloid typing in this report.

  8. Coordinate unsaturation with fluorinated ligands

    Energy Technology Data Exchange (ETDEWEB)

    Rack, J.L.; Hurlburt, P.K.; Anderson, O.P.; Strauss, S.H. [Colorado State Univ., Ft. Collins, CO (United States)

    1993-12-31

    The preparation and characterization of Zn(OTeF{sub 5}){sub 2} has resulted in a model compound with which to explore the concept of coordinative unsaturation. The coordination of solvents of varying donicity and dielectric constant to the Zn(II) ions in Zn(OTeF{sub 5}){sub 2} was studied by vapor phase monometry, NMR and IR spectroscopy, conductimetry, and X-Ray crystallography. The structures of [Zn(C{sub 6}H{sub 5}NO{sub 2}){sub 2}(OTeF{sub 5})2]2 and Zn(C{sub 6}H{sub 5}NO{sub 2}){sub 3}(OTEF{sub 5}){sub 2} demonstrate the electronic flexibility of some weakly coordinating solvents in that nitrobenzene can function as either an {eta}{sup 1}O or {eta}{sup 2}O,O`-ligand. The dependence of the number of bound solvent molecules and the degree of OTeF{sub 5}{minus} dissociation on solvent donor number and dielectric constant will be presented.

  9. pH-dependence of the specific binding of Cu(II) and Zn(II) ions to the amyloid-{beta} peptide

    Energy Technology Data Exchange (ETDEWEB)

    Ghalebani, Leila, E-mail: leila.ghalebani@ki.se [Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm (Sweden); Wahlstroem, Anna, E-mail: anna.wahlstrom@dbb.su.se [Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm (Sweden); Danielsson, Jens, E-mail: jensd@dbb.su.se [Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm (Sweden); Waermlaender, Sebastian K.T.S., E-mail: seb@dbb.su.se [Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm (Sweden); Graeslund, Astrid, E-mail: astrid@dbb.su.se [Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm (Sweden)

    2012-05-11

    Highlights: Black-Right-Pointing-Pointer Cu(II) and Zn(II) display pH-dependent binding to the A{beta}(1-40) peptide. Black-Right-Pointing-Pointer At pH 7.4 both metal ions display residue-specific binding to the A{beta} peptide. Black-Right-Pointing-Pointer At pH 5.5 the binding specificity is lost for Zn(II). Black-Right-Pointing-Pointer Differential Cu(II) and Zn(II) binding may help explain metal-induced AD toxicity. -- Abstract: Metal ions like Cu(II) and Zn(II) are accumulated in Alzheimer's disease amyloid plaques. The amyloid-{beta} (A{beta}) peptide involved in the disease interacts with these metal ions at neutral pH via ligands provided by the N-terminal histidines and the N-terminus. The present study uses high-resolution NMR spectroscopy to monitor the residue-specific interactions of Cu(II) and Zn(II) with {sup 15}N- and {sup 13}C,{sup 15}N-labeled A{beta}(1-40) peptides at varying pH levels. At pH 7.4 both ions bind to the specific ligands, competing with one another. At pH 5.5 Cu(II) retains its specific histidine ligands, while Zn(II) seems to lack residue-specific interactions. The low pH mimics acidosis which is linked to inflammatory processes in vivo. The results suggest that the cell toxic effects of redox active Cu(II) binding to A{beta} may be reversed by the protective activity of non-redox active Zn(II) binding to the same major binding site under non-acidic conditions. Under acidic conditions, the protective effect of Zn(II) may be decreased or changed, since Zn(II) is less able to compete with Cu(II) for the specific binding site on the A{beta} peptide under these conditions.

  10. Multi-target directed donepezil-like ligands for Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Mercedes eUnzeta

    2016-05-01

    Full Text Available Alzheimer's disease (AD, the most common form of adult onset dementia, is an age-related neurodegenerative disorder characterized by progressive memory loss, decline in language skills and other cognitive impairments. Although its etiology is not completely known, several factors including deficits of acetylcholine, β-amyloid deposits, τ-protein phosphorylation, oxidative stress and neuroinflammation are considered to play significant roles in the pathophysiology of this disease. For a long time, AD patients have been treated with acetylcholinesterase inhibitors such as donepezil (Aricept® but with limited therapeutic success. This might be due to the complex multifactorial nature of AD, a fact that has prompted the design of new Multi-Target-Directed Ligands (MTDL based on the one molecule, multiple targets paradigm. Thus, in this context, different series of novel multifunctional molecules with antioxidant, anti-amyloid, anti-inflammatory and metal-chelating properties able to interact with multiple enzymes of therapeutic interest in AD pathology including acetylcholinesterase, butyrylcholinesterase and monoamine oxidases A and B have been designed and assessed biologically. This review describes the multiple targets, the design rationale and an in-house MTDL library, bearing the N-benzylpiperidine motif present in donepezil, linked to different heterocyclic ring systems (indole, pyridine or 8-hydroxyquinoline with special emphasis on compound ASS234, an N-propargylindole derivative. The description of the in vitro biological properties of the compounds and discussion of the corresponding structure-activity-relationships allows us to highlight new issues for the identification of more efficient MTDL for use in AD therapy.

  11. Drug Development in Conformational Diseases: A Novel Family of Chemical Chaperones that Bind and Stabilise Several Polymorphic Amyloid Structures

    Science.gov (United States)

    Bencomo, Alberto; Lara-Martínez, Reyna; Rivera-Marrero, Suchitil; Domínguez, Guadalupe; Pérez-Perera, Rafaela; Jiménez-García, Luis Felipe; Altamirano-Bustamante, Nelly F.; Diaz-Delgado, Massiel; Vedrenne, Fernand; Rivillas-Acevedo, Lina; Pasten-Hidalgo, Karina; Segura-Valdez, María de Lourdes; Islas-Andrade, Sergio; Garrido-Magaña, Eulalia; Perera-Pintado, Alejandro; Prats-Capote, Anaís; Rodríguez-Tanty, Chryslaine; Altamirano-Bustamante, Myriam M.

    2015-01-01

    The increasing prevalence of conformational diseases, including Alzheimer's disease, type 2 Diabetes Mellitus and Cancer, poses a global challenge at many different levels. It has devastating effects on the sufferers as well as a tremendous economic impact on families and the health system. In this work, we apply a cross-functional approach that combines ideas, concepts and technologies from several disciplines in order to study, in silico and in vitro, the role of a novel chemical chaperones family (NCHCHF) in processes of protein aggregation in conformational diseases. Given that Serum Albumin (SA) is the most abundant protein in the blood of mammals, and Bovine Serum Albumin (BSA) is an off-the-shelf protein available in most labs around the world, we compared the ligandability of BSA:NCHCHF with the interaction sites in the Human Islet Amyloid Polypeptide (hIAPP):NCHCHF, and in the amyloid pharmacophore fragments (Aβ17–42 and Aβ16–21):NCHCHF. We posit that the merging of this interaction sites is a meta-structure of pharmacophore which allows the development of chaperones that can prevent protein aggregation at various states from: stabilizing the native state to destabilizing oligomeric state and protofilament. Furthermore to stabilize fibrillar structures, thus decreasing the amount of toxic oligomers in solution, as is the case with the NCHCHF. The paper demonstrates how a set of NCHCHF can be used for studying and potentially treating the various physiopathological stages of a conformational disease. For instance, when dealing with an acute phase of cytotoxicity, what is needed is the recruitment of cytotoxic oligomers, thus chaperone F, which accelerates fiber formation, would be very useful; whereas in a chronic stage it is better to have chaperones A, B, C, and D, which stabilize the native and fibril structures halting self-catalysis and the creation of cytotoxic oligomers as a consequence of fiber formation. Furthermore, all the chaperones are

  12. Drug Development in Conformational Diseases: A Novel Family of Chemical Chaperones that Bind and Stabilise Several Polymorphic Amyloid Structures.

    Directory of Open Access Journals (Sweden)

    Marquiza Sablón-Carrazana

    Full Text Available The increasing prevalence of conformational diseases, including Alzheimer's disease, type 2 Diabetes Mellitus and Cancer, poses a global challenge at many different levels. It has devastating effects on the sufferers as well as a tremendous economic impact on families and the health system. In this work, we apply a cross-functional approach that combines ideas, concepts and technologies from several disciplines in order to study, in silico and in vitro, the role of a novel chemical chaperones family (NCHCHF in processes of protein aggregation in conformational diseases. Given that Serum Albumin (SA is the most abundant protein in the blood of mammals, and Bovine Serum Albumin (BSA is an off-the-shelf protein available in most labs around the world, we compared the ligandability of BSA:NCHCHF with the interaction sites in the Human Islet Amyloid Polypeptide (hIAPP:NCHCHF, and in the amyloid pharmacophore fragments (Aβ17-42 and Aβ16-21:NCHCHF. We posit that the merging of this interaction sites is a meta-structure of pharmacophore which allows the development of chaperones that can prevent protein aggregation at various states from: stabilizing the native state to destabilizing oligomeric state and protofilament. Furthermore to stabilize fibrillar structures, thus decreasing the amount of toxic oligomers in solution, as is the case with the NCHCHF. The paper demonstrates how a set of NCHCHF can be used for studying and potentially treating the various physiopathological stages of a conformational disease. For instance, when dealing with an acute phase of cytotoxicity, what is needed is the recruitment of cytotoxic oligomers, thus chaperone F, which accelerates fiber formation, would be very useful; whereas in a chronic stage it is better to have chaperones A, B, C, and D, which stabilize the native and fibril structures halting self-catalysis and the creation of cytotoxic oligomers as a consequence of fiber formation. Furthermore, all the

  13. Yuzu extract prevents cognitive decline and impaired glucose homeostasis in β-amyloid-infused rats.

    Science.gov (United States)

    Yang, Hye Jeong; Hwang, Jin Taek; Kwon, Dae Young; Kim, Min Jung; Kang, Suna; Moon, Na Rang; Park, Sunmin

    2013-07-01

    Our preliminary study revealed that dementia induced by β-amyloid accumulation impairs peripheral glucose homeostasis (unpublished). We therefore evaluated whether long-term oral consumption of yuzu (Citrus junos Tanaka) extract improves cognitive dysfunction and glucose homeostasis in β-amyloid-induced rats. Male rats received hippocampal CA1 infusions of β-amyloid (25-35) [plaque forming β-amyloid; Alzheimer disease (AD)] or β-amyloid (35-25) [non-plaque forming β-amyloid; C (non-Alzheimer disease control)] at a rate of 3.6 nmol/d for 14 d. AD rats were divided into 2 dietary groups that received either 3% lyophilized 70% ethanol extracts of yuzu (AD-Y) or 3% dextrin (AD-C) in high-fat diets (43% energy as fat). The AD-C group exhibited greater hippocampal β-amyloid deposition, which was not detected in the C group, and attenuated hippocampal insulin signaling. Yuzu treatment prevented β-amyloid accumulation, increased tau phosphorylation, and attenuated hippocampal insulin signaling observed in AD-C rats. Consistent with β-amyloid accumulation, the AD-C rats experienced cognitive dysfunction, which was prevented by yuzu. AD-C rats gained less weight than did C rats due to decreased feed consumption, and yuzu treatment prevented the decrease in feed consumption. Serum glucose concentrations were higher in AD-C than in C rats at 40-120 min after glucose loading during an oral-glucose-tolerance test, but not at 0-40 min. Serum insulin concentrations were highly elevated in AD-C rats but not enough to lower serum glucose to normal concentrations, indicating that rats in the AD-C group had insulin resistance and a borderline diabetic state. Although AD-C rats were profoundly insulin resistant, AD-Y rats exhibited normal first and second phases of glucose tolerance and insulin sensitivity and secretion. In conclusion, yuzu treatment prevented the cognitive dysfunction and impaired energy and glucose homeostasis induced by β-amyloid infusion.

  14. Brain burdens of aluminum, iron, and copper and their relationships with amyloid-β pathology in 60 human brains.

    Science.gov (United States)

    Exley, Christopher; House, Emily; Polwart, Anthony; Esiri, Margaret M

    2012-01-01

    The deposition in the brain of amyloid-β as beta sheet conformers associated with senile plaques and vasculature is frequently observed in Alzheimer’s disease. While metals, primarily aluminum, iron, zinc, and copper, have been implicated in amyloid-β deposition in vivo, there are few data specifically relating brain metal burden with extent of amyloid pathologies in human brains. Herein brain tissue content of aluminum, iron, and copper are compared with burdens of amyloid-β, as senile plaques and as congophilic amyloid angiopathy, in 60 aged human brains. Significant observations were strong negative correlations between brain copper burden and the degree of severity of both senile plaque and congophilic amyloid angiopathy pathologies with the relationship with the former reaching statistical significance. While we did not have access to the dementia status of the majority of the 60 brain donors, this knowledge for just 4 donors allowed us to speculate that diagnosis of dementia might be predicted by a combination of amyloid pathology and a ratio of the brain burden of copper to the brain burden of aluminum. Taking into account only those donor brains with either senile plaque scores ≥4 and/or congophilic amyloid angiopathy scores ≥12, a Cu:Al ratio of <20 would predict that at least 39 of the 60 donors would have been diagnosed as suffering from dementia. Future research should test the hypothesis that, in individuals with moderate to severe amyloid pathology, low brain copper is a predisposition to developing dementia.

  15. Ligand inducible assembly of a DNA tetrahedron.

    Science.gov (United States)

    Dohno, Chikara; Atsumi, Hiroshi; Nakatani, Kazuhiko

    2011-03-28

    Here we show that a small synthetic ligand can be used as a key building component for DNA nanofabrication. Using naphthyridinecarbamate dimer (NCD) as a molecular glue for DNA hybridization, we demonstrate NCD-triggered formation of a DNA tetrahedron.

  16. Nye ligander for Pt-MOF strukturer

    OpenAIRE

    Jakobsen, Søren

    2006-01-01

    Metalorganic frameworks (MOFs) are a new type of compounds which have been intensely investigated during the last few years. They have been synthesized using a wide variety of metals and ligands constructing a vast number of 1, 2 and 3 dimensional structures, some of which possess zeolite-type physics and chemistry. Our approach is to incorporate platinum metal sites into the structures making them bimetallic and potentially catalytically active. Therefore a number of N-N-type ligands (dii...

  17. Designer TGFβ superfamily ligands with diversified functionality.

    Directory of Open Access Journals (Sweden)

    George P Allendorph

    Full Text Available Transforming Growth Factor--beta (TGFβ superfamily ligands, including Activins, Growth and Differentiation Factors (GDFs, and Bone Morphogenetic Proteins (BMPs, are excellent targets for protein-based therapeutics because of their pervasiveness in numerous developmental and cellular processes. We developed a strategy termed RASCH (Random Assembly of Segmental Chimera and Heteromer, to engineer chemically-refoldable TGFβ superfamily ligands with unique signaling properties. One of these engineered ligands, AB208, created from Activin-βA and BMP-2 sequences, exhibits the refolding characteristics of BMP-2 while possessing Activin-like signaling attributes. Further, we find several additional ligands, AB204, AB211, and AB215, which initiate the intracellular Smad1-mediated signaling pathways more strongly than BMP-2 but show no sensitivity to the natural BMP antagonist Noggin unlike natural BMP-2. In another design, incorporation of a short N-terminal segment from BMP-2 was sufficient to enable chemical refolding of BMP-9, without which was never produced nor refolded. Our studies show that the RASCH strategy enables us to expand the functional repertoire of TGFβ superfamily ligands through development of novel chimeric TGFβ ligands with diverse biological and clinical values.

  18. Combined thioflavin T-Congo red fluorescence assay for amyloid fibril detection

    Science.gov (United States)

    Girych, Mykhailo; Gorbenko, Galyna; Maliyov, Ivan; Trusova, Valeriya; Mizuguchi, Chiharu; Saito, Hiroyuki; Kinnunen, Paavo

    2016-09-01

    Fluorescence represents one of the most powerful tools for the detection and structural characterization of the pathogenic protein aggregates, amyloid fibrils. The traditional approaches to the identification and quantification of amyloid fibrils are based on monitoring the fluorescence changes of the benzothiazole dye thioflavin T (ThT) and absorbance changes of the azo dye Congo red (CR). In routine screening it is usually sufficient to perform only the ThT and CR assays, but both of them, when used separately, could give false results. Moreover, fibrillization kinetics can be measured only by ThT fluorescence, while the characteristic absorption spectra and birefringence of CR represent more rigid criteria for the presence of amyloid fibrils. Therefore, it seemed reasonable to use both these dyes simultaneously, combining the advantages of each technique. To this end, we undertook a detailed analysis of the fluorescence spectral behavior of these unique amyloid tracers upon their binding to amyloid fibrils from lysozyme, insulin and an N-terminal fragment of apolipoprotein A-I with Iowa mutation. The fluorescence measurements revealed several criteria for distinguishing between fibrillar and monomeric protein states: (i) a common drastic increase in ThT fluorescence intensity; (ii) a sharp decrease in ThT fluorescence upon addition of CR; (iii) an appearance of the maximum at 535-540 nm in the CR excitation spectra; (iv) increase in CR fluorescence intensity at 610 nm. Based on these findings we designed a novel combined ThT-CR fluorescence assay for amyloid identification. Such an approach not only strengthens the reliability of the ThT assay, but also provides new opportunities for structural characterization of amyloid fibrils.

  19. Plasma based markers of [11C] PiB-PET brain amyloid burden.

    Directory of Open Access Journals (Sweden)

    Steven John Kiddle

    Full Text Available Changes in brain amyloid burden have been shown to relate to Alzheimer's disease pathology, and are believed to precede the development of cognitive decline. There is thus a need for inexpensive and non-invasive screening methods that are able to accurately estimate brain amyloid burden as a marker of Alzheimer's disease. One potential method would involve using demographic information and measurements on plasma samples to establish biomarkers of brain amyloid burden; in this study data from the Alzheimer's Disease Neuroimaging Initiative was used to explore this possibility. Sixteen of the analytes on the Rules Based Medicine Human Discovery Multi-Analyte Profile 1.0 panel were found to associate with [(11C]-PiB PET measurements. Some of these markers of brain amyloid burden were also found to associate with other AD related phenotypes. Thirteen of these markers of brain amyloid burden--c-peptide, fibrinogen, alpha-1-antitrypsin, pancreatic polypeptide, complement C3, vitronectin, cortisol, AXL receptor kinase, interleukin-3, interleukin-13, matrix metalloproteinase-9 total, apolipoprotein E and immunoglobulin E--were used along with co-variates in multiple linear regression, and were shown by cross-validation to explain >30% of the variance of brain amyloid burden. When a threshold was used to classify subjects as PiB positive, the regression model was found to predict actual PiB positive individuals with a sensitivity of 0.918 and a specificity of 0.545. The number of APOE [Symbol: see text] 4 alleles and plasma apolipoprotein E level were found to contribute most to this model, and the relationship between these variables and brain amyloid burden was explored.

  20. α-Iso-cubebene exerts neuroprotective effects in amyloid beta stimulated microglia activation.

    Science.gov (United States)

    Park, Sun Young; Park, Se Jin; Park, Nan Jeong; Joo, Woo Hong; Lee, Sang-Joon; Choi, Young-Whan

    2013-10-25

    Schisandra chinensis is commonly used for food and as a traditional remedy for the treatment of neuronal disorders. However, it is unclear which component of S. chinensis is responsible for its neuropharmacological effects. To answer this question, we isolated α-iso-cubebene, a dibenzocyclooctadiene lignin, from S. chinensis and determined if it has any anti-neuroinflammatory and neuroprotective properties against amyloid β-induced neuroinflammation in microglia. Microglia that are stimulated by amyloid β increased their production of pro-inflammatory cytokines and chemokines, prostaglandin E2 (PGE2), nitric oxide (NO) and reactive oxygen species (ROS) and the enzymatic activity of matrix metalloproteinase 9 (MMP-9). We found this was all inhibited by α-iso-cubebene. Consistent with these results, α-iso-cubebene inhibited the expression of inducible nitric oxide synthase (iNOS), cyclooxygenase 2 (COX-2) and MMP-9 in amyloid β-stimulated microglia. Subsequent mechanistic studies revealed that α-iso-cubebene inhibited the phosphorylation and degradation of IκB-α, the phosphorylation and transactivity of NF-κB, and the phosphorylation of MAPK in amyloid β-stimulated microglia. These results suggest that α-iso-cubebene impairs the amyloid β-induced neuroinflammatory response of microglia by inhibiting the NF-κB and MAPK signaling pathways. Importantly, α-iso-cubebene can provide critical neuroprotection for primary cortical neurons against amyloid β-stimulated microglia-mediated neurotoxicity. To the best of our knowledge, this is the first report showing that α-iso-cubebene can provide neuroprotection against, and influence neuroinflammation triggered by, amyloid β activation of microglia.

  1. Deposition of kappa and lambda light chains in amyloid filaments of dialysis-related amyloidosis.

    Science.gov (United States)

    Brancaccio, D; Ghiggeri, G M; Braidotti, P; Garberi, A; Gallieni, M; Bellotti, V; Zoni, U; Gusmano, R; Coggi, G

    1995-10-01

    beta 2-Microglobulin (beta 2m) is considered to be the amyloidogenic precursor in dialysis-related amyloidosis, although the implication of other relevant cofactors in the pathogenesis of this disease has also been hypothesized. It is conceivable that substances found in amyloid deposits might represent something more than simple codeposition, possibly playing a pathogenic role in amyloidogenesis. Along these lines, a detailed analysis of the protein composition of amyloid fibrils purified from synovial material surgically obtained from nine patients on long-term dialysis was carried out. By the use of sodium dodecyl sulfate-polyacrylamide gel electrophoresis, several other protein components, in addition to beta 2m, were found. These were characterized by NH2 amino-terminal sequencing and immunoblotting. In fibrils obtained by water extraction, which fulfill the electron microscopy criteria of highly pure amyloid material, polyclonal kappa and lambda light chains were detected with a concentration of 15 micrograms/mL in the water extraction material; the beta 2m concentration was 200 micrograms/mL. Light microscopy immunohistochemistry was performed on samples from five patients. Amyloid deposits reacted with anti-beta 2m, and anti-light (kappa, lambda), chain antibodies. The immunoreaction of amyloid filaments to anti-beta 2m, anti-lambda, and anti-kappa light chain antibodies was also tested by electron microscopy by use of the immunogold staining procedure. Amyloid filaments were labeled by the three antibodies and showed a different intensity of immunostaining apparently related to their different aggregation pattern. These observations demonstrate that polyclonal immunoglobulin light chains (kappa and lambda) are not contaminants but, together with beta 2m, represent a major constituent of amyloid deposits in dialysis-related osteoarticular amyloidosis, thus indicating their possible role in amyloidogenesis.

  2. Quantitative Amyloid Imaging in Autosomal Dominant Alzheimer's Disease: Results from the DIAN Study Group.

    Directory of Open Access Journals (Sweden)

    Yi Su

    Full Text Available Amyloid imaging plays an important role in the research and diagnosis of dementing disorders. Substantial variation in quantitative methods to measure brain amyloid burden exists in the field. The aim of this work is to investigate the impact of methodological variations to the quantification of amyloid burden using data from the Dominantly Inherited Alzheimer's Network (DIAN, an autosomal dominant Alzheimer's disease population. Cross-sectional and longitudinal [11C]-Pittsburgh Compound B (PiB PET imaging data from the DIAN study were analyzed. Four candidate reference regions were investigated for estimation of brain amyloid burden. A regional spread function based technique was also investigated for the correction of partial volume effects. Cerebellar cortex, brain-stem, and white matter regions all had stable tracer retention during the course of disease. Partial volume correction consistently improves sensitivity to group differences and longitudinal changes over time. White matter referencing improved statistical power in the detecting longitudinal changes in relative tracer retention; however, the reason for this improvement is unclear and requires further investigation. Full dynamic acquisition and kinetic modeling improved statistical power although it may add cost and time. Several technical variations to amyloid burden quantification were examined in this study. Partial volume correction emerged as the strategy that most consistently improved statistical power for the detection of both longitudinal changes and across-group differences. For the autosomal dominant Alzheimer's disease population with PiB imaging, utilizing brainstem as a reference region with partial volume correction may be optimal for current interventional trials. Further investigation of technical issues in quantitative amyloid imaging in different study populations using different amyloid imaging tracers is warranted.

  3. Quantitative Amyloid Imaging in Autosomal Dominant Alzheimer’s Disease: Results from the DIAN Study Group

    Science.gov (United States)

    Su, Yi; Blazey, Tyler M.; Owen, Christopher J.; Christensen, Jon J.; Friedrichsen, Karl; Joseph-Mathurin, Nelly; Wang, Qing; Hornbeck, Russ C.; Ances, Beau M.; Snyder, Abraham Z.; Cash, Lisa A.; Koeppe, Robert A.; Klunk, William E.; Galasko, Douglas; Brickman, Adam M.; McDade, Eric; Ringman, John M.; Thompson, Paul M.; Saykin, Andrew J.; Ghetti, Bernardino; Sperling, Reisa A.; Johnson, Keith A.; Salloway, Stephen P.; Schofield, Peter R.; Masters, Colin L.; Villemagne, Victor L.; Fox, Nick C.; Förster, Stefan; Chen, Kewei; Reiman, Eric M.; Xiong, Chengjie; Marcus, Daniel S.; Weiner, Michael W.; Morris, John C.; Bateman, Randall J.; Benzinger, Tammie L. S.

    2016-01-01

    Amyloid imaging plays an important role in the research and diagnosis of dementing disorders. Substantial variation in quantitative methods to measure brain amyloid burden exists in the field. The aim of this work is to investigate the impact of methodological variations to the quantification of amyloid burden using data from the Dominantly Inherited Alzheimer’s Network (DIAN), an autosomal dominant Alzheimer’s disease population. Cross-sectional and longitudinal [11C]-Pittsburgh Compound B (PiB) PET imaging data from the DIAN study were analyzed. Four candidate reference regions were investigated for estimation of brain amyloid burden. A regional spread function based technique was also investigated for the correction of partial volume effects. Cerebellar cortex, brain-stem, and white matter regions all had stable tracer retention during the course of disease. Partial volume correction consistently improves sensitivity to group differences and longitudinal changes over time. White matter referencing improved statistical power in the detecting longitudinal changes in relative tracer retention; however, the reason for this improvement is unclear and requires further investigation. Full dynamic acquisition and kinetic modeling improved statistical power although it may add cost and time. Several technical variations to amyloid burden quantification were examined in this study. Partial volume correction emerged as the strategy that most consistently improved statistical power for the detection of both longitudinal changes and across-group differences. For the autosomal dominant Alzheimer’s disease population with PiB imaging, utilizing brainstem as a reference region with partial volume correction may be optimal for current interventional trials. Further investigation of technical issues in quantitative amyloid imaging in different study populations using different amyloid imaging tracers is warranted. PMID:27010959

  4. Fully Flexible Docking of Medium Sized Ligand Libraries with RosettaLigand.

    Directory of Open Access Journals (Sweden)

    Samuel DeLuca

    Full Text Available RosettaLigand has been successfully used to predict binding poses in protein-small molecule complexes. However, the RosettaLigand docking protocol is comparatively slow in identifying an initial starting pose for the small molecule (ligand making it unfeasible for use in virtual High Throughput Screening (vHTS. To overcome this limitation, we developed a new sampling approach for placing the ligand in the protein binding site during the initial 'low-resolution' docking step. It combines the translational and rotational adjustments to the ligand pose in a single transformation step. The new algorithm is both more accurate and more time-efficient. The docking success rate is improved by 10-15% in a benchmark set of 43 protein/ligand complexes, reducing the number of models that typically need to be generated from 1000 to 150. The average time to generate a model is reduced from 50 seconds to 10 seconds. As a result we observe an effective 30-fold speed increase, making RosettaLigand appropriate for docking medium sized ligand libraries. We demonstrate that this improved initial placement of the ligand is critical for successful prediction of an accurate binding position in the 'high-resolution' full atom refinement step.

  5. LigandRFs: random forest ensemble to identify ligand-binding residues from sequence information alone

    KAUST Repository

    Chen, Peng

    2014-12-03

    Background Protein-ligand binding is important for some proteins to perform their functions. Protein-ligand binding sites are the residues of proteins that physically bind to ligands. Despite of the recent advances in computational prediction for protein-ligand binding sites, the state-of-the-art methods search for similar, known structures of the query and predict the binding sites based on the solved structures. However, such structural information is not commonly available. Results In this paper, we propose a sequence-based approach to identify protein-ligand binding residues. We propose a combination technique to reduce the effects of different sliding residue windows in the process of encoding input feature vectors. Moreover, due to the highly imbalanced samples between the ligand-binding sites and non ligand-binding sites, we construct several balanced data sets, for each of which a random forest (RF)-based classifier is trained. The ensemble of these RF classifiers forms a sequence-based protein-ligand binding site predictor. Conclusions Experimental results on CASP9 and CASP8 data sets demonstrate that our method compares favorably with the state-of-the-art protein-ligand binding site prediction methods.

  6. Synthesis and characterization of mixed ligand chiral nanoclusters

    KAUST Repository

    Guven, Zekiye P.

    2016-06-22

    Chiral mixed ligand silver nanoclusters were synthesized in the presence of a chiral and an achiral ligand. While the chiral ligand led mostly to the formation of nanoparticles, the presence of the achiral ligand drastically increased the yield of nanoclusters with enhanced chiral properties. © 2016 The Royal Society of Chemistry.

  7. Modeling copper binding to the amyloid-β peptide at different pH: toward a molecular mechanism for Cu reduction.

    Science.gov (United States)

    Furlan, Sara; Hureau, Christelle; Faller, Peter; La Penna, Giovanni

    2012-10-04

    Oxidative stress, including the production of reactive oxygen species (ROS), has been reported to be a key event in the etiology of Alzheimer's disease (AD). Cu has been found in high concentrations in amyloid plaques, a hallmark of AD, where it is bound to the main constituent amyloid-β (Aβ) peptide. Whereas it has been proposed that Cu-Aβ complexes catalyze the production of ROS via redox-cycling between the Cu(I) and Cu(II) state, the redox chemistry of Cu-Aβ and the precise mechanism of redox reactions are still unclear. Because experiments indicate different coordination environments for Cu(II) and Cu(I), it is expected that the electron is not transferred between Cu-Aβ and reactants in a straightforward manner but involves structural rearrangement. In this work the structures indicated by experimental data are modeled at the level of modern density-functional theory approximations. Possible pathways for Cu(II) reduction in different coordination sites are investigated by means of first-principles molecular dynamics simulations in the water solvent and at room temperature. The models of the ligand reorganization around Cu allow the proposal of a preferential mechanism for Cu-Aβ complex reduction at physiological pH. Models reveal that for efficient reduction the deprotonated amide N in the Ala 2-Glu 3 peptide bond has to be protonated and that interactions in the second coordination sphere make important contributions to the reductive pathway, in particular the interaction between COO(-) and NH(2) groups of Asp 1. The proposed mechanism is an important step forward to a clear understanding of the redox chemistry of Cu-Aβ, a difficult task for spectroscopic approaches as the Cu-peptide interactions are weak and dynamical in nature.

  8. Interaction structure of the complex between neuroprotective factor humanin and Alzheimer's β-amyloid peptide revealed by affinity mass spectrometry and molecular modeling.

    Science.gov (United States)

    Maftei, Madalina; Tian, Xiaodan; Manea, Marilena; Exner, Thomas E; Schwanzar, Daniel; von Arnim, Christine A F; Przybylski, Michael

    2012-06-01

    Humanin (HN) is a linear 24-aa peptide recently detected in human Alzheimer's disease (AD) brain. HN specifically inhibits neuronal cell death in vitro induced by ß-amyloid (Aß) peptides and by amyloid precursor protein and its gene mutations in familial AD, thereby representing a potential therapeutic lead structure for AD; however, its molecular mechanism of action is not well understood. We report here the identification of the binding epitopes between HN and Aß(1-40) and characterization of the interaction structure through a molecular modeling study. Wild-type HN and HN-sequence mutations were synthesized by SPPS and the HPLC-purified peptides characterized by MALDI-MS. The interaction epitopes between HN and Aß(1-40) were identified by affinity-MS using proteolytic epitope excision and extraction, followed by elution and mass spectrometric characterization of the affinity-bound peptides. The affinity-MS analyses revealed HN(5-15) as the epitope sequence of HN, whereas Aß(17-28) was identified as the Aß interaction epitope. The epitopes and binding sites were ascertained by ELISA of the complex of HN peptides with immobilized Aß(1-40) and by ELISA with Aß(1-40) and Aß-partial sequences as ligands to immobilized HN. The specificity and affinity of the HN-Aß interaction were characterized by direct ESI-MS of the HN-Aß(1-40) complex and by bioaffinity analysis using a surface acoustic wave biosensor, providing a K(D) of the complex of 610 nm. A molecular dynamics simulation of the HN-Aß(1-40) complex was consistent with the binding specificity and shielding effects of the HN and Aß interaction epitopes. These results indicate a specific strong association of HN and Aß(1-40) polypeptide and provide a molecular basis for understanding the neuroprotective function of HN.

  9. Human serum amyloid A3 (SAA3 protein, expressed as a fusion protein with SAA2, binds the oxidized low density lipoprotein receptor.

    Directory of Open Access Journals (Sweden)

    Takeshi Tomita

    Full Text Available Serum amyloid A3 (SAA3 possesses characteristics distinct from the other serum amyloid A isoforms, SAA1, SAA2, and SAA4. High density lipoprotein contains the latter three isoforms, but not SAA3. The expression of mouse SAA3 (mSAA3 is known to be up-regulated extrahepatically in inflammatory responses, and acts as an endogenous ligand for the toll-like receptor 4/MD-2 complex. We previously reported that mSAA3 plays an important role in facilitating tumor metastasis by attracting circulating tumor cells and enhancing hyperpermeability in the lungs. On the other hand, human SAA3 (hSAA3 has long been regarded as a pseudogene, which is in contrast to the abundant expression levels of the other isoforms. Although the nucleotide sequence of hSAA3 is very similar to that of the other SAAs, a single oligonucleotide insertion in exon 2 causes a frame-shift to generate a unique amino acid sequence. In the present study, we identified that hSAA3 was transcribed in the hSAA2-SAA3 fusion transcripts of several human cell lines. In the fusion transcript, hSAA2 exon 3 was connected to hSAA3 exon 1 or hSAA3 exon 2, located approximately 130kb downstream from hSAA2 exon 3 in the genome, which suggested that it is produced by alternative splicing. Furthermore, we succeeded in detecting and isolating hSAA3 protein for the first time by an immunoprecipitation-enzyme linked immune assay system using monoclonal and polyclonal antibodies that recognize the hSAA3 unique amino acid sequence. We also demonstrated that hSAA3 bound oxidized low density lipoprotein receptor (oxLDL receptor, LOX-1 and elevated the phosphorylation of ERK, the intracellular MAP-kinase signaling protein.

  10. Differential effects of 24-hydroxycholesterol and 27-hydroxycholesterol on β-amyloid precursor protein levels and processing in human neuroblastoma SH-SY5Y cells

    Directory of Open Access Journals (Sweden)

    Schommer Eric

    2009-01-01

    Full Text Available Abstract Background Activation of the liver × receptors (LXRs by exogenous ligands stimulates the degradation of β-amyloid 1–42 (Aβ42, a peptide that plays a central role in the pathogenesis of Alzheimer's disease (AD. The oxidized cholesterol products (oxysterols, 24-hydroxycholesterol (24-OHC and 27-hydroxycholesterol (27-OHC, are endogenous activators of LXRs. However, the mechanisms by which these oxysterols may modulate Aβ42 levels are not well known. Results We determined the effect of 24-OHC and/or 27-OHC on Aβ generation in SH-SY5Y cells. We found that while 27-OHC increases levels of Aβ42, 24-OHC did not affect levels of this peptide. Increased Aβ42 levels with 27-OHC are associated with increased levels of β-amyloid precursor protein (APP as well as β-secretase (BACE1, the enzyme that cleaves APP to yield Aβ. Unchanged Aβ42 levels with 24-OHC are associated with increased levels of sAPPα, suggesting that 24-OHC favors the processing of APP to the non-amyloidogenic pathway. Interestingly, 24-OHC, but not 27-OHC, increases levels of the ATP-binding cassette transporters, ABCA1 and ABCG1, which regulate cholesterol transport within and between cells. Conclusion These results suggest that cholesterol metabolites are linked to Aβ42 production. 24-OHC may favor the non-amyloidogenic pathway and 27-OHC may enhance production of Aβ42 by upregulating APP and BACE1. Regulation of 24-OHC: 27-OHC ratio could be an important strategy in controlling Aβ42 levels in AD.

  11. The Physics of Amyloid Aggregation and Templating in Prions

    Science.gov (United States)

    Cox, Daniel

    2012-02-01

    The problem of self-assembled amyloid aggregation of proteins in structures with beta-strands perpendicular to a one dimensional grown axis is interesting at a fundamental level (is this the most generic end state of proteins?), from a biological level (if the self-assembly can be regulated it is of use in contexts like spider silk and bacterial colony formation), for human public health (aggregation unregulated induces diseases like mad cow and Alzheimer's), and for possible materials applications (e.g., in tissue scaffolding). In this presentation, I will review the work of my group in examining the possibility that the left-handed beta helix (LHBH) structure can be the building block of the aggregates of mammalian prion and yeast prion proteins. I will also discuss our efforts to assess the possibility of a novel pH driven structural switch between LHBH and alpha-helical forms in the ordered half of the mammalian prion protein, and now the possibly pH stabilized LHBH structure can template aggregate growth of the disordered half of the protein, identified in numerous experimental studies as most relevant to disease.

  12. Interleukin-3 prevents neuronal death induced by amyloid peptide

    Directory of Open Access Journals (Sweden)

    Otth Carola

    2007-10-01

    Full Text Available Abstract Background Interleukin-3 (IL-3 is an important glycoprotein involved in regulating biological responses such as cell proliferation, survival and differentiation. Its effects are mediated via interaction with cell surface receptors. Several studies have demonstrated the expression of IL-3 in neurons and astrocytes of the hippocampus and cortices in normal mouse brain, suggesting a physiological role of IL-3 in the central nervous system. Although there is evidence indicating that IL-3 is expressed in some neuronal populations, its physiological role in these cells is poorly known. Results In this study, we demonstrated the expression of IL-3 receptor in cortical neurons, and analyzed its influence on amyloid β (Aβ-treated cells. In these cells, IL-3 can activate at least three classical signalling pathways, Jak/STAT, Ras/MAP kinase and the PI 3-kinase. Viability assays indicated that IL-3 might play a neuroprotective role in cells treated with Aβ fibrils. It is of interest to note that our results suggest that cell survival induced by IL-3 required PI 3-kinase and Jak/STAT pathway activation, but not MAP kinase. In addition, IL-3 induced an increase of the anti-apoptotic protein Bcl-2. Conclusion Altogether these data strongly suggest that IL-3 neuroprotects neuronal cells against neurodegenerative agents like Aβ.

  13. Microglial responses to amyloid β peptide opsonization and indomethacin treatment

    Directory of Open Access Journals (Sweden)

    Leonard Brian

    2005-08-01

    Full Text Available Abstract Background Recent studies have suggested that passive or active immunization with anti-amyloid β peptide (Aβ antibodies may enhance microglial clearance of Aβ deposits from the brain. However, in a human clinical trial, several patients developed secondary inflammatory responses in brain that were sufficient to halt the study. Methods We have used an in vitro culture system to model the responses of microglia, derived from rapid autopsies of Alzheimer's disease patients, to Aβ deposits. Results Opsonization of the deposits with anti-Aβ IgG 6E10 enhanced microglial chemotaxis to and phagocytosis of Aβ, as well as exacerbated microglial secretion of the pro-inflammatory cytokines TNF-α and IL-6. Indomethacin, a common nonsteroidal anti-inflammatory drug (NSAID, had no effect on microglial chemotaxis or phagocytosis, but did significantly inhibit the enhanced production of IL-6 after Aβ opsonization. Conclusion These results are consistent with well known, differential NSAID actions on immune cell functions, and suggest that concurrent NSAID administration might serve as a useful adjunct to Aβ immunization, permitting unfettered clearance of Aβ while dampening secondary, inflammation-related adverse events.

  14. TANGO-Inspired Design of Anti-Amyloid Cyclic Peptides.

    Science.gov (United States)

    Lu, Xiaomeng; Brickson, Claire R; Murphy, Regina M

    2016-09-21

    β-Amyloid peptide (Aβ) self-associates into oligomers and fibrils, in a process that is believed to directly lead to neuronal death in Alzheimer's disease. Compounds that bind to Aβ, and inhibit fibrillogenesis and neurotoxicity, are of interest as an anti-Alzheimer therapeutic strategy. Peptides are particularly attractive for this purpose, because they have advantages over small molecules in their ability to disrupt protein-protein interactions, yet they are amenable to tuning of their properties through chemical means, unlike antibodies. Self-complementation and peptide library screening are two strategies that have been employed in the search for peptides that bind to Aβ. We have taken a different approach, by designing Aβ-binding peptides using transthyretin (TTR) as a template. Previously, we demonstrated that a cyclic peptide, with sequence derived from the known Aβ-binding site on TTR, suppressed Aβ aggregation into fibrils and protected neurons against Aβ toxicity. Here, we searched for cyclic peptides with improved efficacy, by employing the algorithm TANGO, designed originally to identify amyloidogenic sequences in proteins. By using TANGO as a guide to predict the effect of sequence modifications on conformation and aggregation, we synthesized a significantly improved cyclic peptide. We demonstrate that the peptide, in binding to Aβ, redirects Aβ toward protease-sensitive, nonfibrillar aggregates. Cyclic peptides designed using this strategy have attractive solubility, specificity, and stability characteristics.

  15. Membrane Pore Formation by Amyloid beta (25-35) Peptide

    Science.gov (United States)

    Kandel, Nabin; Tatulian, Suren

    Amyloid (A β) peptide contributes to Alzheimer's disease by a yet unidentified mechanism. One of the possible mechanisms of A β toxicity is formation of pores in cellular membranes. We have characterized the formation of pores in phospholipid membranes by the Aβ25 - 35 peptide (GSNKGAIIGLM) using fluorescence, Fourier transform infrared spectroscopy (FTIR) and circular dichroism (CD) techniques. CD and FTIR identified formation of β-sheet structure upon incubation of the peptide in aqueous buffer for 2 hours. Unilamellar vesicles composed of a zwitterionic lipid, 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC), and 70 % POPC plus 30 % of an acidic lipid, 1-palmitoyl-2-oleoyl-phosphatidylglycerol (POPG), are made in 30 mM CaCl2. Quin-2, a fluorophore that displays increased fluorescence upon Ca2+ binding, is added to the vesicles externally. Peptide addition results in increased Quin-2 fluorescence, which is interpreted by binding of the peptide to the vesicles, pore formation, and Ca2+ leakage. The positive and negative control measurements involve addition of a detergent, Triton X-100, which causes vesicle rupture and release of total calcium, and blank buffer, respectively.

  16. Microtubule modification influences cellular response to amyloid-β exposure

    Directory of Open Access Journals (Sweden)

    Nicole Shamitko-Klingensmith

    2016-05-01

    Full Text Available During the normal aging process, cytoskeletal changes such as a reduction in density or disruption of cytoskeletal components occur that can affect neuronal function. As aging is the biggest risk factor for Alzheimer's disease (AD, this study sought to determine how microtubule (MT modification influences cellular response upon exposure to β-amyloid1-42 (Aβ1-42, which is implicated in AD. The MT networks of hypothalamic GT1-7 neurons were modified by common disrupting or stabilizing drugs, and then the physical and mechanical properties of the modified neurons were determined. The MT modified neurons were then exposed to Aβ1-42 and the ability of the neurons to cope with this exposure was determined by a variety of biochemical assays. Flow cytometry studies indicated that MT disruption reduced the binding of Aβ1-42 to the plasma membrane by 45% per cell compared to neurons with stabilized or unaltered MTs. Although the cells with disrupted MTs experienced less peptide-membrane binding, they experienced similar or increased levels of cytotoxicity caused by the Aβ1-42 exposure. In contrast, MT stabilization delayed toxicity caused by Aβ1-42. These results demonstrate that MT modification significantly influences the ability of neurons to cope with toxicity induced by Aβ1-42.

  17. Amyloid β levels in human red blood cells.

    Directory of Open Access Journals (Sweden)

    Takehiro Kiko

    Full Text Available UNLABELLED: Amyloid β-peptide (Aβ is hypothesized to play a key role by oxidatively impairing the capacity of red blood cells (RBCs to deliver oxygen to the brain. These processes are implicated in the pathogenesis of Alzheimer's disease (AD. Although plasma Aβ has been investigated thoroughly, the presence and distribution of Aβ in human RBCs are still unclear. In this study, we quantitated Aβ40 and Aβ42 in human RBCs with ELISA assays, and provided evidence that significant amounts of Aβ could be detected in RBCs and that the RBC Aβ levels increased with aging. The RBC Aβ levels increased with aging. On the other hand, providing an antioxidant supplement (astaxanthin, a polar carotenoid to humans was found to decrease RBC Aβ as well as oxidative stress marker levels. These results suggest that plasma Aβ40 and Aβ42 bind to RBCs (possibly with aging, implying a pathogenic role of RBC Aβ. Moreover, the data indicate that RBC Aβ40 and Aβ42 may constitute biomarkers of AD. As a preventive strategy, therapeutic application of astaxanthin as an Aβ-lowering agent in RBCs could be considered as a possible anti-dementia agent. TRIAL REGISTRATION: Controlled-Trials.com ISRCTN42483402.

  18. Lipids in Amyloid-β Processing, Aggregation, and Toxicity.

    Science.gov (United States)

    Morgado, Isabel; Garvey, Megan

    2015-01-01

    Aggregation of amyloid-beta (Aβ) peptide is the major event underlying neuronal damage in Alzheimer's disease (AD). Specific lipids and their homeostasis play important roles in this and other neurodegenerative disorders. The complex interplay between the lipids and the generation, clearance or deposition of Aβ has been intensively investigated and is reviewed in this chapter. Membrane lipids can have an important influence on the biogenesis of Aβ from its precursor protein. In particular, increased cholesterol in the plasma membrane augments Aβ generation and shows a strong positive correlation with AD progression. Furthermore, apolipoprotein E, which transports cholesterol in the cerebrospinal fluid and is known to interact with Aβ or compete with it for the lipoprotein receptor binding, significantly influences Aβ clearance in an isoform-specific manner and is the major genetic risk factor for AD. Aβ is an amphiphilic peptide that interacts with various lipids, proteins and their assemblies, which can lead to variation in Aβ aggregation in vitro and in vivo. Upon interaction with the lipid raft components, such as cholesterol, gangliosides and phospholipids, Aβ can aggregate on the cell membrane and thereby disrupt it, perhaps by forming channel-like pores. This leads to perturbed cellular calcium homeostasis, suggesting that Aβ-lipid interactions at the cell membrane probably trigger the neurotoxic cascade in AD. Here, we overview the roles of specific lipids, lipid assemblies and apolipoprotein E in Aβ processing, clearance and aggregation, and discuss the contribution of these factors to the neurotoxicity in AD.

  19. Purified and synthetic Alzheimer's amyloid beta (Aβ) prions.

    Science.gov (United States)

    Stöhr, Jan; Watts, Joel C; Mensinger, Zachary L; Oehler, Abby; Grillo, Sunny K; DeArmond, Stephen J; Prusiner, Stanley B; Giles, Kurt

    2012-07-03

    The aggregation and deposition of amyloid-β (Aβ) peptides are believed to be central events in the pathogenesis of Alzheimer's disease (AD). Inoculation of brain homogenates containing Aβ aggregates into susceptible transgenic mice accelerated Aβ deposition, suggesting that Aβ aggregates are capable of self-propagation and hence might be prions. Recently, we demonstrated that Aβ deposition can be monitored in live mice using bioluminescence imaging (BLI). Here, we use BLI to probe the ability of Aβ aggregates to self-propagate following inoculation into bigenic mice. We report compelling evidence that Aβ aggregates are prions by demonstrating widespread cerebral β-amyloidosis induced by inoculation of either purified Aβ aggregates derived from brain or aggregates composed of synthetic Aβ. Although synthetic Aβ aggregates were sufficient to induce Aβ deposition in vivo, they exhibited lower specific biological activity compared with brain-derived Aβ aggregates. Our results create an experimental paradigm that should lead to identification of self-propagating Aβ conformations, which could represent novel targets for interrupting the spread of Aβ deposition in AD patients.

  20. Size-dependent neurotoxicity of β-amyloid oligomers

    Science.gov (United States)

    Cizas, Paulius; Budvytyte, Rima; Morkuniene, Ramune; Moldovan, Radu; Broccio, Matteo; Lösche, Mathias; Niaura, Gediminas; Valincius, Gintaras; Borutaite, Vilmante

    2010-01-01

    The link between the size of soluble amyloid β (Aβ) oligomers and their toxicity to rat cerebellar granule cells (CGC) was investigated. Variation in conditions during in vitro oligomerization of Aβ1-42 resulted in peptide assemblies with different particle size as measured by atomic force microscopy and confirmed by the dynamic light scattering and fluorescence correlation spectroscopy. Small oligomers of Aβ1-42 with a mean particle z-height of 1-2 nm exhibited propensity to bind to the phospholipid vesicles and they were the most toxic species that induced rapid neuronal necrosis at submicromolar concentrations whereas the bigger aggregates (z-height above 4-5 nm) did not bind vesicles and did not cause detectable neuronal death. Similar neurotoxic pattern was also observed in primary cultures of cortex neurons whereas Aβ1–42 oligomers, monomers and fibrils were non-toxic to glial cells in CGC cultures or macrophage J774 cells. However, both oligomeric forms of Aβ1-42 induced reduction of neuronal cell densities in the CGC cultures. PMID:20153288

  1. Size-dependent neurotoxicity of beta-amyloid oligomers.

    Science.gov (United States)

    Cizas, Paulius; Budvytyte, Rima; Morkuniene, Ramune; Moldovan, Radu; Broccio, Matteo; Lösche, Mathias; Niaura, Gediminas; Valincius, Gintaras; Borutaite, Vilmante

    2010-04-15

    The link between the size of soluble amyloid beta (Abeta) oligomers and their toxicity to rat cerebellar granule cells (CGC) was investigated. Variation in conditions during in vitro oligomerization of Abeta(1-42) resulted in peptide assemblies with different particle size as measured by atomic force microscopy and confirmed by dynamic light scattering and fluorescence correlation spectroscopy. Small oligomers of Abeta(1-42) with a mean particle z-height of 1-2 nm exhibited propensity to bind to phospholipid vesicles and they were the most toxic species that induced rapid neuronal necrosis at submicromolar concentrations whereas the bigger aggregates (z-height above 4-5 nm) did not bind vesicles and did not cause detectable neuronal death. A similar neurotoxic pattern was also observed in primary cultures of cortex neurons whereas Abeta(1-42) oligomers, monomers and fibrils were non-toxic to glial cells in CGC cultures or macrophage J774 cells. However, both oligomeric forms of Abeta(1-42) induced reduction of neuronal cell densities in the CGC cultures.

  2. Amyloid oligomer structure characterization from simulations: a general method.

    Science.gov (United States)

    Nguyen, Phuong H; Li, Mai Suan; Derreumaux, Philippe

    2014-03-07

    Amyloid oligomers and plaques are composed of multiple chemically identical proteins. Therefore, one of the first fundamental problems in the characterization of structures from simulations is the treatment of the degeneracy, i.e., the permutation of the molecules. Second, the intramolecular and intermolecular degrees of freedom of the various molecules must be taken into account. Currently, the well-known dihedral principal component analysis method only considers the intramolecular degrees of freedom, and other methods employing collective variables can only describe intermolecular degrees of freedom at the global level. With this in mind, we propose a general method that identifies all the structures accurately. The basis idea is that the intramolecular and intermolecular states are described in terms of combinations of single-molecule and double-molecule states, respectively, and the overall structures of oligomers are the product basis of the intramolecular and intermolecular states. This way, the degeneracy is automatically avoided. The method is illustrated on the conformational ensemble of the tetramer of the Alzheimer's peptide Aβ9-40, resulting from two atomistic molecular dynamics simulations in explicit solvent, each of 200 ns, starting from two distinct structures.

  3. Amyloid oligomer structure characterization from simulations: A general method

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Phuong H., E-mail: phuong.nguyen@ibpc.fr [Laboratoire de Biochimie Théorique, UPR 9080, CNRS Université Denis Diderot, Sorbonne Paris Cité IBPC, 13 rue Pierre et Marie Curie, 75005 Paris (France); Li, Mai Suan [Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw (Poland); Derreumaux, Philippe, E-mail: philippe.derreumaux@ibpc.fr [Laboratoire de Biochimie Théorique, UPR 9080, CNRS Université Denis Diderot, Sorbonne Paris Cité IBPC, 13 rue Pierre et Marie Curie, 75005 Paris (France); Institut Universitaire de France, 103 Bvd Saint-Germain, 75005 Paris (France)

    2014-03-07

    Amyloid oligomers and plaques are composed of multiple chemically identical proteins. Therefore, one of the first fundamental problems in the characterization of structures from simulations is the treatment of the degeneracy, i.e., the permutation of the molecules. Second, the intramolecular and intermolecular degrees of freedom of the various molecules must be taken into account. Currently, the well-known dihedral principal component analysis method only considers the intramolecular degrees of freedom, and other methods employing collective variables can only describe intermolecular degrees of freedom at the global level. With this in mind, we propose a general method that identifies all the structures accurately. The basis idea is that the intramolecular and intermolecular states are described in terms of combinations of single-molecule and double-molecule states, respectively, and the overall structures of oligomers are the product basis of the intramolecular and intermolecular states. This way, the degeneracy is automatically avoided. The method is illustrated on the conformational ensemble of the tetramer of the Alzheimer's peptide Aβ{sub 9−40}, resulting from two atomistic molecular dynamics simulations in explicit solvent, each of 200 ns, starting from two distinct structures.

  4. Computational Modelling of the Human Islet Amyloid Polypeptide

    DEFF Research Database (Denmark)

    Skeby, Katrine Kirkeby

    2014-01-01

    . Using MD simulations we have investigated the binding of 13 different imaging agents to a fibril segment. Using clustering analysis and binding energy calculations we have identified a common binding mode for the 13 agents in the surface grooves of the fibril, which are present on all amyloid fibrils...... between the N-terminal part of hIAPP and the lipid head-groups. This is due to positive charges present in the N-terminal part of hIAPP interacting with the anionic lipids. The C-terminal part of hIAPP is unfolded in the solution phase, making this part of hIAPP ready for interaction with other peptides...... in flat ribbons which are due to the compatible peptide terminals. Capping only the N-terminal abolishes the fibrillation, which is caused by incompatibility of the hydrophobic N-terminal with the anionic C terminal as well as a lower number of interpeptide hydrogen bonds to overcome the repulsion...

  5. Evaluation of dementia by acrolein, amyloid-β and creatinine.

    Science.gov (United States)

    Igarashi, Kazuei; Yoshida, Madoka; Waragai, Masaaki; Kashiwagi, Keiko

    2015-10-23

    Plasma, urine and cerebrospinal fluid (CSF) were examined for biochemical markers of dementia. Protein-conjugated acrolein (PC-Acro) and the amyloid-β (Aβ)40/42 ratio in plasma can be used to detect mild cognitive impairment (MCI) and Alzheimer's disease (AD). In plasma, PC-Acro and the Aβ40/42 ratio in MCI and AD were significantly higher relative to non-demented subjects. Furthermore, urine acrolein metabolite, 3-hydroxypropyl mercapturic acid (3-HPMA)/creatinine (Cre) and amino acid-conjugated acrolein (AC-Acro)/Cre in AD were significantly lower than MCI. It was also shown that reduced urine 3-HPMA/Cre correlated with increased plasma Aβ40/42 ratio in dementia. The Aβ40/PC-Acro ratio in CSF, together with Aβ40 and Aβ40/42 ratio, was lower in AD than MCI. Increased plasma PC-Acro and Aβ40/42 ratio and decreased urine 3-HPMA/Cre correlated with cognitive ability (MMSE). These results indicate that the measurements of acrolein derivatives together with Aβ and Cre in biologic fluids is useful to estimate severity of dementia.

  6. A strategy on prion AGAAAAGA amyloid fibril molecular modelling

    CERN Document Server

    Zhang, Jiapu

    2011-01-01

    X-ray crystallography and nuclear magnetic resonance (NMR) spectroscopy are two powerful tools to determine the protein 3D structure. However, not all proteins can be successfully crystallized, particularly for membrane proteins. Although NMR spectroscopy is indeed very powerful in determining the 3D structures of membrane proteins, same as X-ray crystallography, it is still very time-consuming and expensive. Under many circumstances, due to the noncrystalline and insoluble nature of some proteins, X-ray and NMR cannot be used at all. Computational approaches, however, allow us to obtain a description of the protein 3D structure at a submicroscopic level. To the best of the authors' knowledge, there is little structural data available to date on the AGAAAAGA palindrome in the hydrophobic region (113-120) of prion proteins, which falls just within the N-terminal unstructured region (1-123) of prion proteins. Many experimental studies have shown that the AGAAAAGA region has amyloid fibril forming properties and...

  7. Amyloid-β depresses excitatory cholinergic synaptic transmission in Drosophila

    Institute of Scientific and Technical Information of China (English)

    Liqun Fang; Jingjing Duan; Dongzhi Ran; Zihao Fan; Ying Yan; Naya Huang; Huaiyu Gu; Yulan Zhu

    2012-01-01

    Objective Decline,disruption,or alterations of nicotinic cholinergic mechanisms contribute to cognitive dysfunctions like Alzheimer's disease (AD).Although amyloid-β (Aβ) aggregation is a pathological hallmark of AD,the mechanisms by which Aβ peptides modulate cholinergic synaptic transmission and memory loss remain obscure.This study was aimed to investigate the potential synaptic modulation by Aβ of the cholinergic synapses between olfactory receptor neurons and projection neurons (PNs) in the olfactory lobe of the fruit fly.Methods Cholinergic spontaneous and miniature excitatory postsynaptic current (mEPSC) were recorded with whole-cell patch clamp from PNs in Drosophila AD models expressing Aβ40,Aβ42,or Aβ42Arc peptides in neural tissue.Results In fly pupae (2 days before eclosion),overexpression of Aβ42 or Aβ42Arc,but not Aβ40,led to a significant decrease of mEPSC frequency,while overexpression of Aβ40,Aβ42,or Aβ42Arc had no significant effect on mEPSC amplitude.In contrast,Pavlovian olfactory associative learning and lifespan assays showed that both short-term memory and lifespan were decreased in the Drosophila models expressing Aβ40,Aβ42,or Aβ42Arc.Conclusion Both electrophysiological and behavioral results showed an effect of Aβ peptide on cholinergic synaptic transmission and suggest a possible mechanism by which Aβ peptides cause cholinergic neuron degeneration and the consequent memory loss.

  8. Amyloid Beta Peptide Slows Down Sensory-Induced Hippocampal Oscillations

    Directory of Open Access Journals (Sweden)

    Fernando Peña-Ortega

    2012-01-01

    Full Text Available Alzheimer’s disease (AD progresses with a deterioration of hippocampal function that is likely induced by amyloid beta (Aβ oligomers. Hippocampal function is strongly dependent on theta rhythm, and disruptions in this rhythm have been related to the reduction of cognitive performance in AD. Accordingly, both AD patients and AD-transgenic mice show an increase in theta rhythm at rest but a reduction in cognitive-induced theta rhythm. We have previously found that monomers of the short sequence of Aβ (peptide 25–35 reduce sensory-induced theta oscillations. However, considering on the one hand that different Aβ sequences differentially affect hippocampal oscillations and on the other hand that Aβ oligomers seem to be responsible for the cognitive decline observed in AD, here we aimed to explore the effect of Aβ oligomers on sensory-induced theta rhythm. Our results show that intracisternal injection of Aβ1–42 oligomers, which has no significant effect on spontaneous hippocampal activity, disrupts the induction of theta rhythm upon sensory stimulation. Instead of increasing the power in the theta band, the hippocampus of Aβ-treated animals responds to sensory stimulation (tail pinch with an increase in lower frequencies. These findings demonstrate that Aβ alters induced theta rhythm, providing an in vivo model to test for therapeutic approaches to overcome Aβ-induced hippocampal and cognitive dysfunctions.

  9. Amyloid Beta-Protein and Neural Network Dysfunction

    Directory of Open Access Journals (Sweden)

    Fernando Peña-Ortega

    2013-01-01

    Full Text Available Understanding the neural mechanisms underlying brain dysfunction induced by amyloid beta-protein (Aβ represents one of the major challenges for Alzheimer’s disease (AD research. The most evident symptom of AD is a severe decline in cognition. Cognitive processes, as any other brain function, arise from the activity of specific cell assemblies of interconnected neurons that generate neural network dynamics based on their intrinsic and synaptic properties. Thus, the origin of Aβ-induced cognitive dysfunction, and possibly AD-related cognitive decline, must be found in specific alterations in properties of these cells and their consequences in neural network dynamics. The well-known relationship between AD and alterations in the activity of several neural networks is reflected in the slowing of the electroencephalographic (EEG activity. Some features of the EEG slowing observed in AD, such as the diminished generation of different network oscillations, can be induced in vivo and in vitro upon Aβ application or by Aβ overproduction in transgenic models. This experimental approach offers the possibility to study the mechanisms involved in cognitive dysfunction produced by Aβ. This type of research may yield not only basic knowledge of neural network dysfunction associated with AD, but also novel options to treat this modern epidemic.

  10. Volumetric properties of human islet amyloid polypeptide in liquid water.

    Science.gov (United States)

    Brovchenko, I; Andrews, M N; Oleinikova, A

    2010-04-28

    The volumetric properties of human islet amyloid polypeptide (hIAPP) in water were studied in a wide temperature range by computer simulations. The intrinsic density rho(p) and the intrinsic thermal expansion coefficient alpha(p) of hIAPP were evaluated by taking into account the difference between the volumetric properties of hydration and bulk water. The density of hydration water rho(h) was found to decrease almost linearly with temperature upon heating and its thermal expansion coefficient was found to be notably higher than that of bulk water. The peptide surface exposed to water is more hydrophobic and its rho(h) is smaller in conformation with a larger number of intrapeptide hydrogen bonds. The two hIAPP peptides studied (with and without disulfide bridge) show negative alpha(p), which is close to zero at 250 K and decreases to approximately -1.5 x 10(-3) K(-1) upon heating to 450 K. The analysis of various structural properties of peptides shows a correlation between the intrinsic peptide volumes and the number of intrapeptide hydrogen bonds. The obtained negative values of alpha(p) can be attributed to the shrinkage of the inner voids of the peptides upon heating.

  11. Amyloid-β Associated Cortical Thinning in Clinically Normal Elderly

    Science.gov (United States)

    Becker, J Alex; Hedden, Trey; Carmasin, Jeremy; Maye, Jacqueline; Rentz, Dorene M; Putcha, Deepti; Fischl, Bruce; Greve, Douglas N; Marshall, Gad A; Salloway, Stephen; Marks, Donald; Buckner, Randy L; Sperling, Reisa A; Johnson, Keith A

    2011-01-01

    Objective Both amyloid-β (Aβ) deposition and brain atrophy are associated with Alzheimer's disease (AD) and the disease process likely begins many years before symptoms appear. We sought to determine whether clinically normal (CN) older individuals with Aβ deposition revealed by positron emission tomography (PET) imaging using Pittsburgh Compound B (PiB) also have evidence of both cortical thickness and hippocampal volume reductions in a pattern similar to that seen in AD. Methods A total of 119 older individuals (87 CN subjects and 32 patients with mild AD) underwent PiB PET and high-resolution structural magnetic resonance imaging (MRI). Regression models were used to relate PiB retention to cortical thickness and hippocampal volume. Results We found that PiB retention in CN subjects was (1) age-related and (2) associated with cortical thickness reductions, particularly in parietal and posterior cingulate regions extending into the precuneus, in a pattern similar to that observed in mild AD. Hippocampal volume reduction was variably related to Aβ deposition. Interpretation We conclude that Aβ deposition is associated with a pattern of cortical thickness reduction consistent with AD prior to the development of cognitive impairment. ANN NEUROL 2010; PMID:21437929

  12. Modeling Amyloid Beta Peptide Insertion into Lipid Bilayers

    CERN Document Server

    Mobley, D L; Singh, R R P; Maddox, M W; Longo, M J; Mobley, David L.; Cox, Daniel L.; Singh, Rajiv R. P.; Maddox, Michael W.; Longo, Marjorie L.

    2003-01-01

    Inspired by recent suggestions that the Alzheimer's amyloid beta peptide (A-beta), can insert into cell membranes and form harmful ion channels, we model insertion of the peptide into cell membranes using a Monte Carlo code which is specific at the amino acid level. We examine insertion of the regular A-beta peptide as well as mutants causing familial Alzheimer's disease. We present our results and develop the hypothesis that partial insertion into the membrane, leaving the peptide in one leaflet, increases the probability of harmful channel formation. This hypothesis can partly explain why these mutations are neurotoxic simply due to peptide insertion behavior, and also explains why, normally, A-beta 42 is more toxic to some cultured cells than A-beta 40, but the E22Q mutation reverses this effect. We further apply this model to various artificial A-beta mutants which have been examined experimentally, and offer testable experimental predictions contrasting the roles of aggregation and insertion with regard ...

  13. Inhibition of fibrocyte differentiation by serum amyloid P.

    Science.gov (United States)

    Pilling, Darrell; Buckley, Christopher D; Salmon, Mike; Gomer, Richard H

    2003-11-15

    Wound healing and the dysregulated events leading to fibrosis both involve the proliferation and differentiation of fibroblasts and the deposition of extracellular matrix. Whether these fibroblasts are locally derived or from a circulating precursor population is unclear. Fibrocytes are a distinct population of fibroblast-like cells derived from peripheral blood monocytes that enter sites of tissue injury to promote angiogenesis and wound healing. We have found that CD14(+) peripheral blood monocytes cultured in the absence of serum or plasma differentiate into fibrocytes within 72 h. We purified the factor in serum and plasma that prevents the rapid appearance of fibrocytes, and identified it as serum amyloid P (SAP). Purified SAP inhibits fibrocyte differentiation at levels similar to those found in plasma, while depleting SAP reduces the ability of plasma to inhibit fibrocyte differentiation. Compared with sera from healthy individuals and patients with rheumatoid arthritis, sera from patients with scleroderma and mixed connective tissue disease, two systemic fibrotic diseases, were less able to inhibit fibrocyte differentiation in vitro and had correspondingly lower serum levels of SAP. These results suggest that low levels of SAP may thus augment pathological processes leading to fibrosis. These data also suggest mechanisms to inhibit fibrosis in chronic inflammatory conditions, or conversely to promote wound healing.

  14. Potential Properties of Plant Sprout Extracts on Amyloid β

    Science.gov (United States)

    Okada, Mizue; Okada, Yoshinori

    2016-01-01

    The aim of this study is to examine the amyloid β (Aβ) inhibition mechanism of plant sprouts' aqueous extracts (PSAE). In this study, we screened the effects of five plant sprouts' extracts on Aβ (1–42) structure modification using gel electrophoresis. In PSAE, no band of Aβ monomer was recognized in Japanese butterbur. Similarly, the Aβ monomer band became light in buckwheat, red cabbage, broccoli, and brussels. The neuroprotective effects of PSAE were evaluated by measuring levels of Aβ in mixtures (Aβ  and PSAE) with Aβ ELISA assay. The treatment with PSAE decreased Aβ levels. The results indicated that the levels of red cabbage, Japanese butterbur, and broccoli were 9.6, 28.0, and 44.0%, respectively. The lowest value was observed with buckwheat. Furthermore, we carried out a Congo Red (CR) and Aβ binding experiment of PSAE to confirm the modification mechanism of PSAE. The correlation coefficient for the absorption spectrum peak of CR was found to be bigger than 0.8 (r = 0.882) which proved that the Aβ levels could be attributed to the peak of CR. In conclusion, we demonstrated that treatment with PSAE effectively decreases Aβ concentration. Thus, the mechanism that decreased the Aβ levels may be modification by PSAE. PMID:27429807

  15. Potential Properties of Plant Sprout Extracts on Amyloid β

    Directory of Open Access Journals (Sweden)

    Mizue Okada

    2016-01-01

    Full Text Available The aim of this study is to examine the amyloid β (Aβ inhibition mechanism of plant sprouts’ aqueous extracts (PSAE. In this study, we screened the effects of five plant sprouts’ extracts on Aβ (1–42 structure modification using gel electrophoresis. In PSAE, no band of Aβ monomer was recognized in Japanese butterbur. Similarly, the Aβ monomer band became light in buckwheat, red cabbage, broccoli, and brussels. The neuroprotective effects of PSAE were evaluated by measuring levels of Aβ in mixtures (Aβ  and PSAE with Aβ ELISA assay. The treatment with PSAE decreased Aβ levels. The results indicated that the levels of red cabbage, Japanese butterbur, and broccoli were 9.6, 28.0, and 44.0%, respectively. The lowest value was observed with buckwheat. Furthermore, we carried out a Congo Red (CR and Aβ binding experiment of PSAE to confirm the modification mechanism of PSAE. The correlation coefficient for the absorption spectrum peak of CR was found to be bigger than 0.8 (r=0.882 which proved that the Aβ levels could be attributed to the peak of CR. In conclusion, we demonstrated that treatment with PSAE effectively decreases Aβ concentration. Thus, the mechanism that decreased the Aβ levels may be modification by PSAE.

  16. The Surprising Role of Amyloid Fibrils in HIV Infection.

    Science.gov (United States)

    Castellano, Laura M; Shorter, James

    2012-01-01

    Despite its discovery over 30 years ago, human immunodeficiency virus (HIV) continues to threaten public health worldwide. Semen is the principal vehicle for the transmission of this retrovirus and several endogenous peptides in semen, including fragments of prostatic acid phosphatase (PAP248-286 and PAP85-120) and semenogelins (SEM1 and SEM2), assemble into amyloid fibrils that promote HIV infection. For example, PAP248-286 fibrils, termed SEVI (Semen derived Enhancer of Viral Infection), potentiate HIV infection by up to 105-fold. Fibrils enhance infectivity by facilitating virion attachment and fusion to target cells, whereas soluble peptides have no effect. Importantly, the stimulatory effect is greatest at low viral titers, which mimics mucosal transmission of HIV, where relatively few virions traverse the mucosal barrier. Devising a method to rapidly reverse fibril formation (rather than simply inhibit it) would provide an innovative and urgently needed preventative strategy for reducing HIV infection via the sexual route. Targeting a host-encoded protein conformer represents a departure from traditional microbicidal approaches that target the viral machinery, and could synergize with direct antiviral approaches. Here, we review the identification of these amyloidogenic peptides, their mechanism of action, and various strategies for inhibiting their HIV-enhancing effects.

  17. Serum amyloid A gene expression in rabbit, mink and mouse.

    Science.gov (United States)

    Marhaug, G; Hackett, B; Dowton, S B

    1997-02-01

    The expression of serum amyloid A (SAA) protein, a major acute-phase reactant in most species, was examined by in situ hybridization in multiple organs of rabbit, mink and mouse. In livers of unstimulated mice and rabbits a heterogeneous pattern of SAA expression in hepatocytes was observed. In all three species, lipopolysaccharide (LPS) administration resulted in extensive uniform hybridization of SAA probes to hepatocytes and in the rabbit SAA transcripts were detected in cells in the white pulp of the spleen, the adrenal cortex and ovary as well as in the mucosa and lymphatic vessels of the small intestine. Examination of hybridizing SAA signals in the rabbit myocardium showed a speckled distribution in myocytes. The rabbit endocardium was strongly positive, and in the kidney rabbit SAA mRNA was mainly confined to epithelial cells of the proximal and distal convoluted tubules. In the unstimulated mouse, SAA mRNA was detected in the liver and epithelial cells of the small and large intestine. After stimulation of an acute-phase response with LPS a strong response was seen in these organs as well as in the convoluted tubules of the kidney. In extrahepatic organs of the mink, no SAA mRNA was detectable in unstimulated animals, while the convoluted tubules of the kidney and uterine endometrium were strongly positive after systemic LPS injection.

  18. Amyloid precursor-like protein 1 (APLP1) exhibits stronger zinc-dependent neuronal adhesion than amyloid precursor protein and APLP2.

    Science.gov (United States)

    Mayer, Magnus C; Schauenburg, Linda; Thompson-Steckel, Greta; Dunsing, Valentin; Kaden, Daniela; Voigt, Philipp; Schaefer, Michael; Chiantia, Salvatore; Kennedy, Timothy E; Multhaup, Gerhard

    2016-04-01

    The amyloid precursor protein (APP) and its paralogs, amyloid precursor-like protein 1 (APLP1) and APLP2, are metalloproteins with a putative role both in synaptogenesis and in maintaining synapse structure. Here, we studied the effect of zinc on membrane localization, adhesion, and secretase cleavage of APP, APLP1, and APLP2 in cell culture and rat neurons. For this, we employed live-cell microscopy techniques, a microcontact printing adhesion assay and ELISA for protein detection in cell culture supernatants. We report that zinc induces the multimerization of proteins of the amyloid precursor protein family and enriches them at cellular adhesion sites. Thus, zinc facilitates the formation of de novo APP and APLP1 containing adhesion complexes, whereas it does not have such influence on APLP2. Furthermore, zinc-binding prevented cleavage of APP and APLPs by extracellular secretases. In conclusion, the complexation of zinc modulates neuronal functions of APP and APLPs by (i) regulating formation of adhesion complexes, most prominently for APLP1, and (ii) by reducing the concentrations of neurotrophic soluble APP/APLP ectodomains. Earlier studies suggest a function of the amyloid precursor protein (APP) family proteins in neuronal adhesion. We report here that adhesive function of these proteins is tightly regulated by zinc, most prominently for amyloid precursor-like protein 1 (APLP1). Zinc-mediated APLP1 multimerization, which induced formation of new neuronal contacts and decreased APLP1 shedding. This suggests that APLP1 could function as a zinc receptor processing zinc signals to stabilized or new neuronal contacts.

  19. Associations between white matter microstructure and amyloid burden in preclinical Alzheimer's disease: A multimodal imaging investigation

    Directory of Open Access Journals (Sweden)

    Annie M. Racine

    2014-01-01

    Full Text Available Some cognitively healthy individuals develop brain amyloid accumulation, suggestive of incipient Alzheimer's disease (AD, but the effect of amyloid on other potentially informative imaging modalities, such as Diffusion Tensor Imaging (DTI, in characterizing brain changes in preclinical AD requires further exploration. In this study, a sample (N = 139, mean age 60.6, range 46 to 71 from the Wisconsin Registry for Alzheimer's Prevention (WRAP, a cohort enriched for AD risk factors, was recruited for a multimodal imaging investigation that included DTI and [C-11]Pittsburgh Compound B (PiB positron emission tomography (PET. Participants were grouped as amyloid positive (Aβ+, amyloid indeterminate (Aβi, or amyloid negative (Aβ− based on the amount and pattern of amyloid deposition. Regional voxel-wise analyses of four DTI metrics, fractional anisotropy (FA, mean diffusivity (MD, axial diffusivity (Da, and radial diffusivity (Dr, were performed based on amyloid grouping. Three regions of interest (ROIs, the cingulum adjacent to the corpus callosum, hippocampal cingulum, and lateral fornix, were selected based on their involvement in the early stages of AD. Voxel-wise analysis revealed higher FA among Aβ+ compared to Aβ− in all three ROIs and in Aβi compared to Aβ− in the cingulum adjacent to the corpus callosum. Follow-up exploratory whole-brain analyses were consistent with the ROI findings, revealing multiple regions where higher FA was associated with greater amyloid. Lower fronto-lateral gray matter MD was associated with higher amyloid burden. Further investigation showed a negative correlation between MD and PiB signal, suggesting that Aβ accumulation impairs diffusion. Interestingly, these findings in a largely presymptomatic sample are in contradistinction to relationships reported in the literature in symptomatic disease stages of Mild Cognitive Impairment and AD, which usually show higher MD and lower FA. Together with

  20. Associations between white matter microstructure and amyloid burden in preclinical Alzheimer's disease: A multimodal imaging investigation

    Science.gov (United States)

    Racine, Annie M.; Adluru, Nagesh; Alexander, Andrew L.; Christian, Bradley T.; Okonkwo, Ozioma C.; Oh, Jennifer; Cleary, Caitlin A.; Birdsill, Alex; Hillmer, Ansel T.; Murali, Dhanabalan; Barnhart, Todd E.; Gallagher, Catherine L.; Carlsson, Cynthia M.; Rowley, Howard A.; Dowling, N. Maritza; Asthana, Sanjay; Sager, Mark A.; Bendlin, Barbara B.; Johnson, Sterling C.

    2014-01-01

    Some cognitively healthy individuals develop brain amyloid accumulation, suggestive of incipient Alzheimer's disease (AD), but the effect of amyloid on other potentially informative imaging modalities, such as Diffusion Tensor Imaging (DTI), in characterizing brain changes in preclinical AD requires further exploration. In this study, a sample (N = 139, mean age 60.6, range 46 to 71) from the Wisconsin Registry for Alzheimer's Prevention (WRAP), a cohort enriched for AD risk factors, was recruited for a multimodal imaging investigation that included DTI and [C-11]Pittsburgh Compound B (PiB) positron emission tomography (PET). Participants were grouped as amyloid positive (Aβ+), amyloid indeterminate (Aβi), or amyloid negative (Aβ−) based on the amount and pattern of amyloid deposition. Regional voxel-wise analyses of four DTI metrics, fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (Da), and radial diffusivity (Dr), were performed based on amyloid grouping. Three regions of interest (ROIs), the cingulum adjacent to the corpus callosum, hippocampal cingulum, and lateral fornix, were selected based on their involvement in the early stages of AD. Voxel-wise analysis revealed higher FA among Aβ+ compared to Aβ− in all three ROIs and in Aβi compared to Aβ− in the cingulum adjacent to the corpus callosum. Follow-up exploratory whole-brain analyses were consistent with the ROI findings, revealing multiple regions where higher FA was associated with greater amyloid. Lower fronto-lateral gray matter MD was associated with higher amyloid burden. Further investigation showed a negative correlation between MD and PiB signal, suggesting that Aβ accumulation impairs diffusion. Interestingly, these findings in a largely presymptomatic sample are in contradistinction to relationships reported in the literature in symptomatic disease stages of Mild Cognitive Impairment and AD, which usually show higher MD and lower FA. Together with analyses