WorldWideScience

Sample records for amyloid beta peptide

  1. Amyloid beta peptide immunotherapy in Alzheimer disease.

    Science.gov (United States)

    Delrieu, J; Ousset, P J; Voisin, T; Vellas, B

    2014-12-01

    Recent advances in the understanding of Alzheimer's disease pathogenesis have led to the development of numerous compounds that might modify the disease process. Amyloid β peptide represents an important molecular target for intervention in Alzheimer's disease. The main purpose of this work is to review immunotherapy studies in relation to the Alzheimer's disease. Several types of amyloid β peptide immunotherapy for Alzheimer's disease are under investigation, active immunization and passive administration with monoclonal antibodies directed against amyloid β peptide. Although immunotherapy approaches resulted in clearance of amyloid plaques in patients with Alzheimer's disease, this clearance did not show significant cognitive effect for the moment. Currently, several amyloid β peptide immunotherapy approaches are under investigation but also against tau pathology. Results from amyloid-based immunotherapy studies in clinical trials indicate that intervention appears to be more effective in early stages of amyloid accumulation in particular solanezumab with a potential impact at mild Alzheimer's disease, highlighting the importance of diagnosing Alzheimer's disease as early as possible and undertaking clinical trials at this stage. In both phase III solanezumab and bapineuzumab trials, PET imaging revealed that about a quarter of patients lacked fibrillar amyloid pathology at baseline, suggesting that they did not have Alzheimer's disease in the first place. So a new third phase 3 clinical trial for solanezumab, called Expedition 3, in patients with mild Alzheimer's disease and evidence of amyloid burden has been started. Thus, currently, amyloid intervention is realized at early stage of the Alzheimer's disease in clinical trials, at prodromal Alzheimer's disease, or at asymptomatic subjects or at risk to develop Alzheimer's disease and or at asymptomatic subjects with autosomal dominant mutation. PMID:25459121

  2. Tau/Amyloid Beta 42 Peptide Test (Alzheimer Biomarkers)

    Science.gov (United States)

    ... helpful? Also known as: Alzheimer Biomarkers Formal name: Tau Protein and Amyloid Beta 42 Peptide Related tests: Phosporylated ... should know? How is it used? Tests for Tau protein and Aß42 may be used as supplemental tests ...

  3. The novel amyloid-beta peptide aptamer inhibits intracellular amyloid-beta peptide toxicity

    Institute of Scientific and Technical Information of China (English)

    Xu Wang; Yi Yang; Mingyue Jia; Chi Ma; Mingyu Wang; Lihe Che; Yu Yang; Jiang Wu

    2013-01-01

    Amyloid β peptide binding alcohol dehydrogenase (ABAD) decoy peptide (DP) can competitively antagonize binding of amyloid β peptide to ABAD and inhibit the cytotoxic effects of amyloid β peptide. Based on peptide aptamers, the present study inserted ABAD-DP into the disulfide bond of human thioredoxin (TRX) using molecular cloning technique to construct a fusion gene that can express the TRX1-ABAD-DP-TRX2 aptamer. Moreover, adeno-associated virus was used to allow its stable expression. Immunofluorescent staining revealed the co-expression of the transduced fusion gene TRX1-ABAD-DP-TRX2 and amyloid β peptide in NIH-3T3 cells, indicating that the TRX1-ABAD-DP-TRX2 aptamer can bind amyloid β peptide within cells. In addition, cell morphology and MTT results suggested that TRX1-ABAD-DP-TRX2 attenuated amyloid β peptide-induced SH-SY5Y cell injury and improved cell viability. These findings confirmed the possibility of constructing TRX-based peptide aptamer using ABAD-DP. Moreover, TRX1-ABAD-DP-TRX2 inhibited the cytotoxic effect of amyloid β peptide.

  4. Plasma amyloid beta peptides and oligomers antibodies in Alzheimer's disease

    OpenAIRE

    Zhou, L.; Chu, LW; Kwan, JSC; Ho, JWM; Lam, KSL; Ho, PWL; Chan, KH

    2011-01-01

    INTRODUCTION: Various forms of amyloid beta (Aβ) including Aβ peptides, oligomers, protofibrils and fibrils are thought to be pathogenic in Alzheimer’s disease (AD). The exact pathophysiological role of endogenous Aβ autoantibodies (Ab) in healthy subjects and AD patients are uncertain. Potential protective role ...

  5. Modeling Amyloid Beta Peptide Insertion into Lipid Bilayers

    CERN Document Server

    Mobley, D L; Singh, R R P; Maddox, M W; Longo, M J; Mobley, David L.; Cox, Daniel L.; Singh, Rajiv R. P.; Maddox, Michael W.; Longo, Marjorie L.

    2003-01-01

    Inspired by recent suggestions that the Alzheimer's amyloid beta peptide (A-beta), can insert into cell membranes and form harmful ion channels, we model insertion of the peptide into cell membranes using a Monte Carlo code which is specific at the amino acid level. We examine insertion of the regular A-beta peptide as well as mutants causing familial Alzheimer's disease. We present our results and develop the hypothesis that partial insertion into the membrane, leaving the peptide in one leaflet, increases the probability of harmful channel formation. This hypothesis can partly explain why these mutations are neurotoxic simply due to peptide insertion behavior, and also explains why, normally, A-beta 42 is more toxic to some cultured cells than A-beta 40, but the E22Q mutation reverses this effect. We further apply this model to various artificial A-beta mutants which have been examined experimentally, and offer testable experimental predictions contrasting the roles of aggregation and insertion with regard ...

  6. Amyloid Beta Peptides Differentially Affect Hippocampal Theta Rhythms In Vitro

    Directory of Open Access Journals (Sweden)

    Armando I. Gutiérrez-Lerma

    2013-01-01

    Full Text Available Soluble amyloid beta peptide (Aβ is responsible for the early cognitive dysfunction observed in Alzheimer's disease. Both cholinergically and glutamatergically induced hippocampal theta rhythms are related to learning and memory, spatial navigation, and spatial memory. However, these two types of theta rhythms are not identical; they are associated with different behaviors and can be differentially modulated by diverse experimental conditions. Therefore, in this study, we aimed to investigate whether or not application of soluble Aβ alters the two types of theta frequency oscillatory network activity generated in rat hippocampal slices by application of the cholinergic and glutamatergic agonists carbachol or DHPG, respectively. Due to previous evidence that oscillatory activity can be differentially affected by different Aβ peptides, we also compared Aβ25−35 and Aβ1−42 for their effects on theta rhythms in vitro at similar concentrations (0.5 to 1.0 μM. We found that Aβ25−35 reduces, with less potency than Aβ1−42, carbachol-induced population theta oscillatory activity. In contrast, DHPG-induced oscillatory activity was not affected by a high concentration of Aβ25−35 but was reduced by Aβ1−42. Our results support the idea that different amyloid peptides might alter specific cellular mechanisms related to the generation of specific neuronal network activities, instead of exerting a generalized inhibitory effect on neuronal network function.

  7. PARP-1 modulates amyloid beta peptide-induced neuronal damage.

    Directory of Open Access Journals (Sweden)

    Sara Martire

    Full Text Available Amyloid beta peptide (Aβ causes neurodegeneration by several mechanisms including oxidative stress, which is known to induce DNA damage with the consequent activation of poly (ADP-ribose polymerase (PARP-1. To elucidate the role of PARP-1 in the neurodegenerative process, SH-SY5Y neuroblastoma cells were treated with Aβ25-35 fragment in the presence or absence of MC2050, a new PARP-1 inhibitor. Aβ25-35 induces an enhancement of PARP activity which is prevented by cell pre-treatment with MC2050. These data were confirmed by measuring PARP-1 activity in CHO cells transfected with amylod precursor protein and in vivo in brains specimens of TgCRND8 transgenic mice overproducing the amyloid peptide. Following Aβ25-35 exposure a significant increase in intracellular ROS was observed. These data were supported by the finding that Aβ25-35 induces DNA damage which in turn activates PARP-1. Challenge with Aβ25-35 is also able to activate NF-kB via PARP-1, as demonstrated by NF-kB impairment upon MC2050 treatment. Moreover, Aβ25-35 via PARP-1 induces a significant increase in the p53 protein level and a parallel decrease in the anti-apoptotic Bcl-2 protein. These overall data support the hypothesis of PARP-1 involvment in cellular responses induced by Aβ and hence a possible rationale for the implication of PARP-1 in neurodegeneration is discussed.

  8. Interaction of amyloid inhibitor proteins with amyloid beta peptides: insight from molecular dynamics simulations.

    Directory of Open Access Journals (Sweden)

    Payel Das

    Full Text Available Knowledge of the detailed mechanism by which proteins such as human αB- crystallin and human lysozyme inhibit amyloid beta (Aβ peptide aggregation is crucial for designing treatment for Alzheimer's disease. Thus, unconstrained, atomistic molecular dynamics simulations in explicit solvent have been performed to characterize the Aβ17-42 assembly in presence of the αB-crystallin core domain and of lysozyme. Simulations reveal that both inhibitor proteins compete with inter-peptide interaction by binding to the peptides during the early stage of aggregation, which is consistent with their inhibitory action reported in experiments. However, the Aβ binding dynamics appear different for each inhibitor. The binding between crystallin and the peptide monomer, dominated by electrostatics, is relatively weak and transient due to the heterogeneous amino acid distribution of the inhibitor surface. The crystallin-bound Aβ oligomers are relatively long-lived, as they form more extensive contact surface with the inhibitor protein. In contrast, a high local density of arginines from lysozyme allows strong binding with Aβ peptide monomers, resulting in stable complexes. Our findings not only illustrate, in atomic detail, how the amyloid inhibitory mechanism of human αB-crystallin, a natural chaperone, is different from that of human lysozyme, but also may aid de novo design of amyloid inhibitors.

  9. Influence of hydrophobic Teflon particles on the structure of amyloid beta-peptide

    NARCIS (Netherlands)

    Giacomelli, CE; Norde, W

    2003-01-01

    The amyloid beta-protein (Abeta) constitutes the major peptide component of the amyloid plaque deposits of Alzheimer's disease in humans. The Abeta changes from a nonpathogenic to a pathogenic conformation resulting in self-aggregation and deposition of the peptide. It has been established that dena

  10. Identification of a Novel Parallel beta-Strand Conformation within Molecular Monolayer of Amyloid Peptide

    DEFF Research Database (Denmark)

    Liu, Lei; Li, Qiang; Zhang, Shuai;

    2016-01-01

    . In this work, the early A beta(33-42) aggregates forming the molecular monolayer at hydrophobic interface are investigated. The molecular monolayer of amyloid peptide A beta(33-42) consisting of novel parallel beta-strand-like structure is further revealed by means of a quantitative nanomechanical...... spectroscopy technique with force controlled in pico-Newton range, combining with molecular dynamic simulation. The identified parallel beta-strand-like structure of molecular monolayer is distinct from the antiparallel beta-strand structure of A beta(33-42) amyloid fibril. This finding enriches the molecular...

  11. Inhibition of aggregation of amyloid peptides by beta-sheet breaker peptides and their binding affinity.

    Science.gov (United States)

    Viet, Man Hoang; Ngo, Son Tung; Lam, Nguyen Sy; Li, Mai Suan

    2011-06-01

    The effects of beta-sheet breaker peptides KLVFF and LPFFD on the oligomerization of amyloid peptides were studied by all-atom simulations. It was found that LPFFD interferes the aggregation of Aβ(16-22) peptides to a greater extent than does KLVFF. Using the molecular mechanics-Poisson-Boltzmann surface area (MM-PBSA) method, we found that the former binds more strongly to Aβ(16-22). Therefore, by simulations, we have clarified the relationship between aggregation rates and binding affinity: the stronger the ligand binding, the slower the oligomerization process. The binding affinity of pentapeptides to full-length peptide Aβ(1-40) and its mature fibrils has been considered using the Autodock and MM-PBSA methods. The hydrophobic interaction between ligands and receptors plays a more important role for association than does hydrogen bonding. The influence of beta-sheet breaker peptides on the secondary structures of monomer Aβ(1-40) was studied in detail, and it turns out that, in their presence, the total beta-sheet content can be enhanced. However, the aggregation can be slowed because the beta-content is reduced in fibril-prone regions. Both pentapeptides strongly bind to monomer Aβ(1-40), as well as to mature fibrils, but KLVFF displays a lower binding affinity than LPFFD. Our findings are in accord with earlier experiments that both of these peptides can serve as prominent inhibitors. In addition, we predict that LPFFD inhibits/degrades the fibrillogenesis of full-length amyloid peptides better than KLVFF. This is probably related to a difference in their total hydrophobicities in that the higher the hydrophobicity, the lower the inhibitory capacity. The GROMOS96 43a1 force field with explicit water and the force field proposed by Morris et al. (Morris et al. J. Comput. Chem. 1998, 19, 1639 ) were employed for all-atom molecular dynamics simulations and Autodock experiments, respectively. PMID:21563780

  12. Beta-amyloid peptide blocks the fast-inactivating K+ current in rat hippocampal neurons.

    OpenAIRE

    Good, T A; Smith, D. O.; Murphy, R M

    1996-01-01

    Deposition of beta-amyloid peptide (A beta) in senile plaques is a hallmark of Alzheimer disease neuropathology. Chronic exposure of neuronal cultures to synthetic A beta is directly toxic, or enhances neuronal susceptibility to excitotoxins. Exposure to A beta may cause a loss of cellular calcium homeostasis, but the mechanism by which this occurs is uncertain. In this work, the acute response of rat hippocampal neurons to applications of synthetic A beta was measured using whole-cell voltag...

  13. PEGylated nanoparticles bind to and alter amyloid-beta peptide conformation

    DEFF Research Database (Denmark)

    Brambilla, Davide; Verpillot, Romain; Le Droumaguet, Benjamin;

    2012-01-01

    We have demonstrated that the polyethylene glycol (PEG) corona of long-circulating polymeric nanoparticles (NPs) favors interaction with the amyloid-beta (Aß(1-42)) peptide both in solution and in serum. The influence of PEGylation of poly(alkyl cyanoacrylate) and poly(lactic acid) NPs on the...

  14. Beta-amyloid peptides undergo regulated co-secretion with neuropeptide and catecholamine neurotransmitters

    OpenAIRE

    Toneff, Thomas; Funkelstein, Lydiane; Mosier, Charles; Abagyan, Armen; Ziegler, Michael; Hook, Vivian

    2013-01-01

    Beta-amyloid (Aβ) peptides are secreted from neurons, resulting in extracellular accumulation of Aβ and neurodegeneration of Alzheimer's disease. Because neuronal secretion is fundamental for the release of neurotransmitters, this study assessed the hypothesis that Aβ undergoes co-release with neurotransmitters. Model neuronal-like chromaffin cells were investigated, and results illustrate regulated, co-secretion of Aβ(1–40) and Aβ(1–42) with peptide neurotransmitters (galanin, enkephalin, an...

  15. Lipid rafts participate in aberrant degradative autophagic-lysosomal pathway of amyloid-beta peptide in Alzheimer’s disease

    Institute of Scientific and Technical Information of China (English)

    Xin Zhou; Chun Yang; Yufeng Liu; Peng Li; Huiying Yang; Jingxing Dai; Rongmei Qu; Lin Yuan

    2014-01-01

    Amyloid-beta peptide is the main component of amyloid plaques, which are found in Alzhei-mer’s disease. The generation and deposition of amyloid-beta is one of the crucial factors for the onset and progression of Alzheimer’s disease. Lipid rafts are glycolipid-rich liquid domains of the plasma membrane, where certain types of protein tend to aggregate and intercalate. Lipid rafts are involved in the generation of amyloid-beta oligomers and the formation of amyloid-beta peptides. In this paper, we review the mechanism by which lipid rafts disturb the aberrant deg-radative autophagic-lysosomal pathway of amyloid-beta, which plays an important role in the pathological process of Alzheimer’s disease. Moreover, we describe this mechanism from the view of the Two-system Theory of fasciology and thus, suggest that lipid rafts may be a new target of Alzheimer’s disease treatment.

  16. Sex-dependent actions of amyloid beta peptides on hippocampal choline carriers of postnatal rats

    Czech Academy of Sciences Publication Activity Database

    Krištofíková, Z.; Říčný, Jan; Kozmiková, I.; Řípová, D.; Zach, P.; Klaschka, Jan

    2006-01-01

    Roč. 31, č. 3 (2006), s. 351-360. ISSN 0364-3190 R&D Projects: GA ČR(CZ) GA305/03/1547 Institutional research plan: CEZ:AV0Z50110509; CEZ:AV0Z10300504 Keywords : amyloid beta peptide * high affinity choline transport * rat hippocampus Subject RIV: ED - Physiology Impact factor: 2.139, year: 2006

  17. Involvement of oxidative stress in the enhancement of acetylcholinesterase activity induced by amyloid beta-peptide

    OpenAIRE

    de Melo, Joana Barbosa; Agostinho, Paula; Oliveira, Catarina Resende

    2003-01-01

    Acetylcholinesterase (AChE) activity is increased within and around amyloid plaques, which are present in Alzheimer's disease (AD) patient's brain. In this study, using cultured retinal cells as a neuronal model, we analyzed the effect of the synthetic peptide A[beta]25-35 on the activity of AChE, the degradation enzyme of acetylcholine, as well as the involvement of oxidative stress in this process. The activity of AChE was increased when retinal cells were incubated with A[beta]25-35 (25 [m...

  18. Cross-beta order and diversity in nanocrystals of an amyloid-forming peptide.

    Science.gov (United States)

    Diaz-Avalos, Ruben; Long, Chris; Fontano, Eric; Balbirnie, Melinda; Grothe, Robert; Eisenberg, David; Caspar, Donald L D

    2003-07-25

    The seven-residue peptide GNNQQNY from the N-terminal region of the yeast prion protein Sup35, which forms amyloid fibers, colloidal aggregates and highly ordered nanocrystals, provides a model system for characterizing the elusively protean cross-beta conformation. Depending on preparative conditions, orthorhombic and monoclinic crystals with similar lath-shaped morphology have been obtained. Ultra high-resolution (frames, have been mapped in reciprocal space. However, reliable integrated intensities cannot be obtained from these series, and dynamical electron diffraction effects present problems in data analysis. The diversity of ordered structures formed under similar conditions has made it difficult to obtain reproducible X-ray diffraction data from powder specimens; and overlapping Bragg reflections in the powder patterns preclude separated structure factor measurements for these data. Model protofilaments, consisting of tightly paired, half-staggered beta strands related by a screw axis, can be fit in the crystal lattices, but model refinement will require accurate structure factor measurements. Nearly anhydrous packing of this hydrophilic peptide can account for the insolubility of the crystals, since the activation energy for rehydration may be extremely high. Water-excluding packing of paired cross-beta peptide segments in thin protofilaments may be characteristic of the wide variety of anomalously stable amyloid aggregates. PMID:12860136

  19. Distinct cerebrospinal fluid amyloid beta peptide signatures in sporadic and PSEN1 A431E-associated familial Alzheimer's disease

    OpenAIRE

    Portelius, Erik; Andreasson, Ulf; Ringman, John M.; Buerger, Katharina; Daborg, Jonny; Buchhave, Peder; Hansson, Oskar; Harmsen, Andreas; Gustavsson, Mikael K; Hanse, Eric; Galasko, Douglas; Hampel, Harald; Blennow, Kaj; Zetterberg, Henrik

    2010-01-01

    Background: Alzheimer's disease (AD) is associated with deposition of amyloid beta (A beta) in the brain, which is reflected by low concentration of the A beta 1-42 peptide in the cerebrospinal fluid (CSF). There are at least 15 additional A beta peptides in human CSF and their relative abundance pattern is thought to reflect the production and degradation of A beta. Here, we test the hypothesis that AD is characterized by a specific CSF A beta isoform pattern that is distinct when comparing ...

  20. The mechanism of the low-density lipoprotein receptor- related protein (LRP) in the production of amyloid-[Beta] peptide

    OpenAIRE

    Chen, Eunice Chungyu

    2008-01-01

    Alzheimer's disease (AD) is the most common form of neurodegenerative disorder affecting the elderly, presenting symptoms such as memory impairment and dementia. AD is pathologically characterized by the development of extracellular senile plaques and intracellular neurofibrillary tangles (NFT). The plaques are composed of amyloid-[Beta] peptide (A[Beta]) and the NFTs are composed of a hyperphosphorylated form of the tau protein. A[Beta] is formed by sequential proteolytic processing of the a...

  1. Designed amyloid beta peptide fibril - a tool for high-throughput screening of fibril inhibitors.

    Science.gov (United States)

    Dolphin, Gunnar T; Ouberai, Myriam; Dumy, Pascal; Garcia, Julian

    2007-11-01

    Amyloid beta peptide (Abeta) fibril formation is widely believed to be the causative event of Alzheimer's disease pathogenesis. Therapeutic approaches are therefore in development that target various sites in the production and aggregation of Abeta. Herein we present a high-throughput screening tool to generate novel hit compounds that block Abeta fibril formation. This tool is an application for our fibril model (Abeta(16-37)Y(20)K(22)K(24))(4), which is a covalent assembly of four Abeta fragments. With this tool, screening studies are complete within one hour, as opposed to days with native Abeta(1-40). A Z' factor of 0.84+/-0.03 was determined for fibril formation and inhibition, followed by the reporter molecule thioflavin T. Herein we also describe the analysis of a broad range of reported inhibitors and non-inhibitors of Abeta fibril formation to test the validity of the system. PMID:17876751

  2. Chronic exposure of NG108-15 cells to amyloid beta peptide (A beta(1-42)) abolishes calcium influx via N-type calcium channels

    Czech Academy of Sciences Publication Activity Database

    Kašparová, Jana; Lisá, Věra; Tuček, Stanislav; Doležal, Vladimír

    2001-01-01

    Roč. 26, 8-9 (2001), s. 1079-1084. ISSN 0364-3190 R&D Projects: GA MZd NF5183 Institutional research plan: CEZ:AV0Z5011922 Keywords : amyloid beta peptide * Alzheimer's disease * calcium Subject RIV: FH - Neurology Impact factor: 1.638, year: 2001

  3. Evaluation of the amyloid beta-GFP fusion protein as a model of amyloid beta peptides-mediated aggregation: A study of DNAJB6 chaperone

    OpenAIRE

    Rasha Mohamed Hussein; Rashed, Laila A

    2015-01-01

    Alzheimer’s disease is a progressive neurodegenerative disease characterized by the accumulation and aggregation of extracellular amyloid β (Aβ) peptides and intracellular aggregation of hyper-phosphorylated tau protein. Recent evidence indicates that accumulation and aggregation of intracellular amyloid β peptides may also play a role in disease pathogenesis. This would suggest that intracellular Heat Shock Proteins (HSP) that maintain cellular protein homeostasis might be candidates for dis...

  4. Inhibitory Effect of Curcumin-Cu(II) and Curcumin-Zn(II) Complexes on Amyloid-Beta Peptide Fibrillation

    OpenAIRE

    Rona Banerjee

    2014-01-01

    Mononuclear complexes of Curcumin with Cu(II) and Zn(II) have been synthesized and, characterized and their effects on the fibrillization and aggregation of amyloid-beta (Aβ) peptide have been studied. FTIR spectroscopy and atomic force microscopy (AFM) observations demonstrate that the complexes can inhibit the transition from less structured oligomers to β-sheet rich protofibrils which act as seeding factors for further fibrillization. The metal complexes also impart more improved inhibitor...

  5. DCP-LA neutralizes mutant amyloid beta peptide-induced impairment of long-term potentiation and spatial learning.

    Science.gov (United States)

    Nagata, Tetsu; Tomiyama, Takami; Tominaga, Takemi; Mori, Hiroshi; Yaguchi, Takahiro; Nishizaki, Tomoyuki

    2010-01-01

    Long-term potentiation (LTP) was monitored from the CA1 region of the intact rat hippocampus by delivering high frequency stimulation (HFS) to the Schaffer collateral commissural pathway. Intraventricular injection with mutant amyloid beta(1-42) peptide lacking glutamate-22 (Abeta(1-42)E22Delta), favoring oligomerization, 10 min prior to HFS, inhibited expression of LTP, with the potency more than wild-type amyloid beta(1-42) peptide. Intraperitoneal injection with the linoleic acid derivative 8-[2-(2-pentyl-cyclopropylmethyl)-cyclopropyl]-octanoic acid (DCP-LA) 70 min prior to HFS neutralized mutant Abeta(1-42)E22Delta peptide-induced LTP inhibition. In the water maze test, continuous intraventricular injection with mutant Abeta(1-42)E22Delta peptide for 14 days prolonged the acquisition latency as compared with that for control, with the potency similar to wild-type Abeta(1-42) peptide, and intraperitoneal injection with DCP-LA shortened the prolonged latency to control levels. The results of the present study indicate that DCP-LA neutralizes mutant Abeta(1-42)E22Delta peptide-induced impairment of LTP and spatial learning. PMID:19716848

  6. Nasal administration of amyloid-beta peptide decreases cerebral amyloid burden in a mouse model of Alzheimer's disease

    DEFF Research Database (Denmark)

    Weiner, H L; Lemere, C A; Maron, R;

    2000-01-01

    -Abeta antibodies of the IgG1 and IgG2b classes, and mononuclear cells in the brain expressing the anti-inflammatory cytokines interleukin-4, interleukin-10, and tumor growth factor-beta. Our results demonstrate that chronic nasal administration of Abeta peptide can induce an immune response to Abeta that decreases...

  7. Einfluß einer In-vitro- und In-vivo-Cholesterol-Modulation in Hirnmembranen auf die zellulären Effekte von Amyloid-beta-Peptid

    OpenAIRE

    Kirsch, Christopher

    2003-01-01

    Die exzessive Bildung und Ablagerung von aggregiertem Amyloid beta-Peptid im Gehirn von Alzheimer Patienten wird allgemein als zentrales Ereignis im Rahmen des Neurodegenerationsprozesses der Alzheimer Demenz betrachtet. Der Amyloid-Stoffwechsel ist dabei in sehr vielfältiger Weise mit dem zellulären Cholesterol-Stoffwechsel verknüpft. Hohe Cholesterolspiegel in spezifischen Membrandomänen wie Lipid-Rafts forcieren sehr wahrscheinlich die zelluläre Produktion als auch die Fibrillogenese von A...

  8. Iron and aluminum interaction with amyloid-beta peptides associated with Alzheimer’s disease

    International Nuclear Information System (INIS)

    An elevation in the concentration of heavy metal ions in Alzheimer’s disease (AD) brain has been demonstrated in many studies. Aβ precipitation and toxicity in AD brains seem to be caused by abnormal interactions with neocortical metal ions, especially iron, copper, zinc, and aluminum [1–3]. There is increasing evidence that iron and aluminum ions are involved in the mechanisms that underlie the neurodegenerative diseases [4,5]. However, evidence was brought to demonstrate that some Aβ fragments, at physiological pH, are not able to form binary complexes with Fe(III) ions of sufficient stability to compete with metal hydroxide precipitation [6]. On the contrary, multiple metal ions are known to interact with Aβ peptides [7]. Consequently, we investigated here the interaction of Fe(II/III) and Al(III) ions with some amyloidpeptides and fragments that results in peptide aggregation and fibrillation [8,9]. Infrared spectroscopy, atomic force microscopy, scanning electron microscopy, electrophoresis and mass spectrometry demonstrated conformational changes of peptides in the presence of such metals

  9. Iron and aluminum interaction with amyloid-beta peptides associated with Alzheimer’s disease

    Energy Technology Data Exchange (ETDEWEB)

    Drochioiu, Gabi; Ion, Laura [Alexandru Ioan Cuza University of Iasi, 11 Carol I, Iasi 700506 (Romania); Murariu, Manuela; Habasescu, Laura [Petru Poni Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, Iasi 700487 (Romania)

    2014-10-06

    An elevation in the concentration of heavy metal ions in Alzheimer’s disease (AD) brain has been demonstrated in many studies. Aβ precipitation and toxicity in AD brains seem to be caused by abnormal interactions with neocortical metal ions, especially iron, copper, zinc, and aluminum [1–3]. There is increasing evidence that iron and aluminum ions are involved in the mechanisms that underlie the neurodegenerative diseases [4,5]. However, evidence was brought to demonstrate that some Aβ fragments, at physiological pH, are not able to form binary complexes with Fe(III) ions of sufficient stability to compete with metal hydroxide precipitation [6]. On the contrary, multiple metal ions are known to interact with Aβ peptides [7]. Consequently, we investigated here the interaction of Fe(II/III) and Al(III) ions with some amyloidpeptides and fragments that results in peptide aggregation and fibrillation [8,9]. Infrared spectroscopy, atomic force microscopy, scanning electron microscopy, electrophoresis and mass spectrometry demonstrated conformational changes of peptides in the presence of such metals.

  10. The amyloid beta-peptide is imported into mitochondria via the TOM import machinery and localized to mitochondrial cristae

    DEFF Research Database (Denmark)

    Hansson Petersen, Camilla A; Alikhani, Nyosha; Behbahani, Homira;

    2008-01-01

    The amyloid beta-peptide (Abeta) has been suggested to exert its toxicity intracellularly. Mitochondrial functions can be negatively affected by Abeta and accumulation of Abeta has been detected in mitochondria. Because Abeta is not likely to be produced locally in mitochondria, we decided to...... investigate the mechanisms for mitochondrial Abeta uptake. Our results from rat mitochondria show that Abeta is transported into mitochondria via the translocase of the outer membrane (TOM) machinery. The import was insensitive to valinomycin, indicating that it is independent of the mitochondrial membrane...... potential. Subfractionation studies following the import experiments revealed Abeta association with the inner membrane fraction, and immunoelectron microscopy after import showed localization of Abeta to mitochondrial cristae. A similar distribution pattern of Abeta in mitochondria was shown by...

  11. Stoichiometric inhibition of amyloid beta-protein aggregation with peptides containing alternating alpha,alpha-disubstituted amino acids.

    Science.gov (United States)

    Etienne, Marcus A; Aucoin, Jed P; Fu, Yanwen; McCarley, Robin L; Hammer, Robert P

    2006-03-22

    We have prepared two peptides based on the hydrophobic core (Lys-Leu-Val-Phe-Phe) of amyloid beta-protein (Abeta) that contain alpha,alpha-disubstituted amino acids at alternating positions, but differ in the positioning of the oligolysine chain (AMY-1, C-terminus; AMY-2, N-terminus). We have studied the effects of AMY-1 and AMY-2 on the aggregation of Abeta and find that, at stoichiometric concentrations, both peptides completely stop Abeta fibril growth. Equimolar mixtures of AMY-1 and Abeta form only globular aggregates as imaged by scanning force microscopy and transmission electron microscopy. These samples show no signs of protofibrillar or fibrillar material even after prolonged periods of time (4.5 months). Also, 10 mol % of AMY-1 prevents Abeta self-assembly for long periods of time; aged samples (4.5 months) show only a few protofibrillar or fibrillar aggregates. Circular dichroism spectroscopy of equimolar mixtures of AMY-1 and Abeta show that the secondary structure of the mixture changes over time and progresses to a predominantly beta-sheet structure, which is consistent with the design of these inhibitors preferring a sheet-like conformation. Changing the position of the charged tail on the peptide, AMY-2 interacts with Abeta differently in that equimolar mixtures form large ( approximately 1 mum) globular aggregates which do not progress to fibrils, but precipitate out of solution. The differences in the aggregation mediated by the two peptides is discussed in terms of a model where the inhibitors act as cosurfactants that interfere with the native ability of Abeta to self-assemble by disrupting hydrophobic interactions either at the C-terminus or N-terminus of Abeta. PMID:16536517

  12. Monomeric Amyloid Beta Peptide in Hexafluoroisopropanol Detected by Small Angle Neutron Scattering

    Science.gov (United States)

    Zhang-Haagen, Bo; Biehl, Ralf; Nagel-Steger, Luitgard; Radulescu, Aurel; Richter, Dieter; Willbold, Dieter

    2016-01-01

    Small proteins like amyloid beta (Aβ) monomers are related to neurodegenerative disorders by aggregation to insoluble fibrils. Small angle neutron scattering (SANS) is a nondestructive method to observe the aggregation process in solution. We show that SANS is able to resolve monomers of small molecular weight like Aβ for aggregation studies. We examine Aβ monomers after prolonged storing in d-hexafluoroisopropanol (dHFIP) by using SANS and dynamic light scattering (DLS). We determined the radius of gyration from SANS as 1.0±0.1 nm for Aβ1–40 and 1.6±0.1 nm for Aβ1–42 in agreement with 3D NMR structures in similar solvents suggesting a solvent surface layer with 5% increased density. After initial dissolution in dHFIP Aβ aggregates sediment with a major component of pure monomers showing a hydrodynamic radius of 1.8±0.3 nm for Aβ1–40 and 3.2±0.4 nm for Aβ1–42 including a surface layer of dHFIP solvent molecules. PMID:26919121

  13. Monomeric Amyloid Beta Peptide in Hexafluoroisopropanol Detected by Small Angle Neutron Scattering.

    Directory of Open Access Journals (Sweden)

    Bo Zhang-Haagen

    Full Text Available Small proteins like amyloid beta (Aβ monomers are related to neurodegenerative disorders by aggregation to insoluble fibrils. Small angle neutron scattering (SANS is a nondestructive method to observe the aggregation process in solution. We show that SANS is able to resolve monomers of small molecular weight like Aβ for aggregation studies. We examine Aβ monomers after prolonged storing in d-hexafluoroisopropanol (dHFIP by using SANS and dynamic light scattering (DLS. We determined the radius of gyration from SANS as 1.0±0.1 nm for Aβ1-40 and 1.6±0.1 nm for Aβ1-42 in agreement with 3D NMR structures in similar solvents suggesting a solvent surface layer with 5% increased density. After initial dissolution in dHFIP Aβ aggregates sediment with a major component of pure monomers showing a hydrodynamic radius of 1.8±0.3 nm for Aβ1-40 and 3.2±0.4 nm for Aβ1-42 including a surface layer of dHFIP solvent molecules.

  14. Local atomic structure and oxidation processes of Cu(I) binding site in amyloid beta peptide: XAS Study

    Science.gov (United States)

    Kremennaya, M. A.; Soldatov, M. A.; Stretsov, V. A.; Soldatov, A. V.

    2016-05-01

    There are two different motifs of X-ray absorption spectra for Cu(I) K-edge in amyloidpeptide which could be due to two different configurations of local Cu(I) environment. Two or three histidine ligands can coordinate copper ion in varying conformations. On the other hand, oxidation of amyloidpeptide could play an additional role in local copper environment. In order to explore the peculiarities of local atomic and electronic structure of Cu(I) binding sites in amyloidpeptide the x-ray absorption spectra were simulated for various Cu(I) environments including oxidized amyloid-β and compared with experimental data.

  15. Chronic cladribine administration increases amyloid beta peptide generation and plaque burden in mice.

    Directory of Open Access Journals (Sweden)

    Crystal D Hayes

    Full Text Available BACKGROUND: The clinical uses of 2-chloro-2'-deoxyadenosine (2-CDA or cladribine which was initially prescribed to patients with hematological and lymphoid cancers is now extended to treat patients with multiple sclerosis (MS. Previous data has shown that 2-CDA has high affinity to the brain and readily passes through the blood brain barrier reaching CSF concentrations 25% of that found in plasma. However, whether long-term administration of 2-CDA can lead to any adverse effects in patients or animal models is not yet clearly known. METHODOLOGY: Here we show that exposure of 2-CDA to CHO cells stably expressing wild-type APP751 increased generation and secretion of amyloid β peptide (Aβ in to the conditioned medium. Interestingly, increased Aβ levels were noticed even at non-toxic concentrations of 2-CDA. Remarkably, chronic treatment of APdE9 mice, a model of Alzheimer's disease with 2-CDA for 60 days increased amyloid plaque burden by more than 1-fold. Increased Aβ generation appears to result from increased turnover of APP as revealed by cycloheximide-chase experiments. Additionally, surface labeling of APP with biotin and immunoprecipitation of surface labeled proteins with anti-biotin antibody also indicated increased APP at the cell surface in 2-CDA treated cells compared to controls. Increased turnover of APP by 2-CDA in turn might be a consequence of decreased protein levels of PIN 1, which is known to regulate cis-trans isomerization and phosphorylation of APP. Most importantly, like many other oncology drugs, 2-CDA administration led to significant delay in acquiring a reward-based learning task in a T maze paradigm. CONCLUSIONS: Taken together, these data provide compelling evidence for the first time that chronic 2-CDA administration can increase amyloidogenic processing of APP leading to robustly increased plaque burden which may be responsible for the observed deficits in learning skills. Thus chronic treatment of mice with 2

  16. Comparison of the amyloid pore forming properties of rat and human Alzheimer’s beta-amyloid peptide 1-42: Calcium imaging data

    Directory of Open Access Journals (Sweden)

    Coralie Di Scala

    2016-03-01

    Full Text Available The data here consists of calcium imaging of human neuroblastoma SH-SY5Y cells treated with the calcium-sensitive dye Fluo-4AM and then incubated with nanomolar concentrations of either human or rat Alzheimer’s β-amyloid peptide Aβ1-42. These data are both of a qualitative (fluorescence micrographs and semi-quantitative nature (estimation of intracellular calcium concentrations of cells probed by Aβ1-42 peptides vs. control untreated cells. Since rat Aβ1-42 differs from its human counterpart at only three amino acid positions, this comparative study is a good assessment of the specificity of the amyloid pore forming assay. The interpretation of this dataset is presented in the accompanying study “Broad neutralization of calcium-permeable amyloid pore channels with a chimeric Alzheimer/Parkinson peptide targeting brain gangliosides” [1].

  17. Comparison of the amyloid pore forming properties of rat and human Alzheimer’s beta-amyloid peptide 1-42: Calcium imaging data

    Science.gov (United States)

    Di Scala, Coralie; Yahi, Nouara; Flores, Alessandra; Boutemeur, Sonia; Kourdougli, Nazim; Chahinian, Henri; Fantini, Jacques

    2016-01-01

    The data here consists of calcium imaging of human neuroblastoma SH-SY5Y cells treated with the calcium-sensitive dye Fluo-4AM and then incubated with nanomolar concentrations of either human or rat Alzheimer’s β-amyloid peptide Aβ1-42. These data are both of a qualitative (fluorescence micrographs) and semi-quantitative nature (estimation of intracellular calcium concentrations of cells probed by Aβ1-42 peptides vs. control untreated cells). Since rat Aβ1-42 differs from its human counterpart at only three amino acid positions, this comparative study is a good assessment of the specificity of the amyloid pore forming assay. The interpretation of this dataset is presented in the accompanying study “Broad neutralization of calcium-permeable amyloid pore channels with a chimeric Alzheimer/Parkinson peptide targeting brain gangliosides” [1]. PMID:26909380

  18. Comparison of the amyloid pore forming properties of rat and human Alzheimer's beta-amyloid peptide 1-42: Calcium imaging data.

    Science.gov (United States)

    Di Scala, Coralie; Yahi, Nouara; Flores, Alessandra; Boutemeur, Sonia; Kourdougli, Nazim; Chahinian, Henri; Fantini, Jacques

    2016-03-01

    The data here consists of calcium imaging of human neuroblastoma SH-SY5Y cells treated with the calcium-sensitive dye Fluo-4AM and then incubated with nanomolar concentrations of either human or rat Alzheimer's β-amyloid peptide Aβ1-42. These data are both of a qualitative (fluorescence micrographs) and semi-quantitative nature (estimation of intracellular calcium concentrations of cells probed by Aβ1-42 peptides vs. control untreated cells). Since rat Aβ1-42 differs from its human counterpart at only three amino acid positions, this comparative study is a good assessment of the specificity of the amyloid pore forming assay. The interpretation of this dataset is presented in the accompanying study "Broad neutralization of calcium-permeable amyloid pore channels with a chimeric Alzheimer/Parkinson peptide targeting brain gangliosides" [1]. PMID:26909380

  19. Protective effects of Lingguizhugan decoction on amyloid-beta peptide (25-35)-induced cell injury: Anti-inflammatory effects☆

    OpenAIRE

    Xi, Feifei; Sang, Feng; Zhou, Chunxiang; Ling, Yun

    2012-01-01

    In the present study, a human neuroblastoma cell line (SH-SY5Y) and BV-2 microglia were treated with amyloidpeptide (25–35), as a model of Alzheimer’s disease, to evaluate the protective effects of 10-3–10-8 g/mL Lingguizhugan decoction and to examine the underlying anti-inflammatory mechanism. Lingguizhugan decoction significantly enhanced the viability of SH-SY5Y cells with amyloidpeptide-induced injury, and lowered levels of interleukin-1β, interleukin-6, tumor necrosis factor-α and ...

  20. CD147 is a regulatory subunit of the gamma-secretase complex inAlzheimer's disease amyloid beta-peptide production

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Shuxia; Zhou, Hua; Walian, Peter J.; Jap, Bing K.

    2005-04-06

    {gamma}-secretase is a membrane protein complex that cleaves the {beta}-amyloid precursor protein (APP) within the transmembrane region, following prior processing by {beta}-secretase, producing amyloid {beta}-peptides (A{beta}{sub 40} and A{beta}{sub 42}). Errant production of A{beta}-peptides that substantially increases A{beta}{sub 42} production has been associated with the formation of amyloid plaques in Alzheimer's disease patients. Biophysical and genetic studies indicate that presenilin-1 (Psn-1), which contains the proteolytic active site, and three other membrane proteins, nicastrin (Nct), APH-1, and PEN-2 are required to form the core of the active {gamma}-secretase complex. Here, we report the purification of the native {gamma}-secretase complexes from HeLa cell membranes and the identification of an additional {gamma}-secretase complex subunit, CD147, a transmembrane glycoprotein with two immunoglobulin-like domains. The presence of this subunit as an integral part of the complex itself was confirmed through co-immunoprecipitation studies of the purified protein from HeLa cells and solubilized complexes from other cell lines such as neural cell HCN-1A and HEK293. Depletion of CD147 by RNA interference was found to increase the production of A{beta} peptides without changing the expression level of the other {gamma}-secretase components or APP substrates while CD147 overexpression had no statistically significant effect on amyloid {beta}-peptide production, other {gamma}-secretase components or APP substrates, indicating that the presence of the CD147 subunit within the {gamma}-secretase complex directly down-modulates the production of A{beta}-peptides. {gamma}-secretase was first recognized through its role in the production of the A{beta} peptides that are pathogenic in Alzheimer's disease (AD) (1). {gamma}-secretase is a membrane protein complex with unusual aspartyl protease activity that cleaves a variety of type I membrane proteins

  1. Expression of secreted human single-chain fragment variable antibody against human amyloid beta peptide in Pichia pastoris

    Institute of Scientific and Technical Information of China (English)

    Jiong Cai; Fang Li; Shizhen Wang

    2008-01-01

    BACKGROUND: Studies have shown that monoclonal or polyclonal antibody injections ofamyloid β peptide arc effective in removing amyloid β peptide overload in the brain.OBJECTIVE: Based on successful screening of a human single-chain fragment variable antibody specific to amyloid β peptide, this paper aimed to express recombinant human single-chain variable antibody against amyloid β peptide.DESIGN, TIME AND SETTING: A single sample experiment was performed at the Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Hospital (Beijing, China) from January to July 2006.MATERIALS: Human single-chain fragment variable antibody gene against amyloid β peptide was screened from a human phage-display antibody library.METHODS: Human single-chain fragment variable antibody gene was mutated to eliminate a BamHI restriction site and cloned into a Teasy plasmid for pT-seFvAβ construction, which was identified by PCR amplification and endonuclease digestion. Plasmid pT-scFvA β was cut by EcoRl and Notl endonucleases, and the antibody gene was cloned into pPIC9K plasmid to construct pPIC9K-scFvA β expression vector, which was confirmed by gene sequencing. Linearized pPICgK-scFvA β was used to transform a Pichia pastoris GS115 cell line, and the recombinant was induced by 0.5 % methanol to express human single-chain fragment variable antibody specific to amyloid β peptide.MAIN OUTCOME MEASURES: Protein electrophoresis was used to identify PCR products, gene sequencing was uscd to verify the pPIC9K-scFvA sequence, and SDS-PAGE was used to detect recombinant expression of human single-chain fragment variable antibody specific to amyloid β peptide in Pichia pastoris.RESULTS: Gene sequencing confirmed pPICgK-scFvA β orientation. Rccomhinants were obtained by lineadzed pPIC9K-scFvA β transformation. After induction with 0.5% methanol, the recombinant yeast cells secreted proteins of 33-ku size

  2. Metabolic changes may precede proteostatic dysfunction in a Drosophila model of amyloid beta peptide toxicity.

    Science.gov (United States)

    Ott, Stanislav; Vishnivetskaya, Anastasia; Malmendal, Anders; Crowther, Damian C

    2016-05-01

    Amyloid beta (Aβ) peptide aggregation is linked to the initiation of Alzheimer's disease; accordingly, aggregation-prone isoforms of Aβ, expressed in the brain, shorten the lifespan of Drosophila melanogaster. However, the lethal effects of Aβ are not apparent until after day 15. We used shibire(TS) flies that exhibit a temperature-sensitive paralysis phenotype as a reporter of proteostatic robustness. In this model, we found that increasing age but not Aβ expression lowered the flies' permissive temperature, suggesting that Aβ did not exert its lethal effects by proteostatic disruption. Instead, we observed that chemical challenges, in particular oxidative stressors, discriminated clearly between young (robust) and old (sensitive) flies. Using nuclear magnetic resonance spectroscopy in combination with multivariate analysis, we compared water-soluble metabolite profiles at various ages in flies expressing Aβ in their brains. We observed 2 genotype-linked metabolomic signals, the first reported the presence of any Aβ isoform and the second the effects of the lethal Arctic Aβ. Lethality was specifically associated with signs of oxidative respiration dysfunction and oxidative stress. PMID:27103517

  3. Distinct cerebrospinal fluid amyloid beta peptide signatures in sporadic and PSEN1 A431E-associated familial Alzheimer's disease

    OpenAIRE

    Portelius, Erik; Andreasson, Ulf; Ringman, John M.; Buerger, Katharina; Daborg, Jonny; Buchhave, Peder; Hansson, Oskar; Harmsen, Andreas; Gustavsson, Mikael K; Hanse, Eric; Galasko, Douglas; Hampel, Harald; Blennow, Kaj; Zetterberg, Henrik

    2010-01-01

    Abstract Background Alzheimer's disease (AD) is associated with deposition of amyloid β (Aβ) in the brain, which is reflected by low concentration of the Aβ1-42 peptide in the cerebrospinal fluid (CSF). There are at least 15 additional Aβ peptides in human CSF and their relative abundance pattern is thought to reflect the production and degradation of Aβ. Here, we test the hypothesis that AD is characterized by a specific CSF Aβ isoform pattern that is ...

  4. Regulation of adenosine triphosphate-sensitive potassium channels suppresses the toxic effects of amyloid-beta peptide (25-35)

    Institute of Scientific and Technical Information of China (English)

    Min Kong; Maowen Ba; Hui Liang; Peng Shao; Tianxia Yu; Ying Wang

    2013-01-01

    In this study, we treated PC12 cells with 0-20 μM amyloidpeptide (25-35) for 24 hours to induce cytotoxicity, and found that 5-20 μM amyloidpeptide (25-35) decreased PC12 cell viability, but adenosine triphosphate-sensitive potassium channel activator diazoxide suppressed the decrease reactive oxygen species levels. These protective effects were reversed by the selective mitochondrial adenosine triphosphate-sensitive potassium channel blocker 5-hydroxydecanoate. An inducible nitric oxide synthase inhibitor, Nω-nitro-L-arginine, also protected PC12 cells from intracellular reactive oxygen species levels. However, the H2O2-degrading enzyme catalase could that the increases in both mitochondrial membrane potential and reactive oxygen species levels adenosine triphosphate-sensitive potassium channels and nitric oxide. Regulation of adenosine triphosphate-sensitive potassium channels suppresses PC12 cell cytotoxicity induced by amyloid

  5. Critical role for sphingosine kinase-1 in regulating survival of neuroblastoma cells exposed to amyloid-beta peptide.

    Science.gov (United States)

    Gomez-Brouchet, Anne; Pchejetski, Dimitri; Brizuela, Leyre; Garcia, Virginie; Altié, Marie-Françoise; Maddelein, Marie-Lise; Delisle, Marie-Bernadette; Cuvillier, Olivier

    2007-08-01

    We examined the role of sphingosine kinase-1 (SphK1), a critical regulator of the ceramide/sphingosine 1-phosphate (S1P) biostat, in the regulation of death and survival of SH-SY5Y neuroblastoma cells in response to amyloid beta (Abeta) peptide (25-35). Upon incubation with Abeta, SH-SY5Y cells displayed a marked down-regulation of SphK1 activity coupled with an increase in the ceramide/S1P ratio followed by cell death. This mechanism was redox-sensitive; N-acetylcysteine totally abrogated the down-regulation of SphK1 activity and strongly inhibited Abeta-induced cell death. SphK1 overexpression impaired the cytotoxicity of Abeta, whereas SphK1 silencing by RNA interference mimicked Abeta-induced cell death, thereby establishing a critical role for SphK1. We further demonstrated that SphK1 could mediate the well established cytoprotective action of insulin-like growth factor (IGF-I) against Abeta toxicity. A dominant-negative form of SphK1 or its pharmacological inhibition not only abrogated IGF-I-triggered stimulation of SphK1 but also hampered IGF-I protective effect. Similarly to IGF-I, the neuroprotective action of TGF-beta1 was also dependent on SphK1 activity; activation of SphK1 as well as cell survival were impeded by a dominant-negative form of SphK1. Taken together, these results provide the first illustration of SphK1 role as a critical regulator of death and survival of Abeta-treated cells. PMID:17522181

  6. Amyloid-beta peptide degradation in cell cultures by mycoplasma contaminants

    Directory of Open Access Journals (Sweden)

    Davies Peter

    2008-06-01

    Full Text Available Abstract Background Cell cultures have become an indispensable tool in Alzheimer's disease research for studying amyloid-β (Aβ metabolism. It is estimated that up to 35% of cell cultures in current use are infected with various mycoplasma species. In contrast with common bacterial and fungal infections, contaminations of cell cultures with mycoplasmas represent a challenging issue in terms of detectability and prevention. Mycoplasmas are the smallest and simplest self-replicating bacteria and the consequences of an infection for the host cells are variable, ranging from no apparent effect to induction of apoptosis. Findings Here we present evidence that mycoplasmas from a cell culture contamination are able to efficiently and rapidly degrade extracellular Aβ. As a result, we observed no accumulation of Aβ in the conditioned medium of mycoplasma-positive cells stably transfected with the amyloid-β precursor protein (APP. Importantly, eradication of the mycoplasma contaminant – identified as M. hyorhinis – by treatments with a quinolone-based antibiotic, restored extracellular Aβ accumulation in the APP-transfected cells. Conclusion These data show that mycoplasmas degrade Aβ and thus may represent a significant source of variability when comparing extracellular Aβ levels in different cell lines. On the basis of these results, we recommend assessment of mycoplasma contaminations prior to extracellular Aβ level measurements in cultured cells.

  7. Multiple mechanisms of iron-induced amyloid beta-peptide accumulation in SHSY5Y cells: protective action of negletein.

    Science.gov (United States)

    Banerjee, Priyanjalee; Sahoo, Arghyadip; Anand, Shruti; Ganguly, Anirban; Righi, Giuliana; Bovicelli, Paolo; Saso, Luciano; Chakrabarti, Sasanka

    2014-12-01

    The increased accumulation of iron in the brain in Alzheimer's disease (AD) is well documented, and excess iron is strongly implicated in the pathogenesis of the disease. The adverse effects of accumulated iron in AD brain may include the oxidative stress, altered amyloid beta-metabolism and the augmented toxicity of metal-bound amyloid beta 42. In this study, we have shown that exogenously added iron in the form of ferric ammonium citrate (FAC) leads to considerable accumulation of amyloid precursor protein (APP) without a corresponding change in the concerned gene expression in cultured SHSY5Y cells during exposure up to 48 h. This phenomenon is also associated with increased β-secretase activity and augmented release of amyloid beta 42 in the medium. Further, the increase in β-secretase activity, in SHSY5Y cells, upon exposure to iron apparently involves reactive oxygen species (ROS) and NF-κB activation. The synthetic flavone negletein (5,6-dihydroxy-7-methoxyflavone), which is a known chelator for iron, can significantly prevent the effects of FAC on APP metabolism in SHSY5Y cells. Further, this compound inhibits the iron-dependent formation of ROS and also blocks the iron-induced oligomerization of amyloid beta 42 in vitro. In concentrations used in this study, negletein alone appears to have only marginal toxic effects on cell viability, but, on the other hand, the drug is capable of ameliorating the iron-induced loss of cell viability considerably. Our results provide the initial evidence of potential therapeutic effects of negletein, which should be explored in suitable animal models of AD. PMID:25249289

  8. Mechanisms of beta-amyloid neurotoxicity : Perspectives of pharmacotherapy

    NARCIS (Netherlands)

    Harkany, T; Abraham, [No Value; Konya, C; Nyakas, C; Zarandi, M; Penke, B; Luiten, PGM

    2000-01-01

    One of the characteristic neuropathological hallmarks of Alzheimer's disease (AD) is the extracellular accumulation of beta -amyloid peptides (A beta) in neuritic plaques, Experimental data indicate that different molecular forms of A beta affect a wide array of neuronal and glial functions and ther

  9. Analysis of the complex between amyloid beta peptides and mitochondrial enzyme 17beta-HSD in cerebrospinal fluid

    Czech Academy of Sciences Publication Activity Database

    Krištofíková, Z.; Hegnerová, Kateřina; Bocková, Markéta; Vaisocherová, Hana; Bartoš, A.; Říčný, J.; Řípová, D.; Homola, J.

    2008-01-01

    Roč. 275, podzim (2008), s. 249-249. ISSN 1742-464X. [EUROPTRODE /9./. Dublin, 30.03.2008-02.04.2008] Institutional research plan: CEZ:AV0Z20670512 Keywords : surface plasmon resonance * alzheimer disease * 17beta-HSD10 Subject RIV: JB - Sensors, Measurment, Regulation Impact factor: 3.139, year: 2008

  10. Candidate genes for Alzheimer's disease are associated with individual differences in plasma levels of beta amyloid peptides in adults with Down syndrome.

    Science.gov (United States)

    Schupf, Nicole; Lee, Annie; Park, Naeun; Dang, Lam-Ha; Pang, Deborah; Yale, Alexander; Oh, David Kyung-Taek; Krinsky-McHale, Sharon J; Jenkins, Edmund C; Luchsinger, José A; Zigman, Warren B; Silverman, Wayne; Tycko, Benjamin; Kisselev, Sergey; Clark, Lorraine; Lee, Joseph H

    2015-10-01

    We examined the contribution of candidates genes for Alzheimer's disease (AD) to individual differences in levels of beta amyloid peptides in adults with Down syndrom, a population at high risk for AD. Participants were 254 non-demented adults with Down syndrome, 30-78 years of age. Genomic deoxyribonucleic acid was genotyped using an Illumina GoldenGate custom array. We used linear regression to examine differences in levels of Aβ peptides associated with the number of risk alleles, adjusting for age, sex, level of intellectual disability, race and/or ethnicity, and the presence of the APOE ε4 allele. For Aβ42 levels, the strongest gene-wise association was found for a single nucleotide polymorphism (SNP) on CAHLM1; for Aβ40 levels, the strongest gene-wise associations were found for SNPs in IDE and SOD1, while the strongest gene-wise associations with levels of the Aβ42/Aβ40 ratio were found for SNPs in SORCS1. Broadly classified, variants in these genes may influence amyloid precursor protein processing (CALHM1, IDE), vesicular trafficking (SORCS1), and response to oxidative stress (SOD1). PMID:26166206

  11. Neuroprotective approaches in experimental models of beta-amyloid neurotoxicity : Relevance to Alzheimer's disease

    NARCIS (Netherlands)

    Harkany, T; Hortobagyi, T; Sasvari, M; Konya, C; Penke, B; Luiten, PGM; Nyakas, C

    1999-01-01

    1. beta-Amyloid peptides (A beta s) accumulate abundantly in the Alzheimer's disease (AD) brain in areas subserving information acquisition arid processing, and memory formation. A beta fragments are producedin a process of abnormal proteolytic cleavage of their precursor, the amyloid precursor prot

  12. Accumulation of Exogenous Amyloid-Beta Peptide in Hippocampal Mitochondria Causes Their Dysfunction: A Protective Role for Melatonin

    Directory of Open Access Journals (Sweden)

    Sergio Rosales-Corral

    2012-01-01

    Full Text Available Amyloid-beta (Aβ pathology is related to mitochondrial dysfunction accompanied by energy reduction and an elevated production of reactive oxygen species (ROS. Monomers and oligomers of Aβ have been found inside mitochondria where they accumulate in a time-dependent manner as demonstrated in transgenic mice and in Alzheimer’s disease (AD brain. We hypothesize that the internalization of extracellular Aβ aggregates is the major cause of mitochondrial damage and here we report that following the injection of fibrillar Aβ into the hippocampus, there is severe axonal damage which is accompanied by the entrance of Aβ into the cell. Thereafter, Aβ appears in mitochondria where it is linked to alterations in the ionic gradient across the inner mitochondrial membrane. This effect is accompanied by disruption of subcellular structure, oxidative stress, and a significant reduction in both the respiratory control ratio and in the hydrolytic activity of ATPase. Orally administrated melatonin reduced oxidative stress, improved the mitochondrial respiratory control ratio, and ameliorated the energy imbalance.

  13. Improving cognitive impairment by Tongxinluo via inhibiting expression of beta-secretase 1/beta-amyloid peptide in experimental vascular dementia

    Institute of Scientific and Technical Information of China (English)

    Jia Jia; Wenbin Zhu; Lihui Wang; Yun Xu

    2008-01-01

    BACKGROUND: Tongxinluo has been clinically proven to be effective in improving memory and cognitive function in patients with post-stroke vascular dementia. Is the mechanism related to the deposition of beta-amyloid peptide (Aβ) in hippocampus? OBJECTIVE: To observe the effect of Tongxinluo on cognitive impairment in a mouse model with vascular dementia and the changes of Aβ deposition andβ-secretase 1 (BACE1) expression.DESIGN: Randomized controlled study.SETTING: State Key Laboratory of Pharmaceutical Biotechnology of Nanjing University and Affiliated Drum Tower Hospital of Nanjing University Medical School.MATERIALS: The experiment was carried out in the State Key Laboratory of Pharmaceutical Biotechnology of Nanjing University and Affiliated Drum Tower Hospital of Nanjing University Medical School from March 2006 to January 2007. A total of 36 healthy Kunming mice, 18 of each gender, were chosen. The study was conducted in accordance with the National Regulations of Experimental Animal Administration, and all animal experiments were approved by the Committee of Experimental Animal Administration of Nanjing University. Tongxinluo was provided by Shijiazhuang Yiling Pharmaceutical Co., Ltd.METHODS: All mice were randomly divided into 6 groups, including naive control (n=6), sham-operated control (n=6) and experimental groups treated with different doses of Tongxinluo (0.2, 0.4, and 0.6 g/kg/d; n=6 for each group) or vehicle (n=6). Five groups were subjected to bilateral common carotid arteries (2-VO) occlusion to produce a vascular dementia model(noocclusion was performed in sham-operated group). The mice in the Tongxinluo treatment groups were intragastricly administered daily with a Tongxinluo suspension (40 g/L in distilled water) at doses of 0.2, 0.4 or 0.6 g/kg/d from day 1 to day 30 post-surgery. The animals in vehicle, sham-operated and naive groups were administered an equal volume of distilled water. MAIN OUTCOME MEASURES: ①Escape latency time

  14. Hydrogen sulfide inhibits beta-amyloid peptide-induced apoptosis in PC12 cells and the underlying mechanisms

    Institute of Scientific and Technical Information of China (English)

    Xiuqin Chen; Jingtian Li; Jinhui Zou; Bailing Li; Meng Wang

    2008-01-01

    BACKGROUND: Studies have demonstrated that hydrogen sulfide (H2S) levels are 55% lower in brains of Alzheimer's disease (AD) patients than in age-matched normal individuals, which suggests that H2S might be involved in some aspects of AD pathogenesis.OBJECTIVE: To observe the protective mechanisms of varied concentrations of H2S against β -amyloid-peptide (A β) induced apoptosis in pheochromoytoma (PC12) cells, and to analyze the pathway of action.DESIGN, TIME AND SETTING: A controlled, observational, in vitro experiment was performed at Nenrophysiology Laboratory in Zhougshan Medical School, Sun Yat-sen University between July 2006 and May 2007.MATERIALS: PC12 cells were provided by the Animal Experimental Center of Medical School of Sun Yat-sen University. Glybenclamide, rhodamine123, and dihydrorhodamine123 were purchased from Sigma (USA).METHODS: PCI2 cells were incubated at 37℃ in a 5% CO2-enriched incubator with RPMI-1640 medium, supplemented with 5% horse-serum and 10% fetal bovine serum. Cells in logarithmic growth curves received different treatment: The PC12 cells were maintains at 37℃ with the original medium, then incubated in A β 25-35, sodium hydrosulfide (NariS), glybenclamide, NailS+ A β 25-35, or pretreated with glybenelamide 30 minutes prior to administration of and A β 25-35, respectively. MAIN OUTCOME MEASURES: (1) The survival rate of PC12 cells was detected by MTT assay and Hoechst staining. (2) The apoptosis rate of PC12 cells was detected utilizing flow cytometry with propidium iodide staining, and morphological changes of apoptotic cells were observed. (3) The mitochondrial membrane potential was detected by Rhodamine 123-combined flow cytometry. (4) The intracellular reactive oxygen species content was detected by dihydrorhodamine123-combined flow cytometry. RESULTS: A β 25-35 induced significantly decreased viability and increased percentage of apoptosis in PC 12 cells, as well as dissipated mitochondrial membrane potential

  15. Effects of Low-Dose Pioglitazone on Serum Levels of Adiponectin, Dehydroepiandrosterone, Amyloid Beta Peptide, and Lipid Profile in Elderly Japanese People with Type 2 Diabetes

    Directory of Open Access Journals (Sweden)

    Yuji Aoki

    2015-01-01

    Full Text Available This study was performed to see how pioglitazone at low doses could affect blood biomarkers related to atherosclerosis and aging. The effects of an add-on treatment with pioglitazone (15 mg for males and 7.5 mg for females for 6 months were assessed in 24 outpatients (12 males, 12 females with type 2 diabetes aged ≥ 70 years. As doses of sulfonylurea were reduced in 10 patients, no significant differences in HbA1c and glucose levels were seen. After the treatment, serum levels of HDL cholesterol, arachidonic acid (predominant in males, and high-molecular-weight adiponectin significantly increased. The level of dehydroepiandrosterone sulfate significantly decreased. No significant changes were seen in those of small dense LDL cholesterol, high-sensitivity C-reactive protein, and amyloid beta peptides 1–40 and 1–42. There was a slight but significant increase in body weight, but apparent adverse effects were not observed. In conclusion, pioglitazone at low doses increased serum adiponectin, HDL cholesterol, and arachidonic acid levels but decreased serum dehydroepiandrosterone level, not associated with glycemia, in elderly Japanese people with type 2 diabetes. An optimal dose of pioglitazone should be sought for to minimize its adverse effects and to fully exert its pleiotropic effects such as antiatherosclerotic and antiaging effects.

  16. Monodisperse carboxyl-functionalized poly(ethylene glycol)-coated magnetic poly(glycidyl methacrylate) microspheres: application to the immunocapture of .beta.-amyloid peptides

    Czech Academy of Sciences Publication Activity Database

    Horák, Daniel; Hlídková, Helena; Hiraoui, M.; Taverna, M.; Proks, Vladimír; Mázl Chánová, Eliška; Smadja, C.; Kučerová, Z.

    2014-01-01

    Roč. 14, č. 11 (2014), s. 1590-1599. ISSN 1616-5187 R&D Projects: GA MŠk 7E12053 EU Projects: European Commission(XE) 246513 - NADINE Institutional support: RVO:61389013 Keywords : β-amyloid peptides * CE-LIF detection * functionalization Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.851, year: 2014

  17. Characterization of D-enantiomeric peptides binding to monomeric Amyloid beta (1-42) identified by a competitive mirror image phage display

    OpenAIRE

    Rudolph, Stephan; Kutzsche, Janine; Klein, Antonia Nicole; Frenzel, Daniel; Willbold, Dieter

    2014-01-01

    Alzheimer's disease (AD) is the most prominent type of dementia in elderly people. Until now there is no curative therapy available.Amyloid beta (Aβ) is assumed to play a major role in the development and progression of the disease. Freely diffusible, toxic Aβ oligomers seem to have a major toxicological impact.

  18. Mutation-based structural modification and dynamics study of amyloid beta peptide (1–42: An in-silico-based analysis to cognize the mechanism of aggregation

    Directory of Open Access Journals (Sweden)

    Pritam Kumar Panda

    2016-03-01

    Full Text Available Alzheimer's disease is the prevalent cause of premature senility, a progressive mental disorder due to degeneration in brain and deposition of amyloid β peptide (1–42, a misfolded protein in the form of aggregation that prevails for a prolonged time and obstructs every aspect of life. One of the primary hallmarks of the neuropathological disease is the accretion of amyloid β peptide in the brain that leads to Alzheimer's disease, but the mechanism is still a mystery. Several investigations have shown that mutations at specific positions have a significant impact in stability of the peptide as predicted from aggregation profiles. Here in our study, we have analyzed the mutations by substituting residues at position A22G, E22G, E22K, E22Q, D23N, L34V and molecular dynamics have been performed to check the deviation in stability and conformation of the peptide. The results validated that the mutations at specific positions lead to instability and the proline substitution at E22P and L34P stalled the aggregation of the peptide.

  19. Surface Mediated Self-Assembly of Amyloid Peptides

    Science.gov (United States)

    Fakhraai, Zahra

    2015-03-01

    Amyloid fibrils have been considered as causative agents in many neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, type II diabetes and amyloidosis. Amyloid fibrils form when proteins or peptides misfold into one dimensional crystals of stacked beta-sheets. In solution, amyloid fibrils form through a nucleation and growth mechanism. The rate limiting nucleation step requires a critical concentration much larger than those measured in physiological conditions. As such the exact origins of the seeds or oligomers that result in the formation of fully mature fibrils in the body remain topic intense studies. It has been suggested that surfaces and interfaces can enhance the fibrillization rate. However, studies of the mechanism and kinetics of the surface-mediated fibrillization are technologically challenging due to the small size of the oligomer and protofibril species. Using smart sample preparation technique to dry the samples after various incubation times we are able to study the kinetics of fibril formation both in solution and in the vicinity of various surfaces using high-resolution atomic force microscopy. These studies elucidate the role of surfaces in catalyzing amyloid peptide formation through a nucleation-free process. The nucleation free self-assembly is rapid and requires much smaller concentrations of peptides or proteins. We show that this process resembles diffusion limited aggregation and is governed by the peptide adhesion rate, two -dimensional diffusion of the peptides on the surface, and preferential interactions between the peptides. These studies suggest an alternative pathway for amyloid formation may exist, which could lead to new criteria for disease prevention and alternative therapies. Research was partially supported by a seed grant from the National Institute of Aging of the National Institutes of Health (NIH) under Award Number P30AG010124 (PI: John Trojanowski) and the University of Pennsylvania.

  20. Beta-amyloid peptides enhance the proliferative response of activated CD4CD28 lymphocytes from Alzheimer disease patients and from healthy elderly.

    Directory of Open Access Journals (Sweden)

    Agnieszka Jóźwik

    Full Text Available Alzheimer's disease (AD is the most frequent form of dementia among elderly. Despite the vast amount of literature on non-specific immune mechanisms in AD there is still little information about the potential antigen-specific immune response in this pathology. It is known that early stages of AD include β-amyloid (Aβ- reactive antibodies production and inflammatory response. Despite some evidence gathered proving cellular immune response background in AD pathology, the specific reactions of CD4(+ and CD8(+ cells remain unknown as the previous investigations yielded conflicting results. Here we investigated the CD4(+CD28(+ population of human peripheral blood T cells and showed that soluble β-amyloids alone were unable to stimulate these cells to proliferate significantly, resulting only in minor, probably antigen-specific, proliferative response. On the other hand, the exposure of in vitro pre-stimulated lymphocytes to soluble Aβ peptides significantly enhanced the proliferative response of these cells which had also lead to increased levels of TNF, IL-10 and IL-6. We also proved that Aβ peptide-enhanced proliferative response of CD4(+CD28(+ cells is autonomous and independent from disease status while being associated with the initial, ex vivo activation status of the CD4(+ cells. In conclusion, we suggest that the effect of Aβ peptides on the immune system of AD patients does not depend on the specific reactivity to Aβ epitope(s, but is rather a consequence of an unspecific modulation of the cell cycle dynamics and cytokine production by T cells, occurring simultaneously in a huge proportion of Aβ peptide-exposed T lymphocytes and affecting the immune system performance.

  1. Molecular Dynamics Simulation of Amyloid Beta Dimer Formation

    CERN Document Server

    Urbanc, B; Ding, F; Sammond, D; Khare, S; Buldyrev, S V; Stanley, H E; Dokholyan, N V

    2004-01-01

    Recent experiments with amyloid-beta (Abeta) peptide suggest that formation of toxic oligomers may be an important contribution to the onset of Alzheimer's disease. The toxicity of Abeta oligomers depends on their structure, which is governed by assembly dynamics. Due to limitations of current experimental techniques, a detailed knowledge of oligomer structure at the atomic level is missing. We introduce a molecular dynamics approach to study Abeta dimer formation: (1) we use discrete molecular dynamics simulations of a coarse-grained model to identify a variety of dimer conformations, and (2) we employ all-atom molecular mechanics simulations to estimate the thermodynamic stability of all dimer conformations. Our simulations of a coarse-grained Abeta peptide model predicts ten different planar beta-strand dimer conformations. We then estimate the free energies of all dimer conformations in all-atom molecular mechanics simulations with explicit water. We compare the free energies of Abeta(1-42) and Abeta(1-40...

  2. Rescue of amyloid-Beta-induced inhibition of nicotinic acetylcholine receptors by a peptide homologous to the nicotine binding domain of the alpha 7 subtype.

    Directory of Open Access Journals (Sweden)

    Arthur A Nery

    Full Text Available Alzheimer's disease (AD is characterized by brain accumulation of the neurotoxic amyloidpeptide (Aβ and by loss of cholinergic neurons and nicotinic acetylcholine receptors (nAChRs. Recent evidence indicates that memory loss and cognitive decline in AD correlate better with the amount of soluble Aβ than with the extent of amyloid plaque deposits in affected brains. Inhibition of nAChRs by soluble Aβ40 is suggested to contribute to early cholinergic dysfunction in AD. Using phage display screening, we have previously identified a heptapeptide, termed IQ, homologous to most nAChR subtypes, binding with nanomolar affinity to soluble Aβ40 and blocking Aβ-induced inhibition of carbamylcholine-induced currents in PC12 cells expressing α7 nAChRs. Using alanine scanning mutagenesis and whole-cell current recording, we have now defined the amino acids in IQ essential for reversal of Aβ40 inhibition of carbamylcholine-induced responses in PC12 cells, mediated by α7 subtypes and other endogenously expressed nAChRs. We further investigated the effects of soluble Aβ, IQ and analogues of IQ on α3β4 nAChRs recombinantly expressed in HEK293 cells. Results show that nanomolar concentrations of soluble Aβ40 potently inhibit the function of α3β4 nAChRs, and that subsequent addition of IQ or its analogues does not reverse this effect. However, co-application of IQ makes the inhibition of α3β4 nAChRs by Aβ40 reversible. These findings indicate that Aβ40 inhibits different subtypes of nAChRs by interacting with specific receptor domains homologous to the IQ peptide, suggesting that IQ may be a lead for novel drugs to block the inhibition of cholinergic function in AD.

  3. New Insights in the Amyloid-Beta Interaction with Mitochondria

    OpenAIRE

    Carlos Spuch; Saida Ortolano; Carmen Navarro

    2012-01-01

    Biochemical and morphological alterations of mitochondria may play an important role in the pathogenesis of Alzheimer’s disease (AD). Particularly, mitochondrial dysfunction is a hallmark of amyloid-beta-induced neuronal toxicity in Alzheimer’s disease. The recent emphasis on the intracellular biology of amyloid-beta and its precursor protein (APP) has led researchers to consider the possibility that mitochondria-associated and mitochondrial amyloid-beta may directly cause neurotoxicity. Both...

  4. Amyloid-beta Alzheimer targets — protein processing, lipid rafts, and amyloid-beta pores

    Science.gov (United States)

    Arbor, Sage C.; LaFontaine, Mike; Cumbay, Medhane

    2016-01-01

    Amyloid beta (Aβ), the hallmark of Alzheimer’s Disease (AD), now appears to be deleterious in its low number aggregate form as opposed to the macroscopic Aβ fibers historically seen postmortem. While Alzheimer targets, such as the tau protein, amyloid precursor protein (APP) processing, and immune system activation continue to be investigated, the recent discovery that amyloid beta aggregates at lipid rafts and likely forms neurotoxic pores has led to a new paradigm regarding why past therapeutics may have failed and how to design the next round of compounds for clinical trials. An atomic resolution understanding of Aβ aggregates, which appear to exist in multiple conformations, is most desirable for future therapeutic development. The investigative difficulties, structures of these small Aβ aggregates, and current therapeutics are summarized in this review.

  5. Amyloid-beta Alzheimer targets - protein processing, lipid rafts, and amyloid-beta pores.

    Science.gov (United States)

    Arbor, Sage C; LaFontaine, Mike; Cumbay, Medhane

    2016-03-01

    Amyloid beta (Aβ), the hallmark of Alzheimer's Disease (AD), now appears to be deleterious in its low number aggregate form as opposed to the macroscopic Aβ fibers historically seen postmortem. While Alzheimer targets, such as the tau protein, amyloid precursor protein (APP) processing, and immune system activation continue to be investigated, the recent discovery that amyloid beta aggregates at lipid rafts and likely forms neurotoxic pores has led to a new paradigm regarding why past therapeutics may have failed and how to design the next round of compounds for clinical trials. An atomic resolution understanding of Aβ aggregates, which appear to exist in multiple conformations, is most desirable for future therapeutic development. The investigative difficulties, structures of these small Aβ aggregates, and current therapeutics are summarized in this review. PMID:27505013

  6. Laser-Induced In-Source Decay Applied to the Determination of Amyloid-Beta in Alzheimer's Brains.

    Science.gov (United States)

    Kelley, Andrea R; Perry, George; Castellani, Rudolph J; Bach, Stephan B H

    2016-03-16

    A method for the analysis of amyloid-beta peptides in isolated plaques and intact tissue sections affected by Alzheimer's disease (AD) is presented. This method employs matrix-assisted laser desorption/ionization (MALDI) time-of-flight mass spectrometry and the inherent laser-induced in-source decay (ISD) that occurs coupled with imaging mass spectrometry (IMS) to investigate the composition of these samples eliminating the need for other confirmational MS/MS techniques. These results demonstrate this technique's usefulness for the identification of amyloid-beta peptides in tissue and isolated senile plaques from AD patients using the reproducible fragmentation pattern demonstrated via the laser-induced ISD of synthetic amyloid-beta peptide clips (1-40, 1-42). Clear differences between the hippocampal AD tissue and the control hippocampal tissue regarding the presence of amyloid-beta have been identified. These are based on laser-induced ISD of standard amyloid-beta clips as controls as well as the analysis of isolated senile plaques as a confirmation before tissue analysis. Using the resulting observed peptide clip masses from the control data, we present mass spectrometry based identification of the amyloid-beta peptides in both isolated plaques and hippocampal regions of those patients diagnosed with AD. PMID:26720297

  7. Inhibition of beta-amyloid aggregation by fluorescent dye labels

    Energy Technology Data Exchange (ETDEWEB)

    Amaro, Mariana; Wellbrock, Thorben; Birch, David J. S.; Rolinski, Olaf J., E-mail: o.j.rolinski@strath.ac.uk [Photophysics group, Centre for Molecular Nanometrology, Department of Physics, Scottish Universities Physics Alliance, University of Strathclyde, 107 Rottenrow, Glasgow G4 0NG (United Kingdom)

    2014-02-10

    The fluorescence decay of beta-amyloid's (Aβ) intrinsic fluorophore tyrosine has been used for sensing the oligomer formation of dye-labelled Aβ monomers and the results compared with previously studied oligomerization of the non-labelled Aβ peptides. It has been demonstrated that two different sized, covalently bound probes 7-diethylaminocoumarin-3-carbonyl and Hilyte Fluor 488 (HLF), alter the rate and character of oligomerization to different extents. The ability of HLF to inhibit formation of highly ordered structures containing beta-sheets was also shown. The implications of our findings for using fluorescence methods in amyloidosis research are discussed and the advantages of this auto-fluorescence approach highlighted.

  8. Characteristics of Amyloid-Related Oligomers Revealed by Crystal Structures of Macrocyclic [beta]-Sheet Mimics

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Cong; Sawaya, Michael R.; Cheng, Pin-Nan; Zheng, Jing; Nowick, James S.; Eisenberg, David (UCI); (UCLA)

    2011-09-20

    Protein amyloid oligomers have been strongly linked to amyloid diseases and can be intermediates to amyloid fibers. {beta}-Sheets have been identified in amyloid oligomers. However, because of their transient and highly polymorphic properties, the details of their self-association remain elusive. Here we explore oligomer structure using a model system: macrocyclic peptides. Key amyloidogenic sequences from A{beta} and tau were incorporated into macrocycles, thereby restraining them to {beta}-strands, but limiting the growth of the oligomers so they may crystallize and cannot fibrillate. We determined the atomic structures for four such oligomers, and all four reveal tetrameric interfaces in which {beta}-sheet dimers pair together by highly complementary, dry interfaces, analogous to steric zippers found in fibers, suggesting a common structure for amyloid oligomers and fibers. In amyloid fibers, the axes of the paired sheets are either parallel or antiparallel, whereas the oligomeric interfaces display a variety of sheet-to-sheet pairing angles, offering a structural explanation for the heterogeneity of amyloid oligomers.

  9. BETASCAN: probable beta-amyloids identified by pairwise probabilistic analysis.

    Directory of Open Access Journals (Sweden)

    Allen W Bryan

    2009-03-01

    Full Text Available Amyloids and prion proteins are clinically and biologically important beta-structures, whose supersecondary structures are difficult to determine by standard experimental or computational means. In addition, significant conformational heterogeneity is known or suspected to exist in many amyloid fibrils. Recent work has indicated the utility of pairwise probabilistic statistics in beta-structure prediction. We develop here a new strategy for beta-structure prediction, emphasizing the determination of beta-strands and pairs of beta-strands as fundamental units of beta-structure. Our program, BETASCAN, calculates likelihood scores for potential beta-strands and strand-pairs based on correlations observed in parallel beta-sheets. The program then determines the strands and pairs with the greatest local likelihood for all of the sequence's potential beta-structures. BETASCAN suggests multiple alternate folding patterns and assigns relative a priori probabilities based solely on amino acid sequence, probability tables, and pre-chosen parameters. The algorithm compares favorably with the results of previous algorithms (BETAPRO, PASTA, SALSA, TANGO, and Zyggregator in beta-structure prediction and amyloid propensity prediction. Accurate prediction is demonstrated for experimentally determined amyloid beta-structures, for a set of known beta-aggregates, and for the parallel beta-strands of beta-helices, amyloid-like globular proteins. BETASCAN is able both to detect beta-strands with higher sensitivity and to detect the edges of beta-strands in a richly beta-like sequence. For two proteins (Abeta and Het-s, there exist multiple sets of experimental data implying contradictory structures; BETASCAN is able to detect each competing structure as a potential structure variant. The ability to correlate multiple alternate beta-structures to experiment opens the possibility of computational investigation of prion strains and structural heterogeneity of amyloid

  10. New Insights in the Amyloid-Beta Interaction with Mitochondria

    Directory of Open Access Journals (Sweden)

    Carlos Spuch

    2012-01-01

    Full Text Available Biochemical and morphological alterations of mitochondria may play an important role in the pathogenesis of Alzheimer’s disease (AD. Particularly, mitochondrial dysfunction is a hallmark of amyloid-beta-induced neuronal toxicity in Alzheimer’s disease. The recent emphasis on the intracellular biology of amyloid-beta and its precursor protein (APP has led researchers to consider the possibility that mitochondria-associated and mitochondrial amyloid-beta may directly cause neurotoxicity. Both proteins are known to localize to mitochondrial membranes, block the transport of nuclear-encoded mitochondrial proteins to mitochondria, interact with mitochondrial proteins, disrupt the electron transport chain, increase reactive oxygen species production, cause mitochondrial damage, and prevent neurons from functioning normally. In this paper, we will outline current knowledge of the intracellular localization of amyloid-beta. Moreover, we summarize evidence from AD postmortem brain as well as animal AD models showing that amyloid-beta triggers mitochondrial dysfunction through a number of pathways such as impairment of oxidative phosphorylation, elevation of reactive oxygen species production, alteration of mitochondrial dynamics, and interaction with mitochondrial proteins. Thus, this paper supports the Alzheimer cascade mitochondrial hypothesis such as the most important early events in this disease, and probably one of the future strategies on the therapy of this neurodegenerative disease.

  11. High-affinity Anticalins with aggregation-blocking activity directed against the Alzheimer β-amyloid peptide

    OpenAIRE

    Rauth, Sabine; Hinz, Dominik; Börger, Michael; Uhrig, Markus; Mayhaus, Manuel; Riemenschneider, Matthias; Skerra, Arne

    2016-01-01

    Amyloid beta (Aβ) peptides, in particular Aβ42 and Aβ40, exert neurotoxic effects and their overproduction leads to amyloid deposits in the brain, thus constituting an important biomolecular target for treatments of Alzheimer's disease (AD). We describe the engineering of cognate Anticalins as a novel type of neutralizing protein reagent based on the human lipocalin scaffold. Phage display selection from a genetic random library comprising variants of the human lipocalin 2 (Lcn2) with mutatio...

  12. Antiaggregation Potential of Padina gymnospora against the Toxic Alzheimer's Beta-Amyloid Peptide 25-35 and Cholinesterase Inhibitory Property of Its Bioactive Compounds.

    Directory of Open Access Journals (Sweden)

    Balakrishnan Shanmuganathan

    Full Text Available Inhibition of β-amyloid (Aβ aggregation in the cerebral cortex of the brain is a promising therapeutic and defensive strategy in identification of disease modifying agents for Alzheimer's disease (AD. Since natural products are considered as the current alternative trend for the discovery of AD drugs, the present study aims at the evaluation of anti-amyloidogenic potential of the marine seaweed Padina gymnospora. Prevention of aggregation and disaggregation of the mature fibril formation of Aβ 25-35 by acetone extracts of P. gymnospora (ACTPG was evaluated in two phases by Thioflavin T assay. The results were further confirmed by confocal laser scanning microscopy (CLSM analysis and Fourier transform infrared (FTIR spectroscopic analysis. The results of antiaggregation and disaggregation assay showed that the increase in fluorescence intensity of aggregated Aβ and the co-treatment of ACTPG (250 μg/ml with Aβ 25-35, an extensive decrease in the fluorescence intensity was observed in both phases, which suggests that ACTPG prevents the oligomers formation and disaggregation of mature fibrils. In addition, ACTPG was subjected to column chromatography and the bioactivity was screened based on the cholinesterase inhibitory activity. Finally, the active fraction was subjected to LC-MS/MS analysis for the identification of bioactive compounds. Overall, the results suggest that the bioactive compound alpha bisabolol present in the alga might be responsible for the observed cholinesterase inhibition with the IC50 value < 10 μg/ml for both AChE and BuChE when compared to standard drug donepezil (IC50 value < 6 μg/ml and support its use for the treatment of neurological disorders.

  13. Effect of Curcumin on the metal ion induced fibrillization of Amyloidpeptide

    Science.gov (United States)

    Banerjee, Rona

    2014-01-01

    The effect of Curcumin on Cu(II) and Zn(II) induced oligomerization and protofibrillization of the amyloid-beta (Aβ) peptide has been studied by spectroscopic and microscopic methods. Curcumin could significantly reduce the β-sheet content of the peptide in a time dependent manner. It also plays an antagonistic role in β-sheet formation that is promoted by metal ions like Cu(II) and Zn(II) as observed by Circular Dichroism (CD) spectroscopy. Atomic force microscopic (AFM) images show that spontaneous fibrillization of the peptide occurs in presence of Cu(II) and Zn(II) but is inhibited on incubation of the peptide with Curcumin indicating the beneficial role of Curcumin in preventing the aggregation of Aβ peptide.

  14. Amyloid fibrils composed of hexameric peptides attenuate neuroinflammation.

    Science.gov (United States)

    Kurnellas, Michael P; Adams, Chris M; Sobel, Raymond A; Steinman, Lawrence; Rothbard, Jonathan B

    2013-04-01

    The amyloid-forming proteins tau, αB crystallin, and amyloid P protein are all found in lesions of multiple sclerosis (MS). Our previous work established that amyloidogenic peptides from the small heat shock protein αB crystallin (HspB5) and from amyloid β fibrils, characteristic of Alzheimer's disease, were therapeutic in experimental autoimmune encephalomyelitis (EAE), reflecting aspects of the pathology of MS. To understand the molecular basis for the therapeutic effect, we showed a set of amyloidogenic peptides composed of six amino acids, including those from tau, amyloid β A4, major prion protein (PrP), HspB5, amylin, serum amyloid P, and insulin B chain, to be anti-inflammatory and capable of reducing serological levels of interleukin-6 and attenuating paralysis in EAE. The chaperone function of the fibrils correlates with the therapeutic outcome. Fibrils composed of tau 623-628 precipitated 49 plasma proteins, including apolipoprotein B-100, clusterin, transthyretin, and complement C3, supporting the hypothesis that the fibrils are active biological agents. Amyloid fibrils thus may provide benefit in MS and other neuroinflammatory disorders. PMID:23552370

  15. Beta-amyloid, cholinergní neurony a Alzheimerova choroba

    Czech Academy of Sciences Publication Activity Database

    Kašparová, Jana; Doležal, Vladimír

    2002-01-01

    Roč. 51, č. 2 (2002), s. 82-94. ISSN 0009-0557 R&D Projects: GA MZd NF5183; GA ČR GA305/01/0283 Institutional research plan: CEZ:AV0Z5011922 Keywords : Alzheimer 's disease * beta-amyloid * cholinergic neurons Subject RIV: FR - Pharmacology ; Medidal Chemistry

  16. Distribution of beta-amyloid in the canine brain.

    Science.gov (United States)

    Hou, Y; White, R G; Bobik, M; Marks, J S; Russell, M J

    1997-03-01

    The distribution of amyloid-beta protein (A beta) in the canine brain was demonstrated by immunochemistry on serially sectioned tissues from 10 aged mixed breed dogs. Summation of quantitative data and relegation to anatomical sites for the 10 dogs showed A beta to be widely distributed in the cortex and hippocampus while completely absent in the brain stem and cerebellum. The highest density of A beta was in the dentate gyrus of the hippocampus. Cortical areas exhibiting the greatest A beta deposition were the posterior and medial suprasylvius gyrus and the proreus gyrus of the frontal lobe. Unlike humans the canine entorhinal cortex, amygdala, basal ganglia and olfactory bulbs were rarely affected. This suggested that the highly developed olfactory pathways of the canine are generally spared from A beta deposition. PMID:9141082

  17. Amyloid-beta Positron Emission Tomography Imaging Probes : A Critical Review

    NARCIS (Netherlands)

    Kepe, Vladimir; Moghbel, Mateen C.; Langstrom, Bengt; Zaidi, Habib; Vinters, Harry V.; Huang, Sung-Cheng; Satyamurthy, Nagichettiar; Doudet, Doris; Mishani, Eyal; Cohen, Robert M.; Hoilund-Carlsen, Poul F.; Alavi, Abass; Barrio, Jorge R.

    2013-01-01

    The rapidly rising prevalence and cost of Alzheimer's disease in recent decades has made the imaging of amyloid-beta deposits the focus of intense research. Several amyloid imaging probes with purported specificity for amyloid-beta plaques are currently at various stages of FDA approval. However, a

  18. A peptide study of the relationship between the collagen triple-helix and amyloid

    OpenAIRE

    Parmar, Avanish S.; Nunes, Ana Monica; Baum, Jean; Brodsky, Barbara

    2012-01-01

    Type XXV collagen, or Collagen-Like Amyloidogenic Component (CLAC), is a component of amyloid plaques, and recent studies suggest this collagen affects amyloid fibril elongation and has a genetic association with Alzheimer’s disease. The relationship between the collagen triple helix and amyloid fibrils was investigated by studying peptide models, including a very stable triple helical peptide (Pro-Hyp-Gly)10; an amyloidogenic peptide GNNQQNY; and a hybrid peptide where the GNNQQNY sequence w...

  19. Reexamining Alzheimer's disease: evidence for a protective role for amyloid-beta protein precursor and amyloid-beta.

    Science.gov (United States)

    Castellani, Rudy J; Lee, Hyoung-gon; Siedlak, Sandra L; Nunomura, Akihiko; Hayashi, Takaaki; Nakamura, Masao; Zhu, Xiongwei; Perry, George; Smith, Mark A

    2009-01-01

    Alzheimer's disease (AD) is an age-related neurodegenerative disease characterized clinically by cognitive decline and pathologically by the accumulation of amyloid-beta-containing senile plaques and neurofibrillary tangles. A great deal of attention has focused, focused on amyloid-beta as the major pathogenic mechanism with the ultimate goal of using amyloid-beta lowering therapies as an avenue of treatment. Unfortunately, nearly a quarter century later, no tangible progress has been offered, whereas spectacular failure tends to be the most compelling. We have long contended, as has substantial literature, that proteinaceous accumulations are simply downstream and, often, endstage manifestations of disease. Their overall poor correlation with the level of dementia, and their presence in the cognitively intact is evidence that is often ignored as an inconvenient truth. Current research examining amyloid oligomers, therefore, will add copious details to what is, in essence, a reductionist distraction from upstream pleiotrophic processes such as oxidative stress, cell cycle dysfunction, and inflammation. It is now long overdue that the neuroscientists avoid the pitfall of perseverating on "proteinopathies'' and recognize that the continued targeting of end stage lesions in the face of repeated failure, or worse, is a losing proposition. PMID:19584435

  20. Gold Nanoparticles and Microwave Irradiation Inhibit Beta-Amyloid Amyloidogenesis

    Directory of Open Access Journals (Sweden)

    Bastus Neus

    2008-01-01

    Full Text Available Abstract Peptide-Gold nanoparticles selectively attached to β-amyloid protein (Aβ amyloidogenic aggregates were irradiated with microwave. This treatment produces dramatic effects on the Aβ aggregates, inhibiting both the amyloidogenesis and the restoration of the amyloidogenic potential. This novel approach offers a new strategy to inhibit, locally and remotely, the amyloidogenic process, which could have application in Alzheimer’s disease therapy. We have studied the irradiation effect on the amyloidogenic process in the presence of conjugates peptide-nanoparticle by transmission electronic microscopy observations and by Thioflavine T assays to quantify the amount of fibrils in suspension. The amyloidogenic aggregates rather than the amyloid fibrils seem to be better targets for the treatment of the disease. Our results could contribute to the development of a new therapeutic strategy to inhibit the amyloidogenic process in Alzheimer’s disease.

  1. Gold Nanoparticles and Microwave Irradiation Inhibit Beta-Amyloid Amyloidogenesis

    Science.gov (United States)

    Araya, Eyleen; Olmedo, Ivonne; Bastus, Neus G.; Guerrero, Simón; Puntes, Víctor F.; Giralt, Ernest; Kogan, Marcelo J.

    2008-11-01

    Peptide-Gold nanoparticles selectively attached to β-amyloid protein (Aβ) amyloidogenic aggregates were irradiated with microwave. This treatment produces dramatic effects on the Aβ aggregates, inhibiting both the amyloidogenesis and the restoration of the amyloidogenic potential. This novel approach offers a new strategy to inhibit, locally and remotely, the amyloidogenic process, which could have application in Alzheimer’s disease therapy. We have studied the irradiation effect on the amyloidogenic process in the presence of conjugates peptide-nanoparticle by transmission electronic microscopy observations and by Thioflavine T assays to quantify the amount of fibrils in suspension. The amyloidogenic aggregates rather than the amyloid fibrils seem to be better targets for the treatment of the disease. Our results could contribute to the development of a new therapeutic strategy to inhibit the amyloidogenic process in Alzheimer’s disease.

  2. NNanomechanical characteristics of proteins and peptides in amyloid

    OpenAIRE

    Boayue, Nya Mehnwolo

    2012-01-01

    ......The understanding of the aggregation of amyloid fibrils is essential as they are linked to a number of diseases such as Alzheimer and Parkston’s disease. Amy- loids from different proteins or peptides have common characteristics such as core β-sheet structure, green birefringence upon binding to Congo red, and fibrillar mor- phology. In this thesis, I report single molecule analysis of TTR105−115 a fragment of transthyretin, a serum and cerebrospinal fluid carrier of ...

  3. Oligomer Formation of Toxic and Functional Amyloid Peptides Studied with Atomistic Simulations.

    Science.gov (United States)

    Carballo-Pacheco, Martín; Ismail, Ahmed E; Strodel, Birgit

    2015-07-30

    Amyloids are associated with diseases, including Alzheimer's, as well as functional roles such as storage of peptide hormones. It is still unclear what differences exist between aberrant and functional amyloids. However, it is known that soluble oligomers formed during amyloid aggregation are more toxic than the final fibrils. Here, we perform molecular dynamics simulations to study the aggregation of the amyloidpeptide Aβ25-35, associated with Alzheimer's disease, and two functional amyloid-forming tachykinin peptides: kassinin and neuromedin K. Although the three peptides have similar primary sequences, tachykinin peptides, in contrast to Aβ25-35, form nontoxic amyloids. Our simulations reveal that the charge of the C-terminus is essential to controlling the aggregation process. In particular, when the kassinin C-terminus is not amidated, the aggregation kinetics decreases considerably. In addition, we observe that the monomeric peptides in extended conformations aggregate faster than those in collapsed hairpin-like conformations. PMID:26130191

  4. Designing peptidic inhibitors of serum amyloid A aggregation process.

    Science.gov (United States)

    Sosnowska, Marta; Skibiszewska, Sandra; Kamińska, Emilia; Wieczerzak, Ewa; Jankowska, Elżbieta

    2016-04-01

    Amyloid A amyloidosis is a life-threatening complication of a wide range of chronic inflammatory, infectious and neoplastic diseases, and the most common form of systemic amyloidosis worldwide. It is characterized by extracellular tissue deposition of fibrils that are composed of fragments of serum amyloid A protein (SAA), a major acute-phase reactant protein, produced predominantly by hepatocytes. Currently, there are no approved therapeutic agents directed against the formation of fibrillar SAA assemblies. We attempted to develop peptidic inhibitors based on their similarity and complementarity to the regions critical for SAA self-association, which they should interact with and block their assembly into amyloid fibrils. Inh1 and inh4 which are comprised of the residues from the amyloidogenic region of SAA1.1 protein and Aβ peptide, respectively, were found by us as capable to significantly suppress aggregation of the SAA1-12 peptide. It was chosen as an aggregation model that mimicks the amyloidogenic nucleus of SAA protein. We suppose that aromatic interactions may be responsible for inhibitory activity of both compounds. We also recognized that aromatic residues are involved in self-association of SAA1-12. PMID:26759015

  5. Alzheimer's disease amyloid-beta links lens and brain pathology in Down syndrome.

    Directory of Open Access Journals (Sweden)

    Juliet A Moncaster

    Full Text Available Down syndrome (DS, trisomy 21 is the most common chromosomal disorder and the leading genetic cause of intellectual disability in humans. In DS, triplication of chromosome 21 invariably includes the APP gene (21q21 encoding the Alzheimer's disease (AD amyloid precursor protein (APP. Triplication of the APP gene accelerates APP expression leading to cerebral accumulation of APP-derived amyloid-beta peptides (Abeta, early-onset AD neuropathology, and age-dependent cognitive sequelae. The DS phenotype complex also includes distinctive early-onset cerulean cataracts of unknown etiology. Previously, we reported increased Abeta accumulation, co-localizing amyloid pathology, and disease-linked supranuclear cataracts in the ocular lenses of subjects with AD. Here, we investigate the hypothesis that related AD-linked Abeta pathology underlies the distinctive lens phenotype associated with DS. Ophthalmological examinations of DS subjects were correlated with phenotypic, histochemical, and biochemical analyses of lenses obtained from DS, AD, and normal control subjects. Evaluation of DS lenses revealed a characteristic pattern of supranuclear opacification accompanied by accelerated supranuclear Abeta accumulation, co-localizing amyloid pathology, and fiber cell cytoplasmic Abeta aggregates (approximately 5 to 50 nm identical to the lens pathology identified in AD. Peptide sequencing, immunoblot analysis, and ELISA confirmed the identity and increased accumulation of Abeta in DS lenses. Incubation of synthetic Abeta with human lens protein promoted protein aggregation, amyloid formation, and light scattering that recapitulated the molecular pathology and clinical features observed in DS lenses. These results establish the genetic etiology of the distinctive lens phenotype in DS and identify the molecular origin and pathogenic mechanism by which lens pathology is expressed in this common chromosomal disorder. Moreover, these findings confirm increased Abeta

  6. The role of mutated amyloid beta 1-42 stimulating dendritic cells in a PDAPP transgenic mouse

    Directory of Open Access Journals (Sweden)

    LI Jia-lin

    2012-06-01

    Full Text Available Background Amyloid plaque is one of the pathological hallmarks of Alzheimer's disease (AD. Anti-beta-amyloid (Aβ immunotherapy is effective in removing brain Aβ, but has shown to be associated with detrimental effects. To avoid severe adverse effects such as meningoencephalitis induced by amyloid beta vaccine with adjuvant, and take advantage of amyloid beta antibody's therapeutic effect on Alzheimer's disease sufficiently, our group has developed a new Alzheimer vaccine with mutated amyloid beta 1-42 peptide stimulating dendritic cells (DC. Our previous work has confirmed that DC vaccine can induce adequate anti-amyloid beta antibody in PDAPP Tg mice safely and efficiently. The DC vaccine can improve impaired learning and memory in the Alzheimer's animal model, and did not cause microvasculitis, microhemorrhage or meningoencephalitis in the animal model. However, the exact mechanism of immunotherapy which reduces Aβ deposition remains unknown. In this report, we studied the mechanism of the vaccine, thinking that this may have implications for better understanding of the pathogenesis of Alzheimer's disease. Methods A new Alzheimer vaccine with mutated amyloid beta 1-42 peptide stimulating DC which were obtained from C57/B6 mouse bone marrow was developed. Amyloid beta with Freund's adjuvant was inoculated at the same time to act as positive control. After the treatment was done, the samples of brains were collected, fixed, cut. Immunohistochemical staining was performed to observe the expression of the nuclear hormone liver X receptor (LXR, membrane-bound protein tyrosine phosphatase (CD45, the ATP-binding cassette family of active transporters (ABCA1, receptor for advanced glycation end products (RAGE, β-site APP-cleaving enzyme (BACE and Aβ in mouse brain tissue. Semi-quantitative analysis was used to defect CA1, CA2, CA3, DG, Rad in hippocampus region and positive neuron in cortex region. Results Aβ was significantly reduced in the

  7. Time Until Neuron Death After Initial Puncture From an Amyloid-Beta Oligomer

    CERN Document Server

    Horton, Tanner

    2015-01-01

    Hardy and Higgins first proposed the amyloid cascade hypothesis in 1992, stating that the decrease in neuronal function observed in Alzheimer's Disease (AD) is due to a process initiated by the oligomerization of amyloid-beta peptides. One hypothesis states that toxicity arises from the aggregation of amyloid-beta into a pore structure, which can then puncture the brain cell membrane; this allow toxic calcium ions to flood through the opening, causing eventual cell death. In 2007, neurobiologist Ruth Nussinov calculated the three pore sizes most likely to occur within the brain. Based on her findings, we constructed a method to determine the time it takes for a cell to die after the cell is punctured by the pore. Our findings have shown that cell death occurs within one second after the oligomer makes contact with the cell. We believe this is important because instant cell death has been one criticism of Nussinov's model, and we have calculated a concrete time value for that criticism. We identify two potenti...

  8. Successful adjuvant-free vaccination of BALB/c mice with mutated amyloid β peptides

    Directory of Open Access Journals (Sweden)

    Wahi Monika M

    2008-02-01

    Full Text Available Abstract Background A recent human clinical trial of an Alzheimer's disease (AD vaccine using amyloid beta (Aβ 1–42 plus QS-21 adjuvant produced some positive results, but was halted due to meningoencephalitis in some participants. The development of a vaccine with mutant Aβ peptides that avoids the use of an adjuvant may result in an effective and safer human vaccine. Results All peptides tested showed high antibody responses, were long-lasting, and demonstrated good memory response. Epitope mapping indicated that peptide mutation did not lead to epitope switching. Mutant peptides induced different inflammation responses as evidenced by cytokine profiles. Ig isotyping indicated that adjuvant-free vaccination with peptides drove an adequate Th2 response. All anti-sera from vaccinated mice cross-reacted with human Aβ in APP/PS1 transgenic mouse brain tissue. Conclusion Our study demonstrated that an adjuvant-free vaccine with different Aβ peptides can be an effective and safe vaccination approach against AD. This study represents the first report of adjuvant-free vaccines utilizing Aβ peptides carrying diverse mutations in the T-cell epitope. These largely positive results provide encouragement for the future of the development of human vaccinations for AD.

  9. Neuroinflammation and Complexes of 17 beta-Hydroxysteroid Dehydrogenase type 10-Amyloid beta in Alzheimer's Disease

    Czech Academy of Sciences Publication Activity Database

    Krištofíková, Z.; Řípová, D.; Bartoš, A.; Bocková, Markéta; Hegnerová, Kateřina; Říčný, J.; Čechová, L.; Vrajová, M.; Homola, Jiří

    2013-01-01

    Roč. 10, č. 2 (2013), s. 165-173. ISSN 1567-2050 R&D Projects: GA MZd(CZ) NT11225 Institutional support: RVO:67985882 Keywords : Amyloid beta * mitochondrial enzyme * Alzheimer 's disease Subject RIV: JB - Sensors, Measurment, Regulation Impact factor: 3.796, year: 2013

  10. Expression of the alternative oxidase mitigates beta-amyloid production and toxicity in model systems.

    Science.gov (United States)

    El-Khoury, Riyad; Kaulio, Eveliina; Lassila, Katariina A; Crowther, Damian C; Jacobs, Howard T; Rustin, Pierre

    2016-07-01

    Mitochondrial dysfunction has been widely associated with the pathology of Alzheimer's disease, but there is no consensus on whether it is a cause or consequence of disease, nor on the precise mechanism(s). We addressed these issues by testing the effects of expressing the alternative oxidase AOX from Ciona intestinalis, in different models of AD pathology. AOX can restore respiratory electron flow when the cytochrome segment of the mitochondrial respiratory chain is inhibited, supporting ATP synthesis, maintaining cellular redox homeostasis and mitigating excess superoxide production at respiratory complexes I and III. In human HEK293-derived cells, AOX expression decreased the production of beta-amyloid peptide resulting from antimycin inhibition of respiratory complex III. Because hydrogen peroxide was neither a direct product nor substrate of AOX, the ability of AOX to mimic antioxidants in this assay must be indirect. In addition, AOX expression was able to partially alleviate the short lifespan of Drosophila models neuronally expressing human beta-amyloid peptides, whilst abrogating the induction of markers of oxidative stress. Our findings support the idea of respiratory chain dysfunction and excess ROS production as both an early step and as a pathologically meaningful target in Alzheimer's disease pathogenesis, supporting the concept of a mitochondrial vicious cycle underlying the disease. PMID:27094492

  11. Imaging of dialysis-related amyloid (AB-amyloid) deposits with 131I-beta 2-microglobulin

    International Nuclear Information System (INIS)

    The diagnosis of dialysis-related amyloid (AB-amyloid) has been based usually on clinical and radiological criteria. Following the discovery that beta 2-microglobulin was the major protein of this amyloid, we isolated and radiolabelled uremic plasma beta 2-microglobulin. After intravenous injection, gamma-camera images of selected joint areas were obtained from 42 patients who were on regular hemodialysis therapy. Positive scans involving the shoulder, hip, knee and carpal regions were found in 13 of 14 patients treated for more than 10 years and 10 of 16 patients treated for 5 to 10 years. Patients treated for less time had negative scans. Specificity was indicated by negative scans in non-amyloid inflammatory lesions in control hemodialysis patients. Up to 48-fold tracer enrichment was detected in excised AB-amyloid containing tissue as compared to amyloid-free tissue. These findings suggest that circulating radiolabelled beta 2-microglobulin is taken up by the amyloid deposits. This method may non-invasively detect tissue infiltrates of amyloid. It may also permit prospective evaluation of the efficacy of prophylactic dialysis strategies which are designed to prevent or delay the onset of this complication of long-term dialysis

  12. ToF-SIMS analysis of amyloid beta aggregation on different lipid membranes.

    Science.gov (United States)

    Yokoyama, Yuta; Aoyagi, Satoka; Shimanouchi, Toshinori; Iwamura, Miki; Iwai, Hideo

    2016-06-01

    Amyloid beta (Aβ) peptides are considered to be strongly related to Alzheimer's disease. Aβ peptides form a β-sheet structure on hard lipid membranes and it would aggregate to form amyloid fibrils, which are toxic to cells. However, the aggregation mechanism of Aβ is not fully understood. To evaluate the influence of the lipid membrane condition for Aβ aggregation, the adsorption forms of Aβ (1-40) on mixture membranes of lipid 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and cholesterol β-d-glucoside (β-CG) were investigated by time-of-flight secondary ion mass spectrometry. As a result, Aβ adsorbed along the localized DMPC lipid on the mixture lipid membranes, whereas it was adsorbed homogeneously on the pure DMPC and β-CG membranes. Moreover, amino acid fragments that mainly existed in the n-terminal of Aβ (1-40) peptide were strongly detected on the localized DMPC region. These results suggested that the Aβ was adsorbed along the localized DMPC lipid with a characteristic orientation. These findings suggest that the hardness of the membrane is very sensitive to coexisting materials and that surface hardness is important for aggregation of Aβ. PMID:26822505

  13. Manipulation of self-assembly amyloid peptide nanotubes by dielectrophoresis.

    Science.gov (United States)

    Castillo, Jaime; Tanzi, Simone; Dimaki, Maria; Svendsen, Winnie

    2008-12-01

    Self-assembled amyloid peptide nanotubes (SAPNT) were manipulated and immobilized using dielectrophoresis. Micro-patterned electrodes of Au were fabricated by photolithography and lifted off on a silicon dioxide layer. SAPNT were manipulated by adjusting the amplitude and frequency of the applied voltage. The immobilized SAPNT were evaluated by SEM and atomic force microscopy. The conductivity of the immobilized SAPNT was studied by I-V characterization, for both single SAPNT and bundles. This work illustrates a way to manipulate and integrate biological nanostructures into novel bio-nanoassemblies with concrete applications, such as field-effect transistors, microprobes, microarrays, and biosensing devices. PMID:19130587

  14. Dimensionality of carbon nanomaterial impacting on the modulation of amyloid peptide assembly

    Science.gov (United States)

    Wang, J.; Zhu, Z.; Bortolini, C.; Hoffmann, S. V.; Amari, A.; Zhang, H. X.; Liu, L.; Dong, M. D.

    2016-07-01

    A wide variety of inorganic nanomaterials have been exploited so far for their great potential for biological applications. Some of these materials could be valid candidates to modulate the assembly of amyloid peptides, which is relevant to amyloid-related diseases. In this work, we reveal that a carbon nanomaterial can indeed modulate the assembly of amyloid peptides and, additionally, we show that this modulating effect is closely related to the dimensionality of the nanomaterials.

  15. Cytochrome c peroxidase activity of heme bound amyloid β peptides.

    Science.gov (United States)

    Seal, Manas; Ghosh, Chandradeep; Basu, Olivia; Dey, Somdatta Ghosh

    2016-09-01

    Heme bound amyloid β (Aβ) peptides, which have been associated with Alzheimer's disease (AD), can catalytically oxidize ferrocytochrome c (Cyt c(II)) in the presence of hydrogen peroxide (H2O2). The rate of catalytic oxidation of Cyt(II) c has been found to be dependent on several factors, such as concentration of heme(III)-Aβ, Cyt(II) c, H2O2, pH, ionic strength of the solution, and peptide chain length of Aβ. The above features resemble the naturally occurring enzyme cytochrome c peroxidase (CCP) which is known to catalytically oxidize Cyt(II) c in the presence of H2O2. In the absence of heme(III)-Aβ, the oxidation of Cyt(II) c is not catalytic. Thus, heme-Aβ complex behaves as CCP. PMID:27270708

  16. Screening for a human single chain Fv antibody against epitope on amyloid-beta 1-40 from a human phage display library

    Institute of Scientific and Technical Information of China (English)

    ZHAO Zhen-fu; GAO Guo-quan; LIU Shu; ZOU Jun-tao; XIE Yao; YUAN Qun-fang; WANG Hua-qiao; YAO Zhi-bin

    2007-01-01

    @@ Amyloid-beta peptides (Aβ) are believed to be responsible for the mental decline in patients with Alzheimer's disease (AD). In 1999, Schenk et al1 reported that immunization with Aβ attenuated AD-like pathology in the PDAPP mouse, and developed a new vaccination approach to AD.

  17. Alzheimer's disease cybrids replicate beta-amyloid abnormalities through cell death pathways.

    Science.gov (United States)

    Khan, S M; Cassarino, D S; Abramova, N N; Keeney, P M; Borland, M K; Trimmer, P A; Krebs, C T; Bennett, J C; Parks, J K; Swerdlow, R H; Parker, W D; Bennett, J P

    2000-08-01

    Alzheimer's disease (AD) is characterized by the deposition in brain of beta-amyloid (Abeta) peptides, elevated brain caspase-3, and systemic deficiency of cytochrome c oxidase. Although increased Abeta deposition can result from mutations in amyloid precursor protein or presenilin genes, the cause of increased Abeta deposition in sporadic AD is unknown. Cytoplasmic hybrid ("cybrid") cells made from mitochondrial DNA of nonfamilial AD subjects show antioxidant-reversible lowering of mitochondrial membrane potential (delta(gYm), secrete twice as much Abeta(1-40) and Abeta(1-42), have increased intracellular Abeta(1-40) (1.7-fold), and develop Congo red-positive Abeta deposits. Also elevated are cytoplasmic cytochrome c (threefold) and caspase-3 activity (twofold). Increased AD cybrid Abeta(1-40) secretion was normalized by inhibition of caspase-3 or secretase and reduced by treatment with the antioxidant S(-)pramipexole. Expression of AD mitochondrial genes in cybrid cells depresses cytochrome c oxidase activity and increases oxidative stress, which, in turn, lowers delta(psi)m. Under stress, cells with AD mitochondrial genes are more likely to activate cell death pathways, which drive caspase 3-mediated Abeta peptide secretion and may account for increased Abeta deposition in the AD brain. Therapeutic strategies for reducing neurodegeneration in sporadic AD can address restoration of delta(psi)m and reduction of elevated Abeta secretion. PMID:10939564

  18. Amyloidpeptides time-dependent structural modifications: AFM and voltammetric characterization.

    Science.gov (United States)

    Enache, Teodor Adrian; Chiorcea-Paquim, Ana-Maria; Oliveira-Brett, Ana Maria

    2016-07-01

    The human amyloid beta (Aβ) peptides, Aβ1-40 and Aβ1-42, structural modifications, from soluble monomers to fully formed fibrils through intermediate structures, were investigated, and the results were compared with those obtained for the inverse Aβ40-1 and Aβ42-1, mutant Aβ1-40Phe(10) and Aβ1-40Nle(35), and rat Aβ1-40Rat peptide sequences. The aggregation was followed at a slow rate, in chloride free media and room temperature, and revealed to be a sequence-structure process, dependent on the physicochemical properties of each Aβ peptide isoforms, and occurring at different rates and by different pathways. The fibrilization process was investigated by atomic force microscopy (AFM), via changes in the adsorption morphology from: (i) initially random coiled structures of ∼0.6 nm height, corresponding to the Aβ peptide monomers in random coil or in α-helix conformations, to (ii) aggregates and protofibrils of 1.5-6.0 nm height and (iii) two types of fibrils, corresponding to the Aβ peptide in a β-sheet configuration. The reactivity of the carbon electrode surface was considered. The hydrophobic surface induced rapid changes of the Aβ peptide conformations, and differences between the adsorbed fibrils, formed at the carbon surface (beaded, thin, 2.0 nm height), were detected. Differential pulse voltammetry showed that, according to their primary structure, the Aβ peptides undergo oxidation in one or two steps, the first step corresponding to the tyrosine amino acids oxidation, and the second one to the histidine and methionine amino acids oxidation. The fibrilization process was electrochemically detected via the decrease of the Aβ peptide oxidation peak currents that occurred in a time dependent manner. PMID:27216391

  19. Common molecular mechanism of amyloid pore formation by Alzheimer’s β-amyloid peptide and α-synuclein

    Science.gov (United States)

    Di Scala, Coralie; Yahi, Nouara; Boutemeur, Sonia; Flores, Alessandra; Rodriguez, Léa; Chahinian, Henri; Fantini, Jacques

    2016-01-01

    Calcium-permeable pores formed by small oligomers of amyloid proteins are the primary pathologic species in Alzheimer’s and Parkinson’s diseases. However, the molecular mechanisms underlying the assembly of these toxic oligomers in the plasma membrane of brain cells remain unclear. Here we have analyzed and compared the pore-forming capability of a large panel of amyloid proteins including wild-type, variant and truncated forms, as well as synthetic peptides derived from specific domains of Aβ1-42 and α-synuclein. We show that amyloid pore formation involves two membrane lipids, ganglioside and cholesterol, that physically interact with amyloid proteins through specific structural motifs. Mutation or deletion of these motifs abolished pore formation. Moreover, α-synuclein (Parkinson) and Aβ peptide (Alzheimer) did no longer form Ca2+-permeable pores in presence of drugs that target either cholesterol or ganglioside or both membrane lipids. These results indicate that gangliosides and cholesterol cooperate to favor the formation of amyloid pores through a common molecular mechanism that can be jammed at two different steps, suggesting the possibility of a universal therapeutic approach for neurodegenerative diseases. Finally we present the first successful evaluation of such a new therapeutic approach (coined “membrane therapy”) targeting amyloid pores formed by Aβ1-42 and α-synuclein. PMID:27352802

  20. Common molecular mechanism of amyloid pore formation by Alzheimer's β-amyloid peptide and α-synuclein.

    Science.gov (United States)

    Di Scala, Coralie; Yahi, Nouara; Boutemeur, Sonia; Flores, Alessandra; Rodriguez, Léa; Chahinian, Henri; Fantini, Jacques

    2016-01-01

    Calcium-permeable pores formed by small oligomers of amyloid proteins are the primary pathologic species in Alzheimer's and Parkinson's diseases. However, the molecular mechanisms underlying the assembly of these toxic oligomers in the plasma membrane of brain cells remain unclear. Here we have analyzed and compared the pore-forming capability of a large panel of amyloid proteins including wild-type, variant and truncated forms, as well as synthetic peptides derived from specific domains of Aβ1-42 and α-synuclein. We show that amyloid pore formation involves two membrane lipids, ganglioside and cholesterol, that physically interact with amyloid proteins through specific structural motifs. Mutation or deletion of these motifs abolished pore formation. Moreover, α-synuclein (Parkinson) and Aβ peptide (Alzheimer) did no longer form Ca(2+)-permeable pores in presence of drugs that target either cholesterol or ganglioside or both membrane lipids. These results indicate that gangliosides and cholesterol cooperate to favor the formation of amyloid pores through a common molecular mechanism that can be jammed at two different steps, suggesting the possibility of a universal therapeutic approach for neurodegenerative diseases. Finally we present the first successful evaluation of such a new therapeutic approach (coined "membrane therapy") targeting amyloid pores formed by Aβ1-42 and α-synuclein. PMID:27352802

  1. Neurotrophic effects of amyloid precursor protein peptide 165 in vitro.

    Science.gov (United States)

    Yao, Jie; Ma, Lina; Wang, Rong; Sheng, Shuli; Ji, Zhijuan; Zhang, Jingyan

    2016-01-01

    Diabetic encephalopathy is one of the risk factors for Alzheimer's disease. Our previous findings indicated that animals with diabetic encephalopathy exhibit learning and memory impairment in addition to hippocampal neurodegeneration, both of which are ameliorated with amyloid precursor protein (APP) 17-mer (APP17) peptide treatment. Although APP17 is neuroprotective, it is susceptible to enzymatic degradation. Derived from the active sequence structure of APP17, we have previously structurally transformed and modified several APP5-mer peptides (APP328-332 [RERMS], APP 5). We have developed seven different derivatives of APP5, including several analogs. Results from the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay on human neuroblastoma SH-SY5Y cells in the present study showed that P165 was the most neuroprotective APP5 derivative. Furthermore, we tested the effects of APP5 and P165 on the number of cells and the release of lactate dehydrogenase. Western immunoblot analyses were also performed. The digestion rates of P165 and APP5 were determined by the pepsin digestion test. P165 resisted pepsin digestion significantly more than APP5. Therefore, P165 may be optimal for oral administration. Overall, these findings suggest that P165 may be a potential drug for the treatment of diabetic encephalopathy. PMID:26551064

  2. Beta-secretase-cleaved amyloid precursor protein in Alzheimer brain: a morphologic study

    DEFF Research Database (Denmark)

    Sennvik, Kristina; Bogdanovic, N; Volkmann, Inga; Fastbom, J; Benedikz, Eirikur

    2004-01-01

    (beta-sAPP) in brain tissue sections from the frontal, temporal and occipital lobe. Strong granular beta-sAPP staining was found throughout the gray matter of all three areas, while white matter staining was considerably weaker. beta-sAPP was found to be localized in astrocytes and in axons. We found...... the beta-sAPP immunostaining to be stronger and more extensive in gray matter in Alzheimer disease (AD) cases than controls. The axonal beta-sAPP staining was patchy and unevenly distributed for the AD cases, indicating impaired axonal transport. beta-sAPP was also found surrounding senile plaques and......beta-amyloid (Abeta) is the main constituent of senile plaques seen in Alzheimer's disease. Abeta is derived from the amyloid precursor protein (APP) via proteolytic cleavage by proteases beta- and gamma-secretase. In this study, we examined content and localization of beta-secretase-cleaved APP...

  3. Low-power laser irradiation inhibits amyloid beta-induced cell apoptosis

    Science.gov (United States)

    Zhang, Heng; Wu, Shengnan

    2011-03-01

    The deposition and accumulation of amyloid-β-peptide (Aβ) in the brain are considered a pathological hallmark of Alzheimer's disease(AD). Apoptosis is a contributing pathophysiological mechanism of AD. Low-power laser irradiation (LPLI), a non-damage physical therapy, which has been used clinically for decades of years, is shown to promote cell proliferation and prevent apoptosis. Recently, low-power laser irradiation (LPLI) has been applied to moderate AD. In this study, Rat pheochromocytoma (PC12) cells were treated with amyloid beta 25-35 (Aβ25-35) for induction of apoptosis before LPLI treatment. We measured cell viability with CCK-8 according to the manufacture's protocol, the cell viability assays show that low fluence of LPLI (2 J/cm2 ) could inhibit the cells apoptosis. Then using statistical analysis of proportion of apoptotic cells by flow cytometry based on Annexin V-FITC/PI, the assays also reveal that low fluence of LPLI (2 J/cm2 ) could inhibit the Aβ-induced cell apoptosis. Taken together, we demonstrated that low fluence of LPLI (2 J/cm2 ) could inhibit the Aβ-induced cell apoptosis, these results directly point to a therapeutic strategy for the treatment of AD through LPLI.

  4. The Protective Role of Carnosic Acid against Beta-Amyloid Toxicity in Rats

    Directory of Open Access Journals (Sweden)

    H. Rasoolijazi

    2013-01-01

    Full Text Available Oxidative stress is one of the pathological mechanisms responsible for the beta- amyloid cascade associated with Alzheimer’s disease (AD. Previous studies have demonstrated the role of carnosic acid (CA, an effective antioxidant, in combating oxidative stress. A progressive cognitive decline is one of the hallmarks of AD. Thus, we attempted to determine whether the administration of CA protects against memory deficit caused by beta-amyloid toxicity in rats. Beta-amyloid (1–40 was injected by stereotaxic surgery into the Ca1 region of the hippocampus of rats in the Amyloid beta (Aβ groups. CA was delivered intraperitoneally, before and after surgery in animals in the CA groups. Passive avoidance learning and spontaneous alternation behavior were evaluated using the shuttle box and the Y-maze, respectively. The degenerating hippocampal neurons were detected by fluoro-jade b staining. We observed that beta-amyloid (1–40 can induce neurodegeneration in the Ca1 region of the hippocampus by using fluoro-jade b staining. Also, the behavioral tests revealed that CA may recover the passive avoidance learning and spontaneous alternation behavior scores in the Aβ + CA group, in comparison with the Aβ group. We found that CA may ameliorate the spatial and learning memory deficits induced by the toxicity of beta-amyloid in the rat hippocampus.

  5. Amyloid-beta: a crucial factor in Alzheimer's disease.

    Science.gov (United States)

    Sadigh-Eteghad, Saeed; Sabermarouf, Babak; Majdi, Alireza; Talebi, Mahnaz; Farhoudi, Mehdi; Mahmoudi, Javad

    2015-01-01

    Alzheimer's disease (AD) is the most prevalent form of dementia which affects people older than 60 years of age. In AD, the dysregulation of the amyloid-beta (Aβ) level leads to the appearance of senile plaques which contain Aβ depositions. Aβ is a complex biological molecule which interacts with many types of receptors and/or forms insoluble assemblies and, eventually, its nonphysiological depositions alternate with the normal neuronal conditions. In this situation, AD signs appear and the patients experience marked cognitional disabilities. In general, intellect, social skills, personality, and memory are influenced by this disease and, in the long run, it leads to a reduction in quality of life and life expectancy. Due to the pivotal role of Aβ in the pathobiology of AD, a great deal of effort has been made to reveal its exact role in neuronal dysfunctions and to finding efficacious therapeutic strategies against its adverse neuronal outcomes. Hence, the determination of its different molecular assemblies and the mechanisms underlying its pathological effects are of interest. In the present paper, some of the well-established structural forms of Aβ, its interactions with various receptors and possible molecular and cellular mechanisms underlying its neurotoxicity are discussed. In addition, several Aβ-based rodent models of AD are reviewed. PMID:25471398

  6. Seeded growth of beta-amyloid fibrils from Alzheimer's brain-derived fibrils produces a distinct fibril structure.

    Science.gov (United States)

    Paravastu, Anant K; Qahwash, Isam; Leapman, Richard D; Meredith, Stephen C; Tycko, Robert

    2009-05-01

    Studies by solid-state nuclear magnetic resonance (NMR) of amyloid fibrils prepared in vitro from synthetic 40-residue beta-amyloid (Abeta(1-40)) peptides have shown that the molecular structure of Abeta(1-40) fibrils is not uniquely determined by amino acid sequence. Instead, the fibril structure depends on the precise details of growth conditions. The molecular structures of beta-amyloid fibrils that develop in Alzheimer's disease (AD) are therefore uncertain. We demonstrate through thioflavin T fluorescence and electron microscopy that fibrils extracted from brain tissue of deceased AD patients can be used to seed the growth of synthetic Abeta(1-40) fibrils, allowing preparation of fibrils with isotopic labeling and in sufficient quantities for solid-state NMR and other measurements. Because amyloid structures propagate themselves in seeded growth, as shown in previous studies, the molecular structures of brain-seeded synthetic Abeta(1-40) fibrils most likely reflect structures that are present in AD brain. Solid-state (13)C NMR spectra of fibril samples seeded with brain material from two AD patients were found to be nearly identical, indicating the same molecular structures. Spectra of an unseeded control sample indicate greater structural heterogeneity. (13)C chemical shifts and other NMR data indicate that the predominant molecular structure in brain-seeded fibrils differs from the structures of purely synthetic Abeta(1-40) fibrils that have been characterized in detail previously. These results demonstrate a new approach to detailed structural characterization of amyloid fibrils that develop in human tissue, and to investigations of possible correlations between fibril structure and the degree of cognitive impairment and neurodegeneration in AD. PMID:19376973

  7. Beta-protein deposition: a pathogenetic link between Alzheimer's disease and cerebral amyloid angiopathies.

    Science.gov (United States)

    Coria, F; Prelli, F; Castaño, E M; Larrondo-Lillo, M; Fernandez-Gonzalez, J; van Duinen, S G; Bots, G T; Luyendijk, W; Shelanski, M L; Frangione, B

    1988-10-25

    Cerebral amyloid angiopathy (CAA) refers to a group of hereditary (hereditary cerebral hemorrhage with amyloidosis, HCHWA and sporadic (SCAA) disorders characterized by amyloid fibril deposition restricted to the leptomeningeal and cortical vasculature leading to recurrent hemorrhagic and/or ischemic accidents. On clinical and biochemical grounds, two forms of HCHWA can be distinguished. The amyloid subunit of the HCHWA of Icelandic origin is related to Cystatin C, while amyloid from patients of Dutch origin (HCHWA-D) is related to the beta-protein (or A4), the main component of vascular and plaque core amyloid in Alzheimer's disease (AD) and Down's syndrome (DS) [corrected]. SCAA is an increasingly recognized cause of stroke in normotensive individual amounting to 5-10% of all cerebrovascular accidents. We now report the isolation and partial amino acid sequence of the amyloid subunit from a case of SCAA and a new case of HCHWA-D. The recognition that a heterogeneous group of diseases are linked by similar pathological and chemical features suggests that diversity of etiological factors may promote a common pathogenetic mechanism leading to amyloid-beta (A beta) deposition, and open new ways of research in AD and CAA as they are related to dementia and stroke. PMID:3058268

  8. Multifunctional cholinesterase and amyloid Beta fibrillization modulators. Synthesis and biological investigation.

    Science.gov (United States)

    Butini, Stefania; Brindisi, Margherita; Brogi, Simone; Maramai, Samuele; Guarino, Egeria; Panico, Alessandro; Saxena, Ashima; Chauhan, Ved; Colombo, Raffaella; Verga, Laura; De Lorenzi, Ersilia; Bartolini, Manuela; Andrisano, Vincenza; Novellino, Ettore; Campiani, Giuseppe; Gemma, Sandra

    2013-12-12

    In order to identify novel Alzheimer's modifying pharmacological tools, we developed bis-tacrines bearing a peptide moiety for specific interference with surface sites of human acetylcholinesterase (hAChE) binding amyloid-beta (Aβ). Accordingly, compounds 2a-c proved to be inhibitors of hAChE catalytic and noncatalytic functions, binding the catalytic and peripheral sites, interfering with Aβ aggregation and with the Aβ self-oligomerization process (2a). Compounds 2a-c in complex with TcAChE span the gorge with the bis-tacrine system, and the peptide moieties bulge outside the gorge in proximity of the peripheral site. These moieties are likely responsible for the observed reduction of hAChE-induced Aβ aggregation since they physically hamper Aβ binding to the enzyme surface. Moreover, 2a was able to significantly interfere with Aβ self-oligomerization, while 2b,c showed improved inhibition of hAChE-induced Aβ aggregation. PMID:24900626

  9. Specific interactions between amyloidpeptide and curcumin derivatives: Ab initio molecular simulations

    Science.gov (United States)

    Ishimura, Hiromi; Kadoya, Ryushi; Suzuki, Tomoya; Murakawa, Takeru; Shulga, Sergiy; Kurita, Noriyuki

    2015-07-01

    Alzheimer's disease is caused by accumulation of amyloid-β (Aβ) peptides in a brain. To suppress the production of Aβ peptides, it is effective to inhibit the cleavage of amyloid precursor protein (APP) by secretases. However, because the secretases also play important roles to produce vital proteins for human body, inhibitors for the secretases may have side effects. To propose new agents for protecting the cleavage site of APP from the attacking of the γ-secretase, we have investigated here the specific interactions between a short APP peptide and curcumin derivatives, using protein-ligand docking as well as ab initio molecular simulations.

  10. Absence of beta-amyloid in cortical cataracts of donors with and without Alzheimer's disease.

    Science.gov (United States)

    Michael, Ralph; Rosandić, Jurja; Montenegro, Gustavo A; Lobato, Elvira; Tresserra, Francisco; Barraquer, Rafael I; Vrensen, Gijs F J M

    2013-01-01

    Eye lenses from human donors with and without Alzheimer's disease (AD) were studied to evaluate the presence of amyloid in cortical cataract. We obtained 39 lenses from 21 postmortem donors with AD and 15 lenses from age-matched controls provided by the Banco de Ojos para Tratamientos de la Ceguera (Barcelona, Spain). For 17 donors, AD was clinically diagnosed by general physicians and for 4 donors the AD diagnosis was neuropathologically confirmed. Of the 21 donors with AD, 6 had pronounced bilateral cortical lens opacities and 15 only minor or no cortical opacities. As controls, 7 donors with pronounced cortical opacities and 8 donors with almost transparent lenses were selected. All lenses were photographed in a dark field stereomicroscope. Histological sections were analyzed using a standard and a more sensitive Congo red protocol, thioflavin staining and beta-amyloid immunohistochemistry. Brain tissue from two donors, one with cerebral amyloid angiopathy and another with advanced AD-related changes and one cornea with lattice dystrophy were used as positive controls for the staining techniques. Thioflavin, standard and modified Congo red staining were positive in the control brain tissues and in the dystrophic cornea. Beta-amyloid immunohistochemistry was positive in the brain tissues but not in the cornea sample. Lenses from control and AD donors were, without exception, negative after Congo red, thioflavin, and beta-amyloid immunohistochemical staining. The results of the positive control tissues correspond well with known observations in AD, amyloid angiopathy and corneas with lattice dystrophy. The absence of staining in AD and control lenses with the techniques employed lead us to conclude that there is no beta-amyloid in lenses from donors with AD or in control cortical cataracts. The inconsistency with previous studies of Goldstein et al. (2003) and Moncaster et al. (2010), both of which demonstrated positive Congo red, thioflavin, and beta-amyloid

  11. Peptide p5 binds both heparinase-sensitive glycosaminoglycans and fibrils in patient-derived AL amyloid extracts

    International Nuclear Information System (INIS)

    Highlights: •Polybasic peptide p5 binds human light chain amyloid extracts. •The binding of p5 with amyloid involves both glycosaminoglycans and fibrils. •Heparinase treatment led to a correlation between p5 binding and fibril content. •p5 binding to AL amyloid requires electrostatic interactions. -- Abstract: In previously published work, we have described heparin-binding synthetic peptides that preferentially recognize amyloid deposits in a mouse model of reactive systemic (AA) amyloidosis and can be imaged by using positron and single photon emission tomographic imaging. We wanted to extend these findings to the most common form of visceral amyloidosis, namely light chain (AL); however, there are no robust experimental animal models of AL amyloidosis. To further define the binding of the lead peptide, p5, to AL amyloid, we characterized the reactivity in vitro of p5 with in situ and patient-derived AL amyloid extracts which contain both hypersulfated heparan sulfate proteoglycans as well as amyloid fibrils. Histochemical staining demonstrated that the peptide specifically localized with tissue-associated AL amyloid deposits. Although we anticipated that p5 would undergo electrostatic interactions with the amyloid-associated glycosaminoglycans expressing heparin-like side chains, no significant correlation between peptide binding and glycosaminoglycan content within amyloid extracts was observed. In contrast, following heparinase I treatment, although overall binding was reduced, a positive correlation between peptide binding and amyloid fibril content became evident. This interaction was further confirmed using synthetic light chain fibrils that contain no carbohydrates. These data suggest that p5 can bind to both the sulfated glycosaminoglycans and protein fibril components of AL amyloid. Understanding these complex electrostatic interactions will aid in the optimization of synthetic peptides for use as amyloid imaging agents and potentially as

  12. Methionine oxidation of amyloid peptides by peroxovanadium complexes: inhibition of fibril formation through a distinct mechanism.

    Science.gov (United States)

    He, Lei; Wang, Xuesong; Zhu, Dengsen; Zhao, Cong; Du, Weihong

    2015-12-01

    Fibril formation of amyloid peptides is linked to a number of pathological states. The prion protein (PrP) and amyloid-β (Aβ) are two remarkable examples that are correlated with prion disorders and Alzheimer's disease, respectively. Metal complexes, such as those formed by platinum and ruthenium compounds, can act as inhibitors against peptide aggregation primarily through metal coordination. This study revealed the inhibitory effect of two peroxovanadium complexes, (NH4)[VO(O2)2(bipy)]·4H2O (1) and (NH4)[VO(O2)2(phen)]·2H2O (2), on amyloid fibril formation of PrP106-126 and Aβ1-42via site-specific oxidation of methionine residues, besides direct binding of the complexes with the peptides. Complexes 1 and 2 showed higher anti-amyloidogenic activity on PrP106-126 aggregation than on Aβ1-42, though their regulation on the cytotoxicity induced by the two peptides could not be differentiated. The action efficacy may be attributed to the different molecular structures of the vanadium complex and the peptide sequence. Results reflected that methionine oxidation may be a crucial action mode in inhibiting amyloid fibril formation. This study offers a possible application value for peroxovanadium complexes against amyloid proteins. PMID:26444976

  13. Amyloidpeptide aggregation and the influence of carbon nanoparticles

    Science.gov (United States)

    Wen-Hui, Xi; Guang-Hong, Wei

    2016-01-01

    Soluble peptides or proteins can self-aggregate into insoluble, ordered amyloid fibrils under appropriate conditions. These amyloid aggregates are the hallmarks of several human diseases ranging from neurodegenerative disorders to systemic amyloidoses. In this review, we first introduce the common structural features of amyloid fibrils and the amyloid fibrillation kinetics determined from experimental studies. Then, we discuss the structural models of Alzheimer’s amyloid-β (Aβ) fibrils derived from solid-state nuclear magnetic resonance spectroscopy. On the computational side, molecular dynamics simulations can provide atomic details of structures and the underlying oligomerization mechanisms. We finally summarize recent progress in atomistic simulation studies on the oligomerization of Aβ (including full-length Aβ and its fragments) and the influence of carbon nanoparticles. Project supported by the National Natural Science Foundation of China (Grant Nos. 11274075 and 91227102).

  14. Amyloid-Beta Related Angiitis of the Central Nervous System: Case Report and Topic Review

    Directory of Open Access Journals (Sweden)

    JoseBiller

    2014-02-01

    Full Text Available Amyloid-beta related angiitis (ABRA of the central nervous system (CNS is a rare disorder with overlapping features of primary angiits of the CNS (PACNS and cerebral amyloid angiopathy (CAA. We evaluated a 74-year-old man with intermittent left sided weakness and MRI findings of leptomeningeal enhancement, vasogenic edema and subcortical white matter disease proven to have ABRA. We discuss clinicopathological features and review the topic of ABRA.

  15. Surface-bound basement membrane components accelerate amyloidpeptide nucleation in air-free wells: an in vitro model of cerebral amyloid angiopathy.

    Science.gov (United States)

    Hasegawa, Kazuhiro; Ozawa, Daisaku; Ookoshi, Tadakazu; Naiki, Hironobu

    2013-08-01

    Cerebral amyloid angiopathy is caused by deposition of the amyloid β-peptide which consists of mainly 39-40 residues to the cortical and leptomeningeal vessel walls. There are no definite in vitro systems to support the hypothesis that the vascular basement membrane may act as a scaffold of amyloid β-peptide carried by perivascular drainage flow and accelerate its amyloid fibril formation in vivo. We previously reported the critical roles of interfaces and agitation on the nucleation of amyloid fibrils at low concentrations of amyloid β-peptide monomers. Here, we reproduced the perivascular drainage flow in vitro by using N-hydroxysuccinimide-Sepharose 4 Fast flow beads as an inert stirrer in air-free wells rotated at 1rpm. We then reproduced the basement membranes in the media of cerebral arteries in vitro by conjugating Matrigel and other proteins on the surface of Sepharose beads. These beads were incubated with 5μM amyloid β(1-40) at 37°C without air, where amyloid β(1-40) alone does not form amyloid fibrils. Using the initiation time of fibril growth kinetics (i.e., the lag time of fibril growth during which nuclei, on-pathway oligomers and protofibrils are successively formed) as a parameter of the efficiency of biological molecules to induce amyloid fibril formation, we found that basement membrane components including Matrigel, laminin, fibronectin, collagen type IV and fibrinogen accelerate the initiation of amyloid β-peptide fibril growth in vitro. These data support the essential role of vascular basement membranes in the development of cerebral amyloid angiopathy. PMID:23608949

  16. AFM-based force spectroscopy measurements of mature amyloid fibrils of the peptide glucagon

    DEFF Research Database (Denmark)

    Dong, M. D.; Hovgaard, M. B.; Mamdouh, W.;

    2008-01-01

    We report on the mechanical characterization of individual mature amyloid fibrils by atomic force microscopy (AFM) and AFM-based single-molecule force spectroscopy (SMFS). These self-assembling materials, formed from the 29-residue amphiphatic peptide hormone glucagon, were found to display a...... addition, such biological amyloid fibril structures with highly stable mechanical properties can potentially be used to produce nanofibres (nanowires) that may be suitable for nanotechnological applications....

  17. Intracellular accumulation of amyloid-beta - a predictor for synaptic dysfunction and neuron loss in Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Thomas A Bayer

    2010-03-01

    Full Text Available Despite of long-standing evidence that beta-amyloid (Aβ peptides have detrimental effects on synaptic function, the relationship between Aβ, synaptic and neuron loss is largely unclear. During the last years there is growing evidence that early intraneuronal accumulation of Aβ peptides is one of the key events leading to synaptic and neuronal dysfunction. Many studies have been carried out using transgenic mouse models of Alzheimer’s disease (AD which have been proven to be valuable model system in modern AD research. The present review discusses the impact of intraneuronal Aβ accumulation on synaptic impairment and neuron loss and provides an overview of currently available AD mouse models showing these pathological alterations.

  18. Beta-Amyloid Deposition and Alzheimer's Type Changes Induced by Borrelia Spirochetes

    Energy Technology Data Exchange (ETDEWEB)

    Miklossy,J.; Kis, A.; Radenovic, A.; Miller, L.; Forro, L.; Martins, R.; Reiss, K.; Darbinian, N.; Darekar, P.; et al.

    2006-01-01

    The pathological hallmarks of Alzheimer's disease (AD) consist of {beta}-amyloid plaques and neurofibrillary tangles in affected brain areas. The processes, which drive this host reaction are unknown. To determine whether an analogous host reaction to that occurring in AD could be induced by infectious agents, we exposed mammalian glial and neuronal cells in vitro to Borrelia burgdorferi spirochetes and to the inflammatory bacterial lipopolysaccharide (LPS). Morphological changes analogous to the amyloid deposits of AD brain were observed following 2-8 weeks of exposure to the spirochetes. Increased levels of {beta}-amyloid presursor protein (A{beta}PP) and hyperphosphorylated tau were also detected by Western blots of extracts of cultured cells that had been treated with spirochetes or LPS. These observations indicate that, by exposure to bacteria or to their toxic products, host responses similar in nature to those observed in AD may be induced.

  19. Adaptor protein sorting nexin 17 regulates amyloid precursor protein trafficking and processing in the early endosomes

    NARCIS (Netherlands)

    Lee, Jiyeon; Retamal, Claudio; Cuitino, Loreto; Caruano-Yzermans, Amy; Shin, Jung-Eun; van Kerkhof, Peter; Marzolo, Maria-Paz; Bu, Guojun

    2008-01-01

    Accumulation of extracellular amyloid beta peptide (A beta), generated from amyloid precursor protein (APP) processing by beta- and gamma-secretases, is toxic to neurons and is central to the pathogenesis of Alzheimer disease. Production of A beta from APP is greatly affected by the subcellular loca

  20. Action of Caffeine as an Amyloid Inhibitor in the Aggregation of Aβ16-22 Peptides.

    Science.gov (United States)

    Sharma, Bhanita; Paul, Sandip

    2016-09-01

    Alzheimer's disease (AD) is a neurodegenerative disease caused due to aggregation of Aβ peptides in the brain tissues. Recently, several studies on AD transgenic mice have shown the effect of caffeine in significantly reducing the Aβ amyloid level in their brains. However, the mechanism and mode of caffeine action on amyloid aggregation are not known. Therefore, in this study, we have carried out molecular dynamics simulations of five amyloid-forming Aβ16-22 peptides in pure water and in a regime of caffeine solutions, with different caffeine/peptide stoichiometric ratios. The secondary structure analyses of peptides in pure water show the formation of β-sheet conformations, whereas on addition of caffeine, these ordered conformations become negligible. The radial distribution function, contact map, nonbonding interaction energy, hydrogen bonding, potential of mean force, and hydration analyses show that there is less interpeptide interaction in the presence of caffeine, and the effect is greater with an increasing caffeine ratio. The interaction of aromatic phenylalanine residues of peptides with caffeine restricts the interpeptide interaction tendency. Upon increasing the number of caffeine molecules, interaction of caffeine with other hydrophobic residues also increases. Thus, the hydrophobic core-recognition motif of amyloid formation of peptides is physically blocked by caffeine, thereby abolishing the self-assembly formation. PMID:27487451

  1. Neuro-inflammation induced by lipopolysaccharide causes cognitive impairment through enhancement of beta-amyloid generation

    Directory of Open Access Journals (Sweden)

    Oh Ki

    2008-08-01

    Full Text Available Abstract Background Alzheimer's disease (AD is characterized by extensive loss of neurons in the brain of AD patients. Intracellular accumulation of beta-amyloid peptide (Aβ has also shown to occur in AD. Neuro-inflammation has been known to play a role in the pathogenesis of AD. Methods In this study, we investigated neuro-inflammation and amyloidogenesis and memory impairment following the systemic inflammation generated by lipopolysaccharide (LPS using immunohistochemistry, ELISA, behavioral tests and Western blotting. Results Intraperitoneal injection of LPS, (250 μg/kg induced memory impairment determined by passive avoidance and water maze tests in mice. Repeated injection of LPS (250 μg/kg, 3 or 7 times resulted in an accumulation of Aβ1–42 in the hippocampus and cerebralcortex of mice brains through increased β- and γ-secretase activities accompanied with the increased expression of amyloid precursor protein (APP, 99-residue carboxy-terminal fragment of APP (C99 and generation of Aβ1–42 as well as activation of astrocytes in vivo. 3 weeks of pretreatment of sulindac sulfide (3.75 and 7.5 mg/kg, orally, an anti-inflammatory agent, suppressed the LPS-induced amyloidogenesis, memory dysfunction as well as neuronal cell death in vivo. Sulindac sulfide (12.5–50 μM also suppressed LPS (1 μg/ml-induced amyloidogenesis in cultured neurons and astrocytes in vitro. Conclusion This study suggests that neuro-inflammatory reaction could contribute to AD pathology, and anti-inflammatory agent could be useful for the prevention of AD.

  2. A humanin derivative reduces amyloid beta accumulation and ameliorates memory deficit in triple transgenic mice.

    Directory of Open Access Journals (Sweden)

    Takako Niikura

    Full Text Available Humanin (HN, a 24-residue peptide, was identified as a novel neuroprotective factor and shows anti-cell death activity against a wide spectrum of Alzheimer's disease (AD-related cytotoxicities, including exposure to amyloid beta (Abeta, in vitro. We previously demonstrated that the injection of S14G-HN, a highly potent HN derivative, into brain ameliorated memory loss in an Abeta-injection mouse model. To fully understand HN's functions under AD-associated pathological conditions, we examined the effect of S14G-HN on triple transgenic mice harboring APP(swe, tau(P310L, and PS-1(M146V that show the age-dependent development of multiple pathologies relating to AD. After 3 months of intranasal treatment, behavioral analyses showed that S14G-HN ameliorated cognitive impairment in male mice. Moreover, ELISA and immunohistochemical analyses showed that Abeta levels in brains were markedly lower in S14G-HN-treated male and female mice than in vehicle control mice. We also found the expression level of neprilysin, an Abeta degrading enzyme, in the outer molecular layer of hippocampal formation was increased in S14G-HN-treated mouse brains. NEP activity was also elevated by S14G-HN treatment in vitro. These findings suggest that decreased Abeta level in these mice is at least partly attributed to S14G-HN-induced increase of neprilysin level. Although HN was identified as an anti-neuronal death factor, these results indicate that HN may also have a therapeutic effect on amyloid accumulation in AD.

  3. Anti-amyloid-beta to tau-based immunization: developments in immunotherapy for Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Lambracht-Washington D

    2013-08-01

    Full Text Available Doris Lambracht-Washington, Roger N Rosenberg Department of Neurology and Neurotherapeutics, Alzheimer's Disease Center, University of Texas Southwestern Medical Center, Dallas, TX, USA Abstract: Immunotherapy might provide an effective treatment for Alzheimer's disease (AD. A unique feature of AD immunotherapies is that an immune response against a self-antigen needs to be elicited without causing adverse autoimmune reactions. Current research is focused on two possible targets in this regard. One is the inhibition of accumulation and deposition of amyloid beta 1–42 (Aβ42, which is one of the major peptides found in senile plaques, and the second target is hyperphosphorylated tau, which forms neurofibrillary tangles inside the nerve cell and shows association with the progression of dementia. Mouse models have shown that immunotherapy targeting Aβ42 as well as tau with the respective anti-Aβ or anti-tau antibodies can provide significant improvements in these mice. While anti-Aβ immunotherapy (active and passive immunizations is already in several stages of clinical trials, tau-based immunizations have been analyzed only in mouse models. Recently, as a significant correlation of progression of dementia and levels of phosphorylated tau have been found, high interest has again focused on further development of tau-based therapies. While Aβ immunotherapy might delay the onset of AD, immunotherapy targeting tau might provide benefits in later stages of this disease. Last but not least, targeting Aβ and tau simultaneously with immunotherapy might provide additional therapeutic effects, as these two pathologies are likely synergistic; this is an approach that has not been tested yet. In this review, we will summarize animal models used to test possible therapies for AD, some of the facts about Aβ42 and tau biology, and present an overview on halted, ongoing, and upcoming clinical trials together with ongoing preclinical studies targeting tau

  4. Amyloid beta, mitochondrial dysfunction and synaptic damage: implications for cognitive decline in aging and Alzheimer’s disease

    OpenAIRE

    Reddy, P. Hemachandra; Beal, M. Flint

    2008-01-01

    Recent studies of postmortem brains from Alzheimer’s disease (AD) patients and transgenic AD mice suggest that oxidative damage, induced by amyloid beta, is associated with mitochondria early in AD progression. Amyloid beta and amyloid precursor protein are known to localize to mitochondrial membranes, block the transport of nuclear-encoded mitochondrial proteins to mitochondria, interact with mitochondrial proteins, disrupt the electron transport chain, increase reactive oxygen species produ...

  5. In silico study of amyloid beta-protein folding relevant to Alzheimer's disease

    Science.gov (United States)

    Lam Ng, Alfonso Ramon

    Amyloid beta-protein (Abeta) folding is the initial step in the formation of the early toxic Abeta assemblies that are critically linked to Alzheimer's disease (AD). Abeta exists in two main alloforms, Abeta40 and Abeta42, composed of 40 and 42 residues, respectively. Abeta42 aggregates faster, forms more toxic assemblies, and is linked more strongly to AD. Two amino acids of Abeta42, I41 and A42, profoundly affect the behavior of Abeta40 and Abeta42. To examine why this happens, I study Abeta40 and Abeta42 folding using discrete molecular dynamics and a four-bead protein model with backbone hydrogen bonding and residue-specific effective hydropathic and electrostatic interactions. In particular, I explore a range of values of the hydropathic (EHP) and electrostatic (ECH) potential energies. For each peptide, I create a hundred different initial conformations for each set of parameters (EHP,E CH). I investigate the Abeta40 and Abeta42 monomer folding in a wide temperature range and quantify the folded structures by calculating the secondary structure propensities and the intramolecular contact maps. For each set of parameters (EHP,ECH), I calculate an average beta-strand secondary structure propensity in the Abeta40 and Abeta42 monomers as a function of temperature. I compare these simulated results with experimental circular dichroism measurements and estimate the model physiological temperature and the model parameters (E HP,ECH) that best fit the experimental conditions. The results show that in the temperature range [278K,350K], the average beta-strand in Abeta42 is larger than that of Abeta40, which is in agreement with experiments. The model predicts that the average beta-strand propensity should decrease for T>350K. At low temperatures, both Abeta40 and Abeta42 adopt a predominantly collapsed-coil conformation with small amounts of an beta-helical secondary structure (<1%). At high temperatures, beta-strand rich structures are more prominent (19%). Also, the

  6. Beta amyloid and hyperphosphorylated tau deposits in the pancreas in type 2 diabetes

    Energy Technology Data Exchange (ETDEWEB)

    Miklossy, J.; Miller, L.; Qing, H.; Radenovic, A.; Kis, A.; Vileno, B.; Laszlo, F.; Martins, R.N.; Waeber, G.; Mooser, V.; Bosman, F.; Khalili, K.; Darbinian, N.; McGeer, P.L.

    2008-08-25

    Strong epidemiologic evidence suggests an association between Alzheimer disease (AD) and type 2 diabetes. To determine if amyloid beta (A{beta}) and hyperphosphorylated tau occurs in type 2 diabetes, pancreas tissues from 21 autopsy cases (10 type 2 diabetes and 11 controls) were analyzed. APP and tau mRNAs were identified in human pancreas and in cultured insulinoma beta cells (INS-1) by RT-PCR. Prominent APP and tau bands were detected by Western blotting in pancreatic extracts. Aggregated A{beta}, hyperphosphorylated tau, ubiquitin, apolipoprotein E, apolipoprotein(a), IB1/JIP-1 and JNK1 were detected in Langerhans islets in type 2 diabetic patients. A{beta} was co-localized with amylin in islet amyloid deposits. In situ beta sheet formation of islet amyloid deposits was shown by infrared microspectroscopy (SIRMS). LPS increased APP in non-neuronal cells as well. We conclude that A{beta} deposits and hyperphosphorylated tau are also associated with type 2 diabetes, highlighting common pathogenetic features in neurodegenerative disorders, including AD and type 2 diabetes and suggesting that A{beta} deposits and hyperphosphorylated tau may also occur in other organs than the brain.

  7. How Ionic Strength Affects the Conformational Behavior of Human and Rat Beta Amyloids - A Computational Study

    OpenAIRE

    Kriz Z.; Klusak J.; Kristofikova Z.; Koca J.

    2016-01-01

    Progressive cerebral deposition of amyloid beta occurs in Alzheimeŕs disease and during the aging of certain mammals (human, monkey, dog, bear, cow, cat) but not others (rat, mouse). It is possibly due to different amino acid sequences at positions 5, 10 and 13. To address this issue, we performed series of 100 ns long trajectories (each trajectory was run twice with different initial velocity distribution) on amyloid beta (1–42) with the human and rat amino acid sequence in three different e...

  8. Amyloid Beta: Multiple Mechanisms of Toxicity and Only Some Protective Effects?

    Directory of Open Access Journals (Sweden)

    Paul Carrillo-Mora

    2014-01-01

    Full Text Available Amyloid beta (Aβ is a peptide of 39–43 amino acids found in large amounts and forming deposits in the brain tissue of patients with Alzheimer’s disease (AD. For this reason, it has been implicated in the pathophysiology of damage observed in this type of dementia. However, the role of Aβ in the pathophysiology of AD is not yet precisely understood. Aβ has been experimentally shown to have a wide range of toxic mechanisms in vivo and in vitro, such as excitotoxicity, mitochondrial alterations, synaptic dysfunction, altered calcium homeostasis, oxidative stress, and so forth. In contrast, Aβ has also shown some interesting neuroprotective and physiological properties under certain experimental conditions, suggesting that both physiological and pathological roles of Aβ may depend on several factors. In this paper, we reviewed both toxic and protective mechanisms of Aβ to further explore what their potential roles could be in the pathophysiology of AD. The complete understanding of such apparently opposed effects will also be an important guide for the therapeutic efforts coming in the future.

  9. Nano-biosensors to detect beta-amyloid for Alzheimer's disease management.

    Science.gov (United States)

    Kaushik, Ajeet; Jayant, Rahul Dev; Tiwari, Sneham; Vashist, Arti; Nair, Madhavan

    2016-06-15

    Beta-amyloid (β-A) peptides are potential biomarkers to monitor Alzheimer's diseases (AD) for diagnostic purposes. Increased β-A level is neurotoxic and induces oxidative stress in brain resulting in neurodegeneration and causes dementia. As of now, no sensitive and inexpensive method is available for β-A detection under physiological and pathological conditions. Although, available methods such as neuroimaging, enzyme-linked immunosorbent assay (ELISA), and polymerase chain reaction (PCR) detect β-A, but they are not yet extended at point-of-care (POC) due to sophisticated equipments, need of high expertize, complicated operations, and challenge of low detection limit. Recently, β-A antibody based electrochemical immuno-sensing approach has been explored to detect β-A at pM levels within 30-40min compared to 6-8h of ELISA test. The introduction of nano-enabling electrochemical sensing technology could enable rapid detection of β-A at POC and may facilitate fast personalized health care delivery. This review explores recent advancements in nano-enabling electrochemical β-A sensing technologies towards POC application to AD management. These analytical tools can serve as an analytical tool for AD management program to obtain bio-informatics needed to optimize therapeutics for neurodegenerative diseases diagnosis management. PMID:26851586

  10. Detection of Alzheimer’s disease amyloid-beta plaque deposition by deep brain impedance profiling

    Science.gov (United States)

    Béduer, Amélie; Joris, Pierre; Mosser, Sébastien; Fraering, Patrick C.; Renaud, Philippe

    2015-04-01

    Objective. Alzheimer disease (AD) is the most common form of neurodegenerative disease in elderly people. Toxic brain amyloid-beta (Aß) aggregates and ensuing cell death are believed to play a central role in the pathogenesis of the disease. In this study, we investigated if we could monitor the presence of these aggregates by performing in situ electrical impedance spectroscopy measurements in AD model mice brains. Approach. In this study, electrical impedance spectroscopy measurements were performed post-mortem in APPPS1 transgenic mice brains. This transgenic model is commonly used to study amyloidogenesis, a pathological hallmark of AD. We used flexible probes with embedded micrometric electrodes array to demonstrate the feasibility of detecting senile plaques composed of Aß peptides by localized impedance measurements. Main results. We particularly focused on deep brain structures, such as the hippocampus. Ex vivo experiments using brains from young and old APPPS1 mice lead us to show that impedance measurements clearly correlate with the percentage of Aβ plaque load in the brain tissues. We could monitor the effects of aging in the AD APPPS1 mice model. Significance. We demonstrated that a localized electrical impedance measurement constitutes a valuable technique to monitor the presence of Aβ-plaques, which is complementary with existing imaging techniques. This method does not require prior Aβ staining, precluding the risk of variations in tissue uptake of dyes or tracers, and consequently ensuring reproducible data collection.

  11. DNA polymerase-beta is expressed early in neurons of Alzheimer's disease brain and is loaded into DNA replication forks in neurons challenged with beta-amyloid

    NARCIS (Netherlands)

    A. Copani; J.J.M. Hoozemans; F. Caraci; M. Calafiore; E.S. van Haastert; R. Veerhuis; A.J.M. Rozemuller; E. Aronica; M.A. Sortino; F. Nicoletti

    2006-01-01

    Cultured neurons exposed to synthetic beta-amyloid (A beta) fragments reenter the cell cycle and initiate a pathway of DNA replication that involves the repair enzyme DNA polymerase-beta (DNA pol-beta) before undergoing apoptotic death. In this study, by performing coimmunoprecipitation experiments

  12. Oxidative stress induces macroautophagy of amyloid beta-protein and ensuing apoptosis

    DEFF Research Database (Denmark)

    Zheng, Lin; Kågedal, Katarina; Dehvari, Nodi; Benedikz, Eirikur; Cowburn, Richard; Marcusson, Jan; Terman, Alexei

    2009-01-01

    There is increasing evidence for the toxicity of intracellular amyloid beta-protein (Abeta) to neurons and the involvement of lysosomes in this process in Alzheimer disease (AD). We have recently shown that oxidative stress, a recognized determinant of AD, enhances macroautophagy and leads to int...

  13. Manipulation of self-assembly amyloid peptide nanotubes by dielectrophoresis (DEP)

    DEFF Research Database (Denmark)

    Castillo, Jaime; Tanzi, Simone; Dimaki, Maria; Svendsen, Winnie Edith

    2008-01-01

    Self-assembled amyloid peptide nanotubes (SAPNT) were manipulated and immobilized using dielectrophoresis. Micro-patterned electrodes of Au were fabricated by photolithography and lifted off on a silicon dioxide layer. SAPNT were manipulated by adjusting the amplitude and frequency of the applied...

  14. Unfolding, aggregation, and seeded amyloid formation of lysine-58-cleaved beta(2)-microglobulin

    DEFF Research Database (Denmark)

    Heegaard, N.H.H.; Jørgensen, T.J.D.; Rozlosnik, N.;

    2005-01-01

    . Using amide hydrogen/deuterium exchange monitored by mass spectrometry, we show that Delta K58-beta(2)m has increased unfolding rates compared to wt-beta(2)m and that unfolding is highly temperature dependent. The unfolding rate is I order of magnitude faster in Delta K58-beta(2)M than in wt-beta(2)m...... fluorescence. After a few days at 37 degrees C, in contrast to wt-beta(2)M, Delta K-58-beta(2)M forms well-defined high molecular weight aggregates that are detected by size-exclusion chromatography. Atomic force microscopy after seeding with amyloid-beta(2)m fibrils under conditions that induce minimal...

  15. A binding-site barrier affects imaging efficiency of high affinity amyloid-reactive peptide radiotracers in vivo.

    Directory of Open Access Journals (Sweden)

    Jonathan S Wall

    Full Text Available Amyloid is a complex pathology associated with a growing number of diseases including Alzheimer's disease, type 2 diabetes, rheumatoid arthritis, and myeloma. The distribution and extent of amyloid deposition in body organs establishes the prognosis and can define treatment options; therefore, determining the amyloid load by using non-invasive molecular imaging is clinically important. We have identified a heparin-binding peptide designated p5 that, when radioiodinated, was capable of selectively imaging systemic visceral AA amyloidosis in a murine model of the disease. The p5 peptide was posited to bind effectively to amyloid deposits, relative to similarly charged polybasic heparin-reactive peptides, because it adopted a polar α helix secondary structure. We have now synthesized a variant, p5R, in which the 8 lysine amino acids of p5 have been replaced with arginine residues predisposing the peptide toward the α helical conformation in an effort to enhance the reactivity of the peptide with the amyloid substrate. The p5R peptide had higher affinity for amyloid and visualized AA amyloid in mice by using SPECT/CT imaging; however, the microdistribution, as evidenced in micro-autoradiographs, was dramatically altered relative to the p5 peptide due to its increased affinity and a resultant "binding site barrier" effect. These data suggest that radioiodinated peptide p5R may be optimal for the in vivo detection of discreet, perivascular amyloid, as found in the brain and pancreatic vasculature, by using molecular imaging techniques; however, peptide p5, due to its increased penetration, may yield more quantitative imaging of expansive tissue amyloid deposits.

  16. Insulin Promotes Survival of Amyloid-Beta Oligomers Neuroblastoma Damaged Cells via Caspase 9 Inhibition and Hsp70 Upregulation

    Directory of Open Access Journals (Sweden)

    M. Di Carlo

    2010-01-01

    Full Text Available Alzheimer's disease (AD and type 2 diabetes are connected in a way that is still not completely understood, but insulin resistance has been implicated as a risk factor for developing AD. Here we show an evidence that insulin is capable of reducing cytotoxicity induced by Amyloid-beta peptides (A-beta in its oligomeric form in a dose-dependent manner. By TUNEL and biochemical assays we demonstrate that the recovery of the cell viability is obtained by inhibition of intrinsic apoptotic program, triggered by A-beta and involving caspase 9 and 3 activation. A protective role of insulin on mitochondrial damage is also shown by using Mito-red vital dye. Furthermore, A-beta activates the stress inducible Hsp70 protein in LAN5 cells and an overexpression is detectable after the addition of insulin, suggesting that this major induction is the necessary condition to activate a cell survival program. Together, these results may provide opportunities for the design of preventive and therapeutic strategies against AD.

  17. Interactions of laminin with the amyloid ß peptide: Implications for Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Morgan C.

    2001-01-01

    Full Text Available Extensive neuronal cell loss is observed in Alzheimer's disease. Laminin immunoreactivity colocalizes with senile plaques, the characteristic extracellular histopathological lesions of Alzheimer brain, which consist of the amyloid ß (Aß peptide polymerized into amyloid fibrils. These lesions have neurotoxic effects and have been proposed to be a main cause of neurodegeneration. In order to understand the pathological significance of the interaction between laminin and amyloid, we investigated the effect of laminin on amyloid structure and toxicity. We found that laminin interacts with the Aß1-40 peptide, blocking fibril formation and even inducing depolymerization of preformed fibrils. Protofilaments known to be intermediate species of Aß fibril formation were also detected as intermediate species of laminin-induced Aß fibril depolymerization. Moreover, laminin-amyloid interactions inhibited the toxic effects on rat primary hippocampal neurons. As a whole, our results indicate a putative anti-amyloidogenic role of laminin which may be of biological and therapeutic interest for controlling amyloidosis, such as those observed in cerebral angiopathy and Alzheimer's disease.

  18. Amyloidβ Peptides in interaction with raft-mime model membranes: a neutron reflectivity insight.

    Science.gov (United States)

    Rondelli, Valeria; Brocca, Paola; Motta, Simona; Messa, Massimo; Colombo, Laura; Salmona, Mario; Fragneto, Giovanna; Cantù, Laura; Del Favero, Elena

    2016-01-01

    The role of first-stage β-amyloid aggregation in the development of the Alzheimer disease, is widely accepted but still unclear. Intimate interaction with the cell membrane is invoked. We designed Neutron Reflectometry experiments to reveal the existence and extent of the interaction between β-amyloid (Aβ) peptides and a lone customized biomimetic membrane, and their dependence on the aggregation state of the peptide. The membrane, asymmetrically containing phospholipids, GM1 and cholesterol in biosimilar proportion, is a model for a raft, a putative site for amyloid-cell membrane interaction. We found that the structured-oligomer of Aβ(1-42), its most acknowledged membrane-active state, is embedded as such into the external leaflet of the membrane. Conversely, the Aβ(1-42) unstructured early-oligomers deeply penetrate the membrane, likely mimicking the interaction at neuronal cell surfaces, when the Aβ(1-42) is cleaved from APP protein and the membrane constitutes a template for its further structural evolution. Moreover, the smaller Aβ(1-6) fragment, the N-terminal portion of Aβ, was also used. Aβ N-terminal is usually considered as involved in oligomer stabilization but not in the peptide-membrane interaction. Instead, it was seen to remove lipids from the bilayer, thus suggesting its role, once in the whole peptide, in membrane leakage, favouring peptide recruitment. PMID:26880066

  19. MMPBSA Decomposition of the Binding Energy throughout a Molecular Dynamics Simulation of Amyloid-Beta (Aß10−35 Aggregation

    Directory of Open Access Journals (Sweden)

    Josep M. Campanera

    2010-04-01

    Full Text Available Recent experiments with amyloid-beta (Aβ peptides indicate that the formation of toxic oligomers may be an important contribution to the onset of Alzheimer’s disease. The toxicity of Aβ oligomers depend on their structure, which is governed by assembly dynamics. However, a detailed knowledge of the structure of at the atomic level has not been achieved yet due to limitations of current experimental techniques. In this study, replica exchange molecular dynamics simulations are used to identify the expected diversity of dimer conformations of Aβ10−35 monomers. The most representative dimer conformation has been used to track the dimer formation process between both monomers. The process has been characterized by means of the evolution of the decomposition of the binding free energy, which provides an energetic profile of the interaction. Dimers undergo a process of reorganization driven basically by inter-chain hydrophobic and hydrophilic interactions and also solvation/desolvation processes.

  20. The Peptide Vaccine Combined with Prior Immunization of a Conventional Diphtheria-Tetanus Toxoid Vaccine Induced Amyloid β Binding Antibodies on Cynomolgus Monkeys and Guinea Pigs

    Directory of Open Access Journals (Sweden)

    Akira Yano

    2015-01-01

    Full Text Available The reduction of brain amyloid beta (Aβ peptides by anti-Aβ antibodies is one of the possible therapies for Alzheimer’s disease. We previously reported that the Aβ peptide vaccine including the T-cell epitope of diphtheria-tetanus combined toxoid (DT induced anti-Aβ antibodies, and the prior immunization with conventional DT vaccine enhanced the immunogenicity of the peptide. Cynomolgus monkeys were given the peptide vaccine subcutaneously in combination with the prior DT vaccination. Vaccination with a similar regimen was also performed on guinea pigs. The peptide vaccine induced anti-Aβ antibodies in cynomolgus monkeys and guinea pigs without chemical adjuvants, and excessive immune responses were not observed. Those antibodies could preferentially recognize Aβ40, and Aβ42 compared to Aβ fibrils. The levels of serum anti-Aβ antibodies and plasma Aβ peptides increased in both animals and decreased the brain Aβ40 level of guinea pigs. The peptide vaccine could induce a similar binding profile of anti-Aβ antibodies in cynomolgus monkeys and guinea pigs. The peptide vaccination could be expected to reduce the brain Aβ peptides and their toxic effects via clearance of Aβ peptides by generated antibodies.

  1. Molecular simulations of beta-amyloid protein near hydrated lipids (PECASE).

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Aidan Patrick; Han, Kunwoo (Texas A& M University, College Station, TX); Ford, David M. (Texas A& M University, College Station, TX)

    2005-12-01

    We performed molecular dynamics simulations of beta-amyloid (A{beta}) protein and A{beta} fragment(31-42) in bulk water and near hydrated lipids to study the mechanism of neurotoxicity associated with the aggregation of the protein. We constructed full atomistic models using Cerius2 and ran simulations using LAMMPS. MD simulations with different conformations and positions of the protein fragment were performed. Thermodynamic properties were compared with previous literature and the results were analyzed. Longer simulations and data analyses based on the free energy profiles along the distance between the protein and the interface are ongoing.

  2. High-affinity Anticalins with aggregation-blocking activity directed against the Alzheimer β-amyloid peptide

    Science.gov (United States)

    Rauth, Sabine; Hinz, Dominik; Börger, Michael; Uhrig, Markus; Mayhaus, Manuel; Riemenschneider, Matthias; Skerra, Arne

    2016-01-01

    Amyloid beta (Aβ) peptides, in particular Aβ42 and Aβ40, exert neurotoxic effects and their overproduction leads to amyloid deposits in the brain, thus constituting an important biomolecular target for treatments of Alzheimer's disease (AD). We describe the engineering of cognate Anticalins as a novel type of neutralizing protein reagent based on the human lipocalin scaffold. Phage display selection from a genetic random library comprising variants of the human lipocalin 2 (Lcn2) with mutations targeted at 20 exposed amino acid positions in the four loops that form the natural binding site was performed using both recombinant and synthetic target peptides and resulted in three different Anticalins. Biochemical characterization of the purified proteins produced by periplasmic secretion in Escherichia coli revealed high folding stability in a monomeric state, with Tm values ranging from 53.4°C to 74.5°C, as well as high affinities for Aβ40, between 95 pM and 563 pM, as measured by real-time surface plasmon resonance analysis. The central linear VFFAED epitope within the Aβ sequence was mapped using a synthetic peptide array on membranes and was shared by all three Anticalins, despite up to 13 mutual amino acid differences in their binding sites. All Anticalins had the ability–with varying extent–to inhibit Aβ aggregation in vitro according to the thioflavin-T fluorescence assay and, furthermore, they abolished Aβ42-mediated toxicity in neuronal cell culture. Thus, these Anticalins provide not only useful protein reagents to study the molecular pathology of AD but they also show potential as alternative drug candidates compared with antibodies. PMID:27029347

  3. High-affinity Anticalins with aggregation-blocking activity directed against the Alzheimer β-amyloid peptide.

    Science.gov (United States)

    Rauth, Sabine; Hinz, Dominik; Börger, Michael; Uhrig, Markus; Mayhaus, Manuel; Riemenschneider, Matthias; Skerra, Arne

    2016-06-01

    Amyloid beta (Aβ) peptides, in particular Aβ42 and Aβ40, exert neurotoxic effects and their overproduction leads to amyloid deposits in the brain, thus constituting an important biomolecular target for treatments of Alzheimer's disease (AD). We describe the engineering of cognate Anticalins as a novel type of neutralizing protein reagent based on the human lipocalin scaffold. Phage display selection from a genetic random library comprising variants of the human lipocalin 2 (Lcn2) with mutations targeted at 20 exposed amino acid positions in the four loops that form the natural binding site was performed using both recombinant and synthetic target peptides and resulted in three different Anticalins. Biochemical characterization of the purified proteins produced by periplasmic secretion in Escherichia coli revealed high folding stability in a monomeric state, with Tm values ranging from 53.4°C to 74.5°C, as well as high affinities for Aβ40, between 95 pM and 563 pM, as measured by real-time surface plasmon resonance analysis. The central linear VFFAED epitope within the Aβ sequence was mapped using a synthetic peptide array on membranes and was shared by all three Anticalins, despite up to 13 mutual amino acid differences in their binding sites. All Anticalins had the ability-with varying extent-to inhibit Aβ aggregation in vitro according to the thioflavin-T fluorescence assay and, furthermore, they abolished Aβ42-mediated toxicity in neuronal cell culture. Thus, these Anticalins provide not only useful protein reagents to study the molecular pathology of AD but they also show potential as alternative drug candidates compared with antibodies. PMID:27029347

  4. [beta subsccript 2]-microglobulin forms three-dimensional domain-swapped amyloid fibrils with disulfide linkages

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Cong; Sawaya, Michael R.; Eisenberg, David (UCLA)

    2011-08-09

    {beta}{sub 2}-microglobulin ({beta}{sub 2}-m) is the light chain of the type I major histocompatibility complex. It deposits as amyloid fibrils within joints during long-term hemodialysis treatment. Despite the devastating effects of dialysis-related amyloidosis, full understanding of how fibrils form from soluble {beta}{sub 2}-m remains elusive. Here we show that {beta}{sub 2}-m can oligomerize and fibrillize via three-dimensional domain swapping. Isolating a covalently bound, domain-swapped dimer from {beta}{sub 2}-m oligomers on the pathway to fibrils, we were able to determine its crystal structure. The hinge loop that connects the swapped domain to the core domain includes the fibrillizing segment LSFSKD, whose atomic structure we also determined. The LSFSKD structure reveals a class 5 steric zipper, akin to other amyloid spines. The structures of the dimer and the zipper spine fit well into an atomic model for this fibrillar form of {beta}{sub 2}-m, which assembles slowly under physiological conditions.

  5. Osthole decreases beta amyloid levels through up-regulation of miR-107 in Alzheimer's disease.

    Science.gov (United States)

    Jiao, Yanan; Kong, Liang; Yao, Yingjia; Li, Shaoheng; Tao, Zhenyu; Yan, Yuhui; Yang, Jingxian

    2016-09-01

    Accumulation of β-amyloid peptide (Aβ) in the brain plays an important role in the pathogenesis of Alzheimer's disease (AD). Although osthole has been shown to neuroprotective activity in AD, the exact molecular mechanism of its neuroprotective effects has not yet been fully elucidated. Recently, microRNAs (miRNAs) have been reported to regulate multiple aspects of AD development and progression, indicating that targeting miRNAs could be a novel strategy to treat AD. In the current study, we investigated whether a natural coumarin derivative osthole could up-regulate miR-107, resulting in facilitating the cells survival, reducing LDH leakage, inhibiting apoptosis and reducing beta amyloid (Aβ) production in AD. We found that osthole treatment significantly up-regulate miR-107 expression and inhibited BACE1, one of the targets of miR-107. Administration of osthole to APP/PS1 transgenic mice resulted in a significant improvement in learning and memory function, which was associated with a significant a decrease in Aβ in the hippocampal and cortex region of the brain. Our findings demonstrated that osthole plays a neuroprotective activity role in part through up-regulate miR-107 in AD. PMID:27143098

  6. Amyloid beta oligomers induce neuronal elasticity changes in age-dependent manner: a force spectroscopy study on living hippocampal neurons

    Science.gov (United States)

    Ungureanu, Andreea-Alexandra; Benilova, Iryna; Krylychkina, Olga; Braeken, Dries; De Strooper, Bart; Van Haesendonck, Chris; Dotti, Carlos G.; Bartic, Carmen

    2016-01-01

    Small soluble species of amyloid-beta (Aβ) formed during early peptide aggregation stages are responsible for several neurotoxic mechanisms relevant to the pathology of Alzheimer’s disease (AD), although their interaction with the neuronal membrane is not completely understood. This study quantifies the changes in the neuronal membrane elasticity induced by treatment with the two most common Aβ isoforms found in AD brains: Aβ40 and Aβ42. Using quantitative atomic force microscopy (AFM), we measured for the first time the static elastic modulus of living primary hippocampal neurons treated with pre-aggregated Aβ40 and Aβ42 soluble species. Our AFM results demonstrate changes in the elasticity of young, mature and aged neurons treated for a short time with the two Aβ species pre-aggregated for 2 hours. Neurons aging under stress conditions, showing aging hallmarks, are the most susceptible to amyloid binding and show the largest decrease in membrane stiffness upon Aβ treatment. Membrane stiffness defines the way in which cells respond to mechanical forces in their environment and has been shown to be important for processes such as gene expression, ion-channel gating and neurotransmitter vesicle transport. Thus, one can expect that changes in neuronal membrane elasticity might directly induce functional changes related to neurodegeneration. PMID:27173984

  7. Individual aggregates of amyloid beta induce temporary calcium influx through the cell membrane of neuronal cells

    Science.gov (United States)

    Drews, Anna; Flint, Jennie; Shivji, Nadia; Jönsson, Peter; Wirthensohn, David; De Genst, Erwin; Vincke, Cécile; Muyldermans, Serge; Dobson, Chris; Klenerman, David

    2016-01-01

    Local delivery of amyloid beta oligomers from the tip of a nanopipette, controlled over the cell surface, has been used to deliver physiological picomolar oligomer concentrations to primary astrocytes or neurons. Calcium influx was observed when as few as 2000 oligomers were delivered to the cell surface. When the dosing of oligomers was stopped the intracellular calcium returned to basal levels or below. Calcium influx was prevented by the presence in the pipette of the extracellular chaperone clusterin, which is known to selectively bind oligomers, and by the presence a specific nanobody to amyloid beta. These data are consistent with individual oligomers larger than trimers inducing calcium entry as they cross the cell membrane, a result supported by imaging experiments in bilayers, and suggest that the initial molecular event that leads to neuronal damage does not involve any cellular receptors, in contrast to work performed at much higher oligomer concentrations. PMID:27553885

  8. S14G-humanin restored cellular homeostasis disturbed by amyloid-beta protein***

    Institute of Scientific and Technical Information of China (English)

    Xue Li; Wencong Zhao; Hongqi Yang; Junhong Zhang; Jianjun Ma

    2013-01-01

    Humanin is a potential therapeutic agent for Alzheimer’s disease, and its derivative, S14G-humanin, is 1 000-fold stronger in its neuroprotective effect against Alzheimer’s disease-relevant insults. Alt-hough effective, the detailed molecular mechanism through which S14G-humanin exerts its effects remains unclear. Data from this study showed that fibril ar amyloid-beta 40 disturbed cel ular ho-meostasis through the cel membrane, increasing intracel ular calcium, generating reactive oxygen species, and decreasing the mitochondrial membrane potential. S14G-humanin restored these re-sponses. The results suggested that S14G-humanin blocked the effects of amyloid-beta 40 on the neuronal cel membrane, and restored the disturbed cel ular homeostasis, thereby exerting a neuroprotective effect on hippocampal neurons.

  9. The role of animal models in advancing amyloid-beta immunotherapy to the clinic

    OpenAIRE

    Games, Dora; Seubert, Peter

    2010-01-01

    The amyloid-beta (Aβ) hypothesis of Alzheimer's disease (AD) causality is now well into its third decade and is finally entering a phase of rigorous clinical testing in numerous late stage clinical trials. The use of Aβ-based animal models of AD has been essential to the discovery and/or preclinical validation of many of these therapeutic approaches. While several neuropathologically based results from preclinical studies have translated nicely into AD patients, the full clinical value of Aβ-...

  10. AMYLOID BETA ACCUMULATION IN HIV-1-INFECTED BRAIN: THE ROLE OF THE BLOOD BRAIN BARRIER

    OpenAIRE

    András, Ibolya E.; Toborek, Michal

    2012-01-01

    In recent years we face an increase in the aging of the HIV-1-infected population, which is not only due to effective antiretroviral therapy but also to new infections among older people. Even with the use of the antiretroviral therapy, HIV-associated neurocognitive disorders represent an increasing problem as the HIV-1-infected population ages. Increased amyloid beta (Aβ) deposition is characteristic of HIV-1-infected brains, and it has been hypothesized that brain vascular dysfunction contr...

  11. Preferential Transport Theory for Beta-Amyloid Clearance from the Brain

    Science.gov (United States)

    Coloma, Mikhail; Schaffer, David; Chiarot, Paul; Huang, Peter

    2015-11-01

    The failure to clear beta-amyloid from the aging brain leads to its accumulation within the walls of arteries and to Alzheimer's disease. However, the transport mechanism for beta-amyloid clearance is not well understood. In this study, we propose a preferential transport theory for flow within the vascular walls in the cerebral arterial basement membrane. The flow conduit within the arterial basement membrane is modeled as an annulus between deformable concentric cylinders filled with an incompressible, single-phase Newtonian fluid. The transport is driven by arterial lumen deformation induced by heart pulsations superimposed with reflected boundary waves. Our theory predicts that while the overall arterial wave propagation is in the same direction as the blood flow toward the capillaries, a reverse flow in the basement membrane can be preferentially induced toward larger arteries. This has been suggested as a potential clearance pathway for beta-amyloid. We estimate the magnitude of the reverse transport through a control volume analysis which is corroborated by numerical solutions of the Navier-Stokes equations. Bench-top experiments to validate our computational models are presented.

  12. Fibrillation of β amyloid peptides in the presence of phospholipid bilayers and the consequent membrane disruption.

    Science.gov (United States)

    Qiang, Wei; Yau, Wai-Ming; Schulte, Jürgen

    2015-01-01

    Fibrillation of β amyloid (Aβ) peptides and the accumulation of amyloid plaques are considered as an important clinical hallmark to identify Alzheimer's disease (AD). The physiological connection between Aβ plaques and the disruption of neuronal cells has not been clearly understood. One hypothesis to explain the Aβ neurotoxicity is that the fibrillation process induces disruption to the cellular membrane. We studied the Aβ fibrillation process in two biologically relevant conditions with the peptide either pre-incorporated into or externally added to the synthetic phospholipid bilayers. These two sample preparation conditions mimic the physiological membrane proximities of Aβ peptides before and after the enzymatic cleavage of amyloid precursor protein (APP). Using thioflavin T (ThT) fluorescence and transmission electron microscopy (TEM), we were able to monitor the kinetics and morphological evolution of fibril formation, which was highly sensitive to the two sample preparation protocols. While the external addition protocol generates long and mature fibrils through normal fibrillation process, the pre-incubation protocol was found to stabilize the immature protofibrils. Fluorescence spectroscopy studies with doubly-labeled phospholipids indicated that there may be a lipid uptake process associated with the fibril formation. Solid state nuclear magnetic resonance (NMR) spectroscopy provided evidence for high resolution structural variations in fibrils formed with different protocols, and in particular the stabilization of long-range contact between N- and C-terminal β strands. In addition, disruption of phospholipid bilayers was supported by measurements with ³¹P chemical shifts and relaxation time constants. PMID:24769158

  13. Role of amyloid peptides in vascular dysfunction and platelet dysregulation in Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Ilaria Canobbio

    2015-03-01

    Full Text Available Alzheimer’s disease (AD is the most common neurodegenerative cause of dementia in the elderly. AD is accompanied by the accumulation of amyloid peptides in the brain parenchyma and in the cerebral vessels. The sporadic form of the AD accounts for about 95% of all cases. It is characterized by a late onset, typically after the age of 65, with a complex and still poorly understood aetiology. Several observations point towards a central role of cerebrovascular dysfunction in the onset of sporadic AD. According to the vascular hypothesis, AD may be initiated by vascular dysfunctions that precede and promote the neurodegenerative process. In accordance to this, AD patients show increased hemorragic or ischemic stroke risks. It is now clear that multiple bidirectional connections exist between AD and cerebrovascular disease, and in this new scenario, the effect of amyloid peptides on vascular cells and blood platelets appear to be central to AD. In this review we analyse the effect of amyloid peptides on vascular function and platelet activation and its contribution to the cerebrovascular pathology associated with AD and the progression of this disease.

  14. Neuroprotective effects of Triticum aestivum L. against beta-amyloid-induced cell death and memory impairments.

    Science.gov (United States)

    Jang, Jung-Hee; Kim, Chang-Yul; Lim, Sun Ha; Yang, Chae Ha; Song, Kyung-Sik; Han, Hyung Soo; Lee, Hyeong-Kyu; Lee, Jongwon

    2010-01-01

    beta-Amyloid (A beta) is a key component of senile plaques, neuropathological hallmarks of Alzheimer's disease (AD) and has been reported to induce cell death via oxidative stress. This study investigated the protective effects of Triticum aestivum L. (TAL) on A beta-induced apoptosis in SH-SY5Y cells and cognitive dysfunctions in Sprague-Dawley (SD) rats. Cells treated with A beta exhibited decreased viability and apoptotic features, such as DNA fragmentation, alterations in mitochondria and an increased Bax/Bcl-2 ratio, which were attenuated by TAL extract (TALE) pretreatment. To elucidate the neuroprotective mechanisms of TALE, the study examined A beta-induced oxidative stress and cellular defense. TALE pretreatment suppressed A beta-increased intracellular accumulation of reactive oxygen species (ROS) via up-regulation of glutathione, an essential endogenous antioxidant. To further verify the effect of TALE on memory impairments, A beta or scopolamine was injected in SD rats and a water maze task conducted as a spatial memory test. A beta or scopolamine treatment increased the time taken to find the platform during training trials, which was decreased by TALE pretreatment. Furthermore, one of the active components of TALE, total dietary fiber also effectively inhibited A beta-induced cytotoxicity and scopolamine-caused memory deficits. These results suggest that TALE may have preventive and/or therapeutic potential in the management of AD. PMID:19441012

  15. Glutamate carboxypeptidase II does not process amyloid-beta peptide

    Czech Academy of Sciences Publication Activity Database

    Sedlák, František; Šácha, Pavel; Blechová, Miroslava; Březinová, Anna; Šafařík, Martin; Šebestík, Jaroslav; Konvalinka, Jan

    2013-01-01

    Roč. 27, č. 7 (2013), s. 2626-2632. ISSN 0892-6638 R&D Projects: GA ČR GAP304/12/0847 Institutional support: RVO:61388963 Keywords : PSMA * Alzheimer's disease * disaggregation * exopeptidase * substrate specificity * depsipeptide Subject RIV: CE - Biochemistry Impact factor: 5.480, year: 2013

  16. Effect of copper (II) ion against elongation behavior of amyloid {beta} fibrils on liposome membranes

    Energy Technology Data Exchange (ETDEWEB)

    Shimanouchi, T.; Onishi, R.; Kitaura, N.; Umakoshi, H.; Kuboi, R. [Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka (Japan)

    2012-01-15

    The fibril growth behavior of amyloid {beta} protein (A{beta}) on cell membranes is relating to the progression of Alzheimer's disease. This growth behavior of A{beta} fibrils is sensitively affected by the metal ions, neurotransmitters, or bioreactive substrate. The inhibitory effect of those materials was quantitatively estimated from the viewpoints of ''crystal growth''. In a bulk aqueous solution, copper (II) ion showed the strong inhibitory effect on the growth of A{beta} fibrils. Meanwhile, the addition of a closed-phospholipid bilayer membrane (liposome) could reduce the above inhibitory effect of copper (II) ion. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. JNK/p38 MAPK involves in ginsenoside Rb1 attenuating beta-amyloid peptide (25-35)-induced tau protein hyperphosphorylation in embryo rat cortical neurons%人参皂苷Rb1通过JNK/p38 MAPK途径减轻Aβ25-35诱导的胎鼠皮层神经元tau蛋白过度磷酸化

    Institute of Scientific and Technical Information of China (English)

    宋锦秋; 陈晓春; 张静; 黄天文; 曾育琦; 沈杰; 陈丽敏

    2008-01-01

    探讨在Aβ25-35(beta-amyloid peptide (25-35),Aβ25-35)诱导的拟阿尔茨海默病样胎鼠皮层神经元tau蛋白过度磷酸化中,人参皂苷Rb1对tau蛋白磷酸化及JNK/p38 MAPK的可能作用.应用蛋白免疫印迹和免疫细胞化学染色的方法,观察tau蛋白磷酸化和JNK(c-jun N-terminal kinase)/p38 MAPK的表达情况.凝聚态Aβ25-35(20 μmol·L-1)作用于皮层神经元12 h,tau蛋白的磷酸化水平明显增高,同时JNK/p38 MAPK的总量及其活性形式--磷酸化JNK/p38 MAPK的蛋白表达水平也增加,人参皂苷Rb1可以减轻tau蛋白的磷酸化水平及JNK/p38 MAPK的蛋白水平.人参皂苷Rb1可通过JNK/p38 MAPK途径减轻Aβ25-35诱导的tau蛋白过度磷酸化.

  18. Interleukin-3 prevents neuronal death induced by amyloid peptide

    Directory of Open Access Journals (Sweden)

    Otth Carola

    2007-10-01

    Full Text Available Abstract Background Interleukin-3 (IL-3 is an important glycoprotein involved in regulating biological responses such as cell proliferation, survival and differentiation. Its effects are mediated via interaction with cell surface receptors. Several studies have demonstrated the expression of IL-3 in neurons and astrocytes of the hippocampus and cortices in normal mouse brain, suggesting a physiological role of IL-3 in the central nervous system. Although there is evidence indicating that IL-3 is expressed in some neuronal populations, its physiological role in these cells is poorly known. Results In this study, we demonstrated the expression of IL-3 receptor in cortical neurons, and analyzed its influence on amyloid β (Aβ-treated cells. In these cells, IL-3 can activate at least three classical signalling pathways, Jak/STAT, Ras/MAP kinase and the PI 3-kinase. Viability assays indicated that IL-3 might play a neuroprotective role in cells treated with Aβ fibrils. It is of interest to note that our results suggest that cell survival induced by IL-3 required PI 3-kinase and Jak/STAT pathway activation, but not MAP kinase. In addition, IL-3 induced an increase of the anti-apoptotic protein Bcl-2. Conclusion Altogether these data strongly suggest that IL-3 neuroprotects neuronal cells against neurodegenerative agents like Aβ.

  19. Synthetic peptide homologous to β protein from Alzheimer's disease forms amyloid-like fibrils in vitro

    International Nuclear Information System (INIS)

    Progressive amyloid deposition in senile plaques and cortical blood vessels may play a central role in the pathogenesis of Alzheimer's disease. The authors have used x-ray diffraction and electron microscopy to study the molecular organization and morphology of macromolecular assemblies formed by three synthetic peptides homologous to β protein of brain amyloid: β-(1-28), residues 1-28 of the β protein; [Ala1-β-(1-28), β-(1-28) with alanine substituted for lysine at position 16; and β-(18-28), residues 18-28 of the β protein. β-(1-28) readily formed fibrils in vitro that were similar in ultrastructure to the in vivo amyloid and aggregated into large bundles resembling those of senile plaque cores. X-ray patterns from partially dried, oriented pellets showed a cross-β-conformation. [Ala16]β-(1-28) formed β-pleated sheet assemblies that were dissimilar to in vivo fibrils. The width of the 10-A spacing indicated stacks of about six sheets. Thus, substitution of the uncharged alanine for the positively charged lysine in the β-strand region enhances the packing of the sheets and dramatically alters the type of macromolecular aggregate formed. Β-(18-28) formed assemblies that had even a greater number of stacked sheets. The findings on these homologous synthetic assemblies help to define the specific sequence that is required to form Alzheimer's-type amyloid fibrils, thus providing an in vitro model of age-related cerebral amyloidogenesis

  20. Amyloid fibril formation of peptides derived from the C-terminus of CETP modulated by lipids

    Energy Technology Data Exchange (ETDEWEB)

    García-González, Victor [Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 México, DF (Mexico); Mas-Oliva, Jaime, E-mail: jmas@ifc.unam.mx [Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 México, DF (Mexico); División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510 México, DF (Mexico)

    2013-04-26

    Highlights: •The secondary structure of a C-terminal peptide derived from CETP was studied. •Lipids modulate secondary structure changes of a C-terminal peptide derived from CETP. •Lysophosphatidic acid maintains a functional α-helix and prevents fibril formation. •Transfer of lipids by CETP is related to the presence of an α-helix at its C-end. -- Abstract: Cholesteryl-ester transfer protein (CETP) is a plasmatic protein involved in neutral lipid transfer between lipoproteins. Focusing on the last 12 C-terminus residues we have previously shown that mutation D{sub 470}N promotes a conformational change towards a β-secondary structure. In turn, this modification leads to the formation of oligomers and fibrillar structures, which cause cytotoxic effects similar to the ones provoked by amyloid peptides. In this study, we evaluated the role of specific lipid arrangements on the structure of peptide helix-Z (D{sub 470}N) through the use of thioflavin T fluorescence, peptide bond absorbance, circular dichroism and electron microscopy. The results indicate that the use of micelles formed with lysophosphatidylcholine and lysophosphatidic acid (LPA) under neutral pH induce a conformational transition of peptide helix-Z containing a β-sheet conformation to a native α-helix structure, therefore avoiding the formation of amyloid fibrils. In contrast, incubation with phosphatidic acid does not change the profile for the β-sheet conformation. When the electrostatic charge at the surface of micelles or vesicles is regulated through the use of lipids such as phospholipid and LPA, minimal changes and the presence of β-structures were recorded. Mixtures with a positive net charge diminished the percentage of β-structure and the amount of amyloid fibrils. Our results suggest that the degree of solvation determined by the presence of a free hydroxyl group on lipids such as LPA is a key condition that can modulate the secondary structure and the consequent formation of

  1. Protective Effects of Some Medicinal Plants from Lamiaceae Family Against Beta-Amyloid Induced Toxicity in PC12 Cell

    Directory of Open Access Journals (Sweden)

    S Saeidnia

    2012-10-01

    Full Text Available Background: Excessive accumulation of beta-amyliod peptide (Aβ, the major component of senile plaques in Alzheimer's disease (AD, causes neuronal cell death through induction of oxidative stress. Therefore, antioxidants may be of use in the treatment of AD. The medicinal plants from the Lamiaceae family have been widely used in Iranian traditional medicine. These plants contain compounds with antioxidant activity and some species in this family have been reported to have neuroprotective properties. In the present study, methanolic extract of seven plants from salvia and satureja species were evaluated for their protective effects against beta-amyloid induced neurotoxicity.Methods: Aerial parts of the plants were extracted with ethyl acetate and methanol, respectively, by percolation at room temperature and subsequently, methanolic extracts of the plants were prepared. PC12 cells were incubated with different concentrations of the extracts in culture medium 1h prior to incubation with Aβ. Cell toxicity was assessed 24h after addition of Aβ by MTT assay.Results: Satureja bachtiarica, Salvia officinalis and Salvia macrosiphon methanolic extracts exhibited high protective effects against Aβ induced toxicity (P<0.001. Protective effects of Satureja bachtiarica and Salvia officinalis were dose-dependent.Conclusion: The main constituents of these extracts are polyphenolic and flavonoid compounds such as rosmarinic acid, naringenin, apigenin and luteolin which have antioxidant properties and may have a role in neuroprotection. Based on neuroprotective effect of these plants against Aβ induced toxicity, we recommend greater attention to their use in the treatment of Alzheimer disease.

  2. Levels of alpha- and beta-secretase cleaved amyloid precursor protein in the cerebrospinal fluid of Alzheimer's disease patients

    DEFF Research Database (Denmark)

    Sennvik, K; Fastbom, J; Blomberg, M;

    2000-01-01

    Alternative cleavage of the amyloid precursor protein (APP) results in generation and secretion of both soluble APP (sAPP) and beta-amyloid (Abeta). Abeta is the main component of the amyloid depositions in the brains of Alzheimer's disease (AD) patients. Using Western blotting, we compared the...... levels of alpha-secretase cleaved sAPP, beta-secretase cleaved sAPP and total sAPP, in cerebrospinal fluid (CSF) from 13 sporadic AD patients and 13 healthy controls. Our findings show significant amounts of beta-secretase cleaved sAPP in CSF. There was no statistically significant difference in the...... levels of beta-secretase cleaved sAPP between AD patients and controls. The levels of alpha-secretase cleaved sAPP and total sAPP were, however, found to be significantly lower in the AD patients than in the controls....

  3. Development of magnetic resonance imaging based detection methods for beta amyloids via sialic acid-functionalized magnetic nanoparticles

    Science.gov (United States)

    Kouyoumdjian, Hovig

    The development of a non-invasive method for the detection of Alzheimer's disease is of high current interest, which can be critical in early diagnosis and in guiding preventive treatment of the disease. The aggregates of beta amyloids are a pathological hallmark of Alzheimer's disease. Carbohydrates such as sialic acid terminated gangliosides have been shown to play significant roles in initiation of amyloid aggregation. Herein, we report a biomimetic approach using sialic acid coated iron oxide superparamagnetic nanoparticles for in vitro detection in addition to the assessment of the in vivo mouse-BBB (Blood brain barrier) crossing of the BSA (bovine serum albumin)-modified ones. The sialic acid functionalized dextran nanoparticles were shown to bind with beta amyloids through several techniques including ELISA (enzyme linked immunosorbent assay), MRI (magnetic resonance imaging), TEM (transmission electron microscopy), gel electrophoresis and tyrosine fluorescence assay. The superparamagnetic nature of the nanoparticles allowed easy detection of the beta amyloids in mouse brains in both in vitro and ex vivo model by magnetic resonance imaging. Furthermore, the sialic acid nanoparticles greatly reduced beta amyloid induced cytotoxicity to SH-SY5Y neuroblastoma cells, highlighting the potential of the glyconanoparticles for detection and imaging of beta amyloids. Sialic acid functionalized BSA (bovine serum albumin) nanoparticles also showed significant binding to beta amyloids, through ELISA and ex vivo mouse brain MRI experiments. Alternatively, the BBB crossing was demonstrated by several techniques such as confocal microscopy, endocytosis, exocytosis assays and were affirmed by nanoparticles transcytosis assays through bEnd.3 endothelial cells. Finally, the BBB crossing was confirmed by analyzing the MRI signal of nanoparticle-injected CD-1 mice.

  4. Hydrodynamic effects on β-amyloid (16-22) peptide aggregation

    Science.gov (United States)

    Chiricotto, Mara; Melchionna, Simone; Derreumaux, Philippe; Sterpone, Fabio

    2016-07-01

    Computer simulations based on simplified representations are routinely used to explore the early steps of amyloid aggregation. However, when protein models with implicit solvent are employed, these simulations miss the effect of solvent induced correlations on the aggregation kinetics and lifetimes of metastable states. In this work, we apply the multi-scale Lattice Boltzmann Molecular Dynamics technique (LBMD) to investigate the initial aggregation phases of the amyloid Aβ16-22 peptide. LBMD includes naturally hydrodynamic interactions (HIs) via a kinetic on-lattice representation of the fluid kinetics. The peptides are represented by the flexible OPEP coarse-grained force field. First, we have tuned the essential parameters that control the coupling between the molecular and fluid evolutions in order to reproduce the experimental diffusivity of elementary species. The method is then deployed to investigate the effect of HIs on the aggregation of 100 and 1000 Aβ16-22 peptides. We show that HIs clearly impact the aggregation process and the fluctuations of the oligomer sizes by favouring the fusion and exchange dynamics of oligomers between aggregates. HIs also guide the growth of the leading largest cluster. For the 100 Aβ16-22 peptide system, the simulation of ˜300 ns allowed us to observe the transition from ellipsoidal assemblies to an elongated and slightly twisted aggregate involving almost the totality of the peptides. For the 1000 Aβ16-22 peptides, a system of unprecedented size at quasi-atomistic resolution, we were able to explore a branched disordered fibril-like structure that has never been described by other computer simulations, but has been observed experimentally.

  5. Fibrils from designed non-amyloid-related synthetic peptides induce AA-amyloidosis during inflammation in an animal model.

    Directory of Open Access Journals (Sweden)

    Per Westermark

    Full Text Available BACKGROUND: Mouse AA-amyloidosis is a transmissible disease by a prion-like mechanism where amyloid fibrils act by seeding. Synthetic peptides with no amyloid relationship can assemble into amyloid-like fibrils and these may have seeding capacity for amyloid proteins. PRINCIPAL FINDINGS: Several synthetic peptides, designed for nanotechnology, have been examined for their ability to produce fibrils with Congo red affinity and concomitant green birefringence, affinity for thioflavin S and to accelerate AA-amyloidosis in mice. It is shown that some amphiphilic fibril-forming peptides not only produced Congo red birefringence and showed affinity for thioflavin S, but they also shortened the lag phase for systemic AA-amyloidosis in mice when they were given intravenously at the time of inflammatory induction with silver nitride. Peptides, not forming amyloid-like fibrils, did not have such properties. CONCLUSIONS: These observations should caution researchers and those who work with synthetic peptides and their derivatives to be aware of the potential health concerns.

  6. In vitro fibrillization of Alzheimer's amyloidpeptide (1-42)

    Science.gov (United States)

    Tiiman, Ann; Krishtal, Jekaterina; Palumaa, Peep; Tõugu, Vello

    2015-09-01

    The amyloid deposition in the form of extracellular fibrillar aggregates of amyloid-β (Aβ) peptide is a critical pathological event in Alzheimer's disease. Here, we report a systematic investigation of the effects of environmental factors on the kinetics of Aβ fibrillization in vitro. The effects of Aβ42 peptide concentration, temperature, pH, added solvents and the ratio of Aβ40 and Aβ42 on the peptide fibrillization under agitated conditions was studied. The analysis show that the rate of fibril growth by monomer addition is not limited by diffusion but by rearrangement in the monomer structure, which is enhanced by low concentrations of fluorinated alcohols and characterized by the activation energy of 12 kcal/mol. Fibrillization rate decreases at pH values below 7.0 where simultaneous protonation of His 13 and 14 inhibits fibril formation. The lag period for Aβ42 was only twofold shorter and the fibril growth rate twofold faster than those of Aβ40. Lag period was shortened and the fibrillization rate was increased only at 90% content of Aβ42.

  7. Indexing amyloid peptide diffraction from serial femtosecond crystallography: new algorithms for sparse patterns

    Energy Technology Data Exchange (ETDEWEB)

    Brewster, Aaron S. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Sawaya, Michael R. [University of California, Los Angeles, CA 90095-1570 (United States); University of California, Los Angeles, CA 90095-1570 (United States); University of California, Los Angeles, CA 90095-1570 (United States); Rodriguez, Jose [University of California, Los Angeles, CA 90095-1570 (United States); University of California, Los Angeles, CA 90095-1570 (United States); Hattne, Johan; Echols, Nathaniel [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); McFarlane, Heather T. [University of California, Los Angeles, CA 90095-1570 (United States); University of California, Los Angeles, CA 90095-1570 (United States); Cascio, Duilio [University of California, Los Angeles, CA 90095-1570 (United States); University of California, Los Angeles, CA 90095-1570 (United States); University of California, Los Angeles, CA 90095-1570 (United States); Adams, Paul D. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); University of California, Berkeley, CA 94720 (United States); Eisenberg, David S. [University of California, Los Angeles, CA 90095-1570 (United States); University of California, Los Angeles, CA 90095-1570 (United States); University of California, Los Angeles, CA 90095-1570 (United States); Sauter, Nicholas K., E-mail: nksauter@lbl.gov [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2015-02-01

    Special methods are required to interpret sparse diffraction patterns collected from peptide crystals at X-ray free-electron lasers. Bragg spots can be indexed from composite-image powder rings, with crystal orientations then deduced from a very limited number of spot positions. Still diffraction patterns from peptide nanocrystals with small unit cells are challenging to index using conventional methods owing to the limited number of spots and the lack of crystal orientation information for individual images. New indexing algorithms have been developed as part of the Computational Crystallography Toolbox (cctbx) to overcome these challenges. Accurate unit-cell information derived from an aggregate data set from thousands of diffraction patterns can be used to determine a crystal orientation matrix for individual images with as few as five reflections. These algorithms are potentially applicable not only to amyloid peptides but also to any set of diffraction patterns with sparse properties, such as low-resolution virus structures or high-throughput screening of still images captured by raster-scanning at synchrotron sources. As a proof of concept for this technique, successful integration of X-ray free-electron laser (XFEL) data to 2.5 Å resolution for the amyloid segment GNNQQNY from the Sup35 yeast prion is presented.

  8. Seeding-dependent maturation of beta2-microglobulin amyloid fibrils at neutral pH.

    Science.gov (United States)

    Kihara, Miho; Chatani, Eri; Sakai, Miyo; Hasegawa, Kazuhiro; Naiki, Hironobu; Goto, Yuji

    2005-03-25

    Beta2-microglobulin (beta2-m) is a major component of amyloid fibrils deposited in patients with dialysis-related amyloidosis. Recent studies have focused on the mechanism by which amyloid fibrils are formed under physiological conditions, which had been difficult to reproduce quantitatively. Yamamoto et al. (Yamamoto, S., Hasegawa, K., Yamaguchi, I., Tsutsumi, S., Kardos, J., Goto, Y., Gejyo, F. & Naiki, H. (2004) Biochemistry 43, 11075-11082) showed that a combination of seed fibrils prepared under acidic conditions and a low concentration of sodium dodecyl sulfate below its critical micelle concentration enabled extensive fibril formation at pH 7.0. Here, we found that repeated self-seeding at pH 7.0 with fibrils formed at the same pH causes a marked acceleration of growth, indicating the maturation of fibrils. The observed maturation can be simulated by assuming the existence of two types of fibrils with different growth rates. Importantly, some mutations of beta2-m or the addition of a low concentration of urea, both destabilizing the native conformation, were not enough to extend the fibrils at pH 7.0, and a low concentration of sodium dodecyl sulfate (i.e. 0.5 mM) was essential. Thus, even though the first stage fibrils in patients are unstable and require stabilizing factors to remain at neutral pH, they can adapt to a neutral pH with repeated self-seeding, implying a mechanism of development of amyloid deposition after a long latent period in patients. PMID:15659393

  9. Cholesterol Depletion Reduces the Internalization of β-Amyloid Peptide in SH-SY5Y Cells

    Institute of Scientific and Technical Information of China (English)

    ZHOU Qinghua; HE Li; SUI Senfang

    2006-01-01

    Deposition of amyloid in the brain is a critical step in the pathogenesis of Alzheimer's disease. The endocytosis of β-amyloid peptide (Aβ) is an important factor among the many factors that contribute to the genesis of amyloid deposits. Since cholesterol participates in many important physiological processes, the present work investigated the relationship between the cellular cholesterol content and the endocytosis of the exogenic Aβ, and found that reduction of the cholesterol content by methyl-β-cyclodextrin could reduce the endocytosis of Aβ. The study indicates that the endocytosis of Aβ is partly mediated by cholesterol.

  10. Effects of Amyloid Precursor Protein 17 Peptide on the Protection of Diabetic Encephalopathy and Improvement of Glycol Metabolism in the Diabetic Rat

    OpenAIRE

    Heng Meng; Duo Zhang; Haishan Yang

    2013-01-01

    Researchers have proposed that amyloid precursor protein 17 peptide (APP17 peptide), an active fragment of amyloid precursor protein (APP) in the nervous system, has therapeutic effects on neurodegeneration. Diabetic encephalopathy (DE) is a neurological disease caused by diabetes. Here we use multiple experimental approaches to investigate the effect of APP17 peptide on changes in learning behavior and glycol metabolism in rats. It was found that rats with DE treated by APP17 peptide showed ...

  11. Impairment of context memory by β-amyloid peptide in terrestrial snail

    Directory of Open Access Journals (Sweden)

    2008-09-01

    Full Text Available We examined influence of the β-amyloid peptide (25-35 neurotoxic fragment (βAP on Helix lucorum food-aversion learning. Testing with aversively conditioned carrot showed that 2, 5, and 14 days after training the βAP-injected group responded in a significantly larger number of cases and with a significantly smaller latency than the sham-injected control group. The results demonstrate that the amyloid peptide partially impairs the learning process. In an attempt to specify what component of memory is impaired we compared responses in a context in which the snails were aversively trained, and in a neutral context. It was found that the sham-injected learned snails significantly less frequently took the aversively conditioned food in the context in which the snails were shocked, while the βAP-injected snails remembered the aversive context 2 days after associative training, but were not able to distinguish two contexts 5, and 14 days after training. In a separate series of experiments a specific context was associated with electric shock, and changes in general responsiveness were tested in two contexts several days later. It was found that the βAP-injected snails significantly increased withdrawal responses in all tested contexts, while the sham-injected control animals selectively increased responsiveness only in the context in which they were reinforced with electric shocks. These results demonstrate that the β-amyloid peptide (25-35 interferes with the learning process, and may play a significant role in behavioral plasticity and memory by selectively impairing only one

  12. Evidence for Inhibition of Lysozyme Amyloid Fibrillization by Peptide Fragments from Human Lysozyme: A Combined Spectroscopy, Microscopy, and Docking Study.

    Science.gov (United States)

    Kar, Rajiv K; Gazova, Zuzana; Bednarikova, Zuzana; Mroue, Kamal H; Ghosh, Anirban; Zhang, Ruiyan; Ulicna, Katarina; Siebert, Hans-Christian; Nifantiev, Nikolay E; Bhunia, Anirban

    2016-06-13

    Degenerative diseases, such as Alzheimer's and prion diseases, as well as type II diabetes, have a pathogenesis associated with protein misfolding, which routes with amyloid formation. Recent strategies for designing small-molecule and polypeptide antiamyloid inhibitors are mainly based on mature fibril structures containing cross β-sheet structures. In the present study, we have tackled the hypothesis that the rational design of antiamyloid agents that can target native proteins might offer advantageous prospect to design effective therapeutics. Lysozyme amyloid fibrillization was treated with three different peptide fragments derived from lysozyme protein sequence R(107)-R(115). Using low-resolution spectroscopic, high-resolution NMR, and STD NMR-restrained docking methods such as HADDOCK, we have found that these peptide fragments have the capability to affect lysozyme fibril formation. The present study implicates the prospect that these peptides can also be tested against other amyloid-prone proteins to develop novel therapeutic agents. PMID:27116396

  13. Clearance of amyloid-beta in Alzheimer's disease: shifting the action site from center to periphery.

    Science.gov (United States)

    Liu, Yu-Hui; Wang, Ye-Ran; Xiang, Yang; Zhou, Hua-Dong; Giunta, Brian; Mañucat-Tan, Noralyn B; Tan, Jun; Zhou, Xin-Fu; Wang, Yan-Jiang

    2015-02-01

    Amyloid-beta (Aβ) is suggested to play a causal role in the pathogenesis of Alzheimer's disease (AD). Immunotherapies are among the most promising Aβ-targeting therapeutic strategies for AD. But, to date, all clinical trials of this modality have not been successful including Aβ vaccination (AN1792), anti-Aβ antibodies (bapineuzumab, solanezumab and ponezumab), and intravenous immunoglobulin (IVIG). We propose that one reason for the failures of these clinical trials may be the adverse effects of targeting the central clearance of amyloid plaques. The potential adverse effects include enhanced neurotoxicity related to Aβ oligomerization from plaques, neuroinflammation related to opsonized Aβ phagocytosis, autoimmunity related to cross-binding of antibodies to amyloid precursor protein (APP) on the neuron membrane, and antibody-mediated vascular and neuroskeletal damage. Overall, the majority of the adverse effects seen in clinical trials were associated with the entry of antibodies into the brain. Finally, we propose that peripheral Aβ clearance would be effective and safe for future Aβ-targeting therapies. PMID:24733588

  14. Broad neutralization of calcium-permeable amyloid pore channels with a chimeric Alzheimer/Parkinson peptide targeting brain gangliosides.

    Science.gov (United States)

    Di Scala, Coralie; Yahi, Nouara; Flores, Alessandra; Boutemeur, Sonia; Kourdougli, Nazim; Chahinian, Henri; Fantini, Jacques

    2016-02-01

    Growing evidence supports a role for brain gangliosides in the pathogenesis of neurodegenerative diseases including Alzheimer's and Parkinson's. Recently we deciphered the ganglioside-recognition code controlling specific ganglioside binding to Alzheimer's β-amyloid (Aβ1-42) peptide and Parkinson's disease-associated protein α-synuclein. Cracking this code allowed us to engineer a short chimeric Aβ/α-synuclein peptide that recognizes all brain gangliosides. Here we show that ganglioside-deprived neural cells do no longer sustain the formation of zinc-sensitive amyloid pore channels induced by either Aβ1-42 or α-synuclein, as assessed by single-cell Ca(2+) fluorescence microscopy. Thus, amyloid channel formation, now considered a key step in neurodegeneration, is a ganglioside-dependent process. Nanomolar concentrations of chimeric peptide competitively inhibited amyloid pore formation induced by Aβ1-42 or α-synuclein in cultured neural cells. Moreover, this peptide abrogated the intracellular calcium increases induced by Parkinson's-associated mutant forms of α-synuclein (A30P, E46K and A53T). The chimeric peptide also prevented the deleterious effects of Aβ1-42 on synaptic vesicle trafficking and decreased the Aβ1-42-induced impairment of spontaneous activity in rat hippocampal slices. Taken together, these data show that the chimeric peptide has broad anti-amyloid pore activity, suggesting that a common therapeutic strategy based on the prevention of amyloid-ganglioside interactions is a reachable goal for both Alzheimer's and Parkinson's diseases. PMID:26655601

  15. A 'danse macabre': tau and Fyn in STEP with amyloid beta to facilitate induction of synaptic depression and excitotoxicity.

    Science.gov (United States)

    Boehm, Jannic

    2013-06-01

    Alzheimer's disease, with its two most prominent pathological factors amyloid beta and tau protein, can be described as a disease of the synapse. It therefore comes as little surprise that NMDA receptor-related synaptic dysfunction had been thought for several years to underlie the synaptic pathophysiology seen in Alzheimer's disease. In this review I will summarise recent evidence showing that the NMDA receptor links the effects of extracellular amyloid beta with intracellular tau protein. Furthermore, the antagonistic roles of Fyn and STEP in NMDA receptor regulation, synaptic plasticity and induction of synaptic depression will be discussed. PMID:23773061

  16. Thermodynamic description of Beta amyloid formation using physicochemical scales and fractal bioinformatic scales.

    Science.gov (United States)

    Phillips, J C

    2015-05-20

    Protein function depends on both protein structure and amino acid (aa) sequence. Here we show that modular features of both structure and function can be quantified economically from the aa sequences alone for the small (40,42 aa) plaque-forming (aggregative) amyloid beta fragments. Some edge and center features of the fragments are predicted. Bioinformatic scales based on β strand formation propensities and the thermodynamically second order fractal hydropathicity scale based on evolutionary optimization (self-organized criticality) are contrasted with the standard first order physicochemical scale based on complete protein (water-air) unfolding. The results are consistent with previous studies of these physicochemical factors that show that aggregative properties, even of beta fragments, are driven primarily by near-equilibrium hydropathic forces. PMID:25702750

  17. Decrease in the production of beta-amyloid by berberine inhibition of the expression of beta-secretase in HEK293 cells

    Directory of Open Access Journals (Sweden)

    Zhu Feiqi

    2011-12-01

    Full Text Available Abstract Background Berberine (BER, the major alkaloidal component of Rhizoma coptidis, has multiple pharmacological effects including inhibition of acetylcholinesterase, reduction of cholesterol and glucose levels, anti-inflammatory, neuroprotective and neurotrophic effects. It has also been demonstrated that BER can reduce the production of beta-amyloid40/42, which plays a critical and primary role in the pathogenesis of Alzheimer's disease. However, the mechanism by which it accomplishes this remains unclear. Results Here, we report that BER could not only significantly decrease the production of beta-amyloid40/42 and the expression of beta-secretase (BACE, but was also able to activate the extracellular signal-regulated kinase1/2 (ERK1/2 pathway in a dose- and time-dependent manner in HEK293 cells stably transfected with APP695 containing the Swedish mutation. We also find that U0126, an antagonist of the ERK1/2 pathway, could abolish (1 the activation activity of BER on the ERK1/2 pathway and (2 the inhibition activity of BER on the production of beta-amyloid40/42 and the expression of BACE. Conclusion Our data indicate that BER decreases the production of beta-amyloid40/42 by inhibiting the expression of BACE via activation of the ERK1/2 pathway.

  18. Multiscale Molecular Dynamics Simulations of Beta-Amyloid Interactions with Neurons

    Science.gov (United States)

    Qiu, Liming; Vaughn, Mark; Cheng, Kelvin

    2012-10-01

    Early events of human beta-amyloid protein interactions with cholesterol-containing membranes are critical to understanding the pathogenesis of Alzheimer's disease (AD) and to exploring new therapeutic interventions of AD. Atomistic molecular dynamics (AMD) simulations have been extensively used to study the protein-lipid interaction at high atomic resolutions. However, traditional MD simulations are not efficient in sampling the phase space of complex lipid/protein systems with rugged free energy landscapes. Meanwhile, coarse-grained MD (CGD) simulations are efficient in the phase space sampling but suffered from low spatial resolutions and from the fact that the energy landscapes are not identical to those of the AMD. Here, a multiscale approach was employed to simulate the protein-lipid interactions of beta-amyloid upon its release from proteolysis residing in the neuronal membranes. We utilized a forward (AMD to CGD) and reverse (CGD-AMD) strategy to explore new transmembrane and surface protein configuration and evaluate the stabilization mechanisms by measuring the residue-specific protein-lipid or protein conformations. The detailed molecular interactions revealed in this multiscale MD approach will provide new insights into understanding the early molecular events leading to the pathogenesis of AD.

  19. Synthesis, Molecular Modelling and Biological Evaluation of Novel Heterodimeric, Multiple Ligands Targeting Cholinesterases and Amyloid Beta

    Directory of Open Access Journals (Sweden)

    Michalina Hebda

    2016-03-01

    Full Text Available Cholinesterases and amyloid beta are one of the major biological targets in the search for a new and efficacious treatment of Alzheimer’s disease. The study describes synthesis and pharmacological evaluation of new compounds designed as dual binding site acetylcholinesterase inhibitors. Among the synthesized compounds, two deserve special attention—compounds 42 and 13. The former is a saccharin derivative and the most potent and selective acetylcholinesterase inhibitor (EeAChE IC50 = 70 nM. Isoindoline-1,3-dione derivative 13 displays balanced inhibitory potency against acetyl- and butyrylcholinesterase (BuChE (EeAChE IC50 = 0.76 μM, EqBuChE IC50 = 0.618 μM, and it inhibits amyloid beta aggregation (35.8% at 10 μM. Kinetic studies show that the developed compounds act as mixed or non-competitive acetylcholinesterase inhibitors. According to molecular modelling studies, they are able to interact with both catalytic and peripheral active sites of the acetylcholinesterase. Their ability to cross the blood-brain barrier (BBB was confirmed in vitro in the parallel artificial membrane permeability BBB assay. These compounds can be used as a solid starting point for further development of novel multifunctional ligands as potential anti-Alzheimer’s agents.

  20. PPARgamma agonist curcumin reduces the amyloid-beta-stimulated inflammatory responses in primary astrocytes.

    Science.gov (United States)

    Wang, Hong-Mei; Zhao, Yan-Xin; Zhang, Shi; Liu, Gui-Dong; Kang, Wen-Yan; Tang, Hui-Dong; Ding, Jian-Qing; Chen, Sheng-Di

    2010-01-01

    Alzheimer's disease (AD) is the most common age-related neurodegenerative disorder. Accumulating data indicate that astrocytes play an important role in the neuroinflammation related to the pathogenesis of AD. It has been shown that microglia and astrocytes are activated in AD brain and amyloid-beta (Abeta) can increase the expression of cyclooxygenase 2 (COX-2), interleukin-1, and interleukin-6. Suppressing the inflammatory response caused by activated astrocytes may help to inhibit the development of AD. Curcumin is a major constituent of the yellow curry spice turmeric and proved to be a potential anti-inflammatory drug in arthritis and colitis. There is a low age-adjusted prevalence of AD in India, a country where turmeric powder is commonly used as a culinary compound. Curcumin has been shown to suppress activated astroglia in amyloid-beta protein precursor transgenic mice. The real mechanism by which curcumin inhibits activated astroglia is poorly understood. Here we report that the expression of COX-2 and glial fibrillary acidic protein were enhanced and that of peroxisome proliferator-activated receptor gamma (PPARgamma) was decreased in Abeta(25-35)-treated astrocytes. In line with these results, nuclear factor-kappaB translocation was increased in the presence of Abeta. All these can be reversed by the pretreatment of curcumin. Furthermore, GW9662, a PPARgamma antagonist, can abolish the anti-inflammatory effect of curcumin. These results show that curcumin might act as a PPARgamma agonist to inhibit the inflammation in Abeta-treated astrocytes. PMID:20413894

  1. Effect of osmolytes on the conformation and aggregation of some amyloid peptides: CD spectroscopic data.

    Science.gov (United States)

    Inayathullah, Mohammed; Rajadas, Jayakumar

    2016-06-01

    Protein misfolding and aggregation are responsible for a large number of diseases called protein conformational diseases or disorders that include Alzheimer׳s disease, Huntington׳s diseases, Prion related encephalopathies and type-II diabetes (http://dx.doi.org/10.1038/35041139) (Kopito and Ron, 2000) [1]. A variety of studies have shown that some small organic molecules, known as osmolytes have the ability to stabilize native conformation of proteins and prevent misfolding and aggregation (http://www.la-press.com/article.php?article_id=447) (Zhao et al., 2008) [2]. It has been shown that certain short segment or fragment of respective proteins can also form amyloids, and the segments also promote the aggregation in the full-length protein (http://dx.doi.org/10.2174/0929867023369187) (Gazit, 2002) [3]. This article presents circular dichroism spectroscopic data on conformational analysis and effect of osmolytes on Aβ peptide fragments, different lengths of polyglutamine peptide and the amyloidogenic segment of islet amyloid polypeptide. PMID:27222868

  2. Computational identification of potential multitarget treatments for ameliorating the adverse effects of amyloid-beta on synaptic plasticity

    Directory of Open Access Journals (Sweden)

    ThomasJ.Anastasio

    2014-05-01

    Full Text Available The leading hypothesis on Alzheimer Disease (AD is that it is caused by buildup of the peptide amyloid-beta (Abeta, which initially causes dysregulation of synaptic plasticity and eventually causes destruction of synapses and neurons. Pharmacological efforts to limit Abeta buildup have proven ineffective, and this raises the twin challenges of understanding the adverse effects of Abeta on synapses and of suggesting pharmacological means to prevent it. The purpose of this paper is to initiate a computational approach to understanding the dysregulation by Abeta of synaptic plasticity and to offer suggestions whereby combinations of various chemical compounds could be arrayed against it. This data-driven approach confronts the complexity of synaptic plasticity by representing findings from the literature in a course-grained manner, and focuses on understanding the aggregate behavior of many molecular interactions. The same set of interactions is modeled by two different computer programs, each written using a different programming modality: one imperative, the other declarative. Both programs compute the same results over an extensive test battery, providing an essential crosscheck. Then the imperative program is used for the computationally intensive purpose of determining the effects on the model of every combination of ten different compounds, while the declarative program is used to analyze model behavior using temporal logic. Together these two model implementations offer new insights into the mechanisms by which Abeta dysregulates synaptic plasticity and suggest many drug combinations that potentially may reduce or prevent it.

  3. Dynamic behavior of small heat shock protein inhibition on amyloid fibrillization of a small peptide (SSTSAA) from RNase A

    International Nuclear Information System (INIS)

    Highlights: ► Mechanism of small heat shock protein inhibition on fibril formation was studied. ► Peptide SSTSAA with modified ends was used for amyloid fibril formation. ► FRET signal was followed during the fibril formation. ► Mj HSP16.5 inhibits fibril formation when introduced in the lag phase. ► Mj HSP16.5 slows down fibril formation when introduced after the lag phase. -- Abstract: Small heat shock proteins, a class of molecular chaperones, are reported to inhibit amyloid fibril formation in vitro, while the mechanism of inhibition remains unknown. In the present study, we investigated the mechanism by which Mj HSP16.5 inhibits amyloid fibril formation of a small peptide (SSTSAA) from RNase A. A model peptide (dansyl-SSTSAA-W) was designed by introducing a pair of fluorescence resonance energy transfer (FRET) probes into the peptide, allowing for the monitoring of fibril formation by this experimental model. Mj HSP16.5 completely inhibited fibril formation of the model peptide at a molar ratio of 1:120. The dynamic process of fibril formation, revealed by FRET, circular dichroism, and electron microscopy, showed a lag phase of about 2 h followed by a fast growth period. The effect of Mj HSP16.5 on amyloid fibril formation was investigated by adding it into the incubation solution during different growth phases. Adding Mj HSP16.5 to the incubating peptide before or during the lag phase completely inhibited fibril formation. However, introducing Mj HSP16.5 after the lag phase only slowed down the fibril formation process by adhering to the already formed fibrils. These findings provide insight into the inhibitory roles of small heat shock proteins on amyloid fibril formation at the molecular level.

  4. Chaperones ameliorate beta cell dysfunction associated with human islet amyloid polypeptide overexpression.

    Directory of Open Access Journals (Sweden)

    Lisa Cadavez

    Full Text Available In type 2 diabetes, beta-cell dysfunction is thought to be due to several causes, one being the formation of toxic protein aggregates called islet amyloid, formed by accumulations of misfolded human islet amyloid polypeptide (hIAPP. The process of hIAPP misfolding and aggregation is one of the factors that may activate the unfolded protein response (UPR, perturbing endoplasmic reticulum (ER homeostasis. Molecular chaperones have been described to be important in regulating ER response to ER stress. In the present work, we evaluate the role of chaperones in a stressed cellular model of hIAPP overexpression. A rat pancreatic beta-cell line expressing hIAPP exposed to thapsigargin or treated with high glucose and palmitic acid, both of which are known ER stress inducers, showed an increase in ER stress genes when compared to INS1E cells expressing rat IAPP or INS1E control cells. Treatment with molecular chaperone glucose-regulated protein 78 kDa (GRP78, also known as BiP or protein disulfite isomerase (PDI, and chemical chaperones taurine-conjugated ursodeoxycholic acid (TUDCA or 4-phenylbutyrate (PBA, alleviated ER stress and increased insulin secretion in hIAPP-expressing cells. Our results suggest that the overexpression of hIAPP induces a stronger response of ER stress markers. Moreover, endogenous and chemical chaperones are able to ameliorate induced ER stress and increase insulin secretion, suggesting that improving chaperone capacity can play an important role in improving beta-cell function in type 2 diabetes.

  5. Aliphatic peptides show similar self-assembly to amyloid core sequences, challenging the importance of aromatic interactions in amyloidosis.

    Science.gov (United States)

    Lakshmanan, Anupama; Cheong, Daniel W; Accardo, Angelo; Di Fabrizio, Enzo; Riekel, Christian; Hauser, Charlotte A E

    2013-01-01

    The self-assembly of abnormally folded proteins into amyloid fibrils is a hallmark of many debilitating diseases, from Alzheimer's and Parkinson diseases to prion-related disorders and diabetes type II. However, the fundamental mechanism of amyloid aggregation remains poorly understood. Core sequences of four to seven amino acids within natural amyloid proteins that form toxic fibrils have been used to study amyloidogenesis. We recently reported a class of systematically designed ultrasmall peptides that self-assemble in water into cross-β-type fibers. Here we compare the self-assembly of these peptides with natural core sequences. These include core segments from Alzheimer's amyloid-β, human amylin, and calcitonin. We analyzed the self-assembly process using circular dichroism, electron microscopy, X-ray diffraction, rheology, and molecular dynamics simulations. We found that the designed aliphatic peptides exhibited a similar self-assembly mechanism to several natural sequences, with formation of α-helical intermediates being a common feature. Interestingly, the self-assembly of a second core sequence from amyloid-β, containing the diphenylalanine motif, was distinctly different from all other examined sequences. The diphenylalanine-containing sequence formed β-sheet aggregates without going through the α-helical intermediate step, giving a unique fiber-diffraction pattern and simulation structure. Based on these results, we propose a simplified aliphatic model system to study amyloidosis. Our results provide vital insight into the nature of early intermediates formed and suggest that aromatic interactions are not as important in amyloid formation as previously postulated. This information is necessary for developing therapeutic drugs that inhibit and control amyloid formation. PMID:23267112

  6. A Cocoa Peptide Protects Caenorhabditis elegans from Oxidative Stress and β-Amyloid Peptide Toxicity

    OpenAIRE

    Martorell, Patricia; Bataller, Esther; Llopis, Silvia; Gonzalez, Núria; Álvarez, Beatriz; Montón, Fernando; Ortiz, Pepa; Ramón, Daniel; Genovés, Salvador

    2013-01-01

    Background Cocoa and cocoa-based products contain different compounds with beneficial properties for human health. Polyphenols are the most frequently studied, and display antioxidant properties. Moreover, protein content is a very interesting source of antioxidant bioactive peptides, which can be used therapeutically for the prevention of age-related diseases. Methodology/Principal Findings A bioactive peptide, 13L (DNYDNSAGKWWVT), was obtained from a hydrolyzed cocoa by-product by chromatog...

  7. Beta-amyloid precursor protein transgenic mice that harbor diffuse A beta deposits but do not form plaques show increased ischemic vulnerability: role of inflammation

    Czech Academy of Sciences Publication Activity Database

    Koistinaho, M.; Kettunen, M. I.; Goldsteins, G.; Keinänen, R.; Salminen, A.; Ort, Michael; Bureš, Jan; Liu, D.; Kauppinen, R. A.; Higgins, L. S.; Koistinaho, J.

    2002-01-01

    Roč. 99, č. 3 (2002), s. 1610-1615. ISSN 0027-8424 R&D Projects: GA ČR GA309/00/1656 Institutional research plan: CEZ:AV0Z5011922 Keywords : Beta-amyloid * Alzheimer disease * brain ischemia Subject RIV: FH - Neurology Impact factor: 10.701, year: 2002

  8. Amyloid beta protein and tau in cerebrospinal fluid and plasma as biomarkers for dementia: a review of recent literature.

    NARCIS (Netherlands)

    Frankfort, S.V.; Tulner, L.R.; Campen, J.P. van; Verbeek, M.M.; Jansen, R.W.; Beijnen, J.H.

    2008-01-01

    This review addresses recent developments in amyloid beta (Abeta), total tau (t-tau), and phosporylated tau (p-tau) protein analysis, in cerebrospinal fluid (CSF) and plasma as biomarkers for dementia. Recent research focused on the protection of patients with mild cognitive impairment (MCI) into de

  9. The coding sequence of amyloid-beta precursor protein APP contains a neural-specific promoter element.

    NARCIS (Netherlands)

    Collin, R.W.J.; Martens, G.J.M.

    2006-01-01

    The amyloid-beta precursor protein APP is generally accepted to be involved in the pathology of Alzheimer's disease. Since its physiological role is still unclear, we decided to study the function of APP via stable transgenesis in the amphibian Xenopus laevis. However, the application of constructs

  10. Spectroscopic investigation of Ginkgo biloba terpene trilactones and their interaction with amyloid peptide Aβ(25-35)

    Science.gov (United States)

    He, Jiangtao; Petrovic, Ana G.; Dzyuba, Sergei V.; Berova, Nina; Nakanishi, Koji; Polavarapu, Prasad L.

    2008-04-01

    The beneficial effects of Ginkgo biloba extract in the "treatment" of dementia are attributed to its terpene trilactone (TTL) constituents. The interactions between TTLs and amyloid peptide are believed to be responsible in preventing the aggregation of peptide. These interactions have been investigated using infrared vibrational absorption (VA) and circular dichroism (VCD) spectra. Four TTLs, namely ginkgolide A (GA), ginkgolide B (GB), ginkgolide C (GC) and bilobalide (BB) and amyloid Aβ(25-35) peptide, as a model for the full length peptide, are used in this study. GA-monoether and GA-diether have also been synthesized and investigated to help understand the role of individual carbonyl groups in these interactions. The precipitation and solubility issues encountered with the mixture of ginkgolide + Aβ peptide for VA and VCD studies were overcome using binary ethanol-D 2O solvent mixture. The experimental VA and VCD spectra of GA, GB, GC and BB, GA-monoether and GA-diether have been analyzed using the corresponding spectra predicted with density functional theory. The time-dependent experimental VA and VCD spectra of Aβ(25-35) peptide and the corresponding experimental spectra in the presence of TTLs indicated that the effect of the TTLs in modulating the aggregation of Aβ(25-35) peptide is relatively small. Such small effects might indicate the absence of a specific interaction between the TTLs and Aβ(25-35) peptide as a major force leading to the reduced aggregation of amyloid peptides. It is possible that the therapeutic effect of G. biloba extract does not originate from direct interactions between TTLs and the Aβ(25-35) peptide and is more complex.

  11. Is pathological aging a successful resistance against amyloid-beta or preclinical Alzheimer's disease?

    Science.gov (United States)

    Murray, Melissa E; Dickson, Dennis W

    2014-01-01

    Individuals with pathological aging, a form of cerebral amyloidosis in older people, have widespread extracellular amyloid-beta (Aβ) senile plaque deposits in the setting of limited neurofibrillary tau pathology. Unlike the characteristic finding of antemortem cognitive impairment in Alzheimer's disease patients, individuals with pathological aging usually lack cognitive impairment despite similar Aβ senile plaque burdens. It has been hypothesized that protective or resistance factors may underlie pathological aging, thus minimizing or preventing deleterious effects on cognition. Despite increasing interest and recognition, a review of the literature remains challenging given the range of terms used to describe pathological aging. This debate briefly reviews neuropathologic and biochemical evidence that pathological aging individuals have resistance factors to Aβ plaque pathology. Additionally, we will discuss evidence of pathological aging as an intermediate between normal individuals and Alzheimer's disease patients, and discuss protective or resistance factors against vascular disease and neurofibrillary pathology. Lastly, we will emphasize the need for longitudinal biomarker evidence using amyloid positron emission tomography, which will provide a better understanding of the kinetics of Aβ deposition in pathological aging. PMID:25031637

  12. Polarization properties of amyloid-beta plaques in Alzheimer's disease (Conference Presentation)

    Science.gov (United States)

    Baumann, Bernhard; Wöhrer, Adelheid; Ricken, Gerda; Pircher, Michael; Kovacs, Gabor G.; Hitzenberger, Christoph K.

    2016-03-01

    In histopathological practice, birefringence is used for the identification of amyloidosis in numerous tissues. Amyloid birefringence is caused by the parallel arrangement of fibrous protein aggregates. Since neurodegenerative processes in Alzheimer's disease (AD) are also linked to the formation of amyloid-beta (Aβ) plaques, optical methods sensitive to birefringence may act as non-invasive tools for Aβ identification. At last year's Photonics West, we demonstrated polarization-sensitive optical coherence tomography (PS-OCT) imaging of ex vivo cerebral tissue of advanced stage AD patients. PS-OCT provides volumetric, structural imaging based on both backscatter contrast and tissue polarization properties. In this presentation, we report on polarization-sensitive neuroimaging along with numerical simulations of three-dimensional Aβ plaques. High speed PS-OCT imaging was performed using a spectral domain approach based on polarization maintaining fiber optics. The sample beam was interfaced to a confocal scanning microscope arrangement. Formalin-fixed tissue samples as well as thin histological sections were imaged. For comparison to the PS-OCT results, ray propagation through plaques was modeled using Jones analysis and various illumination geometries and plaque sizes. Characteristic polarization patterns were found. The results of this study may not only help to understand PS-OCT imaging of neuritic Aβ plaques but may also have implications for polarization-sensitive imaging of other fibrillary structures.

  13. The interaction with gold suppresses fiber-like conformations of the amyloid β (16-22) peptide

    Science.gov (United States)

    Bellucci, Luca; Ardèvol, Albert; Parrinello, Michele; Lutz, Helmut; Lu, Hao; Weidner, Tobias; Corni, Stefano

    2016-04-01

    Inorganic surfaces and nanoparticles can accelerate or inhibit the fibrillation process of proteins and peptides, including the biomedically relevant amyloid β peptide. However, the microscopic mechanisms that determine such an effect are still poorly understood. By means of large-scale, state-of-the-art enhanced sampling molecular dynamics simulations, here we identify an interaction mechanism between the segments 16-22 of the amyloid β peptide, known to be fibrillogenic by itself, and the Au(111) surface in water that leads to the suppression of fiber-like conformations from the peptide conformational ensemble. Moreover, thanks to advanced simulation analysis techniques, we characterize the conformational selection vs. induced fit nature of the gold effect. Our results disclose an inhibition mechanism that is rooted in the details of the microscopic peptide-surface interaction rather than in general phenomena such as peptide sequestration from the solution.Inorganic surfaces and nanoparticles can accelerate or inhibit the fibrillation process of proteins and peptides, including the biomedically relevant amyloid β peptide. However, the microscopic mechanisms that determine such an effect are still poorly understood. By means of large-scale, state-of-the-art enhanced sampling molecular dynamics simulations, here we identify an interaction mechanism between the segments 16-22 of the amyloid β peptide, known to be fibrillogenic by itself, and the Au(111) surface in water that leads to the suppression of fiber-like conformations from the peptide conformational ensemble. Moreover, thanks to advanced simulation analysis techniques, we characterize the conformational selection vs. induced fit nature of the gold effect. Our results disclose an inhibition mechanism that is rooted in the details of the microscopic peptide-surface interaction rather than in general phenomena such as peptide sequestration from the solution. Electronic supplementary information (ESI

  14. Inhibition of beta-site amyloid precursor protein-cleaving enzyme and beta-amyloid precursor protein genes in SK-N-SH cells

    Institute of Scientific and Technical Information of China (English)

    Suqin Gao; Lin Sun; Enji Han; Hongshun Qi; Jinbo Feng; Shunliang Xu; Wen Xia

    2009-01-01

    BACKGROUND:Previous studies have demonstrated that Piper futokadsura stem selectively inhibits expression of amyloid precursor protein (APP) at the mRNA level.In addition,the piperlonguminine (A) and dihydropiperlonguminine (B) components (1:0.8),which can be separated from Futokadsura stem,selectively inhibit expression of the APP at mRNA and protein levels.OBJECTIVE:Based on previous findings,the present study investigated the effects of β-site amyloid precursor protein cleaving enzyme (BACE1) and APP genes on the production of β-amyloid peptide 42 (Aβ42) in human neuroblastoma cells (SK-N-SH cells) using small interfering RNAs (siRNAs) and A/B components separated from Futokadsura stem,respectively.DESIGN,TIME AND SETTING:A gene interference-based randomized,controlled,in vitro experiment was performed at the Key Laboratory of Cardiovascular Remodeling and Function Research,Ministries of Education and Public Health,and Institute of Pharmacologic Research,School of Pharmaceutical Science & Department of Biochemistry,School of Medicine,Shandong University between July 2006 and December 2007.MATERIALS:SK-N-SH cells were provided by Shanghai Institutes of Biological Sciences,Chinese Academy of Sciences,Shanghai,China;mouse anti-human BACE1 monoclonal antibody was purchased from R&D Systems,USA;mouse anti-human APP monoclonal antibody was purchased from Cell Signaling Technology,USA;and horseradish peroxidase (HRP)-conjugated goat anti-mouse IgG was provided by Sigma,USA.METHODS:The human BACE1 cDNA sequence was obtained from NCBI website (www.ncbi.nlm.nih.gov/sites/entrez).Three pairs of siRNAs,specific to human BACE1 gene,were synthesized through the use of Silencer? pre-designed siRNA specification,and were transfected into SK-N-SH cells with siPORT NeoFX transfection agent to compare the effects of different concentrations of siRNAs (10-50 nmol/L) on SK-N-SH cells.Futokadsura stem was separated and purified with chemical methods,and the crystal was composed of

  15. Lower levels of cerebrospinal fluid amyloid beta (Abeta) in non-demented Indian controls.

    Science.gov (United States)

    Subramanian, Sarada; Sandhyarani, Boya; Shree, A N Divya; Murthy, K Krishna; Kalyani, K; Kumar, S Praveen; Pradeep; Noone, Mohin Jeslie; Taly, A B

    2006-10-23

    Prevalence of Alzheimer's disease in Indian population is lower than in developed countries. To determine whether limitation of amyloid beta (Abeta) concentration may be responsible for lower rate of incidence, we measured the levels of Abeta in cerebrospinal fluid (CSF) collected from 72 non-demented individuals ranging in the age from 20 years to 65 years. These samples were segregated into three groups ranging from 20-35 years, 36-50 years and 51-65 years of age. Levels of Abeta could be detected in all the age groups and they were much lower than the values reported in literature from the developed countries. No significant difference in the average level of Ass was observed with increase in age. PMID:16978775

  16. S-nitrosylation of Drp1 mediates beta-amyloid-related mitochondrial fission and neuronal injury.

    Science.gov (United States)

    Cho, Dong-Hyung; Nakamura, Tomohiro; Fang, Jianguo; Cieplak, Piotr; Godzik, Adam; Gu, Zezong; Lipton, Stuart A

    2009-04-01

    Mitochondria continuously undergo two opposing processes, fission and fusion. The disruption of this dynamic equilibrium may herald cell injury or death and may contribute to developmental and neurodegenerative disorders. Nitric oxide functions as a signaling molecule, but in excess it mediates neuronal injury, in part via mitochondrial fission or fragmentation. However, the underlying mechanism for nitric oxide-induced pathological fission remains unclear. We found that nitric oxide produced in response to beta-amyloid protein, thought to be a key mediator of Alzheimer's disease, triggered mitochondrial fission, synaptic loss, and neuronal damage, in part via S-nitrosylation of dynamin-related protein 1 (forming SNO-Drp1). Preventing nitrosylation of Drp1 by cysteine mutation abrogated these neurotoxic events. SNO-Drp1 is increased in brains of human Alzheimer's disease patients and may thus contribute to the pathogenesis of neurodegeneration. PMID:19342591

  17. Indirubin-3′-monoxime suppresses amyloid-beta-induced apoptosis by inhibiting tau hyperphosphorylation

    Institute of Scientific and Technical Information of China (English)

    Shu-gang Zhang; Xiao-shan Wang; Ying-dong Zhang; Qing Di; Jing-ping Shi; Min Qian; Li-gang Xu; Xing-jian Lin; Jie Lu

    2016-01-01

    Indirubin-3′-monoxime is an effective inhibitor of cyclin-dependent protein kinases, and may play an obligate role in neuronal apopto-sis in Alzheimer’s disease. Here, we found that indirubin-3′-monoxime improved the morphology and increased the survival rate of SH-SY5Y cells exposed to amyloid-beta 25–35 (Aβ25–35), and also suppressed apoptosis by reducing tau phosphorylation at Ser199 and Thr205. Furthermore, indirubin-3′-monoxime inhibited phosphorylation of glycogen synthase kinase-3β (GSK-3β). Our results suggest that in-dirubin-3′-monoxime reduced Aβ25–35-induced apoptosis by suppressing tau hyperphosphorylationvia a GSK-3β-mediated mechanism. Indirubin-3′-monoxime is a promising drug candidate for Alzheimer’s disease.

  18. Amyloid properties of the leader peptide of variant B cystatin C: implications for Alzheimer and macular degeneration.

    Science.gov (United States)

    Sant'Anna, Ricardo; Navarro, Susanna; Ventura, Salvador; Paraoan, Luminita; Foguel, Debora

    2016-03-01

    Variant B (VB) of cystatin C has a mutation in its signal peptide (A25T), which interferes with its processing leading to reduced secretion and partial retention in the vicinity of the mitochondria. There are genetic evidences of the association of VB with Alzheimer's disease (AD) and age-related macular degeneration (AMD). Here, we investigated aggregation and amyloid propensities of unprocessed VB combining computational and in vitro studies. Aggregation predictors revealed the presence of four aggregation-prone regions, with a strong one at the level of the signal peptide, which indeed formed toxic aggregates and mature amyloid fibrils in solution. In light of these results, we propose for the first time the role of the signal peptide in pathogenesis of AD and AMD. PMID:26865059

  19. Molecular modeling of the ion channel-like nanotube structure of amyloid β-peptide

    Institute of Scientific and Technical Information of China (English)

    JIAO Yong; YANG Pin

    2007-01-01

    The ion channel-like nanotube structure of the oligomers of amyloid β-peptide (Aβ) was first investigated by molecular modeling. The results reveal that the hydrogen bond net is one of the key factors to stabilize the structure. The hydrophobicity distribution mode of the side chains is in favor of the structure inserting into the bilayers and forming a hydrophilic pore. The lumen space is under the control of the negative potential, weaker but spreading continuously, to which the cation selectivity attributes; meanwhile, the alternate distribution of the stronger positive and negative potentials makes the electrostatic distribution of the structure framework balance, which is also one of the key factors stabilizing the structure. The results lay the theoretical foundation for illuminating the structure stability and the ion permeability, and give a clue to elucidating the molecular mechanism of Alzheimer's disease (AD) and designing novel drugs to prevent or reverse AD at the root.

  20. Cu(II) mediates kinetically distinct, non-amyloidogenic aggregation of amyloidpeptides

    DEFF Research Database (Denmark)

    Pedersen, Jeppe T.; Østergaard, Jesper; Rozlosnik, Noemi; Gammelgaard, Bente; Heegaard, Niels H. H.

    2011-01-01

    aggregates, which shifted from fibrillar to non-fibrillar at increasing Cu(II):Aβ ratios. We observed dynamic morphological changes of the aggregates, and that the formation of spherical aggregates appeared to be a common morphological end point independent on the Cu(II) concentration. Experiments with Aβ1......Cu(II) ions are implicated in the pathogenesis of Alzheimer disease by influencing the aggregation of the amyloid-β (Aβ) peptide. Elucidating the underlying Cu(II)-induced Aβ aggregation is paramount for understanding the role of Cu(II) in the pathology of Alzheimer disease. The aim of this study...... was to characterize the qualitative and quantitative influence of Cu(II) on the extracellular aggregation mechanism and aggregate morphology of Aβ1-40 using spectroscopic, microelectrophoretic, mass spectrometric, and ultrastructural techniques. We found that the Cu(II):Aβ ratio in solution has a...

  1. The nicotinic alpha7 acetylcholine receptor agonist ssr180711 is unable to activate limbic neurons in mice overexpressing human amyloid-beta1-42

    DEFF Research Database (Denmark)

    Søderman, Andreas; Thomsen, Morten S; Hansen, Henrik H;

    2008-01-01

    Recent studies have demonstrated that amyloid-beta1-42 (Abeta1-42) binds to the nicotinergic alpha7 acetylcholine receptor (alpha7 nAChR) and that the application of Abeta1-42 to cells inhibits the function of the alpha7 nAChR. The in vivo consequences of the pharmacological activation of the alp...... that clinical trials testing alpha7 nAChR agonists should be related to the content of Abeta peptides in the patient's nervous system....... systemic administration of the alpha7 nAChR agonist SSR180711 (10 mg/kg) result in a significant increase in Fos protein levels in the shell of nucleus accumbens in wild-type mice, but has no effect in the transgene mice. There were fewer cell bodies expressing Fos in the prefrontal cortex of transgene...

  2. All-d-Enantiomer of β-Amyloid Peptide Forms Ion Channels in Lipid Bilayers.

    Science.gov (United States)

    Capone, Ricardo; Jang, Hyunbum; Kotler, Samuel A; Connelly, Laura; Teran Arce, Fernando; Ramachandran, Srinivasan; Kagan, Bruce L; Nussinov, Ruth; Lal, Ratnesh

    2012-03-13

    Alzheimer's disease (AD) is the most common type of senile dementia in aging populations. Amyloid β (Aβ)-mediated dysregulation of ionic homeostasis is the prevailing underlying mechanism leading to synaptic degeneration and neuronal death. Aβ-dependent ionic dysregulation most likely occurs either directly via unregulated ionic transport through the membrane or indirectly via Aβ binding to cell membrane receptors and subsequent opening of existing ion channels or transporters. Receptor binding is expected to involve a high degree of stereospecificity. Here, we investigated whether an Aβ peptide enantiomer, whose entire sequence consists of d-amino acids, can form ion-conducting channels; these channels can directly mediate Aβ effects even in the absence of receptor-peptide interactions. Using complementary approaches of planar lipid bilayer (PLB) electrophysiological recordings and molecular dynamics (MD) simulations, we show that the d-Aβ isomer exhibits ion conductance behavior in the bilayer indistinguishable from that described earlier for the l-Aβ isomer. The d isomer forms channel-like pores with heterogeneous ionic conductance similar to the l-Aβ isomer channels, and the d-isomer channel conductance is blocked by Zn(2+), a known blocker of l-Aβ isomer channels. MD simulations further verify formation of β-barrel-like Aβ channels with d- and l-isomers, illustrating that both d- and l-Aβ barrels can conduct cations. The calculated values of the single-channel conductance are approximately in the range of the experimental values. These findings are in agreement with amyloids forming Ca(2+) leaking, unregulated channels in AD, and suggest that Aβ toxicity is mediated through a receptor-independent, nonstereoselective mechanism. PMID:22423218

  3. Lattice model for amyloid peptides: OPEP force field parametrization and applications to the nucleus size of Alzheimer's peptides

    Science.gov (United States)

    Tran, Thanh Thuy; Nguyen, Phuong H.; Derreumaux, Philippe

    2016-05-01

    Coarse-grained protein lattice models approximate atomistic details and keep the essential interactions. They are, therefore, suitable for capturing generic features of protein folding and amyloid formation at low computational cost. As our aim is to study the critical nucleus sizes of two experimentally well-characterized peptide fragments Aβ16-22 and Aβ37-42 of the full length Aβ1-42 Alzheimer's peptide, it is important that simulations with the lattice model reproduce all-atom simulations. In this study, we present a comprehensive force field parameterization based on the OPEP (Optimized Potential for Efficient protein structure Prediction) force field for an on-lattice protein model, which incorporates explicitly the formation of hydrogen bonds and directions of side-chains. Our bottom-up approach starts with the determination of the best lattice force parameters for the Aβ16-22 dimer by fitting its equilibrium parallel and anti-parallel β-sheet populations to all-atom simulation results. Surprisingly, the calibrated force field is transferable to the trimer of Aβ16-22 and the dimer and trimer of Aβ37-42. Encouraged by this finding, we characterized the free energy landscapes of the two decamers. The dominant structure of the Aβ16-22 decamer matches the microcrystal structure. Pushing the simulations for aggregates between 4-mer and 12-mer suggests a nucleus size for fibril formation of 10 chains. In contrast, the Aβ37-42 decamer is largely disordered with mixed by parallel and antiparallel chains, suggesting that the nucleus size is >10 peptides. Our refined force field coupled to this on-lattice model should provide useful insights into the critical nucleation number associated with neurodegenerative diseases.

  4. Investigation of the inhibitory effects of TiO{sub 2} on the β-amyloid peptide aggregation

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Mukhtar H., E-mail: ahmed-m@email.ulster.ac.uk [School of Chemical Science, National Centre for Sensor Research, Dublin City University, Dublin 9 (Ireland); Nanotechnology Integrated Bioengineering Centre, University of Ulster, Jordanstown, BT37 0QB Belfast (United Kingdom); Byrne, John A. [Nanotechnology Integrated Bioengineering Centre, University of Ulster, Jordanstown, BT37 0QB Belfast (United Kingdom); Keyes, Tia E. [School of Chemical Science, National Centre for Sensor Research, Dublin City University, Dublin 9 (Ireland)

    2014-06-01

    TiO{sub 2} thin films are of great interest as biocompatible coatings and also as photocatalytic self-cleaning and antimicrobial coatings. In this work we used β-amyloid as a model for infectious protein to investigate the attachment and photocatalytic degradation. TiO{sub 2} films were prepared on stainless steel substrates using magnetron sputtering. The films were characterised before and after exposure to β-amyloid (1–42), using XRD, Raman spectroscopy, XPS and AFM. The TiO{sub 2} film was mostly composed of the anatase phase with a relatively high surface roughness. The presence of Raman peaks at 1668 cm{sup −1} and 1263 cm{sup −1}, with the XPS spectral feature for nitrogen at 400 eV, confirmed the adsorption of amyloid on surface. Following exposure of the β-amyloid contaminated TiO{sub 2} to UV-B irradiation a slight shift of amide modes was observed. Furthermore, the amide I spectra show an overall decrease in α-helix content with presence of a minor peak around 1591 cm{sup −1}, which is related to tryptophanyl and tyrosinyl radicals, which can lead to conformational change of β-amyloid. The C1s band at 292.2 eV suggests the formation of free carboxylic acid. The loss in the crucial structure of β-amyloid leads to reduce the fibril formation, thought to be induced through a photocatalytic process. - Highlights: • TiO{sub 2} thin films synthesised and characterised • Absorption study using β-amyloid (1–42) • Investigation of peptide configuration via Raman, AFM and XPS spectroscopies • β-Amyloid was subsequently degraded by photocatalytic activity of TiO{sub 2}.

  5. Biological markers of amyloid beta-related mechanisms in Alzheimer's disease.

    LENUS (Irish Health Repository)

    Hampel, Harald

    2010-06-01

    Recent research progress has given detailed knowledge on the molecular pathogenesis of Alzheimer\\'s disease (AD), which has been translated into an intense, ongoing development of disease-modifying treatments. Most new drug candidates are targeted on inhibiting amyloid beta (Abeta) production and aggregation. In drug development, it is important to co-develop biomarkers for Abeta-related mechanisms to enable early diagnosis and patient stratification in clinical trials, and to serve as tools to identify and monitor the biochemical effect of the drug directly in patients. Biomarkers are also requested by regulatory authorities to serve as safety measurements. Molecular aberrations in the AD brain are reflected in the cerebrospinal fluid (CSF). Core CSF biomarkers include Abeta isoforms (Abeta40\\/Abeta42), soluble APP isoforms, Abeta oligomers and beta-site APP-cleaving enzyme 1 (BACE1). This article reviews recent research advances on core candidate CSF and plasma Abeta-related biomarkers, and gives a conceptual review on how to implement biomarkers in clinical trials in AD.

  6. Biological markers of amyloid beta-related mechanisms in Alzheimer's disease.

    LENUS (Irish Health Repository)

    Hampel, Harald

    2012-02-01

    Recent research progress has given detailed knowledge on the molecular pathogenesis of Alzheimer\\'s disease (AD), which has been translated into an intense, ongoing development of disease-modifying treatments. Most new drug candidates are targeted on inhibiting amyloid beta (Abeta) production and aggregation. In drug development, it is important to co-develop biomarkers for Abeta-related mechanisms to enable early diagnosis and patient stratification in clinical trials, and to serve as tools to identify and monitor the biochemical effect of the drug directly in patients. Biomarkers are also requested by regulatory authorities to serve as safety measurements. Molecular aberrations in the AD brain are reflected in the cerebrospinal fluid (CSF). Core CSF biomarkers include Abeta isoforms (Abeta40\\/Abeta42), soluble APP isoforms, Abeta oligomers and beta-site APP-cleaving enzyme 1 (BACE1). This article reviews recent research advances on core candidate CSF and plasma Abeta-related biomarkers, and gives a conceptual review on how to implement biomarkers in clinical trials in AD.

  7. The effect of resveratrol on beta amyloid-induced memory impairment involves inhibition of phosphodiesterase-4 related signaling.

    Science.gov (United States)

    Wang, Gang; Chen, Ling; Pan, Xiaoyu; Chen, Jiechun; Wang, Liqun; Wang, Weijie; Cheng, Ruochuan; Wu, Fan; Feng, Xiaoqing; Yu, Yingcong; Zhang, Han-Ting; O'Donnell, James M; Xu, Ying

    2016-04-01

    Resveratrol, a natural polyphenol found in red wine, has wide spectrum of pharmacological properties including antioxidative and antiaging activities. Beta amyloid peptides (Aβ) are known to involve cognitive impairment, neuroinflammatory and apoptotic processes in Alzheimer's disease (AD). Activation of cAMP and/or cGMP activities can improve memory performance and decrease the neuroinflammation and apoptosis. However, it remains unknown whether the memory enhancing effect of resveratrol on AD associated cognitive disorders is related to the inhibition of phosphodiesterase 4 (PDE4) subtypes and subsequent increases in intracellular cAMP and/or cGMP activities. This study investigated the effect of resveratrol on Aβ1-42-induced cognitive impairment and the participation of PDE4 subtypes related cAMP or cGMP signaling. Mice microinfused with Aβ1-42 into bilateral CA1 subregions displayed learning and memory impairment, as evidenced by reduced memory acquisition and retrieval in the water maze and retention in the passive avoidance tasks; it was also significant that neuroinflammatory and pro-apoptotic factors were increased in Aβ1-42-treated mice. Aβ1-42-treated mice also increased in PDE4A, 4B and 4D expression, and decreased in PKA level. However, PKA inhibitor H89, but not PKG inhibitor KT5823, prevented resveratrol's effects on these parameters. Resveratrol also reversed Aβ1-42-induced decreases in phosphorylated cAMP response-element binding protein (pCREB), brain derived neurotrophic factor (BDNF) and anti-apoptotic factor BCl-2 expression, which were reversed by H89. These findings suggest that resveratrol reversing Aβ-induced learning and memory disorder may involve the regulation of neuronal inflammation and apoptosis via PDE4 subtypes related cAMP-CREB-BDNF signaling. PMID:26980711

  8. Satureja bachtiarica ameliorate beta-amyloid induced memory impairment, oxidative stress and cholinergic deficit in animal model of Alzheimer's disease.

    Science.gov (United States)

    Soodi, Maliheh; Saeidnia, Soodabeh; Sharifzadeh, Mohammad; Hajimehdipoor, Homa; Dashti, Abolfazl; Sepand, Mohammad Reza; Moradi, Shahla

    2016-04-01

    Extracellular deposition of Beta-amyloid peptide (Aβ) is the main finding in the pathophysiology of Alzheimer's disease (AD), which damages cholinergic neurons through oxidative stress and reduces the cholinergic neurotransmission. Satureja bachtiarica is a medicinal plant from the Lamiaceae family which was widely used in Iranian traditional medicine. The aim of the present study was to investigate possible protective effects of S. bachtiarica methanolic extract on Aβ induced spatial memory impairment in Morris Water Maze (MWM), oxidative stress and cholinergic neuron degeneration. Pre- aggregated Aβ was injected into the hippocampus of each rat bilaterally (10 μg/rat) and MWM task was performed 14 days later to evaluate learning and memory function. Methanolic extract of S.bachtiarica (10, 50 and 100 mg/Kg) was injected intraperitoneally for 19 consecutive days, after Aβ injection. After the probe test the brain tissue were collected and lipid peroxidation, Acetylcholinesterase (AChE) activity and Cholin Acetyl Transferees (ChAT) immunorectivity were measured in the hippocampus. Intrahipocampal injection of Aβ impaired learning and memory in MWM in training days and probe trail. Methanolic extract of S. bachtiarica (50 and 100 mg/Kg) could attenuate Aβ-induced memory deficit. ChAT immunostaining revealed that cholinergic neurons were loss in Aβ- injected group and S. bachtiarica (100 mg/Kg) could ameliorate Aβ- induced ChAT reduction in the hippocampus. Also S. bachtiarica could ameliorate Aβ-induced lipid peroxidation and AChE activity increase in the hippocampus. In conclusion our study represent that S.bachtiarica methanolic extract can improve Aβ-induced memory impairment and cholinergic loss then we recommended this extract as a candidate for further investigation in treatment of AD. PMID:26638718

  9. HIV-1 stimulates nuclear entry of amyloid beta via dynamin dependent EEA1 and TGF-β/Smad signaling

    International Nuclear Information System (INIS)

    Clinical evidence indicates increased amyloid deposition in HIV-1-infected brains, which contributes to neurocognitive dysfunction in infected patients. Here we show that HIV-1 exposure stimulates amyloid beta (Aβ) nuclear entry in human brain endothelial cells (HBMEC), the main component of the blood–brain barrier (BBB). Treatment with HIV-1 and/or Aβ resulted in concurrent increase in early endosomal antigen-1 (EEA1), Smad, and phosphorylated Smad (pSmad) in nuclear fraction of HBMEC. A series of inhibition and silencing studies indicated that Smad and EEA1 closely interact by influencing their own nuclear entry; the effect that was attenuated by dynasore, a blocker of GTP-ase activity of dynamin. Importantly, inhibition of dynamin, EEA1, or TGF-β/Smad effectively attenuated HIV-1-induced Aβ accumulation in the nuclei of HBMEC. The present study indicates that nuclear uptake of Aβ involves the dynamin-dependent EEA1 and TGF-β/Smad signaling pathways. These results identify potential novel targets to protect against HIV-1-associated dysregulation of amyloid processes at the BBB level. - Highlights: • HIV-1 induces nuclear accumulation of amyloid beta (Aβ) in brain endothelial cells. • EEA-1 and TGF-Β/Smad act in concert to regulate nuclear entry of Aβ. • Dynamin appropriates the EEA-1 and TGF-Β/Smad signaling. • Dynamin serves as a master regulator of HIV-1-induced nuclear accumulation of Aβ

  10. Interaction of lobed kudzuvine root, rhizoma chuanxiong with both acetylcholinesterase and beta-amyloid (Aβ1-42

    Directory of Open Access Journals (Sweden)

    Li Shuai

    2013-01-01

    Full Text Available Background: Lobed kudzuvine root and rhizoma chuanxiong are effective drugs in traditional Chinese medicine. Objective: Extracts of the two medicines were investigated for their in vitro of beta-amyloid (Aβ1-42-aggregation-and acetylcholinesterase (AChE-inhibitory activities. Materials and Methods: The interaction of lobed kudzuvine root, rhizoma chuanxiong with both acetylcholinesterase and beta-amyloid (Aβ1-42 were studied by Michaelis-Menten equations, Thioflavin T (ThT fluorescence analysis and transmission electron microscope (TEM. Results: Inhibition of acetylcholinesterase showed that 1-butanol fraction of the two medicines were noncompetitive inhibition, apparent inhibition constants were 9.947 and 7.1523. ThT fluorescence analysis and TEM results indicated that inhibition of the water fraction and 1-butanol fraction (both lobed kudzuvine root and rhizoma chuanxiong was better. Conclusion: The result supported further research on chemical constituents and pharmacological mechanisms.

  11. [Noopept improves the spatial memory and stimulates prefibrillar beta-amyloid(25-35) antibody production in mice].

    Science.gov (United States)

    Bobkova, N V; Gruden', M A; Samokhin, A N; Medvinskaia, N I; Morozova-Roch, L; Uudasheva, T A; Ostrovskaia, R U; Seredinin, S B

    2005-01-01

    The effects of the novel proline-containing nootropic and neuroprotective dipeptide noopept (GVS-111, N-phenylacetyl-L-prolylglycine ethyl ester) were studied on NMRI mice upon olfactory bulbectomy, which had been previously shown to imitate the main morphological and biochemical signs of Alzheimer's disease (AD). The spatial memory was assessed using the Morris (water maze) test; the immunological status was characterized by ELISA with antibodies to prefibrillar beta-amyloid(25-35), S100b protein, and protofilaments of equine lysozyme, which are the molecular factors involved in the pathogenesis of AD. The control (sham-operated) animals during the Morris test preferred a sector where the safety platform was placed during the learning session. Bulbectomized animals treated with saline failed to recognize this sector, while bulbectomized animals treated with noopept (0.01 mg/kg for 21 days) restored this predominance, thus demonstrating the improvement of the spatial memory. These animals also demonstrated an increase in the level of antibodies to beta-amyloid(25-35)--the effect, which was more pronounced in the sham-operated than in bulbectomized mice. The latter demonstrated a profound decrease of immunological reactivity in a large number of tests. Noopept, stimulating the production of antibodies to beta-amyloid(25-35), can attenuate the well-known neurotoxic effects of beta-amyloid. The obtained data on the mnemotropic and immunostimulant effects noopept are indicative of good prospects for the clinical usage of this drug in the therapy of patients with neurodegenerative diseases. PMID:16277202

  12. Overexpression of estrogen receptor beta alleviates the toxic effects of beta-amyloid protein on PC12 cells via non-hormonal ligands

    Institute of Scientific and Technical Information of China (English)

    Hui Wang; Lihui Si; Xiaoxi Li; Weiguo Deng; Haimiao Yang; Yuyan Yang; Yan Fu

    2012-01-01

    After binding to the estrogen receptor, estrogen can alleviate the toxic effects of beta-amyloid protein, and thereby exert a therapeutic effect on Alzheimer's disease patients. Estrogen can increase the incidence of breast carcinoma and endometrial cancer in post-menopausal women, so it is not suitable for clinical treatment of Alzheimer's disease. There is recent evidence that the estrogen receptor can exert its neuroprotective effects without estrogen dependence. Real-time quantitative PCR and flow cytometry results showed that, compared with non-transfected PC12 cells, adenovirus-mediated estrogen receptor β gene-transfected PC12 cells exhibited lower expression of tumor necrosis factor α and interleukin 1β under stimulation with beta-amyloid protein and stronger protection from apoptosis. The Akt-specific inhibitor Abi-2 decreased the anti-inflammatory and anti-apoptotic effects of estrogen receptor β gene-transfection. These findings suggest that overexpression of estrogen receptor β can alleviate the toxic effect of beta-amyloid protein on PC12 cells, without estrogen dependence. The Akt pathway is one of the potential means for the anti-inflammatory and anti-apoptotic effects of the estrogen receptor.

  13. Inhibition of Cu-amyloid-β by using bifunctional peptides with β-sheet breaker and chelator moieties.

    Science.gov (United States)

    Jensen, Madeleine; Canning, Anne; Chiha, Sabri; Bouquerel, Pierre; Pedersen, Jeppe Trudslev; Østergaard, Jesper; Cuvillier, Olivier; Sasaki, Isabelle; Hureau, Christelle; Faller, Peter

    2012-04-16

    Breaking the mold: Inhibition of toxic amyloid-β (Aβ) aggregates and disruption of Cu-Aβ with subsequent redox-silencing of Cu have been considered promising strategies against Alzheimer's disease. The design and proof of concept of simple peptides containing a Cu-chelating/redox-silencing unit and an Aβ-aggregation inhibition unit (β-sheet breaker) is described (see scheme). PMID:22422637

  14. Determining the Effect of Aluminum Oxide Nanoparticles on the Aggregation of Amyloid-Beta in Transgenic Caenorhabditis elegans

    Science.gov (United States)

    Patel, Suhag; Matticks, John; Howell, Carina

    2014-03-01

    The cause of Alzheimer's disease has been linked partially to genetic factors but the predicted environmental components have yet to be determined. In Alzheimer's, accumulation of amyloid-beta protein in the brain forms plaques resulting in neurodegeneration and loss of mental functions. It has been postulated that aluminum influences the aggregation of amyloid-beta. To test this hypothesis, transgenic Caenorhabditis elegans, CL2120, was used as a model organism to observe neurodegeneration in nematodes exposed to aluminum oxide nanoparticles. Behavioral testing, fluorescent staining, and fluorescence microscopy were used to test the effects of aggregation of amyloid-beta in the nervous systems of effected nematodes exposed to aluminum oxide nanoparticles. Energy-dispersive x-ray spectroscopy was used to quantify the total concentration of aluminum oxide that the worms were exposed to during the experiment. Exposure of transgenic and wild type worms to a concentration of 4 mg mL-1 aluminum oxide showed a decrease in the sinusoidal motion, as well as an infirmity of transgenic worms when compared to control worms. These results support the hypothesis that aluminum may play a role in neurodegeneration in C. elegans, and may influence and increase the progression of Alzheimer's disease. This work was supported by National Science Foundation grants DUE-1058829, DMR-0923047 DUE-0806660 and Lock Haven FPDC grants.

  15. Distinct cerebrospinal fluid amyloid β peptide signatures in sporadic and PSEN1 A431E-associated familial Alzheimer's disease

    OpenAIRE

    Galasko Douglas; Hanse Eric; Gustavsson Mikael K; Harmsen Andreas; Hansson Oskar; Buchhave Peder; Daborg Jonny; Buerger Katharina; Ringman John M; Andreasson Ulf; Portelius Erik; Hampel Harald; Blennow Kaj; Zetterberg Henrik

    2010-01-01

    Abstract Background Alzheimer's disease (AD) is associated with deposition of amyloid β (Aβ) in the brain, which is reflected by low concentration of the Aβ1-42 peptide in the cerebrospinal fluid (CSF). There are at least 15 additional Aβ peptides in human CSF and their relative abundance pattern is thought to reflect the production and degradation of Aβ. Here, we test the hypothesis that AD is characterized by a specific CSF Aβ isoform pattern that is distinct when comparing sporadic AD (SAD...

  16. Antimicrobial peptide (Cn-AMP2) from liquid endosperm of Cocos nucifera forms amyloid-like fibrillar structure.

    Science.gov (United States)

    Gour, Shalini; Kaushik, Vibha; Kumar, Vijay; Bhat, Priyanka; Yadav, Subhash C; Yadav, Jay K

    2016-04-01

    Cn-AMP2 is an antimicrobial peptide derived from liquid endosperm of coconut (Cocos nucifera). It consists of 11 amino acid residues and predicted to have high propensity for β-sheet formation that disposes this peptide to be amyloidogenic. In the present study, we have examined the amyloidogenic propensities of Cn-AMP2 in silico and then tested the predictions under in vitro conditions. The in silico study revealed that the peptide possesses high amyloidogenic propensity comparable with Aβ. Upon solubilisation and agitation in aqueous buffer, Cn-AMP2 forms visible aggregates that display bathochromic shift in the Congo red absorbance spectra, strong increase in thioflavin T fluorescence and fibrillar morphology under transmission electron microscopy. All these properties are typical of an amyloid fibril derived from various proteins/peptides including Aβ. PMID:27028204

  17. 670 nm laser light and EGCG complementarily reduce amyloid-{beta} aggregates in human neuroblastoma cells: basis for treatment of Alzheimer's disease?

    OpenAIRE

    Sommer, A.P.; Bieschke, J.; Friedrich, R.P.; Zhu, D.; Wanker, E. E.; Fecht, H.J.; Mereles, D; Hunstein, W

    2012-01-01

    Objective: The aim of the present study is to present the results of in vitro experiments with possible relevance in the treatment of Alzheimer's disease (AD). Background Data: Despite intensive research efforts, there is no treatment for AD. One root cause of AD is the extra- and intracellular deposition of amyloid-beta (A{beta}) fibrils in the brain. Recently, it was shown that extracellular A{beta} can enter brain cells, resulting in neurotoxicity. Methods: After internalization of A{beta}...

  18. Computational modeling of the effects of amyloid-beta on release probability at hippocampal synapses

    Directory of Open Access Journals (Sweden)

    Armando Romani

    2013-01-01

    Full Text Available The role of amyloid-beta (Aβ in brain function and in the pathogenesis of Alzheimer’s disease remains elusive. Recent publications reported that an increase in Aβ concentration perturbs pre-synaptic release in hippocampal neurons. In particular, it was shown in vitro that Aβ is an endogenous regulator of synaptic transmission at the CA3-CA1 synapse, enhancing its release probability. How this synaptic modulator influences neuronal output during physiological stimulation patterns, such as those elicited in vivo, is still unknown. Using a realistic model of hippocampal CA1 pyramidal neurons, we first implemented this Aβ-induced enhancement of release probability and validated the model by reproducing the experimental findings. We then demonstrated that this synaptic modification can significantly alter synaptic integration properties in a wide range of physiologically relevant input frequencies (from 5 to 200 Hz. Finally, we used natural input patterns, obtained from CA3 pyramidal neurons in vivo during free exploration of rats in an open field, to investigate the effects of enhanced Aβ on synaptic release under physiological conditions. The model shows that the CA1 neuronal response to these natural patterns is altered in the increased-Aβ condition, especially for frequencies in the theta and gamma ranges. These results suggest that the perturbation of release probability induced by increased Aβ can significantly alter the spike probability of CA1 pyramidal neurons and thus contribute to abnormal hippocampal function during Alzheimer’s disease.

  19. Bioassay-Guided Isolation of Neuroprotective Compounds from Uncaria rhynchophylla against Beta-Amyloid-Induced Neurotoxicity

    Directory of Open Access Journals (Sweden)

    Yan-Fang Xian

    2012-01-01

    Full Text Available Uncaria rhynchophylla is a component herb of many Chinese herbal formulae for the treatment of neurodegenerative diseases. Previous study in our laboratory has demonstrated that an ethanol extract of Uncaria rhynchophylla ameliorated cognitive deficits in a mouse model of Alzheimer’s disease induced by D-galactose. However, the active ingredients of Uncaria rhynchophylla responsible for the anti-Alzheimer’s disease activity have not been identified. This study aims to identify the active ingredients of Uncaria rhynchophylla by a bioassay-guided fractionation approach and explore the acting mechanism of these active ingredients by using a well-established cellular model of Alzheimer’s disease, beta-amyloid- (Aβ- induced neurotoxicity in PC12 cells. The results showed that six alkaloids, namely, corynoxine, corynoxine B, corynoxeine, isorhynchophylline, isocorynoxeine, and rhynchophylline were isolated from the extract of Uncaria rhynchophylla. Among them, rhynchophylline and isorhynchophylline significantly decreased Aβ-induced cell death, intracellular calcium overloading, and tau protein hyperphosphorylation in PC12 cells. These results suggest that rhynchophylline and isorhynchophylline are the major active ingredients responsible for the protective action of Uncaria rhynchophylla against Aβ-induced neuronal toxicity, and their neuroprotective effect may be mediated, at least in part, by inhibiting intracellular calcium overloading and tau protein hyperphosphorylation.

  20. Nanoscale-alumina induces oxidative stress and accelerates amyloid beta (Aβ) production in ICR female mice

    Science.gov (United States)

    Shah, Shahid Ali; Yoon, Gwang Ho; Ahmad, Ashfaq; Ullah, Faheem; Amin, Faiz Ul; Kim, Myeong Ok

    2015-09-01

    The adverse effects of nanoscale-alumina (Al2O3-NPs) have been previously demonstrated in both in vitro and in vivo studies, whereas little is known about their mechanism of neurotoxicity. It is the goal of this research to determine the toxic effects of nano-alumina on human neuroblastoma SH-SY5Y and mouse hippocampal HT22 cells in vitro and on ICR female mice in vivo. Nano-alumina displayed toxic effects on SH-SY5Y cell lines in three different concentrations also increased aluminium abundance and induced oxidative stress in HT22 cells. Nano-alumina peripherally administered to ICR female mice for three weeks increased brain aluminium and ROS production, disturbing brain energy homeostasis, and led to the impairment of hippocampus-dependent memory. Most importantly, these nano-particles induced Alzheimer disease (AD) neuropathology by enhancing the amyloidogenic pathway of Amyloid Beta (Aβ) production, aggregation and implied the progression of neurodegeneration in the cortex and hippocampus of these mice. In conclusion, these data demonstrate that nano-alumina is toxic to both cells and female mice and that prolonged exposure may heighten the chances of developing a neurodegenerative disease, such as AD.

  1. Gene expression profile of amyloid beta protein-injected mouse model for Alzheimer disease

    Institute of Scientific and Technical Information of China (English)

    Ling-na KONG; Ping-ping ZUO; Liang MU; Yan-yong LIU; Nan YANG

    2005-01-01

    Aim: To investigate the gene expression profile changes in the cerebral cortex of mice injected icv with amyloid beta-protein (Aβ) fragment 25-35 using cDNA microarray. Methods: Balb/c mice were randomly divided into a control group and Aβ-treated group. The Morris water maze test was performed to detect the effect of Aβ-injection on the learning and memory of mice. Atlas Mouse 1.2 Expression Arrays containing 1176 genes were used to investigate the gene expression pattern of each group. Results: The gene expression profiles showed that 19 genes including TBX1, NF-κB, AP-1/c-Jun, cadherin, integrin, erb-B2, and FGFR1 were up-regulated after 2 weeks oficv administration of Aβ; while 12 genes were downregulated, including NGF, glucose phosphate isomerase 1, AT motif binding factor 1, Na+/K+-ATPase, and Akt. Conclusions: The results provide important leads for pursuing a more complete understanding of the molecular events of Aβ-injection into mice with Alzheimer disease.

  2. Low Cerebrospinal Fluid Amyloid-Beta Concentration Is Associated with Poorer Delayed Memory Recall in Women

    Directory of Open Access Journals (Sweden)

    Fanni Haapalinna

    2016-07-01

    Full Text Available Background: Data on the association of memory performance with cerebrospinal fluid (CSF biomarkers of Alzheimer's disease (AD are inconsistent. The Consortium to Establish a Registry for Alzheimer's Disease neuropsychological battery (CERAD-NB is a commonly used validated cognitive tool; however, only few studies have examined its relationship with CSF biomarkers for AD. We studied the correlation of pathological changes in CSF biomarkers with various CERAD-NB subtests and total scores. Methods: Out of 79 subjects (36 men, mean age 70.5 years, 63 had undergone an assessment of cognitive status with CERAD-NB and a CSF biomarker analysis due to a suspected memory disorder, and 16 were controls with no memory complaint.Results: In women we found a significant correlation between CSF amyloid-beta (Aβ1-42 and several subtests measuring delayed recall. Word List Recall correlated with all markers: Aβ1-42 (r = 0.323, p = 0.035, tau (r = -0.304, p = 0.050 and hyperphosphorylated tau (r = -0.331, p = 0.046. No such correlations were found in men. Conclusions: CSF biomarkers correlate with delayed memory scores in CERAD-NB in women, and women may have more actual AD pathology at the time of the investigations than men.

  3. In vitro detection of beta amyloid exploiting surface enhanced Raman scattering (SERS) using a nanofluidic biosensor

    Science.gov (United States)

    Benford, Melodie E.; Chou, I.-Hsien; Beier, Hope T.; Wang, Miao; Kameoka, Jun; Good, Theresa A.; Coté, Gerard L.

    2008-02-01

    Alzheimer's disease (AD), a neurodegenerative disease and the most common cause of dementia, affects 4.5 million people according to the 2000 US census and is expected to triple to 13.2 million by the year 2050. Since no definitive pre-mortem tests exist to distinguish AD from mild cognitive impairment due to the natural aging process, we focus on detecting the beta amyloid (Aβ) protein, the primary component of the senile plaques characteristic of AD. We specifically detect cytotoxic species of Aβ by exploiting surface enhanced Raman scattering (SERS). Using a nanofluidic device with a bottleneck shape (a microchannel leading into a nanochannel); we trapped gold colloid particles (60 nm) at the entrance to the nanochannel, with Aβ restricted within the interstices between the aggregated nanoparticles. The continuous flow generated from pumping the solution into the device produced size-dependent trapping of the gold colloid particles, resulting in a high density of aggregated nanoparticles at this precise region, creating localized "hot spots" in the interstitial region between nanoparticles, and shifting the plasmon resonance to the near infrared region, in resonance with incident laser wavelength. With this robust sensing platform, we were able to obtain concentration-dependent SERS spectra of Aβ and of different proteins present in the cerebrospinal fluid of healthy people and people with Alzheimer's disease.

  4. Insulin Attenuates Beta-Amyloid-Associated Insulin/Akt/EAAT Signaling Perturbations in Human Astrocytes.

    Science.gov (United States)

    Han, Xiaojuan; Yang, Liling; Du, Heng; Sun, Qinjian; Wang, Xiang; Cong, Lin; Liu, Xiaohui; Yin, Ling; Li, Shan; Du, Yifeng

    2016-08-01

    The excitatory amino acid transporters 1 and 2 (EAAT1 and EAAT2), mostly located on astrocytes, are the main mediators for glutamate clearance in humans. Malfunctions of these transporters may lead to excessive glutamate accumulation and subsequent excitotoxicity to neurons, which has been implicated in many kinds of neurodegenerative disorders including Alzheimer's disease (AD). Yet, the specific mechanism of the glutamate system dysregulation remains vague. To explore whether the insulin/protein kinase B (Akt)/EAAT signaling in human astrocytes could be disturbed by beta-amyloid protein (Aβ) and be protected by insulin, we incubated HA-1800 cells with varying concentrations of Aβ1-42 oligomers and insulin. Then the alterations of several key substrates in this signal transduction pathway were determined. Our results showed that expressions of insulin receptor, phospho-insulin receptor, phospho-protein kinase B, phospho-mammalian target of rapamycin, and EAAT1 and EAAT2 were decreased by the Aβ1-42 oligomers in a dose-dependent manner (p  0.05), and the mRNA levels of EAAT1 and EAAT2 were also unchanged (p > 0.05). Taken together, this study indicates that Aβ1-42 oligomers could cause disturbances in insulin/Akt/EAAT signaling in astrocytes, which might be responsible for AD onset and progression. Additionally, insulin can exert protective functions to the brain by modulating protein modifications or expressions. PMID:26358886

  5. 葛根素对淀粉样β蛋白所致痴呆模型小鼠学习记忆的影响%Effects of puerarin on learning and memory of model mouse with beta amyloid peptide-induced dementia

    Institute of Scientific and Technical Information of China (English)

    杨东旭; 唐玉; 胡小敏; 刘进学; 陈怡; 金有豫

    2005-01-01

    BACKGROUND: Puerarin, the main effective component of Chinese herb, Radix puerariae, is isoflavone monomer, which can counteract learning and memory impairment induced by scopolamine or D-galactose etc.OBJECTIVE: To investigate the protective effects of puerarin on β-amYloid peptide-induced learning and memory impairment of model mouse of dementia and the changes of superoxide dismutase activity and malondialdhehyde content in brain and blood.DESIGN: Randomized controlled trailSETTING: Department of Pharmacology, Capital University of MedicalSciencesMATERIALS: The experiment was conducted in Departmentof Pharmacology of Capital University of Medical Sciences from March to June 2002.A total of 40 ICR mice were selected and randomly divided into 4 groups:pseudooperation group, dementia model group, puerarin 25 mg/kg group and puerarin 50 mg/kg group, with 10 in each group.METHODS: ①Model preparation: After anaesthesia with pentobarbital sodium, single intraventricular injection of 3 μL β-amyloid peptide was conducted from right side on each mouse in dementia model group, puerarin 25 mg/kg group and puerarin 50 mg/kg group under aseptic manipulation. The same operation was carried out on the mouse in pseudooperation group but without injection of β-amyloid peptide. ②Giving medicine:10 mL/kg physiological saline was intraperitoneally injected into the mouse in pseudooperation group and model group; 25 mL/kg puerarin was intraperitoneally injected to the mouse in 25 mg/kg puerarin group; 50 mL/kg puerarin was intraperitoneally injected to the mouse in 50 mg/kg puerarin group.The medicines were given to each group from the day of model preparation on and behavioral test was carried out 12 days later. ③ Morris water maze examination was used to detect learning and memory ability of the mice.Time for finding the platform (escape latency) in 2 minutes, swimming distance, original angle and search strategy were recorded as learning results.④When the above

  6. Metal-amyloidpeptide interactions: a preliminary investigation of molecular mechanisms for Alzheimer's disease

    Institute of Scientific and Technical Information of China (English)

    JIAO Yong; YANG Pin

    2007-01-01

    Although humans have spent exactly 100 years combating Alzheimer's disease (AD), the molecular mechanisms of AD remain unclear. Owing to the rapid growth of the oldest age groups of the population and the continuous increase of the incidence of AD, it has become one of the crucial problems to modern sciences. It would be impossible to prevent or reverse AD at the root without elucidating its molecular mechanisms. From the point of view of metal-amyloidpeptide (Aβ) interactions, we review the molecular mechanisms of AD, mainly including Cu2+ and Zn2+ inducing the aggregation of Aβ, catalysing the production of active oxygen species from Aβ, as well as interacting with the ion-channel-like structures of Aβ. Moreover, the development of therapeutic drugs on the basis of metal-Aβ interactions is also briefly introduced. With the increasingly rapid progress of the molecular mechanisms of AD, we are now entering a new dawn that promises the delivery of revolutionary developments for the control of dementias.

  7. Viscoelastic response of neural cells governed by the deposition of amyloidpeptides (Aβ)

    Science.gov (United States)

    Gong, Ze; You, Ran; Chang, Raymond Chuen-Chung; Lin, Yuan

    2016-06-01

    Because of its intimate relation with Alzheimer's disease (AD), the question of how amyloidpeptide (Aβ) deposition alters the membrane and cytoskeltal structure of neural cells and eventually their mechanical response has received great attention. In this study, the viscoelastic properties of primary neurons subjected to various Aβ treatments were systematically characterized using atomic force microrheology. It was found that both the storage ( G ') and loss ( G ″) moduli of neural cells are rate-dependent and grow by orders of magnitude as the driving frequency ω varies from 1 to 100 Hz. However, a much stronger frequency dependence was observed in the loss moduli (with a scaling exponent of ˜0.96) than that in G ' ( ˜ ω 0.2 ). Furthermore, both cell moduli increase gradually within the first 6 h of Aβ treatment before steady-state values are reached, with a higher dosage of Aβ leading to larger changes in cell properties. Interestingly, we showed that the measured neuron response can be well-explained by a power law structural damping model. Findings here establish a quantitative link between Aβ accumulation and the physical characteristics of neural cells and hence could provide new insights into how disorders like AD affect the progression of different neurological processes from a mechanics point of view.

  8. The effect of HIV protease inhibitors on amyloidpeptide degradation and synthesis in human cells and Alzheimer's disease animal model.

    Science.gov (United States)

    Lan, Xiqian; Kiyota, Tomomi; Hanamsagar, Richa; Huang, Yunlong; Andrews, Scott; Peng, Hui; Zheng, Jialin C; Swindells, Susan; Carlson, George A; Ikezu, Tsuneya

    2012-06-01

    Combined antiretroviral therapy (ART) tremendously improved the lifespan and symptoms associated with AIDS-defining illness in affected individuals. However, chronic ART-treated patients frequently develop age-dependent complications, including dementia, diabetes, and hyperlipidemia: all risk factors of Alzheimer's disease. Importantly, the effect of ART compounds on amyloid generation and clearance has never been systematically examined. Nine prescribed HIV protease inhibitors were tested for their effect on amyloidpeptide (Aβ) clearance in primary cultured human monocyte-derived macrophages. Atazanavir, ritonavir, and saquinavir modestly inhibited of Aβ degradation, while lopinavir, nelfinavir, and ritonavir enhanced secretion of undigested Aβ after phagocytosis. Lopinavir, nelfinavir, ritonavir, and saquinavir inhibited endogenous Aβ40 production from primary cultured human cortical neurons, which were associated with reduction in Beta-site APP Converting Enzyme 1 (BACE1) and γ-secretase enzyme activities. However, ART compounds showed little inhibition of purified BACE1 activity in vitro, suggesting the indirect effect of ART compounds on BACE1 activity in neurons. Finally, nefinavir or lopinavir/ritonavir (Kaletra) were orally administered for 30 days into APP SCID mice expressing a double mutant form of APP 695 (KM670/671NL + V717F) in homozygosity for the scid allele of Prkdc. There was no difference in beta-amyloidosis by ART drug administration as determined by both immunohistochemistry and ELISA measurements although the therapeutic doses of the ART compounds was present in the brain. These data demonstrated that ART drugs can inhibit Aβ clearance in macrophages and Aβ production in neurons, but these effects did not significantly alter Aβ accumulation in the mouse brain. PMID:21826404

  9. Ceria/POMs hybrid nanoparticles as a mimicking metallopeptidase for treatment of neurotoxicity of amyloidpeptide.

    Science.gov (United States)

    Guan, Yijia; Li, Meng; Dong, Kai; Gao, Nan; Ren, Jinsong; Zheng, Yongchen; Qu, Xiaogang

    2016-08-01

    Protein misfolding to amyloid aggregates is the hallmark for neurodegenerative disease. While much attention has been paid to screen natural proteases that can degrade amyloidpeptides (Aβ), it is difficult to apply them in the clinics with the intractable problem of immunogenicity in living organisms. Herein, we rationally designed an artificial nanozyme, Ceria/Polyoxometalates hybrid (CeONP@POMs) with both proteolytic and superoxide dismutase (SOD) activities. Our results indicated that CeONP@POMs could efficiently degrade Aβ aggregates and reduce intracellular reactive oxygen species (ROS). More importantly, CeONP@POMD could not only promote PC12 cell proliferation and can cross blood-brain barrier (BBB), but also inhibit Aβ-induced BV2 microglial cell activation which was demonstrated by immunoluorescence assay and flow cytometry measurements. In vivo studies further indicated that CeONP@POMD as nanozyme possessed good biocompatibility, evidenced by a detailed study of their biodistribution, body weight change, and in vivo toxicology. Therefore, our results pave the way for design of multifunctional artificial nanozyme for treatment of neurotoxicity of amyloidpeptide. PMID:27179436

  10. The architecture of amyloid-like peptide fibrils revealed by X-ray scattering, diffraction and electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Langkilde, Annette E., E-mail: annette.langkilde@sund.ku.dk [University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen (Denmark); Morris, Kyle L.; Serpell, Louise C. [University of Sussex, Falmer, Brighton (United Kingdom); Svergun, Dmitri I. [European Molecular Biology Laboratory, Hamburg Outstation, 22607 Hamburg (Germany); Vestergaard, Bente [University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen (Denmark)

    2015-04-01

    The aggregation process and the fibril state of an amyloidogenic peptide suggest monomer addition to be the prevailing mechanism of elongation and a model of the peptide packing in the fibrils has been obtained. Structural analysis of protein fibrillation is inherently challenging. Given the crucial role of fibrils in amyloid diseases, method advancement is urgently needed. A hybrid modelling approach is presented enabling detailed analysis of a highly ordered and hierarchically organized fibril of the GNNQQNY peptide fragment of a yeast prion protein. Data from small-angle X-ray solution scattering, fibre diffraction and electron microscopy are combined with existing high-resolution X-ray crystallographic structures to investigate the fibrillation process and the hierarchical fibril structure of the peptide fragment. The elongation of these fibrils proceeds without the accumulation of any detectable amount of intermediate oligomeric species, as is otherwise reported for, for example, glucagon, insulin and α-synuclein. Ribbons constituted of linearly arranged protofilaments are formed. An additional hierarchical layer is generated via the pairing of ribbons during fibril maturation. Based on the complementary data, a quasi-atomic resolution model of the protofilament peptide arrangement is suggested. The peptide structure appears in a β-sheet arrangement reminiscent of the β-zipper structures evident from high-resolution crystal structures, with specific differences in the relative peptide orientation. The complexity of protein fibrillation and structure emphasizes the need to use multiple complementary methods.

  11. Electrochemical quantification of the Alzheimer’s disease amyloid-β (1–40 using amyloid-β fibrillization promoting peptide

    Directory of Open Access Journals (Sweden)

    Satoshi Fujii

    2015-12-01

    Full Text Available Amyloidpeptide (Aβ is believed to be an important biomarker for the early diagnosis of Alzheimer’s disease. Therefore, practical and reliable methods to assay Aβ levels have been coveted. In this study, a rapid, sensitive, and selective electrochemical method for Aβ(1–40 detection using Cu2+ redox cycling on peptide-modified gold electrodes was developed. A 19-residue peptide that can promote Aβ fibrillization (AFPP was immobilized onto a gold electrode. After incubating an Aβ solution with the modified electrode for 1 h, a Cu2+ solution was added and cyclic voltammetry measurements were conducted. The voltammetric response was found to be proportional to the Aβ(1–40 concentration in the 0.1–5 μM range, and a detection limit of 18 nM was achieved. Washing with sodium hydroxide and ethylenediaminetetraacetate solutions easily reinitialized the modified electrode. Results obtained using the reinitialized electrode showed good reproducibility. Furthermore, when another amyloidogenic and Cu2+-binding protein amylin was used as the target, no voltammetric response was observed. These results indicate that the AFPP-modified electrode provides a promising, label-free, sensitive, selective, cost-effective, and easy method for the quantification of Aβ.

  12. APP17肽调节胰岛素受体底物1在糖尿病小鼠脑内分布及对脑海马区神经元退行性变的作用%Effects of amyloid beta protein precursor 17 peptide on distribution of insulin receptor substrate-1 in brain and degeneration of neurons in hippocampus of diabetic mice

    Institute of Scientific and Technical Information of China (English)

    陆珊; 雷亚平; 崔艳君; 王蓬文; 盛树力

    2006-01-01

    BACKGROUND: In brain insulin does its work through the insulin receptor substrate (IRS). Amyloid beta protein precursor 17 (APP17) peptide has the neurotrophic function, which may improve diabetic encephalopathy resulted from insulin deficiency by affecting insulin receptor substrate.OBJECTIVE: The mouse diabetic model was produced to observe the effect of APP17 peptide on the distribution of IRS-1 in brain tissues.DESIGN: Randomized control animal experiment.SETTING: Staff Room of Pathology, College of Basic Medical Sciences,Capital University of Medical Sciences; Beijing Research Laboratory for Brain Aging of Xuanwu Hospital.MATERIALS: The experiment was performed in Staff Room of Pathology,College of Basic Medical Sciences, Capital University of Medical Sciences and Beijing Research Laboratory for Brain Aging of Xuanwu Hospital from September to October 2003. Totally 18 male kunming mice were employed,and randomly assigned into control group, diabetic group and APP17 peptide treatment group with 6 mice in each group.METHODS: ①The mice were subjected to intraperitoneal injection of streptozotocin (STZ, Sigma) by 200 mg/kg, and 3 days later, the tail blood was sampled to examine non-fasting blood glucose, and the blood glucose over 15 mmol/L was set as the criteria for successful diabetic model establishment. ②In APP17 + diabetes mellitus group, the mice received subcutaneous injection of 0.35 μg APP17 peptide once daily for 2 weeks. The mice in the normal control group were not interfered. ③Then brain was removed and crystat sections were prepared. Immunohistochemical staining was done for IRS-1 at four weeks after giving streptozotocin.MAIN OUTCOME MEASURES: Pattern and distribution of IRS-1 positive cells of mice in each group.RESULTS: Totally 18 mice were involved in the result analysis. ①In the brains of diabetic mice the IRS-1 immunohistochemical positive cells distributed at cortex, hippocampus, thalamus, hypothalamus and so on, while the positive

  13. 心肺复苏大鼠海马神经元磷脂酰肌醇-3-激酶、蛋白激酶B和磷酸化cAMP应答元件结合蛋白表达的变化及APP17肽的影响%The effect of beta-amyloid precursor protein peptide on the expressions of PDK, PKB, p-CREB in the neurons of hippocampal gyrus in rats after cardiopulmonary resuscitation

    Institute of Scientific and Technical Information of China (English)

    王晶; 路毅; 赵妍; 秦俭; 王蓉; 赵志炜

    2009-01-01

    Objective To explore the effects of beta-amyloid precursor protein (APP17) peptide on the changes in the expressions of phosphoinositide 3-kinase(PI3K), protein kinase B(PKB) and phosphorylation of cAMP response element binding protein (p-CREB) in the neurons of hippocampal gyms in rats after cardiopulmonary resuscitation. Method Twenty-one Wistar rats were randomly divided into three groups, namely the sham-operated control group, the resuscitation group and resuscitation with APP17 peptide-treated group. The rat model of asphyxial cardiac arrest was made by clamping the endotracheal tube and the standard external cardiopulmonary resuscitation ( CPR) was performed until the restoration of spontaneous circulation ( ROSC) observed.ROSC was defined by the appearance of normal QRS waves of electrocardiogram and mean artery pressure ( MAP)≥60 mmHg for more than 10 minutes. Rats of resuscitation group and control group received intravenous 0.9%NaCl, and the rats of the APP17 peptide group were treated with APP17 peptide(10μg·300 g~(-1), i. v.) after ROSC. Rats were sacrificed by decapitation after reperfusion 2 hours and then the cerebral hippocampal gyrus was immediately separated to detect PI3K, PKB and p-CREB by immunohistochemistry ( IHC) and Western-blot analysis. Statistical comparisons were made by one-way analysis of variance (ANOVA) . Results IHC showed that there was no significant difference in PDK positive cells between resuscitation group and control group (2.75 ±1.80 vs. 2.53 ± 1.53, P > 0.05) . The PDK obviously more increased in the APP17 peptide group than in resuscitation group(5.85 ± 2.83 vs. 2.75 ± 1.80, P < 0.01) .The counts of PKB and p-CREB positive cells were obviously lower in resuscitation group than those in control group (2.45 ± 1.36 vs. 5.22 ± 2.50, P < 0.05);(2.41 ± 1.11 vs. 8.31 ±3.02, P < 0.01 ). The PKB and p-CREB positive cells were significantly higher in the APP17 peptide group than in resuscitation group (9.66±4.32 vs. 2

  14. Green tea aroma fraction reduces β-amyloid peptide-induced toxicity in Caenorhabditis elegans transfected with human β-amyloid minigene.

    Science.gov (United States)

    Takahashi, Atsushi; Watanabe, Tatsuro; Fujita, Takashi; Hasegawa, Toshio; Saito, Michio; Suganuma, Masami

    2014-01-01

    Green tea is a popular world-wide beverage with health benefits that include preventive effects on cancer as well as cardiovascular, liver and Alzheimer's diseases (AD). This study will examine the preventive effects on AD of a unique aroma of Japanese green tea. First, a transgenic Caenorhabditis elegans (C. elegans) CL4176 expressing human β-amyloid peptide (Aβ) was used as a model of AD. A hexane extract of processed green tea was further fractionated into volatile and non-volatile fractions, named roasty aroma and green tea aroma fractions depending on their aroma, by microscale distillation. Both hexane extract and green tea aroma fraction were found to inhibit Aβ-induced paralysis, while only green tea aroma fraction extended lifespan in CL4176. We also found that green tea aroma fraction has antioxidant activity. This paper indicates that the green tea aroma fraction is an additional component for prevention of AD. PMID:25229860

  15. Soluble Beta-Amyloid Precursor Protein Is Related to Disease Progression in Amyotrophic Lateral Sclerosis

    Science.gov (United States)

    Steinacker, Petra; Fang, Lubin; Kuhle, Jens; Petzold, Axel; Tumani, Hayrettin; Ludolph, Albert C.; Otto, Markus; Brettschneider, Johannes

    2011-01-01

    Background Biomarkers of disease progression in amyotrophic lateral sclerosis (ALS) could support the identification of beneficial drugs in clinical trials. We aimed to test whether soluble fragments of beta-amyloid precursor protein (sAPPα and sAPPß) correlated with clinical subtypes of ALS and were of prognostic value. Methodology/Principal Findings In a cross-sectional study including patients with ALS (N = 68) with clinical follow-up data over 6 months, Parkinson's disease (PD, N = 20), and age-matched controls (N = 40), cerebrospinal fluid (CSF) levels of sAPPα a, sAPPß and neurofilaments (NfHSMI35) were measured by multiplex assay, Progranulin by ELISA. CSF sAPPα and sAPPß levels were lower in ALS with a rapidly-progressive disease course (p = 0.03, and p = 0.02) and with longer disease duration (p = 0.01 and p = 0.01, respectively). CSF NfHSMI35 was elevated in ALS compared to PD and controls, with highest concentrations found in patients with rapid disease progression (p<0.01). High CSF NfHSMI3 was linked to low CSF sAPPα and sAPPß (p = 0.001, and p = 0.007, respectively). The ratios CSF NfHSMI35/CSF sAPPα,-ß were elevated in patients with fast progression of disease (p = 0.002 each). CSF Progranulin decreased with ongoing disease (p = 0.04). Conclusions This study provides new CSF candidate markers associated with progression of disease in ALS. The data suggest that a deficiency of cellular neuroprotective mechanisms (decrease of sAPP) is linked to progressive neuro-axonal damage (increase of NfHSMI35) and to progression of disease. PMID:21858182

  16. Soluble beta-amyloid precursor protein is related to disease progression in amyotrophic lateral sclerosis.

    Directory of Open Access Journals (Sweden)

    Petra Steinacker

    Full Text Available BACKGROUND: Biomarkers of disease progression in amyotrophic lateral sclerosis (ALS could support the identification of beneficial drugs in clinical trials. We aimed to test whether soluble fragments of beta-amyloid precursor protein (sAPPα and sAPPß correlated with clinical subtypes of ALS and were of prognostic value. METHODOLOGY/PRINCIPAL FINDINGS: In a cross-sectional study including patients with ALS (N = 68 with clinical follow-up data over 6 months, Parkinson's disease (PD, N = 20, and age-matched controls (N = 40, cerebrospinal fluid (CSF levels of sAPPα a, sAPPß and neurofilaments (NfH(SMI35 were measured by multiplex assay, Progranulin by ELISA. CSF sAPPα and sAPPß levels were lower in ALS with a rapidly-progressive disease course (p = 0.03, and p = 0.02 and with longer disease duration (p = 0.01 and p = 0.01, respectively. CSF NfH(SMI35 was elevated in ALS compared to PD and controls, with highest concentrations found in patients with rapid disease progression (p<0.01. High CSF NfH(SMI3 was linked to low CSF sAPPα and sAPPß (p = 0.001, and p = 0.007, respectively. The ratios CSF NfH(SMI35/CSF sAPPα,-ß were elevated in patients with fast progression of disease (p = 0.002 each. CSF Progranulin decreased with ongoing disease (p = 0.04. CONCLUSIONS: This study provides new CSF candidate markers associated with progression of disease in ALS. The data suggest that a deficiency of cellular neuroprotective mechanisms (decrease of sAPP is linked to progressive neuro-axonal damage (increase of NfH(SMI35 and to progression of disease.

  17. Copper Exposure Perturbs Brain Inflammatory Responses and Impairs Clearance of Amyloid-Beta.

    Science.gov (United States)

    Kitazawa, Masashi; Hsu, Heng-Wei; Medeiros, Rodrigo

    2016-07-01

    Copper promotes a toxic buildup of amyloid-beta (Aβ) and neurofibrillary tangle pathology in the brain, and its exposure may increase the risk for Alzheimer's disease (AD). However, underlying molecular mechanisms by which copper triggers such pathological changes remain largely unknown. We hypothesized that the copper exposure perturbs brain inflammatory responses, leading to impairment of Aβ clearance from the brain parenchyma. Here, we investigated whether copper attenuated Aβ clearance by microglial phagocytosis or by low-density lipoprotein-related receptor protein-1 (LRP1) dependent transcytosis in both in vitro and in vivo When murine monocyte BV2 cells were exposed to copper, their phagocytic activation induced by fibrillar Aβ or LPS was significantly reduced, while the secretion of pro-inflammatory cytokines, such as IL-1β, TNF-α, and IL-6, were increased. Interestingly, not only copper itself but also IL-1β, IL-6, or TNF-α were capable of markedly reducing the expression of LRP1 in human microvascular endothelial cells (MVECs) in a concentration-dependent manner. While copper-mediated downregulation of LRP1 was proteasome-dependent, the cytokine-induced loss of LRP1 was proteasome- or lysosome-independent. In the mouse model, copper exposure also significantly elevated neuroinflammation and downregulated LRP1 in the brain, consistent with our in vitro results. Taken together, our findings support the pathological impact of copper on inflammatory responses and Aβ clearance in the brain, which could serve as key mechanisms to explain, in part, the copper exposure as an environmental risk factor for AD. PMID:27122238

  18. Organotypic vibrosections from whole brain adult Alzheimer mice (overexpressing amyloid-precursor-protein with the Swedish-Dutch-Iowa mutations as a model to study clearance of beta-amyloid plaques

    Directory of Open Access Journals (Sweden)

    Christian eHumpel

    2015-04-01

    Full Text Available Alzheimer´s disease is a severe neurodegenerative disorder of the brain, pathologically characterized by extracellular beta-amyloid plaques, intraneuronal Tau inclusions, inflammation, reactive glial cells, vascular pathology and neuronal cell death. The degradation and clearance of beta-amyloid plaques is an interesting therapeutic approach, and the proteases neprilysin (NEP, insulysin and matrix metalloproteinases (MMP are of particular interest. The aim of this project was to establish and characterize a simple in vitro model to study the degrading effects of these proteases. Organoytpic brain vibrosections (120 µm thick were sectioned from adult (9 month old wildtype and transgenic mice (expressing amyloid precursor protein (APP harboring the Swedish K670N/M671L, Dutch E693Q, and Iowa D694N mutations; APP_SDI and cultured for 2 weeks. Plaques were stained by immunohistochemistry for beta-amyloid and Thioflavin S. Our data show that plaques were evident in 2 week old cultures from 9 month old transgenic mice. These plaques were surrounded by reactive GFAP+ astroglia and Iba1+ microglia. Incubation of fresh slices for 2 weeks with 1-0.1-0.01 µg/ml of NEP, insulysin, MMP-2 or MMP-9 showed that NEP, insulysin and MMP-9 markedly degradeded beta-amyloid plaques but only at the highest concentration. Our data provide for the first time a potent and powerful living brain vibrosection model containing a high number of plaques, which allows to rapidly and simply study the degradation and clearance of beta-amyloid plaques in vitro.

  19. Cholesterol enhances amyloid {beta} deposition in mouse retina by modulating the activities of A{beta}-regulating enzymes in retinal pigment epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jiying [Department of Ophthalmology and Visual Science, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519 (Japan); Ohno-Matsui, Kyoko, E-mail: k.ohno.oph@tmd.ac.jp [Department of Ophthalmology and Visual Science, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519 (Japan); Morita, Ikuo [Section of Cellular Physiological Chemistry, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519 (Japan)

    2012-08-10

    Highlights: Black-Right-Pointing-Pointer Cholesterol-treated RPE produces more A{beta} than non-treated RPE. Black-Right-Pointing-Pointer Neprilysin expression and activity decreased in cholesterol-treated RPE. Black-Right-Pointing-Pointer {alpha}-Secretase expression and activity decreased in cholesterol-treated RPE. Black-Right-Pointing-Pointer Cholesterol-enriched diet induced subRPE deposits in aged mice. Black-Right-Pointing-Pointer A{beta} were present in cholesterol-enriched-diet-induced subRPE deposits in aged mice. -- Abstract: Subretinally-deposited amyloid {beta} (A{beta}) is a main contributor of developing age-related macular degeneration (AMD). However, the mechanism causing A{beta} deposition in AMD eyes is unknown. Hypercholesterolemia is a significant risk for developing AMD. Thus, we investigated the effects of cholesterol on A{beta} production in retinal pigment epithelial (RPE) cells in vitro and in the mouse retina in vivo. RPE cells isolated from senescent (12-month-old) C57BL/6 mice were treated with 10 {mu}g/ml cholesterol for 48 h. A{beta} amounts in culture supernatants were measured by ELISA. Activity and expression of enzymes and proteins that regulate A{beta} production were examined by activity assay and real time PCR. The retina of mice fed cholesterol-enriched diet was examined by transmission electron microscopy. Cholesterol significantly increased A{beta} production in cultured RPE cells. Activities of A{beta} degradation enzyme; neprilysin (NEP) and anti-amyloidogenic secretase; {alpha}-secretase were significantly decreased in cell lysates of cholesterol-treated RPE cells compared to non-treated cells, but there was no change in the activities of {beta}- or {gamma}-secretase. mRNA levels of NEP and {alpha}-secretase (ADAM10 and ADAM17) were significantly lower in cholesterol-treated RPE cells than non-treated cells. Senescent (12-month-old) mice fed cholesterol-enriched chow developed subRPE deposits containing A{beta}, whereas

  20. Effect of curcumin and Cu 2+/Zn 2+ ions on the fibrillar aggregates formed by the amyloid peptide and other peptides at the organic-aqueous interface

    Science.gov (United States)

    Sanghamitra, Nusrat J. M.; Varghese, Neenu; Rao, C. N. R.

    2010-08-01

    Characteristic features of a perilous neuro-degenerative disease such as the Alzhiemer's disease is fibrillar plaque formation by the amyloid (Aβ) peptide. We have modelled the formation and disintegration of fibrils by studying the aggregate structures formed by Aβ structural motif diphenylalanine as well as insulin and bovine serum albumin at the organic-aqueous interface. Even small concentrations of curcumin in the organic medium or Cu 2+ and Zn 2+ ions in the aqueous medium are found to break down the fibrillar structures.

  1. Effect of cholesterol and amyloidpeptide on structure and function of mixed-lipid films and pulmonary surfactant BLES: an atomic force microscopy study.

    Science.gov (United States)

    Hane, Francis; Drolle, Elizabeth; Leonenko, Zoya

    2010-12-01

    Pulmonary surfactant forms a thin molecular film inside mammalian lung alveoli and lowers the surface tension of the air/fluid interface to reduce the work of breathing. Upon compression functional surfactant forms characteristic multilayer structures, which indicate surfactant surface activity. We showed that cholesterol adversely affects both structural and surface-active properties of BLES surfactant and DPPC/DOPG lipid films. Incorporation of small concentrations of fibril-forming peptide amyloid-β 1-40 helps to counteract the distractive effect of cholesterol by improving characteristic multilayer formation that occurs upon compression. In contrast to many negative effects of amyloid-forming peptides reported earlier, we report a positive effect of amyloidpeptide on surfactant function, which may aid in the designing of novel surfactant formulations. PMID:20493966

  2. Molecular dynamics studies of the inhibitory mechanism of copper(Ⅱ) on aggregation of amyloid β-peptide

    Institute of Scientific and Technical Information of China (English)

    Yong Jiao; Pin Yang

    2007-01-01

    The inhibitory mechanism of copper(Ⅱ) on the aggregation of amyloid β-peptide (Aβ) was investigated by molecular dynamics simulations. The binding mode of copper(Ⅱ) with Aβ is characterized by the imidazole nitrogen atom, Nπ, of the histidine residue H13,acting as the anchoring site, and the backbone's deprotoned amide nitrogen atoms as the main binding sites. Drove by the coordination bonds and their induced hydrogen bond net, the conformations of Aβ converted from β-sheet non-β-sheet conformations, which destabilized the aggregation of Aβ into fibrils.

  3. Depression and Plasma Amyloid β Peptides in the Elderly with and without the Apolipoprotein E4 Allele

    OpenAIRE

    Sun, Xiaoyan; Chiu, Chi Chia; Liebson, Elizabeth; Crivello, Natalia A.; Wang, Lixia; Caunch, Joshua; Folstein, Marshal; Rosenberg, Irwin; Mwamburi, D. Mkaya; Peter, Inga; Qiu, Wei Qiao

    2009-01-01

    Depression associated with low plasma Amyloidpeptide 42 (Aβ42) leading to a high ratio of Aβ40/Aβ42, a biomarker of Alzheimer’s disease (AD), may represent a unique depression subtype. The relationship between low plasma Aβ42 in depression and the major risk factor of AD, Apolipoprotein E4 (ApoE4), is unknown. With the goal of clarifying this relationship, we analyzed 1060 homebound elders with ApoE characterization and depression status in a cross-sectional study. Plasma Aβ40 and Aβ42 wer...

  4. Cryogenic solid state NMR studies of fibrils of the Alzheimer’s disease amyloidpeptide: perspectives for DNP

    International Nuclear Information System (INIS)

    Dynamic Nuclear Polarization solid-state NMR holds the potential to enable a dramatic increase in sensitivity by exploiting the large magnetic moment of the electron. However, applications to biological solids are hampered in uniformly isotopically enriched biomacromolecules due to line broadening which yields a limited spectral resolution at cryogenic temperatures. We show here that high magnetic fields allow to overcome the broadening of resonance lines often experienced at liquid nitrogen temperatures. For a fibril sample of the Alzheimer’s disease β-amyloid peptide, we find similar line widths at low temperature and at room temperature. The presented results open new perspectives for structural investigations in the solid-state

  5. Protective effects of berberine against amyloid beta-induced toxicity in cultured rat cortical neurons

    Institute of Scientific and Technical Information of China (English)

    Jing Wang; Yanjun Zhang; Shuai Du; Mixia Zhang

    2011-01-01

    Berberine, a major constituent of Coptidis rhizoma, exhibits neural protective effects. The present study analyzed the potential protective effect of berberine against amyloid G-induced cytotoxicity in rat cerebral cortical neurons. Alzheimer's disease cell models were treated with 0.5 and 2 μmol/Lberberine for 36 hours to inhibit amyloid G-induced toxicity. Methyl thiazolyl tetrazolium assay and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling staining results showed that berberine significantly increased cell viability and reduced cell apoptosis in primary cultured rat cortical neurons. In addition, western blot analysis revealed a protective effect of berberine against amyloid β-induced toxicity in cultured cortical neurons, which coincided with significantly decreased abnormal up-regulation of activated caspase-3. These results showed that berberine exhibited a protective effect against amyloid 13-induced cytotoxicity in cultured rat cortical neurons.

  6. Folding and Unfolding of Light-Triggered beta-Hairpin Model Peptides

    NARCIS (Netherlands)

    Schrader, Tobias E.; Cordes, Thorben; Schreier, Wolfgang J.; Koller, Florian O.; Dong, Shou-Liang; Moroder, Luis; Zinth, Wolfgang

    2011-01-01

    Ultrafast spectroscopy in the visible and mid-infrared is used to study the reaction dynamics of two light-triggered model peptides containing an azobenzene derivative as a switching element. One model peptide, the AzoTrpZip2, forms a beta-hairpin structure in the cis form of the chromophore. This p

  7. Beta-Amyloid Downregulates MDR1-P-Glycoprotein (Abcb1 Expression at the Blood-Brain Barrier in Mice

    Directory of Open Access Journals (Sweden)

    Anja Brenn

    2011-01-01

    Full Text Available Neurovascular dysfunction is an important component of Alzheimer's disease, leading to reduced clearance across the blood-brain barrier and accumulation of neurotoxic β-amyloid (Aβ peptides in the brain. It has been shown that the ABC transport protein P-glycoprotein (P-gp, ABCB1 is involved in the export of Aβ from the brain into the blood. To determine whether Aβ influences the expression of key Aβ transporters, we studied the effects of 1-day subcutaneous Aβ1-40 and Aβ1-42 administration via Alzet mini-osmotic pumps on P-gp, BCRP, LRP1, and RAGE expression in the brain of 90-day-old male FVB mice. Our results demonstrate significantly reduced P-gp, LRP1, and RAGE mRNA expression in mice treated with Aβ1-42 compared to controls, while BCRP expression was not affected. The expression of the four proteins was unchanged in mice treated with Aβ1-40 or reverse-sequence peptides. These findings indicate that, in addition to the age-related decrease of P-gp expression, Aβ1-42 itself downregulates the expression of P-gp and other Aβ-transporters, which could exacerbate the intracerebral accumulation of Aβ and thereby accelerate neurodegeneration in Alzheimer's disease and cerebral β-amyloid angiopathy.

  8. Minocycline alleviates beta-amyloid protein and tau pathology via restraining neuroinflammation induced by diabetic metabolic disorder

    Science.gov (United States)

    Cai, Zhiyou; Yan, Yong; Wang, Yonglong

    2013-01-01

    Background Compelling evidence has shown that diabetic metabolic disorder plays a critical role in the pathogenesis of Alzheimer’s disease, including increased expression of β-amyloid protein (Aβ) and tau protein. Evidence has supported that minocycline, a tetracycline derivative, protects against neuroinflammation induced by neurodegenerative disorders or cerebral ischemia. This study has evaluated minocycline influence on expression of Aβ protein, tau phosphorylation, and inflammatory cytokines (interleukin-1β and tumor necrosis factor-α) in the brain of diabetic rats to clarify neuroprotection by minocycline under diabetic metabolic disorder. Method An animal model of diabetes was established by high fat diet and intraperitoneal injection of streptozocin. In this study, we investigated the effect of minocycline on expression of Aβ protein, tau phosphorylation, and inflammatory cytokines (interleukin-1β and tumor necrosis factor-α) in the hippocampus of diabetic rats via immunohistochemistry, western blotting, and enzyme-linked immunosorbent assay. Results These results showed that minocycline decreased expression of Aβ protein and lowered the phosphorylation of tau protein, and retarded the proinflammatory cytokines, but not amyloid precursor protein. Conclusion On the basis of the finding that minocycline had no influence on amyloid precursor protein and beta-site amyloid precursor protein cleaving enzyme 1 which determines the speed of Aβ generation, the decreases in Aβ production and tau hyperphosphorylation by minocycline are through inhibiting neuroinflammation, which contributes to Aβ production and tau hyperphosphorylation. Minocycline may also lower the self-perpetuating cycle between neuroinflammation and the pathogenesis of tau and Aβ to act as a neuroprotector. Therefore, the ability of minocycline to modulate inflammatory reactions may be of great importance in the selection of neuroprotective agents, especially in chronic conditions

  9. Low levels of amyloid-beta and its transporters in neonatal rats with and without hydrocephalus

    Directory of Open Access Journals (Sweden)

    Silverberg Gerald D

    2009-05-01

    Full Text Available Abstract Background Previous studies in aging animals have shown that amyloid-beta protein (Aβ accumulates and its transporters, low-density lipoprotein receptor-related protein-1 (LRP-1 and the receptor for advanced glycation end products (RAGE are impaired during hydrocephalus. Furthermore, correlations between astrocytes and Aβ have been found in human cases of normal pressure hydrocephalus (NPH and Alzheimer's disease (AD. Because hydrocephalus occurs frequently in children, we evaluated the expression of Aβ and its transporters and reactive astrocytosis in animals with neonatal hydrocephalus. Methods Hydrocephalus was induced in neonatal rats by intracisternal kaolin injections on post-natal day one, and severe ventriculomegaly developed over a three week period. MRI was performed on post-kaolin days 10 and 21 to document ventriculomegaly. Animals were sacrificed on post-kaolin day 21. For an age-related comparison, tissue was used from previous studies when hydrocephalus was induced in a group of adult animals at either 6 months or 12 months of age. Tissue was processed for immunohistochemistry to visualize LRP-1, RAGE, Aβ, and glial fibrillary acidic protein (GFAP and with quantitative real time reverse transcriptase polymerase chain reaction (qRT-PCR to quantify expression of LRP-1, RAGE, and GFAP. Results When 21-day post-kaolin neonatal hydrocephalic animals were compared to adult (6–12 month old hydrocephalic animals, immunohistochemistry demonstrated levels of Aβ, RAGE, and LRP-1 that were substantially lower in the younger animals; in contrast, GFAP levels were elevated in both young and old hydrocephalic animals. When the neonatal hydrocephalic animals were compared to age-matched controls, qRT-PCR demonstrated no significant changes in Aβ, LRP-1 and RAGE. However, immunohistochemistry showed very small increases or decreases in individual proteins. Furthermore, qRT-PCR indicated statistically significant increases in GFAP

  10. Aggregation properties of a short peptide that mediates amyloid fibril formation in model proteins unrelated to disease

    Indian Academy of Sciences (India)

    Nitin Chaudhary; Shashi Singh; Ramakrishnan Nagaraj

    2011-09-01

    Short peptides have been identified from amyloidogenic proteins that form amyloid fibrils in isolation. The hexapeptide stretch 21DIDLHL26 has been shown to be important in the self-assembly of the Src homology 3 (SH3) domain of p85 subunit of bovine phosphatidylinositol-3-kinase (PI3-SH3). The SH3 domain of chicken brain -spectrin, which is otherwise non-amyloidogenic, is rendered amyloidogenic if 22EVTMKK27 is replaced by DIDLHL. In this article, we describe the aggregation behaviour of DIDLHL-COOH and DIDLHL-CONH2. Our results indicate that DIDLHL-COOH and DIDLHL-CONH2 aggregate to form spherical structures at pH 5 and 6. At pH 5, in the presence of mica, DIDLHL-CONH2 forms short fibrous structures. The presence of NaCl along with mica results in fibrillar structures. At pH 6, DIDLHL-CONH2 forms largely spherical aggregates. Both the peptides are unstructured in solution but adopt -conformation on drying. The aggregates formed by DIDLHL-COOH and DIDLHL-CONH2 are formed during drying process and their structures are modulated by the presence of mica and salt. Our study suggests that a peptide need not have intrinsic amyloidogenic propensity to facilitate the selfassembly of the full-length protein. The propensity of peptides to form self-assembled structures that are non-amyloidogenic could be important in potentiating the self-assembly of full-length proteins into amyloid fibrils.

  11. Immunization with the SDPM1 peptide lowers amyloid plaque burden and improves cognitive function in the APPswePSEN1(A246E) transgenic mouse model of Alzheimer’s disease

    OpenAIRE

    Wang, Chiou-Miin; deVries, Sarah; Camboni, Marybeth; Glass, Matthew; Martin, Paul T.

    2010-01-01

    Vaccination has become an important therapeutic approach to the treatment of Alzheimer’s disease (AD), however, immunization with Aβ amyloid can have unwanted, potentially lethal, side effects. Here we demonstrate an alternative peptide-mimotope vaccine strategy using the SDPM1 peptide. SDPM1 is a 20 amino acid peptide bounded by cysteines that binds tetramer forms of Aβ1–40- and Aβ1–42-amyloid and blocks subsequent Aβ amyloid aggregation. Immunization of mice with SDPM1 induced peptide mimot...

  12. Dynamic changes of beta-amyloid protein deposition in hippocampus of female ovariectomized rats

    Institute of Scientific and Technical Information of China (English)

    Huiqing Xie; Jianda Zhou; Shaodan Sun; Xuhong Li; Liming Deng; Fengmei Li

    2008-01-01

    BACKGROUND: To evaluate and summarize the effects of cerebral perfusion and vascular reserve on the treatment of SICAS. Recently, research on β-amyloid protein has focused on the regulatory effects of es-trogen or phytoestrogen on its deposition. However, there have been only a few reports on dynamic changes of β-amyloid protein deposition in hippocampus of ovariectomized rats.OBJECTIVE: To measureβ-amyloid protein deposition in the hippocampal formation of ovariectomized rats by using immunohistochemistry; to observe time-dependent dynamic changes. DESIGN: Randomized controlled animal study.SETTING: Third Xiangya Hospital of Central South University.MATERIALS: The experiment was carried out in the Central Laboratory of the Third Xiangya Hospital of Central South University from November 2005 to December 2006. Fifty healthy female Sprague Dawley (SD) rats, weighing (293 ± 10) g, were provided by the Animal Laboratory of Xiangya Medical College, Central South University. All rats had neither a childbearing history nor hepatic or renal disease, or skeletal deformity. Β-amyloid protein immunohistochemical kit was provided by Wuhan Boster Company. The ex-periment was in accordance with animal ethics standards.METHODS: All rats were randomly divided into five groups, including normal control group (n = 10), sham operation group (n = 10), and ovariectomized group (n = 30). After anesthesia in the ovariectomized group, the bilateral ovaries were separated and resected. The same volume of fat was resected in the sham operation group. Rats from the normal control group, however, did not receive any surgical treatments. Rats in the normal control group and sham operation group were sacrificed by anesthesia 7 weeks after surgery. Every ten rats from the ovariectomized group was respectively sacrificed at 7, 15, and 30 weeks after surgery. Immunohistochemistry was used to detectβ-amyloid protein deposition in hippocampal sections. Cell counting and gray value

  13. Effects of Amyloid Precursor Protein 17 Peptide on the Protection of Diabetic Encephalopathy and Improvement of Glycol Metabolism in the Diabetic Rat

    Directory of Open Access Journals (Sweden)

    Heng Meng

    2013-01-01

    Full Text Available Researchers have proposed that amyloid precursor protein 17 peptide (APP17 peptide, an active fragment of amyloid precursor protein (APP in the nervous system, has therapeutic effects on neurodegeneration. Diabetic encephalopathy (DE is a neurological disease caused by diabetes. Here we use multiple experimental approaches to investigate the effect of APP17 peptide on changes in learning behavior and glycol metabolism in rats. It was found that rats with DE treated by APP17 peptide showed reversed behavioral alternation. The [18F]-FDG-PET images and other results all showed that the APP17 peptide could promote glucose metabolism in the brain of the DE rat model. Meanwhile, the insulin signaling was markedly increased as shown by increased phosphorylation of Akt and enhanced GLUT4 activation. Compared with the DE group, the activities of SOD, GSH-Px, and CAT in the rat hippocampal gyrus were increased, while MDA decreased markedly in the DE + APP17 peptide group. No amyloid plaques in the cortex and the hippocampus were detected in either group, indicating that the experimental animals in the current study were not suffering from Alzheimer’s disease. These results indicate that APP17 peptide could be used to treat DE effectively.

  14. Beta-Sheet-Forming, Self-Assembled Peptide Nanomaterials towards Optical, Energy, and Healthcare Applications.

    Science.gov (United States)

    Kim, Sungjin; Kim, Jae Hong; Lee, Joon Seok; Park, Chan Beum

    2015-08-12

    Peptide self-assembly is an attractive route for the synthesis of intricate organic nanostructures that possess remarkable structural variety and biocompatibility. Recent studies on peptide-based, self-assembled materials have expanded beyond the construction of high-order architectures; they are now reporting new functional materials that have application in the emerging fields such as artificial photosynthesis and rechargeable batteries. Nevertheless, there have been few reviews particularly concentrating on such versatile, emerging applications. Herein, recent advances in the synthesis of self-assembled peptide nanomaterials (e.g., cross β-sheet-based amyloid nanostructures, peptide amphiphiles) are selectively reviewed and their new applications in diverse, interdisciplinary fields are described, ranging from optics and energy storage/conversion to healthcare. The applications of peptide-based self-assembled materials in unconventional fields are also highlighted, such as photoluminescent peptide nanostructures, artificial photosynthetic peptide nanomaterials, and lithium-ion battery components. The relation of such functional materials to the rapidly progressing biomedical applications of peptide self-assembly, which include biosensors/chips and regenerative medicine, are discussed. The combination of strategies shown in these applications would further promote the discovery of novel, functional, small materials. PMID:25929870

  15. Atomic structure of the cross-[beta] spine of islet amyloid polypeptide (amylin)

    Energy Technology Data Exchange (ETDEWEB)

    Wiltzius, J.J.; Sievers, S.A.; Sawaya, M.R.; Cascio, D.; Popov, D.; Riekel, C.; Eisenberg, D. (UCLA); (ESRF)

    2009-03-27

    Human islet amyloid polypeptide (IAPP or amylin) is a 37-residue hormone found as fibrillar deposits in pancreatic extracts of nearly all type II diabetics. Although the cellular toxicity of IAPP has been established, the structure of the fibrillar form found in these deposits is unknown. Here we have crystallized two segments from IAPP, which themselves form amyloid-like fibrils. The atomic structures of these two segments, NNFGAIL and SSTNVG, were determined, and form the basis of a model for the most commonly observed, full-length IAPP polymorph.

  16. Minocycline alleviates beta-amyloid protein and tau pathology via restraining neuroinflammation induced by diabetic metabolic disorder

    Directory of Open Access Journals (Sweden)

    Cai Z

    2013-08-01

    Full Text Available Zhiyou Cai,1 Yong Yan,2 Yonglong Wang2 1Department of Neurology, the Lu’an Affiliated Hospital of Anhui Medical University, Lu’an People’s Hospital, Lu’an, Anhui Province, People’s Republic of China; 2Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, People’s Republic of China Background: Compelling evidence has shown that diabetic metabolic disorder plays a critical role in the pathogenesis of Alzheimer’s disease, including increased expression of β-amyloid protein (Aβ and tau protein. Evidence has supported that minocycline, a tetracycline derivative, protects against neuroinflammation induced by neurodegenerative disorders or cerebral ischemia. This study has evaluated minocycline influence on expression of Aβ protein, tau phosphorylation, and inflammatory cytokines (interleukin-1β and tumor necrosis factor-α in the brain of diabetic rats to clarify neuroprotection by minocycline under diabetic metabolic disorder. Method: An animal model of diabetes was established by high fat diet and intraperitoneal injection of streptozocin. In this study, we investigated the effect of minocycline on expression of Aβ protein, tau phosphorylation, and inflammatory cytokines (interleukin-1β and tumor necrosis factor-α in the hippocampus of diabetic rats via immunohistochemistry, western blotting, and enzyme-linked immunosorbent assay. Results: These results showed that minocycline decreased expression of Aβ protein and lowered the phosphorylation of tau protein, and retarded the proinflammatory cytokines, but not amyloid precursor protein. Conclusion: On the basis of the finding that minocycline had no influence on amyloid precursor protein and beta-site amyloid precursor protein cleaving enzyme 1 which determines the speed of Aβ generation, the decreases in Aβ production and tau hyperphosphorylation by minocycline are through inhibiting

  17. Poor Memory Performance in Aged Cynomolgus Monkeys with Hippocampal Atrophy, Depletion of Amyloid Beta 1-42 and Accumulation of Tau Proteins in Cerebrospinal Fluid

    DEFF Research Database (Denmark)

    Darusman, Huda S; Pandelaki, Jacub; Mulyadi, Rahmad;

    2014-01-01

    performance had evidence of atrophy in the hippocampus and cortical areas, significantly lower cerebrospinal fluid levels of amyloid beta amino acid 1-42 (p<0.001) and higher cerebrospinal fluid total tau levels (p<0.05) compared to the group performing well on the DRT tests. CONCLUSION: Old, memory...

  18. Radioiodinated benzimidazole derivatives as single photon emission computed tomography probes for imaging of {beta}-amyloid plaques in Alzheimer's disease

    Energy Technology Data Exchange (ETDEWEB)

    Cui Mengchao [Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501 (Japan); Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875 (China); Ono, Masahiro, E-mail: ono@pharm.kyoto-u.ac.j [Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501 (Japan); Kimura, Hiroyuki; Kawashima, Hidekazu [Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501 (Japan); Liu Boli [Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875 (China); Saji, Hideo, E-mail: hsaji@pharm.kyoto-u.ac.j [Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501 (Japan)

    2011-04-15

    Five iodinated 2-phenyl-1H-benzo[d]imidazole derivatives were synthesized and evaluated as potential probes for {beta}-amyloid (A{beta}) plaques. One of the compounds, 4-(6-iodo-1H-benzo[d]imidazol-2-yl)-N,N-dimethylaniline (12), showed excellent affinity for A{beta}{sub 1-42} aggregates (K{sub i}=9.8 nM). Autoradiography with sections of postmortem Alzheimer's disease (AD) brain revealed that a radioiodinated probe [{sup 125}I]12, labeled A{beta} plaques selectively with low nonspecific binding. Biodistribution experiments with normal mice injected intravenously with [{sup 125}I]12 showed high uptake [4.14 percent injected dose per gram (% ID/g) at 2 min] into and rapid clearance (0.15% ID/g at 60 min) from the brain, which may bring about a good signal-to-noise ratio and therefore achieve highly sensitive detection of A{beta} plaques. In addition, [{sup 125}I]12 labeled amyloid plaques in vivo in an AD transgenic model. The preliminary results strongly suggest that [{sup 125}I]12 bears characteristics suitable for detecting amyloid plaques in vivo. When labeled with {sup 123}I, it may be a useful SPECT imaging agent for A{beta} plaques in the brain of living AD patients.

  19. Characterization of the fine specificity of peptide antibodies to HLA-DQ beta-chain molecules

    DEFF Research Database (Denmark)

    Petersen, J S; Atar, D; Karlsen, Alan E;

    1990-01-01

    In an attempt to produce epitope specific antisera which could distinguish two closely associated HLA-DQ beta-chain alleles, we immunized 20 rabbits with synthetic peptides representing sequences from the first domain of the HLA-DQw8 and -DQw7 beta-chain molecules, differing only by one amino acid...... in position 57. Several of the antisera in immunoblotting specifically recognized either the HLA-DQw7 or the HLA-DQw8 beta-chain allele as previously reported. The fine specificity of the antisera was tested in ELISA using synthetic peptides of varying length as solid phase antigen. Two out of the 20 antisera...... specifically recognized DQw7 beta peptides and two antisera bound only to DQw8 beta peptides from the region containing the amino acid in position 57. To analyze whether the antisera bound to native HLA-DQ beta-chain molecules, FACS analysis was carried out. Seven of the 20 antisera bound to intact EBV...

  20. Protective Effects of Some Medicinal Plants from Lamiaceae Family Against Beta-Amyloid Induced Toxicity in PC12 Cell

    OpenAIRE

    S. Saeidnia; M Soodi; P Balali

    2012-01-01

    Background: Excessive accumulation of beta-amyliod peptide (Aβ), the major component of senile plaques in Alzheimer's disease (AD), causes neuronal cell death through induction of oxidative stress. Therefore, antioxidants may be of use in the treatment of AD. The medicinal plants from the Lamiaceae family have been widely used in Iranian traditional medicine. These plants contain compounds with antioxidant activity and some species in this family have been reported to have neuroprotective pro...

  1. Early stages of amyloid fibril formation studied by liquid-state NMR: the peptide hormone glucagon

    DEFF Research Database (Denmark)

    Svane, Anna Sigrid Pii; Jahn, Kasper; Deva, Taru; Malmendal, Anders; Otzen, Daniel; Dittmer, Jens; Nielsen, Niels Chr

    2008-01-01

    the course of the fibril formation process. Kinetic information is extracted from the time course of the residual free glucagon signal decay. This suggests that glucagon amyloids form by a nucleated growth mechanism in which trimers (rather than monomers) of glucagon interact directly with the growing...

  2. Polymorphism of amyloid fibrils formed by a peptide from the yeast prion protein Sup35: AFM and Tip-Enhanced Raman Scattering studies.

    Science.gov (United States)

    Krasnoslobodtsev, Alexey V; Deckert-Gaudig, Tanja; Zhang, Yuliang; Deckert, Volker; Lyubchenko, Yuri L

    2016-06-01

    Aggregation of prion proteins is the cause of various prion related diseases. The infectious form of prions, amyloid aggregates, exist as multiple strains. The strains are thought to represent structurally different prion protein molecules packed into amyloid aggregates, but the knowledge on the structure of different types of aggregates is limited. Here we report on the use of AFM (Atomic Force Microscopy) and TERS (Tip-Enhanced Raman Scattering) to study morphological heterogeneity and access underlying conformational features of individual amyloid aggregates. Using AFM we identified the morphology of amyloid fibrils formed by the peptide (CGNNQQNY) from the yeast prion protein Sup35 that is critically involved in the aggregation of the full protein. TERS results demonstrate that morphologically different amyloid fibrils are composed of a distinct set of conformations. Fibrils formed at pH 5.6 are composed of a mixture of peptide conformations (β-sheets, random coil and α-helix) while fibrils formed in pH~2 solution primarily have β-sheets. Additionally, peak positions in the amide III region of the TERS spectra suggested that peptides have parallel arrangement of β-sheets for pH~2 fibrils and antiparallel arrangement for fibrils formed at pH 5.6. We also developed a methodology for detailed analysis of the peptide secondary structure by correlating intensity changes of Raman bands in different regions of TERS spectra. Such correlation established that structural composition of peptides is highly localized with large contribution of unordered secondary structures on a fibrillar surface. PMID:27060278

  3. Oligomeric AmyloidPeptide on Sialylic Lewisx–Selectin Bonding at Cerebral Endothelial Surface

    Directory of Open Access Journals (Sweden)

    Sholpan Askarova

    2014-12-01

    Full Text Available Introduction: Alzheimer’s disease (AD is a chronic neurodegenerative disorder, which affects approximately 10% of the population aged 65 and 40% of people over the age 80. Currently, AD is on the list of diseases with no effective treatment. Thus, the study of molecular and cellular mechanisms of AD progression is of high scientific and practical importance. In fact, dysfunction of the blood-brain barrier (BBB plays an important role in the onset and progression of the disease. Increased deposition of amyloid b peptide (Aβ in cerebral vasculature and enhanced transmigration of monocytes across the BBB are frequently observed in AD brains and are some of the pathological hallmarks of the diseases. Since the transmigration of monocytes across the BBB is both a mechanical and a biochemical process, the expression of adhesion molecules and mechanical properties of endothelial cells are the critical factors that require investigation.Methods: Because of recent advances in the biological applications of atomic force microscopy (AFM, we applied AFM with cantilever tips bio-functionalized by sLex in combination with the advanced immunofluorescent microscopy (QIM to study the direct effects of Aβ42 oligomers on the selectins expression, actin polymerization, and cellular mechanical and adhesion properties in cerebral endothelial cells (mouse bEnd3 line and primary human CECs and find a possible way to attenuate these effects. Results: QIM results showed that Aβ42 increased the expressions of P-selectin on the cell surface and enhanced actin polymerization. Consistent with our QIM results, AFM data showed that Aβ42 increased the probability of cell adhesion with sLex-coated cantilever and cell stiffness. These effects were counteracted by lovstatin, a cholesterol-lowering drug.  Surprisingly, the apparent rupture force of sLex-selectin bonding was significantly lower after treatment with Aβ42, as compared with the control (i.e. no treatment

  4. Silibinin inhibits acetylcholinesterase activity and amyloid β peptide aggregation: a dual-target drug for the treatment of Alzheimer's disease.

    Science.gov (United States)

    Duan, Songwei; Guan, Xiaoyin; Lin, Runxuan; Liu, Xincheng; Yan, Ying; Lin, Ruibang; Zhang, Tianqi; Chen, Xueman; Huang, Jiaqi; Sun, Xicui; Li, Qingqing; Fang, Shaoliang; Xu, Jun; Yao, Zhibin; Gu, Huaiyu

    2015-05-01

    Alzheimer's disease (AD) is characterized by amyloid β (Aβ) peptide aggregation and cholinergic neurodegeneration. Therefore, in this paper, we examined silibinin, a flavonoid extracted from Silybum marianum, to determine its potential as a dual inhibitor of acetylcholinesterase (AChE) and Aβ peptide aggregation for AD treatment. To achieve this, we used molecular docking and molecular dynamics simulations to examine the affinity of silibinin with Aβ and AChE in silico. Next, we used circular dichroism and transmission electron microscopy to study the anti-Aβ aggregation capability of silibinin in vitro. Moreover, a Morris Water Maze test, enzyme-linked immunosorbent assay, immunohistochemistry, 5-bromo-2-deoxyuridine double labeling, and a gene gun experiment were performed on silibinin-treated APP/PS1 transgenic mice. In molecular dynamics simulations, silibinin interacted with Aβ and AChE to form different stable complexes. After the administration of silibinin, AChE activity and Aβ aggregations were down-regulated, and the quantity of AChE also decreased. In addition, silibinin-treated APP/PS1 transgenic mice had greater scores in the Morris Water Maze. Moreover, silibinin could increase the number of newly generated microglia, astrocytes, neurons, and neuronal precursor cells. Taken together, these data suggest that silibinin could act as a dual inhibitor of AChE and Aβ peptide aggregation, therefore suggesting a therapeutic strategy for AD treatment. PMID:25771396

  5. Molecular modeling on Zn(Ⅱ) binding modes of Alzheimer's amyloid β-peptide in insoluble aggregates and soluble complexes

    Institute of Scientific and Technical Information of China (English)

    HAN; Daxiong; YANG; Pin

    2004-01-01

    Aggregation of the amyloid β-peptide (A β) into insoluble fibrils is a key pathological event in Alzheimer's disease. Zn(Ⅱ) ion induces significant Aβ aggregation at nearly physiological concentrations in vitro. In order to explore the induce mechanism, the possible binding modes of Zn(Ⅱ) in Aβ peptide are studied by molecular modeling method. First, the Aβ species containing 1,2,4 and 12 peptides are established respectively. And next a Zn(Ⅱ) ion is manually hold the different sits of the Aβ species based on the experimental data and subsequently the coordinate atom and number are assigned. Finally, the optimum binding site is found by the system energy minimization. Modeling results show that in soluble Zn(Ⅱ) complex, Nτ of imidazole ring of His14, O of carbonyl of main-chain, and two O of water occupy the four ligand positions of the tetrahedral complex; in the aggregation of Aβ, the His13(Nτ)-Zn(Ⅱ)-His14(Nτ)bridges are formed by Zn(Ⅱ) cross-linking action. Therefore, the possible Zn(Ⅱ) binding mode obtained by the studies will be helpful to reveal the form mechanism of pathogenic aggregates in brain.

  6. Amyloid Beta and Tau Proteins as Therapeutic Targets for Alzheimer’s Disease Treatment: Rethinking the Current Strategy

    Directory of Open Access Journals (Sweden)

    Siddhartha Mondragón-Rodríguez

    2012-01-01

    Full Text Available Alzheimer’s disease (AD is defined by the concurrence of accumulation of abnormal aggregates composed of two proteins: Amyloid beta (Aβ and tau, and of cellular changes including neurite degeneration and loss of neurons and cognitive functions. Based on their strong association with disease, genetically and pathologically, it is not surprising that there has been a focus towards developing therapies against the aggregated structures. Unfortunately, current therapies have but mild benefit. With this in mind we will focus on the relationship of synaptic plasticity with Aβ and tau protein and their role as potential targets for the development of therapeutic drugs. Finally, we will provide perspectives in developing a multifactorial strategy for AD treatment.

  7. NMDA-receptor activation but not ion flux is required for amyloid-beta induced synaptic depression.

    Directory of Open Access Journals (Sweden)

    Albert Tamburri

    Full Text Available Alzheimer disease is characterized by a gradual decrease of synaptic function and, ultimately, by neuronal loss. There is considerable evidence supporting the involvement of oligomeric amyloid-beta (Aβ in the etiology of Alzheimer's disease. Historically, AD research has mainly focused on the long-term changes caused by Aβ rather than analyzing its immediate effects. Here we show that acute perfusion of hippocampal slice cultures with oligomeric Aβ depresses synaptic transmission within 20 minutes. This depression is dependent on synaptic stimulation and the activation of NMDA-receptors, but not on NMDA-receptor mediated ion flux. It, therefore, appears that Aβ dependent synaptic depression is mediated through a use-dependent metabotropic-like mechanism of the NMDA-receptor, but does not involve NMDA-receptor mediated synaptic transmission, i.e. it is independent of calcium flux through the NMDA-receptor.

  8. AmyloidPeptide Aβ3pE-42 Induces Lipid Peroxidation, Membrane Permeabilization, and Calcium Influx in Neurons.

    Science.gov (United States)

    Gunn, Adam P; Wong, Bruce X; Johanssen, Timothy; Griffith, James C; Masters, Colin L; Bush, Ashley I; Barnham, Kevin J; Duce, James A; Cherny, Robert A

    2016-03-18

    Pyroglutamate-modified amyloid-β (pE-Aβ) is a highly neurotoxic amyloid-β (Aβ) isoform and is enriched in the brains of individuals with Alzheimer disease compared with healthy aged controls. Pyroglutamate formation increases the rate of Aβ oligomerization and alters the interactions of Aβ with Cu(2+) and lipids; however, a link between these properties and the toxicity of pE-Aβ peptides has not been established. We report here that Aβ3pE-42 has an enhanced capacity to cause lipid peroxidation in primary cortical mouse neurons compared with the full-length isoform (Aβ(1-42)). In contrast, Aβ(1-42) caused a significant elevation in cytosolic reactive oxygen species, whereas Aβ3pE-42 did not. We also report that Aβ3pE-42 preferentially associates with neuronal membranes and triggers Ca(2+) influx that can be partially blocked by the N-methyl-d-aspartate receptor antagonist MK-801. Aβ3pE-42 further caused a loss of plasma membrane integrity and remained bound to neurons at significantly higher levels than Aβ(1-42) over extended incubations. Pyroglutamate formation was additionally found to increase the relative efficiency of Aβ-dityrosine oligomer formation mediated by copper-redox cycling. PMID:26697885

  9. Molecular modeling of the inhibitory mechanism of copper(II) on aggregation of amyloid β-peptide

    Institute of Scientific and Technical Information of China (English)

    JIAO Yong; HAN Daxiong; YANG Pin

    2005-01-01

    Aggregation of amyloid β-peptide (Aβ) into insoluble fibrils is a key pathological event in Alzheimer's disease (AD). Under certain conditions, Cu(Ⅱ) exhibits strong inhibitory effect on the Zn(Ⅱ)-induced aggregation, which occurs significantly even at nearly physiological concentrations of zinc ion in vitro. Cu(Ⅱ) is considered as a potential factor in the normal brain preventing Aβ from aggregating. The possible mechanism of the inhibitory effect of Cu(Ⅱ) is investigated for the first time by molecular modeling method. In the mono-ring mode, the Y10 residue promotes typical quasi-helix conformations of Aβ. Specially, [Cu-H13(Nπ)-Y10(OH)] complex forms a local 3.010 helix conformation. In the multi-ring mode, the side chains of Q15 and E11 residues collaborate harmoniously with other chelating ligands producing markedly low energies and quasi-helix conformations. [Cu-3N-Q15(O)-E11(O1)] and [Cu-H13(Nπ)-Y10(OH)] complex with quasi-helix conformations may prefer soluble forms in solution. In addition, hydrogen-bond interactions may be the main driving force for Aβaggregation. All the results will provide helpful clues for an improved understanding of the role of Cu(Ⅱ) in the pathogenesis of AD and contribute to the development of an "anti-amyloid" therapeutic strategy.

  10. Proposal for an inhibitor of Alzheimer's disease blocking aggregation of amyloidpeptides: ab initio molecular simulations

    International Nuclear Information System (INIS)

    Aggregation of amyloid-β (Aβ) peptides is believed to play a key role in the mechanism of molecular pathogenesis of Alzheimer's disease (AD). To inhibit the aggregation and prevent AD, numerous compounds have been synthesized. A previous experimental study elucidated that a triazine derivative AA3E2 has anti-amyloidogenic ability, while a triazine derivative AA3D2 having a different substituent has no inhibitory effect. However, the reason for this remarkable difference in the ability cannot be explained by the chemical structures of these derivatives. In the present study, we present stable structures of the solvated complexes with Aβ and AA3E2/AA3D2 obtained by classical molecular mechanics method. The specific interactions between Aβ and AA3E2/AA3D2 in the complexes are investigated by ab initio fragment molecular orbital calculations. Based on the results obtained, we attempt to propose new potent inhibitors for the Aβ aggregation.

  11. Surface Plasmon Resonance Based Biosensors for Exploring the Influence of Alkaloids on Aggregation of AmyloidPeptide

    Directory of Open Access Journals (Sweden)

    Hanna Radecka

    2011-04-01

    Full Text Available The main objective of the presented study was the development of a simple analytical tool for exploring the influence of naturally occurring compounds on the aggregation of amyloidpeptide (Aβ40 in order to find potential anti-neurodegenerative drugs. The gold discs used for surface plasmon resonance (SPR measurements were modified with thioaliphatic acid. The surface functionalized with carboxylic groups was used for covalent attaching of Aβ40 probe by creation of amide bonds in the presence of EDC/NHS. The modified SPR gold discs were used for exploring the Aβ40 aggregation process in the presence of selected alkaloids: arecoline hydrobromide, pseudopelletierine hydrochloride, trigonelline hydrochloride and α-lobeline hydrochloride. The obtained results were discussed with other parameters which govern the phenomenon studied such as lipophilicity/ hydrophilicy and Aβ40-alkaloid association constants.

  12. Ultrafast Unzipping of a Beta-Hairpin Peptide

    NARCIS (Netherlands)

    Zinth, W.; Schrader, T.E.; Schreier, W.J.; Koller, F.O.; Cordes, T.; Babitzki, G.; Denschlag, R.; Tavan, P.; Löweneck, M.; Dong, Shou-Liang; Moroder, L.; Renner, C.; Corkum, Paul; Jonas, David M.; Miller, R.J. Dwayne; Weiner, Andrew M.

    2007-01-01

    Light induced switching of a beta-hairpin structure is investigated by femtosecond IR spectroscopy. While the unzipping process comprises ultrafast kinetics and is finished within 1 ns, the folding into the hairpin structure is a much slower process.

  13. Distinct cerebrospinal fluid amyloid β peptide signatures in sporadic and PSEN1 A431E-associated familial Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Galasko Douglas

    2010-01-01

    Full Text Available Abstract Background Alzheimer's disease (AD is associated with deposition of amyloid β (Aβ in the brain, which is reflected by low concentration of the Aβ1-42 peptide in the cerebrospinal fluid (CSF. There are at least 15 additional Aβ peptides in human CSF and their relative abundance pattern is thought to reflect the production and degradation of Aβ. Here, we test the hypothesis that AD is characterized by a specific CSF Aβ isoform pattern that is distinct when comparing sporadic AD (SAD and familial AD (FAD due to different mechanisms underlying brain amyloid pathology in the two disease groups. Results We measured Aβ isoform concentrations in CSF from 18 patients with SAD, 7 carriers of the FAD-associated presenilin 1 (PSEN1 A431E mutation, 17 healthy controls and 6 patients with depression using immunoprecipitation-mass spectrometry. Low CSF levels of Aβ1-42 and high levels of Aβ1-16 distinguished SAD patients and FAD mutation carriers from healthy controls and depressed patients. SAD and FAD were characterized by similar changes in Aβ1-42 and Aβ1-16, but FAD mutation carriers exhibited very low levels of Aβ1-37, Aβ1-38 and Aβ1-39. Conclusion SAD patients and PSEN1 A431E mutation carriers are characterized by aberrant CSF Aβ isoform patterns that hold clinically relevant diagnostic information. PSEN1 A431E mutation carriers exhibit low levels of Aβ1-37, Aβ1-38 and Aβ1-39; fragments that are normally produced by γ-secretase, suggesting that the PSEN1 A431E mutation modulates γ-secretase cleavage site preference in a disease-promoting manner.

  14. Lysosomal dysfunction in a mouse model of Sandhoff disease leads to accumulation of ganglioside-bound amyloidpeptide.

    Science.gov (United States)

    Keilani, Serene; Lun, Yi; Stevens, Anthony C; Williams, Hadis N; Sjoberg, Eric R; Khanna, Richie; Valenzano, Kenneth J; Checler, Frederic; Buxbaum, Joseph D; Yanagisawa, Katsuhiko; Lockhart, David J; Wustman, Brandon A; Gandy, Sam

    2012-04-11

    Alterations in the lipid composition of endosomal-lysosomal membranes may constitute an early event in Alzheimer's disease (AD) pathogenesis. In this study, we investigated the possibility that GM2 ganglioside accumulation in a mouse model of Sandhoff disease might be associated with the accumulation of intraneuronal and extracellular proteins commonly observed in AD. Our results show intraneuronal accumulation of amyloidpeptide (Aβ)-like, α-synuclein-like, and phospho-tau-like immunoreactivity in the brains of β-hexosaminidase knock-out (HEXB KO) mice. Biochemical and immunohistochemical analyses confirmed that at least some of the intraneuronal Aβ-like immunoreactivity (iAβ-LIR) represents amyloid precursor protein C-terminal fragments (APP-CTFs) and/or Aβ. In addition, we observed increased levels of Aβ40 and Aβ42 peptides in the lipid-associated fraction of HEXB KO mouse brains, and intraneuronal accumulation of ganglioside-bound Aβ (GAβ) immunoreactivity in a brain region-specific manner. Furthermore, α-synuclein and APP-CTFs and/or Aβ were found to accumulate in different regions of the substantia nigra, indicating different mechanisms of accumulation or turnover pathways. Based on the localization of the accumulated iAβ-LIR to endosomes, lysosomes, and autophagosomes, we conclude that a significant accumulation of iAβ-LIR may be associated with the lysosomal-autophagic turnover of Aβ and fragments of APP-containing Aβ epitopes. Importantly, intraneuronal GAβ immunoreactivity, a proposed prefibrillar aggregate found in AD, was found to accumulate throughout the frontal cortices of postmortem human GM1 gangliosidosis, Sandhoff disease, and Tay-Sachs disease brains. Together, these results establish an association between the accumulation of gangliosides, autophagic vacuoles, and the intraneuronal accumulation of proteins associated with AD. PMID:22496568

  15. In vivo PET imaging of beta-amyloid deposition in mouse models of Alzheimer's disease with a high specific activity PET imaging agent [18F]flutemetamol

    OpenAIRE

    Snellman, Anniina; Rokka, Johanna; Lopez-Picon, Francisco R; Eskola, Olli; Salmona, Mario; Forloni, Gianluigi; Scheinin, Mika; Solin, Olof; Rinne, Juha O; Haaparanta-Solin, Merja

    2014-01-01

    Background: The purpose of the study was to evaluate the applicability of 18F-labelled amyloid imaging positron emission tomography (PET) agent [18F]flutemetamol to detect changes in brain beta-amyloid (Aβ) deposition in vivo in APP23, Tg2576 and APPswe-PS1dE9 mouse models of Alzheimer's disease. We expected that the high specific activity of [18F]flutemetamol would make it an attractive small animal Aβ imaging agent. Methods: [18F]flutemetamol uptake in the m...

  16. Restraint stress and repeated CRF receptor activation in the amygdala both increase amyloid β precursor protein (APP) and amyloid-β (Aβ) peptide but have divergent effects on BDNF and pre-synaptic proteins in the prefrontal cortex of rats

    OpenAIRE

    Ray, Balmiki; Gaskins, Denise L.; Sajdyk, Tammy J.; Spence, John P.; Fitz, Stephanie D.; Shekhar, Anantha; Lahiri, Debomoy K.

    2011-01-01

    Both environmental stress and anxiety may represent important risk factors for Alzheimer's disease (AD) pathogenesis. Previous studies demonstrate that restraint stress is associated with increased amyloid beta (Aβ) and decreased brain-derived neurotrophic factor (BDNF) levels in the brain. Aβ deposition, synaptic loss, and neurodegeneration define major hallmarks of AD, and BDNF is responsible for the maintenance of neurons. In contrast to restraint stress, repeated injections of sub-anxioge...

  17. The inhibitory mechanism of a fullerene derivative against amyloidpeptide aggregation: an atomistic simulation study.

    Science.gov (United States)

    Sun, Yunxiang; Qian, Zhenyu; Wei, Guanghong

    2016-05-14

    Alzheimer's disease (AD) is associated with the pathological self-assembly of amyloid-β (Aβ) peptides into β-sheet enriched fibrillar aggregates. Aβ dimers formed in the initial step of Aβ aggregation were reported to be the smallest toxic species. Inhibiting the formation of β-sheet-rich oligomers and fibrils is considered as the primary therapeutic strategy for AD. Previous studies reported that fullerene derivatives strongly inhibit Aβ fibrillation. However, the underlying inhibitory mechanism remains elusive. As a first step to understand fullerene-modulated full-length Aβ aggregation, we investigated the conformational ensemble of the Aβ1-42 dimer with and without 1,2-(dimethoxymethano)fullerene (DMF) - a more water-soluble fullerene derivative - by performing a 340 ns explicit-solvent replica exchange molecular dynamics simulation. Our simulations show that although disordered states are the most abundant conformations of the Aβ1-42 dimer, conformations containing diverse extended β-hairpins are also populated. The first most-populated β-hairpins involving residues L17-D23 and A30-V36 strongly resemble the engineered β-hairpin which is a building block of toxic Aβ oligomers. We find that the interaction of DMFs with Aβ peptides greatly impedes the formation of such β-hairpins and inter-peptide β-sheets. Binding energy analyses demonstrate that DMF preferentially binds not only to the central hydrophobic motif LVFFA of the Aβ peptide as suggested experimentally, but also to the aromatic residues including F4 and Y10 and the C-terminal hydrophobic region I31-V40. This study reveals a complete picture of the inhibitory mechanism of full-length Aβ1-42 aggregation by fullerenes, providing theoretical insights into the development of drug candidates against AD. PMID:27091578

  18. Antimicrobial beta-peptides and alpha-peptoids

    DEFF Research Database (Denmark)

    Godballe, Troels; Nilsson, Line L.; Petersen, Pernille D.;

    2011-01-01

    The field of drug discovery and development has seen tremendous activity over the past decade to better tackle the increasing occurrence of drugresistant bacterial infections and to alleviate some of the pressure we put on the last-resort drugs on the market. One of the new and promising drug...... candidates is derived from naturally occurring antimicrobial peptides. However, despite promising results in early-stage clinical trials, these molecules have faced some difficulties securing FDA approval, which can be linked to their poor metabolic stability. Hence, mimetics of these antimicrobial peptides...... have been suggested as new templates for antibacterial compound design, because these mimetics are resistant against degradation by proteases. This review will discuss the structural features of two different types of mimetics, b-peptides and a-peptoids, in relation to their antibacterial activity and...

  19. Effects of age and beta-amyloid on cognitive changes in normal elderly people

    OpenAIRE

    Oh, Hwamee; Madison, Cindee,; Haight, Thaddeus J.; Markley, Candace; Jagust, William J.

    2012-01-01

    Age-related decline is common in multiple cognitive domains. β-amyloid (Aβ) deposition, a pathological hallmark of Alzheimer’s disease, is also associated with cognitive changes in many older people. In this study, we examined a wide range of cognitive function in order to differentiate the effect of age and Aβ on cognition during aging. Using PET imaging with the radiotracer Pittsburgh compound B (PIB), we classified normal older subjects as High PIB-Old and Low PIB-Old and applied sequentia...

  20. The Structure of the AmyloidPeptide High-Affinity Copper II Binding Site in Alzheimer Disease

    International Nuclear Information System (INIS)

    Neurodegeneration observed in Alzheimer disease (AD) is believed to be related to the toxicity from reactive oxygen species (ROS) produced in the brain by the amyloid-β (Aβ) protein bound primarily to copper ions. The evidence for an oxidative stress role of Aβ-Cu redox chemistry is still incomplete. Details of the copper binding site in Aβ may be critical to the etiology of AD. Here we present the structure determined by combining x-ray absorption spectroscopy (XAS) and density functional theory analysis of Aβ peptides complexed with Cu2+ in solution under a range of buffer conditions. Phosphate-buffered saline buffer salt (NaCl) concentration does not affect the high-affinity copper binding mode but alters the second coordination sphere. The XAS spectra for truncated and full-length Aβ-Cu2+ peptides are similar. The novel distorted six-coordinated (3N3O) geometry around copper in the Aβ-Cu2+ complexes include three histidines: glutamic, or/and aspartic acid, and axial water. The structure of the high-affinity Cu2+ binding site is consistent with the hypothesis that the redox activity of the metal ion bound to Aβ can lead to the formation of dityrosine-linked dimers found in AD.

  1. Aβ42-oligomer Interacting Peptide (AIP) neutralizes toxic amyloid-β42 species and protects synaptic structure and function

    Science.gov (United States)

    Barucker, Christian; Bittner, Heiko J.; Chang, Philip K.-Y.; Cameron, Scott; Hancock, Mark A.; Liebsch, Filip; Hossain, Shireen; Harmeier, Anja; Shaw, Hunter; Charron, François M.; Gensler, Manuel; Dembny, Paul; Zhuang, Wei; Schmitz, Dietmar; Rabe, Jürgen P.; Rao, Yong; Lurz, Rudi; Hildebrand, Peter W.; McKinney, R. Anne; Multhaup, Gerhard

    2015-10-01

    The amyloid-β42 (Aβ42) peptide is believed to be the main culprit in the pathogenesis of Alzheimer disease (AD), impairing synaptic function and initiating neuronal degeneration. Soluble Aβ42 oligomers are highly toxic and contribute to progressive neuronal dysfunction, loss of synaptic spine density, and affect long-term potentiation (LTP). We have characterized a short, L-amino acid Aβ-oligomer Interacting Peptide (AIP) that targets a relatively well-defined population of low-n Aβ42 oligomers, rather than simply inhibiting the aggregation of Aβ monomers into oligomers. Our data show that AIP diminishes the loss of Aβ42-induced synaptic spine density and rescues LTP in organotypic hippocampal slice cultures. Notably, the AIP enantiomer (comprised of D-amino acids) attenuated the rough-eye phenotype in a transgenic Aβ42 fly model and significantly improved the function of photoreceptors of these flies in electroretinography tests. Overall, our results indicate that specifically “trapping” low-n oligomers provides a novel strategy for toxic Aβ42-oligomer recognition and removal.

  2. Inhibition of beta-amyloid-induced neurotoxicity by pinocembrin through Nrf2/HO-1 pathway in SH-SY5Y cells.

    Science.gov (United States)

    Wang, Yumin; Miao, Yingchun; Mir, Aamina Zia; Cheng, Long; Wang, Lina; Zhao, Linan; Cui, Qifu; Zhao, Weili; Wang, Hongquan

    2016-09-15

    Amyloid beta peptide (Aβ) can cause neurotoxicity in Alzheimer's disease (AD). It evokes a cascade of oxidative damage to neurons. Pinocembrin (PCB), the most abundant flavonoid in propolis, has been proven to have neuroprotective effects in vivo and in vitro. In the present study, we investigated the neuroprotective effects of PCB on Aβ25-35-induced neurotoxicity. Exposure of SH-SY5Y cells to 25μM Aβ25-35 for 24h caused viability loss, apoptotic increase and reactive oxygen species (ROS) increase, pre-treatment with PCB for 4h significantly reduced the viability loss, apoptotic rate and attenuated Aβ-mediated ROS production. PCB strikingly inhibited Aβ25-35-induced mitochondrial dysfunctions, including lowered membrane potential, decreased Bcl-2/Bax ratio. In addition, PCB suppressed the release of cytochrome c and the cleavage of caspase-3. PCB treatment also resulted in an increase in Nrf2 protein levels and subsequent induction of heme oxygenase-1(HO-1) expression in SH-SY5Y cells. RNA interference-mediated knockdown of Nrf2 expression suppressed the PCB-induced HO-1 expression. Notably, we found that the HO-1 inhibitor zinc protoporphyrin IX (ZnPP) markedly diminished the neuroprotective effect of PCB against Aβ-mediated neurotoxicity. Taken together, these results indicated that PCB protects SH-SY5Y cells from Aβ25-35-induced neurotoxicity through activation of Nrf2/HO-1 pathways. Thus, activation of Nrf2/HO-1 pathways and inhibition of mitochondria-dependent apoptosis together may protect cells from Aβ25-35-induceded neurotoxicity. PMID:27538638

  3. Progress in the development of therapeutic antibodies targeting prion proteins and β-amyloid peptides

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Prion diseases and Alzheimer’s disease (AD) are characterized by protein misfolding, and can lead to dementia. However, prion diseases are infectious and transmissible, while AD is not. The similarities and differences between these diseases have led researchers to perform comparative studies. In the last 2 decades, progress has been made in immunotherapy using anti-prion protein and anti-β-amyloid antibodies. In this study, we review new ideas and strategies for therapeutic antibodies targeting prion diseases and AD through conformation dependence.

  4. Independent and Interactive Influences of the APOE Genotype and Beta-Amyloid Burden on Cognitive Function in Mild Cognitive Impairment.

    Science.gov (United States)

    Seo, Eun Hyun; Kim, Sang Hoon; Park, Sang Hag; Kang, Seong-Ho; Choo, Il Han

    2016-02-01

    This study aimed to investigate the independent and interactive influences of apolipoprotein E (APOE) ε4 and beta-amyloid (Aβ) on multiple cognitive domains in a large group of cognitively normal (CN) individuals and patients with mild cognitive impairment (MCI) and Alzheimer's disease (AD). Participants were included if clinical and cognitive assessments, amyloid imaging, and APOE genotype were all available from the Alzheimer's Disease Neuroimaging Initiative database (CN = 324, MCI = 502, AD = 182). Individuals with one or two copies of ε4 were designated as APOE ε4 carriers (ε4+); individuals with no ε4 were designated as APOE ε4 non-carriers (ε4-). Based on mean florbetapir standard uptake value ratios, participants were classified as Aβ burden-positive (Aβ+) or Aβ burden-negative (Aβ-). In MCI, APOE ε4 effects were predominantly observed on frontal executive function, with ε4+ participants exhibiting poorer performances; Aβ positivity had no influence on this effect. Aβ effects were observed on global cognition, memory, and visuospatial ability, with Aβ+ participants exhibiting poorer performances. Measures of frontal executive function were not influenced by Aβ. Interactive effects of APOE ε4+ and Aβ were observed on global cognition and verbal recognition memory. Aβ, not APOE ε4+, influenced clinical severity and functional status. The influences of APOE ε4+ and Aβ on cognitive function were minimal in CN and AD. In conclusion, we provide further evidence of both independent and interactive influences of APOE ε4+ and Aβ on cognitive function in MCI, with APOE ε4+ and Aβ showing dissociable effects on executive and non-executive functions, respectively. PMID:26839485

  5. Indoleamine-2,3-dioxygenase mediates neurobehavioral alterations induced by an intracerebroventricular injection of amyloid-β1-42 peptide in mice.

    Science.gov (United States)

    Souza, Leandro Cattelan; Jesse, Cristiano R; Antunes, Michelle S; Ruff, Jossana Rodrigues; de Oliveira Espinosa, Dieniffer; Gomes, Nathalie Savedra; Donato, Franciele; Giacomeli, Renata; Boeira, Silvana Peterini

    2016-08-01

    Alzheimer's disease (AD) is a neurodegenerative disorder that is characterized by a progressive cognitive decline along with various neuropsychiatric symptoms, including depression and anxiety. Increasing evidence has been proposed the activation of the tryptophan-degrading indoleamine-2,3-dyoxigenase (IDO), the rate-limiting enzyme of kynurerine pathway (KP), as a pathogenic factor of amyloid-beta (Aβ)-related inflammation in AD. In the current study, the effects of an intracerebroventricular (i.c.v.) injection of Aβ1-42 peptide (400pmol/mice; 3μl/site) on the regulation of KP biomarkers (IDO activity, tryptophan and kynurerine levels) and the impact of Aβ1-42 on neurotrophic factors levels were investigated as potential mechanisms linking neuroinflammation to cognitive/emotional disturbances in mice. Our results demonstrated that Aβ1-42 induced memory impairment in the object recognition test. Aβ1-42 also induced emotional alterations, such as depressive and anxiety-like behaviors, as evaluated in the tail suspension and elevated-plus maze tests, respectively. We observed an increase in levels of proinflammatory cytokines in the Aβ1-42-treated mice, which led to an increase in IDO activity in the prefrontal cortex (PFC) and the hippocampus (HC). The IDO activation subsequently increased kynurerine production and the kynurenine/tryptophan ratio and decreased the levels of neurotrophic factors in the PFC and HC, which contributed to Aβ-associated behavioral disturbances. The inhibition of IDO activation by IDO inhibitor 1-methyltryptophan (1-MT), prevented the development of behavioral and neurochemical alterations. These data demonstrate that brain IDO activation plays a key role in mediating the memory and emotional disturbances in an experimental model based on Aβ-induced neuroinflammation. PMID:26965653

  6. Amyloid β-peptide directly induces spontaneous calcium transients, delayed intercellular calcium waves and gliosis in rat cortical astrocytes

    Directory of Open Access Journals (Sweden)

    Marius Buibas

    2010-01-01

    Full Text Available The contribution of astrocytes to the pathophysiology of AD (Alzheimer's disease and the molecular and signalling mechanisms that potentially underlie them are still very poorly understood. However, there is mounting evidence that calcium dysregulation in astrocytes may be playing a key role. Intercellular calcium waves in astrocyte networks in vitro can be mechanically induced after Aβ (amyloid β-peptide treatment, and spontaneously forming intercellular calcium waves have recently been shown in vivo in an APP (amyloid precursor protein/PS1 (presenilin 1 Alzheimer's transgenic mouse model. However, spontaneous intercellular calcium transients and waves have not been observed in vitro in isolated astrocyte cultures in response to direct Aβ stimulation in the absence of potentially confounding signalling from other cell types. Here, we show that Aβ alone at relatively low concentrations is directly able to induce intracellular calcium transients and spontaneous intercellular calcium waves in isolated astrocytes in purified cultures, raising the possibility of a potential direct effect of Aβ exposure on astrocytes in vivo in the Alzheimer's brain. Waves did not occur immediately after Aβ treatment, but were delayed by many minutes before spontaneously forming, suggesting that intracellular signalling mechanisms required sufficient time to activate before intercellular effects at the network level become evident. Furthermore, the dynamics of intercellular calcium waves were heterogeneous, with distinct radial or longitudinal propagation orientations. Lastly, we also show that changes in the expression levels of the intermediate filament proteins GFAP (glial fibrillary acidic protein and S100B are affected by Aβ-induced calcium changes differently, with GFAP being more dependent on calcium levels than S100B.

  7. Cholinergic Neurons - Keeping Check on Amyloid beta in the Cerebral Cortex

    Directory of Open Access Journals (Sweden)

    Saak V. Ovsepian

    2013-12-01

    Full Text Available The physiological relevance of the uptake of ligands with no apparent trophic functions via the p75 neurotrophin receptor (p75NTR remains unclear. Herein, we propose a homeostatic role for this in clearance of amyloid β (Aβ in the brain. We hypothesize that uptake of Aβ in conjunction with p75NTR followed by its degradation in lysosomes endows cholinergic basalo-cortical projections enriched in this receptor a facility for maintaining physiological levels of Aβ in target areas. Thus, in addition to the diffuse modulator influence and channeling of extra-thalamic signals, cholinergic innervations could supply the cerebral cortex with an elaborate system for Aβ drainage. Interpreting the emerging relationship of new molecular data with established role of cholinergic modulator system in regulating cortical network dynamics should provide new insights into the brain physiology and mechanisms of neuro-degenerative diseases.

  8. αB-Crystallin inhibits the cell toxicity associated with amyloid fibril formation by κ-casein and the amyloidpeptide

    OpenAIRE

    Dehle, Francis C.; Ecroyd, Heath; Musgrave, Ian F.; Carver, John A.

    2010-01-01

    Amyloid fibril formation is associated with diseases such as Alzheimer’s, Parkinson’s, and prion diseases. Inhibition of amyloid fibril formation by molecular chaperone proteins, such as the small heat-shock protein αB-crystallin, may play a protective role in preventing the toxicity associated with this form of protein misfolding. Reduced and carboxymethylated κ-casein (RCMκ-CN), a protein derived from milk, readily and reproducibly forms fibrils at physiological temperature and pH. We inves...

  9. Sphingolipid metabolism correlates with cerebrospinal fluid Beta amyloid levels in Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Alfred N Fonteh

    Full Text Available Sphingolipids are important in many brain functions but their role in Alzheimer's disease (AD is not completely defined. A major limit is availability of fresh brain tissue with defined AD pathology. The discovery that cerebrospinal fluid (CSF contains abundant nanoparticles that include synaptic vesicles and large dense core vesicles offer an accessible sample to study these organelles, while the supernatant fluid allows study of brain interstitial metabolism. Our objective was to characterize sphingolipids in nanoparticles representative of membrane vesicle metabolism, and in supernatant fluid representative of interstitial metabolism from study participants with varying levels of cognitive dysfunction. We recently described the recruitment, diagnosis, and CSF collection from cognitively normal or impaired study participants. Using liquid chromatography tandem mass spectrometry, we report that cognitively normal participants had measureable levels of sphingomyelin, ceramide, and dihydroceramide species, but that their distribution differed between nanoparticles and supernatant fluid, and further differed in those with cognitive impairment. In CSF from AD compared with cognitively normal participants: a total sphingomyelin levels were lower in nanoparticles and supernatant fluid; b levels of ceramide species were lower in nanoparticles and higher in supernatant fluid; c three sphingomyelin species were reduced in the nanoparticle fraction. Moreover, three sphingomyelin species in the nanoparticle fraction were lower in mild cognitive impairment compared with cognitively normal participants. The activity of acid, but not neutral sphingomyelinase was significantly reduced in the CSF from AD participants. The reduction in acid sphingomylinase in CSF from AD participants was independent of depression and psychotropic medications. Acid sphingomyelinase activity positively correlated with amyloid β42 concentration in CSF from cognitively normal but

  10. Synergistic effects of high fat feeding and apolipoprotein E deletion on enterocytic amyloid-beta abundance

    Directory of Open Access Journals (Sweden)

    Dhaliwal Satvinder S

    2008-04-01

    Full Text Available Abstract Background Amyloid-β (Aβ, a key protein found in amyloid plaques of subjects with Alzheimer's disease is expressed in the absorptive epithelial cells of the small intestine. Ingestion of saturated fat significantly enhances enterocytic Aβ abundance whereas fasting abolishes expression. Apolipoprotein (apo E has been shown to directly modulate Aβ biogenesis in liver and neuronal cells but it's effect in enterocytes is not known. In addition, apo E modulates villi length, which may indirectly modulate Aβ as a consequence of differences in lipid absorption. This study compared Aβ abundance and villi length in wild-type (WT and apo E knockout (KO mice maintained on either a low-fat or high-fat diet. Wild-type C57BL/6J and apo E KO mice were randomised for six-months to a diet containing either 4% (w/w unsaturated fats, or chow comprising 16% saturated fats and 1% cholesterol. Quantitative immunohistochemistry was used to assess Aβ abundance in small intestinal enterocytes. Apo E KO mice given the low-fat diet had similar enterocytic Aβ abundance compared to WT controls. Results The saturated fat diet substantially increased enterocytic Aβ in WT and in apo E KO mice, however the effect was greater in the latter. Villi height was significantly greater in apo E KO mice than for WT controls when given the low-fat diet. However, WT mice had comparable villi length to apo E KO when fed the saturated fat and cholesterol enriched diet. There was no effect of the high-fat diet on villi length in apo E KO mice. Conclusion The findings of this study are consistent with the notion that lipid substrate availability modulates enterocytic Aβ. Apo E may influence enterocytic lipid availability by modulating absorptive capacity.

  11. Chronic treatment with amyloid beta(1-42) inhibits non-cholinergic high-affinity choline transport in NG108-15 cells through protein kinase C signaling

    Czech Academy of Sciences Publication Activity Database

    Nováková, Jana; Mikasová, Lenka; Machová, Eva; Lisá, Věra; Doležal, Vladimír

    2005-01-01

    Roč. 1062, č. 1-2 (2005), s. 101-110. ISSN 0006-8993 R&D Projects: GA AV ČR(CZ) IAA5011206; GA MŠk(CZ) LC554 Grant ostatní: Lipidiet(XE) QLK1-CT-2002-00172 Institutional research plan: CEZ:AV0Z50110509 Keywords : choline transporter * beta-amyloid * protein kinase C Subject RIV: ED - Physiology Impact factor: 2.296, year: 2005

  12. A semi-automated motion-tracking analysis of locomotion speed in the C. elegans transgenics overexpressing beta-amyloid in neurons

    OpenAIRE

    Machino, Kevin; Link, Christopher D.; Wang, Susan; Murakami, Hana; Murakami, Shin

    2014-01-01

    Multi-Worm Tracker (MWT) is a real-time computer vision system that can simultaneously quantify motional patterns of multiple worms. MWT provides several behavioral parameters, including analysis of accurate real-time locomotion speed in the nematode, Caenorhabditis elegans. Here, we determined locomotion speed of the Alzheimer's disease (AD) transgenic strain that over-expresses human beta-amyloid1-42 (Aβ) in the neurons. The MWT analysis showed that the AD strain logged a slower average spe...

  13. Near-infrared fluorescence molecular imaging of amyloid beta species and monitoring therapy in animal models of Alzheimer’s disease

    OpenAIRE

    Zhang, Xueli; Tian, Yanli; Zhang, Can; Tian, Xiaoyu; Ross, Alana W.; Moir, Robert D.; Sun, Hongbin; Tanzi, Rudolph E.; Moore, Anna; Ran, Chongzhao

    2015-01-01

    Drug development for Alzheimer’s disease (AD) has been largely unsuccessful to date. Although numerous agents are reportedly effective in vitro, only an inadequate number of them have been tested in vivo, partially because of the lack of reliable and cost-efficient imaging methods to monitor their in vivo therapeutic effectiveness. Several amyloid beta (Aβ)-specific PET tracers have been used for clinical studies. However, their application for monitoring drug treatment in small animals is li...

  14. Neurogenic Responses to Amyloid-Beta Plaques in the Brain of Alzheimer's Disease-Like Transgenic (pPDGF-APPSw,Ind) Mice

    OpenAIRE

    Gan, Li; Qiao, Shuhong; Lan, Xun; Chi, Liying; Luo, Chun; Lien, Lindsey; Liu, Qing Yan; Liu, Rugao

    2007-01-01

    Formation and accumulation of amyloid-beta (Aβ) plaques are associated with declined memory and other neurocognitive function in Alzheimer's Disease (AD) patients. However, the effects of Aβ plaques on neural progenitor cells (NPCs) and neurogenesis from NPCs remain largely unknown. The existing data on neurogenesis in AD patients and AD-like animal models remain controversial. For this reason, we utilized the nestin second-intron enhancer controlled LacZ (pNes-LacZ) reporter transgenic mice ...

  15. BACE1 activity impairs neuronal glucose oxidation: rescue by beta-hydroxybutyrate and lipoic acid

    OpenAIRE

    Findlay, John A.; Hamilton, David L.; Ashford, Michael L J

    2015-01-01

    Glucose hypometabolism and impaired mitochondrial function in neurons have been suggested to play early and perhaps causative roles in Alzheimer's disease (AD) pathogenesis. Activity of the aspartic acid protease, beta-site amyloid precursor protein (APP) cleaving enzyme 1 (BACE1), responsible for beta amyloid peptide generation, has recently been demonstrated to modify glucose metabolism. We therefore examined, using a human neuroblastoma (SH-SY5Y) cell line, whether increased BACE1 activity...

  16. Anti-acetylcholinesterase and Antioxidant Activities of Inhaled Juniper Oil on Amyloid Beta (1-42)-Induced Oxidative Stress in the Rat Hippocampus.

    Science.gov (United States)

    Cioanca, Oana; Hancianu, Monica; Mihasan, Marius; Hritcu, Lucian

    2015-05-01

    Juniper volatile oil is extracted from Juniperus communis L., of the Cupressaceae family, also known as common juniper. Also, in aromatherapy the juniper volatile oil is used against anxiety, nervous tension and stress-related conditions. In the present study, we identified the effects of the juniper volatile oil on amyloid beta (1-42)-induced oxidative stress in the rat hippocampus. Rats received a single intracerebroventricular injection of amyloid beta (1-42) (400 pmol/rat) and then were exposed to juniper volatile oil (200 μl, either 1 or 3 %) for controlled 60 min period, daily, for 21 continuous days. Also, the antioxidant activity in the hippocampus was assessed using superoxide dismutase, glutathione peroxidase and catalase specific activities, the total content of the reduced glutathione, protein carbonyl and malondialdehyde levels. Additionally, the acetylcholinesterase activity in the hippocampus was assessed. The amyloid beta (1-42)-treated rats exhibited the following: increase of the acetylcholinesterase, superoxide dismutase and catalase specific activities, decrease of glutathione peroxidase specific activity and the total content of the reduced glutathione along with an elevation of malondialdehyde and protein carbonyl levels. Inhalation of the juniper volatile oil significantly decreases the acetylcholinesterase activity and exhibited antioxidant potential. These findings suggest that the juniper volatile oil may be a potential candidate for the development of therapeutic agents to manage oxidative stress associated with Alzheimer's disease through decreasing the activity of acetylcholinesterase and anti-oxidative mechanism. PMID:25743585

  17. Recent progress in the study of intracellular toxicity of amyloid β peptide in Alzheimer's disease

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yan; YU Longchuan

    2007-01-01

    Amyloid β (Aβ) deposition is one of the major pathological markers of Alzheimer's disease (AD). Extracellular Aβ toxicity has been studied for a long time in AD research field. However, controversial data show that extracellular Aβ load does not correlate with the dementia levels of AD patients and extracellular Aβ only induces significant cell death at non-physiological high concentrations.With the evolvement of Aβ hypothesis, considerable attention has been devoted to the study of intracellular Aβ toxicity recently. Intracellular Aβ induces dramatic cell loss in AD transgenic models and in human primary neurons (at pM concentrations) through p53, Bax and caspase-6 pathways. Here, we review the generation, toxicity and possible pathways of intracellular Aβ toxicity, and discuss the implication and current knowledge of intracellular Aβ in neuronal cell loss in neurodegenerative diseases.

  18. The aggregation kinetics of Alzheimer’s β-amyloid peptide is controlled by stochastic nucleation

    OpenAIRE

    Hortschansky, Peter; Schroeckh, Volker; Christopeit, Tony; Zandomeneghi, Giorgia; Fändrich, Marcus

    2005-01-01

    We report here a recombinant expression system that allows production of large quantities of Alzheimer’s Aβ(1–40) peptide. The material is competent to dissolve in water solutions with “random-coil properties,” although its conformation and factual oligomerization state are determined by the physico-chemical solution conditions. When dissolved in 50 mM sodium phosphate buffer (pH 7.4) at 37°C, the peptide is able to undergo a nucleated polymerization reaction. The aggregation profile is chara...

  19. Hypocretin and brain β-amyloid peptide interactions in cognitive disorders and narcolepsy

    Directory of Open Access Journals (Sweden)

    Yves A Dauvilliers

    2014-06-01

    Full Text Available Objective: To examine relationships between cerebrospinal fluid (CSF Alzheimer’ disease (AD biomarkers and hypocretin-1 levels in patients with cognitive abnormalities and hypocretin-deficient narcolepsy-cataplexy (NC, estimate diagnostic accuracy, and determine correlations with sleep disturbances. Background: Sleep disturbances are frequent in AD. Interactions between brain β-amyloid (Aβ aggregation and a wake-related neurotransmitter hypocretin have been reported in a mouse model of AD. Methods: Ninety-one cognitive patients (37 AD, 16 mild cognitive impairment – MCI that converts to AD, 38 other dementias and 15 elderly patients with NC were recruited. Patients were diagnosed blind to CSF results. CSF A42, total tau, ptau181, and hypocretin-1 were measured. Sleep disturbances were assessed with questionnaires in 32 cognitive patients. Results: Lower CSF Aβ42 but higher tau and P-tau levels were found in AD and MCI compared to other dementias. CSF hypocretin-1 levels were higher in patients with MCI due to AD compared to other dementias, with a similar tendency for patients with advanced AD. CSF hypocretin-1 was significantly and independently associated with AD/MCI due to AD, with an OR of 2.70 after full adjustment, exceeding that for Aβ42. Aβ42 correlated positively with hypocretin-1 levels in advanced stage AD. No association was found between sleep disturbances and CSF biomarkers. No patients with NC achieved pathological cutoffs for Aβ42, with respectively one and four patients with NC above tau and P-tau cutoffs and no correlations between hypocretin-1 and other biomarkers. Conclusions: Our results suggest a pathophysiological relationship between Aβ42 and hypocretin-1 in the AD process, with higher CSF hypocretin-1 levels in early disease stages. Further longitudinal studies are needed to validate these biomarker interactions and to determine the cause-effect relationship and the role of wake/sleep behavior in amyloid

  20. Inhibition of tumor necrosis factor-alpha by sodium ferulate in protecting neurons from beta-amyloid induced damage

    Institute of Scientific and Technical Information of China (English)

    Suyan Yao; Deyu Zheng; Zhuo Liu; Ying Jin

    2006-01-01

    BACKGROUND: Sodium ferulate (SF) has an effect of anti-inflammation; however, whether it can inhibit beta-amyloid (Aβ) induced damage or not should be further studied.OBJECTIVE: To investigate the effects of SF on neurotoxicity mediated by Aβ-induced macrophage activation via inhibiting tumor necrosis factor-α (TNF-α) in vitro.DESTGN: A contrast experiment based on cells.SETTrNG: Departments of Pathophysiology, Pharmacology and Anatomy, Liaoning Medical College.MATERTALS: A total of 36 Kunming mice aged 8-10 weeks and some SD rats aged 2-3 days of both genders were selected in this study. Main reagents were detailed as follows: Aβ peptide (Sigma Company); SF (purity >99%, Suzhou Changtong Chemical Co., Ltd.); lactate dehydrogenase (LDH) assay kit (Bangding Biological Engineering Co., Beijing, China); microtubule-associated protein 2 (MAP-2) monoclonal antibodies and TNF-αmonoclonal antibodies (Boster Biological Engineering Co., Wuhan, China).METHODS: The experiment was carried out in Laboratories of Pharmacology and Anatomy, Liaoning Medical College from May to December 2004. Cerebellum was obtained from rats under sterile condition to culture neurons and macrophages taken from mice abdominal cavity. Later, two parallel experiments were performed as follows: ① Macrophages culture groups: In normal control group, macrophages were cultured in DMEM after being seeded. In Aβ group, neurotoxic form of Aβ was added into DMEM media with final concentration of 10 μmol/L after macrophages were seeded for 24 hours. In Aβ+SF group, ten minutes after Aβ treatment, for 10, 100, 500 μmol/L and 1 mmol/L of SF were added to the media of the macrophages culture. ②Macrophages-neurons co-cultured groups: Control macrophages-neurons were co-cultured. Aβ group:Neurotoxic form of Aβ was added into the media with concentration of 10 iμmol/L after macrophages were seeded in the neurons cultured wells for 24 hours. Aβ±SF group: Ten minutes after Aβ treatment, 10

  1. Designing biomaterials exploiting beta-sheet forming peptides self-assembly

    Science.gov (United States)

    Saiani, Alberto

    2013-03-01

    The use of non-covalent self-assembly to construct materials has become a prominent strategy in material science offering practical routes for the construction of increasingly functional materials for a variety of applications ranging from electronic to biotechnology. A variety of molecular building blocks can be used for this purpose, one such block that has attracted considerable attention are de-novo designed peptides. The library of 20 natural amino acids offers the ability to play with the intrinsic properties of the peptide such as structure, hydrophobicity, charge and functionality allowing the design of materials with a wide range of properties. The beta-sheet motif is of particular interest as short peptides can be designed to form beta-sheet rich fibres that entangle and consequently form hydrogels. These hydrogels can be further functionalised using specific biological signals or drugs by synthesising functionalised peptides that are incorporated into the hydrogel network during the self-assembling process. This functionalisation approach is very attractive has it does not require any chemistry avoiding therefore the use of additional potentially toxic chemicals. It also offers the possibility to introduce multiple functionalities in a straightforward fashion. The hydrogels can also be made responsive through the use of enzymatic catalysis and/or conjugation with responsive polymers. In this presentation we will discuss the design opportunities offered by these peptides to create new functional biomaterials.

  2. Control of Alzheimer's amyloid beta toxicity by the high molecular weight immunophilin FKBP52 and copper homeostasis in Drosophila.

    Directory of Open Access Journals (Sweden)

    Reiko Sanokawa-Akakura

    Full Text Available FK506 binding proteins (FKBPs, also called immunophilins, are prolyl-isomerases (PPIases that participate in a wide variety of cellular functions including hormone signaling and protein folding. Recent studies indicate that proteins that contain PPIase activity can also alter the processing of Alzheimer's Amyloid Precursor Protein (APP. Originally identified in hematopoietic cells, FKBP52 is much more abundantly expressed in neurons, including the hippocampus, frontal cortex, and basal ganglia. Given the fact that the high molecular weight immunophilin FKBP52 is highly expressed in CNS regions susceptible to Alzheimer's, we investigated its role in Abeta toxicity. Towards this goal, we generated Abeta transgenic Drosophila that harbor gain of function or loss of function mutations of FKBP52. FKBP52 overexpression reduced the toxicity of Abeta and increased lifespan in Abeta flies, whereas loss of function of FKBP52 exacerbated these Abeta phenotypes. Interestingly, the Abeta pathology was enhanced by mutations in the copper transporters Atox1, which interacts with FKBP52, and Ctr1A and was suppressed in FKBP52 mutant flies raised on a copper chelator diet. Using mammalian cultures, we show that FKBP52 (-/- cells have increased intracellular copper and higher levels of Abeta. This effect is reversed by reconstitution of FKBP52. Finally, we also found that FKBP52 formed stable complexes with APP through its FK506 interacting domain. Taken together, these studies identify a novel role for FKBP52 in modulating toxicity of Abeta peptides.

  3. Glutamine acts as a neuroprotectant against DNA damage, beta-amyloid and H2O2-induced stress.

    Directory of Open Access Journals (Sweden)

    Jianmin Chen

    Full Text Available Glutamine is the most abundant free amino acid in the human blood stream and is 'conditionally essential' to cells. Its intracellular levels are regulated both by the uptake of extracellular glutamine via specific transport systems and by its intracellular synthesis by glutamine synthetase (GS. Adding to the regulatory complexity, when extracellular glutamine is reduced GS protein levels rise. Unfortunately, this excess GS can be maladaptive. GS overexpression is neurotoxic especially if the cells are in a low-glutamine medium. Similarly, in low glutamine, the levels of multiple stress response proteins are reduced rendering cells hypersensitive to H(2O(2, zinc salts and DNA damage. These altered responses may have particular relevance to neurodegenerative diseases of aging. GS activity and glutamine levels are lower in the Alzheimer's disease (AD brain, and a fraction of AD hippocampal neurons have dramatically increased GS levels compared with control subjects. We validated the importance of these observations by showing that raising glutamine levels in the medium protects cultured neuronal cells against the amyloid peptide, Aβ. Further, a 10-day course of dietary glutamine supplementation reduced inflammation-induced neuronal cell cycle activation, tau phosphorylation and ATM-activation in two different mouse models of familial AD while raising the levels of two synaptic proteins, VAMP2 and synaptophysin. Together, our observations suggest that healthy neuronal cells require both intracellular and extracellular glutamine, and that the neuroprotective effects of glutamine supplementation may prove beneficial in the treatment of AD.

  4. The Effects of Endogenous Non-Peptide Molecule Isatin and Hydrogen Peroxide on Proteomic Profiling of Rat Brain Amyloid-β Binding Proteins: Relevance to Alzheimer’s Disease?

    Directory of Open Access Journals (Sweden)

    Alexei E. Medvedev

    2014-12-01

    Full Text Available The amyloidpeptide is considered as a key player in the development and progression of Alzheimer’s disease (AD. Although good evidence exists that amyloid-β accumulates inside cells, intracellular brain amyloid-binding proteins remain poorly characterized. Proteomic profiling of rat brain homogenates, performed in this study, resulted in identification of 89 individual intracellular amyloid-binding proteins, and approximately 25% of them were proteins that we had previously identified as specifically binding to isatin, an endogenous neuroprotector molecule. A significant proportion of the amyloid-binding proteins (more than 30% are differentially expressed or altered/oxidatively modified in AD patients. Incubation of brain homogenates with 70 µM hydrogen peroxide significantly influenced the profile of amyloid-β binding proteins and 0.1 mM isatin decreased the number of identified amyloid-β binding proteins both in control and hydrogen peroxide treated brain homogenates. The effects of hydrogen peroxide and isatin have been confirmed in optical biosensor experiments with purified glyceraldehyde-3-phosphate dehydrogenase, one of the known crucial amyloid-β binding proteins (also identified in this study. Data obtained suggest that isatin protects crucial intracellular protein targets against amyloid binding, and possibly favors intracellular degradation of this protein via preventing formation of amyloid-β oligomers described in the literature for some isatin derivatives.

  5. Amyloidpeptides and tau protein as biomarkers in cerebrospinal and interstitial fluid following traumatic brain injury: A review of experimental and clinical studies

    Directory of Open Access Journals (Sweden)

    Parmenion P. Tsitsopoulos

    2013-06-01

    Full Text Available Traumatic brain injury (TBI survivors frequently suffer from life-long deficits in cognitive functions and a reduced quality of life. Axonal injury, observed in most severe TBI patients, results in accumulation of amyloid precursor protein (APP. Post-injury enzymatic cleavage of APP can generate amyloid-β (Aβ peptides, a hallmark finding in Alzheimer’s disease (AD. At autopsy, brains of AD and a subset of TBI victims display some similarities including accumulation of Aβ peptides and neurofibrillary tangles of hyperphosphorylated tau proteins. Most epidemiological evidence suggests a link between TBI and AD, implying that TBI has neurodegenerative sequelae. Aβ peptides and tau may be used as biomarkers in interstitial fluid (ISF using cerebral microdialysis and/or cerebrospinal fluid (CSF following clinical TBI. In the present review, the available clinical and experimental literature on Aβ peptides and tau as potential biomarkers following TBI is comprehensively analyzed. Elevated CSF and ISF tau protein levels have been observed following severe TBI and suggested to correlate with clinical outcome. Although Aβ peptides are produced by normal neuronal metabolism, high levels of long and/or fibrillary Aβ peptides may be neurotoxic. Increased CSF and/or ISF Aβ levels post-injury may be related to neuronal activity and/or the presence of axonal injury. The heterogeneity of animal models, clinical cohorts, analytical techniques and the complexity of TBI in available studies make the clinical value of tau and Aβ as biomarkers uncertain at present. Additionally, the link between early post-injury changes in tau and Aβ peptides and the future risk of developing AD remains unclear. Future studies using e.g. rapid biomarker sampling combined with enhanced analytical techniques and/or novel pharmacological tools could provide additional information on the importance of Aβ peptides and tau protein in both the acute pathophysiology and long

  6. Increased tauopathy drives microglia-mediated clearance of beta-amyloid.

    Science.gov (United States)

    Chen, Wesley; Abud, Edsel A; Yeung, Stephen T; Lakatos, Anita; Nassi, Trevor; Wang, Jane; Blum, David; Buée, Luc; Poon, Wayne W; Blurton-Jones, Mathew

    2016-01-01

    Alzheimer disease is characterized by the accumulation of β-amyloid (Aβ) plaques and tau-laden neurofibrillary tangles. Emerging studies suggest that in neurodegenerative diseases, aggregation of one protein species can promote other proteinopathies and that inflammation plays an important role in this process. To study the interplay between Aβ deposition, tau pathology, and microgliosis, we established a new AD transgenic mouse model by crossing 5xfAD mice with Thy-Tau22 transgenic mice. The resulting 'T5x' mice exhibit a greater than three-fold increase in misfolded and hyperphosphorylated tau and further substantiates the hypothesis that Aβ accelerates tau pathology. Surprisingly, T5x mice exhibit a 40-50 % reduction in Aβ plaque load and insoluble Aβ species when compared with aged-matched 5xfAD littermates. T5x mice exhibit significant changes in cytokine production, an almost doubling of microglial number, and a dramatic shift in microglia activation state. Furthermore, T5x microglia exhibit increased phagocytic capacity that enhances the clearance of insoluble Aβ and decreasing plaque load. Therefore, our results suggest that strategies to increase the phagocytic ability of microglia can be employed to reduce Aβ and that tau-induced changes in microglial activation state can promote the clearance of Aβ. PMID:27339073

  7. The Aqueous Extract of Rhizome of Gastrodia elata Protected Drosophila and PC12 Cells against Beta-Amyloid-Induced Neurotoxicity

    Directory of Open Access Journals (Sweden)

    Chun-Fai Ng

    2013-01-01

    Full Text Available This study aims to investigate the neuroprotective effect of the rhizome of Gastrodia elata (GE aqueous extract on beta-amyloid(Aβ-induced toxicity in vivo and in vitro. Transgenic Drosophila mutants with Aβ-induced neurodegeneration in pan-neuron and ommatidia were used to determine the efficacy of GE. The antiapoptotic and antioxidative mechanisms of GE were also studied in Aβ-treated pheochromocytoma (PC12 cells. In vivo studies demonstrated that GE (5 mg/g Drosophila media-treated Drosophila possessed a longer lifespan, better locomotor function, and less-degenerated ommatidia when compared with the Aβ-expressing control (all P<0.05. In vitro studies illustrated that GE increased the cell viability of Aβ-treated PC12 cells in dose-dependent manner, probably through attenuation of Aβ-induced oxidative and apoptotic stress. GE also significantly upregulated the enzymatic activities of catalase, superoxide dismutase, and glutathione peroxidase, leading to the decrease of reactive oxidation species production and apoptotic marker caspase-3 activity. In conclusion, our current data presented the first evidence that the aqueous extract of GE was capable of reducing the Aβ-induced neurodegeneration in Drosophila, possibly through inhibition of apoptosis and reduction of oxidative stress. GE aqueous extract could be developed as a promising herbal agent for neuroprotection and novel adjuvant therapies for Alzheimer’s disease.

  8. Icariin Prevents Amyloid Beta-Induced Apoptosis via the PI3K/Akt Pathway in PC-12 Cells

    Directory of Open Access Journals (Sweden)

    Dongdong Zhang

    2015-01-01

    Full Text Available Icariin is a prenylated flavonol glycoside derived from the Chinese herb Epimedium sagittatum that exerts a variety of pharmacological activities and shows promise in the treatment and prevention of Alzheimer’s disease. In this study, we investigated the neuroprotective effects of icariin against amyloid beta protein fragment 25–35 (Aβ25–35 induced neurotoxicity in cultured rat pheochromocytoma PC12 cells and explored potential underlying mechanisms. Our results showed that icariin dose-dependently increased cell viability and decreased Aβ25–35-induced apoptosis, as assessed by MTT assay and Annexin V/propidium iodide staining, respectively. Results of western blot analysis revealed that the selective phosphatidylinositol 3-kinase (PI3K inhibitor LY294002 suppressed icariin-induced Akt phosphorylation, suggesting that the protective effects of icariin are associated with activation of the PI3K/Akt signaling pathway. LY294002 also blocked the icariin-induced downregulation of proapoptotic factors Bax and caspase-3 and upregulation of antiapoptotic factor Bcl-2 in Aβ25–35-treated PC12 cells. These findings provide further evidence for the clinical efficacy of icariin in the treatment of Alzheimer’s disease.

  9. Mitochondria-targeted antioxidant mitotempo protects mitochondrial function against amyloid beta toxicity in primary cultured mouse neurons.

    Science.gov (United States)

    Hu, Hongtao; Li, Mo

    2016-09-01

    Mitochondrial defects including excess reactive oxygen species (ROS) production and compromised ATP generation are featured pathology in Alzheimer's disease (AD). Amyloid beta (Aβ)-mediated mitochondrial ROS overproduction disrupts intra-neuronal Redox balance, in turn exacerbating mitochondrial dysfunction leading to neuronal injury. Previous studies have found the beneficial effects of mitochondria-targeted antioxidants in preventing mitochondrial dysfunction and neuronal injury in AD animal and cell models, suggesting that mitochondrial ROS scavengers hold promise for the treatment of this neurological disorder. In this study, we have determined that mitotempo, a novel mitochondria-targeted antioxidant protects mitochondrial function from the toxicity of Aβ in primary cultured neurons. Our results showed that Aβ-promoted mitochondrial superoxide production and neuronal lipid oxidation were significantly suppressed by the application of mitotempo. Moreover, mitotempo also demonstrated protective effects on mitochondrial bioenergetics evidenced by preserved mitochondrial membrane potential, cytochrome c oxidase activity as well as ATP production. In addition, the Aβ-induced mitochondrial DNA (mtDNA) depletion and decreased expression levels of mtDNA replication-related DNA polymerase gamma (DNA pol γ) and Twinkle were substantially mitigated by mitotempo. Therefore, our study suggests that elimination of excess mitochondrial ROS rescues mitochondrial function in Aβ-insulted neruons; and mitotempo has the potential to be a promising therapeutic agent to protect mitochondrial and neuronal function in AD. PMID:27444386

  10. IMPY, a potential {beta}-amyloid imaging probe for detection of prion deposits in scrapie-infected mice

    Energy Technology Data Exchange (ETDEWEB)

    Song, P.-J. [INSERM, U619, F-37000 Tours (France); Universite Francois-Rabelais, F-37000 Tours (France); IFR135, F-37000 Tours (France); Bernard, Serge [IFR135, F-37000 Tours (France); INRA, UR1282, IASP, 37380 Nouzilly (France)], E-mail: bernard@tours.inra.fr; Sarradin, Pierre [INRA, UR1282, IASP, 37380 Nouzilly (France); Vergote, Jackie [INSERM, U619, F-37000 Tours (France); Universite Francois-Rabelais, F-37000 Tours (France); IFR135, F-37000 Tours (France); Barc, Celine [INRA, UR1282, IASP, 37380 Nouzilly (France); Chalon, Sylvie [INSERM, U619, F-37000 Tours (France); Universite Francois-Rabelais, F-37000 Tours (France); IFR135, F-37000 Tours (France); Kung, M.-P.; Kung, Hank F. [Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104 (United States); Department of Pharmacology, University of Pennsylvania, Philadelphia, PA 19104 (United States); Guilloteau, Denis [INSERM, U619, F-37000 Tours (France); Universite Francois-Rabelais, F-37000 Tours (France); IFR135, F-37000 Tours (France)

    2008-02-15

    Introduction: A potential single-photon emission computed tomography imaging agent for labeling of A{beta} plaques of Alzheimer's disease, IMPY (2-(4'-dimethylaminophenyl)-6-iodo-imidazo[1,2-a]pyridine), would be effective in detection of prion amyloid deposits in transmissible spongiform encephalopathies (TSEs). Methods: In vitro autoradiographic studies were carried out with [{sup 125}I]IMPY on brain sections from scrapie-infected mice and age-matched controls. Competition study was performed to evaluate the prion deposit binding specificity with nonradioactive IMPY. Results: Binding of [{sup 125}I]IMPY was observed in infected brain sections, while on age-matched control brain sections, there was no or very low labeling. Prion deposit binding was confirmed by histoblots with prion protein-specific monoclonal antibody 2D6. In the presence of nonradioactive IMPY, the binding of [{sup 125}I]IMPY was significantly inhibited in all regions studied. Conclusions: These findings indicate that IMPY can detect the prion deposits in vitro in scrapie-infected mice. Labeled with {sup 123}I, this ligand may be useful to quantitate prion deposit burdens in TSEs by in vivo imaging.

  11. A synthetic peptide with the putative iron binding motif of amyloid precursor protein (APP does not catalytically oxidize iron.

    Directory of Open Access Journals (Sweden)

    Kourosh Honarmand Ebrahimi

    Full Text Available The β-amyloid precursor protein (APP, which is a key player in Alzheimer's disease, was recently reported to possess an Fe(II binding site within its E2 domain which exhibits ferroxidase activity [Duce et al. 2010, Cell 142: 857]. The putative ligands of this site were compared to those in the ferroxidase site of ferritin. The activity was indirectly measured using transferrin, which scavenges the Fe(III product of the reaction. A 22-residue synthetic peptide, named FD1, with the putative ferroxidase site of APP, and the E2 domain of APP were each reported to exhibit 40% of the ferroxidase activity of APP and of ceruloplasmin. It was also claimed that the ferroxidase activity of APP is inhibited by Zn(II just as in ferritin. We measured the ferroxidase activity indirectly (i by the incorporation of the Fe(III product of the ferroxidase reaction into transferrin and directly (ii by monitoring consumption of the substrate molecular oxygen. The results with the FD1 peptide were compared to the established ferroxidase activities of human H-chain ferritin and of ceruloplasmin. For FD1 we observed no activity above the background of non-enzymatic Fe(II oxidation by molecular oxygen. Zn(II binds to transferrin and diminishes its Fe(III incorporation capacity and rate but it does not specifically bind to a putative ferroxidase site of FD1. Based on these results, and on comparison of the putative ligands of the ferroxidase site of APP with those of ferritin, we conclude that the previously reported results for ferroxidase activity of FD1 and - by implication - of APP should be re-evaluated.

  12. Non-fibrillar amyloidpeptide reduces NMDA-induced neurotoxicity, but not AMPA-induced neurotoxicity

    International Nuclear Information System (INIS)

    Amyloidpeptide (Aβ) is thought to be linked to the pathogenesis of Alzheimer's disease. Recent studies suggest that Aβ has important physiological roles in addition to its pathological roles. We recently demonstrated that Aβ42 protects hippocampal neurons from glutamate-induced neurotoxicity, but the relationship between Aβ42 assemblies and their neuroprotective effects remains largely unknown. In this study, we prepared non-fibrillar and fibrillar Aβ42 based on the results of the thioflavin T assay, Western blot analysis, and atomic force microscopy, and examined the effects of non-fibrillar and fibrillar Aβ42 on glutamate-induced neurotoxicity. Non-fibrillar Aβ42, but not fibrillar Aβ42, protected hippocampal neurons from glutamate-induced neurotoxicity. Furthermore, non-fibrillar Aβ42 decreased both neurotoxicity and increases in the intracellular Ca2+ concentration induced by N-methyl-D-aspartate (NMDA), but not by α-amino-3-hydrozy-5-methyl-4-isoxazole propionic acid (AMPA). Our results suggest that non-fibrillar Aβ42 protects hippocampal neurons from glutamate-induced neurotoxicity through regulation of the NMDA receptor.

  13. Metal-amyloidpeptide interactions: a preliminary investigation of molecular mechanisms for Alzheimer’s disease

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Although humans have spent exactly 100 years combating Alzheimer’s disease (AD), the molecular mechanisms of AD remain unclear. Owing to the rapid growth of the oldest age groups of the popula-tion and the continuous increase of the incidence of AD, it has become one of the crucial problems to modern sciences. It would be impossible to prevent or reverse AD at the root without elucidating its molecular mechanisms. From the point of view of metal-amyloidpeptide (Aβ) interactions, we review the molecular mechanisms of AD, mainly including Cu2+ and Zn2+ inducing the aggregation of Aβ, cata-lysing the production of active oxygen species from Aβ, as well as interacting with the ion-channel-like structures of Aβ. Moreover, the development of therapeutic drugs on the basis of metal-Aβ interactions is also briefly introduced. With the increasingly rapid progress of the molecular mechanisms of AD, we are now entering a new dawn that promises the delivery of revolutionary developments for the control of dementias.

  14. The AmyloidPeptide of Alzheimer’s Disease Binds CuI in a Linear Bis-His Coordination Environment: Insight into a Possible Neuroprotective Mechanism for the AmyloidPeptide

    Energy Technology Data Exchange (ETDEWEB)

    Shearer, J.; Szalai, V

    2008-01-01

    Oxidative stress has been suggested to contribute to neuronal apoptosis associated with Alzheimer's disease (AD). Copper may participate in oxidative stress through redox-cycling between its +2 and +1 oxidation states to generate reactive oxygen species (ROS). In vitro, copper binds to the amyloid-? peptide of AD, and in vivo, copper is associated with amyloid plaques characteristic of AD. As a result, the A?CuI complex may be a critical reactant involved in ROS associated with AD etiology. To characterize the A?CuI complex, we have pursued X-ray absorption (XAS) and electron paramagnetic resonance (EPR) spectroscopy of A?CuII and A?CuI (produced by ascorbate reduction of A?CuII). The A?CuII complex Cu K-edge XAS spectrum is indicative of a square-planar CuII center with mixed N/O ligation. Multiple scattering analysis of the extended X-ray absorption fine structure (EXAFS) data for A?CuII indicates that two of the ligands are imidazole groups of histidine ligands, indicating a (NIm)2(N/O)2 CuII ligation sphere for A?CuII. After reduction of the A?CuII complex with ascorbate, the edge region decreases in energy by 4 eV. The X-ray absorption near-edge spectrum region of A?CuI displays an intense pre-edge feature at 8984.1(2) eV. EXAFS data fitting yielded a two-coordinate geometry, with two imidazole ligands coordinated to CuI at 1.877(2) A in a linear geometry. Ascorbate reduction of A?CuII under inert atmosphere and subsequent air oxidation of A?CuI to regenerate A?CuII was monitored by low-temperature EPR spectroscopy. Slow reappearance of the A?CuII EPR signal indicates that O2 oxidation of the A?CuI complex is kinetically sluggish and A? damage is occurring following reoxidation of A?CuI by O2. Together, these results lead us to hypothesize that CuI is ligated by His13 and His14 in a linear coordination environment in ??, that A? may be playing a neuroprotective role, and that metal-mediated oxidative damage of A? occurs over multiple redox cycles.

  15. Alzheimer's disease and amyloid beta-peptide deposition in the brain: a matter of 'aging'?

    DEFF Research Database (Denmark)

    Moro, Maria Luisa; Collins, Matthew J; Cappellini, Enrico

    2010-01-01

    Biomolecules can experience aging processes that limit their long-term functionality in organisms. Typical markers of protein aging are spontaneous chemical modifications, such as AAR (amino acid racemization) and AAI (amino acid isomerization), mainly involving aspartate and asparagine residues...... changes associated with molecular aging also have significant long-term consequences for Abeta folding and turnover. New fast, reproducible and accurate methods for the screening of protein aging markers in biological samples may contribute to improve diagnostic and therapeutic approaches in AD....

  16. Huperzine A protects isolated rat brain mitochondria against beta-amyloid peptide.

    Science.gov (United States)

    Gao, Xin; Zheng, Chun Yan; Yang, Ling; Tang, Xi Can; Zhang, Hai Yan

    2009-06-01

    Our previous work in cells and animals showed that mitochondria are involved in the neuroprotective effect of huperzine A (HupA). In this study, the effects of HupA on isolated rat brain mitochondria were investigated. In addition to inhibiting the Abeta(25-35) (40 microM)-induced decrease in mitochondrial respiration, adenosine 5'-triphosphate (ATP) synthesis, enzyme activity, and transmembrane potential, HupA (0.01 or 0.1 microM) effectively prevented Abeta-induced mitochondrial swelling, reactive oxygen species increase, and cytochrome c release. More interestingly, administration of HupA to isolated mitochondria promoted the rate of ATP production and blocked mitochondrial swelling caused by normal osmosis. These results indicate that HupA protects mitochondria against Abeta at least in part by preserving membrane integrity and improving energy metabolism. These direct effects on mitochondria further extend the noncholinergic functions of HupA. PMID:19272446

  17. Complex of amyloid beta peptides with 24-hydroxycholesterol and its effect on hemicholinium-3 sensitive carriers

    Czech Academy of Sciences Publication Activity Database

    Krištofíková, Z.; Kopecký, V. Jr.; Hofbauerová, Kateřina; Hovorková, P.; Řípová, D.

    2008-01-01

    Roč. 33, č. 3 (2008), s. 412-421. ISSN 0364-3190 Grant ostatní: GA Mšk(CZ) MZOPCP2005 Institutional research plan: CEZ:AV0Z50200510 Keywords : aging * hippocampus * choline carriers Subject RIV: EE - Microbiology, Virology Impact factor: 2.260, year: 2008

  18. Calcium Channel Blockers, Progression to Dementia, and Effects on Amyloid Beta Peptide Production

    OpenAIRE

    Lovell, Mark A.; Erin Abner; Richard Kryscio; Liou Xu; Fister, Shuling X.; Lynn, Bert C.

    2015-01-01

    Previous epidemiologic studies suggest that antihypertensive drugs may be protective against cognitive decline. To determine if subjects enrolled in the University of Kentucky longitudinal aging study who used antihypertensive drugs showed diminished progression to dementia, we used a 3-parameter logistic regression model to compare the rate of progression to dementia for subjects who used any of the five common categories of antihypertensive drugs to those with similar demographic characteri...

  19. Conformational stability of fibrillar amyloid-beta oligomers via protofilament pair formation - a systematic computational study.

    Directory of Open Access Journals (Sweden)

    Anna Kahler

    Full Text Available Amyloid-[Formula: see text] (A[Formula: see text] oligomers play a crucial role in Alzheimer's disease due to their neurotoxic aggregation properties. Fibrillar A[Formula: see text] oligomerization can lead to protofilaments and protofilament pairs via oligomer elongation and oligomer association, respectively. Small fibrillar oligomers adopt the protofilament topology, whereas fibrils contain at least protofilament pairs. To date, the underlying growth mechanism from oligomers to the mature fibril still remains to be elucidated. Here, we performed all-atom molecular dynamics simulations in explicit solvent on single layer-like protofilaments and fibril-like protofilament pairs of different size ranging from the tetramer to the 48-mer. We found that the initial U-shaped topology per monomer is maintained over time in all oligomers. The observed deviations of protofilaments from the starting structure increase significantly with size due to the twisting of the in-register parallel [Formula: see text]-sheets. This twist causes long protofilaments to be unstable and leads to a breakage. Protofilament pairs, which are stabilized by a hydrophobic interface, exhibit more fibril-like properties such as the overall structure and the twist angle. Thus, they can act as stable conformational templates for further fibril growth. Key properties like the twist angle, shape complementarity, and energetics show a size-dependent behavior so that small oligomers favor the protofilament topology, whereas large oligomers favor the protofilament pair topology. The region for this conformational transition is at the size of approximately twelve A[Formula: see text] monomers. From that, we propose the following growth mechanism from A[Formula: see text] oligomers to fibrils: (1 elongation of short protofilaments; (2 breakage of large protofilaments; (3 formation of short protofilament pairs; and (4 elongation of protofilament pairs.

  20. The conjugation of amyloid beta protein on the gold colloidal nanoparticles' surfaces

    International Nuclear Information System (INIS)

    The conjugation of various sequences of amyloid β protein solution (Aβ); Aβ1-11, Aβ12-28, Aβ31-35, Aβ1-40, and Aβ1-42 with gold colloidal suspension of 20 nm size was examined. Absorption spectroscopy was utilized to identify changes in the optical properties of gold colloid for pHs, ranging from pH 2 to pH 10. Colour changes were seen for all tested proteins in this study at a higher pH than where bare gold colloid exhibits its colour change at pH = 3.09 ± 0.02. All tested Aβ sequences except for Aβ1-42 exhibited colour changes around pI values of Aβ1-40, about pH 5.2. The Aβ1-42 exhibited precipitants in all pH lower than pH 7 and showed the colour change around pH 3.96 ± 0.05. The colour change observed at a pH lower than 5 is attributed to the unfolded Aβ monomer units around the gold colloidal surface. Interestingly, only Aβ1-40-coated gold colloidal nanoparticles exhibited a reversible colour change as the pH was externally altered between pH 4 and 10. This reversibility is an important implication of the observation of a reversible step reported for the fibrillogenesis. It was interpreted that the reversible process takes place when hydrophilic Aβ possesses a three-dimensional network containing both β-sheet and α-helices

  1. Low background and high contrast PET imaging of amyloid-{beta} with [{sup 11}C]AZD2995 and [{sup 11}C]AZD2184 in Alzheimer's disease patients

    Energy Technology Data Exchange (ETDEWEB)

    Forsberg, Anton; Andersson, Jan; Varnaes, Katarina; Halldin, Christer [Karolinska Institutet, Centre for Psychiatry Research, Department of Clinical Neuroscience, Stockholm (Sweden); Jureus, Anders; Swahn, Britt-Marie; Sandell, Johan; Julin, Per; Svensson, Samuel [AstraZeneca Research and Development, Neuroscience Research and Therapy Area, Soedertaelje (Sweden); Cselenyi, Zsolt; Schou, Magnus; Johnstroem, Peter; Farde, Lars [Karolinska Institutet, Centre for Psychiatry Research, Department of Clinical Neuroscience, Stockholm (Sweden); Karolinska Hospital, AstraZeneca Translational Sciences Centre, PET CoE, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm (Sweden); Eriksdotter, Maria; Freund-Levi, Yvonne [Karolinska Institutet, Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Stockholm (Sweden); Karolinska University Hospital, Department of Geriatric Medicine, Stockholm (Sweden); Jeppsson, Fredrik [AstraZeneca Research and Development, Neuroscience Research and Therapy Area, Soedertaelje (Sweden); Karolinska Institutet, Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Stockholm (Sweden)

    2013-04-15

    The aim of this study was to evaluate AZD2995 side by side with AZD2184 as novel PET radioligands for imaging of amyloid-{beta} in Alzheimer's disease (AD). In vitro binding of tritium-labelled AZD2995 and AZD2184 was studied and compared with that of the established amyloid-{beta} PET radioligand PIB. Subsequently, a first-in-human in vivo PET study was performed using [{sup 11}C]AZD2995 and [{sup 11}C]AZD2184 in three healthy control subjects and seven AD patients. AZD2995, AZD2184 and PIB were found to share the same binding site to amyloid-{beta}. [{sup 3}H]AZD2995 had the highest signal-to-background ratio in brain tissue from patients with AD as well as in transgenic mice. However, [{sup 11}C]AZD2184 had superior imaging properties in PET, as shown by larger effect sizes comparing binding potential values in cortical regions of AD patients and healthy controls. Nevertheless, probably due to a lower amount of nonspecific binding, the group separation of the distribution volume ratio values of [{sup 11}C]AZD2995 was greater in areas with lower amyloid-{beta} load, e.g. the hippocampus. Both AZD2995 and AZD2184 detect amyloid-{beta} with high affinity and specificity and also display a lower degree of nonspecific binding than that reported for PIB. Overall [{sup 11}C]AZD2184 seems to be an amyloid-{beta} radioligand with higher uptake and better group separation when compared to [{sup 11}C]AZD2995. However, the very low nonspecific binding of [{sup 11}C]AZD2995 makes this radioligand potentially interesting as a tool to study minute levels of amyloid-{beta}. This sensitivity may be important in investigating, for example, early prodromal stages of AD or in the longitudinal study of a disease modifying therapy. (orig.)

  2. Aliphatic peptides show similar self-assembly to amyloid core sequences, challenging the importance of aromatic interactions in amyloidosis

    OpenAIRE

    Lakshmanan, Anupama; Cheong, Daniel W.; Accardo, Angelo; Di Fabrizio, Enzo; Riekel, Christian; Hauser, Charlotte A. E.

    2012-01-01

    The self-assembly of abnormally folded proteins into amyloid fibrils is a hallmark of many debilitating diseases, from Alzheimer’s and Parkinson diseases to prion-related disorders and diabetes type II. However, the fundamental mechanism of amyloid aggregation remains poorly understood. Core sequences of four to seven amino acids within natural amyloid proteins that form toxic fibrils have been used to study amyloidogenesis. We recently reported a class of systematically designed ultrasmall p...

  3. A neural cell adhesion molecule-derived peptide reduces neuropathological signs and cognitive impairment induced by Abeta25-35

    DEFF Research Database (Denmark)

    Klementiev, B; Novikova, T; Novitskaya, V;

    2007-01-01

    protein. Furthermore, quantitative immunohistochemistry demonstrated time-related statistically significant increases in amyloid immunoreactivity, tau phosphorylation, microglial activation, and astrocytosis, and stereological investigations demonstrated statistically significant increased neuronal cell...... intranasal and s.c. administration of the peptide. Furthermore, FGL-treatment was shown to inhibit the activity of GSK3beta, a kinase implicated in signaling regulating cell survival, tau phosphorylation and the processing of the amyloid precursor protein (APP). Thus, the peptide induced a statistically...

  4. Structure-based design of non-natural amino-acid inhibitors of amyloid fibril formation

    Energy Technology Data Exchange (ETDEWEB)

    Sievers, Stuart A.; Karanicolas, John; Chang, Howard W.; Zhao, Anni; Jiang, Lin; Zirafi, Onofrio; Stevens, Jason T.; Münch, Jan; Baker, David; Eisenberg, David (UCLA); (UWASH); (UL); (Kansas); (Ulm)

    2011-09-20

    Many globular and natively disordered proteins can convert into amyloid fibrils. These fibrils are associated with numerous pathologies as well as with normal cellular functions, and frequently form during protein denaturation. Inhibitors of pathological amyloid fibril formation could be useful in the development of therapeutics, provided that the inhibitors were specific enough to avoid interfering with normal processes. Here we show that computer-aided, structure-based design can yield highly specific peptide inhibitors of amyloid formation. Using known atomic structures of segments of amyloid fibrils as templates, we have designed and characterized an all-D-amino-acid inhibitor of the fibril formation of the tau protein associated with Alzheimer's disease, and a non-natural L-amino-acid inhibitor of an amyloid fibril that enhances sexual transmission of human immunodeficiency virus. Our results indicate that peptides from structure-based designs can disrupt the fibril formation of full-length proteins, including those, such as tau protein, that lack fully ordered native structures. Because the inhibiting peptides have been designed on structures of dual-{beta}-sheet 'steric zippers', the successful inhibition of amyloid fibril formation strengthens the hypothesis that amyloid spines contain steric zippers.

  5. Characterization of the conformational space of a triple-stranded beta-sheet forming peptide with molecular dynamics simulations

    NARCIS (Netherlands)

    Soto, P; Colombo, G

    2004-01-01

    Molecular dynamics (MD) simulations have been performed on a series of mutants of the 20 amino acid peptide Betanova in order to critically assess the ability of MD simulations to reproduce the folding and stability of small beta-sheet-forming peptides on currently accessible timescales. Simulations

  6. Use of synthetic peptides to locate novel integrin alpha2beta1-binding motifs in human collagen III.

    Science.gov (United States)

    Raynal, Nicolas; Hamaia, Samir W; Siljander, Pia R-M; Maddox, Ben; Peachey, Anthony R; Fernandez, Rafael; Foley, Loraine J; Slatter, David A; Jarvis, Gavin E; Farndale, Richard W

    2006-02-17

    A set of 57 synthetic peptides encompassing the entire triplehelical domain of human collagen III was used to locate binding sites for the collagen-binding integrin alpha(2)beta(1). The capacity of the peptides to support Mg(2+)-dependent binding of several integrin preparations was examined. Wild-type integrins (recombinant alpha(2) I-domain, alpha(2)beta(1) purified from platelet membranes, and recombinant soluble alpha(2)beta(1) expressed as an alpha(2)-Fos/beta(1)-Jun heterodimer) bound well to only three peptides, two containing GXX'GER motifs (GROGER and GMOGER, where O is hydroxyproline) and one containing two adjacent GXX'GEN motifs (GLKGEN and GLOGEN). Two mutant alpha(2) I-domains were tested: the inactive T221A mutant, which recognized no peptides, and the constitutively active E318W mutant, which bound a larger subset of peptides. Adhesion of activated human platelets to GER-containing peptides was greater than that of resting platelets, and HT1080 cells bound well to more of the peptides compared with platelets. Binding of cells and recombinant proteins was abolished by anti-alpha(2) monoclonal antibody 6F1 and by chelation of Mg(2+). We describe two novel high affinity integrin-binding motifs in human collagen III (GROGER and GLOGEN) and a third motif (GLKGEN) that displays intermediate activity. Each motif was verified using shorter synthetic peptides. PMID:16326707

  7. Binding, conformational transition and dimerization of amyloidpeptide on GM1-containing ternary membrane: insights from molecular dynamics simulation.

    Directory of Open Access Journals (Sweden)

    Moutusi Manna

    Full Text Available Interactions of amyloid-β (Aβ with neuronal membrane are associated with the progression of Alzheimer's disease (AD. Ganglioside GM1 has been shown to promote the structural conversion of Aβ and increase the rate of peptide aggregation; but the exact nature of interaction driving theses processes remains to be explored. In this work, we have carried out atomistic-scale computer simulations (totaling 2.65 µs to investigate the behavior of Aβ monomer and dimers in GM1-containing raft-like membrane. The oligosaccharide head-group of GM1 was observed to act as scaffold for Aβ-binding through sugar-specific interactions. Starting from the initial helical peptide conformation, a β-hairpin motif was formed at the C-terminus of the GM1-bound Aβ-monomer; that didn't appear in absence of GM1 (both in fluid POPC and liquid-ordered cholesterol/POPC bilayers and also in aqueous medium within the simulation time span. For Aβ-dimers, the β-structure was further enhanced by peptide-peptide interactions, which might influence the propensity of Aβ to aggregate into higher-ordered structures. The salt-bridges and inter-peptide hydrogen bonds were found to account for dimer stability. We observed spontaneous formation of intra-peptide D(23-K(28 salt-bridge and a turn at V(24GSN(27 region - long been accepted as characteristic structural-motifs for amyloid self-assembly. Altogether, our results provide atomistic details of Aβ-GM1 and Aβ-Aβ interactions and demonstrate their importance in the early-stages of GM1-mediated Aβ-oligomerisation on membrane surface.

  8. Hubungan Konsumsi Antioksidan dari Makanan dengan Beta-Amyloid Plasma sebagai Penanda Gangguan Fungsi Kognitif pada Lanjut Usia

    Directory of Open Access Journals (Sweden)

    Ratna D Siregar

    2015-01-01

    Full Text Available AbstrakPenelitian ini bertujuan untuk mengetahui hubungan antara konsumsi vitamin A, vitamin C, vitamin E, zink dan selenium dari makanan dengan fungsi kognitif pada lanjut usia. Metoda penelitian adalah cross sectional study terhadap 145 lansia umur ≥ 60 tahun, pada dua kecamatan di Kabupaten Lima Puluh Kota Sumatra Barat. Wawancara konsumsi antioksidan menggunakan Food Frequency Questionnaires (FFQ, fungsi kognitif diperiksa dengan Montreal Cognitive Assesment versi Indonesia (MoCA-Ina, Aβ40 dan Aβ42 plasma diperiksa dengan metode ELISA. Data dianalisis menggunakan uji Mann-Whitney dan Chi-square. Pada hasil penelitian ditemukan 83 orang (57,2% lansia yang mengalami gangguan fungsi kognitif. Terdapat hubungan yang signifikan antara konsumsi vitamin C (p<0,049 dan vitamin E (p<0,037 tetapi tidak terdapat hubungan signifikan antara vitamin A, zink dan selenium dengan fungsi kognitif. Tidak terdapat hubungan yang signifikan antara konsumsi antioksidan dengan tingkat Aβ40 dan Aβ42 serta antara tingkat Aβ40 dan Aβ42 dengan fungsi kognitif masing-masing (p<0,058 dan p<0,350. Kesimpulan hasil penelitian ini didapatkan hubungan antara konsumsi vitamin C dan vitamin E dari makanan dengan fungsi kognitif. Tetapi tidak terdapat hubungan antara konsumsi antioksidan dengan Aβ40 dan Aβ42 plasma dan Aβ40 dan Aβ42 dengan fungsi kognitif.Kata kunci: antioksidan, beta-amyloid, fungsi kognitif, lanjut usiaAbstractThe objective of this study was to determine the relationship between consumption of vitamin A, vitamin C, vitamin E, zinc and selenium from foods with cognitive function in elderly. This was a cross-sectional study that was conducted to 145 elderly with age ≥ 60 years, in two districts in West Sumatra, in Lima Puluh Kota city. Interview antioxidant intake using a Food Frequency Questionnaires (FFQ, cognitive function was checked by Montreal Cognitive Assessment Indonesian version (MoCA-Ina, plasma Aβ40 dan Aβ42 were examined by ELISA

  9. Engineering Metal Ion Coordination to Regulate Amyloid Fibril Assembly And Toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Dong, J.; Canfield, J.M.; Mehta, A.K.; Shokes, J.E.; Tian, B.; Childers, W.S.; Simmons, J.A.; Mao, Z.; Scott, R.A.; Warncke, K.; Lynn, D.G.

    2009-06-02

    Protein and peptide assembly into amyloid has been implicated in functions that range from beneficial epigenetic controls to pathological etiologies. However, the exact structures of the assemblies that regulate biological activity remain poorly defined. We have previously used Zn{sup 2+} to modulate the assembly kinetics and morphology of congeners of the amyloid {beta} peptide (A{beta}) associated with Alzheimer's disease. We now reveal a correlation among A{beta}-Cu{sup 2+} coordination, peptide self-assembly, and neuronal viability. By using the central segment of A{beta}, HHQKLVFFA or A{beta}(13-21), which contains residues H13 and H14 implicated in A{beta}-metal ion binding, we show that Cu{sup 2+} forms complexes with A{beta}(13-21) and its K16A mutant and that the complexes, which do not self-assemble into fibrils, have structures similar to those found for the human prion protein, PrP. N-terminal acetylation and H14A substitution, Ac-A{beta}(13-21)H14A, alters metal coordination, allowing Cu{sup 2+} to accelerate assembly into neurotoxic fibrils. These results establish that the N-terminal region of A{beta} can access different metal-ion-coordination environments and that different complexes can lead to profound changes in A{beta} self-assembly kinetics, morphology, and toxicity. Related metal-ion coordination may be critical to the etiology of other neurodegenerative diseases.

  10. Cortical Amyloid beta in cognitively normal elderly adults is associated with decreased network efficiency within the cerebro-cerebellar system.

    Directory of Open Access Journals (Sweden)

    Stefanie eSteininger

    2014-03-01

    Full Text Available Deposition of cortical amyloid beta (Aβ is a correlate of aging and a risk factor for Alzheimer Disease (AD. While several higher order cognitive processes involve functional interactions between cortex and cerebellum, this study aims to investigate effects of cortical Aβ deposition on coupling within the cerebro-cerebellar system. We included 15 healthy elderly subjects with normal cognitive performance as assessed by neuropsychological testing. Cortical Aβ was quantified using Pittsburgh Compound-B positron-emission-tomography (PiB-PET late frame signals. Volumes of brain structures were assessed by applying an automated parcellation algorithm to three dimensional magnetization-prepared rapid gradient-echo T1-weighted images. Basal functional network activity within the cerebro-cerebellar system was assessed using blood-oxygen-level dependent (BOLD resting state functional magnetic resonance imaging (fMRI at the high field strength of 7 Tesla for measuring coupling between cerebellar seeds and cerebral gray matter. A bivariate regression approach was applied for identification of brain regions with significant effects of individual cortical Aβ load on coupling.Consistent with earlier reports, a significant degree of positive and negative coupling could be observed between cerebellar seeds and cerebral voxels. Significant positive effects of cortical Aβ load on cerebro-cerebellar coupling resulted for cerebral brain regions located in inferior temporal lobe, prefrontal cortex, hippocampus, parahippocampal gyrus and thalamus. Our findings indicate that brain amyloidosis in cognitively normal elderly subjects is associated with decreased network efficiency within the cerebro-cerebellar system. While the identified cerebral regions are consistent with established patterns of increased sensitivity for Aβ associated neurodegeneration, additional studies are needed to elucidate the relationship between dysfunction of the cerebro

  11. Plasma beta-amyloid as potential biomarker of Alzheimer disease: possibility of diagnostic tool for Alzheimer disease.

    Science.gov (United States)

    Takeda, Shuko; Sato, Naoyuki; Rakugi, Hiromi; Morishita, Ryuichi

    2010-10-01

    Alzheimer disease (AD), which is characterized by progressive cognitive and behavioral deficit, is the most common form of dementia. The incidence of AD is increasing at an alarming rate, and has become a major public health concern in many countries. It is well known that the onset of AD is preceded by a long preclinical period. It is thus critical to establish diagnostic biomarkers that can predict the risk of developing AD prior to clinical manifestation of dementia, for effective prevention and early intervention. With the emergence of potential promising approaches to treat AD targeting the beta-amyloid (Abeta) pathway, such as gamma-secretase inhibitors and vaccine therapy, there is an urgent need for such diagnostic markers. Although cerebrospinal fluid (CSF) Abeta and tau protein levels are candidate biomarkers for AD, the invasive sampling procedure with associated complications limits their use in routine clinical practice. Plasma Abeta has been suggested as an inexpensive and non-invasive biomarker for AD. Although most previous cross-sectional studies on plasma Abeta level in humans failed to show a significant difference between individuals with AD compared to healthy older adults, many strategies are under investigation to improve the diagnostic potential of plasma Abeta. One promising approach is to modify the plasma Abeta level using some potential modulators. It is possible that a difference in plasma Abeta level might be unmasked by evaluating the response to stimulation by a modulator. Anti-Abeta antibody and Abeta binding proteins have been reported to be such modulators of plasma Abeta. In addition, the glucometabolic or hormonal status appears to modulate the plasma Abeta level. Our recent study has shown the possibility that glucose loading could be a novel simple strategy to modulate the plasma Abeta level, making it better suited for early diagnosis. This review summarizes the utility and limitations of current biomarkers of AD and

  12. Development of a high-sensitivity immunoassay for amyloid-beta 1-42 using a silicon microarray platform.

    Science.gov (United States)

    Gagni, Paola; Sola, Laura; Cretich, Marina; Chiari, Marcella

    2013-09-15

    In this work, we present a highly sensitive immunoassay for the detection of the Alzheimer's disease (AD) biomarker amyloid-beta 1-42 (Aβ42) based on a label/label-free microarray platform that utilises silicon/silicon oxide (Si/SiO2) substrates. Due to constructive interference, Si/SiO2 layered slides allow enhancement of the fluorescence intensity on the surface with significant improvements in sensitivity of detection. The same substrate allows the label-free multiplexed detection of targets using the Interferometric Reflectance Imaging Sensor (IRIS), a platform amenable to high-throughput detection of mass changes on microarray substrates. Silicon chips are coated with copoly(DMA-NAS-MAPS), a ter-copolymer made from dimethylacrylamide (DMA), 3-(trimethoxysilyl)propyl methacrylate (MAPS) and N-Acryloyloxy succinimide (NAS). Aβ42 aggregation was studied by circular dichroism (CD), and an optimal antibody pair was selected based on specificity of recognition, binding yield and spot morphology of the capture antibody on the coated silicon surface as analysed by IRIS. Finally, incubation conditions were optimised, and an unprecedented Aβ42 detection sensitivity of 73pg/mL was achieved using an artificial cerebrospinal fluid (CSF) sample. Because of their multiplexing capability, low volume sample consumption and efficient sample-to-result time for population-wide screening, microarrays are ideal tools for the identification of individuals with preclinical AD who are still cognitively healthy. The high sensitivity of this assay format, potentially coupled to a pre-concentration step or signal-enhancing modifications, could lead to a non-invasive, inexpensive diagnostic tool for population-wide screening of AD biomarkers in biological fluids other than CSF, such as serum or plasma. PMID:23624018

  13. Reduced amyloidogenic processing of the amyloid beta-protein precursor by the small-molecule Differentiation Inducing Factor-1.

    Science.gov (United States)

    Myre, Michael A; Washicosky, Kevin; Moir, Robert D; Tesco, Giuseppina; Tanzi, Rudolph E; Wasco, Wilma

    2009-04-01

    The detection of cell cycle proteins in Alzheimer's disease (AD) brains may represent an early event leading to neurodegeneration. To identify cell cycle modifiers with anti-Abeta properties, we assessed the effect of Differentiation-Inducing Factor-1 (DIF-1), a unique, small-molecule from Dictyostelium discoideum, on the proteolysis of the amyloid beta-protein precursor (APP) in a variety of different cell types. We show that DIF-1 slows cell cycle progression through G0/G1 that correlates with a reduction in cyclin D1 protein levels. Western blot analysis of DIF-treated cells and conditioned medium revealed decreases in the levels of secreted APP, mature APP, and C-terminal fragments. Assessment of conditioned media by sandwich ELISA showed reduced levels of Abeta40 and Abeta42, also demonstrating that treatment with DIF-1 effectively decreases the ratio of Abeta42 to Abeta40. In addition, DIF-1 significantly diminished APP phosphorylation at residue T668. Interestingly, site-directed mutagenesis of APP residue Thr668 to alanine or glutamic acid abolished the effect of DIF-1 on APP proteolysis and restored secreted levels of Abeta. Finally, DIF-1 prevented the accumulation of APP C-terminal fragments induced by the proteasome inhibitor lactacystin, and calpain inhibitor N-acetyl-leucyl-leucyl-norleucinal (ALLN). Our findings suggest that DIF-1 affects G0/G1-associated amyloidogenic processing of APP by a gamma-secretase-, proteasome- and calpain-insensitive pathway, and that this effect requires the presence of residue Thr668. PMID:19154786

  14. Nanoformulated alpha-mangostin ameliorates Alzheimer's disease neuropathology by elevating LDLR expression and accelerating amyloid-beta clearance.

    Science.gov (United States)

    Yao, Lei; Gu, Xiao; Song, Qingxiang; Wang, Xiaolin; Huang, Meng; Hu, Meng; Hou, Lina; Kang, Ting; Chen, Jun; Chen, Hongzhuan; Gao, Xiaoling

    2016-03-28

    Alzheimer's disease (AD), the most common form of dementia, is now representing one of the largest global healthcare challenges. However, an effective therapy is still lacking. Accumulation of amyloid-beta (Aβ) in the brain is supposed to trigger pathogenic cascades that eventually lead to AD. Therefore, Aβ clearance strategy is being actively pursued as a promising disease modifying therapy. Here, we found that α-mangostin (α-M), a polyphenolic xanthone derivative from mangosteen, up-regulated low density lipoprotein receptor (LDLR) expression in microglia and liver cells, and efficiently facilitated Aβ clearance. However, the in vivo application of α-M is limited due to its hydrophobic nature, poor aqueous solubility and stability, and thus low bioavailability and accumulation in the target organs. To overcome this limitation, α-M was encapsulated into the core of poly(ethylene glycol)-poly(l-lactide) (PEG-PLA) nanoparticles [NP(α-M)]. Such nanoencapsulation improved the biodistribution of α-M in both the brain and liver, enhanced the brain clearance of (125)I-radiolabeled Aβ1-42 in an LDLR-dependent manner, reduced Aβ deposition, attenuated neuroinflammatory responses, ameliorated neurologic changes and reversed behavioral deficits in AD model mice. These findings justified the concept that polyphenol-mediated modulation of LDLR expression might serve as a safe and efficient disease-modifying therapy for AD by accelerating Aβ clearance. It also demonstrated the powerful capacity of nanotechnology in modulating the biodistribution behavior of drug to improve its therapeutic efficacy in AD. PMID:26836197

  15. Dual effect of beta-amyloid on α7 and α4β2 nicotinic receptors controlling the release of glutamate, aspartate and GABA in rat hippocampus.

    Directory of Open Access Journals (Sweden)

    Elisa Mura

    Full Text Available BACKGROUND: We previously showed that beta-amyloid (Aβ, a peptide considered as relevant to Alzheimer's Disease, is able to act as a neuromodulator affecting neurotransmitter release in absence of evident sign of neurotoxicity in two different rat brain areas. In this paper we focused on the hippocampus, a brain area which is sensitive to Alzheimer's Disease pathology, evaluating the effect of Aβ (at different concentrations on the neurotransmitter release stimulated by the activation of pre-synaptic cholinergic nicotinic receptors (nAChRs, α4β2 and α7 subtypes. Particularly, we focused on some neurotransmitters that are usually involved in learning and memory: glutamate, aspartate and GABA. METHODOLOGY/FINDINGS: WE USED A DUAL APPROACH: in vivo experiments (microdialysis technique on freely moving rats in parallel to in vitro experiments (isolated nerve endings derived from rat hippocampus. Both in vivo and in vitro the administration of nicotine stimulated an overflow of aspartate, glutamate and GABA. This effect was greatly inhibited by the highest concentrations of Aβ considered (10 µM in vivo and 100 nM in vitro. In vivo administration of 100 nM Aβ (the lowest concentration considered potentiated the GABA overflow evoked by nicotine. All these effects were specific for Aβ and for nicotinic secretory stimuli. The in vitro administration of either choline or 5-Iodo-A-85380 dihydrochloride (α7 and α4β2 nAChRs selective agonists, respectively elicited the hippocampal release of aspartate, glutamate, and GABA. High Aβ concentrations (100 nM inhibited the overflow of all three neurotransmitters evoked by both choline and 5-Iodo-A-85380 dihydrochloride. On the contrary, low Aβ concentrations (1 nM and 100 pM selectively acted on α7 subtypes potentiating the choline-induced release of both aspartate and glutamate, but not the one of GABA. CONCLUSIONS/SIGNIFICANCE: The results reinforce the concept that Aβ has relevant

  16. Induction of serine racemase expression and D-serine release from microglia by amyloid β-peptide

    Directory of Open Access Journals (Sweden)

    Griffin W Sue T

    2004-04-01

    Full Text Available Abstract Background Roles for excitotoxicity and inflammation in Alzheimer's disease have been hypothesized. Proinflammatory stimuli, including amyloid β-peptide (Aβ, elicit a release of glutamate from microglia. We tested the possibility that a coagonist at the NMDA class of glutamate receptors, D-serine, could respond similarly. Methods Cultured microglial cells were exposed to Aβ. The culture medium was assayed for levels of D-serine by HPLC and for effects on calcium and survival on primary cultures of rat hippocampal neurons. Microglial cell lysates were examined for the levels of mRNA and protein for serine racemase, the enzyme that forms D-serine from L-serine. The racemase mRNA was also assayed in Alzheimer hippocampus and age-matched controls. A microglial cell line was transfected with a luciferase reporter construct driven by the putative regulatory region of human serine racemase. Results Conditioned medium from Aβ-treated microglia contained elevated levels of D-serine. Bioassays of hippocampal neurons with the microglia-conditioned medium indicated that Aβ elevated a NMDA receptor agonist that was sensitive to an antagonist of the D-serine/glycine site (5,7-dicholorokynurenic acid; DCKA and to enzymatic degradation of D-amino acids by D-amino acid oxidase (DAAOx. In the microglia, Aβ elevated steady-state levels of dimeric serine racemase, the apparent active form of the enzyme. Promoter-reporter and mRNA analyses suggest that serine racemase is transcriptionally induced by Aβ. Finally, the levels of serine racemase mRNA were elevated in Alzheimer's disease hippocampus, relative to age-matched controls. Conclusions These data suggest that Aβ could contribute to neurodegeneration through stimulating microglia to release cooperative excitatory amino acids, including D-serine.

  17. Gengnianchun recipe inhibits apoptosis of pheochromocytoma cells from beta-amyloid 25-35 insult, better than monotherapies and their compounds

    Institute of Scientific and Technical Information of China (English)

    Jun Li; Wenjun Wang; Dajin Li; Wenjiang Zhou

    2011-01-01

    This study aims to determine and compare the protective effects of Gengnianchun recipe drug serum and compounds of its representative drug monotherapies against sympathetic nerve pheochromocytoma cell line PC12 cells damaged by beta-amyloid 25-35 at the cellular apoptosis and related signal pathway levels. PC12 cells cultured with medicated rat serum showed enhanced cell viability and reduced cellular apoptosis rates compared with those of monotherapies and their compounds. Furthermore, Gengnianchun recipe up-regulated expressions of anti-apoptotic protein Bcl-2, estrogen receptor-beta and phosphorylated extracellular-signal-regulated kinase 1/2; and down-regulated expressions of pro-apoptotic proteins Bax and caspase-3. Gengnianchun recipe was superior to representative drug monotherapies, such as paeoniflorin, berberine, timosaponin A-III, icariine and their compounds in protecting PC12 cells. Mitogen-activated protein kinase blocker and estrogen receptor antagonist were found to reverse the above effects of Gengnianchun recipe. The experimental findings indicate that, Gengnianchun recipe protects PC12 cells from beta-amyloid 25-35 insult; its inhibitory effect on apoptosis may be achieved through the mitogen-activated protein kinase and estrogen receptor pathways.

  18. The Structural Basis of [beta]-Peptide-Specific Cleavage by the Serine Protease Cyanophycinase

    Energy Technology Data Exchange (ETDEWEB)

    Law, Adrienne M.; Lai, Sandy W.S.; Tavares, John; Kimber, Matthew S.; (Guelph)

    2010-10-01

    Cyanophycin, or poly-L-Asp-multi-L-Arg, is a non-ribosomally synthesized peptidic polymer that is used for nitrogen storage by cyanobacteria and other select eubacteria. Upon synthesis, it self-associates to form insoluble granules, the degradation of which is uniquely catalyzed by a carboxy-terminal-specific protease, cyanophycinase. We have determined the structure of cyanophycinase from the freshwater cyanobacterium Synechocystis sp. PCC6803 at 1.5-{angstrom} resolution, showing that the structure is dimeric, with individual protomers resembling aspartyl dipeptidase. Kinetic characterization of the enzyme demonstrates that the enzyme displays Michaelis-Menten kinetics with a k{sub cat} of 16.5 s{sup -1} and a k{sub cat}/K{sub M} of 7.5 x 10{sup -6} M{sup -1} s{sup -1}. Site-directed mutagenesis experiments confirm that cyanophycinase is a serine protease and that Gln101, Asp172, Gln173, Arg178, Arg180 and Arg183, which form a conserved pocket adjacent to the catalytic Ser132, are functionally critical residues. Modeling indicates that cyanophycinase binds the {beta}-Asp-Arg dipeptide residue immediately N-terminal to the scissile bond in an extended conformation in this pocket, primarily recognizing this penultimate {beta}-Asp-Arg residue of the polymeric chain. Because binding and catalysis depend on substrate features unique to {beta}-linked aspartyl peptides, cyanophycinase is able to act within the cytosol without non-specific cleavage events disrupting essential cellular processes.

  19. Effects of long-term estrogen replacement therapy on beta-amyloid precursor protein and mRNA expression in ovariectomized rat hippocampus

    Institute of Scientific and Technical Information of China (English)

    Bo Jiang; Eryuan Liao; Liming Tan; Ruchun Dai; Zhijie Xiao

    2009-01-01

    BACKGROUND: In vitro cultures of neural stem cells have shown that estrogen can regulate beta-amyloid precursor protein (β-APP) metabolism and reduce amyloid-beta production.OBJECTIVE: To investigate the effects of long-term oral administration of compound nylestriol or low-dose 17beta-estradiol on β-APP and mRNA expression in the hippocampus of ovariectomized (OVX) rats. DESIGN, TIME AND SETTING: This randomized and controlled experiment was performed at the Animal Laboratory and Laboratory of Endocrine and Metabolic Disease, Xiangya Second Hospital of Central South University between April 2003 and May 2004.MATERIALS: According to body mass, 50 six-month-old female Sprague-Dawley rats were randomly divided into five groups (n = 10 per group): normal control, sham operation, OVX model, 17beta-estradiol (Sigma, USA), and compound nylestriol tablet (Laboratory of Endocrine and Metabolic Disease, Xiangya Second Hospital of Central South University) groups.METHODS: Rats in OVX plus 17beta-estradiol and OVX plus compound nylestriol tablet groups underwent ovariectomy. On the second day after surgery, rats were intragastrically given 17beta-estradiol (100 μg/kg), once per day or compound nylestriol tablet (0.5 mg/kg) and levonorgestrel (0.15 mg/kg) every 2 days.MAIN OUTCOME MEASURES: β-APP expression in the hippocampus of OVX rats was determined using immunohistochemistry (SABC method) and β-APP mRNA expression was analyzed by in situ hybridization. The results were quantitatively analyzed using cell counting and average optical density. RESULTS: The number and optical density of β-APP-positive neurons in every subregion of the hippocampus of OVX rats was dramatically increased compared with normal and sham operation groups following 35 weeks of administration (P < 0.05). Levels of β-APP were decreased following oral administration of compound nylestriol or 17beta-estradiol. In situ hybridization showed that long-term estrogen deficiency and oral administration

  20. Specific recognition of the C-terminal end of A beta 42 by a high affinity monoclonal antibody

    DEFF Research Database (Denmark)

    Axelsen, T.V.; Holm, A.; Birkelund, S.;

    2009-01-01

    The neurotoxic peptide A beta(42) is derived from the amyloid precursor protein by proteolytic cleavage and is deposited in the brain of patients suffering from Alzheimer's disease (AD). In this study we generate a high affinity monoclonal antibody that targets the C-terminal end of A beta(42) with...

  1. Lipophilicity of amyloid β-peptide 12-28 and 25-35 to unravel their ability to promote hydrophobic and electrostatic interactions.

    Science.gov (United States)

    Ermondi, G; Catalano, F; Vallaro, M; Ermondi, I; Camacho Leal, M P; Rinaldi, L; Visentin, S; Caron, G

    2015-11-10

    The growing interest for peptide therapeutics calls for new strategies to determine the physico-chemical properties responsible for the interactions of peptides with the environment. This study reports about the lipophilicity of two fragments of the amyloid β-peptide, Aβ 25-35 and Aβ 12-28. Firstly, computational studies showed the limits of log D(7.4)oct in describing the lipophilicity of medium-sized peptides. Chromatographic lipophilicity indexes (expressed as log k', the logarithm of the retention factor) were then measured in three different systems to highlight the different skills of Aβ 25-35 and Aβ 12-28 in giving interactions with polar and apolar environments. CD studies were also performed to validate chromatographic experimental conditions. Results show that Aβ 12-28 has a larger skill in promoting hydrophobic and electrostatic interactions than Aβ 25-35. This finding proposes a strategy to determine the lipophilicity of peptides for drug discovery purposes but also gives insights in unraveling the debate about the aminoacidic region of Aβ responsible for its neurotoxicity. PMID:26325311

  2. The biochemical aftermath of anti-amyloid immunotherapy

    Directory of Open Access Journals (Sweden)

    Nicoll James AR

    2010-10-01

    Full Text Available Abstract Background Active and passive immunotherapy in both amyloid-beta precursor protein (APP transgenic mice and Alzheimer's Disease (AD patients have resulted in remarkable reductions in amyloid plaque accumulation, although the degree of amyloid regression has been highly variable. Nine individuals with a clinical diagnosis of AD dementia were actively immunized with the Aβ peptide 1-42 (AN-1792 and subjected to detailed postmortem biochemical analyses. These patients were compared to 6 non-immunized AD cases and 5 non-demented control (NDC cases. Results All patients were assessed for the presence of AD pathology including amyloid plaques, neurofibrillary tangles and vascular amyloidosis. This effort revealed that two immunotherapy recipients had dementia as a consequence of diseases other than AD. Direct neuropathological examination consistently demonstrated small to extensive areas in which amyloid plaques apparently were disrupted. Characterization of Aβ species remnants by ELISA suggested that total Aβ levels may have been reduced, although because the amounts of Aβ peptides among treated individuals were extremely variable, those data must be regarded as tentative. Chromatographic analysis and Western blots revealed abundant dimeric Aβ peptides. SELDI-TOF mass spectrometry demonstrated a substantive number of Aβ-related peptides, some of them with elongated C-terminal sequences. Pro-inflammatory TNF-α levels were significantly increased in the gray matter of immunized AD cases compared to the NDC and non-immunized AD groups. Conclusions Immunotherapy responses were characterized by extreme variability. Considering the broad range of biological variation that characterizes aging and complicates the recognition of reliable AD biomarkers, such disparities will make the interpretation of outcomes derived from epidemiologic and therapeutic investigations challenging. Although in some cases the apparent removal of amyloid plaques

  3. Increased expression of ApoE and protection from amyloid-beta toxicity in transmitochondrial cybrids with haplogroup K mtDNA.

    Science.gov (United States)

    Thaker, Kunal; Chwa, Marilyn; Atilano, Shari R; Coskun, Pinar; Cáceres-Del-Carpio, Javier; Udar, Nitin; Boyer, David S; Jazwinski, S Michal; Miceli, Michael V; Nesburn, Anthony B; Kuppermann, Baruch D; Kenney, M Cristina

    2016-09-01

    Mitochondrial (mt) DNA haplogroups, defined by specific single nucleotide polymorphism (SNP) patterns, represent populations of diverse geographic origins and have been associated with increased risk or protection of many diseases. The H haplogroup is the most common European haplogroup while the K haplogroup is highly associated with the Ashkenazi Jewish population. Transmitochondrial cybrids (cell lines with identical nuclei, but mtDNA from either H (n=8) or K (n=8) subjects) were analyzed by the Seahorse flux analyzer, quantitative polymerase chain reaction (Q-PCR) and immunohistochemistry (IHC). Cybrids were treated with amyloidpeptides and cell viabilities were measured. Other cybrids were demethylated with 5-aza-2'-deoxycytidine (5-aza-dC) and expression levels for APOE and NFkB2 were measured. Results show K cybrids have (a) significantly lower mtDNA copy numbers, (b) higher expression levels for MT-DNA encoded genes critical for oxidative phosphorylation, (c) lower Spare Respiratory Capacity, (d) increased expression of inhibitors of the complement pathway and important inflammasome-related genes; and (e) significantly higher levels of APOE transcription that were independent of methylation status. After exposure to amyloid-β1-42 peptides (active form), H haplogroup cybrids demonstrated decreased cell viability compared to those treated with amyloid-β42-1 (inactive form) (p<0.0001), while this was not observed in the K cybrids (p=0.2). K cybrids had significantly higher total global methylation levels and differences in expression levels for two acetylation genes and four methylation genes. Demethylation with 5-aza-dC altered expression levels for NFkB2, while APOE transcription patterns were unchanged. Our findings support the hypothesis that mtDNA-nuclear retrograde signaling may mediate expression levels of APOE, a key factor in many age-related diseases. Future studies will focus on identification of the mitochondrial-nuclear retrograde signaling

  4. Monodisperse carboxyl-functionalized poly(ethylene glycol)-coated magnetic poly(glycidyl methacrylate) microspheres: application to the immunocapture of β-amyloid peptides.

    Science.gov (United States)

    Horák, Daniel; Hlídková, Helena; Hiraoui, Mohamed; Taverna, Myriam; Proks, Vladimír; Mázl Chánová, Eliška; Smadja, Claire; Kučerová, Zdenka

    2014-11-01

    Identification and evaluation of small changes in β-amyloid peptide (Aβ) levels in cerebrospinal fluid is of crucial importance for early detection of Alzheimer's disease. Microfluidic detection methods enable effective preconcentration of Aβ using magnetic microparticles coated with Aβ antibodies. Poly(glycidyl methacrylate) microspheres are coated with α-amino-ω-methoxy-PEG5000 /α-amino-ω-Boc-NH-PEG5000 Boc groups deprotected and NH2 succinylated to introduce carboxyl groups. Capillary electrophoresis with laser-induced fluorescence detection confirms the efficient capture of Aβ 1-40 peptides on the microspheres with immobilized monoclonal anti-Aβ 6E10. The capture specificity is confirmed by comparing Aβ 1-40 levels on the anti-IgG-immobilized particles used as a control. PMID:25142028

  5. Fetzima (levomilnacipran), a drug for major depressive disorder as a dual inhibitor for human serotonin transporters and beta-site amyloid precursor protein cleaving enzyme-1.

    Science.gov (United States)

    Rizvi, Syed Mohd Danish; Shaikh, Sibhghatulla; Khan, Mahiuddin; Biswas, Deboshree; Hameed, Nida; Shakil, Shazi

    2014-01-01

    Pharmacological management of Major Depressive Disorder includes the use of serotonin reuptake inhibitors which targets serotonin transporters (SERT) to increase the synaptic concentrations of serotonin. Beta-site amyloid precursor protein cleaving enzyme-1 (BACE-1) is responsible for amyloid β plaque formation. Hence it is an interesting target for Alzheimer's disease (AD) therapy. This study describes molecular interactions of a new Food and Drug Administration approved antidepressant drug named 'Fetzima' with BACE-1 and SERT. Fetzima is chemically known as levomilnacipran. The study has explored a possible link between the treatment of Depression and AD. 'Autodock 4.2' was used for docking study. The free energy of binding (ΔG) values for 'levomilnacipran-SERT' interaction and 'levomilnacipran-BACE1' interaction were found to be -7.47 and -8.25 kcal/mol, respectively. Levomilnacipran was found to interact with S438, known to be the most important amino acid residue of serotonin binding site of SERT during 'levomilnacipran-SERT' interaction. In the case of 'levomilnacipran-BACE1' interaction, levomilnacipran interacted with two very crucial aspartic acid residues of BACE-1, namely, D32 and D228. These residues are accountable for the cleavage of amyloid precursor protein and the subsequent formation of amyloid β plaques in AD brain. Hence, Fetzima (levomilnacipran) might act as a potent dual inhibitor of SERT and BACE-1 and expected to form the basis of a future dual therapy against depression and AD. It is an established fact that development of AD is associated with Major Depressive Disorder. Therefore, the design of new BACE-1 inhibitors based on antidepressant drug scaffolds would be particularly beneficial. PMID:25345508

  6. Phosphorylated tau/amyloid beta 1-42 ratio in ventricular cerebrospinal fluid reflects outcome in idiopathic normal pressure hydrocephalus

    Directory of Open Access Journals (Sweden)

    Patel Sunil

    2012-03-01

    Full Text Available Abstract Background Idiopathic normal pressure hydrocephalus (iNPH is a potentially reversible cause of dementia and gait disturbance that is typically treated by operative placement of a ventriculoperitoneal shunt. The outcome from shunting is variable, and some evidence suggests that the presence of comorbid Alzheimer's disease (AD may impact shunt outcome. Evidence also suggests that AD biomarkers in cerebrospinal fluid (CSF may predict the presence of AD. The aim of this study was to investigate the relationship between the phosphorylated tau/amyloid beta 1-42 (ptau/Aβ1-42 ratio in ventricular CSF and shunt outcome in patients with iNPH. Methods We conducted a prospective trial with a cohort of 39 patients with suspected iNPH. Patients were clinically and psychometrically assessed prior to and approximately 4 months after ventriculoperitoneal shunting. Lumbar and ventricular CSF obtained intraoperatively, and tissue from intraoperative cortical biopsies were analyzed for AD biomarkers. Outcome measures included performance on clinical symptom scales, supplementary gait measures, and standard psychometric tests. We investigated relationships between the ptau/Aβ1-42 ratio in ventricular CSF and cortical AD pathology, initial clinical features, shunt outcome, and lumbar CSF ptau/Aβ1-42 ratios in the patients in our cohort. Results We found that high ptau/Aβ1-42 ratios in ventricular CSF correlated with the presence of cortical AD pathology. At baseline, iNPH patients with ratio values most suggestive of AD presented with better gait performance but poorer cognitive performance. Patients with high ptau/Aβ1-42 ratios also showed a less robust response to shunting on both gait and cognitive measures. Finally, in a subset of 18 patients who also underwent lumbar puncture, ventricular CSF ratios were significantly correlated with lumbar CSF ratios. Conclusions Levels of AD biomarkers in CSF correlate with the presence of cortical AD pathology

  7. Amyloid beta dimers/trimers potently induce cofilin-actin rods that are inhibited by maintaining cofilin-phosphorylation

    Directory of Open Access Journals (Sweden)

    Podlisny Marcia

    2011-01-01

    Full Text Available Abstract Background Previously we reported 1 μM synthetic human amyloid beta1-42 oligomers induced cofilin dephosphorylation (activation and formation of cofilin-actin rods within rat hippocampal neurons primarily localized to the dentate gyrus. Results Here we demonstrate that a gel filtration fraction of 7PA2 cell-secreted SDS-stable human Aβ dimers and trimers (Aβd/t induces maximal neuronal rod response at ~250 pM. This is 4,000-fold more active than traditionally prepared human Aβ oligomers, which contain SDS-stable trimers and tetramers, but are devoid of dimers. When incubated under tyrosine oxidizing conditions, synthetic human but not rodent Aβ1-42, the latter lacking tyrosine, acquires a marked increase (620 fold for EC50 in rod-inducing activity. Gel filtration of this preparation yielded two fractions containing SDS-stable dimers, trimers and tetramers. One, eluting at a similar volume to 7PA2 Aβd/t, had maximum activity at ~5 nM, whereas the other, eluting at the void volume (high-n state, lacked rod inducing activity at the same concentration. Fractions from 7PA2 medium containing Aβ monomers are not active, suggesting oxidized SDS-stable Aβ1-42 dimers in a low-n state are the most active rod-inducing species. Aβd/t-induced rods are predominantly localized to the dentate gyrus and mossy fiber tract, reach significance over controls within 2 h of treatment, and are reversible, disappearing by 24 h after Aβd/t washout. Overexpression of cofilin phosphatases increase rod formation when expressed alone and exacerbate rod formation when coupled with Aβd/t, whereas overexpression of a cofilin kinase inhibits Aβd/t-induced rod formation. Conclusions Together these data support a mechanism by which Aβd/t alters the actin cytoskeleton via effects on cofilin in neurons critical to learning and memory.

  8. Noopept efficiency in experimental Alzheimer disease (cognitive deficiency caused by beta-amyloid25-35 injection into Meynert basal nuclei of rats).

    Science.gov (United States)

    Ostrovskaya, R U; Belnik, A P; Storozheva, Z I

    2008-07-01

    Experiments on adult Wistar rats showed that injection of beta-amyloid25-35 (2 microg) into Meynert basal nuclei caused long-term memory deficiency which was detected 24 days after this injection by the memory trace retrieval in conditioned passive avoidance reflex (CPAR). The effects of noopept, an original nootropic and neuroprotective dipeptide, on the severity of this cognitive deficiency were studied. Preventive (for 7 days before the injury) intraperitoneal injections of noopept in a dose of 0.5 mg/kg completely prevented mnestic disorders under conditions of this model. Noopept exhibited a significant normalizing effect, if the treatment was started 15 days after the injury, when neurodegenerative changes in the basal nuclei, cortex, and hippocampus were still acutely pronounced. The mechanisms of this effect of the drug are studied, including, in addition to the choline-positive effect, its multicomponent neuroprotective effect and stimulation of production of antibodies to beta-amyloid25-35. Noopept efficiency in many models of Alzheimer disease, its high bioavailability and low toxicity suggest this dipeptide for further studies as a potential agent for the treatment of this condition (initial and moderate phases). PMID:19145356

  9. The soluble transcobalamin receptor (sCD320) is present in cerebrospinal fluid and correlates to dementia-related biomarkers tau proteins and amyloid-beta

    DEFF Research Database (Denmark)

    Abuyaman, Omar; Nexo, Ebba

    2015-01-01

    in cerebrospinal fluid (CSF) and show its correlations to dementia-related biomarkers tau proteins and amyloid-beta. METHODS: We collected 223 cerebrospinal fluid samples and corresponding plasma samples (n = 46). We measured CSF and plasma sCD320, holoTC and total TC employing in-house ELISA methods...... and CSF phospho-tau (181P) (p-tau), total tau (t-tau) and amyloid-beta 1-42 (Aβ) (n = 177) employing commercial ELISA kits (Innogenetics Company). Size exclusion chromatography was performed on a Superdex 200 column. RESULTS: The median sCD320 concentration in CSF (14 pmol/L) is around five times.......01). Interestingly, sCD320 correlates to p-tau and t-tau (Rs = 0.599, 0.569 (n = 173, 176) respectively, p < 0.001) and to Aβ (Rs = 0.265, p < 0.001 (n = 177)). CONCLUSION: We document for the first time the occurrence of sCD320 in human CSF. We report that the concentration of sCD320 correlates to the dementia...

  10. Effects of Yizhi Capsule (益智胶囊) on Learning and Memory Disorder and β-amyloid Peptide Induced Neurotoxicity in Rats

    Institute of Scientific and Technical Information of China (English)

    WU Hang-yu; XU Jiang-ping; LI Lin; ZHU Bai-hua

    2006-01-01

    Objective: To explore the effects of Yizhi Capsule (益智胶囊, YZC) on learning and memory disorder and β-amyloid peptide induced neurotoxicity in rats. Methods: Various doses of YZC were administered to Sprague-Dawley (SD) rats for 8 consecutive days, twice a day. On the 8th day of the experiment,scopolamine hydrobromide was intraperitoneally injected to every rat and Morris water maze test and shuttle dark avoidance test were carried out respectively to explore the changes of learning and memory capacities in the rats. Besides, after the cerebral cortical neurons of newborn SD rats aged within 3 days were cultured in vitro for 7 days, drug serum containing YZC was added to the cultured neurons before or after β amyloid peptide25-35 (Aβ25-35) intoxication to observe the protective effect of YZC on neurotoxicity by MTT assay and to determine the LDH content in the supernatant. Results: Compared with those untreated with YZC, the rats having received YZC treatment got superiority in shorter time of platform seeking in Morris water maze test,as well as elongated latent period and less times of error in shuttle dark avoidance test. On the cultured neurons, YZC drug serum could effectively increase the survival rate of Aβ25-35 intoxicated neurons and reduce the LDH contents in cultured supernatant. Conclusion: YZC has an action of improving learning and memory disorder, and good protective effect on Aβ25-35 induced neurotoxicity in SD rats.

  11. Structural exploration and Förster theory modeling for the interpretation of gas-phase FRET measurements: Chromophore-grafted amyloidpeptides

    Science.gov (United States)

    Kulesza, Alexander; Daly, Steven; MacAleese, Luke; Antoine, Rodolphe; Dugourd, Philippe

    2015-07-01

    The distance-dependence of excitation energy transfer, e.g., being described by Förster theory (Förster resonance energy transfer (FRET)), allows the use of optical techniques for the direct observation of structural properties. Recently, this technique has been successfully applied in the gas phase. The detailed interpretation of the experimental FRET results, however, relies on the comparison with structural modeling. We therefore present a complete first-principles modeling approach that explores the gas-phase structure of chromophore-grafted peptides and achieves accurate predictions of FRET efficiencies. We apply the approach to amyloid-β 12-28 fragments, known to be involved in amyloid plaque formation connected to Alzheimer's disease. We sample structures of the peptides that are grafted with 5-carboxyrhodamine 575 (Rh575) and QSY-7 chromophores by means of replica-exchange molecular dynamics simulations upon an Amber-type forcefield parametrization as a function of the charge state. The generated ensembles provide chromophore-distance and -orientation distributions which are used with the spectral parameters of the Rh575/QSY-7 chromophores to model FRET-efficiencies for the systems. The theoretical values agree with the experimental average "action"-FRET efficiencies and motivate to use the herein reported parametrization, sampling, and FRET-modeling technique in future studies on the structural properties and aggregation-behavior of related systems.

  12. Effect of nanoparticles binding ß-amyloid peptide on nitric oxide production by cultured endothelial cells and macrophages

    Directory of Open Access Journals (Sweden)

    Orlando A

    2013-04-01

    Full Text Available Antonina Orlando,1 Francesca Re,1 Silvia Sesana,1 Ilaria Rivolta,1 Alice Panariti,1 Davide Brambilla,2 Julien Nicolas,2 Patrick Couvreur,2 Karine Andrieux,2 Massimo Masserini,1 Emanuela Cazzaniga1 1Department of Health Sciences, University of Milano-Bicocca, Monza, Italy; 2Institut Galien Paris Sud, University Paris-Sud, Châtenay-Malabry, France Background: As part of a project designing nanoparticles for the treatment of Alzheimer’s disease, we have synthesized and characterized a small library of nanoparticles binding with high affinity to the β-amyloid peptide and showing features of biocompatibility in vitro, which are important properties for administration in vivo. In this study, we focused on biocompatibility issues, evaluating production of nitric oxide by cultured human umbilical vein endothelial cells and macrophages, used as models of cells which would be exposed to nanoparticles after systemic administration. Methods: The nanoparticles tested were liposomes and solid lipid nanoparticles carrying phosphatidic acid or cardiolipin, and PEGylated poly(alkyl cyanoacrylate nanoparticles (PEG-PACA. We measured nitric oxide production using the Griess method as well as phosphorylation of endothelial nitric oxide synthase and intracellular free calcium, which are biochemically related to nitric oxide production. MTT viability tests and caspase-3 detection were also undertaken. Results: Exposure to liposomes did not affect the viability of endothelial cells at any concentration tested. Increased production of nitric oxide was detected only with liposomes carrying phosphatidic acid or cardiolipin at the highest concentration (120 µg/mL, together with increased synthase phosphorylation and intracellular calcium levels. Macrophages exposed to liposomes showed a slightly dose-dependent decrease in viability, with no increase in production of nitric oxide. Exposure to solid lipid nanoparticles carrying phosphatidic acid decreased viability in

  13. Cilostazol Modulates Autophagic Degradation of β-Amyloid Peptide via SIRT1-Coupled LKB1/AMPKα Signaling in Neuronal Cells

    Science.gov (United States)

    Lee, Won Suk; Shin, Hwa Kyoung; Kim, Hye Young; Hong, Ki Whan; Kim, Chi Dae

    2016-01-01

    A neuroprotective role of autophagy mediates the degradation of β-amyloid peptide (Aβ) in Alzheimer’s disease (AD). The previous study showed cilostazol modulates autophagy by increasing beclin1, Atg5 and LC3-II expressions, and depletes intracellular Aβ accumulation. This study elucidated the mechanisms through which cilostazol modulates the autophagic degradation of Aβ in neurons. In N2a cells, cilostazol (10–30 μM), significantly increased the expression of P-AMPKα (Thr 172) and downstream P-ACC (acetyl-CoA carboxylase) (Ser 79) as did resveratrol (SIRT1 activator), or AICAR (AMPK activator), which were blocked by KT5720, compound C (AMPK inhibitor), or sirtinol. Furthermore, phosphorylated-mTOR (Ser 2448) and phosphorylated-P70S6K (Thr 389) expressions were suppressed, and LC3-II levels were elevated in association with decreased P62/Sqstm1 by cilostazol. Cilostazol increased cathepsin B activity and decreased p62/SQSTM 1, consequently decreased accumulation of Aβ1–42 in the activated N2aSwe cells, and these results were blocked by sirtinol, compound C and bafilomycin A1 (autophagosome blocker), suggesting enhanced autophagosome formation by cilostazol. In SIRT1 gene-silenced N2a cells, cilostazol failed to increase the expressions of P-LKB1 (Ser 428) and P-AMPKα, which contrasted with its effect in negative control cells transfected with scrambled siRNA duplex. Further, N2a cells transfected with expression vectors encoding pcDNA SIRT1 showed increased P-AMPKα expression, which mimicked the effect of cilostazol in N2a cells; suggesting cilostazol-stimulated expressions of P-LKB1 and P-AMPKα were SIRT1-dependent. Unlike their effects in N2a cells, in HeLa cells, which lack LKB1, cilostazol and resveratrol did not elevate SIRT1 or P-AMPKα expression, indicating cilostazol and resveratrol-stimulated expressions of SIRT1 and P-AMPKα are LKB1-dependent. In conclusion, cilostazol upregulates autophagy by activating SIRT1-coupled P-LKB1/P-AMPKα and

  14. Cilostazol Upregulates Autophagy via SIRT1 Activation: Reducing AmyloidPeptide and APP-CTFβ Levels in Neuronal Cells.

    Directory of Open Access Journals (Sweden)

    Hye Rin Lee

    Full Text Available Autophagy is a vital pathway for the removal of β-amyloid peptide (Aβ and the aggregated proteins that cause Alzheimer's disease (AD. We previously found that cilostazol induced SIRT1 expression and its activity in neuronal cells, and thus, we hypothesized that cilostazol might stimulate clearances of Aβ and C-terminal APP fragment β subunit (APP-CTFβ by up-regulating autophagy.When N2a cells were exposed to soluble Aβ1-42, protein levels of beclin-1, autophagy-related protein5 (Atg5, and SIRT1 decreased significantly. Pretreatment with cilostazol (10-30 μM or resveratrol (20 μM prevented these Aβ1-42 evoked suppressions. LC3-II (a marker of mammalian autophagy levels were significantly increased by cilostazol, and this increase was reduced by 3-methyladenine. To evoke endogenous Aβ overproduction, N2aSwe cells (N2a cells stably expressing human APP containing the Swedish mutation were cultured in medium with or without tetracycline (Tet+ for 48 h and then placed in Tet- condition. Aβ and APP-CTFβ expressions were increased after 12~24 h in Tet- condition, and these increased expressions were significantly reduced by pretreating cilostazol. Cilostazol-induced reductions in the expressions of Aβ and APP-CTFβ were blocked by bafilomycin A1 (a blocker of autophagosome to lysosome fusion. After knockdown of the SIRT1 gene (to ~40% in SIRT1 protein, cilostazol failed to elevate the expressions of beclin-1, Atg5, and LC3-II, indicating that cilostazol increases these expressions by up-regulating SIRT1. Further, decreased cell viability induced by Aβ was prevented by cilostazol, and this inhibition was reversed by 3-methyladenine, indicating that the protective effect of cilostazol against Aβ induced neurotoxicity is, in part, ascribable to the induction of autophagy. In conclusion, cilostazol modulates autophagy by increasing the activation of SIRT1, and thereby enhances Aβ clearance and increases cell viability.

  15. Sulindac Sulfide Induces the Formation of Large Oligomeric Aggregates of the Alzheimer's Disease AmyloidPeptide Which Exhibit Reduced Neurotoxicity.

    Science.gov (United States)

    Prade, Elke; Barucker, Christian; Sarkar, Riddhiman; Althoff-Ospelt, Gerhard; Lopez del Amo, Juan Miguel; Hossain, Shireen; Zhong, Yifei; Multhaup, Gerd; Reif, Bernd

    2016-03-29

    Alzheimer's disease is characterized by deposition of the amyloid β-peptide (Aβ) in brain tissue of affected individuals. In recent years, many potential lead structures have been suggested that can potentially be used for diagnosis and therapy. However, the mode of action of these compounds is so far not understood. Among these small molecules, the nonsteroidal anti-inflammatory drug (NSAID) sulindac sulfide received a lot of attention. In this manuscript, we characterize the interaction between the monomeric Aβ peptide and the NSAID sulindac sulfide. We find that sulindac sulfide efficiently depletes the pool of toxic oligomers by enhancing the rate of fibril formation. In vitro, sulindac sulfide forms colloidal particles which catalyze the formation of fibrils. Aggregation is immediate, presumably by perturbing the supersaturated Aβ solution. We find that sulindac sulfide induced Aβ aggregates are structurally homogeneous. The C-terminal part of the peptide adopts a β-sheet structure, whereas the N-terminus is disordered. The salt bridge between D23 and K28 is present, similar as in wild type fibril structures. (13)C-(19)F transferred echo double resonance experiments suggest that sulindac sulfide colocalizes with the Aβ peptide in the aggregate. PMID:26900939

  16. Familial Danish dementia: a novel form of cerebral amyloidosis associated with deposition of both amyloid-Dan and amyloid-beta

    DEFF Research Database (Denmark)

    Holton, J.L; Lashley, T.; Ghiso, J.;

    2002-01-01

    -fibrillary) lesions was found. A[beta] was also present in a proportion of both vascular and parenchymal lesions. There was severe neurofibrillary pathology, and tau immunoblotting revealed a triplet electrophoretic migration pattern comparable with PHF-tau. FDD is a novel form of CNS amyloidosis with extensive...

  17. Studies on the interactions between glycosylated beta3-peptides and the lectin Vicia villosa by saturation transfer difference NMR spectroscopy.

    Science.gov (United States)

    Kaszowska, Marta; Norgren, Anna S; Arvidson, Per I; Sandström, Corine

    2009-12-14

    Saturation transfer difference (STD) NMR spectroscopy was used to study the interaction of the lectin Vicia villosa (VVLB(4)) with alpha-D-GalNAc glycosylated beta(3)-peptides. The data were compared to those obtained with the monosaccharides D-Gal, D-GalNAc, and D-Glc as well as with those obtained with the Tn antigen alpha-glycopeptide (D-GalNAc-alpha-O-Ser/Thr), molecule naturally recognized by V. villosa. Evidence that the lectin also recognizes glycosylated beta(3)-peptides and has close contact with both the sugar and amino acid moieties was obtained. PMID:19863951

  18. Molecular cloning and expression of gene fragments from corynebacteriophage beta encoding enzymatically active peptides of diphtheria toxin.

    OpenAIRE

    Tweten, R K; Collier, R J

    1983-01-01

    Two restriction fragments from corynebacteriophage beta vir tox+ that encode peptides similar to diphtheria toxin fragment A and the chain termination fragment, CRM45, have been cloned into Escherichia coli in plasmid pBR322. Clones containing the recombinant plasmids produced gene products that were active in catalyzing the ADP ribosylation of elongation factor 2 and were reactive with diphtheria toxin antiserum. Toxin-related peptides were found primarily in the periplasmic compartment and ...

  19. Design and synthesis of basic peptides having amphipathic beta-structure and their interaction with phospholipid membranes.

    Science.gov (United States)

    Ono, S; Lee, S; Mihara, H; Aoyagi, H; Kato, T; Yamasaki, N

    1990-02-28

    Basic amphipathic beta-structural peptides, Ac-(Ser-Val-Lys-Val)n-NHCH3 (1n, n = 1-3) and Ac-(Lys-Val)n-NHCH3 (2n, n = 2-4), were synthesized and their interaction with DPPC and DPPC-DPPG (3:1) bilayers was studied by CD, dye-leakage and fluorescence experiments. The CD data indicated that oligopeptides consisting of more than eight residues with alternating hydrophobic (Val) and hydrophilic amino acids (Ser and Lys) were able to form an amphipathic beta-structure in acidic phospholipid bilayers, but not or weakly in aqueous solution and in neutral phospholipid bilayers. The dye-leakage experiment showed that the basic amphipathic beta-structural peptides interact with acidic phospholipid bilayers to perturb them, but less effectively compared with basic amphipathic alpha-helical peptides. Fluorescent spectroscopic data suggest that hydrophobic side of the amphipathic peptides may immerse into membrane without deep penetration. Based on these results, we postulate that the formation of the basic amphipathic beta-structure on acidic lipid bilayers may be due to the combined effect of electrostatic and hydrophobic interactions between basic peptides and acidic lipid bilayers. PMID:2306456

  20. Rational design and identification of a non-peptidic aggregation inhibitor of amyloid-β based on a pharmacophore motif obtained from cyclo[-Lys-Leu-Val-Phe-Phe-].

    Science.gov (United States)

    Arai, Tadamasa; Araya, Takushi; Sasaki, Daisuke; Taniguchi, Atsuhiko; Sato, Takeshi; Sohma, Youhei; Kanai, Motomu

    2014-07-28

    Inhibition of pathogenic protein aggregation may be an important and straightforward therapeutic strategy for curing amyloid diseases. Small-molecule aggregation inhibitors of Alzheimer's amyloid-β (Aβ) are extremely scarce, however, and are mainly restricted to dye- and polyphenol-type compounds that lack drug-likeness. Based on the structure-activity relationship of cyclic Aβ16-20 (cyclo-[KLVFF]), we identified unique pharmacophore motifs comprising side-chains of Leu(2), Val(3), Phe(4), and Phe(5) residues without involvement of the backbone amide bonds to inhibit Aβ aggregation. This finding allowed us to design non-peptidic, small-molecule aggregation inhibitors that possess potent activity. These molecules are the first successful non-peptidic, small-molecule aggregation inhibitors of amyloids based on rational molecular design. PMID:24931598

  1. Visual and fluorescent assays for selective detection of beta-amyloid oligomers based on the inner filter effect of gold nanoparticles on the fluorescence of CdTe quantum dots.

    Science.gov (United States)

    Xia, Ning; Zhou, Binbin; Huang, Nanbing; Jiang, Mengsha; Zhang, Jiebing; Liu, Lin

    2016-11-15

    Beta-amyloid (Aβ) peptides are the major constituents of senile plaques in the brains of Alzheimer's disease (AD) patients. Aβ monomers (AβMs) can coalesce to form small, soluble oligomers (AβOs), followed by reorganization and assembly into long, thread-like fibrils (AβFs). Recently, soluble AβOs have been regarded as reliable molecular biomarkers for the diagnosis of AD because of their high toxicity for neuronal synapse and high concentration levels in the brains of AD patients. In this work, we reported a label-free, sensitive and selective method for visual and fluorescent detection of AβOs based on the inner filter effect (IFE) of gold nanoparticles (AuNPs) on the fluorescence of CdTe quantum dots (QDs). Specifically, the fluorescence of CdTe QDs was quenched significantly by AuNPs through the IFE. PrP(95-110), an AβOs-specific binding peptide from cellular prion protein, triggered the aggregation and color change of AuNPs suspension; thus, the IFE of AuNPs on the fluorescence of CdTe QDs was weakened and the fluorescence intensity was recovered. However, in the presence of AβOs, the specific interaction of AβOs and PrP(95-110) prevented the absorption of PrP(95-110) onto the surface of AuNPs. As a result, the aggregation of AuNPs was inhibited and the fluorescence intensity of CdTe QDs was quenched again. This label-free method is specific for detection of AβOs but not for AβMs and AβFs. The detection limits were found to be 0.5nM for the visual assay and 0.2nM for the fluorescent detection. We believe that this work would be valuable for many investigations related to AD diagnosis and drug discovery. PMID:27240009

  2. beta. -Endorphin and related peptides suppress phorbol myristate acetate-induced respiratory burst in human polymorphonuclear leukocytes

    Energy Technology Data Exchange (ETDEWEB)

    Diamant, M.; Henricks, P.A.J.; Nijkamp, F.P.; de Wied, D. (Univ. of Utrecht (Netherlands))

    1989-01-01

    In the present study, the immunomodulatory effect of {beta}-endorphin ({beta}-E) and shorter pro-opiomelancortin (POMC) fragments was evaluated by assessing their influence on respiratory burst in human polymorphonuclear leukocytes (PMN). The effect of the peptides on phorbol myristate acetate (PMA)-stimulated production of reactive oxygen metabolites was measured in a lucigenin-enhanced chemiluminescence (CL) assay. Both POMC peptides with opiate-like activity and their non-opioid derivatives were tested. With the exception of {alpha}-E, PMA-stimulated respiratory burst was suppressed by all POMC fragments tested. A U-shaped dose-response relation was observed. Doses lower than 10{sup {minus}17}M and higher than 10{sup {minus}8}M were without effect. {beta}-E and dT{beta}E both suppressed PMA-induced oxidative burst in human PMN at physiological concentrations. {gamma}-E and dT{gamma}E proved to be less potent inhibitors, reaching maximal effect at higher concentrations. DE{gamma}E exerted an even less pronounced but still significant suppressive effect at the concentration of 10{sup {minus}10}M. None of the endorphins tested was shown to affect resting oxidative metabolism in the PMN. The modulatory effects of the opioid peptides could not be blocked by the opioid antagonist naloxone.

  3. Individualized quantification of brain {beta}-amyloid burden: results of a proof of mechanism phase 0 florbetaben PET trial in patients with Alzheimer's disease and healthy controls

    Energy Technology Data Exchange (ETDEWEB)

    Barthel, Henryk; Luthardt, Julia; Becker, Georg; Patt, Marianne; Sattler, Bernhard; Schildan, Andreas; Hesse, Swen; Meyer, Philipp M.; Sabri, Osama [University of Leipzig, Department of Nuclear Medicine, Leipzig (Germany); Hammerstein, Eva; Hartwig, Kristin; Gertz, Hermann-Josef [University of Leipzig, Department of Psychiatry, Leipzig (Germany); Eggers, Birk [Arzneimittelforschung Leipzig GmbH, Leipzig (Germany); Wolf, Henrike [University of Leipzig, Department of Psychiatry, Leipzig (Germany); University of Zurich, Department of Psychiatry, Zurich (Switzerland); Zimmermann, Torsten; Reischl, Joachim; Rohde, Beate; Reininger, Cornelia [Bayer Healthcare, Berlin (Germany)

    2011-09-15

    Complementing clinical findings with those generated by biomarkers - such as {beta}-amyloid-targeted positron emission tomography (PET) imaging - has been proposed as a means of increasing overall accuracy in the diagnosis of Alzheimer's disease (AD). Florbetaben ([{sup 18}F]BAY 94-9172) is a novel {beta}-amyloid PET tracer currently in global clinical development. We present the results of a proof of mechanism study in which the diagnostic efficacy, pharmacokinetics, safety and tolerability of florbetaben were assessed. The value of various quantitative parameters derived from the PET scans as potential surrogate markers of cognitive decline was also investigated. Ten patients with mild-moderate probable AD (DSM-IV and NINCDS-ADRDA criteria) and ten age-matched ({>=} 55 years) healthy controls (HCs) were administered a single dose of 300 MBq florbetaben, which contained a tracer mass dose of < 5 {mu}g. The 70-90 min post-injection brain PET data were visually analysed by three blinded experts. Quantitative assessment was also performed via MRI-based, anatomical sampling of predefined volumes of interest (VOI) and subsequent calculation of standardized uptake value (SUV) ratios (SUVRs, cerebellar cortex as reference region). Furthermore, single-case, voxelwise analysis was used to calculate individual ''whole brain {beta}-amyloid load''. Visual analysis of the PET data revealed nine of the ten AD, but only one of the ten HC brains to be {beta}-amyloid positive (p = 0.001), with high inter-reader agreement (weighted kappa {>=} 0.88). When compared to HCs, the neocortical SUVRs were significantly higher in the ADs (with descending order of effect size) in frontal cortex, lateral temporal cortex, occipital cortex, anterior and posterior cingulate cortices, and parietal cortex (p = 0.003-0.010). Voxel-based group comparison confirmed these differences. Amongst the PET-derived parameters, the Statistical Parametric Mapping-based whole brain

  4. Influence of scan duration on the accuracy of {beta}-amyloid PET with florbetaben in patients with Alzheimer's disease and healthy volunteers

    Energy Technology Data Exchange (ETDEWEB)

    Tiepolt, Solveig; Barthel, Henryk; Butzke, Daniel; Hesse, Swen; Patt, Marianne; Sabri, Osama [University of Leipzig, Department of Nuclear Medicine, Leipzig (Germany); Gertz, Hermann-Josef [University of Leipzig, Department of Psychiatry, Leipzig (Germany); Reininger, Cornelia [Bayer Pharma AG, Global Clinical Development, Berlin (Germany)

    2013-02-15

    Florbetaben is a {beta}-amyloid-targeted PET tracer with significant potential for augmenting the toolbox in the clinical diagnosis of Alzheimer's disease (AD). In dementia imaging, shortening of scan duration may simplify future clinical use. The aim of this retrospective study was to investigate the effect of scan duration on diagnostic accuracy. PET scans obtained from 25 AD patients and 25 healthy volunteers (HVs) were analysed. In each subject, scans of three different durations (5, 10 and 20 min; all starting 90 min after injection) were obtained, randomized, and visually assessed by three experts blinded to the subject's identity and group affiliation. Presence/absence of {beta}-amyloid and diagnostic confidence (0-100 %) were scored, and 10 % of the scans were re-read. Further, randomly selected datasets of ten AD patients and ten HVs were quantified using an established VOI-based approach and using a voxel-based approach. The sensitivity and specificity of the blinded read were 80 % and 96 %, respectively, for all scan durations. Diagnostic confidence was high (97 {+-} 6 %, 97 {+-} 6 % and 95 {+-} 8 % for the 20-min, 10-min and 5-min scans, respectively; n.s.), as was interreader agreement (kappa{sub 20} {sub min} = 0.94, kappa{sub 10} {sub min} = 0.94, kappa{sub 5} {sub min} = 0.89; n.s.). Intrareader agreement was highest for the 20-min scan (kappa = 1.00) and lower for the 10-min scan (kappa = 0.71) and 5-min scan (kappa = 0.80; p = 0.002 and 0.003 vs. the 20-min scan). For all scan durations, composite SUVRs (Cohen's d effect size 4.5, 3.9 and 4.8 for the 5-min, 10-min and 20-min scans; p < 0.0001 each) and individual brain volumes affected by {beta}-amyloid (Cohen's d effect size 1.6, 1.8 and 2.0 for the 5-min, 10-min and 20-min scans; p < 0.005 each) were significantly higher in AD patients than in HVs. Reduction in scan duration did not relevantly affect the accuracy of florbetaben PET scans in discriminating between AD patients

  5. Protein kinase C betaII peptide inhibitor exerts cardioprotective effects in rat cardiac ischemia/reperfusion injury.

    Science.gov (United States)

    Omiyi, Didi; Brue, Richard J; Taormina, Philip; Harvey, Margaret; Atkinson, Norrell; Young, Lindon H

    2005-08-01

    Ischemia followed by reperfusion (I/R) in the presence of polymorphonuclear leukocytes (PMNs) results in a marked cardiac contractile dysfunction. A cell-permeable protein kinase C (PKC) betaII peptide inhibitor was used to test the hypothesis that PKC betaII inhibition could attenuate PMN-induced cardiac dysfunction by suppression of superoxide production from PMNs and increase NO release from vascular endothelium. The effects of the PKC betaII peptide inhibitor were examined in isolated ischemic (20 min) and reperfused (45 min) rat hearts with PMNs. The PKC betaII inhibitor (10 microM; n = 7) significantly attenuated PMN-induced cardiac dysfunction compared with I/R hearts (n = 9) receiving PMNs alone in left ventricular developed pressure (LVDP) and the maximal rate of LVDP (+dP/dt(max)) cardiac function indices (p < 0.01). The PKC betaII inhibitor at 10 microM significantly increased endothelial NO release from a basal value of 1.85 +/- 0.18 pmol NO/mg tissue to 3.49 +/- 0.62 pmol NO/mg tissue from rat aorta. It also significantly inhibited superoxide release (i.e., absorbance) from N-formyl-L-methionyl-L-leucyl-L-phenylalanine-stimulated rat PMNs from 0.13 +/- 0.01 to 0.02 +/- 0.004 (p < 0.01) at 10 microM. Histological analysis of the left ventricle of representative rat hearts from each group showed that the PKC betaII peptide inhibitor-treated hearts experienced a marked reduction in PMN vascular adherence and infiltration into the postreperfused cardiac tissue compared with I/R + PMN hearts (p < 0.01). These results suggest that the PKC betaII peptide inhibitor attenuates PMN-induced post-I/R cardiac contractile dysfunction by increasing endothelial NO release and by inhibiting superoxide release from PMNs. PMID:15878997

  6. Characterization of the beta amyloid precursor protein-like gene in the central nervous system of the crab Chasmagnathus. Expression during memory consolidation

    Directory of Open Access Journals (Sweden)

    Fustiñana Maria

    2010-09-01

    Full Text Available Abstract Background Human β-amyloid, the main component in the neuritic plaques found in patients with Alzheimer's disease, is generated by cleavage of the β-amyloid precursor protein. Beyond the role in pathology, members of this protein family are synaptic proteins and have been associated with synaptogenesis, neuronal plasticity and memory, both in vertebrates and in invertebrates. Consolidation is necessary to convert a short-term labile memory to a long-term and stable form. During consolidation, gene expression and de novo protein synthesis are regulated in order to produce key proteins for the maintenance of plastic changes produced during the acquisition of new information. Results Here we partially cloned and sequenced the beta-amyloid precursor protein like gene homologue in the crab Chasmagnathus (cappl, showing a 37% of identity with the fruit fly Drosophila melanogaster homologue and 23% with Homo sapiens but with much higher degree of sequence similarity in certain regions. We observed a wide distribution of cappl mRNA in the nervous system as well as in muscle and gills. The protein localized in all tissues analyzed with the exception of muscle. Immunofluorescence revealed localization of cAPPL in associative and sensory brain areas. We studied gene and protein expression during long-term memory consolidation using a well characterized memory model: the context-signal associative memory in this crab species. mRNA levels varied at different time points during long-term memory consolidation and correlated with cAPPL protein levels Conclusions cAPPL mRNA and protein is widely distributed in the central nervous system of the crab and the time course of expression suggests a role of cAPPL during long-term memory formation.

  7. The carbonic anhydrase inhibitor methazolamide prevents amyloid beta-induced mitochondrial dysfunction and caspase activation protecting neuronal and glial cells in vitro and in the mouse brain.

    Science.gov (United States)

    Fossati, Silvia; Giannoni, Patrizia; Solesio, Maria E; Cocklin, Sarah L; Cabrera, Erwin; Ghiso, Jorge; Rostagno, Agueda

    2016-02-01

    Mitochondrial dysfunction has been recognized as an early event in Alzheimer's disease (AD) pathology, preceding and inducing neurodegeneration and memory loss. The presence of cytochrome c (CytC) released from the mitochondria into the cytoplasm is often detected after acute or chronic neurodegenerative insults, including AD. The carbonic anhydrase inhibitor (CAI) methazolamide (MTZ) was identified among a library of drugs as an inhibitor of CytC release and proved to be neuroprotective in Huntington's disease and stroke models. Here, using neuronal and glial cell cultures, in addition to an acute model of amyloid beta (Aβ) toxicity, which replicates by intra-hippocampal injection the consequences of interstitial and cellular accumulation of Aβ, we analyzed the effects of MTZ on neuronal and glial degeneration induced by the Alzheimer's amyloid. MTZ prevented DNA fragmentation, CytC release and activation of caspase 9 and caspase 3 induced by Aβ in neuronal and glial cells in culture through the inhibition of mitochondrial hydrogen peroxide production. Moreover, intraperitoneal administration of MTZ prevented neurodegeneration induced by intra-hippocampal Aβ injection in the mouse brain and was effective at reducing caspase 3 activation in neurons and microglia in the area surrounding the injection site. Our results, delineating the molecular mechanism of action of MTZ against Aβ-mediated mitochondrial dysfunction and caspase activation, and demonstrating its efficiency in a model of acute amyloid-mediated toxicity, provide the first combined in vitro and in vivo evidence supporting the potential of a new therapy employing FDA-approved CAIs in AD. PMID:26581638

  8. Validation of assays for measurement of amyloidpeptides in cerebrospinal fluid and plasma specimens from patients with Alzheimer's disease treated with solanezumab.

    Science.gov (United States)

    Lachno, D Richard; Evert, Barbara A; Vanderstichele, Hugo; Robertson, Michael; Demattos, Ronald B; Konrad, Robert J; Talbot, Jayne A; Racke, Margaret M; Dean, Robert A

    2013-01-01

    The aim of this study was to validate new assays for measurement of amyloid-β (Aβ) peptides in cerebrospinal fluid (CSF) and plasma specimens in clinical studies of solanezumab according to current regulatory recommendations. Four assays based on the INNOTEST® β-AMYLOID(1-42) and prototype INNOTEST β-AMYLOID(1-40) kits were developed and validated. To render these assays 'solanezumab-tolerant', excess drug was added to calibrators, quality control, and test samples via a 2-fold dilution with kit diluent. Validation parameters were evaluated by repeated testing of human CSF and EDTA-plasma pools containing solanezumab. Calibration curve correlation coefficients for the four assays were ≥0.9985. Intra- and inter-assay coefficients of variation for Aβ1-40 and Aβ1-42 were ≤13 and ≤15%, respectively for both matrices. Dilutional linearity, within and between assays, was demonstrated for both analytes in CSF and plasma at clinically relevant dilution factors. This dilution regimen was successfully applied during Phase 3 clinical sample analysis. Aβ1-40 and Aβ1-42 were stable in CSF and plasma containing solanezumab at 2-8°C and room temperature for up to 8 h and during 5 additional freeze-thaw cycles from ≤-20 and ≤-70°C. Results of parallel tests on stored clinical samples using INNOTEST methods and proprietary ELISA methods were closely correlated (r2 > 0.9), although bias in reported concentrations was observed between assays. In conclusion, the modified INNOTEST assays provided (relatively) accurate and precise quantification of Aβ1-40 and Aβ1-42 in CSF and plasma containing solanezumab according to established consensus validation criteria. The clinical experience with these assays post validation has shown them to be robust and reliable. PMID:23302661

  9. Molecular dynamics simulation of {beta}-sheet formation in self-assembled peptide amphiphile fibers

    Energy Technology Data Exchange (ETDEWEB)

    Lee, One-Sun; Liu Yamei; Schatz, George C., E-mail: schatz@chem.northwestern.edu [Northwestern University, Department of Chemistry (United States)

    2012-08-15

    The influence of amino acid sequence on the secondary structure of peptide amphiphile (PAs) cylindrical micelles and fibers that are self-assembled in solution is studied using molecular dynamics simulations. Simulations for two choices of PAs were performed, starting with structures that have the correct overall shape, but which restructure considerably during the simulation, with one fiber being composed of valine rich PAs and the other of alanine rich PAs. Self-assembly is similar in both simulations, with stable fibers (diameter is 7.7-8 nm) obtained after 40 ns. We find that the valine rich PA fiber has a higher {beta}-sheet population than the alanine rich fiber, and that the number of hydrogen bonds is higher. This behavior of the valine rich fiber is consistent with experimental measurements of higher stiffness, and it shows that stiffness can be varied while still maintaining self-assembly.

  10. The effect of beta-turn structure on the permeation of peptides across monolayers of bovine brain microvessel endothelial cells

    DEFF Research Database (Denmark)

    Sorensen, M; Steenberg, B; Knipp, G T; Wang, W; Steffansen, B; Frokjaer, S; Borchardt, R T

    1997-01-01

    PURPOSE: To investigate the effects of the beta-turn structure of a peptide on its permeation via the paracellular and transcellular routes across cultured bovine brain microvessel endothelial cell (BBMEC) monolayers, an in vitro model of the blood-brain barrier (BBB). METHODS: The effective perm...

  11. Selenomethionine reduces the deposition of beta-amyloid plaques by modulating β-secretase and enhancing selenoenzymatic activity in a mouse model of Alzheimer's disease.

    Science.gov (United States)

    Zhang, Zhong-Hao; Chen, Chen; Wu, Qiu-Yan; Zheng, Rui; Liu, Qiong; Ni, Jia-Zuan; Hoffmann, Peter R; Song, Guo-Li

    2016-08-01

    Alzheimer's disease (AD) is characterized by the production of large amounts of beta-amyloid (Aβ) and the accumulation of extracellular senile plaques, which have been considered to be potential targets in the treatment of AD. Selenium (Se) is a nutritionally essential trace element with known antioxidant potential and Se status has been shown to decrease with age and has a close relationship with cognitive competence in AD. Selenomethionine (Se-Met), a major reserve form of Se in organisms, has been shown in our previous study to ameliorate the decline in cognitive function, increase oxidation resistance, and reduce tau hyperphosphorylation in a triple transgenic mouse model of AD. However, it has not been reported whether Se-Met has any effects on Aβ pathology in AD mice. To study the effect of Se-Met on Aβ pathology and the function of selenoproteins/selenoenzymes in 3× Tg-AD mice, 3× Tg-AD mice at 8 months of age were treated with Se-Met for 3 months. Se-Met led to significantly reduced production and deposition of Aβ, down-regulation of β-secretase levels and enhanced activity of selenoenzymes as well as increased levels of Se in the hippocampus and cortex. Se-Met reduces amyloidogenic processing of amyloid precursor protein while modulating β-secretase and selenoenzymatic activity in AD mice. These results indicate that Se-Met might exert its therapeutic effect through multiple pathways in AD. PMID:27465436

  12. Green-fluorescent protein+ Astrocytes Attach to beta-Amyloid Plaques in an Alzheimer Mouse Model and GFPare Sensitive for Clasmatodendrosis

    Directory of Open Access Journals (Sweden)

    Christian eHumpel

    2016-04-01

    Full Text Available Alzheimer’s disease (AD is pathologically characterized by beta-amyloid (Aβ plaques and Tau pathology. It is well-established that Aβ plaques are surrounded by reactive astrocytes, highly expressing glial fibrillary acidic protein (GFAP. In order to study the cellular interaction of reactive astrocytes with Aβ plaques, we crossbred mice overexpressing amyloid precursor protein (APP with the Swedish-Dutch-Iowa mutations (APP-SweDI with mice expressing green fluorescent protein (GFP under the GFAP-promotor. Three-dimensional confocal microscopy revealed a tight association and intense sprouting of astrocytic fine branched processes towards Aβ plaques in 12 month old mice. In order to study phagocytosis, 110 µm thick brain slices from 12 month old crossbred mice were cultured overnight, however, we found that the GFP fluorescence faded away, distal processes degenerated and a complete loss of astrocytic morphology was seen (clasmatodendrosis. In summary, our data show that GFP+ reactive astrocytes make intense contact with Aβ plaques but these cells are highly vulnerable for degeneration.

  13. Mycoplasma hyorhinis markedly degrades β-amyloid peptides in vitro and ex vivo: a novel biological approach for treating Alzheimer’s disease?

    Science.gov (United States)

    Habib, Ahsan; Deng, Juan; Hou, Huayan; Zou, Qiang; Giunta, Brian; Wang, Yan-Jiang; Obregon, Demian; Sawmiller, Darrell; Li, Song; Mori, Takashi; Tan, Jun

    2013-01-01

    Accumulation of amyloid-β (Aβ) peptides (predominantly Aβ40, 42) and their aggregation into plaques in the brain are thought to be the one of the major causes of Alzheimer’s disease (AD). Originally discovered in our Chinese hamster ovary (CHO) cell line stably expressing human wild-type amyloid precursor protein (APP) (CHO/APPwt) cultures devoid of Aβ production, we found that Mycoplasma selectively degrades soluble Aβ in a time and dose (colony forming unit) dependent manner. Moreover, we fully characterized the Mycoplasma species as Mycoplasma hyorhinis (M. hyorhinis) by genetic and colony morphological analyses by light microscopy. Most interestingly, we attenuated the pathogenicity of M. hyorhinis by γ irradiation (3.5 Gy), and found that its ability to degrade Aβ was retained. On the other hand, heated and sonicated M. hyorhinis failed to retain this ability to degrade Aβ, suggesting that this degradation requires viable cells and likely a biologically active signaling pathway. In addition, we found that M. hyorhinis can degrade Aβ produced in AD model mice (PSAPP mice) ex vivo. Finally, we found that irradiated (non-pathogenic) M. hyorhinis also can degrade Aβ produced in PSAPP mice in vivo. These studies suggest that irradiated (non-pathogenic) M. hyorhinis can be a novel and alternative biological strategy for AD treatment. PMID:24093060

  14. Repeated intraperitoneal injections of liposomes containing phosphatidic acid and cardiolipin reduce amyloid-β levels in APP/PS1 transgenic mice

    DEFF Research Database (Denmark)

    Ordóñez-Gutiérrez, Lara; Re, Francesca; Bereczki, Erika;

    2015-01-01

    UNLABELLED: The accumulation of extracellular amyloid-beta (Aβ) peptide and intracellular neurofibrillary tangles in the brain are two major neuropathological hallmarks of Alzheimer's disease (AD). It is thought that an equilibrium exists between Aβ in the brain and in the peripheral blood and th...

  15. Intraneuronal beta-Amyloid Is a Major Risk Factor - Novel Evidence from the APP/PS1KI Mouse Model

    OpenAIRE

    Bayer, Thomas A.; Breyhan, Henning; Duan, Kailai; Rettig, Jens; Wirths, Oliver

    2008-01-01

    Accumulating evidence points to an important role of intraneuronal -amyloid (A ) in the development of Alzheimer’s disease (AD), with its typical clinical symptoms like memory impairment and changes in personality. We have previously reported on the A precursor protein and presenilin- 1 knock-out (APP/PS1KI) mouse model with abundant intraneuronal A 42 accumulation and a 50% loss of CA1 neurons at 10 months of age. In addition, we observed reduced short- and long-ter...

  16. Cratoxylum formosum Extract Protects against Amyloid-Beta Toxicity in a Caenorhabditis elegans Model of Alzheimer's Disease.

    Science.gov (United States)

    Keowkase, Roongpetch; Weerapreeyakul, Natthida

    2016-04-01

    Amyloid-β, one of the hallmarks of Alzheimer's disease, is toxic to neurons and causes cell death in the brain. Oxidative stress is known to play an important role in Alzheimer's disease, and there is strong evidence linking oxidative stress to amyloid-β. The herbal plant "Tiew kon" (Cratoxylum formosum ssp. pruniflorum) is an indigenous vegetable that is grown in Southeast Asia. Many reports suggested that the twig extract from C. formosum possesses an antioxidant property. The purpose of this study was to investigate the protective effect of the twig extract from C. formosum against amyloid-β toxicity using the transgenic Caenorhabditis elegans model. This study demonstrated that the extract significantly delayed amyloid-β-induced paralysis in the C. elegans model of Alzheimer's disease. Using a genetic approach, we found that DAF-16/FOXO transcription factor, heat shock factor 1, and SKN-1 (Nrf2 in mammals) were required for the extract-mediated delayed paralysis. The extract ameliorated oxidative stress by reducing the level of H2O2, which appeared to account for the protective action of the extract. The extract possesses antioxidant activity against juglone-induced oxidative stress as it was shown to increase survival of the stressed worms. In addition, C. formosum decreased the expression of the heat shock protein-16.2 gene which was induced by thermal stress, indicating its ability to reduce cellular stress. The results from this study support the C. elegans model in the search for disease-modifying agents to treat Alzheimer's disease and indicate the potential of the extract from C. formosum ssp. pruniflorum as a source for the development of anti-Alzheimer's drugs. PMID:26845710

  17. PET imaging of alpha(v)beta(3) integrin expression in tumours with Ga-68-labelled mono-, di- and tetrameric RGD peptides

    NARCIS (Netherlands)

    Dijkgraaf, Ingrid; Yim, Cheng-Bin; Franssen, Gerben M.; Schuit, Robert C.; Luurtsema, Gert; Liu, Shuang; Oyen, Wim J. G.; Boerman, Otto C.

    2011-01-01

    Due to the restricted expression of alpha(v)beta(3) in tumours, alpha(v)beta(3) is considered a suitable receptor for tumour targeting. In this study the alpha(v)beta(3)-binding characteristics of Ga-68-labelled monomeric, dimeric and tetrameric RGD peptides were determined and compared with their I

  18. Chronic pre-treatment with memantine prevents amyloid-beta protein-mediated long-term potentiation disruption

    Institute of Scientific and Technical Information of China (English)

    Fushun Li; Xiaowei Chen; Feiming Wang; Shujun Xu; Lan Chang; Roger Anwyl; Qinwen Wang

    2013-01-01

    Previous studies indicate that memantine, a low-affinity N-methyl-D-aspartate receptor antagonist, exerted acute protective effects against amyloid-β protein-induced neurotoxicity. In the present study, the chronic effects and mechanisms of memantine were investigated further using electrophysiological methods. The results showed that 7-day intraperitoneal application of memantine, at doses of 5 mg/kg or 20 mg/kg, did not alter hippocampal long-term potentiation induction in rats, while 40 mg/kg memantine presented potent long-term potentiation inhibition. Then further in vitro studys were carried out in 5 mg/kg and 20 mg/kg memantine treated rats. We found that 20 mg/kg memantine attenuated the potent long-term potentiation inhibition caused by exposure to amyloid-β protein in the dentate gyrus in vitro. These findings are the first to demonstrate the antagonizing effect of long-term systematic treatment of memantine against amyloid-β protein triggered long-term potentiation inhibition to improve synaptic plasticity.

  19. C-peptide reverses TGF-beta1-induced changes in renal proximal tubular cells: implications for treatment of diabetic nephropathy.

    Science.gov (United States)

    Hills, Claire E; Al-Rasheed, Nawal; Al-Rasheed, Nouf; Willars, Gary B; Brunskill, Nigel J

    2009-03-01

    The crucial pathology underlying progressive chronic kidney disease in diabetes is tubulointerstitial fibrosis. Central to this process is epithelial-mesenchymal transformation (EMT) of proximal tubular epithelial cells driven by maladaptive transforming growth factor-beta1 (TGF-beta1) signaling. Novel signaling roles for C-peptide have recently been discovered with evidence emerging that C-peptide may mitigate microvascular complications of diabetes. We studied the potential for C-peptide to interrupt injurious TGF-beta1 signaling pathways and thus block development of EMT in HK2 human kidney proximal tubular cells. Cells were incubated with TGF-beta1 either alone or with C-peptide in low or high glucose. Changes in cell morphology, TGF-beta1 receptor expression, vimentin, E-cadherin, and phosphorylated Smads were assessed. Luciferase reporters were used to assess Smad activity. The cytoskeleton was visualized by TRITC-phalloidin staining. The typical TGF-beta1-stimulated, EMT-associated morphological alterations of proximal tubular cells, including increased vimentin expression, decreased E-cadherin expression, and cytoskeletal rearrangements, were prevented by C-peptide treatment. C-peptide also blocked TGF-beta1-induced upregulation of expression of both type I and type II TGF-beta1 receptors and attenuated TGF-beta1-mediated Smad phosphorylation and Smad transcriptional activity. These effects of C-peptide were inhibited by pertussis toxin. The results demonstrate that C-peptide almost completely reversed the morphological changes in PT cells induced by TGF-beta1 and suggest a role or C-peptide as a renoprotective agent in diabetic nephropathy. PMID:19091788

  20. Photoprotective effect of the N-terminal 5-mer peptide analog P165 of amyloid precursor protein in human dermal fibroblasts

    Institute of Scientific and Technical Information of China (English)

    Wang Ying; Chen Hui; Lin Yuying; Wang Wen; Wang Rong; Lian Shi; Zhu Wei

    2014-01-01

    Background We showed in our previous study that the N-terminal 17-mer peptide of amyloid precursor protein (APP17-mer peptide),an active peptide segment with trophic and antioxidative effects,protects skin fibroblasts against ultraviolet (UV) damage and downregulates matrix metalloproteinase 1 (MMP-1) expression.The aim of the current study was to explore the protective effects of P165,the N-terminal 5-mer peptide analog of amyloid precursor protein that is resistant to enzymolysis,on UVA-induced damage in human dermal fibroblasts (HDFs).Methods HDFs were cultured in Dulbecco's modified Eagle's medium without and with P165 (concentrations were 1,10,and 100 μJmol/L).Then,15 J/cm2 UVA irradiation was used to obtain the UV-irradiated model.Cell proliferation was analyzed using MTT kit.The collagen type Ⅰ and MMP-1 contents in cell lysate were determined by enzyme-linked immunosorbent assay (ELISA).Fluorometric assays were performed to detect the formation of intracellular reactive oxygen species (ROS) in the cells.Results P165 significantly protected the HDFs against UVA-induced cytotoxicity.Compared with the UVA-irradiated control,1,10,and 100 μmol/L P165 elevated cell proliferation by 14.98% (P<0.05),17.52% (P<0.01) and 28.34% (P<0.001),respectively.Simultaneously,10 and 100 μmol/L P165 increased collagen type Ⅰ content (both P<0.05).Moreover,P165 treatment (all concentrations) also markedly suppressed the UVA-induced MMP-1 expression (all P<0.001).P165 at 1,10,and 100 μmol/L also reduced UVA-induced ROS generation by 11.27%,13.69% (both P<0.05),and 25.48% (P<0.001),respectively.Conclusions P165 could protect the HDFs against UVA-induced photodamage,including cytotoxicity,and MMP-1 generation.Furthermore,it also increased the collagen type Ⅰ content in the cells.The inhibitory effect on intracellular ROS generation might be involved in these photoprotective effects.Thus,P165 may be a useful candidate in the prevention and

  1. Curcumin Improves Amyloid β-Peptide (1-42) Induced Spatial Memory Deficits through BDNF-ERK Signaling Pathway

    OpenAIRE

    Lu Zhang; Yu Fang; Yuming Xu; Yajun Lian; Nanchang Xie; Tianwen Wu; Haifeng Zhang; Limin Sun; Ruifang Zhang; Zhenhua Wang

    2015-01-01

    Curcumin, the most active component of turmeric, has various beneficial properties, such as antioxidant, anti-inflammatory, and antitumor effects. Previous studies have suggested that curcumin reduces the levels of amyloid and oxidized proteins and prevents memory deficits and thus is beneficial to patients with Alzheimer's disease (AD). However, the molecular mechanisms underlying curcumin's effect on cognitive functions are not well-understood. In the present study, we examined the working ...

  2. Transfer of Copper from an Amyloid to a Natural Copper-Carrier Peptide with a Specific Mediating Ligand.

    Science.gov (United States)

    Nguyen, Michel; Bijani, Christian; Martins, Nathalie; Meunier, Bernard; Robert, Anne

    2015-11-16

    The oxidative stress that arises from the catalytic reduction of dioxygen by Cu(II/I)-loaded amyloids is the major pathway for neuron death that occurs in Alzheimer's disease. In this work, we show that bis-8(aminoquinoline) ligands, copper(II) specific chelators, are able to catalytically extract Cu(II) from Cu-Aβ1-16 and then completely release Cu(I) in the presence of glutathione to provide a Cu(I)-glutathione complex, a biological intermediate that is able to deliver copper to apo forms of copper-protein complexes. These data demonstrate that bis-8(aminoquinolines) can perform the transfer of copper ions from the pathological Cu-amyloid complexes to regular copper-protein complexes. These copper-specific ligands assist GSH to recycle Cu(I) in an AD brain and consequently slow down oxidative damage that is due to copper dysregulation in Alzheimer's disease. Under the same conditions, we have shown that the copper complex of PBT2, a mono(8-hydroxyquinoline) previously used as a drug candidate, does not efficiently release copper in the presence of GSH. In addition, we report that GSH itself was unable to fully abstract copper ions from Cu-β-amyloid complexes. PMID:26420347

  3. Parathyroid Hormone-Related Peptide (1-36) Enhances Beta Cell Regeneration and Increases Beta Cell Mass in a Mouse Model of Partial Pancreatectomy

    Science.gov (United States)

    Mozar, Anaïs; Lin, Hugo; Williams, Katoura; Chin, Connie; Li, Rosemary; Kondegowda, Nagesha Guthalu; Stewart, Andrew F.; Garcia-Ocaña, Adolfo; Vasavada, Rupangi Chhaya

    2016-01-01

    Aims/Hypothesis Finding ways to stimulate the regeneration of endogenous pancreatic beta cells is an important goal in the treatment of diabetes. Parathyroid hormone-related protein (PTHrP), the full-length (1–139) and amino-terminal (1–36) peptides, enhance beta cell function, proliferation, and survival. Therefore, we hypothesize that PTHrP(1–36) has the potential to regenerate endogenous beta cells. Methods The partial pancreatectomy (PPx) mouse model of beta cell injury was used to test this hypothesis. Male Balb/c mice underwent either sham-operation or PPx, and were subsequently injected with PTHrP(1–36) (160μg/kg) or vehicle (veh), for 7, 30, or 90 days. The four groups of mice, sham-veh, sham-PTHrP, PPx-veh, and PPx-PTHrP were assessed for PTHrP and receptor expression, and glucose and beta cell homeostasis. Results PTHrP-receptor, but not the ligand, was significantly up-regulated in islets from mice that underwent PPx compared to sham-operated mice. This suggests that exogenous PTHrP could further enhance beta cell regeneration after PPx. PTHrP did not significantly affect body weight, blood glucose, plasma insulin, or insulin sensitivity, in either sham or PPx mice. Glucose tolerance improved in the PPx-PTHrP versus PPx-veh mice only in the early stages of treatment. As hypothesized, there was a significant increase in beta cell proliferation in PPx-PTHrP mice at days 7 and 30; however, this was normalized by day 90, compared to PPx-veh mice. Enhanced beta cell proliferation translated to a marked increase in beta cell mass at day 90, in PPx-PTHrP versus PPx-veh mice. Conclusions PTHrP(1–36) significantly enhances beta cell regeneration through increased beta cell proliferation and beta cell mass after PPx. Future studies will determine the potential of PTHrP to enhance functional beta cell mass in the setting of diabetes. PMID:27391423

  4. Increased efflux of amyloidpeptides through the blood-brain barrier by muscarinic acetylcholine receptor inhibition reduces pathological phenotypes in mouse models of brain amyloidosis.

    Science.gov (United States)

    Paganetti, Paolo; Antoniello, Katia; Devraj, Kavi; Toni, Nicolas; Kieran, Dairin; Madani, Rime; Pihlgren, Maria; Adolfsson, Oskar; Froestl, Wolfgang; Schrattenholz, André; Liebner, Stefan; Havas, Daniel; Windisch, Manfred; Cirrito, John R; Pfeifer, Andrea; Muhs, Andreas

    2014-01-01

    The formation and accumulation of toxic amyloidpeptides (Aβ) in the brain may drive the pathogenesis of Alzheimer's disease. Accordingly, disease-modifying therapies for Alzheimer's disease and related disorders could result from treatments regulating Aβ homeostasis. Examples are the inhibition of production, misfolding, and accumulation of Aβ or the enhancement of its clearance. Here we show that oral treatment with ACI-91 (Pirenzepine) dose-dependently reduced brain Aβ burden in AβPPPS1, hAβPPSL, and AβPP/PS1 transgenic mice. A possible mechanism of action of ACI-91 may occur through selective inhibition of muscarinic acetylcholine receptors (AChR) on endothelial cells of brain microvessels and enhanced Aβ peptide clearance across the blood-brain barrier. One month treatment with ACI-91 increased the clearance of intrathecally-injected Aβ in plaque-bearing mice. ACI-91 also accelerated the clearance of brain-injected Aβ in blood and peripheral tissues by favoring its urinal excretion. A single oral dose of ACI-91 reduced the half-life of interstitial Aβ peptide in pre-plaque mhAβPP/PS1d mice. By extending our studies to an in vitro model, we showed that muscarinic AChR inhibition by ACI-91 and Darifenacin augmented the capacity of differentiated endothelial monolayers for active transport of Aβ peptide. Finally, ACI-91 was found to consistently affect, in vitro and in vivo, the expression of endothelial cell genes involved in Aβ transport across the Blood Brain Brain (BBB). Thus increased Aβ clearance through the BBB may contribute to reduced Aβ burden and associated phenotypes. Inhibition of muscarinic AChR restricted to the periphery may present a therapeutic advantage as it avoids adverse central cholinergic effects. PMID:24072071

  5. 99mTc-MAMA-chrysamine G, a probe for beta-amyloid protein of Alzheimer's disease

    International Nuclear Information System (INIS)

    Chrysamine G (CG), an analogue of Congo red, is known to bind in vitro to the β-amyloid protein (Aβ 10-43) and to homogenates of several regions of the brain of Alzheimer's disease (AD) patients. We synthesised a conjugate of 2-(acetamido)-CG with a bis-S-trityl protected monoamide-monoaminedithiol (MAMA-Tr2) tetraligand, which was efficiently deprotected and labelled with a 75% yield with technetium-99m, to obtain 99mTc-MAMA-CG. In mice, 99mTc-MAMA-CG was cleared mainly by the hepatobiliary system, resulting in a fast blood clearance. Brain uptake of 99mTc-MAMA-CG was low. Co-injection with the blood pool tracer iodine-125 human serum albumin (125I-HSA) demonstrated a brain/blood activity ratio for 99mTc-MAMA-CG that was significantly higher than that for 125I-HSA (t test for dependent samples, P99mTc-MAMA-CG to cross the blood-brain barrier. In vitro autoradiography demonstrated pronounced binding of 99mTc-MAMA-CG to β-amyloid deposits in autopsy sections of the parietal and occipital cortex of an AD patient as compared with controls. Adding 10 μM Congo red during incubation displaced the binding of 99mTc-MAMA-CG. Congo red staining and autoradiography identified the same lesions. 99mTc-MAMA-CG seems to bind selectively to β-amyloid deposition in human brain parenchyma and blood vessels in vitro and thus might be a lead compound for further development of a useful tracer agent for the in vivo diagnosis of Alzheimer's disease. (orig.)

  6. Oligomerization and toxicity of A{beta} fusion proteins

    Energy Technology Data Exchange (ETDEWEB)

    Caine, Joanne M., E-mail: Jo.Caine@csiro.au [CSIRO Materials Science and Engineering and the Preventive Health Flagship, Parkville, Victoria (Australia); Bharadwaj, Prashant R. [CSIRO Materials Science and Engineering and the Preventive Health Flagship, Parkville, Victoria (Australia); Centre for Excellence for Alzheimer' s Disease Research and Care, School of Exercise, Biomedical and Health Sciences, Edith Cowan University, Western Australia (Australia); Sankovich, Sonia E. [CSIRO Materials Science and Engineering and the Preventive Health Flagship, Parkville, Victoria (Australia); Ciccotosto, Giuseppe D. [The Department of Pathology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010 (Australia); Streltsov, Victor A.; Varghese, Jose [CSIRO Materials Science and Engineering and the Preventive Health Flagship, Parkville, Victoria (Australia)

    2011-06-10

    Highlights: {yields} We expressed amyloid-{beta} (A{beta}) peptide as a soluble maltose binding protein fusion (MBP-A{beta}42 and MBP-A{beta}16). {yields} The full length A{beta} peptide fusion, MBP-A{beta}42, forms oligomeric species as determined by SDS-PAGE gels, gel filtration and DLS. {yields} The MBP-A{beta}42, but not MBP-A{beta}16 or MBP alone, is toxic to both yeast and mammalian cells as determined by toxicity assays. -- Abstract: This study has found that the Maltose binding protein A{beta}42 fusion protein (MBP-A{beta}42) forms soluble oligomers while the shorter MBP-A{beta}16 fusion and control MBP did not. MBP-A{beta}42, but neither MBP-A{beta}16 nor control MBP, was toxic in a dose-dependent manner in both yeast and primary cortical neuronal cells. This study demonstrates the potential utility of MBP-A{beta}42 as a reagent for drug screening assays in yeast and neuronal cell cultures and as a candidate for further A{beta}42 characterization.

  7. Targeted correction of a thalassemia-associated beta-globin mutation induced by pseudo-complementary peptide nucleic acids

    DEFF Research Database (Denmark)

    Lonkar, Pallavi; Kim, Ki-Hyun; Kuan, Jean Y;

    2009-01-01

    Beta-thalassemia is a genetic disorder caused by mutations in the beta-globin gene. Triplex-forming oligonucleotides and triplex-forming peptide nucleic acids (PNAs) have been shown to stimulate recombination in mammalian cells via site-specific binding and creation of altered helical structures...... that provoke DNA repair. However, the use of these molecules for gene targeting requires homopurine tracts to facilitate triple helix formation. Alternatively, to achieve binding to mixed-sequence target sites for the induced gene correction, we have used pseudo-complementary PNAs (pcPNAs). Due to...

  8. Proinsulin C-peptide antagonizes the profibrotic effects of TGF-beta1 via up-regulation of retinoic acid and HGF-related signaling pathways.

    Science.gov (United States)

    Hills, Claire E; Willars, Gary B; Brunskill, Nigel J

    2010-04-01

    Novel signaling roles for C-peptide have recently been discovered with evidence that it can ameliorate complications of type 1 diabetes. Here we sought to identify new pathways regulated by C-peptide of relevance to the pathophysiology of diabetic nephropathy. Microarray analysis was performed to identify genes regulated by either C-peptide and/or TGF-beta1 in a human proximal tubular cell line, HK-2. Expression of retinoic acid receptor beta (RARbeta), hepatocyte growth factor (HGF), cellular retinoic acid-binding protein II (CRABPII), vimentin, E-cadherin, Snail, and beta-catenin was assessed by immunoblotting. The cellular localization of vimentin and beta-catenin was determined by immunocytochemistry. Changes in cell morphology were assessed by phase contrast microscopy. Gene expression profiling demonstrated differential expression of 953 and 1458 genes after C-peptide exposure for 18 h or 48 h, respectively. From these, members of the antifibrotic retinoic acid (RA)- and HGF-signaling pathways were selected. Immunoblotting demonstrated that C-peptide increased RARbeta, CRABPII, and HGF. We confirmed a role for RA in reversal of TGF-beta1-induced changes associated with epithelial-mesenchymal transition, including expression changes in Snail, E-cadherin, vimetin, and redistribution of beta-catenin. Importantly, these TGF-beta1-induced changes were inhibited by C-peptide. Further, effects of TGF-beta1 on Snail and E-cadherin expression were blocked by HGF, and inhibitory effects of C-peptide were removed by blockade of HGF activity. This study identifies a novel role for HGF as an effector of C-peptide, possibly via an RA-signaling pathway, highlighting C-peptide as a potential therapy for diabetic nephropathy. PMID:20197308

  9. A new DNA vaccine fused with the C3d-p28 induces a Th2 immune response against amyloid-beta*

    Institute of Scientific and Technical Information of China (English)

    Wanshu Guo; Sha Sha; Tongzi Jiang; Xiaona Xing; Yunpeng Cao

    2013-01-01

    To enhance anti-amyloid-beta (Aβ) antibody generation and induce a Th2 immune response, we constructed a new DNA vaccine p(Aβ3-10 )10-C3d-p28.3 encoding ten repeats of Aβ3-10 and three copies of C3d-p28 as a molecular adjuvant. In this study, we administered this adjuvant intramus-cularly to female C57BL/6J mice at 8-10 weeks of age. Enzyme linked immunosorbent assay was used to detect the titer of serum anti-Aβ antibody, isotypes, and cytokines in splenic T cel s. A 3-(4,5-cimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay was used to detect the prolifera-tion rate of splenic T cel s. Brain sections from a 12-month-old APP/PS1 transgenic mouse were used for detecting the binding capacities of anti-Aβ antibodies to Aβ plaques. The p(Aβ3-10)10-C3d-p28.3 vaccine induced high titers of anti-amyloid-βantibodies, which bound to Aβplaques in APP/PS1 transgenic mouse brain tissue, demonstrating that the vaccine is effective against plaques in a mouse model of Alzheimer’s disease. Moreover, the vaccine elicited a pre-dominantly IgG1 humoral response and low levels of interferon-γ in ex vivo cultured splenocytes, indicating that the vaccine could shift the cel ular immune response towards a Th2 phenotype. This indicated that the vaccine did not elicit a detrimental immune response and had a favorable safety profile. Our results indicate that the p(Aβ3-10)10-C3d-p28.3 vaccine is a promising immunothera-peutic option for Aβvaccination in Alzheimer’s disease.

  10. 5-aminoimidazole-4-carboxamide-1-beta-4-ribofuranoside (AICAR attenuates the expression of LPS- and Aβ peptide-induced inflammatory mediators in astroglia

    Directory of Open Access Journals (Sweden)

    Giri Shailendra

    2005-09-01

    Full Text Available Abstract Background Alzheimer's disease (AD pathology shows characteristic 'plaques' rich in amyloid beta (Aβ peptide deposits. Inflammatory process-related proteins such as pro-inflammatory cytokines have been detected in AD brain suggesting that an inflammatory immune reaction also plays a role in the pathogenesis of AD. Glial cells in culture respond to LPS and Aβ stimuli by upregulating the expression of cytokines TNF-α, IL-1β, and IL-6, and also the expression of proinflammatory genes iNOS and COX-2. We have earlier reported that LPS/Aβ stimulation-induced ceramide and ROS generation leads to iNOS expression and nitric oxide production in glial cells. The present study was undertaken to investigate the neuroprotective function of AICAR (a potent activator of AMP-activated protein kinase in blocking the pro-oxidant/proinflammatory responses induced in primary glial cultures treated with LPS and Aβ peptide. Methods To test the anti-inflammatory/anti-oxidant functions of AICAR, we tested its inhibitory potential in blocking the expression of pro-inflammatory cytokines and iNOS, expression of COX-2, generation of ROS, and associated signaling following treatment of glial cells with LPS and Aβ peptide. We also investigated the neuroprotective effects of AICAR against the effects of cytokines and inflammatory mediators (released by the glia, in blocking neurite outgrowth inhibition, and in nerve growth factor-(NGF induced neurite extension by PC-12 cells. Results AICAR blocked LPS/Aβ-induced inflammatory processes by blocking the expression of proinflammatory cytokine, iNOS, COX-2 and MnSOD genes, and by inhibition of ROS generation and depletion of glutathione in astroglial cells. AICAR also inhibited down-stream signaling leading to the regulation of transcriptional factors such as NFκB and C/EBP which are critical for the expression of iNOS, COX-2, MnSOD and cytokines (TNF-α/IL-1β and IL-6. AICAR promoted NGF-induced neurite growth

  11. Curcumin Improves Amyloid β-Peptide (1-42 Induced Spatial Memory Deficits through BDNF-ERK Signaling Pathway.

    Directory of Open Access Journals (Sweden)

    Lu Zhang

    Full Text Available Curcumin, the most active component of turmeric, has various beneficial properties, such as antioxidant, anti-inflammatory, and antitumor effects. Previous studies have suggested that curcumin reduces the levels of amyloid and oxidized proteins and prevents memory deficits and thus is beneficial to patients with Alzheimer's disease (AD. However, the molecular mechanisms underlying curcumin's effect on cognitive functions are not well-understood. In the present study, we examined the working memory and spatial reference memory in rats that received a ventricular injection of amyloid-β1-42 (Aβ1-42, representing a rodent model of Alzheimer's disease (AD. The rats treated with Aβ1-42 exhibited obvious cognitive deficits in behavioral tasks. Chronic (seven consecutive days, once per day but not acute (once a day curcumin treatments (50, 100, and 200 mg/kg improved the cognitive functions in a dose-dependent manner. In addition, the beneficial effect of curcumin is accompanied by increased BDNF levels and elevated levels of phosphorylated ERK in the hippocampus. Furthermore, the cognition enhancement effect of curcumin could be mimicked by the overexpression of BDNF in the hippocampus and blocked by either bilateral hippocampal injections with lentiviruses that express BDNF shRNA or a microinjection of ERK inhibitor. These findings suggest that chronic curcumin ameliorates AD-related cognitive deficits and that upregulated BDNF-ERK signaling in the hippocampus may underlie the cognitive improvement produced by curcumin.

  12. Toxic β-Amyloid (Aβ) Alzheimer's Ion Channels: From Structure to Function and Design

    Science.gov (United States)

    Nussinov, Ruth

    2012-02-01

    Full-length amyloid beta peptides (Aβ1-40/42) form neuritic amyloid plaques in Alzheimer's disease (AD) patients and are implicated in AD pathology. Recent biophysical and cell biological studies suggest a direct mechanism of amyloid beta toxicity -- ion channel mediated loss of calcium homeostasis. Truncated amyloid beta fragments (Aβ11-42 and Aβ17-42), commonly termed as non-amyloidogenic are also found in amyloid plaques of Alzheimer's disease (AD) and in the preamyloid lesions of Down's syndrome (DS), a model system for early onset AD study. Very little is known about the structure and activity of these smaller peptides although they could be key AD and DS pathological agents. Using complementary techniques of explicit solvent molecular dynamics (MD) simulations, atomic force microscopy (AFM), channel conductance measurements, cell calcium uptake assays, neurite degeneration and cell death assays, we have shown that non-amyloidogenic Aβ9-42 and Aβ17-42 peptides form ion channels with loosely attached subunits and elicit single channel conductances. The subunits appear mobile suggesting insertion of small oligomers, followed by dynamic channel assembly and dissociation. These channels allow calcium uptake in APP-deficient cells and cause neurite degeneration in human cortical neurons. Channel conductance, calcium uptake and neurite degeneration are selectively inhibited by zinc, a blocker of amyloid ion channel activity. Thus truncated Aβ fragments could account for undefined roles played by full length Aβs and provide a novel mechanism of AD and DS pathology. The emerging picture from our large-scale simulations is that toxic ion channels formed by β-sheets are highly polymorphic, and spontaneously break into loosely interacting dynamic units (though still maintaining ion channel structures as imaged with AFM), that associate and dissociate leading to toxic ion flux. This sharply contrasts intact conventional gated ion channels that consist of tightly

  13. Quantitative Analysis of the Flavonoid Glycosides and Terpene Trilactones in the Extract of Ginkgo biloba and Evaluation of Their Inhibitory Activity towards Fibril Formation of β-Amyloid Peptide

    OpenAIRE

    Haiyan Xie; Jing-Rong Wang; Lee-Fong Yau; Yong Liu; Liang Liu; Quan-Bin Han; Zhongzhen Zhao; Zhi-Hong Jiang

    2014-01-01

    The standard extract of Ginkgo biloba leaves (EGb761) is used clinically in Europe for the symptomatic treatment of impaired cerebral function in primary degenerative dementia syndromes, and the results of numerous in vivo and in vitro studies have supported such clinical use. The abnormal production and aggregation of amyloid β peptide (Aβ) and the deposition of fibrils in the brain are regarded as key steps in the onset of Alzheimer’s Disease (AD), and the inhibition of Aβ aggregation and d...

  14. Nonstereogenic alpha-aminoisobutyryl-glycyl dipeptidyl unit nucleates type I' beta-turn in linear peptides in aqueous solution.

    Science.gov (United States)

    Masterson, Larry R; Etienne, Marcus A; Porcelli, Fernando; Barany, George; Hammer, Robert P; Veglia, Gianluigi

    2007-01-01

    The use of alpha,alpha-disubstituted amino acids represents a valuable strategy to exercise conformational control in peptides. Incorporation of the nonstereogenic alpha-aminoisobutyryl-glycyl (Aib-Gly) dipeptidyl sequence into i+1 and i+2 positions of an acyclic peptide sequence, originally designed and investigated by Gellman and coworkers, [H-Arg-Tyr-Val-Glu-Val-Yyy-Xxx-Orn-Lys-Ile-Leu-Gln-NH2] nucleates a stable [2:4] left-handed type I' beta-turn in water. NMR spectra show that this newly designed beta-hairpin does not aggregate in water up to a concentration of approximately 1 mM, and that its backbone conformation is superimposable on corresponding hairpins containing the DPro-Gly (literature) and Aib-DAla (this work) sequences. The Aib-Gly turn-inducer sequence eliminates complications because of cis-trans isomerization of Zzz-Pro bonds, and constitutes an attractive alternative to the proteogenic Asn-Gly and nonproteogenic DPro-Gly motifs previously suggested as turn-inducer sequences. These design principles could be exploited to prepare water-soluble beta-hairpin peptides with robust structures and novel function. PMID:17427180

  15. Yizhijiannao Granule and a combination of its effective monomers, icariin and Panax notoginseng saponins, inhibit early PC12 cell apoptosis induced by beta-amyloid (25–35)☆

    OpenAIRE

    Zhang, Ting; Zhang, Zhanwei; Dong, Keli; Li, Guangcheng; Zhu, Hong

    2012-01-01

    One of our previous studies showed that Yizhijiannao Granule, a compound Chinese medicine, effectively improved the clinical symptoms of Alzheimer's disease. In the present study, we established a model of Alzheimer's disease using beta-amyloid (25–35) in PC12 cells, and treated the cells with Yizhijiannao Granule and its four monomers, i.e., icariin, catechin, Panax notoginseng saponins, and eleutheroside E. Flow cytometry showed that Yizhijiannao Granule-containing serum, icariin, Panax not...

  16. Improved targeting of the alpha(v)beta (3) integrin by multimerisation of RGD peptides.

    NARCIS (Netherlands)

    Dijkgraaf, I.; Kruijtzer, J.A.; Liu, S.; Soede, A.C.; Oyen, W.J.G.; Corstens, F.H.M.; Liskamp, R.M.; Boerman, O.C.

    2007-01-01

    PURPOSE: The integrin alpha(v)beta(3) is expressed on sprouting endothelial cells and on various tumour cell types. Due to the restricted expression of alpha(v)beta(3) in tumours, alpha(v)beta(3) is considered a suitable receptor for tumour targeting. In this study the alpha(v)beta(3) binding charac

  17. Imaging characteristic of dual-phase {sup 18}F-florbetapir (AV-45/Amyvid) PET for the concomitant detection of perfusion deficits and beta-amyloid deposition in Alzheimer's disease and mild cognitive impairment

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Kun-Ju; Hsiao, Ing-Tsung; Hsieh, Chia-Ju; Wey, Shiaw-Pyng; Yen, Tzu-Chen [Linkou Chang Gung Memorial Hospital and University, Department of Nuclear Medicine and Molecular Imaging Center, Taoyuan (China); Chang Gung University, Department of Medical Imaging and Radiological Sciences and Healthy Aging Research Center, Taoyuan (China); Hsu, Jung-Lung [Linkou Chang Gung Memorial Hospital, Section of Dementia and Cognitive Impairment, Department of Neurology, Taoyuan (China); Taipei Medical University, Graduate Institute of Humanities in Medicine, Taipei (China); Huang, Chin-Chang; Huang, Kuo-Lun [Linkou Chang Gung Memorial Hospital and University, Department of Neurology, Taoyuan (China)

    2016-07-15

    We investigated dual-phase {sup 18}F-florbetapir (AV-45/Amyvid) PET imaging for the concomitant detection of brain perfusion deficits and beta-amyloid deposition in patients with Alzheimer's disease (AD) and amnestic mild cognitive impairment (MCI), and in cognitively healthy controls (HCs). A total of 82 subjects (24 AD patients, 44 MCI patients and 14 HCs) underwent both dual-phase {sup 18}F-AV-45 PET and MRI imaging. Dual-phase dynamic PET imaging consisted of (1) five 1-min scans obtained 1 - 6 min after tracer injection (perfusion {sup 18}F-AV-45 imaging, pAV-45), and (2) ten 1-min scans obtained 50 - 60 min after tracer injection (amyloid {sup 18}F-AV-45 imaging). Amyloid-negative MCI/AD patients were excluded. Volume of interest analysis and statistical parametric mapping of pAV-45 and {sup 18}F-AV-45 images were performed to investigate the perfusion deficits and the beta-amyloid burden in the three study groups. The associations between Mini-Mental State Examination (MMSE) scores and global perfusion deficits and amyloid deposition were investigated with linear and segmental linear correlation analyses. HCs generally had normal pAV-45 findings, whereas perfusion deficits were evident in the hippocampus, and temporal, parietal and middle frontal cortices in both MCI and AD patients. The motor-sensory cortex was relatively preserved. MMSE scores in the entire study cohort were significantly associated with the degree of perfusion impairment as assessed by pAV-45 imaging (r = 0.5156, P < 0.0001). {sup 18}F-AV-45 uptake was significantly higher in AD patients than in the two other study groups. However, the correlation between MMSE scores and {sup 18}F-AV-45 uptake in MCI patients was more of a binary phenomenon and began in MCI patients with MMSE score 23.14 when {sup 18}F-AV-45 uptake was higher and MMSE score lower than in patients with early MCI. Amyloid deposition started in the precuneus and the frontal and temporal regions in early MCI, ultimately

  18. β-淀粉样肽对线粒体的损伤及其在阿尔茨海默病中的作用%Mitochondria injury by amyloidpeptide and it's function in Alzheimer's disease

    Institute of Scientific and Technical Information of China (English)

    杨秀明

    2012-01-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disease, which characterized by extracellular amyloidpeptide (Aβ) plaques and intracellular neurofibrillary tangles(NFTs). The etiological factors and pathogenesis are still unclear. Amyloidpeptide locates in mitochondria and it can induce a series of disorders in mitochondrial function, such as decreasing in ATP production, promoting oxidative stress, brokening the balance of mitochondrial fission/fusion and enhancing cellular apoptosis, and so on.%阿尔茨海默病(Alzheimer′s disease,AD)是以老年斑(senile plaque,SP)和神经纤维缠结(neurofibrillary tangles,NFTs)为主要病理特征的中枢神经系统退行性疾病,其病因及发病机制至今仍不明确.AD的病变产物β-淀粉样肽(amyloidpeptide,Aβ)在线粒体内沉积导致线粒体功能障碍,如ATP产生减少、氧化应激增强、细胞凋亡增强以及线粒体分裂/融合异常等,进而引起AD的一系列病理变化.

  19. Telencephalin protects PAJU cells from amyloid beta protein-induced apoptosis by activating the ezrin/radixin/moesin protein family/phosphatidylinositol-3-kinase/protein kinase B pathway

    Institute of Scientific and Technical Information of China (English)

    Heping Yang; Dapeng Wu; Xiaojie Zhang; Xiang Wang; Yi Peng; Zhiping Hu

    2012-01-01

    Telencephalin is a neural glycoprotein that reduces apoptosis induced by amyloid beta protein in the human neural tumor cell line PAJU.In this study,we examined the role of the ezrin/radixin/moesin protein family/phosphatidylinositol-3-kinase/protein kinase B pathway in this process.Western blot analysis demonstrated that telencephalin,phosphorylated ezrin/radixin/moesin and phosphatidylinositol-3-kinase/protein kinase B were not expressed in PAJU cells transfected with empty plasmid,while they were expressed in PAJU cells transfected with a telencephalin expression plasmid.After treatment with 1.0 nM amyloid beta protein 42,expression of telencephalin and phosphorylated phosphatidylinositol-3-kinase/protein kinase B in the transfected cells gradually diminished,while levels of phosphorylated ezrin/radixin/moesin increased.In addition,the high levels of telencephalin,phosphorylated ezrin/radixin/moesin and phosphatidylinositol-3-kinase/protein kinase B expression in PAJU cells transfected with a telencephalin expression plasmid could be suppressed by the phosphatidylinositol-3-kinase inhibitor LY294002.These findings indicate that telencephalin activates the ezrin/radixin/moesin family/phosphatidylinositol-3-kinase/protein kinase B pathway and protects PAJU cells from amyloid beta protein-induced apoptosis.

  20. How can a beta-sheet peptide be both a potent antimicrobial and harmfully toxic? Molecular dynamics simulations of protegrin-1 in micelles

    DEFF Research Database (Denmark)

    Langham, Allison A; Khandelia, Himanshu; Kaznessis, Yiannis N

    2006-01-01

    In this work, the naturally occurring beta-hairpin antimicrobial peptide protegrin-1 (PG-1) is studied by molecular dynamics simulation in all-atom sodium dodecylsulfate and dodecylphosphocholine micelles. These simulations provide a high-resolution picture of the interactions between the peptide...

  1. The architecture of amyloid-like peptide fibrils revealed by X-ray scattering, diffraction and electron microscopy

    DEFF Research Database (Denmark)

    Langkilde, Annette Eva; Morris, Kyle L; Serpell, Louise C;

    2015-01-01

    GNNQQNY peptide fragment of a yeast prion protein. Data from small-angle X-ray solution scattering, fibre diffraction and electron microscopy are combined with existing high-resolution X-ray crystallographic structures to investigate the fibrillation process and the hierarchical fibril structure of the...

  2. Activation of phospholipase A2 by temporin B: Formation of antimicrobial peptide-enzyme amyloid-type cofibrils

    NARCIS (Netherlands)

    Code, Christian; Domanov, Y.A.; Killian, J.A.; Kinnunen, P.K.J.

    2009-01-01

    Phospholipases A2 have been shown to be activated in a concentration dependent manner by a number of antimicrobial peptides, including melittin, magainin 2, indolicidin, and temporins B and L. Here we used fluorescently labelled bee venom PLA2 (PLA2D) and the saturated phospholipid substrate 1,2-dip

  3. Self-assembling DNA-peptide hybrids: morphological consequences of oligonucleotide grafting to a pathogenic amyloid fibrils forming dipeptide.

    Science.gov (United States)

    Gour, Nidhi; Kedracki, Dawid; Safir, Ilyès; Ngo, Kien Xuan; Vebert-Nardin, Corinne

    2012-06-01

    For the very first time, highly efficient synthesis of DNA-peptide hybrids to scaffold self-assembled nanostructures is described. Oligonucleotide conjugation to the diphenylalanine dipeptide triggers a morphological transition from fibrillar to vesicular structures which may potentially be used as delivery vehicles, since they exhibit pH triggered release. PMID:22534735

  4. Functional Hydrogel Materials Inspired by Amyloid

    Science.gov (United States)

    Schneider, Joel

    2012-02-01

    Protein assembly resulting in the formation of amyloid fibrils, assemblies rich in cross beta-sheet structure, is normally thought of as a deleterious event associated with disease. However, amyloid formation is also involved in a diverse array of normal biological functions such as cell adhesion, melanin synthesis, insect defense mechanism and modulation of water surface tension by fungi and bacteria. These findings indicate that Nature has evolved to take advantage of large, proteinaceous fibrillar assemblies to elicit function. We are designing functional materials, namely hydrogels, from peptides that self-assembled into fibrillar networks, rich in cross beta-sheet structure. These gels can be used for the direct encapsulation and delivery of small molecule-, protein- and cell-based therapeutics. Loaded gels exhibit shear-thinning/self-healing mechanical properties enabling their delivery via syringe. In addition to their use for delivery, we have found that some of these gels display antibacterial activity. Although cytocompatible towards mammalian cells, the hydrogels can kill a broad spectrum of bacteria on contact.

  5. High plasma levels of islet amyloid polypeptide in young with new-onset of type 1 diabetes mellitus.

    Directory of Open Access Journals (Sweden)

    Johan F Paulsson

    Full Text Available AIMS/HYPOTHESIS: Islet amyloid polypeptide (IAPP is a beta cell hormone secreted together with insulin upon glucose stimulation. IAPP participates in normal glucose regulation, but IAPP is also known for its ability to misfold and form islet amyloid. Amyloid fibrils form through smaller cell toxic intermediates and deposited amyloid disrupts normal islet architecture. Even though IAPP and amyloid formation are much discussed in type 2 diabetes, our aim was to study the significance of IAPP in type 1 diabetes. RESULTS: Plasma IAPP levels in children and adolescents with newly diagnosed type 1 diabetes (n = 224 were analysed and concentrations exceeding 100 pmol/L (127.2-888.7 pmol/L were found in 11% (25/224. The IAPP increase did not correlate with C-peptide levels. CONCLUSIONS/INTERPRETATION: Plasma levels of IAPP and insulin deviate in a subpopulation of young with newly-diagnosed type 1 diabetes. The determined elevated levels of IAPP might increase the risk for IAPP misfolding and formation of cell toxic amyloid in beta cells. This finding add IAPP-aggregation to the list over putative pathological factors causing type 1 diabetes.

  6. The Relationship between Different Assays for Detection and Quantification of Amyloid Beta 42 in Human Cerebrospinal Fluid

    Directory of Open Access Journals (Sweden)

    Teresa A. Ellis

    2012-01-01

    Full Text Available Alzheimer's disease (AD, which is characterized by a degeneration of neurons and their synapses, is one of the most common forms of dementia. CSF levels of amyloid 42 (A42 have been recognized as a strong candidate to serve as an AD biomarker. There are a number of commercial assays that are routinely employed for measuring A42; however, these assays give diverse ranges for the absolute levels of CSF A42. In order to employ CSF A42 as a biomarker across multiple laboratories, studies need to be performed to understand the relationship between the different platforms. We have analyzed CSF samples from both diseased and nondiseased subjects with two different widely used assay platforms. The results showed that different values for the levels of CSF A42 were reported, depending on the assay used. Nonetheless, both assays clearly demonstrated statistically significant differences in the levels of A42 in CSF from AD relative to age-matched controls (AMC. This paper provides essential data for establishing the relationship between these assays and provides an important step towards the validation of A42 as a biomarker for AD.

  7. Ablation of MMP9 gene ameliorates paracellular permeability and fibrinogen-amyloid beta complex formation during hyperhomocysteinemia.

    Science.gov (United States)

    Muradashvili, Nino; Tyagi, Reeta; Metreveli, Naira; Tyagi, Suresh C; Lominadze, David

    2014-09-01

    Increased blood level of homocysteine (Hcy), called hyperhomocysteinemia (HHcy) accompanies many cognitive disorders including Alzheimer's disease. We hypothesized that HHcy-enhanced cerebrovascular permeability occurs via activation of matrix metalloproteinase-9 (MMP9) and leads to an increased formation of fibrinogen-β-amyloid (Fg-Aβ) complex. Cerebrovascular permeability changes were assessed in C57BL/6J (wild type, WT), cystathionine-β-synthase heterozygote (Cbs+/-, a genetic model of HHcy), MMP9 gene knockout (Mmp9-/-), and Cbs and Mmp9 double knockout (Cbs+/-/Mmp9-/-) mice using a dual-tracer probing method. Expression of vascular endothelial cadherin (VE-cadherin) and Fg-Aβ complex formation was assessed in mouse brain cryosections by immunohistochemistry. Short-term memory of mice was assessed with a novel object recognition test. The cerebrovascular permeability in Cbs+/- mice was increased via mainly the paracellular transport pathway. VE-cadherin expression was the lowest and Fg-Aβ complex formation was the highest along with the diminished short-term memory in Cbs+/- mice. These effects of HHcy were ameliorated in Cbs+/-/Mmp9-/- mice. Thus, HHcy causes activation of MMP9 increasing cerebrovascular permeability by downregulation of VE-cadherin resulting in an enhanced formation of Fg-Aβ complex that can be associated with loss of memory. These data may lead to the identification of new targets for therapeutic intervention that can modulate HHcy-induced cerebrovascular permeability and resultant pathologies. PMID:24865997

  8. Nanoscale size dependence in the conjugation of amyloid beta and ovalbumin proteins on the surface of gold colloidal particles

    International Nuclear Information System (INIS)

    Absorption spectroscopy was utilized to investigate the conjugation of amyloid β protein solution (Aβ1-40) and chicken egg albumin (ovalbumin) with various sizes of gold colloidal nanoparticles for various pHs, ranging from pH 2 to pH 10. The pH value that indicates the colour change, pHo, exhibited colloidal size dependence for both Aβ1-40 and ovalbumin coated particles. In particular, Aβ1-40 coated gold colloidal particles exhibited non-continuous size dependence peaking at 40 and 80 nm, implying that their corresponding cage-like structures provide efficient net charge cancellation at these core sizes. Remarkably, only the pHo value for ovalbumin coated 80 nm gold colloid was pH>7, and a specific cage-like structure is speculated to have a positive net charge facing outward when ovalbumin self-assembles over this particular gold colloid. The previously reported reversible colour change between pH 4 and 10 took place only with Aβ1-40 coated 20 nm gold colloids; this was also explored with ovalbumin coated gold colloids. Interestingly, gold colloidal nanoparticles showed a quasi-reversible colour change when they were coated with ovalbumin for all test sizes. The ovalbumin coated gold colloid was found to maintain reversible properties longer than Aβ1-40 coated gold colloid

  9. Exploring Beta-Amyloid Protein Transmembrane Insertion Behavior and Residue-Specific Lipid Interactions in Lipid Bilayers Using Multiscale MD Simulations

    Science.gov (United States)

    Qiu, Liming; Vaughn, Mark; Cheng, Kelvin

    2013-03-01

    Beta-amyloid (Abeta) interactions with neurons are linked to Alzheimer's. Using a multiscale MD simulation strategy that combines the high efficiency of phase space sampling of coarse-grained MD (CGD) and the high spatial resolution of Atomistic MD (AMD) simulations, we studied the Abeta insertion dynamics in cholesterol-enriched and -depleted lipid bilayers that mimic the neuronal membranes domains. Forward (AMD-CGD) and reverse (CGD-AMD) mappings were used. At the atomistic level, cholesterol promoted insertion of Abeta with high (folded) or low (unfolded) helical contents of the lipid insertion domain (Lys28-Ala42), and the insertions were stabilized by the Lys28 snorkeling and Ala42-anchoring to the polar lipid groups of the bilayer up to 200ns. After the forward mapping, the folded inserted state switched to a new extended inserted state with the Lys28 descended to the middle of the bilayer while the unfolded inserted state migrated to the membrane surface up to 4000ns. The two new states remained stable for 200ns at the atomistic scale after the reverse mapping. Our results suggested that different Abeta membrane-orientation states separated by free energy barriers can be explored by the multiscale MD more effectively than by Atomistic MD simulations alone. NIH RC1-GM090897-02

  10. 7.0T nuclear magnetic resonance evaluation of the amyloid beta (1-40) animal model of Alzheimer’s disease:comparison of cytology veriifcation

    Institute of Scientific and Technical Information of China (English)

    Lei Zhang; Shuai Dong; Guixiang Zhao; Yu Ma

    2014-01-01

    3.0T magnetic resonance spectroscopic imaging is a commonly used method in the research of brain function in Alzheimer’s disease. However, the role of 7.0T high-ifeld magnetic resonance spectroscopic imaging in brain function of Alzheimer’s disease remains unclear. In this study, 7.0T magnetic resonance spectroscopy showed that in the hippocampus of Alzheimer’s disease rats, the N-acetylaspartate wave crest was reduced, and the creatine and choline wave crest was elevated. This ifnding was further supported by hematoxylin-eosin staining, which showed a loss of hippocampal neurons and more glial cells. Moreover, electron microscopy showed neuronal shrinkage and mitochondrial rupture, and scanning electron microscopy revealed small size hippocampal synaptic vesicles, incomplete synaptic structure, and reduced number. Overall, the results revealed that 7.0T high-ifeld nuclear magnetic resonance spectroscopy detected the lesions and functional changes in hippocampal neurons of Alzheimer’s disease rats in vivo, allowing the possibility for assessing the success rate and grading of the amyloid beta (1-40) animal model of Alzheimer’s disease.

  11. Curcumin inhibits beta-amyloid protein 40/42 expression in the brain in a concentration-and time-dependent manner

    Institute of Scientific and Technical Information of China (English)

    Xiong Zhang; Lu Si; Xiaodong Shi; Wenke Yin; Yu Li

    2010-01-01

    Several studies have demonstrated that the amount of beta-amyloid(Aβ)protein in the brain can be lowered by down-regulating Aβ production,promoting Aβ degradation,reducing Aβ oligomerization or deposition,thereby alleviating symptoms of Alzheimer's disease.Curcumin has been known to be a peroxisome proliferator activated receptor gamma(PPARy)agonist and can obviously inhibit Aβ production and oligomerization.This study investigated the effects of curcumin on the β-site APP cleaving enzyme 1(BACE1)activity and PPARy expression in human neuroblastoma SH-SY5Y cells,and validated the inhibitory effects of curcumin on Aβ40/42 expression in the brain.Results revealed that PPARy mRNA and protein expression in the human neuroblastoma SH-SY5Y cells significantly increased with increasing curcumin concentration and time course(P < 0.05);BACE1 mRNA and protein expression and Aβ40/42 production significantly decreased with increasing curcumin concentration and time course(P < 0.05).The changes in PPARY and BACE1expression during Aβ production could be reversed by the PPARy antagonist GW9662.These findings indicate that curcumin reduced Aβ production by activating PPARy expression and inhibiting BACE1 expression in a concentration-and time-dependent manner.

  12. Antiamnesic Effect of Broccoli (Brassica oleracea var. italica) Leaves on Amyloid Beta (Aβ)1-42-Induced Learning and Memory Impairment.

    Science.gov (United States)

    Park, Seon Kyeong; Ha, Jeong Su; Kim, Jong Min; Kang, Jin Yong; Lee, Du Sang; Guo, Tian Jiao; Lee, Uk; Kim, Dae-Ok; Heo, Ho Jin

    2016-05-01

    To examine the antiamnesic effects of broccoli (Brassica oleracea var. italica) leaves, we performed in vitro and in vivo tests on amyloid beta (Aβ)-induced neurotoxicity. The chloroform fraction from broccoli leaves (CBL) showed a remarkable neuronal cell-protective effect and an inhibition against acetylcholinesterase (AChE). The ameliorating effect of CBL on Aβ1-42-induced learning and memory impairment was evaluated by Y-maze, passive avoidance, and Morris water maze tests. The results indicated improving cognitive function in the CBL group. After the behavioral tests, antioxidant effects were detected by superoxide dismutase (SOD), oxidized glutathione (GSH)/total GSH, and malondialdehyde (MDA) assays, and inhibition against AChE was also presented in the brain. Finally, oxo-dihydroxy-octadecenoic acid (oxo-DHODE) and trihydroxy-octadecenoic acid (THODE) as main compounds were identified by quadrupole time-of-flight ultraperformance liquid chromatography (Q-TOF UPLC-MS) analysis. Therefore, our studies suggest that CBL could be used as a natural resource for ameliorating Aβ1-42-induced learning and memory impairment. PMID:27079470

  13. Protective effects of components of the Chinese herb grassleaf sweetlfag rhizome on PC12 cells incubated with amyloid-beta42

    Institute of Scientific and Technical Information of China (English)

    Zi-hao Liang; Xiao-hui Cheng; Zhi-gang Ruan; Han Wang; Shan-shan Li; Jing Liu; Guo-ying Li; Su-min Tian

    2015-01-01

    The major ingredients of grassleaf sweetlfag rhizome areβ-asarone and eugenol, which can cross the blood-brain barrier and protect neurons. This study aimed to observe the neuroprotective effects and mechanisms ofβ-asarone and eugenol, components of the Chinese herb grassleaf sweetlfag rhizome, on PC12 cells. First, PC12 cells were cultured with different concentrations (between 1 × 10–10 M and 1 × 10–5 M) ofβ-asarone and eugenol. Survival rates of PC12 cells were not significantly affected. Second, PC12 cells incubated with amyloid-beta42, which reduced cell survival, were cultured under the same conditions (1 × 10–6 Mβ-asarone and eugenol). The survival rates of PC12 cells significantly increased, while expression levels of the mRNAs for the pro-apoptotic protein Bax decreased, and those for the anti-apoptotic protein Bcl mRNA increased. In addition, the combination ofβ-asarone with eugenol achieved better results than either component alone. Our experimental ifndings indicate that bothβ-asarone and eugenol protect PC12 cells through inhibiting apoptosis, and that the combination of the two is better than either alone.

  14. Protective effects of components of the Chinese herb grassleaf sweetflag rhizome on PC12 cells incubated with amyloid-beta42

    Directory of Open Access Journals (Sweden)

    Zi-hao Liang

    2015-01-01

    Full Text Available The major ingredients of grassleaf sweetflag rhizome are β-asarone and eugenol, which can cross the blood-brain barrier and protect neurons. This study aimed to observe the neuroprotective effects and mechanisms of β-asarone and eugenol, components of the Chinese herb grassleaf sweetflag rhizome, on PC12 cells. First, PC12 cells were cultured with different concentrations (between 1 × 10 -10 M and 1 × 10 -5 M of β-asarone and eugenol. Survival rates of PC12 cells were not significantly affected. Second, PC12 cells incubated with amyloid-beta42, which reduced cell survival, were cultured under the same conditions (1 × 10 -6 M β-asarone and eugenol. The survival rates of PC12 cells significantly increased, while expression levels of the mRNAs for the pro-apoptotic protein Bax decreased, and those for the anti-apoptotic protein Bcl mRNA increased. In addition, the combination of β-asarone with eugenol achieved better results than either component alone. Our experimental findings indicate that both β-asarone and eugenol protect PC12 cells through inhibiting apoptosis, and that the combination of the two is better than either alone.

  15. Curcumin Attenuates Beta-Amyloid-Induced Neuroinflammation via Activation of Peroxisome Proliferator-Activated Receptor-Gamma Function in a Rat Model of Alzheimer's Disease.

    Science.gov (United States)

    Liu, Zun-Jing; Li, Zhong-Hao; Liu, Lei; Tang, Wen-Xiong; Wang, Yu; Dong, Ming-Rui; Xiao, Cheng

    2016-01-01

    Neuroinflammation is known to have a pivotal role in the pathogenesis of Alzheimer's disease (AD), and curcumin has been reported to have therapeutical effects on AD because of its anti-inflammatory effects. Curcumin is not only a potent PPARγ agonist, but also has neuroprotective effects on cerebral ischemic injury. However, whether PPARγ activated by curcumin is responsible for the anti-neuroinflammation and neuroprotection on AD remains unclear, and needs to be further investigated. Here, using both APP/PS1 transgenic mice and beta-amyloid-induced neuroinflammation in mixed neuronal/glial cultures, we showed that curcumin significantly alleviated spatial memory deficits in APP/PS1 mice and promoted cholinergic neuronal function in vivo and in vitro. Curcumin also reduced the activation of microglia and astrocytes, as well as cytokine production and inhibited nuclear factor kappa B (NF-κB) signaling pathway, suggesting the beneficial effects of curcumin on AD are attributable to the suppression of neuroinflammation. Attenuation of these beneficial effects occurred when co-administrated with PPARγ antagonist GW9662 or silence of PPARγ gene expression, indicating that PPARγ might be involved in anti-inflammatory effects. Circular dichroism and co-immunoprecipitation analysis showed that curcumin directly bound to PPARγ and increased the transcriptional activity and protein levels of PPARγ. Taking together, these data suggested that PPARγ might be a potential target of curcumin, acting to alleviate neuroinflammation and improve neuronal function in AD. PMID:27594837

  16. Carnosic Acid Prevents Beta-Amyloid-Induced Injury in Human Neuroblastoma SH-SY5Y Cells via the Induction of Autophagy.

    Science.gov (United States)

    Liu, Jie; Su, Hua; Qu, Qiu-Min

    2016-09-01

    Beta-amyloid (Aβ), the hallmark protein in Alzheimer's disease (AD), induces neurotoxicity that involves oxidative stress and mitochondrial dysfunction, leading to cell death. Carnosic acid (CA), a polyphenolic diterpene isolated from the herb rosemary (Rosemarinus officinalis), was investigated in our study to assess its neuroprotective effect and underlying mechanism against Aβ-induced injury in human neuroblastoma SH-SY5Y cells. We found that CA pretreatment alleviated the Aβ25-35-induced loss of cell viability, inhibited both Aβ1-42 accumulation and tau hyperphosphorylation, reduced reactive oxygen species generation, and maintained the mitochondrial membrane potential. Moreover, CA increased the microtubule-associated protein light chain 3 (LC3)-II/I ratio and decreased SQSTM1(p62), indicating that CA could induce autophagy. Autophagy inhibitor 3-methyladenine (3-MA) attenuated the neuroprotective effect of CA, suggesting that autophagy was involved in the neuroprotection of CA. It was also observed that CA activated AMP-activated protein kinase (AMPK) but inhibited mammalian target of rapamycin (mTOR). Furthermore, blocking AMPK with si-AMPKα successfully inhibited the upregulation of LC3-II/I, prevented the downregulation of phosphorylation of mTOR and SQSTM1(p62), indicating that CA induced autophagy in SH-SY5Y cells via the activation of AMPK. These results suggested that CA might be a potential agent for preventing AD. PMID:27168327

  17. The effect of beta-amyloid on face processing in young and old adults: A multivariate analysis of the BOLD signal.

    Science.gov (United States)

    Rieck, Jenny R; Rodrigue, Karen M; Kennedy, Kristen M; Devous, Michael D; Park, Denise C

    2015-07-01

    The recent ability to measure in vivo beta-amyloid (Aβ), a marker of Alzheimer's disease (AD), has led to an increased focus on the significance of Aβ deposition in clinically normal adults. Evidence suggests that healthy adults with elevated cortical Aβ show differences in neural activity associated with memory encoding-specifically encoding of face stimuli. Here, we examined if Aβ deposition in clinically normal adults was related to differences in neural activity in ventral visual cortex during face viewing. Our sample included 23 high-Aβ older adults, 23 demographically matched low-Aβ older adults, and 16 young adults. Participants underwent cognitive testing, Aβ positron emission tomography imaging with (18) F-Florbetapir, and functional magnetic resonance imaging to measure neural activity while participants passively viewed photographs of faces. Using barycentric discriminant analysis-a between-groups classification technique-we found that patterns of neural activity in the left fusiform gyrus, a region highly responsive to faces, distinguished Aβ status of participants. Older adults with elevated Aβ were characterized by decreased activity in left fusiform compared to Aβ-negative older adults. Further, we found that the degree to which older adults expressed decreased fusiform activity was related to worse performance on tasks of processing speed. Our results provide unique evidence that, in addition to previously studied memory and default regions, decreased neural activity in a region important for face perception was associated with elevated Aβ and may be an early manifestation of AD. PMID:25832770

  18. Alpha-tocopherol quinine ameliorates spatial memory deficits by reducing beta-amyloid oligomers, neuroinflammation and oxidative stress in transgenic mice with Alzheimer's disease.

    Science.gov (United States)

    Wang, Shao-Wei; Yang, Shi-Gao; Liu, Wen; Zhang, Yang-Xin; Xu, Peng-Xin; Wang, Teng; Ling, Tie-Jun; Liu, Rui-Tian

    2016-01-01

    The pathologies of Alzheimer's disease (AD) is associated with soluble beta-amyloid (Aβ) oligomers, neuroinflammation and oxidative stress. Decreasing the levels of Aβ oligomer, glial activation and oxidative stress are potential therapeutic approaches for AD treatment. We previously found alpha-tocopherol quinine (α-TQ) inhibited Aβ aggregation and cytotoxicity, decreased the release of inflammatory cytokines and reactive oxygen species (ROS) in vitro. However, whether α-TQ ameliorates memory deficits and other neuropathologies in mice or patients with AD remains unknown. In this study, we reported that orally administered α-TQ ameliorated memory impairment in APPswe/PS1dE9 transgenic mice, decreased oxidative stress and the levels of Aβ oligomer in the brains of mice, prevented the production of inducible nitric oxide synthase and inflammatory mediators, such as interleukin-6 and interleukin-1β, and inhibited microglial activation by inhibiting NF-κB signaling pathway. These findings suggest that α-TQ has potential therapeutic value for AD treatment. PMID:26358659

  19. SS31, a Small Molecule Antioxidant Peptide, Attenuates β-Amyloid Elevation, Mitochondrial/Synaptic Deterioration and Cognitive Deficit in SAMP8 Mice.

    Science.gov (United States)

    Jia, Yan-Li; Sun, Su-Juan; Chen, Jing-Hong; Jia, Qian; Huo, Tian-Tian; Chu, Li-Fang; Bai, Jiang-Tao; Yu, Ye-Jing; Yan, Xiao-Xin; Wang, Jian-Hua

    2016-01-01

    Mitochondrial dysfunction, oxidative stress and β -amyloid (Aβ) formation are thought to cause neuronal and synaptic degeneration underlying cognitive decline in Alzheimer's disease (AD). The senescence-accelerated mouse-prone 8 (SAMP8) mice have been used as an animal model for mechanistic and translational research for AD. In the present study we characterized mitochondrial and synaptic alterations in SAMP8 mice relative to SAMR1control mice and explored a protective effect of the small molecule peptide SS31, a cell membrane penetrant antioxidant, on mitochondrial and synaptic protein integrity as well as cognitive performance. Electron microscopic analysis revealed mitochondrial/synaptic deterioration in 10 months-old SAMP8 relative to SAMR1 mice, with the changes in the former rescued following 8 weeks treatment with SS31 (5 mg/kg/day, i.p.). Elevation of Aβ42, mitochondrial fission protein (DLP1, Fis1) and matrix protein cyclophilin D (CypD), and reductions of mitochondrial fusion protein (Mfn2) and synaptic (i.e. synaptophysin, postsynaptic density protein 95 and growth associated protein 43) proteins, were detected in hippocampal lysates in SAMP8 mice relative to SAMR1. The above altered protein expressions in the SAMP8 mouse brain were restored with the SS31 treatment. Moreover, the SS31 treatment rescued learning and memory deficits detected in 10 month-old SAMP8 mice. Together, the findings suggest that this mitochondria-targeting antioxidant peptide may be of potential utility for AD therapy, with its pharmacological efficacy involves lowering of central Aβ levels and protection of mitochondrial homeostasis and synaptic integrity, which may help slow down cognitive decline. PMID:26679857

  20. Correction of a splice-site mutation in the beta-globin gene stimulated by triplex-forming peptide nucleic acids

    OpenAIRE

    Chin, Joanna Y; Kuan, Jean Y.; Lonkar, Pallavi S.; Krause, Diane S.; Seidman, Michael M.; Peterson, Kenneth R.; Nielsen, Peter E.; Kole, Ryszard; Glazer, Peter M.

    2008-01-01

    Splice-site mutations in the beta-globin gene can lead to aberrant transcripts and decreased functional beta-globin, causing beta-thalassemia. Triplex-forming DNA oligonucleotides (TFOs) and peptide nucleic acids (PNAs) have been shown to stimulate recombination in reporter gene loci in mammalian cells via site-specific binding and creation of altered helical structures that provoke DNA repair. We have designed a series of triplex-forming PNAs that can specifically bind to sequences in the hu...

  1. Validation of a Commercial Chemiluminescence Immunoassay for the Simultaneous Measurement of Three Different AmyloidPeptides in Human Cerebrospinal Fluid and Application to a Clinical Cohort.

    Science.gov (United States)

    Klafki, Hans-W; Hafermann, Henning; Bauer, Chris; Haussmann, Ute; Kraus, Inga; Schuchhardt, Johannes; Muck, Stephan; Scherbaum, Norbert; Wiltfang, Jens

    2016-09-01

    A comprehensive assay validation campaign of a commercially available chemiluminescence multiplex immunoassay for the simultaneous measurement of the amyloidpeptides Aβ38, Aβ40, and Aβ42 in human cerebrospinal fluid (CSF) is presented. The assay quality parameters we addressed included impact of sample dilution, parallelism, lower limits of detection, lower limits of quantification, intra- and inter-assay repeatability, analytical spike recoveries, and between laboratory reproducibility of the measurements. The assay performed well in our hands and fulfilled a number of predefined acceptance criteria. The CSF levels of Aβ40 and Aβ42 determined in a clinical cohort (n = 203) were statistically significantly correlated with available ELISA data of Aβ1-40 (n = 158) and Aβ1-42 (n = 179) from a different laboratory. However, Bland-Altman method comparison indicated systematic differences between the assays. The data presented here furthermore indicate that the CSF concentration of Aβ40 can surrogate total CSF Aβ and support the hypothesis that the Aβ42/Aβ40 ratio outperforms CSF Aβ42 alone as a biomarker for Alzheimer's disease due to a normalization to total Aβ levels. PMID:27567847

  2. Neutron Scattering Studies of the Interplay of Amyloid β Peptide(1-40) and An Anionic Lipid 1,2-dimyristoyl-sn-glycero-3-phosphoglycerol.

    Science.gov (United States)

    Rai, Durgesh K; Sharma, Veerendra K; Anunciado, Divina; O'Neill, Hugh; Mamontov, Eugene; Urban, Volker; Heller, William T; Qian, Shuo

    2016-01-01

    The interaction between lipid bilayers and Amyloid β peptide (Aβ) plays a critical role in proliferation of Alzheimer's disease (AD). AD is expected to affect one in every 85 humans by 2050, and therefore, deciphering the interplay of Aβ and lipid bilayers at the molecular level is of profound importance. In this work, we applied an array of neutron scattering methods to study the structure and dynamics of Aβ(1-40) interacting 1,2-dimyristoyl-sn-glycero-3-phosphoglycerol (DMPG) bilayers. In the structural investigations of lipid bilayer's response to Aβ binding, Small Angle Neutron Scattering and Neutron Membrane Diffraction revealed that the Aβ anchors firmly to the highly charged DMPG bilayers in the interfacial region between water and hydrocarbon chain, and it doesn't penetrate deeply into the bilayer. This association mode is substantiated by the dynamics studies with high resolution Quasi-Elastic Neutron Scattering experiments, showing that the addition of Aβ mainly affects the slower lateral motion of lipid molecules, especially in the fluid phase, but not the faster internal motion. The results revealed that Aβ associates with the highly charged membrane in surface with limited impact on the structure, but the altered membrane dynamics could have more influence on other membrane processes. PMID:27503057

  3. A fluorimetric study on the interaction between a Trp-containing beta-strand peptide and amphiphilic polymer-coated gold nanoparticles.

    Science.gov (United States)

    Yuan, Ming; Zhong, Ruibo; Yun, Xiaoling; Hou, Jiahua; Du, Qiqige; Zhao, Guofen; Zhang, Feng

    2016-02-01

    Owing to the inevitability of nanoparticles encountering proteins/peptides in current bio-nano-medicine development, it is important to know how they interact with each other in vitro before developing in vivo applications. To this end, a model de novo β-sheet-forming peptide and typical biocompatible nanoparticles were selected to study thermodynamic aspects of their interactions via a fluorescence quenching method. The results showed that Pep11 and AuNPs spontaneously formed conjugates, mainly driven by a coulombic interaction with a binding affinity of ~ 0.1 µM(-1); the physical adsorption process was cooperative. These results deepen our quantitative understanding of nanoparticle-peptide interactions. The results may also be helpful in further nanoparticle-peptide hybrid nanofabrication and also useful for the application of nanoparticles in the treatment of amyloid diseases. PMID:25920412

  4. Differential mode of interaction of ThioflavinT with native β structural motif in human α 1-acid glycoprotein and cross beta sheet of its amyloid: Biophysical and molecular docking approach

    Science.gov (United States)

    Ajmal, Mohammad Rehan; Nusrat, Saima; Alam, Parvez; Zaidi, Nida; Badr, Gamal; Mahmoud, Mohamed H.; Rajpoot, Ravi Kant; Khan, Rizwan Hasan

    2016-08-01

    The present study details the interaction mechanism of Thioflavin T (ThT) to Human α1-acid glycoprotein (AAG) applying various spectroscopic and molecular docking methods. Fluorescence quenching data revealed the binding constant in the order of 104 M-1 and the standard Gibbs free energy change value, ΔG = -6.78 kcal mol-1 for the interaction between ThT and AAG indicating process is spontaneous. There is increase in absorbance of AAG upon the interaction of ThT that may be due to ground state complex formation between ThT and AAG. ThT impelled rise in β-sheet structure in AAG as observed from far-UV CD spectra while there are minimal changes in tertiary structure of the protein. DLS results suggested the reduction in AAG molecular size, ligand entry into the central binding pocket of AAG may have persuaded the molecular compaction in AAG. Isothermal titration calorimetric (ITC) results showed the interaction process to be endothermic with the values of standard enthalpy change ΔH0 = 4.11 kcal mol-1 and entropy change TΔS0 = 10.82 kcal.mol- 1. Moreover, docking results suggested hydrophobic interactions and hydrogen bonding played the important role in the binding process of ThT with F1S and A forms of AAG. ThT fluorescence emission at 485 nm was measured for properly folded native form and for thermally induced amyloid state of AAG. ThT fluorescence with native AAG was very low, while on the other hand with amyloid induced state of the protein AAG showed a positive emission peak at 485 nm upon the excitation at 440 nm, although it binds to native state as well. These results confirmed that ThT binding alone is not responsible for enhancement of ThT fluorescence but it also required beta stacked sheet structure found in protein amyloid to give proper signature signal for amyloid. This study gives the mechanistic insight into the differential interaction of ThT with beta structures found in native state of the proteins and amyloid forms, this study reinforce

  5. Isorhynchophylline Protects PC12 Cells Against Beta-Amyloid-Induced Apoptosis via PI3K/Akt Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Yan-Fang Xian

    2013-01-01

    Full Text Available The neurotoxicity of amyloid-β (Aβ has been implicated as a critical cause of Alzheimer’s disease. Isorhynchophylline (IRN, an oxindole alkaloid isolated from Uncaria rhynchophylla, exerts neuroprotective effect against Aβ25–35-induced neurotoxicity in vitro. However, the exact mechanism for its neuroprotective effect is not well understood. The present study aimed to investigate the molecular mechanisms underlying the protective action of IRN against Aβ25–35-induced neurotoxicity in cultured rat pheochromocytoma (PC12 cells. Pretreatment with IRN significantly increased the cell viability, inhibited the release of lactate dehydrogenase and the extent of DNA fragmentation in Aβ25–35-treated cells. IRN treatment was able to enhance the protein levels of phosphorylated Akt (p-Akt and glycogen synthase kinase-3β (p-GSK-3β. Lithium chloride blocked Aβ25–35-induced cellular apoptosis in a similar manner as IRN, suggesting that GSK-3β inhibition was involved in neuroprotective action of IRN. Pretreatment with LY294002 completely abolished the protective effects of IRN. Furthermore, IRN reversed Aβ25–35-induced attenuation in the level of phosphorylated cyclic AMP response element binding protein (p-CREB and the effect of IRN could be blocked by the PI3K inhibitor. These experimental findings unambiguously suggested that the protective effect of IRN against Aβ25–35-induced apoptosis in PC12 cells was associated with the enhancement of p-CREB expression via PI3K/Akt/GSK-3β signaling pathway.

  6. Diet rich in date palm fruits improves memory, learning and reduces beta amyloid in transgenic mouse model of Alzheimer′s disease

    Directory of Open Access Journals (Sweden)

    Selvaraju Subash

    2015-01-01

    Full Text Available Background: At present, the treatment options available to delay the onset or slow down the progression of Alzheimer′s disease (AD are not effective. Recent studies have suggested that diet and lifestyle factors may represent protective strategies to minimize the risk of developing AD. Date palm fruits are a good source of dietary fiber and are rich in total phenolics and natural antioxidants, such as anthocyanins, ferulic acid, protocatechuic acid and caffeic acid. These polyphenolic compounds have been shown to be neuroprotective in different model systems. Objective: We investigated whether dietary supplementation with 2% and 4% date palm fruits (grown in Oman could reduce cognitive and behavioral deficits in a transgenic mouse model for AD (amyloid precursor protein [APPsw]/Tg2576. Materials and Methods: The experimental groups of APP-transgenic mice from the age of 4 months were fed custom-mix diets (pellets containing 2% and 4% date fruits. We assessed spatial memory and learning ability, psychomotor coordination, and anxiety-related behavior in all the animals at the age of 4 months and after 14 months of treatment using the Morris water maze test, rota-rod test, elevated plus maze test, and open-field test. We have also analyzed the levels of amyloid beta (Aβ protein (1-40 and 1-42 in plasma of control and experimental animals. Results: Standard diet-fed Tg mice showed significant memory deficits, increased anxiety-related behavior, and severe impairment in spatial learning ability, position discrimination learning ability and motor coordination when compared to wild-type on the same diet and Tg mice fed 2% and 4% date supplementation at the age of 18 months. The levels of both Aβ proteins were significantly lowered in date fruits supplemented groups than the Tg mice without the diet supplement. The neuroprotective effect offered by 4% date fruits diet to AD mice is higher than 2% date fruits diet. Conclusions: Our results suggest

  7. Inhibition of Src kinase activity attenuates amyloid associated microgliosis in a murine model of Alzheimer’s disease

    OpenAIRE

    Dhawan Gunjan; Combs Colin K

    2012-01-01

    Abstract Background Microglial activation is an important histologic characteristic of the pathology of Alzheimer’s disease (AD). One hypothesis is that amyloid beta (Aβ) peptide serves as a specific stimulus for tyrosine kinase-based microglial activation leading to pro-inflammatory changes that contribute to disease. Therefore, inhibiting Aβ stimulation of microglia may prove to be an important therapeutic strategy for AD. Methods Primary murine microglia cultures and the murine microglia c...

  8. Effect of nanoparticles binding beta-amyloid peptide on nitric oxide production by cultured endothelial cells and macrophages

    OpenAIRE

    Orlando A; Re F; Sesana S; Rivolta I; Panariti A; Brambilla D; Nicolas J; Couvreur P; Andrieux K; Masserini M; Cazzaniga E.

    2013-01-01

    Antonina Orlando,1 Francesca Re,1 Silvia Sesana,1 Ilaria Rivolta,1 Alice Panariti,1 Davide Brambilla,2 Julien Nicolas,2 Patrick Couvreur,2 Karine Andrieux,2 Massimo Masserini,1 Emanuela Cazzaniga1 1Department of Health Sciences, University of Milano-Bicocca, Monza, Italy; 2Institut Galien Paris Sud, University Paris-Sud, Châtenay-Malabry, France Background: As part of a project designing nanoparticles for the treatment of Alzheimer’s disease, we have synthesized and chara...

  9. A systematic review of amyloid-beta peptides as putative mediators of the association between affective disorders and Alzheimer's disease

    DEFF Research Database (Denmark)

    Abbasowa, L.; Heegaard, N. H. H.

    2014-01-01

    Background: Affective disorders are associated with an increased occurrence of cognitive deficits and have been linked to cognitive impairment and Alzheimer's disease. The putative molecular mechanisms involved in these associations are however not clear. The aim of this systematic review was to ...

  10. Take five—BACE and the γ-secretase quartet conduct Alzheimer's amyloid β-peptide generation

    OpenAIRE

    Haass, Christian

    2004-01-01

    In 1959, Dave Brubeck and Paul Desmond revolutionized modern jazz music by composing their unforgettable Take Five in 5/4, one of the most defiant time signatures in all music. Of similar revolutionary importance for biomedical and basic biochemical research is the identification of the minimal set of genes required to obtain a deadly time bomb ticking in all of us: Alzheimer's disease. It now appears that one needs to Take Five genes to produce a deadly peptide by a proteolytic mechanism, wh...

  11. Synaptic silencing and plasma membrane dyshomeostasis induced by amyloidpeptide are prevented by Aristotelia chilensis enriched extract.

    Science.gov (United States)

    Fuentealba, Jorge; Dibarrart, Andrea; Saez-Orellana, Francisco; Fuentes-Fuentes, María Cecilia; Oyanedel, Carlos N; Guzmán, José; Perez, Claudia; Becerra, José; Aguayo, Luis G

    2012-01-01

    Alzheimer's disease (AD) is characterized by the presence of different types of extracellular and neurotoxic aggregates of amyloid-β (Aβ). Recently, bioactive compounds extracted from natural sources showing neuroprotective properties have become of interest in brain neurodegeneration. We have purified, characterized, and evaluated the protective potential of one extract enriched in polyphenols obtained from Aristotelia chilensis (MQ), a Chilean berry fruit, in neuronal models of AD induced by soluble oligomers of Aβ1-40. For example, using primary hippocampal cultures from rats (E18), we observed neuroprotection when the neurons were co-incubated with Aβ (0.5 μM) plus MQ for 24 h (Aβ = 23 ± 2%; Aβ + MQ = 3 ± 1%; n = 3). In parallel, co-incubation of Aβ with MQ recovered the frequency of Ca2+ transient oscillations when compared to neurons treated with Aβ alone (Aβ = 72 ± 3%; Aβ + MQ = 86 ± 2%; n = 5), correlating with the changes observed in spontaneous synaptic activity. Additionally, MAP-2 immunostaining showed a preservation of the dendritic tree, suggesting that the toxic effect of Aβ is prevented in the presence of MQ. A new complex mechanism is proposed by which MQ induces neuroprotective effects including antioxidant properties, modulation of cell survival pathways, and/or direct interaction with the Aβ aggregates. Our results suggest that MQ induces changes in the aggregation kinetics of Aβ producing variations in the nucleation phase (Aβ: k1 = 2.7 ± 0.4 × 10-3 s-1 MQ: k1 = 8.3 ± 0.6 × 10-3 s-1) and altering Thioflavin T insertion in β-sheets. In conclusion, MQ induces a potent neuroprotection by direct interaction with the Aβ aggregates, generating far less toxic species and in this way protecting the neuronal network. PMID:22728896

  12. Amyloid Beta-Mediated Hypomethylation of Heme Oxygenase 1 Correlates with Cognitive Impairment in Alzheimer’s Disease

    Science.gov (United States)

    Sung, Hye Youn; Choi, Byung-Ok; Jeong, Jee Hyang; Kong, Kyoung Ae; Hwang, Jinha; Ahn, Jung-Hyuck

    2016-01-01

    To identify epigenetically regulated genes involved in the pathogenesis of Alzheimer’s disease (AD) we analyzed global mRNA expression and methylation profiles in amyloid precursor protein (APP)-Swedish mutant-expressing AD model cells, H4-sw and selected heme oxygenase-1 (HMOX1), which is associated with pathological features of AD such as neurofibrillary tangles and senile plaques. We examined the epigenetic regulatory mechanism of HMOX1 and its application as a diagnostic and prognostic biomarker for AD. Our results show that HMOX1 mRNA and protein expression was approximately 12.2-fold and 7.9-fold increased in H4-sw cells, respectively. Increased HMOX1 expression was also detected in the brain, particularly the hippocampus, of AD model transgenic mice. However, the methylation of specific CpG sites within its promoter, particularly at CpG located −374 was significantly decreased in H4-sw cells. Treatment of neuroglioma cells with the demethylating agent 5-aza-2′-deoxycytidine resulted in reduced methylation of HMOX1 promoter accompanied by enhanced HMOX1 expression strongly supporting DNA methylation-dependent transcriptional regulation of HMOX1. Toxic Aβ-induced aberrant hypomethylation of HMOX1 at −374 promoter CpG site was correlated with increased HMOX1expression. In addition to neuroglioma cells, we also found Aβ-induced epigenetic regulation of HMOX1 in human T lymphocyte Jurkat cells. We evaluated DNA methylation status of HMOX1 at −374 promoter CpG site in blood samples from AD patients, patients with mild cognitive impairment (MCI), and control individuals using quantitative methylation-specific polymerase chain reaction. We observed lower methylation of HMOX1 at the −374 promoter CpG site in AD patients compared to MCI and control individuals, and a correlation between Mini-Mental State Examination score and demethylation level. Receiver operating characteristics analysis revealed good discrimination of AD patients from MCI patients and

  13. Mitochondria-Targeted Antioxidant SS31 Prevents Amyloid Beta-Induced Mitochondrial Abnormalities and Synaptic Degeneration in Alzheimer's Disease.

    Science.gov (United States)

    Calkins, Marcus J; Manczak, Maria; Reddy, P Hemachandra

    2012-01-01

    In neuronal systems, the health and activity of mitochondria and synapses are tightly coupled. For this reason, it has been postulated that mitochondrial abnormalities may, at least in part, drive neurodegeneration in conditions such as Alzheimer's disease (AD). Mounting evidence from multiple Alzheimer's disease cell and mouse models and postmortem brains suggest that loss of mitochondrial integrity may be a key factor that mediates synaptic loss. Therefore, the prevention or rescue of mitochondrial dysfunction may help delay or altogether prevent AD-associated neurodegeneration. Since mitochondrial health is heavily dependent on antioxidant defenses, researchers have begun to explore the use of mitochondria-targeted antioxidants as therapeutic tools to prevent neurodegenerative diseases. This review will highlight advances made using a model mitochondria-targeted antioxidant peptide, SS31, as a potential treatment for AD. PMID:23226091

  14. Amyloid Precursor Protein Processing in Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Adwait BHADBHADE

    2012-03-01

    Full Text Available How to Cite this Article: Bhadbhade A, Cheng DW. Amyloid Precursor Protein Processing in Alzheimer’s Disease. Iranian Journal of Child Neurology2012;6(1:1-5.Alzheimer’s disease (AD is a progressive neurodegenerative disorder and a leading cause of dementia. The AD is characterized by presence of intraneuronal tangles and extracellular plaques in the brain. The plaques are composed of dense and mostly insoluble deposits of amyloid beta peptide (Aβ, formed by sequential cleavage of the Amyloid Precursor Protein (APP, by two pathways amyloidogenic and non-amyloidogenic. Tangles are composed of paired helical fragments, which aggregate to form, microtubular protein tau. Although Aβ plaques are established to be the cause of the disease, there exist genetic factors and other pathological identifications in addition to these which are an integral part of the disease. This article gives an overview into the mechanism of APP action, genetic factors and other pathological identifications contributing to Alzheimer’s disease formation.References Brookmeyer R, Gray S, Kawas C. Projections of Alzheimer’s disease in the United States and the public health impact of delaying disease onset. American Journal of Public Health 1998;88(9:1337. Hebert LE, Scherr PA, Bienias JL, Bennett DA, Evans DA. Alzheimer disease in the US population. Arch Neurol 2003;60(8:1119-22. Möller HJ, Graeber M. The case described by Alois Alzheimer in 1911. European Archives of Psychiatry and Clinical Neuroscience 1998:248(3:111-122. Selkoe D J. (2002. Deciphering the genesis and fate of amyloid beta-protein yields novel therapies for Alzheimer disease. J Clinic Investigat 2002;110(10: 1375-82. Wolfe MS. Tau mutations in neurodegenerative diseases. J Biolog Chem 2009;284(10:6021. Selkoe DJ. Alzheimer’s disease: genes, proteins, and therapy. Physiological reviews 2001;81(2:741. Selkoe DJ. The cell biology of [beta]-amyloid precursor protein and presenilin in Alzheimer

  15. Amyloid formation: functional friend or fearful foe?

    Science.gov (United States)

    Bergman, P; Roan, N R; Römling, U; Bevins, C L; Münch, J

    2016-08-01

    Amyloid formation has been most studied in the context of neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease, as well as in amyloidosis. However, it is becoming increasingly clear that amyloid is also present in the healthy setting; for example nontoxic amyloid formation is important for melanin synthesis and in innate immunity. Furthermore, bacteria have mechanisms to produce functional amyloid structures with important roles in bacterial physiology and interaction with host cells. Here, we will discuss some novel aspects of fibril-forming proteins in humans and bacteria. First, the amyloid-forming properties of the antimicrobial peptide human defensin 6 (HD6) will be considered. Intriguingly, unlike other antimicrobial peptides, HD6 does not kill bacteria. However, recent data show that HD6 can form amyloid structures at the gut mucosa with strong affinity for bacterial surfaces. These so-called nanonets block bacterial invasion by entangling the bacteria in net-like structures. Next, the role of functional amyloid fibrils in human semen will be discussed. These fibrils were discovered through their property to enhance HIV infection but they may also have other yet unknown functions. Finally, the role of amyloid formation in bacteria will be reviewed. The recent finding that bacteria can make amyloid in a controlled fashion without toxic effects is of particular interest and may have implications for human disease. The role of amyloid in health and disease is beginning to be unravelled, and here, we will review some of the most recent findings in this exciting area. PMID:27151743

  16. Heterologous amyloid seeding: revisiting the role of acetylcholinesterase in Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Létitia Jean

    Full Text Available Neurodegenerative diseases associated with abnormal protein folding and ordered aggregation require an initial trigger which may be infectious, inherited, post-inflammatory or idiopathic. Proteolytic cleavage to generate vulnerable precursors, such as amyloid-beta peptide (Abeta production via beta and gamma secretases in Alzheimer's Disease (AD, is one such trigger, but the proteolytic removal of these fragments is also aetiologically important. The levels of Abeta in the central nervous system are regulated by several catabolic proteases, including insulysin (IDE and neprilysin (NEP. The known association of human acetylcholinesterase (hAChE with pathological aggregates in AD together with its ability to increase Abeta fibrilization prompted us to search for proteolytic triggers that could enhance this process. The hAChE C-terminal domain (T40, AChE(575-614 is an exposed amphiphilic alpha-helix involved in enzyme oligomerisation, but it also contains a conformational switch region (CSR with high propensity for conversion to non-native (hidden beta-strand, a property associated with amyloidogenicity. A synthetic peptide (AChE(586-599 encompassing the CSR region shares homology with Abeta and forms beta-sheet amyloid fibrils. We investigated the influence of IDE and NEP proteolysis on the formation and degradation of relevant hAChE beta-sheet species. By combining reverse-phase HPLC and mass spectrometry, we established that the enzyme digestion profiles on T40 versus AChE(586-599, or versus Abeta, differed. Moreover, IDE digestion of T40 triggered the conformational switch from alpha- to beta-structures, resulting in surfactant CSR species that self-assembled into amyloid fibril precursors (oligomers. Crucially, these CSR species significantly increased Abeta fibril formation both by seeding the energetically unfavorable formation of amyloid nuclei and by enhancing the rate of amyloid elongation. Hence, these results may offer an explanation

  17. The anti-tumor histone deacetylase inhibitor SAHA and the natural flavonoid curcumin exhibit synergistic neuroprotection against amyloid-beta toxicity.

    Directory of Open Access Journals (Sweden)

    Jia Meng

    Full Text Available With the trend of an increasing aged population worldwide, Alzheimer's disease (AD, an age-related neurodegenerative disorder, as one of the major causes of dementia in elderly people is of growing concern. Despite the many hard efforts attempted during the past several decades in trying to elucidate the pathological mechanisms underlying AD and putting forward potential therapeutic strategies, there is still a lack of effective treatments for AD. The efficacy of many potential therapeutic drugs for AD is of main concern in clinical practice. For example, large bodies of evidence show that the anti-tumor histone deacetylase (HDAC inhibitor, suberoylanilidehydroxamic acid (SAHA, may be of benefit for the treatment of AD; however, its extensive inhibition of HDACs makes it a poor therapeutic. Moreover, the natural flavonoid, curcumin, may also have a potential therapeutic benefit against AD; however, it is plagued by low bioavailability. Therefore, the integrative effects of SAHA and curcumin were investigated as a protection against amyloid-beta neurotoxicity in vitro. We hypothesized that at low doses their synergistic effect would improve therapeutic selectivity, based on experiments that showed that at low concentrations SAHA and curcumin could provide comprehensive protection against Aβ25-35-induced neuronal damage in PC12 cells, strongly implying potent synergism. Furthermore, network analysis suggested that the possible mechanism underlying their synergistic action might be derived from restoration of the damaged functional link between Akt and the CBP/p300 pathway, which plays a crucial role in the pathological development of AD. Thus, our findings provided a feasible avenue for the application of a synergistic drug combination, SAHA and curcumin, in the treatment of AD.

  18. Lipoprotein-based nanoparticles rescue the memory loss of mice with Alzheimer's disease by accelerating the clearance of amyloid-beta.

    Science.gov (United States)

    Song, Qingxiang; Huang, Meng; Yao, Lei; Wang, Xiaolin; Gu, Xiao; Chen, Juan; Chen, Jun; Huang, Jialin; Hu, Quanyin; Kang, Ting; Rong, Zhengxing; Qi, Hong; Zheng, Gang; Chen, Hongzhuan; Gao, Xiaoling

    2014-03-25

    Amyloid-beta (Aβ) accumulation in the brain is believed to play a central role in Alzheimer's disease (AD) pathogenesis, and the common late-onset form of AD is characterized by an overall impairment in Aβ clearance. Therefore, development of nanomedicine that can facilitate Aβ clearance represents a promising strategy for AD intervention. However, previous work of this kind was concentrated at the molecular level, and the disease-modifying effectiveness of such nanomedicine has not been investigated in clinically relevant biological systems. Here, we hypothesized that a biologically inspired nanostructure, apolipoprotein E3-reconstituted high density lipoprotein (ApoE3-rHDL), which presents high binding affinity to Aβ, might serve as a novel nanomedicine for disease modification in AD by accelerating Aβ clearance. Surface plasmon resonance, transmission electron microscopy, and co-immunoprecipitation analysis showed that ApoE3-rHDL demonstrated high binding affinity to both Aβ monomer and oligomer. It also accelerated the microglial, astroglial, and liver cell degradation of Aβ by facilitating the lysosomal transport. One hour after intravenous administration, about 0.4% ID/g of ApoE3-rHDL gained access to the brain. Four-week daily treatment with ApoE3-rHDL decreased Aβ deposition, attenuated microgliosis, ameliorated neurologic changes, and rescued memory deficits in an AD animal model. The findings here provided the direct evidence of a biomimetic nanostructure crossing the blood-brain barrier, capturing Aβ and facilitating its degradation by glial cells, indicating that ApoE3-rHDL might serve as a novel nanomedicine for disease modification in AD by accelerating Aβ clearance, which also justified the concept that nanostructures with Aβ-binding affinity might provide a novel nanoplatform for AD therapy. PMID:24527692

  19. Droplet-based magnetic bead immunoassay using microchannel-connected multiwell plates (μCHAMPs) for the detection of amyloid beta oligomers.

    Science.gov (United States)

    Park, Min Cheol; Kim, Moojong; Lim, Gun Taek; Kang, Sung Min; An, Seong Soo A; Kim, Tae Song; Kang, Ji Yoon

    2016-06-21

    Multiwell plates are regularly used in analytical research and clinical diagnosis but often require laborious washing steps and large sample or reagent volumes (typically, 100 μL per well). To overcome such drawbacks in the conventional multiwell plate, we present a novel microchannel-connected multiwell plate (μCHAMP) that can be used for automated disease biomarker detection in a small sample volume by performing droplet-based magnetic bead immunoassay inside the plate. In this μCHAMP-based immunoassay platform, small volumes (30-50 μL) of aqueous-phase working droplets are stably confined within each well by the simple microchannel structure (200-300 μm in height and 0.5-1 mm in width), and magnetic beads are exclusively transported into an adjacent droplet through the oil-filled microchannels assisted by a magnet array aligned beneath and controlled by a XY-motorized stage. Using this μCHAMP-based platform, we were able to perform parallel detection of synthetic amyloid beta (Aβ) oligomers as a model analyte for the early diagnosis of Alzheimer's disease (AD). This platform easily simplified the laborious and consumptive immunoassay procedure by achieving automated parallel immunoassay (32 assays per operation in 3-well connected 96-well plate) within 1 hour and at low sample consumption (less than 10 μL per assay) with no cumbersome manual washing step. Moreover, it could detect synthetic Aβ oligomers even below 10 pg mL(-1) concentration with a calculated detection limit of ∼3 pg mL(-1). Therefore, the μCHAMP and droplet-based magnetic bead immunoassay, with the combination of XY-motorized magnet array, would be a useful platform in the diagnosis of human disease, including AD, which requires low consumption of the patient's body fluid sample and automation of the entire immunoassay procedure for high processing capacity. PMID:27185215

  20. Rosiglitazone activation of PPARγ-dependent pathways is neuroprotective in human neural stem cells against amyloid-beta-induced mitochondrial dysfunction and oxidative stress.

    Science.gov (United States)

    Chiang, Ming-Chang; Nicol, Christopher J; Cheng, Yi-Chuan; Lin, Kuan-Hung; Yen, Chia-Hui; Lin, Chien-Hung

    2016-04-01

    Neuronal cell impairment, such as that induced by amyloid-beta (Aβ) protein, is a process with limited therapeutic interventions and often leads to long-term neurodegeneration common in disorders such as Alzheimer's disease. Interestingly, peroxisome proliferator-activated receptor gamma (PPARγ) is a ligand-activated nuclear receptor whose ligands control many physiological and pathologic processes, and may be neuroprotective. We hypothesized that rosiglitazone, a PPARγ agonist, would prevent Aβ-mediated effects in human neural stem cells (hNSCs). Here, we show that rosiglitazone reverses, via PPARγ-dependent downregulation of caspase 3 and 9 activity, the Aβ-mediated decreases in hNSC cell viability. In addition, Aβ decreases hNSC messenger RNA (mRNA) levels of 2 neuroprotective factors (Bcl-2 and CREB), but co-treatment with rosiglitazone significantly rescues these effects. Rosiglitazone co-treated hNSCs also showed significantly increased mitochondrial function (reflected by levels of adenosine triphosphate and Mit mass), and PPARγ-dependent mRNA upregulation of PGC1α and mitochondrial genes (nuclear respiratory factor-1 and Tfam). Furthermore, hNSCs co-treated with rosiglitazone were significantly rescued from Aβ-induced oxidative stress and correlates with reversal of the Aβ-induced mRNA decrease in oxidative defense genes (superoxide dismutase 1, superoxide dismutase 2, and glutathione peroxidase 1). Taken together, these novel findings show that rosiglitazone-induced activation of PPARγ-dependent signaling rescues Aβ-mediated toxicity in hNSCs and provide evidence supporting a neuroprotective role for PPARγ activating drugs in Aβ-related diseases such as Alzheimer's disease. PMID:26973118

  1. Effect of oxidative stress on DNA damage and beta-amyloid precursor proteins in lymphoblastoid cell lines from a Nigerian population.

    Science.gov (United States)

    Lahiri, D K; Xu, Y; Klaunig, J; Baiyewu, O; Ogunniyi, A; Hall, K; Hendrie, H; Sahota, A

    1999-01-01

    The epsilon 4 allele of apolipoprotein E (APOE) is strongly associated with late-onset Alzheimer's disease (AD) in Caucasian populations, but our studies suggest that APOE epsilon 4 is not a risk factor for AD in Nigerian blacks and is a weak risk factor in African-Americans. The prevalence of AD is lower in Nigerians than in African-Americans. Increased oxidative damage to macromolecules in brain tissue by reactive oxygen species (ROS) has been reported in AD. Here we examined the effects of endogenous and induced oxidative stress on total (nuclear and mitochondrial) DNA damage in lymphoblastoid cell lines (5 probable AD and 3 controls) from Ibadan, Nigeria. Cells were exposed to 200 microM t-butyl peroxide (a generator of ROS) for 4 hours. Total DNA was isolated and digested with nuclease P1 and alkaline phosphatase. DNA fragments were separated by HPLC and the levels of 8-hydroxy-2'-deoxyguanosine (OH8dG, an indicator of DNA damage) and deoxyguanosine (dG) determined. We did not detect a significant difference in the OH8dG/dG ratio in untreated or treated cell lines in the two groups, and this was independent of APOE genotype. We also examined, by Western blotting, the level of beta-amyloid precursor protein (APP) which is involved in AD. The level of the heat shock protein (HSP-70) was examined as a control. There was a slight decrease in levels of APP and HSP-70 following treatment. Studies in cell lines from Caucasian subjects have shown an increase in mitochondrial DNA damage following oxidative challenge. Our preliminary results suggest that African populations are less vulnerable to chemical-induced oxidative DNA damage. PMID:10672260

  2. Blood amyloid beta levels in healthy, mild cognitive impairment and Alzheimer's disease individuals: replication of diastolic blood pressure correlations and analysis of critical covariates.

    Directory of Open Access Journals (Sweden)

    Agustín Ruiz

    Full Text Available Plasma amyloid beta (Aβ levels are being investigated as potential biomarkers for Alzheimer's disease. In AB128 cross-sectional study, a number of medical relevant correlates of blood Aβ40 or Aβ42 were analyzed in 140 subjects (51 Alzheimer's disease patients, 53 healthy controls and 36 individuals diagnosed with mild cognitive impairment. We determined the association between multiple variables with Aβ40 and Aβ42 levels measured in three different blood compartments called i Aβ directly accessible (DA in the plasma, ii Aβ recovered from the plasma matrix (RP after diluting the plasma sample in a formulated buffer, and iii associated with the remaining cellular pellet (CP. We confirmed that diastolic blood pressure (DBP is consistently correlated with blood DA Aβ40 levels (r=-0.19, P=0.032. These results were consistent in the three phenotypic groups studied. Importantly, the observation resisted covariation with age, gender or creatinine levels. Observed effect size and direction of Aβ40 levels/DBP correlation are in accordance with previous reports. Of note, DA Aβ40 and the RP Aβ40 were also strongly associated with creatinine levels (r=0.599, P<<0.001 and to a lesser extent to urea, age, hematocrit, uric acid and homocysteine (p<0.001. DBP and the rest of statistical significant correlates identified should be considered as potential confounder factors in studies investigating blood Aβ levels as potential AD biomarker. Remarkably, the factors affecting Aβ levels in plasma (DA, RP and blood cell compartments (CP seem completely different.

  3. Ethnic comparison of pharmacokinetics of {sup 18}F-florbetaben, a PET tracer for beta-amyloid imaging, in healthy Caucasian and Japanese subjects

    Energy Technology Data Exchange (ETDEWEB)

    Senda, Michio; Sasaki, Masahiro; Yamane, Tomohiko; Shimizu, Keiji [Institute of Biomedical Research and Innovation, Division of Molecular Imaging, 2-2 Minatojima-Minamimachi, Chuo-ku, Kobe (Japan); Patt, Marianne; Barthel, Henryk; Sattler, Bernhard; Sabri, Osama [University of Leipzig, Department of Nuclear Medicine, Leipzig (Germany); Nagasawa, Toshiki; Aitoku, Yasuko [Bayer Yakuhin Ltd, Osaka (Japan); Schultze-Mosgau, Marcus [Bayer HealthCare AG, Berlin (Germany); Dinkelborg, Ludger [Piramal Imaging GmbH, Berlin (Germany)

    2015-01-15

    {sup 18}F-Florbetaben is a positron emission tomography (PET) tracer indicated for imaging cerebral beta-amyloid deposition in adult patients with cognitive impairment who are being evaluated for Alzheimer's disease and other causes of cognitive decline. The present study examined ethnic comparability of the plasma pharmacokinetics, which is the input to the brain, between Caucasian and Japanese subjects. Two identical phase I trials were performed in 18 German and 18 Japanese healthy volunteers to evaluate the plasma pharmacokinetics of a single dose of 300 MBq {sup 18}F-florbetaben, either of low (≤5 μg, LD) or high (50-55 μg, HD) mass dose. Pharmacokinetic parameters were evaluated based on the total {sup 18}F radioactivity measurements in plasma followed by metabolite analysis using radio-HPLC. The pharmacokinetics of {sup 18}F-florbetaben was characterized by a rapid elimination from plasma. The dose-normalized areas under the curve of {sup 18}F-florbetaben in plasma as an indicator of the input to the brain were comparable between Germans (LD: 0.38 min/l, HD: 0.55 min/l) and Japanese (LD: 0.35 min/l, HD: 0.45 min/l) suggesting ethnic similarity, and the mass dose effect was minimal. A polar metabolite fraction was the main radiolabelled degradation product in plasma and was also similar between the doses and the ethnic groups. Absence of a difference in the pharmacokinetics of {sup 18}F-florbetaben in Germans and Japanese has warranted further global development of the PET imaging agent. (orig.)

  4. Neurodegeneration in an Animal Model of Chronic Amyloid-beta Oligomer Infusion Is Counteracted by Antibody Treatment Infused with Osmotic Pumps.

    Science.gov (United States)

    Sajadi, Ahmadali; Provost, Chloé; Pham, Brendon; Brouillette, Jonathan

    2016-01-01

    Decline in hippocampal-dependent explicit memory (memory for facts and events) is one of the earliest clinical symptom of Alzheimer's disease (AD). It is well established that synapse loss and ensuing neurodegeneration are the best predictors for memory impairments in AD. Latest studies have emphasized the neurotoxic role of soluble amyloid-beta oligomers (Aβo) that begin to accumulate in the human brain approximately 10 to 15 yr before the clinical symptoms become apparent. Many reports indicate that soluble Aβo correlate with memory deficits in AD models and humans. The Aβo-induced neurodegeneration observed in neuronal and brain slice cultures has been more challenging to reproduce in many animal models. The model of repeated Aβo infusions shown here overcome this issue and allow addressing two key domains for developing new disease modifying therapies: identify biological markers to diagnose early AD, and determine the molecular mechanisms underpinning Aβo-induced memory deficits at the onset of AD. Since soluble Aβo aggregate relatively fast into insoluble Aβ fibrils that correlate poorly with the clinical state of patients, soluble Aβo are prepared freshly and injected once per day during six days to produce marked cell death in the hippocampus. We used cannula specially design for simultaneous infusions of Aβo and continuous infusion of Aβo antibody (6E10) in the hippocampus using osmotic pumps. This innovative in vivo method can now be used in preclinical studies to validate the efficiency of new AD therapies that might prevent the deposition and neurotoxicity of Aβo in pre-dementia patients. PMID:27585306

  5. [18F]Flutemetamol amyloid-beta PET imaging compared with [11C]PIB across the spectrum of Alzheimer's disease

    International Nuclear Information System (INIS)

    The aim was to identify the amyloid beta (Aβ) deposition by positron emission tomography (PET) imaging with the 18F-labeled Pittsburgh compound B (PIB) derivative [18F]flutemetamol (FMM) across a spectrum of Alzheimer's disease (AD) and to compare Aβ deposition between [18F]FMM and [11C]PIB PET imaging. The study included 36 patients with AD, 68 subjects with mild cognitive impairment (MCI), 41 older healthy controls (HC) (aged ≥56), 11 young HC (aged ≤45), and 10 transitional HC (aged 46-55). All 166 subjects underwent 30-min static [18F]FMM PET 85 min after injection, 60-min dynamic [11C]PIB PET, and cognitive testing. [18F]FMM scans were assessed visually, and standardized uptake value ratios (SUVR) were defined quantitatively in regions of interest identified on coregistered MRI (cerebellar cortex as a reference region). The PIB distribution volume ratios (DVR) were determined in the same regions. Of 36 AD patients, 35 had positive scans, while 36 of 41 older HC subjects had negative scans. [18F]FMM scans had a sensitivity of 97.2 % and specificity of 85.3 % in distinguishing AD patients from older HC subjects, and a specificity of 100 % for young and transitional HC subjects. The [11C]PIB scan had the same results. Interreader agreement was excellent (kappa score = 0.81). The cortical FMM SUVR in AD patients was significantly greater than in older HC subjects (1.76 ± 0.23 vs 1.30 ± 0.26, p 18F]FMM PET imaging detects Aβ deposition in patients along the continuum from normal cognitive status to dementia of AD and discriminates AD patients from HC subjects, similar to [11C]PIB PET. (orig.)

  6. Regional Fluid-Attenuated Inversion Recovery (FLAIR at 7 Tesla correlates with Amyloid beta in Hippocampus and Brainstem of cognitively normal elderly subjects.

    Directory of Open Access Journals (Sweden)

    Xinyang Liu

    2014-09-01

    Full Text Available Background: Accumulation of amyloid beta (Aβ may occur during healthy aging and is a risk factor for Alzheimer Disease (AD. While individual Aβ-accumulation can be measured non-invasively using Pittsburgh compound-B positron-emission-tomography (PiB-PET, Fluid-Attenuated Inversion Recovery (FLAIR is a Magnetic Resonance Imaging (MRI sequence, capable of indicating heterogeneous age-related brain pathologies associated with tissue-edema. In the current study cognitively normal elderly subjects were investigated for regional correlation of PiB- and FLAIR- intensity. Methods: 14 healthy elderly subjects without known history of cognitive impairment received 11C-PiB-PET for estimation of regional Aβ-load. In addition, whole brain T1-MPRAGE and FLAIR-MRI sequences were acquired at high field strength of 7 Tesla (7T. Volume-normalized intensities of brain regions were assessed by applying an automated subcortical segmentation algorithm for spatial definition of brain structures. Statistical dependence between FLAIR- and PiB-PET intensities was tested using Spearman's rank correlation coefficient (rho, followed by Holm-Bonferroni correction for multiple testing. Results: Neuropsychological testing revealed normal cognitive performance levels in all participants. Mean regional PiB-PET and FLAIR intensities were normally distributed and independent. Significant correlation between volume-normalized PiB-PET signals and FLAIR intensities resulted for Hippocampus (right:rho=0.86; left:rho=0.84, Brainstem (rho=0.85 and left Basal Ganglia vessel region (rho=0.82. Conclusions: Our finding of a significant relationship between PiB- and FLAIR-intensity mainly observable in the Hippocampus and Brainstem, indicates regional Aβ associated tissue-edema in cognitively normal elderly subjects. Further studies including clinical populations are necessary to clarify the relevance of our findings for estimating individual risk for age-related neurodegenerative

  7. Viewing ageing eyes: diverse sites of amyloid Beta accumulation in the ageing mouse retina and the up-regulation of macrophages.

    Directory of Open Access Journals (Sweden)

    Jaimie Hoh Kam

    Full Text Available BACKGROUND: Amyloid beta (Aβ accumulates in the ageing central nervous system and is associated with a number of age-related diseases, including age-related macular degeneration (AMD in the eye. AMD is characterised by accumulation of extracellular deposits called drusen in which Aβ is a key constituent. Aβ activates the complement cascade and its deposition is associated with activated macrophages. So far, little is known about the quantitative measurements of Aβ accumulation and definitions of its relative sites of ocular deposition in the normal ageing mouse. METHODOLOGY/PRINCIPAL FINDINGS: We have traced Aβ accumulation quantitatively in the ageing mouse retina using immunohistochemistry and Western blot analysis. We reveal that it is not only deposited at Bruch's membrane and along blood vessels, but unexpectedly, it also coats photoreceptor outer segments. While Aβ is present at all sites of deposition from 3 months of age, it increases markedly from 6 months onward. Progressive accumulation of deposits on outer segments was confirmed with scanning electron microscopy, revealing age-related changes in their morphology. Such progress of accumulation of Aβ on photoreceptor outer segments with age was also confirmed in human retinae using immunohistochemistry. We also chart the macrophage response to increases in Aβ showing up-regulation in their numbers using both confocal laser imaging of the eye in vivo followed by in vitro immunostaining. With age macrophages become bloated with cellular debris including Aβ, however, their increasing numbers fail to stop Aβ accumulation. CONCLUSIONS: Increasing Aβ deposition in blood vessels and Bruch's membrane will impact upon retinal perfusion and clearance of cellular waste products from the outer retina, a region of very high metabolic activity. This accumulation of Aβ may contribute to the 30% reduction of photoreceptors found throughout life and the shortening of those that remain. The

  8. Amyloid beta deposition and phosphorylated tau accumulation are key features in aged choroidal vessels in the complement factor H knock out model of retinal degeneration.

    Science.gov (United States)

    Aboelnour, Asmaa; Kam, Jaimie Hoh; Elnasharty, M A; Sayed-Ahmed, Ahmed; Jeffery, Glen

    2016-06-01

    Extra-cellular deposition including amyloid beta (Aβ) is a feature of retinal ageing. It has been documented for Bruch's membrane (BM) where Aβ is elevated in complement factor H knockout mice (Cfh(-/-)) proposed as a model for age related macular degeneration. However, arterial deposition in choroidal vessels prior to perfusion across BM has not been examined. Aβ is associated with tau phosphorylation and these are linked in blood vessels in Alzheimers Disease where they can drive perivascular pathology. Here we ask if Aβ, tau and phosphorylated tau are features of ageing in choroidal vessels in 12 month C57 BL/6 and Cfh(-/-) mice, using immune staining and Western blot analysis. Greater levels of Aβ and phosphorylated tau are found in choroidal vessels in Cfh(-/-) mice. Western blot revealed a 40% increase in Aβ in Cfh(-/-) over C57 BL/6 mice. Aβ deposits coat around 55% of the luminal wall in Cfh(-/-) compared to only about 40% in C57 BL/6. Total tau was similar in both groups, but phosphorylated tau increased by >100% in Cfh(-/-) compared to C57 BL/6 and covered >75% of the luminal wall compared to 50% in C57 BL/6. Hence, phosphorylated tau is a marked choroidal feature in this mouse model. Aβ deposition was clumped in Cfh(-/-) mice and likely to influence blood flow dynamics. Disturbed flow is associated with atherogenesis and may be related to the accumulation of membrane attack complex recently identified between choroidal vessels in those at high risk of macular degeneration due to complement factor H polymorphisms. PMID:27181225

  9. Amyloid beta protein-induced zinc sequestration leads to synaptic loss via dysregulation of the ProSAP2/Shank3 scaffold

    Directory of Open Access Journals (Sweden)

    Hof Patrick R

    2011-09-01

    Full Text Available Abstract Background Memory deficits in Alzheimer's disease (AD manifest together with the loss of synapses caused by the disruption of the postsynaptic density (PSD, a network of scaffold proteins located in dendritic spines. However, the underlying molecular mechanisms remain elusive. Since it was shown that ProSAP2/Shank3 scaffold assembly within the PSD is Zn2+-dependent and that the amyloid beta protein (Aβ is able to bind Zn2+, we hypothesize that sequestration of Zn2+ ions by Aβ contributes to ProSAP/Shank platform malformation. Results To test this hypothesis, we designed multiple in vitro and in vivo assays demonstrating ProSAP/Shank dysregulation in rat hippocampal cultures following Aβ oligomer accumulation. These changes were independent from alterations on ProSAP/Shank transcriptional level. However, application of soluble Aβ prevented association of Zn2+ ions with ProSAP2/Shank3 in a cell-based assay and decreased the concentration of Zn2+ clusters within dendrites. Zn2+ supplementation or saturation of Aβ with Zn2+ ions prior to cell treatment was able to counter the effects induced by Aβ on synapse density and ProSAP2/Shank3 levels at the PSD. Interestingly, intracellular Zn2+ levels in APP-PS1 mice and human AD hippocampus are reduced along with a reduction in synapse density and synaptic ProSAP2/Shank3 and Shank1 protein levels. Conclusions We conclude that sequestration of Zn2+ ions by Aβ significantly contributes to changes in ProSAP2/Shank3 platforms. These changes in turn lead to less consolidated (mature synapses reflected by a decrease in Shank1 protein levels at the PSD and decreased synapse density in hippocampal neurons.

  10. K+ channel openers prevent global ischemia-induced expression of c-fos, c-jun, heat shock protein, and amyloid beta-protein precursor genes and neuronal death in rat hippocampus.

    OpenAIRE

    Heurteaux, C; Bertaina, V; Widmann, C; Lazdunski, M

    1993-01-01

    Transient global forebrain ischemia induces in rat brain a large increase of expression of the immediate early genes c-fos and c-jun and of the mRNAs for the 70-kDa heat-shock protein and for the form of the amyloid beta-protein precursor including the Kunitz-type protease-inhibitor domain. At 24 hr after ischemia, this increased expression is particularly observed in regions that are vulnerable to the deleterious effects of ischemia, such as pyramidal cells of the CA1 field in the hippocampu...

  11. Effects of AmyloidPeptides on Voltage-Gated L-Type CaV1.2 and CaV1.3 Ca2+ Channels

    OpenAIRE

    Kim, Sunoh; Rhim, Hyewhon

    2011-01-01

    Overload of intracellular Ca2+ has been implicated in the pathogenesis of neuronal disorders, such as Alzheimer’s disease. Various mechanisms produce abnormalities in intracellular Ca2+ homeostasis systems. L-type Ca2+ channels have been known to be closely involved in the mechanisms underlying the neurodegenerative properties of amyloid-β (Aβ) peptides. However, most studies of L-type Ca2+ channels in Aβ-related mechanisms have been limited to CaV1.2, and surprisingly little is known about t...

  12. Hierarchical structures based on self-assembling beta-hairpin peptides and their application as biomaterials and hybrid materials

    Science.gov (United States)

    Altunbas, Aysegul

    Self-assembly represents a robust and powerful paradigm for the bottom-up construction of nanostructures. Self-assembled peptide hydrogels are emerging as promising routes to novel multifunctional materials. The 20 amino acid MAX1and MAX8 peptides self-assemble into a three dimensional network of entangled, branched fibrils rich in beta-sheet secondary structure with a high density of lysine groups exposed on the fibril-surfaces. These hydrogels form self-supporting structures that shear thin upon application of shear and then immediately recover to a solid hydrogel upon cessation of shear which facilitates the local delivery of the hydrogel into a site in vivo. Templated condensation of silica precursors on self-assembled nanoscale peptide fibrils with various surface functionalities can be used to mimic biosilicification. This template-defined approach towards biomineralization was utilized for the controlled fabrication of 3D hybrid nanostructures. We report a study on the structure-property relationship of self-assembled peptide hydrogels where mineralization of individual fibrils through sol-gel chemistry was achieved. The nanostructure and consequent mechanical characteristics of these hybrid networks can be modulated by changing the stoichiometric parameters of the sol-gel process. Construction of such organic-inorganic hybrid networks by sol-gel processing of self-assembled peptide hydrogels has improved mechanical properties and resulted in materials with ˜ 3 orders of magnitude higher stiffness. The physical characterization of the hybrid networks via electron microscopy and small angle scattering is detailed and correlated with changes in the network mechanical behavior. The resultant high fidelity templating process suggests that the peptide substrate can be used to template the coating of other functional inorganic materials. Self-assembling peptide hydrogels encapsulating an anti-tumorigenic drug, curcumin, have been prepared and demonstrated to be

  13. Functional Amyloid Formation within Mammalian Tissue.

    Directory of Open Access Journals (Sweden)

    2005-11-01

    Full Text Available Amyloid is a generally insoluble, fibrous cross-beta sheet protein aggregate. The process of amyloidogenesis is associated with a variety of neurodegenerative diseases including Alzheimer, Parkinson, and Huntington disease. We report the discovery of an unprecedented functional mammalian amyloid structure generated by the protein Pmel17. This discovery demonstrates that amyloid is a fundamental nonpathological protein fold utilized by organisms from bacteria to humans. We have found that Pmel17 amyloid templates and accelerates the covalent polymerization of reactive small molecules into melanin-a critically important biopolymer that protects against a broad range of cytotoxic insults including UV and oxidative damage. Pmel17 amyloid also appears to play a role in mitigating the toxicity associated with melanin formation by sequestering and minimizing diffusion of highly reactive, toxic melanin precursors out of the melanosome. Intracellular Pmel17 amyloidogenesis is carefully orchestrated by the secretory pathway, utilizing membrane sequestration and proteolytic steps to protect the cell from amyloid and amyloidogenic intermediates that can be toxic. While functional and pathological amyloid share similar structural features, critical differences in packaging and kinetics of assembly enable the usage of Pmel17 amyloid for normal function. The discovery of native Pmel17 amyloid in mammals provides key insight into the molecular basis of both melanin formation and amyloid pathology, and demonstrates that native amyloid (amyloidin may be an ancient, evolutionarily conserved protein quaternary structure underpinning diverse pathways contributing to normal cell and tissue physiology.

  14. Using bacterial inclusion bodies to screen for amyloid aggregation inhibitors

    OpenAIRE

    Villar-Piqué Anna; Espargaró Alba; Sabaté Raimon; de Groot Natalia S; Ventura Salvador

    2012-01-01

    Abstract Background The amyloidpeptide (Aβ42) is the main component of the inter-neuronal amyloid plaques characteristic of Alzheimer's disease (AD). The mechanism by which Aβ42 and other amyloid peptides assemble into insoluble neurotoxic deposits is still not completely understood and multiple factors have been reported to trigger their formation. In particular, the presence of endogenous metal ions has been linked to the pathogenesis of AD and other neurodegenerative disorders. Results ...

  15. Glucagon-Like Peptide-1 Triggers Protective Pathways in Pancreatic Beta-Cells Exposed to Glycated Serum

    Directory of Open Access Journals (Sweden)

    Alessandra Puddu

    2013-01-01

    Full Text Available Advanced glycation end products (AGEs might play a pathophysiological role in the development of diabetes and its complications. AGEs negatively affect pancreatic beta-cell function and the expression of transcriptional factors regulating insulin gene. Glucagon-like peptide-1 (GLP-1, an incretin hormone that regulates glucose homeostasis, might counteract the harmful effects of AGEs on the beta cells in culture. The aim of this study was to identify the intracellular mechanisms underlying GLP-1-mediated protection from AGE-induced detrimental activities in pancreatic beta cells. HIT-T15 cells were cultured for 5 days with glycated serum (GS, consisting in a pool of AGEs, in the presence or absence of 10 nmol/L GLP-1. After evaluation of oxidative stress, we determined the expression and subcellular localization of proteins involved in maintaining redox balance and insulin gene expression, such as nuclear factor erythroid-derived 2 (Nrf2, glutathione reductase, PDX-1, and MafA. Then, we investigated proinsulin production. The results showed that GS increased oxidative stress, reduced protein expression of all investigated factors through proteasome activation, and decreased proinsulin content. Furthermore, GS reduced ability of PDX-1 and MafA to bind DNA. Coincubation with GLP-1 reversed these GS-mediated detrimental effects. In conclusion, GLP-1, protecting cells against oxidants, triggers protective intercellular pathways in HIT-T15 cells exposed to GS.

  16. Towards a Pharmacophore for Amyloid

    Energy Technology Data Exchange (ETDEWEB)

    Landau, Meytal; Sawaya, Michael R.; Faull, Kym F.; Laganowsky, Arthur; Jiang, Lin; Sievers, Stuart A.; Liu, Jie; Barrio, Jorge R.; Eisenberg, David (UCLA)

    2011-09-16

    Diagnosing and treating Alzheimer's and other diseases associated with amyloid fibers remains a great challenge despite intensive research. To aid in this effort, we present atomic structures of fiber-forming segments of proteins involved in Alzheimer's disease in complex with small molecule binders, determined by X-ray microcrystallography. The fiber-like complexes consist of pairs of {beta}-sheets, with small molecules binding between the sheets, roughly parallel to the fiber axis. The structures suggest that apolar molecules drift along the fiber, consistent with the observation of nonspecific binding to a variety of amyloid proteins. In contrast, negatively charged orange-G binds specifically to lysine side chains of adjacent sheets. These structures provide molecular frameworks for the design of diagnostics and drugs for protein aggregation diseases. The devastating and incurable dementia known as Alzheimer's disease affects the thinking, memory, and behavior of dozens of millions of people worldwide. Although amyloid fibers and oligomers of two proteins, tau and amyloid-{beta}, have been identified in association with this disease, the development of diagnostics and therapeutics has proceeded to date in a near vacuum of information about their structures. Here we report the first atomic structures of small molecules bound to amyloid. These are of the dye orange-G, the natural compound curcumin, and the Alzheimer's diagnostic compound DDNP bound to amyloid-like segments of tau and amyloid-{beta}. The structures reveal the molecular framework of small-molecule binding, within cylindrical cavities running along the {beta}-spines of the fibers. Negatively charged orange-G wedges into a specific binding site between two sheets of the fiber, combining apolar binding with electrostatic interactions, whereas uncharged compounds slide along the cavity. We observed that different amyloid polymorphs bind different small molecules, revealing that a

  17. Immature transformed rat islet beta-cells differentially express C-peptides derived from the genes coding for insulin I and II as well as a transfected human insulin gene

    DEFF Research Database (Denmark)

    Blume, N; Petersen, J S; Andersen, L C;

    1992-01-01

    Synthetic peptides representing unique sequences in rat proinsulin C-peptide I and II were used to generate highly specific antisera, which, when applied on sections of normal rat pancreas, confirm a homogeneous coexpression of the two C-peptides in all islet beta-cells. Insulin gene expression is...... insulin-producing cells showed highly differential expression at the cellular level of the three proinsulin C-peptide immunoreactivities, as follows: C-peptide I greater than human C-peptide greater than C-peptide II. The fractions of cells expressing human C-peptide and C-peptide II decreased in time and...... species of proinsulin-C-peptide immunoreactivity but still at high levels. However, rat C-peptide II and human C-peptide were often colocalized, even in later passages. In situ hybridization studies combined with the immunocytochemical data suggest that the differential expression occurs at the level of...

  18. Beta amyloid differently modulate nicotinic and muscarinic receptor subtypes which regulate in vitro and in vivo the release of glycine in the rat hippocampus

    Directory of Open Access Journals (Sweden)

    Stefania eZappettini

    2012-07-01

    Full Text Available Using both in vitro (hippocampal synaptosomes in superfusion and in vivo (microdialysis approaches we investigated whether and to what extent β amyloid peptide 1-40 (Aβ 1-40 interferes with the cholinergic modulation of the release of glycine (GLY in the rat hippocampus. The nicotine-evoked overflow of endogenous GLY in hippocampal synaptosomes in superfusion was significantly inhibited by Aβ 1-40 (10 nM while increasing the concentration to 100 nM the inhibitory effect did not further increase. Both the Choline (Ch (α7 agonist; 1 mM and the 5-Iodo-A-85380 dihydrochloride (5IA85380, α4β2 agonist; 10 nM-evoked GLY overflow were inhibited by Aβ1-40 at 100 nM but not at 10nM concentrations. The KCl evoked [3H]GLY and [3H]Acetylcholine (ACh overflow were strongly inhibited in presence of oxotremorine; however this inhibitory muscarinic effect was not affected by Aβ1-40. The effects of Aβ1-40 on the administration of nicotine, veratridine, 5IA85380 and PHA 543613 hydrochloride (PHA543613 (a selective agonist of α7 subtypes on hippocampal endogenous GLY release in vivo were also studied. Aβ 1-40 significantly reduced (at 10 μM but not at 1 μM the nicotine evoked in vivo release of GLY. Aβ 1-40 (at 10 μM but not at 1 μM significantly inhibited the PHA543613 (1 mM-elicited GLY overflow while was ineffective on the GLY overflow evoked by 5IA85380 (1 mM. Aβ 40-1 (10 μM did not produce any inhibitory effect on nicotine evoked GLY overflow both in the in vitro and in vivo experiments. Our results indicate that a the cholinergic modulation of the release of GLY occurs by the activation of both α7 and α4β2 nicotinic ACh receptors (nAChRs as well as by the activation of inhibitory muscarinic ACh receptors (mAChRs and b Aβ 1-40 can modulate cholinergic evoked GLY release exclusively through the interaction with α7 and the α4β2 nAChR nicotinic receptors but not through mAChR subtypes.

  19. [{sup 18}F]Flutemetamol amyloid-beta PET imaging compared with [{sup 11}C]PIB across the spectrum of Alzheimer's disease

    Energy Technology Data Exchange (ETDEWEB)

    Hatashita, Shizuo; Yamasaki, Hidetomo [Shonan-Atsugi Hospital, Neurology, PET Center, Atsugi (Japan); Suzuki, Yutaka; Wakebe, Daichi; Hayakawa, Hideki [Shonan-Atsugi Hospital, Radiology, PET Center, Atsugi (Japan); Tanaka, Kumiko [Shonan-Atsugi Hospital, Pharmacology, PET Center, Atsugi (Japan)

    2014-02-15

    The aim was to identify the amyloid beta (Aβ) deposition by positron emission tomography (PET) imaging with the {sup 18}F-labeled Pittsburgh compound B (PIB) derivative [{sup 18}F]flutemetamol (FMM) across a spectrum of Alzheimer's disease (AD) and to compare Aβ deposition between [{sup 18}F]FMM and [{sup 11}C]PIB PET imaging. The study included 36 patients with AD, 68 subjects with mild cognitive impairment (MCI), 41 older healthy controls (HC) (aged ≥56), 11 young HC (aged ≤45), and 10 transitional HC (aged 46-55). All 166 subjects underwent 30-min static [{sup 18}F]FMM PET 85 min after injection, 60-min dynamic [{sup 11}C]PIB PET, and cognitive testing. [{sup 18}F]FMM scans were assessed visually, and standardized uptake value ratios (SUVR) were defined quantitatively in regions of interest identified on coregistered MRI (cerebellar cortex as a reference region). The PIB distribution volume ratios (DVR) were determined in the same regions. Of 36 AD patients, 35 had positive scans, while 36 of 41 older HC subjects had negative scans. [{sup 18}F]FMM scans had a sensitivity of 97.2 % and specificity of 85.3 % in distinguishing AD patients from older HC subjects, and a specificity of 100 % for young and transitional HC subjects. The [{sup 11}C]PIB scan had the same results. Interreader agreement was excellent (kappa score = 0.81). The cortical FMM SUVR in AD patients was significantly greater than in older HC subjects (1.76 ± 0.23 vs 1.30 ± 0.26, p < 0.01). Of the MCI patients, 68 had a bimodal distribution of SUVR, and 29 of them (42.6 %) had positive scans. Cortical FMM SUVR values were strongly correlated with PIB DVR (r = 0.94, n = 145, p < 0.001). [{sup 18}F]FMM PET imaging detects Aβ deposition in patients along the continuum from normal cognitive status to dementia of AD and discriminates AD patients from HC subjects, similar to [{sup 11}C]PIB PET. (orig.)

  20. Effect of combination of extracts of ginseng and ginkgo biloba on acetylcholine in amyloid beta-protein-treated rats determined by an improved HPLC

    Institute of Scientific and Technical Information of China (English)

    Jian-xun LIU; Wei-hong CONG; Li XU; Jian-nong WANG

    2004-01-01

    AIM: To determine the concentration of acetylcholine (ACh) in amyloid beta-protein (Aβ) treated rats and offer a method determining ACh as well. METHODS: A 1-month combination of extrats of ginseng and ginkgo biloba(Naoweikang) ig administration to rats was performed daily after bilateral injection of Aβ1-40 (4 g/L, 1 μL for each side) into hippocampus. After decollation, homogenizing, and centrifuging and extracting, a high pressure liquid chromatographic (HPLC) method using electrochemical detection (ECD) combined with two immobilized enzyme reactors was used to determine ACh in rat whole brain. RESULTS: With a mobile phase consisting of disodium hydrogen orthophosphate, tetramethylammonium chloride (TMAC1), octanesulfonic acid sodium salt (OSA) and"Reagent MB" at a final pH of 8.0, ACh was determined while removing the interfering choline in less than 10 min at a flow rate of 0.35 mL/min on a platinum (Pt) working electrode at a potential of +300 mV vs a solid-state palladium (Pd) reference electrode. Linear regression analysis of peak area vs concentration demonstrated linearity in the 28.01 to 1400.06 μg/L injection range. The r-value was 0.9978. The limit of detection (LOD) is 0.28 ng on column. ACh in whole brain decreased by 20.34 % (from 162.1±32.7 to 134.7±14.0 μg/L, P<0.05) after bilateral injection of Aβ into rat hippocampus. After Naoweikang administration (31 and 15.5 mg/kg, respectively), ACh increased by 19.97 % (from 134.7+14.0 to 161.6+26.2 μg/L, P<0.05) and 18.56 % (from 134.7+14.0 to 159.7+22.9 μg/L, P<0.05), respectively. CONCLUSION: Naoweikang significantly increased the level of ACh in whole brain of Aβ treated rats. And a sensitive, selective and reliable method for routinely determining ACh in rat whole brain was established in this study.

  1. Calcium binding to beta-2-microglobulin at physiological pH drives the occurrence of conformational changes which cause the protein to precipitate into amorphous forms that subsequently transform into amyloid aggregates.

    Directory of Open Access Journals (Sweden)

    Sukhdeep Kumar

    Full Text Available Using spectroscopic, calorimetric and microscopic methods, we demonstrate that calcium binds to beta-2-microglobulin (β2m under physiological conditions of pH and ionic strength, in biological buffers, causing a conformational change associated with the binding of up to four calcium atoms per β2m molecule, with a marked transformation of some random coil structure into beta sheet structure, and culminating in the aggregation of the protein at physiological (serum concentrations of calcium and β2m. We draw attention to the fact that the sequence of β2m contains several potential calcium-binding motifs of the DXD and DXDXD (or DXEXD varieties. We establish (a that the microscopic aggregation seen at physiological concentrations of β2m and calcium turns into actual turbidity and visible precipitation at higher concentrations of protein and β2m, (b that this initial aggregation/precipitation leads to the formation of amorphous aggregates, (c that the formation of the amorphous aggregates can be partially reversed through the addition of the divalent ion chelating agent, EDTA, and (d that upon incubation for a few weeks, the amorphous aggregates appear to support the formation of amyloid aggregates that bind to the dye, thioflavin T (ThT, resulting in increase in the dye's fluorescence. We speculate that β2m exists in the form of microscopic aggregates in vivo and that these don't progress to form larger amyloid aggregates because protein concentrations remain low under normal conditions of kidney function and β2m degradation. However, when kidney function is compromised and especially when dialysis is performed, β2m concentrations probably transiently rise to yield large aggregates that deposit in bone joints and transform into amyloids during dialysis related amyloidosis.

  2. Interactions driving the collapse of islet amyloid polypeptide: Implications for amyloid aggregation

    Science.gov (United States)

    Cope, Stephanie M.

    Human islet amyloid polypeptide (hIAPP), also known as amylin, is a 37-residue intrinsically disordered hormone involved in glucose regulation and gastric emptying. The aggregation of hIAPP into amyloid fibrils is believed to play a causal role in type 2 diabetes. To date, not much is known about the monomeric state of hIAPP or how it undergoes an irreversible transformation from disordered peptide to insoluble aggregate. IAPP contains a highly conserved disulfide bond that restricts hIAPP(1-8) into a short ring-like structure: N_loop. Removal or chemical reduction of N_loop not only prevents cell response upon binding to the CGRP receptor, but also alters the mass per length distribution of hIAPP fibers and the kinetics of fibril formation. The mechanism by which N_loop affects hIAPP aggregation is not yet understood, but is important for rationalizing kinetics and developing potential inhibitors. By measuring end-to-end contact formation rates, Vaiana et al. showed that N_loop induces collapsed states in IAPP monomers, implying attractive interactions between N_loop and other regions of the disordered polypeptide chain . We show that in addition to being involved in intra-protein interactions, the N_loop is involved in inter-protein interactions, which lead to the formation of extremely long and stable beta-turn fibers. These non-amyloid fibers are present in the 10 muM concentration range, under the same solution conditions in which hIAPP forms amyloid fibers. We discuss the effect of peptide cyclization on both intra- and inter-protein interactions, and its possible implications for aggregation. Our findings indicate a potential role of N_loop-N_loop interactions in hIAPP aggregation, which has not previously been explored. Though our findings suggest that N_loop plays an important role in the pathway of amyloid formation, other naturally occurring IAPP variants that contain this structural feature are incapable of forming amyloids. For example, hIAPP readily

  3. Novel pharmaceutical composition of bradykinin potentiating penta peptide with beta-cyclodextrin: physical-chemical characterization and anti-hypertensive evaluation.

    Science.gov (United States)

    Denadai, Angelo M L; Ianzer, Danielle; Alcântara, Antônio Flávio de C; Santoro, Marcelo M; Santos, Cynthia F F; Lula, Ivana Silva; de Camargo, Antônio C M; Faljoni-Alario, Adelaide; dos Santos, Robson A S; Sinisterra, Rubén D

    2007-05-01

    This work describes chemical properties and anti-hypertensive activity of an oral pharmaceutical formulation obtained from the complexation of beta-cyclodextrin (beta-CD) with bradykinin potentiating penta peptide (BPP-5a) founded in the Bothrops jararaca poison. Physical chemistry characterizations were recorded in order to investigate the intermolecular interactions between species in complex. Circular dichroism data indicated conformational changes of BPP-5a upon complexation with beta-CD. ROESY and theoretical calculations showed a selective approximation of triptophan moiety into cavity of beta-CD. Isothermal titration calorimetry data indicated an exothermic formation of the complex, which is accomplished by reduction of entropy. The anti-hypertensive activity of the BPP-5a/beta-CD complex has been evaluated in spontaneous hypertensive rats, showing better results than pure BPP-5a. PMID:17196774

  4. Correction of a splice-site mutation in the beta-globin gene stimulated by triplex-forming peptide nucleic acids

    DEFF Research Database (Denmark)

    Chin, Joanna Y; Kuan, Jean Y; Lonkar, Pallavi S;

    2008-01-01

    Splice-site mutations in the beta-globin gene can lead to aberrant transcripts and decreased functional beta-globin, causing beta-thalassemia. Triplex-forming DNA oligonucleotides (TFOs) and peptide nucleic acids (PNAs) have been shown to stimulate recombination in reporter gene loci in mammalian...... DNA fragments, can promote single base-pair modification at the start of the second intron of the beta-globin gene, the site of a common thalassemia-associated mutation. This single base pair change was detected by the restoration of proper splicing of transcripts produced from a green fluorescent...... cells via site-specific binding and creation of altered helical structures that provoke DNA repair. We have designed a series of triplex-forming PNAs that can specifically bind to sequences in the human beta-globin gene. We demonstrate here that these PNAs, when cotransfected with recombinatory donor...

  5. Against Research Progress of Beta Amyloid Protein in the Role of Alzheimer Disease and Traditional Chinese Medicine Therapy by Multiple Targets%β-淀粉样蛋白在阿尔茨海默病中的作用及中药多靶点对抗研究进展

    Institute of Scientific and Technical Information of China (English)

    胡海燕

    2012-01-01

    阿尔茨海默病(Alzheimer's disease,AD)是以认知功能障碍和记忆损害为主要临床特征的神经退行性疾病,其病理变化之一是患者脑内的神经炎性斑(老年斑),主要成分为细胞外β-淀粉样蛋白(amyloid protein β,Aβ)的沉积,而Aβ又由淀粉样前体蛋白(amyloid precursor protein,APP)经序列水解而来.研究表明,Aβ可能是各种原因诱发AD的共同通路,是AD形成和发展的关键因素,因此本文以Aβ为靶标,对其产生、神经毒性及中药多靶点抗AD作用的研究进展进行综述.%AlzheimerS disease ( Alzheimer's disease, AD) is cognitive impairment and memory impairment as the main clinical features of neurodegenerative diseases. One of pathological changes was the brain in patients with neuritic plaques (senile plaques). The main component was extracellular amyloid beta protein (amyloid protein A beta,Ap) dep-osition, while the amyloid precursor protein (amyloid precursor protein, APP) is hydrolyzed to the A beta by sequence. Research shows that A beta may be various reasons induced AD common pathway and the key to AD formation and development, therefore, this paper, based on A beta as a target reviewed its generation, neurotoxicity and multiple targets of anti AD effects by traditional Chinese medicine therapy.

  6. The effects of glucagon-like peptide-1 on the beta cell

    DEFF Research Database (Denmark)

    Vilsbøll, Tina

    2009-01-01

    type 2 diabetes, as assessed by homoeostasis model assessment-B analysis and proinsulin : insulin ratio. Additionally, liraglutide and exenatide are able to enhance first- and second-phase insulin secretion and are able to restore beta-cell sensitivity to glucose. Preclinical studies have shown that...

  7. The new β amyloid-derived peptide Aβ1-6A2V-TAT(D) prevents Aβ oligomer formation and protects transgenic C. elegans from Aβ toxicity.

    Science.gov (United States)

    Diomede, Luisa; Romeo, Margherita; Cagnotto, Alfredo; Rossi, Alessandro; Beeg, Marten; Stravalaci, Matteo; Tagliavini, Fabrizio; Di Fede, Giuseppe; Gobbi, Marco; Salmona, Mario

    2016-04-01

    One attractive pharmacological strategy for Alzheimer's disease (AD) is to design small peptides to interact with amyloid-β (Aβ) protein reducing its aggregation and toxicity. Starting from clinical observations indicating that patients coding a mutated Aβ variant (AβA2V) in the heterozygous state do not develop AD, we developed AβA2V synthetic peptides, as well as a small peptide homologous to residues 1-6. These hindered the amyloidogenesis of Aβ and its neurotoxicity in vitro, suggesting a basis for the design of a new small peptide in D-isomeric form, linked to the arginine-rich TAT sequence [Aβ1-6A2V-TAT(D)], to allow translocation across biological membranes and the blood-brain barrier. Aβ1-6A2V-TAT(D) was resistant to protease degradation, stable in serum and specifically able to interfere with Aβ aggregation in vitro, reducing the appearance of toxic soluble species and protecting transgenic C. elegans from toxicity related to the muscular expression of human Aβ. These observations offer a proof of concept for future pharmacological studies in mouse models of AD, providing a foundation for the design of AβA2V-based peptidomimetic molecules for therapeutic purposes. PMID:26792398

  8. Peptide YY antagonizes beta-adrenergic-stimulated release of insulin in dogs

    International Nuclear Information System (INIS)

    Peptide YY (PYY) and neuropeptide Y (NPY) are peptides of 36 amino acids that share structural homologies with pancreatic polypeptide (PP). PP is predominantly found in the endocrine pancreas. PYY is primarily found in mucosal endocrine cells of the distal ileum, colon, and rectum, whereas NPY is found in both the peripheral and central nervous system. Previous studies indicate that these peptides can interact with the autonomic nervous system. The objective of the present experiments was to study the effect of PYY on neurally stimulated insulin release in conscious dogs. Intravenous administration of PYY (100, 200, and 400 pmol·kg-1 ·h-1) reduced 2-DG-stimulated insulin release in a dose-dependent manner (P <0.05) without affecting plasma glucose levels. Administration of NPY, but not PP, reduced 2-DG-stimulated release of insulin. The inhibitory action of PYY on 2-DG-stimulated insulin release persisted in the presence of atropine or phentolamine treatment; however, hexamethonium alone or phentolamine plus propranolol treatment blocked the inhibitory action of PYY. Release of insulin stimulated by the β-agonist isoproterenol was also inhibited by PYY. These results indicate that PYY can inhibit autonomic neurotransmission by a mechanism that may involve ganglionic or postganglionic inhibition of β-adrenergic stimulation. The findings suggest a role for PYY and NPY in the autonomic regulation of insulin release

  9. Beta-amyloid deposition and cognitive function in patients with major depressive disorder with different subtypes of mild cognitive impairment: {sup 18}F-florbetapir (AV-45/Amyvid) PET study

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Kuan-Yi; Liu, Chia-Yih; Chen, Chia-Hsiang; Lee, Chin-Pang [Chang Gung Memorial Hospital and Chang Gung University, Department of Psychiatry, Tao-Yuan (China); Chen, Cheng-Sheng [Kaohsiung Medical University Hospital and College of Medicine, Kaohsiung Medical University, Department of Psychiatry, Kaohsiung (China); Hsiao, Ing-Tsung; Hsieh, Chia-Ju; Yen, Tzu-Chen; Lin, Kun-Ju [Chang Gung Memorial Hospital, Department of Nuclear Medicine and Molecular Imaging Center, Kuei Shan Hsiang, Taoyuan (China); Chang Gung University, Department of Medical Imaging and Radiological Sciences and Healthy Aging Research Center, Tao-Yuan (China)

    2016-06-15

    The objective of this study was to evaluate the amyloid burden, as assessed by {sup 18}F-florbetapir (AV-45/Amyvid) positron emission tomography PET, in patients with major depressive disorder (MDD) with different subtypes of mild cognitive impairment (MCI) and the relationship between amyloid burden and cognition in MDD patients. The study included 55 MDD patients without dementia and 21 healthy control subjects (HCs) who were assessed using a comprehensive cognitive test battery and {sup 18}F-florbetapir PET imaging. The standardized uptake value ratios (SUVR) in eight cortical regions using the whole cerebellum as reference region were determined and voxel-wise comparisons between the HC and MDD groups were performed. Vascular risk factors, serum homocysteine level and the apolipoprotein E (ApoE) genotype were also determined. Among the 55 MDD patients, 22 (40.0 %) had MCI, 12 (21.8 %) non-amnestic MCI (naMCI) and 10 (18.2 %) amnestic MCI (aMCI). The MDD patients with aMCI had the highest relative {sup 18}F-florbetapir uptake in all cortical regions, and a significant difference in relative {sup 18}F-florbetapir uptake was found in the parietal region as compared with that in naMCI subjects (P < 0.05) and HCs (P < 0.01). Voxel-wise analyses revealed significantly increased relative {sup 18}F-florbetapir uptake in the MDD patients with aMCI and naMCI in the frontal, parietal, temporal and occipital areas (P < 0.005). The global cortical SUVR was significantly negatively correlated with MMSE score (r = -0.342, P = 0.010) and memory function (r = -0.328, P = 0.015). The negative correlation between the global SUVR and memory in the MDD patients remained significant in multiple regression analyses that included age, educational level, ApoE genotype, and depression severity (β = -3.607, t = -2.874, P = 0.006). We found preliminary evidence of brain beta-amyloid deposition in MDD patients with different subtypes of MCI. Our findings in MDD patients support the

  10. Atomic force microscopy and MD simulations reveal pore-like structures of all-D-enantiomer of Alzheimer's β-amyloid peptide: relevance to the ion channel mechanism of AD pathology.

    Science.gov (United States)

    Connelly, Laura; Jang, Hyunbum; Arce, Fernando Teran; Capone, Ricardo; Kotler, Samuel A; Ramachandran, Srinivasan; Kagan, Bruce L; Nussinov, Ruth; Lal, Ratnesh

    2012-02-01

    Alzheimer's disease (AD) is a protein misfolding disease characterized by a buildup of β-amyloid (Aβ) peptide as senile plaques, uncontrolled neurodegeneration, and memory loss. AD pathology is linked to the destabilization of cellular ionic homeostasis and involves Aβ peptide-plasma membrane interactions. In principle, there are two possible ways through which disturbance of the ionic homeostasis can take place: directly, where the Aβ peptide either inserts into the membrane and creates ion-conductive pores or destabilizes the membrane organization, or, indirectly, where the Aβ peptide interacts with existing cell membrane receptors. To distinguish between these two possible types of Aβ-membrane interactions, we took advantage of the biochemical tenet that ligand-receptor interactions are stereospecific; L-amino acid peptides, but not their D-counterparts, bind to cell membrane receptors. However, with respect to the ion channel-mediated mechanism, like L-amino acids, D-amino acid peptides will also form ion channel-like structures. Using atomic force microscopy (AFM), we imaged the structures of both D- and L-enantiomers of the full length Aβ(1-42) when reconstituted in lipid bilayers. AFM imaging shows that both L- and D-Aβ isomers form similar channel-like structures. Molecular dynamics (MD) simulations support the AFM imaged 3D structures. Previously, we have shown that D-Aβ(1-42) channels conduct ions similarly to their L- counterparts. Taken together, our results support the direct mechanism of Aβ ion channel-mediated destabilization of ionic homeostasis rather than the indirect mechanism through Aβ interaction with membrane receptors. PMID:22217000

  11. Atomic View of a Toxic Amyloid Small Oligomer

    Energy Technology Data Exchange (ETDEWEB)

    Laganowsky, Arthur; Liu, Cong; Sawaya, Michael R.; Whitelegge, Julian P.; Park, Jiyong; Zhao, Minglei; Pensalfini, Anna; Soriaga, Angela B.; Landau, Meytal; Teng, Poh K.; Cascio, Duilio; Glabe, Charles; Eisenberg, David (UCI); (UCLA)

    2012-04-30

    Amyloid diseases, including Alzheimer's, Parkinson's, and the prion conditions, are each associated with a particular protein in fibrillar form. These amyloid fibrils were long suspected to be the disease agents, but evidence suggests that smaller, often transient and polymorphic oligomers are the toxic entities. Here, we identify a segment of the amyloid-forming protein {alpha}{beta} crystallin, which forms an oligomeric complex exhibiting properties of other amyloid oligomers: {beta}-sheet-rich structure, cytotoxicity, and recognition by an oligomer-specific antibody. The x-ray-derived atomic structure of the oligomer reveals a cylindrical barrel, formed from six antiparallel protein strands, that we term a cylindrin. The cylindrin structure is compatible with a sequence segment from the {beta}-amyloid protein of Alzheimer's disease. Cylindrins offer models for the hitherto elusive structures of amyloid oligomers.

  12. Looking for a generic inhibitor of amyloid-like fibril formation among flavone derivatives

    OpenAIRE

    Šneideris, Tomas; Baranauskienė, Lina; Jonathan G Cannon; Rutkienė, Rasa; Meškys, Rolandas; Smirnovas, Vytautas

    2015-01-01

    A range of diseases is associated with amyloid fibril formation. Despite different proteins being responsible for each disease, all of them share similar features including beta-sheet-rich secondary structure and fibril-like protein aggregates. A number of proteins can form amyloid-like fibrils in vitro, resembling structural features of disease-related amyloids. Given these generic structural properties of amyloid and amyloid-like fibrils, generic inhibitors of fibril formation would be of i...

  13. Severe In Vivo Hyper-Homocysteinemia is not Associated with Elevation of AmyloidPeptides in the Tg2576 Mice

    OpenAIRE

    Zhuo, Jia-Min; Praticò, Domenico

    2010-01-01

    Since hyper-homocysteinemia (HHcy) was recognized as a risk factor for Alzheimer’s disease (AD), many studies tried to induce HHcy in animal models to investigate its effect on amyloid-β protein precursor (AβPP) metabolism. Previous reports found that HHcy induced in AD transgenic mouse models, by either feeding a methionine-enriched diet or vitamin Bs deficient diet, is associated with elevation of amyloid-β (Aβ) levels. However, there is no data available on the effect of dietary interventi...

  14. Sporadic Cerebral Amyloid Angiopathy: Pathophysiology, Neuroimaging Features, and Clinical Implications.

    Science.gov (United States)

    Boulouis, Gregoire; Charidimou, Andreas; Greenberg, Steven M

    2016-06-01

    Sporadic cerebral amyloid angiopathy is a small vessel disorder defined pathologically by progressive amyloid deposition in the walls of cortical and leptomeningeal vessels resulting from disruption of a complex balance between production, circulation, and clearance of amyloidpeptide (Aβ) in the brain. Cerebral amyloid angiopathy is a major cause of lobar symptomatic intracerebral hemorrhage, transient focal neurologic episodes, and a key contributor to vascular cognitive impairment. The mechanisms and consequences of amyloid-β deposition at the pathological level and its neuroimaging manifestations, clinical consequences, and implications for patient care are addressed in this review. PMID:27214698

  15. Study of the BPP7a peptide and its {beta}-cyclodextrin complex: physicochemical characterization and complete sequence specific NMR assignments

    Energy Technology Data Exchange (ETDEWEB)

    Lula, Ivana; Sousa, Frederico B. de; Denadai, Angelo M.L.; Sinisterra, Ruben D.; Ianzer, Danielle; Santos, Robson A.S., E-mail: sinisterra@ufmg.br [Departamento de Quimica, Instituto de Ciencias Exatas and Departamento de Fisiologia e Biofisica, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, (Brazil); Camargo, Antonio C.M. de [Center for Applied Toxinology (CAT-CEPID), Instituto Butantan, Sao Paulo, SP (Brazil)

    2011-09-15

    The BPP7a heptapeptide, p-Glu1Asp2Gly3Pro4Ile5Pro6Pro7, forms an association complex with {beta}-cyclodextrin in a 1:1 molar ratio. The peptide and its complex were characterized by circular dichroism (CD) and isothermal titration calorimetry (ITC), which showed a very weak interaction between the {beta}-cyclodextrin and the peptide. Assignments of all hydrogen resonances of the peptide alone and as a complex were made using {sup 1}H nuclear magnetic resonance (NMR) experiments at 400 and 600 MHz. High resolution diffusion ordered spectroscopy (HR-DOSY) experiments were carried out to establish the self-aggregation state of BPP7a. It was also shown that the {beta}-cyclodextrin breaks the molecular clusters leading to complex formation. In addition, the anti-hypertensive activity of the BPP7a/{beta}-cyclodextrin complex was evaluated in spontaneous hypertensive rats (SHR), showing increased activity compared to that of pure BPP7a. (author)

  16. Synthetic peptides corresponding to human follicle-stimulating hormone (hFSH)-beta-(1-15) and hFSH-beta-(51-65) induce uptake of 45Ca++ by liposomes: evidence for calcium-conducting transmembrane channel formation

    Energy Technology Data Exchange (ETDEWEB)

    Grasso, P.; Santa-Coloma, T.A.; Reichert, L.E. Jr. (Department of Biochemistry, Albany Medical College, New York, NY (USA))

    1991-06-01

    We have previously described FSH receptor-mediated influx of 45Ca++ in cultured Sertoli cells from immature rats and receptor-enriched proteoliposomes via activation of voltage-sensitive and voltage-independent calcium channels. We have further shown that this effect of FSH does not require cholera toxin- or pertussis toxin-sensitive guanine nucleotide binding protein or activation of adenylate cyclase. In the present study, we have identified regions of human FSH-beta-subunit which appear to be involved in mediating calcium influx. We screened 11 overlapping peptide amides representing the entire primary structure of hFSH-beta-subunit for their effects on 45Ca++ flux in FSH receptor-enriched proteoliposomes. hFSH-beta-(1-15) and hFSH-beta-(51-65) induced uptake of 45Ca++ in a concentration-related manner. This effect of hFSH-beta-(1-15) and hFSH-beta-(51-65) was also observed in liposomes lacking incorporated FSH receptor. Reducing membrane fluidity by incubating liposomes (containing no receptor) with hFSH-beta-(1-15) or hFSH-beta-(51-65) at temperatures lower than the transition temperatures of their constituent phospholipids resulted in no significant (P greater than 0.05) difference in 45Ca++ uptake. The effectiveness of the calcium ionophore A23187, however, was abolished. Ruthenium red, a voltage-independent calcium channel antagonist, was able to completely block uptake of 45Ca++ induced by hFSH-beta-(1-15) and hFSH-beta-(51-65) whereas nifedipine, a calcium channel blocker specific for L-type voltage-sensitive calcium channels, was without effect. These results suggest that in addition to its effect on voltage-sensitive calcium channel activity, interaction of FSH with its receptor may induce formation of transmembrane aqueous channels which also facilitate influx of extracellular calcium.

  17. Synthetic peptides corresponding to human follicle-stimulating hormone (hFSH)-beta-(1-15) and hFSH-beta-(51-65) induce uptake of 45Ca++ by liposomes: evidence for calcium-conducting transmembrane channel formation

    International Nuclear Information System (INIS)

    We have previously described FSH receptor-mediated influx of 45Ca++ in cultured Sertoli cells from immature rats and receptor-enriched proteoliposomes via activation of voltage-sensitive and voltage-independent calcium channels. We have further shown that this effect of FSH does not require cholera toxin- or pertussis toxin-sensitive guanine nucleotide binding protein or activation of adenylate cyclase. In the present study, we have identified regions of human FSH-beta-subunit which appear to be involved in mediating calcium influx. We screened 11 overlapping peptide amides representing the entire primary structure of hFSH-beta-subunit for their effects on 45Ca++ flux in FSH receptor-enriched proteoliposomes. hFSH-beta-(1-15) and hFSH-beta-(51-65) induced uptake of 45Ca++ in a concentration-related manner. This effect of hFSH-beta-(1-15) and hFSH-beta-(51-65) was also observed in liposomes lacking incorporated FSH receptor. Reducing membrane fluidity by incubating liposomes (containing no receptor) with hFSH-beta-(1-15) or hFSH-beta-(51-65) at temperatures lower than the transition temperatures of their constituent phospholipids resulted in no significant (P greater than 0.05) difference in 45Ca++ uptake. The effectiveness of the calcium ionophore A23187, however, was abolished. Ruthenium red, a voltage-independent calcium channel antagonist, was able to completely block uptake of 45Ca++ induced by hFSH-beta-(1-15) and hFSH-beta-(51-65) whereas nifedipine, a calcium channel blocker specific for L-type voltage-sensitive calcium channels, was without effect. These results suggest that in addition to its effect on voltage-sensitive calcium channel activity, interaction of FSH with its receptor may induce formation of transmembrane aqueous channels which also facilitate influx of extracellular calcium

  18. Prediction of outcome in cancer patients with febrile neutropenia: comparison of the Multinational Association of Supportive Care in Cancer risk-index score with procalcitonin, C-reactive protein, serum amyloid A, and interleukins-1beta, -6, -8 and -10.

    Science.gov (United States)

    Uys, A; Rapoport, B L; Fickl, H; Meyer, P W A; Anderson, R

    2007-11-01

    The primary objective of the study was to compare the predictive potential of procalcitonin (PCT), C-reactive protein (CRP), serum amyloid A (SAA), and interleukin (IL)-1beta, IL-6, IL-8, and IL-10, with that of the Multinational Association of Supportive Care in Cancer (MASCC) risk-index score in cancer patients on presentation with chemotherapy-induced febrile neutropenia (FN). Seventy-eight consecutive FN episodes in 63 patients were included, and MASCC scores, as well as concentrations of CRP, SAA, PCT, and IL-1beta, IL-6, IL-8 and IL-10, and haematological parameters were determined on presentation, 72 h later and at outcome. Multivariate analysis of data revealed the MASCC score, but none of the laboratory parameters, to be an accurate, independent variable (P < 0.0001) for prediction of resolution with or without complications and death. Of the various laboratory parameters, PCT had the strongest association with the MASCC score (r = -0.51; P < 0.0001). In cancer patients who present with FN, the MASCC risk-index score is a useful predictor of outcome, while measurement of PCT, CRP, SAA, or IL-1beta, IL-6, IL-8 and IL-10, is of limited value. PMID:17944761

  19. Binding of peptides to HLA-DQ molecules: peptide binding properties of the disease-associated HLA-DQ(alpha 1*0501, beta 1*0201) molecule

    DEFF Research Database (Denmark)

    Johansen, B H; Buus, S; Vartdal, F;

    1994-01-01

    assay. The MB 65 kDa 243-255Y peptide bound to DQ2 in a strictly pH-dependent fashion, with optimal binding around pH 5 and only weak binding at pH 7.4. The association of the MB 65 kDa 243-255Y peptide to DQ2 was slow, but once formed, the peptide-HLA complexes were very stable. The binding of peptides...

  20. Probing the Orientation and Conformation of alpha-Helix and beta-Strand Model Peptides on Self-Assembled Monolayers Using Sum Frequency Generation and NEXAFS Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Weidner, T.; Apte, J; Gamble, L; Castner, D

    2010-01-01

    The structure and orientation of amphiphilic {alpha}-helix and {beta}-strand model peptide films on self-assembled monolayers (SAMs) have been studied with sum frequency generation (SFG) vibrational spectroscopy and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy. The {alpha}-helix peptide is a 14-mer, and the {beta}-strand is a 15-mer of hydrophilic lysine and hydrophobic leucine residues with hydrophobic periodicities of 3.5 and 2, respectively. These periodicities result in the leucine side chains located on one side of the peptides and the lysine side chains on the other side. The SAMs were prepared from the assembly of either carboxylic acid- or methyl-terminated alkyl thiols onto gold surfaces. For SFG studies, the deuterated analog of the methyl SAM was used. SFG vibrational spectra in the C-H region of air-dried peptides films on both SAMs exhibit strong peaks near 2965, 2940, and 2875 cm{sup -1} related to ordered leucine side chains. The orientation of the leucine side chains was determined from the phase of these features relative to the nonresonant gold background. The relative phase for both the {alpha}-helix and {beta}-strand peptides showed that the leucine side chains were oriented away from the carboxylic acid SAM surface and oriented toward the methyl SAM surface. Amide I peaks observed near 1656 cm{sup -1} for the {alpha}-helix peptide confirm that the secondary structure is preserved on both SAMs. Strong linear dichroism related to the amide {pi}* orbital at 400.8 eV was observed in the nitrogen K-edge NEXAFS spectra for the adsorbed {beta}-strand peptides, suggesting that the peptide backbones are oriented parallel to the SAM surface with the side chains pointing toward or away from the interface. For the {alpha}-helix the dichroism of the amide {pi}* is significantly weaker, probably because of the broad distribution of amide bond orientations in the {alpha}-helix secondary structure.

  1. Bioinspired peptide nanotubes: Deposition technology and physical properties

    Energy Technology Data Exchange (ETDEWEB)

    Shklovsky, J.; Beker, P. [Department of Physical Electronics, School of Electrical Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, 69978 Tel Aviv (Israel); Amdursky, N. [Department of Physical Electronics, School of Electrical Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, 69978 Tel Aviv (Israel); Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978 Tel Aviv (Israel); Gazit, E. [Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978 Tel Aviv (Israel); Rosenman, G., E-mail: gilr@eng.tau.ac.il [Department of Physical Electronics, the School of Electrical Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, 69978 Tel Aviv (Israel)

    2010-05-25

    Proteins and peptides have the intrinsic ability to self-assemble into elongated solid nanofibrils, which give rise to amyloid progressive neurodegenerative diseases (Alzheimer's, Parkinson, etc.). It has been found that of the core recognition motif of A{beta} peptide is the diphenylalanine element. The diphenylalanine peptide can self-assemble into well-ordered peptide nanotubes (PNT). In this paper we report on our newly developed process-vapor deposition of PNT and 'bottom-up' nanotechnological techniques of PNT patterning. Study of several physical properties of PNT such as optical and electrochemical are presented. The results may lead to the development of a new generation of PNT-based bioinspired functional nanodevices.

  2. Correction of a splice-site mutation in the beta-globin gene stimulated by triplex-forming peptide nucleic acids.

    Science.gov (United States)

    Chin, Joanna Y; Kuan, Jean Y; Lonkar, Pallavi S; Krause, Diane S; Seidman, Michael M; Peterson, Kenneth R; Nielsen, Peter E; Kole, Ryszard; Glazer, Peter M

    2008-09-01

    Splice-site mutations in the beta-globin gene can lead to aberrant transcripts and decreased functional beta-globin, causing beta-thalassemia. Triplex-forming DNA oligonucleotides (TFOs) and peptide nucleic acids (PNAs) have been shown to stimulate recombination in reporter gene loci in mammalian cells via site-specific binding and creation of altered helical structures that provoke DNA repair. We have designed a series of triplex-forming PNAs that can specifically bind to sequences in the human beta-globin gene. We demonstrate here that these PNAs, when cotransfected with recombinatory donor DNA fragments, can promote single base-pair modification at the start of the second intron of the beta-globin gene, the site of a common thalassemia-associated mutation. This single base pair change was detected by the restoration of proper splicing of transcripts produced from a green fluorescent protein-beta-globin fusion gene. The ability of these PNAs to induce recombination was dependent on dose, sequence, cell-cycle stage, and the presence of a homologous donor DNA molecule. Enhanced recombination, with frequencies up to 0.4%, was observed with use of the lysomotropic agent chloroquine. Finally, we demonstrate that these PNAs were effective in stimulating the modification of the endogenous beta-globin locus in human cells, including primary hematopoietic progenitor cells. This work suggests that PNAs can be effective tools to induce heritable, site-specific modification of disease-related genes in human cells. PMID:18757759

  3. Ligand-binding sites in human serum amyloid P component

    DEFF Research Database (Denmark)

    Heegaard, N.H.H.; Heegaard, Peter M. H.; Roepstorff, P.; Robey, F.A.

    1996-01-01

    Amyloid P component (AP) is a naturally occurring glycoprotein that is found in serum and basement membranes, AP is also a component of all types of amyloid, including that found in individuals who suffer from Alzheimer's disease and Down's syndrome. Because AP has been found to bind strongly and...... of 25 mu M, while the IC50 of AP-(27-38)-peptide and AP-(33-38)-peptide are 10 mu M and 2 mu M, respectively, The understanding of the structure and function of active AP peptides will be useful for development of amyloid-targeted diagnostics and therapeutics....

  4. Amyloid cascade in Alzheimer's disease: Recent advances in medicinal chemistry.

    Science.gov (United States)

    Mohamed, Tarek; Shakeri, Arash; Rao, Praveen P N

    2016-05-01

    Alzheimer's disease is of major concern all over the world due to a number of factors including (i) an aging population (ii) increasing life span and (iii) lack of effective pharmacotherapy options. The past decade has seen intense research in discovering disease-modifying multitargeting small molecules as therapeutic options. The pathophysiology of Alzheimer's disease is attributed to a number of factors such as the cholinergic dysfunction, amyloid/tau toxicity and oxidative stress/mitochondrial dysfunction. In recent years, targeting the amyloid cascade has emerged as an attractive strategy to discover novel neurotherapeutics. Formation of beta-amyloid species, with different degrees of solubility and neurotoxicity is associated with the gradual decline in cognition leading to dementia. The two commonly used approaches to prevent beta-amyloid accumulation in the brain include (i) development of beta-secretase inhibitors and (ii) designing direct inhibitors of beta-amyloid (self-induced) aggregation. This review highlights the amyloid cascade hypothesis and the key chemical features required to design small molecules that inhibit lower and higher order beta-amyloid aggregates. Several recent examples of small synthetic molecules with disease-modifying properties were considered and their molecular docking studies were conducted using either a dimer or steric-zipper assembly of beta-amyloid. These investigations provide a mechanistic understanding on the structural requirements needed to design novel small molecules with anti-amyloid aggregation properties. Significantly, this work also demonstrates that the structural requirements to prevent aggregation of various amyloid species differs considerably, which explains the fact that many small molecules do not exhibit similar inhibition profile toward diverse amyloid species such as dimers, trimers, tetramers, oligomers, protofibrils and fibrils. PMID:26945113

  5. Preparation of Amyloid Immuno-Nanoparticles as Potential MRI Contrast Agents for Alzheimer's Disease Diagnosis.

    Science.gov (United States)

    Yin, Zhenyu; Yul, Tingting; Xu, Yun

    2015-09-01

    Alzheimer's disease (AD) is the most common form of dementia which is caused by accumulation in the brain of plaques made up of amyloid beta-peptide (Abeta). Research on nanosized systems indicated that nanoparticles (NPs) could pass across the blood-brain barrier (BBB) and improve the visibility of internal body structures in magnetic resonance imaging (MRI), which made it possible to aid the early diagnosis of AD. In this research study we synthesized magnetite nanoparticles by high-temperature solution-phase reaction, transferred into water based on a ligand exchange process and coated with meso-2,3-dimercaptosuccinic (DMSA). Subsequently, the anti-amyloid Abeta immunomagnetic nanoparticles (IMNPs) were prepared by grafting anti-amyloid antibodies on the surface of the DMSA-coated magnetic nanoparticles (MNPs). The enzyme linked immunosorbent assay (ELISA) method was introduced to evaluate the IMNPs activity and conjugation amount of antibodies. The biocompatibility of the IMNPs was tested by colony-forming assay. The results showed that the anti-amyloid Abeta IMNPs were biocompatible and biologically active, as well as effective in enhancing MRI solution, indicating that the IMNPs could be used as potential MRI contrast agents and targeted carriers for AD early diagnosis and therapy. PMID:26716196

  6. Islet amyloid polypeptide inserts into phospholipid monolayers as monomer.

    Science.gov (United States)

    Engel, Maarten F M; Yigittop, HaciAli; Elgersma, Ronald C; Rijkers, Dirk T S; Liskamp, Rob M J; de Kruijff, Ben; Höppener, Jo W M; Antoinette Killian, J

    2006-02-24

    Amyloid deposits in the pancreatic islets of Langerhans are thought to be a main factor responsible for death of the insulin-producing islet beta-cells in type 2 diabetes. It is hypothesized that beta-cell death is related to interaction of the 37 amino acid residue human islet amyloid polypeptide (hIAPP), the major constituent of islet amyloid, with cellular membranes. However, the mechanism of hIAPP-membrane interactions is largely unknown. Here, we study the nature and the molecular details of the initial step of hIAPP-membrane interactions by using the monolayer technique. It is shown that both freshly dissolved hIAPP and the non-amyloidogenic mouse IAPP (mIAPP) have a pronounced ability to insert into phospholipid monolayers, even at lipid packing conditions that exceed the conditions that occur in biological membranes. In contrast, the fibrillar form of hIAPP has lost the ability to insert. These results, combined with the observations that both the insertion kinetics and the dependence of insertion on the initial surface pressure are similar for freshly dissolved hIAPP and mIAPP, indicate that hIAPP inserts into phospholipid monolayers most likely as a monomer. In addition, our results suggest that the N-terminal part of hIAPP, which is nearly identical with that of mIAPP, is largely responsible for insertion. This is supported by experiments with hIAPP fragments, which show that a peptide consisting of the 19 N-terminal residues of hIAPP efficiently inserts into phospholipid monolayers, whereas an amyloidogenic decapeptide, consisting of residues 20-29 of hIAPP, inserts much less efficiently. The results obtained here suggest that hIAPP monomers might insert with high efficiency in biological membranes in vivo. This process could play an important role as a first step in hIAPP-induced membrane damage in type 2 diabetes. PMID:16403520

  7. General amyloid inhibitors? A critical examination of the inhibition of IAPP amyloid formation by inositol stereoisomers.

    Directory of Open Access Journals (Sweden)

    Hui Wang

    Full Text Available Islet amyloid polypeptide (IAPP or amylin forms amyloid deposits in the islets of Langerhans; a process that is believed to contribute to the progression of type 2 diabetes and to the failure of islet transplants. An emerging theme in amyloid research is the hypothesis that the toxic species produced during amyloid formation by different polypeptides share common features and exert their effects by common mechanisms. If correct, this suggests that inhibitors of amyloid formation by one polypeptide might be effective against other amyloidogenic sequences. IAPP and Aβ, the peptide responsible for amyloid formation in Alzheimer's disease, are particularly interesting in this regard as they are both natively unfolded in their monomeric states and share some common characteristics. Comparatively little effort has been expended on the design of IAPP amyloid inhibitors, thus it is natural to inquire if Aβ inhibitors are effective against IAPP, especially since no IAPP inhibitors have been clinically approved. A range of compounds inhibit Aβ amyloid formation, including various stereoisomers of inositol. Myo-, scyllo-, and epi-inositol have been shown to induce conformational changes in Aβ and prevent Aβ amyloid fibril formation by stabilizing non-fibrillar β-sheet structures. We investigate the ability of inositol stereoisomers to inhibit amyloid formation by IAPP. The compounds do not induce a conformational change in IAPP and are ineffective inhibitors of IAPP amyloid formation, although some do lead to modest apparent changes in IAPP amyloid fibril morphology. Thus not all classes of Aβ inhibitors are effective against IAPP. This work provides a basis of comparison to work on polyphenol based inhibitors of IAPP amyloid formation and helps provide clues as to the features which render them effective. The study also helps provide information for further efforts in rational inhibitor design.

  8. PET imaging of {alpha}{sub v}{beta}{sub 3} integrin expression in tumours with {sup 68}Ga-labelled mono-, di- and tetrameric RGD peptides

    Energy Technology Data Exchange (ETDEWEB)

    Dijkgraaf, Ingrid; Franssen, Gerben M.; Oyen, Wim J.G.; Boerman, Otto C. [Radboud University Nijmegen Medical Centre, Department of Nuclear Medicine, P.O. Box 9101, Nijmegen (Netherlands); Yim, Cheng-Bin [Radboud University Nijmegen Medical Centre, Department of Nuclear Medicine, P.O. Box 9101, Nijmegen (Netherlands); Utrecht University, Department of Medicinal Chemistry and Chemical Biology, Utrecht Institute for Pharmaceutical Sciences, Utrecht (Netherlands); Schuit, Robert C. [VU University Medical Centre, Department of Nuclear Medicine and PET Research, P.O. Box 7057, Amsterdam (Netherlands); Luurtsema, Gert [University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, Hanzeplein 1, P.O. Box 30.001, Groningen (Netherlands); Liu, Shuang [Purdue University, School of Health Sciences, West Lafayette, IN (United States)

    2011-01-15

    Due to the restricted expression of {alpha}{sub v}{beta}{sub 3} in tumours, {alpha}{sub v}{beta}{sub 3} is considered a suitable receptor for tumour targeting. In this study the {alpha}{sub v}{beta}{sub 3}-binding characteristics of {sup 68}Ga-labelled monomeric, dimeric and tetrameric RGD peptides were determined and compared with their {sup 111}In-labelled counterparts. A monomeric (E-c(RGDfK)), a dimeric (E-[c(RGDfK)]{sub 2}) and a tetrameric (E{l_brace}E[c(RGDfK)]{sub 2}{r_brace}{sub 2}) RGD peptide were synthesised, conjugated with DOTA and radiolabelled with {sup 68}Ga. In vitro {alpha}{sub v}{beta}{sub 3}-binding characteristics were determined in a competitive binding assay. In vivo {alpha}{sub v}{beta}{sub 3}-targeting characteristics of the compounds were assessed in mice with subcutaneously growing SK-RC-52 xenografts. In addition, microPET images were acquired using a microPET/CT scanner. The IC{sub 50} values for the Ga(III)-labelled DOTA-E-c(RGDfK), DOTA-E-[c(RGDfK)]{sub 2} and DOTA-E{l_brace}E[c(RGDfK)]{sub 2}{r_brace}{sub 2} were 23.9 {+-} 1.22, 8.99 {+-} 1.20 and 1.74 {+-} 1.18 nM, respectively, and were similar to those of the In(III)-labelled mono-, di- and tetrameric RGD peptides (26.6 {+-} 1.15, 3.34 {+-} 1.16 and 1.80 {+-} 1.37 nM, respectively). At 2 h post-injection, tumour uptake of the {sup 68}Ga-labelled mono-, di- and tetrameric RGD peptides (3.30 {+-} 0.30, 5.24 {+-} 0.27 and 7.11 {+-} 0.67%ID/g, respectively) was comparable to that of their {sup 111}In-labelled counterparts (2.70 {+-} 0.29, 5.61 {+-} 0.85 and 7.32 {+-} 2.45%ID/g, respectively). PET scans were in line with the biodistribution data. On all PET scans, the tumour could be clearly visualised. The integrin affinity and the tumour uptake followed the order of DOTA-tetramer > DOTA-dimer > DOTA-monomer. The {sup 68}Ga-labelled tetrameric RGD peptide has excellent characteristics for imaging of {alpha}{sub v} {beta}{sub 3} expression with PET. (orig.)

  9. Amyloid β-sheet mimics that antagonize protein aggregation and reduce amyloid toxicity

    Science.gov (United States)

    Cheng, Pin-Nan; Liu, Cong; Zhao, Minglei; Eisenberg, David; Nowick, James S.

    2012-11-01

    The amyloid protein aggregation associated with diseases such as Alzheimer's, Parkinson's and type II diabetes (among many others) features a bewildering variety of β-sheet-rich structures in transition from native proteins to ordered oligomers and fibres. The variation in the amino-acid sequences of the β-structures presents a challenge to developing a model system of β-sheets for the study of various amyloid aggregates. Here, we introduce a family of robust β-sheet macrocycles that can serve as a platform to display a variety of heptapeptide sequences from different amyloid proteins. We have tailored these amyloid β-sheet mimics (ABSMs) to antagonize the aggregation of various amyloid proteins, thereby reducing the toxicity of amyloid aggregates. We describe the structures and inhibitory properties of ABSMs containing amyloidogenic peptides from the amyloidpeptide associated with Alzheimer's disease, β2-microglobulin associated with dialysis-related amyloidosis, α-synuclein associated with Parkinson's disease, islet amyloid polypeptide associated with type II diabetes, human and yeast prion proteins, and Tau, which forms neurofibrillary tangles.

  10. The Effect of HIV Protease Inhibitors on AmyloidPeptide Degradation and Synthesis in Human Cells and Alzheimer’s Disease Animal Model

    OpenAIRE

    Lan, Xiqian; Kiyota, Tomomi; Hanamsagar, Richa; Huang, Yunlong; Andrews, Scott; Peng, Hui; Zheng, Jialin C.; Swindells, Susan; Carlson, George A.; Ikezu, Tsuneya

    2011-01-01

    Combined antiretroviral therapy (ART) tremendously improved the lifespan and symptoms associated with AIDS-defining illness in affected individuals. However, chronic ART-treated patients frequently develop age-dependent complications, including dementia, diabetes, and hyperlipidemia: all risk factors of Alzheimer’s disease. Importantly, the effect of ART compounds on amyloid generation and clearance has never been systematically examined. Nine prescribed HIV protease inhibitors were tested fo...

  11. Tight beta-turns in peptides. DFT-based study of infrared absorption and vibrational circular dichroism for various conformers including solvent effects

    Czech Academy of Sciences Publication Activity Database

    Kim, J.; Kapitán, Josef; Lakhani, A.; Bouř, Petr; Keiderling, T. A.

    2008-01-01

    Roč. 119, 1/3 (2008), s. 81-97. ISSN 1432-881X R&D Projects: GA ČR GA203/06/0420 Grant ostatní: NSF(US) CHE03-16014 Institutional research plan: CEZ:AV0Z40550506 Keywords : peptide beta-turn * density functional theory * infrared absorption * vibrational circular dichroism Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.370, year: 2008

  12. FKBP12 regulates the localization and processing of amyloid precursor protein in human cell lines

    Indian Academy of Sciences (India)

    Fan-Lun Liu; Ting-Yi Liu; Fan-Lu Kung

    2014-03-01

    One of the pathological hallmarks of Alzheimer’s disease is the presence of insoluble extracellular amyloid plaques. These plaques are mainly constituted of amyloid beta peptide (A), a proteolytic product of amyloid precursor protein (APP). APP processing also generates the APP intr