WorldWideScience

Sample records for amyloid beta peptide

  1. The novel amyloid-beta peptide aptamer inhibits intracellular amyloid-beta peptide toxicity

    Institute of Scientific and Technical Information of China (English)

    Xu Wang; Yi Yang; Mingyue Jia; Chi Ma; Mingyu Wang; Lihe Che; Yu Yang; Jiang Wu

    2013-01-01

    Amyloid β peptide binding alcohol dehydrogenase (ABAD) decoy peptide (DP) can competitively antagonize binding of amyloid β peptide to ABAD and inhibit the cytotoxic effects of amyloid β peptide. Based on peptide aptamers, the present study inserted ABAD-DP into the disulfide bond of human thioredoxin (TRX) using molecular cloning technique to construct a fusion gene that can express the TRX1-ABAD-DP-TRX2 aptamer. Moreover, adeno-associated virus was used to allow its stable expression. Immunofluorescent staining revealed the co-expression of the transduced fusion gene TRX1-ABAD-DP-TRX2 and amyloid β peptide in NIH-3T3 cells, indicating that the TRX1-ABAD-DP-TRX2 aptamer can bind amyloid β peptide within cells. In addition, cell morphology and MTT results suggested that TRX1-ABAD-DP-TRX2 attenuated amyloid β peptide-induced SH-SY5Y cell injury and improved cell viability. These findings confirmed the possibility of constructing TRX-based peptide aptamer using ABAD-DP. Moreover, TRX1-ABAD-DP-TRX2 inhibited the cytotoxic effect of amyloid β peptide.

  2. Interaction between amyloid beta peptide and an aggregation blocker peptide mimicking islet amyloid polypeptide.

    Directory of Open Access Journals (Sweden)

    Nasrollah Rezaei-Ghaleh

    Full Text Available Assembly of amyloid-beta peptide (Aβ into cytotoxic oligomeric and fibrillar aggregates is believed to be a major pathologic event in Alzheimer's disease (AD and interfering with Aβ aggregation is an important strategy in the development of novel therapeutic approaches. Prior studies have shown that the double N-methylated analogue of islet amyloid polypeptide (IAPP IAPP-GI, which is a conformationally constrained IAPP analogue mimicking a non-amyloidogenic IAPP conformation, is capable of blocking cytotoxic self-assembly of Aβ. Here we investigate the interaction of IAPP-GI with Aβ40 and Aβ42 using NMR spectroscopy. The most pronounced NMR chemical shift changes were observed for residues 13-20, while residues 7-9, 15-16 as well as the C-terminal half of Aβ--that is both regions of the Aβ sequence that are converted into β-strands in amyloid fibrils--were less accessible to solvent in the presence of IAPP-GI. At the same time, interaction of IAPP-GI with Aβ resulted in a concentration-dependent co-aggregation of Aβ and IAPP-GI that was enhanced for the more aggregation prone Aβ42 peptide. On the basis of the reduced toxicity of the Aβ peptide in the presence of IAPP-GI, our data are consistent with the suggestion that IAPP-GI redirects Aβ into nontoxic "off-pathway" aggregates.

  3. Modeling Amyloid Beta Peptide Insertion into Lipid Bilayers

    CERN Document Server

    Mobley, D L; Singh, R R P; Maddox, M W; Longo, M J; Mobley, David L.; Cox, Daniel L.; Singh, Rajiv R. P.; Maddox, Michael W.; Longo, Marjorie L.

    2003-01-01

    Inspired by recent suggestions that the Alzheimer's amyloid beta peptide (A-beta), can insert into cell membranes and form harmful ion channels, we model insertion of the peptide into cell membranes using a Monte Carlo code which is specific at the amino acid level. We examine insertion of the regular A-beta peptide as well as mutants causing familial Alzheimer's disease. We present our results and develop the hypothesis that partial insertion into the membrane, leaving the peptide in one leaflet, increases the probability of harmful channel formation. This hypothesis can partly explain why these mutations are neurotoxic simply due to peptide insertion behavior, and also explains why, normally, A-beta 42 is more toxic to some cultured cells than A-beta 40, but the E22Q mutation reverses this effect. We further apply this model to various artificial A-beta mutants which have been examined experimentally, and offer testable experimental predictions contrasting the roles of aggregation and insertion with regard ...

  4. Amyloid Beta Peptides Differentially Affect Hippocampal Theta Rhythms In Vitro

    Directory of Open Access Journals (Sweden)

    Armando I. Gutiérrez-Lerma

    2013-01-01

    Full Text Available Soluble amyloid beta peptide (Aβ is responsible for the early cognitive dysfunction observed in Alzheimer's disease. Both cholinergically and glutamatergically induced hippocampal theta rhythms are related to learning and memory, spatial navigation, and spatial memory. However, these two types of theta rhythms are not identical; they are associated with different behaviors and can be differentially modulated by diverse experimental conditions. Therefore, in this study, we aimed to investigate whether or not application of soluble Aβ alters the two types of theta frequency oscillatory network activity generated in rat hippocampal slices by application of the cholinergic and glutamatergic agonists carbachol or DHPG, respectively. Due to previous evidence that oscillatory activity can be differentially affected by different Aβ peptides, we also compared Aβ25−35 and Aβ1−42 for their effects on theta rhythms in vitro at similar concentrations (0.5 to 1.0 μM. We found that Aβ25−35 reduces, with less potency than Aβ1−42, carbachol-induced population theta oscillatory activity. In contrast, DHPG-induced oscillatory activity was not affected by a high concentration of Aβ25−35 but was reduced by Aβ1−42. Our results support the idea that different amyloid peptides might alter specific cellular mechanisms related to the generation of specific neuronal network activities, instead of exerting a generalized inhibitory effect on neuronal network function.

  5. PARP-1 modulates amyloid beta peptide-induced neuronal damage.

    Directory of Open Access Journals (Sweden)

    Sara Martire

    Full Text Available Amyloid beta peptide (Aβ causes neurodegeneration by several mechanisms including oxidative stress, which is known to induce DNA damage with the consequent activation of poly (ADP-ribose polymerase (PARP-1. To elucidate the role of PARP-1 in the neurodegenerative process, SH-SY5Y neuroblastoma cells were treated with Aβ25-35 fragment in the presence or absence of MC2050, a new PARP-1 inhibitor. Aβ25-35 induces an enhancement of PARP activity which is prevented by cell pre-treatment with MC2050. These data were confirmed by measuring PARP-1 activity in CHO cells transfected with amylod precursor protein and in vivo in brains specimens of TgCRND8 transgenic mice overproducing the amyloid peptide. Following Aβ25-35 exposure a significant increase in intracellular ROS was observed. These data were supported by the finding that Aβ25-35 induces DNA damage which in turn activates PARP-1. Challenge with Aβ25-35 is also able to activate NF-kB via PARP-1, as demonstrated by NF-kB impairment upon MC2050 treatment. Moreover, Aβ25-35 via PARP-1 induces a significant increase in the p53 protein level and a parallel decrease in the anti-apoptotic Bcl-2 protein. These overall data support the hypothesis of PARP-1 involvment in cellular responses induced by Aβ and hence a possible rationale for the implication of PARP-1 in neurodegeneration is discussed.

  6. Interaction of amyloid inhibitor proteins with amyloid beta peptides: insight from molecular dynamics simulations.

    Directory of Open Access Journals (Sweden)

    Payel Das

    Full Text Available Knowledge of the detailed mechanism by which proteins such as human αB- crystallin and human lysozyme inhibit amyloid beta (Aβ peptide aggregation is crucial for designing treatment for Alzheimer's disease. Thus, unconstrained, atomistic molecular dynamics simulations in explicit solvent have been performed to characterize the Aβ17-42 assembly in presence of the αB-crystallin core domain and of lysozyme. Simulations reveal that both inhibitor proteins compete with inter-peptide interaction by binding to the peptides during the early stage of aggregation, which is consistent with their inhibitory action reported in experiments. However, the Aβ binding dynamics appear different for each inhibitor. The binding between crystallin and the peptide monomer, dominated by electrostatics, is relatively weak and transient due to the heterogeneous amino acid distribution of the inhibitor surface. The crystallin-bound Aβ oligomers are relatively long-lived, as they form more extensive contact surface with the inhibitor protein. In contrast, a high local density of arginines from lysozyme allows strong binding with Aβ peptide monomers, resulting in stable complexes. Our findings not only illustrate, in atomic detail, how the amyloid inhibitory mechanism of human αB-crystallin, a natural chaperone, is different from that of human lysozyme, but also may aid de novo design of amyloid inhibitors.

  7. Tau/Amyloid Beta 42 Peptide Test (Alzheimer Biomarkers)

    Science.gov (United States)

    ... Was this page helpful? Also known as: Alzheimer Biomarkers Formal name: Tau Protein and Amyloid Beta 42 ... being researched for their potential use as AD biomarkers. If someone has symptoms of dementia , a health ...

  8. Influence of hydrophobic Teflon particles on the structure of amyloid beta-peptide

    NARCIS (Netherlands)

    Giacomelli, C.E.; Norde, W.

    2003-01-01

    The amyloid beta-protein (Abeta) constitutes the major peptide component of the amyloid plaque deposits of Alzheimer's disease in humans. The Abeta changes from a nonpathogenic to a pathogenic conformation resulting in self-aggregation and deposition of the peptide. It has been established that dena

  9. Acetylcholinesterase, a senile plaque component, affects the fibrillogenesis of amyloid-beta-peptides.

    Science.gov (United States)

    Alvarez, A; Bronfman, F; Pérez, C A; Vicente, M; Garrido, J; Inestrosa, N C

    1995-12-01

    Acetylcholinesterase (AChE) colocalizes with amyloid-beta peptide (A beta) deposits present in the brain of Alzheimer's patients. Recent studies showed that A beta 1-40 can adopt two different conformational states in solution (an amyloidogenic conformer, A beta ac, and a non-amyloidogenic conformer, A beta nac) which have distinct abilities to form amyloid fibrils. We report here that AChE binds A beta nac and accelerates amyloid formation by the same peptide. No such effect was observed with A beta ac, the amyloidogenic conformer, suggesting that AChE acts as a 'pathological chaperone' inducing a conformational transition from A beta nac into A beta ac in vitro.

  10. Amyloid Beta Peptide Slows Down Sensory-Induced Hippocampal Oscillations

    Directory of Open Access Journals (Sweden)

    Fernando Peña-Ortega

    2012-01-01

    Full Text Available Alzheimer’s disease (AD progresses with a deterioration of hippocampal function that is likely induced by amyloid beta (Aβ oligomers. Hippocampal function is strongly dependent on theta rhythm, and disruptions in this rhythm have been related to the reduction of cognitive performance in AD. Accordingly, both AD patients and AD-transgenic mice show an increase in theta rhythm at rest but a reduction in cognitive-induced theta rhythm. We have previously found that monomers of the short sequence of Aβ (peptide 25–35 reduce sensory-induced theta oscillations. However, considering on the one hand that different Aβ sequences differentially affect hippocampal oscillations and on the other hand that Aβ oligomers seem to be responsible for the cognitive decline observed in AD, here we aimed to explore the effect of Aβ oligomers on sensory-induced theta rhythm. Our results show that intracisternal injection of Aβ1–42 oligomers, which has no significant effect on spontaneous hippocampal activity, disrupts the induction of theta rhythm upon sensory stimulation. Instead of increasing the power in the theta band, the hippocampus of Aβ-treated animals responds to sensory stimulation (tail pinch with an increase in lower frequencies. These findings demonstrate that Aβ alters induced theta rhythm, providing an in vivo model to test for therapeutic approaches to overcome Aβ-induced hippocampal and cognitive dysfunctions.

  11. Identification of a Novel Parallel beta-Strand Conformation within Molecular Monolayer of Amyloid Peptide

    DEFF Research Database (Denmark)

    Liu, Lei; Li, Qiang; Zhang, Shuai;

    2016-01-01

    technique with force controlled in pico-Newton range, combining with molecular dynamic simulation. The identified parallel beta-strand-like structure of molecular monolayer is distinct from the antiparallel beta-strand structure of A beta(33-42) amyloid fibril. This finding enriches the molecular structures....... In this work, the early A beta(33-42) aggregates forming the molecular monolayer at hydrophobic interface are investigated. The molecular monolayer of amyloid peptide A beta(33-42) consisting of novel parallel beta-strand-like structure is further revealed by means of a quantitative nanomechanical spectroscopy......The differentiation of protein properties and biological functions arises from the variation in the primary and secondary structure. Specifically, in abnormal assemblies of protein, such as amyloid peptide, the secondary structure is closely correlated with the stable ensemble and the cytotoxicity...

  12. Structural Transformation and Aggregation of cc-beta Peptides Into Amyloid Proto-fibrils

    Science.gov (United States)

    Bhandari, Yuba; Steckmann, Timothy; Chapagain, Prem; Gerstman, Bernard

    2013-03-01

    The study of amyloid fibrils has important implications in understanding and treatment of various neurodegenerative diseases such as Alzheimer's and Parkinson's. During the formation of amyloid fibrils, peptide polymers manifest fascinating physical behavior by undergoing complicated structural transformations. We examine the behavior of a small engineered peptide called cc-beta, that was designed to mimic the structural changes of the much larger, naturally occurring amyloid beta proteins. Molecular dynamics (MD) simulations are performed to uncover the underlying physics that is responsible for the large scale structural transformations. By using implicit solvent replica exchange MD simulations, we examined the behavior of 12 peptides, initially arranged in four different cc-beta alpha helix trimers. We observed various intermediate stages of aggregation, as well as an organized proto-fibril beta aggregate. We discuss the time evolution and the various interactions involved in the structural transformation.

  13. Interaction of calreticulin with amyloid beta peptide 1-42.

    Science.gov (United States)

    Duus, K; Hansen, P R; Houen, G

    2008-01-01

    The interaction of calreticulin with amyloid beta (Abeta) was investigated using solid phase and solution binding assays. Calreticulin bound Abeta 1-42 in a time and concentration dependent fashion. The binding was optimal at pH 5 and was stimulated by Ca2+ and inhibited by Zn2+ at pH 7. Interaction took place through the hydrophobic C-terminus of Abeta 1-42 and the polypeptide binding site of calreticulin. The results are discussed in the light of a reported role of calreticulin as a cell surface scavenger receptor.

  14. Membrane Pore Formation by Amyloid beta (25-35) Peptide

    Science.gov (United States)

    Kandel, Nabin; Tatulian, Suren

    Amyloid (A β) peptide contributes to Alzheimer's disease by a yet unidentified mechanism. One of the possible mechanisms of A β toxicity is formation of pores in cellular membranes. We have characterized the formation of pores in phospholipid membranes by the Aβ25 - 35 peptide (GSNKGAIIGLM) using fluorescence, Fourier transform infrared spectroscopy (FTIR) and circular dichroism (CD) techniques. CD and FTIR identified formation of β-sheet structure upon incubation of the peptide in aqueous buffer for 2 hours. Unilamellar vesicles composed of a zwitterionic lipid, 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC), and 70 % POPC plus 30 % of an acidic lipid, 1-palmitoyl-2-oleoyl-phosphatidylglycerol (POPG), are made in 30 mM CaCl2. Quin-2, a fluorophore that displays increased fluorescence upon Ca2+ binding, is added to the vesicles externally. Peptide addition results in increased Quin-2 fluorescence, which is interpreted by binding of the peptide to the vesicles, pore formation, and Ca2+ leakage. The positive and negative control measurements involve addition of a detergent, Triton X-100, which causes vesicle rupture and release of total calcium, and blank buffer, respectively.

  15. ATP-promoted amyloidosis of an amyloid beta peptide.

    Science.gov (United States)

    Exley, C

    1997-10-20

    Amyloidosis is implicated in the aetiology of a number of disorders of human health. The factors that influence its instigation and subsequent rate of progress are the subject of a considerable research effort. The peptide fragment A beta(25-35) is amyloidogenic and has proven to be a useful model of the processes involved in amyloidosis. It is demonstrated herein that the assembly of A beta(25-35) into thioflavin T-reactive fibrils and their subsequent rearrangement into advanced glycation endproducts is accelerated by ATP. Aluminium potentiated these effects of ATP, suggesting a possible link with the aetiology of amyloidoses in vivo.

  16. Acetylcholinesterase accelerates assembly of amyloid-beta-peptides into Alzheimer's fibrils: possible role of the peripheral site of the enzyme.

    Science.gov (United States)

    Inestrosa, N C; Alvarez, A; Pérez, C A; Moreno, R D; Vicente, M; Linker, C; Casanueva, O I; Soto, C; Garrido, J

    1996-04-01

    Acetylcholinesterase (AChE), an important component of cholinergic synapses, colocalizes with amyloid-beta peptide (A beta) deposits of Alzheimer's brain. We report here that bovine brain AChE, as well as the human and mouse recombinant enzyme, accelerates amyloid formation from wild-type A beta and a mutant A beta peptide, which alone produces few amyloid-like fibrils. The action of AChE was independent of the subunit array of the enzyme, was not affected by edrophonium, an active site inhibitor, but it was affected by propidium, a peripheral anionic binding site ligand. Butyrylcholinesterase, an enzyme that lacks the peripheral site, did not affect amyloid formation. Furthermore, AChE is a potent amyloid-promoting factor when compared with other A beta-associated proteins. Thus, in addition to its role in cholinergic synapses, AChE may function by accelerating A beta formation and could play a role during amyloid deposition in Alzheimer's brain.

  17. TLR2 is a primary receptor for Alzheimer's amyloid beta peptide to trigger neuroinflammatory activation.

    NARCIS (Netherlands)

    Liu, S.; Liu, Y.; Hao, W.; Wolf, L.; Kiliaan, A.J.; Penke, B.; Rube, C.E.; Walter, J.; Heneka, M.T.; Hartmann, T.; Menger, M.D.; Fassbender, K.

    2012-01-01

    Microglia activated by extracellularly deposited amyloid beta peptide (Abeta) act as a two-edged sword in Alzheimer's disease pathogenesis: on the one hand, they damage neurons by releasing neurotoxic proinflammatory mediators (M1 activation); on the other hand, they protect neurons by triggering an

  18. PEGylated nanoparticles bind to and alter amyloid-beta peptide conformation

    DEFF Research Database (Denmark)

    Brambilla, Davide; Verpillot, Romain; Le Droumaguet, Benjamin;

    2012-01-01

    We have demonstrated that the polyethylene glycol (PEG) corona of long-circulating polymeric nanoparticles (NPs) favors interaction with the amyloid-beta (Aß(1-42)) peptide both in solution and in serum. The influence of PEGylation of poly(alkyl cyanoacrylate) and poly(lactic acid) NPs on the int...

  19. Ethyl ether fraction of Gastrodia elata Blume protects amyloid beta peptide-induced cell death.

    Science.gov (United States)

    Kim, Hyeon-Ju; Moon, Kwang-Deog; Lee, Dong-Seok; Lee, Sang-Han

    2003-01-01

    Alzheimer's disease is the most common cause of dementia in the elderly. Recently, it has been reported that Alzheimer's disease is associated with cell death in neuronal cells including the hippocampus. Amyloid beta-peptide stimulates neuronal cell death, but the underlying signaling pathways are poorly understood. In order to develop anti-dementia agents with potential therapeutic value, we examined the effect of the herbal compound Gastrodia elata Blume (GEB) on neuronal cell death induced by amyloid beta-peptide in IMR-32 neuroblastoma cells. The fractionation of GEB was carried out in various solvents. The hydroxyl radical scavenging effect of the ethyl ether fraction was more potent than any other fractions. In cells treated with amyloid beta-peptide, the neuroprotective effect of the ethyl ether, chloroform, and butanol fractions was 92, 44, and 39%, respectively, compared with control. Taken together, these results suggest that the ethyl ether fraction of GEB contains one or more compounds that dramatically reduce amyloid beta-peptide induced neuronal cell death in vitro.

  20. Nasal administration of amyloid-beta peptide decreases cerebral amyloid burden in a mouse model of Alzheimer's disease

    DEFF Research Database (Denmark)

    Weiner, H L; Lemere, C A; Maron, R;

    2000-01-01

    Progressive cerebral deposition of amyloid-beta (Abeta) peptide, an early and essential feature of Alzheimer's disease (AD), is accompanied by an inflammatory reaction marked by microgliosis, astrocytosis, and the release of proinflammatory cytokines. Mucosal administration of disease......-Abeta antibodies of the IgG1 and IgG2b classes, and mononuclear cells in the brain expressing the anti-inflammatory cytokines interleukin-4, interleukin-10, and tumor growth factor-beta. Our results demonstrate that chronic nasal administration of Abeta peptide can induce an immune response to Abeta that decreases...

  1. Lipid rafts participate in aberrant degradative autophagic-lysosomal pathway of amyloid-beta peptide in Alzheimer’s disease

    Institute of Scientific and Technical Information of China (English)

    Xin Zhou; Chun Yang; Yufeng Liu; Peng Li; Huiying Yang; Jingxing Dai; Rongmei Qu; Lin Yuan

    2014-01-01

    Amyloid-beta peptide is the main component of amyloid plaques, which are found in Alzhei-mer’s disease. The generation and deposition of amyloid-beta is one of the crucial factors for the onset and progression of Alzheimer’s disease. Lipid rafts are glycolipid-rich liquid domains of the plasma membrane, where certain types of protein tend to aggregate and intercalate. Lipid rafts are involved in the generation of amyloid-beta oligomers and the formation of amyloid-beta peptides. In this paper, we review the mechanism by which lipid rafts disturb the aberrant deg-radative autophagic-lysosomal pathway of amyloid-beta, which plays an important role in the pathological process of Alzheimer’s disease. Moreover, we describe this mechanism from the view of the Two-system Theory of fasciology and thus, suggest that lipid rafts may be a new target of Alzheimer’s disease treatment.

  2. All-atom molecular dynamics studies of the full-length {beta}-amyloid peptides

    Energy Technology Data Exchange (ETDEWEB)

    Luttmann, Edgar [Department of Chemistry, Faculty of Science, University of Paderborn, Warburgerstr. 100, 33098 Paderborn (Germany); Fels, Gregor [Department of Chemistry, Faculty of Science, University of Paderborn, Warburgerstr. 100, 33098 Paderborn (Germany)], E-mail: fels@uni-paderborn.de

    2006-03-31

    {beta}-Amyloid peptides are believed to play an essential role in Alzheimer's disease (AD), due to their sedimentation in the form of {beta}-amyloid aggregates in the brain of AD-patients, and the in vitro neurotoxicity of oligomeric aggregates. The monomeric peptides come in different lengths of 39-43 residues, of which the 42 alloform seems to be most strongly associated with AD-symptoms. Structural information on these peptides to date comes from NMR studies in acidic solutions, organic solvents, or on shorter fragments of the peptide. In addition X-ray and solid-state NMR investigations of amyloid fibrils yield insight into the structure of the final aggregate and therefore define the endpoint of any conformational change of an A{beta}-monomer along the aggregation process. The conformational changes necessary to connect the experimentally known conformations are not yet understood and this process is an active field of research. In this paper, we report results from all-atom molecular dynamics simulations based on experimental data from four different peptides of 40 amino acids and two peptides consisting of 42 amino acids. The simulations allow for the analysis of intramolecular interactions and the role of structural features. In particular, they show the appearance of {beta}-turn in the region between amino acid 21 and 33, forming a hook-like shape as it is known to exist in the fibrillar A{beta}-structures. This folding does not depend on the formation of a salt bridge between Asp-23 and Lys-28 but requires the A{beta}(1-42) as such structure was not observed in the shorter system A{beta}(1-40)

  3. {beta} - amyloid imaging probes

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Jae Min [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2007-04-15

    Imaging distribution of {beta} - amyloid plaques in Alzheimer's disease is very important for early and accurate diagnosis. Early trial of the {beta} -amyloid plaques includes using radiolabeled peptides which can be only applied for peripheral {beta} - amyloid plaques due to limited penetration through the blood brain barrier (BBB). Congo red or Chrysamine G derivatives were labeled with Tc-99m for imaging {beta} - amyloid plaques of Alzheimer patient's brain without success due to problem with BBB penetration. Thioflavin T derivatives gave breakthrough for {beta} - amyloid imaging in vivo, and a benzothiazole derivative [C-11]6-OH-BTA-1 brought a great success. Many other benzothiazole, benzoxazole, benzofuran, imidazopyridine, and styrylbenzene derivatives have been labeled with F-18 and I-123 to improve the imaging quality. However, [C-11]6-OH-BTA-1 still remains as the best. However, short half-life of C-11 is a limitation of wide distribution of this agent. So, it is still required to develop an Tc-99m, F-18 or I-123 labeled agent for {beta} - amyloid imaging agent.

  4. Complement activation by the amyloid proteins A beta peptide and beta 2-microglobulin

    DEFF Research Database (Denmark)

    Nybo, Mads; Nielsen, E H; Svehag, S E

    1999-01-01

    Complement activation (CA) has been reported to play a role in the pathogenesis of Alzheimer's disease (AD). To investigate whether CA may contribute to amyloidogenesis in general, the CA potential of different amyloid fibril proteins was tested. CA induced by A beta preparations containing soluble...... protein, protofilaments and some fibrils or only fibrils in a solid phase system (ELISA) was modest with a slow kinetics compared to the positive delta IgG control. Soluble A beta induced no detectable CA in a liquid phase system (complement consumption assay) while fibrillar A beta caused CA at 200 mg....../ml and higher concentrations. Soluble beta 2-microglobulin (beta 2M) purified from peritoneal dialysates was found to be as potent a complement activator as A beta in both solid and liquid phase systems while beta 2M purified from urine exhibited lower activity, a difference which may be explained...

  5. Insights into the molecular interactions between aminopeptidase and amyloid beta peptide using molecular modeling techniques.

    Science.gov (United States)

    Dhanavade, Maruti J; Sonawane, Kailas D

    2014-08-01

    Amyloid beta (Aβ) peptides play a central role in the pathogenesis of Alzheimer's disease. The accumulation of Aβ peptides in AD brain was caused due to overproduction or insufficient clearance and defects in the proteolytic degradation of Aβ peptides. Hence, Aβ peptide degradation could be a promising therapeutic approach in AD treatment. Recent experimental report suggests that aminopeptidase from Streptomyces griseus KK565 (SGAK) can degrade Aβ peptides but the interactive residues are yet to be known in detail at the atomic level. Hence, we developed the three-dimensional model of aminopeptidase (SGAK) using SWISS-MODEL, Geno3D and MODELLER. Model built by MODELLER was used for further studies. Molecular docking was performed between aminopeptidase (SGAK) with wild-type and mutated Aβ peptides. The docked complex of aminopeptidase (SGAK) and wild-type Aβ peptide (1IYT.pdb) shows more stability than the other complexes. Molecular docking and MD simulation results revealed that the residues His93, Asp105, Glu139, Glu140, Asp168 and His255 are involved in the hydrogen bonding with Aβ peptide and zinc ions. The interactions between carboxyl oxygen atoms of Glu139 of aminopeptidase (SGAK) with water molecule suggest that the Glu139 may be involved in the nucleophilic attack on Ala2-Glu3 peptide bond of Aβ peptide. Hence, amino acid Glu139 of aminopeptidase (SGAK) might play an important role to degrade Aβ peptides, a causative agent of Alzheimer's disease.

  6. Alzheimer's disease and amyloid beta-peptide deposition in the brain: a matter of 'aging'?

    DEFF Research Database (Denmark)

    Moro, Maria Luisa; Collins, Matthew J; Cappellini, Enrico

    2010-01-01

    Biomolecules can experience aging processes that limit their long-term functionality in organisms. Typical markers of protein aging are spontaneous chemical modifications, such as AAR (amino acid racemization) and AAI (amino acid isomerization), mainly involving aspartate and asparagine residues....... Since these modifications may affect folding and turnover, they reduce protein functionality over time and may be linked to pathological conditions. The present mini-review describes evidence of AAR and AAI involvement in the misfolding and brain accumulation of Abeta (amyloid beta-peptide), a central...

  7. MALDI, AP/MALDI and ESI techniques for the MS detection of amyloid [beta]-peptides

    Science.gov (United States)

    Grasso, Giuseppe; Mineo, Placido; Rizzarelli, Enrico; Spoto, Giuseppe

    2009-04-01

    Amyloid [beta]-peptides (A[beta]s) are involved in several neuropathological conditions such as Alzheimer's disease and considerable experimental evidences have emerged indicating that different proteases play a major role in regulating the accumulation of A[beta]s in the brain. Particularly, insulin-degrading enzyme (IDE) has been shown to degrade A[beta]s at different cleavage sites, but the experimental results reported in the literature and obtained by mass spectrometry methods are somehow fragmentary. The detection of A[beta]s is often complicated by solubility issues, oxidation artifacts and spontaneous aggregation/cleavage and, in order to rationalize the different reported results, we analyzed A[beta]s solutions by three different MS approaches: matrix assisted laser desorption ionization-time of flight (MALDI-TOF), atmospheric pressure (AP) MALDI ion trap and electrospray ionization (ESI) ion trap. Differences in the obtained results are discussed and ESI is chosen as the most suitable MS method for A[beta]s detection. Finally, cleavage sites produced by interaction of A[beta]s with IDE are identified, two of which had never been reported in the literature.

  8. Computational Design of New Peptide Inhibitors for Amyloid Beta (Aβ) Aggregation in Alzheimer's Disease: Application of a Novel Methodology

    OpenAIRE

    Gözde Eskici; Mert Gur

    2013-01-01

    Computational Design of New Peptide Inhibitors for Amyloid Beta (Ab) Aggregation in Alzheimer’s Disease: Application of a Novel Methodology Go¨ zde Eskici¤a , Mert Gur¤b* Center for Computational Biology and Bioinformatics, Koc University, Istanbul, Turkey Abstract Alzheimer’s disease is the most common form of dementia. It is a neurodegenerative and incurable disease that is associated with the tight packing of amyloid fibrils. This packing is facilitated by the compatib...

  9. Dynamics in Alzheimer's disease: the role of peptide flexibility on amyloid beta aggregation

    Science.gov (United States)

    Antonieta Sanchez Farran, Maria; Maranas, Janna

    2010-03-01

    Aggregates of the amyloid beta peptide (Aβ) are thought to trigger brain cell death in Alzheimer's patients. Two different types of Aβ aggregates have been identified: soluble, and insoluble. Soluble aggregates are formed in early stages of peptide association, whereas insoluble aggregates are the final state of aggregation. Interestingly, it is the soluble aggregates, not the insoluble ones, which correlate with disease progression. Despite the relevance of soluble aggregates as a target for Alzheimer's disease, their mechanism of formation is unknown. The role of local flexibility in protein function has recently received attention: in this study we ask if local flexibility plays a similar role in how soluble aggregates form. To answer this question, we perform all-atom molecular dynamics simulations of the wild-type Aβ monomer, and two mutated forms that vary in their ability to form soluble aggregates. We find that enhanced flexibility facilitates the formation and availability of nucleation sites by allowing the peptide to more easily access the conformations most favorable to association. Peptides with high flexibility show larger conformational changes than less flexible peptides, the extent of these changes could determine the ability of Aβ to self associate.

  10. Metabolic changes may precede proteostatic dysfunction in a Drosophila model of amyloid beta peptide toxicity

    DEFF Research Database (Denmark)

    Ott, Stanislav; Vishnivetskaya, Anastasia; Malmendal, Anders;

    2016-01-01

    Amyloid beta (Aβ) peptide aggregation is linked to the initiation of Alzheimer's disease; accordingly, aggregation-prone isoforms of Aβ, expressed in the brain, shorten the lifespan of Drosophila melanogaster. However, the lethal effects of Aβ are not apparent until after day 15. We used shibire(...

  11. Amyloid beta-peptide worsens cognitive impairment following cerebral ischemia-reperfusion injury*****

    Institute of Scientific and Technical Information of China (English)

    Bo Song; Qiang Ao; Ying Niu; Qin Shen; Huancong Zuo; Xiufang Zhang; Yandao Gong

    2013-01-01

    Amyloid β-peptide, a major component of senile plaques in Alzheimer’s disease, has been impli-cated in neuronal cel death and cognitive impairment. Recently, studies have shown that the pathogenesis of cerebral ischemia is closely linked with Alzheimer’s disease. In this study, a rat model of global cerebral ischemia-reperfusion injury was established via occlusion of four arteries;meanwhile, fibril ar amyloid β-peptide was injected into the rat lateral ventricle. The Morris water maze test and histological staining revealed that administration of amyloid β-peptide could further aggravate impairments to learning and memory and neuronal cel death in the hippocampus of rats subjected to cerebral ischemia-reperfusion injury. Western blot showed that phosphorylation of tau protein and the activity of glycogen synthase kinase 3β were significantly stronger in cerebral is-chemia-reperfusion injury rats subjected to amyloidβ-peptide administration than those undergoing cerebral ischemia-reperfusion or amyloidβ-peptide administration alone. Conversely, the activity of protein phosphatase 2A was remarkably reduced in rats with cerebral ischemia-reperfusion injury fol owing amyloidβ-peptide administration. These findings suggest that amyloidβ-peptide can po-tentiate tau phosphorylation induced by cerebral ischemia-reperfusion and thereby aggravate cog-nitive impairment.

  12. Effect of graphene oxide on the conformational transitions of amyloid beta peptide: A molecular dynamics simulation study.

    Science.gov (United States)

    Baweja, Lokesh; Balamurugan, Kanagasabai; Subramanian, Venkatesan; Dhawan, Alok

    2015-09-01

    The interactions between nanomaterials (NMs) and amyloid proteins are central to the nanotechnology-based diagnostics and therapy in neurodegenerative disorders such as Alzheimer's and Parkinson's. Graphene oxide (GO) and its derivatives have shown to modulate the aggregation pattern of disease causing amyloid beta (Aβ) peptide. However, the mechanism is still not well understood. Using molecular dynamics simulations, the effect of graphene oxide (GO) and reduced graphene oxide (rGO) having carbon:oxygen ratio of 4:1 and 10:1, respectively, on the conformational transitions (alpha-helix to beta-sheet) and the dynamics of the peptide was investigated. GO and rGO decreased the beta-strand propensity of amino acid residues in Aβ. The peptide displayed different modes of adsorption on GO and rGO. The adsorption on GO was dominated by electrostatic interactions, whereas on rGO, both van der Waals and electrostatic interactions contributed in the adsorption of the peptide. Our study revealed that the slight increase in the hydrophobic patches on rGO made it more effective inhibitor of conformational transitions in the peptide. Alpha helix-beta sheet transition in Aβ peptide could be one of the plausible mechanism by which graphene oxide may inhibit amyloid fibrillation.

  13. Scutellaria baicalensis stem-leaf total flavonoid reduces neuronal apoptosis induced by amyloid beta-peptide (25-35)

    Institute of Scientific and Technical Information of China (English)

    Ruiting Wang; Xingbin Shen; Enhong Xing; Lihua Guan; Lisheng Xin

    2013-01-01

    Scutellaria baicalensis stem-leaf total flavonoid might attenuate learning/memory impairment and neuronal loss in rats induced by amyloid beta-peptide. This study aimed to explore the effects of Scutellaria baicalensis stem-leaf total flavonoid on amyloid beta-peptide-induced neuronal apoptosis and the expression of apoptosis-related proteins in the rat hippocampus. Male Wistar rats were given intragastric administration of Scutellaria baicalensis stem-leaf total flavonoid, 50 or 100 mg/kg, once per day. On day 8 after administration, 10 μg amyloid beta-peptide (25–35) was injected into the bilateral hippocampus of rats to induce neuronal apoptosis. On day 20, hippocampal tissue was harvested and probed with the terminal deoxyribonucleotidyl transferase-mediated biotin-16-dUTP nick-end labeling assay. Scutellaria baicalensis stem-leaf total flavonoid at 50 and 100 mg/kg reduced neuronal apoptosis induced by amyloid beta-peptide (25–35) in the rat hippocampus. Immunohistochemistry and western blot assay revealed that expression of the pro-apoptotic protein Bax, cytochrome c and caspase-3 was significantly diminished by 50 and 100 mg/kg Scutellaria baicalensis stem-leaf total flavonoid, while expression of the anti-apoptotic protein Bcl-2 was increased. Moreover, 100 mg/kg Scutellaria baicalensis stem-leaf total flavonoid had a more dramatic effect than the lower dosage. These experimental findings indicate that Scutellaria baicalensis stem-leaf total flavonoid dose-dependently attenuates neuronal apoptosis induced by amyloid beta-peptide in the hippocampus, and it might mediate this by regulating the expression of Bax, cytochrome c, caspase-3 and Bcl-2.

  14. Elevation in sphingomyelin synthase activity is associated with increases in amyloid-beta peptide generation.

    Directory of Open Access Journals (Sweden)

    Jen-Hsiang T Hsiao

    Full Text Available A pathological hallmark of Alzheimer's disease (AD is the presence of amyloid-beta peptide (Aβ plaques in the brain. Aβ is derived from a sequential proteolysis of the transmenbrane amyloid precursor protein (APP, a process which is dependent on the distribution of lipids present in the plasma membrane. Sphingomyelin is a major membrane lipid, however its role in APP processing is unclear. Here, we assessed the expression of sphingomyelin synthase (SGMS1; the gene responsible for sphingomyelin synthesis in human brain and found that it was significantly elevated in the hippocampus of AD brains, but not in the cerebellum. Secondly, we assessed the impact of altering SGMS activity on Aβ generation. Inhibition of SGMS activity significantly reduced the level of Aβ in a dose- and time dependent manner. The decrease in Aβ level occurred without changes in APP expression or cell viability. These results when put together indicate that SGMS activity impacts on APP processing to produce Aβ and it could be a contributing factor in Aβ pathology associated with AD.

  15. Aloe arborescens Extract Protects IMR-32 Cells against Alzheimer Amyloid Beta Peptide via Inhibition of Radical Peroxide Production.

    Science.gov (United States)

    Clementi, Maria Elisabetta; Tringali, Giuseppe; Triggiani, Doriana; Giardina, Bruno

    2015-11-01

    Aloe arborescens is commonly used as a pharmaceutical ingredient for its effect in burn treatment and ability to increase skin wound healing properties. Besides, it is well known to have beneficial phytotherapeutic, anticancer, and radio-protective properties. In this study, we first provided evidence that A. arborescens extract protects IMR32, a neuroblastoma human cellular line, from toxicity induced by beta amyloid, the peptide responsible for Alzheimer's disease. In particular, pretreatment with A. arborescens maintains an elevated cell viability and exerts a protective effect on mitochondrial functionality, as evidenced by oxygen consumption experiments. The protective mechanism exerted by A. arborescens seems be related to lowering of oxidative potential of the cells, as demonstrated by the ROS measurement compared with the results obtained in the presence of amyloid beta (1-42) peptide alone. Based on these preliminary observations we suggest that use ofA. arborescens extract could be developed as agents for the management of AD.

  16. The Alzheimer's disease-associated amyloid beta-protein is an antimicrobial peptide.

    Directory of Open Access Journals (Sweden)

    Stephanie J Soscia

    Full Text Available BACKGROUND: The amyloid beta-protein (Abeta is believed to be the key mediator of Alzheimer's disease (AD pathology. Abeta is most often characterized as an incidental catabolic byproduct that lacks a normal physiological role. However, Abeta has been shown to be a specific ligand for a number of different receptors and other molecules, transported by complex trafficking pathways, modulated in response to a variety of environmental stressors, and able to induce pro-inflammatory activities. METHODOLOGY/PRINCIPAL FINDINGS: Here, we provide data supporting an in vivo function for Abeta as an antimicrobial peptide (AMP. Experiments used established in vitro assays to compare antimicrobial activities of Abeta and LL-37, an archetypical human AMP. Findings reveal that Abeta exerts antimicrobial activity against eight common and clinically relevant microorganisms with a potency equivalent to, and in some cases greater than, LL-37. Furthermore, we show that AD whole brain homogenates have significantly higher antimicrobial activity than aged matched non-AD samples and that AMP action correlates with tissue Abeta levels. Consistent with Abeta-mediated activity, the increased antimicrobial action was ablated by immunodepletion of AD brain homogenates with anti-Abeta antibodies. CONCLUSIONS/SIGNIFICANCE: Our findings suggest Abeta is a hitherto unrecognized AMP that may normally function in the innate immune system. This finding stands in stark contrast to current models of Abeta-mediated pathology and has important implications for ongoing and future AD treatment strategies.

  17. DCP-LA neutralizes mutant amyloid beta peptide-induced impairment of long-term potentiation and spatial learning.

    Science.gov (United States)

    Nagata, Tetsu; Tomiyama, Takami; Tominaga, Takemi; Mori, Hiroshi; Yaguchi, Takahiro; Nishizaki, Tomoyuki

    2010-01-01

    Long-term potentiation (LTP) was monitored from the CA1 region of the intact rat hippocampus by delivering high frequency stimulation (HFS) to the Schaffer collateral commissural pathway. Intraventricular injection with mutant amyloid beta(1-42) peptide lacking glutamate-22 (Abeta(1-42)E22Delta), favoring oligomerization, 10 min prior to HFS, inhibited expression of LTP, with the potency more than wild-type amyloid beta(1-42) peptide. Intraperitoneal injection with the linoleic acid derivative 8-[2-(2-pentyl-cyclopropylmethyl)-cyclopropyl]-octanoic acid (DCP-LA) 70 min prior to HFS neutralized mutant Abeta(1-42)E22Delta peptide-induced LTP inhibition. In the water maze test, continuous intraventricular injection with mutant Abeta(1-42)E22Delta peptide for 14 days prolonged the acquisition latency as compared with that for control, with the potency similar to wild-type Abeta(1-42) peptide, and intraperitoneal injection with DCP-LA shortened the prolonged latency to control levels. The results of the present study indicate that DCP-LA neutralizes mutant Abeta(1-42)E22Delta peptide-induced impairment of LTP and spatial learning.

  18. Specific Triazine Herbicides Induce Amyloid-beta(42) Production

    NARCIS (Netherlands)

    Portelius, Erik; Durieu, Emilie; Bodin, Marion; Cam, Morgane; Pannee, Josef; Leuxe, Charlotte; Mabondzo, Aloise; Oumata, Nassima; Galons, Herve; Lee, Jung Yeol; Chang, Young-Tae; Stuber, Kathrin; Koch, Philipp; Fontaine, Gaelle; Potier, Marie-Claude; Manousopoulou, Antigoni; Garbis, Spiros D.; Covaci, Adrian; Van Dam, Debby; De Deyn, Peter; Karg, Frank; Flajolet, Marc; Omori, Chiori; Hata, Saori; Suzuki, Toshiharu; Blennow, Kaj; Zetterberg, Henrik; Meijer, Laurent

    2016-01-01

    Proteolytic cleavage of the amyloid-beta protein precursor (A beta PP) ecretases leads to extracellular release of amyloid-beta (A beta) peptides. Increased production of A beta(42) over A beta(40) and aggregation into oligomers and plaques constitute an Alzheimer's disease (AD) hallmark. Identifyin

  19. Copper enhances amyloid-beta peptide neurotoxicity and non beta-aggregation: a series of experiments conducted upon copper-bound and copper-free amyloid-beta peptide.

    Science.gov (United States)

    Dai, Xueling; Sun, Yaxuan; Gao, Zhaolan; Jiang, Zhaofeng

    2010-05-01

    Alzheimer's disease is characterized by the abnormal aggregation of amyloid-beta peptide (Abeta) in extracellular deposits known as senile plaques. However, the nature of the toxic Abeta species and its precise mechanism of action remain unclear. Previous reports suggest that the histidine residues are involved in copper-Abeta interaction, by which resulting in the neurotoxicity of Abeta and free radical damage. Here, we employed a mutant Abeta (Abeta H13R) in which a histidine residue was replaced by arginine. Copper facilitated the precipitation of both wild-type and mutant Abeta in the spectrophotometric absorbance assay but suppressed beta-structure aggregates according to Thioflavine-T assay. Wild-type Abeta alone is more cytotoxic but produced less amount of H(2)O(2) than AbetaH13R-copper complexes, suggesting that Abeta-membrane interaction may also implicated in the pathologic progress. Abeta toxicity is in positive correlation to its competence to aggregate despite the aggregation is mainly composed of non-beta fibril substances. In short, these findings may provide further evidence on the role of copper in the pathogenesis of Alzheimer's disease.

  20. Multiscale MD Simulations of Folding Dynamics and Mobility of Beta-Amyloid Peptide on Lipid Bilayer Surfaces

    Science.gov (United States)

    van Tilburg, Scott; Cheng, Kelvin

    2013-03-01

    Early interaction events of beta-amyloid peptides with the neuronal membranes play a key role in the pathogenesis of Alzheimer's disease. We have used multiscale Molecular Dynamics (MD) simulations to study the protein folding dynamics and lateral mobility of beta-amyloid protein on the cholesterol-enriched and -depleted lipid nano-domains. Several independent simulation replicates of all-atom and coarse-grained MD simulations of beta-amyloid on different lipid bilayer nano-domains have been generated. Using Define Secondary Structure of Proteins (DSSP) algorithm and mean-square-distance (MSD) analysis, the protein conformation and the lateral diffusion coefficients of protein, as well as the lipid and water, were calculated as a function of simulation time up to 200 nanoseconds for atomistic and 2 microseconds for coarse-grained simulations per replicate in different bilayer systems. Subtle differences in the conformation and mobility of the protein were observed in lipid bilayers with and without cholesterol. The structural dynamics information obtained from this work will provide useful insights into understanding the role of protein/lipid interactions in the membrane-associated aggregation of protein on neuronal membranes. HHMI-Trinity University and NIH RC1-GM090897-02

  1. Hormetic effect of amyloid-beta peptide in hippocampal synaptic plasticity and memory

    Directory of Open Access Journals (Sweden)

    Daniela Puzzo

    2012-09-01

    Full Text Available Background: The term hormesis refers to a biphasic dose-response phenomenon characterized by low-dose stimulation and high-dose inhibition represented by a J-shaped or U-shaped curve, depending on the parameter measured (Calabrese and Baldwin, Hum Exp Toxicol, 2002. Indeed, several, if not all, physiological molecules (i.e. glutamate, glucocorticoids, nitric oxide are likely to present a hormetic effect, exhibiting opposite effects at high or low concentrations. In the last few years, we have focused on amyloid-beta (A, a peptide widely known because it is produced in high amounts during Alzheimer’s disease (AD. A is considered a toxic fragment causing synaptic dysfunction and memory impairment (Selkoe, Science, 2002. However, the peptide is normally produced in the healthy brain and growing evidences indicate that it might have a physiologic function. Aim: Based on previous results showing that picomolar concentrations of A42 enhance synaptic plasticity and memory (Puzzo et al, J Neurosci, 2008 and that endogenous A is necessary for synaptic plasticity and memory (Puzzo et al, Ann Neurol, 2011, the aim of our study was to demonstrate the hormetic role of A in synaptic plasticity and memory. Methods: We used 3-month old wild type mice to analyze how synaptic plasticity, measured on hippocampal slices in vitro, and spatial reference memory were modified by treatment with different doses of A (from 2 pM to 20 μM. Results: We demonstrated that A has a hormetic effect (Puzzo et al, Neurobiol Aging, 2012 with low-doses (200 pM stimulating synaptic plasticity and memory and high-doses (≥ 200 nM inhibiting these processes. Conclusions: Our results suggest that, paradoxically, very low doses of A might serve to enhance memory at appropriate concentrations and conditions. These findings raise several issues when designing

  2. Arginine metabolising enzymes as therapeutic tools for Alzheimer's disease: peptidyl arginine deiminase catalyses fibrillogenesis of beta-amyloid peptides.

    Science.gov (United States)

    Mohlake, Peter; Whiteley, Chris G

    2010-06-01

    The accumulation of arginine in the cerebrospinal fluid and brains of patients suffering from acute neurodegenerative diseases like Alzheimer's disease, point to defects in the metabolic pathways involving this amino acids. The deposits of neurofibrillary tangles and senile plaques perhaps as a consequence of fibrillogenesis of beta-amyloid peptides has also been shown to be a hallmark in the aetiology of certain neurodegenerative diseases. Peptidylarginine deiminase (PAD II) is an enzyme that uses arginine as a substrate and we now show that PAD II not only binds with the peptides Abeta(1-40), Abeta(22-35), Abeta(17-28), Abeta(25-35) and Abeta(32-35) but assists in the proteolytic degradation of these peptides with the concomitant formation of insoluble fibrils. PAD was purified in 12.5% yield and 137 fold with a specific activity of 59 micromol min(-1) mg(-1) from bovine brain by chromatography on diethylaminoethyl (DEAE)-Sephacel. Characterisation of the enzyme gave a pH and temperature optima of 7.5 degrees C and 68 degrees C, respectively, and the enzyme lost 50% activity within 38 min at this temperature. Michaelis-Menten kinetics established a V(max) and K(m) of 1.57 micromol min(-1) ml(-1) and 1.35 mM, respectively, with N-benzoyl arginine ethyl ester as substrate. Kinetic analysis was used to measure the affinity (K(i)) of the amyloid peptides to PAD with values between 1.4 and 4.6 microM. The formation of Abeta fibrils was rate limiting involving an initial lag time of about 24 h that was dependent on the concentration of the amyloid peptides. Turbidity measurements at 400 nm, Congo Red assay and Thioflavin-T staining fluorescence were used to establish the aggregation kinetics of PAD-induced fibril formation.

  3. Iron promotes the toxicity of amyloid beta peptide by impeding its ordered aggregation.

    Science.gov (United States)

    Liu, Beinan; Moloney, Aileen; Meehan, Sarah; Morris, Kyle; Thomas, Sally E; Serpell, Louise C; Hider, Robert; Marciniak, Stefan J; Lomas, David A; Crowther, Damian C

    2011-02-11

    We have previously shown that overexpressing subunits of the iron-binding protein ferritin can rescue the toxicity of the amyloid β (Aβ) peptide in our Drosophila model system. These data point to an important pathogenic role for iron in Alzheimer disease. In this study, we have used an iron-selective chelating compound and RNAi-mediated knockdown of endogenous ferritin to further manipulate iron in the brain. We confirm that chelation of iron protects the fly from the harmful effects of Aβ. To understand the pathogenic mechanisms, we have used biophysical techniques to see how iron affects Aβ aggregation. We find that iron slows the progression of the Aβ peptide from an unstructured conformation to the ordered cross-β fibrils that are characteristic of amyloid. Finally, using mammalian cell culture systems, we have shown that iron specifically enhances Aβ toxicity but only if the metal is present throughout the aggregation process. These data support the hypothesis that iron delays the formation of well ordered aggregates of Aβ and so promotes its toxicity in Alzheimer disease.

  4. Molecular dynamics simulation and molecular docking studies of Angiotensin converting enzyme with inhibitor lisinopril and amyloid Beta Peptide.

    Science.gov (United States)

    Jalkute, Chidambar Balbhim; Barage, Sagar Hindurao; Dhanavade, Maruti Jayram; Sonawane, Kailas Dasharath

    2013-06-01

    Angiotensin converting enzyme (ACE) cleaves amyloid beta peptide. So far this cleavage mechanism has not been studied in detail at atomic level. Keeping this view in mind, we performed molecular dynamics simulation of crystal structure complex of testis truncated version of ACE (tACE) and its inhibitor lisinopril along with Zn(2+) to understand the dynamic behavior of active site residues of tACE. Root mean square deviation results revealed the stability of tACE throughout simulation. The residues Ala 354, Glu 376, Asp 377, Glu 384, His 513, Tyr 520 and Tyr 523 of tACE stabilized lisinopril by hydrogen bonding interactions. Using this information in subsequent part of study, molecular docking of tACE crystal structure with Aβ-peptide has been made to investigate the interactions of Aβ-peptide with enzyme tACE. The residues Asp 7 and Ser 8 of Aβ-peptide were found in close contact with Glu 384 of tACE along with Zn(2+). This study has demonstrated that the residue Glu 384 of tACE might play key role in the degradation of Aβ-peptide by cleaving peptide bond between Asp 7 and Ser 8 residues. Molecular basis generated by this attempt could provide valuable information towards designing of new therapies to control Aβ concentration in Alzheimer's patient.

  5. Microscopic factors that control beta-sheet registry in amyloid fibrils formed by fragment 11-25 of amyloid beta peptide: insights from computer simulations.

    Science.gov (United States)

    Negureanu, Lacramioara; Baumketner, Andrij

    2009-06-26

    Short fragments of amyloidogenic proteins are widely used as model systems in studies of amyloid formation. Fragment 11-25 of the amyloid beta protein involved in Alzheimer's disease (Abeta11-25) was recently shown to form amyloid fibrils composed of anti-parallel beta-sheets. Interestingly, fibrils grown under neutral and acidic conditions were seen to possess different registries of their inter-beta-strand hydrogen bonds. In an effort to explain the microscopic origin of this pH dependence, we studied Abeta11-25 fibrils using methods of theoretical modeling. Several structural models were built for fibrils at low and neutral pH levels and these were examined in short molecular dynamics simulations in explicit water. The models that displayed the lowest free energy, as estimated using an implicit solvent model, were selected as representative of the true fibrillar structure. It was shown that the registry of these models agrees well with the experimental results. At neutral pH, the main contribution to the free energy difference between the two registries comes from the electrostatic interactions. The charge group of the carboxy terminus makes a large contribution to these interactions and thus appears to have a critical role in determining the registry.

  6. Iron and aluminum interaction with amyloid-beta peptides associated with Alzheimer’s disease

    Energy Technology Data Exchange (ETDEWEB)

    Drochioiu, Gabi; Ion, Laura [Alexandru Ioan Cuza University of Iasi, 11 Carol I, Iasi 700506 (Romania); Murariu, Manuela; Habasescu, Laura [Petru Poni Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, Iasi 700487 (Romania)

    2014-10-06

    An elevation in the concentration of heavy metal ions in Alzheimer’s disease (AD) brain has been demonstrated in many studies. Aβ precipitation and toxicity in AD brains seem to be caused by abnormal interactions with neocortical metal ions, especially iron, copper, zinc, and aluminum [1–3]. There is increasing evidence that iron and aluminum ions are involved in the mechanisms that underlie the neurodegenerative diseases [4,5]. However, evidence was brought to demonstrate that some Aβ fragments, at physiological pH, are not able to form binary complexes with Fe(III) ions of sufficient stability to compete with metal hydroxide precipitation [6]. On the contrary, multiple metal ions are known to interact with Aβ peptides [7]. Consequently, we investigated here the interaction of Fe(II/III) and Al(III) ions with some amyloidpeptides and fragments that results in peptide aggregation and fibrillation [8,9]. Infrared spectroscopy, atomic force microscopy, scanning electron microscopy, electrophoresis and mass spectrometry demonstrated conformational changes of peptides in the presence of such metals.

  7. Iron and aluminum interaction with amyloid-beta peptides associated with Alzheimer's disease

    Science.gov (United States)

    Drochioiu, Gabi; Murariu, Manuela; Ion, Laura; Habasescu, Laura

    2014-10-01

    An elevation in the concentration of heavy metal ions in Alzheimer's disease (AD) brain has been demonstrated in many studies. Aβ precipitation and toxicity in AD brains seem to be caused by abnormal interactions with neocortical metal ions, especially iron, copper, zinc, and aluminum [1-3]. There is increasing evidence that iron and aluminum ions are involved in the mechanisms that underlie the neurodegenerative diseases [4,5]. However, evidence was brought to demonstrate that some Aβ fragments, at physiological pH, are not able to form binary complexes with Fe(III) ions of sufficient stability to compete with metal hydroxide precipitation [6]. On the contrary, multiple metal ions are known to interact with Aβ peptides [7]. Consequently, we investigated here the interaction of Fe(II/III) and Al(III) ions with some amyloidpeptides and fragments that results in peptide aggregation and fibrillation [8,9]. Infrared spectroscopy, atomic force microscopy, scanning electron microscopy, electrophoresis and mass spectrometry demonstrated conformational changes of peptides in the presence of such metals.

  8. Protective spin-labeled fluorenes maintain amyloid beta peptide in small oligomers and limit transitions in secondary structure

    Energy Technology Data Exchange (ETDEWEB)

    Altman, Robin [Univ. of California, Davis, CA (United States). Dept. of Biochemistry and Molecular Medicine; Ly, Sonny [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Physical and Life Science Directorate; Hilt, Silvia [Univ. of California, Davis, CA (United States). Dept. of Biochemistry and Molecular Medicine; Petrlova, Jitka [Univ. of California, Davis, CA (United States). Dept. of Biochemistry and Molecular Medicine; Maezawa, Izumi [Univ. of California Davis, Sacramento, CA (United States). MIND Inst. and Dept. of Pathology and Laboratory Medicine; Kálai, Tamás [Univ. of Pecs (Hungary). Inst. of Organic and Medicinal Chemistry; Hideg, Kálmán [Univ. of Pecs (Hungary). Inst. of Organic and Medicinal Chemistry; Jin, Lee-Way [Univ. of California Davis, Sacramento, CA (United States). MIND Inst. and Dept. of Pathology and Laboratory Medicine; Laurence, Ted A. [Univ. of California, Davis, CA (United States). Dept. of Biochemistry and Molecular Medicine; Voss, John C. [Univ. of California, Davis, CA (United States). Dept. of Biochemistry and Molecular Medicine

    2015-12-01

    Alzheimer’s disease is characterized by the presence of extracellular plaques comprised of amyloid beta (Aβ) peptides. Soluble oligomers of the Aβ peptide underlie a cascade of neuronal loss and dysfunction associated with Alzheimer's disease. Single particle analyses of Aβ oligomers in solution by fluorescence correlation spectroscopy (FCS) were used to provide real-time descriptions of how spin-labeled fluorenes (SLFs; bi-functional small molecules that block the toxicity of Aβ) prevent and disrupt oligomeric assemblies of Aβ in solution. The FCS results, combined with electron paramagnetic resonance spectroscopy and circular dichroism spectroscopy, demonstrate SLFs can inhibit the growth of Aβ oligomers and disrupt existing oligomers while retaining Aβ in a largely disordered state. Furthermore, while the ability of SLF to block Aβ toxicity correlates with a reduction in oligomer size, our results suggest the conformation of Aβ within the oligomer determines the toxicity of the species. Attenuation of Aβ toxicity, which has been associated primarily with the soluble oligomeric form, can be achieved through redistribution of the peptides into smaller oligomers and arrest of the fractional increase in beta secondary structure.

  9. Minocycline recovers MTT-formazan exocytosis impaired by amyloid beta peptide.

    Science.gov (United States)

    Kreutzmann, Peter; Wolf, Gerald; Kupsch, Kathleen

    2010-10-01

    Minocycline, a tetracycline antibiotic, has been reported to exert beneficial effects in models of Alzheimer's disease (AD). To characterize the mechanisms underlying the putative minocycline-related neuroprotection, we studied its effect in an in vitro model of AD. Primary hippocampal cultures were treated with β-amyloid peptide (Aβ) and cell viability was assessed by standard MTT-assay. Incubation with 10 μM Aβ for 24 h significantly inhibits cellular MTT-reduction without inducing morphological signs of enhanced cell death or increase in release of lactate dehydrogenase. This indicates that cell viability was not affected. The inhibition of MTT-reduction by Aβ was due to an acceleration of MTT-formazan exocytosis. Intriguingly, the Aβ-triggered increase in MTT-formazan exocytosis was abolished by co-treatment with minocycline. In vehicle-treated cells minocycline had no effect on formazan exocytosis. This hitherto unrecognized property of minocycline has to be noticed in the elucidation of the underlying mechanism of this promising neuroprotectant.

  10. Monomeric Amyloid Beta Peptide in Hexafluoroisopropanol Detected by Small Angle Neutron Scattering.

    Directory of Open Access Journals (Sweden)

    Bo Zhang-Haagen

    Full Text Available Small proteins like amyloid beta (Aβ monomers are related to neurodegenerative disorders by aggregation to insoluble fibrils. Small angle neutron scattering (SANS is a nondestructive method to observe the aggregation process in solution. We show that SANS is able to resolve monomers of small molecular weight like Aβ for aggregation studies. We examine Aβ monomers after prolonged storing in d-hexafluoroisopropanol (dHFIP by using SANS and dynamic light scattering (DLS. We determined the radius of gyration from SANS as 1.0±0.1 nm for Aβ1-40 and 1.6±0.1 nm for Aβ1-42 in agreement with 3D NMR structures in similar solvents suggesting a solvent surface layer with 5% increased density. After initial dissolution in dHFIP Aβ aggregates sediment with a major component of pure monomers showing a hydrodynamic radius of 1.8±0.3 nm for Aβ1-40 and 3.2±0.4 nm for Aβ1-42 including a surface layer of dHFIP solvent molecules.

  11. Local atomic structure and oxidation processes of Cu(I) binding site in amyloid beta peptide: XAS Study

    Science.gov (United States)

    Kremennaya, M. A.; Soldatov, M. A.; Streltsov, V. A.; Soldatov, A. V.

    2016-05-01

    There are two different motifs of X-ray absorption spectra for Cu(I) K-edge in amyloidpeptide which could be due to two different configurations of local Cu(I) environment. Two or three histidine ligands can coordinate copper ion in varying conformations. On the other hand, oxidation of amyloidpeptide could play an additional role in local copper environment. In order to explore the peculiarities of local atomic and electronic structure of Cu(I) binding sites in amyloidpeptide the x-ray absorption spectra were simulated for various Cu(I) environments including oxidized amyloid-β and compared with experimental data.

  12. Chronic cladribine administration increases amyloid beta peptide generation and plaque burden in mice.

    Directory of Open Access Journals (Sweden)

    Crystal D Hayes

    Full Text Available BACKGROUND: The clinical uses of 2-chloro-2'-deoxyadenosine (2-CDA or cladribine which was initially prescribed to patients with hematological and lymphoid cancers is now extended to treat patients with multiple sclerosis (MS. Previous data has shown that 2-CDA has high affinity to the brain and readily passes through the blood brain barrier reaching CSF concentrations 25% of that found in plasma. However, whether long-term administration of 2-CDA can lead to any adverse effects in patients or animal models is not yet clearly known. METHODOLOGY: Here we show that exposure of 2-CDA to CHO cells stably expressing wild-type APP751 increased generation and secretion of amyloid β peptide (Aβ in to the conditioned medium. Interestingly, increased Aβ levels were noticed even at non-toxic concentrations of 2-CDA. Remarkably, chronic treatment of APdE9 mice, a model of Alzheimer's disease with 2-CDA for 60 days increased amyloid plaque burden by more than 1-fold. Increased Aβ generation appears to result from increased turnover of APP as revealed by cycloheximide-chase experiments. Additionally, surface labeling of APP with biotin and immunoprecipitation of surface labeled proteins with anti-biotin antibody also indicated increased APP at the cell surface in 2-CDA treated cells compared to controls. Increased turnover of APP by 2-CDA in turn might be a consequence of decreased protein levels of PIN 1, which is known to regulate cis-trans isomerization and phosphorylation of APP. Most importantly, like many other oncology drugs, 2-CDA administration led to significant delay in acquiring a reward-based learning task in a T maze paradigm. CONCLUSIONS: Taken together, these data provide compelling evidence for the first time that chronic 2-CDA administration can increase amyloidogenic processing of APP leading to robustly increased plaque burden which may be responsible for the observed deficits in learning skills. Thus chronic treatment of mice with 2

  13. alpha-Synuclein enhances secretion and toxicity of amyloid beta peptides in PC12 cells

    NARCIS (Netherlands)

    Kazmierczak, Anna; Strosznajder, Joanna B.; Adamczyk, Agata

    2008-01-01

    alpha-Synuclein is the fundamental component of Lewy bodies which occur in the brain of 60% of sporadic and familial Alzheimer's disease patients. Moreover, a proteolytic fragment of alpha-synuclein, the so-called non-amyloid component of Alzheimer's disease amyloid, was found to be an integral part

  14. Protective effects of Lingguizhugan decoction on amyloid-beta peptide (25-35)-induced cell injury Anti-inflammatory effects

    Institute of Scientific and Technical Information of China (English)

    Feifei Xi; Feng Sang; Chunxiang Zhou; Yun Ling

    2012-01-01

    In the present study, a human neuroblastoma cell line (SH-SY5Y) and BV-2 microglia were treated with amyloidpeptide (25-35), as a model of Alzheimer's disease, to evaluate the protective effects of 10-3-10-8 g/mL Lingguizhugan decoction and to examine the underlying anti-inflammatory mechanism. Lingguizhugan decoction significantly enhanced the viability of SH-SY5Y cells with amyloidpeptide-induced injury, and lowered levels of interleukin-1β, interleukin-6, tumor necrosis factor-α and nitric oxide in the culture supernatant of activated BV-2 microglia. The effects of 10-3 g/mL Lingguizhugan decoction were more significant. These results suggest that Lingguizhugan decoction can protect SH-SY5Y cells against amyloidpeptide (25-35)-induced injury in a dose-dependent manner by inhibiting overexpression of inflammatory factors by activated microglia.

  15. In silico analysis of the apolipoprotein E and the amyloid beta peptide interaction: misfolding induced by frustration of the salt bridge network.

    Directory of Open Access Journals (Sweden)

    Jinghui Luo

    2010-02-01

    Full Text Available The relationship between Apolipoprotein E (ApoE and the aggregation processes of the amyloid beta (A beta peptide has been shown to be crucial for Alzheimer's disease (AD. The presence of the ApoE4 isoform is considered to be a contributing risk factor for AD. However, the detailed molecular properties of ApoE4 interacting with the A beta peptide are unknown, although various mechanisms have been proposed to explain the physiological and pathological role of this relationship. Here, computer simulations have been used to investigate the process of A beta interaction with the N-terminal domain of the human ApoE isoforms (ApoE2, ApoE3 and ApoE4. Molecular docking combined with molecular dynamics simulations have been undertaken to determine the A beta peptide binding sites and the relative stability of binding to each of the ApoE isoforms. Our results show that from the several ApoE isoforms investigated, only ApoE4 presents a misfolded intermediate when bound to A beta. Moreover, the initial alpha-helix used as the A beta peptide model structure also becomes unstructured due to the interaction with ApoE4. These structural changes appear to be related to a rearrangement of the salt bridge network in ApoE4, for which we propose a model. It seems plausible that ApoE4 in its partially unfolded state is incapable of performing the clearance of A beta, thereby promoting amyloid forming processes. Hence, the proposed model can be used to identify potential drug binding sites in the ApoE4-A beta complex, where the interaction between the two molecules can be inhibited.

  16. CD147 is a regulatory subunit of the gamma-secretase complex inAlzheimer's disease amyloid beta-peptide production

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Shuxia; Zhou, Hua; Walian, Peter J.; Jap, Bing K.

    2005-04-06

    {gamma}-secretase is a membrane protein complex that cleaves the {beta}-amyloid precursor protein (APP) within the transmembrane region, following prior processing by {beta}-secretase, producing amyloid {beta}-peptides (A{beta}{sub 40} and A{beta}{sub 42}). Errant production of A{beta}-peptides that substantially increases A{beta}{sub 42} production has been associated with the formation of amyloid plaques in Alzheimer's disease patients. Biophysical and genetic studies indicate that presenilin-1 (Psn-1), which contains the proteolytic active site, and three other membrane proteins, nicastrin (Nct), APH-1, and PEN-2 are required to form the core of the active {gamma}-secretase complex. Here, we report the purification of the native {gamma}-secretase complexes from HeLa cell membranes and the identification of an additional {gamma}-secretase complex subunit, CD147, a transmembrane glycoprotein with two immunoglobulin-like domains. The presence of this subunit as an integral part of the complex itself was confirmed through co-immunoprecipitation studies of the purified protein from HeLa cells and solubilized complexes from other cell lines such as neural cell HCN-1A and HEK293. Depletion of CD147 by RNA interference was found to increase the production of A{beta} peptides without changing the expression level of the other {gamma}-secretase components or APP substrates while CD147 overexpression had no statistically significant effect on amyloid {beta}-peptide production, other {gamma}-secretase components or APP substrates, indicating that the presence of the CD147 subunit within the {gamma}-secretase complex directly down-modulates the production of A{beta}-peptides. {gamma}-secretase was first recognized through its role in the production of the A{beta} peptides that are pathogenic in Alzheimer's disease (AD) (1). {gamma}-secretase is a membrane protein complex with unusual aspartyl protease activity that cleaves a variety of type I membrane proteins

  17. Role of Notch-1 signaling pathway in PC12 cell apoptosis induced by amyloid beta-peptide (25-35)

    Institute of Scientific and Technical Information of China (English)

    Huimin Liang; Yaozhou Zhang; Xiaoyan Shi; Tianxiang Wei; Jiyu Lou

    2014-01-01

    Recent studies have demonstrated that Notch-1 expression is increased in the hippocampus of Alzheimer’s disease patients. We speculate that Notch-1 signaling may be involved in PC12 cell apoptosis induced by amyloid beta-peptide (25-35) (Aβ25-35). In the present study, PC12 cells were cultured with different doses (0, 0.1, 1.0, 10 and 100 nmol/L) of N-[N-(3,5-Dilfuorophen-acetyl)-L-alanyl]-S-phenylglycine t-butyl ester, a Notch-1 signaling pathway inhibitor, for 30 minutes. Then cultured cells were induced with Aβ25-35 for 48 hours. Pretreatment of PC12 cells with high doses of N-[N-(3,5-Dilfuorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (> 10 nmol/L) prolonged the survival of PC12 cells after Aβ25-35 induction, decreased the expression of apoptosis-related proteins caspase-3, -8, -9, increased the activity of oxidative stress-related su-peroxide dismutase and catalase, inhibited the production of active oxygen, and reduced nuclear factor kappa B expression. This study indicates that the Notch-1 signaling pathway plays a pivotal role in Aβ25-35-induced PC12 apoptosis.

  18. Expression of secreted human single-chain fragment variable antibody against human amyloid beta peptide in Pichia pastoris

    Institute of Scientific and Technical Information of China (English)

    Jiong Cai; Fang Li; Shizhen Wang

    2008-01-01

    BACKGROUND: Studies have shown that monoclonal or polyclonal antibody injections ofamyloid β peptide arc effective in removing amyloid β peptide overload in the brain.OBJECTIVE: Based on successful screening of a human single-chain fragment variable antibody specific to amyloid β peptide, this paper aimed to express recombinant human single-chain variable antibody against amyloid β peptide.DESIGN, TIME AND SETTING: A single sample experiment was performed at the Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Hospital (Beijing, China) from January to July 2006.MATERIALS: Human single-chain fragment variable antibody gene against amyloid β peptide was screened from a human phage-display antibody library.METHODS: Human single-chain fragment variable antibody gene was mutated to eliminate a BamHI restriction site and cloned into a Teasy plasmid for pT-seFvAβ construction, which was identified by PCR amplification and endonuclease digestion. Plasmid pT-scFvA β was cut by EcoRl and Notl endonucleases, and the antibody gene was cloned into pPIC9K plasmid to construct pPIC9K-scFvA β expression vector, which was confirmed by gene sequencing. Linearized pPICgK-scFvA β was used to transform a Pichia pastoris GS115 cell line, and the recombinant was induced by 0.5 % methanol to express human single-chain fragment variable antibody specific to amyloid β peptide.MAIN OUTCOME MEASURES: Protein electrophoresis was used to identify PCR products, gene sequencing was uscd to verify the pPIC9K-scFvA sequence, and SDS-PAGE was used to detect recombinant expression of human single-chain fragment variable antibody specific to amyloid β peptide in Pichia pastoris.RESULTS: Gene sequencing confirmed pPICgK-scFvA β orientation. Rccomhinants were obtained by lineadzed pPIC9K-scFvA β transformation. After induction with 0.5% methanol, the recombinant yeast cells secreted proteins of 33-ku size

  19. Regulation of adenosine triphosphate-sensitive potassium channels suppresses the toxic effects of amyloid-beta peptide (25-35)

    Institute of Scientific and Technical Information of China (English)

    Min Kong; Maowen Ba; Hui Liang; Peng Shao; Tianxia Yu; Ying Wang

    2013-01-01

    In this study, we treated PC12 cells with 0-20 μM amyloidpeptide (25-35) for 24 hours to induce cytotoxicity, and found that 5-20 μM amyloidpeptide (25-35) decreased PC12 cell viability, but adenosine triphosphate-sensitive potassium channel activator diazoxide suppressed the decrease reactive oxygen species levels. These protective effects were reversed by the selective mitochondrial adenosine triphosphate-sensitive potassium channel blocker 5-hydroxydecanoate. An inducible nitric oxide synthase inhibitor, Nω-nitro-L-arginine, also protected PC12 cells from intracellular reactive oxygen species levels. However, the H2O2-degrading enzyme catalase could that the increases in both mitochondrial membrane potential and reactive oxygen species levels adenosine triphosphate-sensitive potassium channels and nitric oxide. Regulation of adenosine triphosphate-sensitive potassium channels suppresses PC12 cell cytotoxicity induced by amyloid

  20. Altered emotionality leads to increased pain tolerance in amyloid beta (Abeta1-40) peptide-treated mice.

    Science.gov (United States)

    Pamplona, Fabrício A; Pandolfo, Pablo; Duarte, Filipe S; Takahashi, Reinaldo N; Prediger, Rui D S

    2010-09-01

    Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the decline in cognitive functions, but it is also related to emotional disturbances. Since pain experience results from a complex integration of sensory, cognitive and affective processes, it is not surprising that AD patients display a distinct pattern of pain responsivity. We evaluated whether mice treated with amyloid beta (Abeta) peptide-thought to be critical in the pathogenesis of AD-exhibit altered pain responses and its relation to altered emotionality. Mice received a single i.c.v. injection of vehicle (PBS) or Abeta fragment (1-40) (400pmol/mice) and after 30 days, they were evaluated in tests of pain (hotplate, footshock-sensitivity), learning/memory (water-maze), emotionality (elevated plus-maze, forced swim) and locomotion (open-field). Abeta(1-40)-treated mice presented similar latencies to the control group in the hotplate test and similar nociceptive flinch threshold in the footshock-sensitivity test. However, they presented an increased jump threshold in footshock-sensitivity, suggesting increased pain tolerance. Altered emotionality was observed in the elevated plus-maze (EPM) and forced-swim tests (FST), suggesting anxiogenic-like and depressive-like states, respectively. A multifactorial principal component analysis (PCA) revealed that jump threshold of the footshock-sensitivity test falls within 'Emotionality' and 'Pain', showing moderate correlation with each one of the components of behavior. Acute treatment with the antidepressant desipramine (10mg/kg, i.p.) reduced the jump threshold (i.e. pain tolerance) and time of immobility in FST (i.e. depressive-like state). Flinch threshold (i.e. pain sensitivity), locomotion and anxiety were not altered with desipramine treatment. These results suggest that Abeta(1-40) peptide increases pain tolerance, but not pain sensitivity in mice, which seems to be linked to alterations in cognitive/emotional components of pain

  1. Effects of Capsule Yi -Zhi on learning and memory disorder and beta-amyloid peptide induced neurotoxicity in rats

    Institute of Scientific and Technical Information of China (English)

    XUJiang-Ping; WUHang-Yu; LILin

    2004-01-01

    AIM To investigate the effects of Capsule Yi-Zhi (CYZ) on learning and memory disorder and beta-amyloid protein induced neurotoxieity in rats. Methods Various doses of CYZ were administered to Sprague-Dawley (SD) rats for 8 days, twice a day. Then scopolamine hydrobromide (Sco) intraperitoneal injection was performed on each rat and the

  2. Amorphous Aggregation of Amyloid Beta 1-40 Peptide in Confined Space.

    Science.gov (United States)

    Foschi, Giulia; Albonetti, Cristiano; Liscio, Fabiola; Milita, Silvia; Greco, Pierpaolo; Biscarini, Fabio

    2015-11-16

    The amorphous aggregation of Aβ1-40 peptide is addressed by using micromolding in capillaries. Both the morphology and the size of the aggregates are modulated by changing the contact angle of the sub-micrometric channel walls. Upon decreasing the hydrophilicity of the channels, the aggregates change their morphology from small aligned drops to discontinuous lines, thereby keeping their amorphous structure. Aβ1-40 fibrils are observed at high contact angles.

  3. Aluminium, beta-amyloid and non-enzymatic glycosylation.

    Science.gov (United States)

    Exley, C; Schley, L; Murray, S; Hackney, C M; Birchall, J D

    1995-05-08

    The non-enzymatic glycosylation of beta-amyloid is implicated in the aetiology of Alzheimer's disease. However, controversy surrounds the nature of any involvement and a potential mechanism has not been fully elucidated. We present evidence of an aluminium-induced aggregation of the A beta P(25-35) peptide and speculate that the mechanism of formation of our ordered beta-amyloid aggregates might involve non-enzymatic glycosylation and/or site-specific crosslinking of beta-amyloid fibrils by atomic aluminium.

  4. Substitution of isoleucine-31 by helical-breaking proline abolishes oxidative stress and neurotoxic properties of Alzheimer's amyloid beta-peptide.

    Science.gov (United States)

    Kanski, Jaroslaw; Aksenova, Marina; Schöneich, Christian; Butterfield, D Allan

    2002-06-01

    Alzheimer's disease (AD) brain is characterized by excess deposition of the 42-amino acid amyloid beta-peptide [A(beta)(1-42)]. AD brain is under intense oxidative stress, and we have previously suggested that A(beta)(1-42) was associated with this increased oxidative stress. In addition, we previously demonstrated that the single methionine residue of A(beta)(1-42), residue 35, was critical for the oxidative stress and neurotoxic properties of this peptide. Others have shown that the C-terminal region of A(beta)(1-42) is helical in aqueous micellar solutions, including that part of the protein containing Met35. Importantly, Cu(II)-binding induces alpha-helicity in A(beta) in aqueous solution. Invoking the i + 4 rule of helices, we hypothesized that the carbonyl oxygen of Ile31 would interact with the S atom of Met35 to change the electronic environment of the sulfur such that molecular oxygen could lead to the production of a sulfuramyl free radical on Met35. If this hypothesis is correct, a prediction would be that breaking the helical interaction of Ile31 and Met35 would abrogate the oxidative stress and neurotoxic properties of A(beta)(1-42). Accordingly, we investigated A(beta)(1-42) in which the Ile31 residue was replaced with the helix-breaking amino acid, proline. The alpha-helical environment around Met35 was completely abolished as indicated by circular dichroism (CD)-spectroscopy. As a consequence, the aggregation, oxidative stress, Cu(II) reduction, and neurotoxic properties of A(beta)(1-42)I31P were completely altered compared to native A(beta)(1-42). The results presented here are consistent with the notion that interaction of Ile31 with Met35 may play an important role in the oxidative processes of Met35 contributing to the toxicity of the peptide.

  5. Mechanisms of beta-amyloid neurotoxicity : Perspectives of pharmacotherapy

    NARCIS (Netherlands)

    Harkany, T; Abraham, [No Value; Konya, C; Nyakas, C; Zarandi, M; Penke, B; Luiten, PGM

    2000-01-01

    One of the characteristic neuropathological hallmarks of Alzheimer's disease (AD) is the extracellular accumulation of beta -amyloid peptides (A beta) in neuritic plaques, Experimental data indicate that different molecular forms of A beta affect a wide array of neuronal and glial functions and ther

  6. Alzheimer's beta-amyloid peptides can activate the early components of complement classical pathway in a C1q-independent manner.

    Science.gov (United States)

    Bergamaschini, L; Canziani, S; Bottasso, B; Cugno, M; Braidotti, P; Agostoni, A

    1999-03-01

    beta-Amyloid (beta-A) accumulates in the brain of patients with Alzheimer's disease (AD) and is presumably involved in the pathogenesis of this disease, on account of its neurotoxicity and complement-activating ability. Although assembly of beta-A in particular aggregates seems to be crucial, soluble non-fibrillar beta-A may also be involved. Non-fibrillar beta-A does not bind C1q, so we investigated alternative mechanisms of beta-A-dependent complement activation in vitro. On incubation with normal human plasma, non-fibrillar beta-A 1-42, and truncated peptide 1-28, induced dose-dependent activation of C1s and C4, sparing C3, as assessed by densitometric analysis of immunostained membrane after SDS-PAGE and Western blotting. The mechanism of C4 activation was not dependent on C1q, because non-fibrillar beta-A can still activate C1s and C4 in plasma genetically deficient in C1q (C1qd). In Factor XII-deficient plasma (F.XIId) the amount of cleaved C4 was about 5-10% less that in C1qd and in normal EDTA plasma; the reconstitution of F.XIId plasma with physiologic concentrations of F.XII resulted in an increased (8-15%) beta-A-dependent cleavage of C4. Thus our results indicate that the C1q-independent activation of C1 and C4 can be partially mediated by the activation products of contact system. Since the activation of contact system and of C4 leads to generation of several humoral inflammatory peptides, non-fibrillar beta-A might play a role in initiating the early inflammatory reactions leading to a multistep cascade contributing to neuronal and clinical dysfunction of AD brain.

  7. pH-dependence of the specific binding of Cu(II) and Zn(II) ions to the amyloid-{beta} peptide

    Energy Technology Data Exchange (ETDEWEB)

    Ghalebani, Leila, E-mail: leila.ghalebani@ki.se [Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm (Sweden); Wahlstroem, Anna, E-mail: anna.wahlstrom@dbb.su.se [Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm (Sweden); Danielsson, Jens, E-mail: jensd@dbb.su.se [Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm (Sweden); Waermlaender, Sebastian K.T.S., E-mail: seb@dbb.su.se [Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm (Sweden); Graeslund, Astrid, E-mail: astrid@dbb.su.se [Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm (Sweden)

    2012-05-11

    Highlights: Black-Right-Pointing-Pointer Cu(II) and Zn(II) display pH-dependent binding to the A{beta}(1-40) peptide. Black-Right-Pointing-Pointer At pH 7.4 both metal ions display residue-specific binding to the A{beta} peptide. Black-Right-Pointing-Pointer At pH 5.5 the binding specificity is lost for Zn(II). Black-Right-Pointing-Pointer Differential Cu(II) and Zn(II) binding may help explain metal-induced AD toxicity. -- Abstract: Metal ions like Cu(II) and Zn(II) are accumulated in Alzheimer's disease amyloid plaques. The amyloid-{beta} (A{beta}) peptide involved in the disease interacts with these metal ions at neutral pH via ligands provided by the N-terminal histidines and the N-terminus. The present study uses high-resolution NMR spectroscopy to monitor the residue-specific interactions of Cu(II) and Zn(II) with {sup 15}N- and {sup 13}C,{sup 15}N-labeled A{beta}(1-40) peptides at varying pH levels. At pH 7.4 both ions bind to the specific ligands, competing with one another. At pH 5.5 Cu(II) retains its specific histidine ligands, while Zn(II) seems to lack residue-specific interactions. The low pH mimics acidosis which is linked to inflammatory processes in vivo. The results suggest that the cell toxic effects of redox active Cu(II) binding to A{beta} may be reversed by the protective activity of non-redox active Zn(II) binding to the same major binding site under non-acidic conditions. Under acidic conditions, the protective effect of Zn(II) may be decreased or changed, since Zn(II) is less able to compete with Cu(II) for the specific binding site on the A{beta} peptide under these conditions.

  8. The clinical significance of plasmatic amyloid A{beta}-40 peptide levels in Alzheimer's disease patients treated with galantamine.

    Science.gov (United States)

    Modrego, Pedro J; Monleon, Inmaculada; Sarasa, Manuel

    2008-01-01

    To date there are no conclusive reports on the usefulness of determining amyloid peptides in the serum of patients with Alzheimer's disease (AD). Only anecdotal works deal with the changes in the peptides produced by cholinesterase inhibitors. In this study, the authors investigated and studied the clinical significance of plasmatic Abeta-40 and Abeta-42 peptide levels in a series of 34 consecutive patients with AD. The baseline levels of the Abeta-40 peptide correlated negatively with the Mini Examen Cognoscitivo (Spanish version of the Mini-Mental test) score. Complete follow-up was possible in 22 patients. After 6 months of treatment with galantamine, the mean Abeta-40 peptide levels decreased from 31.86 to 24.22 pg/mL. The baseline levels of Abeta-40 were predictive of response to treatment in the Alzheimer's Disease Assessment Scale-Cognitive Subscale. The authors conclude that determining plasmatic Abeta-40 peptide levels could be useful in predicting and monitoring response to treatment in AD.

  9. Amyloid Beta Peptides Affect Pregnenolone and Pregnenolone Sulfate Levels in PC-12 and SH-SY5Y Cells Depending on Cholesterol.

    Science.gov (United States)

    Calan, Ozlem Gursoy; Akan, Pinar; Cataler, Aysenur; Dogan, Cumhur; Kocturk, Semra

    2016-07-01

    Increased amyloid beta (AB) peptide concentration is one of the initiating factors in the neurodegeneration process. It has been suggested that cholesterol induces the synthesis of AB peptide from amyloid precursor protein or facilitates the formation of amyloid plaque by lowering the aggregation threshold of the peptide. It is also shown that AB peptides may affect cholesterol metabolism and the synthesis of steroid hormones such as progesterone and estradiol. Pregnenolone (P) and pregnenolone sulfate (PS) are the major steroids produced from cholesterol in neural tissue. In toxicity conditions, the effect of AB peptides on P and PS levels has not yet been determined. Furthermore, it has not been clearly defined how changes in cellular P and PS levels affect neuronal cell survival. The aim of this study was to determine the effects of AB peptides on cellular changes in P and PS levels depending on the level of their main precursor, cholesterol. Cholesterol and toxic concentrations of AB fragments (AB 25-35, AB 1-40 and AB 1-42) were applied to PC-12 and SH-SY5Y cells. Changes in cellular cholesterol, P and PS levels were determined simultaneously in a dose-and time-dependent manner. The cell viability and cell death types were also evaluated. AB peptides affected both cell viability and P/PS levels. Steroid levels were altered depending on AB fragment type and the cholesterol content of the cells. Treatment with each of the AB fragments alone increased P levels by twofold. However, combined treatment with AB peptides and cholesterol increased P levels by approximately sixfold, while PS levels were increased only about 2.5 fold in both cell lines. P levels in the groups treated with AB 25-35 were higher than those in AB 1-40 and AB 1-42 groups. The cell viabilities were significantly low in the group treated by AB and cholesterol (9 mM). The effect of AB peptides on P levels might be a result of cellular self-defense. On the other hand, the rate of P increase

  10. Laser-induced propagation and destruction of amyloid beta fibrils.

    Science.gov (United States)

    Yagi, Hisashi; Ozawa, Daisaku; Sakurai, Kazumasa; Kawakami, Toru; Kuyama, Hiroki; Nishimura, Osamu; Shimanouchi, Toshinori; Kuboi, Ryoichi; Naiki, Hironobu; Goto, Yuji

    2010-06-18

    The amyloid deposition of amyloid beta (Abeta) peptides is a critical pathological event in Alzheimer disease (AD). Preventing the formation of amyloid deposits and removing preformed fibrils in tissues are important therapeutic strategies against AD. Previously, we reported the destruction of amyloid fibrils of beta(2)-microglobulin K3 fragments by laser irradiation coupled with the binding of amyloid-specific thioflavin T. Here, we studied the effects of a laser beam on Abeta fibrils. As was the case for K3 fibrils, extensive irradiation destroyed the preformed Abeta fibrils. However, irradiation during spontaneous fibril formation resulted in only the partial destruction of growing fibrils and a subsequent explosive propagation of fibrils. The explosive propagation was caused by an increase in the number of active ends due to breakage. The results not only reveal a case of fragmentation-induced propagation of fibrils but also provide insights into therapeutic strategies for AD.

  11. Neuroprotective approaches in experimental models of beta-amyloid neurotoxicity : Relevance to Alzheimer's disease

    NARCIS (Netherlands)

    Harkany, T.; Hortobágyi, Tibor; Sasvari, M.; Konya, C.; Penke, B; Luiten, P.G.M.; Nyakas, C.

    1999-01-01

    1. beta-Amyloid peptides (A beta s) accumulate abundantly in the Alzheimer's disease (AD) brain in areas subserving information acquisition arid processing, and memory formation. A beta fragments are producedin a process of abnormal proteolytic cleavage of their precursor, the amyloid precursor prot

  12. Influence of the solvent on the self-assembly of a modified amyloid beta peptide fragment. II. NMR and computer simulation investigation.

    Science.gov (United States)

    Hamley, I W; Nutt, D R; Brown, G D; Miravet, J F; Escuder, B; Rodríguez-Llansola, F

    2010-01-21

    The conformation of a model peptide AAKLVFF based on a fragment of the amyloid beta peptide Abeta16-20, KLVFF, is investigated in methanol and water via solution NMR experiments and molecular dynamics computer simulations. In previous work, we have shown that AAKLVFF forms peptide nanotubes in methanol and twisted fibrils in water. Chemical shift measurements were used to investigate the solubility of the peptide as a function of concentration in methanol and water. This enabled the determination of critical aggregation concentrations. The solubility was lower in water. In dilute solution, diffusion coefficients revealed the presence of intermediate aggregates in concentrated solution, coexisting with NMR-silent larger aggregates, presumed to be beta-sheets. In water, diffusion coefficients did not change appreciably with concentration, indicating the presence mainly of monomers, coexisting with larger aggregates in more concentrated solution. Concentration-dependent chemical shift measurements indicated a folded conformation for the monomers/intermediate aggregates in dilute methanol, with unfolding at higher concentration. In water, an antiparallel arrangement of strands was indicated by certain ROESY peak correlations. The temperature-dependent solubility of AAKLVFF in methanol was well described by a van't Hoff analysis, providing a solubilization enthalpy and entropy. This pointed to the importance of solvophobic interactions in the self-assembly process. Molecular dynamics simulations constrained by NOE values from NMR suggested disordered reverse turn structures for the monomer, with an antiparallel twisted conformation for dimers. To model the beta-sheet structures formed at higher concentration, possible model arrangements of strands into beta-sheets with parallel and antiparallel configurations and different stacking sequences were used as the basis for MD simulations; two particular arrangements of antiparallel beta-sheets were found to be stable, one

  13. Intravenous immunoglobulin protects neurons against amyloid beta-peptide toxicity and ischemic stroke by attenuating multiple cell death pathways.

    Science.gov (United States)

    Widiapradja, Alexander; Vegh, Viktor; Lok, Ker Zhing; Manzanero, Silvia; Thundyil, John; Gelderblom, Mathias; Cheng, Yi-Lin; Pavlovski, Dale; Tang, Sung-Chun; Jo, Dong-Gyu; Magnus, Tim; Chan, Sic L; Sobey, Christopher G; Reutens, David; Basta, Milan; Mattson, Mark P; Arumugam, Thiruma V

    2012-07-01

    Intravenous immunoglobulin (IVIg) preparations obtained by fractionating blood plasma, are increasingly being used increasingly as an effective therapeutic agent in treatment of several inflammatory diseases. Its use as a potential therapeutic agent for treatment of stroke and Alzheimer's disease has been proposed, but little is known about the neuroprotective mechanisms of IVIg. In this study, we investigated the effect of IVIg on downstream signaling pathways that are involved in neuronal cell death in experimental models of stroke and Alzheimer's disease. Treatment of cultured neurons with IVIg reduced simulated ischemia- and amyloid βpeptide (Aβ)-induced caspase 3 cleavage, and phosphorylation of the cell death-associated kinases p38MAPK, c-Jun NH2 -terminal kinase and p65, in vitro. Additionally, Aβ-induced accumulation of the lipid peroxidation product 4-hydroxynonenal was attenuated in neurons treated with IVIg. IVIg treatment also up-regulated the anti-apoptotic protein, Bcl2 in cortical neurons under ischemia-like conditions and exposure to Aβ. Treatment of mice with IVIg reduced neuronal cell loss, apoptosis and infarct size, and improved functional outcome in a model of focal ischemic stroke. Together, these results indicate that IVIg acts directly on neurons to protect them against ischemic stroke and Aβ-induced neuronal apoptosis by inhibiting cell death pathways and by elevating levels of the anti-apoptotic protein Bcl2.

  14. Accumulation of Exogenous Amyloid-Beta Peptide in Hippocampal Mitochondria Causes Their Dysfunction: A Protective Role for Melatonin

    Directory of Open Access Journals (Sweden)

    Sergio Rosales-Corral

    2012-01-01

    Full Text Available Amyloid-beta (Aβ pathology is related to mitochondrial dysfunction accompanied by energy reduction and an elevated production of reactive oxygen species (ROS. Monomers and oligomers of Aβ have been found inside mitochondria where they accumulate in a time-dependent manner as demonstrated in transgenic mice and in Alzheimer’s disease (AD brain. We hypothesize that the internalization of extracellular Aβ aggregates is the major cause of mitochondrial damage and here we report that following the injection of fibrillar Aβ into the hippocampus, there is severe axonal damage which is accompanied by the entrance of Aβ into the cell. Thereafter, Aβ appears in mitochondria where it is linked to alterations in the ionic gradient across the inner mitochondrial membrane. This effect is accompanied by disruption of subcellular structure, oxidative stress, and a significant reduction in both the respiratory control ratio and in the hydrolytic activity of ATPase. Orally administrated melatonin reduced oxidative stress, improved the mitochondrial respiratory control ratio, and ameliorated the energy imbalance.

  15. Accumulation of Exogenous Amyloid-Beta Peptide in Hippocampal Mitochondria Causes Their Dysfunction: A Protective Role for Melatonin

    Science.gov (United States)

    Rosales-Corral, Sergio; Acuna-Castroviejo, Dario; Tan, Dun Xian; López-Armas, Gabriela; Cruz-Ramos, José; Munoz, Rubén; Melnikov, Valery G.; Manchester, Lucien C.; Reiter, Russel J.

    2012-01-01

    Amyloid-beta (Aβ) pathology is related to mitochondrial dysfunction accompanied by energy reduction and an elevated production of reactive oxygen species (ROS). Monomers and oligomers of Aβ have been found inside mitochondria where they accumulate in a time-dependent manner as demonstrated in transgenic mice and in Alzheimer's disease (AD) brain. We hypothesize that the internalization of extracellular Aβ aggregates is the major cause of mitochondrial damage and here we report that following the injection of fibrillar Aβ into the hippocampus, there is severe axonal damage which is accompanied by the entrance of Aβ into the cell. Thereafter, Aβ appears in mitochondria where it is linked to alterations in the ionic gradient across the inner mitochondrial membrane. This effect is accompanied by disruption of subcellular structure, oxidative stress, and a significant reduction in both the respiratory control ratio and in the hydrolytic activity of ATPase. Orally administrated melatonin reduced oxidative stress, improved the mitochondrial respiratory control ratio, and ameliorated the energy imbalance. PMID:22666521

  16. Amyloid-beta induced CA1 pyramidal cell loss in young adult rats is alleviated by systemic treatment with FGL, a neural cell adhesion molecule-derived mimetic peptide.

    Directory of Open Access Journals (Sweden)

    Nicola J Corbett

    Full Text Available Increased levels of neurotoxic amyloid-beta in the brain are a prominent feature of Alzheimer's disease. FG-Loop (FGL, a neural cell adhesion molecule-derived peptide that corresponds to its second fibronectin type III module, has been shown to provide neuroprotection against a range of cellular insults. In the present study impairments in social recognition memory were seen 24 days after a 5 mg/15 µl amyloid-beta(25-35 injection into the right lateral ventricle of the young adult rat brain. This impairment was prevented if the animal was given a systemic treatment of FGL. Unbiased stereology was used to investigate the ability of FGL to alleviate the deleterious effects on CA1 pyramidal cells of the amyloid-beta(25-35 injection. NeuN, a neuronal marker (for nuclear staining was used to identify pyramidal cells, and immunocytochemistry was also used to identify inactive glycogen synthase kinase 3beta (GSK3β and to determine the effects of amyloid-beta(25-35 and FGL on the activation state of GSK3β, since active GSK3β has been shown to cause a range of AD pathologies. The cognitive deficits were not due to hippocampal atrophy as volume estimations of the entire hippocampus and its regions showed no significant loss, but amyloid-beta caused a 40% loss of pyramidal cells in the dorsal CA1 which was alleviated partially by FGL. However, FGL treatment without amyloid-beta was also found to cause a 40% decrease in CA1 pyramidal cells. The action of FGL may be due to inactivation of GSK3β, as an increased proportion of CA1 pyramidal neurons contained inactive GSK3β after FGL treatment. These data suggest that FGL, although potentially disruptive in non-pathological conditions, can be neuroprotective in disease-like conditions.

  17. Progressive effect of beta amyloid peptides accumulation on CA1 pyramidal neurons: a model study suggesting possible treatments

    Directory of Open Access Journals (Sweden)

    Viviana eCulmone

    2012-07-01

    Full Text Available Several independent studies show that accumulation of β-amyloid (Aβ peptides , one of the characteristic hallmark of Alzheimer’s Disease (AD, can affect normal neuronal activity in different ways. However, in spite of intense experimental work to explain the possible underlying mechanisms of action, a comprehensive and congruent understanding is still lacking. Part of the problem might be the opposite ways in which Aβ have been experimentally found to affect the normal activity of a neuron; for example, making a neuron more excitable (by reducing the A- or DR-type K+ currents or less excitable (by reducing synaptic transmission and Na+ current. The overall picture is therefore confusing, since the interplay of many mechanisms makes it difficult to link individual experimental findings with the more general problem of understanding the progression of the disease. This is an important issue, especially for the development of new drugs trying to ameliorate the effects of the disease. We addressed these paradoxes through computational models. We first modeled the different stages of AD by progressively modifying the intrinsic membrane and synaptic properties of a realistic model neuron, while accounting for multiple and different experimental findings and by evaluating the contribution of each mechanism to the overall modulation of the cell’s excitability. We then tested a number of manipulations of channel and synaptic activation properties that could compensate for the effects of Aβ. The model predicts possible therapeutic treatments in terms of pharmacological manipulations of channels’ kinetic and activation properties. The results also suggest how and which mechanisms can be targeted by a drug to restore the original firing conditions.

  18. Sulfonated dyes attenuate the toxic effects of beta-amyloid in a structure-specific fashion.

    Science.gov (United States)

    Pollack, S J; Sadler, I I; Hawtin, S R; Tailor, V J; Shearman, M S

    1995-09-15

    We recently reported that several sulfate-containing glycosaminoglycans, a class of compounds associated with the beta-amyloid plaques of Alzheimer's disease, attenuate the toxic effects of beta-amyloid fragments beta 25-35 and beta 1-40. The amyloid-binding sulfonated dye Congo Red was shown to have a similar effect. Using two clonal cell lines, we now demonstrate that several sulfonated dyes attenuate beta-amyloid toxicity and that the protective effect appears specific for compounds whose sulfonate groups can interact with the beta-pleated structure of aggregated amyloid. These results suggest that by binding beta-amyloid these compounds may prevent toxic interactions of the peptide with cells.

  19. Amyloid-beta(29-42) dimer formations studied by a multicanonical-multioverlap molecular dynamics simulation.

    Science.gov (United States)

    Itoh, Satoru G; Okamoto, Yuko

    2008-03-13

    Amyloid-beta peptides are known to form amyloid fibrils and are considered to play an important role in Alzheimer's disease. Amyloid-beta(29-42) is a fragment of the amyloid-beta peptide and also has a tendency to form amyloid fibrils. In order to study the mechanism of amyloidogenesis of this fragment, we applied one of the generalized-ensemble algorithms, the multicanonical-multioverlap algorithm, to amyloid-beta(29-42) dimer in aqueous solution. We obtained a detailed free-energy landscape of the dimer system. From the detailed free-energy landscape, we examined monomer and dimer formations of amyloid-beta(29-42) and deduced dimerization processes, which correspond to seeding processes in the amyloidogenesis of amyloid-beta(29-42).

  20. Role of glycine-33 and methionine-35 in Alzheimer's amyloid beta-peptide 1-42-associated oxidative stress and neurotoxicity.

    Science.gov (United States)

    Kanski, Jaroslaw; Varadarajan, Sridhar; Aksenova, Marina; Butterfield, D Allan

    2002-03-16

    Recent theoretical calculations predicted that Gly33 of one molecule of amyloid beta-peptide (1-42) (Abeta(1-42)) is attacked by a putative sulfur-based free radical of methionine residue 35 of an adjacent peptide. This would lead to a carbon-centered free radical on Gly33 that would immediately bind oxygen to form a peroxyl free radical. Such peroxyl free radicals could contribute to the reported Abeta(1-42)-induced lipid peroxidation, protein oxidation, and neurotoxicity, all of which are prevented by the chain-breaking antioxidant vitamin E. In the theoretical calculations, it was shown that no other amino acid, only Gly, could undergo such a reaction. To test this prediction we studied the effects of substitution of Gly33 of Abeta(1-42) on protein oxidation and neurotoxicity of hippocampal neurons and free radical formation in synaptosomes and in solution. Gly33 of Abeta(1-42) was substituted by Val (Abeta(1-42G33V)). The substituted peptide showed almost no neuronal toxicity compared to the native Abeta(1-42) as well as significantly lowered levels of oxidized proteins. In addition, synaptosomes subjected to Abeta(1-42G33V) showed considerably lower dichlorofluorescein-dependent fluorescence - a measure of reactive oxygen species (ROS) - in comparison to native Abeta(1-42) treatment. The ability of the peptides to generate ROS was also evaluated by electron paramagnetic resonance (EPR) spin trapping methods using the ultrapure spin trap N-tert-butyl-alpha-phenylnitrone (PBN). While Abeta(1-42) gave a strong mixture of four- and six-line PBN-derived spectra, the intensity of the EPR signal generated by Abeta(1-42G33V) was far less. Finally, the ability of the peptides to form fibrils was evaluated by electron microscopy. Abeta(1-42G33V) does not form fibrils nearly as well as Abeta(1-42) after 48 h of incubation. The results suggest that Gly33 may be a possible site of free radical propagation processes that are initiated on Met35 of Abeta(1-42) and that

  1. Amyloid Beta as a Modulator of Synaptic Plasticity

    OpenAIRE

    Parihar, Mordhwaj S.; Gregory J. Brewer

    2010-01-01

    Alzheimer’s disease is associated with synapse loss, memory dysfunction and pathological accumulation of amyloid beta in plaques. However, an exclusively pathological role for amyloid beta is being challenged by new evidence for an essential function of amyloid beta at the synapse. Amyloid beta protein exists in different assembly states in the central nervous system and plays distinct roles ranging from synapse and memory formation to memory loss and neuronal cell death. Amyloid beta is pres...

  2. Deposition of mouse amyloid beta in human APP/PS1 double and single AD model transgenic mice.

    NARCIS (Netherlands)

    Groen, T. van; Kiliaan, A.J.; Kadish, I.

    2006-01-01

    The deposition of amyloid beta (Abeta) peptides and neurofibrillary tangles are the two characteristic pathological features of Alzheimer's disease (AD). To investigate the relation between amyloid precursor protein (APP) production, amyloid beta deposition and the type of Abeta in deposits, i.e., h

  3. Thermodynamics and dynamics of amyloid peptide oligomerization are sequence dependent.

    Science.gov (United States)

    Lu, Yan; Derreumaux, Philippe; Guo, Zhi; Mousseau, Normand; Wei, Guanghong

    2009-06-01

    Aggregation of the full-length amyloid-beta (Abeta) and beta2-microglobulin (beta2m) proteins is associated with Alzheimer's disease and dialysis-related amyloidosis, respectively. This assembly process is not restricted to full-length proteins, however, many short peptides also assemble into amyloid fibrils in vitro. Remarkably, the kinetics of amyloid-fibril formation of all these molecules is generally described by a nucleation-polymerization process characterized by a lag phase associated with the formation of a nucleus, after which fibril elongation occurs rapidly. In this study, we report using long molecular dynamics simulations with the OPEP coarse-grained force field, the thermodynamics and dynamics of the octamerization for two amyloid 7-residue peptides: the beta2m83-89 NHVTLSQ and Abeta16-22 KLVFFAE fragments. Based on multiple trajectories run at 310 K, totaling 2.2 mus (beta2m83-89) and 4.8 mus (Abeta16-22) and starting from random configurations and orientations of the chains, we find that the two peptides not only share common but also very different aggregation properties. Notably, an increase in the hydrophobic character of the peptide, as observed in Abeta16-22 with respect to beta2m83-89 impacts the thermodynamics by reducing the population of bilayer beta-sheet assemblies. Higher hydrophobicity is also found to slow down the dynamics of beta-sheet formation by enhancing the averaged lifetime of all configuration types (CT) and by reducing the complexity of the CT transition probability matrix. Proteins 2009. (c) 2008 Wiley-Liss, Inc.

  4. Improving cognitive impairment by Tongxinluo via inhibiting expression of beta-secretase 1/beta-amyloid peptide in experimental vascular dementia

    Institute of Scientific and Technical Information of China (English)

    Jia Jia; Wenbin Zhu; Lihui Wang; Yun Xu

    2008-01-01

    BACKGROUND: Tongxinluo has been clinically proven to be effective in improving memory and cognitive function in patients with post-stroke vascular dementia. Is the mechanism related to the deposition of beta-amyloid peptide (Aβ) in hippocampus? OBJECTIVE: To observe the effect of Tongxinluo on cognitive impairment in a mouse model with vascular dementia and the changes of Aβ deposition andβ-secretase 1 (BACE1) expression.DESIGN: Randomized controlled study.SETTING: State Key Laboratory of Pharmaceutical Biotechnology of Nanjing University and Affiliated Drum Tower Hospital of Nanjing University Medical School.MATERIALS: The experiment was carried out in the State Key Laboratory of Pharmaceutical Biotechnology of Nanjing University and Affiliated Drum Tower Hospital of Nanjing University Medical School from March 2006 to January 2007. A total of 36 healthy Kunming mice, 18 of each gender, were chosen. The study was conducted in accordance with the National Regulations of Experimental Animal Administration, and all animal experiments were approved by the Committee of Experimental Animal Administration of Nanjing University. Tongxinluo was provided by Shijiazhuang Yiling Pharmaceutical Co., Ltd.METHODS: All mice were randomly divided into 6 groups, including naive control (n=6), sham-operated control (n=6) and experimental groups treated with different doses of Tongxinluo (0.2, 0.4, and 0.6 g/kg/d; n=6 for each group) or vehicle (n=6). Five groups were subjected to bilateral common carotid arteries (2-VO) occlusion to produce a vascular dementia model(noocclusion was performed in sham-operated group). The mice in the Tongxinluo treatment groups were intragastricly administered daily with a Tongxinluo suspension (40 g/L in distilled water) at doses of 0.2, 0.4 or 0.6 g/kg/d from day 1 to day 30 post-surgery. The animals in vehicle, sham-operated and naive groups were administered an equal volume of distilled water. MAIN OUTCOME MEASURES: ①Escape latency time

  5. Amyloid fibrils compared to peptide nanotubes.

    Science.gov (United States)

    Zganec, Matjaž; Zerovnik, Eva

    2014-09-01

    Prefibrillar oligomeric states and amyloid fibrils of amyloid-forming proteins qualify as nanoparticles. We aim to predict what biophysical and biochemical properties they could share in common with better researched peptide nanotubes. We first describe what is known of amyloid fibrils and prefibrillar aggregates (oligomers and protofibrils): their structure, mechanisms of formation and putative mechanism of cytotoxicity. In distinction from other neuronal fibrillar constituents, amyloid fibrils are believed to cause pathology, however, some can also be functional. Second, we give a review of known biophysical properties of peptide nanotubes. Finally, we compare properties of these two macromolecular states side by side and discuss which measurements that have already been done with peptide nanotubes could be done with amyloid fibrils as well.

  6. Hydrogen sulfide inhibits beta-amyloid peptide-induced apoptosis in PC12 cells and the underlying mechanisms

    Institute of Scientific and Technical Information of China (English)

    Xiuqin Chen; Jingtian Li; Jinhui Zou; Bailing Li; Meng Wang

    2008-01-01

    BACKGROUND: Studies have demonstrated that hydrogen sulfide (H2S) levels are 55% lower in brains of Alzheimer's disease (AD) patients than in age-matched normal individuals, which suggests that H2S might be involved in some aspects of AD pathogenesis.OBJECTIVE: To observe the protective mechanisms of varied concentrations of H2S against β -amyloid-peptide (A β) induced apoptosis in pheochromoytoma (PC12) cells, and to analyze the pathway of action.DESIGN, TIME AND SETTING: A controlled, observational, in vitro experiment was performed at Nenrophysiology Laboratory in Zhougshan Medical School, Sun Yat-sen University between July 2006 and May 2007.MATERIALS: PC12 cells were provided by the Animal Experimental Center of Medical School of Sun Yat-sen University. Glybenclamide, rhodamine123, and dihydrorhodamine123 were purchased from Sigma (USA).METHODS: PCI2 cells were incubated at 37℃ in a 5% CO2-enriched incubator with RPMI-1640 medium, supplemented with 5% horse-serum and 10% fetal bovine serum. Cells in logarithmic growth curves received different treatment: The PC12 cells were maintains at 37℃ with the original medium, then incubated in A β 25-35, sodium hydrosulfide (NariS), glybenclamide, NailS+ A β 25-35, or pretreated with glybenelamide 30 minutes prior to administration of and A β 25-35, respectively. MAIN OUTCOME MEASURES: (1) The survival rate of PC12 cells was detected by MTT assay and Hoechst staining. (2) The apoptosis rate of PC12 cells was detected utilizing flow cytometry with propidium iodide staining, and morphological changes of apoptotic cells were observed. (3) The mitochondrial membrane potential was detected by Rhodamine 123-combined flow cytometry. (4) The intracellular reactive oxygen species content was detected by dihydrorhodamine123-combined flow cytometry. RESULTS: A β 25-35 induced significantly decreased viability and increased percentage of apoptosis in PC 12 cells, as well as dissipated mitochondrial membrane potential

  7. On the Involvement of Copper Binding to the N-Terminus of the Amyloid Beta Peptide of Alzheimer's Disease: A Computational Study on Model Systems

    Directory of Open Access Journals (Sweden)

    Samira Azimi

    2011-01-01

    Full Text Available Density functional and second order Moller-Plesset perturbation theoretical methods, coupled with a polarizable continuum model of water, were applied to determine the structures, binding affinities, and reduction potentials of Cu(II and Cu(I bound to models of the Asp1, Ala2, His6, and His13His14 regions of the amyloid beta peptide of Alzheimer's disease. The results indicate that the N-terminal Asp binds to Cu(II together with His6 and either His13 or His14 to form the lower pH Component I of Aβ. Component II of Aβ is the complex between Cu(II and His6, His13, and His14, to which an amide O (of Ala2 is also coordinated. Asp1 does not bind to Cu(II if three His residues are attached nor to any Cu(I species to which one or more His residues are bound. The most stable Cu(I species is one in which Cu(I bridges the Nδ of His13 and His14 in a linear fashion. Cu(I binds more strongly to Aβ than does Cu(II. The computed reduction potential that closely matches the experimental value for Cu(II/Aβ corresponds to reduction of Component II (without Ala2 to the Cu(I complex after endergonic attachment of His6.

  8. Methionine residue 35 is critical for the oxidative stress and neurotoxic properties of Alzheimer's amyloid beta-peptide 1-42.

    Science.gov (United States)

    Butterfield, D Allan; Kanski, Jaroslaw

    2002-07-01

    Amyloid beta-peptide 1-42 [Abeta(1-42)] is central to the pathogenesis of Alzheimer's disease (AD), and the AD brain is under intense oxidative stress. Our laboratory combined these two aspects of AD into the Abeta-associated free radical oxidative stress model for neurodegeneration in AD brain. Abeta(1-42) caused protein oxidation, lipid peroxidation, reactive oxygen species formation, and cell death in neuronal and synaptosomal systems, all of which could be inhibited by free radical antioxidants. Recent studies have been directed at discerning molecular mechanisms by which Abeta(1-42)-associated free radical oxidative stress and neurotoxicity arise. The single methionine located in residue 35 of Abeta(1-42) is critical for these properties. This review presents the evidence supporting the role of methionine in Abeta(1-42)-associated free radical oxidative stress and neurotoxicity. This work is of obvious relevance to AD and provides a coupling between the centrality of Abeta(1-42) in the pathogenesis of AD and the oxidative stress under which the AD brain exists.

  9. Traumatic Brain Injury, Microglia, and Beta Amyloid

    OpenAIRE

    Mannix, Rebekah C.; Whalen, Michael J

    2012-01-01

    Recently, there has been growing interest in the association between traumatic brain injury (TBI) and Alzheimer's Disease (AD). TBI and AD share many pathologic features including chronic inflammation and the accumulation of beta amyloid (A\\(\\beta\\)). Data from both AD and TBI studies suggest that microglia play a central role in A\\(\\beta\\) accumulation after TBI. This paper focuses on the current research on the role of microglia response to A\\(\\beta\\) after TBI.

  10. Evidence for Novel [beta]-Sheet Structures in Iowa Mutant [beta]-Amyloid Fibrils

    Energy Technology Data Exchange (ETDEWEB)

    Tycko, Robert; Sciarretta, Kimberly L.; Orgel, Joseph P.R.O.; Meredith, Stephen C.; (IIT); (NIH); (UC)

    2009-07-24

    Asp23-to-Asn mutation within the coding sequence of {beta}-amyloid, called the Iowa mutation, is associated with early onset, familial Alzheimer's disease and cerebral amyloid angiopathy, in which patients develop neuritic plaques and massive vascular deposition predominantly of the mutant peptide. We examined the mutant peptide, D23N-A{beta}40, by electron microscopy, X-ray diffraction, and solid-state NMR spectroscopy. D23N-A{beta}40 forms fibrils considerably faster than the wild-type peptide (k = 3.77 x 10{sup -3} min{sup -1} and 1.07 x 10{sup -4} min{sup -1} for D23N-A{beta}40 and the wild-type peptide WT-A{beta}40, respectively) and without a lag phase. Electron microscopy shows that D23N-A{beta}40 forms fibrils with multiple morphologies. X-ray fiber diffraction shows a cross-{beta} pattern, with a sharp reflection at 4.7 {angstrom} and a broad reflection at 9.4 {angstrom}, which is notably smaller than the value for WT-A{beta}40 fibrils (10.4 {angstrom}). Solid-state NMR measurements indicate molecular level polymorphism of the fibrils, with only a minority of D23N-A{beta}40 fibrils containing the in-register, parallel {beta}-sheet structure commonly found in WT-A{beta}40 fibrils and most other amyloid fibrils. Antiparallel {beta}-sheet structures in the majority of fibrils are indicated by measurements of intermolecular distances through 13C-13C and 15N-13C dipole-dipole couplings. An intriguing possibility exists that there is a relationship between the aberrant structure of D23N-A{beta}40 fibrils and the unusual vasculotropic clinical picture in these patients.

  11. The ability of apolipoprotein E fragments to promote intraneuronal accumulation of amyloid beta peptide 42 is both isoform and size-specific

    Science.gov (United States)

    Dafnis, Ioannis; Argyri, Letta; Sagnou, Marina; Tzinia, Athina; Tsilibary, Effie C.; Stratikos, Efstratios; Chroni, Angeliki

    2016-01-01

    The apolipoprotein (apo) E4 isoform is the strongest risk factor for late-onset Alzheimer’s disease (AD). ApoE4 is more susceptible to proteolysis than apoE2 and apoE3 isoforms and carboxyl-terminal truncated apoE4 forms have been found in AD patients’ brain. We have previously shown that a specific apoE4 fragment, apoE4-165, promotes amyloid-peptide beta 42 (Aβ42) accumulation in human neuroblastoma SK-N-SH cells and increased intracellular reactive oxygen species formation, two events considered to occur early in AD pathogenesis. Here, we show that these effects are allele-dependent and absolutely require the apoE4 background. Furthermore, the exact length of the fragment is critical since longer or shorter length carboxyl-terminal truncated apoE4 forms do not elicit the same effects. Structural and thermodynamic analyses showed that apoE4-165 has a compact structure, in contrast to other carboxyl-terminal truncated apoE4 forms that are instead destabilized. Compared however to other allelic backgrounds, apoE4-165 is structurally distinct and less thermodynamically stable suggesting that the combination of a well-folded structure with structural plasticity is a unique characteristic of this fragment. Overall, our findings suggest that the ability of apoE fragments to promote Aβ42 intraneuronal accumulation is specific for both the apoE4 isoform and the particular structural and thermodynamic properties of the fragment. PMID:27476701

  12. Plasma beta amyloid and the risk of Alzheimer's disease in Down syndrome.

    NARCIS (Netherlands)

    Coppus, A.M.W.; Schuur, M.; Vergeer, J.; Janssens, A.C.; Oostra, B.A.; Verbeek, M.M.; Duijn, C.M. van

    2012-01-01

    Extracellular deposition of amyloid beta peptide (Abeta) has been implicated as a critical step in the pathogenesis of Alzheimer's disease (AD). In Down syndrome (DS), Alzheimer's disease is assumed to be caused by the triplication and overexpression of the gene for amyloid precursor protein (APP),

  13. Mutation-based structural modification and dynamics study of amyloid beta peptide (1–42: An in-silico-based analysis to cognize the mechanism of aggregation

    Directory of Open Access Journals (Sweden)

    Pritam Kumar Panda

    2016-03-01

    Full Text Available Alzheimer's disease is the prevalent cause of premature senility, a progressive mental disorder due to degeneration in brain and deposition of amyloid β peptide (1–42, a misfolded protein in the form of aggregation that prevails for a prolonged time and obstructs every aspect of life. One of the primary hallmarks of the neuropathological disease is the accretion of amyloid β peptide in the brain that leads to Alzheimer's disease, but the mechanism is still a mystery. Several investigations have shown that mutations at specific positions have a significant impact in stability of the peptide as predicted from aggregation profiles. Here in our study, we have analyzed the mutations by substituting residues at position A22G, E22G, E22K, E22Q, D23N, L34V and molecular dynamics have been performed to check the deviation in stability and conformation of the peptide. The results validated that the mutations at specific positions lead to instability and the proline substitution at E22P and L34P stalled the aggregation of the peptide.

  14. Copper(II) ions and the Alzheimer's amyloidpeptide: Affinity and stoichiometry of binding

    Science.gov (United States)

    Tõugu, Vello; Friedemann, Merlin; Tiiman, Ann; Palumaa, Peep

    2014-10-01

    Deposition of amyloid beta (Aβ) peptides into amyloid plaques is the hallmark of Alzheimer's disease. According to the amyloid cascade hypothesis this deposition is an early event and primary cause of the disease, however, the mechanisms that cause this deposition remain elusive. An increasing amount of evidence shows that the interactions of biometals can contribute to the fibrillization and amyloid formation by amyloidogenic peptides. From different anions the copper ions deserve the most attention since it can contribute not only toamyloid formation but also to its toxicity due to the generation of ROS. In this thesis we focus on the affinity and stoichiometry of copper(II) binding to the Aβ molecule.

  15. Graphene oxide strongly inhibits amyloid beta fibrillation

    NARCIS (Netherlands)

    Mahmoudi, Morteza; Akhavan, Omid; Ghavami, Mahdi; Rezaee, Farhad; Ghiasi, Seyyed Mohammad Amin

    2012-01-01

    Since amyloid beta fibrillation (AbF) plays an important role in the development of neurodegenerative diseases, we investigated the effect of graphene oxide (GO) and their protein-coated surfaces on the kinetics of Ab fibrillation in the aqueous solution. We showed that GO and their protein-covered

  16. Quantification of the binding properties of Cu2+ to the amyloid beta peptide: coordination spheres for human and rat peptides and implication on Cu2+-induced aggregation.

    Science.gov (United States)

    Hong, Lian; Carducci, Tessa M; Bush, William D; Dudzik, Christopher G; Millhauser, Glenn L; Simon, John D

    2010-09-02

    There is no consensus on the coordinating ligands for Cu(2+) by Abeta. However, the differences in peptide sequence between human and rat have been hypothesized to alter metal ion binding in a manner that alters Cu(2+)-induced aggregation of Abeta. Herein, we employ isothermal titration calorimetry (ITC), circular dichroism (CD), and electron paramagnetic resonance (EPR) spectroscopy to examine the Cu(2+) coordination spheres to human and rat Abeta and an extensive set of Abeta(16) mutants. EPR of the mutant peptides is consistent with a 3N1O binding geometry, like the native human peptide at pH 7.4. The thermodynamic data reveal an equilibrium between three coordination spheres, {NH(2), O, N(Im)(His6), N(-)}, {NH(2), O, N(Im)(His6), N(Im)(His13)}, and {NH(2), O, N(Im)(His6), N(Im)(His14)}, for human Abeta(16) but one dominant coordination for rat Abeta(16), {NH(2), O, N(Im)(His6), N(-)}, at pH 7.4-6.5. ITC and CD data establish that the mutation R5G is sufficient for reproducing this difference in Cu(2+) binding properties at pH 7.4. The substitution of bulky and positively charged Arg by Gly is proposed to stabilize the coordination {NH(2), O-, N(Im)(His6), N(-)} that then results in one dominating coordination sphere for the case of the rat peptide. The differences in the coordination geometries for Cu(2+) by the human and rat Abeta are proposed to contribute to the variation in the ability of Cu(2+) to induce aggregation of Abeta peptides.

  17. Molecular Dynamics Simulation of Amyloid Beta Dimer Formation

    CERN Document Server

    Urbanc, B; Ding, F; Sammond, D; Khare, S; Buldyrev, S V; Stanley, H E; Dokholyan, N V

    2004-01-01

    Recent experiments with amyloid-beta (Abeta) peptide suggest that formation of toxic oligomers may be an important contribution to the onset of Alzheimer's disease. The toxicity of Abeta oligomers depends on their structure, which is governed by assembly dynamics. Due to limitations of current experimental techniques, a detailed knowledge of oligomer structure at the atomic level is missing. We introduce a molecular dynamics approach to study Abeta dimer formation: (1) we use discrete molecular dynamics simulations of a coarse-grained model to identify a variety of dimer conformations, and (2) we employ all-atom molecular mechanics simulations to estimate the thermodynamic stability of all dimer conformations. Our simulations of a coarse-grained Abeta peptide model predicts ten different planar beta-strand dimer conformations. We then estimate the free energies of all dimer conformations in all-atom molecular mechanics simulations with explicit water. We compare the free energies of Abeta(1-42) and Abeta(1-40...

  18. Rescue of amyloid-Beta-induced inhibition of nicotinic acetylcholine receptors by a peptide homologous to the nicotine binding domain of the alpha 7 subtype.

    Directory of Open Access Journals (Sweden)

    Arthur A Nery

    Full Text Available Alzheimer's disease (AD is characterized by brain accumulation of the neurotoxic amyloidpeptide (Aβ and by loss of cholinergic neurons and nicotinic acetylcholine receptors (nAChRs. Recent evidence indicates that memory loss and cognitive decline in AD correlate better with the amount of soluble Aβ than with the extent of amyloid plaque deposits in affected brains. Inhibition of nAChRs by soluble Aβ40 is suggested to contribute to early cholinergic dysfunction in AD. Using phage display screening, we have previously identified a heptapeptide, termed IQ, homologous to most nAChR subtypes, binding with nanomolar affinity to soluble Aβ40 and blocking Aβ-induced inhibition of carbamylcholine-induced currents in PC12 cells expressing α7 nAChRs. Using alanine scanning mutagenesis and whole-cell current recording, we have now defined the amino acids in IQ essential for reversal of Aβ40 inhibition of carbamylcholine-induced responses in PC12 cells, mediated by α7 subtypes and other endogenously expressed nAChRs. We further investigated the effects of soluble Aβ, IQ and analogues of IQ on α3β4 nAChRs recombinantly expressed in HEK293 cells. Results show that nanomolar concentrations of soluble Aβ40 potently inhibit the function of α3β4 nAChRs, and that subsequent addition of IQ or its analogues does not reverse this effect. However, co-application of IQ makes the inhibition of α3β4 nAChRs by Aβ40 reversible. These findings indicate that Aβ40 inhibits different subtypes of nAChRs by interacting with specific receptor domains homologous to the IQ peptide, suggesting that IQ may be a lead for novel drugs to block the inhibition of cholinergic function in AD.

  19. AMYLOIDPEPTIDE BINDS TO MICROTUBULE-ASSOCIATED PROTEIN 1B (MAP1B)

    Science.gov (United States)

    Gevorkian, Goar; Gonzalez-Noriega, Alfonso; Acero, Gonzalo; Ordoñez, Jorge; Michalak, Colette; Munguia, Maria Elena; Govezensky, Tzipe; Cribbs, David H.; Manoutcharian, Karen

    2008-01-01

    Extracellular and intraneuronal formation of amyloid-beta aggregates have been demonstrated to be involved in the pathogenesis of Alzheimer’s disease. However, the precise mechanism of amyloid-beta neurotoxicity is not completely understood. Previous studies suggest that binding of amyloid-beta to a number of targets have deleterious effects on cellular functions. In the present study we have shown for the first time that amyloid-beta 1-42 bound to a peptide comprising the microtubule binding domain of the heavy chain of microtubule-associated protein 1B by the screening of a human brain cDNA library expressed on M13 phage. This interaction may explain, in part, the loss of neuronal cytoskeletal integrity, impairment of microtubule-dependent transport and synaptic dysfunction observed previously in Alzheimer’s disease. PMID:18079022

  20. Alcadein cleavages by amyloid beta-precursor protein (APP) alpha- and gamma-secretases generate small peptides, p3-Alcs, indicating Alzheimer disease-related gamma-secretase dysfunction.

    Science.gov (United States)

    Hata, Saori; Fujishige, Sayaka; Araki, Yoichi; Kato, Naoko; Araseki, Masahiko; Nishimura, Masaki; Hartmann, Dieter; Saftig, Paul; Fahrenholz, Falk; Taniguchi, Miyako; Urakami, Katsuya; Akatsu, Hiroyasu; Martins, Ralph N; Yamamoto, Kazuo; Maeda, Masahiro; Yamamoto, Tohru; Nakaya, Tadashi; Gandy, Sam; Suzuki, Toshiharu

    2009-12-25

    Alcadeins (Alcs) constitute a family of neuronal type I membrane proteins, designated Alc(alpha), Alc(beta), and Alc(gamma). The Alcs express in neurons dominantly and largely colocalize with the Alzheimer amyloid precursor protein (APP) in the brain. Alcs and APP show an identical function as a cargo receptor of kinesin-1. Moreover, proteolytic processing of Alc proteins appears highly similar to that of APP. We found that APP alpha-secretases ADAM 10 and ADAM 17 primarily cleave Alc proteins and trigger the subsequent secondary intramembranous cleavage of Alc C-terminal fragments by a presenilin-dependent gamma-secretase complex, thereby generating "APP p3-like" and non-aggregative Alc peptides (p3-Alcs). We determined the complete amino acid sequence of p3-Alc(alpha), p3-Alc(beta), and p3-Alc(gamma), whose major species comprise 35, 37, and 31 amino acids, respectively, in human cerebrospinal fluid. We demonstrate here that variant p3-Alc C termini are modulated by FAD-linked presenilin 1 mutations increasing minor beta-amyloid species Abeta42, and these mutations alter the level of minor p3-Alc species. However, the magnitudes of C-terminal alteration of p3-Alc(alpha), p3-Alc(beta), and p3-Alc(gamma) were not equivalent, suggesting that one type of gamma-secretase dysfunction does not appear in the phenotype equivalently in the cleavage of type I membrane proteins. Because these C-terminal alterations are detectable in human cerebrospinal fluid, the use of a substrate panel, including Alcs and APP, may be effective to detect gamma-secretase dysfunction in the prepathogenic state of Alzheimer disease subjects.

  1. Evidence for novel beta-sheet structures in Iowa mutant beta-amyloid fibrils.

    Science.gov (United States)

    Tycko, Robert; Sciarretta, Kimberly L; Orgel, Joseph P R O; Meredith, Stephen C

    2009-07-01

    Asp23-to-Asn mutation within the coding sequence of beta-amyloid, called the Iowa mutation, is associated with early onset, familial Alzheimer's disease and cerebral amyloid angiopathy, in which patients develop neuritic plaques and massive vascular deposition predominantly of the mutant peptide. We examined the mutant peptide, D23N-Abeta40, by electron microscopy, X-ray diffraction, and solid-state NMR spectroscopy. D23N-Abeta40 forms fibrils considerably faster than the wild-type peptide (k = 3.77 x 10(-3) min(-1) and 1.07 x 10(-4) min(-1) for D23N-Abeta40 and the wild-type peptide WT-Abeta40, respectively) and without a lag phase. Electron microscopy shows that D23N-Abeta40 forms fibrils with multiple morphologies. X-ray fiber diffraction shows a cross-beta pattern, with a sharp reflection at 4.7 A and a broad reflection at 9.4 A, which is notably smaller than the value for WT-Abeta40 fibrils (10.4 A). Solid-state NMR measurements indicate molecular level polymorphism of the fibrils, with only a minority of D23N-Abeta40 fibrils containing the in-register, parallel beta-sheet structure commonly found in WT-Abeta40 fibrils and most other amyloid fibrils. Antiparallel beta-sheet structures in the majority of fibrils are indicated by measurements of intermolecular distances through (13)C-(13)C and (15)N-(13)C dipole-dipole couplings. An intriguing possibility exists that there is a relationship between the aberrant structure of D23N-Abeta40 fibrils and the unusual vasculotropic clinical picture in these patients.

  2. Involvement of formyl peptide receptors in receptor for advanced glycation end products (RAGE - and amyloid beta 1-42-induced signal transduction in glial cells

    Directory of Open Access Journals (Sweden)

    Slowik Alexander

    2012-11-01

    Full Text Available Abstract Background Recent studies suggest that the chemotactic G-protein-coupled-receptor (GPCR formyl-peptide-receptor-like-1 (FPRL1 and the receptor-for-advanced-glycation-end-products (RAGE play an important role in the inflammatory response involved in neurodegenerative disorders such as Alzheimer’s disease (AD. Therefore, the expression and co-localisation of mouse formyl peptide receptor (mFPR 1 and 2 as well as RAGE in an APP/PS1 transgenic mouse model using immunofluorescence and real-time RT-PCR were analysed. The involvement of rat or human FPR1/FPRL1 (corresponds to mFPR1/2 and RAGE in amyloid-β 1–42 (Aβ1-42-induced signalling were investigated by extracellular signal regulated kinase 1/2 (ERK1/2 phosphorylation. Furthermore, the cAMP level in primary rat glial cells (microglia and astrocytes and transfected HEK 293 cells was measured. Formyl peptide receptors and RAGE were inhibited by a small synthetic antagonist WRW4 and an inactive receptor variant delta-RAGE, lacking the intracytoplasmatic domains. Results We demonstrated a strong increase of mFPR1/2 and RAGE expression in the cortex and hippocampus of APP/PS1 transgenic mice co-localised to the glial cells. In addition, the Aβ1-42-induced signal transduction is dependant on FPRL1, but also on FPR1. For the first time, we have shown a functional interaction between FPRL1/FPR1 and RAGE in RAGE ligands S100B- or AGE-mediated signalling by ERK1/2 phosphorylation and cAMP level measurement. In addition a possible physical interaction between FPRL1 as well as FPR1 and RAGE was shown with co-immunoprecipitation and fluorescence microscopy. Conclusions The results suggest that both formyl peptide receptors play an essential role in Aβ1-42-induced signal transduction in glial cells. The interaction with RAGE could explain the broad ligand spectrum of formyl peptide receptors and their important role for inflammation and the host defence against infections.

  3. Cytotoxic amyloid peptides inhibit cellular 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction by enhancing MTT formazan exocytosis.

    Science.gov (United States)

    Liu, Y; Schubert, D

    1997-12-01

    Amyloid beta peptide (A beta) neurotoxicity is believed to play a central role in the pathogenesis of Alzheimer's disease. An early indicator of A beta toxicity is the inhibition of cellular 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction to MTT formazan, a widely used assay for measuring cell viability. In this report we show that A beta and other cytotoxic amyloid peptides such as human amylin dramatically enhance MTT formazan exocytosis, resulting in the inhibition of cellular MTT reduction. Only the amyloid peptides that are known to be cytotoxic enhanced MTT formazan exocytosis. Basal MTT formazan exocytosis and amyloid peptide-enhanced MTT formazan exocytosis are blocked by several drugs with diverse known effects. These and other data suggest that MTT formazan exocytosis is a multistep process and that cytotoxic amyloid peptides enhance MTT formazan exocytosis through an intracellular signal transduction pathway.

  4. Some commonly used brominated flame retardants cause Ca2+-ATPase inhibition, beta-amyloid peptide release and apoptosis in SH-SY5Y neuronal cells.

    Directory of Open Access Journals (Sweden)

    Fawaz Al-Mousa

    Full Text Available Brominated flame retardants (BFRs are chemicals commonly used to reduce the flammability of consumer products and are considered pollutants since they have become widely dispersed throughout the environment and have also been shown to bio-accumulate within animals and man. This study investigated the cytotoxicity of some of the most commonly used groups of BFRs on SH-SY5Y human neuroblastoma cells. The results showed that of the BFRs tested, hexabromocyclododecane (HBCD, tetrabromobisphenol-A (TBBPA and decabromodiphenyl ether (DBPE, all are cytotoxic at low micromolar concentrations (LC(50 being 2.7 ± 0.7 µM, 15 ± 4 µM and 28 ± 7 µM, respectively. They induced cell death, at least in part, by apoptosis through activation of caspases. They also increased intracellular [Ca(2+] levels and reactive-oxygen-species within these neuronal cells. Furthermore, these BFRs also caused rapid depolarization of the mitochondria and cytochrome c release in these neuronal cells. Elevated intracellular [Ca(2+] levels appear to occur through a mechanism involving microsomal Ca(2+-ATPase inhibition and this maybe responsible for Ca(2+-induced mitochondrial dysfunction. In addition, µM levels of these BFRs caused β-amyloid peptide (Aβ-42 processing and release from these cells with a few hours of exposure. These results therefore shows that these pollutants are both neurotoxic and amyloidogenic in-vitro.

  5. BETASCAN: probable beta-amyloids identified by pairwise probabilistic analysis.

    Directory of Open Access Journals (Sweden)

    Allen W Bryan

    2009-03-01

    Full Text Available Amyloids and prion proteins are clinically and biologically important beta-structures, whose supersecondary structures are difficult to determine by standard experimental or computational means. In addition, significant conformational heterogeneity is known or suspected to exist in many amyloid fibrils. Recent work has indicated the utility of pairwise probabilistic statistics in beta-structure prediction. We develop here a new strategy for beta-structure prediction, emphasizing the determination of beta-strands and pairs of beta-strands as fundamental units of beta-structure. Our program, BETASCAN, calculates likelihood scores for potential beta-strands and strand-pairs based on correlations observed in parallel beta-sheets. The program then determines the strands and pairs with the greatest local likelihood for all of the sequence's potential beta-structures. BETASCAN suggests multiple alternate folding patterns and assigns relative a priori probabilities based solely on amino acid sequence, probability tables, and pre-chosen parameters. The algorithm compares favorably with the results of previous algorithms (BETAPRO, PASTA, SALSA, TANGO, and Zyggregator in beta-structure prediction and amyloid propensity prediction. Accurate prediction is demonstrated for experimentally determined amyloid beta-structures, for a set of known beta-aggregates, and for the parallel beta-strands of beta-helices, amyloid-like globular proteins. BETASCAN is able both to detect beta-strands with higher sensitivity and to detect the edges of beta-strands in a richly beta-like sequence. For two proteins (Abeta and Het-s, there exist multiple sets of experimental data implying contradictory structures; BETASCAN is able to detect each competing structure as a potential structure variant. The ability to correlate multiple alternate beta-structures to experiment opens the possibility of computational investigation of prion strains and structural heterogeneity of amyloid

  6. Binding of fullerenes to amyloid beta fibrils: size matters.

    Science.gov (United States)

    Huy, Pham Dinh Quoc; Li, Mai Suan

    2014-10-01

    Binding affinity of fullerenes C20, C36, C60, C70 and C84 for amyloid beta fibrils is studied by docking and all-atom molecular dynamics simulations with the Amber force field and water model TIP3P. Using the molecular mechanic-Poisson Boltzmann surface area method one can demonstrate that the binding free energy linearly decreases with the number of carbon atoms of fullerene, i.e. the larger is the fullerene size, the higher is the binding affinity. Overall, fullerenes bind to Aβ9-40 fibrils stronger than to Aβ17-42. The number of water molecules trapped in the interior of 12Aβ9-40 fibrils was found to be lower than inside pentamer 5Aβ17-42. C60 destroys Aβ17-42 fibril structure to a greater extent compared to other fullerenes. Our study revealed that the van der Waals interaction dominates over the electrostatic interaction and non-polar residues of amyloid beta peptides play the significant role in interaction with fullerenes providing novel insight into the development of drug candidates against Alzheimer's disease.

  7. The Mitochondrial Peptidase Pitrilysin Degrades Islet Amyloid Polypeptide in Beta-Cells.

    Directory of Open Access Journals (Sweden)

    Hanjun Guan

    Full Text Available Amyloid formation and mitochondrial dysfunction are characteristics of type 2 diabetes. The major peptide constituent of the amyloid deposits in type 2 diabetes is islet amyloid polypeptide (IAPP. In this study, we found that pitrilysin, a zinc metallopeptidase of the inverzincin family, degrades monomeric, but not oligomeric, islet amyloid polypeptide in vitro. In insulinoma cells when pitrilysin expression was decreased to 5% of normal levels, there was a 60% increase in islet amyloid polypeptide-induced apoptosis. In contrast, overexpression of pitrilysin protects insulinoma cells from human islet amyloid polypeptide-induced apoptosis. Since pitrilysin is a mitochondrial protein, we used immunofluorescence staining of pancreases from human IAPP transgenic mice and Western blot analysis of IAPP in isolated mitochondria from insulinoma cells to provide evidence for a putative intramitochondrial pool of IAPP. These results suggest that pitrilysin regulates islet amyloid polypeptide in beta cells and suggest the presence of an intramitochondrial pool of islet amyloid polypeptide involved in beta-cell apoptosis.

  8. Protective effect of cyclophilin A against Alzheimer's amyloid beta-peptide (25-35)-induced oxidative stress in PC12 cells

    Institute of Scientific and Technical Information of China (English)

    GE Yu-song; TENG Wei-yu; ZHANG Chao-dong

    2009-01-01

    Background β-amyloid peptide (Aβ) is considered responsible for the pathogenesis of Alzheimer's disease (AD). Possible mechanisms underlying Aβ-induced neuronal cytotoxicity include excessive production of reactive oxidative species (ROS) and apoptosis. Cyclophilin A (CypA), exhibits antioxidant properties and protects neurons against oxidative stress induced injury. This study was conducted to demonstrate whether CyPA added to cultured PC12 cells could alleviate Aβ-induced oxidative stress and protect them from apoptosis.Methods PC12 cells were pre-incubated for 30 minutes with recombinant human cyclophilin A (rhCyPA) in 0.1 nmol/L, 1.0 nmol/L, 10 nmol/L and 100 nmol/L and then incubated with 10 umol/L Aβ25-35. In every group, cell viability, apoptotic morphology, apoptotic rate, intracellular ROS accumulation, the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) of PC12 cells and mitochondrial transmembrane potential were detected. Subsequently, the expression of the active form of caspase-3 was determined by Western blotting.Results It was shown that cultures treated with 1.0 nmol/L, 10 nmol/L or 100 nmol/L rhCyPA + Aβ25-35 had significantly higher cell viability and a lower rate of apoptosis compared with the cultures exposed only to Aβ25-35. In addition, rhCyPA attenuated Aβ25-35-induced overproduction of intracellular ROS and Aβ25-35-induced a decrease in activity of the key antioxidant enzymes SOD and GSH-Px. Furthermore, rhCyPA also attenuated Aβ25-35-induced mitochondrial dysfunction and the activation of caspase-3.Conclusion CyPA may act as an ROS scavenger, and prevent Aβ25-35-induced neurotoxicity through attenuating oxidative stress induced by Aβ25-35.

  9. Neurotoxicity induced by amyloid beta-peptide and ibotenic acid in organotypic hippocampal cultures: protection by S-allyl-L-cysteine, a garlic compound.

    Science.gov (United States)

    Ito, Yoshihisa; Ito, Moriyuki; Takagi, Noritaka; Saito, Hiroshi; Ishige, Kumiko

    2003-09-19

    We have assessed amyloid-beta (Abeta)-induced neurotoxicity, with and without added ibotenic acid (IBO), a potent N-methyl-D-aspartate (NMDA) agonist, in an organotypic hippocampal slice culture (OHC). In the OHC, there was little neurotoxicity after treatment with Abeta(25-35) (25 or 50 microM) alone for 48 h. However, with IBO alone neuronal death was observed in the pyramidal cell layer at low concentrations, and there was dramatic neuronal death at concentrations of 65 microM or more. When Abeta was combined with IBO (Abeta+IBO) there was more intense cell death than with IBO alone. S-Allyl-L-cysteine (SAC), one of the organosulfur compounds having a thioallyl group in aged garlic extract, was shown to protect the hippocampal neurons in the CA3 area and the dentate gyrus (DG) from the cell death induced by Abeta+IBO with no change in the CA1 area. Although L-glutamate (500 microM) potentiated the degree of IBO-induced neuronal death, it attenuated the Abeta+IBO-induced neuronal death in both the CA3 area and the DG with no obvious effect on the CA1 area. These results suggest that Abeta+IBO induces extensive neuronal death, and that SAC and L-glutamate protect cells from death in specific areas of the hippocampus. In addition, inhibition using a pan-caspase inhibitor, z-VAD-fmk, only provided partial protection from Abeta+IBO-induced toxicity for the neurons in the CA3 area. These results suggest that multiple mechanisms may be involved in Abeta+IBO-induced neuronal death in the OHC.

  10. Copernicus revisited: amyloid beta in Alzheimer's disease.

    Science.gov (United States)

    Joseph, J; Shukitt-Hale, B; Denisova, N A; Martin, A; Perry, G; Smith, M A

    2001-01-01

    The beta-amyloid hypothesis of Alzheimer's Disease (AD) has dominated the thinking and research in this area for over a decade and a half. While there has been a great deal of effort in attempting to prove its centrality in this devastating disease, and while an enormous amount has been learned about its properties (e.g., putative toxicity, processing and signaling), Abeta has not proven to be both necessary and sufficient for the development, neurotoxicity, and cognitive deficits associated with this disease. Instead, the few treatments that are available have emerged from aging research and are primarily directed toward modification of acetylcholine levels. Clearly, it is time to rethink this position and to propose instead that future approaches should focus upon altering the age-related sensitivity of the neuronal environment to insults involving such factors as inflammation and oxidative stress. In other words "solve the problems of aging and by extension those of AD will also be reduced." This review is being submitted as a rather Lutherian attempt to "nail an alternative thesis" to the gate of the Church of the Holy Amyloid to open its doors to the idea that aging is the most pervasive element in this disease and Abeta is merely one of the planets.

  11. Sugar microarray via click chemistry: molecular recognition with lectins and amyloid {beta} (1-42)

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, Erino; Fukuda, Tomohiro; Miura, Yoshiko [School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292 (Japan); Yamauchi, Takahiro, E-mail: miuray@jaist.ac.j [Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan)

    2009-06-15

    Sugar microarrays were fabricated on various substrates via click chemistry. Acetylene-terminated substrates were prepared by forming self-assembled monolayers (SAMs) on a gold substrate with alkyl-disulfide and on silicon, quartz and glass substrates with a silane-coupling reagent. The gold substrates were subjected to surface plasmon resonance measurements, and the quartz and glass substrates were subjected to spectroscopy measurements and optical microscopy observation. The saccharide-immobilized substrate on the gold substrate showed specific interaction with the corresponding lectin, and the saccharides showed inert surface properties to other proteins with a high signal-to-noise ratio. We also focused on the saccharide-protein interaction on protein amyloidosis of Alzheimer amyloid {beta}. Amyloid {beta} peptide showed conformation transition on the saccharide-immobilization substrate into a {beta}-sheet, and fibril formation and amyloid aggregates were found on the specific saccharides.

  12. Solution structures of {beta}-amyloid{sub 10-35} and {beta}-amyloid{sub 10-35} PEG3000 aggregates.

    Energy Technology Data Exchange (ETDEWEB)

    Benzinger, T. L. S.; Burkoth, T. S.; Gordon, D.; Lynn, D. G.; Meredith, S. C.; Morgan, D. M.; Seifert, S.; Thiyagarajan, P.; Urban, V.

    1999-07-02

    Small angle neutron and x-ray scattering (SANS/SAXS) studies were conducted on the structure of the aggregates formed from both the truncated model peptide {beta}-Amyloid(10-35) (A{beta}{sub 10-35}) and a block copolymer {beta}-Amyloid (10-35)-PEG3000 (A{beta}{sub 10-35}-PEG) in D{sub 2}O at pHs from 3.0 to 7.0. These studies indicate that A{beta}{sub 10-35} aggregates into rod-like particles (fibril) and their radii are strongly dependent on the Pm of the solution. The fibril-fibril association in A{beta}{sub 10-35} solutions is less of pH < 5.6, but becomes larger at higher pH. A{beta}{sub 10-35}-PEG also assembles into rod-like particles whose radius is larger by about 30 {angstrom} than that for A{beta}{sub 10-35} fibril at pH 4.2, while it is about 23 {angstrom} larger at higher pH. Contrast matching SAXS/SANS experiments that eliminate the coherent scattering from PEG reveal that PEG moiety is located at the periphery of the fibril. Also, the mass per unit length of the peptide portion is similar for both A{beta}{sub 10-35} and A{beta}{sub 10-35}-PEG fibrils at pH 5.6. The mass per unit length of the rods from SANS provides key information on the packing of A{beta}{sub 10-35} peptides in the fibril.

  13. alpha7 Nicotinic acetylcholine receptor knockout selectively enhances ethanol-, but not beta-amyloid-induced neurotoxicity.

    Science.gov (United States)

    de Fiebre, Nancyellen C; de Fiebre, Christopher M

    2005-01-03

    The alpha7 subtype of nicotinic acetylcholine receptor (nAChR) has been implicated as a potential site of action for two neurotoxins, ethanol and the Alzheimer's disease related peptide, beta-amyloid. Here, we utilized primary neuronal cultures of cerebral cortex from alpha7 nAChR null mutant mice to examine the role of this receptor in modulating the neurotoxic properties of subchronic, "binge" ethanol and beta-amyloid. Knockout of the alpha7 nAChR gene selectively enhanced ethanol-induced neurotoxicity in a gene dosage-related fashion. Susceptibility of cultures to beta-amyloid induced toxicity, however, was unaffected by alpha7 nAChR gene null mutation. Further, beta-amyloid did not inhibit the binding of the highly alpha7-selective radioligand, [(125)I]alpha-bungarotoxin. On the other hand, in studies in Xenopus oocytes ethanol efficaciously inhibited alpha7 nAChR function. These data suggest that alpha7 nAChRs modulate the neurotoxic effects of binge ethanol, but not the neurotoxicity produced by beta-amyloid. It is hypothesized that inhibition of alpha7 nAChRs by ethanol provides partial protection against the neurotoxic properties of subchronic ethanol.

  14. Early Treatment Critical: Bexarotene Reduces Amyloid-Beta Burden In Silico.

    Science.gov (United States)

    Rosenthal, Joseph; Belfort, Georges; Isaacson, David

    2016-01-01

    Amyloid-beta peptides have long been implicated in the pathology of Alzheimer's disease. Bexarotene, a drug approved by the U.S. Food and Drug Administration for treating a class of non-Hodgkin's lymphoma, has been reported to facilitate the removal of amyloid-beta. We have developed a mathematical model to explore the efficacy of bexarotene treatment in reducing amyloid-beta load, and simulate amyloid-beta production throughout the lifespan of diseased mice. Both aspects of the model are based on and consistent with previous experimental results. Beyond what is known empirically, our model shows that low dosages of bexarotene are unable to reverse symptoms in diseased mice, but dosages at and above an age-dependent critical concentration can recover healthy brain cells. Further, early treatment was shown to have significantly improved efficacy versus treatment in older mice. Relevance with respect to bexarotene-based amyloid-beta-clearance mechanism and direct treatment for Alzheimer's disease is emphasized.

  15. Cerebrolysin decreases amyloid-beta production by regulating amyloid protein precursor maturation in a transgenic model of Alzheimer's disease.

    Science.gov (United States)

    Rockenstein, Edward; Torrance, Magdalena; Mante, Michael; Adame, Anthony; Paulino, Amy; Rose, John B; Crews, Leslie; Moessler, Herbert; Masliah, Eliezer

    2006-05-15

    Cerebrolysin is a peptide mixture with neurotrophic effects that might reduce the neurodegenerative pathology in Alzheimer's disease (AD). We have previously shown in an amyloid protein precursor (APP) transgenic (tg) mouse model of AD-like neuropathology that Cerebrolysin ameliorates behavioral deficits, is neuroprotective, and decreases amyloid burden; however, the mechanisms involved are not completely clear. Cerebrolysin might reduce amyloid deposition by regulating amyloid-beta (Abeta) degradation or by modulating APP expression, maturation, or processing. To investigate these possibilities, APP tg mice were treated for 6 months with Cerebrolysin and analyzed in the water maze, followed by RNA, immunoblot, and confocal microscopy analysis of full-length (FL) APP and its fragments, beta-secretase (BACE1), and Abeta-degrading enzymes [neprilysin (Nep) and insulin-degrading enzyme (IDE)]. Consistent with previous studies, Cerebrolysin ameliorated the performance deficits in the spatial learning portion of the water maze and reduced the synaptic pathology and amyloid burden in the brains of APP tg mice. These effects were associated with reduced levels of FL APP and APP C-terminal fragments, but levels of BACE1, Notch1, Nep, and IDE were unchanged. In contrast, levels of active cyclin-dependent kinase-5 (CDK5) and glycogen synthase kinase-3beta [GSK-3beta; but not stress-activated protein kinase-1 (SAPK1)], kinases that phosphorylate APP, were reduced. Furthermore, Cerebrolysin reduced the levels of phosphorylated APP and the accumulation of APP in the neuritic processes. Taken together, these results suggest that Cerebrolysin might reduce AD-like pathology in the APP tg mice by regulating APP maturation and transport to sites where Abeta protein is generated. This study clarifies the mechanisms through which Cerebrolysin might reduce Abeta production and deposition in AD and further supports the importance of this compound in the potential treatment of early AD.

  16. Method for measurement of the blood-brain barrier permeability in the perfused mouse brain: application to amyloid-beta peptide in wild type and Alzheimer's Tg2576 mice.

    Science.gov (United States)

    LaRue, Barbra; Hogg, Elizabeth; Sagare, Abhay; Jovanovic, Suzana; Maness, Lawrence; Maurer, Calvin; Deane, Rashid; Zlokovic, Berislav V

    2004-09-30

    The role of transport exchanges of neuroactive solutes across the blood-brain barrier (BBB) is increasingly recognized. To take full advantage of genetically altered mouse models of neurodegenerative disorders for BBB transport studies, we adapted a brain perfusion technique to the mouse. During a carotid brain perfusion with a medium containing sheep red blood cells and mock plasma, the physiological parameters in the arterial inflow, regional cerebral blood flow (14C-iodoantipyrine autoradiography), ultrastructural integrity of the tissue, barrier to lanthanum, brain water content, energy metabolites and lactate levels remain unchanged. Amyloid-beta peptides (Abeta) were iodinated by lactoperoxidase method. Non-oxidized mono-iodinated Abeta monomers were separated by HPLC (as confirmed by MALDI-TOF spectrometry) and used in transport measurements. Transport of intact 125I-Abeta40 across the BBB was time- and concentration-dependent in contrast to negligible 14C-inulin uptake. In 5-6 months old Alzheimer's Tg2576 mice, Abeta40 BBB transport was increased by >eight-fold compared to age-matched littermate controls, and was mediated via the receptor for advanced glycation endproducts. We conclude the present arterial brain perfusion method provides strictly controlled environment in cerebral microcirculation suitable for examining transport of rapidly and slowly penetrating molecules across the BBB in normal and transgenic mice.

  17. Amyloidpeptide binds to cytochrome C oxidase subunit 1.

    Science.gov (United States)

    Hernandez-Zimbron, Luis Fernando; Luna-Muñoz, Jose; Mena, Raul; Vazquez-Ramirez, Ricardo; Kubli-Garfias, Carlos; Cribbs, David H; Manoutcharian, Karen; Gevorkian, Goar

    2012-01-01

    Extracellular and intraneuronal accumulation of amyloid-beta aggregates has been demonstrated to be involved in the pathogenesis of Alzheimer's disease (AD). However, the precise mechanism of amyloid-beta neurotoxicity is not completely understood. Previous studies suggest that binding of amyloid-beta to a number of macromolecules has deleterious effects on cellular functions. Mitochondria were found to be the target for amyloid-beta, and mitochondrial dysfunction is well documented in AD. In the present study we have shown for the first time that Aβ 1-42 bound to a peptide comprising the amino-terminal region of cytochrome c oxidase subunit 1. Phage clone, selected after screening of a human brain cDNA library expressed on M13 phage and bearing a 61 amino acid fragment of cytochrome c oxidase subunit 1, bound to Aβ 1-42 in ELISA as well as to Aβ aggregates present in AD brain. Aβ 1-42 and cytochrome c oxidase subunit 1 co-immunoprecipitated from mitochondrial fraction of differentiated human neuroblastoma cells. Likewise, molecular dynamics simulation of the cytochrome c oxidase subunit 1 and the Aβ 1-42 peptide complex resulted in a reliable helix-helix interaction, supporting the experimental results. The interaction between Aβ 1-42 and cytochrome c oxidase subunit 1 may explain, in part, the diminished enzymatic activity of respiratory chain complex IV and subsequent neuronal metabolic dysfunction observed in AD.

  18. Amyloidpeptide binds to cytochrome C oxidase subunit 1.

    Directory of Open Access Journals (Sweden)

    Luis Fernando Hernandez-Zimbron

    Full Text Available Extracellular and intraneuronal accumulation of amyloid-beta aggregates has been demonstrated to be involved in the pathogenesis of Alzheimer's disease (AD. However, the precise mechanism of amyloid-beta neurotoxicity is not completely understood. Previous studies suggest that binding of amyloid-beta to a number of macromolecules has deleterious effects on cellular functions. Mitochondria were found to be the target for amyloid-beta, and mitochondrial dysfunction is well documented in AD. In the present study we have shown for the first time that Aβ 1-42 bound to a peptide comprising the amino-terminal region of cytochrome c oxidase subunit 1. Phage clone, selected after screening of a human brain cDNA library expressed on M13 phage and bearing a 61 amino acid fragment of cytochrome c oxidase subunit 1, bound to Aβ 1-42 in ELISA as well as to Aβ aggregates present in AD brain. Aβ 1-42 and cytochrome c oxidase subunit 1 co-immunoprecipitated from mitochondrial fraction of differentiated human neuroblastoma cells. Likewise, molecular dynamics simulation of the cytochrome c oxidase subunit 1 and the Aβ 1-42 peptide complex resulted in a reliable helix-helix interaction, supporting the experimental results. The interaction between Aβ 1-42 and cytochrome c oxidase subunit 1 may explain, in part, the diminished enzymatic activity of respiratory chain complex IV and subsequent neuronal metabolic dysfunction observed in AD.

  19. AFM-based force spectroscopy measurements of mature amyloid fibrils of the peptide glucagon

    Energy Technology Data Exchange (ETDEWEB)

    Dong Mingdong; Hovgaard, Mads Bruun; Mamdouh, Wael; Xu Sailong; Otzen, Daniel Erik; Besenbacher, Flemming [Interdisciplinary Nanoscience Center (iNANO), University of Aarhus, DK-8000 Aarhus C (Denmark)], E-mail: dao@inano.dk, E-mail: fbe@inano.dk

    2008-09-24

    We report on the mechanical characterization of individual mature amyloid fibrils by atomic force microscopy (AFM) and AFM-based single-molecule force spectroscopy (SMFS). These self-assembling materials, formed from the 29-residue amphiphatic peptide hormone glucagon, were found to display a reversible elastic behaviour. Based on AFM morphology and SMFS studies, we suggest that the observed elasticity is due to a force-induced conformational transition which is reversible due to the {beta}-helical conformation of protofibrils, allowing a high degree of extension. The elastic properties of such mature fibrils contribute to their high stability, suggesting that the internal hydrophobic interactions of amyloid fibrils are likely to be of fundamental importance in the assembly of amyloid fibrils and therefore for the understanding of the progression of their associated pathogenic disorders. In addition, such biological amyloid fibril structures with highly stable mechanical properties can potentially be used to produce nanofibres (nanowires) that may be suitable for nanotechnological applications.

  20. BETA-AMYLOID((1-42)) AFFECTS CHOLINERGIC BUT NOT PARVALBUMIN-CONTAINING NEURONS IN THE SEPTAL COMPLEX OF THE RAT

    NARCIS (Netherlands)

    HARKANY, T; DEJONG, GI; SOOS, K; PENKE, B; LUITEN, PGM; GULYA, K

    1995-01-01

    beta-Amyloid((1-42)) peptide (beta AP((1-42))) was injected into the medial septum of rats. After a 14-day survival time, neuronal alterations in the septal cholinergic and GABAergic systems were visualized by means of histo- and immunocytochemical methods. Neurons insulted by the peptide were prima

  1. New Insights in the Amyloid-Beta Interaction with Mitochondria

    Directory of Open Access Journals (Sweden)

    Carlos Spuch

    2012-01-01

    Full Text Available Biochemical and morphological alterations of mitochondria may play an important role in the pathogenesis of Alzheimer’s disease (AD. Particularly, mitochondrial dysfunction is a hallmark of amyloid-beta-induced neuronal toxicity in Alzheimer’s disease. The recent emphasis on the intracellular biology of amyloid-beta and its precursor protein (APP has led researchers to consider the possibility that mitochondria-associated and mitochondrial amyloid-beta may directly cause neurotoxicity. Both proteins are known to localize to mitochondrial membranes, block the transport of nuclear-encoded mitochondrial proteins to mitochondria, interact with mitochondrial proteins, disrupt the electron transport chain, increase reactive oxygen species production, cause mitochondrial damage, and prevent neurons from functioning normally. In this paper, we will outline current knowledge of the intracellular localization of amyloid-beta. Moreover, we summarize evidence from AD postmortem brain as well as animal AD models showing that amyloid-beta triggers mitochondrial dysfunction through a number of pathways such as impairment of oxidative phosphorylation, elevation of reactive oxygen species production, alteration of mitochondrial dynamics, and interaction with mitochondrial proteins. Thus, this paper supports the Alzheimer cascade mitochondrial hypothesis such as the most important early events in this disease, and probably one of the future strategies on the therapy of this neurodegenerative disease.

  2. Amyloid beta and Alzheimer’s Disease: The role of neprilysin-2 in amyloid-beta clearance

    Directory of Open Access Journals (Sweden)

    Robert eMarr

    2014-08-01

    Full Text Available Accumulation of the amyloid-beta (Ab peptide is a central factor in Alzheimer’s disease (AD pathogenesis as supported by continuing evidence. This review concisely summarizes this evidence supporting a critical role for Ab in AD before discussing the clearance of this peptide. Mechanisms of clearance of Ab are critical for preventing pathological elevations in Ab concentration. Direct degradation of Ab by endopeptidases has emerged as one important pathway for clearance. Of particular interest are endopeptidases that are sensitive to the neprilysin (NEP inhibitors thiorphan and phosphoramidon (i.e. are NEP-like as these inhibitors induce a dramatic increase in Ab levels in rodents. This review will focus on Neprilysin-2 (NEP2, a NEP-like endopeptidase which cooperates with NEP to control Ab levels in the brain. The evidence for the involvement of NEP2 in AD is discussed as well as the therapeutic relevance with regards to gene therapy and the development of molecular markers for the disease.

  3. Effects of L-3-n-butylphthalide on caspase-3 and nuclear factor kappa-B expression in primary basal forebrain and hippocampal cultures after beta-amyloid peptide 1-42 treatment

    Institute of Scientific and Technical Information of China (English)

    Ruixia Wang; Yong Zhang; Liangliang Jiang; Guozhao Ma; Qingxi Fu; Jialong Li; Peng Yan; Lunqian Shen; Yabo Feng; Chunxia Li; Zaiying Pang; Yuanxiao Cui; Chunfu Chen; Yifeng Du; Zhaokong Liu

    2009-01-01

    BACKGROUND: L-3-n-butylphthalide (L-NBP) can inhibit phosphorylation of tau protein and reduce the neurotoxicity of beta-amyloid peptide 1-42 (Aβ1-42).OBJECTIVE: To observe the neuroprotective effects of L-NBP on caspase-3 and nuclear factor kappa-B (NF-кB) expression in a rat model of Alzheimer's disease.DESIGN, TIME AND SETTING: A cell experiment was performed at the Central Laboratory of Provincial Hospital affiliated to Shandong University between January 2008 and August 2008.MATERIALS: L-NBP (purity>98%) was provided by Shijiazhuang Pharma Group NBP Pharmaceutical Company Limited. Aβ1-42, 3-[4,5-dimethylthiazolo-2]-2,5 iphenyltetrazolium bromide (MTT), and rabbit anti-Caspase-3 polyclonal antibody were provided by Cell Signaling, METHODS: Primary cultures were generated from rat basal forebrain and hippocampal neurons at 17 or 19 days of gestation. The cells were assigned into five groups: the control group, the Aβ1-42 group (2μmol/L), the Aβ1-42+0.1μmol/L L-NBP group, the Aβ1-42+1 μmol/L L-NBP group, and the Aβ1-42 + 10μmol/L L-NBP group. The neurons were treated with Aβ1-42 (2 μmol/L) alone or in combination with L-NBP (0.1, 1, 10μmol/L) for 48 hours. Cells in the control group were incubated in PBS.MAIN OUTCOME MEASURES: Morphologic changes were evaluated using inverted microscopy, Western blot.RESULTS: Induction with Aβ1-42 for 48 hours caused cell death and soma atrophy, and increased the high dose (P<0.05).CONCLUSION: Aβ1-42 is toxic to basal forebrain and hippocampal primary neurons; L-NBP protects against this toxicity and inhibits the induction of caspase-3 and NF-κB expression.

  4. Size-dependent neurotoxicity of beta-amyloid oligomers.

    Science.gov (United States)

    Cizas, Paulius; Budvytyte, Rima; Morkuniene, Ramune; Moldovan, Radu; Broccio, Matteo; Lösche, Mathias; Niaura, Gediminas; Valincius, Gintaras; Borutaite, Vilmante

    2010-04-15

    The link between the size of soluble amyloid beta (Abeta) oligomers and their toxicity to rat cerebellar granule cells (CGC) was investigated. Variation in conditions during in vitro oligomerization of Abeta(1-42) resulted in peptide assemblies with different particle size as measured by atomic force microscopy and confirmed by dynamic light scattering and fluorescence correlation spectroscopy. Small oligomers of Abeta(1-42) with a mean particle z-height of 1-2 nm exhibited propensity to bind to phospholipid vesicles and they were the most toxic species that induced rapid neuronal necrosis at submicromolar concentrations whereas the bigger aggregates (z-height above 4-5 nm) did not bind vesicles and did not cause detectable neuronal death. A similar neurotoxic pattern was also observed in primary cultures of cortex neurons whereas Abeta(1-42) oligomers, monomers and fibrils were non-toxic to glial cells in CGC cultures or macrophage J774 cells. However, both oligomeric forms of Abeta(1-42) induced reduction of neuronal cell densities in the CGC cultures.

  5. Protective Effect of Eecdysterone on the PC12 Cell CytotoxicityInduced by beta-amyloid 25-35

    Institute of Scientific and Technical Information of China (English)

    YANGSu-Fen; WUZhong-Jun; YANGZheng-Qin; LIYu; WuQin; ZHOUQi-Xin; SHIJing-Shan

    2004-01-01

    Objective. To study the effect of ecdysterone (ECR) on beta - amyloid peptide fragment 25-35 ( Aβ25-35 )-induced PC12 cell cytotoxicity, and further to expore its mechanism. Methods: PC12 survial was monitored by LDH release and 3-(4, 5-dimethylthiazol-yl-2, 5-diphenyhetrazolium bromide (MTT) assays. The content of malondi-

  6. The cerebrospinal fluid amyloid beta42/40 ratio in the differentiation of Alzheimer's disease from non-Alzheimer's dementia

    NARCIS (Netherlands)

    Spies, P E; Slats, D; Sjögren, J M C; Kremer, B P H; Verhey, F R J; Rikkert, M G M Olde; Verbeek, M M

    2010-01-01

    BACKGROUND: Amyloid beta(40) (Abeta(40)) is the most abundant Abeta peptide in the brain. The cerebrospinal fluid (CSF) level of Abeta(40) might therefore be considered to most closely reflect the total Abeta load in the brain. Both in Alzheimer's disease (AD) and in normal aging the Abeta load in t

  7. Proteomic study of amyloid beta (25-35) peptide exposure to neuronal cells: Impact on APE1/Ref-1's protein-protein interaction.

    Science.gov (United States)

    Mantha, Anil K; Dhiman, Monisha; Taglialatela, Giulio; Perez-Polo, Regino J; Mitra, Sankar

    2012-06-01

    The genotoxic, extracellular accumulation of amyloid β (Aβ) protein and subsequent neuronal cell death are associated with Alzheimer's disease (AD). APE1/Ref-1, the predominant apurinic/apyrimidinic (AP) endonuclease and essential in eukaryotic cells, plays a central role in the base excision repair (BER) pathway for repairing oxidized and alkylated bases and single-strand breaks (SSBs) in DNA. APE1/Ref-1 is also involved in the redox activation of several trans-acting factors (TFs) in various cell types, but little is known about its role in neuronal functions. There is emerging evidence for APE1/Ref-1's role in neuronal cells vulnerable in AD and other neurodegenerative disorders, as reflected in its nuclear accumulation in AD brains. An increase in APE1/Ref-1 has been shown to enhance neuronal survival after oxidative stress. To address whether APE1/Ref-1 level or its association with other proteins is responsible for this protective effect, we used 2-D proteomic analyses and identified cytoskeleton elements (i.e., tropomodulin 3, tropomyosin alpha-3 chain), enzymes involved in energy metabolism (i.e., pyruvate kinase M2, N-acetyl transferase, sulfotransferase 1c), proteins involved in stress response (i.e., leucine-rich and death domain, anti-NGF30), and heterogeneous nuclear ribonucleoprotien-H (hnRNP-H) as being associated with APE1/Ref-1 in Aβ(25-35)-treated rat pheochromocytoma PC12 and human neuroblastoma SH-SY5Y cell lines, two common neuronal precursor lines used in Aβ neurotoxicity studies. Because the levels of some of these proteins are affected in the brains of AD patients, our study suggests a neuroprotective role for APE1/Ref-1 via its association with those proteins and modulating their cellular functions during Aβ-mediated neurotoxicity.

  8. An interaction of beta-amyloid with aluminium in vitro.

    Science.gov (United States)

    Exley, C; Price, N C; Kelly, S M; Birchall, J D

    1993-06-21

    We have used circular dichroism spectroscopy to confirm that, in a membrane-mimicking solvent, A beta P(1-40) adopts a partially helical conformation and we have demonstrated the loss of this structure in the presence of physiologically relevant concentrations of aluminium. This is the first evidence of a direct biochemical interaction between aluminium and beta-amyloid and may have important implications for the pathogenesis of Alzheimer's disease.

  9. Amyloid fibrils composed of hexameric peptides attenuate neuroinflammation.

    Science.gov (United States)

    Kurnellas, Michael P; Adams, Chris M; Sobel, Raymond A; Steinman, Lawrence; Rothbard, Jonathan B

    2013-04-03

    The amyloid-forming proteins tau, αB crystallin, and amyloid P protein are all found in lesions of multiple sclerosis (MS). Our previous work established that amyloidogenic peptides from the small heat shock protein αB crystallin (HspB5) and from amyloid β fibrils, characteristic of Alzheimer's disease, were therapeutic in experimental autoimmune encephalomyelitis (EAE), reflecting aspects of the pathology of MS. To understand the molecular basis for the therapeutic effect, we showed a set of amyloidogenic peptides composed of six amino acids, including those from tau, amyloid β A4, major prion protein (PrP), HspB5, amylin, serum amyloid P, and insulin B chain, to be anti-inflammatory and capable of reducing serological levels of interleukin-6 and attenuating paralysis in EAE. The chaperone function of the fibrils correlates with the therapeutic outcome. Fibrils composed of tau 623-628 precipitated 49 plasma proteins, including apolipoprotein B-100, clusterin, transthyretin, and complement C3, supporting the hypothesis that the fibrils are active biological agents. Amyloid fibrils thus may provide benefit in MS and other neuroinflammatory disorders.

  10. Cu K-edge X-ray Absorption Spectroscopy Reveals Differential Copper Coordimation Within Amyloid-beta Oligomers Compared to Amyloid-beta Monomers

    Energy Technology Data Exchange (ETDEWEB)

    J Shearer; P Callan; T Tran; V Szalai

    2011-12-31

    The fatal neurodegenerative disorder Alzheimer's disease (AD) has been linked to the formation of soluble neurotoxic oligomers of amyloid-{beta} (A{beta}) peptides. These peptides have high affinities for copper cations. Despite their potential importance in AD neurodegeneration few studies have focused on probing the Cu{sup 2+/1+} coordination environment within A{beta} oligomers. Herein we present a Cu K-edge X-ray absorption spectroscopic study probing the copper-coordination environment within oligomers of A{beta}(42) (sequence: DAEFRHDSGYEVHHQKLVFFAEDVGSNKGAIIGLMVGGVVIA). We find that the Cu{sup 2+} cation is contained within a square planar mixed N/O ligand environment within A{beta}(42) oligomers, which is similar to the copper coordination environment of the monomeric forms of {l_brace}Cu{sup II}A{beta}(40){r_brace} and {l_brace}Cu{sup II}A{beta}(16){r_brace}. Reduction of the Cu{sup 2+} cation within the A{beta}(42) oligomers to Cu{sup 1+} yields a highly dioxygen sensitive copper-species that contains Cu{sup 1+} in a tetrahedral coordination geometry. This can be contrasted with monomers of {l_brace}Cu{sup I}A{beta}(40){r_brace} and {l_brace}Cu{sup I}A{beta}(16){r_brace}, which contain copper in a dioxygen inert linear bis-histidine ligand environment [Shearer and Szalai, J. Am. Chem. Soc., 2008, 130, 17826]. The biological implications of these findings are discussed.

  11. Prediction of Peptide and Protein Propensity for Amyloid Formation.

    Directory of Open Access Journals (Sweden)

    Carlos Família

    Full Text Available Understanding which peptides and proteins have the potential to undergo amyloid formation and what driving forces are responsible for amyloid-like fiber formation and stabilization remains limited. This is mainly because proteins that can undergo structural changes, which lead to amyloid formation, are quite diverse and share no obvious sequence or structural homology, despite the structural similarity found in the fibrils. To address these issues, a novel approach based on recursive feature selection and feed-forward neural networks was undertaken to identify key features highly correlated with the self-assembly problem. This approach allowed the identification of seven physicochemical and biochemical properties of the amino acids highly associated with the self-assembly of peptides and proteins into amyloid-like fibrils (normalized frequency of β-sheet, normalized frequency of β-sheet from LG, weights for β-sheet at the window position of 1, isoelectric point, atom-based hydrophobic moment, helix termination parameter at position j+1 and ΔG° values for peptides extrapolated in 0 M urea. Moreover, these features enabled the development of a new predictor (available at http://cran.r-project.org/web/packages/appnn/index.html capable of accurately and reliably predicting the amyloidogenic propensity from the polypeptide sequence alone with a prediction accuracy of 84.9 % against an external validation dataset of sequences with experimental in vitro, evidence of amyloid formation.

  12. Cerebral microvascular amyloid beta protein deposition induces vascular degeneration and neuroinflammation in transgenic mice expressing human vasculotropic mutant amyloid beta precursor protein.

    NARCIS (Netherlands)

    Miao, J.; Xu, F.; Davis, J.; Otte-Holler, I.; Verbeek, M.M.; Nostrand, W.E. van

    2005-01-01

    Cerebral vascular amyloid beta-protein (Abeta) deposition, also known as cerebral amyloid angiopathy, is a common pathological feature of Alzheimer's disease. Additionally, several familial forms of cerebral amyloid angiopathy exist including the Dutch (E22Q) and Iowa (D23N) mutations of Abeta. Incr

  13. Amyloid-beta Positron Emission Tomography Imaging Probes : A Critical Review

    NARCIS (Netherlands)

    Kepe, Vladimir; Moghbel, Mateen C.; Langstrom, Bengt; Zaidi, Habib; Vinters, Harry V.; Huang, Sung-Cheng; Satyamurthy, Nagichettiar; Doudet, Doris; Mishani, Eyal; Cohen, Robert M.; Hoilund-Carlsen, Poul F.; Alavi, Abass; Barrio, Jorge R.

    2013-01-01

    The rapidly rising prevalence and cost of Alzheimer's disease in recent decades has made the imaging of amyloid-beta deposits the focus of intense research. Several amyloid imaging probes with purported specificity for amyloid-beta plaques are currently at various stages of FDA approval. However, a

  14. Emerging roles for the amyloid precursor protein and derived peptides in the regulation of cellular and systemic metabolism.

    Science.gov (United States)

    Czeczor, Juliane K; McGee, Sean L

    2017-03-28

    The amyloid precursor protein (APP) is a transmembrane protein that can be cleaved by proteases through two different pathways to yield a number of small peptides, each with distinct physiological properties and functions. It has been extensively studied in the context of Alzheimer's disease, with the APP-derived amyloid beta (Aβ) peptide being a major constituent of the amyloid plaques observed in this disease. It has been known for some time that APP can regulate neuronal metabolism, however this review will examine evidence that APP and its peptides can also regulate key metabolic processes such as insulin action, lipid synthesis and storage and mitochondrial function in peripheral tissues. This review will present a hypothesis that amyloidogenic processing of APP in peripheral tissues plays a key role in the response to nutrient excess and that this could contribute to the pathogenesis of metabolic diseases such as obesity and type 2 diabetes (T2D). This article is protected by copyright. All rights reserved.

  15. Genes and mechanisms involved in beta-amyloid generation and Alzheimer's disease.

    Science.gov (United States)

    Steiner, H; Capell, A; Leimer, U; Haass, C

    1999-01-01

    Alzheimer's disease is characterized by the invariable accumulation of senile plaques that are predominantly composed of amyloid beta-peptide (Abeta). Abeta is generated by proteolytic processing of the beta-amyloid precursor protein (betaAPP) involving the combined action of beta- and gamma-secretase. Cleavage within the Abeta domain by alpha-secretase prevents Abeta generation. In some very rare cases of familial AD (FAD), mutations have been identified within the betaAPP gene. These mutations are located close to or at the cleavage sites of the secretases and pathologically effect betaAPP processing by increasing Abeta production, specifically its highly amyloidogenic 42 amino acid variant (Abeta42). Most of the mutations associated with FAD have been identified in the two presenilin (PS) genes, particularly the PS1 gene. Like the mutations identified within the betaAPP gene, mutations in PS1 and PS2 cause the increased generation of Abeta42. PS1 has been shown to be functionally involved in Notch signaling, a key process in cellular differentation, and in betaAPP processing. A gene knock out of PS1 in mice leads to an embryonic lethal phenotype similar to that of mice lacking Notch. In addition, absence of PS1 results in reduced gamma-secretase cleavage and leads to an accumulation of betaAPP C-terminal fragments and decreased amounts of Abeta. Recent work may suggest that PS1 could be the gamma-secretase itself, exhibiting the properties of a novel aspartyl protease. Mutagenesis of either of two highly conserved intramembraneous aspartate residues of PS1 leads to reduced Abeta production as observed in the PS1 knockout. A corresponding mutation in PS2 interfered with betaAPP processing and Notch signaling suggesting a functional redundancy of both presenilins. In this issue, some of the recent work on the molecular mechanisms involved in Alzheimer's disease (AD) as well as novel diagnostic approaches and risk factors for AD will be discussed. In the first

  16. Drugs of Alzheimer's disease targeting amyloid beta-peptide in phase Ⅲ clinical trials%进入临床试验Ⅲ期以β淀粉样蛋白为靶标的抗阿尔采末病药物

    Institute of Scientific and Technical Information of China (English)

    史长城; 于锋

    2012-01-01

    Alzheimer's disease (AD) is a chronic and progressive neurodegenerative disorder. To date, there is still no effective drug for it. With more understanding about the etiology and pathogenesis of AD, amyloid beta - peptide (Aβ) is considered to be an important factor. Therefore, results of these clinical trials with many drugs targeting Aβ were disappointed. Clinical trials of two drugs, tramiprosate and semagacestat have been terminated. The paper reviewed these drugs targeting Aβ in phase Ⅲ clinical trials, in order to provide reference services to researchers.%阿尔采末病(AD)是一种常见的神经退行性疾病,目前尚无有效的治疗药物.随着AD发病机制研究的深入,β淀粉样蛋白(amyloid beta-peptide,Aβ)被认为是AD发病重要因素之一.因此,很多药物设计选择以Aβ为靶标,但这类药物的临床研究却受到不同程度的挫折,tram1prosate和semagacestat的临床试验已经提前终止.本文对目前进入临床试验Ⅲ期以Aβ为靶标的药物进行综述,以期为研究者提供参考.

  17. Exploring the early steps of aggregation of amyloid-forming peptide KFFE

    Energy Technology Data Exchange (ETDEWEB)

    Wei Guanghong [Departement de Physique and Regroupement Quebecois sur les Materiaux de Pointe, Universite de Montreal, CP 6128, succursale centre-ville, Montreal, QC, H3C 3J7 (Canada); Mousseau, Normand [Departement de Physique and Regroupement Quebecois sur les Materiaux de Pointe, Universite de Montreal, CP 6128, succursale centre-ville, Montreal, QC, H3C 3J7 (Canada); Derreumaux, Philippe [Laboratoire de Biochimie, Theorique, UPR 9080 CNRS, IBPC, Universite Paris 7 Denis-Diderot, 13 rue Pierre et Marie Curie, 75005 Paris (France)

    2004-11-10

    It has been shown recently that even a tetrapeptide can form amyloid fibrils sharing all the characteristics of amyloid fibrils built from large proteins. Recent experimental studies also suggest that the toxicity observed in several neurodegenerative diseases, such as Alzheimer's disease and Creutzfeldt-Jakob disease, is not only related to the mature fibrils themselves, but also to the soluble oligomers formed early in the process of fibrillogenesis. This raises the interest in studying the early steps of the aggregation process. Although fibril formation follows the nucleation-condensation process, characterized by the presence of lag phase, the exact pathways remain to be determined. In this study, we used the activation-relaxation technique and a generic energy model to explore the process of self-assembly and the structures of the resulting aggregates of eight KFFE peptides. Our simulations show, starting from different states with a preformed antiparallel dimer, that eight chains can self-assemble to adopt, with various orientations, four possible distant oligomeric well-aligned structures of similar energy. Two of these structures show a double-layer {beta}-sheet organization, in agreement with the structure of amyloid fibrils as observed by x-ray diffraction; another two are mixtures of dimers and trimers. Our results also suggest that octamers are likely to be below the critical size for nucleation of amyloid fibrils for small peptides.

  18. Gold Nanoparticles and Microwave Irradiation Inhibit Beta-Amyloid Amyloidogenesis

    Directory of Open Access Journals (Sweden)

    Bastus Neus

    2008-01-01

    Full Text Available Abstract Peptide-Gold nanoparticles selectively attached to β-amyloid protein (Aβ amyloidogenic aggregates were irradiated with microwave. This treatment produces dramatic effects on the Aβ aggregates, inhibiting both the amyloidogenesis and the restoration of the amyloidogenic potential. This novel approach offers a new strategy to inhibit, locally and remotely, the amyloidogenic process, which could have application in Alzheimer’s disease therapy. We have studied the irradiation effect on the amyloidogenic process in the presence of conjugates peptide-nanoparticle by transmission electronic microscopy observations and by Thioflavine T assays to quantify the amount of fibrils in suspension. The amyloidogenic aggregates rather than the amyloid fibrils seem to be better targets for the treatment of the disease. Our results could contribute to the development of a new therapeutic strategy to inhibit the amyloidogenic process in Alzheimer’s disease.

  19. P-glycoprotein efflux and other factors limit brain amyloid beta reduction by beta-site amyloid precursor protein-cleaving enzyme 1 inhibitors in mice.

    Science.gov (United States)

    Meredith, Jere E; Thompson, Lorin A; Toyn, Jeremy H; Marcin, Lawrence; Barten, Donna M; Marcinkeviciene, Jovita; Kopcho, Lisa; Kim, Young; Lin, Alan; Guss, Valerie; Burton, Catherine; Iben, Lawrence; Polson, Craig; Cantone, Joe; Ford, Michael; Drexler, Dieter; Fiedler, Tracey; Lentz, Kimberley A; Grace, James E; Kolb, Janet; Corsa, Jason; Pierdomenico, Maria; Jones, Kelli; Olson, Richard E; Macor, John E; Albright, Charles F

    2008-08-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disease. Amyloid beta (Abeta) peptides are hypothesized to cause the initiation and progression of AD based on pathologic data from AD patients, genetic analysis of mutations that cause early onset forms of AD, and preclinical studies. Based on this hypothesis, beta-site amyloid precursor protein (APP)-cleaving enzyme 1 (BACE1) inhibitors are an attractive therapeutic approach for AD because cleavage of the APP by BACE1 is required to form Abeta. In this study, three potent BACE1 inhibitors are characterized. All three inhibitors decrease Abeta formation in cultured cells with IC(50) values less than 10 nM. Analysis of APP C-terminal fragments by immunoblotting and Abeta peptides by mass spectrometry showed that these inhibitors decreased Abeta by inhibiting BACE1. An assay for Abeta1-40 in mice was developed and used to show that these BACE1 inhibitors decreased plasma Abeta1-40, but not brain Abeta1-40, in wild-type mice. Because these BACE1 inhibitors were substrates for P-glycoprotein (P-gp), a member of the ATP-binding cassette superfamily of efflux transporters, these inhibitors were administered to P-gp knockout (KO) mice. These studies showed that all three BACE1 inhibitors decreased brain Abeta1-40 in P-gp KO mice, demonstrating that P-gp is a major limitation for development of BACE1 inhibitors to test the amyloid hypothesis. A comparison of plasma Abeta1-40 and brain Abeta1-40 dose responses for these three compounds revealed differences in relative ED(50) values, indicating that factors other than P-gp can also contribute to poor brain activity by BACE1 inhibitors.

  20. The metal loading ability of beta-amyloid N-terminus: a combined potentiometric and spectroscopic study of copper(II) complexes with beta-amyloid(1-16), its short or mutated peptide fragments, and its polyethylene glycol (PEG)-ylated analogue.

    Science.gov (United States)

    Damante, Chiara A; Osz, Katalin; Nagy, Zoltán; Pappalardo, Giuseppe; Grasso, Giulia; Impellizzeri, Giuseppe; Rizzarelli, Enrico; Sóvágó, Imre

    2008-10-20

    Alzheimer's disease (AD) is becoming a rapidly growing health problem, as it is one of the main causes of dementia in the elderly. Interestingly, copper(II) (together with zinc and iron) ions are accumulated in amyloid deposits, suggesting that metal binding to Abeta could be involved in AD pathogenesis. In Abeta, the metal binding is believed to occur within the N-terminal region encompassing the amino acid residues 1-16. In this work, potentiometric, spectroscopic (UV-vis, circular dichroism, and electron paramagnetic resonance), and electrospray ionization mass spectrometry (ESI-MS) approaches were used to investigate the copper(II) coordination features of a new polyethylene glycol (PEG)-conjugated Abeta peptide fragment encompassing the 1-16 amino acid residues of the N-terminal region (Abeta(1-16)PEG). The high water solubility of the resulting metal complexes allowed us to obtain a complete complex speciation at different metal-to-ligand ratios ranging from 1:1 to 4:1. Potentiometric and ESI-MS data indicate that Abeta(1-16)PEG is able to bind up to four copper(II) ions. Furthermore, in order to establish the coordination environment at each metal binding site, a series of shorter peptide fragments of Abeta, namely, Abeta(1-4), Abeta(1-6), AcAbeta(1-6), and AcAbeta(8-16)Y10A, were synthesized, each encompassing a potential copper(II) binding site. The complexation properties of these shorter peptides were also comparatively investigated by using the same experimental approach.

  1. TANGO-Inspired Design of Anti-Amyloid Cyclic Peptides.

    Science.gov (United States)

    Lu, Xiaomeng; Brickson, Claire R; Murphy, Regina M

    2016-09-21

    β-Amyloid peptide (Aβ) self-associates into oligomers and fibrils, in a process that is believed to directly lead to neuronal death in Alzheimer's disease. Compounds that bind to Aβ, and inhibit fibrillogenesis and neurotoxicity, are of interest as an anti-Alzheimer therapeutic strategy. Peptides are particularly attractive for this purpose, because they have advantages over small molecules in their ability to disrupt protein-protein interactions, yet they are amenable to tuning of their properties through chemical means, unlike antibodies. Self-complementation and peptide library screening are two strategies that have been employed in the search for peptides that bind to Aβ. We have taken a different approach, by designing Aβ-binding peptides using transthyretin (TTR) as a template. Previously, we demonstrated that a cyclic peptide, with sequence derived from the known Aβ-binding site on TTR, suppressed Aβ aggregation into fibrils and protected neurons against Aβ toxicity. Here, we searched for cyclic peptides with improved efficacy, by employing the algorithm TANGO, designed originally to identify amyloidogenic sequences in proteins. By using TANGO as a guide to predict the effect of sequence modifications on conformation and aggregation, we synthesized a significantly improved cyclic peptide. We demonstrate that the peptide, in binding to Aβ, redirects Aβ toward protease-sensitive, nonfibrillar aggregates. Cyclic peptides designed using this strategy have attractive solubility, specificity, and stability characteristics.

  2. The role of mutated amyloid beta 1-42 stimulating dendritic cells in a PDAPP transgenic mouse

    Directory of Open Access Journals (Sweden)

    LI Jia-lin

    2012-06-01

    Full Text Available Background Amyloid plaque is one of the pathological hallmarks of Alzheimer's disease (AD. Anti-beta-amyloid (Aβ immunotherapy is effective in removing brain Aβ, but has shown to be associated with detrimental effects. To avoid severe adverse effects such as meningoencephalitis induced by amyloid beta vaccine with adjuvant, and take advantage of amyloid beta antibody's therapeutic effect on Alzheimer's disease sufficiently, our group has developed a new Alzheimer vaccine with mutated amyloid beta 1-42 peptide stimulating dendritic cells (DC. Our previous work has confirmed that DC vaccine can induce adequate anti-amyloid beta antibody in PDAPP Tg mice safely and efficiently. The DC vaccine can improve impaired learning and memory in the Alzheimer's animal model, and did not cause microvasculitis, microhemorrhage or meningoencephalitis in the animal model. However, the exact mechanism of immunotherapy which reduces Aβ deposition remains unknown. In this report, we studied the mechanism of the vaccine, thinking that this may have implications for better understanding of the pathogenesis of Alzheimer's disease. Methods A new Alzheimer vaccine with mutated amyloid beta 1-42 peptide stimulating DC which were obtained from C57/B6 mouse bone marrow was developed. Amyloid beta with Freund's adjuvant was inoculated at the same time to act as positive control. After the treatment was done, the samples of brains were collected, fixed, cut. Immunohistochemical staining was performed to observe the expression of the nuclear hormone liver X receptor (LXR, membrane-bound protein tyrosine phosphatase (CD45, the ATP-binding cassette family of active transporters (ABCA1, receptor for advanced glycation end products (RAGE, β-site APP-cleaving enzyme (BACE and Aβ in mouse brain tissue. Semi-quantitative analysis was used to defect CA1, CA2, CA3, DG, Rad in hippocampus region and positive neuron in cortex region. Results Aβ was significantly reduced in the

  3. Time Until Neuron Death After Initial Puncture From an Amyloid-Beta Oligomer

    CERN Document Server

    Horton, Tanner

    2015-01-01

    Hardy and Higgins first proposed the amyloid cascade hypothesis in 1992, stating that the decrease in neuronal function observed in Alzheimer's Disease (AD) is due to a process initiated by the oligomerization of amyloid-beta peptides. One hypothesis states that toxicity arises from the aggregation of amyloid-beta into a pore structure, which can then puncture the brain cell membrane; this allow toxic calcium ions to flood through the opening, causing eventual cell death. In 2007, neurobiologist Ruth Nussinov calculated the three pore sizes most likely to occur within the brain. Based on her findings, we constructed a method to determine the time it takes for a cell to die after the cell is punctured by the pore. Our findings have shown that cell death occurs within one second after the oligomer makes contact with the cell. We believe this is important because instant cell death has been one criticism of Nussinov's model, and we have calculated a concrete time value for that criticism. We identify two potenti...

  4. Relationships of Alzheimer's Disease and Compounds of Amyloid beta-Peptides Bonded with Coppers%Aβ-Cu(Ⅱ)复合物与阿尔茨海默病的关系

    Institute of Scientific and Technical Information of China (English)

    戴雪玲; 陈翠丽; 姜招峰

    2005-01-01

    β-淀粉样肽(amyloid peptide β,Aβ)在脑内沉积并与Cu(Ⅱ)螯合形成Aβ-Cu(Ⅱ)复合物,该复合物诱导活性氧形成并造成神经细胞损伤,这可能是阿尔茨海默病(AD)发生与发展的主要机制之一;以此为基础,探讨使用抗氧化剂及金属螯合剂降低Aβ神经毒性,可能是探索预防AD发生和减缓AD发展的一个新途径.

  5. Cannabidiol promotes amyloid precursor protein ubiquitination and reduction of beta amyloid expression in SHSY5YAPP+ cells through PPARγ involvement.

    Science.gov (United States)

    Scuderi, Caterina; Steardo, Luca; Esposito, Giuseppe

    2014-07-01

    The amyloidogenic cascade is regarded as a key factor at the basis of Alzheimer's disease (AD) pathogenesis. The aberrant cleavage of amyloid precursor protein (APP) induces an increased production and a subsequent aggregation of beta amyloid (Aβ) peptide in limbic and association cortices. As a result, altered neuronal homeostasis and oxidative injury provoke tangle formation with consequent neuronal loss. Cannabidiol (CBD), a Cannabis derivative devoid of psychotropic effects, has attracted much attention because it may beneficially interfere with several Aβ-triggered neurodegenerative pathways, even though the mechanism responsible for such actions remains unknown. In the present research, the role of CBD was investigated as a possible modulating compound of APP processing in SHSY5Y(APP+) neurons. In addition, the putative involvement of peroxisome proliferator-activated receptor-γ (PPARγ) was explored as a candidate molecular site responsible for CBD actions. Results indicated the CBD capability to induce the ubiquitination of APP protein which led to a substantial decrease in APP full length protein levels in SHSY5Y(APP+) with the consequent decrease in Aβ production. Moreover, CBD promoted an increased survival of SHSY5Y(APP+) neurons, by reducing their long-term apoptotic rate. Obtained results also showed that all, here observed, CBD effects were dependent on the selective activation of PPARγ.

  6. Peptide concentration alters intermediate species in amyloid β fibrillation kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Garvey, M., E-mail: megan.garvey@molbiotech.rwth-aachen.de [Max-Planck Research Unit for Enzymology of Protein Folding, Weinbergweg 22, 06120 Halle (Saale) (Germany); Morgado, I., E-mail: immorgado@ualg.pt [Max-Planck Research Unit for Enzymology of Protein Folding, Weinbergweg 22, 06120 Halle (Saale) (Germany)

    2013-04-12

    Highlights: ► Aβ(1–40) aggregation in vitro has been monitored at different concentrations. ► Aβ(1–40) fibrillation does not always follow conventional kinetic mechanisms. ► We demonstrate non-linear features in the kinetics of Aβ(1–40) fibril formation. ► At high Aβ(1–40) concentrations secondary processes dictate fibrillation speed. ► Intermediate species may play significant roles on final amyloid fibril development. -- Abstract: The kinetic mechanism of amyloid aggregation remains to be fully understood. Investigations into the species present in the different kinetic phases can assist our comprehension of amyloid diseases and further our understanding of the mechanism behind amyloid β (Aβ) (1–40) peptide aggregation. Thioflavin T (ThT) fluorescence and transmission electron microscopy (TEM) have been used in combination to monitor Aβ(1–40) aggregation in vitro at both normal and higher than standard concentrations. The observed fibrillation behaviour deviates, in several respects, from standard concepts of the nucleation–polymerisation models and shows such features as concentration-dependent non-linear effects in the assembly mechanism. Aβ(1–40) fibrillation kinetics do not always follow conventional kinetic mechanisms and, specifically at high concentrations, intermediate structures become populated and secondary processes may further modify the fibrillation mechanism.

  7. Expression of the alternative oxidase mitigates beta-amyloid production and toxicity in model systems.

    Science.gov (United States)

    El-Khoury, Riyad; Kaulio, Eveliina; Lassila, Katariina A; Crowther, Damian C; Jacobs, Howard T; Rustin, Pierre

    2016-07-01

    Mitochondrial dysfunction has been widely associated with the pathology of Alzheimer's disease, but there is no consensus on whether it is a cause or consequence of disease, nor on the precise mechanism(s). We addressed these issues by testing the effects of expressing the alternative oxidase AOX from Ciona intestinalis, in different models of AD pathology. AOX can restore respiratory electron flow when the cytochrome segment of the mitochondrial respiratory chain is inhibited, supporting ATP synthesis, maintaining cellular redox homeostasis and mitigating excess superoxide production at respiratory complexes I and III. In human HEK293-derived cells, AOX expression decreased the production of beta-amyloid peptide resulting from antimycin inhibition of respiratory complex III. Because hydrogen peroxide was neither a direct product nor substrate of AOX, the ability of AOX to mimic antioxidants in this assay must be indirect. In addition, AOX expression was able to partially alleviate the short lifespan of Drosophila models neuronally expressing human beta-amyloid peptides, whilst abrogating the induction of markers of oxidative stress. Our findings support the idea of respiratory chain dysfunction and excess ROS production as both an early step and as a pathologically meaningful target in Alzheimer's disease pathogenesis, supporting the concept of a mitochondrial vicious cycle underlying the disease.

  8. Successful adjuvant-free vaccination of BALB/c mice with mutated amyloid β peptides

    Directory of Open Access Journals (Sweden)

    Wahi Monika M

    2008-02-01

    Full Text Available Abstract Background A recent human clinical trial of an Alzheimer's disease (AD vaccine using amyloid beta (Aβ 1–42 plus QS-21 adjuvant produced some positive results, but was halted due to meningoencephalitis in some participants. The development of a vaccine with mutant Aβ peptides that avoids the use of an adjuvant may result in an effective and safer human vaccine. Results All peptides tested showed high antibody responses, were long-lasting, and demonstrated good memory response. Epitope mapping indicated that peptide mutation did not lead to epitope switching. Mutant peptides induced different inflammation responses as evidenced by cytokine profiles. Ig isotyping indicated that adjuvant-free vaccination with peptides drove an adequate Th2 response. All anti-sera from vaccinated mice cross-reacted with human Aβ in APP/PS1 transgenic mouse brain tissue. Conclusion Our study demonstrated that an adjuvant-free vaccine with different Aβ peptides can be an effective and safe vaccination approach against AD. This study represents the first report of adjuvant-free vaccines utilizing Aβ peptides carrying diverse mutations in the T-cell epitope. These largely positive results provide encouragement for the future of the development of human vaccinations for AD.

  9. Specific binding of DNA to aggregated forms of Alzheimer's disease amyloid peptides.

    Science.gov (United States)

    Camero, Sergio; Ayuso, Jose M; Barrantes, Alejandro; Benítez, María J; Jiménez, Juan S

    2013-04-01

    Anomalous protein aggregation is closely associated to age-related mental illness. Extraneuronal plaques, mainly composed of aggregated amyloid peptides, are considered as hallmarks of Alzheimer's disease. According to the amyloid cascade hypothesis, this disease starts as a consequence of an abnormal processing of the amyloid precursor protein resulting in an excess of amyloid peptides. Nuclear localization of amyloid peptide aggregates together with amyloid-DNA interaction, have been repeatedly reported. In this paper we have used surface plasmon resonance and electron microscopy to study the structure and behavior of different peptides and proteins, including β-lactoglobulin, bovine serum albumin, myoglobin, histone, casein and the amyloidpeptides related to Alzheimer's disease Aβ25-35 and Aβ1-40. The main purpose of this study is to investigate whether proneness to DNA interaction is a general property displayed by aggregated forms of proteins, or it is an interaction specifically related to the aggregated forms of those particular proteins and peptides related to neurodegenerative diseases. Our results reveal that those aggregates formed by amyloid peptides show a particular proneness to interact with DNA. They are the only aggregated structures capable of binding DNA, and show more affinity for DNA than for other polyanions like heparin and polyglutamic acid, therefore strengthening the hypothesis that amyloid peptides may, by means of interaction with nuclear DNA, contribute to the onset of Alzheimer's disease.

  10. Alzheimer's disease amyloid peptides interact with DNA, as proved by surface plasmon resonance.

    Science.gov (United States)

    Barrantes, Alejandro; Camero, Sergio; Garcia-Lucas, Angel; Navarro, Pedro J; Benitez, María J; Jiménez, Juan S

    2012-10-01

    According to the amyloid hypothesis, abnormal processing of the β-amyloid precursor protein in Alzheimer's disease patients increases the production of β-amyloid toxic peptides, which, after forming highly aggregated fibrillar structures, lead to extracellular plaques formation, neuronal loss and dementia. However, a great deal of evidence has point to intracellular small oligomers of amyloid peptides, probably transient intermediates in the process of fibrillar structures formation, as the most toxic species. In order to study the amyloid-DNA interaction, we have selected here three different forms of the amyloid peptide: Aβ1-40, Aβ25-35 and a scrambled form of Aβ25-35. Surface Plasmon Resonance was used together with UV-visible spectroscopy, Electrophoresis and Electronic Microscopy to carry out this study. Our results prove that, similarly to the full length Aβ1-42, all conformations of toxic amyloid peptides, Aβ1-40 and Aβ25-35, may bind DNA. In contrast, the scrambled form of Aβ25-35, a non-aggregating and nontoxic form of this peptide, could not bind DNA. We conclude that although the amyloid-DNA interaction is closely related to the amyloid aggregation proneness, this cannot be the only factor which determines the interaction, since small oligomers of amyloid peptides may also bind DNA if their predominant negatively charged amino acid residues are previously neutralized.

  11. Curcumin Binding to Beta Amyloid: A Computational Study.

    Science.gov (United States)

    Rao, Praveen P N; Mohamed, Tarek; Teckwani, Karan; Tin, Gary

    2015-10-01

    Curcumin, a chemical constituent present in the spice turmeric, is known to prevent the aggregation of amyloid peptide implicated in the pathophysiology of Alzheimer's disease. While curcumin is known to bind directly to various amyloid aggregates, no systematic investigations have been carried out to understand its ability to bind to the amyloid aggregates including oligomers and fibrils. In this study, we constructed computational models of (i) Aβ hexapeptide (16) KLVFFA(21) octamer steric-zipper β-sheet assembly and (ii) full-length Aβ fibril β-sheet assembly. Curcumin binding in these models was evaluated by molecular docking and molecular dynamics (MD) simulation studies. In both the models, curcumin was oriented in a linear extended conformation parallel to fiber axis and exhibited better stability in the Aβ hexapeptide (16) KLVFFA(21) octamer steric-zipper model (Ebinding  = -10.05 kcal/mol) compared to full-length Aβ fibril model (Ebinding  = -3.47 kcal/mol). Analysis of MD trajectories of curcumin bound to full-length Aβ fibril shows good stability with minimum Cα-atom RMSD shifts. Interestingly, curcumin binding led to marked fluctuations in the (14) HQKLVFFA(21) region that constitute the fibril spine with RMSF values ranging from 1.4 to 3.6 Å. These results show that curcumin binding to Aβ shifts the equilibrium in the aggregation pathway by promoting the formation of non-toxic aggregates.

  12. A peptide study of the relationship between the collagen triple-helix and amyloid.

    Science.gov (United States)

    Parmar, Avanish S; Nunes, Ana Monica; Baum, Jean; Brodsky, Barbara

    2012-10-01

    Type XXV collagen, or collagen-like amyloidogenic component, is a component of amyloid plaques, and recent studies suggest this collagen affects amyloid fibril elongation and has a genetic association with Alzheimer's disease. The relationship between the collagen triple helix and amyloid fibrils was investigated by studying peptide models, including a very stable triple helical peptide (Pro-Hyp-Gly)₁₀ , an amyloidogenic peptide GNNQQNY, and a hybrid peptide where the GNNQQNY sequence was incorporated between (GPO)(n) domains. Circular dichroism and nuclear magnetic resonance (NMR) spectroscopy showed the GNNQQNY peptide formed a random coil structure, whereas the hybrid peptide contained a central disordered GNNQQNY region transitioning to triple-helical ends. Light scattering confirmed the GNNQQNY peptide had a high propensity to form amyloid fibrils, whereas amyloidogenesis was delayed in the hybrid peptide. NMR data suggested the triple-helix constraints on the GNNQQNY sequence within the hybrid peptide may disfavor the conformational change necessary for aggregation. Independent addition of a triple-helical peptide to the GNNQQNY peptide under aggregating conditions delayed nucleation and amyloid fibril growth. The inhibition of amyloid nucleation depended on the Gly-Xaa-Yaa sequence and required the triple-helix conformation. The inhibitory effect of the collagen triple-helix on an amyloidogenic sequence, when in the same molecule or when added separately, suggests Type XXV collagen, and possibly other collagens, may play a role in regulating amyloid fibril formation.

  13. NOVEL AMYLOID-BETA SPECIFIC scFv and VH ANTIBODY FRAGMENTS FROM HUMAN AND MOUSE PHAGE DISPLAY ANTIBODY LIBRARIES

    Science.gov (United States)

    Medecigo, M.; Manoutcharian, K.; Vasilevko, V.; Govezensky, T.; Munguia, M. E.; Becerril, B.; Luz-Madrigal, A.; Vaca, L.; Cribbs, D. H.; Gevorkian, G.

    2010-01-01

    Anti-amyloid immunotherapy has been proposed as an appropriate therapeutic approach for Alzheimer’s disease (AD). Significant efforts have been made towards the generation and assessment of antibody-based reagents capable of preventing and clearing amyloid aggregates as well as preventing their synaptotoxic effects. In this study, we selected a novel set of human anti-amyloid-beta peptide 1-42 (Aβ1-42) recombinant monoclonal antibodies in a single chain fragment variable (scFv) and a single domain (VH) formats. We demonstrated that these antibody fragments recognize in a specific manner amyloid beta deposits in APP/Tg mouse brains, inhibit toxicity of oligomeric Aβ1-42 in neuroblastoma cell cultures in a concentration-dependently manner and reduced amyloid deposits in APP/Tg2576 mice after intracranial administration. These antibody fragments recognize epitopes in the middle/C-terminus region of Aβ, which makes them strong therapeutic candidates due to the fact that most of the Aβ species found in the brains of AD patients display extensive N-terminus truncations/modifications. PMID:20451261

  14. Dimensionality of carbon nanomaterial impacting on the modulation of amyloid peptide assembly

    Science.gov (United States)

    Wang, J.; Zhu, Z.; Bortolini, C.; Hoffmann, S. V.; Amari, A.; Zhang, H. X.; Liu, L.; Dong, M. D.

    2016-07-01

    A wide variety of inorganic nanomaterials have been exploited so far for their great potential for biological applications. Some of these materials could be valid candidates to modulate the assembly of amyloid peptides, which is relevant to amyloid-related diseases. In this work, we reveal that a carbon nanomaterial can indeed modulate the assembly of amyloid peptides and, additionally, we show that this modulating effect is closely related to the dimensionality of the nanomaterials.

  15. Dimensionality of carbon nanomaterial impacting on the modulation of amyloid peptide assembly

    DEFF Research Database (Denmark)

    Wang, J.; Zhu, Z.; Bortolini, C.;

    2016-01-01

    A wide variety of inorganic nanomaterials have been exploited so far for their great potential for biological applications. Some of these materials could be valid candidates to modulate the assembly of amyloid peptides, which is relevant to amyloid-related diseases. In this work, we reveal...... that a carbon nanomaterial can indeed modulate the assembly of amyloid peptides and, additionally, we show that this modulating effect is closely related to the dimensionality of the nanomaterials....

  16. Non-conjugated small molecule FRET for differentiating monomers from higher molecular weight amyloid beta species.

    Directory of Open Access Journals (Sweden)

    Chongzhao Ran

    Full Text Available BACKGROUND: Systematic differentiation of amyloid (Aβ species could be important for diagnosis of Alzheimer's disease (AD. In spite of significant progress, controversies remain regarding which species are the primary contributors to the AD pathology, and which species could be used as the best biomarkers for its diagnosis. These controversies are partially caused by the lack of reliable methods to differentiate the complicated subtypes of Aβ species. Particularly, differentiation of Aβ monomers from toxic higher molecular weight species (HrMW would be beneficial for drug screening, diagnosis, and molecular mechanism studies. However, fast and cheap methods for these specific aims are still lacking. PRINCIPAL FINDINGS: We demonstrated the feasibility of a non-conjugated FRET (Förster resonance energy transfer technique that utilized amyloid beta (Aβ species as intrinsic platforms for the FRET pair assembly. Mixing two structurally similar curcumin derivatives that served as the small molecule FRET pair with Aβ40 aggregates resulted in a FRET signal, while no signal was detected when using Aβ40 monomer solution. Lastly, this FRET technique enabled us to quantify the concentrations of Aβ monomers and high molecular weight species in solution. SIGNIFICANCE: We believe that this FRET technique could potentially be used as a tool for screening for inhibitors of Aβ aggregation. We also suggest that this concept could be generalized to other misfolded proteins/peptides implicated in various pathologies including amyloid in diabetes, prion in bovine spongiform encephalopathy, tau protein in AD, and α-synuclein in Parkinson disease.

  17. Amyloid peptide Aβ40 inhibits aggregation of Aβ42: Evidence from molecular dynamics simulations

    Science.gov (United States)

    Viet, Man Hoang; Li, Mai Suan

    2012-06-01

    Effects of amyloid beta (Aβ) peptide Aβ40 on secondary structures of Aβ42 are studied by all-atom simulations using the GROMOS96 43a1 force field with explicit water. It is shown that in the presence of Aβ40 the beta-content of monomer Aβ42 is reduced. Since the fibril-prone conformation N* of full-length Aβ peptides has the shape of beta strand-loop-beta strand this result suggests that Aβ40 decreases the probability of observing N* of Aβ42 in monomer state. Based on this and the hypothesis that the higher is the population of N* the higher fibril formation rates, one can expect that, in agreement with the recent experiment, Aβ40 inhibit fibril formation of Aβ42. It is shown that the presence of Aβ40 makes the salt bridge D23-K28 and fragment 18-33 of Aβ42 more flexible providing additional support for this experimental fact. Our estimation of the binding free energy by the molecular mechanics-Poisson-Boltzmann surface area method reveals the inhibition mechanism that Aβ40 binds to Aβ42 modifying its morphology.

  18. Screening for a human single chain Fv antibody against epitope on amyloid-beta 1-40 from a human phage display library

    Institute of Scientific and Technical Information of China (English)

    ZHAO Zhen-fu; GAO Guo-quan; LIU Shu; ZOU Jun-tao; XIE Yao; YUAN Qun-fang; WANG Hua-qiao; YAO Zhi-bin

    2007-01-01

    @@ Amyloid-beta peptides (Aβ) are believed to be responsible for the mental decline in patients with Alzheimer's disease (AD). In 1999, Schenk et al1 reported that immunization with Aβ attenuated AD-like pathology in the PDAPP mouse, and developed a new vaccination approach to AD.

  19. Cytochrome c peroxidase activity of heme bound amyloid β peptides.

    Science.gov (United States)

    Seal, Manas; Ghosh, Chandradeep; Basu, Olivia; Dey, Somdatta Ghosh

    2016-09-01

    Heme bound amyloid β (Aβ) peptides, which have been associated with Alzheimer's disease (AD), can catalytically oxidize ferrocytochrome c (Cyt c(II)) in the presence of hydrogen peroxide (H2O2). The rate of catalytic oxidation of Cyt(II) c has been found to be dependent on several factors, such as concentration of heme(III)-Aβ, Cyt(II) c, H2O2, pH, ionic strength of the solution, and peptide chain length of Aβ. The above features resemble the naturally occurring enzyme cytochrome c peroxidase (CCP) which is known to catalytically oxidize Cyt(II) c in the presence of H2O2. In the absence of heme(III)-Aβ, the oxidation of Cyt(II) c is not catalytic. Thus, heme-Aβ complex behaves as CCP.

  20. Inhibition of amyloid-beta-induced cell death in human brain pericytes in vitro.

    NARCIS (Netherlands)

    Rensink, A.A.M.; Verbeek, M.M.; Otte-Holler, I.; Donkelaar, H.J. ten; Waal, R.M.W. de; Kremer, H.P.H.

    2002-01-01

    Amyloid-beta protein (A beta) deposition in the cerebral vascular walls is one of the key features of Alzheimer's disease and hereditary cerebral hemorrhage with amyloidosis-Dutch type (HCHWA-D). A beta(1-40) carrying the 'Dutch' mutation (HCHWA-D A beta(1-40)) induces pronounced degeneration of cul

  1. Beta-secretase-cleaved amyloid precursor protein in Alzheimer brain: a morphologic study

    DEFF Research Database (Denmark)

    Sennvik, Kristina; Bogdanovic, N; Volkmann, Inga

    2004-01-01

    beta-amyloid (Abeta) is the main constituent of senile plaques seen in Alzheimer's disease. Abeta is derived from the amyloid precursor protein (APP) via proteolytic cleavage by proteases beta- and gamma-secretase. In this study, we examined content and localization of beta-secretase-cleaved APP...... the beta-sAPP immunostaining to be stronger and more extensive in gray matter in Alzheimer disease (AD) cases than controls. The axonal beta-sAPP staining was patchy and unevenly distributed for the AD cases, indicating impaired axonal transport. beta-sAPP was also found surrounding senile plaques...

  2. Microglia, neuroinflammation, and beta-amyloid protein in Alzheimer's disease.

    Science.gov (United States)

    Cai, Zhiyou; Hussain, M Delwar; Yan, Liang-Jun

    2014-05-01

    Compelling evidence from basic molecular biology has demonstrated the dual roles of microglia in the pathogenesis of Alzheimer's disease (AD). On one hand, microglia are involved in AD pathogenesis by releasing inflammatory mediators such as inflammatory cytokines, complement components, chemokines, and free radicals that are all known to contribute to beta-amyloid (Aβ) production and accumulation. On the other hand, microglia are also known to play a beneficial role in generating anti-Aβ antibodies and stimulating clearance of amyloid plaques. Aβ itself, an inducer of microglia activation and neuroinflammation, has been considered as an underlying and unifying factor in the development of AD. A vicious cycle of inflammation has been formed between Aβ accumulation, activated microglia, and microglial inflammatory mediators, which enhance Aβ deposition and neuroinflammation. Thus, inhibiting the vicious cycle seems to be a promising treatment to restrain further development of AD. With increasing research efforts on microglia in AD, intervention of microglia activation and neuroinflammation in AD may provide a potential target for AD therapy in spite of the provisional failure of nonsteroidal antiinflammatory drugs in clinical trials.

  3. Distinguishing the cross-beta spine arrangements in amyloid fibrils using FRET analysis.

    Science.gov (United States)

    Deng, Wei; Cao, Aoneng; Lai, Luhua

    2008-06-01

    The recently published microcrystal structures of amyloid fibrils from small peptides greatly enhanced our understanding of the atomic-level structure of the amyloid fibril. However, only a few amyloid fibrils can form microcrystals. The dansyl-tryptophan fluorescence resonance energy transfer (FRET) pair was shown to be able to detect the inter-peptide arrangement of the Transthyretin (105-115) amyloid fibril. In this study, we combined the known microcrystal structures with the corresponding FRET efficiencies to build a model for amyloid fibril structure classification. We found that fibrils with an antiparallel structural arrangement gave the largest FRET signal, those with a parallel arrangement gave the lowest FRET signal, and those with a mixed arrangement gave a moderate FRET signal. This confirms that the amyloid fibril structure patterns can be classified based on the FRET efficiency.

  4. Fibrillar beta-amyloid peptide Aβ1–40 activates microglial proliferation via stimulating TNF-α release and H2O2 derived from NADPH oxidase: a cell culture study

    Directory of Open Access Journals (Sweden)

    Sharpe Martyn

    2006-09-01

    Full Text Available Abstract Background Alzheimer's disease is characterized by the accumulation of neuritic plaques, containing activated microglia and β-amyloid peptides (Aβ. Fibrillar Aβ can activate microglia, resulting in production of toxic and inflammatory mediators like hydrogen peroxide, nitric oxide, and cytokines. We have recently found that microglial proliferation is regulated by hydrogen peroxide derived from NADPH oxidase. Thus, in this study, we investigated whether Aβ can stimulate microglial proliferation and cytokine production via activation of NADPH oxidase to produce hydrogen peroxide. Methods Primary mixed glial cultures were prepared from the cerebral cortices of 7-day-old Wistar rats. At confluency, microglial cells were isolated by tapping, replated, and treated either with or without Aβ. Hydrogen peroxide production by cells was measured with Amplex Red and peroxidase. Microglial proliferation was assessed under a microscope 0, 24 and 48 hours after plating. TNF-α and IL-1β levels in the culture medium were assessed by ELISA. Results We found that 1 μM fibrillar (but not soluble Aβ1–40 peptide induced microglial proliferation and caused release of hydrogen peroxide, TNF-α and IL-1β from microglial cells. Proliferation was prevented by the NADPH oxidase inhibitor apocynin (10 μM, by the hydrogen peroxide-degrading enzyme catalase (60 U/ml, and by its mimetics EUK-8 and EUK-134 (20 μM; as well as by an antibody against TNF-α and by a soluble TNF receptor inhibitor. Production of TNF-α and IL-1β, measured after 24 hours of Aβ treatment, was also prevented by apocynin, catalase and EUKs, but the early release (measured after 1 hour of Aβ treatment of TNF-α was insensitive to apocynin or catalase. Conclusion These results indicate that Aβ1–40-induced microglial proliferation is mediated both by microglial release of TNF-α and production of hydrogen peroxide from NADPH oxidase. This suggests that TNF-α and NADPH

  5. Self-assembly of a nine-residue amyloid-forming peptide fragment of SARS corona virus E-protein: mechanism of self aggregation and amyloid-inhibition of hIAPP.

    Science.gov (United States)

    Ghosh, Anirban; Pithadia, Amit S; Bhat, Jyotsna; Bera, Supriyo; Midya, Anupam; Fierke, Carol A; Ramamoorthy, Ayyalusamy; Bhunia, Anirban

    2015-04-01

    Molecular self-assembly, a phenomenon widely observed in nature, has been exploited through organic molecules, proteins, DNA, and peptides to study complex biological systems. These self-assembly systems may also be used in understanding the molecular and structural biology which can inspire the design and synthesis of increasingly complex biomaterials. Specifically, use of these building blocks to investigate protein folding and misfolding has been of particular value since it can provide tremendous insights into peptide aggregation related to a variety of protein misfolding diseases, or amyloid diseases (e.g., Alzheimer's disease, Parkinson's disease, type-II diabetes). Herein, the self-assembly of TK9, a nine-residue peptide of the extra membrane C-terminal tail of the SARS corona virus envelope, and its variants were characterized through biophysical, spectroscopic, and simulated studies, and it was confirmed that the structure of these peptides influences their aggregation propensity, hence, mimicking amyloid proteins. TK9, which forms a beta-sheet rich fibril, contains a key sequence motif that may be critical for beta-sheet formation, thus making it an interesting system to study amyloid fibrillation. TK9 aggregates were further examined through simulations to evaluate the possible intra- and interpeptide interactions at the molecular level. These self-assembly peptides can also serve as amyloid inhibitors through hydrophobic and electrophilic recognition interactions. Our results show that TK9 inhibits the fibrillation of hIAPP, a 37 amino acid peptide implicated in the pathology of type-II diabetes. Thus, biophysical and NMR experimental results have revealed a molecular level understanding of peptide folding events, as well as the inhibition of amyloid-protein aggregation are reported.

  6. Identification of distinct physiochemical properties of toxic prefibrillar species formed by A{beta} peptide variants

    Energy Technology Data Exchange (ETDEWEB)

    Goeransson, Anna-Lena, E-mail: anngo@ifm.liu.se [Division of Molecular Biotechnology, Department of Physics, Chemistry and Biology, Linkoeping University (Sweden); Nilsson, K. Peter R., E-mail: petni@ifm.liu.se [Division of Organic Chemistry, Department of Physics, Chemistry and Biology, Linkoeping University (Sweden); Kagedal, Katarina, E-mail: katarina.kagedal@liu.se [Department of Clinical and Experimental Medicine, Linkoeping University (Sweden); Brorsson, Ann-Christin, E-mail: anki@ifm.liu.se [Division of Molecular Biotechnology, Department of Physics, Chemistry and Biology, Linkoeping University (Sweden)

    2012-04-20

    Highlights: Black-Right-Pointing-Pointer Identification of toxic prefibrillar A{beta} species. Black-Right-Pointing-Pointer Fluorescence measurements using a combined set of fluorophores. Black-Right-Pointing-Pointer Morphology studies using transmission electron microscopy. -- Abstract: The formation of amyloid-{beta} peptide (A{beta}) aggregates at an early stage during the self-assembly process is an important factor in the development of Alzheimer's disease. The toxic effect is believed to be exerted by prefibrillar species of A{beta}. It is therefore important to identify which prefibrillar species are toxic and characterize their distinct properties. In the present study, we investigated the in vitro aggregation behavior of A{beta}-derived peptides possessing different levels of neurotoxic activity, using fluorescence spectroscopy in combination with transmission electron microscopy. The toxicity of various A{beta} aggregates was assessed by using cultures of human neuroblastoma cells. Through combined use of the fluorescence probe 8-anilino-1-napthalenesulfonate (ANS) and the novel luminescent probe pentamer formyl thiophene acetic acid (p-FTAA), we were able to identify those A{beta} peptide-derived prefibrillar species which exhibited cellular toxicity. In particular, species, which formed early during the aggregation process and showed strong p-FTAA and ANS fluorescence, were the species that possessed toxic activities. Moreover, by manipulating the aggregation conditions, it was possible to change the capacity of the A{beta} peptide to form nontoxic versus toxic species.

  7. The conformations of the amyloid-beta (21-30) fragment can be described by three families in solution.

    Science.gov (United States)

    Chen, Wei; Mousseau, Normand; Derreumaux, Philippe

    2006-08-28

    Alzheimer's disease has been linked to the self-assembly of the amyloid-beta protein of 40 and 42 residues. Although monomers are in equilibrium with higher-order species ranging from dimers to heptamers, structural knowledge of the monomeric amyloid-beta (Abeta) peptides is an important issue. Recent experimental data have shown that the fragment (21-30) is protease-resistant within full-length Abeta peptides and displays two structural families in solution. Because the details of the Abeta(21-30) structures found using distinct force fields and protocols differ at various degrees from those of the NMR structures, we revisit the conformational space of this peptide using the activation-relaxation technique (ART nouveau) coupled with a coarse-grained force field (OPEP v.3.0). We find that although Abeta(21-30) does not have a secondary structure, it dominantly populates three structural families, with a loop spanning residues Val24-Lys28. The first two families, which differ in the nature of the electrostatic interactions, satisfy the five interproton rotating frame nuclear Overhauser effect spectroscopy (ROESY) distances and superpose well onto the NMR structures. The third family, which cannot be seen by ROESY NMR experiments, displays a more open structure. This numeric study complements the experimental results by providing a much more detailed description of the dominant structures. Moreover, it provides further evidence of the capability of ART OPEP in providing a reliable conformational picture of peptides in solution.

  8. Differential gene expression in human brain pericytes induced by amyloid-beta protein.

    NARCIS (Netherlands)

    Rensink, A.A.M.; Otte-Holler, I.; Donkelaar, H.J. ten; Waal, R.M.W. de; Kremer, H.P.H.; Verbeek, M.M.

    2004-01-01

    Cerebral amyloid angiopathy is one of the characteristics of Alzheimer's disease (AD) and this accumulation of fibrillar amyloid-beta (Alphabeta) in the vascular wall is accompanied by marked vascular damage. In vitro, Abeta1-40 carrying the 'Dutch' mutation (DAbeta1-40) induces degeneration of cult

  9. How ionic strength affects the conformational behavior of human and rat beta amyloids--a computational study.

    Directory of Open Access Journals (Sweden)

    Zdeněk Kříž

    Full Text Available Progressive cerebral deposition of amyloid beta occurs in Alzheimers disease and during the aging of certain mammals (human, monkey, dog, bear, cow, cat but not others (rat, mouse. It is possibly due to different amino acid sequences at positions 5, 10 and 13. To address this issue, we performed series of 100 ns long trajectories (each trajectory was run twice with different initial velocity distribution on amyloid beta (1-42 with the human and rat amino acid sequence in three different environments: water with only counter ions, water with NaCl at a concentration of 0.15 M as a model of intracellular Na(+ concentration at steady state, and water with NaCl at a concentration of 0.30 M as a model of intracellular Na(+ concentration under stimulated conditions. We analyzed secondary structure stability, internal hydrogen bonds, and residual fluctuation. It was observed that the change in ionic strength affects the stability of internal hydrogen bonds. Increasing the ionic strength increases atomic fluctuation in the hydrophobic core of the human amyloid, and decreases the atomic fluctuation in the case of rat amyloid. The secondary structure analyses show a stable α-helix part between residues 10 and 20. However, C-terminus of investigated amyloids is much more flexible showing no stable secondary structure elements. Increasing ionic strength of the solvent leads to decreasing stability of the secondary structural elements. The difference in conformational behavior of the three amino acids at position 5, 10 and 13 for human and rat amyloids significantly changes the conformational behavior of the whole peptide.

  10. Multi-frequency, multi-technique pulsed EPR investigation of the copper binding site of murine amyloid β peptide.

    Science.gov (United States)

    Kim, Donghun; Bang, Jeong Kyu; Kim, Sun Hee

    2015-01-26

    Copper-amyloid peptides are proposed to be the cause of Alzheimer's disease, presumably by oxidative stress. However, mice do not produce amyloid plaques and thus do not suffer from Alzheimer's disease. Although much effort has been focused on the structural characterization of the copper- human amyloid peptides, little is known regarding the copper-binding mode in murine amyloid peptides. Thus, we investigated the structure of copper-murine amyloid peptides through multi-frequency, multi-technique pulsed EPR spectroscopy in conjunction with specific isotope labeling. Based on our pulsed EPR results, we found that Ala2, Glu3, His6, and His14 are directly coordinated with the copper ion in murine amyloid β peptides at pH 8.5. This is the first detailed structural characterization of the copper-binding mode in murine amyloid β peptides. This work may advance the knowledge required for developing inhibitors of Alzheimer's disease.

  11. Amyloid β Peptide-Induced Changes in Prefrontal Cortex Activity and Its Response to Hippocampal Input

    Science.gov (United States)

    Flores-Martínez, Ernesto

    2017-01-01

    Alterations in prefrontal cortex (PFC) function and abnormalities in its interactions with other brain areas (i.e., the hippocampus) have been related to Alzheimer Disease (AD). Considering that these malfunctions correlate with the increase in the brain's amyloid beta (Aβ) peptide production, here we looked for a causal relationship between these pathognomonic signs of AD. Thus, we tested whether or not Aβ affects the activity of the PFC network and the activation of this cortex by hippocampal input stimulation in vitro. We found that Aβ application to brain slices inhibits PFC spontaneous network activity as well as PFC activation, both at the population and at the single-cell level, when the hippocampal input is stimulated. Our data suggest that Aβ can contribute to AD by disrupting PFC activity and its long-range interactions throughout the brain. PMID:28127312

  12. NADPH oxidase mediates β-amyloid peptide-induced activation of ERK in hippocampal organotypic cultures

    Science.gov (United States)

    Serrano, Faridis; Chang, Angela; Hernandez, Caterina; Pautler, Robia G; Sweatt, J David; Klann, Eric

    2009-01-01

    Background Previous studies have shown that beta amyloid (Aβ) peptide triggers the activation of several signal transduction cascades in the hippocampus, including the extracellular signal-regulated kinase (ERK) cascade. In this study we sought to characterize the cellular localization of phosphorylated, active ERK in organotypic hippocampal cultures after acute exposure to either Aβ (1-42) or nicotine. Results We observed that Aβ and nicotine increased the levels of active ERK in distinct cellular localizations. We also examined whether phospho-ERK was regulated by redox signaling mechanisms and found that increases in active ERK induced by Aβ and nicotine were blocked by inhibitors of NADPH oxidase. Conclusion Our findings indicate that NADPH oxidase-dependent redox signaling is required for Aβ-induced activation of ERK, and suggest a similar mechanism may occur during early stages of Alzheimer's disease. PMID:19804648

  13. Amyloid β Peptide-Induced Changes in Prefrontal Cortex Activity and Its Response to Hippocampal Input

    Directory of Open Access Journals (Sweden)

    Ernesto Flores-Martínez

    2017-01-01

    Full Text Available Alterations in prefrontal cortex (PFC function and abnormalities in its interactions with other brain areas (i.e., the hippocampus have been related to Alzheimer Disease (AD. Considering that these malfunctions correlate with the increase in the brain’s amyloid beta (Aβ peptide production, here we looked for a causal relationship between these pathognomonic signs of AD. Thus, we tested whether or not Aβ affects the activity of the PFC network and the activation of this cortex by hippocampal input stimulation in vitro. We found that Aβ application to brain slices inhibits PFC spontaneous network activity as well as PFC activation, both at the population and at the single-cell level, when the hippocampal input is stimulated. Our data suggest that Aβ can contribute to AD by disrupting PFC activity and its long-range interactions throughout the brain.

  14. Brain beta-amyloid accumulation in transgenic mice expressing mutant superoxide dismutase 1.

    Science.gov (United States)

    Turner, Bradley J; Li, Qiao-Xin; Laughton, Katrina M; Masters, Colin L; Lopes, Elizabeth C; Atkin, Julie D; Cheema, Surindar S

    2004-12-01

    Oxidative stress is implicated in both the deposition and pathogenesis of beta-amyloid (Abeta) protein in Alzheimer's disease (AD). Accordingly, overexpression of the antioxidant enzyme superoxide dismutase 1 (SOD1) in neuronal cells and transgenic AD mice reduces Abeta toxicity and accumulation. In contrast, mutations in SOD1 associated with amyotrophic lateral sclerosis (ALS) confer enhanced pro-oxidative enzyme activities. We therefore examined whether ALS-linked mutant SOD1 overexpression in motor neuronal cells or transgenic ALS mice modulates Abeta toxicity or its accumulation in the brain. Aggregated, but not freshly solubilised, substrate-bound Abeta peptides induced degenerative morphology and cytotoxicity in motor neuron-like NSC-34 cells. Transfection of NSC-34 cells with human wild-type SOD1 attenuated Abeta-induced toxicity, however this neuroprotective effect was also observed for ALS-linked mutant SOD1. Analysis of the cerebral cortex, brainstem, cerebellum and olfactory bulb from transgenic SOD1G93A mice using enzyme-linked immunosorbent assay of acid-guanidine extracts revealed age-dependent elevations in Abeta levels, although not significantly different from wild-type mouse brain. In addition, brain amyloid protein precursor (APP) levels remained unaltered as a consequence of mutant SOD1 expression. We therefore conclude that mutant SOD1 overexpression promotes neither Abeta toxicity nor brain accumulation in these ALS models.

  15. Low-power laser irradiation inhibits amyloid beta-induced cell apoptosis

    Science.gov (United States)

    Zhang, Heng; Wu, Shengnan

    2011-03-01

    The deposition and accumulation of amyloid-β-peptide (Aβ) in the brain are considered a pathological hallmark of Alzheimer's disease(AD). Apoptosis is a contributing pathophysiological mechanism of AD. Low-power laser irradiation (LPLI), a non-damage physical therapy, which has been used clinically for decades of years, is shown to promote cell proliferation and prevent apoptosis. Recently, low-power laser irradiation (LPLI) has been applied to moderate AD. In this study, Rat pheochromocytoma (PC12) cells were treated with amyloid beta 25-35 (Aβ25-35) for induction of apoptosis before LPLI treatment. We measured cell viability with CCK-8 according to the manufacture's protocol, the cell viability assays show that low fluence of LPLI (2 J/cm2 ) could inhibit the cells apoptosis. Then using statistical analysis of proportion of apoptotic cells by flow cytometry based on Annexin V-FITC/PI, the assays also reveal that low fluence of LPLI (2 J/cm2 ) could inhibit the Aβ-induced cell apoptosis. Taken together, we demonstrated that low fluence of LPLI (2 J/cm2 ) could inhibit the Aβ-induced cell apoptosis, these results directly point to a therapeutic strategy for the treatment of AD through LPLI.

  16. The Protective Role of Carnosic Acid against Beta-Amyloid Toxicity in Rats

    Directory of Open Access Journals (Sweden)

    H. Rasoolijazi

    2013-01-01

    Full Text Available Oxidative stress is one of the pathological mechanisms responsible for the beta- amyloid cascade associated with Alzheimer’s disease (AD. Previous studies have demonstrated the role of carnosic acid (CA, an effective antioxidant, in combating oxidative stress. A progressive cognitive decline is one of the hallmarks of AD. Thus, we attempted to determine whether the administration of CA protects against memory deficit caused by beta-amyloid toxicity in rats. Beta-amyloid (1–40 was injected by stereotaxic surgery into the Ca1 region of the hippocampus of rats in the Amyloid beta (Aβ groups. CA was delivered intraperitoneally, before and after surgery in animals in the CA groups. Passive avoidance learning and spontaneous alternation behavior were evaluated using the shuttle box and the Y-maze, respectively. The degenerating hippocampal neurons were detected by fluoro-jade b staining. We observed that beta-amyloid (1–40 can induce neurodegeneration in the Ca1 region of the hippocampus by using fluoro-jade b staining. Also, the behavioral tests revealed that CA may recover the passive avoidance learning and spontaneous alternation behavior scores in the Aβ + CA group, in comparison with the Aβ group. We found that CA may ameliorate the spatial and learning memory deficits induced by the toxicity of beta-amyloid in the rat hippocampus.

  17. β-淀粉样蛋白对小胶质细胞合成一氧化氮的影响%Effect of amyloid beta-peptide on activated microglial cell excreting nitric oxide

    Institute of Scientific and Technical Information of China (English)

    韩笑峰; 吕丽; 葛汝丽; 唐荣华

    2008-01-01

    目的 探讨β-淀粉样蛋白(arnyloid beta-peptide,AB)诱导小胶质细胞活化后K轻链核因子(nuclear factor-kappa B,NF-kB)的表达及一氧化氮(NO)水平的变化.方法 Ap干预纯化培养的小胶质细胞,观察其形态学变化,采用镉还原法测定NO水平,免疫细胞化学方法研究NF-KB的表达.结果 500 nmol/L及1000 mnol/L AB干预组细胞形态呈"阿米巴样",细胞核内NF-kB的表达增加(P<0.05),培养基中NO浓度升高(P<0.05).结论 AB激活小胶质细胞NF-kB途径大量合成NO,可能参与阿尔茨海默病(Alzheimer's disease,AD)的致病过程.

  18. Initial stages of beta-amyloid Aβ1-40 and Aβ1-42 oligomerization observed using fluorescence decay and molecular dynamics analyses of tyrosine

    Science.gov (United States)

    Amaro, Mariana; Kubiak-Ossowska, Karina; Birch, David J. S.; Rolinski, Olaf J.

    2013-03-01

    The development of Alzheimer’s disease is associated with the aggregation of the beta-amyloid peptides Aβ1-40 and Aβ1-42. It is believed that the small oligomers formed during the early stages of the aggregation are neurotoxic and involved in the process of neurodegeneration. In this paper we use fluorescence decay measurements of beta-amyloid intrinsic fluorophore tyrosine (Tyr) and molecular dynamics (MD) simulations to study the early stages of oligomer formation for the Aβ1-40 and Aβ1-42 peptides in vitro. We demonstrate that the lifetime distributions of the amyloid fluorescence decay efficiently describe changes in the complex Tyr photophysics during the peptide aggregation and highlight the differences in aggregation performance of the two amyloids. Tyr fluorescence decay is found to be a more sensitive sensor of Aβ1-40 aggregation than Aβ1-42 aggregation. The MD simulation of the peptide aggregation is compared with the experimental data and supports a four-rotamer model of Tyr.

  19. Atomistic MD simulations reveal the protective role of cholesterol in dimeric beta-amyloid induced disruptions in neuronal membrane mimics

    Science.gov (United States)

    Qiu, Liming; Buie, Creighton; Cheng, Sara; Chou, George; Vaughn, Mark; Cheng, K.

    2011-10-01

    Interactions of oligomeric beta-amyloid peptides with neuronal membranes have been linked to the pathogenesis of Alzheimer's disease (AD). The molecular details of the interactions of different lipid components, particularly cholesterol (CHOL), of the membranes with the peptides are not clear. Using an atomistic MD simulations approach, the water permeability barrier, structural geometry and order parameters of binary phosphatidylcholine (PC) and PC/CHOL lipid bilayers were examined from various 200 ns-simulation replicates. Our results suggest that the longer length dimer (2 x 42 residues) perturbs the membrane more than the shorter one (2 x 40 residues). In addition, we discovered a significant protective role of cholesterol in protein-induced disruptions of the membranes. The use of a new Monte-Carlo method in characterizing the structures of the conformal annular lipids in close proximity with the proteins will be introduced. We propose that the neurotoxicity of beta-amyloid peptide may be associated with the nanodomain or raft-like structures of the neuronal membranes in-vivo in the development of AD.

  20. Hydrogen peroxide is generated during the very early stages of aggregation of the amyloid peptides implicated in Alzheimer disease and familial British dementia.

    Science.gov (United States)

    Tabner, Brian J; El-Agnaf, Omar M A; Turnbull, Stuart; German, Matthew J; Paleologou, Katerina E; Hayashi, Yoshihito; Cooper, Leanne J; Fullwood, Nigel J; Allsop, David

    2005-10-28

    Alzheimer disease and familial British dementia are neurodegenerative diseases that are characterized by the presence of numerous amyloid plaques in the brain. These lesions contain fibrillar deposits of the beta-amyloid peptide (Abeta) and the British dementia peptide (ABri), respectively. Both peptides are toxic to cells in culture, and there is increasing evidence that early "soluble oligomers" are the toxic entity rather than mature amyloid fibrils. The molecular mechanisms responsible for this toxicity are not clear, but in the case of Abeta, one prominent hypothesis is that the peptide can induce oxidative damage via the formation of hydrogen peroxide. We have developed a reliable method, employing electron spin resonance spectroscopy in conjunction with the spin-trapping technique, to detect any hydrogen peroxide generated during the incubation of Abeta and other amyloidogenic peptides. Here, we monitored levels of hydrogen peroxide accumulation during different stages of aggregation of Abeta-(1-40) and ABri and found that in both cases it was generated as a short "burst" early on in the aggregation process. Ultrastructural studies with both peptides revealed that structures resembling "soluble oligomers" or "protofibrils" were present during this early phase of hydrogen peroxide formation. Mature amyloid fibrils derived from Abeta-(1-40) did not generate hydrogen peroxide. We conclude that hydrogen peroxide formation during the early stages of protein aggregation may be a common mechanism of cell death in these (and possibly other) neurodegenerative diseases.

  1. Small molecule inhibitors of amyloid β peptide aggregation as a potential therapeutic strategy for Alzheimer's disease

    Institute of Scientific and Technical Information of China (English)

    Qin NIE; Xiao-guang DU; Mei-yu GENG

    2011-01-01

    Amyloid β (Aβ) peptides have long been viewed as a potential target for Alzheimer's disease (AD). Aggregation of Aβ peptides in the brain tissue is believed to be an exclusively pathological process. Therefore, blocking the initial stages of Aβ peptide aggregation with small molecules could hold considerable promise as the starting point for the development of new therapies for AD. Recent rapid progresses in our understanding of toxic amyloid assembly provide a fresh impetus for this interesting approach. Here, we discuss the problems, challenges and new concepts in targeting Aβ peptides.

  2. Purified and synthetic Alzheimer's amyloid beta (Aβ) prions.

    Science.gov (United States)

    Stöhr, Jan; Watts, Joel C; Mensinger, Zachary L; Oehler, Abby; Grillo, Sunny K; DeArmond, Stephen J; Prusiner, Stanley B; Giles, Kurt

    2012-07-03

    The aggregation and deposition of amyloid-β (Aβ) peptides are believed to be central events in the pathogenesis of Alzheimer's disease (AD). Inoculation of brain homogenates containing Aβ aggregates into susceptible transgenic mice accelerated Aβ deposition, suggesting that Aβ aggregates are capable of self-propagation and hence might be prions. Recently, we demonstrated that Aβ deposition can be monitored in live mice using bioluminescence imaging (BLI). Here, we use BLI to probe the ability of Aβ aggregates to self-propagate following inoculation into bigenic mice. We report compelling evidence that Aβ aggregates are prions by demonstrating widespread cerebral β-amyloidosis induced by inoculation of either purified Aβ aggregates derived from brain or aggregates composed of synthetic Aβ. Although synthetic Aβ aggregates were sufficient to induce Aβ deposition in vivo, they exhibited lower specific biological activity compared with brain-derived Aβ aggregates. Our results create an experimental paradigm that should lead to identification of self-propagating Aβ conformations, which could represent novel targets for interrupting the spread of Aβ deposition in AD patients.

  3. Information-Selectivity of Beta-Amyloid Pathology in an Associative Memory Model

    Directory of Open Access Journals (Sweden)

    Mark eRowan

    2012-01-01

    Full Text Available This work updates Ruppin and Reggia's associative neural network model of Alzheimer's disease by simulating beta-amyloid pathology and modelling the progression of beta-amyloid throughout the network according to Small's synaptic scaling theory, leading to a self-reinforcing cascade of damage. Using an information theoretic approach, it is shown that the simulated beta-amyloid pathology initially selectively targets neurons with low contribution to the overall performance of the network, but that it targets neurons with increasingly higher significance to the network as the disease progresses. The results provide a possible explanation for the apparent low correlation between amyloid plaque density and cognitive decline in the early stages of Alzheimer's disease.

  4. The role of metallobiology and amyloidpeptides in Alzheimer's disease.

    Science.gov (United States)

    Roberts, Blaine R; Ryan, Timothy M; Bush, Ashley I; Masters, Colin L; Duce, James A

    2012-01-01

    The biggest risk factor for Alzheimer's disease is the process of ageing, but the mechanisms that lead to the manifestation of the disease remain to be elucidated. Why age triggers the disease is unclear but an emerging theme is the inability for a cell to efficiently maintain many key processes such as energy production, repair, and regenerative mechanisms. Metal ions are essential to the metabolic function of every cell. This review will explore the role and reported changes in metal ions in Alzheimer disease, particularly the brain, blood and cerebral spinal fluid, emphasizing how iron, copper and zinc may be involved through the interactions with amyloid precursor protein, the proteolytically cleaved peptide amyloid-beta (Aβ), and other related metalloproteins. Finally, we explore the monomeric makeup of possible Aβ dimers, what a dimeric Aβ species from Alzheimer's disease brain tissue is likely to be composed of, and discuss how metals may influence Aβ production and toxicity via a copper catalyzed dityrosine cross-link.

  5. Amyloid Beta-Protein and Neural Network Dysfunction

    Directory of Open Access Journals (Sweden)

    Fernando Peña-Ortega

    2013-01-01

    Full Text Available Understanding the neural mechanisms underlying brain dysfunction induced by amyloid beta-protein (Aβ represents one of the major challenges for Alzheimer’s disease (AD research. The most evident symptom of AD is a severe decline in cognition. Cognitive processes, as any other brain function, arise from the activity of specific cell assemblies of interconnected neurons that generate neural network dynamics based on their intrinsic and synaptic properties. Thus, the origin of Aβ-induced cognitive dysfunction, and possibly AD-related cognitive decline, must be found in specific alterations in properties of these cells and their consequences in neural network dynamics. The well-known relationship between AD and alterations in the activity of several neural networks is reflected in the slowing of the electroencephalographic (EEG activity. Some features of the EEG slowing observed in AD, such as the diminished generation of different network oscillations, can be induced in vivo and in vitro upon Aβ application or by Aβ overproduction in transgenic models. This experimental approach offers the possibility to study the mechanisms involved in cognitive dysfunction produced by Aβ. This type of research may yield not only basic knowledge of neural network dysfunction associated with AD, but also novel options to treat this modern epidemic.

  6. Destruction of amyloid fibrils by graphene through penetration and extraction of peptides.

    Science.gov (United States)

    Yang, Zaixing; Ge, Cuicui; Liu, Jiajia; Chong, Yu; Gu, Zonglin; Jimenez-Cruz, Camilo A; Chai, Zhifang; Zhou, Ruhong

    2015-11-28

    Current therapies for Alzheimer's disease (AD) can provide a moderate symptomatic reduction or delay progression at various stages of the disease, but such treatments ultimately do not arrest the advancement of AD. As such, novel approaches for AD treatment and prevention are urgently needed. We here provide both experimental and computational evidence that pristine graphene and graphene-oxide nanosheets can inhibit Aβ peptide monomer fibrillation and clear mature amyloid fibrils, thus impacting the central molecular superstructures correlated with AD pathogenesis. Our molecular dynamics simulations for the first time reveal that graphene nanosheets can penetrate and extract a large number of peptides from pre-formed amyloid fibrils; these effects seem to be related to exceptionally strong dispersion interactions between peptides and graphene that are further enhanced by strong π-π stacking between the aromatic residues of extracted Aβ peptides and the graphene surface. Atomic force microscopy images confirm these predictions by demonstrating that mature amyloid fibrils can be cut into pieces and cleared by graphene oxides. Thioflavin fluorescence assays further illustrate the detailed dynamic processes by which graphene induces inhibition of monomer aggregation and clearance of mature amyloid fibrils, respectively. Cell viability and ROS assays indicate that graphene oxide can indeed mitigate cytotoxicity of Aβ peptide amyloids. Our findings provide new insights into the underlying molecular mechanisms that define graphene-amyloid interaction and suggest that further research on nanotherapies for Alzheimer's and other protein aggregation-related diseases is warranted.

  7. Calpain inhibition prevents amyloid-beta-induced neurodegeneration and associated behavioral dysfunction in rats

    NARCIS (Netherlands)

    Granic, Ivica; Nyakas, Csaba; Luiten, Paul G. M.; Eisel, Ulrich L. M.; Halmy, Laszlo G.; Gross, Gerhard; Schoemaker, Hans; Moeller, Achim; Nimmrich, Volker

    2010-01-01

    Amyloid-beta (A beta) is toxic to neurons and such toxicity is - at least in part - mediated via the NMDA receptor. Calpain, a calcium dependent cystein protease, is part of the NMDA receptor-induced neurodegeneration pathway, and we previously reported that inhibition of calpain prevents excitotoxi

  8. Diagnostic Accuracy of Cerebrospinal Fluid Amyloid-beta Isoforms for Early and Differential Dementia Diagnosis

    NARCIS (Netherlands)

    Struyfs, Hanne; Van Broeck, Bianca; Timmers, Maarten; Fransen, Erik; Sleegers, Kristel; Van Broeckhoven, Christine; De Deyn, Peter P.; Streffer, Johannes R.; Mercken, Marc; Engelborghs, Sebastiaan

    2015-01-01

    Background: Overlapping cerebrospinal fluid biomarkers (CSF) levels between Alzheimer's disease (AD) and non-AD patients decrease differential diagnostic accuracy of the AD core CSF biomarkers. Amyloid-beta (A beta) isoforms might improve the AD versus non-AD differential diagnosis. Objective: To de

  9. Absence of beta-amyloid in cortical cataracts of donors with and without Alzheimer's disease.

    Science.gov (United States)

    Michael, Ralph; Rosandić, Jurja; Montenegro, Gustavo A; Lobato, Elvira; Tresserra, Francisco; Barraquer, Rafael I; Vrensen, Gijs F J M

    2013-01-01

    Eye lenses from human donors with and without Alzheimer's disease (AD) were studied to evaluate the presence of amyloid in cortical cataract. We obtained 39 lenses from 21 postmortem donors with AD and 15 lenses from age-matched controls provided by the Banco de Ojos para Tratamientos de la Ceguera (Barcelona, Spain). For 17 donors, AD was clinically diagnosed by general physicians and for 4 donors the AD diagnosis was neuropathologically confirmed. Of the 21 donors with AD, 6 had pronounced bilateral cortical lens opacities and 15 only minor or no cortical opacities. As controls, 7 donors with pronounced cortical opacities and 8 donors with almost transparent lenses were selected. All lenses were photographed in a dark field stereomicroscope. Histological sections were analyzed using a standard and a more sensitive Congo red protocol, thioflavin staining and beta-amyloid immunohistochemistry. Brain tissue from two donors, one with cerebral amyloid angiopathy and another with advanced AD-related changes and one cornea with lattice dystrophy were used as positive controls for the staining techniques. Thioflavin, standard and modified Congo red staining were positive in the control brain tissues and in the dystrophic cornea. Beta-amyloid immunohistochemistry was positive in the brain tissues but not in the cornea sample. Lenses from control and AD donors were, without exception, negative after Congo red, thioflavin, and beta-amyloid immunohistochemical staining. The results of the positive control tissues correspond well with known observations in AD, amyloid angiopathy and corneas with lattice dystrophy. The absence of staining in AD and control lenses with the techniques employed lead us to conclude that there is no beta-amyloid in lenses from donors with AD or in control cortical cataracts. The inconsistency with previous studies of Goldstein et al. (2003) and Moncaster et al. (2010), both of which demonstrated positive Congo red, thioflavin, and beta-amyloid

  10. MD-simulations of Beta-Amyloid Protein Insertion Efficiency and Kinetics into Neuronal Membrane Mimics

    Science.gov (United States)

    Qiu, Liming; Buie, Creighton; Vaughn, Mark; Cheng, Kwan

    2011-03-01

    Early interaction events of beta-amyloid (A β) peptides with the neuronal membranes play a key role in the pathogenesis of Alzheimer's disease. We have used all-atom MD simulations to study the protein insertion efficiency and kinetics of monomeric A β40 and A β42 into phosphatidylcholine lipid bilayers (PC) with and without 40 mole% cholesterol (CHOL) that mimic the cholesterol-enriched and depleted lipid nanodomains of the neuronal plasma membranes. Independent replicates of 200-ns simulations of each protein pre-inserted in the upper lipid layer were generated. In PC bilayers, only 25% of A β40 and 50% of A β42 in the replicates showed complete insertion into the lower lipid layer, whereas the percentages increased to 50% and 100%, respectively, in PC/CHOL bilayers, providing evidence that cholesterol improves the protein insertion efficiency into the bilayers. The rate of protein insertion was proportional to the hydrophobic, transmembrane helix length of the inserted peptide and depended on the cholesterol content. We propose that the lysine snorkeling and C-terminus anchoring of A β to the PC headgroups at the upper and lower lipid/water interfaces represent the dual-transmembrane stabilization mechanisms of A β in the neuronal membrane domains.

  11. Microglial responses to amyloid β peptide opsonization and indomethacin treatment

    Directory of Open Access Journals (Sweden)

    Leonard Brian

    2005-08-01

    Full Text Available Abstract Background Recent studies have suggested that passive or active immunization with anti-amyloid β peptide (Aβ antibodies may enhance microglial clearance of Aβ deposits from the brain. However, in a human clinical trial, several patients developed secondary inflammatory responses in brain that were sufficient to halt the study. Methods We have used an in vitro culture system to model the responses of microglia, derived from rapid autopsies of Alzheimer's disease patients, to Aβ deposits. Results Opsonization of the deposits with anti-Aβ IgG 6E10 enhanced microglial chemotaxis to and phagocytosis of Aβ, as well as exacerbated microglial secretion of the pro-inflammatory cytokines TNF-α and IL-6. Indomethacin, a common nonsteroidal anti-inflammatory drug (NSAID, had no effect on microglial chemotaxis or phagocytosis, but did significantly inhibit the enhanced production of IL-6 after Aβ opsonization. Conclusion These results are consistent with well known, differential NSAID actions on immune cell functions, and suggest that concurrent NSAID administration might serve as a useful adjunct to Aβ immunization, permitting unfettered clearance of Aβ while dampening secondary, inflammation-related adverse events.

  12. The iA{beta}5p {beta}-breaker peptide regulates the A{beta}(25-35) interaction with lipid bilayers through a cholesterol-mediated mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Vitiello, Giuseppe [Department of Chemistry, University of Naples ' Federico II' , Naples (Italy); CSGI (Consorzio per lo Sviluppo dei Sistemi a Grande Interfase), Florence (Italy); Grimaldi, Manuela; D' Ursi, Anna Maria [Department of Pharmaceutical Science, University of Salerno, Fisciano (Italy); D' Errico, Gerardino, E-mail: gerardino.derrico@unina.it [Department of Chemistry, University of Naples ' Federico II' , Naples (Italy); CSGI (Consorzio per lo Sviluppo dei Sistemi a Grande Interfase), Florence (Italy)

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer iA{beta}5p shows a significant tendency to deeply penetrates the hydrophobic core of lipid membrane. Black-Right-Pointing-Pointer A{beta}(25-35) locates in the external region of the membrane causing a re-positioning of CHOL. Black-Right-Pointing-Pointer iA{beta}5p withholds cholesterol in the inner hydrophobic core of the lipid membrane. Black-Right-Pointing-Pointer iA{beta}5p prevents the A{beta}(25-35) release from the lipid membrane. -- Abstract: Alzheimer's disease is characterized by the deposition of aggregates of the {beta}-amyloid peptide (A{beta}) in the brain. A potential therapeutic strategy for Alzheimer's disease is the use of synthetic {beta}-sheet breaker peptides, which are capable of binding A{beta} but unable to become part of a {beta}-sheet structure, thus inhibiting the peptide aggregation. Many studies suggest that membranes play a key role in the A{beta} aggregation; consequently, it is strategic to investigate the interplay between {beta}-sheet breaker peptides and A{beta} in the presence of lipid bilayers. In this work, we focused on the effect of the {beta}-sheet breaker peptide acetyl-LPFFD-amide, iA{beta}5p, on the interaction of the A{beta}(25-35) fragment with lipid membranes, studied by Electron Spin Resonance spectroscopy, using spin-labeled membrane components (either phospholipids or cholesterol). The ESR results show that iA{beta}5p influences the A{beta}(25-35) interaction with the bilayer through a cholesterol-mediated mechanism: iA{beta}5p withholds cholesterol in the inner hydrophobic core of the bilayer, making the interfacial region more fluid and capable to accommodate A{beta}(25-35). As a consequence, iA{beta}5p prevents the A{beta}(25-35) release from the lipid membrane, which is the first step of the {beta}-amyloid aggregation process.

  13. Amyloid-Beta Related Angiitis of the Central Nervous System: Case Report and Topic Review

    Directory of Open Access Journals (Sweden)

    Amre eNouh

    2014-02-01

    Full Text Available Amyloid-beta related angiitis (ABRA of the central nervous system (CNS is a rare disorder with overlapping features of primary angiits of the CNS (PACNS and cerebral amyloid angiopathy (CAA. We evaluated a 74-year-old man with intermittent left sided weakness and MRI findings of leptomeningeal enhancement, vasogenic edema and subcortical white matter disease proven to have ABRA. We discuss clinicopathological features and review the topic of ABRA.

  14. Peptide p5 binds both heparinase-sensitive glycosaminoglycans and fibrils in patient-derived AL amyloid extracts

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Emily B.; Williams, Angela [Department of Medicine, University of Tennessee Graduate School of Medicine, 1924 Alcoa Highway, Knoxville, TN 37922 (United States); Heidel, Eric [Department of Surgery, University of Tennessee Graduate School of Medicine, 1924 Alcoa Highway, Knoxville, TN 37922 (United States); Macy, Sallie [Department of Medicine, University of Tennessee Graduate School of Medicine, 1924 Alcoa Highway, Knoxville, TN 37922 (United States); Kennel, Stephen J. [Department of Medicine, University of Tennessee Graduate School of Medicine, 1924 Alcoa Highway, Knoxville, TN 37922 (United States); Department of Radiology, University of Tennessee Graduate School of Medicine, 1924 Alcoa Highway, Knoxville, TN 37922 (United States); Wall, Jonathan S., E-mail: jwall@utmck.edu [Department of Medicine, University of Tennessee Graduate School of Medicine, 1924 Alcoa Highway, Knoxville, TN 37922 (United States); Department of Radiology, University of Tennessee Graduate School of Medicine, 1924 Alcoa Highway, Knoxville, TN 37922 (United States)

    2013-06-21

    Highlights: •Polybasic peptide p5 binds human light chain amyloid extracts. •The binding of p5 with amyloid involves both glycosaminoglycans and fibrils. •Heparinase treatment led to a correlation between p5 binding and fibril content. •p5 binding to AL amyloid requires electrostatic interactions. -- Abstract: In previously published work, we have described heparin-binding synthetic peptides that preferentially recognize amyloid deposits in a mouse model of reactive systemic (AA) amyloidosis and can be imaged by using positron and single photon emission tomographic imaging. We wanted to extend these findings to the most common form of visceral amyloidosis, namely light chain (AL); however, there are no robust experimental animal models of AL amyloidosis. To further define the binding of the lead peptide, p5, to AL amyloid, we characterized the reactivity in vitro of p5 with in situ and patient-derived AL amyloid extracts which contain both hypersulfated heparan sulfate proteoglycans as well as amyloid fibrils. Histochemical staining demonstrated that the peptide specifically localized with tissue-associated AL amyloid deposits. Although we anticipated that p5 would undergo electrostatic interactions with the amyloid-associated glycosaminoglycans expressing heparin-like side chains, no significant correlation between peptide binding and glycosaminoglycan content within amyloid extracts was observed. In contrast, following heparinase I treatment, although overall binding was reduced, a positive correlation between peptide binding and amyloid fibril content became evident. This interaction was further confirmed using synthetic light chain fibrils that contain no carbohydrates. These data suggest that p5 can bind to both the sulfated glycosaminoglycans and protein fibril components of AL amyloid. Understanding these complex electrostatic interactions will aid in the optimization of synthetic peptides for use as amyloid imaging agents and potentially as

  15. Benzalkonium Chloride Accelerates the Formation of the Amyloid Fibrils of Corneal Dystrophy-associated Peptides*

    Science.gov (United States)

    Kato, Yusuke; Yagi, Hisashi; Kaji, Yuichi; Oshika, Tetsuro; Goto, Yuji

    2013-01-01

    Corneal dystrophies are genetic disorders resulting in progressive corneal clouding due to the deposition of amyloid fibrils derived from keratoepithelin, also called transforming growth factor β-induced protein (TGFBI). The formation of amyloid fibrils is often accelerated by surfactants such as sodium dodecyl sulfate (SDS). Most eye drops contain benzalkonium chloride (BAC), a cationic surfactant, as a preservative substance. In the present study, we aimed to reveal the role of BAC in the amyloid fibrillation of keratoepithelin-derived peptides in vitro. We used three types of 22-residue synthetic peptides covering Leu110-Glu131 of the keratoepithelin sequence: an R-type peptide with wild-type R124, a C-type peptide with C124 associated with lattice corneal dystrophy type I, and a H-type peptide with H124 associated with granular corneal dystrophy type II. The time courses of spontaneous amyloid fibrillation and seed-dependent fibril elongation were monitored in the presence of various concentrations of BAC or SDS using thioflavin T fluorescence. BAC and SDS accelerated the fibrillation of all synthetic peptides in the absence and presence of seeds. Optimal acceleration occurred near the CMC, which suggests that the unstable and dynamic interactions of keratoepithelin peptides with amphipathic surfactants led to the formation of fibrils. These results suggest that eye drops containing BAC may deteriorate corneal dystrophies and that those without BAC are preferred especially for patients with corneal dystrophies. PMID:23861389

  16. Intracellular accumulation of amyloid-beta - a predictor for synaptic dysfunction and neuron loss in Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Thomas A Bayer

    2010-03-01

    Full Text Available Despite of long-standing evidence that beta-amyloid (Aβ peptides have detrimental effects on synaptic function, the relationship between Aβ, synaptic and neuron loss is largely unclear. During the last years there is growing evidence that early intraneuronal accumulation of Aβ peptides is one of the key events leading to synaptic and neuronal dysfunction. Many studies have been carried out using transgenic mouse models of Alzheimer’s disease (AD which have been proven to be valuable model system in modern AD research. The present review discusses the impact of intraneuronal Aβ accumulation on synaptic impairment and neuron loss and provides an overview of currently available AD mouse models showing these pathological alterations.

  17. The tissue plasminogen activator-plasminogen proteolytic cascade accelerates amyloid-beta (Abeta) degradation and inhibits Abeta-induced neurodegeneration.

    Science.gov (United States)

    Melchor, Jerry P; Pawlak, Robert; Strickland, Sidney

    2003-10-01

    Accumulation of the amyloid-beta (Abeta) peptide depends on both its generation and clearance. To better define clearance pathways, we have evaluated the role of the tissue plasminogen activator (tPA)-plasmin system in Abeta degradation in vivo. In two different mouse models of Alzheimer's disease, chronically elevated Abeta peptide in the brain correlates with the upregulation of plasminogen activator inhibitor-1 (PAI-1) and inhibition of the tPA-plasmin system. In addition, Abeta injected into the hippocampus of mice lacking either tPA or plasminogen persists, inducing PAI-1 expression and causing activation of microglial cells and neuronal damage. Conversely, Abeta injected into wild-type mice is rapidly cleared and does not cause neuronal degeneration. Thus, the tPA-plasmin proteolytic cascade aids in the clearance of Abeta, and reduced activity of this system may contribute to the progression of Alzheimer's disease.

  18. CSF beta-amyloid levels are altered in narcolepsy: a link with the inflammatory hypothesis?

    Science.gov (United States)

    Liguori, Claudio; Placidi, Fabio; Albanese, Maria; Nuccetelli, Marzia; Izzi, Francesca; Marciani, Maria Grazia; Mercuri, Nicola Biagio; Bernardini, Sergio; Romigi, Andrea

    2014-08-01

    Narcolepsy is characterized by hypocretin deficiency due to the loss of hypothalamic orexinergic neurons, and is associated with both the human leucocyte antigen DQB1*06:02 and the T cell receptor polymorphism. The above relationship suggests autoimmune/inflammatory processes underlying the loss of orexinergic neurons in narcolepsy. To test the autoimmune/inflammatory hypothesis by means of cerebrospinal fluid (CSF) levels of beta-amyloid1-42 and/or total tau proteins in a sample of narcoleptic patients, we analysed 16 narcoleptic patients and 16 healthy controls. Beta-amyloid1-42 CSF levels were significantly lower in narcoleptic patients compared with healthy controls. We also documented pathologically low levels of CSF beta-amyloid1-42 (narcolepsy and the prevalence of an 'amyloidogenic' pathway caused by the deficiency of the alpha-secretases enzymes.

  19. Beta-Amyloid Deposition and Alzheimer's Type Changes Induced by Borrelia Spirochetes

    Energy Technology Data Exchange (ETDEWEB)

    Miklossy,J.; Kis, A.; Radenovic, A.; Miller, L.; Forro, L.; Martins, R.; Reiss, K.; Darbinian, N.; Darekar, P.; et al.

    2006-01-01

    The pathological hallmarks of Alzheimer's disease (AD) consist of {beta}-amyloid plaques and neurofibrillary tangles in affected brain areas. The processes, which drive this host reaction are unknown. To determine whether an analogous host reaction to that occurring in AD could be induced by infectious agents, we exposed mammalian glial and neuronal cells in vitro to Borrelia burgdorferi spirochetes and to the inflammatory bacterial lipopolysaccharide (LPS). Morphological changes analogous to the amyloid deposits of AD brain were observed following 2-8 weeks of exposure to the spirochetes. Increased levels of {beta}-amyloid presursor protein (A{beta}PP) and hyperphosphorylated tau were also detected by Western blots of extracts of cultured cells that had been treated with spirochetes or LPS. These observations indicate that, by exposure to bacteria or to their toxic products, host responses similar in nature to those observed in AD may be induced.

  20. Neuro-inflammation induced by lipopolysaccharide causes cognitive impairment through enhancement of beta-amyloid generation

    Directory of Open Access Journals (Sweden)

    Oh Ki

    2008-08-01

    Full Text Available Abstract Background Alzheimer's disease (AD is characterized by extensive loss of neurons in the brain of AD patients. Intracellular accumulation of beta-amyloid peptide (Aβ has also shown to occur in AD. Neuro-inflammation has been known to play a role in the pathogenesis of AD. Methods In this study, we investigated neuro-inflammation and amyloidogenesis and memory impairment following the systemic inflammation generated by lipopolysaccharide (LPS using immunohistochemistry, ELISA, behavioral tests and Western blotting. Results Intraperitoneal injection of LPS, (250 μg/kg induced memory impairment determined by passive avoidance and water maze tests in mice. Repeated injection of LPS (250 μg/kg, 3 or 7 times resulted in an accumulation of Aβ1–42 in the hippocampus and cerebralcortex of mice brains through increased β- and γ-secretase activities accompanied with the increased expression of amyloid precursor protein (APP, 99-residue carboxy-terminal fragment of APP (C99 and generation of Aβ1–42 as well as activation of astrocytes in vivo. 3 weeks of pretreatment of sulindac sulfide (3.75 and 7.5 mg/kg, orally, an anti-inflammatory agent, suppressed the LPS-induced amyloidogenesis, memory dysfunction as well as neuronal cell death in vivo. Sulindac sulfide (12.5–50 μM also suppressed LPS (1 μg/ml-induced amyloidogenesis in cultured neurons and astrocytes in vitro. Conclusion This study suggests that neuro-inflammatory reaction could contribute to AD pathology, and anti-inflammatory agent could be useful for the prevention of AD.

  1. A humanin derivative reduces amyloid beta accumulation and ameliorates memory deficit in triple transgenic mice.

    Directory of Open Access Journals (Sweden)

    Takako Niikura

    Full Text Available Humanin (HN, a 24-residue peptide, was identified as a novel neuroprotective factor and shows anti-cell death activity against a wide spectrum of Alzheimer's disease (AD-related cytotoxicities, including exposure to amyloid beta (Abeta, in vitro. We previously demonstrated that the injection of S14G-HN, a highly potent HN derivative, into brain ameliorated memory loss in an Abeta-injection mouse model. To fully understand HN's functions under AD-associated pathological conditions, we examined the effect of S14G-HN on triple transgenic mice harboring APP(swe, tau(P310L, and PS-1(M146V that show the age-dependent development of multiple pathologies relating to AD. After 3 months of intranasal treatment, behavioral analyses showed that S14G-HN ameliorated cognitive impairment in male mice. Moreover, ELISA and immunohistochemical analyses showed that Abeta levels in brains were markedly lower in S14G-HN-treated male and female mice than in vehicle control mice. We also found the expression level of neprilysin, an Abeta degrading enzyme, in the outer molecular layer of hippocampal formation was increased in S14G-HN-treated mouse brains. NEP activity was also elevated by S14G-HN treatment in vitro. These findings suggest that decreased Abeta level in these mice is at least partly attributed to S14G-HN-induced increase of neprilysin level. Although HN was identified as an anti-neuronal death factor, these results indicate that HN may also have a therapeutic effect on amyloid accumulation in AD.

  2. Estrogen protects neuronal cells from amyloid beta-induced apoptosis via regulation of mitochondrial proteins and function

    Directory of Open Access Journals (Sweden)

    Iwamoto Sean

    2006-11-01

    Full Text Available Abstract Background Neurodegeneration in Alzheimer's disease is associated with increased apoptosis and parallels increased levels of amyloid beta, which can induce neuronal apoptosis. Estrogen exposure prior to neurotoxic insult of hippocampal neurons promotes neuronal defence and survival against neurodegenerative insults including amyloid beta. Although all underlying molecular mechanisms of amyloid beta neurotoxicity remain undetermined, mitochondrial dysfunction, including altered calcium homeostasis and Bcl-2 expression, are involved in neurodegenerative vulnerability. Results In this study, we investigated the mechanism of 17β-estradiol-induced prevention of amyloid beta-induced apoptosis of rat hippocampal neuronal cultures. Estradiol treatment prior to amyloid beta exposure significantly reduced the number of apoptotic neurons and the associated rise in resting intracellular calcium levels. Amyloid beta exposure provoked down regulation of a key antiapoptotic protein, Bcl-2, and resulted in mitochondrial translocation of Bax, a protein known to promote cell death, and subsequent release of cytochrome c. E2 pretreatment inhibited the amyloid beta-induced decrease in Bcl-2 expression, translocation of Bax to the mitochondria and subsequent release of cytochrome c. Further implicating the mitochondria as a target of estradiol action, in vivo estradiol treatment enhanced the respiratory function of whole brain mitochondria. In addition, estradiol pretreatment protected isolated mitochondria against calcium-induced loss of respiratory function. Conclusion Therefore, we propose that estradiol pretreatment protects against amyloid beta neurotoxicity by limiting mitochondrial dysfunction via activation of antiapoptotic mechanisms.

  3. Beta amyloid and hyperphosphorylated tau deposits in the pancreas in type 2 diabetes

    Energy Technology Data Exchange (ETDEWEB)

    Miklossy, J.; Miller, L.; Qing, H.; Radenovic, A.; Kis, A.; Vileno, B.; Laszlo, F.; Martins, R.N.; Waeber, G.; Mooser, V.; Bosman, F.; Khalili, K.; Darbinian, N.; McGeer, P.L.

    2008-08-25

    Strong epidemiologic evidence suggests an association between Alzheimer disease (AD) and type 2 diabetes. To determine if amyloid beta (A{beta}) and hyperphosphorylated tau occurs in type 2 diabetes, pancreas tissues from 21 autopsy cases (10 type 2 diabetes and 11 controls) were analyzed. APP and tau mRNAs were identified in human pancreas and in cultured insulinoma beta cells (INS-1) by RT-PCR. Prominent APP and tau bands were detected by Western blotting in pancreatic extracts. Aggregated A{beta}, hyperphosphorylated tau, ubiquitin, apolipoprotein E, apolipoprotein(a), IB1/JIP-1 and JNK1 were detected in Langerhans islets in type 2 diabetic patients. A{beta} was co-localized with amylin in islet amyloid deposits. In situ beta sheet formation of islet amyloid deposits was shown by infrared microspectroscopy (SIRMS). LPS increased APP in non-neuronal cells as well. We conclude that A{beta} deposits and hyperphosphorylated tau are also associated with type 2 diabetes, highlighting common pathogenetic features in neurodegenerative disorders, including AD and type 2 diabetes and suggesting that A{beta} deposits and hyperphosphorylated tau may also occur in other organs than the brain.

  4. Phosphate and HEPES buffers potently affect the fibrillation and oligomerization mechanism of Alzheimer's A{beta} peptide

    Energy Technology Data Exchange (ETDEWEB)

    Garvey, Megan; Tepper, Katharina [Max-Planck-Forschungsstelle fuer Enzymologie der Proteinfaltung, Weinbergweg 22, D-06120 Halle (Saale) (Germany); Haupt, Caroline [Institute fuer Physik, Biophysik, Martin-Luther Universitaet Halle-Wittenberg, Betty-Heimann-Str. 7, D-06120 Halle (Saale) (Germany); Knuepfer, Uwe [Leibniz-Institute for Infection Biology and Natural Product Research, Beutenbergstr. 11a, D-07745 Jena (Germany); Klement, Karolin; Meinhardt, Jessica [Leibniz-Institute for Age Research (FLI), Beutenbergstr. 11, D-07745 Jena (Germany); Horn, Uwe [Leibniz-Institute for Infection Biology and Natural Product Research, Beutenbergstr. 11a, D-07745 Jena (Germany); Balbach, Jochen [Institute fuer Physik, Biophysik, Martin-Luther Universitaet Halle-Wittenberg, Betty-Heimann-Str. 7, D-06120 Halle (Saale) (Germany); Faendrich, Marcus, E-mail: fandrich@enzyme-halle.mpg.de [Max-Planck-Forschungsstelle fuer Enzymologie der Proteinfaltung, Weinbergweg 22, D-06120 Halle (Saale) (Germany); Bio zentrum, Martin-Luther Universitaet Halle-Wittenberg, Weinbergweg 22, D-06120 Halle (Saale) (Germany)

    2011-06-10

    Highlights: {yields} Sodium phosphate buffer accelerated A{beta}(1-40) nucleation relative to HEPES. {yields} A{beta}(1-40) fibrils formed in the two buffers show only minor structural differences. {yields} NMR revealed that A{beta}(1-40) histidine residues mediate buffer dependent changes. -- Abstract: The oligomerization of A{beta} peptide into amyloid fibrils is a hallmark of Alzheimer's disease. Due to its biological relevance, phosphate is the most commonly used buffer system for studying the formation of A{beta} and other amyloid fibrils. Investigation into the characteristics and formation of amyloid fibrils frequently relies upon material formed in vitro, predominantly in phosphate buffers. Herein, we examine the effects on the fibrillation and oligomerization mechanism of A{beta} peptide that occur due solely to the influence of phosphate buffer. We reveal that significant differences in amyloid fibrillation are observed due to fibrillation being initiated in phosphate or HEPES buffer (at physiological pH and temperature). Except for the differing buffer ions, all experimental parameters were kept constant. Fibril formation was assessed using fluorescently monitored kinetic studies, microscopy, X-ray fiber diffraction and infrared and nuclear magnetic resonance spectroscopies. Based on this set up, we herein reveal profound effects on the mechanism and speed of A{beta} fibrillation. The three histidine residues at positions 6, 13 and 14 of A{beta}(1-40) are instrumental in these mechanistic changes. We conclude that buffer plays a more significant role in fibril formation than has been generally acknowledged.

  5. Amyloid Beta: Multiple Mechanisms of Toxicity and Only Some Protective Effects?

    Directory of Open Access Journals (Sweden)

    Paul Carrillo-Mora

    2014-01-01

    Full Text Available Amyloid beta (Aβ is a peptide of 39–43 amino acids found in large amounts and forming deposits in the brain tissue of patients with Alzheimer’s disease (AD. For this reason, it has been implicated in the pathophysiology of damage observed in this type of dementia. However, the role of Aβ in the pathophysiology of AD is not yet precisely understood. Aβ has been experimentally shown to have a wide range of toxic mechanisms in vivo and in vitro, such as excitotoxicity, mitochondrial alterations, synaptic dysfunction, altered calcium homeostasis, oxidative stress, and so forth. In contrast, Aβ has also shown some interesting neuroprotective and physiological properties under certain experimental conditions, suggesting that both physiological and pathological roles of Aβ may depend on several factors. In this paper, we reviewed both toxic and protective mechanisms of Aβ to further explore what their potential roles could be in the pathophysiology of AD. The complete understanding of such apparently opposed effects will also be an important guide for the therapeutic efforts coming in the future.

  6. Nano-biosensors to detect beta-amyloid for Alzheimer's disease management.

    Science.gov (United States)

    Kaushik, Ajeet; Jayant, Rahul Dev; Tiwari, Sneham; Vashist, Arti; Nair, Madhavan

    2016-06-15

    Beta-amyloid (β-A) peptides are potential biomarkers to monitor Alzheimer's diseases (AD) for diagnostic purposes. Increased β-A level is neurotoxic and induces oxidative stress in brain resulting in neurodegeneration and causes dementia. As of now, no sensitive and inexpensive method is available for β-A detection under physiological and pathological conditions. Although, available methods such as neuroimaging, enzyme-linked immunosorbent assay (ELISA), and polymerase chain reaction (PCR) detect β-A, but they are not yet extended at point-of-care (POC) due to sophisticated equipments, need of high expertize, complicated operations, and challenge of low detection limit. Recently, β-A antibody based electrochemical immuno-sensing approach has been explored to detect β-A at pM levels within 30-40 min compared to 6-8h of ELISA test. The introduction of nano-enabling electrochemical sensing technology could enable rapid detection of β-A at POC and may facilitate fast personalized health care delivery. This review explores recent advancements in nano-enabling electrochemical β-A sensing technologies towards POC application to AD management. These analytical tools can serve as an analytical tool for AD management program to obtain bio-informatics needed to optimize therapeutics for neurodegenerative diseases diagnosis management.

  7. Dementia of the eye: the role of amyloid beta in retinal degeneration.

    Science.gov (United States)

    Ratnayaka, J A; Serpell, L C; Lotery, A J

    2015-08-01

    Age-related macular degeneration (AMD) is one of the most common causes of irreversible blindness affecting nearly 50 million individuals globally. The disease is characterised by progressive loss of central vision, which has significant implications for quality of life concerns in an increasingly ageing population. AMD pathology manifests in the macula, a specialised region of the retina, which is responsible for central vision and perception of fine details. The underlying pathology of this complex degenerative disease is incompletely understood but includes both genetic as well as epigenetic risk factors. The recent discovery that amyloid beta (Aβ), a highly toxic and aggregate-prone family of peptides, is elevated in the ageing retina and is associated with AMD has opened up new perspectives on the aetiology of this debilitating blinding disease. Multiple studies now link Aβ with key stages of AMD progression, which is both exciting and potentially insightful, as this identifies a well-established toxic agent that aggressively targets cells in degenerative brains. Here, we review the most recent findings supporting the hypothesis that Aβ may be a key factor in AMD pathology. We describe how multiple Aβ reservoirs, now reported in the ageing eye, may target the cellular physiology of the retina as well as associated layers, and propose a mechanistic pathway of Aβ-mediated degenerative change leading to AMD.

  8. DNA polymerase-beta is expressed early in neurons of Alzheimer's disease brain and is loaded into DNA replication forks in neurons challenged with beta-amyloid

    NARCIS (Netherlands)

    A. Copani; J.J.M. Hoozemans; F. Caraci; M. Calafiore; E.S. van Haastert; R. Veerhuis; A.J.M. Rozemuller; E. Aronica; M.A. Sortino; F. Nicoletti

    2006-01-01

    Cultured neurons exposed to synthetic beta-amyloid (A beta) fragments reenter the cell cycle and initiate a pathway of DNA replication that involves the repair enzyme DNA polymerase-beta (DNA pol-beta) before undergoing apoptotic death. In this study, by performing coimmunoprecipitation experiments

  9. Macrocyclic beta-sheet peptides that mimic protein quaternary structure through intermolecular beta-sheet interactions.

    Science.gov (United States)

    Khakshoor, Omid; Demeler, Borries; Nowick, James S

    2007-05-02

    This paper reports the design, synthesis, and characterization of a family of cyclic peptides that mimic protein quaternary structure through beta-sheet interactions. These peptides are 54-membered-ring macrocycles comprising an extended heptapeptide beta-strand, two Hao beta-strand mimics [JACS 2000, 122, 7654] joined by one additional alpha-amino acid, and two delta-linked ornithine beta-turn mimics [JACS 2003, 125, 876]. Peptide 3a, as the representative of these cyclic peptides, contains a heptapeptide sequence (TSFTYTS) adapted from the dimerization interface of protein NuG2 [PDB ID: 1mio]. 1H NMR studies of aqueous solutions of peptide 3a show a partially folded monomer in slow exchange with a strongly folded oligomer. NOE studies clearly show that the peptide self-associates through edge-to-edge beta-sheet dimerization. Pulsed-field gradient (PFG) NMR diffusion coefficient measurements and analytical ultracentrifugation (AUC) studies establish that the oligomer is a tetramer. Collectively, these experiments suggest a model in which cyclic peptide 3a oligomerizes to form a dimer of beta-sheet dimers. In this tetrameric beta-sheet sandwich, the macrocyclic peptide 3a is folded to form a beta-sheet, the beta-sheet is dimerized through edge-to-edge interactions, and this dimer is further dimerized through hydrophobic face-to-face interactions involving the Phe and Tyr groups. Further studies of peptides 3b-3n, which are homologues of peptide 3a with 1-6 variations in the heptapeptide sequence, elucidate the importance of the heptapeptide sequence in the folding and oligomerization of this family of cyclic peptides. Studies of peptides 3b-3g show that aromatic residues across from Hao improve folding of the peptide, while studies of peptides 3h-3n indicate that hydrophobic residues at positions R3 and R5 of the heptapeptide sequence are important in oligomerization.

  10. Destruction of amyloid fibrils by graphene through penetration and extraction of peptides

    Science.gov (United States)

    Yang, Zaixing; Ge, Cuicui; Liu, Jiajia; Chong, Yu; Gu, Zonglin; Jimenez-Cruz, Camilo A.; Chai, Zhifang; Zhou, Ruhong

    2015-11-01

    Current therapies for Alzheimer's disease (AD) can provide a moderate symptomatic reduction or delay progression at various stages of the disease, but such treatments ultimately do not arrest the advancement of AD. As such, novel approaches for AD treatment and prevention are urgently needed. We here provide both experimental and computational evidence that pristine graphene and graphene-oxide nanosheets can inhibit Aβ peptide monomer fibrillation and clear mature amyloid fibrils, thus impacting the central molecular superstructures correlated with AD pathogenesis. Our molecular dynamics simulations for the first time reveal that graphene nanosheets can penetrate and extract a large number of peptides from pre-formed amyloid fibrils; these effects seem to be related to exceptionally strong dispersion interactions between peptides and graphene that are further enhanced by strong π-π stacking between the aromatic residues of extracted Aβ peptides and the graphene surface. Atomic force microscopy images confirm these predictions by demonstrating that mature amyloid fibrils can be cut into pieces and cleared by graphene oxides. Thioflavin fluorescence assays further illustrate the detailed dynamic processes by which graphene induces inhibition of monomer aggregation and clearance of mature amyloid fibrils, respectively. Cell viability and ROS assays indicate that graphene oxide can indeed mitigate cytotoxicity of Aβ peptide amyloids. Our findings provide new insights into the underlying molecular mechanisms that define graphene-amyloid interaction and suggest that further research on nanotherapies for Alzheimer's and other protein aggregation-related diseases is warranted.Current therapies for Alzheimer's disease (AD) can provide a moderate symptomatic reduction or delay progression at various stages of the disease, but such treatments ultimately do not arrest the advancement of AD. As such, novel approaches for AD treatment and prevention are urgently needed. We

  11. Amyloid-beta Isoform Metabolism Quantitation by Stable Isotope Labeled Kinetics

    OpenAIRE

    Mawuenyega, Kwasi G.; Kasten, Tom; Sigurdson, Wendy; Bateman, Randall J.

    2013-01-01

    Abundant evidence suggests a central role for the amyloid-β (Aβ) peptide in Alzheimer’s disease (AD) pathogenesis. Production and clearance of different Aβ isoforms have been established as targets of proposed disease-modifying therapeutic treatments of AD. However, previous studies used multiple sequential purification steps to isolate the isoforms individually and quantitate them based on a common mid-domain peptide. We created a method to simultaneously purify Aβ isoforms and quantitate th...

  12. Mitochondrion-derived reactive oxygen species lead to enhanced amyloid beta formation

    NARCIS (Netherlands)

    Leuner, K.; Schutt, T.; Kurz, C.; Eckert, S.H.; Schiller, C.; Occhipinti, A.; Mai, S.; Jendrach, M.; Eckert, G.P.; Kruse, S.E.; Palmiter, R.D.; Brandt, U.; Drose, S.; Wittig, I.; Willem, M.; Haass, C.; Reichert, A.S.; Muller, W.E.

    2012-01-01

    AIMS: Intracellular amyloid beta (Abeta) oligomers and extracellular Abeta plaques are key players in the progression of sporadic Alzheimer's disease (AD). Still, the molecular signals triggering Abeta production are largely unclear. We asked whether mitochondrion-derived reactive oxygen species (RO

  13. Amyloid-beta Oligomers Relate to Cognitive Decline in Alzheimer's Disease

    NARCIS (Netherlands)

    Jongbloed, W.; Bruggink, K.A.; Kester, M.I.; Visser, P.J.; Scheltens, P.; Blankenstein, M.A.; Verbeek, M.M.; Teunissen, C.E.; Veerhuis, R.

    2015-01-01

    BACKGROUND: Amyloid-beta (Abeta)-oligomers are neurotoxic isoforms of Abeta and are a potential diagnostic biomarker for Alzheimer's disease (AD). OBJECTIVES: 1) Analyze the potential of Abeta-oligomer concentrations in cerebrospinal fluid (CSF) to diagnose and predict progression to AD in a large c

  14. Insulin inhibits amyloid beta-induced cell death in cultured human brain pericytes.

    NARCIS (Netherlands)

    Rensink, A.A.M.; Otte-Holler, I.; Boer, R.; Bosch, R.R.; Donkelaar, H.J. ten; Waal, R.M.W. de; Verbeek, M.M.; Kremer, H.P.H.

    2004-01-01

    Amyloid-beta (Abeta) deposition in the cerebral arterial and capillary walls is one of the characteristics of Alzheimer's disease and hereditary cerebral hemorrhage with amyloidosis-Dutch type. In vitro, Abeta1-40, carrying the "Dutch" mutation (DAbeta1-40), induced reproducible degeneration of cult

  15. Increased plasma amyloid beta protein 1-42 levels in Down syndrome.

    Science.gov (United States)

    Mehta, P D; Dalton, A J; Mehta, S P; Kim, K S; Sersen, E A; Wisniewski, H M

    1998-01-23

    Amyloid beta protein 1-40 (A beta40) and A beta42 levels were quantitated in plasma from 43 persons with Down syndrome (DS; 26-68 years of age), 43 age-matched normal controls, and 19 non-DS mentally retarded (MR) persons (26-91 years of age) by using a sandwich enzyme linked immunosorbent assay. A beta40 levels were higher in DS and MR than controls, but were similar between DS and MR groups. A beta42 levels were higher in DS than controls or MR persons. The ratios of A beta42/A beta40 were higher in DS than controls or MR persons. The findings are consistent with those seen in DS brains.

  16. Dual Effect of (LK)nL Peptides on the Onset of Insulin Amyloid Fiber Formation at Hydrophobic Surfaces.

    Science.gov (United States)

    Chouchane, Karim; Vendrely, Charlotte; Amari, Myriam; Moreaux, Katie; Bruckert, Franz; Weidenhaupt, Marianne

    2015-08-20

    Soluble proteins are constantly in contact with material or cellular surfaces, which can trigger their aggregation and therefore have a serious impact on the development of stable therapeutic proteins. In contact with hydrophobic material surfaces, human insulin aggregates readily into amyloid fibers. The kinetics of this aggregation can be accelerated by small peptides, forming stable beta-sheets on hydrophobic surfaces. Using a series of (LK)nL peptides with varying length, we show that these peptides, at low, substoichiometric concentrations, have a positive, cooperative effect on insulin aggregation. This effect is based on a cooperative adsorption of (LK)nL peptides at hydrophobic surfaces, where they form complexes that help the formation of aggregation nuclei. At higher concentrations, they interfere with the formation of an aggregative nucleus. These effects are strictly dependent on the their adsorption on hydrophobic material surfaces and highlight the importance of the impact of materials on protein stability. (LK)nL peptides prove to be valuable tools to investigate the mechanism of HI aggregation nuclei formation on hydrophobic surfaces.

  17. HIV Tat protein and amyloidpeptide form multifibrillar structures that cause neurotoxicity.

    Science.gov (United States)

    Hategan, Alina; Bianchet, Mario A; Steiner, Joseph; Karnaukhova, Elena; Masliah, Eliezer; Fields, Adam; Lee, Myoung-Hwa; Dickens, Alex M; Haughey, Norman; Dimitriadis, Emilios K; Nath, Avindra

    2017-02-20

    Deposition of amyloid-β plaques is increased in the brains of HIV-infected individuals, and the HIV transactivator of transcription (Tat) protein affects amyloidogenesis through several indirect mechanisms. Here, we investigated direct interactions between Tat and amyloidpeptide. Our in vitro studies showed that in the presence of Tat, uniform amyloid fibrils become double twisted fibrils and further form populations of thick unstructured filaments and aggregates. Specifically, Tat binding to the exterior surfaces of the Aβ fibrils increases β-sheet formation and lateral aggregation into thick multifibrillar structures, thus producing fibers with increased rigidity and mechanical resistance. Furthermore, Tat and Aβ aggregates in complex synergistically induced neurotoxicity both in vitro and in animal models. Increased rigidity and mechanical resistance of the amyloid-β-Tat complexes coupled with stronger adhesion due to the presence of Tat in the fibrils may account for increased damage, potentially through pore formation in membranes.

  18. Amyloidpeptide active site: theoretical Cu K-edge XANES study

    Science.gov (United States)

    Chaynikov, A. P.; Soldatov, M. A.; Streltsov, V.; Soldatov, A. V.

    2013-04-01

    This article is dedicated to the local atomic structure analysis of the copper binding site in amyloidpeptide. Here we considered two possible structural models that were previously obtained by means of EXAFS analysis and density functional theory simulations. We present the calculations of Cu K-edge XANES spectra for both models and make comparison of these spectra with experiment.

  19. Interruptions between the triple helix peptides can promote the formation of amyloid-like fibrils

    Science.gov (United States)

    Parmar, Avanish; Hwang, Eileen; Brodsky, Barbara

    2010-03-01

    It has been reported that collagen can initiate or accelerate the formation of amyloid fibrils. Non-fibrillar collagen types have sites where the repeating (Gly-Xaa-Yaa)n sequences are interrupted by non- Gly-Xaa-Yaa sequences, and we are investigating the hypothesis that some of these interruptions can promote amyloid formation. Our experimental data show that model peptides containing an 8 or 9 residue interruption sequence between (Gly-Pro-Hyp)n domains have a strong propensity for self association to form fibrous structures. A peptide containing only the 9-residue interruption sequence forms amyloid like fibrils with anti-parallel β sheet. Computational analysis predicts that 33 out of 374 naturally occurring human non-fibrillar collagen sequences within or between triple-helical sequences have significant cross-β aggregation potential, including the 8 and 9 residue sequences studied in peptides. Further studies are in progress to investigate whether a triple-helix peptide promotes amyloidogenesis and whether amyloid interferes with collagen fibrillogenesis.

  20. Insulin Promotes Survival of Amyloid-Beta Oligomers Neuroblastoma Damaged Cells via Caspase 9 Inhibition and Hsp70 Upregulation

    Directory of Open Access Journals (Sweden)

    M. Di Carlo

    2010-01-01

    Full Text Available Alzheimer's disease (AD and type 2 diabetes are connected in a way that is still not completely understood, but insulin resistance has been implicated as a risk factor for developing AD. Here we show an evidence that insulin is capable of reducing cytotoxicity induced by Amyloid-beta peptides (A-beta in its oligomeric form in a dose-dependent manner. By TUNEL and biochemical assays we demonstrate that the recovery of the cell viability is obtained by inhibition of intrinsic apoptotic program, triggered by A-beta and involving caspase 9 and 3 activation. A protective role of insulin on mitochondrial damage is also shown by using Mito-red vital dye. Furthermore, A-beta activates the stress inducible Hsp70 protein in LAN5 cells and an overexpression is detectable after the addition of insulin, suggesting that this major induction is the necessary condition to activate a cell survival program. Together, these results may provide opportunities for the design of preventive and therapeutic strategies against AD.

  1. A binding-site barrier affects imaging efficiency of high affinity amyloid-reactive peptide radiotracers in vivo.

    Directory of Open Access Journals (Sweden)

    Jonathan S Wall

    Full Text Available Amyloid is a complex pathology associated with a growing number of diseases including Alzheimer's disease, type 2 diabetes, rheumatoid arthritis, and myeloma. The distribution and extent of amyloid deposition in body organs establishes the prognosis and can define treatment options; therefore, determining the amyloid load by using non-invasive molecular imaging is clinically important. We have identified a heparin-binding peptide designated p5 that, when radioiodinated, was capable of selectively imaging systemic visceral AA amyloidosis in a murine model of the disease. The p5 peptide was posited to bind effectively to amyloid deposits, relative to similarly charged polybasic heparin-reactive peptides, because it adopted a polar α helix secondary structure. We have now synthesized a variant, p5R, in which the 8 lysine amino acids of p5 have been replaced with arginine residues predisposing the peptide toward the α helical conformation in an effort to enhance the reactivity of the peptide with the amyloid substrate. The p5R peptide had higher affinity for amyloid and visualized AA amyloid in mice by using SPECT/CT imaging; however, the microdistribution, as evidenced in micro-autoradiographs, was dramatically altered relative to the p5 peptide due to its increased affinity and a resultant "binding site barrier" effect. These data suggest that radioiodinated peptide p5R may be optimal for the in vivo detection of discreet, perivascular amyloid, as found in the brain and pancreatic vasculature, by using molecular imaging techniques; however, peptide p5, due to its increased penetration, may yield more quantitative imaging of expansive tissue amyloid deposits.

  2. Molecular simulations of beta-amyloid protein near hydrated lipids (PECASE).

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Aidan Patrick; Han, Kunwoo (Texas A& M University, College Station, TX); Ford, David M. (Texas A& M University, College Station, TX)

    2005-12-01

    We performed molecular dynamics simulations of beta-amyloid (A{beta}) protein and A{beta} fragment(31-42) in bulk water and near hydrated lipids to study the mechanism of neurotoxicity associated with the aggregation of the protein. We constructed full atomistic models using Cerius2 and ran simulations using LAMMPS. MD simulations with different conformations and positions of the protein fragment were performed. Thermodynamic properties were compared with previous literature and the results were analyzed. Longer simulations and data analyses based on the free energy profiles along the distance between the protein and the interface are ongoing.

  3. Using optical profilometry to characterize cell membrane roughness influenced by amyloid-beta 42 aggregates and electric fields

    Science.gov (United States)

    Pan, Huei-Jyuan; Wang, Ruei-Lin; Xiao, Jian-Long; Chang, Yu-Jen; Cheng, Ji-Yen; Chen, Yun-Ru; Lee, Chau-Hwang

    2014-01-01

    The membrane roughness of Neuro-2a neroblastoma cells is measured by using noninterferometric wide-field optical profilometry. The cells are treated with the fibril and oligomer conformers of amyloid-beta (Aβ) 42, which is a peptide of 42 amino acids related to the development of Alzheimer's disease. We find that both the Aβ42 fibrils and Aβ42 oligomers reduced the cell membrane roughness, but the effect of Aβ42 oligomers was faster and stronger than that of the fibrils. We also apply direct-current electric field (dcEF) stimulations on the cells. A dcEF of 300 mV/mm can increase the membrane roughness under the treatment of Aβ42. These results suggest that Aβ42 can decrease the membrane compliance of live neuroblastoma cells, and dcEFs may counteract this effect.

  4. MMPBSA decomposition of the binding energy throughout a molecular dynamics simulation of amyloid-beta (Abeta(10-35)) aggregation.

    Science.gov (United States)

    Campanera, Josep M; Pouplana, Ramon

    2010-04-15

    Recent experiments with amyloid-beta (Abeta) peptides indicate that the formation of toxic oligomers may be an important contribution to the onset of Alzheimer's disease. The toxicity of Abeta oligomers depend on their structure, which is governed by assembly dynamics. However, a detailed knowledge of the structure of at the atomic level has not been achieved yet due to limitations of current experimental techniques. In this study, replica exchange molecular dynamics simulations are used to identify the expected diversity of dimer conformations of Abeta(10-35) monomers. The most representative dimer conformation has been used to track the dimer formation process between both monomers. The process has been characterized by means of the evolution of the decomposition of the binding free energy, which provides an energetic profile of the interaction. Dimers undergo a process of reorganization driven basically by inter-chain hydrophobic and hydrophilic interactions and also solvation/desolvation processes.

  5. MMPBSA Decomposition of the Binding Energy throughout a Molecular Dynamics Simulation of Amyloid-Beta (Aß10−35 Aggregation

    Directory of Open Access Journals (Sweden)

    Josep M. Campanera

    2010-04-01

    Full Text Available Recent experiments with amyloid-beta (Aβ peptides indicate that the formation of toxic oligomers may be an important contribution to the onset of Alzheimer’s disease. The toxicity of Aβ oligomers depend on their structure, which is governed by assembly dynamics. However, a detailed knowledge of the structure of at the atomic level has not been achieved yet due to limitations of current experimental techniques. In this study, replica exchange molecular dynamics simulations are used to identify the expected diversity of dimer conformations of Aβ10−35 monomers. The most representative dimer conformation has been used to track the dimer formation process between both monomers. The process has been characterized by means of the evolution of the decomposition of the binding free energy, which provides an energetic profile of the interaction. Dimers undergo a process of reorganization driven basically by inter-chain hydrophobic and hydrophilic interactions and also solvation/desolvation processes.

  6. ETAS, an enzyme-treated asparagus extract, attenuates amyloid beta-induced cellular disorder in PC12 cells.

    Science.gov (United States)

    Ogasawara, Junetsu; Ito, Tomohiro; Wakame, Koji; Kitadate, Kentaro; Sakurai, Takuya; Sato, Shogo; Ishibashi, Yoshinaga; Izawa, Tetsuya; Takahashi, Kazuto; Ishida, Hitoshi; Takabatake, Ichiro; Kizaki, Takako; Ohno, Hideki

    2014-04-01

    One of the pathological characterizations of Alzheimer's disease (AD) is the deposition of amyloid beta peptide (Abeta) in cerebral cortical cells. The deposition of Abeta in neuronal cells leads to an increase in the production of free radicals that are typified by reactive oxygen species (ROS), thereby inducing cell death. A growing body of evidence now suggests that several plant-derived food ingredients are capable of scavenging ROS in mammalian cells. The purpose of the present study was to investigate whether enzyme-treated asparagus extract (ETAS), which is rich in antioxidants, is one of these ingredients. The pre-incubation of differentiated PC 12 cells with ETAS significantly recovered Abeta-induced reduction of cell viability, which was accompanied by reduced levels of ROS. These results suggest that ETAS may be one of the functional food ingredients with anti-oxidative capacity to help prevent AD.

  7. Calcium ionophore A23187 specifically decreases the secretion of beta-secretase cleaved amyloid precursor protein during apoptosis in primary rat cortical cultures

    DEFF Research Database (Denmark)

    Sennvik, K; Benedikz, Eirikur; Fastbom, J;

    2001-01-01

    Alzheimer's disease (AD) is characterized by the degeneration and loss of neurons, intracellular neurofibrillary tangles and the accumulation of extracellular senile plaques consisting mainly of beta-amyloid (A beta). A beta is generated from the amyloid precursor protein (APP) by sequential beta...

  8. Macrophage colony-stimulating factor augments beta-amyloid-induced interleukin-1, interleukin-6, and nitric oxide production by microglial cells.

    Science.gov (United States)

    Murphy, G M; Yang, L; Cordell, B

    1998-08-14

    In Alzheimer's disease (AD), a chronic cerebral inflammatory state is thought to lead to neuronal injury. Microglia, intrinsic cerebral immune effector cells, are likely to be key in the pathophysiology of this inflammatory state. We showed that macrophage colony-stimulating factor, a microglial activator found at increased levels in the central nervous system in AD, dramatically augments beta-amyloid peptide (betaAP)-induced microglial production of interleukin-1, interleukin-6, and nitric oxide. In contrast, granulocyte macrophage colony-stimulating factor, another hematopoietic cytokine found in the AD brain, did not augment betaAP-induced microglial secretory activity. These results indicate that increased macrophage colony-stimulating factor levels in AD could magnify betaAP-induced microglial inflammatory cytokine and nitric oxide production, which in turn could intensify the cerebral inflammatory state by activating astrocytes and additional microglia, as well as directly injuring neurons.

  9. Interactions of laminin with the amyloid ß peptide: Implications for Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Morgan C.

    2001-01-01

    Full Text Available Extensive neuronal cell loss is observed in Alzheimer's disease. Laminin immunoreactivity colocalizes with senile plaques, the characteristic extracellular histopathological lesions of Alzheimer brain, which consist of the amyloid ß (Aß peptide polymerized into amyloid fibrils. These lesions have neurotoxic effects and have been proposed to be a main cause of neurodegeneration. In order to understand the pathological significance of the interaction between laminin and amyloid, we investigated the effect of laminin on amyloid structure and toxicity. We found that laminin interacts with the Aß1-40 peptide, blocking fibril formation and even inducing depolymerization of preformed fibrils. Protofilaments known to be intermediate species of Aß fibril formation were also detected as intermediate species of laminin-induced Aß fibril depolymerization. Moreover, laminin-amyloid interactions inhibited the toxic effects on rat primary hippocampal neurons. As a whole, our results indicate a putative anti-amyloidogenic role of laminin which may be of biological and therapeutic interest for controlling amyloidosis, such as those observed in cerebral angiopathy and Alzheimer's disease.

  10. Effects of grape seed-derived polyphenols on amyloid beta-protein self-assembly and cytotoxicity.

    Science.gov (United States)

    Ono, Kenjiro; Condron, Margaret M; Ho, Lap; Wang, Jun; Zhao, Wei; Pasinetti, Giulio M; Teplow, David B

    2008-11-21

    Epidemiological evidence suggests that moderate consumption of red wine reduces the incidence of Alzheimer disease (AD). To study the protective effects of red wine, experiments recently were executed in the Tg2576 mouse model of AD. These studies showed that a commercially available grape seed polyphenolic extract, MegaNatural-AZ (MN), significantly attenuated AD-type cognitive deterioration and reduced cerebral amyloid deposition (Wang, J., Ho, L., Zhao, W., Ono, K., Rosensweig, C., Chen, L., Humala, N., Teplow, D. B., and Pasinetti, G. M. (2008) J. Neurosci. 28, 6388-6392). To elucidate the mechanistic bases for these observations, here we used CD spectroscopy, photo-induced cross-linking of unmodified proteins, thioflavin T fluorescence, size exclusion chromatography, and electron microscopy to examine the effects of MN on the assembly of the two predominant disease-related amyloid beta-protein alloforms, Abeta40 and Abeta42. We also examined the effects of MN on Abeta-induced cytotoxicity by assaying 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide metabolism and lactate dehydrogenase activity in Abeta-treated, differentiated pheochromocytoma (PC12) cells. Initial studies revealed that MN blocked Abeta fibril formation. Subsequent evaluation of the assembly stage specificity of the effect showed that MN was able to inhibit protofibril formation, pre-protofibrillar oligomerization, and initial coil --> alpha-helix/beta-sheet secondary structure transitions. Importantly, MN had protective effects in assays of cytotoxicity in which MN was mixed with Abeta prior to peptide assembly or following assembly and just prior to peptide addition to cells. These data suggest that MN is worthy of consideration as a therapeutic agent for AD.

  11. Always around, never the same: Pathways of amyloid beta induced neurodegeneration throughout the pathogenic cascade of Alzheimer's disease

    NARCIS (Netherlands)

    J.J.M. Hoozemans; S.M. Chafekar; F. Baas; P. Eikelenboom; W. Scheper

    2006-01-01

    There is an increasing amount of evidence showing the importance of intermediate aggregation species of amyloid beta (A beta) in the pathogenic cascade of Alzheimer's disease (AD). Different A beta assembly forms may mediate diverse toxic effects at different stages of the disease. Mouse models for

  12. The Peptide Vaccine Combined with Prior Immunization of a Conventional Diphtheria-Tetanus Toxoid Vaccine Induced Amyloid β Binding Antibodies on Cynomolgus Monkeys and Guinea Pigs

    Directory of Open Access Journals (Sweden)

    Akira Yano

    2015-01-01

    Full Text Available The reduction of brain amyloid beta (Aβ peptides by anti-Aβ antibodies is one of the possible therapies for Alzheimer’s disease. We previously reported that the Aβ peptide vaccine including the T-cell epitope of diphtheria-tetanus combined toxoid (DT induced anti-Aβ antibodies, and the prior immunization with conventional DT vaccine enhanced the immunogenicity of the peptide. Cynomolgus monkeys were given the peptide vaccine subcutaneously in combination with the prior DT vaccination. Vaccination with a similar regimen was also performed on guinea pigs. The peptide vaccine induced anti-Aβ antibodies in cynomolgus monkeys and guinea pigs without chemical adjuvants, and excessive immune responses were not observed. Those antibodies could preferentially recognize Aβ40, and Aβ42 compared to Aβ fibrils. The levels of serum anti-Aβ antibodies and plasma Aβ peptides increased in both animals and decreased the brain Aβ40 level of guinea pigs. The peptide vaccine could induce a similar binding profile of anti-Aβ antibodies in cynomolgus monkeys and guinea pigs. The peptide vaccination could be expected to reduce the brain Aβ peptides and their toxic effects via clearance of Aβ peptides by generated antibodies.

  13. CCR5 deficiency accelerates lipopolysaccharide-induced astrogliosis, amyloid-beta deposit and impaired memory function.

    Science.gov (United States)

    Hwang, Chul Ju; Park, Mi Hee; Hwang, Jae Yeon; Kim, Ju Hwan; Yun, Na Young; Oh, Sang Yeon; Song, Ju Kyung; Seo, Hyun Ok; Kim, Yun-Bae; Hwang, Dae Yeon; Oh, Ki-Wan; Han, Sang-Bae; Hong, Jin Tae

    2016-03-15

    Chemokine receptors are implicated in inflammation and immune responses. Neuro-inflammation is associated with activation of astrocyte and amyloid-beta (Aβ) generations that lead to pathogenesis of Alzheimer disease (AD). Previous our study showed that deficiency of CC chemokine receptor 5 (CCR5) results in activation of astrocytes and Aβ deposit, and thus memory dysfunction through increase of CC chemokine receptor 2 (CCR2) expression. CCR5 knockout mice were used as an animal model with memory dysfunction. For the purpose LPS was injected i.p. daily (0.25 mg/kg/day). The memory dysfunctions were much higher in LPS-injected CCR5 knockout mice compared to CCR5 wild type mice as well as non-injected CCR5 knockout mice. Associated with severe memory dysfuction in LPS injected CCR5 knockout mice, LPS injection significant increase expression of inflammatory proteins, astrocyte activation, expressions of β-secretase as well as Aβ deposition in the brain of CCR5 knockout mice as compared with that of CCR5 wild type mice. In CCR5 knockout mice, CCR2 expressions were high and co-localized with GFAP which was significantly elevated by LPS. Expression of monocyte chemoattractant protein-1 (MCP-1) which ligands of CCR2 also increased by LPS injection, and increment of MCP-1 expression is much higher in CCR5 knockout mice. BV-2 cells treated with CCR5 antagonist, D-ala-peptide T-amide (DAPTA) and cultured astrocytes isolated from CCR5 knockout mice treated with LPS (1 μg/ml) and CCR2 antagonist, decreased the NF-ĸB activation and Aβ level. These findings suggest that the deficiency of CCR5 enhances response of LPS, which accelerates to neuro-inflammation and memory impairment.

  14. Amyloid beta resistance in nerve cell lines is mediated by the Warburg effect.

    Directory of Open Access Journals (Sweden)

    Jordan T Newington

    Full Text Available Amyloid beta (Aβ peptide accumulation in the brains of patients with Alzheimer's disease (AD is closely associated with increased nerve cell death. However, many cells survive and it is important to understand the mechanisms involved in this survival response. Recent studies have shown that an anti-apoptotic mechanism in cancer cells is mediated by aerobic glycolysis, also known as the Warburg effect. One of the major regulators of aerobic glycolysis is pyruvate dehydrogenase kinase (PDK, an enzyme which represses mitochondrial respiration and forces the cell to rely heavily on glycolysis, even in the presence of oxygen. Recent neuroimaging studies have shown that the spatial distribution of aerobic glycolysis in the brains of AD patients strongly correlates with Aβ deposition. Interestingly, clonal nerve cell lines selected for resistance to Aβ exhibit increased glycolysis as a result of activation of the transcription factor hypoxia inducible factor 1. Here we show that Aβ resistant nerve cell lines upregulate Warburg effect enzymes in a manner reminiscent of cancer cells. In particular, Aβ resistant nerve cell lines showed elevated PDK1 expression in addition to an increase in lactate dehydrogenase A (LDHA activity and lactate production when compared to control cells. In addition, mitochondrial derived reactive oxygen species (ROS were markedly diminished in resistant but not sensitive cells. Chemically or genetically inhibiting LDHA or PDK1 re-sensitized resistant cells to Aβ toxicity. These findings suggest that the Warburg effect may contribute to apoptotic-resistance mechanisms in the surviving neurons of the AD brain. Loss of the adaptive advantage afforded by aerobic glycolysis may exacerbate the pathophysiological processes associated with AD.

  15. Matrix metalloproteinase 2 (MMP-2) degrades soluble vasculotropic amyloid-beta E22Q and L34V mutants, delaying their toxicity for human brain microvascular endothelial cells.

    Science.gov (United States)

    Hernandez-Guillamon, Mar; Mawhirt, Stephanie; Fossati, Silvia; Blais, Steven; Pares, Mireia; Penalba, Anna; Boada, Merce; Couraud, Pierre-Olivier; Neubert, Thomas A; Montaner, Joan; Ghiso, Jorge; Rostagno, Agueda

    2010-08-27

    Patients carrying mutations within the amyloid-beta (Abeta) sequence develop severe early-onset cerebral amyloid angiopathy with some of the related variants manifesting primarily with hemorrhagic phenotypes. Matrix metalloproteases (MMPs) are typically associated with blood brain barrier disruption and hemorrhagic transformations after ischemic stroke. However, their contribution to cerebral amyloid angiopathy-related hemorrhage remains unclear. Human brain endothelial cells challenged with Abeta synthetic homologues containing mutations known to be associated in vivo with hemorrhagic manifestations (AbetaE22Q and AbetaL34V) showed enhanced production and activation of MMP-2, evaluated via Multiplex MMP antibody arrays, gel zymography, and Western blot, which in turn proteolytically cleaved in situ the Abeta peptides. Immunoprecipitation followed by mass spectrometry analysis highlighted the generation of specific C-terminal proteolytic fragments, in particular the accumulation of Abeta-(1-16), a result validated in vitro with recombinant MMP-2 and quantitatively evaluated using deuterium-labeled internal standards. Silencing MMP-2 gene expression resulted in reduced Abeta degradation and enhanced apoptosis. Secretion and activation of MMP-2 as well as susceptibility of the Abeta peptides to MMP-2 degradation were dependent on the peptide conformation, with fibrillar elements of AbetaE22Q exhibiting negligible effects. Our results indicate that MMP-2 release and activation differentially degrades Abeta species, delaying their toxicity for endothelial cells. However, taking into consideration MMP ability to degrade basement membrane components, these protective effects might also undesirably compromise blood brain barrier integrity and precipitate a hemorrhagic phenotype.

  16. A Simulation Model of Periarterial Clearance of Amyloid-beta from the Brain

    Directory of Open Access Journals (Sweden)

    Alexandra Katharina Diem

    2016-02-01

    Full Text Available The accumulation of soluble and insoluble amyloid-beta (A-beta in the brain indicates failure of elimination of A-beta from the brain with age and Alzheimer's disease. There is a variety of mechanisms for elimination of A-beta from the brain. They include the action of microglia and enzymes together with receptor-mediated absorption of A-beta into the blood and periarterial lymphatic drainage of A-beta. Although the brain possesses no conventional lymphatics, experimental studies have shown that fluid and solutes, such as A-beta, are eliminated from the brain along 100 nm wide basement membranes in the walls of cerebral capillaries and arteries. This lymphatic drainage pathway is reflected in the deposition of A-beta in the walls of human arteries with age and Alzheimer's disease as cerebral amyloid angiopathy (CAA. Initially, A-beta diffuses through the extracellular spaces of grey matter in the brain and then enters basement membranes in capillaries and arteries to flow out of the brain. Although diffusion through the extracellular spaces of the brain has been well characterised, the exact mechanism whereby perivascular elimination of A-beta occurs has not been resolved. Here we use a computational model to describe the process of periarterial drainage in the context of diffusion in the brain, demonstrating that periarterial drainage along basement membranes is very rapid compared with diffusion. Our results are a validation of experimental data and are significant in the context of failure of periarterial drainage as a mechanism underlying the pathogenesis of AD as well as complications associated with its immunotherapy.

  17. [beta subsccript 2]-microglobulin forms three-dimensional domain-swapped amyloid fibrils with disulfide linkages

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Cong; Sawaya, Michael R.; Eisenberg, David (UCLA)

    2011-08-09

    {beta}{sub 2}-microglobulin ({beta}{sub 2}-m) is the light chain of the type I major histocompatibility complex. It deposits as amyloid fibrils within joints during long-term hemodialysis treatment. Despite the devastating effects of dialysis-related amyloidosis, full understanding of how fibrils form from soluble {beta}{sub 2}-m remains elusive. Here we show that {beta}{sub 2}-m can oligomerize and fibrillize via three-dimensional domain swapping. Isolating a covalently bound, domain-swapped dimer from {beta}{sub 2}-m oligomers on the pathway to fibrils, we were able to determine its crystal structure. The hinge loop that connects the swapped domain to the core domain includes the fibrillizing segment LSFSKD, whose atomic structure we also determined. The LSFSKD structure reveals a class 5 steric zipper, akin to other amyloid spines. The structures of the dimer and the zipper spine fit well into an atomic model for this fibrillar form of {beta}{sub 2}-m, which assembles slowly under physiological conditions.

  18. A novel presenilin-1 mutation: increased beta-amyloid and neurofibrillary changes.

    Science.gov (United States)

    Gómez-Isla, T; Wasco, W; Pettingell, W P; Gurubhagavatula, S; Schmidt, S D; Jondro, P D; McNamara, M; Rodes, L A; DiBlasi, T; Growdon, W B; Seubert, P; Schenk, D; Growdon, J H; Hyman, B T; Tanzi, R E

    1997-06-01

    The prevalence of known mutations in presenilin genes (PS1 and PS2) causing early-onset familial Alzheimer's disease (FAD) was assessed in a population of 98 singleton early-onset AD cases, 29 early-onset FAD cases, and 15 late-onset FAD cases. None of the cases tested positive for the eight mutations initially reported, and none of these mutations were observed in 60 age-matched controls. A novel mutation (R269H) in PS1 was found in a single case of early-onset AD but not in any other AD or control case. Thus, the PS mutations tested are quite rare in early-onset AD. Amyloid beta protein (A beta) deposition was investigated in the temporal cortex of the R269H mutation case using end-specific monoclonal antibodies to detect the presence of A beta x-40 and A beta x-42 subspecies. Stereologically unbiased tangle and neuropil thread counts were obtained from the same region. R269H PS1 mutation was associated with early age of dementia onset, higher amounts of total A beta and A beta x-42, and increased neuronal cytoskeletal changes. Thus, if the changes observed on this case prove to be typical of PS1 mutations, PS1 mutations may impact both amyloid deposition and neurofibrillary pathology.

  19. Reduced aggregation and cytotoxicity of amyloid peptides by graphene oxide/gold nanocomposites prepared by pulsed laser ablation in water.

    Science.gov (United States)

    Li, Jingying; Han, Qiusen; Wang, Xinhuan; Yu, Ning; Yang, Lin; Yang, Rong; Wang, Chen

    2014-11-12

    A novel and convenient method to synthesize the nanocomposites combining graphene oxides (GO) with gold nanoparticles (AuNPs) is reported and their applications to modulate amyloid peptide aggregation are demonstrated. The nanocomposites produced by pulsed laser ablation (PLA) in water show good biocompatibility and solubility. The reduced aggregation of amyloid peptides by the nanocomposites is confirmed by Thioflavin T fluorescence and atomic force microscopy. The cell viability experiments reveals that the presence of the nanocomposites can significantly reduce the cytotoxicity of the amyloid peptides. Furthermore, the depolymerization of peptide fibrils and inhibition of their cellular cytotoxicity by GO/AuNPs is also observed. These observations suggest that the nanocomposites combining GO and AuNPs have a great potential for designing new therapeutic agents and are promising for future treatment of amyloid-related diseases.

  20. NMDA receptor subunit composition determines beta-amyloid-induced neurodegeneration and synaptic loss

    OpenAIRE

    Tackenberg, C; Grinschgl, S; Trutzel, A; Santuccione, A C; Frey, M C; Konietzko, U; Grimm, J.; Brandt, R.; Nitsch, R M

    2013-01-01

    Aggregates of amyloid-beta (Aβ) and tau are hallmarks of Alzheimer's disease (AD) leading to neurodegeneration and synaptic loss. While increasing evidence suggests that inhibition of N-methyl--aspartate receptors (NMDARs) may mitigate certain aspects of AD neuropathology, the precise role of different NMDAR subtypes for Aβ- and tau-mediated toxicity remains to be elucidated. Using mouse organotypic hippocampal slice cultures from arcAβ transgenic mice combined with Sindbis virus-mediated ex...

  1. Amyloid beta1–42 and the phoshorylated tau threonine 231 in brains of aged cynomolgus monkeys (Macaca fascicularis)

    DEFF Research Database (Denmark)

    Darusman, Huda Shalahudin; Gjedde, Albert; Sajuthi, Dondin

    2014-01-01

    Pathological hallmarks indicative of Alzheimer's disease (AD), which are the plaques of amyloid beta1-42 and neurofibrillary tangles, were found in brain of aged cynomolgus monkey. The aim of this study was to investigate if aged monkeys exhibiting spatial memory impairment and levels of biomarkers...... angiopathy, and the tauopathy, to possible neurofibrillary tangles. Six aged monkeys were selected based on their spatial memory performance and profile of biomarkers of AD, divided equally to affected aged subject - with Memory-affected and low amyloid level, and aged with higher performance in memory...... and amyloid, as the age-matched subjects. Using immunohistochemistry, plaques of amyloid beta1-42 were observed in two out of three brains of aged subjects with memory impairment and biomarkers indicative of AD. The cerebral amyloid angiopathy was observed in both aged monkey groups, and unlike in the human...

  2. Effect of pathogenic mutations on the structure and dynamics of Alzheimer's A beta 42-amyloid oligomers.

    Science.gov (United States)

    Kassler, Kristin; Horn, Anselm H C; Sticht, Heinrich

    2010-05-01

    Converging lines of evidence suggest that soluble A beta-amyloid oligomers play a pivotal role in the pathogenesis of Alzheimer's disease, and present direct effectors of synaptic and cognitive dysfunction. Three pathological E22-A beta-amyloid point mutants (E22G, E22K, E22Q) and the deletion mutant E22 Delta exhibit an enhanced tendency to form prefibrillar aggregates. The present study assessed the effect of these four mutations using molecular dynamics simulations and subsequent structural and energetic analyses. Our data shows that E22 plays a unique role in wild type A beta, since it has a destabilising effect on the oligomer structure due to electrostatic repulsion between adjacent E22 side chains. Mutations in which E22 is replaced by an uncharged residue result in higher oligomer stability. This effect is also observed to a lesser extent for the E22K mutation and is consistent with its lower pathogenicity compared to other mutants. Interestingly, deletion of E22 does not destroy the amyloid fold but is compensated by local changes in the backbone geometry that allow the preservation of a structurally important salt bridge. The finding that all mutant oligomers investigated exhibit higher internal stability than the wild type offers an explanation for the experimentally observed enhanced oligomer formation and stability.

  3. Interrelation of inflammation and APP in sIBM: IL-1 beta induces accumulation of beta-amyloid in skeletal muscle.

    Science.gov (United States)

    Schmidt, Jens; Barthel, Konstanze; Wrede, Arne; Salajegheh, Mohammad; Bähr, Mathias; Dalakas, Marinos C

    2008-05-01

    Distinct interrelationships between inflammation and beta-amyloid-associated degeneration, the two major hallmarks of the skeletal muscle pathology in sporadic inclusion body myositis (sIBM), have remained elusive. Expression of markers relevant for these pathomechanisms were analysed in biopsies of sIBM, polymyositis (PM), dermatomyositis (DM), dystrophic and non-myopathic muscle as controls, and cultured human myotubes. By quantitative PCR, a higher upregulation was noted for the mRNA-expression of CXCL-9, CCL-3, CCL-4, IFN-gamma, TNF-alpha and IL-1 beta in sIBM muscle compared to PM, DM and controls. All inflammatory myopathies displayed overexpression of degeneration-associated markers, yet only in sIBM, expression of the mRNA of amyloid precursor protein (APP) significantly and consistently correlated with inflammation in the muscle and mRNA-levels of chemokines and IFN-gamma. Only in sIBM, immunohistochemical analysis revealed that inflammatory mediators including IL-1 beta co-localized to beta-amyloid depositions within myofibres. In human myotubes, exposure to IL-1 beta caused upregulation of APP with subsequent intracellular aggregation of beta-amyloid. Our data suggest that, in sIBM muscle, production of high amounts of pro-inflammatory mediators specifically induces beta-amyloid-associated degeneration. The observations may help to design targeted treatment strategies for chronic inflammatory disorders of the skeletal muscle.

  4. Rapid exchange of metal between Zn(7)-metallothionein-3 and amyloidpeptide promotes amyloid-related structural changes.

    Science.gov (United States)

    Pedersen, Jeppe T; Hureau, Christelle; Hemmingsen, Lars; Heegaard, Niels H H; Østergaard, Jesper; Vašák, Milan; Faller, Peter

    2012-02-28

    Metal ions, especially Zn(2+) and Cu(2+), are implemented in the neuropathogenesis of Alzheimer's disease (AD) by modulating the aggregation of amyloidpeptides (Aβ). Also, Cu(2+) may promote AD neurotoxicity through production of reactive oxygen species (ROS). Impaired metal ion homeostasis is most likely the underlying cause of aberrant metal-Aβ interaction. Thus, focusing on the body's natural protective mechanisms is an attractive therapeutic strategy for AD. The metalloprotein metallothionein-3 (MT-3) prevents Cu-Aβ-mediated cytotoxicity by a Zn-Cu exchange that terminates ROS production. Key questions about the metal exchange mechanisms remain unanswered, e.g., whether an Aβ-metal-MT-3 complex is formed. We studied the exchange of metal between Aβ and Zn(7)-MT-3 by a combination of spectroscopy (absorption, fluorescence, thioflavin T assay, and nuclear magnetic resonance) and transmission electron microscopy. We found that the metal exchange occurs via free Cu(2+) and that an Aβ-metal-MT-3 complex is not formed. This means that the metal exchange does not require specific recognition between Aβ and Zn(7)-MT-3. Also, we found that the metal exchange caused amyloid-related structural and morphological changes in the resulting Zn-Aβ aggregates. A detailed model of the metal exchange mechanism is presented. This model could potentially be important in developing therapeutics with metal-protein attenuating properties in AD.

  5. Self-assembly of the beta2-microglobulin NHVTLSQ peptide using a coarse-grained protein model reveals a beta-barrel species.

    Science.gov (United States)

    Song, Wei; Wei, Guanghong; Mousseau, Normand; Derreumaux, Philippe

    2008-04-10

    Although a wide variety of proteins can assemble into amyloid fibrils, the structure of the early oligomeric species on the aggregation pathways remains unknown at an atomic level of detail. In this paper we report, using molecular dynamics simulations with the OPEP coarse-grained force field, the free energy landscape of a tetramer and a heptamer of the beta2-microglobulin NHVTLSQ peptide. On the basis of a total of more than 17 ns trajectories started from various states, we find that both species are in equilibrium between amorphous and well-ordered aggregates with cross-beta-structure, a perpendicular bilayer beta-sheet, and, for the heptamer, six- or seven-stranded closed and open beta-barrels. Moreover, analysis of the heptamer trajectories shows that the perpendicular bilayer beta-sheet is one possible precursor of the beta-barrel, but that this barrel can also be formed from a twisted monolayer beta-sheet with successive addition of chains. Comparison with previous aggregation simulations and the fact that nature constructs transmembrane beta-sheet proteins with pores open the possibility that beta-barrels with small inner diameters may represent a common intermediate during the early steps of aggregation.

  6. Molecular cloning and chromosomal localization of the nucleic acid sequences encoding the cerebrovascular and plaque amyloid peptide

    Energy Technology Data Exchange (ETDEWEB)

    Robakis, N.K.; Ramakrishna, N.; Wolfe, G.; Wisniewski, H.M.

    1987-05-01

    Amyloid deposits in vessels and neuritic plaques are found in large numbers in the brains of Alzheimer's Disease (AD) and adult Downs Syndrome (DS) patients. The partial amino acid sequence of the amyloid peptide has been determined. They used this amino acid sequence to synthesize an oligonucleotide probe specific for the amyloid peptide gene. Screening of a human brain cDNA library with this probe, yielded a clone which contained an insert 1.8 kb. This clone contains a long open reading frame including a region which encodes the 28 amino acids of the amyloid peptide. Northern blots of human brain mRNA detected a transcript of 3.3 kb long which hybridized to their cDNA clone. A similar mRNA was detected in the hamster, mouse, sheep and rabbit brains. Southern blots under stringent hybridization conditions detected sequences homologous to the amyloid gene in the genomes of hamster, mouse, sheep and rabbit suggesting that this gene has been conserved during mammalian evolution. Hybridization under reduced stringency revealed the presence of additional sequences related to the amyloid gene in the genome of the above organisms. Hybridization analysis of human x chinese hamster cell lines DNA showed that the gene encoding the amyloid peptide is located on chromosome 21, suggesting a genetic relationship between AD and DS.

  7. Longitudinal assessment of tau and amyloid beta in cerebrospinal fluid of Parkinson disease.

    Science.gov (United States)

    Zhang, Jing; Mattison, Hayley A; Liu, Changqin; Ginghina, Carmen; Auinger, Peggy; McDermott, Michael P; Stewart, Tessandra; Kang, Un Jung; Cain, Kevin C; Shi, Min

    2013-11-01

    Tau gene has been consistently associated with the risk of Parkinson disease in recent genome wide association studies. In addition, alterations of the levels of total tau, phosphorylated tau [181P], and amyloid beta 1-42 in cerebrospinal fluid have been reported in patients with sporadic Parkinson disease and asymptomatic carriers of leucine-rich repeat kinase 2 mutations, in patterns that clearly differ from those typically described for patients with Alzheimer disease. To further determine the potential roles of these molecules in Parkinson disease pathogenesis and/or in tracking the disease progression, especially at early stages, the current study assessed all three proteins in 403 Parkinson disease patients enrolled in the DATATOP (Deprenyl and tocopherol antioxidative therapy of parkinsonism) placebo-controlled clinical trial, the largest cohort to date with cerebrospinal fluid samples collected longitudinally. These initially drug-naive patients at early disease stages were clinically evaluated, and cerebrospinal fluid was collected at baseline and then at endpoint, defined as the time at which symptomatic anti-Parkinson disease medications were determined to be required. General linear models were used to test for associations between baseline cerebrospinal fluid biomarker levels or their rates of change and changes in the Unified Parkinson Disease Rating Scale (total or part III motor score) over time. Robust associations among candidate markers are readily noted. Baseline levels of amyloid beta were weakly but negatively correlated with baseline Unified Parkinson Disease Rating Scale total scores. Baseline phosphorylated tau/total tau and phosphorylated tau/amyloid beta were significantly and negatively correlated with the rates of the Unified Parkinson Disease Rating Scale change. While medications (deprenyl and/or tocopherol) did not appear to alter biomarkers appreciably, a weak but significant positive correlation between the rate of change in total

  8. Role of amyloid peptides in vascular dysfunction and platelet dysregulation in Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Ilaria eCanobbio

    2015-03-01

    Full Text Available Alzheimer’s disease (AD is the most common neurodegenerative cause of dementia in the elderly. AD is accompanied by the accumulation of amyloid peptides in the brain parenchyma and in the cerebral vessels. The sporadic form of the AD accounts for about 95% of all cases. It is characterized by a late onset, typically after the age of 65, with a complex and still poorly understood aetiology. Several observations point towards a central role of cerebrovascular dysfunction in the onset of sporadic AD. According to the vascular hypothesis, AD may be initiated by vascular dysfunctions that precede and promote the neurodegenerative process. In accordance to this, AD patients show increased hemorragic or ischemic stroke risks. It is now clear that multiple bidirectional connections exist between AD and cerebrovascular disease, and in this new scenario, the effect of amyloid peptides on vascular cells and blood platelets appear to be central to AD. In this review we analyse the effect of amyloid peptides on vascular function and platelet activation and its contribution to the cerebrovascular pathology associated with AD and the progression of this disease.

  9. An infrared spectroscopy approach to follow β-sheet formation in peptide amyloid assemblies

    Science.gov (United States)

    Seo, Jongcheol; Hoffmann, Waldemar; Warnke, Stephan; Huang, Xing; Gewinner, Sandy; Schöllkopf, Wieland; Bowers, Michael T.; von Helden, Gert; Pagel, Kevin

    2017-01-01

    Amyloidogenic peptides and proteins play a crucial role in a variety of neurodegenerative disorders such as Alzheimer's and Parkinson's disease. These proteins undergo a spontaneous transition from a soluble, often partially folded form, into insoluble amyloid fibrils that are rich in β-sheets. Increasing evidence suggests that highly dynamic, polydisperse folding intermediates, which occur during fibril formation, are the toxic species in the amyloid-related diseases. Traditional condensed-phase methods are of limited use for characterizing these states because they typically only provide ensemble averages rather than information about individual oligomers. Here we report the first direct secondary-structure analysis of individual amyloid intermediates using a combination of ion mobility spectrometry-mass spectrometry and gas-phase infrared spectroscopy. Our data reveal that oligomers of the fibril-forming peptide segments VEALYL and YVEALL, which consist of 4-9 peptide strands, can contain a significant amount of β-sheet. In addition, our data show that the more-extended variants of each oligomer generally exhibit increased β-sheet content.

  10. Cu(II) mediates kinetically distinct, non-amyloidogenic aggregation of amyloidpeptides

    DEFF Research Database (Denmark)

    Pedersen, Jeppe T.; Østergaard, Jesper; Rozlosnik, Noemi

    2011-01-01

    Cu(II) ions are implicated in the pathogenesis of Alzheimer disease by influencing the aggregation of the amyloid-β (Aβ) peptide. Elucidating the underlying Cu(II)-induced Aβ aggregation is paramount for understanding the role of Cu(II) in the pathology of Alzheimer disease. The aim of this study...... on (i) the aggregation kinetics/mechanism of Aβ, because three different kinetic scenarios were observed depending on the Cu(II):Aβ ratio, (ii) the metal:peptide stoichiometry in the aggregates, which increased to 1.4 at supra-equimolar Cu(II):Aβ ratio; and (iii) the morphology of the aggregates, which...

  11. Origin of life. Primordial genetics: Information transfer in a pre-RNA world based on self-replicating beta-sheet amyloid conformers.

    Science.gov (United States)

    Maury, Carl Peter J

    2015-10-01

    The question of the origin of life on Earth can largely be reduced to the question of what was the first molecular replicator system that was able to replicate and evolve under the presumably very harsh conditions on the early Earth. It is unlikely that a functional RNA could have existed under such conditions and it is generally assumed that some other kind of information system preceded the RNA world. Here, I present an informational molecular system that is stable, self-replicative, environmentally responsive, and evolvable under conditions characterized by high temperatures, ultraviolet and cosmic radiation. This postulated pregenetic system is based on the amyloid fold, a functionally unique polypeptide fold characterized by a cross beta-sheet structure in which the beta strands are arranged perpendicular to the fiber axis. Beside an extraordinary structural robustness, the amyloid fold possesses a unique ability to transmit information by a three-dimensional templating mechanism. In amyloidogenesis short peptide monomers are added one by one to the growing end of the fiber. From the same monomeric subunits several structural variants of amyloid may be formed. Then, in a self-replicative mode, a specific amyloid conformer can act as a template and confer its spatially encoded information to daughter molecular entities in a repetitive way. In this process, the specific conformational information, the spatially changed organization, is transmitted; the coding element is the steric zipper structure, and recognition occurs by amino acid side chain complementarity. The amyloid information system fulfills several basic requirements of a primordial evolvable replicator system: (i) it is stable under the presumed primitive Earth conditions, (ii) the monomeric building blocks of the informational polymer can be formed from available prebiotic compounds, (iii) the system is self-assembling and self-replicative and (iv) it is adaptive to changes in the environment and

  12. Protective Effects of Some Medicinal Plants from Lamiaceae Family Against Beta-Amyloid Induced Toxicity in PC12 Cell

    Directory of Open Access Journals (Sweden)

    S Saeidnia

    2012-10-01

    Full Text Available Background: Excessive accumulation of beta-amyliod peptide (Aβ, the major component of senile plaques in Alzheimer's disease (AD, causes neuronal cell death through induction of oxidative stress. Therefore, antioxidants may be of use in the treatment of AD. The medicinal plants from the Lamiaceae family have been widely used in Iranian traditional medicine. These plants contain compounds with antioxidant activity and some species in this family have been reported to have neuroprotective properties. In the present study, methanolic extract of seven plants from salvia and satureja species were evaluated for their protective effects against beta-amyloid induced neurotoxicity.Methods: Aerial parts of the plants were extracted with ethyl acetate and methanol, respectively, by percolation at room temperature and subsequently, methanolic extracts of the plants were prepared. PC12 cells were incubated with different concentrations of the extracts in culture medium 1h prior to incubation with Aβ. Cell toxicity was assessed 24h after addition of Aβ by MTT assay.Results: Satureja bachtiarica, Salvia officinalis and Salvia macrosiphon methanolic extracts exhibited high protective effects against Aβ induced toxicity (P<0.001. Protective effects of Satureja bachtiarica and Salvia officinalis were dose-dependent.Conclusion: The main constituents of these extracts are polyphenolic and flavonoid compounds such as rosmarinic acid, naringenin, apigenin and luteolin which have antioxidant properties and may have a role in neuroprotection. Based on neuroprotective effect of these plants against Aβ induced toxicity, we recommend greater attention to their use in the treatment of Alzheimer disease.

  13. Association between amylin and amyloidpeptides in plasma in the context of apolipoprotein E4 allele.

    Science.gov (United States)

    Qiu, Wei Qiao; Wallack, Max; Dean, Michael; Liebson, Elizabeth; Mwamburi, Mkaya; Zhu, Haihao

    2014-01-01

    Amylin, a pancreatic peptide that readily crosses the blood brain barrier (BBB), and amyloid-beta peptide (Aβ), the main component of amyloid plaques and a major component of Alzheimer's disease (AD) pathology in the brain, share several features. These include having similar β-sheet secondary structures, binding to the same receptor, and being degraded by the same protease. Thus, amylin may be associated with Aβ, but the nature of their relationship remains unclear. In this study, we used human samples to study the relationship between plasma amylin and Aβ in the context of the apolipoprotein E alleles (ApoE). We found that concentrations of Aβ1-42 (PApoE4, BMI, diabetes, stroke, kidney function and lipid profile. This positive association between amylin and Aβ1-42 in plasma was found regardless of the ApoE genotype. In contrast, the relationship between amylin and Aβ1-40 in plasma seen in ApoE4 non-carriers disappeared in the presence of ApoE4. Using AD mouse models, our recent study demonstrates that intraperitoneal (i.p.) injection of synthetic amylin enhances the removal of Aβ from the brain into blood, thus resulting in increased blood levels of both amylin and Aβ. The positive association between amylin and Aβ, especially Aβ1-42, in human blood samples is probably relevant to the findings in the AD mouse models. The presence of ApoE4 may attenuate amylin's capacity to remove Aβ, especially Aβ1-40, from the AD brain.

  14. Interleukin-3 prevents neuronal death induced by amyloid peptide

    Directory of Open Access Journals (Sweden)

    Otth Carola

    2007-10-01

    Full Text Available Abstract Background Interleukin-3 (IL-3 is an important glycoprotein involved in regulating biological responses such as cell proliferation, survival and differentiation. Its effects are mediated via interaction with cell surface receptors. Several studies have demonstrated the expression of IL-3 in neurons and astrocytes of the hippocampus and cortices in normal mouse brain, suggesting a physiological role of IL-3 in the central nervous system. Although there is evidence indicating that IL-3 is expressed in some neuronal populations, its physiological role in these cells is poorly known. Results In this study, we demonstrated the expression of IL-3 receptor in cortical neurons, and analyzed its influence on amyloid β (Aβ-treated cells. In these cells, IL-3 can activate at least three classical signalling pathways, Jak/STAT, Ras/MAP kinase and the PI 3-kinase. Viability assays indicated that IL-3 might play a neuroprotective role in cells treated with Aβ fibrils. It is of interest to note that our results suggest that cell survival induced by IL-3 required PI 3-kinase and Jak/STAT pathway activation, but not MAP kinase. In addition, IL-3 induced an increase of the anti-apoptotic protein Bcl-2. Conclusion Altogether these data strongly suggest that IL-3 neuroprotects neuronal cells against neurodegenerative agents like Aβ.

  15. A cyclic undecamer peptide mimics a turn in folded Alzheimer amyloid β and elicits antibodies against oligomeric and fibrillar amyloid and plaques.

    Directory of Open Access Journals (Sweden)

    Peter Hoogerhout

    Full Text Available The 39- to 42-residue amyloid β (Aβ peptide is deposited in extracellular fibrillar plaques in the brain of patients suffering from Alzheimer's Disease (AD. Vaccination with these peptides seems to be a promising approach to reduce the plaque load but results in a dominant antibody response directed against the N-terminus. Antibodies against the N-terminus will capture Aβ immediately after normal physiological processing of the amyloid precursor protein and therefore will also reduce the levels of non-misfolded Aβ, which might have a physiologically relevant function. Therefore, we have targeted an immune response on a conformational neo-epitope in misfolded amyloid that is formed in advance of Aβ-aggregation. A tetanus toxoid-conjugate of the 11-meric cyclic peptide Aβ(22-28-YNGK' elicited specific antibodies in Balb/c mice. These antibodies bound strongly to the homologous cyclic peptide-bovine serum albumin conjugate, but not to the homologous linear peptide-conjugate, as detected in vitro by enzyme-linked immunosorbent assay. The antibodies also bound--although more weakly--to Aβ(1-42 oligomers as well as fibrils in this assay. Finally, the antibodies recognized Aβ deposits in AD mouse and human brain tissue as established by immunohistological staining. We propose that the cyclic peptide conjugate might provide a lead towards a vaccine that could be administered before the onset of AD symptoms. Further investigation of this hypothesis requires immunization of transgenic AD model mice.

  16. Structure, orientation, and surface interaction of Alzheimer amyloidpeptides on the graphite.

    Science.gov (United States)

    Yu, Xiang; Wang, Qiuming; Lin, Yinan; Zhao, Jun; Zhao, Chao; Zheng, Jie

    2012-04-24

    The misfolding and aggregation of amyloid-β (Aβ) peptides into amyloid fibrils in solution and on the cell membrane has been linked to the pathogenesis of Alzheimer's disease. Although it is well-known that the presence of different surfaces can accelerate the aggregation of Aβ peptides into fibrils, surface-induced conformation, orientation, aggregation, and adsorption of Aβ peptides have not been well understood at the atomic level. Here, we perform all-atom explicit-water molecular dynamics (MD) simulations to study the orientation change, conformational dynamics, surface interaction of small Aβ aggregates with different sizes (monomer to tetramer), and conformations (α-helix and β-hairpin) upon adsorption on the graphite surface, in comparison with Aβ structures in bulk solution. Simulation results show that hydrophobic graphite induces the quick adsorption of Aβ peptides regardless of their initial conformations and sizes. Upon the adsorption, Aβ prefers to adopt random structure for monomers and to remain β-rich-structure for small oligomers, but not helical structures. More importantly, due to the amphiphilic sequence of Aβ and the hydrophobic nature of graphite, hydrophobic C-terminal residues of higher-order Aβ oligomers appear to have preferential interactions with the graphite surface for facilitating Aβ fibril formation and fibril growth. In combination of atomic force microscopy (AFM) images and MD simulation results, a postulated mechanism is proposed to describe the structure and kinetics of Aβ aggregation from aqueous solution to the graphite surface, providing parallel insights into Aβ aggregation on biological cell membranes.

  17. Amyloid fibril formation of peptides derived from the C-terminus of CETP modulated by lipids

    Energy Technology Data Exchange (ETDEWEB)

    García-González, Victor [Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 México, DF (Mexico); Mas-Oliva, Jaime, E-mail: jmas@ifc.unam.mx [Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 México, DF (Mexico); División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510 México, DF (Mexico)

    2013-04-26

    Highlights: •The secondary structure of a C-terminal peptide derived from CETP was studied. •Lipids modulate secondary structure changes of a C-terminal peptide derived from CETP. •Lysophosphatidic acid maintains a functional α-helix and prevents fibril formation. •Transfer of lipids by CETP is related to the presence of an α-helix at its C-end. -- Abstract: Cholesteryl-ester transfer protein (CETP) is a plasmatic protein involved in neutral lipid transfer between lipoproteins. Focusing on the last 12 C-terminus residues we have previously shown that mutation D{sub 470}N promotes a conformational change towards a β-secondary structure. In turn, this modification leads to the formation of oligomers and fibrillar structures, which cause cytotoxic effects similar to the ones provoked by amyloid peptides. In this study, we evaluated the role of specific lipid arrangements on the structure of peptide helix-Z (D{sub 470}N) through the use of thioflavin T fluorescence, peptide bond absorbance, circular dichroism and electron microscopy. The results indicate that the use of micelles formed with lysophosphatidylcholine and lysophosphatidic acid (LPA) under neutral pH induce a conformational transition of peptide helix-Z containing a β-sheet conformation to a native α-helix structure, therefore avoiding the formation of amyloid fibrils. In contrast, incubation with phosphatidic acid does not change the profile for the β-sheet conformation. When the electrostatic charge at the surface of micelles or vesicles is regulated through the use of lipids such as phospholipid and LPA, minimal changes and the presence of β-structures were recorded. Mixtures with a positive net charge diminished the percentage of β-structure and the amount of amyloid fibrils. Our results suggest that the degree of solvation determined by the presence of a free hydroxyl group on lipids such as LPA is a key condition that can modulate the secondary structure and the consequent formation of

  18. Soluble amyloid beta levels are elevated in the white matter of Alzheimer's patients, independent of cortical plaque severity.

    Science.gov (United States)

    Collins-Praino, Lyndsey E; Francis, Yitshak I; Griffith, Erica Y; Wiegman, Anne F; Urbach, Jonathan; Lawton, Arlene; Honig, Lawrence S; Cortes, Etty; Vonsattel, Jean Paul G; Canoll, Peter D; Goldman, James E; Brickman, Adam M

    2014-08-17

    Alzheimer's disease (AD) is the most common neurodegenerative disease and the leading cause of dementia. In addition to grey matter pathology, white matter changes are now recognized as an important pathological feature in the emergence of the disease. Despite growing recognition of the importance of white matter abnormalities in the pathogenesis of AD, the causes of white matter degeneration are still unknown. While multiple studies propose Wallerian-like degeneration as the source of white matter change, others suggest that primary white matter pathology may be due, at least in part, to other mechanisms, including local effects of toxic Aβ peptides. In the current study, we investigated levels of soluble amyloid-beta (Aβ) in white matter of AD patients (n=12) compared with controls (n=10). Fresh frozen white matter samples were obtained from anterior (Brodmann area 9) and posterior (Brodmann area 1, 2 and 3) areas of post-mortem AD and control brains. ELISA was used to examine levels of soluble Aβ -42 and Aβ -40. Total cortical neuritic plaque severity rating was derived from individual ratings in the following areas of cortex: mid-frontal, superior temporal, pre-central, inferior parietal, hippocampus (CA1), subiculum, entorhinal cortex, transentorhinal cortex, inferior temporal, amygdala and basal forebrain. Compared with controls, AD samples had higher white matter levels of both soluble Aβ -42 and Aβ -40. While no regional white matter differences were found in Aβ -40, Aβ -42 levels were higher in anterior regions than in posterior regions across both groups. After statistically controlling for total cortical neuritic plaque severity, differences in both soluble Aβ -42 and Aβ -40 between the groups remained, suggesting that white matter Aβ peptides accumulate independent of overall grey matter fibrillar amyloid pathology and are not simply a reflection of overall amyloid burden. These results shed light on one potential mechanism through which

  19. 康复训练对血管性痴呆大鼠海马β淀粉样多肽及胰岛素降解酶的影响%The effects of rehabilitation training on amyloid-beta peptide and insulin-degrading enzyme levels in the hippocampus of rats with vascular dementia

    Institute of Scientific and Technical Information of China (English)

    叶青; 王红卫; 游咏; 黄海芬; 廖慧颖; 潘思; 黄雁

    2012-01-01

    Objective To investigate the effects of rehabilitation training on hippocampal amyloid-beta peptide (Aβ) and insulin-degrading enzyme (IDE) levels in vascular dementia (VD).Methods Thirty female Sprague-Dawley rats were randomly assigned to a rehabilitation group (n =10),a model group (n =10) or a sham-operation group (n =10).An experimental VD model was established in the rats of the first 2 groups by bilateral common carotid artery permanent ligation.The rats in the rehabilitation group then received 1 h of rehabilitation training daily.Learning and memory were assessed at 4 weeks aftet the operation.Immunohistochemical staining was used to detect Aβ and IDE expression in the hippocampus dentate gyrus (DG) area.Results The rats in the rehabilitation group showed significantly better learning ability compared with the model group.The expression of Aβ in the rehabilitation group was significantly less than in the model group.The expression of IDE in the rehabilitation group was significantly greater Conclusion Rehabilitation can accelerate the recovery of learning and memory in VD,at least in rats The mechanism is possibly related to decreased accumulation of Aβ in the hippocampus due to up-regulation of the expression of IDE.%目的 观察康复训练对血管性痴呆(VD)大鼠海马β-淀粉样多肽(Aβ)及胰岛素降解酶(IDE)的影响.方法 共选取30只SD大鼠,采用随机数字表法将其分为康复组、模型组及假手术组.选用结扎双侧颈总动脉方法制成VD大鼠模型,康复组每天进行1h康复训练.于术后第4周进行行为学测试,以评估各组大鼠学习记忆能力;待行为学测试结束后采用免疫组化法检测各组大鼠海马(DG)区Aβ及IDE表达.结果 术后第4周时发现康复组大鼠学习记忆功能明显优于模型组(P<0.05);且康复组大鼠海马区Aβ表达较模型组显著降低(P<0.05),IDE表达则较模型组明显增高(P<0.05).结论 康复训练能改善VD大鼠学习

  20. A potential function for neuronal exosomes: sequestering intracerebral amyloidpeptide.

    Science.gov (United States)

    Yuyama, Kohei; Sun, Hui; Usuki, Seigo; Sakai, Shota; Hanamatsu, Hisatoshi; Mioka, Tetsuo; Kimura, Nobuyuki; Okada, Megumi; Tahara, Hidetoshi; Furukawa, Jun-ichi; Fujitani, Naoki; Shinohara, Yasuro; Igarashi, Yasuyuki

    2015-01-02

    Elevated amyloidpeptide (Aβ) in brain contributes to Alzheimer's disease (AD) pathogenesis. We demonstrated the presence of exosome-associated Aβ in the cerebrospinal fluid (CSF) of cynomolgus monkeys and APP transgenic mice. The levels of exosome-associated Aβ notably decreased in the CSF of aging animals. We also determined that neuronal exosomes, but not glial exosomes, had abundant glycosphingolipids and could capture Aβ. Infusion of neuronal exosomes into brains of APP transgenic mice decreased Aβ and amyloid depositions, similarly to what reported previously on neuroblastoma-derived exosomes. These findings highlight the role of neuronal exosomes in Aβ clearance, and suggest that their downregulation might relate to Aβ accumulation and, ultimately, the development of AD pathology.

  1. Ab initio molecular simulations on specific interactions between amyloid beta and monosaccharides

    Science.gov (United States)

    Nomura, Kazuya; Okamoto, Akisumi; Yano, Atsushi; Higai, Shin'ichi; Kondo, Takashi; Kamba, Seiji; Kurita, Noriyuki

    2012-09-01

    Aggregation of amyloid β (Aβ) peptides, which is a key pathogenetic event in Alzheimer's disease, can be caused by cell-surface saccharides. We here investigated stable structures of the solvated complexes of Aβ with some types of monosaccharides using molecular simulations based on protein-ligand docking and classical molecular mechanics methods. Moreover, the specific interactions between Aβ and the monosaccharides were elucidated at an electronic level by ab initio fragment molecular orbital calculations. Based on the results, we proposed which type of monosaccharide prefers to have large binding affinity to Aβ and inhibit the Aβ aggregation.

  2. Hydrodynamic effects on β-amyloid (16-22) peptide aggregation

    Science.gov (United States)

    Chiricotto, Mara; Melchionna, Simone; Derreumaux, Philippe; Sterpone, Fabio

    2016-07-01

    Computer simulations based on simplified representations are routinely used to explore the early steps of amyloid aggregation. However, when protein models with implicit solvent are employed, these simulations miss the effect of solvent induced correlations on the aggregation kinetics and lifetimes of metastable states. In this work, we apply the multi-scale Lattice Boltzmann Molecular Dynamics technique (LBMD) to investigate the initial aggregation phases of the amyloid Aβ16-22 peptide. LBMD includes naturally hydrodynamic interactions (HIs) via a kinetic on-lattice representation of the fluid kinetics. The peptides are represented by the flexible OPEP coarse-grained force field. First, we have tuned the essential parameters that control the coupling between the molecular and fluid evolutions in order to reproduce the experimental diffusivity of elementary species. The method is then deployed to investigate the effect of HIs on the aggregation of 100 and 1000 Aβ16-22 peptides. We show that HIs clearly impact the aggregation process and the fluctuations of the oligomer sizes by favouring the fusion and exchange dynamics of oligomers between aggregates. HIs also guide the growth of the leading largest cluster. For the 100 Aβ16-22 peptide system, the simulation of ˜300 ns allowed us to observe the transition from ellipsoidal assemblies to an elongated and slightly twisted aggregate involving almost the totality of the peptides. For the 1000 Aβ16-22 peptides, a system of unprecedented size at quasi-atomistic resolution, we were able to explore a branched disordered fibril-like structure that has never been described by other computer simulations, but has been observed experimentally.

  3. Cu(2+ affects amyloid-β (1-42 aggregation by increasing peptide-peptide binding forces.

    Directory of Open Access Journals (Sweden)

    Francis Hane

    Full Text Available The link between metals, Alzheimer's disease (AD and its implicated protein, amyloid-β (Aβ, is complex and highly studied. AD is believed to occur as a result of the misfolding and aggregation of Aβ. The dyshomeostasis of metal ions and their propensity to interact with Aβ has also been implicated in AD. In this work, we use single molecule atomic force spectroscopy to measure the rupture force required to dissociate two Aβ (1-42 peptides in the presence of copper ions, Cu(2+. In addition, we use atomic force microscopy to resolve the aggregation of Aβ formed. Previous research has shown that metal ions decrease the lag time associated with Aβ aggregation. We show that with the addition of copper ions the unbinding force increases notably. This suggests that the reduction of lag time associated with Aβ aggregation occurs on a single molecule level as a result of an increase in binding forces during the very initial interactions between two Aβ peptides. We attribute these results to copper ions acting as a bridge between the two peptide molecules, increasing the stability of the peptide-peptide complex.

  4. Fibrils from designed non-amyloid-related synthetic peptides induce AA-amyloidosis during inflammation in an animal model.

    Directory of Open Access Journals (Sweden)

    Per Westermark

    Full Text Available BACKGROUND: Mouse AA-amyloidosis is a transmissible disease by a prion-like mechanism where amyloid fibrils act by seeding. Synthetic peptides with no amyloid relationship can assemble into amyloid-like fibrils and these may have seeding capacity for amyloid proteins. PRINCIPAL FINDINGS: Several synthetic peptides, designed for nanotechnology, have been examined for their ability to produce fibrils with Congo red affinity and concomitant green birefringence, affinity for thioflavin S and to accelerate AA-amyloidosis in mice. It is shown that some amphiphilic fibril-forming peptides not only produced Congo red birefringence and showed affinity for thioflavin S, but they also shortened the lag phase for systemic AA-amyloidosis in mice when they were given intravenously at the time of inflammatory induction with silver nitride. Peptides, not forming amyloid-like fibrils, did not have such properties. CONCLUSIONS: These observations should caution researchers and those who work with synthetic peptides and their derivatives to be aware of the potential health concerns.

  5. Oxidative stress induces macroautophagy of amyloid beta-protein and ensuing apoptosis

    DEFF Research Database (Denmark)

    Zheng, Lin; Kågedal, Katarina; Dehvari, Nodi;

    2009-01-01

    There is increasing evidence for the toxicity of intracellular amyloid beta-protein (Abeta) to neurons and the involvement of lysosomes in this process in Alzheimer disease (AD). We have recently shown that oxidative stress, a recognized determinant of AD, enhances macroautophagy and leads...... to intralysosomal accumulation of Abeta in cultured neuroblastoma cells. We hypothesized that oxidative stress promotes AD by stimulating macroautophagy of Abeta that further may induce cell death by destabilizing lysosomal membranes. To investigate such possibility, we compared the effects of hyperoxia (40...

  6. IFN-gamma promotes complement expression and attenuates amyloid plaque deposition in amyloid beta precursor protein transgenic mice.

    Science.gov (United States)

    Chakrabarty, Paramita; Ceballos-Diaz, Carolina; Beccard, Amanda; Janus, Christopher; Dickson, Dennis; Golde, Todd E; Das, Pritam

    2010-05-01

    Reactive gliosis surrounding amyloid beta (Abeta) plaques is an early feature of Alzheimer's disease pathogenesis and has been postulated to represent activation of the innate immune system in an apparently ineffective attempt to clear or neutralize Abeta aggregates. To evaluate the role of IFN-gamma-mediated neuroinflammation on the evolution of Abeta pathology in transgenic (Tg) mice, we have expressed murine IFN-gamma (mIFN-gamma) in the brains of Abeta precursor protein (APP) Tg mice using recombinant adeno-associated virus serotype 1. Expression of mIFN-gamma in brains of APP TgCRND8 mice results in robust noncell autonomous activation of microglia and astrocytes, and a concomitant significant suppression of Abeta deposition. In these mice, mIFN-gamma expression upregulated multiple glial activation markers, early components of the complement cascade as well as led to infiltration of Ly-6c positive peripheral monocytes but no significant effects on APP levels, APP processing or steady-state Abeta levels were noticed in vivo. Taken together, these results suggest that mIFN-gamma expression in the brain suppresses Abeta accumulation through synergistic effects of activated glia and components of the innate immune system that enhance Abeta aggregate phagocytosis.

  7. Insight into the stability of cross-beta amyloid fibril from molecular dynamics simulation.

    Science.gov (United States)

    Chen, Yue; He, Yong-Jie; Wu, Maoying; Yan, Guanwen; Li, Yixue; Zhang, Jian; Chen, Hai-Feng

    2010-06-01

    Amyloid fibrils are considered to play causal roles in the pathogenesis of amyloid-related degenerative diseases such as Alzheimer's disease, type II diabetes mellitus, the transmissible spongiform encephalopathies, and prion disease. The mechanism of fibril formation is still hotly debated and remains an important open question. In this study, we utilized molecular dynamics (MD) simulation to analyze the stability of hexamer for eight class peptides. The MD results suggest that VEALYL and MVGGVV-1 are the most stable ones, then SNQNNY, followed by LYQLEN, MVGGVV-2, VQIVYK, SSTSAA, and GGVVIA. The statistics result indicates that hydrophobic residues play a key role in stabilizing the zipper interface. Single point and two linkage mutants of MVGGVV-1 confirmed that both Met1 and Val2 are key hydrophobic residues. This is consistent with the statistics analysis. The stability results of oligomer for MVGGVV-1 suggest that the intermediate state should be trimer (3-0) and tetramer (2-2). These methods can be used in stabilization study of other amyloid fibril.

  8. In vitro fibrillization of Alzheimer's amyloidpeptide (1-42)

    Science.gov (United States)

    Tiiman, Ann; Krishtal, Jekaterina; Palumaa, Peep; Tõugu, Vello

    2015-09-01

    The amyloid deposition in the form of extracellular fibrillar aggregates of amyloid-β (Aβ) peptide is a critical pathological event in Alzheimer's disease. Here, we report a systematic investigation of the effects of environmental factors on the kinetics of Aβ fibrillization in vitro. The effects of Aβ42 peptide concentration, temperature, pH, added solvents and the ratio of Aβ40 and Aβ42 on the peptide fibrillization under agitated conditions was studied. The analysis show that the rate of fibril growth by monomer addition is not limited by diffusion but by rearrangement in the monomer structure, which is enhanced by low concentrations of fluorinated alcohols and characterized by the activation energy of 12 kcal/mol. Fibrillization rate decreases at pH values below 7.0 where simultaneous protonation of His 13 and 14 inhibits fibril formation. The lag period for Aβ42 was only twofold shorter and the fibril growth rate twofold faster than those of Aβ40. Lag period was shortened and the fibrillization rate was increased only at 90% content of Aβ42.

  9. In vitro fibrillization of Alzheimer’s amyloidpeptide (1-42

    Directory of Open Access Journals (Sweden)

    Ann Tiiman

    2015-09-01

    Full Text Available The amyloid deposition in the form of extracellular fibrillar aggregates of amyloid-β (Aβ peptide is a critical pathological event in Alzheimer’s disease. Here, we report a systematic investigation of the effects of environmental factors on the kinetics of Aβ fibrillization in vitro. The effects of Aβ42 peptide concentration, temperature, pH, added solvents and the ratio of Aβ40 and Aβ42 on the peptide fibrillization under agitated conditions was studied. The analysis show that the rate of fibril growth by monomer addition is not limited by diffusion but by rearrangement in the monomer structure, which is enhanced by low concentrations of fluorinated alcohols and characterized by the activation energy of 12 kcal/mol. Fibrillization rate decreases at pH values below 7.0 where simultaneous protonation of His 13 and 14 inhibits fibril formation. The lag period for Aβ42 was only twofold shorter and the fibril growth rate twofold faster than those of Aβ40. Lag period was shortened and the fibrillization rate was increased only at 90% content of Aβ42.

  10. Conformational Effects of the A21G Flemish Mutation on the Aggregation of Amyloid β Peptide.

    Science.gov (United States)

    Yagi-Utsumi, Maho; Dobson, Christopher M

    2015-01-01

    Among the various hereditary mutants of amyloid β (Aβ) in familial Alzheimer's disease (AD), the A21G Flemish-type mutant has unique properties showing a low aggregation propensity but progressive deposition in vascular walls. Moreover, in contrast to other familial AD cases that show extensive Aβ1-42 deposition in the brain, patients with Flemish AD predominantly exhibit the deposition of the Aβ1-40 isoform. Here we report the structural characterization of the Flemish-type mutant (A21G) in comparison with the wild-type Aβ1-40 peptide to examine the possible effects of the A21G mutation on the conformation of the Aβ1-40 isoform. The kinetic analysis of the aggregation of the peptides monitored by thioflavin T fluorescence measurement indicates that the mutation precludes the initial nucleation process of amyloid fibril formation by Aβ1-40. Spectroscopic data indicate that the Flemish-type mutant bound to aqueous micelles composed of lyso-GM1, in which the mobile N-terminal segment is tethered through the C-terminal helical segment, has reduced α-helical structure compared to the wild-type peptide. Our findings suggest that the mutational perturbation to the membrane binding properties is coupled with the changes in nucleation behavior of Aβ during its fibril formation.

  11. Indexing amyloid peptide diffraction from serial femtosecond crystallography: new algorithms for sparse patterns

    Energy Technology Data Exchange (ETDEWEB)

    Brewster, Aaron S. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Sawaya, Michael R. [University of California, Los Angeles, CA 90095-1570 (United States); University of California, Los Angeles, CA 90095-1570 (United States); University of California, Los Angeles, CA 90095-1570 (United States); Rodriguez, Jose [University of California, Los Angeles, CA 90095-1570 (United States); University of California, Los Angeles, CA 90095-1570 (United States); Hattne, Johan; Echols, Nathaniel [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); McFarlane, Heather T. [University of California, Los Angeles, CA 90095-1570 (United States); University of California, Los Angeles, CA 90095-1570 (United States); Cascio, Duilio [University of California, Los Angeles, CA 90095-1570 (United States); University of California, Los Angeles, CA 90095-1570 (United States); University of California, Los Angeles, CA 90095-1570 (United States); Adams, Paul D. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); University of California, Berkeley, CA 94720 (United States); Eisenberg, David S. [University of California, Los Angeles, CA 90095-1570 (United States); University of California, Los Angeles, CA 90095-1570 (United States); University of California, Los Angeles, CA 90095-1570 (United States); Sauter, Nicholas K., E-mail: nksauter@lbl.gov [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2015-02-01

    Special methods are required to interpret sparse diffraction patterns collected from peptide crystals at X-ray free-electron lasers. Bragg spots can be indexed from composite-image powder rings, with crystal orientations then deduced from a very limited number of spot positions. Still diffraction patterns from peptide nanocrystals with small unit cells are challenging to index using conventional methods owing to the limited number of spots and the lack of crystal orientation information for individual images. New indexing algorithms have been developed as part of the Computational Crystallography Toolbox (cctbx) to overcome these challenges. Accurate unit-cell information derived from an aggregate data set from thousands of diffraction patterns can be used to determine a crystal orientation matrix for individual images with as few as five reflections. These algorithms are potentially applicable not only to amyloid peptides but also to any set of diffraction patterns with sparse properties, such as low-resolution virus structures or high-throughput screening of still images captured by raster-scanning at synchrotron sources. As a proof of concept for this technique, successful integration of X-ray free-electron laser (XFEL) data to 2.5 Å resolution for the amyloid segment GNNQQNY from the Sup35 yeast prion is presented.

  12. Cholesterol Depletion Reduces the Internalization of β-Amyloid Peptide in SH-SY5Y Cells

    Institute of Scientific and Technical Information of China (English)

    ZHOU Qinghua; HE Li; SUI Senfang

    2006-01-01

    Deposition of amyloid in the brain is a critical step in the pathogenesis of Alzheimer's disease. The endocytosis of β-amyloid peptide (Aβ) is an important factor among the many factors that contribute to the genesis of amyloid deposits. Since cholesterol participates in many important physiological processes, the present work investigated the relationship between the cellular cholesterol content and the endocytosis of the exogenic Aβ, and found that reduction of the cholesterol content by methyl-β-cyclodextrin could reduce the endocytosis of Aβ. The study indicates that the endocytosis of Aβ is partly mediated by cholesterol.

  13. Choroid plexus dysfunction impairs beta-amyloid clearance in a triple transgenic mouse model of Alzheimer’s disease

    Science.gov (United States)

    González-Marrero, Ibrahim; Giménez-Llort, Lydia; Johanson, Conrad E.; Carmona-Calero, Emilia María; Castañeyra-Ruiz, Leandro; Brito-Armas, José Miguel; Castañeyra-Perdomo, Agustín; Castro-Fuentes, Rafael

    2015-01-01

    Compromised secretory function of choroid plexus (CP) and defective cerebrospinal fluid (CSF) production, along with accumulation of beta-amyloid (Aβ) peptides at the blood-CSF barrier (BCSFB), contribute to complications of Alzheimer’s disease (AD). The AD triple transgenic mouse model (3xTg-AD) at 16 month-old mimics critical hallmarks of the human disease: β-amyloid (Aβ) plaques and neurofibrillary tangles (NFT) with a temporal- and regional- specific profile. Currently, little is known about transport and metabolic responses by CP to the disrupted homeostasis of CNS Aβ in AD. This study analyzed the effects of highly-expressed AD-linked human transgenes (APP, PS1 and tau) on lateral ventricle CP function. Confocal imaging and immunohistochemistry revealed an increase only of Aβ42 isoform in epithelial cytosol and in stroma surrounding choroidal capillaries; this buildup may reflect insufficient clearance transport from CSF to blood. Still, there was increased expression, presumably compensatory, of the choroidal Aβ transporters: the low density lipoprotein receptor-related protein 1 (LRP1) and the receptor for advanced glycation end product (RAGE). A thickening of the epithelial basal membrane and greater collagen-IV deposition occurred around capillaries in CP, probably curtailing solute exchanges. Moreover, there was attenuated expression of epithelial aquaporin-1 and transthyretin (TTR) protein compared to Non-Tg mice. Collectively these findings indicate CP dysfunction hypothetically linked to increasing Aβ burden resulting in less efficient ion transport, concurrently with reduced production of CSF (less sink action on brain Aβ) and diminished secretion of TTR (less neuroprotection against cortical Aβ toxicity). The putative effects of a disabled CP-CSF system on CNS functions are discussed in the context of AD. PMID:25705176

  14. Choroid plexus dysfunction impairs beta-amyloid clearance in a triple transgenic mouse model of Alzheimer’s disease

    Directory of Open Access Journals (Sweden)

    Ibrahim eGonzález Marrero

    2015-02-01

    Full Text Available Compromised secretory function of choroid plexus (CP and defective cerebrospinal fluid (CSF production, along with accumulation of beta-amyloid (Aβ peptides at the blood-CSF barrier (BCSFB, likely contribute to complications of Alzheimer’s disease (AD. The AD triple transgenic mouse model (3xTg-AD at 16 month-old mimics several critical hallmarks of the human disease. In brain, the 3xTg-AD progressively develops β-amyloid (Aβ plaques and neurofibrillary tangles with a temporal- and regional- specific profile resembling their development in human AD. Currently, little is known about transport and metabolic responses by CP to the disrupted homeostasis of CNS Aβ in AD. This study analyzed the effects of highly-expressed AD-linked human transgenes (APP, PS1 and tau on lateral ventricle CP function. Confocal imaging and immunohistochemistry revealed an increase in Aβ42 (but not Aβ40 in epithelial cytosol and in stroma surrounding choroidal capillaries; the buildup in insoluble Aβ42 may reflect insufficient clearance transport from CSF to blood. Still, there was increased expression, presumably compensatory, of the choroidal Aβ transporters: the low density lipoprotein receptor-related protein 1 (LRP1 and the receptor for advanced glycation end product (RAGE. A thickening of the epithelial basal membrane and greater collagen IV deposition occurred around capillaries in CP of 3xTg-AD mice, probably curtailing solute exchanges. Moreover, there was attenuated expression of epithelial aquaporin-1 and transthyretin protein compared to non-Tg controls. Collectively these findings indicate CP dysfunction (hypothetically linked to increasing Aβ burden resulting in less efficient ion transport, concurrently with reduced production of cerebrospinal fluid (less sink action on brain Aβ and diminished secretion of transthyretin (less neuroprotection against cortical Aβ toxicity. The putative effects of a disabled CP-CSF system on CNS f

  15. Impairment of context memory by β-amyloid peptide in terrestrial snail

    Directory of Open Access Journals (Sweden)

    2008-09-01

    Full Text Available We examined influence of the β-amyloid peptide (25-35 neurotoxic fragment (βAP on Helix lucorum food-aversion learning. Testing with aversively conditioned carrot showed that 2, 5, and 14 days after training the βAP-injected group responded in a significantly larger number of cases and with a significantly smaller latency than the sham-injected control group. The results demonstrate that the amyloid peptide partially impairs the learning process. In an attempt to specify what component of memory is impaired we compared responses in a context in which the snails were aversively trained, and in a neutral context. It was found that the sham-injected learned snails significantly less frequently took the aversively conditioned food in the context in which the snails were shocked, while the βAP-injected snails remembered the aversive context 2 days after associative training, but were not able to distinguish two contexts 5, and 14 days after training. In a separate series of experiments a specific context was associated with electric shock, and changes in general responsiveness were tested in two contexts several days later. It was found that the βAP-injected snails significantly increased withdrawal responses in all tested contexts, while the sham-injected control animals selectively increased responsiveness only in the context in which they were reinforced with electric shocks. These results demonstrate that the β-amyloid peptide (25-35 interferes with the learning process, and may play a significant role in behavioral plasticity and memory by selectively impairing only one

  16. Catalytic antibodies to amyloid β peptide in defense against Alzheimer disease

    Science.gov (United States)

    Taguchi, Hiroaki; Planque, Stephanie; Nishiyama, Yasuhiro; Szabo, Paul; Weksler, Marc E.; Friedland, Robert P.; Paul, Sudhir

    2008-01-01

    Immunoglobulins (Igs) that bind amyloid β peptide (Aβ) are under clinical trials for immunotherapy of Alzheimer disease (AD). We have identified IgMs and recombinant Ig fragments that hydrolyze Aβ. Hydrolysis of peripheral Aβ by the IgMs may induce increased Aβ release from the brain. The catalytic IgMs are increased in AD patients, presumably reflecting a protective autoimmune response. Reduced Aβ aggregation and neurotoxicity attributable to the catalytic function were evident. These findings provide a foundation for development of catalytic Igs for AD immunotherapy. PMID:18486927

  17. Low molecular weight oligomers of amyloid peptides display β-barrel conformations: A replica exchange molecular dynamics study in explicit solvent

    Science.gov (United States)

    De Simone, Alfonso; Derreumaux, Philippe

    2010-04-01

    The self-assembly of proteins and peptides into amyloid fibrils is connected to over 40 pathological conditions including neurodegenerative diseases and systemic amyloidosis. Diffusible, low molecular weight protein and peptide oligomers that form in the early steps of aggregation appear to be the harmful cytotoxic species in the molecular etiology of these diseases. So far, the structural characterization of these oligomers has remained elusive owing to their transient and dynamic features. We here address, by means of full atomistic replica exchange molecular dynamics simulations, the energy landscape of heptamers of the amyloidogenic peptide NHVTLSQ from the beta-2 microglobulin protein. The simulations totaling 5 μs show that low molecular weight oligomers in explicit solvent consist of β-barrels in equilibrium with amorphous states and fibril-like assemblies. The results, also accounting for the influence of the pH on the conformational properties, provide a strong evidence of the formation of transient β-barrel assemblies in the early aggregation steps of amyloid-forming systems. Our findings are discussed in terms of oligomers cytotoxicity.

  18. High frequency NcoI RFLP detected in the Alzheimer amyloid peptide gene

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Y.; Dobkin, C.; Devine-Gage, E.; Ramakrishna, N.; Brown, W.T.; Wisniewski, H.M.; Robakis, N.K.

    1988-02-25

    Probe pAMB2.3 contains a 778bp cDNA fragment encoding the amyloid polypeptide of Alzheimer disease and Down Syndrome (beta protein) inserted into pUC18. The probe was sublocalized to chromosome 21q21. NcoI identifies a two allele polymorphism of a band at either 15 kb or 8.5 kb. Autosomal codominant inheritance was shown in five informative families. Two non polymorphic bands, 7.0kb and 6.0kb, are seen only occasionally. Their presence seems to depend on the particular DNA preparation.

  19. Decrease in the production of beta-amyloid by berberine inhibition of the expression of beta-secretase in HEK293 cells

    Directory of Open Access Journals (Sweden)

    Zhu Feiqi

    2011-12-01

    Full Text Available Abstract Background Berberine (BER, the major alkaloidal component of Rhizoma coptidis, has multiple pharmacological effects including inhibition of acetylcholinesterase, reduction of cholesterol and glucose levels, anti-inflammatory, neuroprotective and neurotrophic effects. It has also been demonstrated that BER can reduce the production of beta-amyloid40/42, which plays a critical and primary role in the pathogenesis of Alzheimer's disease. However, the mechanism by which it accomplishes this remains unclear. Results Here, we report that BER could not only significantly decrease the production of beta-amyloid40/42 and the expression of beta-secretase (BACE, but was also able to activate the extracellular signal-regulated kinase1/2 (ERK1/2 pathway in a dose- and time-dependent manner in HEK293 cells stably transfected with APP695 containing the Swedish mutation. We also find that U0126, an antagonist of the ERK1/2 pathway, could abolish (1 the activation activity of BER on the ERK1/2 pathway and (2 the inhibition activity of BER on the production of beta-amyloid40/42 and the expression of BACE. Conclusion Our data indicate that BER decreases the production of beta-amyloid40/42 by inhibiting the expression of BACE via activation of the ERK1/2 pathway.

  20. Novel strategies for Alzheimer's disease treatment: An overview of anti-amyloid beta monoclonal antibodies

    Directory of Open Access Journals (Sweden)

    Katarzyna Rygiel

    2016-01-01

    Full Text Available Alzheimer's disease (AD is a multifactorial, progressive neurodegenerative disorder with a poor prognosis, and thus, novel therapies for AD are certainly needed in a growing population of elderly patients or asymptomatic individuals, who are at risk for AD, worldwide. It has been established that some AD biomarkers such as amyloid-beta load in the brain, precede the onset of the disease, by approximately 20 years. Therefore, the therapy to prevent or effectively treat AD has to be initiated before the emergence of symptoms. A goal of this review is to present the results of recent clinical trials on monoclonal antibodies against amyloid beta, used for the treatment of AD and also to address some of the current challenges and emerging strategies to prevent AD. In recent trials, a monoclonal antibody, i.e. solanezumab has shown some beneficial cognitive effects among mild AD patients. Ongoing studies with gantenerumab and crenezumab will examine when exactly the AD treatment, aimed at modifying the disease course has to be started. This review was based on Medline database search for trials on passive anti-AD immunotherapy, for which the main timeframe was set from 2012 to 2015.

  1. Multiscale Molecular Dynamics Simulations of Beta-Amyloid Interactions with Neurons

    Science.gov (United States)

    Qiu, Liming; Vaughn, Mark; Cheng, Kelvin

    2012-10-01

    Early events of human beta-amyloid protein interactions with cholesterol-containing membranes are critical to understanding the pathogenesis of Alzheimer's disease (AD) and to exploring new therapeutic interventions of AD. Atomistic molecular dynamics (AMD) simulations have been extensively used to study the protein-lipid interaction at high atomic resolutions. However, traditional MD simulations are not efficient in sampling the phase space of complex lipid/protein systems with rugged free energy landscapes. Meanwhile, coarse-grained MD (CGD) simulations are efficient in the phase space sampling but suffered from low spatial resolutions and from the fact that the energy landscapes are not identical to those of the AMD. Here, a multiscale approach was employed to simulate the protein-lipid interactions of beta-amyloid upon its release from proteolysis residing in the neuronal membranes. We utilized a forward (AMD to CGD) and reverse (CGD-AMD) strategy to explore new transmembrane and surface protein configuration and evaluate the stabilization mechanisms by measuring the residue-specific protein-lipid or protein conformations. The detailed molecular interactions revealed in this multiscale MD approach will provide new insights into understanding the early molecular events leading to the pathogenesis of AD.

  2. PPARgamma agonist curcumin reduces the amyloid-beta-stimulated inflammatory responses in primary astrocytes.

    Science.gov (United States)

    Wang, Hong-Mei; Zhao, Yan-Xin; Zhang, Shi; Liu, Gui-Dong; Kang, Wen-Yan; Tang, Hui-Dong; Ding, Jian-Qing; Chen, Sheng-Di

    2010-01-01

    Alzheimer's disease (AD) is the most common age-related neurodegenerative disorder. Accumulating data indicate that astrocytes play an important role in the neuroinflammation related to the pathogenesis of AD. It has been shown that microglia and astrocytes are activated in AD brain and amyloid-beta (Abeta) can increase the expression of cyclooxygenase 2 (COX-2), interleukin-1, and interleukin-6. Suppressing the inflammatory response caused by activated astrocytes may help to inhibit the development of AD. Curcumin is a major constituent of the yellow curry spice turmeric and proved to be a potential anti-inflammatory drug in arthritis and colitis. There is a low age-adjusted prevalence of AD in India, a country where turmeric powder is commonly used as a culinary compound. Curcumin has been shown to suppress activated astroglia in amyloid-beta protein precursor transgenic mice. The real mechanism by which curcumin inhibits activated astroglia is poorly understood. Here we report that the expression of COX-2 and glial fibrillary acidic protein were enhanced and that of peroxisome proliferator-activated receptor gamma (PPARgamma) was decreased in Abeta(25-35)-treated astrocytes. In line with these results, nuclear factor-kappaB translocation was increased in the presence of Abeta. All these can be reversed by the pretreatment of curcumin. Furthermore, GW9662, a PPARgamma antagonist, can abolish the anti-inflammatory effect of curcumin. These results show that curcumin might act as a PPARgamma agonist to inhibit the inflammation in Abeta-treated astrocytes.

  3. Zinc-induced interaction of the metal-binding domain of amyloidpeptide with DNA.

    Science.gov (United States)

    Khmeleva, Svetlana A; Mezentsev, Yuri V; Kozin, Sergey A; Tsvetkov, Philipp O; Ivanov, Alexis S; Bodoev, Nikolay V; Makarov, Alexander A; Radko, Sergey P

    2013-01-01

    The interaction of the 16-mer synthetic peptide (Aβ16), which represents the metal-binding domain of the amyloid-β with DNA, was studied employing the surface plasmon resonance technique. It has been shown that Aβ16 binds to the duplex DNA in the presence of zinc ions and thus the metal-binding domain can serve as a zinc-dependent DNA-binding site of the amyloid-β. The interaction of Aβ16 with DNA most probably depends on oligomerization of the peptide and is dominated by interaction with phosphates of the DNA backbone.

  4. Amyloid-β(25-35) peptides aggregate into cross-β sheets in unsaturated anionic lipid membranes at high peptide concentrations.

    Science.gov (United States)

    Tang, Jennifer; Alsop, Richard J; Backholm, Matilda; Dies, Hannah; Shi, An-Chang; Rheinstädter, Maikel C

    2016-04-07

    One of the hallmarks of Alzheimer's disease is the formation of protein plaques in the brain, which mainly consist of amyloidpeptides of different lengths. While the role of these plaques in the pathology of the disease is not clear, the mechanism behind peptide aggregation is a topic of intense research and discussion. Because of their simplicity, synthetic membranes are promising model systems to identify the elementary processes involved. We prepared unsaturated zwitterionic/anionic lipid membranes made of 1-palmitoyl-2-oleoyl-sn-glycero-phosphocholine (POPC) and 1,2-dimyristoyl-sn-glycero-3-phospho-l-serine (DMPS) at concentrations of POPC/3 mol% DMPS containing 0 mol%, 3 mol%, 10 mol%, and 20 mol% amyloid-β25-35 peptides. Membrane-embedded peptide clusters were observed at peptide concentrations of 10 and 20 mol% with a typical cluster size of ∼11 μm. Cluster density increased with peptide concentration from 59 (±3) clusters per mm(2) to 920 (±64) clusters per mm(2), respectively. While monomeric peptides take an α-helical state when embedded in lipid bilayers at low peptide concentrations, the peptides in peptide clusters were found to form cross-β sheets and showed the characteristic pattern in X-ray experiments. The presence of the peptides was accompanied by an elastic distortion of the bilayers, which can induce a long range interaction between the peptides. The experimentally observed cluster patterns agree well with Monte Carlo simulations of long-range interacting peptides. This interaction may be the fundamental process behind cross-β sheet formation in membranes and these sheets may serve as seeds for further growth into amyloid fibrils.

  5. Aminoguanidine treatment ameliorates inflammatory responses and memory impairment induced by amyloid-beta 25-35 injection in rats.

    Science.gov (United States)

    Díaz, Alfonso; Rojas, Karla; Espinosa, Blanca; Chávez, Raúl; Zenteno, Edgar; Limón, Daniel; Guevara, Jorge

    2014-06-01

    Alzheimer disease (AD) is a neurodegenerative disorder caused by accumulation of the amyloid-beta peptide (Aβ) in neuritic plaques. Its neurotoxic mechanisms are associated with inflammatory responses and nitrosative stress generation that promote expression of inducible nitric oxide synthase (iNOS) and increased nitric oxide causing neuronal death and memory impairment. Studies suggest that treatment with anti-inflammatory and anti-oxidant agents decreases the risk of developing AD. Aminoguanidine (AG) is an iNOS inhibitor with anti-inflammatory and anti-oxidant effects. In this study, we evaluated the effects of systemic administration of AG (100 mg/kg/day for 4 days) on spatial memory and inflammatory responses induced by an injection of Aβ(25-35) [100 μM] into the temporal cortex (TCx) of rats. A significant improvement of spatial memory was evident in the Aβ(25-35)-treated group at day 30 post-injection subjected to AG treatment; this effect was correlated with decreases in reactive gliosis, IL-1β, TNF-α, and nitrite levels, as well as a reduction in neurodegeneration in the TCx and hippocampus (Hp). These results suggest that AG treatment inhibited glia activation and cytokine release, which may help to counteract neurodegenerative events induced by the toxicity of Aβ.

  6. Aluminum modulates effects of beta amyloid(1-42) on neuronal calcium homeostasis and mitochondria functioning and is altered in a triple transgenic mouse model of Alzheimer's disease.

    Science.gov (United States)

    Drago, Denise; Cavaliere, Alessandra; Mascetra, Nicola; Ciavardelli, Domenico; di Ilio, Carmine; Zatta, Paolo; Sensi, Stefano L

    2008-10-01

    Recent findings suggest that beta-amyloid (A beta) is more neurotoxic when present in its oligomeric configuration rather than as monomers or fibrils. Previous work from our laboratories has shown that A beta aggregation is strongly influenced by the conjugation of the peptide with metal ions (aluminum A, copper [Cu], zinc [Zn], and iron [Fe]) that are found in high concentrations in the core of senile plaques. Disruption of Ca++ signaling and mitochondrial dysfunction are potent triggers of neuronal death and have been implicated in the neuronal loss that is associated with Alzheimer's disease (AD). In this study, we explored whether A beta-metal complexes can have detrimental effects on intraneuronal Ca++ ([Ca++]i) homeostasis and mitochondrial function in vitro. Results from our experiments indicate that, when conjugated with Al, A beta perturbs neuronal [Ca++]i homeostasis and inhibits mitochondrial respiration. Finally, we analyzed the content of the four metals in the brain of a triple transgenic animal model of AD and found that Al is the only one to be increased in the cortex of these mice.

  7. Indexing amyloid peptide diffraction from serial femtosecond crystallography: new algorithms for sparse patterns.

    Science.gov (United States)

    Brewster, Aaron S; Sawaya, Michael R; Rodriguez, Jose; Hattne, Johan; Echols, Nathaniel; McFarlane, Heather T; Cascio, Duilio; Adams, Paul D; Eisenberg, David S; Sauter, Nicholas K

    2015-02-01

    Still diffraction patterns from peptide nanocrystals with small unit cells are challenging to index using conventional methods owing to the limited number of spots and the lack of crystal orientation information for individual images. New indexing algorithms have been developed as part of the Computational Crystallography Toolbox (cctbx) to overcome these challenges. Accurate unit-cell information derived from an aggregate data set from thousands of diffraction patterns can be used to determine a crystal orientation matrix for individual images with as few as five reflections. These algorithms are potentially applicable not only to amyloid peptides but also to any set of diffraction patterns with sparse properties, such as low-resolution virus structures or high-throughput screening of still images captured by raster-scanning at synchrotron sources. As a proof of concept for this technique, successful integration of X-ray free-electron laser (XFEL) data to 2.5 Å resolution for the amyloid segment GNNQQNY from the Sup35 yeast prion is presented.

  8. Self-assembly of amyloid-forming peptides by molecular dynamics simulations.

    Science.gov (United States)

    Wei, Guanghong; Song, Wei; Derreumaux, Philippe; Mousseau, Normand

    2008-05-01

    Protein aggregation is associated with many neurodegenerative diseases. Understanding the aggregation mechanisms is a fundamental step in order to design rational drugs interfering with the toxic intermediates. This self-assembly process is however difficult to observe experimentally, which gives simulations an important role in resolving this problem. This study shows how we can proceed to gain knowledge about the first steps of aggregation. We first start by characterizing the free energy surface of the Abeta (16-22) dimer, a well-studied system numerically, using molecular dynamics simulations with OPEP coarse-grained force field. We then turn to the study of the NHVTLSQ peptide in 4-mers and 16-mers, extracting information on the onset of aggregation. In particular, the simulations indicate that the peptides are mostly random coil at room temperature, but can visit diverse amyloid-competent topologies, albeit with a low probability. The fact that the 16-mers constantly move from one structure to another is consistent with the long lag phase measured experimentally, but the rare critical steps leading to the rapid formation of amyloid fibrils still remain to be determined.

  9. Patterning nanofibrils through the templated growth of multiple modified amyloid peptides

    Science.gov (United States)

    Sakai, Hiroki; Watanabe, Ken; Kudoh, Fuki; Kamada, Rui; Chuman, Yoshiro; Sakaguchi, Kazuyasu

    2016-08-01

    There has been considerable interest in the patterning of functionalized nanowires because of the potential applications of these materials to the construction of nanodevices. A variety of biomolecular building blocks containing amyloid peptides have been used to functionalize nanowires. However, the patterning of self-assembled nanowires can be challenging because of the difficulties associated with controlling the self-assembly of these functionalized building blocks. Herein, we present a versatile approach for the patterning of nanowires based on the combination of templated fibril growth with a versatile functionalization method using our structure-controllable amyloid peptides (SCAPs). Using this approach, we have succeeded in the formation of multi-type nanowires with tandem domain structures in high yields. Given that the mixing-SCAP method can lead to the formation of tandem fibrils, it is noteworthy that our method allowed us to control the initiation of fibril formation from the gold nanoparticles, which were attached to a short fibril as initiation points. This approach could be used to prepare a wide variety of fibril patterns, and therefore holds great potential for the development of novel self-assembled nanodevices.

  10. Neuroprotective Effects of Pomegranate Peel Extract after Chronic Infusion with AmyloidPeptide in Mice

    Science.gov (United States)

    Morzelle, Maressa Caldeira; Salgado, Jocelem Mastrodi; Telles, Milena; Mourelle, Danilo; Bachiega, Patricia; Buck, Hudson Sousa

    2016-01-01

    Alzheimer’s disease is a chronic and degenerative condition that had no treatment until recently. The current therapeutic strategies reduce progression of the disease but are expensive and commonly cause side effects that are uncomfortable for treated patients. Functional foods to prevent and/or treat many conditions, including neurodegenerative diseases, represent a promising field of study currently gaining attention. To this end, here we demonstrate the effects of pomegranate (Punica granatum) peel extract (PPE) regarding spatial memory, biomarkers of neuroplasticity, oxidative stress and inflammation in a mouse model of neurodegeneration. Male C57Bl/6 mice were chronically infused for 35 days with amyloidpeptide 1–42 (Aβ) or vehicle (control) using mini-osmotic pumps. Another group, also infused with Aβ, was treated with PPE (p.o.– βA+PPE, 800 mg/kg/day). Spatial memory was evaluated in the Barnes maze. Animals treated with PPE and in the control group exhibited a reduction in failure to find the escape box, a finding that was not observed in the Aβ group. The consumption of PPE reduced amyloid plaque density, increased the expression of neurotrophin BDNF and reduced the activity of acetylcholinesterase enzyme. A reduction in lipid peroxidation and in the concentration of the pro-inflammatory cytokine TNF-α was also observed in the PPE group. No hepatic lesions were observed in animals treated with PPE. In conclusion, administration of pomegranate peel extract has neuroprotective effects involving multiple mechanisms to prevent establishment and progression of the neurodegenerative process induced by infusion with amyloidpeptide in mice. PMID:27829013

  11. Nanoparticle-chelator conjugates as inhibitors of amyloid-beta aggregation and neurotoxicity: a novel therapeutic approach for Alzheimer disease.

    Science.gov (United States)

    Liu, Gang; Men, Ping; Kudo, Wataru; Perry, George; Smith, Mark A

    2009-05-22

    Oxidative stress and amyloid-beta are considered major etiological and pathological factors in the initiation and promotion of neurodegeneration in Alzheimer disease (AD). Insomuch as causes of such oxidative stress, transition metals, such as iron and copper, which are found in high concentrations in the brains of AD patients and accumulate specifically in the pathological lesions, are viewed as key contributors to the altered redox state. Likewise, the aggregation and toxicity of amyloid-beta is dependent upon transition metals. As such, chelating agents that selectively bind to and remove and/or "redox silence" transition metals have long been considered as attractive therapies for AD. However, the blood-brain barrier and neurotoxicity of many traditional metal chelators has limited their utility in AD or other neurodegenerative disorders. To circumvent this, we previously suggested that nanoparticles conjugated to iron chelators may have the potential to deliver chelators into the brain and overcome such issues as chelator bioavailability and toxic side-effects. In this study, we synthesized a prototype nanoparticle-chelator conjugate (Nano-N2PY) and demonstrated its ability to protect human cortical neurons from amyloid-beta-associated oxidative toxicity. Furthermore, Nano-N2PY nanoparticle-chelator conjugates effectively inhibited amyloid-beta aggregate formation. Overall, this study indicates that Nano-N2PY, or other nanoparticles conjugated to metal chelators, may provide a novel therapeutic strategy for AD and other neurodegenerative diseases associated with excess transition metals.

  12. The coding sequence of amyloid-beta precursor protein APP contains a neural-specific promoter element.

    NARCIS (Netherlands)

    Collin, R.W.J.; Martens, G.J.M.

    2006-01-01

    The amyloid-beta precursor protein APP is generally accepted to be involved in the pathology of Alzheimer's disease. Since its physiological role is still unclear, we decided to study the function of APP via stable transgenesis in the amphibian Xenopus laevis. However, the application of constructs

  13. Amyloid β Peptide Enhances RANKL-Induced Osteoclast Activation through NF-κB, ERK, and Calcium Oscillation Signaling

    Directory of Open Access Journals (Sweden)

    Shangfu Li

    2016-10-01

    Full Text Available Osteoporosis and Alzheimer’s disease (AD are common chronic degenerative disorders which are strongly associated with advanced age. We have previously demonstrated that amyloid beta peptide (Aβ, one of the pathological hallmarks of AD, accumulated abnormally in osteoporotic bone specimens in addition to having an activation effect on osteoclast (Bone 2014,61:164-75. However, the underlying molecular mechanisms remain unclear. Activation of NF-κB, extracellular signal-regulated kinase (ERK phosphorylates, and calcium oscillation signaling pathways by receptor activator NF-κB ligand (RANKL plays a pivotal role in osteoclast activation. Targeting this signaling to modulate osteoclast function has been a promising strategy for osteoclast-related diseases. In this study, we investigated the effects of Aβ on RANKL-induced osteoclast signaling pathways in vitro. In mouse bone marrow monocytes (BMMs, Aβ exerted no effect on RANKL-induced osteoclastogenesis but promoted osteoclastic bone resorption. In molecular levels, Aβ enhanced NF-κB activity and IκB-α degradation, activated ERK phosphorylation and stimulated calcium oscillation, thus leading to upregulation of NFAT-c1 expression during osteoclast activation. Taken together, our data demonstrate that Aβ enhances RANKL-induced osteoclast activation through IκB-α degradation, ERK phosphorylation, and calcium oscillation signaling pathways and that Aβ may be a promising agent in the treatment of osteoclast-related disease such as osteoporosis.

  14. Protein corona composition of gold nanoparticles/nanorods affects amyloid beta fibrillation process

    Science.gov (United States)

    Mirsadeghi, Somayeh; Dinarvand, Rassoul; Ghahremani, Mohammad Hossein; Hormozi-Nezhad, Mohammad Reza; Mahmoudi, Zohreh; Hajipour, Mohammad Javad; Atyabi, Fatemeh; Ghavami, Mahdi; Mahmoudi, Morteza

    2015-03-01

    Protein fibrillation process (e.g., from amyloid beta (Aβ) and α-synuclein) is the main cause of several catastrophic neurodegenerative diseases such as Alzheimer's and Parkinson diseases. During the past few decades, nanoparticles (NPs) were recognized as one of the most promising tools for inhibiting the progress of the disease by controlling the fibrillation kinetic process; for instance, gold NPs have a strong capability to inhibit Aβ fibrillations. It is now well understood that a layer of biomolecules would cover the surface of NPs (so called ``protein corona'') upon the interaction of NPs with protein sources. Due to the fact that the biological species (e.g., cells and amyloidal proteins) ``see'' the protein corona coated NPs rather than the pristine coated particles, one should monitor the fibrillation process of amyloidal proteins in the presence of corona coated NPs (and not pristine coated ones). Therefore, the previously obtained data on NPs effects on the fibrillation process should be modified to achieve a more reliable and predictable in vivo results. Herein, we probed the effects of various gold NPs (with different sizes and shapes) on the fibrillation process of Aβ in the presence and absence of protein sources (i.e., serum and plasma). We found that the protein corona formed a shell at the surface of gold NPs, regardless of their size and shape, reducing the access of Aβ to the gold inhibitory surface and, therefore, affecting the rate of Aβ fibril formation. More specifically, the anti-fibrillation potencies of various corona coated gold NPs were strongly dependent on the protein source and their concentrations (10% serum/plasma (simulation of an in vitro milieu) and 100% serum/plasma (simulation of an in vivo milieu)).Protein fibrillation process (e.g., from amyloid beta (Aβ) and α-synuclein) is the main cause of several catastrophic neurodegenerative diseases such as Alzheimer's and Parkinson diseases. During the past few decades

  15. Polarization properties of amyloid-beta plaques in Alzheimer's disease (Conference Presentation)

    Science.gov (United States)

    Baumann, Bernhard; Wöhrer, Adelheid; Ricken, Gerda; Pircher, Michael; Kovacs, Gabor G.; Hitzenberger, Christoph K.

    2016-03-01

    In histopathological practice, birefringence is used for the identification of amyloidosis in numerous tissues. Amyloid birefringence is caused by the parallel arrangement of fibrous protein aggregates. Since neurodegenerative processes in Alzheimer's disease (AD) are also linked to the formation of amyloid-beta (Aβ) plaques, optical methods sensitive to birefringence may act as non-invasive tools for Aβ identification. At last year's Photonics West, we demonstrated polarization-sensitive optical coherence tomography (PS-OCT) imaging of ex vivo cerebral tissue of advanced stage AD patients. PS-OCT provides volumetric, structural imaging based on both backscatter contrast and tissue polarization properties. In this presentation, we report on polarization-sensitive neuroimaging along with numerical simulations of three-dimensional Aβ plaques. High speed PS-OCT imaging was performed using a spectral domain approach based on polarization maintaining fiber optics. The sample beam was interfaced to a confocal scanning microscope arrangement. Formalin-fixed tissue samples as well as thin histological sections were imaged. For comparison to the PS-OCT results, ray propagation through plaques was modeled using Jones analysis and various illumination geometries and plaque sizes. Characteristic polarization patterns were found. The results of this study may not only help to understand PS-OCT imaging of neuritic Aβ plaques but may also have implications for polarization-sensitive imaging of other fibrillary structures.

  16. Association between amylin and amyloidpeptides in plasma in the context of apolipoprotein E4 allele.

    Directory of Open Access Journals (Sweden)

    Wei Qiao Qiu

    Full Text Available Amylin, a pancreatic peptide that readily crosses the blood brain barrier (BBB, and amyloid-beta peptide (Aβ, the main component of amyloid plaques and a major component of Alzheimer's disease (AD pathology in the brain, share several features. These include having similar β-sheet secondary structures, binding to the same receptor, and being degraded by the same protease. Thus, amylin may be associated with Aβ, but the nature of their relationship remains unclear. In this study, we used human samples to study the relationship between plasma amylin and Aβ in the context of the apolipoprotein E alleles (ApoE. We found that concentrations of Aβ1-42 (P<0.0001 and Aβ1-40 (P<0.0001 increased with each quartile increase of amylin. Using multivariate regression analysis, the study sample showed that plasma amylin was associated with Aβ1-42 (β = +0.149, SE = 0.025, P<0.0001 and Aβ1-40 (β = +0.034, SE = 0.016, P = 0.04 as an outcome after adjusting for age, gender, ethnicity, ApoE4, BMI, diabetes, stroke, kidney function and lipid profile. This positive association between amylin and Aβ1-42 in plasma was found regardless of the ApoE genotype. In contrast, the relationship between amylin and Aβ1-40 in plasma seen in ApoE4 non-carriers disappeared in the presence of ApoE4. Using AD mouse models, our recent study demonstrates that intraperitoneal (i.p. injection of synthetic amylin enhances the removal of Aβ from the brain into blood, thus resulting in increased blood levels of both amylin and Aβ. The positive association between amylin and Aβ, especially Aβ1-42, in human blood samples is probably relevant to the findings in the AD mouse models. The presence of ApoE4 may attenuate amylin's capacity to remove Aβ, especially Aβ1-40, from the AD brain.

  17. Inhibition of beta-site amyloid precursor protein-cleaving enzyme and beta-amyloid precursor protein genes in SK-N-SH cells

    Institute of Scientific and Technical Information of China (English)

    Suqin Gao; Lin Sun; Enji Han; Hongshun Qi; Jinbo Feng; Shunliang Xu; Wen Xia

    2009-01-01

    BACKGROUND:Previous studies have demonstrated that Piper futokadsura stem selectively inhibits expression of amyloid precursor protein (APP) at the mRNA level.In addition,the piperlonguminine (A) and dihydropiperlonguminine (B) components (1:0.8),which can be separated from Futokadsura stem,selectively inhibit expression of the APP at mRNA and protein levels.OBJECTIVE:Based on previous findings,the present study investigated the effects of β-site amyloid precursor protein cleaving enzyme (BACE1) and APP genes on the production of β-amyloid peptide 42 (Aβ42) in human neuroblastoma cells (SK-N-SH cells) using small interfering RNAs (siRNAs) and A/B components separated from Futokadsura stem,respectively.DESIGN,TIME AND SETTING:A gene interference-based randomized,controlled,in vitro experiment was performed at the Key Laboratory of Cardiovascular Remodeling and Function Research,Ministries of Education and Public Health,and Institute of Pharmacologic Research,School of Pharmaceutical Science & Department of Biochemistry,School of Medicine,Shandong University between July 2006 and December 2007.MATERIALS:SK-N-SH cells were provided by Shanghai Institutes of Biological Sciences,Chinese Academy of Sciences,Shanghai,China;mouse anti-human BACE1 monoclonal antibody was purchased from R&D Systems,USA;mouse anti-human APP monoclonal antibody was purchased from Cell Signaling Technology,USA;and horseradish peroxidase (HRP)-conjugated goat anti-mouse IgG was provided by Sigma,USA.METHODS:The human BACE1 cDNA sequence was obtained from NCBI website (www.ncbi.nlm.nih.gov/sites/entrez).Three pairs of siRNAs,specific to human BACE1 gene,were synthesized through the use of Silencer? pre-designed siRNA specification,and were transfected into SK-N-SH cells with siPORT NeoFX transfection agent to compare the effects of different concentrations of siRNAs (10-50 nmol/L) on SK-N-SH cells.Futokadsura stem was separated and purified with chemical methods,and the crystal was composed of

  18. Characterization of the fine specificity of peptide antibodies to HLA-DQ beta-chain molecules

    DEFF Research Database (Denmark)

    Petersen, J S; Atar, D; Karlsen, Alan E

    1990-01-01

    specifically recognized DQw7 beta peptides and two antisera bound only to DQw8 beta peptides from the region containing the amino acid in position 57. To analyze whether the antisera bound to native HLA-DQ beta-chain molecules, FACS analysis was carried out. Seven of the 20 antisera bound to intact EBV...

  19. Indirubin-3′-monoxime suppresses amyloid-beta-induced apoptosis by inhibiting tau hyperphosphorylation

    Institute of Scientific and Technical Information of China (English)

    Shu-gang Zhang; Xiao-shan Wang; Ying-dong Zhang; Qing Di; Jing-ping Shi; Min Qian; Li-gang Xu; Xing-jian Lin; Jie Lu

    2016-01-01

    Indirubin-3′-monoxime is an effective inhibitor of cyclin-dependent protein kinases, and may play an obligate role in neuronal apopto-sis in Alzheimer’s disease. Here, we found that indirubin-3′-monoxime improved the morphology and increased the survival rate of SH-SY5Y cells exposed to amyloid-beta 25–35 (Aβ25–35), and also suppressed apoptosis by reducing tau phosphorylation at Ser199 and Thr205. Furthermore, indirubin-3′-monoxime inhibited phosphorylation of glycogen synthase kinase-3β (GSK-3β). Our results suggest that in-dirubin-3′-monoxime reduced Aβ25–35-induced apoptosis by suppressing tau hyperphosphorylationvia a GSK-3β-mediated mechanism. Indirubin-3′-monoxime is a promising drug candidate for Alzheimer’s disease.

  20. Spectroscopic investigation of Ginkgo biloba terpene trilactones and their interaction with amyloid peptide Aβ(25-35)

    Science.gov (United States)

    He, Jiangtao; Petrovic, Ana G.; Dzyuba, Sergei V.; Berova, Nina; Nakanishi, Koji; Polavarapu, Prasad L.

    2008-04-01

    The beneficial effects of Ginkgo biloba extract in the "treatment" of dementia are attributed to its terpene trilactone (TTL) constituents. The interactions between TTLs and amyloid peptide are believed to be responsible in preventing the aggregation of peptide. These interactions have been investigated using infrared vibrational absorption (VA) and circular dichroism (VCD) spectra. Four TTLs, namely ginkgolide A (GA), ginkgolide B (GB), ginkgolide C (GC) and bilobalide (BB) and amyloid Aβ(25-35) peptide, as a model for the full length peptide, are used in this study. GA-monoether and GA-diether have also been synthesized and investigated to help understand the role of individual carbonyl groups in these interactions. The precipitation and solubility issues encountered with the mixture of ginkgolide + Aβ peptide for VA and VCD studies were overcome using binary ethanol-D 2O solvent mixture. The experimental VA and VCD spectra of GA, GB, GC and BB, GA-monoether and GA-diether have been analyzed using the corresponding spectra predicted with density functional theory. The time-dependent experimental VA and VCD spectra of Aβ(25-35) peptide and the corresponding experimental spectra in the presence of TTLs indicated that the effect of the TTLs in modulating the aggregation of Aβ(25-35) peptide is relatively small. Such small effects might indicate the absence of a specific interaction between the TTLs and Aβ(25-35) peptide as a major force leading to the reduced aggregation of amyloid peptides. It is possible that the therapeutic effect of G. biloba extract does not originate from direct interactions between TTLs and the Aβ(25-35) peptide and is more complex.

  1. Complement-dependent proinflammatory properties of the Alzheimer's disease beta-peptide.

    Science.gov (United States)

    Bradt, B M; Kolb, W P; Cooper, N R

    1998-08-03

    Large numbers of neuritic plaques (NP), largely composed of a fibrillar insoluble form of the beta-amyloid peptide (Abeta), are found in the hippocampus and neocortex of Alzheimer's disease (AD) patients in association with damaged neuronal processes, increased numbers of activated astrocytes and microglia, and several proteins including the components of the proinflammatory complement system. These studies address the hypothesis that the activated complement system mediates the cellular changes that surround fibrillar Abeta deposits in NP. We report that Abeta peptides directly and independently activate the alternative complement pathway as well as the classical complement pathway; trigger the formation of covalent, ester-linked complexes of Abeta with activation products of the third complement component (C3); generate the cytokine-like C5a complement-activation fragment; and mediate formation of the proinflammatory C5b-9 membrane attack complex, in functionally active form able to insert into and permeabilize the membrane of neuronal precursor cells. These findings provide inflammation-based mechanisms to account for the presence of complement components in NP in association with damaged neurons and increased numbers of activated glial cells, and they have potential implications for the therapy of AD.

  2. The HMG-CoA reductase inhibitor, atorvastatin, attenuates the effects of acute administration of amyloid-beta1-42 in the rat hippocampus in vivo.

    Science.gov (United States)

    Clarke, Rachael M; O'Connell, Florence; Lyons, Anthony; Lynch, Marina A

    2007-01-01

    One response of the brain to stressors is to increase microglial activation with the consequent production of proinflammatory cytokines like interleukin-1beta (IL-1beta), which has been shown to exert an inhibitory effect on long-term potentiation (LTP) in the hippocampus. It has been consistently shown, particularly in vitro, that amyloid-beta (Abeta) peptides increase activation of microglia, while its inhibitory effect on LTP is well documented, and associated with the Abeta-induced increase in IL-1beta. Here we set out to establish whether the Abeta-induced inhibition of LTP in perforant path-granule cell synapses, was coupled with evidence of microglial activation and to assess whether atorvastatin, which is used primarily in the treatment of hyperlipidaemia but which possesses anti-inflammatory properties, might modulate the effect of Abeta on LTP. We report that intracerebroventricular injection of Abeta increased expression of several markers of microglial activation, and in parallel, inhibited LTP in dentate gyrus. The data show that atorvastatin abrogated the Abeta-induced microglial activation and the associated deficit in LTP. On the basis of the evidence presented, we propose that the action of atorvastatin is mediated by its ability to increase production of the anti-inflammatory cytokine, interleukin-4, which we report mimics several of the actions of atorvastatin in the rat hippocampus.

  3. The nicotinic alpha7 acetylcholine receptor agonist ssr180711 is unable to activate limbic neurons in mice overexpressing human amyloid-beta1-42

    DEFF Research Database (Denmark)

    Søderman, Andreas; Thomsen, Morten Skøtt; Hansen, Henrik H;

    2008-01-01

    Recent studies have demonstrated that amyloid-beta1-42 (Abeta1-42) binds to the nicotinergic alpha7 acetylcholine receptor (alpha7 nAChR) and that the application of Abeta1-42 to cells inhibits the function of the alpha7 nAChR. The in vivo consequences of the pharmacological activation of the alpha...... through the use of co-immunoprecipitation that human Abeta-immunoreactive peptides bind to mice alpha7 nAChR in vivo. Agonists of the alpha7 nAChR improve memory and attentional properties and increase immediate early gene expression in the prefrontal cortex and the nucleus accumbens. We show that acute...

  4. Mitofusin-2 knockdown increases ER-mitochondria contact and decreases amyloid β-peptide production.

    Science.gov (United States)

    Leal, Nuno Santos; Schreiner, Bernadette; Pinho, Catarina Moreira; Filadi, Riccardo; Wiehager, Birgitta; Karlström, Helena; Pizzo, Paola; Ankarcrona, Maria

    2016-09-01

    Mitochondria are physically and biochemically in contact with other organelles including the endoplasmic reticulum (ER). Such contacts are formed between mitochondria-associated ER membranes (MAM), specialized subregions of ER, and the outer mitochondrial membrane (OMM). We have previously shown increased expression of MAM-associated proteins and enhanced ER to mitochondria Ca(2+) transfer from ER to mitochondria in Alzheimer's disease (AD) and amyloid β-peptide (Aβ)-related neuronal models. Here, we report that siRNA knockdown of mitofusin-2 (Mfn2), a protein that is involved in the tethering of ER and mitochondria, leads to increased contact between the two organelles. Cells depleted in Mfn2 showed increased Ca(2+) transfer from ER to mitchondria and longer stretches of ER forming contacts with OMM. Interestingly, increased contact resulted in decreased concentrations of intra- and extracellular Aβ40 and Aβ42 . Analysis of γ-secretase protein expression, maturation and activity revealed that the low Aβ concentrations were a result of impaired γ-secretase complex function. Amyloid-β precursor protein (APP), β-site APP-cleaving enzyme 1 and neprilysin expression as well as neprilysin activity were not affected by Mfn2 siRNA treatment. In summary, our data shows that modulation of ER-mitochondria contact affects γ-secretase activity and Aβ generation. Increased ER-mitochondria contact results in lower γ-secretase activity suggesting a new mechanism by which Aβ generation can be controlled.

  5. Molecular modeling of the ion channel-like nanotube structure of amyloid β-peptide

    Institute of Scientific and Technical Information of China (English)

    JIAO Yong; YANG Pin

    2007-01-01

    The ion channel-like nanotube structure of the oligomers of amyloid β-peptide (Aβ) was first investigated by molecular modeling. The results reveal that the hydrogen bond net is one of the key factors to stabilize the structure. The hydrophobicity distribution mode of the side chains is in favor of the structure inserting into the bilayers and forming a hydrophilic pore. The lumen space is under the control of the negative potential, weaker but spreading continuously, to which the cation selectivity attributes; meanwhile, the alternate distribution of the stronger positive and negative potentials makes the electrostatic distribution of the structure framework balance, which is also one of the key factors stabilizing the structure. The results lay the theoretical foundation for illuminating the structure stability and the ion permeability, and give a clue to elucidating the molecular mechanism of Alzheimer's disease (AD) and designing novel drugs to prevent or reverse AD at the root.

  6. Common benzothiazole and benzoxazole fluorescent DNA intercalators for studying Alzheimer Aβ1-42 and prion amyloid peptides.

    Science.gov (United States)

    Stefansson, Steingrimur; Adams, Daniel L; Tang, Cha-Mei

    2012-05-01

    Amyloids are fibrillar protein aggregates associated with a number of neurodegenerative pathologies including Alzheimer and Creutzfeldt-Jakob disease. The study of amyloids is usually based on fluorescence with the dye thioflavin-T. Although a number of amyloid binding compounds have been synthesized, many are nonfluorescent or not readily available for research use. Here we report on a class of commercial benzothiazole/benzoxazole containing fluorescent DNA intercalators from Invitrogen that possess the ability to bind amyloid Aβ1-42 peptide and hamster prion. These dyes fluoresce from 500-750 nm and are available as dimers or monomers. We demonstrate that these dyes can be used as acceptors for thioflavin-T fluorescence resonance energy transfer as well as reporter groups for binding studies with Congo red and chrysamine G. As more potential therapeutic compounds for these diseases are generated, there is a need for simple and inexpensive methods to monitor their interactions with amyloids. The fluorescent dyes reported here are readily available and can be used as tools for biochemical studies of amyloid structures and in vitro screening of potential therapeutics.

  7. X-Ray Structural Study of Amyloid-Like Fibrils of Tau Peptides Bound to Small-Molecule Ligands.

    Science.gov (United States)

    Tayeb-Fligelman, Einav; Landau, Meytal

    2017-01-01

    Atomic structures of Tau involved in Alzheimer's disease complexed with small molecule binders are the first step to define the Tau pharmacophore, leading the way to a structure-based design of improved diagnostics and therapeutics. Yet the partially disordered and polymorphic nature of Tau hinders structural analyses. Fortunately, short segments from amyloid proteins, which exhibit similar biophysical properties to the full-length proteins, also form fibrils and oligomers, and their atomic structures can be determined using X-ray microcrystallography. Such structures were successfully used to design amyloid inhibitors. This chapter describes experimental procedures used to determine crystal structures of Tau peptide segments in complex with small-molecule binders.

  8. Lattice model for amyloid peptides: OPEP force field parametrization and applications to the nucleus size of Alzheimer's peptides

    Science.gov (United States)

    Tran, Thanh Thuy; Nguyen, Phuong H.; Derreumaux, Philippe

    2016-05-01

    Coarse-grained protein lattice models approximate atomistic details and keep the essential interactions. They are, therefore, suitable for capturing generic features of protein folding and amyloid formation at low computational cost. As our aim is to study the critical nucleus sizes of two experimentally well-characterized peptide fragments Aβ16-22 and Aβ37-42 of the full length Aβ1-42 Alzheimer's peptide, it is important that simulations with the lattice model reproduce all-atom simulations. In this study, we present a comprehensive force field parameterization based on the OPEP (Optimized Potential for Efficient protein structure Prediction) force field for an on-lattice protein model, which incorporates explicitly the formation of hydrogen bonds and directions of side-chains. Our bottom-up approach starts with the determination of the best lattice force parameters for the Aβ16-22 dimer by fitting its equilibrium parallel and anti-parallel β-sheet populations to all-atom simulation results. Surprisingly, the calibrated force field is transferable to the trimer of Aβ16-22 and the dimer and trimer of Aβ37-42. Encouraged by this finding, we characterized the free energy landscapes of the two decamers. The dominant structure of the Aβ16-22 decamer matches the microcrystal structure. Pushing the simulations for aggregates between 4-mer and 12-mer suggests a nucleus size for fibril formation of 10 chains. In contrast, the Aβ37-42 decamer is largely disordered with mixed by parallel and antiparallel chains, suggesting that the nucleus size is >10 peptides. Our refined force field coupled to this on-lattice model should provide useful insights into the critical nucleation number associated with neurodegenerative diseases.

  9. Forebrain microglia from wild-type but not adult 5xFAD mice prevent amyloid-beta plaque formation in organotypic hippocampal slice cultures

    NARCIS (Netherlands)

    Hellwig, Sabine; Masuch, Annette; Nestel, Sigrun; Katzmarski, Natalie; Meyer-Luehmann, Melanie; Biber, Knut

    2015-01-01

    The role of microglia in amyloid-beta (A beta) deposition is controversial. In the present study, an organotypic hippocampal slice culture (OHSC) system with an in vivo-like microglial-neuronal environment was used to investigate the potential contribution of microglia to A beta plaque formation. We

  10. Investigation of the inhibitory effects of TiO{sub 2} on the β-amyloid peptide aggregation

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Mukhtar H., E-mail: ahmed-m@email.ulster.ac.uk [School of Chemical Science, National Centre for Sensor Research, Dublin City University, Dublin 9 (Ireland); Nanotechnology Integrated Bioengineering Centre, University of Ulster, Jordanstown, BT37 0QB Belfast (United Kingdom); Byrne, John A. [Nanotechnology Integrated Bioengineering Centre, University of Ulster, Jordanstown, BT37 0QB Belfast (United Kingdom); Keyes, Tia E. [School of Chemical Science, National Centre for Sensor Research, Dublin City University, Dublin 9 (Ireland)

    2014-06-01

    TiO{sub 2} thin films are of great interest as biocompatible coatings and also as photocatalytic self-cleaning and antimicrobial coatings. In this work we used β-amyloid as a model for infectious protein to investigate the attachment and photocatalytic degradation. TiO{sub 2} films were prepared on stainless steel substrates using magnetron sputtering. The films were characterised before and after exposure to β-amyloid (1–42), using XRD, Raman spectroscopy, XPS and AFM. The TiO{sub 2} film was mostly composed of the anatase phase with a relatively high surface roughness. The presence of Raman peaks at 1668 cm{sup −1} and 1263 cm{sup −1}, with the XPS spectral feature for nitrogen at 400 eV, confirmed the adsorption of amyloid on surface. Following exposure of the β-amyloid contaminated TiO{sub 2} to UV-B irradiation a slight shift of amide modes was observed. Furthermore, the amide I spectra show an overall decrease in α-helix content with presence of a minor peak around 1591 cm{sup −1}, which is related to tryptophanyl and tyrosinyl radicals, which can lead to conformational change of β-amyloid. The C1s band at 292.2 eV suggests the formation of free carboxylic acid. The loss in the crucial structure of β-amyloid leads to reduce the fibril formation, thought to be induced through a photocatalytic process. - Highlights: • TiO{sub 2} thin films synthesised and characterised • Absorption study using β-amyloid (1–42) • Investigation of peptide configuration via Raman, AFM and XPS spectroscopies • β-Amyloid was subsequently degraded by photocatalytic activity of TiO{sub 2}.

  11. Biological markers of amyloid beta-related mechanisms in Alzheimer's disease.

    LENUS (Irish Health Repository)

    Hampel, Harald

    2010-06-01

    Recent research progress has given detailed knowledge on the molecular pathogenesis of Alzheimer\\'s disease (AD), which has been translated into an intense, ongoing development of disease-modifying treatments. Most new drug candidates are targeted on inhibiting amyloid beta (Abeta) production and aggregation. In drug development, it is important to co-develop biomarkers for Abeta-related mechanisms to enable early diagnosis and patient stratification in clinical trials, and to serve as tools to identify and monitor the biochemical effect of the drug directly in patients. Biomarkers are also requested by regulatory authorities to serve as safety measurements. Molecular aberrations in the AD brain are reflected in the cerebrospinal fluid (CSF). Core CSF biomarkers include Abeta isoforms (Abeta40\\/Abeta42), soluble APP isoforms, Abeta oligomers and beta-site APP-cleaving enzyme 1 (BACE1). This article reviews recent research advances on core candidate CSF and plasma Abeta-related biomarkers, and gives a conceptual review on how to implement biomarkers in clinical trials in AD.

  12. Biological markers of amyloid beta-related mechanisms in Alzheimer's disease.

    LENUS (Irish Health Repository)

    Hampel, Harald

    2012-02-01

    Recent research progress has given detailed knowledge on the molecular pathogenesis of Alzheimer\\'s disease (AD), which has been translated into an intense, ongoing development of disease-modifying treatments. Most new drug candidates are targeted on inhibiting amyloid beta (Abeta) production and aggregation. In drug development, it is important to co-develop biomarkers for Abeta-related mechanisms to enable early diagnosis and patient stratification in clinical trials, and to serve as tools to identify and monitor the biochemical effect of the drug directly in patients. Biomarkers are also requested by regulatory authorities to serve as safety measurements. Molecular aberrations in the AD brain are reflected in the cerebrospinal fluid (CSF). Core CSF biomarkers include Abeta isoforms (Abeta40\\/Abeta42), soluble APP isoforms, Abeta oligomers and beta-site APP-cleaving enzyme 1 (BACE1). This article reviews recent research advances on core candidate CSF and plasma Abeta-related biomarkers, and gives a conceptual review on how to implement biomarkers in clinical trials in AD.

  13. Caffeine reverses cognitive impairment and decreases brain amyloid-beta levels in aged Alzheimer's disease mice.

    Science.gov (United States)

    Arendash, Gary W; Mori, Takashi; Cao, Chuanhai; Mamcarz, Malgorzata; Runfeldt, Melissa; Dickson, Alexander; Rezai-Zadeh, Kavon; Tane, Jun; Citron, Bruce A; Lin, Xiaoyang; Echeverria, Valentina; Potter, Huntington

    2009-01-01

    We have recently shown that Alzheimer's disease (AD) transgenic mice given a moderate level of caffeine intake (the human equivalent of 5 cups of coffee per day) are protected from development of otherwise certain cognitive impairment and have decreased hippocampal amyloid-beta (Abeta) levels due to suppression of both beta-secretase (BACE1) and presenilin 1 (PS1)/gamma-secretase expression. To determine if caffeine intake can have beneficial effects in "aged" APPsw mice already demonstrating cognitive impairment, we administered caffeine in the drinking water of 18-19 month old APPsw mice that were impaired in working memory. At 4-5 weeks into caffeine treatment, those impaired transgenic mice given caffeine (Tg/Caff) exhibited vastly superior working memory compared to the continuing impairment of control transgenic mice. In addition, Tg/Caff mice had substantially reduced Abeta deposition in hippocampus (decrease 40%) and entorhinal cortex (decrease 46%), as well as correlated decreases in brain soluble Abeta levels. Mechanistically, evidence is provided that caffeine suppression of BACE1 involves the cRaf-1/NFkappaB pathway. We also determined that caffeine concentrations within human physiological range effectively reduce active and total glycogen synthase kinase 3 levels in SweAPP N2a cells. Even with pre-existing and substantial Abeta burden, aged APPsw mice exhibited memory restoration and reversal of AD pathology, suggesting a treatment potential of caffeine in cases of established AD.

  14. Acceleration and inhibition of amyloid-β fibril formation by peptide-conjugated fluorescent-maghemite nanoparticles

    Science.gov (United States)

    Skaat, Hadas; Shafir, Gilead; Margel, Shlomo

    2011-08-01

    The formation of amyloid aggregates by association of peptides into ordered structures is hallmark of certain neurodegenerative disorders. Exploring the effect of specific nanoparticles on the formation of amyloid fibrils may contribute toward a mechanistic understanding of the aggregation processes, leading to design nanoparticles that modulate the formation of toxic amyloid plaques. Uniform maghemite (γ-Fe2O3) magnetic nanoparticles, containing fluorescein covalently encapsulated within (F-γ-Fe2O3), were prepared. These F-γ-Fe2O3 nanoparticles of 14.0 ± 4.0 nm were then coated with human serum albumin (HSA) via a precipitation process. Covalent conjugation of the spacer arm succinimidyl polyethylene glycol succinimidyl ester (NHS-PEG-NHS) to the F-γ-Fe2O3 HSA nanoparticles was then accomplished by interacting the primary amine groups of the HSA coating with excess NHS-PEG-NHS molecules. Covalent conjugation of the peptides amyloid-β 40 (Aβ40) or Leu-Pro-Phe-Phe-Asp (LPFFD) onto the surface of the former fluorescent nanoparticles was then performed, by interacting the terminal activated NHS groups of the PEG derivatized F-γ-Fe2O3 HSA nanoparticles with primary amino groups of the peptides. Kinetics of the Aβ40 fibrillation process in the absence and presence of varying concentrations of the Aβ40 or LPFFD conjugated nanoparticles were also elucidated. The non-peptide conjugated fluorescent nanoparticles do not affect the Aβ40 fibrillation process significantly. However, the Aβ40-conjugated nanoparticles (F-γ-Fe2O3 HSA-PEG-Aβ40) accelerate the fibrillation process while the LPFFD-conjugated nanoparticles (F-γ-Fe2O3 HSA-PEG-LPFFD) inhibit it. By applying MRI and fluorescence imaging techniques simultaneously these bioactive fluorescent magnetic iron oxide nanoparticles can be used as an efficient tool to study and control the Aβ40 amyloid fibril formation process.

  15. Satureja bachtiarica ameliorate beta-amyloid induced memory impairment, oxidative stress and cholinergic deficit in animal model of Alzheimer's disease.

    Science.gov (United States)

    Soodi, Maliheh; Saeidnia, Soodabeh; Sharifzadeh, Mohammad; Hajimehdipoor, Homa; Dashti, Abolfazl; Sepand, Mohammad Reza; Moradi, Shahla

    2016-04-01

    Extracellular deposition of Beta-amyloid peptide (Aβ) is the main finding in the pathophysiology of Alzheimer's disease (AD), which damages cholinergic neurons through oxidative stress and reduces the cholinergic neurotransmission. Satureja bachtiarica is a medicinal plant from the Lamiaceae family which was widely used in Iranian traditional medicine. The aim of the present study was to investigate possible protective effects of S. bachtiarica methanolic extract on Aβ induced spatial memory impairment in Morris Water Maze (MWM), oxidative stress and cholinergic neuron degeneration. Pre- aggregated Aβ was injected into the hippocampus of each rat bilaterally (10 μg/rat) and MWM task was performed 14 days later to evaluate learning and memory function. Methanolic extract of S.bachtiarica (10, 50 and 100 mg/Kg) was injected intraperitoneally for 19 consecutive days, after Aβ injection. After the probe test the brain tissue were collected and lipid peroxidation, Acetylcholinesterase (AChE) activity and Cholin Acetyl Transferees (ChAT) immunorectivity were measured in the hippocampus. Intrahipocampal injection of Aβ impaired learning and memory in MWM in training days and probe trail. Methanolic extract of S. bachtiarica (50 and 100 mg/Kg) could attenuate Aβ-induced memory deficit. ChAT immunostaining revealed that cholinergic neurons were loss in Aβ- injected group and S. bachtiarica (100 mg/Kg) could ameliorate Aβ- induced ChAT reduction in the hippocampus. Also S. bachtiarica could ameliorate Aβ-induced lipid peroxidation and AChE activity increase in the hippocampus. In conclusion our study represent that S.bachtiarica methanolic extract can improve Aβ-induced memory impairment and cholinergic loss then we recommended this extract as a candidate for further investigation in treatment of AD.

  16. Episodic memory loss is related to hippocampal-mediated beta-amyloid deposition in elderly subjects.

    Science.gov (United States)

    Mormino, E C; Kluth, J T; Madison, C M; Rabinovici, G D; Baker, S L; Miller, B L; Koeppe, R A; Mathis, C A; Weiner, M W; Jagust, W J

    2009-05-01

    Although beta-amyloid (Abeta) plaques are a primary diagnostic criterion for Alzheimer's disease, this pathology is commonly observed in the brains of non-demented older individuals. To explore the importance of this pathology in the absence of dementia, we compared levels of amyloid deposition (via 'Pittsburgh Compound-B' (PIB) positron emission tomography (PET) imaging) to hippocampus volume (HV) and episodic memory (EM) in three groups: (i) normal controls (NC) from the Berkeley Aging Cohort (BAC NC, n = 20); (ii) normal controls (NC) from the Alzheimer's disease neuroimaging initiative (ADNI NC, n = 17); and (iii) PIB+ mild cognitive impairment subjects from the ADNI (ADNI PIB+ MCI, n = 39). Age, gender and education were controlled for in each statistical model, and HV was adjusted for intracranial volume (aHV). In BAC NC, elevated PIB uptake was significantly associated with smaller aHV (P = 0.0016) and worse EM (P = 0.0086). Within ADNI NC, elevated PIB uptake was significantly associated with smaller aHV (P = 0.047) but not EM (P = 0.60); within ADNI PIB+ MCI, elevated PIB uptake was significantly associated with both smaller aHV (P = 0.00070) and worse EM (P = 0.046). To further understand these relationships, a recursive regression procedure was conducted within all ADNI NC and PIB+ MCI subjects (n = 56) to test the hypothesis that HV mediates the relationship between Abeta and EM. Significant correlations were found between PIB index and EM (P = 0.0044), PIB index and aHV (P index was no longer significantly associated with EM (P = 0.50). These results are consistent with a model in which Abeta deposition, hippocampal atrophy, and EM occur sequentially in elderly subjects, with Abeta deposition as the primary event in this cascade. This pattern suggests that declining EM in older individuals may be caused by Abeta-induced hippocampus atrophy.

  17. Adiponectin is protective against oxidative stress induced cytotoxicity in amyloid-beta neurotoxicity.

    Directory of Open Access Journals (Sweden)

    Koon-Ho Chan

    Full Text Available Beta-amyloid (Aβ neurotoxicity is important in Alzheimer's disease (AD pathogenesis. Aβ neurotoxicity causes oxidative stress, inflammation and mitochondrial damage resulting in neuronal degeneration and death. Oxidative stress, inflammation and mitochondrial failure are also pathophysiological mechanisms of type 2 diabetes (T(2DM which is characterized by insulin resistance. Interestingly, T(2DM increases risk to develop AD which is associated with reduced neuronal insulin sensitivity (central insulin resistance. We studied the potential protective effect of adiponectin (an adipokine with insulin-sensitizing, anti-inflammatory and anti-oxidant properties against Aβ neurotoxicity in human neuroblastoma cells (SH-SY5Y transfected with the Swedish amyloid precursor protein (Sw-APP mutant, which overproduced Aβ with abnormal intracellular Aβ accumulation. Cytotoxicity was measured by assay for lactate dehydrogenase (LDH released upon cell death and lysis. Our results revealed that Sw-APP transfected SH-SY5Y cells expressed both adiponectin receptor 1 and 2, and had increased AMP-activated protein kinase (AMPK activation and enhanced nuclear factor-kappa B (NF-κB activation compared to control empty-vector transfected SH-SY5Y cells. Importantly, adiponectin at physiological concentration of 10 µg/ml protected Sw-APP transfected SH-SY5Y cells against cytotoxicity under oxidative stress induced by hydrogen peroxide. This neuroprotective action of adiponectin against Aβ neurotoxicity-induced cytotoxicity under oxidative stress involved 1 AMPK activation mediated via the endosomal adaptor protein APPL1 (adaptor protein with phosphotyrosine binding, pleckstrin homology domains and leucine zipper motif and possibly 2 suppression of NF-κB activation. This raises the possibility of novel therapies for AD such as adiponectin receptor agonists.

  18. HIV-1 stimulates nuclear entry of amyloid beta via dynamin dependent EEA1 and TGF-β/Smad signaling

    Energy Technology Data Exchange (ETDEWEB)

    András, Ibolya E., E-mail: iandras@med.miami; Toborek, Michal, E-mail: mtoborek@med.miami.edu

    2014-04-15

    Clinical evidence indicates increased amyloid deposition in HIV-1-infected brains, which contributes to neurocognitive dysfunction in infected patients. Here we show that HIV-1 exposure stimulates amyloid beta (Aβ) nuclear entry in human brain endothelial cells (HBMEC), the main component of the blood–brain barrier (BBB). Treatment with HIV-1 and/or Aβ resulted in concurrent increase in early endosomal antigen-1 (EEA1), Smad, and phosphorylated Smad (pSmad) in nuclear fraction of HBMEC. A series of inhibition and silencing studies indicated that Smad and EEA1 closely interact by influencing their own nuclear entry; the effect that was attenuated by dynasore, a blocker of GTP-ase activity of dynamin. Importantly, inhibition of dynamin, EEA1, or TGF-β/Smad effectively attenuated HIV-1-induced Aβ accumulation in the nuclei of HBMEC. The present study indicates that nuclear uptake of Aβ involves the dynamin-dependent EEA1 and TGF-β/Smad signaling pathways. These results identify potential novel targets to protect against HIV-1-associated dysregulation of amyloid processes at the BBB level. - Highlights: • HIV-1 induces nuclear accumulation of amyloid beta (Aβ) in brain endothelial cells. • EEA-1 and TGF-Β/Smad act in concert to regulate nuclear entry of Aβ. • Dynamin appropriates the EEA-1 and TGF-Β/Smad signaling. • Dynamin serves as a master regulator of HIV-1-induced nuclear accumulation of Aβ.

  19. Preventive immunization of aged and juvenile non-human primates to beta-amyloid

    Directory of Open Access Journals (Sweden)

    Kofler Julia

    2012-05-01

    Full Text Available Abstract Background Immunization against beta-amyloid (Aβ is a promising approach for the treatment of Alzheimer’s disease, but the optimal timing for the vaccination remains to be determined. Preventive immunization approaches may be more efficacious and associated with fewer side-effects; however, there is only limited information available from primate models about the effects of preclinical vaccination on brain amyloid composition and the neuroinflammatory milieu. Methods Ten non-human primates (NHP of advanced age (18–26 years and eight 2-year-old juvenile NHPs were immunized at 0, 2, 6, 10 and 14 weeks with aggregated Aβ42 admixed with monophosphoryl lipid A as adjuvant, and monitored for up to 6 months. Anti-Aβ antibody levels and immune activation markers were assessed in plasma and cerebrospinal fluid samples before and at several time-points after immunization. Microglial activity was determined by [11C]PK11195 PET scans acquired before and after immunization, and by post-mortem immunohistochemical and real-time PCR evaluation. Aβ oligomer composition was assessed by immunoblot analysis in the frontal cortex of aged immunized and non-immunized control animals. Results All juvenile animals developed a strong and sustained serum anti-Aβ IgG antibody response, whereas only 80 % of aged animals developed detectable antibodies. The immune response in aged monkeys was more delayed and significantly weaker, and was also more variable between animals. Pre- and post-immunization [11C]PK11195 PET scans showed no evidence of vaccine-related microglial activation. Post-mortem brain tissue analysis indicated a low overall amyloid burden, but revealed a significant shift in oligomer size with an increase in the dimer:pentamer ratio in aged immunized animals compared with non-immunized controls (P  Conclusions Our results indicate that preventive Aβ immunization is a safe therapeutic approach lacking adverse CNS immune system

  20. Blood Beta-Amyloid and Tau in Down Syndrome: A Comparison with Alzheimer’s Disease

    Science.gov (United States)

    Lee, Ni-Chung; Yang, Shieh-Yueh; Chieh, Jen-Jie; Huang, Po-Tsang; Chang, Lih-Maan; Chiu, Yen-Nan; Huang, Ai-Chiu; Chien, Yin-Hsiu; Hwu, Wuh-Liang; Chiu, Ming-Jang

    2017-01-01

    Background: Changes in β-amyloids (Aβ) and tau proteins have been noted in patients with Alzheimer’s disease (AD) and patients with both Down syndrome (DS) and AD. However, reports of changes in the early stage of regression, such as behavioral and psychological symptoms of dementia (BPSD), in DS are sparse. Methods: Seventy-eight controls, 62 patients with AD, 35 with DS and 16 with DS with degeneration (DS_D), including 9 with BPSD and 7 with dementia, were enrolled. The levels of β-amyloids 40 and 42 (Aβ-40, Aβ-42) and tau protein in the blood were analyzed using immunomagnetic reduction (IMR). The Adaptive Behavior Dementia Questionnaire (ABDQ) was used to evaluate the clinical status of the degeneration. Results: The Aβ-40 and tau levels were higher and the Aβ-42 level and Aβ-42/Aβ-40 ratio were lower in DS than in the controls (all p < 0.001). Decreased Aβ-40 and increased Aβ-42 levels and Aβ-42/40 ratios were observed in DS_D compared with DS without degeneration (all p < 0.001). The ABDQ score was negatively correlated with the Aβ-40 level (ρ = −0.556) and the tau protein level (ρ = −0.410) and positively associated with the Aβ-42 level (ρ = 0.621) and the Aβ-42/40 ratio (ρ = 0.544; all p < 0.05). Conclusions: The Aβ-40 and Aβ-42 levels and the Aβ-42/Aβ-40 ratio are considered possible biomarkers for the early detection of degeneration in DS. The elevated Aβ-40 and tau levels in DS may indicate early neurodegeneration. The increased Aβ-42 in DS_D may reflect the neurotoxicity of Aβ-42. The paradox of the tau decreases in DS_D could be explained by a burnout phenomenon during long-term neurodegeneration. The different patterns of the plasma beta amyloids and tau protein may imply a different pathogenesis between DS with degeneration and AD in the general population, in spite of their common key pathological features. PMID:28144219

  1. N-Acetyl-L-Cystein downregulates beta-amyloid precursor protein gene transcription in human neuroblastoma cells.

    Science.gov (United States)

    Studer, R; Baysang, G; Brack, C

    2001-01-01

    The causes for the sporadic form of Alzheimer's disease (AD) are still poorly understood, except from the fact that age is an important risk factor. The main component of the characteristic amyloid plaques in brains of AD patients are Abeta peptides, derivatives of the amyloid precursor protein APP. Oxidative stress may contribute to the aetiology of AD by dysregulation of APP metabolism. Overexpression of the APP gene could result in an increased secretion of neurotoxic Abeta peptides, while preventing the overexpression might be protective. We here report that the antioxidant N-Acetyl-L-Cystein (NAC) downregulates APP gene transcription in human neuroblastoma cells. The effect is reversible when cells are returned to NAC free medium. These results open up new possibilities for the development of therapeutic agents that intervene at the transcriptional level.

  2. Tau and Beta-Amyloid Deposition, Microhemorrhage and Brain Function after Traumatic Brain Injury in War Veterans

    Science.gov (United States)

    2015-10-01

    AWARD NUMBER: W81XWH-14-1-0418 TITLE: Tau and Beta-Amyloid Deposition, Microhemorrhage and Brain Function after Traumatic Brain Injury in War...REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour...completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information

  3. The Effect of Iron in MR Imaging and Transverse Relaxation of Amyloid-Beta Plaques in Alzheimer’s Disease

    OpenAIRE

    Meadowcroft, Mark D.; Peters, Douglas G.; Dewal, Rahul; Connor, James R.; Yang, Qing X.

    2014-01-01

    Dysregulation of neural iron is known to occur during the progression of Alzheimer’s disease. Visualization of amyloid-beta (Aβ) plaques with magnetic resonance imaging (MRI) has largely been credited to rapid proton relaxation in the vicinity of plaques due to focal iron deposition. The goal of this work was to determine the relationship between local relaxation and related focal iron content associated with Aβ plaques. Alzheimer’s disease (N=5) and control tissue (N=3) sample slices from th...

  4. Contrasting effects of nanoparticle-protein attraction on amyloid aggregation.

    Science.gov (United States)

    Radic, Slaven; Davis, Thomas P; Ke, Pu Chun; Ding, Feng

    2015-01-01

    Nanoparticles (NPs) have been experimentally found to either promote or inhibit amyloid aggregation of proteins, but the molecular mechanisms for such complex behaviors remain unknown. Using coarse-grained molecular dynamics simulations, we investigated the effects of varying the strength of nonspecific NP-protein attraction on amyloid aggregation of a model protein, the amyloid-beta peptide implicated in Alzheimer's disease. Specifically, with increasing NP-peptide attraction, amyloid aggregation on the NP surface was initially promoted due to increased local protein concentration on the surface and destabilization of the folded state. However, further increase of NP-peptide attraction decreased the stability of amyloid fibrils and reduced their lateral diffusion on the NP surface necessary for peptide conformational changes and self-association, thus prohibiting amyloid aggregation. Moreover, we found that the relative concentration between protein and NPs also played an important role in amyloid aggregation. With a high NP/protein ratio, NPs that intrinsically promote protein aggregation may display an inhibitive effect by depleting the proteins in solution while having a low concentration of the proteins on each NP's surface. Our coarse-grained molecular dynamics simulation study offers a molecular mechanism for delineating the contrasting and seemingly conflicting effects of NP-protein attraction on amyloid aggregation and highlights the potential of tailoring anti-aggregation nanomedicine against amyloid diseases.

  5. Overexpression of estrogen receptor beta alleviates the toxic effects of beta-amyloid protein on PC12 cells via non-hormonal ligands

    Institute of Scientific and Technical Information of China (English)

    Hui Wang; Lihui Si; Xiaoxi Li; Weiguo Deng; Haimiao Yang; Yuyan Yang; Yan Fu

    2012-01-01

    After binding to the estrogen receptor, estrogen can alleviate the toxic effects of beta-amyloid protein, and thereby exert a therapeutic effect on Alzheimer's disease patients. Estrogen can increase the incidence of breast carcinoma and endometrial cancer in post-menopausal women, so it is not suitable for clinical treatment of Alzheimer's disease. There is recent evidence that the estrogen receptor can exert its neuroprotective effects without estrogen dependence. Real-time quantitative PCR and flow cytometry results showed that, compared with non-transfected PC12 cells, adenovirus-mediated estrogen receptor β gene-transfected PC12 cells exhibited lower expression of tumor necrosis factor α and interleukin 1β under stimulation with beta-amyloid protein and stronger protection from apoptosis. The Akt-specific inhibitor Abi-2 decreased the anti-inflammatory and anti-apoptotic effects of estrogen receptor β gene-transfection. These findings suggest that overexpression of estrogen receptor β can alleviate the toxic effect of beta-amyloid protein on PC12 cells, without estrogen dependence. The Akt pathway is one of the potential means for the anti-inflammatory and anti-apoptotic effects of the estrogen receptor.

  6. Modeling clustered activity increase in amyloid-beta positron emission tomographic images with statistical descriptors

    Directory of Open Access Journals (Sweden)

    Shokouhi S

    2015-04-01

    Full Text Available Sepideh Shokouhi,1 Baxter P Rogers,1 Hakmook Kang,2 Zhaohua Ding,1 Daniel O Claassen,3 John W Mckay,1 William R Riddle1On behalf of the Alzheimer’s Disease Neuroimaging Initiative1Department of Radiology and Radiological Sciences, Vanderbilt University Institute of Imaging Science, 2Department of Biostatistics, 3Department of Neurology, Vanderbilt University, Nashville, TN, USABackground: Amyloid-beta (Aβ imaging with positron emission tomography (PET holds promise for detecting the presence of Aβ plaques in the cortical gray matter. Many image analyses focus on regional average measurements of tracer activity distribution; however, considerable additional information is available in the images. Metrics that describe the statistical properties of images, such as the two-point correlation function (S2, have found wide applications in astronomy and materials science. S2 provides a detailed characterization of spatial patterns in images typically referred to as clustering or flocculence. The objective of this study was to translate the two-point correlation method into Aβ-PET of the human brain using 11C-Pittsburgh compound B (11C-PiB to characterize longitudinal changes in the tracer distribution that may reflect changes in Aβ plaque accumulation.Methods: We modified the conventional S2 metric, which is primarily used for binary images and formulated a weighted two-point correlation function (wS2 to describe nonbinary, real-valued PET images with a single statistical function. Using serial 11C-PiB scans, we calculated wS2 functions from two-dimensional PET images of different cortical regions as well as three-dimensional data from the whole brain. The area under the wS2 functions was calculated and compared with the mean/median of the standardized uptake value ratio (SUVR. For three-dimensional data, we compared the area under the wS2 curves with the subjects’ cerebrospinal fluid measures.Results: Overall, the longitudinal changes in wS2

  7. Enoxaparin treatment administered at both early and late stages of amyloid beta deposition improves cognition of APPswe/PS1dE9 mice with differential effects on brain A beta levels.

    NARCIS (Netherlands)

    Timmer, N.M.; Dijk, L. van; Zee, C.E.E.M. van der; Kiliaan, A.J.; Waal, R.M.W. de; Verbeek, M.M.

    2010-01-01

    Enoxaparin (Enox), a low molecular weight heparin, has been shown to lower brain amyloid beta (A beta) load in a mouse model for Alzheimer's disease. However, the effect of Enox on cognition was not studied. Therefore, we examined the effect of peripheral Enox treatment on cognition and brain A beta

  8. Determining the Effect of Aluminum Oxide Nanoparticles on the Aggregation of Amyloid-Beta in Transgenic Caenorhabditis elegans

    Science.gov (United States)

    Patel, Suhag; Matticks, John; Howell, Carina

    2014-03-01

    The cause of Alzheimer's disease has been linked partially to genetic factors but the predicted environmental components have yet to be determined. In Alzheimer's, accumulation of amyloid-beta protein in the brain forms plaques resulting in neurodegeneration and loss of mental functions. It has been postulated that aluminum influences the aggregation of amyloid-beta. To test this hypothesis, transgenic Caenorhabditis elegans, CL2120, was used as a model organism to observe neurodegeneration in nematodes exposed to aluminum oxide nanoparticles. Behavioral testing, fluorescent staining, and fluorescence microscopy were used to test the effects of aggregation of amyloid-beta in the nervous systems of effected nematodes exposed to aluminum oxide nanoparticles. Energy-dispersive x-ray spectroscopy was used to quantify the total concentration of aluminum oxide that the worms were exposed to during the experiment. Exposure of transgenic and wild type worms to a concentration of 4 mg mL-1 aluminum oxide showed a decrease in the sinusoidal motion, as well as an infirmity of transgenic worms when compared to control worms. These results support the hypothesis that aluminum may play a role in neurodegeneration in C. elegans, and may influence and increase the progression of Alzheimer's disease. This work was supported by National Science Foundation grants DUE-1058829, DMR-0923047 DUE-0806660 and Lock Haven FPDC grants.

  9. Association thermodynamics and conformational stability of beta-sheet amyloid beta(17-42) oligomers: effects of E22Q (Dutch) mutation and charge neutralization.

    Science.gov (United States)

    Blinov, Nikolay; Dorosh, Lyudmyla; Wishart, David; Kovalenko, Andriy

    2010-01-20

    Amyloid fibrils are associated with many neurodegenerative diseases. It was found that amyloidogenic oligomers, not mature fibrils, are neurotoxic agents related to these diseases. Molecular mechanisms of infectivity, pathways of aggregation, and molecular structure of these oligomers remain elusive. Here, we use all-atom molecular dynamics, molecular mechanics combined with solvation analysis by statistical-mechanical, three-dimensional molecular theory of solvation (also known as 3D-RISM-KH) in a new MM-3D-RISM-KH method to study conformational stability, and association thermodynamics of small wild-type Abeta(17-42) oligomers with different protonation states of Glu(22), as well the E22Q (Dutch) mutants. The association free energy of small beta-sheet oligomers shows near-linear trend with the dimers being thermodynamically more stable relative to the larger constructs. The linear (within statistical uncertainty) dependence of the association free energy on complex size is a consequence of the unilateral stacking of monomers in the beta-sheet oligomers. The charge reduction of the wild-type Abeta(17-42) oligomers upon protonation of the solvent-exposed Glu(22) at acidic conditions results in lowering the association free energy compared to the wild-type oligomers at neutral pH and the E22Q mutants. The neutralization of the peptides because of the E22Q mutation only marginally affects the association free energy, with the reduction of the direct electrostatic interactions mostly compensated by the unfavorable electrostatic solvation effects. For the wild-type oligomers at acidic conditions such compensation is not complete, and the electrostatic interactions, along with the gas-phase nonpolar energetic and the overall entropic effects, contribute to the lowering of the association free energy. The differences in the association thermodynamics between the wild-type Abeta(17-42) oligomers at neutral pH and the Dutch mutants, on the one hand, and the Abeta(17

  10. Cerebrospinal Fluid Levels of Amyloid Beta 1-43 Mirror 1-42 in Relation to Imaging Biomarkers of Alzheimer’s Disease

    Science.gov (United States)

    Almdahl, Ina S.; Lauridsen, Camilla; Selnes, Per; Kalheim, Lisa F.; Coello, Christopher; Gajdzik, Beata; Møller, Ina; Wettergreen, Marianne; Grambaite, Ramune; Bjørnerud, Atle; Bråthen, Geir; Sando, Sigrid B.; White, Linda R.; Fladby, Tormod

    2017-01-01

    Introduction: Amyloid beta 1-43 (Aβ43), with its additional C-terminal threonine residue, is hypothesized to play a role in early Alzheimer’s disease pathology possibly different from that of amyloid beta 1-42 (Aβ42). Cerebrospinal fluid (CSF) Aβ43 has been suggested as a potential novel biomarker for predicting conversion from mild cognitive impairment (MCI) to dementia in Alzheimer’s disease. However, the relationship between CSF Aβ43 and established imaging biomarkers of Alzheimer’s disease has never been assessed. Materials and Methods: In this observational study, CSF Aβ43 was measured with ELISA in 89 subjects; 34 with subjective cognitive decline (SCD), 51 with MCI, and four with resolution of previous cognitive complaints. All subjects underwent structural MRI; 40 subjects on a 3T and 50 on a 1.5T scanner. Forty subjects, including 24 with SCD and 12 with MCI, underwent 18F-Flutemetamol PET. Seventy-eight subjects were assessed with 18F-fluorodeoxyglucose PET (21 SCD/7 MCI and 11 SCD/39 MCI on two different scanners). Ten subjects with SCD and 39 with MCI also underwent diffusion tensor imaging. Results: Cerebrospinal fluid Aβ43 was both alone and together with p-tau a significant predictor of the distinction between SCD and MCI. There was a marked difference in CSF Aβ43 between subjects with 18F-Flutemetamol PET scans visually interpreted as negative (37 pg/ml, n = 27) and positive (15 pg/ml, n = 9), p < 0.001. Both CSF Aβ43 and Aβ42 were negatively correlated with standardized uptake value ratios for all analyzed regions; CSF Aβ43 average rho -0.73, Aβ42 -0.74. Both CSF Aβ peptides correlated significantly with hippocampal volume, inferior parietal and frontal cortical thickness and axial diffusivity in the corticospinal tract. There was a trend toward CSF Aβ42 being better correlated with cortical glucose metabolism. None of the studied correlations between CSF Aβ43/42 and imaging biomarkers were significantly different for the two A

  11. ABCA5 regulates amyloidpeptide production and is associated with Alzheimer's disease neuropathology.

    Science.gov (United States)

    Fu, YuHong; Hsiao, Jen-Hsiang T; Paxinos, George; Halliday, Glenda M; Kim, Woojin Scott

    2015-01-01

    Brain cholesterol homeostasis is regulated by a group of proteins called ATP-binding cassette subfamily A (ABCA) transporters. Certain ABCA transporters regulate amyloid-β protein precursor (AβPP) processing to generate amyloidpeptides (Aβ) and are associated with an increased risk for late-onset Alzheimer's disease (AD). ABCA5 is a little-known member of the ABCA subfamily with no known function. In this study we undertook a comprehensive analysis of ABCA5 expression in the human and mouse brains. We explored the potential role of ABCA5 in AβPP processing associated with AD pathology. ABCA5 was differentially expressed in multiple regions of both human and mouse brains. It was strongly expressed in neurons with only weak expression in microglia, astrocytes, and oligodendrocytes. ABCA5 was able to stimulate cholesterol efflux in neurons. ABCA5 expression was specifically elevated in the hippocampus of AD brains. Using two in vitro cell systems we demonstrated that ABCA5 reduces Aβ production, both Aβ40 and Aβ42, without altering AβPP mRNA and protein levels, indicating that the decrease in the Aβ levels was due to changes in AβPP processing and not AβPP expression. This report represents the first extensive expression and functional study of ABCA5 in the human brain and our data suggest a plausible function of ABCA5 in the brain as a cholesterol transporter associated with Aβ generation, information that may offer a potential new target for controlling Aβ levels in the brain.

  12. The role of the E2 copper binding domain in the cell biology of the amyloid precursor protein

    OpenAIRE

    Blanthorn-Hazell, Sophee

    2015-01-01

    Alzheimer’s disease is a neurodegenerative disorder characterised by the accumulation, in the brain, of neurotoxic amyloid beta-(Aβ) peptides. These peptides are generated from the amyloid precursor protein (APP) via the amyloidogenic proteolytic pathway which also leads to the formation of soluble APP beta (sAPPβ). Alternatively, APP can be cleaved by the non-amyloidogenic pathway in which an α-secretase activity cleaves the protein within the Aβ region generating soluble APP alpha (sAPPα). ...

  13. Small angle X-ray scattering analysis of Cu(2+)-induced oligomers of the Alzheimer's amyloid β peptide.

    Science.gov (United States)

    Ryan, Timothy M; Kirby, Nigel; Mertens, Haydyn D T; Roberts, Blaine; Barnham, Kevin J; Cappai, Roberto; Pham, Chi Le Lan; Masters, Colin L; Curtain, Cyril C

    2015-03-01

    Research into causes of Alzheimer's disease and its treatment has produced a tantalising array of hypotheses about the role of transition metal dyshomeostasis, many of them on the interaction of these metals with the neurotoxic amyloidpeptide (Aβ). Here, we have used small angle X-ray scattering (SAXS) to study the effect of the molar ratio, Cu(2+)/Aβ, on the early three-dimensional structures of the Aβ1-40 and Cu(2+)/Aβ1-42 peptides in solution. We found that at molar ratios of 0.5 copper to peptide Aβ1-40 aggregated, while Aβ1-42 adopted a relatively monodisperse cylindrical shape, and at a ratio of 1.5 copper to peptide Aβ1-40 adopted a monodisperse cylindrical shape, while Aβ1-42 adopted the shape of an ellipsoid of rotation. We also found, via in-line rapid mixing SAXS analysis, that both peptides in the absence of copper were monodisperse at very short timeframes (peptide, with a higher ratio favouring the formation of cytotoxic non-amyloid oligomers. Our results are relatively consistent with previous two-dimensional studies of the conformations of these Cu(2+)-induced entities, made on a much longer time-scale than SAXS, by transmission electron microscopy and atomic force microscopy, which showed that a range of oligomeric species are formed. We propose that SAXS carried out on a modern synchrotron beamline enables studies on initial events in disordered protein folding on physiologically-relevant time-scales, and will likely provide great insight into the initiating processes of the Aβ misfolding, oligomerisation and amyloid formation.

  14. Association of cardiovascular factors and Alzheimer's disease plasma amyloid-beta protein in subjective memory complainers.

    Science.gov (United States)

    Bates, Kristyn A; Sohrabi, Hamid R; Rodrigues, Mark; Beilby, John; Dhaliwal, Satvinder S; Taddei, Kevin; Criddle, Arthur; Wraith, Megan; Howard, Matthew; Martins, Georgia; Paton, Athena; Mehta, Pankaj; Foster, Jonathan K; Martins, Ian J; Lautenschlager, Nicola T; Mastaglia, Frank L; Laws, Simon M; Gandy, Samuel E; Martins, Ralph N

    2009-01-01

    A strong link is indicated between cardiovascular disease (CVD) and risk for developing Alzheimer's disease (AD), which may be exacerbated by the major AD genetic risk factor apolipoprotein Eepsilon4 (APOEepsilon4). Since subjective memory complaint (SMC) may potentially be an early indicator for cognitive decline, we examined CVD risk factors in a cohort of SMC. As amyloid-beta (Abeta) is considered to play a central role in AD, we hypothesized that the CVD risk profile (increased LDL, reduced HDL, and increased body fat) would be associated with plasma Abeta levels. We explored this in 198 individuals with and without SMC (average age = 63 years). Correlations between Abeta40 and HDL were observed, which were stronger in non-APOEepsilon4 carriers (rho = -0.315, p association between HDL and Abeta, which if demonstrated to be causal has implications for the development of lifestyle interventions and/or novel therapeutics. The relationship between HDL and Abeta and the potential significance of such an association needs to be validated in a larger longitudinal study.

  15. Gene expression profile of amyloid beta protein-injected mouse model for Alzheimer disease

    Institute of Scientific and Technical Information of China (English)

    Ling-na KONG; Ping-ping ZUO; Liang MU; Yan-yong LIU; Nan YANG

    2005-01-01

    Aim: To investigate the gene expression profile changes in the cerebral cortex of mice injected icv with amyloid beta-protein (Aβ) fragment 25-35 using cDNA microarray. Methods: Balb/c mice were randomly divided into a control group and Aβ-treated group. The Morris water maze test was performed to detect the effect of Aβ-injection on the learning and memory of mice. Atlas Mouse 1.2 Expression Arrays containing 1176 genes were used to investigate the gene expression pattern of each group. Results: The gene expression profiles showed that 19 genes including TBX1, NF-κB, AP-1/c-Jun, cadherin, integrin, erb-B2, and FGFR1 were up-regulated after 2 weeks oficv administration of Aβ; while 12 genes were downregulated, including NGF, glucose phosphate isomerase 1, AT motif binding factor 1, Na+/K+-ATPase, and Akt. Conclusions: The results provide important leads for pursuing a more complete understanding of the molecular events of Aβ-injection into mice with Alzheimer disease.

  16. Computational modeling of the effects of amyloid-beta on release probability at hippocampal synapses

    Directory of Open Access Journals (Sweden)

    Armando eRomani

    2013-01-01

    Full Text Available The role of amyloid-beta (Aβ in brain function and in the pathogenesis of Alzheimer’s disease remains elusive. Recent publications reported that an increase in Aβ concentration perturbs pre-synaptic release in hippocampal neurons. In particular, it was shown in vitro that Aβ is an endogenous regulator of synaptic transmission at the CA3-CA1 synapse, enhancing its release probability. How this synaptic modulator influences neuronal output during physiological stimulation patterns, such as those elicited in vivo, is still unknown. Using a realistic model of hippocampal CA1 pyramidal neurons, we first implemented this Aβ-induced enhancement of release probability and validated the model by reproducing the experimental findings. We then demonstrated that this synaptic modification can significantly alter synaptic integration properties in a wide range of physiologically relevant input frequencies (from 5 to 200 Hz. Finally, we used natural input patterns, obtained from CA3 pyramidal neurons in vivo during free exploration of rats in an open field, to investigate the effects of enhanced Aβ on synaptic release under physiological conditions. The model shows that the CA1 neuronal response to these natural patterns is altered in the increased-Aβ condition, especially for frequencies in the theta and gamma ranges. These results suggest that the perturbation of release probability induced by increased Aβ can significantly alter the spike probability of CA1 pyramidal neurons and thus contribute to abnormal hippocampal function during Alzheimer’s disease.

  17. Analyzing and Modeling the Kinetics of Amyloid Beta Pores Associated with Alzheimer's Disease Pathology.

    Science.gov (United States)

    Ullah, Ghanim; Demuro, Angelo; Parker, Ian; Pearson, John E

    2015-01-01

    Amyloid beta (Aβ) oligomers associated with Alzheimer's disease (AD) form Ca2+-permeable plasma membrane pores, leading to a disruption of the otherwise well-controlled intracellular calcium (Ca2+) homeostasis. The resultant up-regulation of intracellular Ca2+ concentration has detrimental implications for memory formation and cell survival. The gating kinetics and Ca2+ permeability of Aβ pores are not well understood. We have used computational modeling in conjunction with the ability of optical patch-clamping for massively parallel imaging of Ca2+ flux through thousands of pores in the cell membrane of Xenopus oocytes to elucidate the kinetic properties of Aβ pores. The fluorescence time-series data from individual pores were idealized and used to develop data-driven Markov chain models for the kinetics of the Aβ pore at different stages of its evolution. Our study provides the first demonstration of developing Markov chain models for ion channel gating that are driven by optical-patch clamp data with the advantage of experiments being performed under close to physiological conditions. Towards the end, we demonstrate the up-regulation of gating of various Ca2+ release channels due to Aβ pores and show that the extent and spatial range of such up-regulation increases as Aβ pores with low open probability and Ca2+ permeability transition into those with high open probability and Ca2+ permeability.

  18. Amyloid-Beta Induced Changes in Vesicular Transport of BDNF in Hippocampal Neurons

    Directory of Open Access Journals (Sweden)

    Bianca Seifert

    2016-01-01

    Full Text Available The neurotrophin brain derived neurotrophic factor (BDNF is an important growth factor in the CNS. Deficits in transport of this secretory protein could underlie neurodegenerative diseases. Investigation of disease-related changes in BDNF transport might provide insights into the cellular mechanism underlying, for example, Alzheimer’s disease (AD. To analyze the role of BDNF transport in AD, live cell imaging of fluorescently labeled BDNF was performed in hippocampal neurons of different AD model systems. BDNF and APP colocalized with low incidence in vesicular structures. Anterograde as well as retrograde transport of BDNF vesicles was reduced and these effects were mediated by factors released from hippocampal neurons into the extracellular medium. Transport of BDNF was altered at a very early time point after onset of human APP expression or after acute amyloid-beta(1-42 treatment, while the activity-dependent release of BDNF remained unaffected. Taken together, extracellular cleavage products of APP induced rapid changes in anterograde and retrograde transport of BDNF-containing vesicles while release of BDNF was unaffected by transgenic expression of mutated APP. These early transport deficits might lead to permanently impaired brain functions in the adult brain.

  19. Caffeine suppresses amyloid-beta levels in plasma and brain of Alzheimer's disease transgenic mice.

    Science.gov (United States)

    Cao, Chuanhai; Cirrito, John R; Lin, Xiaoyang; Wang, Li; Wang, Lilly; Verges, Deborah K; Dickson, Alexander; Mamcarz, Malgorzata; Zhang, Chi; Mori, Takashi; Arendash, Gary W; Holtzman, David M; Potter, Huntington

    2009-01-01

    Recent epidemiologic studies suggest that caffeine may be protective against Alzheimer's disease (AD). Supportive of this premise, our previous studies have shown that moderate caffeine administration protects/restores cognitive function and suppresses brain amyloid-beta (Abeta) production in AD transgenic mice. In the present study, we report that acute caffeine administration to both young adult and aged AD transgenic mice rapidly reduces Abeta levels in both brain interstitial fluid and plasma without affecting Abeta elimination. Long-term oral caffeine treatment to aged AD mice provided not only sustained reductions in plasma Abeta, but also decreases in both soluble and deposited Abeta in hippocampus and cortex. Irrespective of caffeine treatment, plasma Abeta levels did not correlate with brain Abeta levels or with cognitive performance in individual aged AD mice. Although higher plasma caffeine levels were strongly associated with lower plasma Abeta1-40 levels in aged AD mice, plasma caffeine levels were also not linked to cognitive performance. Plasma caffeine and theophylline levels were tightly correlated, both being associated with reduced inflammatory cytokine levels in hippocampus. Our conclusion is two-fold: first, that both plasma and brain Abeta levels are reduced by acute or chronic caffeine administration in several AD transgenic lines and ages, indicating a therapeutic value of caffeine against AD; and second, that plasma Abeta levels are not an accurate index of brain Abeta levels/deposition or cognitive performance in aged AD mice.

  20. Replica exchange molecular dynamics study of the truncated amyloid beta (11-40) trimer in solution.

    Science.gov (United States)

    Ngo, Son Tung; Hung, Huynh Minh; Truong, Duc Toan; Nguyen, Minh Tho

    2017-01-18

    Amyloid beta (Aβ) oligomers are neurotoxic compounds that destroy the brain of Alzheimer's disease patients. Recent studies indicated that the trimer is one of the most cytotoxic forms of low molecular weight Aβ oligomers. As there was limited information about the structure of the Aβ trimer, either by experiment or by computation, we determined in this work the structure of the 3Aβ11-40 oligomer for the first time using the temperature replica exchange molecular dynamics simulations in the presence of an explicit solvent. More than 20.0 μs of MD simulations were performed. The probability of the β-content and random coil structure of the solvated trimer amounts to 42 ± 6 and 49 ± 7% which is in good agreement with experiments. Intermolecular interactions in central hydrophobic cores play a key role in stabilizing the oligomer. Intermolecular polar contacts between D23 and residues 24-29 replace the salt bridge D23-K28 to secure the loop region. The hydrophilic region of the N-terminus is maintained by the intermolecular polar crossing contacts H13A-Q15B and H13B-Q15C. The difference in the free energy of binding between the constituting monomers and the others amounts to -36 ± 8 kcal mol(-1). The collision cross section of the representative structures of the trimer was computed to be 1330 ± 47 Å(2), which is in good agreement with previous experiments.

  1. Analyzing and Modeling the Kinetics of Amyloid Beta Pores Associated with Alzheimer's Disease Pathology.

    Directory of Open Access Journals (Sweden)

    Ghanim Ullah

    Full Text Available Amyloid beta (Aβ oligomers associated with Alzheimer's disease (AD form Ca2+-permeable plasma membrane pores, leading to a disruption of the otherwise well-controlled intracellular calcium (Ca2+ homeostasis. The resultant up-regulation of intracellular Ca2+ concentration has detrimental implications for memory formation and cell survival. The gating kinetics and Ca2+ permeability of Aβ pores are not well understood. We have used computational modeling in conjunction with the ability of optical patch-clamping for massively parallel imaging of Ca2+ flux through thousands of pores in the cell membrane of Xenopus oocytes to elucidate the kinetic properties of Aβ pores. The fluorescence time-series data from individual pores were idealized and used to develop data-driven Markov chain models for the kinetics of the Aβ pore at different stages of its evolution. Our study provides the first demonstration of developing Markov chain models for ion channel gating that are driven by optical-patch clamp data with the advantage of experiments being performed under close to physiological conditions. Towards the end, we demonstrate the up-regulation of gating of various Ca2+ release channels due to Aβ pores and show that the extent and spatial range of such up-regulation increases as Aβ pores with low open probability and Ca2+ permeability transition into those with high open probability and Ca2+ permeability.

  2. Nanoscale-alumina induces oxidative stress and accelerates amyloid beta (Aβ) production in ICR female mice.

    Science.gov (United States)

    Shah, Shahid Ali; Yoon, Gwang Ho; Ahmad, Ashfaq; Ullah, Faheem; Ul Amin, Faiz; Kim, Myeong Ok

    2015-10-01

    The adverse effects of nanoscale-alumina (Al2O3-NPs) have been previously demonstrated in both in vitro and in vivo studies, whereas little is known about their mechanism of neurotoxicity. It is the goal of this research to determine the toxic effects of nano-alumina on human neuroblastoma SH-SY5Y and mouse hippocampal HT22 cells in vitro and on ICR female mice in vivo. Nano-alumina displayed toxic effects on SH-SY5Y cell lines in three different concentrations also increased aluminium abundance and induced oxidative stress in HT22 cells. Nano-alumina peripherally administered to ICR female mice for three weeks increased brain aluminium and ROS production, disturbing brain energy homeostasis, and led to the impairment of hippocampus-dependent memory. Most importantly, these nano-particles induced Alzheimer disease (AD) neuropathology by enhancing the amyloidogenic pathway of Amyloid Beta (Aβ) production, aggregation and implied the progression of neurodegeneration in the cortex and hippocampus of these mice. In conclusion, these data demonstrate that nano-alumina is toxic to both cells and female mice and that prolonged exposure may heighten the chances of developing a neurodegenerative disease, such as AD.

  3. Molecular cloning and characterization of a cDNA encoding the cerebrovascular and the neuritic plaque amyloid peptides

    Energy Technology Data Exchange (ETDEWEB)

    Robakis, N.K.; Ramakrishna, N.; Wolfe, G.; Wisniewski, H.M.

    1987-06-01

    Deposits of amyloid fibers are found in large numbers in the walls of blood vessels and in neuritic plaques in the brains of patients with Alzheimer disease and adults with Down syndrome. The authors used the amino acid sequence of the amyloid peptide to synthesize oligonucleotide probes specific for the gene encoding this peptide. When a human brain cDNA library was screened with this probe, a clone was found with a 1.7-kilobase insert that contains a long open reading frame coding for 412 amino acid residues including the 28 amino acids of the amyloid peptide. RNA gel blots revealed that a 3.3-kilobase mRNA species was present in the brains of individuals with Alzheimer disease, with Down syndrome, or with not apparent neurological disorders. Southern blots showed that homologous genes are present in the genomic DNA of humans, rabbits, sheep, hamsters, and mice, suggesting that this gene has been conserved through mammalian evolution. Localization of the corresponding genomic sequences on human chromosome 21 suggest a genetic relationship between Alzheimer disease and Down syndrome, and it may explain the early appearance of large numbers of neuritic plaques in adult Down syndrome patients.

  4. Neurotrophic and Neurotoxic Effects of Amyloid |beta Protein: Reversal by Tachykinin Neuropeptides

    Science.gov (United States)

    Yankner, Bruce A.; Duffy, Lawrence K.; Kirschner, Daniel A.

    1990-10-01

    The amyloid β protein is deposited in the brains of patients with Alzheimer's disease but its pathogenic role is unknown. In culture, the amyloid β protein was neurotrophic to undifferentiated hippocampal neurons at low concentrations and neurotoxic to mature neurons at higher concentrations. In differentiated neurons, amyloid β protein caused dendritic and axonal retraction followed by neuronal death. A portion of the amyloid β protein (amino acids 25 to 35) mediated both the trophic and toxic effects and was homologous to the tachykinin neuropeptide family. The effects of the amyloid β protein were mimicked by tachykinin antagonists and completely reversed by specific tachykinin agonists. Thus, the amyloid β protein could function as a neurotrophic factor for differentiating neurons, but at high concentrations in mature neurons, as in Alzheimer's disease, could cause neuronal degeneration.

  5. Amyloid-beta transporter expression at the choroid plexus in normal aging: the possibility of reduced resistance to oxidative stress insults.

    Science.gov (United States)

    Liu, Chong-Bin; Wang, Rui; Dong, Miao-Wu; Gao, Xi-Ren; Yu, Feng

    2014-04-25

    Accumulation of amyloid-beta peptides (Aβ) results in amyloid burden in normal aging brain. Clearance of this peptide from the brain occurs via active transport at the interfaces separating the central nervous system (CNS) from the peripheral circulation. The present study was to investigate the change of Aβ transporters expression at the choroid plexus (CP) in normal aging. Morphological modifications of CP were observed by transmission electron microscope. Real-time RT-PCR was used to measure mRNA expressions of Aβ(42) and its transporters, which include low density lipoprotein receptor-related protein-1 and 2 (LRP-1 and -2), P-glycoprotein (P-gp) and the receptor for advanced glycation end-products (RAGE), at the CP epithelium in rats at ages of 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33 and 36 months. At the same time, the mRNA expressions of oxidative stress-related proteins were also measured. The results showed that a striking deterioration of the CP epithelial cells and increased Aβ(42) mRNA expression were observed in aged rats, and there was a decrease in the transcription of the Aβ efflux transporters, LRP-1 and P-gp, no change in RAGE mRNA expression and an increase in LRP-2, the CP epithelium Aβ influx transporter. Heme oxygenase-1 (HO-1) and caspase-3 expressions at the CP epithelium increased with age at the mRNA level. These results suggest the efficacy of the CP in clearing of Aβ deceases in normal aging, which results in the increase of brain Aβ accumulation. And excess Aβ interferes with oxidative phosphorylation, leads to oxidative stress and morphological structural changes. This in turn induces further pathological cascades of toxicity, inflammation and neurodegeneration process.

  6. Protective effect of Morinda citrifolia fruits on beta-amyloid (25-35) induced cognitive dysfunction in mice: an experimental and biochemical study.

    Science.gov (United States)

    Muralidharan, P; Kumar, V Ravi; Balamurugan, G

    2010-02-01

    The neuroprotective effect of an ethyl acetate extract of Morinda citrifolia (Rubiaceae) Linn. fruits (EMC, ethyl acetate extract of Morinda citrifolia) at doses of 200 and 400 mg/kg, p.o. was studied on beta-amyloid (25-35) peptide induced cognitive dysfunction in mice. In the step-down inhibitory avoidance, EMC exhibited a significant increase in short-term memory and long-term memory (p < 0.05). A significant decrease (p < 0.01) in escape latency was noticed in the animals in the water maze. A significant increase (p < 0.01) in alteration of behavior was exhibited upon administration of EMC 200 and 400 mg/kg on the Y maze. Exploratory parameters such as line crossings, head dipping and rearing were increased significantly in EMC treated groups in a dose-dependent manner (p < 0.05 and p < 0.01). A significant reduction (p < 0.05) in acetyl cholinesterase activity was noticed in the EMC 200 and 400 mg/kg treated groups. The level of monoamine oxidase-A was decreased by the administration of EMC 200 and 400 mg/kg (p < 0.05 and p < 0.01, respectively). EMC at a dose of 400 mg/kg exhibited a significant increase (p < 0.01) in the levels of serotonin and dopamine. Antioxidant enzymes such as superoxide dismutase, glutathione reductase, glutathione peroxidase and ascorbic acid were decreased significantly in the b-amyloid peptide injected group, whose levels were restored significantly (p < 0.01) by the administration of EMC (400 mg/kg).

  7. Antimicrobial peptide (Cn-AMP2) from liquid endosperm of Cocos nucifera forms amyloid-like fibrillar structure.

    Science.gov (United States)

    Gour, Shalini; Kaushik, Vibha; Kumar, Vijay; Bhat, Priyanka; Yadav, Subhash C; Yadav, Jay K

    2016-04-01

    Cn-AMP2 is an antimicrobial peptide derived from liquid endosperm of coconut (Cocos nucifera). It consists of 11 amino acid residues and predicted to have high propensity for β-sheet formation that disposes this peptide to be amyloidogenic. In the present study, we have examined the amyloidogenic propensities of Cn-AMP2 in silico and then tested the predictions under in vitro conditions. The in silico study revealed that the peptide possesses high amyloidogenic propensity comparable with Aβ. Upon solubilisation and agitation in aqueous buffer, Cn-AMP2 forms visible aggregates that display bathochromic shift in the Congo red absorbance spectra, strong increase in thioflavin T fluorescence and fibrillar morphology under transmission electron microscopy. All these properties are typical of an amyloid fibril derived from various proteins/peptides including Aβ.

  8. Amyloidpeptide (1-42) aggregation induced by copper ions under acidic conditions

    Institute of Scientific and Technical Information of China (English)

    Yannan Bin; Xia Li; Yonghui He; Shu Chen; Juan Xiang

    2013-01-01

    It is well known that the aggregation of amyloidpeptide (Aβ) induced by Cu2+ is related to incubation time,solution pH,and temperature.In this work,the aggregation of Aβ1-42 in the presence of Cu2+ under acidic conditions was studied at different incubation time and temperature (e.g.25 and 37℃).Incubation temperature,pH,and the presence of Cu2+ in Aβ solution were confirmed to alter the morphology of aggregation (fibrils or amorphous aggregates),and the morphology is pivotal for Aβ neurotoxicity and Alzheimer disease (AD) development.The results of atomic force microscopy (AFM) indicated that the formation of Aβ fibrous morphology is preferred at lower pH,but Cu2+ induced the formation of amorphous aggregates.The aggregation rate of Aβ was increased with the elevation of temperature.These results were further confirmed by fluorescence spectroscopy and circular dichroism spectroscopy and it was found that the formation of β-sheet structure was inhibited by Cu2+ binding to Aβ.The result was consistent with AFM observation and the fibrillation process was restrained.We believe that the local charge state in hydrophilic domain of Aβ may play a dominant role in the aggregate morphology due to the strong steric hindrance.This research will be valuable for understanding of Aβ toxicity in AD.

  9. Amyloidpeptide (1-42) aggregation induced by copper ions under acidic conditions.

    Science.gov (United States)

    Bin, Yannan; Li, Xia; He, Yonghui; Chen, Shu; Xiang, Juan

    2013-07-01

    It is well known that the aggregation of amyloidpeptide (Aβ) induced by Cu²⁺ is related to incubation time, solution pH, and temperature. In this work, the aggregation of Aβ₁₋₄₂ in the presence of Cu²⁺ under acidic conditions was studied at different incubation time and temperature (e.g. 25 and 37°C). Incubation temperature, pH, and the presence of Cu²⁺ in Aβ solution were confirmed to alter the morphology of aggregation (fibrils or amorphous aggregates), and the morphology is pivotal for Aβ neurotoxicity and Alzheimer disease (AD) development. The results of atomic force microscopy (AFM) indicated that the formation of Aβ fibrous morphology is preferred at lower pH, but Cu²⁺ induced the formation of amorphous aggregates. The aggregation rate of Aβ was increased with the elevation of temperature. These results were further confirmed by fluorescence spectroscopy and circular dichroism spectroscopy and it was found that the formation of β-sheet structure was inhibited by Cu²⁺ binding to Aβ. The result was consistent with AFM observation and the fibrillation process was restrained. We believe that the local charge state in hydrophilic domain of Aβ may play a dominant role in the aggregate morphology due to the strong steric hindrance. This research will be valuable for understanding of Aβ toxicity in AD.

  10. Methyllycaconitine alleviates amyloidpeptides-induced cytotoxicity in SH-SY5Y cells.

    Directory of Open Access Journals (Sweden)

    XiaoLei Zheng

    Full Text Available Alzheimer's disease (AD is a chronic progressive neurodegenerative disorder. As the most common form of dementia, it affects more than 35 million people worldwide and is increasing. Excessive extracellular deposition of amyloidpeptide (Aβ is a pathologic feature of AD. Accumulating evidence indicates that macroautophagy is involved in the pathogenesis of AD, but its exact role is still unclear. Although major findings on the molecular mechanisms have been reported, there are still no effective treatments to prevent, halt, or reverse Alzheimer's disease. In this study, we investigated whether Aβ25-35 could trigger an autophagy process and inhibit the growth of SH-SY5Y cells. Furthermore, we examined the effect of methyllycaconitine (MLA on the cytotoxity of Aβ25-35. MLA had a protective effect against cytotoxity of Aβ, which may be related to its inhibition of Aβ-induced autophagy and the involvement of the mammalian target of rapamycin pathway. Moreover, MLA had a good safety profile. MLA treatment may be a promising therapeutic tool for AD.

  11. Metal-amyloidpeptide interactions: a preliminary investigation of molecular mechanisms for Alzheimer's disease

    Institute of Scientific and Technical Information of China (English)

    JIAO Yong; YANG Pin

    2007-01-01

    Although humans have spent exactly 100 years combating Alzheimer's disease (AD), the molecular mechanisms of AD remain unclear. Owing to the rapid growth of the oldest age groups of the population and the continuous increase of the incidence of AD, it has become one of the crucial problems to modern sciences. It would be impossible to prevent or reverse AD at the root without elucidating its molecular mechanisms. From the point of view of metal-amyloidpeptide (Aβ) interactions, we review the molecular mechanisms of AD, mainly including Cu2+ and Zn2+ inducing the aggregation of Aβ, catalysing the production of active oxygen species from Aβ, as well as interacting with the ion-channel-like structures of Aβ. Moreover, the development of therapeutic drugs on the basis of metal-Aβ interactions is also briefly introduced. With the increasingly rapid progress of the molecular mechanisms of AD, we are now entering a new dawn that promises the delivery of revolutionary developments for the control of dementias.

  12. Apolipoprotein E, especially apolipoprotein E4, increases the oligomerization of amyloid β peptide.

    Science.gov (United States)

    Hashimoto, Tadafumi; Serrano-Pozo, Alberto; Hori, Yukiko; Adams, Kenneth W; Takeda, Shuko; Banerji, Adrian Olaf; Mitani, Akinori; Joyner, Daniel; Thyssen, Diana H; Bacskai, Brian J; Frosch, Matthew P; Spires-Jones, Tara L; Finn, Mary Beth; Holtzman, David M; Hyman, Bradley T

    2012-10-24

    Alzheimer's disease (AD) is the most common progressive neurodegenerative disorder causing dementia. Massive deposition of amyloid β peptide (Aβ) as senile plaques in the brain is the pathological hallmark of AD, but oligomeric, soluble forms of Aβ have been implicated as the synaptotoxic component. The apolipoprotein E ε 4 (apoE ε4) allele is known to be a genetic risk factor for developing AD. However, it is still unknown how apoE impacts the process of Aβ oligomerization. Here, we found that the level of Aβ oligomers in APOE ε4/ε4 AD patient brains is 2.7 times higher than those in APOE ε3/ε3 AD patient brains, matched for total plaque burden, suggesting that apoE4 impacts the metabolism of Aβ oligomers. To test this hypothesis, we examined the effect of apoE on Aβ oligomer formation. Using both synthetic Aβ and a split-luciferase method for monitoring Aβ oligomers, we observed that apoE increased the level of Aβ oligomers in an isoform-dependent manner (E2 apoE4, increases Aβ oligomers in the brain. Higher levels of Aβ oligomers in the brains of APOE ε4/ε4 carriers compared with APOE ε3/ε3 carriers may increase the loss of dendritic spines and accelerate memory impairments, leading to earlier cognitive decline in AD.

  13. Metabolic Characterization of Intact Cells Reveals Intracellular Amyloid Beta but Not Its Precursor Protein to Reduce Mitochondrial Respiration

    Science.gov (United States)

    Schaefer, Patrick M.; von Einem, Bjoern; Walther, Paul; Calzia, Enrico; von Arnim, Christine A. F.

    2016-01-01

    One hallmark of Alzheimer´s disease are senile plaques consisting of amyloid beta (Aβ), which derives from the processing of the amyloid precursor protein (APP). Mitochondrial dysfunction has been linked to the pathogenesis of Alzheimer´s disease and both Aβ and APP have been reported to affect mitochondrial function in isolated systems. However, in intact cells, considering a physiological localization of APP and Aβ, it is pending what triggers the mitochondrial defect. Thus, the aim of this study was to dissect the impact of APP versus Aβ in inducing mitochondrial alterations with respect to their subcellular localization. We performed an overexpression of APP or beta-site amyloid precursor protein cleaving enzyme 1 (BACE1), increasing APP and Aβ levels or Aβ alone, respectively. Conducting a comprehensive metabolic characterization we demonstrate that only APP overexpression reduced mitochondrial respiration, despite lower extracellular Aβ levels compared to BACE overexpression. Surprisingly, this could be rescued by a gamma secretase inhibitor, oppositionally indicating an Aβ-mediated mitochondrial toxicity. Analyzing Aβ localization revealed that intracellular levels of Aβ and an increased spatial association of APP/Aβ with mitochondria are associated with reduced mitochondrial respiration. Thus, our data provide marked evidence for a prominent role of intracellular Aβ accumulation in Alzheimer´s disease associated mitochondrial dysfunction. Thereby it highlights the importance of the localization of APP processing and intracellular transport as a decisive factor for mitochondrial function, linking two prominent hallmarks of neurodegenerative diseases. PMID:28005987

  14. N-methyl-D-aspartate receptor antagonist MK-801 and radical scavengers protect cholinergic nucleus basalis neurons against beta-amyloid neurotoxicity

    NARCIS (Netherlands)

    Harkany, T; Mulder, J; Sasvari, M; Abraham, [No Value; Konya, C; Zarandi, M; Penke, B; Luiten, PGM; Nyakas, C

    1999-01-01

    Previous experimental data indicate the involvement of Ca2+-related excitotoxic processes, possibly mediated by N-Methyl-D-Aspartate (NMDA) receptors, in beta-amyloid (beta A) neurotoxicity. On the other hand, other lines of evidence support the view that free radical generation is a critical step i

  15. Amyloidpeptides act as allosteric modulators of cholinergic signalling through formation of soluble BAβACs.

    Science.gov (United States)

    Kumar, Rajnish; Nordberg, Agneta; Darreh-Shori, Taher

    2016-01-01

    Amyloidpeptides, through highly sophisticated enzymatic machinery, are universally produced and released in an action potential synchronized manner into the interstitial fluids in the brain. Yet no native functions are attributed to amyloid-β. The amyloid-β hypothesis ascribes just neurotoxicity properties through build-up of soluble homomeric amyloid-β oligomers or fibrillar deposits. Apolipoprotein-ε4 (APOE4) allele is the only confirmed genetic risk factor of sporadic Alzheimer's disease; once more it is unclear how it increases the risk of Alzheimer's disease. Similarly, central cholinergic signalling is affected selectively and early in the Alzheimer's disease brain, again why cholinergic neurons show this sensitivity is still unclear. However, the three main known Alzheimer's disease risk factors, advancing age, female gender and APOE4, have been linked to a high apolipoprotein-E and accumulation of the acetylcholine degrading enzyme, butyrylcholinesterase in cerebrospinal fluids of patients. Furthermore, numerous reports indicate that amyloid-β interacts with butyrylcholinesterase and apolipoprotein-E. We have proposed that this interaction leads to formation of soluble ultrareactive acetylcholine-hydrolyzing complexes termed BAβACs, to adjust at demand both synaptic and extracellular acetylcholine signalling. This hypothesis predicted presence of acetylcholine-synthesizing enzyme, choline acetyltransferase in extracellular fluids to allow maintenance of equilibrium between breakdown and synthesis of acetylcholine through continuous in situ syntheses. A recent proof-of-concept study led to the discovery of this enzyme in the human extracellular fluids. We report here that apolipoprotein-E, in particular ε4 isoprotein acts as one of the strongest endogenous anti-amyloid-β fibrillization agents reported in the literature. At biological concentrations, apolipoprotein-E prevented amyloid-β fibrillization for at least 65 h. We show that amyloid

  16. Complement C3 deficiency leads to accelerated amyloid beta plaque deposition and neurodegeneration and modulation of the microglia/macrophage phenotype in amyloid precursor protein transgenic mice.

    Science.gov (United States)

    Maier, Marcel; Peng, Ying; Jiang, Liying; Seabrook, Timothy J; Carroll, Michael C; Lemere, Cynthia A

    2008-06-18

    Complement factor C3 is the central component of the complement system and a key inflammatory protein activated in Alzheimer's disease (AD). Previous studies demonstrated that inhibition of C3 by overexpression of soluble complement receptor-related protein y in an AD mouse model led to reduced microgliosis, increased amyloid beta (Abeta) plaque burden, and neurodegeneration. To further address the role of C3 in AD pathology, we generated a complement C3-deficient amyloid precursor protein (APP) transgenic AD mouse model (APP;C3(-/-)). Brains were analyzed at 8, 12, and 17 months of age by immunohistochemical and biochemical methods and compared with age-matched APP transgenic mice. At younger ages (8-12 months), no significant neuropathological differences were observed between the two transgenic lines. In contrast, at 17 months of age, APP;C3(-/-) mice showed significant changes of up to twofold increased total Abeta and fibrillar amyloid plaque burden in midfrontal cortex and hippocampus, which correlated with (1) significantly increased Tris-buffered saline (TBS)-insoluble Abeta(42) levels and reduced TBS-soluble Abeta(42) and Abeta(40) levels in brain homogenates, (2) a trend for increased Abeta levels in the plasma, (3) a significant loss of neuronal-specific nuclear protein-positive neurons in the hippocampus, and (4) differential activation of microglia toward a more alternative phenotype (e.g., significantly increased CD45-positive microglia, increased brain levels of interleukins 4 and 10, and reduced levels of CD68, F4/80, inducible nitric oxide synthase, and tumor necrosis factor). Our results suggest a beneficial role for complement C3 in plaque clearance and neuronal health as well as in modulation of the microglia phenotype.

  17. The Effect of Beta-Amyloid on Neurons and the Influence of Glucocorticoid and Age on Such Effect

    Institute of Scientific and Technical Information of China (English)

    陈红辉; 孙圣刚; 梅元武; 刘昌勤; 刘安求; 童萼塘

    2002-01-01

    Summary: To explore the relationship between β-amyloid (Aβ) and the pathogenesis of Alzheimer disease (AD), after injection of β-amyloid into the rat brain, the apoptosis of nerve cells and acetylcholine (Ach) content in rat hippocampus were examined by employing TUNEL technique and base hydroxylamine colorimetry respectively. The influence of age and glucocorticoid on the neurotoxic effect of Aβ was also analyzed. Aβ peptide could strongly induce the apoptosis of neurons in hippocampus, cortex and striate body (P<0. 05 or P<0. 01). In addition, the senility and glucocorticoid pre-treatment could enhance the toxic effect of Aβ(P<0. 05 or P<0. 01). It is concluded that Aβ may play an important role in the pathogenesis of Alzheimer disease via its induction of apoptosis of neurons and by decreasing the content of the Ach.

  18. Effect of amyloid peptides on serum withdrawal-induced cell differentiation and cell viability

    Institute of Scientific and Technical Information of China (English)

    Yi Peng WANG; Ze Fen WANG; Ying Chun ZHANG; Qing TIAN; Jian Zhi WANG

    2004-01-01

    Abnormal deposition of amyloid-β(Aβ) peptides and formation of neuritic plaques are recognized as pathological processes in Alzheimer's disease (AD) brain. By using amyloid precursor protein (APP) transfected cells, this study aims to investigate the effect of overproduction of Aβ on cell differentiation and cell viability. It was shown that after serum withdrawal, untransfected cell (N2a/Wt) and vector transfected cells (N2a/vector) extended long and branched cell processes, whereas no neurites was induced in wild type APP (N2a/APP695) and Swedish mutant APP (N2a/APPswe) transfected N2a cells. After differentiation by serum withdrawal, the localization of APP/Aβ and neurofilament was extended to neurites, whereas those of APP-transfected cells were still restricted within the cell body. Levels of both APP and Aβ were significantly higher in N2a/APP695 and N2a/APPswe than in N2a/Wt, as determined by Western blot and Sandwich ELISA, respectively. To further investigate the effect of Aβ on the inhibition of cell differentiation,we added exogenously the similar level or about 10-times of the Aβ level produced by N2a/APP695 and N2a/APPswe to the culture medium and co-cultured with N2a/Wt for 12 h, and we found that the inhibition of serum withdrawalinduced differentiation observed in N2a/APP695 and N2a/APPswe could not be reproduced by exogenous administration of Aβ into N2a/Wt. We also observed that neither endogenous production nor exogenous addition of Aβ1-40 or Aβ1-42, even to hundreds fold of the physiological concentration, affected obviously the cell viability. These results suggest that the overproduction of Aβ could not arrest cell differentiation induced by serum deprivation and that, at least to a certain degree and in a limited time period, is not toxic to cell viability.

  19. Acute and Chronic Sustained Hypoxia Do Not Substantially Regulate AmyloidPeptide Generation In Vivo

    Science.gov (United States)

    Heras-Garvín, Antonio; March-Díaz, Rosana; Navarro, Victoria; Vizuete, Marisa; López-Barneo, José; Vitorica, Javier; Pascual, Alberto

    2017-01-01

    Background Recent epidemiological evidence has linked hypoxia with the development of Alzheimer disease (AD). A number of in vitro and in vivo studies have reported that hypoxia can induce amyloidpeptide accumulation through various molecular mechanisms including the up-regulation of the amyloid-β precursor protein, the β-secretase Bace1, or the γγ-secretase complex components, as well as the down-regulation of Aβ-degrading enzymes. Objectives To investigate the effects of acute and chronic sustained hypoxia in Aβ generation in vivo. Methods 2–3 month-old C57/Bl6J wild-type mice were exposed to either normoxia (21% O2) or hypoxia (9% O2) for either 4 to 72 h (acute) or 21–30 days (chronic sustained) in a hermetic chamber. Brain mRNA levels of Aβ-related genes were measured by quantitative real-time PCR, whereas levels of Bace1 protein, full length AβPP, and its C-terminal fragments (C99/C88 ratio) were measured by Western blot. In addition, 8 and 14-month-old APP/PS1 transgenic mice were subjected to 9% O2 for 21 days and levels of Aβ40, Aβ42, full length AβPP, and soluble AβPPα (sAβPPα) were measured by ELISA or WB. Results Hypoxia (either acute or chronic sustained) did not impact the transcription of any of the Aβ-related genes in young wild-type mice. A significant reduction of Bace1 protein level was noted with acute hypoxia for 16 h but did not correlate with an increased level of full length AβPP or a decreased C99/C83 ratio. Chronic sustained hypoxia did not significantly alter the levels of Bace1, full length AβPP or the C99/C83 ratio. Last, chronic sustained hypoxia did not significantly change the levels of Aβ40, Aβ42, full length AβPP, or sAβPPα in either young or aged APP/PS1 mice. Discussion Our results argue against a hypoxia-induced shift of AβPP proteolysis from the non-amyloidogenic to the amyloidogenic pathways. We discuss the possible methodological caveats of previous in vivo studies. PMID:28099462

  20. Effect of Copper and Zinc on the Single Molecule Self-Affinity of Alzheimer's AmyloidPeptides.

    Directory of Open Access Journals (Sweden)

    Francis T Hane

    Full Text Available The presence of trace concentrations of metallic ions, such as copper and zinc, has previously been shown to drastically increase the aggregation rate and neurotoxicity of amyloid-β (Aβ, the peptide implicated in Alzheimer's disease (AD. The mechanism of why copper and zinc accelerate Aβ aggregation is poorly understood. In this work, we use single molecule force spectroscopy (SMFS to probe the kinetic and thermodynamic parameters (dissociation constant, Kd, kinetic dissociation rate, koff, and free energy, ΔG of the dissociation of an Aβ dimer, the amyloid species which initiates the amyloid cascade. Our results show that nanomolar concentrations of copper do not change the single molecule affinity of Aβ to another Aβ peptide in a statistically significant way, while nanomolar concentrations of zinc decrease the affinity of Aβ-Aβ by an order of magnitude. This suggests that the binding of zinc ion to Aβ may interfere with the binding of Aβ-Aβ, leading to a lower self-affinity.

  1. Effect of Copper and Zinc on the Single Molecule Self-Affinity of Alzheimer's AmyloidPeptides.

    Science.gov (United States)

    Hane, Francis T; Hayes, Reid; Lee, Brenda Y; Leonenko, Zoya

    2016-01-01

    The presence of trace concentrations of metallic ions, such as copper and zinc, has previously been shown to drastically increase the aggregation rate and neurotoxicity of amyloid-β (Aβ), the peptide implicated in Alzheimer's disease (AD). The mechanism of why copper and zinc accelerate Aβ aggregation is poorly understood. In this work, we use single molecule force spectroscopy (SMFS) to probe the kinetic and thermodynamic parameters (dissociation constant, Kd, kinetic dissociation rate, koff, and free energy, ΔG) of the dissociation of an Aβ dimer, the amyloid species which initiates the amyloid cascade. Our results show that nanomolar concentrations of copper do not change the single molecule affinity of Aβ to another Aβ peptide in a statistically significant way, while nanomolar concentrations of zinc decrease the affinity of Aβ-Aβ by an order of magnitude. This suggests that the binding of zinc ion to Aβ may interfere with the binding of Aβ-Aβ, leading to a lower self-affinity.

  2. Amyloid beta inhibits olfactory bulb activity and the ability to smell.

    Directory of Open Access Journals (Sweden)

    Reynaldo Alvarado-Martínez

    Full Text Available Early olfactory dysfunction has been consistently reported in both Alzheimer's disease (AD and in transgenic mice that reproduce some features of this disease. In AD transgenic mice, alteration in olfaction has been associated with increased levels of soluble amyloid beta protein (Aβ as well as with alterations in the oscillatory network activity recorded in the olfactory bulb (OB and in the piriform cortex. However, since AD is a multifactorial disease and transgenic mice suffer a variety of adaptive changes, it is still unknown if soluble Aβ, by itself, is responsible for OB dysfunction both at electrophysiological and behavioral levels. Thus, here we tested whether or not Aβ directly affects OB network activity in vitro in slices obtained from mice and rats and if it affects olfactory ability in these rodents. Our results show that Aβ decreases, in a concentration- and time-dependent manner, the network activity of OB slices at clinically relevant concentrations (low nM and in a reversible manner. Moreover, we found that intrabulbar injection of Aβ decreases the olfactory ability of rodents two weeks after application, an effect that is not related to alterations in motor performance or motivation to seek food and that correlates with the presence of Aβ deposits. Our results indicate that Aβ disrupts, at clinically relevant concentrations, the network activity of the OB in vitro and can trigger a disruption in olfaction. These findings open the possibility of exploring the cellular mechanisms involved in early pathological AD as an approach to reduce or halt its progress.

  3. Glial expression of the {beta}-Amyloid Precursor Protein (APP) in global ischemia

    Energy Technology Data Exchange (ETDEWEB)

    Banati, R.B.; Gehrmann, J.; Kreutzberg, G.W. [Max Planck Institute of Psychiarty, Martinsried (Germany)]|[Max Planck Institute for Neurological Research, Koeln (Germany)]|[Univ. Hospital, Zurich (Switzerland)

    1995-07-01

    The {beta}-amyloid precursor protein (APP) bears characteristics of an acute-phase protein and therefore is likely to be involved in the glial response to brain injury. In the brain, APP is rapidly synthesized by activated glial cells in response to comparatively mild neuronal lesions, e.g., a remote peripheral nerve injury. Perfusion deficits in the brain result largely in neuronal necrosis and are a common condition in elderly patients. This neuronal necrosis is accompanied by a pronounced reaction of astrocytes and microglia, which can also be observed in animal models. We have therefore studied in the rat, immunocytochemically, the induction of APP after 30 min of global ischemia caused by four-vessel occlusion. The postischemic brain injuries were examined at survival times from 12 h to 7 days. From day 3 onward, APP immunoreactivity was strongly induced in the CA{sub 1} and CA{sub 4} regions of the rat dorsal hippocampus as well as in the dorsolateral striatum. In these areas, the majority of APP-immunoreactive cells were reactive glial fibrillary acidic protein (GFAP)-positive astrocytes, as shown by double-immunofluorescence labeling for GFAP and APP. Additionally, small ramified cells, most likely activated microglia, expressed APP immunoreactivity. In contrast, in the parietal cortex, APP immunoreactivity occurred focally in clusters of activated microglia rather than in astrocytes, as demonstrated by double-immunofluorescence labeling for APP and the microglia-binding lectin Griffonia simplicifolia isolectin B{sub 4}. In conclusion, following global ischemia, APP is induced in reactive glial cells with spatial differences in the distribution pattern of APP induction in actrocytes and microglia. 51 refs., 4 figs.

  4. Mechanism of neuronal versus endothelial cell uptake of Alzheimer's disease amyloid beta protein.

    Directory of Open Access Journals (Sweden)

    Karunya K Kandimalla

    Full Text Available Alzheimer's disease (AD is characterized by significant neurodegeneration in the cortex and hippocampus; intraneuronal tangles of hyperphosphorylated tau protein; and accumulation of beta-amyloid (Abeta proteins 40 and 42 in the brain parenchyma as well as in the cerebral vasculature. The current understanding that AD is initiated by the neuronal accumulation of Abeta proteins due to their inefficient clearance at the blood-brain-barrier (BBB, places the neurovascular unit at the epicenter of AD pathophysiology. The objective of this study is to investigate cellular mechanisms mediating the internalization of Abeta proteins in the principle constituents of the neurovascular unit, neurons and BBB endothelial cells. Laser confocal micrographs of wild type (WT mouse brain slices treated with fluorescein labeled Abeta40 (F-Abeta40 demonstrated selective accumulation of the protein in a subpopulation of cortical and hippocampal neurons via nonsaturable, energy independent, and nonendocytotic pathways. This groundbreaking finding, which challenges the conventional belief that Abeta proteins are internalized by neurons via receptor mediated endocytosis, was verified in differentiated PC12 cells and rat primary hippocampal (RPH neurons through laser confocal microscopy and flow cytometry studies. Microscopy studies have demonstrated that a significant proportion of F-Abeta40 or F-Abeta42 internalized by differentiated PC12 cells or RPH neurons is located outside of the endosomal or lysosomal compartments, which may accumulate without degradation. In contrast, BBME cells exhibit energy dependent uptake of F-Abeta40, and accumulate the protein in acidic cell organelle, indicative of endocytotic uptake. Such a phenomenal difference in the internalization of Abeta40 between neurons and BBB endothelial cells may provide essential clues to understanding how various cells can differentially regulate Abeta proteins and help explain the vulnerability of cortical

  5. Soluble beta-amyloid precursor protein is related to disease progression in amyotrophic lateral sclerosis.

    Directory of Open Access Journals (Sweden)

    Petra Steinacker

    Full Text Available BACKGROUND: Biomarkers of disease progression in amyotrophic lateral sclerosis (ALS could support the identification of beneficial drugs in clinical trials. We aimed to test whether soluble fragments of beta-amyloid precursor protein (sAPPα and sAPPß correlated with clinical subtypes of ALS and were of prognostic value. METHODOLOGY/PRINCIPAL FINDINGS: In a cross-sectional study including patients with ALS (N = 68 with clinical follow-up data over 6 months, Parkinson's disease (PD, N = 20, and age-matched controls (N = 40, cerebrospinal fluid (CSF levels of sAPPα a, sAPPß and neurofilaments (NfH(SMI35 were measured by multiplex assay, Progranulin by ELISA. CSF sAPPα and sAPPß levels were lower in ALS with a rapidly-progressive disease course (p = 0.03, and p = 0.02 and with longer disease duration (p = 0.01 and p = 0.01, respectively. CSF NfH(SMI35 was elevated in ALS compared to PD and controls, with highest concentrations found in patients with rapid disease progression (p<0.01. High CSF NfH(SMI3 was linked to low CSF sAPPα and sAPPß (p = 0.001, and p = 0.007, respectively. The ratios CSF NfH(SMI35/CSF sAPPα,-ß were elevated in patients with fast progression of disease (p = 0.002 each. CSF Progranulin decreased with ongoing disease (p = 0.04. CONCLUSIONS: This study provides new CSF candidate markers associated with progression of disease in ALS. The data suggest that a deficiency of cellular neuroprotective mechanisms (decrease of sAPP is linked to progressive neuro-axonal damage (increase of NfH(SMI35 and to progression of disease.

  6. Intravenous immunglobulin binds beta amyloid and modifies its aggregation, neurotoxicity and microglial phagocytosis in vitro.

    Directory of Open Access Journals (Sweden)

    Susann Cattepoel

    Full Text Available Intravenous Immunoglobulin (IVIG has been proposed as a potential therapeutic for Alzheimer's disease (AD and its efficacy is currently being tested in mild-to-moderate AD. Earlier studies reported the presence of anti-amyloid beta (Aβ antibodies in IVIG. These observations led to clinical studies investigating the potential role of IVIG as a therapeutic agent in AD. Also, IVIG is known to mediate beneficial effects in chronic inflammatory and autoimmune conditions by interfering with various pathological processes. Therefore, we investigated the effects of IVIG and purified polyclonal Aβ-specific antibodies (pAbs-Aβ on aggregation, toxicity and phagocytosis of Aβ in vitro, thus elucidating some of the potential mechanisms of action of IVIG in AD patients. We report that both IVIG and pAbs-Aβ specifically bound to Aβ and inhibited its aggregation in a dose-dependent manner as measured by Thioflavin T assay. Additionally, IVIG and the purified pAbs-Aβ inhibited Aβ-induced neurotoxicity in the SH-SY5Y human neuroblastoma cell line and prevented Aβ binding to rat primary cortical neurons. Interestingly, IVIG and pAbs-Aβ also increased the number of phagocytosing cells as well as the amount of phagocytosed fibrillar Aβ by BV-2 microglia. Phagocytosis of Aβ depended on receptor-mediated endocytosis and was accompanied by upregulation of CD11b expression. Importantly, we could also show that Privigen dose-dependently reversed Aβ-mediated LTP inhibition in mouse hippocampal slices. Therefore, our in vitro results suggest that IVIG may have an impact on different processes involved in AD pathogenesis, thereby promoting further understanding of the effects of IVIG observed in clinical studies.

  7. The architecture of amyloid-like peptide fibrils revealed by X-ray scattering, diffraction and electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Langkilde, Annette E., E-mail: annette.langkilde@sund.ku.dk [University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen (Denmark); Morris, Kyle L.; Serpell, Louise C. [University of Sussex, Falmer, Brighton (United Kingdom); Svergun, Dmitri I. [European Molecular Biology Laboratory, Hamburg Outstation, 22607 Hamburg (Germany); Vestergaard, Bente [University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen (Denmark)

    2015-04-01

    The aggregation process and the fibril state of an amyloidogenic peptide suggest monomer addition to be the prevailing mechanism of elongation and a model of the peptide packing in the fibrils has been obtained. Structural analysis of protein fibrillation is inherently challenging. Given the crucial role of fibrils in amyloid diseases, method advancement is urgently needed. A hybrid modelling approach is presented enabling detailed analysis of a highly ordered and hierarchically organized fibril of the GNNQQNY peptide fragment of a yeast prion protein. Data from small-angle X-ray solution scattering, fibre diffraction and electron microscopy are combined with existing high-resolution X-ray crystallographic structures to investigate the fibrillation process and the hierarchical fibril structure of the peptide fragment. The elongation of these fibrils proceeds without the accumulation of any detectable amount of intermediate oligomeric species, as is otherwise reported for, for example, glucagon, insulin and α-synuclein. Ribbons constituted of linearly arranged protofilaments are formed. An additional hierarchical layer is generated via the pairing of ribbons during fibril maturation. Based on the complementary data, a quasi-atomic resolution model of the protofilament peptide arrangement is suggested. The peptide structure appears in a β-sheet arrangement reminiscent of the β-zipper structures evident from high-resolution crystal structures, with specific differences in the relative peptide orientation. The complexity of protein fibrillation and structure emphasizes the need to use multiple complementary methods.

  8. Protective Effect of Ecdysterone on PC12 Cells Cytotoxicity Induced by Beta-amyloid25-35

    Institute of Scientific and Technical Information of China (English)

    YANG Su-fen; WU Zhong-jun; YANG Zheng-qin; WU Qin; GONG Qi-hai; ZHOU Qi-xin; SHI Jing-shan

    2005-01-01

    Objective: To examine the protective effect of ecdysterone (ECR) against beta-amyloid peptide fragment25-35 (Aβ25-35)-induced PC12 cells cytotoxicity, and to further explore its mechanism. Methods:Experimental PC12 cells were divided into the Aβ group (treated by Aβ25-35 100 μmol/L), the blank group (untreated), the positive control group (treated by Vit E 100 μmol/L after induction) and the ECR treated groups (treated by ECR with different concentrations of 1, 50 and 100 μmol/L). The damaged and survival condition of PC12 cells in various groups was monitored by lactate dehydrogenase (LDH) release and MTT assay. The content of malondialdehyde (MDA) was measured by fluorometric assay to indicate the lipid peroxidation. And the antioxidant enzymes activities in PC12 cells, including superoxide dismutases(SOD), catalase (CAT) and glutathione peroxidase(GSH-Px), were detected respectively. Results: After PC12 cells were treated with Aβ25-35 ( 100 μmol/L) for 24 hrs, they revealed a great decrease in MTT absorbance and activity of antioxidant enzymes, including SOD, CAT and GSH-Px as well as a significant increase of LDH activity and MDA content in PC12 cells (P<0.01). When the cells was pretreated with 1-100 μmol/L ECR for 24 hrs before Aβ25-35 treatment, the above-mentioned cytotoxic effect of Aβ25-35 could be significantly attenuated dose-dependently, for ECR 50 μmol/L, P<0.05 and for ECR 100 μmol/L, P<0.01. Moreover, ECR also showed significant inhibition on the Aβ25-35 induced decrease of SOD and GSH-Px activity, but not on that of CAT. Conclusion: ECR could protect PC12 cells from cytotoxicity of Aβ25-35, and the protective mechanism might be related to the increase of SOD and GSH-Px activities and the decrease of MDA resulting from the ECR-pretreatment.

  9. Electrochemical quantification of the Alzheimer’s disease amyloid-β (1–40 using amyloid-β fibrillization promoting peptide

    Directory of Open Access Journals (Sweden)

    Satoshi Fujii

    2015-12-01

    Full Text Available Amyloidpeptide (Aβ is believed to be an important biomarker for the early diagnosis of Alzheimer’s disease. Therefore, practical and reliable methods to assay Aβ levels have been coveted. In this study, a rapid, sensitive, and selective electrochemical method for Aβ(1–40 detection using Cu2+ redox cycling on peptide-modified gold electrodes was developed. A 19-residue peptide that can promote Aβ fibrillization (AFPP was immobilized onto a gold electrode. After incubating an Aβ solution with the modified electrode for 1 h, a Cu2+ solution was added and cyclic voltammetry measurements were conducted. The voltammetric response was found to be proportional to the Aβ(1–40 concentration in the 0.1–5 μM range, and a detection limit of 18 nM was achieved. Washing with sodium hydroxide and ethylenediaminetetraacetate solutions easily reinitialized the modified electrode. Results obtained using the reinitialized electrode showed good reproducibility. Furthermore, when another amyloidogenic and Cu2+-binding protein amylin was used as the target, no voltammetric response was observed. These results indicate that the AFPP-modified electrode provides a promising, label-free, sensitive, selective, cost-effective, and easy method for the quantification of Aβ.

  10. Randomization of amyloid-β-peptide(1-42) conformation by sulfonated and sulfated nanoparticles reduces aggregation and cytotoxicity.

    Science.gov (United States)

    Saraiva, Ana M; Cardoso, Isabel; Saraiva, Maria João; Tauer, Klaus; Pereira, M Carmo; Coelho, Manuel A N; Möhwald, Helmuth; Brezesinski, Gerald

    2010-10-08

    The amyloidpeptide (Aβ) plays a central role in the mechanism of Alzheimer's disease, being the main constituent of the plaque deposits found in AD brains. Aβ amyloid formation and deposition are due to a conformational switching to a β-enriched secondary structure. Our strategy to inhibit Aβ aggregation involves the re-conversion of Aβ conformation by adsorption to nanoparticles. NPs were synthesized by sulfonation and sulfation of polystyrene, leading to microgels and latexes. Both polymeric nanostructures affect the conformation of Aβ inducing an unordered state. Oligomerization was delayed and cytotoxicity reduced. The proper balance between hydrophilic moieties and hydrophobic chains seems to be an essential feature of effective NPs.

  11. Evidence that a synthetic amyloid-ß oligomer-binding peptide (ABP) targets amyloid-ß deposits in transgenic mouse brain and human Alzheimer's disease brain.

    Science.gov (United States)

    Chakravarthy, Balu; Ito, Shingo; Atkinson, Trevor; Gaudet, Chantal; Ménard, Michel; Brown, Leslie; Whitfield, James

    2014-03-14

    The synthetic ~5 kDa ABP (amyloid-ß binding peptide) consists of a region of the 228 kDa human pericentrioloar material-1 (PCM-1) protein that selectively and avidly binds in vitro Aβ1-42 oligomers, believed to be key co-drivers of Alzheimer's disease (AD), but not monomers (Chakravarthy et al., (2013) [3]). ABP also prevents Aß1-42 from triggering the apoptotic death of cultured human SHSY5Y neuroblasts, likely by sequestering Aß oligomers, suggesting that it might be a potential AD therapeutic. Here we support this possibility by showing that ABP also recognizes and binds Aβ1-42 aggregates in sections of cortices and hippocampi from brains of AD transgenic mice and human AD patients. More importantly, ABP targets Aβ1-42 aggregates when microinjected into the hippocampi of the brains of live AD transgenic mice.

  12. Green tea aroma fraction reduces β-amyloid peptide-induced toxicity in Caenorhabditis elegans transfected with human β-amyloid minigene.

    Science.gov (United States)

    Takahashi, Atsushi; Watanabe, Tatsuro; Fujita, Takashi; Hasegawa, Toshio; Saito, Michio; Suganuma, Masami

    2014-01-01

    Green tea is a popular world-wide beverage with health benefits that include preventive effects on cancer as well as cardiovascular, liver and Alzheimer's diseases (AD). This study will examine the preventive effects on AD of a unique aroma of Japanese green tea. First, a transgenic Caenorhabditis elegans (C. elegans) CL4176 expressing human β-amyloid peptide (Aβ) was used as a model of AD. A hexane extract of processed green tea was further fractionated into volatile and non-volatile fractions, named roasty aroma and green tea aroma fractions depending on their aroma, by microscale distillation. Both hexane extract and green tea aroma fraction were found to inhibit Aβ-induced paralysis, while only green tea aroma fraction extended lifespan in CL4176. We also found that green tea aroma fraction has antioxidant activity. This paper indicates that the green tea aroma fraction is an additional component for prevention of AD.

  13. Longipin: An Amyloid Antimicrobial Peptide from the Harvestman Acutisoma longipes (Arachnida: Opiliones) with Preferential Affinity for Anionic Vesicles

    Science.gov (United States)

    Batista, Isabel de Fátima Correia; de Melo, Robson Lopes; Riske, Karin A.; Daffre, Sirlei; Montich, Guillermo; da Silva Junior, Pedro Ismael

    2016-01-01

    In contrast to vertebrate immune systems, invertebrates lack an adaptive response and rely solely on innate immunity in which antimicrobial peptides (AMPs) play an essential role. Most of them are membrane active molecules that are typically unstructured in solution and adopt secondary/tertiary structures upon binding to phospholipid bilayers. This work presents the first characterization of a constitutive AMP from the hemolymph of an Opiliones order animal: the harvestman Acutisoma longipes. This peptide was named longipin. It presents 18 aminoacid residues (SGYLPGKEYVYKYKGKVF) and a positive net charge at neutral pH. No similarity with other AMPs was observed. However, high sequence similarity with heme-lipoproteins from ticks suggested that longipin might be a protein fragment. The synthetic peptide showed enhanced antifungal activity against Candida guilliermondii and C. tropicalis yeasts (MIC: 3.8–7.5 μM) and did not interfered with VERO cells line viability at all concentrations tested (200–0.1 μM). This selectivity against microbial cells is related to the highest affinity of longipin for anionic charged vesicles (POPG:POPC) compared to zwitterionic ones (POPC), once microbial plasma membrane are generally more negatively charged compared to mammalian cells membrane. Dye leakage from carboxyfluorescein-loaded POPG:POPC vesicles suggested that longipin is a membrane active antimicrobial peptide and FT-IR spectroscopy showed that the peptide chain is mainly unstructured in solution or in the presence of POPC vesicles. However, upon binding to POPG:POPC vesicles, the FT-IR spectrum showed bands related to β-sheet and amyloid-like fibril conformations in agreement with thioflavin-T binding assays, indicating that longipin is an amyloid antimicrobial peptide. PMID:27997568

  14. AFM-based force spectroscopy measurements of mature amyloid fibrils of the peptide glucagon

    DEFF Research Database (Denmark)

    Dong, M. D.; Hovgaard, M. B.; Mamdouh, W.;

    2008-01-01

    of such mature fibrils contribute to their high stability, suggesting that the internal hydrophobic interactions of amyloid fibrils are likely to be of fundamental importance in the assembly of amyloid fibrils and therefore for the understanding of the progression of their associated pathogenic disorders...

  15. Mercury induced the Accumulation of Amyloid Beta (Aβ) in PC12 Cells: The Role of Production and Degradation of Aβ

    OpenAIRE

    Song, Ji-Won; Choi, Byung-Sun

    2013-01-01

    Extracellular accumulation of amyloid beta protein (Aβ) plays a central role in Alzheimer’s disease (AD). Some metals, such as copper, lead, and aluminum can affect the Aβ accumulation in the brain. However, the effect of mercury on Aβ accumulation in the brain is not clear. Thus, this study was proposed to estimate whether mercury concentration affects Aβ accumulation in PC12 cells. We treated 10, 100, and 1000 nM HgCl2 (Hg) or CH3HgCl2 (MeHg) for 48 hr in PC12 cells. After treatment, Aβ40 i...

  16. Polymorphism of amyloid fibrils formed by a peptide from the yeast prion protein Sup35: AFM and Tip-Enhanced Raman Scattering studies

    Energy Technology Data Exchange (ETDEWEB)

    Krasnoslobodtsev, Alexey V., E-mail: akrasnos@unomaha.edu [Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, NE 68198 (United States); Department of Physics, University of Nebraska Omaha, Omaha, NE 68182 (United States); Deckert-Gaudig, Tanja [IPHT-Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, D-07745 Jena (Germany); Zhang, Yuliang [Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, NE 68198 (United States); Deckert, Volker [IPHT-Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, D-07745 Jena (Germany); Institute for Physical Chemistry and Abbe Center of Photonics, University of Jena, Helmholtzweg 4, D-07743 Jena (Germany); Lyubchenko, Yuri L., E-mail: ylyubchenko@unmc.edu [Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, NE 68198 (United States)

    2016-06-15

    Aggregation of prion proteins is the cause of various prion related diseases. The infectious form of prions, amyloid aggregates, exist as multiple strains. The strains are thought to represent structurally different prion protein molecules packed into amyloid aggregates, but the knowledge on the structure of different types of aggregates is limited. Here we report on the use of AFM (Atomic Force Microscopy) and TERS (Tip-Enhanced Raman Scattering) to study morphological heterogeneity and access underlying conformational features of individual amyloid aggregates. Using AFM we identified the morphology of amyloid fibrils formed by the peptide (CGNNQQNY) from the yeast prion protein Sup35 that is critically involved in the aggregation of the full protein. TERS results demonstrate that morphologically different amyloid fibrils are composed of a distinct set of conformations. Fibrils formed at pH 5.6 are composed of a mixture of peptide conformations (β-sheets, random coil and α-helix) while fibrils formed in pH~2 solution primarily have β-sheets. Additionally, peak positions in the amide III region of the TERS spectra suggested that peptides have parallel arrangement of β-sheets for pH~2 fibrils and antiparallel arrangement for fibrils formed at pH 5.6. We also developed a methodology for detailed analysis of the peptide secondary structure by correlating intensity changes of Raman bands in different regions of TERS spectra. Such correlation established that structural composition of peptides is highly localized with large contribution of unordered secondary structures on a fibrillar surface. - Highlights: • Amyloid polymorphs were characterized by AFM and TERS. • A mixture of peptide secondary structures in fibrils were identified using TERS. • TERS recognizes packing arrangement (parallel versus antiparallel) of peptides. • TERS is a powerful tool for high resolution structural analysis of fibrils.

  17. Protective effects of berberine against amyloid beta-induced toxicity in cultured rat cortical neurons

    Institute of Scientific and Technical Information of China (English)

    Jing Wang; Yanjun Zhang; Shuai Du; Mixia Zhang

    2011-01-01

    Berberine, a major constituent of Coptidis rhizoma, exhibits neural protective effects. The present study analyzed the potential protective effect of berberine against amyloid G-induced cytotoxicity in rat cerebral cortical neurons. Alzheimer's disease cell models were treated with 0.5 and 2 μmol/Lberberine for 36 hours to inhibit amyloid G-induced toxicity. Methyl thiazolyl tetrazolium assay and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling staining results showed that berberine significantly increased cell viability and reduced cell apoptosis in primary cultured rat cortical neurons. In addition, western blot analysis revealed a protective effect of berberine against amyloid β-induced toxicity in cultured cortical neurons, which coincided with significantly decreased abnormal up-regulation of activated caspase-3. These results showed that berberine exhibited a protective effect against amyloid 13-induced cytotoxicity in cultured rat cortical neurons.

  18. Spatial patterns of brain amyloid-beta burden and atrophy rate associations in mild cognitive impairment.

    Science.gov (United States)

    Tosun, Duygu; Schuff, Norbert; Mathis, Chester A; Jagust, William; Weiner, Michael W

    2011-04-01

    Amyloid-β accumulation in the brain is thought to be one of the earliest events in Alzheimer's disease, possibly leading to synaptic dysfunction, neurodegeneration and cognitive/functional decline. The earliest detectable changes seen with neuroimaging appear to be amyloid-β accumulation detected by (11)C-labelled Pittsburgh compound B positron emission tomography imaging. However, some individuals tolerate high brain amyloid-β loads without developing symptoms, while others progressively decline, suggesting that events in the brain downstream from amyloid-β deposition, such as regional brain atrophy rates, play an important role. The main purpose of this study was to understand the relationship between the regional distributions of increased amyloid-β and the regional distribution of increased brain atrophy rates in patients with mild cognitive impairment. To simultaneously capture the spatial distributions of amyloid-β and brain atrophy rates, we employed the statistical concept of parallel independent component analysis, an effective method for joint analysis of multimodal imaging data. Parallel independent component analysis identified significant relationships between two patterns of amyloid-β deposition and atrophy rates: (i) increased amyloid-β burden in the left precuneus/cuneus and medial-temporal regions was associated with increased brain atrophy rates in the left medial-temporal and parietal regions; and (ii) in contrast, increased amyloid-β burden in bilateral precuneus/cuneus and parietal regions was associated with increased brain atrophy rates in the right medial temporal regions. The spatial distribution of increased amyloid-β and the associated spatial distribution of increased brain atrophy rates embrace a characteristic pattern of brain structures known for a high vulnerability to Alzheimer's disease pathology, encouraging for the use of (11)C-labelled Pittsburgh compound B positron emission tomography measures as early indicators of

  19. Proteolytically inactive insulin-degrading enzyme inhibits amyloid formation yielding non-neurotoxic aβ peptide aggregates.

    Directory of Open Access Journals (Sweden)

    Matias B de Tullio

    Full Text Available Insulin-degrading enzyme (IDE is a neutral Zn(2+ peptidase that degrades short peptides based on substrate conformation, size and charge. Some of these substrates, including amyloid β (Aβ are capable of self-assembling into cytotoxic oligomers. Based on IDE recognition mechanism and our previous report of the formation of a stable complex between IDE and intact Aβ in vitro and in vivo, we analyzed the possibility of a chaperone-like function of IDE. A proteolytically inactive recombinant IDE with Glu111 replaced by Gln (IDEQ was used. IDEQ blocked the amyloidogenic pathway of Aβ yielding non-fibrillar structures as assessed by electron microscopy. Measurements of the kinetics of Aβ aggregation by light scattering showed that 1 IDEQ effect was promoted by ATP independent of its hydrolysis, 2 end products of Aβ-IDEQ co-incubation were incapable of "seeding" the assembly of monomeric Aβ and 3 IDEQ was ineffective in reversing Aβ aggregation. Moreover, Aβ aggregates formed in the presence of IDEQ were non-neurotoxic. IDEQ had no conformational effects upon insulin (a non-amyloidogenic protein under physiological conditions and did not disturb insulin receptor activation in cultured cells. Our results suggest that IDE has a chaperone-like activity upon amyloid-forming peptides. It remains to be explored whether other highly conserved metallopeptidases have a dual protease-chaperone function to prevent the formation of toxic peptide oligomers from bacteria to mammals.

  20. P206-M Understanding the Metabolism of Amyloid-Beta in Humans

    OpenAIRE

    2007-01-01

    The most common form of dementia is Alzheimer’s disease. According to the amyloid hypothesis, the disease is preceded by an accumulation of the amyloid-β (Aβ) protein, which leads to downstream events including activation of microglia, inflammation, synaptic dysfunction, and neuronal loss. The objective of this research is to address the physiology of Aβ in humans by measuring its in vivo metabolic rates.

  1. Novel effects of FCCP [carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone] on amyloid precursor protein processing.

    Science.gov (United States)

    Connop, B P; Thies, R L; Beyreuther, K; Ida, N; Reiner, P B

    1999-04-01

    Amyloidogenic processing of the beta-amyloid precursor protein (APP) has been implicated in the pathology of Alzheimer's disease. Because it has been suggested that catabolic processing of the APP holoprotein occurs in acidic intracellular compartments, we studied the effects of the protonophore carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone (FCCP) and the H+-ATPase inhibitor bafilomycin A1 on APP catabolism in human embryonic kidney 293 cells expressing either wild-type or "Swedish" mutant APP. Unlike bafilomycin A1, which inhibits beta-amyloid production in cells expressing mutant but not wild-type APP, FCCP inhibited beta-amyloid production in both cell types. Moreover, the effects of FCCP were independent of alterations in total cellular APP levels or APP maturation, and the concentrations used did not alter either cellular ATP levels or cell viability. Bafilomycin A1, which had no effect on beta-amyloid production in wild-type cells, inhibited endocytosis of fluorescent transferrin, whereas concentrations of FCCP that inhibited beta-amyloid production in these cells had no effect on endosomal function. Thus, in wild-type-expressing cells it appears that the beta-amyloid peptide is not produced in the classically defined endosome. Although bafilomycin A1 decreased beta-amyloid release from cells expressing mutant APP but not wild-type APP, it altered lysosomal function in both cell types, suggesting that in normal cells beta-amyloid is not produced in the lysosome. Although inhibition of beta-amyloid production by bafilomycin A1 in mutant cells may occur via changes in endosomal/lysosomal pH, our data suggest that FCCP inhibits wild-type beta-amyloid production by acting on a bafilomycin A1-insensitive acidic compartment that is distinct from either the endosome or the lysosome.

  2. Evaluation of beta-cell secretory capacity using glucagon-like peptide 1

    DEFF Research Database (Denmark)

    Vilsbøll, Tina; Nielsen, Mette Toft; Krarup, T

    2000-01-01

    Beta-cell secretory capacity is often evaluated with a glucagon test or a meal test. However, glucagon-like peptide 1 (GLP-1) is the most insulinotropic hormone known, and the effect is preserved in type 2 diabetic patients.......Beta-cell secretory capacity is often evaluated with a glucagon test or a meal test. However, glucagon-like peptide 1 (GLP-1) is the most insulinotropic hormone known, and the effect is preserved in type 2 diabetic patients....

  3. Molecular dynamics studies of the inhibitory mechanism of copper(Ⅱ) on aggregation of amyloid β-peptide

    Institute of Scientific and Technical Information of China (English)

    Yong Jiao; Pin Yang

    2007-01-01

    The inhibitory mechanism of copper(Ⅱ) on the aggregation of amyloid β-peptide (Aβ) was investigated by molecular dynamics simulations. The binding mode of copper(Ⅱ) with Aβ is characterized by the imidazole nitrogen atom, Nπ, of the histidine residue H13,acting as the anchoring site, and the backbone's deprotoned amide nitrogen atoms as the main binding sites. Drove by the coordination bonds and their induced hydrogen bond net, the conformations of Aβ converted from β-sheet non-β-sheet conformations, which destabilized the aggregation of Aβ into fibrils.

  4. Association between IgM anti-herpes simplex virus and plasma amyloid-beta levels.

    Directory of Open Access Journals (Sweden)

    Catherine Féart

    Full Text Available OBJECTIVE: Herpes simplex virus (HSV reactivation has been identified as a possible risk factor for Alzheimer's disease (AD and plasma amyloid-beta (Aβ levels might be considered as possible biomarkers of the risk of AD. The aim of our study was to investigate the association between anti-HSV antibodies and plasma Aβ levels. METHODS: The study sample consisted of 1222 subjects (73.9 y in mean from the Three-City cohort. IgM and IgG anti-HSV antibodies were quantified using an ELISA kit, and plasma levels of Aβ(1-40 and Aβ(1-42 were measured using an xMAP-based assay technology. Cross-sectional analyses of the associations between anti-HSV antibodies and plasma Aβ levels were performed by multi-linear regression. RESULTS: After adjustment for study center, age, sex, education, and apolipoprotein E-e4 polymorphism, plasma Aβ(1-42 and Aβ(1-40 levels were specifically inversely associated with anti-HSV IgM levels (β = -20.7, P=0.001 and β = -92.4, P=0.007, respectively. In a sub-sample with information on CLU- and CR1-linked SNPs genotyping (n=754, additional adjustment for CR1 or CLU markers did not modify these associations (adjustment for CR1 rs6656401, β = -25.6, P=0.002 for Aβ(1-42 and β = -132.7, P=0.002 for Aβ(1-40; adjustment for CLU rs2279590, β = -25.6, P=0.002 for Aβ(1-42 and β = -134.8, P=0.002 for Aβ(1-40. No association between the plasma Aβ(1-42-to-Aβ(1-40 ratio and anti-HSV IgM or IgG were evidenced. CONCLUSION: High anti-HSV IgM levels, markers of HSV reactivation, are associated with lower plasma Aβ(1-40 and Aβ(1-42 levels, which suggest a possible involvement of the virus in the alterations of the APP processing and potentially in the pathogenesis of AD in human.

  5. Investigation on apoptosis of neuronal cells induced by Amyloid beta-Protein

    Institute of Scientific and Technical Information of China (English)

    罗本燕; 徐增斌; 陈智; 陈峰; 唐敏

    2004-01-01

    Objective: To construct a PC12 cell strain with neuronal differentiation, and observe the apoptosis and pro-liferation activity effects induced these cells by Amyloid beta-Protein (Aβ3-43). Methods: 1) PC12 cells in logarithmic growth phase were subcultured for 24 h. After the culture fluid was changed, the cells were treated with Rat-β-NGF and cultured for 9 days. 2) Neuronal differentiation of PC 12 cells in logarithmic growth phase were divided into four groups:control group (0), experimental group (1), experimental group (2) and experimental group (3). The concentrations of Aβ in the four groups were 0 μmol/L, 1.25 μmol/L, 2.5 μmol/L and 5 μmol/L, respectively. The cells were harvested at 24, 48 and 72 h later and stained with AnnexinV-FITC/PI after centrifugation and washing. Then flow cytometry was conducted to examine the apoptosis percentage. 3) NGF-induced PC12 cells were selected and Aβ with different concentrations was added. The final concentrations of Aβ were 0 μmol/L, 1.25 μmol/L, 2.5 μmol/L and 5 μmol/L, respectively. After the cells were incubated in an atmosphere of 5% CO2 at 37 ℃ in an incubator for 72 h, the OD values were examined. Results: 1)Neuronal differentiated PC12 cell lines were successfully established. 2) Flow cytometric examination indicated that Aβ(1.25, 2.5, and 5.0 μmol/L) could effectively induce apoptosis of neuronal-differented cells at the 24 h, 48 h and 72 h time points. 3) Aβ (0-5.00 μmol/L) had no obvious effect on proliferation or restraining of the neuronal differentiation of the PC 12 cells after a 72 h interacting process. Conclusion: This investigation revealed successful neuronal differentiation of the PC12 cell strain. The induction of apoptosis of the neurocytes by various concentrations of Aβ was observed and the in-fluence of Aβ on induced proliferation of PC 12 cells by Rat-β-NGF was revealed. This study may provide basis for future research on the molecular cure of AD and interdiction of AD

  6. Low levels of amyloid-beta and its transporters in neonatal rats with and without hydrocephalus

    Directory of Open Access Journals (Sweden)

    Silverberg Gerald D

    2009-05-01

    Full Text Available Abstract Background Previous studies in aging animals have shown that amyloid-beta protein (Aβ accumulates and its transporters, low-density lipoprotein receptor-related protein-1 (LRP-1 and the receptor for advanced glycation end products (RAGE are impaired during hydrocephalus. Furthermore, correlations between astrocytes and Aβ have been found in human cases of normal pressure hydrocephalus (NPH and Alzheimer's disease (AD. Because hydrocephalus occurs frequently in children, we evaluated the expression of Aβ and its transporters and reactive astrocytosis in animals with neonatal hydrocephalus. Methods Hydrocephalus was induced in neonatal rats by intracisternal kaolin injections on post-natal day one, and severe ventriculomegaly developed over a three week period. MRI was performed on post-kaolin days 10 and 21 to document ventriculomegaly. Animals were sacrificed on post-kaolin day 21. For an age-related comparison, tissue was used from previous studies when hydrocephalus was induced in a group of adult animals at either 6 months or 12 months of age. Tissue was processed for immunohistochemistry to visualize LRP-1, RAGE, Aβ, and glial fibrillary acidic protein (GFAP and with quantitative real time reverse transcriptase polymerase chain reaction (qRT-PCR to quantify expression of LRP-1, RAGE, and GFAP. Results When 21-day post-kaolin neonatal hydrocephalic animals were compared to adult (6–12 month old hydrocephalic animals, immunohistochemistry demonstrated levels of Aβ, RAGE, and LRP-1 that were substantially lower in the younger animals; in contrast, GFAP levels were elevated in both young and old hydrocephalic animals. When the neonatal hydrocephalic animals were compared to age-matched controls, qRT-PCR demonstrated no significant changes in Aβ, LRP-1 and RAGE. However, immunohistochemistry showed very small increases or decreases in individual proteins. Furthermore, qRT-PCR indicated statistically significant increases in GFAP

  7. Correlations between serum levels of beta amyloid, cerebrospinal levels of tau and phospho tau, and delayed response tasks in young and aged cynomolgus monkeys (Macaca fascicularis)

    DEFF Research Database (Denmark)

    Darusman, Huda Shalahudin; Sajuthi, D; Kalliokoski, O

    2013-01-01

    In an attempt to explore cynomolgus monkeys as an animal model for Alzheimer's disease, the present study focused on the Alzheimer's biomarkers beta amyloid 1-42 (Aβ42 ) in serum, and total tau (t-tau) and phosphorylated tau (p-tau) levels in cerebrospinal fluid.......In an attempt to explore cynomolgus monkeys as an animal model for Alzheimer's disease, the present study focused on the Alzheimer's biomarkers beta amyloid 1-42 (Aβ42 ) in serum, and total tau (t-tau) and phosphorylated tau (p-tau) levels in cerebrospinal fluid....

  8. Beta-Amyloid Downregulates MDR1-P-Glycoprotein (Abcb1 Expression at the Blood-Brain Barrier in Mice

    Directory of Open Access Journals (Sweden)

    Anja Brenn

    2011-01-01

    Full Text Available Neurovascular dysfunction is an important component of Alzheimer's disease, leading to reduced clearance across the blood-brain barrier and accumulation of neurotoxic β-amyloid (Aβ peptides in the brain. It has been shown that the ABC transport protein P-glycoprotein (P-gp, ABCB1 is involved in the export of Aβ from the brain into the blood. To determine whether Aβ influences the expression of key Aβ transporters, we studied the effects of 1-day subcutaneous Aβ1-40 and Aβ1-42 administration via Alzet mini-osmotic pumps on P-gp, BCRP, LRP1, and RAGE expression in the brain of 90-day-old male FVB mice. Our results demonstrate significantly reduced P-gp, LRP1, and RAGE mRNA expression in mice treated with Aβ1-42 compared to controls, while BCRP expression was not affected. The expression of the four proteins was unchanged in mice treated with Aβ1-40 or reverse-sequence peptides. These findings indicate that, in addition to the age-related decrease of P-gp expression, Aβ1-42 itself downregulates the expression of P-gp and other Aβ-transporters, which could exacerbate the intracerebral accumulation of Aβ and thereby accelerate neurodegeneration in Alzheimer's disease and cerebral β-amyloid angiopathy.

  9. α-Iso-cubebene exerts neuroprotective effects in amyloid beta stimulated microglia activation.

    Science.gov (United States)

    Park, Sun Young; Park, Se Jin; Park, Nan Jeong; Joo, Woo Hong; Lee, Sang-Joon; Choi, Young-Whan

    2013-10-25

    Schisandra chinensis is commonly used for food and as a traditional remedy for the treatment of neuronal disorders. However, it is unclear which component of S. chinensis is responsible for its neuropharmacological effects. To answer this question, we isolated α-iso-cubebene, a dibenzocyclooctadiene lignin, from S. chinensis and determined if it has any anti-neuroinflammatory and neuroprotective properties against amyloid β-induced neuroinflammation in microglia. Microglia that are stimulated by amyloid β increased their production of pro-inflammatory cytokines and chemokines, prostaglandin E2 (PGE2), nitric oxide (NO) and reactive oxygen species (ROS) and the enzymatic activity of matrix metalloproteinase 9 (MMP-9). We found this was all inhibited by α-iso-cubebene. Consistent with these results, α-iso-cubebene inhibited the expression of inducible nitric oxide synthase (iNOS), cyclooxygenase 2 (COX-2) and MMP-9 in amyloid β-stimulated microglia. Subsequent mechanistic studies revealed that α-iso-cubebene inhibited the phosphorylation and degradation of IκB-α, the phosphorylation and transactivity of NF-κB, and the phosphorylation of MAPK in amyloid β-stimulated microglia. These results suggest that α-iso-cubebene impairs the amyloid β-induced neuroinflammatory response of microglia by inhibiting the NF-κB and MAPK signaling pathways. Importantly, α-iso-cubebene can provide critical neuroprotection for primary cortical neurons against amyloid β-stimulated microglia-mediated neurotoxicity. To the best of our knowledge, this is the first report showing that α-iso-cubebene can provide neuroprotection against, and influence neuroinflammation triggered by, amyloid β activation of microglia.

  10. Synthesis and evaluation of benzothiophene derivatives as ligands for imaging {beta}-amyloid plaques in Alzheimer's disease

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Young Soo [Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul 110-744 (Korea, Republic of); Cancer Research Institute, Seoul National University College of Medicine, Seoul 110-744 (Korea, Republic of)]|[Institute of Radiation Medicine, Medical Research Center, Seoul National University, Seoul 110-744 (Korea, Republic of); Jeong, Jae Min [Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul 110-744 (Korea, Republic of)]|[Cancer Research Institute, Seoul National University College of Medicine, Seoul 110-744 (Korea, Republic of) and Institute of Radiation Medicine, Medical Research Center, Seoul National University, Seoul 110-744 (Korea, Republic of)]. E-mail: jmjng@snu.ac.kr; Lee, Yun-Sang [Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul 110-744 (Korea, Republic of)]|[Institute of Radiation Medicine, Medical Research Center, Seoul National University, Seoul 110-744 (Korea, Republic of); Kim, Hyung Woo [Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul 110-744 (Korea, Republic of)]|[Institute of Radiation Medicine, Medical Research Center, Seoul National University, Seoul 110-744 (Korea, Republic of); Ganesha, Rai B.; Kim, Young Ju; Lee, Dong Soo [Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul 110-744 (Korea, Republic of); Chung, June-Key [Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul 110-744 (Korea, Republic of)]|[Cancer Research Institute, Seoul National University College of Medicine, Seoul 110-744 (Korea, Republic of); Lee, Myung Chul [Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul 110-744 (Korea, Republic of)

    2006-08-15

    The imaging of the distribution of {beta}-amyloid (A{beta}) plaques in the brain is becoming an important diagnostic modality in Alzheimer's disease (AD). Here, we synthesized novel benzothiophene derivatives and labeled them with {sup 18}F for the potential diagnostic imaging of AD patients using positron emission tomography. The K {sub i} values of benzothiophene derivatives were evaluated by competitive binding assay using 2-(3'-[{sup 125}I]iodo-4'-N-methylaminophenyl)benzothiazole as a radioligand and A{beta}(1-40) or A{beta}(1-42) aggregates as receptors. All synthesized benzothiophene derivatives showed high binding affinities (K {sub i}=0.28-6.50 nM) to both A{beta}(1-40) and A{beta}(1-42) aggregates. Binding affinities were increased by O-alkylation or N-alkylation of 2-(4'-hydroxyphenyl)benzothiophene or 2-(4'-aminophenyl)benzothiophene. Biodistribution studies of 2-(4'-O-(2''-[{sup 18}F]fluoroethyl)hydroxyphenyl)benzothiophene ([{sup 18}F]) and 2-(4'-O-(3''-[{sup 18}F]fluoropropyl)hydroxyphenyl)benzothiophene ([{sup 18}F]) in normal mice were performed after intravenous injection through the tail vein. In biodistribution data, [{sup 18}F] and [{sup 18}F] showed high initial brain uptakes at 2 min (5.2{+-}0.4% and 3.3{+-}0.2% ID/g, respectively), and brain activities washed out to 2.0{+-}0.2% and 0.5{+-}0.1% ID/g at 4 h, respectively. In conclusion, benzothiophene derivatives showed excellent binding affinities for A{beta} aggregates and high initial brain uptakes in normal mice.

  11. Studies on the Interactions of Copper and Zinc Ions with β-Amyloid Peptides by a Surface Plasmon Resonance Biosensor

    Directory of Open Access Journals (Sweden)

    He Tian

    2012-09-01

    Full Text Available The aggregation of β-amyloid peptide (Aβ into fibrils plays an important role in the pathogenesis of Alzheimer’s disease (AD. Metal ions including copper and zinc are closely connected to the precipitation and toxicity of Aβ. In this study, a surface plasmon resonance (SPR biosensor was constructed to investigate the interactions between Aβ and metal ions. Aβ peptide was immobilized on the SPR chip surface through a preformed alkanethiol self-assembled monolayer (SAM. Our observations indicate that the immobilized Aβ undergoes a conformational change upon exposure to the metal ions. A difference in metal binding affinity between Aβ1–28 and Aβ1–42 was also detected. The results suggest that SPR is an effective method to characterize the interactions between Aβ and metal ions.

  12. Studies on the interactions of copper and zinc ions with β-amyloid peptides by a surface plasmon resonance biosensor.

    Science.gov (United States)

    Yao, Fujun; Zhang, Ruiping; Tian, He; Li, Xiangjun

    2012-01-01

    The aggregation of β-amyloid peptide (Aβ) into fibrils plays an important role in the pathogenesis of Alzheimer's disease (AD). Metal ions including copper and zinc are closely connected to the precipitation and toxicity of Aβ. In this study, a surface plasmon resonance (SPR) biosensor was constructed to investigate the interactions between Aβ and metal ions. Aβ peptide was immobilized on the SPR chip surface through a preformed alkanethiol self-assembled monolayer (SAM). Our observations indicate that the immobilized Aβ undergoes a conformational change upon exposure to the metal ions. A difference in metal binding affinity between Aβ(1-28) and Aβ(1-42) was also detected. The results suggest that SPR is an effective method to characterize the interactions between Aβ and metal ions.

  13. Platinum-coordinated graphitic carbon nitride nanosheet used for targeted inhibition of amyloid β-peptide aggregation

    Institute of Scientific and Technical Information of China (English)

    Meng Li; Yijia Guan; Zhaowei Chen; Nan Gao; Jinsong Ren; Kai Dong; Xiaogang Qu

    2016-01-01

    Amyloid β-peptide (Aβ) aggregation is a critical step in the pathogenesis of Alzheimer's disease (AD).Inhibition of Aβ production,dissolution of existing aggregates and clearance of Aβ represent valid therapeutic strategies against AD.Herein,a novel platinum(Ⅱ)-coordinated graphitic carbon nitride (g-C3N4)nanosheet (g-C3N4@Pt) has been designed to covalently bind to Aβ and modulate the peptide's aggregation and toxicity.Furthermore,g-C3N4@Pt nanosheets possess high photocatalytic activity and can oxygenate Aβ upon visible light irradiation,remarkably attenuating both the aggregation potency and neurotoxidty of Aβ.Due to its ability to cross the blood-brain barrier (BBB) and its good biocompatibility,g-C3N4@Pt nanosheet is a promising inhibitor of Aβ aggregation.This study may serve as a model for the engineering of novel multifunctional nanomaterials used for the treatment of AD.

  14. Soluble aggregates of the amyloidpeptide are trapped by serum albumin to enhance amyloid-β activation of endothelial cells

    Directory of Open Access Journals (Sweden)

    Gonzalez-Velasquez Francisco J

    2009-04-01

    Full Text Available Abstract Background Self-assembly of the amyloidpeptide (Aβ has been implicated in the pathogenesis of Alzheimer's disease (AD. As a result, synthetic molecules capable of inhibiting Aβ self-assembly could serve as therapeutic agents and endogenous molecules that modulate Aβ self-assembly may influence disease progression. However, increasing evidence implicating a principal pathogenic role for small soluble Aβ aggregates warns that inhibition at intermediate stages of Aβ self-assembly may prove detrimental. Here, we explore the inhibition of Aβ1–40 self-assembly by serum albumin, the most abundant plasma protein, and the influence of this inhibition on Aβ1–40 activation of endothelial cells for monocyte adhesion. Results It is demonstrated that serum albumin is capable of inhibiting in a dose-dependent manner both the formation of Aβ1–40 aggregates from monomeric peptide and the ongoing growth of Aβ1–40 fibrils. Inhibition of fibrillar Aβ1–40 aggregate growth is observed at substoichiometric concentrations, suggesting that serum albumin recognizes aggregated forms of the peptide to prevent monomer addition. Inhibition of Aβ1–40 monomer aggregation is observed down to stoichiometric ratios with partial inhibition leading to an increase in the population of small soluble aggregates. Such partial inhibition of Aβ1–40 aggregation leads to an increase in the ability of resulting aggregates to activate endothelial cells for adhesion of monocytes. In contrast, Aβ1–40 activation of endothelial cells for monocyte adhesion is reduced when more complete inhibition is observed. Conclusion These results demonstrate that inhibitors of Aβ self-assembly have the potential to trap small soluble aggregates resulting in an elevation rather than a reduction of cellular responses. These findings provide further support that small soluble aggregates possess high levels of physiological activity and underscore the importance of

  15. Buyuan Congnao decoction decreases hippocampal beta-amyloid expression in a rat model of Alzheimer's disease

    Institute of Scientific and Technical Information of China (English)

    Min Chen; Jing Wang; Cairong Ming

    2012-01-01

    A mixture of ibotenic acid and β-amyloid 1-42 was injected into the hippocampus of a rat model of Alzheimer's disease, followed by intragastric administration of a traditional Chinese medicine Buyuan Congnao decoction (main components included radix astragali, radix polygoni multiflori preparata, rhizoma acori talarinowii, radix polygalae, fructus alpiniae oxyphyllae, and radix glycyrrhizae preparata) and a piracetam suspension.Following treatment with traditional Chinese medicine or western medicine, β-amyloid expression decreased and neuronal morphology was normal in the rat hippocampal CA1 region, in addition to significantly shortened average latency in the Morris water navigation task.These findings suggested that compound prescription of Buyuan Congnao decoction, similar to the curative effects of piracetam, decreased hippocampal β-amyloid expression in a rat model of Alzheimer's disease, as well as improved learning and memory.

  16. Dipolar recoupling NMR of biomolecular self-assemblies : determining inter- and intrastrand distances in fibrilized Alzheimer's {betta}-amyloid peptide.

    Energy Technology Data Exchange (ETDEWEB)

    Gregory, D. M.; Senzinger, T. L. S.; Burkoth, T. S.; Miller-Auer, H.; Lynn, D. G.; Meredith, S. C.; Botto, R. E.; Chemistry; Univ. of Chicago

    1998-12-01

    We demonstrate a new method for investigating the structure of self-associating biopolymers using dipolar recoupling NMR techniques. This approach was applied to the study of fibrillar {beta}-amyloid (A{beta}) peptides (the primary component of the plaques of Alzheimer's disease) containing only a single isotopic spin label ({sup 13}C), by employing the DRAWS (dipolar recoupling with a windowless sequence) technique to measure {sup 13}C-{sup 13}C distances. The 'single-label' approach simplified analysis of DRAWS data, since only interstrand contacts are present, without the possibility of any intrastrand contacts. As previously reported [T.L.S. Benzinger, D.M. Gregory, T.S. Burkoth, H. Miller-Auer, D.G. Lynn, R.E. Botto, S.C. Meredith, Proc. Natl. Acad. Sci. 95 (1998) 13407.], contacts of approximately 5 {angstrom} were observed at all residues studied, consistent with an extended parallel {beta}-sheet structure with each amino acid in exact register. Here, we propose that our strategy is completely generalizable, and provides a new approach for characterizing any iterative, self-associating biopolymer. Towards the end of generalizing and refining our approach, in this paper we evaluate several issues raised by our previous analyses. First, we consider the effects of double-quantum (DQ) transverse relaxation processes. Next, we discuss the effects of various multiple-spin geometries on modeling of DRAWS data. Several practical issues are also discussed: these include (1) the use of DQ filtering experiments, either to corroborate DRAWS data, or as a rapid screening assessment of the proper placement of isotopic spin labels; and (2) the comparison of solid samples prepared by either lyophilization or freezing. Finally, data obtained from the use of single labels is compared with that obtained in doubly {sup 13}C-labeled model compounds of known crystal structure. It is shown that such data are obtainable in far more complex peptide molecules. These

  17. Statins reduce amyloid β-peptide production by modulating amyloid precursor protein maturation and phosphorylation through a cholesterol-independent mechanism in cultured neurons.

    Science.gov (United States)

    Hosaka, Ai; Araki, Wataru; Oda, Akiko; Tomidokoro, Yasushi; Tamaoka, Akira

    2013-03-01

    Statins, 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors, have been reported to attenuate amyloidpeptide (Aβ) production in various cellular models. However, the mechanisms by which statins affect neuronal Aβ production have not yet been clarified. Here, we investigated this issue in rat primary cortical neurons using two statins, pitavastatin (PV) and atorvastatin (AV). Treatment of neurons with 0.2-2.5 μM PV or AV for 4 days induced a concentration- and time-dependent reduction in the secretion of both Aβ40 and Aβ42. Moreover, Western blot analyses of cell lysates showed that treatment with PV or AV significantly reduced expression levels of the mature form of amyloid precursor protein (APP) and Thr668-phosphorylated APP (P-APP), but not immature form of APP; the decreases in P-APP levels were more notable than those of mature APP levels. The statin treatment did not alter expression of BACE1 (β-site APP-cleaving enzyme 1) or γ-secretase complex proteins (presenilin 1, nicastrin, APH-1, and PEN-2). In neurons overexpressing APP via recombinant adenoviruses, PV or AV similarly reduced Aβ secretion and the levels of mature APP and P-APP. Statins also markedly reduced cellular cholesterol content in neurons in a concentration-dependent manner. Co-treatment with mevalonate reversed the statin-induced decreases in Aβ secretion and mature APP and P-APP levels, whereas co-treatment with cholesterol did not, despite recovery of cellular cholesterol levels. Finally, cell-surface biotinylation experiments revealed that both statins significantly reduced the levels of cell-surface P-APP without changing those of cell surface mature APP. These results suggest that statins reduce Aβ production by selectively modulating APP maturation and phosphorylation through a mechanism independent of cholesterol reduction in cultured neurons.

  18. Aggregation properties of a short peptide that mediates amyloid fibril formation in model proteins unrelated to disease

    Indian Academy of Sciences (India)

    Nitin Chaudhary; Shashi Singh; Ramakrishnan Nagaraj

    2011-09-01

    Short peptides have been identified from amyloidogenic proteins that form amyloid fibrils in isolation. The hexapeptide stretch 21DIDLHL26 has been shown to be important in the self-assembly of the Src homology 3 (SH3) domain of p85 subunit of bovine phosphatidylinositol-3-kinase (PI3-SH3). The SH3 domain of chicken brain -spectrin, which is otherwise non-amyloidogenic, is rendered amyloidogenic if 22EVTMKK27 is replaced by DIDLHL. In this article, we describe the aggregation behaviour of DIDLHL-COOH and DIDLHL-CONH2. Our results indicate that DIDLHL-COOH and DIDLHL-CONH2 aggregate to form spherical structures at pH 5 and 6. At pH 5, in the presence of mica, DIDLHL-CONH2 forms short fibrous structures. The presence of NaCl along with mica results in fibrillar structures. At pH 6, DIDLHL-CONH2 forms largely spherical aggregates. Both the peptides are unstructured in solution but adopt -conformation on drying. The aggregates formed by DIDLHL-COOH and DIDLHL-CONH2 are formed during drying process and their structures are modulated by the presence of mica and salt. Our study suggests that a peptide need not have intrinsic amyloidogenic propensity to facilitate the selfassembly of the full-length protein. The propensity of peptides to form self-assembled structures that are non-amyloidogenic could be important in potentiating the self-assembly of full-length proteins into amyloid fibrils.

  19. Antibodies targeted to the brain with image-guided focused ultrasound reduces amyloid-beta plaque load in the TgCRND8 mouse model of Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Jessica F Jordão

    Full Text Available Immunotherapy for Alzheimer's disease (AD relies on antibodies directed against toxic amyloid-beta peptide (Abeta, which circulate in the bloodstream and remove Abeta from the brain. In mouse models of AD, the administration of anti-Abeta antibodies directly into the brain, in comparison to the bloodstream, was shown to be more efficient at reducing Abeta plaque pathology. Therefore, delivering anti-Abeta antibodies to the brain of AD patients may also improve treatment efficiency. Transcranial focused ultrasound (FUS is known to transiently-enhance the permeability of the blood-brain barrier (BBB, allowing intravenously administered therapeutics to enter the brain. Our goal was to establish that anti-Abeta antibodies delivered to the brain using magnetic resonance imaging-guided FUS (MRIgFUS can reduce plaque pathology. To test this, TgCRND8 mice received intravenous injections of MRI and FUS contrast agents, as well as anti-Abeta antibody, BAM-10. MRIgFUS was then applied transcranially. Within minutes, the MRI contrast agent entered the brain, and BAM-10 was later found bound to Abeta plaques in targeted cortical areas. Four days post-treatment, Abeta pathology was significantly reduced in TgCRND8 mice. In conclusion, this is the first report to demonstrate that MRIgFUS delivery of anti-Abeta antibodies provides the combined advantages of using a low dose of antibody and rapidly reducing plaque pathology.

  20. Treatment of beta amyloid 1–42 (Aβ1–42)-induced basal forebrain cholinergic damage by a non-classical estrogen signaling activator in vivo

    Science.gov (United States)

    Kwakowsky, Andrea; Potapov, Kyoko; Kim, SooHyun; Peppercorn, Katie; Tate, Warren P.; Ábrahám, István M.

    2016-01-01

    In Alzheimer’s disease (AD), there is a loss in cholinergic innervation targets of basal forebrain which has been implicated in substantial cognitive decline. Amyloid beta peptide (Aβ1–42) accumulates in AD that is highly toxic for basal forebrain cholinergic (BFC) neurons. Although the gonadal steroid estradiol is neuroprotective, the administration is associated with risk of off-target effects. Previous findings suggested that non-classical estradiol action on intracellular signaling pathways has ameliorative potential without estrogenic side effects. After Aβ1–42 injection into mouse basal forebrain, a single dose of 4-estren-3α, 17β-diol (estren), the non-classical estradiol pathway activator, restored loss of cholinergic cortical projections and also attenuated the Aβ1–42-induced learning deficits. Estren rapidly and directly phosphorylates c-AMP-response–element-binding-protein and extracellular-signal-regulated-kinase-1/2 in BFC neurons and restores the cholinergic fibers via estrogen receptor-α. These findings indicated that selective activation of non-classical intracellular estrogen signaling has a potential to treat the damage of cholinergic neurons in AD. PMID:26879842

  1. Stabilization of the cyclin-dependent kinase 5 activator, p35, by paclitaxel decreases beta-amyloid toxicity in cortical neurons.

    Science.gov (United States)

    Li, Guibin; Faibushevich, Alexander; Turunen, Brandon J; Yoon, Sung Ok; Georg, Gunda; Michaelis, Mary L; Dobrowsky, Rick T

    2003-01-01

    One hallmark of Alzheimer's disease (AD) is the formation of neurofibrillary tangles, aggregated paired helical filaments composed of hyperphosphorylated tau. Amyloid-beta (Abeta) induces tau hyperphosphorylation, decreases microtubule (MT) stability and induces neuronal death. MT stabilizing agents have been proposed as potential therapeutics that may minimize Abeta toxicity and here we report that paclitaxel (taxol) prevents cell death induced by Abeta peptides, inhibits Abeta-induced activation of cyclin-dependent kinase 5 (cdk5) and decreases tau hyperphosphorylation. Taxol did not inhibit cdk5 directly but significantly blocked Abeta-induced calpain activation and decreased formation of the cdk5 activator, p25, from p35. Taxol specifically inhibited the Abeta-induced activation of the cytosolic cdk5-p25 complex, but not the membrane-associated cdk5-p35 complex. MT-stabilization was necessary for neuroprotection and inhibition of cdk5 but was not sufficient to prevent cell death induced by overexpression of p25. As taxol is not permeable to the blood-brain barrier, we assessed the potential of taxanes to attenuate Abeta toxicity in adult animals using a succinylated taxol analog (TX67) permeable to the blood-brain barrier. TX67, but not taxol, attenuated the magnitude of both basal and Abeta-induced cdk5 activation in acutely dissociated cortical cultures prepared from drug treated adult mice. These results suggest that MT-stabilizing agents may provide a therapeutic approach to decrease Abeta toxicity and neurofibrillary pathology in AD and other tauopathies.

  2. Sodium Hydrosulfide Attenuates Beta-Amyloid-Induced Cognitive Deficits and Neuroinflammation via Modulation of MAPK/NF-κB Pathway in Rats.

    Science.gov (United States)

    Liu, Huiyu; Deng, Yuanyuan; Gao, Jianmei; Liu, Yuangui; Li, Wenxian; Shi, Jingshan; Gong, Qihai

    2015-01-01

    Beta-amyloid (Aβ), a neurotoxic peptide, accumulates in the brain of Alzheimer's disease (AD) subjects to initiate neuroinflammation eventually leading to memory impairment. Here, we demonstrated that Aβ-injected rats exhibited cognitive impairment and neuroinflammation with a remarkable reduction of hydrogen sulfide (H2S) levels in the hippocampus compared with that in shamoperated rats. Interestingly, the expression of cystathionine-β-synthase (CBS) and 3- mercaptopyruvate-sulfurtransferase (3MST), the major enzymes responsible for endogenous H2S generation, were also significantly decreased. However, intraperitoneal (i.p.) injection of sodium hydrosulfide (NaHS, a H2S donor) dramatically attenuated cognitive impairment and neuroinflammation induced by hippocampal injection of 10 μg of Aβ1-42 in rats. Subsequently, NaHS significantly suppressed the expression of tumor necrosis factor (TNF)-α, interleukin-1β (IL-1β) and cyclooxygenase-2 (COX-2) in rat hippocampus following Aβ administration. Furthermore, NaHS exerted a beneficial effect on inhibition of IκB-α degradation and subsequent activation of transcription factor nuclear factor κB (NF-κB), as well as inhibition of extracellular signal-regulated kinase (ERK1/2) activity and p38 MAPK activity but not c-Jun N-terminal kinase (JNK) activity induced by Aβ. These results demonstrate that NaHS might be a potential agent for treatment of neuroinflammation-related AD.

  3. First and second generation γ-secretase modulators (GSMs) modulate amyloid-β (Aβ) peptide production through different mechanisms.

    Science.gov (United States)

    Borgegard, Tomas; Juréus, Anders; Olsson, Fredrik; Rosqvist, Susanne; Sabirsh, Alan; Rotticci, Didier; Paulsen, Kim; Klintenberg, Rebecka; Yan, Hongmei; Waldman, Magnus; Stromberg, Kia; Nord, Johan; Johansson, Jonas; Regner, Anna; Parpal, Santiago; Malinowsky, David; Radesater, Ann-Cathrin; Li, Tingsheng; Singh, Rajeshwar; Eriksson, Hakan; Lundkvist, Johan

    2012-04-01

    γ-Secretase-mediated cleavage of amyloid precursor protein (APP) results in the production of Alzheimer disease-related amyloid-β (Aβ) peptides. The Aβ42 peptide in particular plays a pivotal role in Alzheimer disease pathogenesis and represents a major drug target. Several γ-secretase modulators (GSMs), such as the nonsteroidal anti-inflammatory drugs (R)-flurbiprofen and sulindac sulfide, have been suggested to modulate the Alzheimer-related Aβ production by targeting the APP. Here, we describe novel GSMs that are selective for Aβ modulation and do not impair processing of Notch, EphB2, or EphA4. The GSMs modulate Aβ both in cell and cell-free systems as well as lower amyloidogenic Aβ42 levels in the mouse brain. Both radioligand binding and cellular cross-competition experiments reveal a competitive relationship between the AstraZeneca (AZ) GSMs and the established second generation GSM, E2012, but a noncompetitive interaction between AZ GSMs and the first generation GSMs (R)-flurbiprofen and sulindac sulfide. The binding of a (3)H-labeled AZ GSM analog does not co-localize with APP but overlaps anatomically with a γ-secretase targeting inhibitor in rodent brains. Combined, these data provide compelling evidence of a growing class of in vivo active GSMs, which are selective for Aβ modulation and have a different mechanism of action compared with the original class of GSMs described.

  4. Effects of Amyloid Precursor Protein 17 Peptide on the Protection of Diabetic Encephalopathy and Improvement of Glycol Metabolism in the Diabetic Rat

    Directory of Open Access Journals (Sweden)

    Heng Meng

    2013-01-01

    Full Text Available Researchers have proposed that amyloid precursor protein 17 peptide (APP17 peptide, an active fragment of amyloid precursor protein (APP in the nervous system, has therapeutic effects on neurodegeneration. Diabetic encephalopathy (DE is a neurological disease caused by diabetes. Here we use multiple experimental approaches to investigate the effect of APP17 peptide on changes in learning behavior and glycol metabolism in rats. It was found that rats with DE treated by APP17 peptide showed reversed behavioral alternation. The [18F]-FDG-PET images and other results all showed that the APP17 peptide could promote glucose metabolism in the brain of the DE rat model. Meanwhile, the insulin signaling was markedly increased as shown by increased phosphorylation of Akt and enhanced GLUT4 activation. Compared with the DE group, the activities of SOD, GSH-Px, and CAT in the rat hippocampal gyrus were increased, while MDA decreased markedly in the DE + APP17 peptide group. No amyloid plaques in the cortex and the hippocampus were detected in either group, indicating that the experimental animals in the current study were not suffering from Alzheimer’s disease. These results indicate that APP17 peptide could be used to treat DE effectively.

  5. Minocycline alleviates beta-amyloid protein and tau pathology via restraining neuroinflammation induced by diabetic metabolic disorder

    Directory of Open Access Journals (Sweden)

    Cai Z

    2013-08-01

    Full Text Available Zhiyou Cai,1 Yong Yan,2 Yonglong Wang2 1Department of Neurology, the Lu’an Affiliated Hospital of Anhui Medical University, Lu’an People’s Hospital, Lu’an, Anhui Province, People’s Republic of China; 2Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, People’s Republic of China Background: Compelling evidence has shown that diabetic metabolic disorder plays a critical role in the pathogenesis of Alzheimer’s disease, including increased expression of β-amyloid protein (Aβ and tau protein. Evidence has supported that minocycline, a tetracycline derivative, protects against neuroinflammation induced by neurodegenerative disorders or cerebral ischemia. This study has evaluated minocycline influence on expression of Aβ protein, tau phosphorylation, and inflammatory cytokines (interleukin-1β and tumor necrosis factor-α in the brain of diabetic rats to clarify neuroprotection by minocycline under diabetic metabolic disorder. Method: An animal model of diabetes was established by high fat diet and intraperitoneal injection of streptozocin. In this study, we investigated the effect of minocycline on expression of Aβ protein, tau phosphorylation, and inflammatory cytokines (interleukin-1β and tumor necrosis factor-α in the hippocampus of diabetic rats via immunohistochemistry, western blotting, and enzyme-linked immunosorbent assay. Results: These results showed that minocycline decreased expression of Aβ protein and lowered the phosphorylation of tau protein, and retarded the proinflammatory cytokines, but not amyloid precursor protein. Conclusion: On the basis of the finding that minocycline had no influence on amyloid precursor protein and beta-site amyloid precursor protein cleaving enzyme 1 which determines the speed of Aβ generation, the decreases in Aβ production and tau hyperphosphorylation by minocycline are through inhibiting

  6. Unfolding, aggregation, and seeded amyloid formation of lysine-58-cleaved beta(2)-microglobulin

    DEFF Research Database (Denmark)

    Heegaard, N.H.H.; Jørgensen, T.J.D.; Rozlosnik, N.;

    2005-01-01

    beta(2)-Microglobulin (beta(2)m) is the amyloidogenic protein in dialysis-related amyloidosis, but the mechanisms underlying beta(2)m fibrillogenesis in vivo are largely unknown. We study a structural variant of beta(2)M that has been linked to cancer and inflammation and may be present in the ci......beta(2)-Microglobulin (beta(2)m) is the amyloidogenic protein in dialysis-related amyloidosis, but the mechanisms underlying beta(2)m fibrillogenesis in vivo are largely unknown. We study a structural variant of beta(2)M that has been linked to cancer and inflammation and may be present...... in the circulation of dialysis patients. This beta(2)M variant, Delta K58-beta(2)m, is a disulfide-linked two-chain molecule consisting of amino acid residues 1-57 and 59-99 of intact beta(2)m, and we here demonstrate and characterize its decreased conformational stability as compared to wild-type (wt) beta(2)M......, and at 37 degrees C the half-time for unfolding is more than 170-fold faster than at 15 degrees C. Conformational changes are also reflected by a very prominent Congo red binding of Delta K58-beta(2)m at 37 degrees C, by the evolution of thioflavin T fluorescence, and by changes in intrinsic fluorescence...

  7. Islet amyloid polypeptide forms rigid lipid-protein amyloid fibrils on supported phospholipid bilayers.

    Science.gov (United States)

    Domanov, Yegor A; Kinnunen, Paavo K J

    2008-02-08

    Islet amyloid polypeptide (IAPP) forms fibrillar amyloid deposits in the pancreatic islets of Langerhans of patients with type 2 diabetes mellitus, and its misfolding and aggregation are thought to contribute to beta-cell death. Increasing evidence suggests that IAPP fibrillization is strongly influenced by lipid membranes and, vice versa, that the membrane architecture and integrity are severely affected by amyloid growth. Here, we report direct fluorescence microscopic observations of the morphological transformations accompanying IAPP fibrillization on the surface of supported lipid membranes. Within minutes of application in submicromolar concentrations, IAPP caused extensive remodeling of the membrane including formation of defects, vesiculation, and tubulation. The effects of IAPP concentration, ionic strength, and the presence of amyloid seeds on the bilayer perturbation and peptide aggregation were examined. Growth of amyloid fibrils was visualized using fluorescently labeled IAPP or thioflavin T staining. Two-color imaging of the peptide and membranes revealed that the fibrils were initially composed of the peptide only, and vesiculation occurred in the points where growing fibers touched the lipid membrane. Interestingly, after 2-5 h of incubation, IAPP fibers became "wrapped" by lipid membranes derived from the supported membrane. Progressive increase in molecular-level association between amyloid and membranes in the maturing fibers was confirmed by Förster resonance energy transfer spectroscopy.

  8. Aging and amyloid beta-induced oxidative DNA damage and mitochondrial dysfunction in Alzheimer's disease: implications for early intervention and therapeutics.

    Science.gov (United States)

    Mao, Peizhong; Reddy, P Hemachandra

    2011-11-01

    Alzheimer's disease (AD) is an age-related progressive neurodegenerative disease affecting thousands of people in the world and effective treatment is still not available. Over two decades of intense research using AD postmortem brains, transgenic mouse and cell models of amyloid precursor protein and tau revealed that amyloid beta (Aβ) and hyperphosphorylated tau are synergistically involved in triggering disease progression. Accumulating evidence also revealed that aging and amyloid beta-induced oxidative DNA damage and mitochondrial dysfunction initiate and contributes to the development and progression of the disease. The purpose of this article is to summarize the latest progress in aging and AD, with a special emphasis on the mitochondria, oxidative DNA damage including methods of its measurement. It also discusses the therapeutic approaches against oxidative DNA damage and treatment strategies in AD.

  9. Role of acetylation and charge in antimicrobial peptides based on human beta-defensin-3.

    Science.gov (United States)

    Papanastasiou, Emilios Andrew; Hua, Quyen; Sandouk, Aline; Son, U Hyon; Christenson, Andrew James; Van Hoek, Monique Louise; Bishop, Barney Michael

    2009-07-01

    Cationic antimicrobial peptides are an evolutionarily ancient and essential element of innate immunity in higher organisms. The precise mechanism by which these peptides exert their antimicrobial activity on bacteria is not well understood. Decapeptides based on the C-terminus of human beta-defensin-3 were designed and evaluated to study the role of charge in defining the antimicrobial activity and selectivity of these peptides against Escherichia coli. Acetylated derivatives of these peptides were prepared in order to further evaluate how positively charged primary amines contribute to potency in these small antimicrobial peptides. These peptides enabled us to explore the relationship between net charge, charge distribution and antimicrobial activity. While the results indicate that net charge is a major factor in antimicrobial activity in these peptides, the actual relationship between charge and potency appears to be more complex.

  10. St. John's Wort reduces beta-amyloid accumulation in a double transgenic Alzheimer's disease mouse model-role of P-glycoprotein.

    Science.gov (United States)

    Brenn, Anja; Grube, Markus; Jedlitschky, Gabriele; Fischer, Andrea; Strohmeier, Barbara; Eiden, Martin; Keller, Markus; Groschup, Martin H; Vogelgesang, Silke

    2014-01-01

    The adenosine triphosphate-binding cassette transport protein P-glycoprotein (ABCB1) is involved in the export of beta-amyloid from the brain into the blood, and there is evidence that age-associated deficits in cerebral P-glycoprotein content may be involved in Alzheimer's disease pathogenesis. P-glycoprotein function and expression can be pharmacologically induced by a variety of compounds including extracts of Hypericum perforatum (St. John's Wort). To clarify the effect of St. John's Wort on the accumulation of beta-amyloid and P-glycoprotein expression in the brain, St. John's Wort extract (final hyperforin concentration 5%) was fed to 30-day-old male C57BL/6J-APP/PS1(+/-) mice over a period of 60 or 120 days, respectively. Age-matched male C57BL/6J-APP/PS1(+/-) mice receiving a St. John's Wort-free diet served as controls. Mice receiving St. John's Wort extract showed (i) significant reductions of parenchymal beta-amyloid 1-40 and 1-42 accumulation; and (ii) moderate, but statistically significant increases in cerebrovascular P-glycoprotein expression. Thus, the induction of cerebrovascular P-glycoprotein may be a novel therapeutic strategy to protect the brain from beta-amyloid accumulation, and thereby impede the progression of Alzheimer's disease.

  11. Effect of 1 night of total sleep deprivation on cerebrospinal fluid beta-amyloid 42 in healthy middle-aged men: a randomized clinical trial

    NARCIS (Netherlands)

    Ooms, S.; Overeem, S.; Besse, K.; Olde Rikkert, M.G.M.; Verbeek, M.M.; Claassen, J.A.

    2014-01-01

    IMPORTANCE: Increasing evidence suggests a relationship between poor sleep and the risk of developing Alzheimer disease. A previous study found an effect of sleep on beta-amyloid (Abeta), which is a key protein in Alzheimer disease pathology. OBJECTIVE: To determine the effect of 1 night of total sl

  12. Amyloid Beta Aggregation in the Presence of Temperature-Sensitive Polymers

    Directory of Open Access Journals (Sweden)

    Sebastian Funtan

    2016-05-01

    Full Text Available The formation of amyloid fibrils is considered to be one of the main causes for many neurodegenerative diseases, such as Alzheimer’s, Parkinson’s or Huntington’s disease. Current knowledge suggests that amyloid-aggregation represents a nucleation-dependent aggregation process in vitro, where a sigmoidal growth phase follows an induction period. Here, we studied the fibrillation of amyloid β 1-40 (Aβ40 in the presence of thermoresponsive polymers, expected to alter the Aβ40 fibrillation kinetics due to their lower critical solution behavior. To probe the influence of molecular weight and the end groups of the polymer on its lower critical solution temperature (LCST, also considering its concentration dependence in the presence of buffer-salts needed for the aggregation studies of the amyloids, poly(oxazolines (POx with LCSTs ranging from 14.2–49.8 °C and poly(methoxy di(ethylene glycolacrylates with LCSTs ranging from 34.4–52.7 °C were synthesized. The two different polymers allowed the comparison of the influence of different molecular structures onto the fibrillation process. Mixtures of Aβ40 with these polymers in varying concentrations were studied via time-dependent measurements of the thioflavin T (ThT fluorescence. The studies revealed that amyloid fibrillation was accelerated in, accompanied by an extension of the lag phase of Aβ40 fibrillation from 18.3 h in the absence to 19.3 h in the presence of the poly(methoxy di(ethylene glycolacrylate (3600 g/mol.

  13. Structural properties of Gerstmann-Straussler-Scheinker disease amyloid protein.

    Science.gov (United States)

    Salmona, Mario; Morbin, Michela; Massignan, Tania; Colombo, Laura; Mazzoleni, Giulia; Capobianco, Raffaella; Diomede, Luisa; Thaler, Florian; Mollica, Luca; Musco, Giovanna; Kourie, Joseph J; Bugiani, Orso; Sharma, Deepak; Inouye, Hideyo; Kirschner, Daniel A; Forloni, Gianluigi; Tagliavini, Fabrizio

    2003-11-28

    Prion protein (PrP) amyloid formation is a central feature of genetic and acquired forms of prion disease such as Gerstmann-Sträussler-Scheinker disease (GSS) and variant Creutzfeldt-Jakob disease. The major component of GSS amyloid is a PrP fragment spanning residues approximately 82-146. To investigate the determinants of the physicochemical properties of this fragment, we synthesized PrP-(82-146) and variants thereof, including entirely and partially scrambled peptides. PrP-(82-146) readily formed aggregates that were partially resistant to protease digestion. Peptide assemblies consisted of 9.8-nm-diameter fibrils having a parallel cross-beta-structure. Second derivative of infrared spectra indicated that PrP-(82-146) aggregates are primarily composed of beta-sheet (54%) and turn (24%) which is consistent with their amyloid-like properties. The peptide induced a remarkable increase in plasma membrane microviscosity of primary neurons. Modification of the amino acid sequence 106-126 caused a striking increase in aggregation rate, with formation of large amount of protease-resistant amorphous material and relatively few amyloid fibrils. Alteration of the 127-146 region had even more profound effects, with the inability to generate amyloid fibrils. These data indicate that the intrinsic properties of PrP-(82-146) are dependent upon the integrity of the C-terminal region and account for the massive deposition of PrP amyloid in GSS.

  14. The Multimerization State of the Amyloid-β42 Amyloid Peptide Governs its Interaction Network with the Extracellular Matrix.

    Science.gov (United States)

    Salza, Romain; Lethias, Claire; Ricard-Blum, Sylvie

    2017-01-01

    The goals of this work were i) to identify the interactions of amyloid-β (Aβ)42 under monomeric, oligomeric, and fibrillar forms with the extracellular matrix (ECM) and receptors, ii) to determine the influence of Aβ42 supramolecular organization on these interactions, and iii) to identify the molecular functions, biological processes, and pathways targeted by Aβ42 in the ECM. The ECM and cell surface partners of Aβ42 and its supramolecular forms were identified with protein and glycosaminoglycan (GAG) arrays (81 molecules in triplicate) probed by surface plasmon resonance imaging. The number of partners of Aβ42 increased upon its multimerization, ranging from 4 for the peptide up to 53 for the fibrillar aggregates. The peptide interacted only with ECM proteins but their percentage among Aβ42 partners decreased upon multimerization. Aβ42 and its supramolecular forms recognized different molecular features on their partners, and the partners of Aβ42 fibrillar forms were enriched in laminin IV-A, N-terminal, and EGF-like domains. Aβ42 oligomerization triggered interactions with receptors, whereas Aβ42 fibrillogenesis promoted binding to GAGs, proteoglycans, enzymes, and growth factors and the ability to interact with perineuronal nets. Fibril aggregation bind to further membrane proteins including tumor endothelial marker-8, syndecan-4, and discoidin-domain receptor-2. The partners of the Aβ42 supramolecular forms are enriched in proteins contributing to cell growth and/or maintenance, involved in integrin cell surface interactions and expressed in kidney cancer, preadipocytes, and dentin. In conclusion, the supramolecular assembly of Aβ42 governs its ability to interact in vitro with ECM proteins, remodeling and crosslinking ECM enzymes, proteoglycans, and receptors.

  15. Astrocytic expression of the Alzheimer's disease beta-secretase (BACE1) is stimulus-dependent

    DEFF Research Database (Denmark)

    Hartlage-Rübsamen, Maike; Zeitschel, Ulrike; Apelt, Jenny

    2003-01-01

    The beta-site APP-cleaving enzyme (BACE1) is a prerequisite for the generation of beta-amyloid peptides, which give rise to cerebrovascular and parenchymal beta-amyloid deposits in the brain of Alzheimer's disease patients. BACE1 is neuronally expressed in the brains of humans and experimental...... paradigms studied. In contrast, BACE1 expression by reactive astrocytes was evident in chronic but not in acute models of gliosis. Additionally, we observed BACE1-immunoreactive astrocytes in proximity to beta-amyloid plaques in the brains of aged Tg2576 mice and Alzheimer's disease patients....

  16. Simple Colorimetric Detection of Amyloid β-peptide (1-40) based on Aggregation of Gold Nanoparticles in the Presence of Copper Ions.

    Science.gov (United States)

    Zhou, Yanli; Dong, Hui; Liu, Lantao; Xu, Maotian

    2015-05-13

    A simple method for specific colorimetric sensing of Alzheimer's disease related amyloidpeptide (Aβ) is developed based on the aggregation of gold nanoparticles in the presence of copper ion. The detection of limit for Aβ(1-40) is 0.6 nM and the promising results from practical samples (human serum) indicate the great potential for the routine detection.

  17. Structural and biological mimicry of protein surface recognition by [alpha/beta]-peptide foldamers

    Energy Technology Data Exchange (ETDEWEB)

    Horne, W. Seth; Johnson, Lisa M.; Ketas, Thomas J.; Klasse, Per Johan; Lu, Min; Moore, John P.; Gellman, Samuel H.; (Cornell); (UW)

    2009-10-05

    Unnatural oligomers that can mimic protein surfaces offer a potentially useful strategy for blocking biomedically important protein-protein interactions. Here we evaluate an approach based on combining {alpha}- and {beta}-amino acid residues in the context of a polypeptide sequence from the HIV protein gp41, which represents an excellent testbed because of the wealth of available structural and biological information. We show that {alpha}/{beta}-peptides can mimic structural and functional properties of a critical gp41 subunit. Physical studies in solution, crystallographic data, and results from cell-fusion and virus-infectivity assays collectively indicate that the gp41-mimetic {alpha}/{beta}-peptides effectively block HIV-cell fusion via a mechanism comparable to that of gp41-derived {alpha}-peptides. An optimized {alpha}/{beta}-peptide is far less susceptible to proteolytic degradation than is an analogous {alpha}-peptide. Our findings show how a two-stage design approach, in which sequence-based {alpha} {yields} {beta} replacements are followed by site-specific backbone rigidification, can lead to physical and biological mimicry of a natural biorecognition process.

  18. Antimicrobial beta-peptides and alpha-peptoids

    DEFF Research Database (Denmark)

    Godballe, Troels; Nilsson, Line L.; Petersen, Pernille D.;

    2011-01-01

    candidates is derived from naturally occurring antimicrobial peptides. However, despite promising results in early-stage clinical trials, these molecules have faced some difficulties securing FDA approval, which can be linked to their poor metabolic stability. Hence, mimetics of these antimicrobial peptides...

  19. The effect of iron in MRI and transverse relaxation of amyloid-beta plaques in Alzheimer's disease.

    Science.gov (United States)

    Meadowcroft, Mark D; Peters, Douglas G; Dewal, Rahul P; Connor, James R; Yang, Qing X

    2015-03-01

    Dysregulation of neural iron is known to occur during the progression of Alzheimer's disease. The visualization of amyloid-beta (Aβ) plaques with MRI has largely been credited to rapid proton relaxation in the vicinity of plaques as a result of focal iron deposition. The goal of this work was to determine the relationship between local relaxation and related focal iron content associated with Aβ plaques. Alzheimer's disease (n=5) and control tissue (n=3) sample slices from the entorhinal cortex were treated overnight with the iron chelator deferoxamine or saline, and microscopic gradient-echo MRI datasets were taken. Subsequent to imaging, the same slices were stained for Aβ and iron, and then compared with regard to parametric R2 * relaxation maps and gradient-echo-weighted MR images. Aβ plaques in both chelated and unchelated tissue generated MR hypo-intensities and showed relaxation rates significantly greater than the surrounding tissue. The transverse relaxation rate associated with amyloid plaques was determined not to be solely a result of iron load, as much of the relaxation associated with Aβ plaques remained following iron chelation. The data indicate a dual relaxation mechanism associated with Aβ plaques, such that iron and plaque composition synergistically produce transverse relaxation.

  20. Protective effects of tea polyphenols on cerebral nerve cell apoptosis induced by D-galactose and beta-amyloid peptide 25-35%茶多酚对D-半乳糖与Aβ25~35诱导脑神经细胞凋亡的保护效应

    Institute of Scientific and Technical Information of China (English)

    曲娴; 李冰; 杨文豪; 吕俊华

    2007-01-01

    子水平变化.④小鼠脑神经细胞凋亡情况.结果:纳入大鼠90只均进入结果分析.①药物处理12周后,茶多酚中、高剂量组和维生素E组的小鼠游出迷宫时间短于模型组,进入迷宫盲端的错误次数较模型组减少,差异均有统计学意义(P<0.05~0.01).②茶多酚中、高剂量组超氧化物歧化酶活性较模型组有所增高,茶多酚高剂量组丙二醛含量较模型组有所降低,差异有统计学意义(P<0.05~0.01).③茶多酚中、高剂量组和维生素E组红细胞内和脑神经元细胞浆钙离子浓度均低于模型组,差异有统计学意义(P<0.05~0.01).④茶多酚各剂量组神经细胞凋亡率均低于模型组,差异有显著性意义(P<0.05).结论:茶多酚具有抑制D-半乳糖与Aβ25~35诱致脑神经细胞凋亡作用,并明显改善摸型小鼠学习记忆能力,其作用可能与提高全身性抗氧化能力,改善氧化应激损伤引起的细胞内钙超载有关.%BACKGROUND: Some researches demonstrate that tea polyphenols (TP) has protective effects on neurotoxicity of hippocampal nerve cells induced byβ-amyloid peptide (Aβ), 6-hydroxydopamine (6-OHDA) and oxidative substances. In addition, clinical preliminary examination indicates that TP plays a certain preventive and therapeutic effects on the reduction of recognition function in high-risk population with Alzheimer disease (AD); however, its target and mechanism are still hot topics.OBJECTIVE: To observe the interfering effects of TP on cerebral nerve cell apoptosis induced by D-galactose and Aβ25~35 in mice.DESIGN: Randomized controlled animal study.SETTING: Department of Pharmacology, Pharmacological College of Jinan University.MATERIALS: The experiment was carried out in the Experimental Center of Jinan University from September 2004 to January 2005. A total of 90 healthy Kumning mice, aged 2 months, each gender in half, weighing 26-28 g, were provided by Guangdong Provincial Medical

  1. Rimmed vacuoles with beta-amyloid and ubiquitinated filamentous deposits in the muscles of patients with long-standing denervation (postpoliomyelitis muscular atrophy): similarities with inclusion body myositis.

    Science.gov (United States)

    Semino-Mora, C; Dalakas, M C

    1998-10-01

    In the chronically denervated muscles of patients with prior paralytic poliomyelitis, there are secondary myopathic features, including endomysial inflammation and rare vacuolated fibers. To assess the frequency and characteristics of the vacuoles and their similarities with those seen in inclusion body myositis (IBM), we examined 58 muscle biopsy specimens from patients with prior paralytic poliomyelitis for (1) the presence of rimmed vacuoles; (2) acid-phosphatase reactivity; (3) Congo-red-positive amyloid deposits; (4) electron microscopy, searching for tubulofilaments; and (5) immunoelectron microscopy, using antibodies against beta-amyloid and ubiquitin. We found vacuolated muscle fibers in 18 of 58 (31%) biopsies, with a mean frequency of 2.06 +/- 0.42 fibers per specimen. The vacuoles contained acid phosphatase-positive material in 6 of the 18 (33.30%) specimens and stained positive for Congo red in five (27.80%). By immunoelectron microscopy, the vacuoles contained 5.17 +/- 0.13 nm fibrils and 14.9 +/- 0.31 nm filaments that immunoreacted with antibodies to beta-amyloid and ubiquitin in a pattern identical to the one seen in IBM. We conclude that vacuolated muscle fibers containing filamentous inclusions positive for amyloid and ubiquitin are not unique to IBM and the other vacuolar myopathies but can also occur in a chronic neurogenic condition, such as postpoliomyelitis. The chronicity of the underlying disease, rather than the cause, may lead to vacuolar formation, amyloid deposition, and accumulation of ubiquitinated filaments.

  2. Amyloid beta-protein and lipid rafts: focused on biogenesis and catabolism.

    Science.gov (United States)

    Araki, Wataru; Tamaoka, Akira

    2015-01-01

    Cerebral accumulation of amyloid β-protein (Aβ) is thought to play a key role in the molecular pathology of Alzheimer's disease (AD). Three secretases (β-, γ-, and α-secretase) are proteases that control the production of Aβ from amyloid precursor protein. Increasing evidence suggests that cholesterol-rich membrane microdomains termed 'lipid rafts' are involved in the biogenesis and accumulation of Aβ as well as Aβ-mediated neurotoxicity. γ-Secretase is enriched in lipid rafts, which are considered an important site for Aβ generation. Additionally, Aβ-degrading peptidases located in lipid rafts, such as neprilysin, appear to play a role in Aβ catabolism. This mini-review focuses on the roles of lipid rafts in the biogenesis and catabolism of Aβ, covering recent research on the relationship between lipid rafts and the three secretases or Aβ-degrading peptidases. Furthermore, the significance of lipid rafts in Aβ aggregation and neurotoxicity is briefly summarized.

  3. Amyloid Beta and Tau Proteins as Therapeutic Targets for Alzheimer’s Disease Treatment: Rethinking the Current Strategy

    Directory of Open Access Journals (Sweden)

    Siddhartha Mondragón-Rodríguez

    2012-01-01

    Full Text Available Alzheimer’s disease (AD is defined by the concurrence of accumulation of abnormal aggregates composed of two proteins: Amyloid beta (Aβ and tau, and of cellular changes including neurite degeneration and loss of neurons and cognitive functions. Based on their strong association with disease, genetically and pathologically, it is not surprising that there has been a focus towards developing therapies against the aggregated structures. Unfortunately, current therapies have but mild benefit. With this in mind we will focus on the relationship of synaptic plasticity with Aβ and tau protein and their role as potential targets for the development of therapeutic drugs. Finally, we will provide perspectives in developing a multifactorial strategy for AD treatment.

  4. Cytokine-producing microglia have an altered beta-amyloid load in aged APP/PS1 Tg mice

    DEFF Research Database (Denmark)

    Babcock, Alicia A; Ilkjær, Laura; Clausen, Bettina H

    2015-01-01

    of CD11b, TNF, and IL-1Ra. Cytokine production and Aβ load were assessed in neocortical CD11b(+)(CD45(+)) microglia by flow cytometry. Whereas most microglia in aged mice produced IL-1Ra, relatively low proportions of microglia produced TNF, IL-1α, and IL-1β. However, microglial production......Beta-amyloid (Aβ) plaques and chronic neuroinflammation are significant neuropathological features of Alzheimer's disease. Microglial cells in aged brains have potential to produce cytokines such as TNF and IL-1 family members (IL-1α, IL-1β, and IL-1Ra) and to phagocytose Aβ in Alzheimer's disease...... were higher in IL-1α(+) and IL-1Ra(+) microglia, than microglia that did not produce these cytokines. In contrast, total Aβ load was lower in IL-1β(+) and TNF(+) microglia, compared to IL-1β(-) and TNF(-) microglia, and TNF(+) microglia also had a lower phagocytic index. Using GFP bone marrow chimeric...

  5. Thermodynamics of binding interactions between bovine beta-lactoglobulin A and the antihypertensive peptide beta-Lg f142-148.

    Science.gov (United States)

    Roufik, Samira; Gauthier, Sylvie F; Leng, Xiaojing; Turgeon, Sylvie L

    2006-02-01

    The binding capacity of bovine beta-lactoglobulin variant A (beta-Lg A) for six peptides derived from beta-Lg was evaluated using an ultrafiltration method under the following conditions: pH 6.8, 40 degrees C, and a beta-Lg A/peptide molar ratio of 1:5. Only peptides beta-Lg f102-105, f142-148, and f69-83 bound in significant amounts to beta-Lg A corresponding to 1.5, 1.1, and 0.7 mol of peptide per mole of beta-Lg A, respectively. The interaction between beta-Lg A and the antihypertensive peptide beta-Lg f142-148 was investigated further by isothermal titration calorimetry. The binding isotherms at pH 6.8 and 25 degrees C confirmed that beta-Lg f142-148 bound to beta-Lg A and that the interaction followed a sequential three-site binding model with constants of association of 2 x 10(3), 1 x 10(3), and 0.4 x 10(3) M(-1) for the first, second, and third binding sites, respectively. The enthalpy of binding was exothermic for the first and second binding sites and endothermic for the third binding site. Binding of the peptide to all three sites was spontaneous as shown by the negative free energy values. These results show for the first time that beta-Lg A can bind bioactive peptides. This potential could be exploited to transport bioactive peptides and protect them in the gastrointestinal tract following their oral administration as nutraceuticals.

  6. Misfolded amyloid ion channels present mobile beta-sheet subunits in contrast to conventional ion channels.

    Science.gov (United States)

    Jang, Hyunbum; Arce, Fernando Teran; Capone, Ricardo; Ramachandran, Srinivasan; Lal, Ratnesh; Nussinov, Ruth

    2009-12-02

    In Alzheimer's disease, calcium permeability through cellular membranes appears to underlie neuronal cell death. It is increasingly accepted that calcium permeability involves toxic ion channels. We modeled Alzheimer's disease ion channels of different sizes (12-mer to 36-mer) in the lipid bilayer using molecular dynamics simulations. Our Abeta channels consist of the solid-state NMR-based U-shaped beta-strand-turn-beta-strand motif. In the simulations we obtain ion-permeable channels whose subunit morphologies and shapes are consistent with electron microscopy/atomic force microscopy. In agreement with imaged channels, the simulations indicate that beta-sheet channels break into loosely associated mobile beta-sheet subunits. The preferred channel sizes (16- to 24-mer) are compatible with electron microscopy/atomic force microscopy-derived dimensions. Mobile subunits were also observed for beta-sheet channels formed by cytolytic PG-1 beta-hairpins. The emerging picture from our large-scale simulations is that toxic ion channels formed by beta-sheets spontaneously break into loosely interacting dynamic units that associate and dissociate leading to toxic ionic flux. This sharply contrasts intact conventional gated ion channels that consist of tightly interacting alpha-helices that robustly prevent ion leakage, rather than hydrogen-bonded beta-strands. The simulations suggest why conventional gated channels evolved to consist of interacting alpha-helices rather than hydrogen-bonded beta-strands that tend to break in fluidic bilayers. Nature designs folded channels but not misfolded toxic channels.

  7. A genome-wide association meta-analysis of plasma Aβ peptides concentrations in the elderly

    NARCIS (Netherlands)

    V. Chouraki (Vincent); R.F.A.G. de Bruijn (Renée); J. Chapuis; J.C. Bis (Joshua); C. Reitz (Christiane); S. Schraen (Susanna); C.A. Ibrahim-Verbaas (Carla); B. Grenier-Boley (Benjamin); C. Delay; R. Rogers; F. Demiautte; A. Mounier; A.L. Fitzpatrick (Annette); C. Berr (Claudine); J.-F. Dartigues; A.G. Uitterlinden (André); A. Hofman (Albert); M.M.B. Breteler (Monique); J.T. Becker; M. Lathrop (Mark); N. Schupf; A. Alperovitch (Annick); R. Mayeux (Richard); C.M. van Duijn (Cornelia M.); L. Buee (Luc); P. Amouyel (Philippe); O.L. Lopez (Oscar); M.A. Ikram (Arfan); C. Tzourio (Christophe); J.-C. Lambert (J.)

    2014-01-01

    textabstractAmyloid beta (Aβ) peptides are the major components of senile plaques, one of the main pathological hallmarks of Alzheimer disease (AD). However, Aβ peptides' functions are not fully understood and seem to be highly pleiotropic. We hypothesized that plasma Aβ peptides concentrations coul

  8. Cerebrospinal Fluid Amyloid Beta and Tau Concentrations Are Not Modulated by 16 Weeks of Moderate- to High-Intensity Physical Exercise in Patients with Alzheimer Disease

    DEFF Research Database (Denmark)

    Jensen, Camilla Steen; Portelius, Erik; Siersma, Volkert

    2016-01-01

    Background: Physical exercise may have some effect on cognition in patients with Alzheimer disease (AD). However, the underlying biochemical effects are unclear. Animal studies have shown that amyloid beta (Aβ), one of the pathological hallmarks of AD, can be altered with high levels of physical...... of Life, Physical Health and Functional Ability in Alzheimer's Disease: The Effect of Physical Exercise (ADEX) study we analyzed cerebrospinal fluid samples for Aβ species, total tau (t-tau), phosphorylated tau (p-tau) and soluble amyloid precursor protein (sAPP) species. We also assessed the patients...

  9. The alpha7 nicotinic acetylcholine receptor-selective antagonist, methyllycaconitine, partially protects against beta-amyloid1-42 toxicity in primary neuron-enriched cultures.

    Science.gov (United States)

    Martin, Shelley E; de Fiebre, Nancy Ellen C; de Fiebre, Christopher M

    2004-10-01

    Studies have suggested that the neuroprotective actions of alpha7 nicotinic agonists arise from activation of receptors and not from the extensive desensitization which rapidly follows activation. Here, we report that the alpha7-selective nicotinic antagonist, methyllycaconitine (MLA), protects against beta-amyloid-induced neurotoxicity; whereas the alpha4beta2-selective antagonist, dihydro-beta-erythroidine, does not. These findings suggest that neuroprotective actions of alpha7-acting agents arise from receptor inhibition/desensitization and that alpha7 antagonists may be useful neuroprotective agents.

  10. Molecular modeling of the inhibitory mechanism of copper(II) on aggregation of amyloid β-peptide

    Institute of Scientific and Technical Information of China (English)

    JIAO Yong; HAN Daxiong; YANG Pin

    2005-01-01

    Aggregation of amyloid β-peptide (Aβ) into insoluble fibrils is a key pathological event in Alzheimer's disease (AD). Under certain conditions, Cu(Ⅱ) exhibits strong inhibitory effect on the Zn(Ⅱ)-induced aggregation, which occurs significantly even at nearly physiological concentrations of zinc ion in vitro. Cu(Ⅱ) is considered as a potential factor in the normal brain preventing Aβ from aggregating. The possible mechanism of the inhibitory effect of Cu(Ⅱ) is investigated for the first time by molecular modeling method. In the mono-ring mode, the Y10 residue promotes typical quasi-helix conformations of Aβ. Specially, [Cu-H13(Nπ)-Y10(OH)] complex forms a local 3.010 helix conformation. In the multi-ring mode, the side chains of Q15 and E11 residues collaborate harmoniously with other chelating ligands producing markedly low energies and quasi-helix conformations. [Cu-3N-Q15(O)-E11(O1)] and [Cu-H13(Nπ)-Y10(OH)] complex with quasi-helix conformations may prefer soluble forms in solution. In addition, hydrogen-bond interactions may be the main driving force for Aβaggregation. All the results will provide helpful clues for an improved understanding of the role of Cu(Ⅱ) in the pathogenesis of AD and contribute to the development of an "anti-amyloid" therapeutic strategy.

  11. Lipoprotein receptor-related protein-1 mediates amyloid-beta-mediated cell death of cerebrovascular cells.

    NARCIS (Netherlands)

    Wilhelmus, M.M.; Otte-Holler, I.; Triel, J.J. van; Veerhuis, R.; Maat-Schieman, M.L.; Bu, G.; Waal, R.M.W. de; Verbeek, M.M.

    2007-01-01

    Inefficient clearance of A beta, caused by impaired blood-brain barrier crossing into the circulation, seems to be a major cause of A beta accumulation in the brain of late-onset Alzheimer's disease patients and hereditary cerebral hemorrhage with amyloidosis Dutch type. We observed association of r

  12. Identifying structural features of fibrillar islet amyloid polypeptide using site-directed spin labeling.

    Science.gov (United States)

    Jayasinghe, Sajith A; Langen, Ralf

    2004-11-12

    Pancreatic amyloid deposits, composed primarily of the 37-residue islet amyloid polypeptide (IAPP), are a characteristic feature found in more than 90% of patients with type II diabetes. Although IAPP amyloid deposits are associated with areas of pancreatic islet beta-cell dysfunction and depletion and are thought to play a role in disease, their structure is unknown. We used electron paramagnetic resonance spectroscopy to analyze eight spin-labeled derivatives of IAPP in an effort to determine structural features of the peptide. In solution, all eight derivatives gave rise to electron paramagnetic resonance spectra with sharp lines indicative of rapid motion on the sub-nanosecond time scale. These spectra are consistent with a rapidly tumbling and highly dynamic peptide. In contrast, spectra for the fibrillar form exhibit reduced mobility and the presence of strong intermolecular spin-spin interactions. The latter implies that the peptide subunits are ordered and that the same residues from neighboring peptides are in close proximity to one another. Our data are consistent with a parallel arrangement of IAPP peptides within the amyloid fibril. Analysis of spin label mobility indicates a high degree of order throughout the peptide, although the N-terminal region is slightly less ordered. Possible similarities with respect to the domain organization and parallelism of Alzheimer's amyloid beta peptide fibrils are discussed.

  13. Surface Plasmon Resonance Based Biosensors for Exploring the Influence of Alkaloids on Aggregation of AmyloidPeptide

    Directory of Open Access Journals (Sweden)

    Hanna Radecka

    2011-04-01

    Full Text Available The main objective of the presented study was the development of a simple analytical tool for exploring the influence of naturally occurring compounds on the aggregation of amyloidpeptide (Aβ40 in order to find potential anti-neurodegenerative drugs. The gold discs used for surface plasmon resonance (SPR measurements were modified with thioaliphatic acid. The surface functionalized with carboxylic groups was used for covalent attaching of Aβ40 probe by creation of amide bonds in the presence of EDC/NHS. The modified SPR gold discs were used for exploring the Aβ40 aggregation process in the presence of selected alkaloids: arecoline hydrobromide, pseudopelletierine hydrochloride, trigonelline hydrochloride and α-lobeline hydrochloride. The obtained results were discussed with other parameters which govern the phenomenon studied such as lipophilicity/ hydrophilicy and Aβ40-alkaloid association constants.

  14. Cisplatin inhibits the formation of a reactive intermediate during copper-catalyzed oxidation of amyloid β peptide.

    Science.gov (United States)

    Walke, Gulshan R; Rapole, Srikanth; Kulkarni, Prasad P

    2014-10-06

    Cisplatin was studied for its effect on the copper-catalyzed oxidation of amyloid β (Aβ) peptide. The interaction of cisplatin with Aβ1-16 in the presence of Cu(II) was investigated using cyclic voltammetry and mass spectrometry. The positive shift in the E1/2 value of Aβ1-16-Cu(II) suggests that the interaction of cisplatin alters the copper-binding properties of Aβ1-16. The mass spectrometry data show complete inhibition of copper-catalyzed decarboxylation/deamination of the Asp1 residue of Aβ1-16, while there is a significant decrease in copper-catalyzed oxidation of Aβ1-16 in the presence of cisplatin. Overall, our results provide a novel mode by which cisplatin inhibits copper-catalyzed oxidation of Aβ. These findings may lead to the design of better platinum complexes to treat oxidative stress in Alzheimer's disease and other related neurological disorders.

  15. Evidence of redox-active iron formation following aggregation of ferrihydrite and the Alzheimer's disease peptide β-amyloid.

    Science.gov (United States)

    Everett, James; Céspedes, Eva; Shelford, Leigh R; Exley, Chris; Collingwood, Joanna F; Dobson, Jon; van der Laan, Gerrit; Jenkins, Catherine A; Arenholz, Elke; Telling, Neil D

    2014-03-17

    Recent work has demonstrated increased levels of redox-active iron biominerals in Alzheimer's disease (AD) tissue. However, the origin, nature, and role of iron in AD pathology remains unclear. Using X-ray absorption, X-ray microspectroscopy, and electron microscopy techniques, we examined interactions between the AD peptide β-amyloid (Aβ) and ferrihydrite, which is the ferric form taken when iron is stored in humans. We report that Aβ is capable of reducing ferrihydrite to a pure iron(II) mineral where antiferromagnetically ordered Fe(2+) cations occupy two nonequivalent crystal symmetry sites. Examination of these iron(II) phases following air exposure revealed a material consistent with the iron(II)-rich mineral magnetite. These results demonstrate the capability of Aβ to induce the redox-active biominerals reported in AD tissue from natural iron precursors. Such interactions between Aβ and ferrihydrite shed light upon the processes of AD pathogenesis, while providing potential targets for future therapies.

  16. Amyloid-like fibrils from an 18-residue peptide analogue of a part of the central domain of the B-family of silkmoth chorion proteins.

    Science.gov (United States)

    Iconomidou, V A; Chryssikos, G D; Gionis, V; Vriend, G; Hoenger, A; Hamodrakas, S J

    2001-06-22

    Chorion is the major component of silkmoth eggshell. More than 95% of its dry mass consists of the A and B families of low molecular weight structural proteins, which have remarkable mechanical and chemical properties, and protect the oocyte and the developing embryo from the environment. We present data from negative staining, Congo red binding, X-ray diffraction, Fourier transform-Raman, attenuated total reflectance infrared spectroscopy and modelling studies of a synthetic peptide analogue of a part of the central domain of the B family of silkmoth chorion proteins, indicating that this peptide folds and self-assembles, forming amyloid-like fibrils. These results support further our proposal, based on experimental data from a synthetic peptide analogue of the central domain of the A family of chorion proteins, that silkmoth chorion is a natural, protective amyloid [Iconomidou et al., FEBS Lett. 479 (2000) 141-145].

  17. Alterations in amyloid beta-protein and apolipoprotein E in cerebrospinal fluid after subarachnoid hemorrhage

    Institute of Scientific and Technical Information of China (English)

    Xinzhong Wen; Yonghong Zhang; Leiming Huo

    2007-01-01

    BACKGROUND: The findings about the alterations in cerebrospinal fluid beta-amyloid protein (Aβ) and apolipoprotein E (ApoE) after subarachnoid hemorrhage indicate that they have significant correlation with prognosis of patients.OBJECTIVE: To observe the alterations in cerebrospinal fluid Aβ and ApoE after subarachnoid hemorrhage (SAH).DESIGN: Contrast observation.SETTING: Department of Neurosurgery, the First Hospital of Lanzhou University.PARTICIPANTS: A total of 25 SAH patients including 16 males and 9 females aged from 13 to 72 years were selected form Department of Neurosurgery, the First Affiliated Hospital of Lanzhou University from October 2003 to February 2004. The Hunt-Hess grade ranged from Ⅰ to Ⅳ, and patients admitted hospital in 24 hours after invasion, affirmed by the brain CT scan and lumbar vertebra puncture, no other severe complications and important organs' functional defect and severe infection, no hematological system disease.METHODS: All admitted patients were collected CSF by lumbar vertebra puncture in 24 hours. The cerebrospinal fluid (CSF) of control group came from the admitted 15 patients of our hospital that have no nervous system disease. Aβ content was detected by enzyme linked immunosorbent assay (ELISA), the kit was provided by the Central Laboratory of the First Hospital of Lanzhou University; ApoE concentration was detected by monoclone enzyme linked immunosorbent assay (ELISA), the kit was provided by the Immunotechnique Research Institute of the Fourth Military Medical University. S100B concentration was detected by enzyme linked immunosorbent assay double antibody sandwich method, the kit was provided by the Physiological Research Room of the Fourth Military Medical University. The data were indicated on Mean±SD and were analyzed by SPSS 10.0 statistical package. All data were handled through test of significance variance analysis, and groups were compared through independent sampler t test. The concentration was

  18. Involvement of insulin-degrading enzyme in insulin- and atrial natriuretic peptide-sensitive internalization of amyloidpeptide in mouse brain capillary endothelial cells.

    Science.gov (United States)

    Ito, Shingo; Ohtsuki, Sumio; Murata, Sho; Katsukura, Yuki; Suzuki, Hiroya; Funaki, Miho; Tachikawa, Masanori; Terasaki, Tetsuya

    2014-01-01

    Cerebral clearance of amyloidpeptide (Aβ), which is implicated in Alzheimer's disease, involves elimination across the blood-brain barrier (BBB), and we previously showed that an insulin-sensitive process is involved in the case of Aβ1-40. The purpose of this study was to clarify the molecular mechanism of the insulin-sensitive Aβ1-40 elimination across mouse BBB. An in vivo cerebral microinjection study demonstrated that [125I]hAβ1-40 elimination from mouse brain was inhibited by human natriuretic peptide (hANP), and [125I]hANP elimination was inhibited by hAβ1-40, suggesting that hAβ1-40 and hANP share a common elimination process. Internalization of [125I]hAβ1-40 into cultured mouse brain capillary endothelial cells (TM-BBB4) was significantly inhibited by either insulin, hANP, other natriuretic peptides or insulin-degrading enzyme (IDE) inhibitors, but was not inhibited by phosphoramidon or thiorphan. Although we have reported the involvement of natriuretic peptide receptor C (Npr-C) in hANP internalization, cells stably expressing Npr-C internalized [125I]hANP but not [125I]hAβ1-40, suggesting that there is no direct interaction between Npr-C and hAβ1-40. IDE was detected in plasma membrane of TM-BBB4 cells, and internalization of [125I]hAβ1-40 by TM-BBB4 cells was reduced by IDE-targeted siRNAs. We conclude that elimination of hAβ1-40 from mouse brain across the BBB involves an insulin- and ANP-sensitive process, mediated by IDE expressed in brain capillary endothelial cells.

  19. Garlic extract exhibits antiamyloidogenic activity on amyloid-beta fibrillogenesis: relevance to Alzheimer's disease.

    Science.gov (United States)

    Gupta, Veer Bala; Indi, S S; Rao, K S J

    2009-01-01

    Alzheimer's disease is characterized pathologically by the deposition of amyloid plaques. Fibrillar Abeta is the principal component of amyloid plaques in the brain of AD patients. The prevention of Abeta aggregation or dissolution of fibrillar Abeta has clinical significance. The present communication examined in vitro the antiamyloidogenic properties of garlic extract. The effects of aqueous garlic extract (both fresh and boiled) on Abeta aggregation and defibrillation were studied by thioflavin-T based fluorescence assay, transmission electron microscopy and SDS-polyacrylamide gel electrophoresis. The aqueous fresh garlic extract not only inhibited Abeta fibril formation in a concentration and time dependent manner but was also able to defibrillate Abeta preformed fibrils. The maximum defibrillization was observed after 2-3 days of incubation. The boiled aqueous garlic extract also retained its antiamyloidogenic activity. This indicated that antiamyloidogenic activity of garlic extract is non-enzymatic, i.e. proteases present in garlic did not degrade Abeta in solution. However, the fibril degrading ability of boiled garlic extract was significantly lost. The findings suggest that consumption of garlic may lead to inhibition of Abeta aggregation in human brain.

  20. Antimicrobial peptides initiate IL-1 beta posttranslational processing: a novel role beyond innate immunity.

    Science.gov (United States)

    Perregaux, David G; Bhavsar, Kanan; Contillo, Len; Shi, Jishu; Gabel, Christopher A

    2002-03-15

    Human monocytes stimulated with LPS produce large quantities of prointerleukin-1beta, but little of this cytokine product is released extracellularly as the mature biologically active species. To demonstrate efficient proteolytic cleavage and export, cytokine-producing cells require a secondary effector stimulus. In an attempt to identify agents that may serve as initiators of IL-1beta posttranslational processing in vivo, LPS-activated human monocytes were treated with several individual antimicrobial peptides. Two peptides derived from porcine neutrophils, protegrin (PTG)-1 and PTG-3, promoted rapid and efficient release of mature IL-1beta. The PTG-mediated response engaged a mechanism similar to that initiated by extracellular ATP acting via the P2X(7) receptor. Thus, both processes were disrupted by a caspase inhibitor, both were sensitive to ethacrynic acid and CP-424,174, two pharmacological agents that suppress posttranslational processing, and both were negated by elevation of extracellular potassium. Moreover, the PTGs, like ATP, promoted a dramatic change in monocyte morphology and a loss of membrane latency. The PTG response was concentration dependent and was influenced profoundly by components within the culture medium. In contrast, porcine neutrophil antimicrobial peptides PR-26 and PR-39 did not initiate IL-1beta posttranslational processing. The human defensin HNP-1 and the frog peptide magainin 1 elicited export of 17-kDa IL-1beta, but these agents were less efficient than PTGs. As a result of this ability to promote release of potent proinflammatory cytokines such as IL-1beta, select antimicrobial peptides may possess important immunomodulatory functions that extend beyond innate immunity.

  1. Effect of creatine supplementation on cognitive performance and apoptosis in a rat model of amyloid-beta-induced Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Malek Alimohammadi-Kamalabadi

    2016-11-01

    Conclusion: Cr supplementation before and after β-amyloid injection into the CA1 area of hippocampus deteriorates the learning and memory impairment of rats and it does not protect neuronal apoptosis caused by β-amyloid.

  2. In vivo amyloid aggregation kinetics tracked by time-lapse confocal microscopy in real-time.

    Science.gov (United States)

    Villar-Piqué, Anna; Espargaró, Alba; Ventura, Salvador; Sabate, Raimon

    2016-01-01

    Amyloid polymerization underlies an increasing number of human diseases. Despite this process having been studied extensively in vitro, aggregation is a difficult process to track in vivo due to methodological limitations and the slow kinetics of aggregation reactions in cells and tissues. Herein we exploit the amyloid properties of the inclusions bodies (IBs) formed by amyloidogenic proteins in bacteria to address the kinetics of in vivo amyloid aggregation. To this aim we used time-lapse confocal microscopy and a fusion of the amyloid-beta peptide (A β42) with a fluorescent reporter. This strategy allowed us to follow the intracellular kinetics of amyloid-like aggregation in real-time and to discriminate between variants exhibiting different in vivo aggregation propensity. Overall, the approach opens the possibility to assess the impact of point mutations as well as potential anti-aggregation drugs in the process of amyloid formation in living cells.

  3. Familial Danish dementia: a novel form of cerebral amyloidosis associated with deposition of both amyloid-Dan and amyloid-beta

    DEFF Research Database (Denmark)

    Holton, J.L; Lashley, T.; Ghiso, J.;

    2002-01-01

    response using conventional techniques, immunohistochemistry, confocal microscopy, and immunoelectron microscopy. We showed that ADan is widely distributed in the central nervous system (CNS) in the leptomeninges, blood vessels, and parenchyma. A predominance of parenchymal pre-amyloid (non...

  4. Exploring the contribution of estrogen to amyloid-beta regulation:a novel multifactorial computational modeling approach

    Directory of Open Access Journals (Sweden)

    Thomas J. Anastasio

    2013-03-01

    Full Text Available According to the amyloid hypothesis, Alzheimer Disease results from the accumulation beyond normative levels of the peptide amyloid-β (Aβ. Perhaps because of its pathological potential, Aβ and the enzymes that produce it are heavily regulated by the molecular interactions occurring within cells, including neurons. This regulation involves a highly complex system of intertwined normative and pathological processes, and the sex hormone estrogen contributes to it by influencing the Aβ-regulation system at many different points. Owing to its high complexity, Aβ regulation and the contribution of estrogen are very difficult to reason about. This report describes a computational model of the contribution of estrogen to Aβ regulation that provides new insights and generates experimentally testable and therapeutically relevant predictions. The computational model is written in the declarative programming language known as Maude, which allows not only simulation but also analysis of the system using temporal logic. The model illustrates how the various effects of estrogen could work together to reduce Aβ levels, or prevent them from rising, in the presence of pathological triggers. The model predicts that estrogen itself should be more effective in reducing Aβ than agonists of estrogen receptor α (ERα, and that agonists of ERβ should be ineffective. The model shows how estrogen itself could dramatically reduce Aβ, and predicts that NSAIDs should provide a small additional benefit. It also predicts that certain compounds, but not others, could augment the reduction in Aβ due to estrogen. The model is intended as a starting point for a computational/experimental interaction in which model predictions are tested experimentally, the results are used to confirm, correct, and expand the model, new predictions are generated, and the process continues, producing a model of ever increasing explanatory power and predictive value.

  5. 运动训练对血管性痴呆大鼠海马β淀粉样蛋白及β分泌酶的影响%Effect of exercise training on amyloid-beta peptide and β-secretase in the hippocampus of the rats with vascular dementia

    Institute of Scientific and Technical Information of China (English)

    叶青; 王红卫; 游咏; 黄海芬; 廖慧颖; 潘思; 黄雁

    2012-01-01

    Objective To study the effect of exercise training on β-amyloid polypeptide (Aβ) and β-secretase(BACE) in the hippocampus of the rats with vascular dementia (VD).Methods 30 Sprague-Dawley (SD) rats were carried out to an exercise group (n =10 ),a model group (n =10 ),and a sham-operation group ( n =10 ).VD rat models were made by the ligation of bilateral common carotid arteries.Morris water maze test were carried out 4 weeks after the operation to assess the ability in learning and memory of the rats and Aβ and β-secretase (BACE) expression was detected in the hippocampus of the rats using immunohistochemical techniques.Results In the Morris water maze test,the model group showed reduction in the learning and memorizing ability,with obvious longer escape latencies ( ( 101.34 ± 19.67 ) s,(95.42 ± 23.89 ) s,( 89.39 ± 22.67 ) s,( 90.12 ± 19.77 ) s,respective-ly) than that of sham-operation group ( ( 62.13 ± 11.38 ) s,( 24.84 ± 13.69 ) s,( 16.98 ± 12.51 )s,( 11.41 ± 8.93 ) s,correspond-dingly) (P < 0.05 ),and the exercise group was improved in the learning and memorizing ability ( corresponding to ( 80.15 ± 21.56 ) s,( 51.24 ± 20.91 ) s,( 43.78 ± 22.36) s,( 45.67 ± 20.87 ) s ),compared with the model group(P<0.05).The grey values of Aβ in the hippocampus of the rats for the exercise group was ( 130.12 ± 19.01 ),( 116.77 ± 23.67 ) for the model group and ( 148.44 ± 17.67 ) for the sham-operation group(P< 0.05).The grey values of BACE in the hippocampus of the ratsfor the exercise group were( 131.21± 25.25 ),( 120.53± 10.21 ) for the model group(P< 0.05 ) and ( 162.38 ± 28.11 ) for the sham-operation group (P < 0.05).Conclusion Exercise training can lower the expression of BACE and Aβ in the hippocampus of rats with VD,therefore improving the learning and memory ability of rats with VD.%目的 研究运动训练对血管性痴呆(VD)大鼠海马β-淀粉样多肽(Aβ)及β分泌酶(BACE)的影响.方法 将30只SD大鼠数字随机表

  6. Advances in the pathogenesis of Alzheimer’s disease: a re-evaluation of amyloid cascade hypothesis

    Directory of Open Access Journals (Sweden)

    Dong Suzhen

    2012-09-01

    Full Text Available Abstract Alzheimer’s disease (AD is a common neurodegenerative disease characterized clinically by progressive deterioration of memory, and pathologically by histopathological changes including extracellular deposits of amyloid-beta (A-beta peptides forming senile plaques (SP and the intracellular neurofibrillary tangles (NFT of hyperphosphorylated tau in the brain. This review focused on the new developments of amyloid cascade hypothesis with details on the production, metabolism and clearance of A-beta, and the key roles of some important A-beta-related genes in the pathological processes of AD. The most recent research advances in genetics, neuropathology and pathogenesis of the disease were also discussed.

  7. Glucagon-like peptide-1 receptor agonist treatment reduces beta cell mass in normoglycaemic mice

    NARCIS (Netherlands)

    Ellenbroek, J.H.; Tons, H.A.; Westerouen van Meeteren, M.J.; de Graaf, N.; Hanegraaf, M.A.; Rabelink, T.J.; Carlotti, F.; de Koning, E.J.

    2013-01-01

    AIMS/HYPOTHESIS: Incretin-based therapies improve glycaemic control in patients with type 2 diabetes. In animal models of diabetes, glucagon-like peptide-1 receptor agonists (GLP-1RAs) increase beta cell mass. GLP-1RAs are also evaluated in non-diabetic individuals with obesity and cardiovascular di

  8. Activation of phospholipase A2 by temporin B: formation of antimicrobial peptide-enzyme amyloid-type cofibrils.

    Science.gov (United States)

    Code, Christian; Domanov, Yegor A; Killian, J Antoinette; Kinnunen, Paavo K J

    2009-05-01

    Phospholipases A2 have been shown to be activated in a concentration dependent manner by a number of antimicrobial peptides, including melittin, magainin 2, indolicidin, and temporins B and L. Here we used fluorescently labelled bee venom PLA2 (PLA2D) and the saturated phospholipid substrate 1,2-dipalmitoyl-glycero-sn-3-phosphocholine (L-DPPC), exhibiting a lag-burst behaviour upon the initiation of the hydrolytic reaction by PLA2. Increasing concentrations of Cys-temporin B and its fluorescent Texas red derivative (TRC-temB) caused progressive shortening of the lag period. TRC-temB/PLA2D interaction was observed by Förster resonance energy transfer (FRET), with maximum efficiency coinciding with the burst in hydrolysis. Subsequently, supramolecular structures became visible by microscopy, revealing amyloid-like fibrils composed of both the activating peptide and PLA2. Reaction products, palmitic acid and 1-palmitoyl-2-lyso-glycero-sn-3-phosphocholine (lysoPC, both at >8 mol%) were required for FRET when using the non-hydrolysable substrate enantiomer 2,3-dipalmitoyl-glycero-sn-1-phosphocholine (D-DPPC). A novel mechanism of PLA2 activation by co-fibril formation and associated conformational changes is suggested.

  9. Pancreatic beta cells synthesize neuropeptide Y and can rapidly release peptide co-transmitters.

    Directory of Open Access Journals (Sweden)

    Matthew D Whim

    Full Text Available BACKGROUND: In addition to polypeptide hormones, pancreatic endocrine cells synthesize a variety of bioactive molecules including classical transmitters and neuropeptides. While these co-transmitters are thought to play a role in regulating hormone release little is known about how their secretion is regulated. Here I investigate the synthesis and release of neuropeptide Y from pancreatic beta cells. METHODOLOGY/PRINCIPAL FINDINGS: NPY appears to be an authentic co-transmitter in neonatal, but not adult, beta cells because (1 early in mouse post-natal development, many beta cells are NPY-immunoreactive whereas no staining is observed in beta cells from NPY knockout mice; (2 GFP-expressing islet cells from an NPY(GFP transgenic mouse are insulin-ir; (3 single cell RT-PCR experiments confirm that the NPY(GFP cells contain insulin mRNA, a marker of beta cells. The NPY-immunoreactivity previously reported in alpha and delta cells is therefore likely to be due to the presence of NPY-related peptides. INS-1 cells, a beta cell line, are also NPY-ir and contain NPY mRNA. Using the FMRFamide tagging technique, NPY secretion was monitored from INS-1 beta cells with high temporal resolution. Peptide release was evoked by brief depolarizations and was potentiated by activators of adenylate cyclase and protein kinase A. Following a transient depolarization, NPY-containing dense core granules fused with the cell membrane and discharged their contents within a few milliseconds. CONCLUSIONS: These results indicate that after birth, NPY expression in pancreatic islets is restricted to neonatal beta cells. The presence of NPY suggests that peptide co-transmitters could mediate rapid paracrine or autocrine signaling within the endocrine pancreas. The FMRFamide tagging technique may be useful in studying the release of other putative islet co-transmitters in real time.

  10. Progress in the development of therapeutic antibodies targeting prion proteins and β-amyloid peptides

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Prion diseases and Alzheimer’s disease (AD) are characterized by protein misfolding, and can lead to dementia. However, prion diseases are infectious and transmissible, while AD is not. The similarities and differences between these diseases have led researchers to perform comparative studies. In the last 2 decades, progress has been made in immunotherapy using anti-prion protein and anti-β-amyloid antibodies. In this study, we review new ideas and strategies for therapeutic antibodies targeting prion diseases and AD through conformation dependence.

  11. Protective effect of Wnt-5a against amyloid beta-induced memory impairment in rats

    Institute of Scientific and Technical Information of China (English)

    Guili Zhang; Lu Lu; Yaping Ge; Fang Deng; Ying Zhang; Jiachun Feng

    2011-01-01

    Recent studies suggest that the activation of the Wnt signaling pathway improves memory function in rats. This study investigated the effects of Wnt-5a on amyloid β (Aβ)-induced cognitive impairment. Aβ25-35 was injected into the rat right lateral ventricle to induce Alzheimer's disease-associated pathology, and Wnt-5a was injected as a potential therapeutic treatment. Immunofluorescence staining showed that compared with normal rats, Aβ25-35 significantly decreased postsynaptic density-95 protein expression in the rat hippocampal CA1 region, but Wnt-5a pretreatment blocked this decrease. This study shows that Wnt-5a can reduce Aβ-induced cognitive impairment, and that it has the potential to be a new therapeutic strategy for the treatment of Alzheimer's disease.

  12. Somatostatin, tau, and beta-amyloid within the anterior olfactory nucleus in Alzheimer disease.

    Science.gov (United States)

    Saiz-Sanchez, D; Ubeda-Bañon, I; de la Rosa-Prieto, C; Argandoña-Palacios, L; Garcia-Muñozguren, S; Insausti, R; Martinez-Marcos, A

    2010-06-01

    Impaired olfaction is an early symptom of Alzheimer disease (AD). This likely to reflect neurodegenerative processes taking place in basal telencephalic structures that mediate olfactory processing, including the anterior olfactory nucleus. Betaeta-amyloid (Abeta) accumulation in AD brain may relate to decline in somatostatin levels: somatostatin induces the expression of the Abeta-degrading enzyme neprilysin and somatostatin deficiency in AD may therefore reduce Abeta clearance. We have investigated the expression of somatostatin in the anterior olfactory nucleus of AD and control brain. We report that somatostatin levels were reduced by approximately 50% in AD brain. Furthermore, triple-immunofluorescence revealed co-localization of somatostatin expression with Abeta (65.43%) with Abeta and tau (19.75%) and with tau (2.47%). These data indicate that somatostatin decreases in AD and its expression may be linked with Abeta deposition.

  13. Cholinergic Neurons - Keeping Check on Amyloid beta in the Cerebral Cortex

    Directory of Open Access Journals (Sweden)

    Saak V. Ovsepian

    2013-12-01

    Full Text Available The physiological relevance of the uptake of ligands with no apparent trophic functions via the p75 neurotrophin receptor (p75NTR remains unclear. Herein, we propose a homeostatic role for this in clearance of amyloid β (Aβ in the brain. We hypothesize that uptake of Aβ in conjunction with p75NTR followed by its degradation in lysosomes endows cholinergic basalo-cortical projections enriched in this receptor a facility for maintaining physiological levels of Aβ in target areas. Thus, in addition to the diffuse modulator influence and channeling of extra-thalamic signals, cholinergic innervations could supply the cerebral cortex with an elaborate system for Aβ drainage. Interpreting the emerging relationship of new molecular data with established role of cholinergic modulator system in regulating cortical network dynamics should provide new insights into the brain physiology and mechanisms of neuro-degenerative diseases.

  14. Sphingolipid metabolism correlates with cerebrospinal fluid Beta amyloid levels in Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Alfred N Fonteh

    Full Text Available Sphingolipids are important in many brain functions but their role in Alzheimer's disease (AD is not completely defined. A major limit is availability of fresh brain tissue with defined AD pathology. The discovery that cerebrospinal fluid (CSF contains abundant nanoparticles that include synaptic vesicles and large dense core vesicles offer an accessible sample to study these organelles, while the supernatant fluid allows study of brain interstitial metabolism. Our objective was to characterize sphingolipids in nanoparticles representative of membrane vesicle metabolism, and in supernatant fluid representative of interstitial metabolism from study participants with varying levels of cognitive dysfunction. We recently described the recruitment, diagnosis, and CSF collection from cognitively normal or impaired study participants. Using liquid chromatography tandem mass spectrometry, we report that cognitively normal participants had measureable levels of sphingomyelin, ceramide, and dihydroceramide species, but that their distribution differed between nanoparticles and supernatant fluid, and further differed in those with cognitive impairment. In CSF from AD compared with cognitively normal participants: a total sphingomyelin levels were lower in nanoparticles and supernatant fluid; b levels of ceramide species were lower in nanoparticles and higher in supernatant fluid; c three sphingomyelin species were reduced in the nanoparticle fraction. Moreover, three sphingomyelin species in the nanoparticle fraction were lower in mild cognitive impairment compared with cognitively normal participants. The activity of acid, but not neutral sphingomyelinase was significantly reduced in the CSF from AD participants. The reduction in acid sphingomylinase in CSF from AD participants was independent of depression and psychotropic medications. Acid sphingomyelinase activity positively correlated with amyloid β42 concentration in CSF from cognitively normal but

  15. Inhibition of tau hyperphosphorylation and beta amyloid production in rat brain by oral administration of atorvastatin

    Institute of Scientific and Technical Information of China (English)

    LU Fen; LI Xu; SUO Ai-qin; ZHANG Jie-wen

    2010-01-01

    Background Alzheimer's disease (AD) is a neurodegenerative disorder and the leading cause of dementia in the elderly. The two hallmark lesions in AD brain are deposition of amyloid plaques and neurofibrillary tangles (NFTs).Hypercholesteremia is one of the risk factors of AD. But its role in the pathogenesis of AD is largely unknown. The aim of this study was to investigate the relationship between hypercholesteremia and tau phosphorylation or β-amyloid (Aβ),and evaluate the effect of atorvastatin on the level of tau phosphorylation and Aβ in the brains of rats fed with high cholesterol diet.Methods Sprague-Dawley (SD) rats were randomly divided into normal diet control group, high cholesterol diet group,and high cholesterol diet plus atorvastatin (Lipitor, 15 mg·kg-1·d-1) treated group. Blood from caudal vein was collected to measure total cholesterol (TC), triglyceride (TG), low density lipoprotein (LDL) and high-density lipoprotein (HDL) at the end of the 3th and the 6th months by an enzymatic method. The animals were sacrificed 6 months later and brains were removed. All left brain hemispheres were fixed for immunohistochemistry. Hippocampus and cerebral cortex were separated from right hemispheres and homogenized separately. Tau phosphorylation and Aβ in the brain tissue were determined by Western blotting (using antibodies PHF-1 and Tau-1) and anti-Aβ40/anti-Aβ42, respectively.Results We found that high cholesterol diet led to hypercholesteremia of rats as well as hyperphosphorylation of tau and increased Aβ level in the brains. Treatment of the high cholesterol diet fed rats with atorvastatin prevented the changes of both tau phosphorylation and Aβ level induced by high cholesterol diet.Conclusions Hypercholesteremia could induce tau hyperphosphorylation and Aβ production in rat brain. Atorvastatin could inhibit tau hyperphosphorylation and decrease Aβ generation. It may play a protective role in the patho-process of hypercholesteremia

  16. Synergistic effects of high fat feeding and apolipoprotein E deletion on enterocytic amyloid-beta abundance

    Directory of Open Access Journals (Sweden)

    Dhaliwal Satvinder S

    2008-04-01

    Full Text Available Abstract Background Amyloid-β (Aβ, a key protein found in amyloid plaques of subjects with Alzheimer's disease is expressed in the absorptive epithelial cells of the small intestine. Ingestion of saturated fat significantly enhances enterocytic Aβ abundance whereas fasting abolishes expression. Apolipoprotein (apo E has been shown to directly modulate Aβ biogenesis in liver and neuronal cells but it's effect in enterocytes is not known. In addition, apo E modulates villi length, which may indirectly modulate Aβ as a consequence of differences in lipid absorption. This study compared Aβ abundance and villi length in wild-type (WT and apo E knockout (KO mice maintained on either a low-fat or high-fat diet. Wild-type C57BL/6J and apo E KO mice were randomised for six-months to a diet containing either 4% (w/w unsaturated fats, or chow comprising 16% saturated fats and 1% cholesterol. Quantitative immunohistochemistry was used to assess Aβ abundance in small intestinal enterocytes. Apo E KO mice given the low-fat diet had similar enterocytic Aβ abundance compared to WT controls. Results The saturated fat diet substantially increased enterocytic Aβ in WT and in apo E KO mice, however the effect was greater in the latter. Villi height was significantly greater in apo E KO mice than for WT controls when given the low-fat diet. However, WT mice had comparable villi length to apo E KO when fed the saturated fat and cholesterol enriched diet. There was no effect of the high-fat diet on villi length in apo E KO mice. Conclusion The findings of this study are consistent with the notion that lipid substrate availability modulates enterocytic Aβ. Apo E may influence enterocytic lipid availability by modulating absorptive capacity.

  17. Synaptotrophic effects of human amyloid beta protein precursors in the cortex of transgenic mice.

    Science.gov (United States)

    Mucke, L; Masliah, E; Johnson, W B; Ruppe, M D; Alford, M; Rockenstein, E M; Forss-Petter, S; Pietropaolo, M; Mallory, M; Abraham, C R

    1994-12-15

    The amyloid precursor protein (APP) is involved in Alzheimer's disease (AD) because its degradation products accumulate abnormally in AD brains and APP mutations are associated with early onset AD. However, its role in health and disease appears to be complex, with different APP derivatives showing either neurotoxic or neurotrophic effects in vitro. To elucidate the effects APP has on the brain in vivo, cDNAs encoding different forms of human APP (hAPP) were placed downstream of the neuron-specific enolase (NSE) promoter. In multiple lines of NSE-hAPP transgenic mice neuronal overexpression of hAPP was accompanied by an increase in the number of synaptophysin immunoreactive (SYN-IR) presynaptic terminals and in the expression of the growth-associated marker GAP-43. In lines expressing moderate levels of hAPP751 or hAPP695, this effect was more prominent in homozygous than in heterozygous transgenic mice. In contrast, a line with several-fold higher levels of hAPP695 expression showed less increase in SYN-IR presynaptic terminals per amount of hAPP expressed than the lower expressor lines and a decrease in synaptotrophic effects in homozygous compared with heterozygous offspring. Transgenic mice (2-24 months of age) showed no evidence for amyloid deposits or neurodegeneration. These findings suggest that APP may be important for the formation/maintenance of synapses in vivo and that its synaptotrophic effects may be critically dependent on the expression levels of different APP isoforms. Alterations in APP expression, processing or function could contribute to the synaptic pathology seen in AD.

  18. Crystallization and preliminary X-ray diffraction analysis of the Fab fragment of WO2, an antibody specific for the A[beta] peptides associated with Alzheimer's disease

    Energy Technology Data Exchange (ETDEWEB)

    Wun, Kwok S.; Miles, Luke A.; Crespi, Gabriela A.N.; Wycherley, Kaye; Ascher, David B.; Barnham, Kevin J.; Cappai, Roberto; Beyreuther, Konrad; Masters, Colin L.; Parker, Michael W.; McKinstry, William J. (SVIMR-A); (HeidelbergU); (WEHI); (Melbourne)

    2008-05-28

    The murine monoclonal antibody WO2 specifically binds the N-terminal region of the amyloid {beta} peptide (A{beta}) associated with Alzheimer's disease. This region of A{beta} has been shown to be the immunodominant B-cell epitope of the peptide and hence is considered to be a basis for the development of immunotherapeutic strategies against this prevalent cause of dementia. Structural studies have been undertaken in order to characterize the molecular basis for antibody recognition of this important epitope. Here, details of the crystallization and X-ray analysis of the Fab fragment of the unliganded WO2 antibody in two crystal forms and of the complexes that it forms with the truncated Az{beta} peptides A{beta}{sub 1-16} and A{beta}{sub 1-28} are presented. These crystals were all obtained using the hanging-drop vapour-diffusion method at 295 K. Crystals of WO2 Fab were grown in polyethylene glycol solutions containing ZnSO{sub 4}; they belonged to the orthorhombic space group P2{sub 1}2{sub 1}2{sub 1} and diffracted to 1.6 {angstrom} resolution. The complexes of WO2 Fab with either A{beta}{sub 1-16} or A{beta}{sub 1-28} were cocrystallized from polyethylene glycol solutions. These two complex crystals grew in the same space group, P2{sub 1}2{sub 1}2{sub 1}, and diffracted to 1.6 {angstrom} resolution. A second crystal form of WO2 Fab was grown in the presence of the sparingly soluble A{beta}{sub 1-42} in PEG 550 MME. This second form belonged to space group P2{sub 1} and diffracted to 1.9 {angstrom} resolution.

  19. A neural cell adhesion molecule-derived peptide reduces neuropathological signs and cognitive impairment induced by Abeta25-35

    DEFF Research Database (Denmark)

    Klementiev, B; Novikova, T; Novitskaya, V;

    2007-01-01

    By means of i.c.v. administration of preaggregated oligomeric beta-amyloid (Abeta)25-35 peptide it was possible in rats to generate neuropathological signs related to those of early stages of Alzheimer's disease (AD). Abeta25-35-administration induced the deposition of endogenously produced amyloid...

  20. Effects of macromolecular crowding on amyloid beta (16-22) aggregation using coarse-grained simulations.

    Science.gov (United States)

    Latshaw, David C; Cheon, Mookyung; Hall, Carol K

    2014-11-26

    To examine the effect of crowding on protein aggregation, discontinuous molecular dynamics (DMD) simulations combined with an intermediate resolution protein model, PRIME20, were applied to a peptide/crowder system. The systems contained 192 Aβ(16-22) peptides and crowders of diameters 5, 20, and 40 Å, represented here by simple hard spheres, at crowder volume fractions of 0.00, 0.10, and 0.20. Results show that both crowder volume fraction and crowder diameter have a large impact on fibril and oligomer formation. The addition of crowders to a system of peptides increases the rate of oligomer formation, shifting from a slow ordered formation of oligomers in the absence of crowders, similar to nucleated polymerization, to a fast collapse of peptides and subsequent rearrangement characteristic of nucleated conformational conversion with a high maximum in the number of peptides in oligomers as the total crowder surface area increases. The rate of conversion from oligomers to fibrils also increases with increasing total crowder surface area, giving rise to an increased rate of fibril growth. In all cases, larger volume fractions and smaller crowders provide the greatest aggregation enhancement effects. We also show that the size of the crowders influences the formation of specific oligomer sizes. In our simulations, the 40 Å crowders enhance the number of dimers relative to the numbers of trimers, hexamers, pentamers, and hexamers, while the 5 Å crowders enhance the number of hexamers relative to the numbers of dimers, trimers, tetramers, and pentamers. These results are in qualitative agreement with previous experimental and theoretical work.

  1. Methanolic extract of Piper nigrum fruits improves memory impairment by decreasing brain oxidative stress in amyloid beta(1-42) rat model of Alzheimer's disease.

    Science.gov (United States)

    Hritcu, Lucian; Noumedem, Jaurès A; Cioanca, Oana; Hancianu, Monica; Kuete, Victor; Mihasan, Marius

    2014-04-01

    The present study analyzed the possible memory-enhancing and antioxidant proprieties of the methanolic extract of Piper nigrum L. fruits (50 and 100 mg/kg, orally, for 21 days) in amyloid beta(1-42) rat model of Alzheimer's disease. The memory-enhancing effects of the plant extract were studied by means of in vivo (Y-maze and radial arm-maze tasks) approaches. Also, the antioxidant activity in the hippocampus was assessed using superoxide dismutase-, catalase-, glutathione peroxidase-specific activities and the total content of reduced glutathione, malondialdehyde, and protein carbonyl levels. The amyloid beta(1-42)-treated rats exhibited the following: decrease of spontaneous alternations percentage within Y-maze task and increase of working memory and reference memory errors within radial arm-maze task. Administration of the plant extract significantly improved memory performance and exhibited antioxidant potential. Our results suggest that the plant extract ameliorates amyloid beta(1-42)-induced spatial memory impairment by attenuation of the oxidative stress in the rat hippocampus.

  2. Transgenic expression of the amyloid-beta precursor protein-intracellular domain does not induce Alzheimer's Disease-like traits in vivo.

    Directory of Open Access Journals (Sweden)

    Luca Giliberto

    Full Text Available BACKGROUND: Regulated intramembranous proteolysis of the amyloid-beta precursor protein by the gamma-secretase yields amyloid-beta, which is the major component of the amyloid plaques found in Alzheimer's disease (AD, and the APP intracellular domain (AID. In vitro studies have involved AID in apoptosis and gene transcription. In vivo studies, which utilize transgenic mice expressing AID in the forebrain, only support a role for AID in apoptosis but not gene transcription. METHODOLOGY/PRINCIPAL FINDINGS: Here, we have further characterized several lines of AID transgenic mice by crossing them with human Tau-bearing mice, to determine whether over-expression of AID in the forebrain provokes AD-like pathologic features in this background. We have found no evidence that AID overexpression induces AD-like characteristics, such as activation of GSK-3beta, hyperphosphorylation of Tau and formation of neurofibrillary pathology. CONCLUSIONS/SIGNIFICANCE: Overall, these data suggest that AID transgenic mice do not represent a model that reproduces the overt biochemical and anatomo-pathologic lesions observed in AD patients. They can still be a valuable tool to understand the role of AID in enhancing the cell sensitivity to apoptotic stimuli, whose pathways still need to be characterized.

  3. Computational Studies of Beta Amyloid (Aβ42 with p75NTR Receptor: A Novel Therapeutic Target in Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Shine Devarajan

    2014-01-01

    Full Text Available Alzheimer’s disease is a neurodegenerative disorder characterized by the accumulation of beta amyloid plaques (Aβ which can induce neurite degeneration and progressive dementia. It has been identified that neuronal apoptosis is induced by binding of Aβ42 to pan neurotrophin receptor (p75NTR and gave the possibility that beta amyloid oligomer is a ligand for p75NTR. However, the atomic contact point responsible for molecular interactions and conformational changes of the protein upon binding was not studied in detail. In view of this, we conducted a molecular docking and simulation study to investigate the binding behaviour of Aβ42 monomer with p75NTR ectodomain. Furthermore, we proposed a p75NTR-ectodomain-Aβ42 complex model. Our data revealed that, Aβ42 specifically recognizes CRD1 and CRD2 domains of the receptor and formed a “cap” like structure at the N-terminal of receptor which is stabilized by a network of hydrogen bonds. These findings are supported by molecular dynamics simulation that Aβ42 showed distinct structural alterations at N- and C-terminal regions due to the influence of the receptor binding site. Overall, the present study gives more structural insight on the molecular interactions of beta amyloid protein involved in the activation of p75NTR receptor.

  4. beta-Scission of C-3 (beta-carbon) alkoxyl radicals on peptides and proteins

    DEFF Research Database (Denmark)

    Headlam, H A; Mortimer, A; Easton, C J

    2000-01-01

    of new reactive groups, including hydroperoxides. These processes can result in the loss of structural or enzymatic activity. Backbone fragmentation is known to occur via a number of mechanisms, most of which involve hydrogen abstraction from the alpha-carbon site on the backbone. In this study, we...... demonstrate that initial attack at a side chain site, the beta-position (C-3), can give rise to formation of alpha-carbon radicals, and hence backbone cleavage, via the formation and subsequent beta-scission of C-3 alkoxyl radicals. This beta-scission reaction is rapid (k estimated to be >10(7) s(-)(1)) even...

  5. Cholesterol does not affect the toxicity of amyloid beta fragment but mimics its effect on MTT formazan exocytosis in cultured rat hippocampal neurons.

    Science.gov (United States)

    Abe, K; Saito, H

    1999-12-01

    It has recently been reported that methyl-beta-cyclodextrin-solubilized cholesterol protects PC12 cells from amyloid beta protein (Abeta) toxicity. To ask if this is the case in brain neurons, we investigated its effect in primary cultured rat hippocampal neurons. In basal culture conditions with no addition of Abeta, methyl-beta-cyclodextrin-solubilized cholesterol at concentrations of 30-100 microM was toxic to neurons, but at concentrations of 1-10 microM promoted neuronal survival. Methyl-beta-cyclodextrin-solubilized cholesterol at 1-10 microM was also effective in protecting neurons from toxicity of 20 microM Abeta. However, these effects were all mimicked by methyl-beta-cyclodextrin alone, but not by cholesterol solubilized by dimethylsulfoxide or ethanol. The effects of methyl-beta-cyclodextrin-solubilized cholesterol on neuronal survival and Abeta toxicity are probably attributed to the action of methyl-beta-cyclodextrin, but not cholesterol. Alternatively, we found that methyl-beta-cyclodextrin-solubilized cholesterol at lower concentrations ( > 10 nM) inhibited cellular reduction of 3-(4,5-dimethylthiazol-2-yl)-2.5-diphenyltetrazolium bromide (MTT) by promoting the exocytosis of MTT formazan. This effect was shared by dimethylsulfoxide- or ethanol-solubilized cholesterol, but not by methyl-beta-cyclodextrin, supporting that it is attributed to the action of cholesterol. These results suggest that cholesterol does not protect neurons from Abeta toxicity, or rather inhibits cellular MTT reduction in a similar manner to Abeta.

  6. p35/Cyclin-dependent kinase 5 is required for protection against beta-amyloid-induced cell death but not tau phosphorylation by ceramide.

    Science.gov (United States)

    Seyb, Kathleen I; Ansar, Sabah; Li, Guibin; Bean, Jennifer; Michaelis, Mary L; Dobrowsky, Rick T

    2007-01-01

    Ceramide is a bioactive sphingolipid that can prevent calpain activation and beta-amyloid (A beta) neurotoxicity in cortical neurons. Recent evidence supports A beta induction of a calpain-dependent cleavage of the cyclin-dependent kinase 5 (cdk5) regulatory protein p35 that contributes to tau hyperphosphorylation and neuronal death. Using cortical neurons isolated from wild-type and p35 knockout mice, we investigated whether ceramide required p35/cdk5 to protect against A beta-induced cell death and tau phosphorylation. Ceramide inhibited A beta-induced calpain activation and cdk5 activity in wild-type neurons and protected against neuronal death and tau hyperphosphorylation. Interestingly, A beta also increased cdk5 activity in p35-/- neurons, suggesting that the alternate cdk5 regulatory protein, p39, might mediate this effect. In p35 null neurons, ceramide blocked A beta-induced calpain activation but did not inhibit cdk5 activity or cell death. However, ceramide blocked tau hyperphosphorylation potentially via inhibition of glycogen synthase kinase-3beta. These data suggest that ceramide can regulate A beta cell toxicity in a p35/cdk5-dependent manner.

  7. Inhibition of tumor necrosis factor-alpha by sodium ferulate in protecting neurons from beta-amyloid induced damage

    Institute of Scientific and Technical Information of China (English)

    Suyan Yao; Deyu Zheng; Zhuo Liu; Ying Jin

    2006-01-01

    BACKGROUND: Sodium ferulate (SF) has an effect of anti-inflammation; however, whether it can inhibit beta-amyloid (Aβ) induced damage or not should be further studied.OBJECTIVE: To investigate the effects of SF on neurotoxicity mediated by Aβ-induced macrophage activation via inhibiting tumor necrosis factor-α (TNF-α) in vitro.DESTGN: A contrast experiment based on cells.SETTrNG: Departments of Pathophysiology, Pharmacology and Anatomy, Liaoning Medical College.MATERTALS: A total of 36 Kunming mice aged 8-10 weeks and some SD rats aged 2-3 days of both genders were selected in this study. Main reagents were detailed as follows: Aβ peptide (Sigma Company); SF (purity >99%, Suzhou Changtong Chemical Co., Ltd.); lactate dehydrogenase (LDH) assay kit (Bangding Biological Engineering Co., Beijing, China); microtubule-associated protein 2 (MAP-2) monoclonal antibodies and TNF-αmonoclonal antibodies (Boster Biological Engineering Co., Wuhan, China).METHODS: The experiment was carried out in Laboratories of Pharmacology and Anatomy, Liaoning Medical College from May to December 2004. Cerebellum was obtained from rats under sterile condition to culture neurons and macrophages taken from mice abdominal cavity. Later, two parallel experiments were performed as follows: ① Macrophages culture groups: In normal control group, macrophages were cultured in DMEM after being seeded. In Aβ group, neurotoxic form of Aβ was added into DMEM media with final concentration of 10 μmol/L after macrophages were seeded for 24 hours. In Aβ+SF group, ten minutes after Aβ treatment, for 10, 100, 500 μmol/L and 1 mmol/L of SF were added to the media of the macrophages culture. ②Macrophages-neurons co-cultured groups: Control macrophages-neurons were co-cultured. Aβ group:Neurotoxic form of Aβ was added into the media with concentration of 10 iμmol/L after macrophages were seeded in the neurons cultured wells for 24 hours. Aβ±SF group: Ten minutes after Aβ treatment, 10

  8. Kinetics of the neuroinflammation-oxidative stress correlation in rat brain following the injection of fibrillar amyloid-beta onto the hippocampus in vivo.

    Science.gov (United States)

    Rosales-Corral, Sergio; Tan, Dun-Xian; Reiter, Russel J; Valdivia-Velázquez, Miguel; Acosta-Martínez, J Pablo; Ortiz, Genaro G

    2004-05-01

    The purpose of this study was to describe-following the injection of a single intracerebral dose of fibrillar amyloid-beta(1-40) in vivo-some correlations between proinflammatory cytokines and oxidative stress indicators in function of time, as well as how these variables fit in a regression model. We found a positive, significant correlation between interleukin (IL)-1beta or IL-6 and the activity of the glutathione peroxidase enzyme (GSH-Px), but IL-1beta or IL-6 maintained a strong, negative correlation with the lipid peroxidation (LPO). The first 12 h marked a positive correlation between IL-6 and tumor necrosis factor-alpha (TNF-alpha), but starting from the 36 h, this relationship became negative. We found also particular patterns of behavior through the time for IL-1beta, nitrites and IL-6, with parallel or sequential interrelationships. Results shows clearly that, in vivo, the fibrillar amyloid-beta (Abeta) disrupts the oxidative balance and initiate a proinflammatory response, which in turn feeds the oxidative imbalance in a coordinated, sequential way. This work contributes to our understanding of the positive feedbacks, focusing the "cytokine cycle" along with the oxidative stress mediators in a complex, multicellular, and interactive environment.

  9. Binding of β-Amyloid (1–42) Peptide to Negatively Charged Phospholipid Membranes in the Liquid-Ordered State: Modeling and Experimental Studies

    OpenAIRE

    Ahyayauch, Hasna; Raab, Michal; Busto, Jon V.; Andraka, Nagore; Arrondo, José-Luis R.; Masserini, Massimo; Tvaroska, Igor; Goñi, Félix M.

    2012-01-01

    To explore the initial stages of amyloid β peptide (Aβ42) deposition on membranes, we have studied the interaction of Aβ42 in the monomeric form with lipid monolayers and with bilayers in either the liquid-disordered or the liquid-ordered (Lo) state, containing negatively charged phospholipids. Molecular dynamics (MD) simulations of the system have been performed, as well as experimental measurements. For bilayers in the Lo state, in the absence of the negatively charged lipids, interaction i...

  10. Reduction of beta-amyloid-induced neurotoxicity on hippocampal cell cultures by moderate acidosis is mediated by transforming growth factor beta.

    Science.gov (United States)

    Uribe-San Martín, R; Herrera-Molina, R; Olavarría, L; Ramírez, G; von Bernhardi, R

    2009-02-18

    Progression of Alzheimer's disease (AD) is associated with chronic inflammation and microvascular alterations, which can induce impairment of brain perfusion because of vascular pathology and local acidosis. Acidosis can promote amyloidogenesis, which could further contribute to neurodegenerative changes. Nevertheless, there is also evidence that acidosis has neuroprotective effects in hypoxia models. Here we studied the effect of moderate acidosis on beta-amyloid (Abeta)-mediated neurotoxicity. We evaluated morphological changes, cell death, nitrite production and reductive metabolism of hippocampal cultures from Sprague-Dawley rats exposed to Abeta under physiological (pH 7.4) or moderate acidosis (pH 7.15-7.05). In addition, because transforming growth factor beta (TGFbeta) 1 is neuroprotective and is induced by several pathophysiological conditions, we assessed its presence at the different pHs. The exposure of hippocampal cells to Abeta induced a conspicuous reduction of neurites' arborization, as well as increased neuronal death and nitric oxide production. However, Abeta neurotoxicity was significantly attenuated when hippocampal cultures were kept at pH 7.15-7.05, showing a 68% reduction on lactate dehydrogenase release compared with cultures exposed to Abeta at pH 7.4 (Pacidosis compared with basal pH media (Pacidosis decreased intracellular TGFbeta1 precursor (latency associated protein-TGFbeta1) and increased up to fourfold TGFbeta1 bioactivity, detecting a 43% increase in the active TGFbeta levels in cultures exposed to Abeta and moderate acidosis. Inhibition of TGFbeta signaling abolished the neuroprotective effect of moderate acidosis. Our results show that moderate acidosis protected hippocampal cells from Abeta-mediated neurotoxicity through the increased activation and signaling potentiation of TGFbeta.

  11. The interaction of beta 2-microglobulin (beta 2m) with mouse class I major histocompatibility antigens and its ability to support peptide binding. A comparison of human and mouse beta 2m

    DEFF Research Database (Denmark)

    Pedersen, L O; Stryhn, A; Holter, T L;

    1995-01-01

    The function of major histocompatibility complex (MHC) class I molecules is to sample peptides derived from intracellular proteins and to present these peptides to CD8+ cytotoxic T lymphocytes. In this paper, biochemical assays addressing MHC class I binding of both peptide and beta 2-microglobul...

  12. Glutamine acts as a neuroprotectant against DNA damage, beta-amyloid and H2O2-induced stress.

    Directory of Open Access Journals (Sweden)

    Jianmin Chen

    Full Text Available Glutamine is the most abundant free amino acid in the human blood stream and is 'conditionally essential' to cells. Its intracellular levels are regulated both by the uptake of extracellular glutamine via specific transport systems and by its intracellular synthesis by glutamine synthetase (GS. Adding to the regulatory complexity, when extracellular glutamine is reduced GS protein levels rise. Unfortunately, this excess GS can be maladaptive. GS overexpression is neurotoxic especially if the cells are in a low-glutamine medium. Similarly, in low glutamine, the levels of multiple stress response proteins are reduced rendering cells hypersensitive to H(2O(2, zinc salts and DNA damage. These altered responses may have particular relevance to neurodegenerative diseases of aging. GS activity and glutamine levels are lower in the Alzheimer's disease (AD brain, and a fraction of AD hippocampal neurons have dramatically increased GS levels compared with control subjects. We validated the importance of these observations by showing that raising glutamine levels in the medium protects cultured neuronal cells against the amyloid peptide, Aβ. Further, a 10-day course of dietary glutamine supplementation reduced inflammation-induced neuronal cell cycle activation, tau phosphorylation and ATM-activation in two different mouse models of familial AD while raising the levels of two synaptic proteins, VAMP2 and synaptophysin. Together, our observations suggest that healthy neuronal cells require both intracellular and extracellular glutamine, and that the neuroprotective effects of glutamine supplementation may prove beneficial in the treatment of AD.

  13. Recent progress in the study of intracellular toxicity of amyloid β peptide in Alzheimer's disease

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yan; YU Longchuan

    2007-01-01

    Amyloid β (Aβ) deposition is one of the major pathological markers of Alzheimer's disease (AD). Extracellular Aβ toxicity has been studied for a long time in AD research field. However, controversial data show that extracellular Aβ load does not correlate with the dementia levels of AD patients and extracellular Aβ only induces significant cell death at non-physiological high concentrations.With the evolvement of Aβ hypothesis, considerable attention has been devoted to the study of intracellular Aβ toxicity recently. Intracellular Aβ induces dramatic cell loss in AD transgenic models and in human primary neurons (at pM concentrations) through p53, Bax and caspase-6 pathways. Here, we review the generation, toxicity and possible pathways of intracellular Aβ toxicity, and discuss the implication and current knowledge of intracellular Aβ in neuronal cell loss in neurodegenerative diseases.

  14. Morphology and structural dynamics of amyloid beta 42 assembly in vitro

    Institute of Scientific and Technical Information of China (English)

    Ying Zhang; Jinsheng He; Shuhan Guo; Jingdo