WorldWideScience

Sample records for amygdalin

  1. AMYGDALIN AND ITS PROPERTIES

    OpenAIRE

    ÇELİK, Mehtap; YILDIRIM, Metin

    2017-01-01

       Amygdalin is the most common cyanogenic glycoside in nature, and it is found in fruit kernels, such as apricot, almond, cherry, apple, plum, pear and peach. Amygdalin is also called D(-)-mandelonitrile-β-D-gentiobioside, D(-)-amygdalin, R-amygdalin, laetrile and vitamin B 17. Amygdalin can be degraded by enzymatic activity, heat treatment, mineral acids or high concentrations of ascorbic acid, and after its degradation, toxic hydrogen cyanide is formed. Amygdalin has been used to treat apl...

  2. Amygdalin, quackery or cure?

    Science.gov (United States)

    Blaheta, Roman A; Nelson, Karen; Haferkamp, Axel; Juengel, Eva

    2016-04-15

    The cyanogenic diglucoside, amygdalin, has gained high popularity among cancer patients together with, or in place of, conventional therapy. Still, evidence based research on amygdalin is sparse and its benefit controversial. Since so many cancer patients consume amygdalin, and many clinicians administer it without clear knowledge of its mode of action, current knowledge has been summarized and the pros and cons of its use weighed. A retrospective analysis was conducted for amygdalin relevant reports using the PubMed database with the main search term "Amygdalin" or "laetrile", at times combined with "cancer", "patient", "cyanide" or "toxic". We did not exclude any "unwanted" articles. Additionally, internet sources authorized by governmental or national institutions have also been included. Individual chapters summarize pharmacokinetics, preclinical and clinical studies and toxicity. No convincing evidence showing that amygdalin induces rapid, distinct tumor regression in cancer patients, particularly in those with late-stage disease, is apparent. However, there is also no evidence that purified amygdalin, administered in "therapeutic" dosage, causes toxicity. Multiple aspects of amygdalin administration have not yet been adequately explored, making further investigation necessary to evaluate its actual therapeutic potential. Copyright © 2016 Elsevier GmbH. All rights reserved.

  3. [Amygdalin - structure and clinical significance].

    Science.gov (United States)

    Zdrojewicz, Zygmunt; Otlewska, Anna; Hackemer, Paweł; Otlewska, Agnieszka

    2015-05-01

    In this publication we described amygdalin. It was isolated for the first time in the 19th century. Amygdalin is called interchangeably vitamin B17 or laetrile. Since more than a hundred years, there has been reports about its unique anticancer properties. We tried to introduce the present knowledge about therapeutic efficacy of laetrile. Most of these studies has been made in the in vitro environment. The lack of appropriate studies forced scientists to examine the positive influence of amygdalin on many diseases like: bladder cancer, prostate cancer, cervical cancer, colon cancer, promyelocytic leukemia, chronic kidney disease, psoriasis and other. © 2015 MEDPRESS.

  4. Characterization of amygdalin-degrading Lactobacillus species.

    Science.gov (United States)

    Menon, R; Munjal, N; Sturino, J M

    2015-02-01

    Cyanogenic glycosides are phytotoxic secondary metabolites produced by some crop plants. The aim of this study was to identify lactic acid bacteria (LAB) capable of catabolizing amygdalin, a model cyanogenic glycoside, for use in the biodetoxification of amygdalin-containing foods and feeds. Amygdalin-catabolizing lactobacilli were characterized using a combination of cultivation-dependent and molecular assays. Lactobacillus paraplantarum and Lactobacillus plantarum grew robustly on amygdalin (Amg(+)), while other LAB species typically failed to catabolize amygdalin (Amg(-)). Interestingly, high concentrations of amygdalin and two of its metabolic derivatives (mandelonitrile and benzaldehyde) inhibited the growth of Lact. plantarum RENO 0093. The differential regulation of genes tentatively involved in cyanohydrin metabolism illustrated that the metabolism of amygdalin- and glucose-grown cultures also differed significantly. Amygdalin fermentation was a relatively uncommon phenotype among the LAB and generally limited to strains from the Lact. plantarum group. Phenotype microarrays (PM) enabled strain-level discrimination between closely related strains within a species and suggested that phenotypic differences might affect niche specialization. Amygdalin-degrading lactobacilli with practical application in the biodetoxification of amygdalin were characterized. These strains show potential for use as starter cultures to improve the safety of foods and feeds. © 2014 The Society for Applied Microbiology.

  5. Content of the cyanogenic glucoside amygdalin in almond seeds related to the bitterness genotype

    Directory of Open Access Journals (Sweden)

    Guillermo Arrázola

    2012-08-01

    Full Text Available Almond kernels can be sweet, slightly bitter or bitter. Bitterness in almond (Prunus dulcis Mill. and other Prunus species is related to the content of the cyanogenic diglucoside amygdalin. When an almond containing amygdalin is chopped, glucose, benzaldehyde (bitter flavor and hydrogen cyanide (which is toxic are released. This two-year-study with 29 different almond cultivars for bitterness was carried out in order to relate the concentration of amygdalin in the kernel with the phenotype (sweet, slightly bitter or bitter and the genotype (homozygous: sweet or bitter or heterozygous: sweet or slightly bitter with an easy analytical test. Results showed that there was a clear difference in the amount of amygdalin between bitter and non-bitter cultivars. However, the content of amygdalin did not differentiate the other genotypes, since similar amounts of amygdalin can be found in the two different genotypes with the same phenotype

  6. Amygdalin Toxicity Studies in Rats Predict Chronic Cyanide Poisoning in Humans

    OpenAIRE

    Newton, George W.; Schmidt, Eric S.; Lewis, Jerry P.; Lawrence, Ruth; Conn, Eric

    1981-01-01

    Significant amounts of cyanide are released when amygdalin (Laetrile), a cyanogenic glycoside, is given orally or intravenously to rats. The amount of cyanide liberated following oral administration is dependent in part on the bacterial flora of the gut and can be suppressed by antibiotic pretreatment of the animals. Bacteria from human feces likewise hydrolyze amygdalin with release of cyanide. Humans taking amygdalin orally in the hope of preventing cancer are likely to be exposed to levels...

  7. Content of the cyanogenic glucoside amygdalin in almond seeds related to the bitterness genotype

    OpenAIRE

    Arrázola, Guillermo; Sánchez P., Raquel; Dicenta, Federico; Grané Teruel, Nuria

    2012-01-01

    Almond kernels can be sweet, slightly bitter or bitter. Bitterness in almond (Prunus dulcis Mill.) and other Prunus species is related to the content of the cyanogenic diglucoside amygdalin. When an almond containing amygdalin is chopped, glucose, benzaldehyde (bitter flavor) and hydrogen cyanide (which is toxic) are released. This two-year-study with 29 different almond cultivars for bitterness was carried out in order to relate the concentration of amygdalin in the kernel with the phenotype...

  8. Physician Beware: Severe Cyanide Toxicity from Amygdalin Tablets Ingestion

    Directory of Open Access Journals (Sweden)

    Tam Dang

    2017-01-01

    Full Text Available Despite the risk of cyanide toxicity and lack of efficacy, amygdalin is still used as alternative cancer treatment. Due to the highly lethal nature of cyanide toxicity, many patients die before getting medical care. Herein, we describe the case of a 73-year-old female with metastatic pancreatic cancer who developed cyanide toxicity from taking amygdalin. Detailed history and physical examination prompted rapid clinical recognition and treatment with hydroxocobalamin, leading to resolution of her cyanide toxicity. Rapid clinical diagnosis and treatment of cyanide toxicity can rapidly improve patients’ clinical outcome and survival. Inquiries for any forms of ingestion should be attempted in patients with clinical signs and symptoms suggestive of poisoning.

  9. Variability of amygdalin content in seeds of sweet and bitter apricot ...

    African Journals Online (AJOL)

    hope&shola

    2010-09-27

    Sep 27, 2010 ... Drug Administration for the use of Vitamin B17 as a drug in the treatment of patients (Asma and Misirli, 2007). Apricot seeds contain various amounts of amygdalin depending on cultivars. It is reported that bitter cultivars contain higher amygdalin than sweet cultivars (Gomez et al., 1998). Femenia et al.

  10. NATURAL PLANT TOXICANT – CYANOGENIC GLYCOSIDE AMYGDALIN: CHARACTERISTIC, METABOLISM AND THE EFFECT ON ANIMAL REPRODUCTION

    Directory of Open Access Journals (Sweden)

    Eduard Kolesár

    2015-02-01

    Full Text Available The amount of cyanogenic glycosides, as natural plant toxicants, in plants varies with plant species and environmental effects. Cyanogenic glycoside as an amygdalin was detected in apricot kernels, bitter almonds and peach, plum, pear and apple seeds. Amygdalin itself is non-toxic, but its HCN production decomposed by some enzymes is toxic substance. Target of this review was to describe the characteristic, metabolism and possible effects of amygdalin on reproductive processes. Previous studies describe the effects of natural compound amygdalin on female and male reproductive systems focused on process of steroidogenesis, spermatozoa motility and morphological abnormalities of spermatozoa. In accordance to the previous studies on amygdalin its benefit is controversial.

  11. Determination of amygdalin in apple seeds, fresh apples and processed apple juices.

    Science.gov (United States)

    Bolarinwa, Islamiyat F; Orfila, Caroline; Morgan, Michael R A

    2015-03-01

    Cyanogenic glycosides are natural plant toxicants. Action by endogenous plant enzymes can release hydrogen cyanide causing potential toxicity issues for animals including humans. We have quantified amygdalin in seeds from different apple varieties, determined the effects of processing on the amygdalin content of apple juice and quantified amygdalin in commercially-available apple juices. Amygdalin contents of seeds from fifteen varieties of apples ranged from 1 mg g(-1) to 4 mg g(-1). The amygdalin content of commercially-available apple juice was low, ranging from 0.01 to 0.04 mg ml(-1) for pressed apple juice and 0.001-0.007 mg ml(-1) for long-life apple juice. Processing led to juice with low amygdalin content, ranging from 0.01 mg ml(-1) to 0.08 mg ml(-1). The results presented show that the amygdalin contents of commercially-available apple juices are unlikely to present health problems to consumers. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Amygdalin Toxicity Studies in Rats Predict Chronic Cyanide Poisoning in Humans

    Science.gov (United States)

    Newton, George W.; Schmidt, Eric S.; Lewis, Jerry P.; Lawrence, Ruth; Conn, Eric

    1981-01-01

    Significant amounts of cyanide are released when amygdalin (Laetrile), a cyanogenic glycoside, is given orally or intravenously to rats. The amount of cyanide liberated following oral administration is dependent in part on the bacterial flora of the gut and can be suppressed by antibiotic pretreatment of the animals. Bacteria from human feces likewise hydrolyze amygdalin with release of cyanide. Humans taking amygdalin orally in the hope of preventing cancer are likely to be exposed to levels of cyanide in excess of that associated with the development of tropical ataxic neuropathy in people of underdeveloped countries where food containing cyanogenic glycosides is a staple part of the diet. PMID:7222669

  13. Determination of Amygdalin content in trade stone fruits and its biological activity in cultured cancer cells

    OpenAIRE

    Janatová, Marie

    2015-01-01

    Janatová, M.: Determination of amygdalin content in trade stone fruits and its biological activity in cultured cancer cells. Charles University in Prague, Faculty of Pharmacy in Hradec Králové, Department of Pharmaceutical Botany and Ecology, Hradec Králové 2015, pp.74 Stone fruits from tribe Amygdaleae of Rosaceae family are known for their antioxidant activity and amount of nutrients and vitamins. Their seeds are connected with content of cyanogenic glycoside amygdalin and their possible ef...

  14. Life-threatening interaction between complementary medicines: cyanide toxicity following ingestion of amygdalin and vitamin C.

    Science.gov (United States)

    Bromley, Jonathan; Hughes, Brett G M; Leong, David C S; Buckley, Nicholas A

    2005-09-01

    To describe a case of severe accidental cyanide poisoning following a single ingestion of amygdalin with therapeutic intent. A 68-year-old patient with cancer presented to the emergency department shortly after her first dose (3 g) of amygdalin with a reduced Glasgow Coma Score, seizures, and severe lactic acidosis requiring intubation and ventilation. The patient also ingested 4800 mg of vitamin C per day. She responded rapidly to hydroxocobalamin treatment. The adverse drug reaction was rated probable on the Naranjo probability scale. Amygdalin and laetrile (a synthetic form of amygdalin) are commonly used as complementary or alternative medicine (CAM) for the treatment of cancer. Vitamin C is known to increase the in vitro conversion of amygdalin to cyanide and reduce body stores of cysteine, which is used to detoxify cyanide. Amygdalin has been used for decades by patients with cancer who are seeking alternative therapies, and severe reactions have not been reported with this dose. An interaction with vitamin C is a plausible explanation for this life-threatening response. This case highlights the fact that CAMs can produce life-threatening toxicity. This case also adds a further note of caution, namely, the potential for serious interactions between CAMs, particularly where there is no tradition of concomitant use.

  15. Separation and purification of amygdalin from thinned bayberry kernels by macroporous adsorption resins.

    Science.gov (United States)

    Wang, Tao; Lu, Shengmin; Xia, Qile; Fang, Zhongxiang; Johnson, Stuart

    2015-01-15

    To utilize the low-value thinned bayberry (Myrica rubra Sieb. et Zucc) kernels (TBKs) waste, an efficient method using macroporous adsorption resins (MARs) for separation and purification of amygdalin from TBKs crude extracts was developed. An aqueous crude sample was prepared from a methanol TBK extract, followed by resin separation. A series of MARs were initially screened for adsorption/desorption of amygdalin in the extract, and D101 was selected for characterization and method development. The static adsorption data of amygdalin on D101 was best fitted to the pseudo-second-order kinetics model. The solute affinity toward D101 at 30 °C was described and the equilibrium experimental data were well-fitted to Langmuir and Freundlich isotherms. Through one cycle of dynamic adsorption/desorption, the purity of amygdalin in the extract, determined by HPLC, increased about 17-fold from 4.8% to 82.0%, with 77.9% recovery. The results suggested that D101 resin effectively separate amygdalin from TBKs. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Molecular mechanism of amygdalin action in vitro: review of the latest research.

    Science.gov (United States)

    Liczbiński, Przemysław; Bukowska, Bożena

    2018-02-28

    Amygdalin, named as 'laetrile' and 'vitamin B-17' was initially supposed to be a safe drug for cancer treatment and was recognized by followers of natural medicine since it has been considered to be hydrolyzed only in cancer cells releasing toxic hydrogen cyanide (HCN), and thus destroying them. Unfortunately, current studies have shown that HCN is also released in normal cells, therefore it may not be safe for human organism. However, there have still been research works conducted on anti-cancer properties of this compound. In vitro experiments have shown induction of apoptosis by amygdalin as a result of increased expression of Bax protein and caspase-3 and reduced expression of antiapoptotic BcL-2protein. Amygdalin has also been shown to inhibit the adhesion of breast cancer cells, lung cancer cells and bladder cancer cells by decreased expression of integrin's, reduction of catenin levels and inhibition of the Akt-mTOR pathway, which may consequently lead to inhibition of metastases of cancer cells. It has also been revealed that amygdalin in renal cancer cells increased expression of p19 protein resulting in inhibition of cell transfer from G1-phase to S-phase, and thus inhibited cell proliferation. Other studies have indicated that amygdalin inhibits NF-kβ and NLRP3 signaling pathways, and consequently has anti-inflammatory effect due to reducing the expression of proinflammatory cytokines such as pro-IL-1β. Moreover, the effect of amygdalin on TGFβ/CTGF pathway, anti-fibrous activity and expression of follistatin resulting in activation of muscle cells growth has been reported. This compound might be applicable in the treatment of various cancer cell types.

  17. Optimization of technological procedure for amygdalin isolation from plum seeds (Pruni domesticae semen

    Directory of Open Access Journals (Sweden)

    Ivan M Savic

    2015-04-01

    Full Text Available The process of amygdalin extraction from plum seeds was optimized using central composite design (CCD and multilayer perceptron (MLP. The effect of time, ethanol concentration, solid-to-liquid ratio and temperature on the amygdalin content in the extracts was estimated using both mathematical models. The MLP 4-3-1 with exponential function in hidden layer and linear function in output layer was used for describing the extraction process. MLP model was more superior compared with CCD model due to better prediction ability. According to MLP model, the suggested optimal conditions are: time of 120 min, 100% (v/v ethanol, solid-to liquid ratio of 1:25 (m/v and temperature of 34.4 °C. The predicted value of amygdalin content in the dried extract (25.42 g per 100 g at these conditions was experimentally confirmed (25.30 g per 100 g of dried extract. Amygdalin (>90% was isolated from the complex extraction mixture and structurally characterized by FT-IR, UV and MS methods.

  18. Amygdalin (Laetrile) and prunasin beta-glucosidases: distribution in germ-free rat and in human tumor tissue.

    Science.gov (United States)

    Newmark, J; Brady, R O; Grimley, P M; Gal, A E; Waller, S G; Thistlethwaite, J R

    1981-01-01

    Amygdalin, the gentiobioside derivative of mandelonitrile commonly referred to as Laetrile, is presently under intensive investigation as a potential cancer chemotherapeutic agent. Because of this interest, we investigated the activity of beta-glucosidases that cleave glucose from amygdalin and from prunasin (mandelonitrile monoglucoside) in tissues from germ-free rats and in normal and neoplastic human tissues. Rat and human small intestinal mucosa contain high levels of activity of glucosidases that act on both of these cyanogenic glucosides. Release of glucose from these compounds was not detected in any of the human neoplastic tissues examined in the present study. These observations are consistent with reports of cyanide toxicity through the oral use of amygdalin or prunasin and pose serious questions concerning the alleged tumoricidal effect of amygdalin. PMID:6796962

  19. Amygdalin (Laetrile) and prunasin beta-glucosidases: distribution in germ-free rat and in human tumor tissue.

    OpenAIRE

    Newmark, J; Brady, R O; Grimley, P M; Gal, A E; Waller, S G; Thistlethwaite, J R

    1981-01-01

    Amygdalin, the gentiobioside derivative of mandelonitrile commonly referred to as Laetrile, is presently under intensive investigation as a potential cancer chemotherapeutic agent. Because of this interest, we investigated the activity of beta-glucosidases that cleave glucose from amygdalin and from prunasin (mandelonitrile monoglucoside) in tissues from germ-free rats and in normal and neoplastic human tissues. Rat and human small intestinal mucosa contain high levels of activity of glucosid...

  20. Quantification of amygdalin in nonbitter, semibitter, and bitter almonds (Prunus dulcis) by UHPLC-(ESI)QqQ MS/MS.

    Science.gov (United States)

    Lee, Jihyun; Zhang, Gong; Wood, Elizabeth; Rogel Castillo, Cristian; Mitchell, Alyson E

    2013-08-14

    Amygdalin is a cynaogenic diglucoside responsible for the bitterness of almonds. Almonds display three flavor phenotypes, nonbitter, semibitter, and bitter. Herein, the amygdalin content of 20 varieties of nonbitter, semibitter, and bitter almonds from four primary growing regions of California was determined using solid-phase extraction and ultrahigh-pressure liquid chromatography electrospray triple-quadrupole mass spectrometry (UHPLC-(ESI)QqQ MS/MS). The detection limit for this method is ≤ 0.1 ng/mL (3 times the signal-to-noise ratio) and the LOQ is 0.33 ng/mL (10 times the signal-to-noise ratio), allowing for the reliable quantitation of trace levels of amygdalin in nonbitter almonds (0.13 mg/kg almond). Results indicate that amygdalin concentrations for the three flavor phenotypes were significantly different (p < 0.001). The mean concentrations of amygdalin in nonbitter, semibitter, and bitter almonds are 63.13 ± 57.54, 992.24 ± 513.04, and 40060.34 ± 7855.26 mg/kg, respectively. Levels of amygdalin ranged from 2.16 to 157.44 mg/kg in nonbitter, from 523.50 to 1772.75 mg/kg in semibitter, and from 33006.60 to 53998.30 mg/kg in bitter almonds. These results suggest that phenotype classification may be achieved on the basis of amygdalin levels. Growing region had a statistically significant effect on the amygdalin concentration in commercial varieties (p < 0.05).

  1. Nutritional and Health-Related Effects of a Diet Containing Apple Seed Meal in Rats: The Case of Amygdalin

    Directory of Open Access Journals (Sweden)

    Paulina M. Opyd

    2017-10-01

    Full Text Available Apple pomace includes seeds that are rich in protein, fiber, and oil, which can be extracted from them. However, they can also contain a significant amount of toxigenic amygdalin. We hypothesized that amygdalin is a compound that significantly reduces the nutritional and health quality of defatted apple seeds. An experiment was conducted on rats that were distributed into three groups and fed with high-fructose diets. In the control (C and amygdalin (AMG groups, cellulose and casein were the source of dietary fiber and protein, respectively; in the apple seed meal (ASM group, dietary fiber and protein originated from the endosperm of apple seeds, which were previously defatted and ground. A diet fed to the ASM group also contained 0.24% of amygdalin from the meal, whereas the AMG diet was supplemented with the same amount of synthetic amygdalin. After 14 days of experimental feeding, the body weight of rats was decreased in the ASM group. When compared to the C group, apparent protein digestibility and nitrogen retention were increased in the AMG group, while both were decreased in the ASM group. In the small intestine, mucosal maltase activity was decreased in the AMG and ASM groups, whereas lactase activity was only decreased by dietary amygdalin. The caecal SCFA pool and butyrate concentration were significantly increased in the ASM group compared to the other groups. Moreover, the ASM diet increased plasma concentration of high density lipoprotein (HDL cholesterol and plasma antioxidant capacity of water-soluble substances (ACW. It also decreased the liver content of thiobarbituric acid-reactive substances (TBARS. In contrast, dietary amygdalin did not affect these indices. Dietary supplementation with apple seed meal can exert beneficial effects on the intestinal tract, blood lipid profile and antioxidant status of rats. In most cases, these effects are not limited by the presence of amygdalin. However, the nutritional value of protein from

  2. Oral and intramuscular application of cyanogenic glycoside amygdalin did not induce changes in haematological profile of male rabbits

    Directory of Open Access Journals (Sweden)

    Katarína Zbyňovská

    2017-01-01

    Full Text Available Amygdalin is a cyanogenic glycoside initially obtained from the seeds of bitter almonds. It is composed of one molecule of benzaldehyde, two molecules of glucose and one molecule of hydrocyanic acid. Various ways of amygdalin application play a different role in recipient organism. Intravenous infusion of amygdalin produced neither cyanidemia nor signs of toxicity, but oral administration resulted in significant blood cyanide levels. The present in vivo study was designed to reveal whether amygdalin is able to cause changes in the haematological profile and thus alter the physiological functions, using rabbits as a biological model. Adult male rabbits (n = 20 were randomly divided into five groups: the control group without any amygdalin administration, two experimental groups received a daily intramuscular injection of amygdalin at a dose 0.6 and 3.0 mg.kg-1 b.w. and other two groups were fed by crushed apricot seeds at dose 60 and 300 mg. kg-1 b.w., mixed with commercial feed over the period of 14 days. After two weeks, haematological parameters in whole blood were analysed (WBC - total white blood cell count, LYM - lymphocytes count, MID - medium size cell count, GRA - granulocytes count, RBC - red blood cell count, HGB - haemoglobin, HCT - haematocrit, MCV - mean corpuscular volume, MCH - mean corpuscular hemoglobin, MCHC - mean corpuscular hemoglobin concentration, RDWc - red cell distribution width, PLT - platelet count, PCT - platelet percentage, MPV - mean platelet volume, PDWc - platelet distribution width using haematology analyser Abacus junior VET. Our findings indicate that intramuscular and oral application of amygdalin for two weeks did not significantly affect the haematology parameters in experimental animals. In this study, no obvious beneficial or negative effects of amygdalin administration on the blood of male rabbits were observed.

  3. Bioactivity-guided fractionation identifies amygdalin as a potent neurotrophic agent from herbal medicine Semen Persicae extract.

    Science.gov (United States)

    Yang, Chuanbin; Zhao, Jia; Cheng, Yuanyuan; Li, Xuechen; Rong, Jianhui

    2014-01-01

    Herbal medicine Semen Persicae is widely used to treat blood stasis in Chinese medicine and other oriental folk medicines. Although little is known about the effects of Semen Persicae and its active compounds on neuron differentiation, our pilot study showed that Semen Persicae extract promoted neurite outgrowth in rat dopaminergic PC12 cells. In the present study, we developed a bioactivity-guided fractionation procedure for the characterization of the neurotrophic activity of Semen Persicae extract. The resultant fractions were assayed for neurite outgrowth in PC12 cells based on microscopic assessment. Through liquid-liquid extraction and reverse phase HPLC separation, a botanical glycoside amygdalin was isolated as the active compound responsible for the neurotrophic activity of Semen Persicae extract. Moreover, we found that amygdalin rapidly induced the activation of extracellular-signal-regulated kinase 1/2 (ERK1/2). A specific ERK1/2 inhibitor PD98059 attenuated the stimulatory effect of amygdalin on neurite outgrowth. Taken together, amygdalin was identified as a potent neurotrophic agent from Semen Persicae extract through a bioactivity-guided fractional procedure. The neurotrophic activity of amygdalin may be mediated by the activation of ERK1/2 pathway.

  4. Bioactivity-Guided Fractionation Identifies Amygdalin as a Potent Neurotrophic Agent from Herbal Medicine Semen Persicae Extract

    Directory of Open Access Journals (Sweden)

    Chuanbin Yang

    2014-01-01

    Full Text Available Herbal medicine Semen Persicae is widely used to treat blood stasis in Chinese medicine and other oriental folk medicines. Although little is known about the effects of Semen Persicae and its active compounds on neuron differentiation, our pilot study showed that Semen Persicae extract promoted neurite outgrowth in rat dopaminergic PC12 cells. In the present study, we developed a bioactivity-guided fractionation procedure for the characterization of the neurotrophic activity of Semen Persicae extract. The resultant fractions were assayed for neurite outgrowth in PC12 cells based on microscopic assessment. Through liquid-liquid extraction and reverse phase HPLC separation, a botanical glycoside amygdalin was isolated as the active compound responsible for the neurotrophic activity of Semen Persicae extract. Moreover, we found that amygdalin rapidly induced the activation of extracellular-signal-regulated kinase 1/2 (ERK1/2. A specific ERK1/2 inhibitor PD98059 attenuated the stimulatory effect of amygdalin on neurite outgrowth. Taken together, amygdalin was identified as a potent neurotrophic agent from Semen Persicae extract through a bioactivity-guided fractional procedure. The neurotrophic activity of amygdalin may be mediated by the activation of ERK1/2 pathway.

  5. Apricot and other seed stones: amygdalin content and the potential to obtain antioxidant, angiotensin I converting enzyme inhibitor and hypocholesterolemic peptides.

    Science.gov (United States)

    García, M C; González-García, E; Vásquez-Villanueva, R; Marina, M L

    2016-11-09

    Stones from olives and Prunus genus fruits are cheap and sustainable sources of proteins and could be potential sources of bioactive peptides. The main limitation to the use of these seeds is the presence of amygdalin. This work proposes to determine amygdalin in olive and Prunus seeds and in protein isolates obtained from them. Moreover, antioxidant, angiotensin I converting enzyme (ACE) inhibitor, and hypocholesterolemic properties will be evaluated in hydrolysates obtained from these seeds. Despite some seeds contained amygdalin, all protein isolates were free of this substance. Two different procedures to obtain bioactive peptides from protein isolates were examined: gastrointestinal digestion and processing with Alcalase, Flavourzyme or Thermolysin. Higher antioxidant, ACE inhibitor and hypocholesterolemic activities were observed when proteins were processed with Alcalase, Flavourzyme or Thermolysin. The highest antioxidant and ACE inhibitor capacities were observed for the Prunus genus seed hydrolysates while the highest capacity to reduce micellar cholesterol solubility was observed for the apricot and olive seed hydrolysates.

  6. Severe cyanide poisoning from an alternative medicine treatment with amygdalin and apricot kernels in a 4-year-old child.

    Science.gov (United States)

    Sauer, Harald; Wollny, Caroline; Oster, Isabel; Tutdibi, Erol; Gortner, Ludwig; Gottschling, Sven; Meyer, Sascha

    2015-05-01

    The use of complementary and alternative medicine (CAM) is widespread in children with cancer and is poorly regulated. Case report. We describe a case of severe cyanide poisoning arising from CAM use. A severely agitated, encephalopathic, unresponsive 4-year-old boy (initial Glasgow Coma Scale of 3) with a history of metastatic ependymoma was brought to our emergency department by ambulance services. Initial blood gas analysis demonstrated severe metabolic/lactic acidosis. On detailed questioning of the parents, the use of CAM including intravenous and oral "vitamin B 17" (amygdalin) and oral apricot kernel was reported. After administering sodium thiosulfate, rapid improvement in his medical condition with complete recovery without need for further intensive care treatment was seen. Serum cyanide level was markedly elevated. Cyanide poisoning can be the cause of severe encephalopathy in children receiving CAM treatment with substances containing cyanogenic glycosides.

  7. Laetrile/Amygdalin (PDQ)

    Science.gov (United States)

    ... integrative medicine—includes a broad range of healing philosophies, approaches, and therapies. A therapy is generally called ... the NLM's PubMed bibliographic database, CAM on PubMed features more than 230,000 references and abstracts for ...

  8. Determination of cyanogenic compound amygdalin and prunasin in almond kernels (prunus dulcis l) by using liquid chromatography

    OpenAIRE

    Arrázola, Guillermo; Grané, Nuria; Dicenta, Federico

    2013-01-01

    In the present work we applied a technics to determine and also permit quantification for separating the cyanogenic components that could be present in the mature almond seed (Prunus dulcis). Among the methods selected the chromatography of liquids of high resolution (HPLC), that permit the quantification of the glycosides for the separation process of lyophilization where there is less  surface there is more contact to sublimation with the degreased samples, looking at the obtain results and...

  9. Cyanogenic glucoside patterns in sweet and bitter almonds

    DEFF Research Database (Denmark)

    Sánchez Pérez, Raquel; Møller, Birger Lindberg; Olsen, Carl Erik

    2009-01-01

    When an almond (Prunus dulcis (Mill.) D. A. Webb) kernel containing cyanogenic glucosides (prunasin or amygdalin) is disintegrated, the glucosides will typically be hydrolyzed by amygdalin hydrolase, prunasin hydrolase, and mandelonitrile lyase with concomitant release of glucose, benzaldehyde...

  10. Changes in the electrophoretic pattern of glucosidases during apple seeds stratification

    OpenAIRE

    A. Podstolski; St. Lewak

    2015-01-01

    The technique of localization of glucosidases on disc electropherograms, based on reduction of 2,3,5-triphenyltetrazolium chloride by enzymatically liberated sugar is described. The changes in electrophoretic patterns of amygdaline, phloridzin and p-nitrophenyl-β-glucoside hydrolysing glucosidases during apple seed stratification were studied. The changes were correlated with earlier described changes in endogenous apple seed amygdaline and phloridzin contents.

  11. Prunasin hydrolases localization during fruit development in sweet and bitter almonds

    DEFF Research Database (Denmark)

    Sánchez Pérez, Raquel; Belmonte, Fara Sáez; Borch-Jensen, Jonas

    2012-01-01

    Amygdalin is a cyanogenic diglucoside and constitutes the bitter component in bitter almond (Prunus dulcis). Amygdalin concentration increases in the course of fruit formation. The monoglucoside prunasin is the precursor of amygdalin. Prunasin may be degraded to hydrogen cyanide, glucose...... identified in a sweet and a bitter almond cultivar. Both cDNAs are 86% identical on the nucleotide level, and their encoded proteins are 79% identical to each other. In addition, Ph691 and Ph692 display 92% and 86% nucleotide identity to Ph1 from black cherry (Prunus serotina). Both proteins were predicted...

  12. Changes in the electrophoretic pattern of glucosidases during apple seeds stratification

    Directory of Open Access Journals (Sweden)

    A. Podstolski

    2015-01-01

    Full Text Available The technique of localization of glucosidases on disc electropherograms, based on reduction of 2,3,5-triphenyltetrazolium chloride by enzymatically liberated sugar is described. The changes in electrophoretic patterns of amygdaline, phloridzin and p-nitrophenyl-β-glucoside hydrolysing glucosidases during apple seed stratification were studied. The changes were correlated with earlier described changes in endogenous apple seed amygdaline and phloridzin contents.

  13. Laetrile treatment for cancer.

    Science.gov (United States)

    Milazzo, Stefania; Horneber, Markus

    2015-04-28

    Laetrile is the name for a semi-synthetic compound which is chemically related to amygdalin, a cyanogenic glycoside from the kernels of apricots and various other species of the genus Prunus. Laetrile and amygdalin are promoted under various names for the treatment of cancer although there is no evidence for its efficacy. Due to possible cyanide poisoning, laetrile can be dangerous. To assess the alleged anti-cancer effect and possible adverse effects of laetrile and amygdalin. We searched the following databases: CENTRAL (2014, Issue 9); MEDLINE (1951-2014); EMBASE (1980-2014); AMED; Scirus; CINAHL (all from 1982-2015); CAMbase (from 1998-2015); the MetaRegister; the National Research Register; and our own files. We examined reference lists of included studies and review articles and we contacted experts in the field for knowledge of additional studies. We did not impose any restrictions of timer or language. Randomized controlled trials (RCTs) and quasi-RCTs. We searched eight databases and two registers for studies testing laetrile or amygdalin for the treatment of cancer. Two review authors screened and assessed articles for inclusion criteria. We located over 200 references, 63 were evaluated in the original review, 6 in the 2011 and none in this update. However, we did not identify any studies that met our inclusion criteria. The claims that laetrile or amygdalin have beneficial effects for cancer patients are not currently supported by sound clinical data. There is a considerable risk of serious adverse effects from cyanide poisoning after laetrile or amygdalin, especially after oral ingestion. The risk-benefit balance of laetrile or amygdalin as a treatment for cancer is therefore unambiguously negative.

  14. Beta-glycosidase (amygdalase and linamarase) from Endomyces fibuliger (LU677): formation and crude enzymes properties.

    NARCIS (Netherlands)

    Brimer, L.; Nout, M.J.R.; Tuncel, G.

    1998-01-01

    In our previous studies, the yeast Endomyces fibuliger LU677 was found to degrade amygdalin in bitter apricot seeds. The present investigation shows that E. fibuliger LU677 produces extracellular beta-glycosidase activity when grown in malt extract broth (MEB). Growth was very good at 25 degrees C

  15. Degradation of cyanogenic glycosides of bitter apricot seeds (Prunus armeniaca) by endogenous and added enzymes as affected by heat treatments and particle size.

    NARCIS (Netherlands)

    Tuncel, G.; Nout, M.J.R.; Brimer, L.

    1998-01-01

    Bitter apricot (Prunus armeniaca) seeds (kernels) are by-products of the apricot processing industry. They contain approximately 50-150 μMol/g (dry weight basis) of potentially toxic cyanogenic glycosides, mainly amygdalin and prunasin. The present paper deals with the degradation of these

  16. 75 FR 1623 - Jason Vale; Denial of Hearing; Final Debarment Order

    Science.gov (United States)

    2010-01-12

    ... the president of Christian Brother's Inc., guilty of three counts of criminal contempt in violation of... conduct relating to the regulation of a drug product. Mr. Vale's convictions for contempt stemmed from his... contempt trial showed that, in violation of the two injunctions, he continued to promote and sell amygdalin...

  17. Prunasin Hydrolases during Fruit Development in Sweet and Bitter Almonds1[C][W][OA

    Science.gov (United States)

    Sánchez-Pérez, Raquel; Belmonte, Fara Sáez; Borch, Jonas; Dicenta, Federico; Møller, Birger Lindberg; Jørgensen, Kirsten

    2012-01-01

    Amygdalin is a cyanogenic diglucoside and constitutes the bitter component in bitter almond (Prunus dulcis). Amygdalin concentration increases in the course of fruit formation. The monoglucoside prunasin is the precursor of amygdalin. Prunasin may be degraded to hydrogen cyanide, glucose, and benzaldehyde by the action of the β-glucosidase prunasin hydrolase (PH) and mandelonitirile lyase or be glucosylated to form amygdalin. The tissue and cellular localization of PHs was determined during fruit development in two sweet and two bitter almond cultivars using a specific antibody toward PHs. Confocal studies on sections of tegument, nucellus, endosperm, and embryo showed that the localization of the PH proteins is dependent on the stage of fruit development, shifting between apoplast and symplast in opposite patterns in sweet and bitter cultivars. Two different PH genes, Ph691 and Ph692, have been identified in a sweet and a bitter almond cultivar. Both cDNAs are 86% identical on the nucleotide level, and their encoded proteins are 79% identical to each other. In addition, Ph691 and Ph692 display 92% and 86% nucleotide identity to Ph1 from black cherry (Prunus serotina). Both proteins were predicted to contain an amino-terminal signal peptide, with the size of 26 amino acid residues for PH691 and 22 residues for PH692. The PH activity and the localization of the respective proteins in vivo differ between cultivars. This implies that there might be different concentrations of prunasin available in the seed for amygdalin synthesis and that these differences may determine whether the mature almond develops into bitter or sweet. PMID:22353576

  18. Does apricot seeds consumption cause changes in human urine?

    Directory of Open Access Journals (Sweden)

    Eva Tušimová

    2017-01-01

    Full Text Available Natural substances, such as amygdalin, used in alternative medicine gained high popularity. Common people as well as patients with different diseases have almost unlimited access to various natural supplements. To protect human health, it is very important to study effect of these substances. Amygdalin is a cyanogenic glucoside derived from seeds of rosaceous plants, for example seeds of bitter almonds (Prunus dulcis, or apricot, cherry, apple, peach, plum, etc. It is a natural product that owns antitumor activity, it has also been used for the treatment of asthma, bronchitis, emphysema, leprosy and diabetes and produces a kind of antitussive and antiasthmatic effects. The present in vivo study was designed to reveal whether amygdalin in apricot seeds has got an effect on human urine composition, pH value and urine associated health status after six weeks of oral administration. The study group finally consisted of 34 healthy adult volunteers (21 females and 13 males. All participants were asked to consume 60 mg.kg-1 body weight of bitter apricot seeds daily (approximately 3.0 mg.kg-1 of amygdalin during 6 weeks. During the experiment, three urine collections were carried out (first collection - at the beginning of the experiment; second collection - after 21 days; third collection - after 42 days. Quantification of urine calcium (Ca, magnesium (Mg, phosphorus (P, sodium (Na, potassium (K, chlorides (Cl-, urea and pH value after apricot seeds supplementation was performed. Statistical analysis of variance showed, that consumption of bitter apricot seeds during 42 days had a significant (p <0.01 effect on amount of calcium excreted in urine, though this decrease shifted its level from elevated mean value in control collection into normal physiological range. Significant changes were observed in urea (p <0.05 and phosphorus (p <0.01 levels in urine after apricot seed ingestion, but gender was also considered to be a source of their variation.

  19. Application of the Prunus spp. Cyanide Seed Defense System onto Wheat: Reduced Insect Feeding and Field Growth Tests.

    Science.gov (United States)

    Mora, Carlos A; Halter, Jonas G; Adler, Cornel; Hund, Andreas; Anders, Heidrun; Yu, Kang; Stark, Wendelin J

    2016-05-11

    Many crops are ill-protected against insect pests during storage. To protect cereal grains from herbivores during storage, pesticides are often applied. While pesticides have an undoubtable functionality, increasing concerns are arising about their application. In the present study, we investigated a bioinspired cyanogenic grain coating with amygdalin as cyanogenic precursor mimicking the feeding-triggered release of hydrogen cyanide (HCN) found for example in bitter almonds. The multilayer coating consisted of biodegradable polylactic acid with individual layers containing amygdalin or β-glucosidase which is capable of degrading amygdalin to HCN. This reaction occurred only when the layers were ruptured, e.g., by a herbivore attack. Upon feeding coated cyanogenic wheat grains to Tenebrio molitor (mealworm beetle), Rhizopertha dominica (lesser grain borer), and Plodia interpunctella (Indianmeal moth), their reproduction as well as consumption rate were significantly reduced, whereas germination ability increased compared to noncoated grains. In field experiments, we observed an initial growth delay compared to uncoated grains which became negligible at later growth stages. The here shown strategy to artificially apply a naturally occurring defense mechanisms could be expanded to other crops than wheat and has the potential to replace certain pesticides with the benefit of complete biodegradability and increased safety during storage.

  20. Cell lysis-free quantum dot multicolor cellular imaging-based mechanism study for TNF-α-induced insulin resistance.

    Science.gov (United States)

    Kim, Min Jung; Rangasamy, Sabarinathan; Shim, Yumi; Song, Joon Myong

    2015-01-27

    TNF-α is an inflammatory cytokine that plays an important role in insulin resistance observed in obesity and chronic inflammation. Many cellular components involved in insulin signaling cascade are known to be inhibited by TNF-α. Insulin receptor substrate (IRS)-1 is one of the major targets in TNF-α-induced insulin resistance. The serine phosphorylation of IRS-1 enables the inhibition of insulin signaling. Until now, many studies have been conducted to investigate the mechanism of TNF-α-induced insulin resistance based on Western blot. Intracellular protein kinase crosstalk is commonly encountered in inflammation-associated insulin resistance. The crosstalk among the signaling molecules obscures the precise role of kinases in insulin resistance. We have developed a cell lysis-free quantum dots (QDots) multicolor cellular imaging to identify the biochemical role of multiple kinases (p38, JNK, IKKβ, IRS1ser, IRS1tyr, GSK3β, and FOXO1) in inflammation-associated insulin resistance pathway with a single assay in one run. QDot-antibody conjugates were used as nanoprobes to simultaneously monitor the activation/deactivation of the above seven intracellular kinases in HepG2 cells. The effect of the test compounds on the suppression of TNF-α-induced insulin resistance was validated through kinase monitoring. Aspirin, indomethacin, cinnamic acid, and amygdalin were tested. Through the measurement of the glycogen level in HepG2 cell treated with TNF-α, it was found that aspirin and indomethacin increased glycogen levels by almost two-fold compared to amygdalin and cinnamic acid. The glucose production assay proved that cinnamic acid was much more efficient in suppressing glucose production, compared with MAP kinase inhibitors and non-steroidal anti-inflammatory drugs. QDot multicolor cellular imaging demonstrated that amygdalin and cinnamic acid selectively acted via the JNK1-dependent pathway to suppress the inflammation-induced insulin resistance and improve

  1. Vibrational microspectroscopy of food. Raman vs. FT-IR

    DEFF Research Database (Denmark)

    Thygesen, Lisbeth Garbrecht; Løkke, Mette Marie; Micklander, Elisabeth

    2003-01-01

    FT-IR and Raman spectroscopy are complementary techniques for the study of molecular vibrations and structure. The combination with a microscope results in an analytical method that allows spatially resolved investigation of the chemical composition of heterogeneous foods and food ingredients...... to different heterogeneous food systems. FT-IR and Raman microspectroscopy were applied to a number of different problems related to food analysis: (1) in situ determination of starch and pectin in the potato cell, (2) in situ determination of the distribution of amygdalin in bitter almonds, (3......) the composition of blisters found on the surface of bread, (4) the microstructure of high-lysine barley and (5) the composition of white spots in the shell of frozen shrimps. (C) 2003 Elsevier Science Ltd. All rights reserved....

  2. Lactobacillus oeni sp. nov., from wine.

    Science.gov (United States)

    Mañes-Lázaro, Rosario; Ferrer, Sergi; Rosselló-Mora, Ramón; Pardo, Isabel

    2009-08-01

    Ten Lactobacillus strains, previously isolated from different Bobal grape wines from the Utiel-Requena Origin Denomination of Spain, were characterized phylogenetically, genotypically and phenotypically. The 16S rRNA genes were sequenced and phylogenetic analysis showed that they form a tight phylogenetic clade that is closely related to reference strains Lactobacillus satsumensis NRIC 0604T, 'Lactobacillus uvarum' 8 and Lactobacillus mali DSM 20444T. DNA-DNA hybridization results confirmed the separation of the strains from other Lactobacillus species. Genotypically, the strains could be differentiated from their closest neighbours by 16S amplified rDNA restriction analysis and random amplified polymorphic DNA patterns. The strains were Gram-staining-positive, facultatively anaerobic rods that did not exhibit catalase activity. Phenotypically, they could be distinguished from their closest relatives by several traits such as their inabilities to grow at pH 3.3, to ferment sucrose, amygdalin and arbutin or to hydrolyse aesculin. The characteristics of the ten wine isolates suggest that they represent a novel species, for which the name Lactobacillus oeni sp. nov. is proposed. The type strain is 59bT (=CECT 7334T=DSM 19972T).

  3. Laetrile for cancer: a systematic review of the clinical evidence.

    Science.gov (United States)

    Milazzo, Stefania; Lejeune, Stephane; Ernst, Edzard

    2007-06-01

    Many cancer patients treated with conventional therapies also try 'alternative' cancer treatments. Laetrile is one such 'alternative' that is claimed to be effective by many alternative therapists. Laetrile is also sometimes referred to as amygdalin, although the two are not the same. The aim of this review is to summarize all types of clinical data related to the effectiveness or safety of laetrile interventions as a treatment of any type of cancer. All types of clinical studies containing original clinical data of laetrile interventions were included. We searched the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE (from 1951), EMBASE (from 1980), Allied and Complementary Medicine (AMED), Scirus, CancerLit, Cumulative Index to Nursing and Allied Health (CINAHL; all from 1982), CAMbase (from 1998), the MetaRegister, the National Research Register, and our own files. For reports on the safety of laetrile, we also searched the Uppsala database. No language restrictions were imposed. Thirty six reports met our inclusion criteria. No controlled clinical trials were found. Three articles were nonconsecutive case series, 2 were consecutive case series, 6 were best case series, and 25 were case reports. None of these publications proved the effectiveness of laetrile. Therefore, the claim that laetrile has beneficial effects for cancer patients is not supported by sound clinical data.

  4. Targeting druggable enzymome by exploiting natural medicines: An in silico-in vitro integrated approach to combating multidrug resistance in bacterial infection.

    Science.gov (United States)

    Zang, Ping; Gong, Aijie; Zhang, Peirong; Yu, Jinling

    2016-01-01

    Antibiotic resistance is a major clinical and public health problem. Development of new therapeutic approaches to prevent bacterial multidrug resistance during antimicrobial chemotherapy has thus been becoming a primary consideration in the medicinal chemistry community. We described a new strategy that combats multidrug resistance by using natural medicines to target the druggable enzymome (i.e., enzymatic proteome) of Staphylococcus aureus. A pipeline of integrating in silico analysis and in vitro assay was purposed to identify antibacterial agents from a large library of natural products with diverse structures, high drug-likeness, and relatively low flexibility, with which a systematic interactome of 826 natural product candidates with 125 functionally essential S. aureus enzymes was constructed via a high-throughput cross-docking approach. The obtained docking score matrix was then converted into an array of synthetic scores; each corresponds to a natural product candidate. By systematically examining the docking results, a number of highly promising candidates with potent antibacterial activity were suggested. Three natural products, i.e., radicicol, jorumycin, and amygdalin, have been determined to possess strong broad-spectrum potency combating both the drug-resistant and drug-sensitive strains (MIC value <10 μg/ml). In addition, some natural products such as tetrandrine, bilobalide, and arbutin exhibited selective inhibition on different strains. Combined quantum mechanics/molecular mechanics analysis revealed diverse non-bonded interactions across the complex interfaces of newly identified antibacterial agents with their putative targets GyrB ATPase and tyrosyl-tRNA synthetase.

  5. Qualitative and Quantitative Analysis of the Major Constituents in Chinese Medical Preparation Lianhua-Qingwen Capsule by UPLC-DAD-QTOF-MS

    Directory of Open Access Journals (Sweden)

    Weina Jia

    2015-01-01

    Full Text Available Lianhua-Qingwen capsule (LQC is a commonly used Chinese medical preparation to treat viral influenza and especially played a very important role in the fight against severe acute respiratory syndrome (SARS in 2002-2003 in China. In this paper, a rapid ultraperformance liquid chromatography coupled with diode-array detector and quadrupole time-of-flight mass spectrometry (UPLC-DAD-QTOF-MS method was established for qualitative and quantitative analysis of the major constituents of LQC. A total of 61 compounds including flavonoids, phenylpropanoids, anthraquinones, triterpenoids, iridoids, and other types of compounds were unambiguously or tentatively identified by comparing the retention times and accurate mass measurement with reference compounds or literature data. Among them, twelve representative compounds were further quantified as chemical markers in quantitative analysis, including salidroside, chlorogenic acid, forsythoside E, cryptochlorogenic acid, amygdalin, sweroside, hyperin, rutin, forsythoside A, phillyrin, rhein, and glycyrrhizic acid. The UPLC-DAD method was evaluated with linearity, limit of detection (LOD, limit of quantification (LOQ, precision, stability, repeatability, and recovery tests. The results showed that the developed quantitative method was linear, sensitive, and precise for the quality control of LQC.

  6. A qNMR approach for bitterness phenotyping and QTL identification in an F1 apricot progeny.

    Science.gov (United States)

    Cervellati, Claudia; Paetz, Christian; Dondini, Luca; Tartarini, Stefano; Bassi, Daniele; Schneider, Bernd; Masia, Andrea

    2012-06-30

    In apricot the bitter flavor of seeds is determined by the amount of amygdalin, a cyanogenic glucoside whose cleavage by endogenous enzymes, upon seed crushing, releases toxic hydrogen cyanide. The presence of such a poisonous compound is an obstacle to the use and commercialization of apricot seeds for human or animal nutrition. To investigate the genetic loci involved in the determination of the bitter phenotype a combined genetic and biochemical approach was used, involving a candidate gene analysis and a fine phenotyping via quantitative nuclear magnetic resonance, on an F1 apricot progeny. Seven functional markers were developed and positioned on the genetic maps of the parental lines Lito and BO81604311 and seven putative QTLs for the bitterness level were determined. In conclusion, this analysis has revealed some loci involved in the shaping of the bitterness degree; has proven the complexity of the bitter trait in apricot, reporting an high variance of the QTLs found over the years; has showed the critical importance of the phenotyping step, whose precision and accuracy is a pre-requisite when studying such a multifactorial character. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Purification and characterization of vanilla bean (Vanilla planifolia Andrews) beta-D-glucosidase.

    Science.gov (United States)

    Odoux, Eric; Chauwin, Audrey; Brillouet, Jean-Marc

    2003-05-07

    Vanilla bean beta-D-glucosidase was purified to apparent homogeneity by successive anion exchange, hydrophobic interaction, and size-exclusion chromatography. The enzyme is a tetramer (201 kDa) made up of four identical subunits (50 kDa). The optimum pH was 6.5, and the optimum temperature was 40 degrees C at pH 7.0. K(m) values for p-nitrophenyl-beta-D-glucopyranoside and glucovanillin were 1.1 and 20.0 mM, respectively; V(max) values were 4.5 and 5.0 microkat.mg(-1). The beta-D-glucosidase was competitively inhibited by glucono-delta-lactone and 1-deoxynojirimycin, with respective K(i) values of 670 and 152 microM, and not inhibited by 2 M glucose. The beta-D-glucosidase was not inhibited by N-ethylmaleimide and DTNB and fully inhibited by 1.5-2 M 2-mercaptoethanol and 1,4-dithiothreitol. The enzyme showed decreasing activity on p-nitrophenyl-beta-D-fucopyranoside, p-nitrophenyl-beta-D-glucopyranoside, p-nitrophenyl-beta-D-galactopyranoside, and p-nitrophenyl-beta-D-xylopyranoside. The enzyme was also active on prunasin, esculin, and salicin and inactive on cellobiose, gentiobiose, amygdalin, phloridzin, indoxyl-beta-D-glucopyranoside, and quercetin-3-beta-D-glucopyranoside.

  8. Phenotypic variation in Lactococcus lactis subsp. lactis isolates derived from intestinal tracts of marine and freshwater fish.

    Science.gov (United States)

    Itoi, S; Yuasa, K; Washio, S; Abe, T; Ikuno, E; Sugita, H

    2009-09-01

    We compared phenotypic characteristics of Lactococcus lactis subsp. lactis derived from different sources including the intestinal tract of marine fish and freshwater fish, and cheese starter culture. In the phylogenetic analysis based on partial 16S rRNA gene nucleotide sequences (1371 bp), freshwater fish-, marine fish- and cheese starter culture-derived strains were identical to that of L. lactis subsp. lactis previously reported. Fermentation profiles determined using the API 50 CH system were similar except for fermentation of several sugars including l-arabinose, mannitol, amygdalin, saccharose, trehalose, inulin and gluconate. The strains did have distinct levels of halotolerance: marine fish-derived strains > cheese starter-derived strain > freshwater fish-derived isolate. Lactococcus lactis subsp. lactis showed extensive diversity in phenotypic adaptation to various environments. The phenotypic properties of these strains suggested that L. lactis subsp. lactis strains from fish intestine have additional functions compared with the cheese starter-derived strain that has previously described. The unique phenotypic traits of the fish intestinal tract-derived L. lactis subsp. lactis might make them useful as a probiotics in aquaculture, and contribute to the development of functional foods and novel food additives, since the strains derived from fish intestines might have additional functions such as antibacterial activity.

  9. Neurovascular compression of cranial nerves: CT and MRI findings

    International Nuclear Information System (INIS)

    Almeida Llanos, Julio; Sinner, Ricardo; Nagel, Jorge

    2002-01-01

    Purpose: The compression of a nervous structure by an aberrant vessel may be asymptomatic or produce an important symptoms, in these cases CT and MRI show relevant information. Materials and Methods: Between January 1998 and March 2001, we studied 27 patients: 8 with trigeminal neuralgia, 7 with hemi facial spasm, 4 vertigo and tinnitus, 2 hemianopsia, 1 with neuralgia of the amygdalin fossa, 1 with bitonal voice, 1 with tongue deviation with fascicular movements, 2 essential hypertension and 1 with severe headache. All of them had a neurologic evaluation from 2 specialists and 2 neuro radiologists interpreted the results. Results: The CT and RMI images with special sequences allowed to prove the compression of the entry segments of the V, VII, IX, X and XII cranial nerves, of the optic chiasma and the ventrolateral aspect of the medulla oblongata in close relation with the vasopressor centre. Also they demonstrate a rare vessel in the Silvio aqueduct avoiding the normal flow of the CSF. Of the total of patients that were studied, 37% had surgical confirmation. Conclusion: CT and RMI are sensitive and specific methods for the detection of vascular compressions of nervous structures. (author)

  10. 1H-NMR, 1H-NMR T2-edited, and 2D-NMR in bipolar disorder metabolic profiling.

    Science.gov (United States)

    Sethi, Sumit; Pedrini, Mariana; Rizzo, Lucas B; Zeni-Graiff, Maiara; Mas, Caroline Dal; Cassinelli, Ana Cláudia; Noto, Mariane N; Asevedo, Elson; Cordeiro, Quirino; Pontes, João G M; Brasil, Antonio J M; Lacerda, Acioly; Hayashi, Mirian A F; Poppi, Ronei; Tasic, Ljubica; Brietzke, Elisa

    2017-12-01

    The objective of this study was to identify molecular alterations in the human blood serum related to bipolar disorder, using nuclear magnetic resonance (NMR) spectroscopy and chemometrics. Metabolomic profiling, employing 1 H-NMR, 1 H-NMR T 2 -edited, and 2D-NMR spectroscopy and chemometrics of human blood serum samples from patients with bipolar disorder (n = 26) compared with healthy volunteers (n = 50) was performed. The investigated groups presented distinct metabolic profiles, in which the main differential metabolites found in the serum sample of bipolar disorder patients compared with those from controls were lipids, lipid metabolism-related molecules (choline, myo-inositol), and some amino acids (N-acetyl-L-phenyl alanine, N-acetyl-L-aspartyl-L-glutamic acid, L-glutamine). In addition, amygdalin, α-ketoglutaric acid, and lipoamide, among other compounds, were also present or were significantly altered in the serum of bipolar disorder patients. The data presented herein suggest that some of these metabolites differentially distributed between the groups studied may be directly related to the bipolar disorder pathophysiology. The strategy employed here showed significant potential for exploring pathophysiological features and molecular pathways involved in bipolar disorder. Thus, our findings may contribute to pave the way for future studies aiming at identifying important potential biomarkers for bipolar disorder diagnosis or progression follow-up.

  11. Qualitative and Quantitative Analysis of the Major Constituents in Chinese Medical Preparation Lianhua-Qingwen Capsule by UPLC-DAD-QTOF-MS

    Science.gov (United States)

    Jia, Weina; Wang, Chunhua; Wang, Yuefei; Pan, Guixiang; Jiang, Miaomiao; Li, Zheng; Zhu, Yan

    2015-01-01

    Lianhua-Qingwen capsule (LQC) is a commonly used Chinese medical preparation to treat viral influenza and especially played a very important role in the fight against severe acute respiratory syndrome (SARS) in 2002-2003 in China. In this paper, a rapid ultraperformance liquid chromatography coupled with diode-array detector and quadrupole time-of-flight mass spectrometry (UPLC-DAD-QTOF-MS) method was established for qualitative and quantitative analysis of the major constituents of LQC. A total of 61 compounds including flavonoids, phenylpropanoids, anthraquinones, triterpenoids, iridoids, and other types of compounds were unambiguously or tentatively identified by comparing the retention times and accurate mass measurement with reference compounds or literature data. Among them, twelve representative compounds were further quantified as chemical markers in quantitative analysis, including salidroside, chlorogenic acid, forsythoside E, cryptochlorogenic acid, amygdalin, sweroside, hyperin, rutin, forsythoside A, phillyrin, rhein, and glycyrrhizic acid. The UPLC-DAD method was evaluated with linearity, limit of detection (LOD), limit of quantification (LOQ), precision, stability, repeatability, and recovery tests. The results showed that the developed quantitative method was linear, sensitive, and precise for the quality control of LQC. PMID:25654135

  12. Identification and functional properties of dominant lactic acid bacteria isolated from Kahudi, a traditional rapeseed fermented food product of Assam, India

    Directory of Open Access Journals (Sweden)

    Gunajit Goswami

    2017-09-01

    Full Text Available Kahudi or Pani tenga is a very unique fermented mustard product of Assam that is prepared by mixing coarsely ground mustard with extracts of acidic Garcinia pedunculata (Thekera or tamarind. Kahudi is produced through a spontaneous and uncontrolled solid state fermentation and very little scientific effort has been directed to understand its microflora and their functional properties. In this paper, we report the microbial flora and their dynamics during Kahudi fermentation with special emphasis on lactic acid bacteria (LAB. LAB were found to be dominant (8 log CFU/g over other microbial flora (4 log CFU/g during the fermentation process leading to Kahudi formation. The microbial load in Kahudi did not include any mycelial molds or pathogenic enteric bacteria. Combination of phenotypic parameters, biochemical tests, and 16S rDNA gene sequencing revealed the dominant group of LAB as Enterococcus durans, Lactobacillus plantarum, Lactobacillus fermentum, and Lactobacillus casei. The sugar fermentation and enzyme profile analysis revealed the ability of the microbial consortia to metabolize an array of indigestible sugars including D-mannose, mannitol, sorbitol, methyl-α-D-mannopyranoside, methyl-α-D-glucopyranoside, N-acetylglucosamine, amygdalin, and arbutin. Although the isolates showed good acid phosphatase activity they had weak extracellular phytase activity. This is the first report on the microbial dynamics and involvement of LAB during Kahudi fermentation.

  13. Bumblebees are not deterred by ecologically relevant concentrations of nectar toxins.

    Science.gov (United States)

    Tiedeken, Erin Jo; Stout, Jane C; Stevenson, Philip C; Wright, Geraldine A

    2014-05-01

    Bees visit flowers to collect nectar and pollen that contain nutrients and simultaneously facilitate plant sexual reproduction. Paradoxically, nectar produced to attract pollinators often contains deterrent or toxic plant compounds associated with herbivore defence. The functional significance of these nectar toxins is not fully understood, but they may have a negative impact on pollinator behaviour and health, and, ultimately, plant pollination. This study investigates whether a generalist bumblebee, Bombus terrestris, can detect naturally occurring concentrations of nectar toxins. Using paired-choice experiments, we identified deterrence thresholds for five compounds found in the nectar of bee-pollinated plants: quinine, caffeine, nicotine, amygdalin and grayanotoxin. The deterrence threshold was determined when bumblebees significantly preferred a sucrose solution over a sucrose solution containing the compound. Bumblebees had the lowest deterrence threshold for the alkaloid quinine (0.01 mmol l(-1)); all other compounds had higher deterrence thresholds, above the natural concentration range in floral nectar. Our data, combined with previous work using honeybees, suggest that generalist bee species have poor acuity for the detection of nectar toxins. The fact that bees do not avoid nectar-relevant concentrations of these compounds likely indicates that it is difficult for them to learn to associate floral traits with the presence of toxins, thus maintaining this trait in plant populations.

  14. Comparative pharmacokinetic and tissue distribution profiles of four major bioactive components in normal and hepatic fibrosis rats after oral administration of Fuzheng Huayu recipe.

    Science.gov (United States)

    Yang, Tao; Liu, Shan; Wang, Chang-Hong; Tao, Yan-Yan; Zhou, Hua; Liu, Cheng-Hai

    2015-10-10

    Fuzheng Huayu recipe (FZHY) is a herbal product for the treatment of liver fibrosis approved by the Chinese State Food and Drug Administration (SFDA), but its pharmacokinetics and tissue distribution had not been investigated. In this study, the liver fibrotic model was induced with intraperitoneal injection of dimethylnitrosamine (DMN), and FZHY was given orally to the model and normal rats. The plasma pharmacokinetics and tissue distribution profiles of four major bioactive components from FZHY were analyzed in the normal and fibrotic rat groups using an ultrahigh performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method. Results revealed that the bioavailabilities of danshensu (DSS), salvianolic acid B (SAB) and rosmarinic acid (ROS) in liver fibrotic rats increased 1.49, 3.31 and 2.37-fold, respectively, compared to normal rats. There was no obvious difference in the pharmacokinetics of amygdalin (AMY) between the normal and fibrotic rats. The tissue distribution of DSS, SAB, and AMY trended to be mostly in the kidney and lung. The distribution of DSS, SAB, and AMY in liver tissue of the model rats was significantly decreased compared to the normal rats. Significant differences in the pharmacokinetics and tissue distribution profiles of DSS, ROS, SAB and AMY were observed in rats with hepatic fibrosis after oral administration of FZHY. These results provide a meaningful basis for developing a clinical dosage regimen in the treatment of hepatic fibrosis by FZHY. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Separation, Characterization and Dose-Effect Relationship of the PPARγ-Activating Bio-Active Constituents in the Chinese Herb Formulation ‘San-Ao Decoction’

    Directory of Open Access Journals (Sweden)

    Chun-Mei Liu

    2009-10-01

    Full Text Available San-ao decoction (SAD, comprising Herba Ephedrae, Radix et Rhizoma Glycyrrhizae and Seneb Armeniacae Amarum, is one of the most popular traditional Chinese medicine (TCM formulae for asthma. Peroxisome proliferator-activated receptors (PPARs areey regulators of lipid and glucose metabolism and have become important therapeutic targets for various deseases, PPARγ activation might exhibit anti-inflammatory properties in different chronic inflammatory processes. The EtOAc fraction of SAD showed a significant effect on PPARγ activation. A simple and rapid method has been established for separation and characterization of the main compounds in the PPARγ-activating fraction of SAD by ultra-fast HPLC coupled with quadropole time-of-flight mass pectrometry (UPLC-Q-TOF/MS. A total of 10 compounds were identified in the activating fraction of SAD, including amygdalin (1, liquiritin (2, 6′-acetyliquiritin (3, liquiritigenin (4, isoliquiritigenin (5, formononetin (6, licoisoflavanone (7, glycycoumarin (8, glycyrol (9 and uercetin (10. The results also characterized formononetin as a predominant component in this fraction. The dose-effect relationship comparison study of formononetin and the EtOAc fraction of SAD by adding formononetin was performed, the results suggested that formononetin was the major component of the EtOAc fraction of SAD responsible for activating PPARγ, and the method will possibly be applied to study the complex biological active constituents of other TCMs.

  16. Influence of apricot kernels on blood plasma levels of selected anterior pituitary hormones in male and female rabbits in vivo

    Directory of Open Access Journals (Sweden)

    Katarína Michalcová

    2016-05-01

    Full Text Available Amygdalin is represented in the family Rosacea more precisely in an apricot kernels and an almonds. There are a lot of components such as trace elements, vitamins, carbohydrates, organic acids, esters, phenols, terpenoids, except cyanogenic glycoside in the seeds. It is known that bioregulators can modulate the activity of specific enzymes and hormones very exactly at low levels and in a short time. The aim of our study was examine the effects of selected doses (0, 60, 300, 420 mg/kg b.w. of apricot kernels in feed on the plasma levels of anterior pituitary hormones in young male and female rabbits in vivo. A sensitive, biochemical method, ELISA was used to determine the hormones prolactin (PRL, luteinizing hormone (LH and follicle stimulating hormone (FSH. 28-day application of apricot kernels did not affect the concentration of PRL, LH, FSH in blood plasma of males. No significant (P≤0.05 differences in case of PRL and LH levels in the blood plasma of females were found. On the other hand a significant (P≤0.05 inhibition of FSH release induced by kernels at the doses 300, 420 mg/kg was found. Our results indicate that apricot kernels could affect secretion of anterior pituitary hormone FSH in female rabbits.

  17. Major gene mutations in fruit tree domestication

    International Nuclear Information System (INIS)

    Spiegel-Roy, P.

    1989-01-01

    Though fruit gathering from the wild began long before domestication, fruit tree domestication started only after the establishment of grain agriculture. Banana, fig, date, grape and olive were among the first fruit trees domesticated. Most fruit trees are outbreeders, highly heterozygous and vegetatively propagated. Knowledge of genetics and economic traits controlled by major genes is limited. Ease of vegetative propagation has played a prominent part in domestication; advances in propagation technology will play a role in domestication of new crops. Changes toward domestication affected by major genes include self-fertility in peach, apricot and sour cherry, while the emergence of self-fertile almond populations is more recent and due probably to introgression from Amygdalus webbii. Self-compatibility in the sweet cherry has been attained only by pollen irradiation. A single gene controls sex in Vitis. Wild grapes are dioecious, with most domesticated cultivars hermaphrodite, and only a few females. In the papaya changes from dioecism to hermaphroditism have also occurred. Self-compatible systems have also been selected during domestication in Rubus. Changes towards parthenocarpy and seedlessness during domestication occurred in the banana, citrus, grape, fig and pineapple. In the banana, parthenocarpy is due to three complementary dominant genes; stenospermocarpy in the grape depends on two complementary recessive genes; parthenocarpy and sterility in citrus seems more complicated; however, it can be induced in genetic material of suitable background with ease by irradiation. Presence of persistent syconia in the fig is controlled by a mutant allele P dominant to wild +. Thornlessness in blackberry is recessive, while in the pineapple spineless forms are dominant. Changes affecting fruit composition owing to major genes include the disappearance of amygdalin present in bitter almonds (bitter kernel recessive to sweet), shell hardness in almond, and a recessive

  18. Traditional Persian topical medications for gastrointestinal diseases

    Directory of Open Access Journals (Sweden)

    Laleh Dehghani Tafti

    2017-03-01

    Full Text Available Drug delivery across the skin is used for several millennia to ease gastrointestinal (GI ailments in Traditional Persian Medicine (TPM. TPM topical remedies are generally being applied on the stomach, lower abdomen, lower back and liver to alleviate GI illnesses such as dyspepsia, gastritis, GI ulcers, inflammatory bowel disease, intestinal worms and infections. The aim of the present study is to survey the topical GI remedies and plant species used as ingredients for these remedies in TPM. In addition, pharmacological activities of the mentioned plants have been discussed. For this, we searched major TPM textbooks to find plants used to cure GI problems in topical use. Additionally, scientific databases were searched to obtain pharmacological data supporting the use of TPM plants in GI diseases. Rosa × damascena, Pistacia lentiscus, Malus domestica, Olea europaea and Artemisia absinthium are among the most frequently mentioned ingredients of TPM remedies. β-asarone, amygdalin, boswellic acids, guggulsterone, crocin, crocetin, isomasticadienolic acid, and cyclotides are the most important phytochemicals present in TPM plants with GI-protective activities. Pharmacological studies demonstrated GI activities for TPM plants supporting their extensive traditional use. These plants play pivotal role in alleviating GI disorders through exhibiting numerous activities including antispasmodic, anti-ulcer, anti-secretory, anti-colitis, anti-diarrheal, antibacterial and anthelmintic properties. Several mechanisms underlie these activities including the alleviation of oxidative stress, exhibiting cytoprotective activity, down-regulation of the inflammatory cytokines, suppression of the cellular signaling pathways of inflammatory responses, improving re-epithelialization and angiogenesis, down-regulation of anti-angiogenic factors, blocking activity of acetylcholine, etc.

  19. Lactobacillus herbarum sp. nov., a species related to Lactobacillus plantarum.

    Science.gov (United States)

    Mao, Yuejian; Chen, Meng; Horvath, Philippe

    2015-12-01

    Strain TCF032-E4 was isolated from a traditional Chinese fermented radish. It shares >99% 16S rRNA sequence identity with L. plantarum, L. pentosus and L. paraplantarum. This strain can ferment ribose, galactose, glucose, fructose, mannose, mannitol, N-acetylglucosamine, amygdalin, arbutin, salicin, cellobiose, maltose, lactose, melibiose, trehalose and gentiobiose. It cannot ferment sucrose, which can be used by L. pentosus, L. paraplantarum, L. fabifermentans, L. xiangfangensis and L. mudanjiangensis, as well as most of the L. plantarum strains (88.7%). TCF032-E4 cannot grow at temperature above 32 °C. This strain shares 78.2-83.6% pheS (phenylalanyl-tRNA synthetase alpha subunit) and 89.5-94.9% rpoA (RNA polymerase alpha subunit) sequence identity with L. plantarum, L. pentosus, L. paraplantarum, L. fabifermentans, L. xiangfangensis and L. mudanjiangensis. These results indicate that TCF032-E4 represents a distinct species. This hypothesis was further confirmed by whole-genome sequencing and comparison with available genomes of related species. The draft genome size of TCF032-E4 is approximately 2.9 Mb, with a DNA G+C content of 43.5 mol%. The average nucleotide identity (ANI) between TCF032-E4 and related species ranges from 79.0 to 81.1%, the highest ANI value being observed with L. plantarum subsp. plantarum ATCC 14917T. A novel species, Lactobacillus herbarum sp. nov., is proposed with TCF032-E4T ( = CCTCC AB2015090T = DSM 100358T) as the type strain.

  20. High content cell-based assay for the inflammatory pathway

    Science.gov (United States)

    Mukherjee, Abhishek; Song, Joon Myong

    2015-07-01

    Cellular inflammation is a non-specific immune response to tissue injury that takes place via cytokine network orchestration to maintain normal tissue homeostasis. However chronic inflammation that lasts for a longer period, plays the key role in human diseases like neurodegenerative disorders and cancer development. Understanding the cellular and molecular mechanisms underlying the inflammatory pathways may be effective in targeting and modulating their outcome. Tumor necrosis factor alpha (TNF-α) is a pro-inflammatory cytokine that effectively combines the pro-inflammatory features with the pro-apoptotic potential. Increased levels of TNF-α observed during acute and chronic inflammatory conditions are believed to induce adverse phenotypes like glucose intolerance and abnormal lipid profile. Natural products e. g., amygdalin, cinnamic acid, jasmonic acid and aspirin have proven efficacy in minimizing the TNF-α induced inflammation in vitro and in vivo. Cell lysis-free quantum dot (QDot) imaging is an emerging technique to identify the cellular mediators of a signaling cascade with a single assay in one run. In comparison to organic fluorophores, the inorganic QDots are bright, resistant to photobleaching and possess tunable optical properties that make them suitable for long term and multicolor imaging of various components in a cellular crosstalk. Hence we tested some components of the mitogen activated protein kinase (MAPK) pathway during TNF-α induced inflammation and the effects of aspirin in HepG2 cells by QDot multicolor imaging technique. Results demonstrated that aspirin showed significant protective effects against TNF-α induced cellular inflammation. The developed cell based assay paves the platform for the analysis of cellular components in a smooth and reliable way.

  1. Comparative analysis of the main bioactive components of San-ao decoction and its series of formulations.

    Science.gov (United States)

    Shu, Xiaoyun; Tang, Yuping; Jiang, Chenxue; Shang, Erxing; Fan, Xinshen; Ding, Anwei

    2012-11-01

    A high performance liquid chromatographic (HPLC) method with diode array detection (DAD) was established for simultaneous determination of seven main bioactive components in San-ao decoction and its series of formulae (San-ao decoction, Wu-ao decoction, Qi-ao decoction and Jia-wei San-ao decoction). Seven compounds were analyzed simultaneously with a XTerra C(18) column (4.6 mm × 250 mm, 5 µm) using a linear gradient elution of a mobile phase containing acetonitrile (A) and a buffer solution (0.02 mol/L potassium dihydrogen phosphate and adjusted to pH 3 using phosphoric acid) (B); the flow rate was 1.0 mL/min. The sample was detected with DAD at 210, 254 and 360 nm and the column was maintained at 30 °C. All the compounds showed good linearity (r2 > 0.9984) in the tested concentration range. The precisions were evaluated by intra-day and inter-day tests, and relative standard deviation (R.S.D.) values within the range of 0.83%–2.53% and 0.64%–2.77% were reported, respectively. The recoveries of the quantified compounds were observed to cover a range from 95.34% and 104.82% with R.S.D. values less than 2.72%. The validated method was successfully applied for the simultaneous determination of seven main bioactive components including ephedrine (1), amygdalin (2), liquiritin (3), benzoic acid (4), isoliquiritin (5), formononetin (6) and glycyrrhizic acid (7) in San-ao decoction and its series of formulae. The results also showed a wide variation in the content of the identified active compounds in these samples, which could also be helpful to illustrate the drug interactions after some herbs combined in different formulations.

  2. Patient perspectives: Tijuana cancer clinics in the post-NAFTA era.

    Science.gov (United States)

    Moss, Ralph W

    2005-03-01

    This article contains observations and historical considerations on cancer and complementary and alternative medicine (CAM) in the Tijuana, Mexico, area. There are approximately 2 dozen such clinics in Tijuana, some of which have been treating international cancer patients since 1963. Among the first clinics to be established were the Bio-Medical Center (Hoxsey therapy), Oasis of Hope (a Laetrile-oriented clinic), and a series of clinics affiliated with the Gerson diet therapy. These original clinics were established mainly by American citizens in response to increased regulation of nonstandard therapies in the United States, particularly after passage of the Kefauver-Harris Amendments to the Food, Drug and Cosmetics Act in 1962. In the 1970s, the Tijuana clinics proliferated with the upsurge of interest in Laetrile (amygdalin). By 1978, 70,000 US cancer patients had taken Laetrile for cancer treatment, and many of those had gone to Tijuana to receive it. The popularity of the Tijuana clinics peaked in the mid-1980s. Although many new clinics opened after then, a dozen have folded in the past 10 years alone. The turning point for the clinics came with passage of the North American Free Trade Agreement (NAFTA), which facilitated greater cooperation among the antifraud authorities of Canada, the United States, and Mexico. In 1994, the tripartite members of NAFTA formed the Mexico-United States-Canada Health Fraud Work Group, or MUCH, whose brief is to strengthen the 3 countries' ability to prevent cross-border health fraud. Under the auspices of MUCH and its members, regulatory crackdowns began in earnest early in 2001. The clinics were also badly affected by the general downturn in travel after 9/11. If these trends continue, many Tijuana clinics are unlikely to survive. Some suggestions are made for how the Tijuana clinics could be reorganized and reformed to minimize the likelihood of governmental actions and to maximize public support. Such reforms center on 5

  3. Effect of apricot seeds on renal structure of rabbits

    Directory of Open Access Journals (Sweden)

    Anna Kolesárová

    2017-01-01

    Full Text Available Amygdalin is the major cyanogenic glycoside present in apricot seeds and is degraded to cyanide by chewing or grinding. The animal data available did not provide a suitable basis for acute human health hazard. The apricot seeds are potentially useful in human nutrition and for treatment of several diseases especially cancer. The present study demonstrates the potential effect of short-term oral application of apricot seeds on renal structure of rabbit as a biological model. Meat line P91 Californian rabbits from the experimental farm of the Animal Production Research Centre Nitra (Slovak Republic were used in the experiments. The animals were randomly divided into the three groups (C-control, P1, P2 - experimental groups leading to 8 rabbits in each group. The control group received no apricot seeds while the experimental groups P1 and P2 received a daily dose 60 and 300 mg.kg-1 b.w. of crushed apricot seeds mixed with feed during 28 days, respectively. After 28 days all animals were slaughtered and kidney tissue was processed by standard histopathological techniques. Tissue sections were observed under an optical microscope with camera Olympus CX41 (Olympus, Japan at a magnification of 10 x 0.40. The basic morphometric criteria of the preparations were quantified using image program MeasurIT (Olympus, Japan. From each sample (n = 24 three histological sections with five different fields of view in each section were analysed and followed parameters were analysed: diameter of renal corpuscles (RC, diameter of glomeruli (G, diameter of tubules (T and the height of epithelial tubules (E. In our study, we observed a slight increase in the most frequent occurrence parenchyma dystrophy experimental animals. These changes were more pronounced in the experimental group (P2 rabbits received a daily dose of 300 mg.kg-1 of body weight of apricot seeds. Most often, we have found enlarged glomeruli filling the entire space of the capsule, and also glomerular