WorldWideScience

Sample records for amygdala mediates anxiety-like

  1. CRF1-R activation of the dynorphin/kappa opioid system in the mouse basolateral amygdala mediates anxiety-like behavior.

    Directory of Open Access Journals (Sweden)

    Michael R Bruchas

    Full Text Available Stress is a complex human experience and having both rewarding and aversive motivational properties. The adverse effects of stress are well documented, yet many of underlying mechanisms remain unclear and controversial. Here we report that the anxiogenic properties of stress are encoded by the endogenous opioid peptide dynorphin acting in the basolateral amygdala. Using pharmacological and genetic approaches, we found that the anxiogenic-like effects of Corticotropin Releasing Factor (CRF were triggered by CRF(1-R activation of the dynorphin/kappa opioid receptor (KOR system. Central CRF administration significantly reduced the percent open-arm time in the elevated plus maze (EPM. The reduction in open-arm time was blocked by pretreatment with the KOR antagonist norbinaltorphimine (norBNI, and was not evident in mice lacking the endogenous KOR ligand dynorphin. The CRF(1-R agonist stressin 1 also significantly reduced open-arm time in the EPM, and this decrease was blocked by norBNI. In contrast, the selective CRF(2-R agonist urocortin III did not affect open arm time, and mice lacking CRF(2-R still showed an increase in anxiety-like behavior in response to CRF injection. However, CRF(2-R knockout animals did not develop CRF conditioned place aversion, suggesting that CRF(1-R activation may mediate anxiety and CRF(2-R may encode aversion. Using a phosphoselective antibody (KORp to identify sites of dynorphin action, we found that CRF increased KORp-immunoreactivity in the basolateral amygdala (BLA of wildtype, but not in mice pretreated with the selective CRF(1-R antagonist, antalarmin. Consistent with the concept that acute stress or CRF injection-induced anxiety was mediated by dynorphin release in the BLA, local injection of norBNI blocked the stress or CRF-induced increase in anxiety-like behavior; whereas norBNI injection in a nearby thalamic nucleus did not. The intersection of stress-induced CRF and the dynorphin/KOR system in the BLA was

  2. Anterior olfactory organ removal produces anxiety-like behavior and increases spontaneous neuronal firing rate in basal amygdala.

    Science.gov (United States)

    Contreras, Carlos M; Gutiérrez-García, Ana G; Molina-Jiménez, Tania

    2013-09-01

    Some chemical cues may produce signs of anxiety and fear mediated by amygdala nuclei, but unknown is the role of two anterior olfactory epithelial organs, the septal and vomeronasal organs (SO-VNOs). The effects of SO-VNO removal were explored in different groups of Wistar rats using two complementary approaches: (i) the assessment of neuronal firing rate in basal and medial amygdala nuclei and (ii) behavioral testing. Fourteen days after SO-VNO removal, spontaneous activity in basal and medial amygdala nuclei in one group was determined using single-unit extracellular recordings. A separate group of rats was tested in the elevated plus maze, social interaction test, and open field test. Compared with sham-operated and intact control rats, SO-VNO removal produced a higher neuronal firing rate in the basal amygdala but not medial amygdala. In the behavioral tests, SO-VNO removal increased signs of anxiety in the elevated plus maze, did not alter locomotion, and increased self-directed behavior, reflecting anxiety-like behavior. Histological analysis showed neuronal destruction in the accessory olfactory bulb but not anterior olfactory nucleus in the SO-VNO group. The present results suggest the participation of SO-VNO/accessory olfactory bulb/basal amygdala relationships in the regulation of anxiety through a process of disinhibition. PMID:23721965

  3. Anterior olfactory organ removal produces anxiety-like behavior and increases spontaneous neuronal firing rate in basal amygdala.

    Science.gov (United States)

    Contreras, Carlos M; Gutiérrez-García, Ana G; Molina-Jiménez, Tania

    2013-09-01

    Some chemical cues may produce signs of anxiety and fear mediated by amygdala nuclei, but unknown is the role of two anterior olfactory epithelial organs, the septal and vomeronasal organs (SO-VNOs). The effects of SO-VNO removal were explored in different groups of Wistar rats using two complementary approaches: (i) the assessment of neuronal firing rate in basal and medial amygdala nuclei and (ii) behavioral testing. Fourteen days after SO-VNO removal, spontaneous activity in basal and medial amygdala nuclei in one group was determined using single-unit extracellular recordings. A separate group of rats was tested in the elevated plus maze, social interaction test, and open field test. Compared with sham-operated and intact control rats, SO-VNO removal produced a higher neuronal firing rate in the basal amygdala but not medial amygdala. In the behavioral tests, SO-VNO removal increased signs of anxiety in the elevated plus maze, did not alter locomotion, and increased self-directed behavior, reflecting anxiety-like behavior. Histological analysis showed neuronal destruction in the accessory olfactory bulb but not anterior olfactory nucleus in the SO-VNO group. The present results suggest the participation of SO-VNO/accessory olfactory bulb/basal amygdala relationships in the regulation of anxiety through a process of disinhibition.

  4. Chemogenetic and Optogenetic Activation of Gαs Signaling in the Basolateral Amygdala Induces Acute and Social Anxiety-Like States.

    Science.gov (United States)

    Siuda, Edward R; Al-Hasani, Ream; McCall, Jordan G; Bhatti, Dionnet L; Bruchas, Michael R

    2016-07-01

    Anxiety disorders are debilitating psychiatric illnesses with detrimental effects on human health. These heightened states of arousal are often in the absence of obvious threatening cues and are difficult to treat owing to a lack of understanding of the neural circuitry and cellular machinery mediating these conditions. Activation of noradrenergic circuitry in the basolateral amygdala is thought to have a role in stress, fear, and anxiety, and the specific cell and receptor types responsible is an active area of investigation. Here we take advantage of two novel cellular approaches to dissect the contributions of G-protein signaling in acute and social anxiety-like states. We used a chemogenetic approach utilizing the Gαs DREADD (rM3Ds) receptor and show that selective activation of generic Gαs signaling is sufficient to induce acute and social anxiety-like behavioral states in mice. Second, we use a recently characterized chimeric receptor composed of rhodopsin and the β2-adrenergic receptor (Opto-β2AR) with in vivo optogenetic techniques to selectively activate Gαs β-adrenergic signaling exclusively within excitatory neurons of the basolateral amygdala. We found that optogenetic induction of β-adrenergic signaling in the basolateral amygdala is sufficient to induce acute and social anxiety-like behavior. These findings support the conclusion that activation of Gαs signaling in the basolateral amygdala has a role in anxiety. These data also suggest that acute and social anxiety-like states may be mediated through signaling pathways identical to β-adrenergic receptors, thus providing support that inhibition of this system may be an effective anxiolytic therapy. PMID:26725834

  5. Evidence that limbic neural plasticity in the right hemisphere mediates partial kindling induced lasting increases in anxiety-like behavior: effects of low frequency stimulation (quenching?) on long term potentiation of amygdala efferents and behavior following kindling.

    Science.gov (United States)

    Adamec, R E

    1999-08-21

    Behavioral and physiological effects of partial kindling of the right ventral hippocampus by perforant path (PP) stimulation were investigated in the cat. Partial kindling produced lasting changes in affect (increased defensive response to rats) and predatory attack (decreased pawing and biting attack). Partial kindling also induced long term potentiation (LTP) of amygdala efferent transmission to ventromedial hypothalamus (VMH) and periaqueductal gray (PAG) in left and right hemispheres. LTP of field population spikes evoked in area CA3 by PP stimulation was also observed. LTP was detected using evoked potential methods. These findings parallel previous studies of left PP-CA3 partial kindling. Analysis of covariance removing effects of LTP from behavioral changes suggests that initiation of increased defensiveness at 2 days after completion of partial kindling depended on LTP of left and right amygdalo-VMH and right amygdalo-PAG transmission. From 6 days after kindling onward, increased defensiveness depended on LTP of right amygdalo-PAG transmission. Depotentiation of amygdala efferent LTP by bilateral low frequency amygdala stimulation (LFS) (900 pulses at 1 Hz, once daily for 7 days) selectively reduced LTP in right amygdala efferents. At the same time, defensive, but not predatory attack behavior, was returned to levels seen prior to partial kindling. Both depotentiation and reduction of defensiveness were transient. Defensiveness increased to post-kindling levels by 76 days after LFS. At the same time, LTP was restored in the right amygdalo-PAG pathway. In contrast LTP in the right amygdalo-VMH pathway remained depotentiated. Effects of LFS were not due to damage, as thresholds to evoke amygdala efferent response were unchanged. These findings suggest that lasting change in affect following partial hippocampal kindling depends on LTP of right amygdala efferent transmission to PAG. The findings parallel studies of non-convulsant pharmacological induction of

  6. Melanocortin-4 receptor in the medial amygdala regulates emotional stress-induced anxiety-like behaviour, anorexia and corticosterone secretion

    OpenAIRE

    Liu, Jing; Garza, Jacob C.; Li, Wei; Lu, Xin-Yun

    2011-01-01

    The central melanocortin system has been implicated in emotional stress-induced anxiety, anorexia and activation of the hypothalamo-pituitary-adrenal (HPA) axis. However, the underlying neural substrates have not been identified. The medial amygdala (MeA) is highly sensitive to emotional stress and expresses high levels of the melanocortin-4 receptor (MC4R). This study investigated the effects of activation and blockade of MC4R in the MeA on anxiety-like behaviour, food intake and corticoster...

  7. Increased anxiety-like behaviour and altered GABAergic system in the amygdala and cerebellum of VPA rats - An animal model of autism.

    Science.gov (United States)

    Olexová, Lucia; Štefánik, Peter; Kršková, Lucia

    2016-08-26

    Anxiety is one of the associated symptoms of autism spectrum disorder. According to the literature, increases in anxiety are accompanied by GABAergic system deregulation. The aim of our study, performed using an animal model of autism in the form of rats prenatally treated with valproic acid (VPA rats), was to investigate changes in anxiety-like behaviour and the gene expression of molecules that control levels of the inhibitory neurotransmitter γ-aminobutyric acid (GABA) in the brain. Anxiety-like behaviours were investigated using zone preferences in the open field test. The levels of the 65 and 67kDa enzymes of l-glutamic acid decarboxylase (GAD) mRNAs and type 1 GABA transporter (GAT1) were evaluated in the amygdala, as well as GABA producing enzymes in the cortex layer of the cerebellum. Our research showed that adult VPA rats spent less time in the inner zone of the testing chamber and more time in the outer zone of the testing chamber in the open field test. We also found that adult VPA rats had increased expression of GAT1 in the amygdala, as well as decreased levels of GAD65 and GAD67 mRNA in the cerebellum compared to control animals. These findings support the existence of a relationship between increased anxiety-like behaviour and changes in the regulation of the GABAergic system in VPA rats. PMID:27353514

  8. Injections of urocortin 1 into the basolateral amygdala induce anxiety-like behavior and c-Fos expression in brainstem serotonergic neurons.

    Science.gov (United States)

    Spiga, F; Lightman, S L; Shekhar, A; Lowry, C A

    2006-01-01

    The amygdala plays a key role in emotional processing and anxiety-related physiological and behavioral responses. Previous studies have shown that injections of the anxiety-related neuropeptide corticotropin-releasing factor or the related neuropeptide urocortin 1 into the region of the basolateral amygdaloid nucleus induce anxiety-like behavior in several behavioral paradigms. Brainstem serotonergic systems in the dorsal raphe nucleus and median raphe nucleus may be part of a distributed neural system that, together with the basolateral amygdala, regulates acute and chronic anxiety states. We therefore investigated the effect of an acute bilateral injection of urocortin 1 into the basolateral amygdala on behavior in the social interaction test and on c-Fos expression within serotonergic neurons in the dorsal raphe nucleus and median raphe nucleus. Male rats were implanted with bilateral cannulae directed at the region of the basolateral amygdala; 72 h after surgery, rats were injected with urocortin 1 (50 fmol/100 nl) or vehicle (100 nl of 1% bovine serum albumin in distilled water). Thirty minutes after injection, a subgroup of rats from each experimental group was exposed to the social interaction test; remaining animals were left in the home cage. Two hours after injection rats were perfused with paraformaldehyde and brains were removed and processed for immunohistochemistry. Acute injection of urocortin 1 had anxiogenic effects in the social interaction test, reducing total interaction time without affecting locomotor activity or exploratory behavior. These behavioral effects were associated with increases in c-Fos expression within brainstem serotonergic neurons. In home cage rats and rats exposed to the social interaction test, urocortin 1 treatment increased the number of c-Fos-immunoreactive serotonergic neurons within subdivisions of both the dorsal raphe nucleus and median raphe nucleus. These results are consistent with the hypothesis that the

  9. Oxidative stress mediates dibutyl phthalateinduced anxiety-like behavior in Kunming mice.

    Science.gov (United States)

    Yan, Biao; Guo, Junhui; Liu, Xudong; Li, Jinquan; Yang, Xu; Ma, Ping; Wu, Yang

    2016-07-01

    Among all phthalate esters, dibutyl phthalate (DBP) is only second to di-(2-ethylhexyl) phthalate (DEHP) in terms of adverse health outcomes, and its potential cerebral neurotoxicity has raised concern in recent years. DBP exposure has been reported to be responsible for neurobehavioral effects and related neurological diseases. In this study, we found that neurobehavioral changes induced by DBP may be mediated by oxidative damage in the mouse brain, and that the co-administration of Mangiferin (MAG, 50mg/kg/day) may protect the brain against oxidative damage caused by DBP exposure. The results of ethological analysis (elevated plus maze test and open-field test), histopathological examination of the brain, and assessments of oxidative stress (OS) in the mouse brain showed that there is a link between oxidative stress and anxiety-like behavior produced by DBP at higher doses (25 or 125mg/kg/day). Biomarkers of oxidative stress encompass reactive oxygen species (ROS), glutathione (GSH), malondialdehyde (MDA) and DPC coefficients (DPC). MAG (50mg/kg/day),administered as an antioxidant,can attenuatetheanxiety-like behavior of the tested mice. PMID:27262985

  10. Cocaine-conditioned place preference is predicted by previous anxiety-like behavior and is related to an increased number of neurons in the basolateral amygdala.

    Science.gov (United States)

    Ladrón de Guevara-Miranda, David; Pavón, Francisco J; Serrano, Antonia; Rivera, Patricia; Estivill-Torrús, Guillermo; Suárez, Juan; Rodríguez de Fonseca, Fernando; Santín, Luis J; Castilla-Ortega, Estela

    2016-02-01

    The identification of behavioral traits that could predict an individual's susceptibility to engage in cocaine addiction is relevant for understanding and preventing this disorder, but investigations of cocaine addicts rarely allow us to determinate whether their behavioral attributes are a cause or a consequence of drug use. To study the behaviors that predict cocaine vulnerability, male C57BL/6J mice were examined in a battery of tests (the elevated plus maze, hole-board, novelty preference in the Y-Maze, episodic-like object recognition and forced swimming) prior to training in a cocaine-conditioned place preference (CPP) paradigm to assess the reinforcing value of the drug. In a second study, the anatomical basis of high and low CPP in the mouse brain was investigated by studying the number of neurons (neuronal nuclei-positive) in two addiction-related limbic regions (the medial prefrontal cortex and the basolateral amygdala) and the number of dopaminergic neurons (tyrosine hydroxylase-positive) in the ventral tegmental area by immunohistochemistry and stereology. Correlational analyses revealed that CPP behavior was successfully predicted by anxiety-like measures in the elevated plus maze (i.e., the more anxious mice showed more preference for the cocaine-paired compartment) but not by the other behaviors analyzed. In addition, increased numbers of neurons were found in the basolateral amygdala of the high CPP mice, a key brain center for anxiety and fear responses. The results support the theory that anxiety is a relevant factor for cocaine vulnerability, and the basolateral amygdala is a potential neurobiological substrate where both anxiety and cocaine vulnerability could overlap. PMID:26523857

  11. Maternal testosterone exposure increases anxiety-like behavior and impacts the limbic system in the offspring.

    Science.gov (United States)

    Hu, Min; Richard, Jennifer Elise; Maliqueo, Manuel; Kokosar, Milana; Fornes, Romina; Benrick, Anna; Jansson, Thomas; Ohlsson, Claes; Wu, Xiaoke; Skibicka, Karolina Patrycja; Stener-Victorin, Elisabet

    2015-11-17

    During pregnancy, women with polycystic ovary syndrome (PCOS) display high circulating androgen levels that may affect the fetus and increase the risk of mood disorders in offspring. This study investigated whether maternal androgen excess causes anxiety-like behavior in offspring mimicking anxiety disorders in PCOS. The PCOS phenotype was induced in rats following prenatal androgen (PNA) exposure. PNA offspring displayed anxiety-like behavior in the elevated plus maze, which was reversed by flutamide [androgen receptor (AR) blocker] and tamoxifen [selective estrogen receptor (ER) modulator]. Circulating sex steroids did not differ between groups at adult age. The expression of serotonergic and GABAergic genes associated with emotional regulation in the amygdala was consistent with anxiety-like behavior in female, and partly in male PNA offspring. Furthermore, AR expression in amygdala was reduced in female PNA offspring and also in females exposed to testosterone in adult age. To determine whether AR activation in amygdala affects anxiety-like behavior, female rats were given testosterone microinjections into amygdala, which resulted in anxiety-like behavior. Together, these data describe the anxiety-like behavior in PNA offspring and adult females with androgen excess, an impact that seems to occur during fetal life, and is mediated via AR in amygdala, together with changes in ERα, serotonergic, and GABAergic genes in amygdala and hippocampus. The anxiety-like behavior following testosterone microinjections into amygdala demonstrates a key role for AR activation in this brain area. These results suggest that maternal androgen excess may underpin the risk of developing anxiety disorders in daughters and sons of PCOS mothers. PMID:26578781

  12. Activation of the sympathetic nervous system mediates hypophagic and anxiety-like effects of CB₁ receptor blockade.

    Science.gov (United States)

    Bellocchio, Luigi; Soria-Gómez, Edgar; Quarta, Carmelo; Metna-Laurent, Mathilde; Cardinal, Pierre; Binder, Elke; Cannich, Astrid; Delamarre, Anna; Häring, Martin; Martín-Fontecha, Mar; Vega, David; Leste-Lasserre, Thierry; Bartsch, Dusan; Monory, Krisztina; Lutz, Beat; Chaouloff, Francis; Pagotto, Uberto; Guzman, Manuel; Cota, Daniela; Marsicano, Giovanni

    2013-03-19

    Complex interactions between periphery and the brain regulate food intake in mammals. Cannabinoid type-1 (CB1) receptor antagonists are potent hypophagic agents, but the sites where this acute action is exerted and the underlying mechanisms are not fully elucidated. To dissect the mechanisms underlying the hypophagic effect of CB1 receptor blockade, we combined the acute injection of the CB1 receptor antagonist rimonabant with the use of conditional CB1-knockout mice, as well as with pharmacological modulation of different central and peripheral circuits. Fasting/refeeding experiments revealed that CB1 receptor signaling in many specific brain neurons is dispensable for the acute hypophagic effects of rimonabant. CB1 receptor antagonist-induced hypophagia was fully abolished by peripheral blockade of β-adrenergic transmission, suggesting that this effect is mediated by increased activity of the sympathetic nervous system. Consistently, we found that rimonabant increases gastrointestinal metabolism via increased peripheral β-adrenergic receptor signaling in peripheral organs, including the gastrointestinal tract. Blockade of both visceral afferents and glutamatergic transmission in the nucleus tractus solitarii abolished rimonabant-induced hypophagia. Importantly, these mechanisms were specifically triggered by lipid-deprivation, revealing a nutrient-specific component acutely regulated by CB1 receptor blockade. Finally, peripheral blockade of sympathetic neurotransmission also blunted central effects of CB1 receptor blockade, such as fear responses and anxiety-like behaviors. These data demonstrate that, independently of their site of origin, important effects of CB1 receptor blockade are expressed via activation of peripheral sympathetic activity. Thus, CB1 receptors modulate bidirectional circuits between the periphery and the brain to regulate feeding and other behaviors.

  13. Stress-induced Alterations in Anxiety-like Behavior and Adaptations in Plasticity in the Bed Nucleus of the Stria Terminalis

    OpenAIRE

    Conrad, Kelly L.; Louderback, Katherine M; Gessner, Caitlin P; Winder, Danny G.

    2011-01-01

    In vulnerable individuals, exposure to stressors can result in chronic disorders such as generalized anxiety disorder (GAD), major depressive disorder (MDD), and post-traumatic stress disorder (PTSD). The extended amygdala is critically implicated in mediating acute and chronic stress responsivity and anxiety-like behaviors. The bed nucleus of the stria terminalis (BNST), a subregion of the extended amygdala, serves as a relay of corticolimbic information to the paraventricular nucleus of the...

  14. Ethanol and corticotropin releasing factor receptor modulation of central amygdala neurocircuitry: An update and future directions.

    Science.gov (United States)

    Silberman, Yuval; Winder, Danny G

    2015-05-01

    The central amygdala is a critical brain region for many aspects of alcohol dependence. Much of the work examining the mechanisms by which the central amygdala mediates the development of alcohol dependence has focused on the interaction of acute and chronic ethanol with central amygdala corticotropin releasing factor signaling. This work has led to a great deal of success in furthering the general understanding of central amygdala neurocircuitry and its role in alcohol dependence. Much of this work has primarily focused on the hypothesis that ethanol utilizes endogenous corticotropin releasing factor signaling to upregulate inhibitory GABAergic transmission in the central amygdala. Work that is more recent suggests that corticotropin releasing factor also plays an important role in mediating anxiety-like behaviors via the enhancement of central amygdala glutamatergic transmission, implying that ethanol/corticotropin releasing factor interactions may modulate excitatory neurotransmission in this brain region. In addition, a number of studies utilizing optogenetic strategies or transgenic mouse lines have begun to examine specific central amygdala neurocircuit dynamics and neuronal subpopulations to better understand overall central amygdala neurocircuitry and the role of neuronal subtypes in mediating anxiety-like behaviors. This review will provide a brief update on this literature and describe some potential future directions that may be important for the development of better treatments for alcohol addiction.

  15. Genetic deletion of monoacylglycerol lipase leads to impaired cannabinoid receptor CB₁R signaling and anxiety-like behavior.

    Science.gov (United States)

    Imperatore, Roberta; Morello, Giovanna; Luongo, Livio; Taschler, Ulrike; Romano, Rosaria; De Gregorio, Danilo; Belardo, Carmela; Maione, Sabatino; Di Marzo, Vincenzo; Cristino, Luigia

    2015-11-01

    Endocannabinoids (eCB) are key regulators of excitatory/inhibitory neurotransmission at cannabinoid-1-receptor (CB1 R)-expressing axon terminals. The most abundant eCB in the brain, that is 2-arachidonoylglycerol (2-AG), is hydrolyzed by the enzyme monoacylglycerol lipase (MAGL), whose chronic inhibition in the brain was reported to cause CB1 R desensitization. We employed the MAGL knock-out mouse (MAGL-/-), a genetic model of congenital and sustained elevation of 2-AG levels in the brain, to provide morphological and biochemical evidence for β-arrestin2-mediated CB1 R desensitization in brain regions involved in the control of emotional states, that is, the prefrontal cortex (PFC), amygdala, hippocampus and cerebellar cortex. We found a widespread CB1 R/β-arrestin2 co-expression in the mPFC, amygdala and hippocampus accompanied by impairment of extracellular signal-regulated kinase signaling and elevation of vesicular glutamate transporter (VGluT1) at CB1 R-positive excitatory terminals in the mPFC, or vesicular GABA transporter (VGAT) at CB1 R-positive inhibitory terminals in the amygdala and hippocampus. The impairment of CB1 R signaling in MAGL-/- mice was also accompanied by enhanced excitatory drive in the basolateral amygdala (BLA)-mPFC circuit, with subsequent elevation of glutamate release to the mPFC and anxiety-like and obsessive-compulsive behaviors, as assessed by the light/dark box and marble burying tests, respectively. Collectively, these data provide evidence for a β-arrestin2-mediated desensitization of CB1 R in MAGL-/- mice, with impact on the synaptic plasticity of brain circuits involved in emotional functions. In this study, the authors provide evidence that congenitally enhanced endocannabinoid levels in the neuronal circuits underlying anxiety-like behavioral states (mainly medial prefrontal cortex, amygdala and hippocampus) lead to CB1R desenistization and anxiety and depression. MAGL-/- mice, a model of congenital overactivity of the e

  16. Odor-mediated taste learning requires dorsal hippocampus, but not basolateral amygdala activity

    OpenAIRE

    Wheeler, Daniel S.; Chang, Stephen E.; Holland, Peter C

    2012-01-01

    Mediated learning is a unique cognitive phenomenon in which mental representations of physically absent stimuli enter into associations with directly-activated representations of physically present stimuli. Three experiments investigated the functional physiology of mediated learning involving the use of odor-taste associations. In Experiments 1a and 1b, basolateral amygdala lesions failed to attenuate mediated taste aversion learning. In Experiment 2, dorsal hippocampus inactivation impaired...

  17. Increasing brain angiotensin converting enzyme 2 activity decreases anxiety-like behavior in male mice by activating central Mas receptors.

    Science.gov (United States)

    Wang, Lei; de Kloet, Annette D; Pati, Dipanwita; Hiller, Helmut; Smith, Justin A; Pioquinto, David J; Ludin, Jacob A; Oh, S Paul; Katovich, Michael J; Frazier, Charles J; Raizada, Mohan K; Krause, Eric G

    2016-06-01

    Over-activation of the brain renin-angiotensin system (RAS) has been implicated in the etiology of anxiety disorders. Angiotensin converting enzyme 2 (ACE2) inhibits RAS activity by converting angiotensin-II, the effector peptide of RAS, to angiotensin-(1-7), which activates the Mas receptor (MasR). Whether increasing brain ACE2 activity reduces anxiety by stimulating central MasR is unknown. To test the hypothesis that increasing brain ACE2 activity reduces anxiety-like behavior via central MasR stimulation, we generated male mice overexpressing ACE2 (ACE2 KI mice) and wild type littermate controls (WT). ACE2 KI mice explored the open arms of the elevated plus maze (EPM) significantly more than WT, suggesting increasing ACE2 activity is anxiolytic. Central delivery of diminazene aceturate, an ACE2 activator, to C57BL/6 mice also reduced anxiety-like behavior in the EPM, but centrally administering ACE2 KI mice A-779, a MasR antagonist, abolished their anxiolytic phenotype, suggesting that ACE2 reduces anxiety-like behavior by activating central MasR. To identify the brain circuits mediating these effects, we measured Fos, a marker of neuronal activation, subsequent to EPM exposure and found that ACE2 KI mice had decreased Fos in the bed nucleus of stria terminalis but had increased Fos in the basolateral amygdala (BLA). Within the BLA, we determined that ∼62% of GABAergic neurons contained MasR mRNA and expression of MasR mRNA was upregulated by ACE2 overexpression, suggesting that ACE2 may influence GABA neurotransmission within the BLA via MasR activation. Indeed, ACE2 overexpression was associated with increased frequency of spontaneous inhibitory postsynaptic currents (indicative of presynaptic release of GABA) onto BLA pyramidal neurons and central infusion of A-779 eliminated this effect. Collectively, these results suggest that ACE2 may reduce anxiety-like behavior by activating central MasR that facilitate GABA release onto pyramidal neurons within the

  18. Divergent responses of inflammatory mediators within the amygdala and medial prefrontal cortex to acute psychological stress.

    Science.gov (United States)

    Vecchiarelli, Haley A; Gandhi, Chaitanya P; Gray, J Megan; Morena, Maria; Hassan, Kowther I; Hill, Matthew N

    2016-01-01

    There is now a growing body of literature that indicates that stress can initiate inflammatory processes, both in the periphery and brain; however, the spatiotemporal nature of this response is not well characterized. The aim of this study was to examine the effects of an acute psychological stress on changes in mRNA and protein levels of a wide range of inflammatory mediators across a broad temporal range, in key corticolimbic brain regions involved in the regulation of the stress response (amygdala, hippocampus, hypothalamus, medial prefrontal cortex). mRNA levels of inflammatory mediators were analyzed immediately following 30min or 120min of acute restraint stress and protein levels were examined 0h through 24h post-termination of 120min of acute restraint stress using both multiplex and ELISA methods. Our data demonstrate, for the first time, that exposure to acute psychological stress results in an increase in the protein level of several inflammatory mediators in the amygdala while concomitantly producing a decrease in the protein level of multiple inflammatory mediators within the medial prefrontal cortex. This pattern of changes seemed largely restricted to the amygdala and medial prefrontal cortex, with stress producing few changes in the mRNA or protein levels of inflammatory mediators within the hippocampus or hypothalamus. Consistent with previous research, stress resulted in a general elevation in multiple inflammatory mediators within the circulation. These data indicate that neuroinflammatory responses to stress do not appear to be generalized across brain structures and exhibit a high degree of spatiotemporal specificity. Given the impact of inflammatory signaling on neural excitability and emotional behavior, these data may provide a platform with which to explore the importance of inflammatory signaling within the prefrontocortical-amygdala circuit in the regulation of the neurobehavioral responses to stress.

  19. Eyes wide shut: amygdala mediates eyes-closed effect on emotional experience with music.

    Directory of Open Access Journals (Sweden)

    Yulia Lerner

    Full Text Available The perceived emotional value of stimuli and, as a consequence the subjective emotional experience with them, can be affected by context-dependent styles of processing. Therefore, the investigation of the neural correlates of emotional experience requires accounting for such a variable, a matter of an experimental challenge. Closing the eyes affects the style of attending to auditory stimuli by modifying the perceptual relationship with the environment without changing the stimulus itself. In the current study, we used fMRI to characterize the neural mediators of such modification on the experience of emotionality in music. We assumed that closed eyes position will reveal interplay between different levels of neural processing of emotions. More specifically, we focused on the amygdala as a central node of the limbic system and on its co-activation with the Locus Ceruleus (LC and Ventral Prefrontal Cortex (VPFC; regions involved in processing of, respectively, 'low', visceral-, and 'high', cognitive-related, values of emotional stimuli. Fifteen healthy subjects listened to negative and neutral music excerpts with eyes closed or open. As expected, behavioral results showed that closing the eyes while listening to emotional music resulted in enhanced rating of emotionality, specifically of negative music. In correspondence, fMRI results showed greater activation in the amygdala when subjects listened to the emotional music with eyes closed relative to eyes open. More so, by using voxel-based correlation and a dynamic causal model analyses we demonstrated that increased amygdala activation to negative music with eyes closed led to increased activations in the LC and VPFC. This finding supports a system-based model of perceived emotionality in which the amygdala has a central role in mediating the effect of context-based processing style by recruiting neural operations involved in both visceral (i.e. 'low' and cognitive (i.e. 'high' related processes

  20. Role of amygdala in mediating sexual and emotional behavior via coupled nitric oxide release

    Institute of Scientific and Technical Information of China (English)

    Elliott SALAMON; Tobias ESCH; George B STEFANO

    2005-01-01

    Although the anatomical configuration of the amygdala has been studied a great deal, very little research has been conducted on understanding the precise mechanism by which this emotional regulatory center exerts its control on emotional and sexual behavior. By applying research methodology from the Neuroscience Research Institute, State University of New York, College at Old Westbury, we intended to demonstrate that much of the mediated effects of the amygdala, specifically the regulation of the male and female sexual response cycles, as well as related emotional considerations, exert their effects coupled to nitric oxide (NO) release. Furthermore, by using current anatomical and histological data, we demonstrated that amygdalar tissue rich in endocannabinoid and opiate, as well as catecholamine, receptors could exert its neurochemical effects within an NOmediated paradigm. This paradigm, together with the existence of estrogen and androgen signaling within the amygdala, further lends credence to our theoretical framework. We begin with a brief anatomical and functional review of amygdalar function, and then proceed to demonstrate its relationship with NO.

  1. Capsaicin-induced changes in LTP in the lateral amygdala are mediated by TRPV1.

    Directory of Open Access Journals (Sweden)

    Carsten Zschenderlein

    Full Text Available The transient receptor potential vanilloid type 1 (TRPV1 channel is a well recognized polymodal signal detector that is activated by painful stimuli such as capsaicin. Here, we show that TRPV1 is expressed in the lateral nucleus of the amygdala (LA. Despite the fact that the central amygdala displays the highest neuronal density, the highest density of TRPV1 labeled neurons was found within the nuclei of the basolateral complex of the amygdala. Capsaicin specifically changed the magnitude of long-term potentiation (LTP in the LA in brain slices of mice depending on the anesthetic (ether, isoflurane used before euthanasia. After ether anesthesia, capsaicin had a suppressive effect on LA-LTP both in patch clamp and in extracellular recordings. The capsaicin-induced reduction of LTP was completely blocked by the nitric oxide synthase (NOS inhibitor L-NAME and was absent in neuronal NOS as well as in TRPV1 deficient mice. The specific antagonist of cannabinoid receptor type 1 (CB1, AM 251, was also able to reduce the inhibitory effect of capsaicin on LA-LTP, suggesting that stimulation of TRPV1 provokes the generation of anandamide in the brain which seems to inhibit NO synthesis. After isoflurane anesthesia before euthanasia capsaicin caused a TRPV1-mediated increase in the magnitude of LA-LTP. Therefore, our results also indicate that the appropriate choice of the anesthetics used is an important consideration when brain plasticity and the action of endovanilloids will be evaluated. In summary, our results demonstrate that TRPV1 may be involved in the amygdala control of learning mechanisms.

  2. Stress and central Urocortin increase anxiety-like behavior in the social interaction test via the CRF1 receptor.

    Science.gov (United States)

    Gehlert, Donald R; Shekhar, Anantha; Morin, S Michelle; Hipskind, Phillip A; Zink, Charity; Gackenheimer, Susan L; Shaw, Janice; Fitz, Stephanie D; Sajdyk, Tammy J

    2005-02-21

    Corticotropin releasing factor (CRF) and Urocortin are important neurotransmitters in the regulation of physiological and behavioral responses to stress. Centrally administered CRF or Urocortin produces anxiety-like responses in numerous animal models of anxiety disorders. Previous studies in our lab have shown that Urocortin infused into the basolateral nucleus of the amygdala produces anxiety-like responses in the social interaction test. Subsequently, in the current study we prepared a specific CRF1 receptor antagonist (N-Cyclopropylmethyl-2,5-dimethyl-N-propyl-N'-(2,4,6-trichloro-phenyl)-pyrimidine-4,6-diamine, NBI3b1996) to examine in this paradigm. This CRF1 receptor antagonist inhibited the ex vivo binding of 125I-sauvagine to rat cerebellum with an ED50 of 6 mg/kg, i.p. NBI3b1996 produced a dose-dependent antagonism of Urocortin-induced anxiety-like behavior in Social Interaction test with an ED50 of 6 mg/kg, i.p. The compound had no effect on baseline social interaction. In addition, the CRF1 receptor antagonist prevented the stress-induced decrease in social interaction. These results provide further support for the CRF1 receptor in anxiety-like behavior and suggest this pathway is quiescent in unstressed animals.

  3. Role of anxiety in the pathophysiology of irritable bowel syndrome: importance of the amygdala

    Directory of Open Access Journals (Sweden)

    Brent Myers

    2009-06-01

    Full Text Available A common characteristic of irritable bowel syndrome (IBS is that symptoms, including abdominal pain and abnormal bowel habits, are often triggered or exacerbated during periods of stress and anxiety. However, the impact of anxiety and affective disorders on the gastrointestinal (GI tract is poorly understood and may in part explain the lack of effective therapeutic approaches to treat IBS. The amygdala is an important structure for regulating anxiety with the central nucleus of the amygdala (CeA facilitating the activation of the hypothalamic-pituitary-adrenal (HPA axis and the autonomic nervous system in response to stress. Moreover, chronic stress enhances function of the amygdala and promotes neural plasticity throughout the amygdaloid complex. This review outlines the latest findings obtained from human studies and animal models related to the role of the emotional brain in the regulation of enteric function, specifically how increasing the gain of the amygdala to induce anxiety-like behavior using corticosterone (CORT or chronic stress increases responsiveness to both visceral and somatic stimuli in rodents. A focus of the review is the relative importance of mineralocorticoid receptor (MR and glucocorticoid receptor (GR-mediated mechanisms within the amygdala in the regulation of anxiety and nociceptive behaviors that are characteristic features of IBS. This review also discusses several outstanding questions important for future research on the role of the amygdala in the generation of abnormal GI function that may lead to potential targets for new therapies to treat functional bowel disorders such as IBS.

  4. An anxiety-like phenotype in mice selectively bred for aggression.

    Science.gov (United States)

    Nehrenberg, Derrick L; Rodriguiz, Ramona M; Cyr, Michel; Zhang, Xiaodong; Lauder, Jean M; Gariépy, Jean-Louis; Wetsel, William C

    2009-07-19

    Using selective bi-directional breeding procedures, two different lines of mice were developed. The NC900 line is highly reactive and attacks their social partners without provocation, whereas aggression in NC100 animals is uncommon in social environments. The enhanced reactivity of NC900 mice suggests that emotionality may have been selected with aggression. As certain forms of anxiety promote exaggerated defensive responses, we tested NC900 mice for the presence of an anxiety-like phenotype. In the open field, light-dark exploration, and zero maze tests, NC900 mice displayed anxiety-like responses. These animals were less responsive to the anxiolytic actions of diazepam in the zero maze than NC100 animals; diazepam also reduced the reactivity and attack behaviors of NC900 mice. The NC900 mice had reduced diazepam-sensitive GABA(A) receptor binding in brain regions associated with aggression and anxiety. Importantly, there was a selective reduction in levels of the GABA(A) receptor alpha(2) subunit protein in NC900 frontal cortex and amygdala; no changes in alpha(1) or gamma(2) subunit proteins were observed. These findings suggest that reductions in the alpha(2) subunit protein in selected brain regions may underlie the anxiety and aggressive phenotype of NC900 mice. Since anxiety and aggression are comorbid in certain psychiatric conditions, such as borderline personality and posttraumatic stress disorder, investigations with NC900 mice may provide new insights into basic mechanisms that underlie these and related psychiatric conditions. PMID:19428632

  5. Presynaptic CRF1 Receptors Mediate the Ethanol Enhancement of GABAergic Transmission in the Mouse Central Amygdala

    Directory of Open Access Journals (Sweden)

    Zhiguo Nie

    2009-01-01

    Full Text Available Corticotropin-releasing factor (CRF is a 41-amino-acid neuropeptide involved in stress responses initiated from several brain areas, including the amygdala formation. Research shows a strong relationship between stress, brain CRF, and excessive alcohol consumption. Behavioral studies suggest that the central amygdala (CeA is significantly involved in alcohol reward and dependence. We recently reported that the ethanol augmentation of GABAergic synaptic transmission in rat CeA involves CRF1 receptors, because both CRF and ethanol significantly enhanced the amplitude of evoked GABAergic inhibitory postsynaptic currents (IPSCs in CeA neurons from wild-type (WT and CRF2 knockout (KO mice, but not in neurons of CRF1 KO mice. The present study extends these findings using selective CRF receptor ligands, gene KO models, and miniature IPSC (mIPSC analysis to assess further a presynaptic role for the CRF receptors in mediating ethanol effects in the CeA. In whole-cell patch recordings of pharmacologically isolated GABAAergic IPSCs from slices of mouse CeA, both CRF and ethanol augmented evoked IPSCs in a concentration-dependent manner, with low EC50s. A CRF1 (but not CRF2 KO construct and the CRF1-selective nonpeptide antagonist NIH-3 (LWH-63 blocked the augmenting effect of both CRF and ethanol on evoked IPSCs. Furthermore, the new selective CRF1 agonist stressin1, but not the CRF2 agonist urocortin 3, also increased evoked IPSC amplitudes. Both CRF and ethanol decreased paired-pulse facilitation (PPF of evoked IPSCs and significantly enhanced the frequency, but not the amplitude, of spontaneous miniature GABAergic mIPSCs in CeA neurons of WT mice, suggesting a presynaptic site of action. The PPF effect of ethanol was abolished in CeA neurons of CRF1 KO mice. The CRF1 antagonist NIH-3 blocked the CRF- and ethanol-induced enhancement of mIPSC frequency in CeA neurons. These data indicate that presynaptic CRF1 receptors play a critical role in permitting

  6. Amygdala mediated connectivity in perceptual decision-making of emotional facial expressions.

    Science.gov (United States)

    Bajaj, Sahil; Lamichhane, Bidhan; Adhikari, Bhim Mani; Dhamala, Mukesh

    2013-01-01

    Recognizing emotional facial expressions is a part of perceptual decision-making processes in the brain. Arriving at a decision for the brain becomes more difficult when available sensory information is limited or ambiguous. We used clear and noisy pictures with happy and angry emotional expressions and asked 32 participants to categorize these pictures based on emotions. There were significant differences in behavioral accuracy and reaction time between the decisions of clear and noisy images. The functional magnetic resonance imaging activations showed that the inferior occipital gyrus (IOG), fusiform gyrus (FG), amygdala (AMG) and ventrolateral prefrontal cortex (VPFC) along with other regions were active during the perceptual decision-making process. Using dynamic causal modeling analysis, we obtained three important results. First, from Bayesian model selection (BMS) approach, we found that the feed-forward network activity was enhanced during the processing of clear and noisy happy faces more than during the processing of clear angry faces. The AMG mediated this feed-forward connectivity in processing of clear and noisy happy faces, whereas the AMG mediation was absent in case of clear angry faces. However, this network activity was enhanced in case of noisy angry faces. Second, connectivity parameters obtained from Bayesian model averaging (BMA) suggested that the forward connectivity dominated over the backward connectivity during such processes. Third, based on the BMA parameters, we found that the easier tasks modulated effective connectivity from IOG to FG, AMG, and VPFC more than the difficult tasks did. These findings suggest that both parallel and hierarchical brain processes are at work during perceptual decision-making of negative, positive, unambiguous and ambiguous emotional expressions, but the AMG-mediated feed-forward network plays a dominant role in such decisions. PMID:23705655

  7. Effects of Xiaoyaosan on Stress-Induced Anxiety-Like Behavior in Rats: Involvement of CRF1 Receptor

    Directory of Open Access Journals (Sweden)

    You-Ming Jiang

    2016-01-01

    Full Text Available Background. Compared with antidepressant activity of Xiaoyaosan, the role of Xiaoyaosan in anxiety has been poorly studied. Objective. To observe the effects of Xiaoyaosan on anxiety-like behavior induced by chronic immobilization stress (CIS and further explore whether these effects were related to CRF1R signaling. Methods. Adult male SD rats were randomly assigned to five groups (n=12: the nonstressed control group, vehicle-treated (saline, p.o. group, Xiaoyaosan-treated (3.854 g/kg, p.o. group, vehicle-treated (surgery group, and antalarmin-treated (surgery group. Artificial cerebrospinal fluid (0.5 μL/side or CRF1R antagonist antalarmin (125 ng/0.5 μL, 0.5 μL/side was bilaterally administered into the basolateral amygdala in the surgery groups. Except for the nonstressed control group, the other four groups were exposed to CIS (14 days, 3 h/day 30 minutes after treatment. On days 15 and 16, all animals were subjected to the elevated plus-maze (EPM and novelty suppressed feeding (NSF test. We then examined the expression of CRF1R, pCREB, and BDNF in the amygdala. Results. Chronic pretreatment with Xiaoyaosan or antalarmin significantly reversed elevated anxiety-like behavior and the upregulated level of CRF1R and BDNF in the amygdala of stressed rats. pCREB did not differ significantly among the groups. Conclusions. These results suggest that Xiaoyaosan exerts anxiolytic-like effects in behavioral tests and the effects may be related to CRF1R signaling in the amygdala.

  8. Effects of Xiaoyaosan on Stress-Induced Anxiety-Like Behavior in Rats: Involvement of CRF1 Receptor.

    Science.gov (United States)

    Jiang, You-Ming; Li, Xiao-Juan; Meng, Zhen-Zhi; Liu, Yue-Yun; Zhao, Hong-Bo; Li, Na; Yan, Zhi-Yi; Ma, Qing-Yu; Zhang, Han-Ting; Chen, Jia-Xu

    2016-01-01

    Background. Compared with antidepressant activity of Xiaoyaosan, the role of Xiaoyaosan in anxiety has been poorly studied. Objective. To observe the effects of Xiaoyaosan on anxiety-like behavior induced by chronic immobilization stress (CIS) and further explore whether these effects were related to CRF1R signaling. Methods. Adult male SD rats were randomly assigned to five groups (n = 12): the nonstressed control group, vehicle-treated (saline, p.o.) group, Xiaoyaosan-treated (3.854 g/kg, p.o.) group, vehicle-treated (surgery) group, and antalarmin-treated (surgery) group. Artificial cerebrospinal fluid (0.5 μL/side) or CRF1R antagonist antalarmin (125 ng/0.5 μL, 0.5 μL/side) was bilaterally administered into the basolateral amygdala in the surgery groups. Except for the nonstressed control group, the other four groups were exposed to CIS (14 days, 3 h/day) 30 minutes after treatment. On days 15 and 16, all animals were subjected to the elevated plus-maze (EPM) and novelty suppressed feeding (NSF) test. We then examined the expression of CRF1R, pCREB, and BDNF in the amygdala. Results. Chronic pretreatment with Xiaoyaosan or antalarmin significantly reversed elevated anxiety-like behavior and the upregulated level of CRF1R and BDNF in the amygdala of stressed rats. pCREB did not differ significantly among the groups. Conclusions. These results suggest that Xiaoyaosan exerts anxiolytic-like effects in behavioral tests and the effects may be related to CRF1R signaling in the amygdala. PMID:27042185

  9. Physical Exercise Counteracts Stress-induced Upregulation of Melanin-concentrating Hormone in the Brain and Stress-induced Persisting Anxiety-like Behaviors.

    Science.gov (United States)

    Kim, Tae-Kyung; Han, Pyung-Lim

    2016-08-01

    Chronic stress induces anxiety disorders, whereas physical exercise is believed to help people with clinical anxiety. In the present study, we investigated the mechanisms underlying stress-induced anxiety and its counteraction by exercise using an established animal model of anxiety. Mice treated with restraint for 2 h daily for 14 days exhibited anxiety-like behaviors, including social and nonsocial behavioral symptoms, and these behavioral impairments lasted for more than 12 weeks after the stress treatment was removed. Despite these lasting behavioral changes, wheel-running exercise treatment for 1 h daily from post-stress days 1 - 21 counteracted anxiety-like behaviors, and these anxiolytic effects of exercise persisted for more than 2 months, suggesting that anxiolytic effects of exercise stably induced. Repeated restraint treatment up-regulated the expression of the neuropeptide, melanin-concentrating hormone (MCH), in the lateral hypothalamus, hippocampus, and basolateral amygdala, the brain regions important for emotional behaviors. In an in vitro study, treatment of HT22 hippocampal cells with glucocorticoid increased MCH expression, suggesting that MCH upregulation can be initially triggered by the stress hormone, corticosterone. In contrast, post-stress treatment with wheel-running exercise reduced the stress-induced increase in MCH expression to control levels in the lateral hypothalamus, hippocampus and basolateral amygdala. Administration of an MCH receptor antagonist (SNAP94847) to stress-treated mice was therapeutic against stress-induced anxiety-like behaviors. These results suggest that repeated stress produces long-lasting anxiety-like behaviors and upregulates MCH in the brain, while exercise counteracts stress-induced MCH expression and persisting anxiety-like behaviors. PMID:27574483

  10. Androgen insensitive male rats display increased anxiety-like behavior on the elevated plus maze.

    Science.gov (United States)

    Hamson, Dwayne K; Jones, Bryan A; Csupity, Attila S; Ali, Faezah M; Watson, Neil V

    2014-02-01

    Male rats carrying the testicular feminization mutation (Tfm-affected males) are insensitive to androgens, resulting in a female-typical peripheral phenotype despite possession of inguinal testes that are androgen secretory. Androgen-dependent neural and behavioral processes may likewise show atypical sexual differentiation. Interestingly, these mutant rats display elevated serum corticosterone, suggesting a chronic anxiety phenotype and dysregulated hypothalamic-pituitary-adrenal axis. In order to understand if elevated anxiety-like behavior is a possible mediating variable affecting the display of certain androgen-dependent behaviors, we compared the performance of Tfm-affected males to wild type males and females in the elevated plus maze (EPM). Two well-established indicators of anxiety-like behavior in the EPM were analyzed: total percentage of time spent on the open arms, and the percentage of open arm entries. We also analyzed the total number of open arm entries. Interestingly, Tfm-affected males spent less percentage of time on the open arms than both males and females, suggesting increased anxiety-like behavior. Percentage of open arm entries and the total number of arm entries was comparable between the groups, indicating that the observed decrease in the percentage of time spent on the open arms was not due to a global reduction in exploratory behavior. These data, in contrast to earlier reports, thus implicate androgen receptor-mediated functions in the expression of anxiety behaviors in male rats. Given that anxiety is widely reported as a precipitating factor in depression, studying the role of the androgen receptor in anxiety may give insights into the pathogenesis of major depressive disorder.

  11. Neuropeptide Y (NPY) in the extended amygdala is recruited during the transition to alcohol dependence.

    Science.gov (United States)

    Gilpin, Nicholas W

    2012-12-01

    Neuropeptide Y (NPY) is abundant in the extended amygdala, a conceptual macrostructure in the basal forebrain important for regulation of negative affective states. NPY has been attributed a central role in anxiety-like behavior, fear, nociception, and reward in rodents. Deletion of the NPY gene in mice produces a high-anxiety high-alcohol-drinking phenotype. NPY infused into the brains of rats selectively bred to consume high quantities of alcohol suppresses alcohol drinking by those animals, an effect that is mediated by central amygdala (CeA). Likewise, alcohol-preferring rats exhibit basal NPY deficits in CeA. NPY infused into the brains of alcohol-dependent rats blocks excessive alcohol drinking by those animals, an effect that also has been localized to the CeA. NPY in CeA may rescue dependence-induced increases in anxiety and alcohol drinking via inhibition of downstream effector regions that receive GABAergic inputs from CeA. It is hypothesized here that NPY modulates anxiety-like behavior via Y2R regulation of NPY release, whereas NPY modulation of alcohol-drinking behavior in alcohol-dependent animals occurs via Y2R regulation of GABA release.

  12. OPIOID RECEPTORS IN THE BASOLATERAL AMYGDALA BUT NOT DORSAL HIPPOCAMPUS MEDIATE CONTEXT-INDUCED ALCOHOL SEEKING

    OpenAIRE

    Marinelli, Peter W.; Funk, Douglas; Juzytsch, Walter; Lê, A.D.

    2010-01-01

    Contexts associated with the availability of alcohol can induce craving in humans and alcohol seeking in rats. The opioid antagonist naltrexone attenuates context-induced reinstatement (renewal) of alcohol seeking and suppresses neuronal activation in the basolateral amygdaloid complex and dorsal hippocampus induced by such reinstatement. The objective of this study was to determine whether pharmacological blockade of opioid receptors in the basolateral amygdala or dorsal hippocampus would at...

  13. Short environmental enrichment in adulthood reverses anxiety and basolateral amygdala hypertrophy induced by maternal separation.

    Science.gov (United States)

    Koe, A S; Ashokan, A; Mitra, R

    2016-02-02

    Maternal separation during early childhood results in greater sensitivity to stressors later in adult life. This is reflected as greater propensity to develop stress-related disorders in humans and animal models, including anxiety and depression. Environmental enrichment (EE) reverses some of the damaging effects of maternal separation in rodent models when provided during peripubescent life, temporally proximal to the separation. It is presently unknown if EE provided outside this critical window can still rescue separation-induced anxiety and neural plasticity. In this report we use a rat model to demonstrate that a single short episode of EE in adulthood reduced anxiety-like behaviour in maternally separated rats. We further show that maternal separation resulted in hypertrophy of dendrites and increase in spine density of basolateral amygdala neurons in adulthood, long after initial stress treatment. This is congruent with prior observations showing centrality of basolateral amygdala hypertrophy in anxiety induced by stress during adulthood. In line with the ability of the adult enrichment to rescue stress-induced anxiety, we show that enrichment renormalized stress-induced structural expansion of the amygdala neurons. These observations argue that behavioural plasticity induced by early adversity can be rescued by environmental interventions much later in life, likely mediated by ameliorating effects of enrichment on basolateral amygdala plasticity.

  14. Campylobacter jejuni infection increases anxiety-like behavior in the holeboard: possible anatomical substrates for viscerosensory modulation of exploratory behavior

    OpenAIRE

    Goehler, Lisa E.; Park, Su Mi; Opitz, Noel; Lyte, Mark; Gaykema, Ronald P.A.

    2007-01-01

    The presence of certain bacteria in the gastrointestinal tract influences behavior and brain function. For example, challenge with live Campylobacter jejuni (C. jejuni), a common food-born pathogen, reduces exploration of open arms of the plus maze, consistent with anxiety-like behavior, and activates brain regions associated with autonomic function, likely via a vagal pathway. As yet, however, little is known regarding the interface of immune sensory signals with brain substrates that mediat...

  15. Androgen Receptors Mediate Masculinization of Astrocytes in the Rat Posterodorsal Medial Amygdala During Puberty

    OpenAIRE

    JOHNSON, RYAN T.; Breedlove, S. Marc; Jordan, Cynthia L.

    2013-01-01

    Astrocytes in the posterodorsal portion of the medial amygdala (MePD) are sexually dimorphic in adult rats: males have more astrocytes in the right MePD and more elaborate processes in the left MePD than do females. Functional androgen receptors (ARs) are required for masculinization of MePD astrocytes, as these measures are demasculinized in adult genetic males carrying the testicular feminization mutation (Tfm) of the AR gene, which renders AR dysfunctional. We now report that the number of...

  16. Roles for pituitary adenylate cyclase-activating peptide (PACAP) expression and signaling in the bed nucleus of the stria terminalis (BNST) in mediating the behavioral consequences of chronic stress

    OpenAIRE

    Hammack, Sayamwong E.; Roman, Carolyn W.; Lezak, Kimberly R.; Kocho-Shellenberg, Margaret; Grimmig, Bethany; Falls, William A; Braas, Karen; May, Victor

    2010-01-01

    Anxiety disorders are frequently long-lasting and debilitating for more than 40 million American adults. Although stressor exposure plays an important role in the etiology of some anxiety disorders, the mechanisms by which exposure to stressful stimuli alters central circuits that mediate anxiety-like emotional behavior are still unknown. Substantial evidence has implicated regions of the central extended amygdala, including the bed nucleus of the stria terminalis (BNST) and the central nucle...

  17. TRH and TRH receptor system in the basolateral amygdala mediate stress-induced depression-like behaviors.

    Science.gov (United States)

    Choi, Juli; Kim, Ji-eun; Kim, Tae-Kyung; Park, Jin-Young; Lee, Jung-Eun; Kim, Hannah; Lee, Eun-Hwa; Han, Pyung-Lim

    2015-10-01

    Chronic stress is a potent risk factor for depression, but the mechanism by which stress causes depression is not fully understood. To investigate the molecular mechanism underlying stress-induced depression, C57BL/6 inbred mice were treated with repeated restraint to induce lasting depressive behavioral changes. Behavioral states of individual animals were evaluated using the forced swim test, which measures psychomotor withdrawals, and the U-field test, which measures sociability. From these behavioral analyses, individual mice that showed depression-like behaviors in both psychomotor withdrawal and sociability tests, and individuals that showed a resiliency to stress-induced depression in both tests were selected. Among the neuropeptides expressed in the amygdala, thyrotropin-releasing hormone (TRH) was identified as being persistently up-regulated in the basolateral amygdala (BLA) in individuals exhibiting severe depressive behaviors in the two behavior tests, but not in individuals displaying a stress resiliency. Activation of TRH receptors by local injection of TRH in the BLA in normal mice produced depressive behaviors, mimicking chronic stress effects, whereas siRNA-mediated suppression of either TRH or TRHR1 in the BLA completely blocked stress-induced depressive symptoms. The TRHR1 agonist, taltirelin, injection in the BLA increased the level of p-ERK, which mimicked the increased p-ERK level in the BLA that was induced by treatment with repeated stress. Stereotaxic injection of U0126, a potent inhibitor of the ERK pathway, within the BLA blocked stress-induced behavioral depression. These results suggest that repeated stress produces lasting depression-like behaviors via the up-regulation of TRH and TRH receptors in the BLA.

  18. Neuropeptide AF induces anxiety-like and antidepressant-like behavior in mice.

    Science.gov (United States)

    Palotai, Miklós; Telegdy, Gyula; Tanaka, Masaru; Bagosi, Zsolt; Jászberényi, Miklós

    2014-11-01

    Little is known about the action of neuropeptide AF (NPAF) on anxiety and depression. Only our previous study provides evidence that NPAF induces anxiety-like behavior in rats. Therefore, the aim of the present study was to investigate the action of NPAF on depression-like behavior and the underlying neurotransmissions in mice. In order to determine whether there are species differences between rats and mice, we have investigated the action of NPAF on anxiety-like behavior in mice as well. A modified forced swimming test (mFST) and an elevated plus maze test (EPMT) were used to investigate the depression and anxiety-related behaviors, respectively. Mice were treated with NPAF 30min prior to the tests. In the mFST, the animals were pretreated with a non-selective muscarinic acetylcholine receptor antagonist, atropine, a non-selective 5-HT2 serotonergic receptor antagonist, cyproheptadine, a mixed 5-HT1/5-HT2 serotonergic receptor antagonist, methysergide, a D2/D3/D4 dopamine receptor antagonist, haloperidol, a α1/α2β-adrenergic receptor antagonist, prazosin or a non-selective β-adrenergic receptor antagonist, propranolol 30min before the NPAF administration. In the mFST, NPAF decreased the immobility time and increased the climbing and swimming times. This action was reversed completely by methysergide and partially by atropine, whereas cyproheptadine, haloperidol, prazosin and propranolol were ineffective. In the EPMT, NPAF decreased the time spent in the arms (open/open+closed). Our results demonstrate that NPAF induces anti-depressant-like behavior in mice, which is mediated, at least in part, through 5HT2-serotonergic and muscarinic cholinergic neurotransmissions. In addition, the NPAF-induced anxiety is species-independent, since it develops also in mice.

  19. Mice with Sort1 deficiency display normal cognition but elevated anxiety-like behavior.

    Science.gov (United States)

    Ruan, Chun-Sheng; Yang, Chun-Rui; Li, Jia-Yi; Luo, Hai-Yun; Bobrovskaya, Larisa; Zhou, Xin-Fu

    2016-07-01

    Exposure to stressful life events plays a central role in the development of mood disorders in vulnerable individuals. However, the mechanisms that link mood disorders to stress are poorly understood. Brain-derived neurotrophic factor (BDNF) has long been implicated in positive regulation of depression and anxiety, while its precursor (proBDNF) recently showed an opposing effect on such mental illnesses. P75(NTR) and sortilin are co-receptors of proBDNF, however, the role of these receptors in mood regulation is not established. Here, we aimed to investigate the role of sortilin in regulating mood-related behaviors and its role in the proBDNF-mediated mood abnormality in mice. We found that sortilin was up-regulated in neocortex (by 78.3%) and hippocampus (by 111%) of chronically stressed mice as assessed by western blot analysis. These changes were associated with decreased mobility in the open field test and increased depression-like behavior in the forced swimming test. We also found that sortilin deficiency in mice resulted in hyperlocomotion in the open field test and increased anxiety-like behavior in both the open field and elevated plus maze tests. No depression-like behavior in the forced swimming test and no deficit in spatial cognition in the Morris water maze test were found in the Sort1-deficient mice. Moreover, the intracellular and extracellular levels of mature BDNF and proBDNF were not changed when sortilin was absent in vivo and in vitro. Finally, we found that both WT and Sort1-deficient mice injected with proBDNF in lateral ventricle displayed increased depression-like behavior in the forced swimming test but not anxiety-like behaviors in the open field and elevated plus maze tests. The present study suggests that sortilin functions as a negative regulator of mood performance and can be a therapeutic target for the treatment of mental illness. PMID:27118371

  20. Basolateral amygdala CB1 cannabinoid receptors mediate nicotine-induced place preference.

    Science.gov (United States)

    Hashemizadeh, Shiva; Sardari, Maryam; Rezayof, Ameneh

    2014-06-01

    In the present study, the effects of bilateral microinjections of cannabinoid CB1 receptor agonist and antagonist into the basolateral amygdala (intra-BLA) on nicotine-induced place preference were examined in rats. A conditioned place preference (CPP) apparatus was used for the assessment of rewarding effects of the drugs in adult male Wistar rats. Subcutaneous (s.c.) administration of nicotine (0.2mg/kg) induced a significant CPP, without any effect on the locomotor activity during the testing phase. Intra-BLA microinjection of a non-selective cannabinoid CB1/CB2 receptor agonist, WIN 55,212-2 (0.1-0.5 μg/rat) with an ineffective dose of nicotine (0.1mg/kg, s.c.) induced a significant place preference. On the other hand, intra-BLA administration of AM251 (20-60 ng/rat), a selective cannabinoid CB1 receptor antagonist inhibited the acquisition of nicotine-induced place preference. It should be considered that the microinjection of the same doses of WIN 55,212-2 or AM251 into the BLA, by itself had no effect on the CPP score. The administration of a higher dose of AM251 (60 ng/rat) during the acquisition decreased the locomotor activity of animals on the testing phase. Interestingly, the microinjection of AM251 (20 and 40 ng/rat), but not WIN55,212-2 (0.1-0.5 μg/rat), into the BLA inhibited the expression of nicotine-induced place preference without any effect on the locomotor activity. Taken together, these findings support the possible role of endogenous cannabinoid system of the BLA in the acquisition and the expression of nicotine-induced place preference. Furthermore, it seems that there is a functional interaction between the BLA cannabinoid receptors and nicotine in producing the rewarding effects.

  1. Grape powder intake prevents ovariectomy-induced anxiety-like behavior, memory impairment and high blood pressure in female Wistar rats.

    Directory of Open Access Journals (Sweden)

    Gaurav Patki

    Full Text Available Diminished estrogen influence at menopause is reported to be associated with cognitive decline, heightened anxiety and hypertension. While estrogen therapy is often prescribed to overcome these behavioral and physiological deficits, antioxidants which have been shown beneficial are gaining nutritional intervention and popularity. Therefore, in the present study, utilizing the antioxidant properties of grapes, we have examined effect of 3 weeks of grape powder (GP; 15 g/L dissolved in tap water treatment on anxiety-like behavior, learning-memory impairment and high blood pressure in ovariectomized (OVX rats. Four groups of female Wistar rats were used; sham control, sham-GP treated, OVX and OVX+GP treated. We observed a significant increase in systolic and diastolic blood pressure in OVX rats as compared to sham-controls. Furthermore, ovariectomy increased anxiety-like behavior and caused learning and memory impairment in rats as compared to sham-controls. Interestingly, providing grape powder treated water to OVX rats restored both systolic and diastolic blood pressure, decreased anxiety-like behavior and improved memory function. Moreover, OVX rats exhibited an impaired long term potentiation which was restored with grape powder treatment. Furthermore, ovariectomy increased oxidative stress in the brain, serum and urine, selectively decreasing antioxidant enzyme, glyoxalase-1 protein expression in the hippocampus but not in the cortex and amygdala of OVX rats, while grape powder treatment reversed these effects. Other antioxidant enzyme levels, including manganese superoxide dismutase (SOD and Cu/Zn SOD remained unchanged. We suggest that grape powder by regulating oxidative stress mechanisms exerts its protective effect on blood pressure, learning-memory and anxiety-like behavior. Our study is the first to examine behavioral, biochemical, physiological and electrophysiological outcome of estrogen depletion in rats and to test protective role

  2. Optogenetic dissection of amygdala functioning

    Directory of Open Access Journals (Sweden)

    Ryan eLalumiere

    2014-03-01

    Full Text Available Studies of amygdala functioning have occupied a significant place in the history of understanding how the brain controls behavior and cognition. Early work on the amygdala placed this small structure as a key component in the regulation of emotion and affective behavior. Over time, our understanding of its role in brain processes has expanded, as we have uncovered amygdala influences on memory, reward behavior, and overall functioning in many other brain regions. Studies have indicated that the amygdala has widespread connections with a variety of brain structures, from the prefrontal cortex to regions of the brainstem, that explain its powerful influence on other parts of the brain and behaviors mediated by those regions. Thus, many optogenetic studies have focused on harnessing the powers of this technique to elucidate the functioning of the amygdala in relation to motivation, fear, and memory as well as to determine how the amygdala regulates activity in other structures. For example, studies using optogenetics have examined how specific circuits within amygdala nuclei regulate anxiety. Other work has provided insight into how the basolateral and central amygdala nuclei regulate memory processing underlying aversive learning. Many experiments have taken advantage of optogenetics’ ability to target either genetically distinct subpopulations of neurons or the specific projections from the amygdala to other brain regions. Findings from such studies have provided evidence that particular patterns of activity in basolateral amygdala glutamatergic neurons are related to memory consolidation processes, while other work has indicated the critical nature of amygdala inputs to the prefrontal cortex and nucleus accumbens in regulating behavior dependent on those downstream structures. This review will examine the recent discoveries on amygdala functioning made through experiments using optogenetics, placing these findings in the context of the major

  3. Optogenetic dissection of amygdala functioning.

    Science.gov (United States)

    Lalumiere, Ryan T

    2014-01-01

    Studies of amygdala functioning have occupied a significant place in the history of understanding how the brain controls behavior and cognition. Early work on the amygdala placed this small structure as a key component in the regulation of emotion and affective behavior. Over time, our understanding of its role in brain processes has expanded, as we have uncovered amygdala influences on memory, reward behavior, and overall functioning in many other brain regions. Studies have indicated that the amygdala has widespread connections with a variety of brain structures, from the prefrontal cortex to regions of the brainstem, that explain its powerful influence on other parts of the brain and behaviors mediated by those regions. Thus, many optogenetic studies have focused on harnessing the powers of this technique to elucidate the functioning of the amygdala in relation to motivation, fear, and memory as well as to determine how the amygdala regulates activity in other structures. For example, studies using optogenetics have examined how specific circuits within amygdala nuclei regulate anxiety. Other work has provided insight into how the basolateral and central amygdala nuclei regulate memory processing underlying aversive learning. Many experiments have taken advantage of optogenetics' ability to target either genetically distinct subpopulations of neurons or the specific projections from the amygdala to other brain regions. Findings from such studies have provided evidence that particular patterns of activity in basolateral amygdala (BLA) glutamatergic neurons are related to memory consolidation processes, while other work has indicated the critical nature of amygdala inputs to the prefrontal cortex and nucleus accumbens (NA) in regulating behavior dependent on those downstream structures. This review will examine the recent discoveries on amygdala functioning made through experiments using optogenetics, placing these findings in the context of the major questions in

  4. Chronic estradiol treatment decreases brain derived neurotrophic factor (BDNF) expression and monoamine levels in the amygdala--implications for behavioral disorders.

    Science.gov (United States)

    Balasubramanian, Priya; Subramanian, Madhan; Nunez, Joseph L; Mohankumar, Sheba M J; Mohankumar, P S

    2014-03-15

    Changes in serum estradiol levels are associated with mood disorders in women. However, the underlying mechanisms are not clear. Because alterations in Brain-Derived Neurotrophic Factor (BDNF) and monoamine levels in the hippocampus and amygdala have been associated with anxiety disorders, we hypothesized that chronic treatment with a low dose of estradiol would cause anxiety-like disorder by altering BDNF and monoamine levels in these regions. To test this hypothesis, female rats were sham-implanted (Controls) or implanted with pellets that release estradiol-17β (E2) for 90-days at the rate of 20 ng/day. Animals underwent behavioral tests such as the open field test and elevated plus maze test at the end of treatment. Brains from these animals were frozen, sectioned and the hippocampus, central amygdala and caudate putamen were microdissected and analyzed for monoamine levels using HPLC. BDNF protein levels in these areas were measured using ELISA and BDNF mRNA levels were analyzed using RT-PCR. In the open field test, animals chronically treated with E2 displayed anxiety-like behavior that was marked by a decrease in the number of inner zone crossings and increase in the rate of defecation compared to controls. However, no behavioral changes were observed in the elevated plus maze test. Chronic E2 treatment also decreased BDNF protein and mRNA levels in the central amygdala that was accompanied by a reduction in dopamine levels. No changes were observed in the hippocampus and caudate putamen. These results suggest that BDNF and dopamine in the central amygdala might possibly mediate chronic E2-induced behavioral alterations.

  5. DBI/ACBP loss-of-function does not affect anxiety-like behaviour but reduces anxiolytic responses to diazepam in mice.

    Science.gov (United States)

    Budry, Lionel; Bouyakdan, Khalil; Tobin, Stephanie; Rodaros, Demetra; Marcher, Ann-Britt; Mandrup, Susanne; Fulton, Stephanie; Alquier, Thierry

    2016-10-15

    Diazepam is well known for its anxiolytic properties, which are mediated via activation of the GABAA receptor. Diazepam Binding Inhibitor (DBI), also called acyl-CoA binding protein (ACBP), is a ubiquitously expressed protein originally identified based on its ability to displace diazepam from its binding site on the GABAA receptor. Central administration of ACBP or its cleaved fragment, commonly referred to as endozepines, induces proconflict and anxiety-like behaviour in rodents. For this reason, ACBP is known as an anxiogenic peptide. However, the role of endogenous ACBP in anxiety-like behaviour and anxiolytic responses to diazepam has not been investigated. To address this question, we assessed anxiety behaviour and anxiolytic responses to diazepam in two complementary loss-of-function mouse models including astrocyte-specific ACBP KO (ACBP(GFAP) KO) and whole-body KO (ACBP KO) mice. Male and female ACBP(GFAP) KO and ACBP KO mice do not show significant changes in anxiety-like behaviour compared to control littermates during elevated plus maze (EPM) and open field (OF) tests. Surprisingly, ACBP(GFAP) KO and ACBP KO mice were unresponsive to the anxiolytic effect of a low dose of diazepam during EPM tests. In conclusion, our experiments using genetic ACBP loss-of-function models suggest that endozepines deficiency does not affect anxiety-like behaviour in mice and impairs the anxiolytic action of diazepam. PMID:27363924

  6. [AMYGDALA: NEUROANATOMY AND NEUROPHYSIOLOGY OF FEAR].

    Science.gov (United States)

    Tsvetkov, E A; Krasnoshchekova, E I; Vesselkin, N P; Kharazova, A D

    2015-01-01

    This work describes neuroanatomical and neurophysiological mechanisms of Pavlovian fear conditioning, focusing on contributions of the amygdala, a subcortical nuclear group, to control of conditioned fear responses. The mechanisms of synaptic plasticity at projections to the amygdala and within amygdala were shown to mediate the formation and retention of fear memory. This work reviews current data on anatomical organization of the amygdala, as well as its afferent and efferent projections, in respect to the role of the amygdala in auditory fear conditioning during which acoustic signals serve as the conditioned stimulus. PMID:26983275

  7. Human amygdala reactivity is diminished by the beta-noradrenergic antagonist propranolol

    NARCIS (Netherlands)

    Hurlemann, R.; Walter, H.; Rehme, A. K.; Kukolja, J.; Santoro, S. C.; Schmidt, C.; Schnell, K.; Musshoff, F.; Keysers, C.; Maier, W.; Kendrick, K. M.; Onur, O. A.

    2010-01-01

    Background. Animal models of anxiety disorders emphasize the crucial role of locus ceruleus-noradrenergic (norepinephrine, NE) signaling, the basolateral amygdala (BLA) and their interactions in the expression of anxiety-like behavioral responses to stress. Despite clinical evidence for the efficacy

  8. NPY Y1 receptors differentially modulate GABAA and NMDA receptors via divergent signal-transduction pathways to reduce excitability of amygdala neurons.

    Science.gov (United States)

    Molosh, Andrei I; Sajdyk, Tammy J; Truitt, William A; Zhu, Weiguo; Oxford, Gerry S; Shekhar, Anantha

    2013-06-01

    Neuropeptide Y (NPY) administration into the basolateral amygdala (BLA) decreases anxiety-like behavior, mediated in part through the Y1 receptor (Y1R) isoform. Activation of Y1Rs results in G-protein-mediated reduction of cAMP levels, which results in reduced excitability of amygdala projection neurons. Understanding the mechanisms linking decreased cAMP levels to reduced excitability in amygdala neurons is important for identifying novel anxiolytic targets. We studied the intracellular mechanisms of activation of Y1Rs on synaptic transmission in the BLA. Activating Y1Rs by [Leu(31),Pro(34)]-NPY (L-P NPY) reduced the amplitude of evoked NMDA-mediated excitatory postsynaptic currents (eEPSCs), without affecting AMPA-mediated eEPSCs, but conversely increased the amplitude of GABAA-mediated evoked inhibitory postsynaptic currents (eIPSCs). Both effects were abolished by the Y1R antagonist, PD160170. Intracellular GDP-β-S, or pre-treatment with either forskolin or 8Br-cAMP, eliminated the effects of L-P NPY on both NMDA- and GABAA-mediated currents. Thus, both the NMDA and GABAA effects of Y1R activation in the BLA are G-protein-mediated and cAMP-dependent. Pipette inclusion of protein kinase A (PKA) catalytic subunit blocked the effect of L-P NPY on GABAA-mediated eIPSCs, but not on NMDA-mediated eEPSCs. Conversely, activating the exchange protein activated by cAMP (Epac) with 8CPT-2Me-cAMP blocked the effect of L-P NPY on NMDA-mediated eEPSCs, but not on GABAA-mediated eIPSCs. Thus, NPY regulates amygdala excitability via two signal-transduction events, with reduced PKA activity enhancing GABAA-mediated eIPSCs and Epac deactivation reducing NMDA-mediated eEPSCs. This multipathway regulation of NMDA- and GABAA-mediated currents may be important for NPY plasticity and stress resilience in the amygdala.

  9. Tempol treatment reduces anxiety-like behaviors induced by multiple anxiogenic drugs in rats.

    Directory of Open Access Journals (Sweden)

    Gaurav Patki

    Full Text Available We have published that pharmacological induction of oxidative stress (OS causes anxiety-like behavior in rats. Using animal models, we also have established that psychological stress induces OS and leads to anxiety-like behaviors. All evidence points towards the causal role of OS in anxiety-like behaviors. To fully ascertain the role of OS in anxiety-like behaviors, it is reasonable to test whether the pro-anxiety effects of anxiogenic drugs caffeine or N-methyl-beta-carboline-3-carboxamide (FG-7142 can be mitigated using agents that minimize OS. In this study, osmotic pumps were either filled with antioxidant tempol or saline. The pumps were attached to the catheter leading to the brain cannula and inserted into the subcutaneous pocket in the back pocket of the rat. Continuous i.c.v. infusion of saline or tempol in the lateral ventricle of the brain (4.3 mmol/day was maintained for 1 week. Rats were intraperitoneally injected either with saline or an anxiogenic drug one at a time. Two hours later all groups were subjected to behavioral assessments. Anxiety-like behavior tests (open-field, light-dark and elevated plus maze suggested that tempol prevented anxiogenic drug-induced anxiety-like behavior in rats. Furthermore, anxiogenic drug-induced increase in stress examined via plasma corticosterone and increased oxidative stress levels assessed via plasma 8-isoprostane were prevented with tempol treatment. Protein carbonylation assay also suggested preventive effect of tempol in the prefrontal cortex brain region of rats. Antioxidant protein expression and pro-inflammatory cytokine levels indicate compromised antioxidant defense as well as an imbalance of inflammatory response.

  10. Evaluation of heat hyperalgesia and anxiety like-behaviors in a rat model of orofacial cancer.

    Science.gov (United States)

    Gambeta, Eder; Kopruszinski, Caroline Machado; Dos Reis, Renata Cristiane; Zanoveli, Janaina Menezes; Chichorro, Juliana Geremias

    2016-04-21

    Pain and anxiety are commonly experienced by cancer patients and both significantly impair their quality of life. Some authors claim that there is a relationship between pain and anxiety, while others suggest that there is not a direct association. In any case, there is indeed a consensus that anxiety impairs the pain condition beyond be under diagnosed and undertreated in cancer pain patients. Herein we investigated if rats presenting heat hyperalgesia induced by orofacial cancer cell inoculation would display anxiety-like behaviors. In addition, we evaluated if pain blockade would result in alleviation of anxiety behaviors, as well as, if blockade of anxiety would result in pain relief. Orofacial cancer was induced in male Wistar rats by inoculation of Walker-256 cells into the right vibrissal pad. Heat facial hyperalgesia was assessed on day 6 after the inoculation, and on this time point rats were submitted to the elevated plus maze and the light-dark transition tests. The influence of lidocaine and midazolam on heat hyperalgesia and anxiety-like behaviors was assessed. The peak of facial heat hyperalgesia was detected 6 days after cancer cells inoculation, and at this time point, rats exhibited increased anxiety-like behaviors. Local treatment with lidocaine (2%/50μL) caused a marked reduction of heat hyperalgesia, but failed to affect the anxiety-like behaviors, while midazolam (0.5mg/kg, i.p.) treatment failed to change the heat threshold, but induced an anxiolytic-like effect. Altogether, our data demonstrated that rats with orofacial cancer present pain- and anxiety-like behaviors, but brief heat hyperalgesia relief does not affect the anxiety-like behaviors, and vice-versa, in our experimental conditions.

  11. Grooming analysis algorithm: use in the relationship between sleep deprivation and anxiety-like behavior.

    Science.gov (United States)

    Pires, Gabriel N; Tufik, Sergio; Andersen, Monica L

    2013-03-01

    Increased anxiety is a classic effect of sleep deprivation. However, results regarding sleep deprivation-induced anxiety-like behavior are contradictory in rodent models. The grooming analysis algorithm is a method developed to examine anxiety-like behavior and stress in rodents, based on grooming characteristics and microstructure. This study evaluated the applicability of the grooming analysis algorithm to distinguish sleep-deprived and control rats in comparison to traditional grooming analysis. Forty-six animals were distributed into three groups: control (n=22), paradoxical sleep-deprived (96 h, n=10) and total sleep deprived (6 h, n=14). Immediately after the sleep deprivation protocol, grooming was evaluated using both the grooming analysis algorithm and traditional measures (grooming latency, frequency and duration). Results showed that both paradoxical sleep-deprived and total sleep-deprived groups displayed grooming in a fragmented framework when compared to control animals. Variables from the grooming analysis algorithm were successful in distinguishing sleep-deprived and normal sleep animals regarding anxiety-like behavior. The grooming analysis algorithm and traditional measures were strongly correlated. In conclusion, the grooming analysis algorithm is a reliable method to assess the relationship between anxiety-like behavior and sleep deprivation.

  12. The amygdala as a neurobiological target for ghrelin in rats: neuroanatomical, electrophysiological and behavioral evidence.

    Directory of Open Access Journals (Sweden)

    Mayte Alvarez-Crespo

    Full Text Available Here, we sought to demonstrate that the orexigenic circulating hormone, ghrelin, is able to exert neurobiological effects (including those linked to feeding control at the level of the amygdala, involving neuroanatomical, electrophysiological and behavioural studies. We found that ghrelin receptors (GHS-R are densely expressed in several subnuclei of the amygdala, notably in ventrolateral (LaVL and ventromedial (LaVM parts of the lateral amygdaloid nucleus. Using whole-cell patch clamp electrophysiology to record from cells in the lateral amygdaloid nucleus, we found that ghrelin reduced the frequency of mEPSCs recorded from large pyramidal-like neurons, an effect that could be blocked by co-application of a ghrelin receptor antagonist. In ad libitum fed rats, intra-amygdala administration of ghrelin produced a large orexigenic response that lasted throughout the 4 hr of testing. Conversely, in hungry, fasted rats ghrelin receptor blockade in the amygdala significantly reduced food intake. Finally, we investigated a possible interaction between ghrelin's effects on feeding control and emotional reactivity exerted at the level of the amygdala. In rats allowed to feed during a 1-hour period between ghrelin injection and anxiety testing (elevated plus maze and open field, intra-amygdala ghrelin had no effect on anxiety-like behavior. By contrast, if the rats were not given access to food during this 1-hour period, a decrease in anxiety-like behavior was observed in both tests. Collectively, these data indicate that the amygdala is a valid target brain area for ghrelin where its neurobiological effects are important for food intake and for the suppression of emotional (anxiety-like behaviors if food is not available.

  13. Alpha-lipoic acid-mediated activation of muscarinic receptors improves hippocampus- and amygdala-dependent memory.

    Science.gov (United States)

    Mahboob, Aamra; Farhat, Syeda Mehpara; Iqbal, Ghazala; Babar, Mustafeez Mujtaba; Zaidi, Najam-us-Sahar Sadaf; Nabavi, Seyed Mohammad; Ahmed, Touqeer

    2016-04-01

    Aluminum (Al) is a neurotoxic agent which readily crosses the blood-brain-barrier (BBB) and accumulates in the brain leading to neurodegenerative disorders, characterised by cognitive impairment. Alpha-lipoic acid (ALA) is an antioxidant and has a potential to improve cognitive functions. This study aimed to evaluate the neuroprotective effect of ALA in AlCl3-induced neurotoxicity mouse model. Effect of ALA (25mg/kg/day) was evaluated in the AlCl3-induced neurotoxicity (AlCl3 150 mg/kg/day) mouse model on learning and memory using behaviour tests and on the expression of muscarinic receptor genes (using RT-PCR), in hippocampus and amygdala. Following ALA treatment, the expression of muscarinic receptor genes M1, M2 and choline acetyltransferase (ChaT) were significantly improved (penhanced fear memory (pmemory was remarkably restored (penhancement thus presenting it an enviable therapeutic candidate for the treatment of neurodegenerative disorders. PMID:26912408

  14. Enhanced group II mGluR-mediated inhibition of pain-related synaptic plasticity in the amygdala

    Directory of Open Access Journals (Sweden)

    Bird Gary C

    2006-05-01

    Full Text Available Abstract Background The latero-capsular part of the central nucleus of the amygdala (CeLC is the target of the spino-parabrachio-amygdaloid pain pathway. Our previous studies showed that CeLC neurons develop synaptic plasticity and increased neuronal excitability in the kaolin/carrageenan model of arthritic pain. These pain-related changes involve presynaptic group I metabotropic glutamate receptors (mGluRs and postsynaptic NMDA and calcitonin gene-related peptide (CGRP1 receptors. Here we address the role of group II mGluRs. Results Whole-cell current- and voltage-clamp recordings were made from CeLC neurons in brain slices from control rats and arthritic rats (>6 h postinjection of kaolin/carrageenan into the knee. Monosynaptic excitatory postsynaptic currents (EPSCs were evoked by electrical stimulation of afferents from the pontine parabrachial (PB area. A selective group II mGluR agonist (LY354740 decreased the amplitude of EPSCs more potently in CeLC neurons from arthritic rats (IC50 = 0.59 nM than in control animals (IC50 = 15.0 nM. The inhibitory effect of LY354740 was reversed by a group II mGluR antagonist (EGLU but not a GABAA receptor antagonist (bicuculline. LY354740 decreased frequency, but not amplitude, of miniature EPSCs in the presence of TTX. No significant changes of neuronal excitability measures (membrane slope conductance and action potential firing rate were detected. Conclusion Our data suggest that group II mGluRs act presynaptically to modulate synaptic plasticity in the amygdala in a model of arthritic pain.

  15. Hemispheric differences in amygdala contributions to response monitoring

    Science.gov (United States)

    Polli, Frida E.; Wright, Christopher I.; Milad, Mohammed R.; Dickerson, Bradford C.; Vangel, Mark; Barton, Jason J.S.; Rauch, Scott L.; Manoach, Dara S.

    2009-01-01

    The amygdala detects aversive events and coordinates with rostral anterior cingulate cortex to adapt behavior. We assessed error-related activation in these regions and its relation to task performance using functional MRI and a saccadic paradigm. Both amygdalae showed increased activation during error versus correct antisaccade trials that was correlated with error-related activation in the corresponding rostral anterior cingulate cortex. Together, activation in right amygdala and right rostral anterior cingulate cortex predicted greater accuracy. In contrast, left amygdala activation predicted a higher error rate. These findings support a role for amygdala in response monitoring. Consistent with proposed specializations of right and left amygdala in aversive conditioning, we hypothesize that right amygdala-rostral anterior cingulate cortex interactions mediate learning to avoid errors, while left error-related amygdala activation underpins detrimental negative affect. PMID:19218865

  16. Widespread blunting of hypothalamic and amygdala-septal activity and behavior in rats with long-term hyperglycemia.

    Science.gov (United States)

    Moreno-Cortés, M L; Gutiérrez-García, A G; Guillén-Ruiz, G; Romo-González, T; Contreras, C M

    2016-09-01

    Anxiety and depression in diabetic patients contributes to a poor prognosis, but possible causal relationships have been controversial. Anxiety, fear, and anhedonia are mediated by interactions between different deep structures of the temporal lobe (e.g., amygdala complex and hippocampus) and other forebrain-related structures (e.g., lateral septal nucleus). Connections between these structures and the hypothalamic orexinergic system are necessary for the maintenance of energy and wakefulness. However, few studies have explored the impact of long-term hyperglycemia in these structures on anxiety. We induced long-term hyperglycemia (glucose levels of ∼500mg/dl) in Wistar rats by injecting them with alloxan and simultaneously protecting them from hyperglycemia by injecting them daily with a low dose of insulin (i.e., just enough insulin to avoid death), thus maintaining hyperglycemia and ketonuria for as long as 6 weeks. Compared with controls, long-term hyperglycemic rats exhibited a significant reduction of Fos expression in the lateral septal nucleus and basolateral amygdala, but no differences were found in cerebellar regions. Orexin-A cells appeared to be inactive in the lateral hypothalamus. No differences were found in sucrose consumption or behavior in the elevated plus maze compared with the control group, but a decrease in general locomotion was observed. These data indicate a generalized blunting of the metabolic brain response, accompanied by a decrease in locomotion but no changes in hedonic- or anxiety-like behavior. PMID:27173433

  17. Cage Change Influences Serum Corticosterone and Anxiety-Like Behaviors in the Mouse

    OpenAIRE

    Rasmussen, Skye; Miller, Melinda M.; Filipski, Sarah B.; Tolwani, Ravi J.

    2011-01-01

    Environmental variables and husbandry practices can influence physiology and alter behavior in mice. Our study evaluated the effects of cage change on serum corticosterone levels and anxiety-like behaviors in C57BL/6 male mice. We examined the effects of 3 different methods of performing cage transfer and of transferring mice to a clean or a dirty familiar cage microenvironment. The 3 different handling methods were forceps transfer, gentle transfer with gloved hands, and a passive transfer t...

  18. The effects of calorie restriction olfactory cues on conspecific anxiety-like behaviour.

    Science.gov (United States)

    Abbott, Jacenta D; Kent, Stephen; Levay, Elizabeth A; Tucker, Rachel V; Penman, Jim; Tammer, Amanda H; Paolini, Antonio G

    2009-08-12

    Olfactory stimuli and calorie restriction (CR) have both been found to reduce anxiety-like behaviour and alter anxiety-related neurochemical mechanisms in rats. The aim of this study was to determine if exposure to olfactory cues from 25% CR male rats leads to anxiolytic-like behaviour in male rats fed ad libitum. Animals were divided into four groups: control (fed ad libitum and given new bedding every 5 days), control olfactory group (fed ad libitum and given the bedding from the control group every 5 days), CR (fed a 25% CR regime and given new bedding every 5 days), and CR olfaction (fed ad libitum and given the bedding from the CR group every 5 days). All animals were assessed on two measures of anxiety-like behaviour: the open field and the elevated plus maze. The CR group demonstrated anxiolytic-like behavioural responses in the open field test, characterised by more time spent in the aversive central zone and a higher frequency of central and middle zone entries compared to all other groups. Intriguingly, the CR olfaction group demonstrated anxiolytic-like behaviour in the elevated plus maze test, characterised by more time spent on the open arms, and a higher ratio of open compared to total arm entries relative to the control and control olfaction groups. After the completion of behavioural testing, serum corticosterone assays were conducted on trunk blood. However, only the CR group demonstrated an increase in corticosterone. Olfactory cues from conspecifics on a CR regime significantly reduced anxiety-like behaviour in rats fed ad libitum, similar to the reduction in anxiety-like behaviour following CR. This may have implications for the development of more efficacious novel treatments for anxiety disorders.

  19. CRH engagement of the locus coeruleus noradrenergic system mediates stress-induced anxiety

    Science.gov (United States)

    McCall, Jordan G.; Al-Hasani, Ream; Siuda, Edward R.; Hong, Daniel Y.; Norris, Aaron J.; Ford, Christopher P.; Bruchas, Michael R.

    2015-01-01

    Summary The locus coeruleus noradrenergic (LC-NE) system is one of the first systems engaged following a stressful event. While numerous groups have demonstrated that LC-NE neurons are activated by many different stressors, the underlying neural circuitry and the role of this activity in generating stress-induced anxiety has not been elucidated. Using a combination of in vivo chemogenetics, optogenetics, and retrograde tracing we determine that increased tonic activity of the LC-NE system is necessary and sufficient for stress-induced anxiety and aversion. Selective inhibition of LC-NE neurons during stress prevents subsequent anxiety-like behavior. Exogenously increasing tonic, but not phasic, activity of LC-NE neurons is alone sufficient for anxiety-like and aversive behavior. Furthermore, endogenous corticotropin releasing hormone+ (CRH+) LC inputs from the amygdala increase tonic LC activity, inducing anxiety-like behaviors. These studies position the LC-NE system as a critical mediator of acute stress-induced anxiety and offer a potential intervention for preventing stress-related affective disorders. PMID:26212712

  20. Acute and chronic effects of citalopram on postsynaptic 5-hydroxytryptamine(1A) receptor-mediated feedback : a microdialysis study in the amygdala

    NARCIS (Netherlands)

    Bosker, FJ; Cremers, TIFH; Jongsma, ME; Westerink, BHC; Wikstrom, VH; den Boer, JA

    2001-01-01

    Microdialysis was used to assess the involvement of postsynaptic 5-hydroxytryptamine(1A) (5-HT1A) receptors in the regulation of extracellular 5-HT in the amygdala. Local infusion of the 5-HT1A receptor agonist flesinoxan (0.3, 1, 3 muM) for 30 min into the amygdala maximally decreased 5-HT to 50% o

  1. Asparagus racemosus attenuates anxiety-like behavior in experimental animal models.

    Science.gov (United States)

    Garabadu, Debapriya; Krishnamurthy, Sairam

    2014-05-01

    Asparagus racemosus Linn. (AR) is used worldwide as a medicinal plant. In the present study, the anxiolytic activity of standardized methanolic extract of root of AR (MAR) was evaluated in open-field test (OFT), hole-board, and elevated plus maze (EPM) tests. Rats received oral pretreatment of MAR in the doses of 50, 100, and 200 mg/kg daily for 7 days and then were evaluated for the anxiolytic activity in different animal models. Both MAR (100 and 200 mg/kg) and diazepam (1 mg/kg, p.o.) increased the grooming behavior, number of central squares crossed, and time spent in the central area during OFT. Further, MAR (100 and 200 mg/kg) increased the head-dip and head-dip/sniffing behavior, and decreased sniffing activity in hole-board test. Furthermore, MAR (100 and 200 mg/kg) increased the percentage entries and time spent to open arm in EPM test paradigm. The anxiolytic activity in the experimental models was similar to that of diazepam. MAR (100 and 200 mg/kg) enhanced the level of amygdalar serotonin and norepinephrine. It also increased the expression of 5-HT2A receptors in the amygdala. In another set of experiment, flumazenil attenuated the anxiolytic effect of minimum effective dose of MAR (100 mg/kg) in OFT, hole-board, and EPM tests, indicating GABAA-mediated mechanism. Moreover, the anxiolytic dose of MAR did not show sedative-like effect in OFT and EPM tests compared to diazepam (6 mg/kg, p.o.). Thus, the anxiolytic response of MAR may involve GABA and serotonergic mechanisms. These preclinical data show that AR can be a potential agent for treatment of anxiety disorders.

  2. Central Agonism of GPR120 Acutely Inhibits Food Intake and Food Reward and Chronically Suppresses Anxiety-Like Behavior in Mice

    Science.gov (United States)

    Fisette, Alexandre; Fernandes, Maria F.; Hryhorczuk, Cécile; Poitout, Vincent; Alquier, Thierry; Fulton, Stephanie

    2016-01-01

    Background: GPR120 (FFAR4) is a G-protein coupled receptor implicated in the development of obesity and the antiinflammatory and insulin-sensitizing effects of omega-3 (ω-3) polyunsaturated fatty acids. Increasing central ω-3 polyunsaturated fatty acid levels has been shown to have both anorectic and anxiolytic actions. Despite the strong clinical interest in GPR120, its role in the brain is largely unknown, and thus we sought to determine the impact of central GPR120 pharmacological activation on energy balance, food reward, and anxiety-like behavior. Methods: Male C57Bl/6 mice with intracerebroventricular cannulae received a single injection (0.1 or 1 µM) or continuous 2-week infusion (1 µM/d; mini-pump) of a GPR120 agonist or vehicle. Free-feeding intake, operant lever-pressing for palatable food, energy expenditure (indirect calorimetry), and body weight were measured. GPR120 mRNA expression was measured in pertinent brain areas. Anxiety-like behavior was assessed in the elevated-plus maze and open field test. Results: GPR120 agonist injections substantially reduced chow intake during 4 hours postinjection, suppressed the rewarding effects of high-fat/-sugar food, and blunted approach-avoidance behavior in the open field. Conversely, prolonged central GPR120 agonist infusions reduced anxiety-like behavior in the elevated-plus maze and open field, yet failed to affect free-feeding intake, energy expenditure, and body weight on a high-fat diet. Conclusion: Acute reductions in food intake and food reward suggest that GPR120 could mediate the effects of central ω-3 polyunsaturated fatty acids to inhibit appetite. The anxiolytic effect elicited by GPR120 agonist infusions favors the testing of compounds that can enter the brain to activate GPR120 for the mitigation of anxiety. PMID:26888796

  3. Acupuncture Attenuates Anxiety-Like Behavior by Normalizing Amygdaloid Catecholamines during Ethanol Withdrawal in Rats

    OpenAIRE

    Zheng Lin Zhao; Guang Wen Zhao; Hou Zhong Li; Xu Dong Yang; Yi Yan Wu; Feng Lin; Li Xin Guan; Feng Guo Zhai; Jia Qi Liu; Chae Ha Yang; Sang Chan Kim; Kee Won Kim; Rong Jie Zhao

    2011-01-01

    Previously, we demonstrated acupuncture at acupoint HT7 (Shen-Men) attenuated ethanol withdrawal syndrome by normalizing the dopamine release in nucleus accumbens shell. In the present study, we investigated the effect of acupuncture on anxiety-like behavior in rats and its relevant mechanism by studying neuro-endocrine parameters during ethanol withdrawal. Rats were treated with 3 g kg−1day−1 of ethanol (20%, w/v) or saline by intraperitoneal injections for 28 days. The rats undergoing ethan...

  4. Effect of dietary fat type on anxiety-like and depression-like behavior in mice

    OpenAIRE

    Mizunoya, Wataru; Ohnuki, Koichiro; Baba, Kento; Miyahara, Hideo; Shimizu, Naomi; Tabata, Kuniko; Kino, Takako; Sato, Yusuke; Tatsumi, Ryuichi; Ikeuchi, Yoshihide

    2013-01-01

    Dietary fat plays an important role in higher brain functions. We aimed to assess the short and long term intake of three different types of dietary fat (soybean oil, lard, and fish oil) on anxiety-like and depression-like behavior in mice. For the short term intake assessment, a behavioral test battery for anxiety and depression was carried out for a 3-day feeding period. For the long term intake assessment, a behavioral test battery began after the 4-week feeding period. During the short te...

  5. Pain-related increase of excitatory transmission and decrease of inhibitory transmission in the central nucleus of the amygdala are mediated by mGluR1

    Directory of Open Access Journals (Sweden)

    Neugebauer Volker

    2010-12-01

    Full Text Available Abstract Neuroplasticity in the central nucleus of the amygdala (CeA, particularly its latero-capsular division (CeLC, is an important contributor to the emotional-affective aspects of pain. Previous studies showed synaptic plasticity of excitatory transmission to the CeLC in different pain models, but pain-related changes of inhibitory transmission remain to be determined. The CeLC receives convergent excitatory inputs from the parabrachial nucleus in the brainstem and from the basolateral amygdala (BLA. In addition, feedforward inhibition of CeA neurons is driven by glutamatergic projections from the BLA area to a cluster of GABAergic neurons in the intercalated cell masses (ITC. Using patch-clamp in rat brain slices we measured monosynaptic excitatory postsynaptic currents (EPSCs and polysynaptic inhibitory currents (IPSCs that were evoked by electrical stimulation in the BLA. In brain slices from arthritic rats, input-output functions of excitatory synaptic transmission were enhanced whereas inhibitory synaptic transmission was decreased compared to control slices from normal untreated rats. A non-NMDA receptor antagonist (NBQX blocked the EPSCs and reduced the IPSCs, suggesting that non-NMDA receptors mediate excitatory transmission and also contribute to glutamate-driven feed-forward inhibition of CeLC neurons. IPSCs were blocked by a GABAA receptor antagonist (bicuculline. Bicuculline increased EPSCs under normal conditions but not in slices from arthritic rats, which indicates a loss of GABAergic control of excitatory transmission. A metabotropic glutamate receptor subtype 1 (mGluR1 antagonist (LY367385 reversed both the increase of excitatory transmission and the decrease of inhibitory transmission in the arthritis pain model but had no effect on basal synaptic transmission in control slices from normal rats. The inhibitory effect of LY367385 on excitatory transmission was blocked by bicuculline suggesting the involvement of a GABAergic

  6. The amygdala: securing pleasure and avoiding pain

    Directory of Open Access Journals (Sweden)

    Anushka B P Fernando

    2013-12-01

    Full Text Available The amygdala has traditionally been associated with fear, mediating the impact of negative emotions on memory. However, this view does not fully encapsulate the function of the amygdala, nor the impact that processing in this structure has on the motivational limbic corticostriatal circuitry of which it is an important structure. Here we discuss the interactions between different amygdala nuclei with cortical and striatal regions involved in motivation; interconnections and parallel circuitries that have become increasingly understood in recent years. We review the evidence that the amygdala stores memories that allow initially motivationally neutral stimuli to become associated through pavlovian conditioning with motivationally relevant outcomes which, importantly, can be either appetitive (e.g. food or aversive (e.g. electric shock. We also consider how different psychological processes supported by the amygdala such as conditioned reinforcement and punishment, conditioned motivation and suppression, and conditioned approach and avoidance behavior, are not only psychologically but also neurobiologically dissociable, being mediated by distinct yet overlapping neural circuits within the limbic corticostriatal circuitry. Clearly the role of the amygdala goes beyond encoding aversive stimuli to also encode the appetitive, requiring an appreciation of the amygdala’s mediation of both appetitive and fearful behavior through diverse psychological processes.

  7. Histaminergic system of the lateral septum in the modulation of anxiety-like behaviour in rats.

    Science.gov (United States)

    Zarrindast, Mohammad-Reza; Valizadegan, Farhad; Rostami, Parvin; Rezayof, Ameneh

    2008-03-31

    The central histaminergic system is known to have modulatory influence on anxiety-related behaviour both in animals and humans through histamine H1 and/or H2 receptors. In the present study, the effects of intra-lateral septal microinjections of histaminergic agents on anxiety-related behaviours in male Wistar rats have been investigated. As a model of anxiety, the elevated plus-maze which is a useful test to investigate the effects of anxiogenic or anxiolytic drugs in rodents was used. Intra-lateral septal administration of histamine (0.5 and 1 microg/rat) decreased the percentage of open arm entries and open arm time but not locomotor activity, showing an anxiogenic response. The intra-lateral septal injections of different doses of the histamine H1 receptor antagonist, pyrilamine (5, 10 and 20 microg/rat) or the histamine H2 receptor antagonist, ranitidine (5, 10 and 20 microg/rat) could not significantly alter the anxiety-like parameters in the plus-maze test. However, intra-lateral septal injections of different doses of pyrilamine (10 and 20 microg/rat) or ranitidine (10 and 20 microg/rat) significantly reversed histamine (1 microg/rat)-induced anxiogenic effect. The results may indicate that the histaminergic system of lateral septum modulate anxiety-like behaviour through histamine H1 and H2 receptors.

  8. Prefrontal inputs to the amygdala instruct fear extinction memory formation

    OpenAIRE

    Bukalo, Olena; Pinard, Courtney R.; Silverstein, Shana; Brehm, Christina; Hartley, Nolan D.; Whittle, Nigel; Colacicco, Giovanni; Busch, Erica; Patel, Sachin; Singewald, Nicolas; Holmes, Andrew

    2015-01-01

    Persistent anxiety after a psychological trauma is a hallmark of many anxiety disorders. However, the neural circuits mediating the extinction of traumatic fear memories remain incompletely understood. We show that selective, in vivo stimulation of the ventromedial prefrontal cortex (vmPFC)–amygdala pathway facilitated extinction memory formation, but not retrieval. Conversely, silencing the vmPFC-amygdala pathway impaired extinction formation and reduced extinction-induced amygdala activity....

  9. Micro-opioid receptor activation in the basolateral amygdala mediates the learning of increases but not decreases in the incentive value of a food reward.

    Science.gov (United States)

    Wassum, Kate M; Cely, Ingrid C; Balleine, Bernard W; Maidment, Nigel T

    2011-02-01

    The decision to perform, or not perform, actions known to lead to a rewarding outcome is strongly influenced by the current incentive value of the reward. Incentive value is largely determined by the affective experience derived during previous consumption of the reward-the process of incentive learning. We trained rats on a two-lever, seeking-taking chain paradigm for sucrose reward, in which responding on the initial seeking lever of the chain was demonstrably controlled by the incentive value of the reward. We found that infusion of the μ-opioid receptor antagonist, CTOP (d-Phe-Cys-Tyr-d-Trp-Orn-Thr-Pen-Thr-NH(2)), into the basolateral amygdala (BLA) during posttraining, noncontingent consumption of sucrose in a novel elevated-hunger state (a positive incentive learning opportunity) blocked the encoding of incentive value information normally used to increase subsequent sucrose-seeking responses. Similar treatment with δ [N, N-diallyl-Tyr-Aib-Aib-Phe-Leu-OH (ICI 174,864)] or κ [5'-guanidinonaltrindole (GNTI)] antagonists was without effect. Interestingly, none of these drugs affected the ability of the rats to encode a decrease in incentive value resulting from experiencing the sucrose in a novel reduced-hunger state. However, the μ agonist, DAMGO ([d-Ala2, NMe-Phe4, Gly5-ol]-enkephalin), appeared to attenuate this negative incentive learning. These data suggest that upshifts and downshifts in endogenous opioid transmission in the BLA mediate the encoding of positive and negative shifts in incentive value, respectively, through actions at μ-opioid receptors, and provide insight into a mechanism through which opiates may elicit inappropriate desire resulting in their continued intake in the face of diminishing affective experience. PMID:21289167

  10. Mefloquine in the nucleus accumbens promotes social avoidance and anxiety-like behavior in mice.

    Science.gov (United States)

    Heshmati, Mitra; Golden, Sam A; Pfau, Madeline L; Christoffel, Daniel J; Seeley, Elena L; Cahill, Michael E; Khibnik, Lena A; Russo, Scott J

    2016-02-01

    Mefloquine continues to be a key drug used for malaria chemoprophylaxis and treatment, despite reports of adverse events like depression and anxiety. It is unknown how mefloquine acts within the central nervous system to cause depression and anxiety or why some individuals are more vulnerable. We show that intraperitoneal injection of mefloquine in mice, when coupled to subthreshold social defeat stress, is sufficient to produce depression-like social avoidance behavior. Direct infusion of mefloquine into the nucleus accumbens (NAc), a key brain reward region, increased stress-induced social avoidance and anxiety behavior. In contrast, infusion into the ventral hippocampus had no effect. Whole cell recordings from NAc medium spiny neurons indicated that mefloquine application increases the frequency of spontaneous excitatory postsynaptic currents, a synaptic adaptation that we have previously shown to be associated with increased susceptibility to social defeat stress. Together, these data demonstrate a role for the NAc in mefloquine-induced depression and anxiety-like behaviors.

  11. Prenatal Thyroxine Treatment Disparately Affects Peripheral and Amygdala Thyroid Hormone Levels

    Science.gov (United States)

    Shukla, Pradeep K.; Sittig, Laura J.; Andrus, Brian M.; Schaffer, Daniel J.; Batra, Kanchi K.; Redei, Eva E.

    2009-01-01

    Summary A prenatal hypothyroid state is associated with behavioral abnormalities in adulthood. Wistar–Kyoto (WKY) rats exhibit hypothyroidism and increased depressive and anxiety-like behaviors. Thus, the WKY could illuminate the mechanisms by which the reversal of developmental hypothyroidism in humans and animals results in adult behavioral improvement. We examined the outcome of maternal thyroxine (T4) treatment on thyroid hormone-regulated functions and adult behavior of the WKY offspring. Pregnant WKY dams completed gestation with and without T4 administration and their adult male offspring were tested. Measures included depressive and anxiety-like behaviors, and thyroid hormone (TH) concentrations in both plasma and specific brain regions. In addition, the expression of two proteins affecting thyroid hormone trafficking and metabolism, monocarboxylate transporter 8 (MCT-8) and iodothyronine deiodinase type III (Dio3), and of several behavior-altering molecules, glucocorticoid receptor (GR), prepro-thyrotropin releasing hormone (prepro-TRH) and corticotrophin releasing hormone (CRH), were determined in the hippocampus and amygdala of the offspring. Prenatal T4 treatment of WKYs did not affect adult depressive behavior but increased anxiety-like behavior and decreased plasma levels of THs. In the hippocampus of males treated with T4 in utero, Dio3 and MCT-8 protein levels were increased, while in the amygdala, there were increases of free T4, MCT-8, GR, prepro-TRH protein and CRH mRNA levels. These results show that T4 administration in utero programs adult peripheral and amygdalar thyroid hormone levels divergently, and that the resulting upregulation of anxiety-related genes in the amygdala could be responsible for the exacerbated anxiety-like behavior seen in WKYs after prenatal T4 treatment. PMID:20005050

  12. Cohort Removal Induces Changes in Body Temperature, Pain Sensitivity, and Anxiety-Like Behavior.

    Science.gov (United States)

    Takao, Keizo; Shoji, Hirotaka; Hattori, Satoko; Miyakawa, Tsuyoshi

    2016-01-01

    Mouse behavior is analyzed to elucidate the effects of various experimental manipulations, including gene mutation and drug administration. When the effect of a factor of interest is assessed, other factors, such as age, sex, temperature, apparatus, and housing, are controlled in experiments by matching, counterbalancing, and/or randomizing. One such factor that has not attracted much attention is the effect of sequential removal of animals from a common cage (cohort removal). Here we evaluated the effects of cohort removal on rectal temperature, pain sensitivity, and anxiety-like behavior by analyzing the combined data of a large number of C57BL/6J mice that we collected using a comprehensive behavioral test battery. Rectal temperature increased in a stepwise manner according to the position of sequential removal from the cage, consistent with previous reports. In the hot plate test, the mice that were removed first from the cage had a significantly longer latency to show the first paw response than the mice removed later. In the elevated plus maze, the mice removed first spent significantly less time on the open arms compared to the mice removed later. The results of the present study demonstrated that cohort removal induces changes in body temperature, pain sensitivity, and anxiety-like behavior in mice. Cohort removal also increased the plasma corticosterone concentration in mice. Thus, the ordinal position in the sequence of removal from the cage should be carefully counterbalanced between groups when the effect of experimental manipulations, including gene manipulation and drug administration, are examined using behavioral tests. PMID:27375443

  13. Cohort removal induces changes in body temperature, pain sensitivity, and anxiety-like behavior

    Directory of Open Access Journals (Sweden)

    Keizo eTakao

    2016-06-01

    Full Text Available Mouse behavior is analyzed to elucidate the effects of various experimental manipulations, including gene mutation and drug administration. When the effect of a factor of interest is assessed, other factors, such as age, sex, temperature, apparatus, and housing, are controlled in experiments by matching, counterbalancing, and/or randomizing. One such factor that has not attracted much attention is the effect of sequential removal of animals from a common cage (cohort removal. Here we evaluated the effects of cohort removal on rectal temperature, pain sensitivity, and anxiety-like behavior by analyzing the combined data of a large number of C57BL/6J mice that we collected using a comprehensive behavioral test battery. Rectal temperature increased in a stepwise manner according to the position of sequential removal from the cage, consistent with previous reports. In the hot plate test, the mice that were removed first from the cage had a significantly longer latency to show the first paw response than the mice removed later. In the elevated plus maze, the mice removed first spent significantly less time on the open arms compared to the mice removed later. The results of the present study demonstrated that cohort removal induces changes in body temperature, pain sensitivity, and anxiety-like behavior in mice. Cohort removal also increased the plasma corticosterone concentration in mice. Thus, the ordinal position in the sequence of removal from the cage should be carefully counterbalanced between groups when the effect of experimental manipulations, including gene manipulation and drug administration, are examined using behavioral tests.

  14. Cohort Removal Induces Changes in Body Temperature, Pain Sensitivity, and Anxiety-Like Behavior.

    Science.gov (United States)

    Takao, Keizo; Shoji, Hirotaka; Hattori, Satoko; Miyakawa, Tsuyoshi

    2016-01-01

    Mouse behavior is analyzed to elucidate the effects of various experimental manipulations, including gene mutation and drug administration. When the effect of a factor of interest is assessed, other factors, such as age, sex, temperature, apparatus, and housing, are controlled in experiments by matching, counterbalancing, and/or randomizing. One such factor that has not attracted much attention is the effect of sequential removal of animals from a common cage (cohort removal). Here we evaluated the effects of cohort removal on rectal temperature, pain sensitivity, and anxiety-like behavior by analyzing the combined data of a large number of C57BL/6J mice that we collected using a comprehensive behavioral test battery. Rectal temperature increased in a stepwise manner according to the position of sequential removal from the cage, consistent with previous reports. In the hot plate test, the mice that were removed first from the cage had a significantly longer latency to show the first paw response than the mice removed later. In the elevated plus maze, the mice removed first spent significantly less time on the open arms compared to the mice removed later. The results of the present study demonstrated that cohort removal induces changes in body temperature, pain sensitivity, and anxiety-like behavior in mice. Cohort removal also increased the plasma corticosterone concentration in mice. Thus, the ordinal position in the sequence of removal from the cage should be carefully counterbalanced between groups when the effect of experimental manipulations, including gene manipulation and drug administration, are examined using behavioral tests.

  15. Fear but not fright: re-evaluating traumatic experience attenuates anxiety-like behaviors after fear conditioning

    Directory of Open Access Journals (Sweden)

    Marco eCostanzi

    2014-08-01

    Full Text Available Fear allows organisms to cope with dangerous situations and remembering these situations has an adaptive role preserving individuals from injury and death. However, recalling traumatic memories can induce re-experiencing the trauma, thus resulting in a maladaptive fear. A failure to properly regulate fear responses has been associated with anxiety disorders, like Posttraumatic Stress Disorder (PTSD. Thus, re-establishing the capability to regulate fear has an important role for its adaptive and clinical relevance. Strategies aimed at erasing fear memories have been proposed, although there are limits about their efficiency in treating anxiety disorders. To re-establish fear regulation, here we propose a new approach, based on the re-evaluation of the aversive value of traumatic experience. Mice were submitted to a contextual-fear-conditioning paradigm in which a neutral context was paired with an intense electric footshock. Three weeks after acquisition, conditioned mice were treated with a less intense footshock (pain threshold. The effectiveness of this procedure in reducing fear expression was assessed in terms of behavioral outcomes related to PTSD (e.g. hyper-reactivity to a neutral tone, anxiety levels in a plus maze task, social avoidance, and learning deficits in a spatial water maze and of amygdala activity by evaluating c-fos expression. Furthermore, a possible role of lateral orbitofrontal cortex (lOFC in mediating the behavioral effects induced by the re-evaluation procedure was investigated. We observed that this treatment (i significantly mitigates the abnormal behavioral outcomes induced by trauma, (ii persistently attenuates fear expression without erasing contextual memory, (iii prevents fear reinstatement, (iv reduces amygdala activity and (v requires an intact lOFC to be effective.The results suggest that an effective strategy to treat pathological anxiety should address cognitive re-evaluation of traumatic experiences

  16. Amygdala and hippocampus enlargement during adolescence in autism.

    NARCIS (Netherlands)

    Groen, W.B.; Teluij, M.; Buitelaar, J.K.; Tendolkar, I.

    2010-01-01

    OBJECTIVE: The amygdala and hippocampus are key components of the neural system mediating emotion perception and regulation and are thought to be involved in the pathophysiology of autism. Although some studies in children with autism suggest that there is an enlargement of amygdala and hippocampal

  17. Oxytocin in the prelimbic medial prefrontal cortex reduces anxiety-like behavior in female and male rats.

    Science.gov (United States)

    Sabihi, Sara; Durosko, Nicole E; Dong, Shirley M; Leuner, Benedetta

    2014-07-01

    The neuropeptide oxytocin (OT) is anxiolytic in rodents and humans. However, the specific brain regions where OT acts to regulate anxiety requires further investigation. The medial prefrontal cortex (mPFC) has been shown to play a role in the modulation of anxiety-related behavior. In addition, the mPFC contains OT-sensitive neurons, expresses OT receptors, and receives long range axonal projections from OT-producing neurons in the hypothalamus, suggesting that the mPFC may be a target where OT acts to diminish anxiety. To investigate this possibility, female rats were administered OT bilaterally into the prelimbic (PL) region of the mPFC and anxiety-like behavior assessed. In addition, to determine if the effects of OT on anxiety-like behavior are sex dependent and to evaluate the specificity of OT, male and female anxiety-like behavior was tested following delivery of either OT or the closely related neuropeptide arginine vasopressin (AVP) into the PL mPFC. Finally, the importance of endogenous OT in the regulation of anxiety-like behavior was examined in male and female rats that received PL infusions of an OT receptor antagonist (OTR-A). Overall, even though males and females showed some differences in their baseline levels of anxiety-like behavior, OT in the PL region of the mPFC decreased anxiety regardless of sex. In contrast, neither AVP nor an OTR-A affected anxiety-like behavior in males or females. Together, these findings suggest that although endogenous OT in the PL region of the mPFC does not influence anxiety, the PL mPFC is a site where exogenous OT may act to attenuate anxiety-related behavior independent of sex. PMID:24845174

  18. Intra-Amygdala Injections of CREB Antisense Impair Inhibitory Avoidance Memory: Role of Norepinephrine and Acetylcholine

    Science.gov (United States)

    Canal, Clinton E.; Chang, Qing; Gold, Paul E.

    2008-01-01

    Infusions of CREB antisense into the amygdala prior to training impair memory for aversive tasks, suggesting that the antisense may interfere with CRE-mediated gene transcription and protein synthesis important for the formation of new memories within the amygdala. However, the amygdala also appears to modulate memory formation in distributed…

  19. Effects of early-life abuse differ across development: infant social behavior deficits are followed by adolescent depressive-like behaviors mediated by the amygdala.

    Science.gov (United States)

    Raineki, Charlis; Cortés, Millie Rincón; Belnoue, Laure; Sullivan, Regina M

    2012-05-30

    Abuse during early life, especially from the caregiver, increases vulnerability to develop later-life psychopathologies such as depression. Although signs of depression are typically not expressed until later life, signs of dysfunctional social behavior have been found earlier. How infant abuse alters the trajectory of brain development to produce pathways to pathology is not completely understood. Here we address this question using two different but complementary rat models of early-life abuse from postnatal day 8 (P8) to P12: a naturalistic paradigm, where the mother is provided with insufficient bedding for nest building; and a more controlled paradigm, where infants undergo olfactory classical conditioning. Amygdala neural assessment (c-Fos), as well as social behavior and forced swim tests were performed at preweaning (P20) and adolescence (P45). Our results show that both models of early-life abuse induce deficits in social behavior, even during the preweaning period; however, depressive-like behaviors were observed only during adolescence. Adolescent depressive-like behavior corresponds with an increase in amygdala neural activity in response to forced swim test. A causal relationship between the amygdala and depressive-like behavior was suggested through amygdala temporary deactivation (muscimol infusions), which rescued the depressive-like behavior in the forced swim test. Our results indicate that social behavior deficits in infancy could serve as an early marker for later psychopathology. Moreover, the implication of the amygdala in the ontogeny of depressive-like behaviors in infant abused animals is an important step toward understanding the underlying mechanisms of later-life mental disease associated with early-life abuse.

  20. Rapid Amygdala Kindling Causes Motor Seizure and Comorbidity of Anxiety- and Depression-Like Behaviors in Rats.

    Science.gov (United States)

    Chen, Shang-Der; Wang, Yu-Lin; Liang, Sheng-Fu; Shaw, Fu-Zen

    2016-01-01

    Amygdala kindling is a model of temporal lobe epilepsy (TLE) with convulsion. The rapid amygdala kindling has an advantage on quick development of motor seizures and for antiepileptic drugs screening. The rapid amygdala kindling causes epileptogenesis accompanied by an anxiolytic response in early isolation of rat pups or depressive behavior in immature rats. However, the effect of rapid amygdala kindling on comorbidity of anxiety- and depression-like behaviors is unexplored in adult rats with normal breeding. In the present study, 40 amygdala stimulations given within 2 days were applied in adult Wistar rats. Afterdischarge (AD) and seizure stage were recorded throughout the amygdala kindling. Anxiety-like behaviors were evaluated by the elevated plus maze (EPM) test and open field (OF) test, whereas depression-like behaviors were assessed by the forced swim (FS) and sucrose consumption (SC) tests. A tonic-clonic convulsion was provoked in the kindle group. Rapid amygdala kindling resulted in a significantly lower frequency entering an open area of either open arms of the EPM or the central zone of an OF, lower sucrose intake, and longer immobility of the FS test in the kindle group. Our results suggest that rapid amygdala kindling elicited severe motor seizures comorbid with anxiety- and depression-like behaviors.

  1. Rapid Amygdala Kindling Causes Motor Seizure and Comorbidity of Anxiety- and Depression-Like Behaviors in Rats

    Science.gov (United States)

    Chen, Shang-Der; Wang, Yu-Lin; Liang, Sheng-Fu; Shaw, Fu-Zen

    2016-01-01

    Amygdala kindling is a model of temporal lobe epilepsy (TLE) with convulsion. The rapid amygdala kindling has an advantage on quick development of motor seizures and for antiepileptic drugs screening. The rapid amygdala kindling causes epileptogenesis accompanied by an anxiolytic response in early isolation of rat pups or depressive behavior in immature rats. However, the effect of rapid amygdala kindling on comorbidity of anxiety- and depression-like behaviors is unexplored in adult rats with normal breeding. In the present study, 40 amygdala stimulations given within 2 days were applied in adult Wistar rats. Afterdischarge (AD) and seizure stage were recorded throughout the amygdala kindling. Anxiety-like behaviors were evaluated by the elevated plus maze (EPM) test and open field (OF) test, whereas depression-like behaviors were assessed by the forced swim (FS) and sucrose consumption (SC) tests. A tonic-clonic convulsion was provoked in the kindle group. Rapid amygdala kindling resulted in a significantly lower frequency entering an open area of either open arms of the EPM or the central zone of an OF, lower sucrose intake, and longer immobility of the FS test in the kindle group. Our results suggest that rapid amygdala kindling elicited severe motor seizures comorbid with anxiety- and depression-like behaviors. PMID:27445726

  2. Anxiety-Like Behavioural Inhibition Is Normative under Environmental Threat-Reward Correlations.

    Directory of Open Access Journals (Sweden)

    Dominik R Bach

    2015-12-01

    Full Text Available Behavioural inhibition is a key anxiety-like behaviour in rodents and humans, distinct from avoidance of danger, and reduced by anxiolytic drugs. In some situations, it is not clear how behavioural inhibition minimises harm or maximises benefit for the agent, and can even appear counterproductive. Extant explanations of this phenomenon make use of descriptive models but do not provide a formal assessment of its adaptive value. This hampers a better understanding of the neural computations underlying anxiety behaviour. Here, we analyse a standard rodent anxiety model, the operant conflict test. We harvest Bayesian Decision Theory to show that behavioural inhibition normatively arises as cost-minimising strategy in temporally correlated environments. Importantly, only if behavioural inhibition is aimed at minimising cost, it depends on probability and magnitude of threat. Harnessing a virtual computer game, we test model predictions in four experiments with human participants. Humans exhibit behavioural inhibition with a strong linear dependence on threat probability and magnitude. Strikingly, inhibition occurs before motor execution and depends on the virtual environment, thus likely resulting from a neural optimisation process rather than a pre-programmed mechanism. Individual trait anxiety scores predict behavioural inhibition, underlining the validity of this anxiety model. These findings put anxiety behaviour into the context of cost-minimisation and optimal inference, and may ultimately pave the way towards a mechanistic understanding of the neural computations gone awry in human anxiety disorder.

  3. Transient gastric irritation in the neonatal rats leads to changes in hypothalamic CRF expression, depression- and anxiety-like behavior as adults.

    Directory of Open Access Journals (Sweden)

    Liansheng Liu

    Full Text Available AIMS: A disturbance of the brain-gut axis is a prominent feature in functional bowel disorders (such as irritable bowel syndrome and functional dyspepsia and psychological abnormalities are often implicated in their pathogenesis. We hypothesized that psychological morbidity in these conditions may result from gastrointestinal problems, rather than causing them. METHODS: Functional dyspepsia was induced by neonatal gastric irritation in male rats. 10-day old male Sprague-Dawley rats received 0.1% iodoacetamide (IA or vehicle by oral gavage for 6 days. At 8-10 weeks of age, rats were tested with sucrose preference and forced-swimming tests to examine depression-like behavior. Elevated plus maze, open field and light-dark box tests were used to test anxiety-like behaviors. ACTH and corticosterone responses to a minor stressor, saline injection, and hypothalamic CRF expression were also measured. RESULTS: Behavioral tests revealed changes of anxiety- and depression-like behaviors in IA-treated, but not control rats. As compared with controls, hypothalamic and amygdaloid CRF immunoreactivity, basal levels of plasma corticosterone and stress-induced ACTH were significantly higher in IA-treated rats. Gastric sensory ablation with resiniferatoxin had no effect on behaviors but treatment with CRF type 1 receptor antagonist, antalarmin, reversed the depression-like behavior in IA-treated rats CONCLUSIONS: The present results suggest that transient gastric irritation in the neonatal period can induce a long lasting increase in depression- and anxiety-like behaviors, increased expression of CRF in the hypothalamus, and an increased sensitivity of HPA axis to stress. The depression-like behavior may be mediated by the CRF1 receptor. These findings have significant implications for the pathogenesis of psychological co-morbidity in patients with functional bowel disorders.

  4. Anxiety-like behaviour and c-fos expression in rats that inhaled vetiver essential oil.

    Science.gov (United States)

    Saiyudthong, Somrudee; Pongmayteegul, Sirinun; Marsden, Charles A; Phansuwan-Pujito, Pansiri

    2015-01-01

    Vetiver essential oil (VEO) has been used in aromatherapy for relaxation. This study aimed to investigate the effects of VEO on an anxiety-related behavioural model (the elevated plus-maze, EPM) and immediate-early gene c-fos in amygdala, known to be involved in anxiety. Male Wistar rats were administered diazepam (1 mg/kg i.p.) for 30 min or inhalated with VEO (1%, 2.5% or 5% w/w) for 7 min prior to exposure to the EPM. Then, the effects of 2.5% VEO, the anxiolytic dose, on c-fos expression in amygdala were investigated. The rats given either 2.5% VEO or diazepam exhibited an anxiolytic-like profile in the EPM. VEO and diazepam significantly increased c-fos expression in the lateral division of the central amygdaloid nucleus (CeL). Therefore, the anxiolytic properties of VEO might be associated with altering neuronal activation in CeL. However, future studies are needed to investigate the precise mechanism of action of VEO. PMID:25553641

  5. Central nervous system-specific knockout of steroidogenic factor 1 results in increased anxiety-like behavior.

    Science.gov (United States)

    Zhao, Liping; Kim, Ki Woo; Ikeda, Yayoi; Anderson, Kimberly K; Beck, Laurel; Chase, Stephanie; Tobet, Stuart A; Parker, Keith L

    2008-06-01

    Steroidogenic factor 1 (SF-1) plays key roles in adrenal and gonadal development, expression of pituitary gonadotropins, and development of the ventromedial hypothalamic nucleus (VMH). If kept alive by adrenal transplants, global knockout (KO) mice lacking SF-1 exhibit delayed-onset obesity and decreased locomotor activity. To define specific roles of SF-1 in the VMH, we used the Cre-loxP system to inactivate SF-1 in a central nervous system (CNS)-specific manner. These mice largely recapitulated the VMH structural defect seen in mice lacking SF-1 in all tissues. In multiple behavioral tests, mice with CNS-specific KO of SF-1 had significantly more anxiety-like behavior than wild-type littermates. The CNS-specific SF-1 KO mice had diminished expression or altered distribution in the mediobasal hypothalamus of several genes whose expression has been linked to stress and anxiety-like behavior, including brain-derived neurotrophic factor, the type 2 receptor for CRH (Crhr2), and Ucn 3. Moreover, transfection and EMSAs support a direct role of SF-1 in Crhr2 regulation. These findings reveal important roles of SF-1 in the hypothalamic expression of key regulators of anxiety-like behavior, providing a plausible molecular basis for the behavioral effect of CNS-specific KO of this nuclear receptor.

  6. Early Life Stress and Macaque Amygdala Hypertrophy: Preliminary Evidence for a Role for the Serotonin Transporter Gene.

    Directory of Open Access Journals (Sweden)

    Jeremy D Coplan

    2014-10-01

    Full Text Available Background: Children exposed to early life stress (ELS exhibit enlarged amygdala volume in comparison to controls. The primary goal of this study was to examine amygdala volumes in bonnet macaques subjected to maternal variable foraging demand (VFD rearing, a well-established model of ELS. Preliminary analyses examined the interaction of ELS and the serotonin transporter gene on amygdala volume. Secondary analyses were conducted to examine the association between amygdala volume and other stress-related variables previously found to distinguish VFD and non-VFD reared animals. Methods: Twelve VFD-reared and nine normally reared monkeys completed MRI scans on a 3T system (mean age=5.2 years. Results: Left amygdala volume was larger in VFD versus control macaques. Larger amygdala volume was associated with: high cerebrospinal fluid concentrations of corticotropin releasing-factor (CRF determined when the animals were in adolescence (mean age=2.7 years; reduced fractional anisotropy of the anterior limb of the internal capsule during young adulthood (mean age=5.2 years and timid anxiety-like responses to an intruder during full adulthood (mean age=8.4 years. Right amygdala volume varied inversely with left hippocampal neurogenesis assessed in late adulthood (mean age=8.7 years. Exploratory analyses also showed a gene-by-environment effect, with VFD-reared macaques with a single short allele of the serotonin transporter gene exhibiting larger amygdala volume compared to VFD-reared subjects with only the long allele and normally reared controls. Conclusion: These data suggest that the left amygdala exhibits hypertrophy after ELS, particularly in association with the serotonin transporter gene, and that amygdala volume variation occurs in concert with other key stress-related behavioral and neurobiological parameters observed across the lifecycle. Future research is required to understand the mechanisms underlying these diverse and persistent changes a

  7. Association between amygdala reactivity and a dopamine transporter gene polymorphism

    OpenAIRE

    Bergman, O.; Åhs, F; Furmark, T; Appel, L; Linnman, C; Faria, V; Bani, M; Pich, E M; Bettica, P; Henningsson, S; Manuck, S B; Ferrell, R E; Nikolova, Y S; Hariri, A R; Fredrikson, M.

    2014-01-01

    Essential for detection of relevant external stimuli and for fear processing, the amygdala is under modulatory influence of dopamine (DA). The DA transporter (DAT) is of fundamental importance for the regulation of DA transmission by mediating reuptake inactivation of extracellular DA. This study examined if a common functional variable number tandem repeat polymorphism in the 3′ untranslated region of the DAT gene (SLC6A3) influences amygdala function during the processing of aversive emotio...

  8. Regulation of the fear network by mediators of stress: Norepinephrine alters the balance between Cortical and Subcortical afferent excitation of the Lateral Amygdala

    Directory of Open Access Journals (Sweden)

    Luke R Johnson

    2011-05-01

    Full Text Available Pavlovian auditory fear conditioning crucially involves the integration of information about and acoustic conditioned stimulus (CS and an aversive unconditioned stimulus (US in the lateral nucleus of the amygdala (LA. The auditory CS reaches the LA subcortically via a direct connection from the auditory thalamus and also from the auditory association cortex itself. How neural modulators, especially those activated during stress, such as norepinephrine (NE, regulate synaptic transmission and plasticity in this network is poorly understood. Here we show that NE inhibits synaptic transmission in both the subcortical and cortical input pathway but that sensory processing is biased towards the subcortical pathway. In addition binding of NE to β-adrenergic receptors further dissociates sensory processing in the LA. These findings suggest a network mechanism that shifts sensory balance towards the faster but more primitive subcortical input.

  9. Enhanced sympathetic nerve activity induced by neonatal colon inflammation induces gastric hypersensitivity and anxiety-like behavior in adult rats.

    Science.gov (United States)

    Winston, John H; Sarna, Sushil K

    2016-07-01

    Gastric hypersensitivity (GHS) and anxiety are prevalent in functional dyspepsia patients; their underlying mechanisms remain unknown largely because of lack of availability of live visceral tissues from human subjects. Recently, we demonstrated in a preclinical model that rats subjected to neonatal colon inflammation show increased basal plasma norepinephrine (NE), which contributes to GHS through the upregulation of nerve growth factor (NGF) expression in the gastric fundus. We tested the hypothesis that neonatal colon inflammation increases anxiety-like behavior and sympathetic nervous system activity, which upregulates the expression of NGF to induce GHS in adult life. Chemical sympathectomy, but not adrenalectomy, suppressed the elevated NGF expression in the fundus muscularis externa and GHS. The measurement of heart rate variability showed a significant increase in the low frequency-to-high frequency ratio in GHS vs. the control rats. Stimulus-evoked release of NE from the fundus muscularis externa strips was significantly greater in GHS than in the control rats. Tyrosine hydroxylase expression was increased in the celiac ganglia of the GHS vs. the control rats. We found an increase in trait but not stress-induced anxiety-like behavior in GHS rats in an elevated plus maze. We concluded that neonatal programming triggered by colon inflammation upregulates tyrosine hydroxylase in the celiac ganglia, which upregulates the release of NE in the gastric fundus muscularis externa. The increase of NE release from the sympathetic nerve terminals concentration dependently upregulates NGF, which proportionately increases the visceromotor response to gastric distention. Neonatal programming concurrently increases anxiety-like behavior in GHS rats. PMID:27151940

  10. Transgenic up-regulation of alpha-CaMKII in forebrain leads to increased anxiety-like behaviors and aggression

    Directory of Open Access Journals (Sweden)

    Hasegawa Shunsuke

    2009-03-01

    Full Text Available Abstract Background Previous studies have demonstrated essential roles for alpha-calcium/calmodulin-dependent protein kinase II (alpha-CaMKII in learning, memory and long-term potentiation (LTP. However, previous studies have also shown that alpha-CaMKII (+/- heterozygous knockout mice display a dramatic decrease in anxiety-like and fearful behaviors, and an increase in defensive aggression. These findings indicated that alpha-CaMKII is important not only for learning and memory but also for emotional behaviors. In this study, to understand the roles of alpha-CaMKII in emotional behavior, we generated transgenic mice overexpressing alpha-CaMKII in the forebrain and analyzed their behavioral phenotypes. Results We generated transgenic mice overexpressing alpha-CaMKII in the forebrain under the control of the alpha-CaMKII promoter. In contrast to alpha-CaMKII (+/- heterozygous knockout mice, alpha-CaMKII overexpressing mice display an increase in anxiety-like behaviors in open field, elevated zero maze, light-dark transition and social interaction tests, and a decrease in locomotor activity in their home cages and novel environments; these phenotypes were the opposite to those observed in alpha-CaMKII (+/- heterozygous knockout mice. In addition, similarly with alpha-CaMKII (+/- heterozygous knockout mice, alpha-CaMKII overexpressing mice display an increase in aggression. However, in contrast to the increase in defensive aggression observed in alpha-CaMKII (+/- heterozygous knockout mice, alpha-CaMKII overexpressing mice display an increase in offensive aggression. Conclusion Up-regulation of alpha-CaMKII expression in the forebrain leads to an increase in anxiety-like behaviors and offensive aggression. From the comparisons with previous findings, we suggest that the expression levels of alpha-CaMKII are associated with the state of emotion; the expression level of alpha-CaMKII positively correlates with the anxiety state and strongly affects

  11. Decreased daytime illumination leads to anxiety-like behaviors and HPA axis dysregulation in the diurnal grass rat (Arvicanthis niloticus).

    Science.gov (United States)

    Ikeno, Tomoko; Deats, Sean P; Soler, Joel; Lonstein, Joseph S; Yan, Lily

    2016-03-01

    The impact of ambient light on mood and anxiety is best exemplified in seasonal affective disorder, in which patients experience depression and anxiety in winter when there is less light in the environment. However, the brain mechanisms underlying light-dependent changes in affective state remain unclear. Our previous work revealed increased depression-like behaviors in the diurnal Nile grass rat (Arvicanthis niloticus) housed in a dim light-dark (dim-LD) cycle as compared to the controls housed in a bright light-dark (bright-LD) condition. As depression is often comorbid with anxiety and is associated with dysregulation of the body's stress response system, the present study examined the anxiety-like behaviors as well as indicators of the hypothalamic-pituitary-adrenal (HPA) axis functioning in the grass rats. Animals housed in dim-LD showed increased anxiety-like behaviors compared to bright-LD controls, as revealed by fewer entries and less time spent at the center in the open field test and more marbles buried during the marble-burying test. Following the marble-burying test, dim-LD animals showed higher plasma corticosterone (CORT) levels and hippocampal Fos expression. Although the daily CORT rhythm was comparable between bright-LD and dim-LD groups, the day/night variation of corticotropin-releasing hormone mRNA expression in the paraventricular nucleus was diminished in dim-LD animals. In addition, glucocorticoid receptor and mineralocorticoid receptor mRNA expression were higher in the hippocampus of dim-LD animals. The results suggest that in diurnal species, reduced daytime illumination can lead to increased anxiety-like behaviors and altered HPA axis functioning, providing insights into the link between decreased environmental illumination and negative emotion.

  12. Gestational stress induces depressive-like and anxiety-like phenotypes through epigenetic regulation of BDNF expression in offspring hippocampus.

    Science.gov (United States)

    Zheng, Yu; Fan, Weidong; Zhang, Xianquan; Dong, Erbo

    2016-01-01

    Exposure to stressful life events during pregnancy exerts profound effects on neurodevelopment and increases the risk for several neurodevelopmental disorders including major depression. The mechanisms underlying the consequences of gestational stress are complex and remain to be elucidated. This study investigated the effects of gestational stress on depressive-like behavior and epigenetic modifications in young adult offspring. Gestational stress was induced by a combination of restraint and 24-hour light disturbance to pregnant dams throughout gestation. Depressive-like and anxiety-like behaviors of young adult offspring were examined. The expression and promoter methylation of brain derived neurotrophic factor (BDNF) were measured using RT-qPCR, Western blot, methylated DNA immunoprecipitation (MeDIP) and chromatin immunoprecipitation (ChIP). In addition, the expressions of histone deacetylases (HDACs) and acetylated histone H3 lysine 14 (AcH3K14) were also analyzed. Our results show that offspring from gestational stress dams exhibited depressive-like and anxiety-like behaviors. Biochemically, stress-offspring showed decreased expression of BDNF, increased expression of DNMT1, HDAC1, and HDAC2, and decreased expression of AcH3K14 in the hippocampus as compared to non-stress offspring. Data from MeDIP and ChIP assays revealed an increased methylation as well as decreased binding of AcH3K14 on specific BDNF promoters. Pearson analyses indicated that epigenetic changes induced by gestational stress were correlated with depressive-like and anxiety-like behaviors. These data suggest that gestational stress may be a suitable model for understanding the behavioral and molecular epigenetic changes observed in patients with depression. PMID:26890656

  13. Neurons in the amygdala play an important role in the neuronal network mediating a clonic form of audiogenic seizures both before and after audiogenic kindling.

    Science.gov (United States)

    Raisinghani, Manish; Faingold, Carl L

    2005-01-25

    Previous studies showed that neuronal network nuclei for behaviorally different forms of audiogenic seizure (AGS) exhibit similarities and important differences. The amygdala is involved differentially in tonic AGS as compared to clonic AGS networks. The role of the lateral amygdala (LAMG) undergoes major changes after AGS repetition (AGS kindling) in tonic forms of AGS. The present study examined the role of LAMG in a clonic form of AGS [genetically epilepsy-prone rats (GEPR-3s)] before and after AGS kindling using bilateral microinjection and chronic neuronal recordings. AGS kindling in GEPR-3s results in facial and forelimb (F&F) clonus, and this behavior could be blocked following bilateral microinjection of a NMDA antagonist (2-amino-7-phosphonoheptanoate) without affecting generalized clonus. Higher AP7 doses blocked both generalized clonus and F&F clonus. LAMG neurons in GEPR-3s exhibited only onset type neuronal responses both before and after AGS kindling, unlike LAMG neurons in normal rats and a tonic form of AGS. A significantly greater LAMG neuronal firing rate occurred after AGS kindling at high acoustic intensities. The latency of LAMG neuronal firing increased significantly after AGS kindling. Burst firing occurred during wild running and generalized clonic behaviors before and after AGS kindling. Burst firing also occurred during F&F clonus after AGS kindling. These findings indicate that LAMG neurons play a critical role in the neuronal network for generalized clonus as well as F&F clonus in GEPR-3s, both before and after AGS kindling, which contrasts markedly with the role of LAMG in tonic AGS.

  14. cGMP-dependent protein kinase type II knockout mice exhibit working memory impairments, decreased repetitive behavior, and increased anxiety-like traits.

    Science.gov (United States)

    Wincott, Charlotte M; Abera, Sinedu; Vunck, Sarah A; Tirko, Natasha; Choi, Yoon; Titcombe, Roseann F; Antoine, Shannon O; Tukey, David S; DeVito, Loren M; Hofmann, Franz; Hoeffer, Charles A; Ziff, Edward B

    2014-10-01

    Neuronal activity regulates AMPA receptor trafficking, a process that mediates changes in synaptic strength, a key component of learning and memory. This form of plasticity may be induced by stimulation of the NMDA receptor which, among its activities, increases cyclic guanosine monophosphate (cGMP) through the nitric oxide synthase pathway. cGMP-dependent protein kinase type II (cGKII) is ultimately activated via this mechanism and AMPA receptor subunit GluA1 is phosphorylated at serine 845. This phosphorylation contributes to the delivery of GluA1 to the synapse, a step that increases synaptic strength. Previous studies have shown that cGKII-deficient mice display striking spatial learning deficits in the Morris Water Maze compared to wild-type littermates as well as lowered GluA1 phosphorylation in the postsynaptic density of the prefrontal cortex (Serulle et al., 2007; Wincott et al., 2013). In the current study, we show that cGKII knockout mice exhibit impaired working memory as determined using the prefrontal cortex-dependent Radial Arm Maze (RAM). Additionally, we report reduced repetitive behavior in the Marble Burying task (MB), and heightened anxiety-like traits in the Novelty Suppressed Feeding Test (NSFT). These data suggest that cGKII may play a role in the integration of information that conveys both anxiety-provoking stimuli as well as the spatial and environmental cues that facilitate functional memory processes and appropriate behavioral response. PMID:24752151

  15. Pulvinar projections to the striatum and amygdala

    Directory of Open Access Journals (Sweden)

    Jonathan D Day-Brown

    2010-11-01

    Full Text Available Visually-guided movement is possible in the absence of conscious visual perception, a phenomenon referred to as blindsight. Similarly, fearful images can elicit emotional responses in the absence of their conscious perception. Both capabilities are thought to be mediated by pathways from the retina through the superior colliculus (SC and pulvinar nucleus. To define potential pathways that underlie behavioral responses to unperceived visual stimuli, we examined the projections from the pulvinar nucleus to the striatum and amygdala in the tree shrew (Tupaia belangeri, a species considered to be a protypical primate. The tree shrew brain has a large pulvinar nucleus that contains two SC-recipient subdivisions; the dorsal (Pd and central (Pc pulvinar both receive topographic (specific projections from SC, and Pd receives an additional nontopographic (diffuse projection from SC (Chomsung et al., 2008; JCN 510:24-46. Anterograde and retrograde tract tracing revealed that both Pd and Pc project to the caudate and putamen, and Pd, but not Pc, additionally projects to the lateral amygdala. Using immunocytochemical staining for substance P (SP and parvalbumin (PV to reveal the patch/matrix organization of tree shrew striatum, we found that SP-rich/PV-poor patches interlock with a PV-rich/SP-poor matrix. Confocal microscopy revealed that tracer-labeled pulvinostriatal terminals preferentially innervate the matrix. Electron microscopy revealed that the postsynaptic targets of tracer-labeled pulvino-striatal and pulvino-amygdala terminals are spines, demonstrating that the pulvinar nucleus projects to the spiny output cells of the striatum matrix and the lateral amygdala, potentially relaying: 1 topographic visual information from SC to striatum to aid in guiding precise movements, and 2 nontopographic visual information from SC to the amygdala alerting the animal to potentially dangerous visual images.

  16. Rimonabant precipitates anxiety in rats withdrawn from palatable food: role of the central amygdala.

    Science.gov (United States)

    Blasio, Angelo; Iemolo, Attilio; Sabino, Valentina; Petrosino, Stefania; Steardo, Luca; Rice, Kenner C; Orlando, Pierangelo; Iannotti, Fabio Arturo; Di Marzo, Vincenzo; Zorrilla, Eric P; Cottone, Pietro

    2013-11-01

    The anti-obesity medication rimonabant, an antagonist of cannabinoid type-1 (CB(1)) receptor, was withdrawn from the market because of adverse psychiatric side effects, including a negative affective state. We investigated whether rimonabant precipitates a negative emotional state in rats withdrawn from palatable food cycling. The effects of systemic administration of rimonabant on anxiety-like behavior, food intake, body weight, and adrenocortical activation were assessed in female rats during withdrawal from chronic palatable diet cycling. The levels of the endocannabinoids, anandamide and 2-arachidonoylglycerol (2-AG), and the CB(1) receptor mRNA and the protein in the central nucleus of the amygdala (CeA) were also investigated. Finally, the effects of microinfusion of rimonabant in the CeA on anxiety-like behavior, and food intake were assessed. Systemic administration of rimonabant precipitated anxiety-like behavior and anorexia of the regular chow diet in rats withdrawn from palatable diet cycling, independently from the degree of adrenocortical activation. These behavioral observations were accompanied by increased 2-AG, CB(1) receptor mRNA, and protein levels selectively in the CeA. Finally, rimonabant, microinfused directly into the CeA, precipitated anxiety-like behavior and anorexia. Our data show that (i) the 2-AG-CB(1) receptor system within the CeA is recruited during abstinence from palatable diet cycling as a compensatory mechanism to dampen anxiety, and (ii) rimonabant precipitates a negative emotional state by blocking the beneficial heightened 2-AG-CB(1) receptor signaling in this brain area. These findings help elucidate the link between compulsive eating and anxiety, and it will be valuable to develop better pharmacological treatments for eating disorders and obesity. PMID:23793355

  17. Alcohol-Seeking Triggered by Discrete Pavlovian Cues is Invigorated by Alcohol Contexts and Mediated by Glutamate Signaling in the Basolateral Amygdala.

    Science.gov (United States)

    Sciascia, Joanna M; Reese, Rebecca M; Janak, Patricia H; Chaudhri, Nadia

    2015-11-01

    The environmental context in which a discrete Pavlovian conditioned stimulus (CS) is experienced can profoundly impact conditioned responding elicited by the CS. We hypothesized that alcohol-seeking behavior elicited by a discrete CS that predicted alcohol would be influenced by context and require glutamate signaling in the basolateral amygdala (BLA). Male, Long-Evans rats were allowed to drink 15% ethanol (v/v) until consumption stabilized. Next, rats received Pavlovian conditioning sessions in which a 10 s CS (15 trials/session) was paired with ethanol (0.2 ml/CS). Entries into a port where ethanol was delivered were measured. Pavlovian conditioning occurred in a specific context (alcohol context) and was alternated with sessions in a different context (non-alcohol context) where neither the CS nor ethanol was presented. At test, the CS was presented without ethanol in the alcohol context or the non-alcohol context, following a bilateral microinfusion (0.3 μl/hemisphere) of saline or the AMPA glutamate receptor antagonist NBQX (2,3-dioxo-6-nitro-1,2,3,4-tetrahydrobenzo[f]quinoxaline-7-sulfonamide disodium salt) in the BLA (0, 0.3, or 1.0 μg/0.3 μl). The effect of NBQX (0, 0.3 μg/0.3 μl) in the caudate putamen (CPu) on CS responding in the non-alcohol context was also tested. The discrete alcohol CS triggered more alcohol-seeking behavior in the alcohol context than the non-alcohol context. NBQX in the BLA reduced CS responding in both contexts but had no effect in the CPu. These data indicate that AMPA glutamate receptors in the BLA are critical for alcohol-seeking elicited by a discrete CS and that behavior triggered by the CS is strongly invigorated by an alcohol context.

  18. Assessment of social interaction and anxiety-like behavior in senescence-accelerated-prone and -resistant mice.

    Science.gov (United States)

    Meeker, Harry C; Chadman, Kathryn K; Heaney, Agnes T; Carp, Richard I

    2013-06-13

    Two members of the senescence-accelerated mouse group, SAMP8 and SAMP10, are characterized by learning and memory deficits, while the SAMR1 strain is not. In this study, we used two behavioral tests, social approach and object recognition and compared the results observed for the SAMP strains with those seen in the control strain, SAMR1. In social approach experiments, the 2 SAMP strains showed decreased sociability compared to SAMR1 as shown by their reluctance to spend time near a stranger mouse and increased immobility. In object recognition experiments, SAMP strains spent more time in the thigmotaxis zone and less time in the more exposed central zone than SAMR1 mice. From a behavioral standpoint, SAMP mice were less interactive and showed increased anxiety-like behavior compared to SAMR1. PMID:23672852

  19. Optogenetic dissection of amygdala functioning

    OpenAIRE

    LaLumiere, Ryan T

    2014-01-01

    Studies of amygdala functioning have occupied a significant place in the history of understanding how the brain controls behavior and cognition. Early work on the amygdala placed this small structure as a key component in the regulation of emotion and affective behavior. Over time, our understanding of its role in brain processes has expanded, as we have uncovered amygdala influences on memory, reward behavior, and overall functioning in many other brain regions. Studies have indicated that t...

  20. Effects of Aqueous Matricaria Recutita extract on anxiety-like behavior in rat’s model kindled by Pentylenetetrazole

    Directory of Open Access Journals (Sweden)

    Gholamreza Komeili

    2016-04-01

    Full Text Available Background and Aim: Kindling can increase anxiety-like behavior in rodents. Oxidative stress has an important role in arousing anxiety. It is known that Matricaria Recutita has an antioxidant effect. Thus, the present study aimed at assessing the effects of this plant’s extract. on anxiety-like behavior induced by kindling in rats. Materials and Methods: In this experimental study, 40 male Wistar Albino rats (wt:200-250 g were randomly divided into 4 equal groups; namely control (intact, kindling, diazepam (2 mg/kg, and aqueous extract of Matricaria Recutita (30 mg/kg intrapertoneally. Kindling was done by a sub-convulsive dose of pentylenetetrazole (PTZ; 40 mg/kg, i.p. in the remainder . groups. Kindling parameters in all these animals were evaluated by a plus elevated maze. The percent of time spent in the open arms of maze (OAT % and percent of entries in the open arms (OAE % were accounted for anxiety evaluation. Increase in OAT % and OAE % indicated an anxiolytic effect. Finally,the obtained data was analyzed by means of Any-Maze software and P<0.05 was taken as the significant level. Results: Kindling significantly (P<0.05 increased anxiety response in rats for at least 24h following the last seizure (decrease in OAT % and OAE %. Administeration of diazepam and Matricaria Recutita induced a significant increase in OAT % and OAE %, thereby . displaying a decrease in the anxiety in the kindled rats (P<0.05. Activity rate of the animals increased in the extract-treated group. Conclusion: The results of the present study showed that Matricaria Recutita was able to improve elevated levels of anxiety in kindled rats. Therefore, further works are needed to elucidate the extent and mechanism of these effects.

  1. Differential effects of photoperiod length on depression- and anxiety-like behavior in female and male diurnal spiny mice.

    Science.gov (United States)

    Ben-Hamo, Miriam; Tal, Katy; Paz-Cohen, Rotem; Kronfeld-Schor, Noga; Einat, Haim

    2016-10-15

    The relationships between biological rhythms and affective disorders are known but their underlying biology not clear. There is difficulty in studying circadian rhythms in humans and appropriate animal models are hard to identify or develop. Some studies show that diurnal rodents can be advantageous model animals for the study of interactions between biological rhythms and affective disorders but previous studies did not include females whereas in humans there are sex differences in affective disorders. The present study tested the effects of short photoperiods in both males and females of the diurnal golden spiny mouse (Acomys russatus). Adult, female and male spiny mice were housed in either neutral photoperiod (12:12 light/dark; NP), or short photoperiod (5:19 light/dark; SP) conditions. After 3weeks acclimatization, animals were tested for spontaneous activity in an open field, elevated plus maze (EPM), sweet solution preference (SSP) and the forced swim test (FST). Both sexes responded to the SP, but while SP males showed increased anxiety-like behavior in the EPM and depression-like behavior in the FST, females showed increased activity, reduced anxiety-like behavior in the EPM, depression-like response in the SSP and no effect in the FST. Differences between sexes were previously demonstrated in behavioral tests that followed a variety of manipulations, and were usually explained in the context of sex hormones. Yet, the current results cannot be compared with previous data from diurnal rodents and further testing of females from other diurnal rodents are needed to explore whether these differences are a general phenomenon or possibly unique to golden spiny mice. PMID:27343805

  2. β1-adrenoceptor activation is required for ethanol enhancement of lateral paracapsular GABAergic synapses in the rat basolateral amygdala.

    Science.gov (United States)

    Silberman, Yuval; Ariwodola, Olusegun J; Weiner, Jeff L

    2012-11-01

    Ethanol (EtOH) potentiation of GABAergic neurotransmission in the basolateral amygdala (BLA) may contribute to the acute anxiolytic effects of this drug. Previous studies have shown that BLA pyramidal neurons receive GABAergic input from two distinct sources: local interneurons and a cluster of GABAergic cells termed lateral paracapsular (LPCS) interneurons. It is noteworthy that whereas EtOH enhances local GABAergic synapses via a presynaptic increase in GABA release, EtOH potentiation of LPCS inhibition is mediated via a distinct mechanism that requires adrenoceptor (AR) activation. Here, we sought to further characterize the interaction between the AR system and EtOH enhancement of LPCS GABAergic synapses by using in vitro electrophysiology techniques in male Sprague-Dawley rats. Exogenous norepinephrine (NE) enhanced LPCS-evoked inhibitory postsynaptic currents (eIPSCs) via the activation of β-ARs, because this effect was blocked by propranolol. EtOH potentiation of LPCS eIPSCs was also blocked by propranolol and significantly reduced by NE pretreatment, suggesting that NE and EtOH may enhance LPCS inhibition via a common mechanism. EtOH enhancement of LPCS eIPSCs was significantly reduced by a selective β1-, but not β2- or β3-, AR antagonist, and both EtOH and NE potentiation of LPCS IPSCs was blocked by postsynaptic disruption of cAMP signaling. These data suggest that EtOH enhances LPCS synapses via a postsynaptic β1-AR, cAMP-dependent cascade. Because enhancement of LPCS inhibition can reduce anxiety-like behaviors, these findings shed light on a novel mechanism that may play a role in some of the anxiolytic effects of EtOH that are thought to contribute to the development and progression of alcoholism.

  3. Association between amygdala reactivity and a dopamine transporter gene polymorphism.

    Science.gov (United States)

    Bergman, O; Åhs, F; Furmark, T; Appel, L; Linnman, C; Faria, V; Bani, M; Pich, E M; Bettica, P; Henningsson, S; Manuck, S B; Ferrell, R E; Nikolova, Y S; Hariri, A R; Fredrikson, M; Westberg, L; Eriksson, E

    2014-01-01

    Essential for detection of relevant external stimuli and for fear processing, the amygdala is under modulatory influence of dopamine (DA). The DA transporter (DAT) is of fundamental importance for the regulation of DA transmission by mediating reuptake inactivation of extracellular DA. This study examined if a common functional variable number tandem repeat polymorphism in the 3' untranslated region of the DAT gene (SLC6A3) influences amygdala function during the processing of aversive emotional stimuli. Amygdala reactivity was examined by comparing regional cerebral blood flow, measured with positron emission tomography and [(15)O]water, during exposure to angry and neutral faces, respectively, in a Swedish sample comprising 32 patients with social anxiety disorder and 17 healthy volunteers. In a separate US sample, comprising 85 healthy volunteers studied with blood oxygen level-dependent functional magnetic resonance imaging, amygdala reactivity was assessed by comparing the activity during exposure to threatening faces and neutral geometric shapes, respectively. In both the Swedish and the US sample, 9-repeat carriers displayed higher amygdala reactivity than 10-repeat homozygotes. The results suggest that this polymorphism contributes to individual variability in amygdala reactivity. PMID:25093598

  4. Estrogen receptor β and oxytocin interact to modulate anxiety-like behavior and neuroendocrine stress reactivity in adult male and female rats.

    Science.gov (United States)

    Kudwa, Andrea E; McGivern, Robert F; Handa, Robert J

    2014-04-22

    The hypothalamic-pituitary-adrenal (HPA) axis is activated in response to stressors and is controlled by neurons residing in the paraventricular nucleus of the hypothalamus (PVN). Although gonadal steroid hormones can influence HPA reactivity to stressors, the exact mechanism of action is not fully understood. It is known, however, that estrogen receptor β (ERβ) inhibits HPA reactivity and decreases anxiety-like behavior in rodents. Since ERβ is co-expressed with oxytocin (OT) in neurons of the PVN, an ERβ-selective agonist was utilized to test the whether ERβ decreases stress-induced HPA reactivity and anxiety-like behaviors via an OTergic pathway. Adult gonadectomized male and female rats were administered diarylpropionitrile, or vehicle, peripherally for 5days. When tested for anxiety-like behavior on the elevated plus maze (EPM), diarylpropionitrile-treated males and females significantly increased time on the open arm of the EPM compared to vehicle controls indicating that ERβ reduces anxiety-like behaviors. One week after behavioral evaluation, rats were subjected to a 20minute restraint stress. Treatment with diarylpropionitrile reduced CORT and ACTH responses in both males and females. Subsequently, another group of animals was implanted with cannulae directed at the lateral ventricle. One week later, rats underwent the same protocol as above but with the additional treatment of intracerebroventricular infusion with an OT antagonist (des Gly-NH2 d(CH2)5 [Tyr(Me)(2), Thr(4)] OVT) or VEH, 20min prior to behavioral evaluation. OT antagonist treatment blocked the effects of diarylpropionitrile on the display of anxiety-like behaviors and plasma CORT levels. These data indicate that ERβ and OT interact to modulate the HPA reactivity and the display of anxiety-like behaviors. PMID:24631553

  5. CaMKIIα knockdown decreases anxiety in the open field and low serotonin-induced upregulation of GluA1 in the basolateral amygdala.

    Science.gov (United States)

    Tran, Lee; Keele, N Bradley

    2016-04-15

    Hyperactivation of the amygdala is implicated in anxiety and mood disorders, but the precise underlying mechanisms are unclear. We previously reported that depletion of serotonin (5-hydroxytryptamine, 5-HT) in the basolateral nucleus of the amygdala (BLA) using the serotonergic neurotoxin 5,7-dihydroxytryptamine (5,7-DHT) potentiated learned fear and increased glutamate receptor (Glu) expression in BLA. Here we investigated the hypothesis that CaMKII facilitates anxiety-like behavior and increased Glu/AMPA receptor subunit A1 (GluA1) expression following depletion of 5-HT in the BLA. Infusion of 5,7-DHT into the BLA resulted in anxiety-like behavior in the open field test (OFT) and increased the phosphorylation of CaMKIIα (Thr-286) in the BLA. Knockdown of the CaMKIIα subunit using adeno-associated virus (AAV)-delivered shRNAi concomitantly attenuated anxiety-like behavior in the OFT and decreased GluA1 expression in the BLA. Our results suggest that the CaMKII signaling plays a key role in low 5-HT-induced anxiety and mood disturbances, potentially through regulation of GluA1 expression in the BLA.

  6. 杏仁核内去甲肾上腺素在应激激素调控记忆保持过程中的作用%Role of amygdala norepinephrine in mediating stress hormone regu-lation of memory storage

    Institute of Scientific and Technical Information of China (English)

    Barbara FERRY; James L McGAUGH

    2000-01-01

    There is extensive evidence indicating that the noradrenergic system of the amygdala, particularly the basolateral nucleus of the amygdala (BLA), is involved in memory consolidation. This article reviews the central hypothesis that stress hormones released during emotionally arousing experiences activate noradrenergic mechanisms in the BLA, resulting in enhanced memory for those events. Findings from expenments using rats have shown that the memory-modulatory effects of the adrenocortical stress hormones epinephrine and glucocorficoids involve activation of β-adrenoceptors in the BLA. In addition, both behavioral and microdialysis studies have shown that the noradrenergic system of the BLA also mediates the influences of other neuromodulatory systems such as opioid peptidergic and GABAergic systems on memory storage. Other findings indicate that this stress hormone-induced activation of noradrenergic mechanisms in the BLA regulates memory storage in other brain regions.

  7. Electrical amygdala kindling.

    Science.gov (United States)

    Dürmüller, N; Porsolt, R D

    2003-11-01

    This unit describes a method of electrical amygdala kindling in the rat. This procedure requires mastery of stereotaxic electrode implantation which is not covered in the current unit. Also, the investigator must have a sound knowledge of electronics and computing. The text gives instructions on how to render rats epileptic, how to determine the effects of compounds in kindled rats, and how to analyze the data. Results with three reference substances are illustrated. These substances are used in the clinic and give robust results in kindling.

  8. Insufficient intake of L-histidine reduces brain histamine and causes anxiety-like behaviors in male mice.

    Science.gov (United States)

    Yoshikawa, Takeo; Nakamura, Tadaho; Shibakusa, Tetsuro; Sugita, Mayu; Naganuma, Fumito; Iida, Tomomitsu; Miura, Yamato; Mohsen, Attayeb; Harada, Ryuichi; Yanai, Kazuhiko

    2014-10-01

    L-histidine is one of the essential amino acids for humans, and it plays a critical role as a component of proteins. L-histidine is also important as a precursor of histamine. Brain histamine is synthesized from L-histidine in the presence of histidine decarboxylase, which is expressed in histamine neurons. In the present study, we aimed to elucidate the importance of dietary L-histidine as a precursor of brain histamine and the histaminergic nervous system. C57BL/6J male mice at 8 wk of age were assigned to 2 different diets for at least 2 wk: the control (Con) diet (5.08 g L-histidine/kg diet) or the low L-histidine diet (LHD) (1.28 g L-histidine/kg diet). We measured the histamine concentration in the brain areas of Con diet-fed mice (Con group) and LHD-fed mice (LHD group). The histamine concentration was significantly lower in the LHD group [Con group vs. LHD group: histamine in cortex (means ± SEs): 13.9 ± 1.25 vs. 9.36 ± 0.549 ng/g tissue; P = 0.002]. Our in vivo microdialysis assays revealed that histamine release stimulated by high K(+) from the hypothalamus in the LHD group was 60% of that in the Con group (P = 0.012). However, the concentrations of other monoamines and their metabolites were not changed by the LHD. The open-field tests showed that the LHD group spent a shorter amount of time in the central zone (87.6 ± 14.1 vs. 50.0 ± 6.03 s/10 min; P = 0.019), and the light/dark box tests demonstrated that the LHD group spent a shorter amount of time in the light box (198 ± 8.19 vs. 162 ± 14.1 s/10 min; P = 0.048), suggesting that the LHD induced anxiety-like behaviors. However, locomotor activity, memory functions, and social interaction did not differ between the 2 groups. The results of the present study demonstrated that insufficient intake of histidine reduced the brain histamine content, leading to anxiety-like behaviors in the mice.

  9. Glucocorticoid enhancement of memory storage involves noradrenergic activation in the basolateral amygdala

    OpenAIRE

    Quirarte, Gina L.; Roozendaal, Benno; McGaugh, James L.

    1997-01-01

    Evidence indicates that the modulatory effects of the adrenergic stress hormone epinephrine as well as several other neuromodulatory systems on memory storage are mediated by activation of β-adrenergic mechanisms in the amygdala. In view of our recent findings indicating that the amygdala is involved in mediating the effects of glucocorticoids on memory storage, the present study examined whether the glucocorticoid-induced effects on memory storage depend on β-adrenergic activation within the...

  10. Repeated oral administration of capsaicin increases anxiety-like behaviours with prolonged stress-response in rats

    Indian Academy of Sciences (India)

    Y-J Choi; J Y Kim; S B Yoo; J-H Lee; J W Jahng

    2013-09-01

    This study was conducted to examine the psycho-emotional effects of repeated oral exposure to capsaicin, the principal active component of chili peppers. Each rat received 1 mL of 0.02% capsaicin into its oral cavity daily, and was subjected to behavioural tests following 10 daily administrations of capsaicin. Stereotypy counts and rostral grooming were significantly increased, and caudal grooming decreased, in capsaicin-treated rats during the ambulatory activity test. In elevated plus maze test, not only the time spent in open arms but also the percent arm entry into open arms was reduced in capsaicin-treated rats compared with control rats. In forced swim test, although swimming duration was decreased, struggling increased in the capsaicin group, immobility duration did not differ between the groups. Repeated oral capsaicin did not affect the basal levels of plasma corticosterone; however, the stress-induced elevation of plasma corticosterone was prolonged in capsaicin treated rats. Oral capsaicin exposure significantly increased c-Fos expression not only in the nucleus tractus of solitarius but also in the paraventricular nucleus. Results suggest that repeated oral exposure to capsaicin increases anxiety-like behaviours in rats, and dysfunction of the hypothalamic-pituitary-adrenal axis may play a role in its pathophysiology.

  11. Reduced Anxiety-Like Behavior and Altered Hippocampal Morphology in Female p75NTRexon IV−/− Mice

    Science.gov (United States)

    Puschban, Zoe; Sah, Anupam; Grutsch, Isabella; Singewald, Nicolas; Dechant, Georg

    2016-01-01

    The presence of the p75 neurotrophin receptor (p75NTR) in adult basal forebrain cholinergic neurons, precursor cells in the subventricular cell layer and the subgranular cell layer of the hippocampus has been linked to alterations in learning as well as anxiety- and depression- related behaviors. In contrast to previous studies performed in a p75NTRexon III−/− model still expressing the short isoform of the p75NTR, we focused on locomotor and anxiety–associated behavior in p75NTRexon IV−/− mice lacking both p75NTR isoforms. Comparing p75NTRexon IV−/− and wildtype mice for both male and female animals showed an anxiolytic-like behavior as evidenced by increased central activities in the open field paradigm and flex field activity system as well as higher numbers of open arm entries in the elevated plus maze test in female p75NTR knockout mice. Morphometrical analyses of dorsal and ventral hippocampus revealed a reduction of width of the dentate gyrus and the granular cell layer in the dorsal but not ventral hippocampus in male and female p75NTRexon IV−/− mice. We conclude that germ-line deletion of p75NTR seems to differentially affect morphometry of dorsal and ventral dentate gyrus and that p75NTR may play a role in anxiety-like behavior, specifically in female mice. PMID:27313517

  12. Prolonged consumption of trans fat favors the development of orofacial dyskinesia and anxiety-like symptoms in older rats.

    Science.gov (United States)

    Pase, Camila Simonetti; Teixeira, Angélica Martelli; Dias, Verônica Tironi; Quatrin, Andréia; Emanuelli, Tatiana; Bürger, Marilise Escobar

    2014-09-01

    Polyunsaturated fatty acids (FAs) are cell membrane components involved in brain functions. We hypothesized that long-term trans fat consumption is able to modify the membrane FAs composition impairing behavioral parameters related to aging. In this study, a comparison of behavioral parameters at 10 and 15 months of trans fat consumption by male Wistar rats was made. Animals were fed for 10 and 15 months from weaning with diets containing either 20% w/w soybean oil (SO), rich in n-6 PUFA, hydrogenated vegetable fat (HVF), rich in trans FAs, or a standard diet (control - C). At both evaluation times, HVF-fed rats showed progressively increased parameters of orofacial dyskinesia, fear and anxiety-like symptoms. The HVF diet reduced locomotor and exploratory activities progressively over 10 and 15 months of supplementation, while the standard and SO diets did not. In this study, we showed that chronic trans FAs consumption from weaning is able to favor the development of neuromotor and neuropsychiatric diseases, whose intensity was time dependent.

  13. Reduced anxiety-like behavior and altered hippocampal morphology in female p75NTR exon IV-/- mice.

    Directory of Open Access Journals (Sweden)

    Zoe ePuschban

    2016-06-01

    Full Text Available The presence of the neurotrophin receptor p75NTR in adult basal forebrain cholinergic neurons, precursor cells in the subventricular cell layer and the subgranular cell layer of the hippocampus has been linked to alterations in learning as well as anxiety- and depression- related behaviors. In contrast to previous studies performed in a p75NTR exonIII-/- model still expressing the short isoform of the p75NTR, we focused on locomotor and anxiety–associated behavior in p75NTR exonIV-/- mice lacking both p75NTR isoforms. Comparing p75NTR exonIV-/- and wildtype mice for both male and female animals showed an anxiolytic-like behavior as evidenced by increased central activities in the open field paradigm and flex field activity system as well as higher numbers of open arm entries in the elevated plus maze test in female p75NTR knockout mice.Morphometrical analyses of dorsal and ventral hippocampus revealed a reduction of width of the dentate gyrus and the granular cell layer in the dorsal but not ventral hippocampus in male and female p75NTR exonIV -/- mice. We conclude that germ-line deletion of p75NTR seems to differentially affect morphometry of dorsal and ventral dentate gyrus and that p75NTR may play a role in anxiety-like behavior, specifically in female mice.

  14. Reduced Anxiety-Like Behavior and Altered Hippocampal Morphology in Female p75NTR(exon IV-/-) Mice.

    Science.gov (United States)

    Puschban, Zoe; Sah, Anupam; Grutsch, Isabella; Singewald, Nicolas; Dechant, Georg

    2016-01-01

    The presence of the p75 neurotrophin receptor (p75NTR) in adult basal forebrain cholinergic neurons, precursor cells in the subventricular cell layer and the subgranular cell layer of the hippocampus has been linked to alterations in learning as well as anxiety- and depression- related behaviors. In contrast to previous studies performed in a p75NTR(exon III-/-) model still expressing the short isoform of the p75NTR, we focused on locomotor and anxiety-associated behavior in p75NTR(exon IV-/-) mice lacking both p75NTR isoforms. Comparing p75NTR(exon IV-/-) and wildtype mice for both male and female animals showed an anxiolytic-like behavior as evidenced by increased central activities in the open field paradigm and flex field activity system as well as higher numbers of open arm entries in the elevated plus maze test in female p75NTR knockout mice. Morphometrical analyses of dorsal and ventral hippocampus revealed a reduction of width of the dentate gyrus and the granular cell layer in the dorsal but not ventral hippocampus in male and female p75NTR(exon IV-/-) mice. We conclude that germ-line deletion of p75NTR seems to differentially affect morphometry of dorsal and ventral dentate gyrus and that p75NTR may play a role in anxiety-like behavior, specifically in female mice. PMID:27313517

  15. Ginsenoside Rb1 rescues anxiety-like responses in a rat model of post-traumatic stress disorder.

    Science.gov (United States)

    Lee, Bombi; Sur, Bongjun; Cho, Seong-Guk; Yeom, Mijung; Shim, Insop; Lee, Hyejung; Hahm, Dae-Hyun

    2016-04-01

    Single prolonged stress (SPS), a rat model of post-traumatic stress disorder (PTSD), induces alterations in the hypothalamic-pituitary-adrenal axis. Korean red ginseng, whose major active component is ginsenoside Rb1 (GRb1), is one of the widely used traditional anxiolytics. However, the efficacy of GRb1 in alleviating PTSD-associated anxiety-like abnormalities has not been investigated. The present study used several behavioral tests to examine the effects of GRb1 on symptoms of anxiety in rats after SPS exposure and on the central noradrenergic system. Male Sprague-Dawley rats received GRb1 (10 or 30 mg/kg, i.p., once daily) during 14 days of SPS. Daily GRb1 (30 mg/kg) administration significantly increased the number and duration of open-arm visits in the elevated plus maze (EPM) test, reduced the anxiety index, increased the risk assessment, reduced grooming behaviors in the EPM test, and increased the total number of line crossings of an open field after SPS. The higher dose of GRb1 also blocked SPS-induced decreases in hypothalamic neuropeptide Y expression, increases in locus coeruleus tyrosine hydroxylase expression, and decreases in hippocampal mRNA expression of brain-derived neurotrophic factor. These findings suggest that GRb1 has anxiolytic-like effects on both behavioral and biochemical symptoms similar to those observed in patients with PTSD.

  16. Altered responsiveness of BNST and amygdala neurons in trauma-induced anxiety.

    Science.gov (United States)

    Rodríguez-Sierra, O E; Goswami, S; Turesson, H K; Pare, D

    2016-01-01

    A highly conserved network of brain structures regulates the expression of fear and anxiety in mammals. Many of these structures display abnormal activity levels in post-traumatic stress disorder (PTSD). However, some of them, like the bed nucleus of the stria terminalis (BNST) and amygdala, are comprised of several small sub-regions or nuclei that cannot be resolved with human neuroimaging techniques. Therefore, we used a well-characterized rat model of PTSD to compare neuronal properties in resilient vs PTSD-like rats using patch recordings obtained from different BNST and amygdala regions in vitro. In this model, a persistent state of extreme anxiety is induced in a subset of susceptible rats following predatory threat. Previous animal studies have revealed that the central amygdala (CeA) and BNST are differentially involved in the genesis of fear and anxiety-like states, respectively. Consistent with these earlier findings, we found that between resilient and PTSD-like rats were marked differences in the synaptic responsiveness of neurons in different sectors of BNST and CeA, but whose polarity was region specific. In light of prior data about the role of these regions, our results suggest that control of fear/anxiety expression is altered in PTSD-like rats such that the influence of CeA is minimized whereas that of BNST is enhanced. A model of the amygdalo-BNST interactions supporting the PTSD-like state is proposed. PMID:27434491

  17. Relationship between amygdala volume and emotion recognition in adolescents at ultra-high risk for psychosis.

    Science.gov (United States)

    Bartholomeusz, Cali F; Whittle, Sarah L; Pilioussis, Eleanor; Allott, Kelly; Rice, Simon; Schäfer, Miriam R; Pantelis, Christos; Amminger, G Paul

    2014-12-30

    Amygdala volume has been proposed as a neural risk biomarker for psychotic illness, but findings in the ultra-high risk for psychosis (UHR) population have been somewhat inconsistent, which may be related to underlying social cognitive abilities. The current study investigated whether amygdala volumes were related to emotion-recognition impairments in UHR individuals, and whether volumes differed by sex. Secondary aims were to assess whether (a) emotion-recognition performance was associated with interhemispheric amygdala volume asymmetry and (b) amgydala volume and volume asymmetry acted as a mediator between emotion-recognition and outcome measures. The amygdala was manually delineated from magnetic resonance images for 39 UHR individuals who had also completed facial and prosody emotion-recognition tasks. Partial correlations were conducted to examine associations between amydgala volume/asymmetry and recognition of negative emotions. Mediation analyses were conducted using regression and bootstrapping techniques. Amygdala volume was positively correlated with sadness emotion recognition, in particular prosody, for females only. Left amygdala volume mediated the effect of sadness recognition on depressive symptoms, negative symptoms, overall psychopathology, and global functioning in females. Findings suggest a complex relationship between emotion recognition, the structure of the amygdala and illness outcome, where recognition of sadness appears to be the precipitator of this relationship in UHR females. Further research is needed to determine illness specificity and to confirm our sex- and emotion-specific results.

  18. Vulnerability imposed by diet and brain trauma for anxiety-like phenotype: implications for post-traumatic stress disorders.

    Directory of Open Access Journals (Sweden)

    Ethika Tyagi

    Full Text Available Mild traumatic brain injury (mTBI, cerebral concussion is a risk factor for the development of psychiatric illness such as posttraumatic stress disorder (PTSD. We sought to evaluate how omega-3 fatty acids during brain maturation can influence challenges incurred during adulthood (transitioning to unhealthy diet and mTBI and predispose the brain to a PTSD-like pathobiology. Rats exposed to diets enriched or deficient in omega-3 fatty acids (n-3 during their brain maturation period, were transitioned to a western diet (WD when becoming adult and then subjected to mTBI. TBI resulted in an increase in anxiety-like behavior and its molecular counterpart NPY1R, a hallmark of PTSD, but these effects were more pronounced in the animals exposed to n-3 deficient diet and switched to WD. The n-3 deficiency followed by WD disrupted BDNF signaling and the activation of elements of BDNF signaling pathway (TrkB, CaMKII, Akt and CREB in frontal cortex. TBI worsened these effects and more prominently in combination with the n-3 deficiency condition. Moreover, the n-3 deficiency primed the immune system to the challenges imposed by the WD and brain trauma as evidenced by results showing that the WD or mTBI affected brain IL1β levels and peripheral Th17 and Treg subsets only in animals previously conditioned to the n-3 deficient diet. These results provide novel evidence for the capacity of maladaptive dietary habits to lower the threshold for neurological disorders in response to challenges.

  19. Depressive- and anxiety-like behaviors and stress-related neuronal activation in vasopressin-deficient female Brattleboro rats.

    Science.gov (United States)

    Fodor, Anna; Kovács, Krisztina Bea; Balázsfi, Diána; Klausz, Barbara; Pintér, Ottó; Demeter, Kornél; Daviu, Nuria; Rabasa, Cristina; Rotllant, David; Nadal, Roser; Zelena, Dóra

    2016-05-01

    Vasopressin can contribute to the development of stress-related psychiatric disorders, anxiety and depression. Although these disturbances are more common in females, most of the preclinical studies have been done in males. We compared female vasopressin-deficient and +/+ Brattleboro rats. To test anxiety we used open-field, elevated plus maze (EPM), marble burying, novelty-induced hypophagia, and social avoidance tests. Object and social recognition were used to assess short term memory. To test depression-like behavior consumption of sweet solutions (sucrose and saccharin) and forced swim test (FST) were studied. The stress-hormone levels were followed by radioimmunoassay and underlying brain areas were studied by c-Fos immunohistochemistry. In the EPM the vasopressin-deficient females showed more entries towards the open arms and less stretch attend posture, drank more sweet fluids and struggled more (in FST) than the +/+ rats. The EPM-induced stress-hormone elevations were smaller in vasopressin-deficient females without basal as well as open-field and FST-induced genotype-differences. On most studied brain areas the resting c-Fos levels were higher in vasopressin-deficient rats, but the FST-induced elevations were smaller than in the +/+ ones. Similarly to males, female vasopressin-deficient animals presented diminished depression- and partly anxiety-like behavior with significant contribution of stress-hormones. In contrast to males, vasopressin deficiency in females had no effect on object and social memory, and stressor-induced c-Fos elevations were diminished only in females. Thus, vasopressin has similar effect on anxiety- and depression-like behavior in males and females, while only in females behavioral alterations are associated with reduced neuronal reactivity in several brain areas. PMID:26939727

  20. Everolimus improves memory and learning while worsening depressive- and anxiety-like behavior in an animal model of depression.

    Science.gov (United States)

    Russo, Emilio; Leo, Antonio; Crupi, Rosalia; Aiello, Rossana; Lippiello, Pellegrino; Spiga, Rosangela; Chimirri, Serafina; Citraro, Rita; Cuzzocrea, Salvatore; Constanti, Andrew; De Sarro, Giovambattista

    2016-07-01

    Everolimus (EVR) is an orally-administered rapamycin analog that selectively inhibits the mammalian target of rapamycin (mTOR) kinase (mainly mTORC1 and likely mTORC2) and the related signaling pathway. mTOR is a serine/threonine protein kinase regulating multiple important cellular functions; dysfunction of mTOR signaling has also been implicated in the pathophysiology of several neurological, neurodegenerative, developmental and cognitive disorders. EVR is widely used as an anti-neoplastic therapy and more recently in children with tuberous sclerosis complex (TSC). However, no clear correlation exists between EVR use and development of central side effects e.g. depression, anxiety or cognitive impairment. We studied the effects of a 3 weeks administration of EVR in mice chronically treated with betamethasone 21-phosphate disodium (BTM) as a model of depression and cognitive decline. EVR treatment had detrimental effects on depressive- and anxiety-like behavior while improving cognitive performance in both control (untreated) and BTM-treated mice. Such effects were accompanied by an increased hippocampal neurogenesis and synaptogenesis. Our results therefore might support the proposed pathological role of mTOR dysregulation in depressive disorders and confirm some previous data on the positive effects of mTOR inhibition in cognitive decline. We also show that EVR, possibly through mTOR inhibition, may be linked to the development of anxiety. The increased hippocampal neurogenesis by EVR might explain its ability to improve cognitive function or protect from cognitive decline. Our findings suggest some caution in the use of EVR, particularly in the developing brain; patients should be carefully monitored for their psychiatric/neurological profiles in any clinical situation where an mTOR inhibitor and in particular EVR is used e.g. cancer treatment, TSC or immunosuppression. PMID:27019134

  1. Sex and Exercise Interact to Alter the Expression of Anabolic Androgenic Steroid-Induced Anxiety-Like Behaviors in the Mouse

    OpenAIRE

    Onakomaiya, Marie M.; Porter, Donna M.; Oberlander, Joseph G.; Henderson, Leslie P.

    2014-01-01

    Anabolic androgenic steroids (AAS) are taken by both sexes to enhance athletic performance and body image, nearly always in conjunction with an exercise regime. Although taken to improve physical attributes, chronic AAS use can promote negative behavior, including anxiety. Few studies have directly compared the impact of AAS use in males versus females or assessed the interaction of exercise and AAS. We show that AAS increase anxiety-like behaviors in female but not male mice and that volunta...

  2. Hypoxic-ischemic injury decreases anxiety-like behavior in rats when associated with loss of tyrosine-hydroxylase immunoreactive neurons of the substantia nigra.

    Science.gov (United States)

    Ming-Yan, Hei; Luo, Ya-Li; Zhang, Xiao-Chun; Liu, Hong; Gao, Ru; Wu, Jing-Jiang

    2012-01-01

    Neonatal Sprague-Dawley rats were randomly divided into normal control, mild hypoxia-ischemia (HI), and severe HI groups (N = 10 in each group at each time) on postnatal day 7 (P7) to study the effect of mild and severe HI on anxiety-like behavior and the expression of tyrosine hydroxylase (TH) in the substantia nigra (SN). The mild and severe HI groups were exposed to hypoxia (8% O2/92% N2) for 90 and 150 min, respectively. The elevated plus-maze (EPM) test was performed to assess anxiety-like behavior by measuring time spent in the open arms (OAT) and OAT%, and immunohistochemistry was used to determine the expression of TH in the SN at P14, P21, and P28. OAT and OAT% in the EPM were significantly increased in both the mild (1.88-, 1.99-, and 2.04-fold, and 1.94-, 1.51-, and 1.46-fold) and severe HI groups (1.69-, 1.68-, and 1.87-fold, and 1.83-, 1.43-, and 1.39-fold, respectively; P Pearson correlation analysis: r = 0.991, P = 0.000 in the mild HI group and r = 0.974, P = 0.000 in the severe HI group) with the impaired anxiety-like behaviors. We conclude that neonatal HI results in decreased anxiety-like behavior during the juvenile period of Sprague-Dawley rats, which is associated with the decreased activity of TH in the SN. The impairment of anxiety and the expression of TH are not likely to be dependent on the severity of HI. PMID:22147192

  3. Ethanol during adolescence decreased the BDNF levels in the hippocampus in adult male Wistar rats, but did not alter aggressive and anxiety-like behaviors

    Directory of Open Access Journals (Sweden)

    Letícia Scheidt

    2015-09-01

    Full Text Available Objective:To investigate the effects of ethanol exposure in adolescent rats during adulthood by assesssing aggression and anxiety-like behaviors and measuring the levels of inflammatory markers.Methods:Groups of male Wistar rats (mean weight 81.4 g, n = 36 were housed in groups of four until postnatal day (PND 60. From PNDs 30 to 46, rats received one of three treatments: 3 g/kg of ethanol (15% w/v, orally, n = 16, 1.5 g/kg of ethanol (12.5% w/v, PO, n = 12, or water (n = 12 every 48 hours. Animals were assessed for aggressive behavior (resident x intruder test and anxiety-like behaviors (elevated plus maze during adulthood.Results:Animals that received low doses of alcohol showed reduced levels of brain-derived neurotrophic factor (BDNF in the hippocampus as compared to the control group. No significant difference was found in prefrontal cortex.Conclusions:Intermittent exposure to alcohol during adolescence is associated with lower levels of BDNF in the hippocampus, probably due the episodic administration of alcohol, but alcohol use did not alter the level agression toward a male intruder or anxiety-like behaviors during the adult phase.

  4. Deep prepiriform cortex kindling and amygdala interactions.

    Science.gov (United States)

    Zhao, D Y; Moshé, S L

    1987-03-01

    The deep prepiriform cortex (DPC) has been recently suggested to be a crucial epileptogenic site in the rat brain. We investigated the susceptibility of the DPC to the development of electrical kindling as compared to that of the superficial prepiriform cortex (SPC) and amygdala as well as the transfer interactions between the two prepiriform sites and amygdala. Adult rats with electrodes implanted in the right prepiriform cortex (DPC or SPC) and left amygdala were divided into a DPC-amygdala and SPC-amygdala group while a third group consisted of rats with electrodes implanted in the ipsilateral DPC and amygdala. Within each group the rats were initially kindled from one site selected randomly and then rekindled from the other site. Both DPC and SPC were as sensitive to the development of kindling as the amygdala. The behavioral seizures elicited with DPC or SPC primary kindling were identical to those induced by amygdala kindling. Initial DPC kindling facilitated the development of kindling from either ipsilateral or contralateral amygdala with the ipsilateral transfer being significantly more potent than the contralateral. SPC kindling also facilitated the development of contralateral amygdala kindling but was less effective than DPC kindling. On the other hand, amygdala kindling did not facilitate contralateral SPC or DPC kindling although it transferred to the ipsilateral DPC. These results indicate that the prepiriform cortex can be readily kindled but not faster than the amygdala and that there are unequal kindling transfer interactions between prepiriform cortex and amygdala.

  5. Serotonin Transporter Genotype Modulates Functional Connectivity between Amygdala and PCC/PCu during Mood Recovery

    OpenAIRE

    Zhuo eFang; Senhua eZhu; Gillihan, Seth J.; Marc eKorczykowski; Detre, John A.; Hengyi eRao

    2013-01-01

    The short (S) allele of the serotonin transporter-linked polymorphic region (5-HTTLPR) has been associated with increased susceptibility to depression. Previous neuroimaging studies have consistently showed increased amygdala activity during the presentation of negative stimuli or regulation of negative emotion in the homozygous short allele carriers, suggesting the key role of amygdala response in mediating increased risk for depression. The default brain network (DMN) has also been shown to...

  6. Serotonin transporter genotype modulates functional connectivity between amygdala and PCC/PCu during mood recovery

    OpenAIRE

    Fang, Zhuo; Zhu, Senhua; Gillihan, Seth J.; Korczykowski, Marc; Detre, John A.; Rao, Hengyi

    2013-01-01

    The short (S) allele of the serotonin transporter-linked polymorphic region (5-HTTLPR) has been associated with increased susceptibility to depression. Previous neuroimaging studies have consistently showed increased amygdala activity during the presentation of negative stimuli or regulation of negative emotion in the homozygous short allele carriers, suggesting the key role of amygdala response in mediating increased risk for depression. The brain default mode network (DMN) has also been sho...

  7. A diet high in fat and sugar reverses anxiety-like behaviour induced by limited nesting in male rats: Impacts on hippocampal markers.

    Science.gov (United States)

    Maniam, Jayanthi; Antoniadis, Christopher P; Le, Vivian; Morris, Margaret J

    2016-06-01

    Stress exposure during early development is known to produce long-term mental health deficits. Stress promotes poor lifestyle choices such as poor diet. Early life adversity and diets high in fat and sugar (HFHS) are known to affect anxiety and memory. However additive effects of HFHS and stress during early development are less explored. Here, we examined whether early life stress (ELS) simulated by limited nesting (LN) induces anxiety-like behaviour and cognitive deficits that are modulated by HFHS diet. We examined key hippocampal markers involved in anxiety and cognition, testing the hypothesis that post-weaning HFHS following ELS would ameliorate anxiety-like behaviour but worsen memory and associated hippocampal changes. Sprague-Dawley rats were exposed to LN, postnatal days 2-9, and at weaning, male siblings were given unlimited access to chow or HFHS resulting in (Con-Chow, Con-HFHS, LN-Chow, LN-HFHS, n=11-15/group). Anxiety-like behaviour was assessed by Elevated Plus Maze (EPM) at 10 weeks and spatial and object recognition tested at 11 weeks of age. Rats were culled at 13 weeks. Hippocampal mRNA expression was measured using TaqMan(®) Array Micro Fluidic cards (Life Technologies). As expected HFHS diet increased body weight; LN and control rats had similar weights at 13 weeks, energy intake was also similar across groups. LN-Chow rats showed increased anxiety-like behaviour relative to control rats, but this was reversed by HFHS diet. Spatial and object recognition memory were unaltered by LN exposure or consumption of HFHS diet. Hippocampal glucocorticoid receptor (GR) protein was not affected by LN exposure in chow rats, but was increased by 45% in HFHS rats relative to controls. Hippocampal genes involved in plasticity and mood regulation, GSKα and GSKβ were affected, with reductions in GSKβ under both diet conditions, and reduced GSKα only in LN-HFHS versus Con-HFHS. Interestingly, HFHS diet and LN exposure independently reduced expression of

  8. Sex differences in the functional connectivity of the amygdalae in association with cortisol.

    Science.gov (United States)

    Kogler, Lydia; Müller, Veronika I; Seidel, Eva-Maria; Boubela, Roland; Kalcher, Klaudius; Moser, Ewald; Habel, Ute; Gur, Ruben C; Eickhoff, Simon B; Derntl, Birgit

    2016-07-01

    Human amygdalae are involved in various behavioral functions such as affective and stress processing. For these behavioral functions, as well as for psychophysiological arousal including cortisol release, sex differences are reported. Here, we assessed cortisol levels and resting-state functional connectivity (rsFC) of left and right amygdalae in 81 healthy participants (42 women) to investigate potential modulation of amygdala rsFC by sex and cortisol concentration. Our analyses revealed that rsFC of the left amygdala significantly differed between women and men: Women showed stronger rsFC than men between the left amygdala and left middle temporal gyrus, inferior frontal gyrus, postcentral gyrus and hippocampus, regions involved in face processing, inner-speech, fear and pain processing. No stronger connections were detected for men and no sex difference emerged for right amygdala rsFC. Also, an interaction of sex and cortisol appeared: In women, cortisol was negatively associated with rsFC of the amygdalae with striatal regions, mid-orbital frontal gyrus, anterior cingulate gyrus, middle and superior frontal gyri, supplementary motor area and the parietal-occipital sulcus. Contrarily in men, positive associations of cortisol with rsFC of the left amygdala and these structures were observed. Functional decoding analyses revealed an association of the amygdalae and these regions with emotion, reward and memory processing, as well as action execution. Our results suggest that functional connectivity of the amygdalae as well as the regulatory effect of cortisol on brain networks differs between women and men. These sex-differences and the mediating and sex-dependent effect of cortisol on brain communication systems should be taken into account in affective and stress-related neuroimaging research. Thus, more studies including both sexes are required. PMID:27039701

  9. From circuits to behaviour in the amygdala.

    Science.gov (United States)

    Janak, Patricia H; Tye, Kay M

    2015-01-15

    The amygdala has long been associated with emotion and motivation, playing an essential part in processing both fearful and rewarding environmental stimuli. How can a single structure be crucial for such different functions? With recent technological advances that allow for causal investigations of specific neural circuit elements, we can now begin to map the complex anatomical connections of the amygdala onto behavioural function. Understanding how the amygdala contributes to a wide array of behaviours requires the study of distinct amygdala circuits. PMID:25592533

  10. Amygdala reactivity and negative emotionality: divergent correlates of antisocial personality and psychopathy traits in a community sample.

    Science.gov (United States)

    Hyde, Luke W; Byrd, Amy L; Votruba-Drzal, Elizabeth; Hariri, Ahmad R; Manuck, Stephen B

    2014-02-01

    Previous studies have emphasized that antisocial personality disorder (APD) and psychopathy overlap highly but differ critically in several features, notably negative emotionality (NEM) and possibly amygdala reactivity to social signals of threat and distress. Here we examined whether dimensions of psychopathy and APD correlate differentially with NEM and amygdala reactivity to emotional faces. Testing these relationships among healthy individuals, dimensions of psychopathy and APD were generated by the profile matching technique of Lynam and Widiger (2001), using facet scales of the NEO Personality Inventory-Revised, and amygdala reactivity was measured using a well-established emotional faces task, in a community sample of 103 men and women. Higher psychopathy scores were associated with lower NEM and lower amygdala reactivity, whereas higher APD scores were related to greater NEM and greater amygdala reactivity, but only after overlapping variance in APD and psychopathy was adjusted for in the statistical model. Amygdala reactivity did not mediate the relationship of APD and psychopathy scores to NEM. Supplemental analyses also compared other measures of factors within psychopathy in predicting NEM and amygdala reactivity and found that Factor 2 psychopathy was positively related to NEM and amygdala reactivity across measures of psychopathy. The overall findings replicate seminal observations on NEM in psychopathy by Hicks and Patrick (2006) and extend this work to neuroimaging in a normative population. They also suggest that one critical way in which APD and psychopathy dimensions may differ in their etiology is through their opposing levels of NEM and amygdala reactivity to threat.

  11. Locus coeruleus noradrenergic innervation of the amygdala facilitates alerting-induced constriction of the rat tail artery.

    Science.gov (United States)

    Mohammed, Mazher; Kulasekara, Keerthi; Ootsuka, Youichirou; Blessing, William W

    2016-06-01

    The amygdala, innervated by the noradrenergic locus coeruleus, processes salient environmental events. α2-adrenoceptor-stimulating drugs (clonidine-like agents) suppress the behavioral and physiological components of the response to salient events. Activation of sympathetic outflow to the cutaneous vascular bed is part of the physiological response to salience-mediated activation of the amygdala. We have determined whether acute systemic and intra-amygdala administration of clonidine, and chronic immunotoxin-mediated destruction of the noradrenergic innervation of the amygdala, impairs salience-related vasoconstrictor episodes in the tail artery of conscious freely moving Sprague-Dawley rats. After acute intraperitoneal injection of clonidine (10, 50, and 100 μg/kg), there was a dose-related decrease in the reduction in tail blood flow elicited by alerting stimuli, an effect prevented by prior administration of the α2-adrenergic blocking drug idazoxan (1 mg/kg ip or 75 nmol bilateral intra-amygdala). A dose-related decrease in alerting-induced tail artery vasoconstriction was also observed after bilateral intra-amygdala injection of clonidine (5, 10, and 20 nmol in 200 nl), an effect substantially prevented by prior bilateral intra-amygdala injection of idazoxan. Intra-amygdala injection of idazoxan by itself did not alter tail artery vasoconstriction elicited by alerting stimuli. Intra-amygdala injection of saporin coupled to antibodies to dopamine-β-hydroxylase (immunotoxin) destroyed the noradrenergic innervation of the amygdala and the parent noradrenergic neurons in the locus coeruleus. The reduction in tail blood flow elicited by standardized alerting stimuli was substantially reduced in immunotoxin-treated rats. Thus, inhibiting the release of noradrenaline within the amygdala reduces activation of the sympathetic outflow to the vascular beds elicited by salient events. PMID:27101292

  12. Amygdala hyperactivation during symptom provocation in obsessive–compulsive disorder and its modulation by distraction

    Directory of Open Access Journals (Sweden)

    Daniela Simon

    2014-01-01

    Full Text Available Anxiety disorders have been linked to a hyperactivated cortico-amygdalar circuitry. Recent findings highlight the amygdala's role in mediating elevated anxiety in obsessive–compulsive disorder (OCD. However, modulation of amygdala hyperactivation by attentional distraction – an effective emotion regulation strategy in healthy individuals – has not yet been examined. While undergoing functional magnetic resonance imaging twenty-one unmedicated OCD patients and 21 controls performed an evaluation and a distraction task during symptom provocation with individually tailored OCD-relevant pictures. To test the specificity of responses, additional aversive and neutral stimuli were included. Significant group-by-picture type interactions were observed within fronto–striato–limbic circuits including the amygdala. In these regions patients showed increased BOLD responses during processing of OCD triggers relative to healthy controls. Amygdala hyperactivation was present across OCD symptom dimensions indicating that it represents a common neural correlate. During distraction, we observed dampening of patients' amygdala hyperactivity to OCD-relevant stimuli. Augmented amygdala involvement in patients during symptom provocation, present across OCD symptom dimensions, might constitute a correlate of fear expression in OCD linking it to other anxiety disorders. Attentional distraction seemed to dampen emotional processing of disorder-relevant stimuli via amygdala downregulation. The clinical impact of this strategy to manage anxiety in OCD should be further elucidated.

  13. Amygdala kindling elevates plasma vasopressin.

    Science.gov (United States)

    Greenwood, R S; Meeker, R B; Hayward, J N

    1991-01-01

    Acute and chronic effects of epilepsy on endocrine function are known to occur in humans with partial seizures of limbic origin and in animals with limbic kindled seizures. The amygdala, a component of the limbic system, has dense hypothalamic connections and amygdala stimulation in monkeys and cats result in vasopressin release. In the present study we sought to determine if amygdala stimulation in the rats results in an immediate acute release of vasopressin and to determine if acute or chronic changes occur in vasopressin release in the fully kindled animal. Plasma vasopressin, osmolality and hematocrit were measured in blood samples drawn from rats with implanted venous catheters before and after stimulation and at different stages of kindling. Low-frequency (15 Hz) electrical stimulation of the amygdala was followed by an immediate, 3-fold increase in plasma vasopressin concentration. Moreover, although the 60 Hz kindling stimulus did not result in a significant immediate rise in plasma vasopressin prior to kindling, after kindling to stage 5 seizures the 60 Hz kindling stimulus resulted in seizures and a significant immediate rise in plasma vasopressin. In addition, we found that kindling was followed by a significant, though modest, rise in the resting plasma vasopressin without an accompanying change in osmolality or hematocrit. We conclude that kindling results in a persistent alteration in the vasopressinergic neuroendocrine system. PMID:2018936

  14. Amygdala kindling elevates plasma vasopressin.

    Science.gov (United States)

    Greenwood, R S; Meeker, R B; Hayward, J N

    1991-01-01

    Acute and chronic effects of epilepsy on endocrine function are known to occur in humans with partial seizures of limbic origin and in animals with limbic kindled seizures. The amygdala, a component of the limbic system, has dense hypothalamic connections and amygdala stimulation in monkeys and cats result in vasopressin release. In the present study we sought to determine if amygdala stimulation in the rats results in an immediate acute release of vasopressin and to determine if acute or chronic changes occur in vasopressin release in the fully kindled animal. Plasma vasopressin, osmolality and hematocrit were measured in blood samples drawn from rats with implanted venous catheters before and after stimulation and at different stages of kindling. Low-frequency (15 Hz) electrical stimulation of the amygdala was followed by an immediate, 3-fold increase in plasma vasopressin concentration. Moreover, although the 60 Hz kindling stimulus did not result in a significant immediate rise in plasma vasopressin prior to kindling, after kindling to stage 5 seizures the 60 Hz kindling stimulus resulted in seizures and a significant immediate rise in plasma vasopressin. In addition, we found that kindling was followed by a significant, though modest, rise in the resting plasma vasopressin without an accompanying change in osmolality or hematocrit. We conclude that kindling results in a persistent alteration in the vasopressinergic neuroendocrine system.

  15. Stress, memory and the amygdala

    NARCIS (Netherlands)

    Roozendaal, Benno; McEwen, Bruce S.; Chattarji, Sumantra

    2009-01-01

    Emotionally significant experiences tend to be well remembered, and the amygdala has a pivotal role in this process. But the efficient encoding of emotional memories can become maladaptive - severe stress often turns them into a source of chronic anxiety. Here, we review studies that have identified

  16. Acute prenatal exposure to ethanol on gestational day 12 elicits opposing deficits in social behaviors and anxiety-like behaviors in Sprague Dawley rats.

    Science.gov (United States)

    Diaz, Marvin R; Mooney, Sandra M; Varlinskaya, Elena I

    2016-09-01

    Our previous research has shown that in Long Evans rats acute prenatal exposure to a high dose of ethanol on gestational day (G) 12 produces social deficits in male offspring and elicits substantial decreases in social preference relative to controls, in late adolescents and adults regardless of sex. In order to generalize the observed detrimental effects of ethanol exposure on G12, pregnant female Sprague Dawley rats were exposed to ethanol or saline and their offspring were assessed in a modified social interaction (SI) test as early adolescents, late adolescents, or young adults. Anxiety-like behavior was also assessed in adults using the elevated plus maze (EPM) or the light/dark box (LDB) test. Age- and sex-dependent social alterations were evident in ethanol-exposed animals. Ethanol-exposed males showed deficits in social investigation at all ages and age-dependent alterations in social preference. Play fighting was not affected in males. In contrast, ethanol-exposed early adolescent females showed no changes in social interactions, whereas older females demonstrated social deficits and social indifference. In adulthood, anxiety-like behavior was decreased in males and females prenatally exposed to ethanol in the EPM, but not the LDB. These findings suggest that social alterations associated with acute exposure to ethanol on G12 are not strain-specific, although they are more pronounced in Long Evans males and Sprague Dawley females. Furthermore, given that anxiety-like behaviors were attenuated in a test-specific manner, this study indicates that early ethanol exposure can have differential effects on different forms of anxiety. PMID:27154534

  17. Escitalopram or novel herbal mixture treatments during or following exposure to stress reduce anxiety-like behavior through corticosterone and BDNF modifications.

    Directory of Open Access Journals (Sweden)

    Ravid Doron

    Full Text Available Anxiety disorders are a major public health concern worldwide. Studies indicate that repeated exposure to adverse experiences early in life can lead to anxiety disorders in adulthood. Current treatments for anxiety disorders are characterized by a low success rate and are associated with a wide variety of side effects. The aim of the present study was to evaluate the anxiolytic effects of a novel herbal treatment, in comparison to treatment with the selective serotonin reuptake inhibitor escitalopram. We recently demonstrated the anxiolytic effects of these treatments in BALB mice previously exposed to one week of stress. In the present study, ICR mice were exposed to post natal maternal separation and to 4 weeks of unpredictable chronic mild stress in adolescence, and treated during or following exposure to stress with the novel herbal treatment or with escitalopram. Anxiety-like behavior was evaluated in the elevated plus maze. Blood corticosterone levels were evaluated using radioimmunoassay. Brain derived neurotrophic factor levels in the hippocampus were evaluated using enzyme-linked immunosorbent assay. We found that (1 exposure to stress in childhood and adolescence increased anxiety-like behavior in adulthood; (2 the herbal treatment reduced anxiety-like behavior, both when treated during or following exposure to stress; (3 blood corticosterone levels were reduced following treatment with the herbal treatment or escitalopram, when treated during or following exposure to stress; (4 brain derived neurotrophic factor levels in the hippocampus of mice treated with the herbal treatment or escitalopram were increased, when treated either during or following exposure to stress. This study expands our previous findings and further points to the proposed herbal compound's potential to be highly efficacious in treating anxiety disorders in humans.

  18. Ondansetron, a 5HT3 receptor antagonist reverses depression and anxiety-like behavior in streptozotocin-induced diabetic mice: possible implication of serotonergic system.

    Science.gov (United States)

    Gupta, Deepali; Radhakrishnan, Mahesh; Kurhe, Yeshwant

    2014-12-01

    Increased prevalence and high comorbidity of depression-like mood disorders and diabetes have prompted investigation of new targets and potential contributing agents. There is considerable evidence supporting the inconsistent clinical efficacy and persistent undesirable effects of existing antidepressant therapy for depression associated with diabetes. Therefore, the present study was aimed at investigating the effect of ondansetron, a selective 5HT3 receptor antagonist in attenuating depression and anxiety-like behavior comorbid with diabetes. Experimentally, Swiss albino mice were rendered diabetic by a single intraperitoneal (i.p.) injection of streptozotocin (STZ, 200 mg/kg). After 8 weeks, diabetic mice received a single dose of vehicle/ondansetron (0.5 and 1 mg/kg, p.o.)/fluoxetine (the positive control, 10 mg/kg p.o.) for 28 days. Thereafter, behavioral studies were conducted to test depression-like behavior using forced swim test (FST) and anxiety-like deficits using hole-board and light-dark tests, followed by biochemical estimation of serotonin content in discrete brain regions. The results demonstrated that, STZ-induced diabetic mice exhibited increased duration of immobility and decreased swimming behavior in FST, reduced exploratory behavior during hole-board test and increased aversion to brightly illuminated light area in light-dark test as compared to non-diabetic mice, while ondansetron (similar to fluoxetine) treatment significantly reversed the same. Biochemical assay revealed that ondansetron administration attenuated diabetes-induced neurochemical impairment of serotonin function, indicated by elevated serotonin levels in discrete brain regions of diabetic mice. Collectively, the data indicate that ondansetron may reverse depression and anxiety-like behavioral deficits associated with diabetes in mice and modulation of serotonergic activity may be a key mechanism of the compound.

  19. Hypoxic-ischemic injury decreases anxiety-like behavior in rats when associated with loss of tyrosine-hydroxylase immunoreactive neurons of the substantia nigra

    International Nuclear Information System (INIS)

    Neonatal Sprague-Dawley rats were randomly divided into normal control, mild hypoxia-ischemia (HI), and severe HI groups (N = 10 in each group at each time) on postnatal day 7 (P7) to study the effect of mild and severe HI on anxiety-like behavior and the expression of tyrosine hydroxylase (TH) in the substantia nigra (SN). The mild and severe HI groups were exposed to hypoxia (8% O2/92% N2) for 90 and 150 min, respectively. The elevated plus-maze (EPM) test was performed to assess anxiety-like behavior by measuring time spent in the open arms (OAT) and OAT%, and immunohistochemistry was used to determine the expression of TH in the SN at P14, P21, and P28. OAT and OAT% in the EPM were significantly increased in both the mild (1.88-, 1.99-, and 2.04-fold, and 1.94-, 1.51-, and 1.46-fold) and severe HI groups (1.69-, 1.68-, and 1.87-fold, and 1.83-, 1.43-, and 1.39-fold, respectively; P < 0.05). The percent of TH-positive cells occupying the SN area was significantly and similarly decreased in both the mild (17.7, 40.2, and 47.2%) and severe HI groups (16.3, 32.2, and 43.8%, respectively; P < 0.05). The decrease in the number of TH-positive cells in the SN and the level of protein expression were closely associated (Pearson correlation analysis: r = 0.991, P = 0.000 in the mild HI group and r = 0.974, P = 0.000 in the severe HI group) with the impaired anxiety-like behaviors. We conclude that neonatal HI results in decreased anxiety-like behavior during the juvenile period of Sprague-Dawley rats, which is associated with the decreased activity of TH in the SN. The impairment of anxiety and the expression of TH are not likely to be dependent on the severity of HI

  20. Hypoxic-ischemic injury decreases anxiety-like behavior in rats when associated with loss of tyrosine-hydroxylase immunoreactive neurons of the substantia nigra

    Directory of Open Access Journals (Sweden)

    Hei Ming-Yan

    2012-01-01

    Full Text Available Neonatal Sprague-Dawley rats were randomly divided into normal control, mild hypoxia-ischemia (HI, and severe HI groups (N = 10 in each group at each time on postnatal day 7 (P7 to study the effect of mild and severe HI on anxiety-like behavior and the expression of tyrosine hydroxylase (TH in the substantia nigra (SN. The mild and severe HI groups were exposed to hypoxia (8% O2/92% N2 for 90 and 150 min, respectively. The elevated plus-maze (EPM test was performed to assess anxiety-like behavior by measuring time spent in the open arms (OAT and OAT%, and immunohistochemistry was used to determine the expression of TH in the SN at P14, P21, and P28. OAT and OAT% in the EPM were significantly increased in both the mild (1.88-, 1.99-, and 2.04-fold, and 1.94-, 1.51-, and 1.46-fold and severe HI groups (1.69-, 1.68-, and 1.87-fold, and 1.83-, 1.43-, and 1.39-fold, respectively; P < 0.05. The percent of TH-positive cells occupying the SN area was significantly and similarly decreased in both the mild (17.7, 40.2, and 47.2% and severe HI groups (16.3, 32.2, and 43.8%, respectively; P < 0.05. The decrease in the number of TH-positive cells in the SN and the level of protein expression were closely associated (Pearson correlation analysis: r = 0.991, P = 0.000 in the mild HI group and r = 0.974, P = 0.000 in the severe HI group with the impaired anxiety-like behaviors. We conclude that neonatal HI results in decreased anxiety-like behavior during the juvenile period of Sprague-Dawley rats, which is associated with the decreased activity of TH in the SN. The impairment of anxiety and the expression of TH are not likely to be dependent on the severity of HI.

  1. Serotonin Transporter Genotype Modulates Functional Connectivity between Amygdala and PCC/PCu during Mood Recovery

    Directory of Open Access Journals (Sweden)

    Zhuo eFang

    2013-10-01

    Full Text Available The short (S allele of the serotonin transporter-linked polymorphic region (5-HTTLPR has been associated with increased susceptibility to depression. Previous neuroimaging studies have consistently showed increased amygdala activity during the presentation of negative stimuli or regulation of negative emotion in the homozygous short allele carriers, suggesting the key role of amygdala response in mediating increased risk for depression. The default brain network (DMN has also been shown to modulate amygdala activity. However, it remains unclear whether 5-HTTLPR genetic variation modulates functional connectivity between the amygdala and regions of DMN. In this study, we re-analyzed our previous imaging dataset and examined the effects of 5-HTTLPR genetic variation on amygdala connectivity. A total of 15 homozygous short (S/S and 15 homozygous long individuals (L/L were scanned in functional MRI during four blocks: baseline, sad mood, mood recovery, and return to baseline. The S/S and L/L groups showed a similar pattern of functional connectivity and no differences were found between the two groups during baseline and sad mood scans. However, during mood recovery, the S/S group showed significantly reduced anti-correlations between amygdala and posterior cingulate cortex/precuneus (PCC/PCu compared to the L/L group. Moreover, PCC/PCu-amygdala connectivity correlated with amygdala activity in the S/S group but not the L/L group. These results suggest that 5-HTTLPR genetic variation modulates amygdala connectivity which subsequently affects its activity during mood regulation, providing an additional mechanism by which the S allele confers depression risk.

  2. Repetitive transcranial magnetic stimulation ameliorates anxiety-like behavior and impaired sensorimotor gating in a rat model of post-traumatic stress disorder.

    Directory of Open Access Journals (Sweden)

    Hua-Ning Wang

    Full Text Available BACKGROUND: Repetitive transcranial magnetic stimulation (rTMS has been employed for decades as a non-pharmacologic treatment for post-traumatic stress disorder (PTSD. Although a link has been suggested between PTSD and impaired sensorimotor gating (SG, studies assessing the effects of rTMS against PTSD or PTSD with impaired SG are scarce. AIM: To assess the benefit of rTMS in a rat model of PTSD. METHODS: Using a modified single prolonged stress (SPS&S rat model of PTSD, behavioral parameters were acquired using open field test (OFT, elevated plus maze test (EPMT, and prepulse inhibition trial (PPI, with or without 7 days of high frequency (10Hz rTMS treatment of SPS&S rats. RESULTS: Anxiety-like behavior, impaired SG and increased plasma level of cortisol were observed in SPS&S animals after stress for a prolonged time. Interestingly, rTMS administered immediately after stress prevented those impairment. CONCLUSION: Stress-induced anxiety-like behavior, increased plasma level of cortisol and impaired PPI occur after stress and high-frequency rTMS has the potential to ameliorate this behavior, suggesting that high frequency rTMS should be further evaluated for its use as a method for preventing PTSD.

  3. Estrogen and voluntary exercise interact to attenuate stress-induced corticosterone release but not anxiety-like behaviors in female rats.

    Science.gov (United States)

    Jones, Alexis B; Gupton, Rebecca; Curtis, Kathleen S

    2016-09-15

    The beneficial effects of physical exercise to reduce anxiety and depression and to alleviate stress are increasingly supported in research studies. The role of ovarian hormones in interactions between exercise and anxiety/stress has important implications for women's health, given that women are at increased risk of developing anxiety-related disorders, particularly during and after the menopausal transition. In these experiments, we tested the hypothesis that estrogen enhances the positive impact of exercise on stress responses by investigating the combined effects of exercise and estrogen on anxiety-like behaviors and stress hormone levels in female rats after an acute stressor. Ovariectomized female rats with or without estrogen were given access to running wheels for one or three days of voluntary running immediately after or two days prior to being subjected to restraint stress. We found that voluntary running was not effective at reducing anxiety-like behaviors, whether or not rats were subjected to restraint stress. In contrast, stress-induced elevations of stress hormone levels were attenuated by exercise experience in estrogen-treated rats, but were increased in rats without estrogen. These results suggest that voluntary exercise may be more effective at reducing stress hormone levels if estrogen is present. Additionally, exercise experience, or the distance run, may be important in reducing stress. PMID:27247143

  4. Exposure to mobile phone electromagnetic field radiation, ringtone and vibration affects anxiety-like behaviour and oxidative stress biomarkers in albino wistar rats.

    Science.gov (United States)

    Shehu, Abubakar; Mohammed, Aliyu; Magaji, Rabiu Abdussalam; Muhammad, Mustapha Shehu

    2016-04-01

    Research on the effects of Mobile phone radio frequency emissions on biological systems has been focused on noise and vibrations as auditory stressors. This study investigated the potential effects of exposure to mobile phone electromagnetic field radiation, ringtone and vibration on anxiety-like behaviour and oxidative stress biomarkers in albino wistar rats. Twenty five male wistar rats were randomly divided into five groups of 5 animals each: group I: exposed to mobile phone in switched off mode (control), group II: exposed to mobile phone in silent mode, group III: exposed to mobile phone in vibration mode, group IV: exposed to mobile phone in ringtone mode, group V: exposed to mobile phone in vibration and ringtone mode. The animals in group II to V were exposed to 10 min call (30 missed calls for 20 s each) per day for 4 weeks. Neurobehavioural studies for assessing anxiety were carried out 24 h after the last exposure and the animals were sacrificed. Brain samples were collected for biochemical evaluation immediately. Results obtained showed a significant decrease (P electromagnetic radiation, vibration, ringtone or both produced a significant effect on anxiety-like behavior and oxidative stress in young wistar rats. PMID:26546224

  5. The role of taurine on anxiety-like behaviors in zebrafish: A comparative study using the novel tank and the light-dark tasks.

    Science.gov (United States)

    Mezzomo, Nathana J; Silveira, Ariane; Giuliani, Giulie S; Quadros, Vanessa A; Rosemberg, Denis B

    2016-02-01

    Taurine (TAU) is an amino sulfonic acid with several functions in central nervous system. Mounting evidence suggests that it acts in osmoregulation, neuromodulation and also as an inhibitory neurotransmitter. However, the effects of TAU on behavioral functions, especially on anxiety-related parameters, are limited. The adult zebrafish is a suitable model organism to examine anxiety-like behaviors since it presents neurotransmitter systems and behavioral functions evolutionary conserved. Anxiety in zebrafish can be measured by different tasks, analyzing the habituation to novelty, as well as the response to brightly lit environments. The aim of this study was to investigate whether acute TAU treatment alters anxiety-like behavior in zebrafish using the novel tank and the light-dark tests. Fish were individually treated with TAU (42, 150, and 400mg/L) for 1h and the behaviors were further analyzed for 6min in the novel tank or in the light-dark test. Control fish were handled in a similar manner, but kept only in home tank water. Although TAU did not alter locomotor and vertical activities, all concentrations significantly increased shuttling and time spent in lit compartment. Moreover, TAU 150 group showed a significant decrease in the number of risk assessment episodes. Overall, these data suggest that TAU exerts an anxiolytic-like effect in zebrafish and the comparative analysis of behavior using different tasks is an interesting strategy for neuropsychiatric studies related to anxiety in this species.

  6. Subchronic Arsenic Exposure Induces Anxiety-Like Behaviors in Normal Mice and Enhances Depression-Like Behaviors in the Chemically Induced Mouse Model of Depression

    Directory of Open Access Journals (Sweden)

    Chia-Yu Chang

    2015-01-01

    Full Text Available Accumulating evidence implicates that subchronic arsenic exposure causes cerebral neurodegeneration leading to behavioral disturbances relevant to psychiatric disorders. However, there is still little information regarding the influence of subchronic exposure to arsenic-contaminated drinking water on mood disorders and its underlying mechanisms in the cerebral prefrontal cortex. The aim of this study is to assess the effects of subchronic arsenic exposure (10 mg/LAs2O3 in drinking water on the anxiety- and depression-like behaviors in normal mice and in the chemically induced mouse model of depression by reserpine pretreatment. Our findings demonstrated that 4 weeks of arsenic exposure enhance anxiety-like behaviors on elevated plus maze (EPM and open field test (OFT in normal mice, and 8 weeks of arsenic exposure augment depression-like behaviors on tail suspension test (TST and forced swimming test (FST in the reserpine pretreated mice. In summary, in this present study, we demonstrated that subchronic arsenic exposure induces only the anxiety-like behaviors in normal mice and enhances the depression-like behaviors in the reserpine induced mouse model of depression, in which the cerebral prefrontal cortex BDNF-TrkB signaling pathway is involved. We also found that eight weeks of subchronic arsenic exposure are needed to enhance the depression-like behaviors in the mouse model of depression. These findings imply that arsenic could be an enhancer of depressive symptoms for those patients who already had the attribute of depression.

  7. Exposure to mobile phone electromagnetic field radiation, ringtone and vibration affects anxiety-like behaviour and oxidative stress biomarkers in albino wistar rats.

    Science.gov (United States)

    Shehu, Abubakar; Mohammed, Aliyu; Magaji, Rabiu Abdussalam; Muhammad, Mustapha Shehu

    2016-04-01

    Research on the effects of Mobile phone radio frequency emissions on biological systems has been focused on noise and vibrations as auditory stressors. This study investigated the potential effects of exposure to mobile phone electromagnetic field radiation, ringtone and vibration on anxiety-like behaviour and oxidative stress biomarkers in albino wistar rats. Twenty five male wistar rats were randomly divided into five groups of 5 animals each: group I: exposed to mobile phone in switched off mode (control), group II: exposed to mobile phone in silent mode, group III: exposed to mobile phone in vibration mode, group IV: exposed to mobile phone in ringtone mode, group V: exposed to mobile phone in vibration and ringtone mode. The animals in group II to V were exposed to 10 min call (30 missed calls for 20 s each) per day for 4 weeks. Neurobehavioural studies for assessing anxiety were carried out 24 h after the last exposure and the animals were sacrificed. Brain samples were collected for biochemical evaluation immediately. Results obtained showed a significant decrease (P < 0.05) in open arm duration in all the experimental groups when compared to the control. A significant decrease (P < 0.05) was also observed in catalase activity in group IV and V when compared to the control. In conclusion, the results of the present study indicates that 4 weeks exposure to electromagnetic radiation, vibration, ringtone or both produced a significant effect on anxiety-like behavior and oxidative stress in young wistar rats.

  8. Comorbid anxiety-like behavior and locus coeruleus impairment in diabetic peripheral neuropathy: A comparative study with the chronic constriction injury model.

    Science.gov (United States)

    Alba-Delgado, Cristina; Cebada-Aleu, Alberto; Mico, Juan Antonio; Berrocoso, Esther

    2016-11-01

    Anxiety frequently appears in patients with diabetic neuropathic pain, a highly prevalent clinical condition. However, the neurobiological mechanisms of this comorbidity are poorly known. Anxiogenic phenotype has been associated with alterations of the noradrenergic locus coeruleus (LC) after peripheral nerve entrapment. We have examined the sensorial (pain) and affective (anxiety) behaviors, and the LC activity in streptozotocin (STZ)-induced diabetic rats. A comparative study with the chronic constriction injury (CCI) model of sciatic nerve was also carried out. Diabetic nociceptive hypersensitivity was observed to appear gradually, reaching their maximum at fourth week. In contrast, CCI displayed a sharp decrease in their sensorial threshold at seventh day. In both models, anxiety-like phenotype was evident after four weeks but not earlier, coincident with the LC alterations. Indeed, STZ animals showed reduced LC firing activity, tyrosine hydroxylase, pCREB and noradrenaline transporter levels, contrary to observed in CCI animals. However, in both models, enhanced LC alpha2-adrenoceptor sensitivity was presented at this time point. This study demonstrated that diabetes induced anxiety-like behavior comorbid with LC impairment at long-term. However, the nociceptive sensitivity time-course, as well as the LC functions, showed distinct features compared to the CCI model, indicating that specific neuroplastic mechanisms are at play in every model. PMID:27328428

  9. Intact electrodermal skin conductance responses after bilateral amygdala damage.

    Science.gov (United States)

    Tranel, D; Damasio, H

    1989-01-01

    Several lines of evidence have suggested that the amygdala is a crucial component of the anatomical network that mediates the skin conductance orienting response (SCOR). In this study, the electrodermal activity of a patient whose entire amygdaloid complex had been destroyed bilaterally, and of 7 age- and gender-matched controls, was recorded under the same experimental conditions. The results indicate unequivocally that the subject could generate normal skin conductance and SCORs, in response to stimuli of different sensory modalities and configurations. This suggests that the amygdala is not a necessary component of the neural network underlying SCORs and that there are alternate neural units and pathways that link sensory cortices to autonomic effectors.

  10. From circuits to behaviour in the amygdala

    OpenAIRE

    Janak, Patricia H.; Tye, Kay M

    2015-01-01

    The amygdala has long been associated with emotion and motivation, playing an essential part in processing both fearful and rewarding environmental stimuli. How can a single structure be crucial for such different functions? With recent technological advances that allow for causal investigations of specific neural circuit elements, we can now begin to map the complex anatomical connections of the amygdala onto behavioural function. Understanding how the amygdala contributes to a wide array of...

  11. Basal forebrain neurons suppress amygdala kindling via cortical but not hippocampal cholinergic projections in rats.

    Science.gov (United States)

    Ferencz, I; Leanza, G; Nanobashvili, A; Kokaia, M; Lindvall, O

    2000-06-01

    Intraventricular administration of the immunotoxin 192 IgG-saporin in rats has been shown to cause a selective loss of cholinergic afferents to the hippocampus and cortical areas, and to facilitate seizure development in hippocampal kindling. Here we demonstrate that this lesion also accelerates seizure progression when kindling is induced by electrical stimulations in the amygdala. However, whereas intraventricular 192 IgG-saporin facilitated the development of the initial stages of hippocampal kindling, the same lesion promoted the late stages of amygdala kindling. To explore the role of various parts of the basal forebrain cholinergic system in amygdala kindling, selective lesions of the cholinergic projections to either hippocampus or cortex were produced by intraparenchymal injections of 192 IgG-saporin into medial septum/vertical limb of the diagonal band or nucleus basalis, respectively. Cholinergic denervation of the cortical regions caused acceleration of amygdala kindling closely resembling that observed after the more widespread lesion induced by intraventricular 192 IgG-saporin. In contrast, removal of the cholinergic input to the hippocampus had no effect on the development of amygdala kindling. These data indicate that basal forebrain cholinergic neurons suppress kindling elicited from amygdala, and that this dampening effect is mediated via cortical but not hippocampal projections.

  12. The link between testosterone and amygdala-orbitofrontal cortex connectivity in adolescent alcohol use.

    Science.gov (United States)

    Peters, Sabine; Jolles, Dietsje J; Van Duijvenvoorde, Anna C K; Crone, Eveline A; Peper, Jiska S

    2015-03-01

    Alcohol consumption is one of the most problematic and widespread forms of risk taking in adolescence. It has been hypothesized that sex hormones such as testosterone play an important role in risk taking by influencing the development of brain networks involved in emotion and motivation, particularly the amygdala and its functional connections. Connectivity between the amygdala and the orbitofrontal cortex (OFC) may be specifically related to alcohol use, given the association of this tract with top-down control over behavioral approach tendencies. In line with this, prior studies in adults indicate a link between alcohol use and functional connectivity between the amygdala and the orbitofrontal cortex (OFC), as well as between testosterone and amygdala-OFC connectivity. We consolidated these research lines by investigating the association between alcohol use, testosterone and resting state functional brain connectivity within one large-scale adolescent sample (n=173, aged 12-25 years). Mediation analyses demonstrated an indirect effect of testosterone levels on alcohol use through amygdala-OFC intrinsic functional connectivity, but only in boys. That is, increased testosterone in boys was associated with reduced amygdala-OFC connectivity, which in turn was associated with increased alcohol intake. This study is the first to demonstrate the interplay between adolescent alcohol use, sex hormones and brain mechanisms, thus taking an important step to increase our understanding of the mechanisms behind this form of adolescent risk-taking. PMID:25618591

  13. The link between testosterone and amygdala-orbitofrontal cortex connectivity in adolescent alcohol use.

    Science.gov (United States)

    Peters, Sabine; Jolles, Dietsje J; Van Duijvenvoorde, Anna C K; Crone, Eveline A; Peper, Jiska S

    2015-03-01

    Alcohol consumption is one of the most problematic and widespread forms of risk taking in adolescence. It has been hypothesized that sex hormones such as testosterone play an important role in risk taking by influencing the development of brain networks involved in emotion and motivation, particularly the amygdala and its functional connections. Connectivity between the amygdala and the orbitofrontal cortex (OFC) may be specifically related to alcohol use, given the association of this tract with top-down control over behavioral approach tendencies. In line with this, prior studies in adults indicate a link between alcohol use and functional connectivity between the amygdala and the orbitofrontal cortex (OFC), as well as between testosterone and amygdala-OFC connectivity. We consolidated these research lines by investigating the association between alcohol use, testosterone and resting state functional brain connectivity within one large-scale adolescent sample (n=173, aged 12-25 years). Mediation analyses demonstrated an indirect effect of testosterone levels on alcohol use through amygdala-OFC intrinsic functional connectivity, but only in boys. That is, increased testosterone in boys was associated with reduced amygdala-OFC connectivity, which in turn was associated with increased alcohol intake. This study is the first to demonstrate the interplay between adolescent alcohol use, sex hormones and brain mechanisms, thus taking an important step to increase our understanding of the mechanisms behind this form of adolescent risk-taking.

  14. Amygdala functional connectivity as a longitudinal biomarker of symptom changes in generalized anxiety

    Science.gov (United States)

    Makovac, Elena; Watson, David R.; Meeten, Frances; Garfinkel, Sarah N.; Cercignani, Mara; Critchley, Hugo D.

    2016-01-01

    Generalized anxiety disorder (GAD) is characterized by excessive worry, autonomic dysregulation and functional amygdala dysconnectivity, yet these illness markers have rarely been considered together, nor their interrelationship tested longitudinally. We hypothesized that an individual’s capacity for emotion regulation predicts longer-term changes in amygdala functional connectivity, supporting the modification of GAD core symptoms. Sixteen patients with GAD (14 women) and individually matched controls were studied at two time points separated by 1 year. Resting-state fMRI data and concurrent measurement of vagally mediated heart rate variability were obtained before and after the induction of perseverative cognition. A greater rise in levels of worry following the induction predicted a stronger reduction in connectivity between right amygdala and ventromedial prefrontal cortex, and enhanced coupling between left amygdala and ventral tegmental area at follow-up. Similarly, amplified physiological responses to the induction predicted increased connectivity between right amygdala and thalamus. Longitudinal shifts in a distinct set of functional connectivity scores were associated with concomitant changes in GAD symptomatology over the course of the year. Results highlight the prognostic value of indices of emotional dysregulation and emphasize the integral role of the amygdala as a critical hub in functional neural circuitry underlying the progression of GAD symptomatology. PMID:27369066

  15. Fluoxetine Facilitates Fear Extinction Through Amygdala Endocannabinoids.

    Science.gov (United States)

    Gunduz-Cinar, Ozge; Flynn, Shaun; Brockway, Emma; Kaugars, Katherine; Baldi, Rita; Ramikie, Teniel S; Cinar, Resat; Kunos, George; Patel, Sachin; Holmes, Andrew

    2016-05-01

    Pharmacologically elevating brain endocannabinoids (eCBs) share anxiolytic and fear extinction-facilitating properties with classical therapeutics, including the selective serotonin reuptake inhibitor, fluoxetine. There are also known functional interactions between the eCB and serotonin systems and preliminary evidence that antidepressants cause alterations in brain eCBs. However, the potential role of eCBs in mediating the facilitatory effects of fluoxetine on fear extinction has not been established. Here, to test for a possible mechanistic contribution of eCBs to fluoxetine's proextinction effects, we integrated biochemical, electrophysiological, pharmacological, and behavioral techniques, using the extinction-impaired 129S1/Sv1mJ mouse strain. Chronic fluoxetine treatment produced a significant and selective increase in levels of anandamide in the BLA, and an associated decrease in activity of the anandamide-catabolizing enzyme, fatty acid amide hydrolase. Slice electrophysiological recordings showed that fluoxetine-induced increases in anandamide were associated with the amplification of eCB-mediated tonic constraint of inhibitory, but not excitatory, transmission in the BLA. Behaviorally, chronic fluoxetine facilitated extinction retrieval in a manner that was prevented by systemic or BLA-specific blockade of CB1 receptors. In contrast to fluoxetine, citalopram treatment did not increase BLA eCBs or facilitate extinction. Taken together, these findings reveal a novel, obligatory role for amygdala eCBs in the proextinction effects of a major pharmacotherapy for trauma- and stressor-related disorders and anxiety disorders. PMID:26514583

  16. Fluoxetine Facilitates Fear Extinction Through Amygdala Endocannabinoids

    Science.gov (United States)

    Gunduz-Cinar, Ozge; Flynn, Shaun; Brockway, Emma; Kaugars, Katherine; Baldi, Rita; Ramikie, Teniel S; Cinar, Resat; Kunos, George; Patel, Sachin; Holmes, Andrew

    2016-01-01

    Pharmacologically elevating brain endocannabinoids (eCBs) share anxiolytic and fear extinction-facilitating properties with classical therapeutics, including the selective serotonin reuptake inhibitor, fluoxetine. There are also known functional interactions between the eCB and serotonin systems and preliminary evidence that antidepressants cause alterations in brain eCBs. However, the potential role of eCBs in mediating the facilitatory effects of fluoxetine on fear extinction has not been established. Here, to test for a possible mechanistic contribution of eCBs to fluoxetine's proextinction effects, we integrated biochemical, electrophysiological, pharmacological, and behavioral techniques, using the extinction-impaired 129S1/Sv1mJ mouse strain. Chronic fluoxetine treatment produced a significant and selective increase in levels of anandamide in the BLA, and an associated decrease in activity of the anandamide-catabolizing enzyme, fatty acid amide hydrolase. Slice electrophysiological recordings showed that fluoxetine-induced increases in anandamide were associated with the amplification of eCB-mediated tonic constraint of inhibitory, but not excitatory, transmission in the BLA. Behaviorally, chronic fluoxetine facilitated extinction retrieval in a manner that was prevented by systemic or BLA-specific blockade of CB1 receptors. In contrast to fluoxetine, citalopram treatment did not increase BLA eCBs or facilitate extinction. Taken together, these findings reveal a novel, obligatory role for amygdala eCBs in the proextinction effects of a major pharmacotherapy for trauma- and stressor-related disorders and anxiety disorders. PMID:26514583

  17. GABA-BZD Receptor Modulating Mechanism of Panax quinquefolius against 72-hours Sleep Deprivation Induced Anxiety like Behavior: Possible Roles of Oxidative Stress, Mitochondrial Dysfunction and Neuroinflammation

    Directory of Open Access Journals (Sweden)

    Priyanka eChanana

    2016-03-01

    Full Text Available ABSTRACTRationale- Panax quinquefolius (American Ginseng is known for its therapeutic potential against various neurological disorders, but its plausible mechanism of action still remains undeciphered. GABA (Gamma Amino Butyric Acid plays an important role in sleep wake cycle homeostasis. Thus there exists rationale in exploring the GABA-ergic potential of Panax quinquefolius as neuroprotective strategy in sleep deprivation induced secondary neurological problems.Objective- The present study was designed to explore the possible GABA-ergic mechanism in the neuro-protective effect of Panax quinquefolius against 72-hours sleep deprivation induced anxiety like behaviour, oxidative stress, mitochondrial dysfunction, HPA-axis activation and neuroinflammation.Materials and Methods- Male laca mice were sleep deprived for 72-hours by using Grid suspended over water method. Panax quinquefolius (American Ginseng 50, 100 and 200 mg/kg was administered alone and in combination with GABA modulators (GABA Cl- channel inhibitor, GABA-benzodiazepine receptor inhibitor and GABAA agonist for 8 days, starting five days prior to 72-hours sleep deprivation period. Various behavioural (locomotor activity, mirror chamber test, biochemical (lipid peroxidation, reduced glutathione, catalase, nitrite levels, mitochondrial complexes, neuroinflammation marker (Tumour Necrosis Factor, TNF-alpha, serum corticosterone, and histopathological sections of brains were assessed. Results- 72-hours sleep deprivation significantly impaired locomotor activity, caused anxiety-like behaviour, conditions of oxidative stress, alterations in mitochondrial enzyme complex activities, raised serum corticosterone levels, brain TNFα levels and led to neuroinflammation like signs in discrete brain areas as compared to naive group. Panax quinquefolius (100 and 200 mg/kg treatment restored the behavioural, biochemical, mitochondrial, molecular and histopathological alterations. Pre-treatment of

  18. GABA-BZD Receptor Modulating Mechanism of Panax quinquefolius against 72-h Sleep Deprivation Induced Anxiety like Behavior: Possible Roles of Oxidative Stress, Mitochondrial Dysfunction and Neuroinflammation

    Science.gov (United States)

    Chanana, Priyanka; Kumar, Anil

    2016-01-01

    Rationale: Panax quinquefolius (American Ginseng) is known for its therapeutic potential against various neurological disorders, but its plausible mechanism of action still remains undeciphered. GABA (Gamma Amino Butyric Acid) plays an important role in sleep wake cycle homeostasis. Thus, there exists rationale in exploring the GABA-ergic potential of Panax quinquefolius as neuroprotective strategy in sleep deprivation induced secondary neurological problems. Objective: The present study was designed to explore the possible GABA-ergic mechanism in the neuro-protective effect of Panax quinquefolius against 72-h sleep deprivation induced anxiety like behavior, oxidative stress, mitochondrial dysfunction, HPA-axis activation and neuroinflammation. Materials and Methods: Male laca mice were sleep deprived for 72-h by using Grid suspended over water method. Panax quinquefolius (American Ginseng 50, 100, and 200 mg/kg) was administered alone and in combination with GABA modulators (GABA Cl− channel inhibitor, GABA-benzodiazepine receptor inhibitor and GABAA agonist) for 8 days, starting 5 days prior to 72-h sleep deprivation period. Various behavioral (locomotor activity, mirror chamber test), biochemical (lipid peroxidation, reduced glutathione, catalase, nitrite levels), mitochondrial complexes, neuroinflammation marker (Tumor Necrosis Factor, TNF-alpha), serum corticosterone, and histopathological sections of brains were assessed. Results: Seventy two hours sleep deprivation significantly impaired locomotor activity, caused anxiety-like behavior, conditions of oxidative stress, alterations in mitochondrial enzyme complex activities, raised serum corticosterone levels, brain TNFα levels and led to neuroinflammation like signs in discrete brain areas as compared to naive group. Panax quinquefolius (100 and 200 mg/kg) treatment restored the behavioral, biochemical, mitochondrial, molecular and histopathological alterations. Pre-treatment of GABA Cl− channel

  19. Amygdala perfusion is predicted by its functional connectivity with the ventromedial prefrontal cortex and negative affect.

    Directory of Open Access Journals (Sweden)

    Garth Coombs

    Full Text Available BACKGROUND: Previous studies have shown that the activity of the amygdala is elevated in people experiencing clinical and subclinical levels of anxiety and depression (negative affect. It has been proposed that a reduction in inhibitory input to the amygdala from the prefrontal cortex and resultant over-activity of the amygdala underlies this association. Prior studies have found relationships between negative affect and 1 amygdala over-activity and 2 reduced amygdala-prefrontal connectivity. However, it is not known whether elevated amygdala activity is associated with decreased amygdala-prefrontal connectivity during negative affect states. METHODS: Here we used resting-state arterial spin labeling (ASL and blood oxygenation level dependent (BOLD functional magnetic resonance imaging (fMRI in combination to test this model, measuring the activity (regional cerebral blood flow, rCBF and functional connectivity (correlated fluctuations in the BOLD signal of one subregion of the amygdala with strong connections with the prefrontal cortex, the basolateral nucleus (BLA, and subsyndromal anxiety levels in 38 healthy subjects. RESULTS: BLA rCBF was strongly correlated with anxiety levels. Moreover, both BLA rCBF and anxiety were inversely correlated with the strength of the functional coupling of the BLA with the caudal ventromedial prefrontal cortex. Lastly, BLA perfusion was found to be a mediator of the relationship between BLA-prefrontal connectivity and anxiety. CONCLUSIONS: These results show that both perfusion of the BLA and a measure of its functional coupling with the prefrontal cortex directly index anxiety levels in healthy subjects, and that low BLA-prefrontal connectivity may lead to increased BLA activity and resulting anxiety. Thus, these data provide key evidence for an often-cited circuitry model of negative affect, using a novel, multi-modal imaging approach.

  20. Cox-2 Plays a Vital Role in the Impaired Anxiety Like Behavior in Colchicine Induced Rat Model of Alzheimer Disease

    Science.gov (United States)

    Sil, Susmita; Ghosh, Tusharkanti

    2016-01-01

    The anxiety status is changed along with memory impairments in intracerebroventricular colchicine injected rat model of Alzheimer Disease (cAD) due to neurodegeneration, which has been indicated to be mediated by inflammation. Inducible cox-2, involved in inflammation, may have important role in the colchicine induced alteration of anxiety status. Therefore, the present study was designed to investigate the role of cox-2 on the anxiety behavior (response to novelty in an elevated open field space) of cAD by inhibiting it with three different doses (10, 20, and 30 mg) of etoricoxib (a cox-2 blocker) in two time points (14 and 21 days). The results showed anxiolytic behavior in cAD along with lower serum corticosterone level, both of which were recovered at all the doses of etoricoxib on day 21. On day 14 all of the anxiety parameters showed similar results to that of day 21 at high doses but not at 10 mg/kg body weight. Results indicate that the parameters of anxiety were dependent on neuronal circuitries that were probably sensitive to etoricoxib induced blocking of neurodegeneration. The present study showed that anxiolytic behavior in cADr is predominantly due to cox-2 mediated neuroinflammation induced neurodegeneration in the brain. PMID:26880859

  1. Short-Term High-Fat Diet (HFD) Induced Anxiety-Like Behaviors and Cognitive Impairment Are Improved with Treatment by Glyburide

    Science.gov (United States)

    Gainey, Stephen J.; Kwakwa, Kristin A.; Bray, Julie K.; Pillote, Melissa M.; Tir, Vincent L.; Towers, Albert E.; Freund, Gregory G.

    2016-01-01

    Obesity-associated comorbidities such as cognitive impairment and anxiety are increasing public health burdens that have gained prevalence in children. To better understand the impact of childhood obesity on brain function, mice were fed with a high-fat diet (HFD) from weaning for 1, 3 or 6 weeks. When compared to low-fat diet (LFD)-fed mice (LFD-mice), HFD-fed mice (HFD-mice) had impaired novel object recognition (NOR) after 1 week. After 3 weeks, HFD-mice had impaired NOR and object location recognition (OLR). Additionally, these mice displayed anxiety-like behavior by measure of both the open-field and elevated zero maze (EZM) testing. At 6 weeks, HFD-mice were comparable to LFD-mice in NOR, open-field and EZM performance but they remained impaired during OLR testing. Glyburide, a second-generation sulfonylurea for the treatment of type 2 diabetes, was chosen as a countermeasure based on previous data exhibiting its potential as an anxiolytic. Interestingly, a single dose of glyburide corrected deficiencies in NOR and mitigated anxiety-like behaviors in mice fed with HFD-diet for 3-weeks. Taken together these results indicate that a HFD negatively impacts a subset of hippocampal-independent behaviors relatively rapidly, but such behaviors normalize with age. In contrast, impairment of hippocampal-sensitive memory takes longer to develop but persists. Since single-dose glyburide restores brain function in 3-week-old HFD-mice, drugs that block ATP-sensitive K+ (KATP) channels may be of clinical relevance in the treatment of obesity-associated childhood cognitive issues and psychopathologies. PMID:27563288

  2. Effects of environmental enrichment on anxiety-like behavior, sociability, sensory gating, and spatial learning in male and female C57BL/6J mice.

    Science.gov (United States)

    Hendershott, Taylor R; Cronin, Marie E; Langella, Stephanie; McGuinness, Patrick S; Basu, Alo C

    2016-11-01

    The influence of housing on cognition and emotional regulation in mice presents a problem for the study of genetic and environmental risk factors for neuropsychiatric disorders: standard laboratory housing may result in low levels of cognitive function or altered levels of anxiety that leave little room for assessment of deleterious effects of experimental manipulations. The use of enriched environment (EE) may allow for the measurement of a wider range of performance in cognitive domains. Cognitive and behavioral effects of EE in male mice have not been widely reproduced, perhaps due to variability in the application of enrichment protocols, and the effects of EE in female mice have not been widely studied. We have developed an EE protocol using common laboratory equipment that, without a running wheel for exercise, results in significant cognitive and behavioral effects relative to standard laboratory housing conditions. We compared male and female wild-type C57BL/6J mice reared from weaning age in an EE to those reared in a standard environment (SE), using common measures of anxiety-like behavior, sensory gating, sociability, and spatial learning and memory. Sex was a significant factor in relevant elevated plus maze (EPM) measures, and bordered on significance in a social interaction (SI) assay. Effects of EE on anxiety-like behavior and sociability were indicative of a general increase in exploratory activity. In male and female mice, EE resulted in reduced prepulse inhibition (PPI) of the acoustic startle response, and enhanced spatial learning and use of spatially precise strategies in a Morris water maze task. PMID:27498148

  3. Assessment of mouse anxiety-like behavior in the light-dark box and open-field arena: role of equipment and procedure.

    Science.gov (United States)

    Kulesskaya, Natalia; Voikar, Vootele

    2014-06-22

    Light-dark box and open field are conventional tests for assessment of anxiety-like behavior in the laboratory mice, based on approach-avoidance conflict. However, except the basic principles, variations in the equipment and procedures are very common. Therefore, contribution of certain methodological issues in different settings was investigated. Three inbred strains (C57BL/6, 129/Sv, DBA/2) and one outbred stock (ICR) of mice were used in the experiments. An effect of initial placement of mice either in the light or dark compartment was studied in the light-dark test. Moreover, two tracking systems were applied - position of the animals was detected either by infrared sensors in square box (1/2 dark) or by videotracking in rectangular box (1/3 dark). Both approaches revealed robust and consistent strain differences in the exploratory behavior. In general, C57BL/6 and ICR mice showed reduced anxiety-like behavior as compared to 129/Sv and DBA/2 strains. However, the latter two strains differed markedly in their behavior. DBA/2 mice displayed high avoidance of the light compartment accompanied by thigmotaxis, whereas the hypoactive 129 mice spent a significant proportion of time in risk-assessment behavior at the opening between two compartments. Starting from the light side increased the time spent in the light compartment and reduced the latency to the first transition. In the open field arena, black floor promoted exploratory behavior - increased time and distance in the center and increased rearing compared to white floor. In conclusion, modifications of the apparatus and procedure had significant effects on approach-avoidance behavior in general whereas the strain rankings remained unaffected.

  4. Short-Term High-Fat Diet (HFD) Induced Anxiety-Like Behaviors and Cognitive Impairment Are Improved with Treatment by Glyburide.

    Science.gov (United States)

    Gainey, Stephen J; Kwakwa, Kristin A; Bray, Julie K; Pillote, Melissa M; Tir, Vincent L; Towers, Albert E; Freund, Gregory G

    2016-01-01

    Obesity-associated comorbidities such as cognitive impairment and anxiety are increasing public health burdens that have gained prevalence in children. To better understand the impact of childhood obesity on brain function, mice were fed with a high-fat diet (HFD) from weaning for 1, 3 or 6 weeks. When compared to low-fat diet (LFD)-fed mice (LFD-mice), HFD-fed mice (HFD-mice) had impaired novel object recognition (NOR) after 1 week. After 3 weeks, HFD-mice had impaired NOR and object location recognition (OLR). Additionally, these mice displayed anxiety-like behavior by measure of both the open-field and elevated zero maze (EZM) testing. At 6 weeks, HFD-mice were comparable to LFD-mice in NOR, open-field and EZM performance but they remained impaired during OLR testing. Glyburide, a second-generation sulfonylurea for the treatment of type 2 diabetes, was chosen as a countermeasure based on previous data exhibiting its potential as an anxiolytic. Interestingly, a single dose of glyburide corrected deficiencies in NOR and mitigated anxiety-like behaviors in mice fed with HFD-diet for 3-weeks. Taken together these results indicate that a HFD negatively impacts a subset of hippocampal-independent behaviors relatively rapidly, but such behaviors normalize with age. In contrast, impairment of hippocampal-sensitive memory takes longer to develop but persists. Since single-dose glyburide restores brain function in 3-week-old HFD-mice, drugs that block ATP-sensitive K(+) (KATP) channels may be of clinical relevance in the treatment of obesity-associated childhood cognitive issues and psychopathologies.

  5. Linkage of functional and structural anomalies in the left amygdala of reactive-aggressive men.

    Science.gov (United States)

    Bobes, María A; Ostrosky, Feggy; Diaz, Karla; Romero, Cesar; Borja, Karina; Santos, Yusniel; Valdés-Sosa, Mitchell

    2013-12-01

    Amygdala structural and functional abnormalities have been associated to reactive aggression in previous studies. However, the possible linkage of these two types of anomalies has not been examined. We hypothesized that they would coincide in the same localizations, would be correlated in intensity and would be mediated by reactive aggression personality traits. Here violent (n = 25) and non-violent (n = 29) men were recruited on the basis of their reactive aggression. Callous-unemotional (CU) traits were also assessed. Gray matter concentration (gmC) and reactivity to fearful and neutral facial expressions were measured in dorsal and ventral amygdala partitions. The difference between responses to fearful and neutral facial expressions was calculated (F/N-difference). Violent individuals exhibited a smaller F/N-difference and gmC in the left dorsal amygdala, where a significant coincidence was found in a conjunction analysis. Moreover, the left amygdala F/N-difference and gmC were correlated to each other, an effect mediated by reactive aggression but not by CU. The F/N-difference was caused by increased reactivity to neutral faces. This suggests that anatomical anomalies within local circuitry (and not only altered input) may underlie the amygdala hyper-reactivity to social signals which is characteristic of reactive aggression.

  6. Anxiolytic effects of kindling role of anatomical location of the kindling electrode in response to kindling of the right basolateral amygdala.

    Science.gov (United States)

    Adamec, Robert; Blundell, Jacqueline; Burton, Paul

    2004-10-22

    Study of effects of kindling on affect has been complicated by the fact that anxiogenic, anxiolytic or no effects may be observed following kindling of the amygdala. Factors affecting behavioral outcome include strain of rat, hemisphere kindled, amygdala nucleus kindled and location of the kindling electrodes within particular AP planes of a given nucleus. Previous work has suggested that kindling of the right basolateral amygdala (BLA) is predominantly anxiogenic. This conclusion was based on kindling of anterior or posterior parts of the BLA. The present study sought to clarify this conclusion by examining behavioral effects of right BLA kindling in a mid-range of AP planes not yet studied. A variety of measures of rodent anxiety-like behavior were examined, including behavior in the hole board, elevated plus maze, light/dark box, social interaction test and unconditioned acoustic startle. Anhedonic effects of kindling were assessed by a sucrose preference test with controls for fluid consumption and taste sensitivities. All effects were assessed shortly after kindling (1-2 days) and at a longer time interval (7-8 days). Kindling to four stage 5 seizures in the mid-right BLA altered behavior at all time points after kindling in all tests except the hole board and light/dark box tests. The effect of kindling was anxiolytic like in the plus maze, social interaction and startle tests. Kindling in mid-BLA also increased sucrose consumption. Effects on sucrose consumption are consistent with previous studies showing no depressive-like effects of amygdala kindling in rodents. It is hypothesized that the focal nature of the behavioral consequences of amygdala kindling are best understood in the context of the circuitry in which the cells stimulated are imbedded and the impact of kindling on functioning of those circuits.

  7. Comparative distribution of relaxin-3 inputs and calcium-binding protein-positive neurons in rat amygdala

    Directory of Open Access Journals (Sweden)

    Fabio N Santos

    2016-04-01

    Full Text Available The neural circuits involved in mediating complex behaviors are being rapidly elucidated using various newly developed and powerful anatomical and molecular techniques, providing insights into the neural basis for anxiety disorders, depression, addiction, and dysfunctional social behaviors. Many of these behaviors and associated physiological processes involve the activation of the amygdala in conjunction with cortical and hippocampal circuits. Ascending subcortical projections provide modulatory inputs to the extended amygdala and its related nodes (or ‘hubs’ within these key circuits. One such input arises from the nucleus incertus (NI in the tegmentum, which sends amino acid- and peptide-containing projections throughout the forebrain. Notably, a distinct population of GABAergic NI neurons expresses the highly-conserved neuropeptide, relaxin-3, and relaxin-3 signaling has been implicated in the modulation of reward/motivation and anxiety- and depressive-like behaviors in rodents via actions within the extended amygdala. Thus, a detailed description of the relaxin-3 innervation of the extended amygdala would provide an anatomical framework for an improved understanding of NI and relaxin-3 modulation of these and other specific amygdala-related functions. Therefore, in this study, we examined the distribution of NI projections and relaxin-3-positive elements (axons/fibers/terminals within the amygdala, relative to the distribution of neurons expressing the calcium-binding proteins, parvalbumin, calretinin and/or calbindin. Anterograde tracer injections into the NI revealed a topographic distribution of NI efferents within the amygdala that was near identical to the distribution of relaxin-3-immunoreactive fibers. Highest densities of anterogradely-labeled elements and relaxin-3-immunoreactive fibers were observed in the medial nucleus of the amygdala, medial divisions of the bed nucleus of the stria terminalis (BST and in the endopiriform

  8. Comparative Distribution of Relaxin-3 Inputs and Calcium-Binding Protein-Positive Neurons in Rat Amygdala.

    Science.gov (United States)

    Santos, Fabio N; Pereira, Celia W; Sánchez-Pérez, Ana M; Otero-García, Marcos; Ma, Sherie; Gundlach, Andrew L; Olucha-Bordonau, Francisco E

    2016-01-01

    The neural circuits involved in mediating complex behaviors are being rapidly elucidated using various newly developed and powerful anatomical and molecular techniques, providing insights into the neural basis for anxiety disorders, depression, addiction, and dysfunctional social behaviors. Many of these behaviors and associated physiological processes involve the activation of the amygdala in conjunction with cortical and hippocampal circuits. Ascending subcortical projections provide modulatory inputs to the extended amygdala and its related nodes (or "hubs") within these key circuits. One such input arises from the nucleus incertus (NI) in the tegmentum, which sends amino acid- and peptide-containing projections throughout the forebrain. Notably, a distinct population of GABAergic NI neurons expresses the highly-conserved neuropeptide, relaxin-3, and relaxin-3 signaling has been implicated in the modulation of reward/motivation and anxiety- and depressive-like behaviors in rodents via actions within the extended amygdala. Thus, a detailed description of the relaxin-3 innervation of the extended amygdala would provide an anatomical framework for an improved understanding of NI and relaxin-3 modulation of these and other specific amygdala-related functions. Therefore, in this study, we examined the distribution of NI projections and relaxin-3-positive elements (axons/fibers/terminals) within the amygdala, relative to the distribution of neurons expressing the calcium-binding proteins, parvalbumin (PV), calretinin (CR) and/or calbindin. Anterograde tracer injections into the NI revealed a topographic distribution of NI efferents within the amygdala that was near identical to the distribution of relaxin-3-immunoreactive fibers. Highest densities of anterogradely-labeled elements and relaxin-3-immunoreactive fibers were observed in the medial nucleus of the amygdala, medial divisions of the bed nucleus of the stria terminalis (BST) and in the endopiriform nucleus. In

  9. Relation between Amygdala Structure and Function in Adolescents with Bipolar Disorder

    Science.gov (United States)

    Kalmar, Jessica H.; Wang, Fei; Chepenik, Lara G.; Womer, Fay Y.; Jones, Monique M.; Pittman, Brian; Shah, Maulik P.; Martin, Andres; Constable, R. Todd; Blumberg, Hilary P.

    2009-01-01

    Adolescents with bipolar disorder showed decreased amygdala volume and increased amygdala response to emotional faces. Amygdala volume is inversely related to activation during emotional face processing.

  10. Threat-related amygdala functional connectivity is associated with 5-HTTLPR genotype and neuroticism

    DEFF Research Database (Denmark)

    Madsen, Martin Korsbak; Mc Mahon, Brenda; Andersen, Sofie Bech;

    2016-01-01

    Communication between the amygdala and other brain regions critically regulates sensitivity to threat, which has been associated with risk for mood and affective disorders. The extent to which these neural pathways are genetically determined or correlate with risk-related personality measures...... and medial prefrontal cortex (mPFC) and between both amygdalae and a cluster including posterior cingulate cortex, precuneus and visual cortex was significantly increased in 5-HTTLPR S' allele carriers relative to L(A)L(A) individuals. Neuroticism was negatively correlated with functional connectivity......OFC/vlPFC, such that S' carriers exhibited a more negative association relative to L(A)L(A) individuals. These findings provide novel evidence for both independent and interactive effects of 5-HTTLPR genotype and neuroticism on amygdala communication, which may mediate effects on risk for mood and affective disorders....

  11. Effects of chronic ethanol exposure on neuronal function in the prefrontal cortex and extended amygdala.

    Science.gov (United States)

    Pleil, Kristen E; Lowery-Gionta, Emily G; Crowley, Nicole A; Li, Chia; Marcinkiewcz, Catherine A; Rose, Jamie H; McCall, Nora M; Maldonado-Devincci, Antoniette M; Morrow, A Leslie; Jones, Sara R; Kash, Thomas L

    2015-12-01

    Chronic alcohol consumption and withdrawal leads to anxiety, escalated alcohol drinking behavior, and alcohol dependence. Alterations in the function of key structures within the cortico-limbic neural circuit have been implicated in underlying the negative behavioral consequences of chronic alcohol exposure in both humans and rodents. Here, we used chronic intermittent ethanol vapor exposure (CIE) in male C57BL/6J mice to evaluate the effects of chronic alcohol exposure and withdrawal on anxiety-like behavior and basal synaptic function and neuronal excitability in prefrontal cortical and extended amygdala brain regions. Forty-eight hours after four cycles of CIE, mice were either assayed in the marble burying test (MBT) or their brains were harvested and whole-cell electrophysiological recordings were performed in the prelimbic and infralimbic medial prefrontal cortex (PLC and ILC), the lateral and medial central nucleus of the amygdala (lCeA and mCeA), and the dorsal and ventral bed nucleus of the stria terminalis (dBNST and vBNST). Ethanol-exposed mice displayed increased anxiety in the MBT compared to air-exposed controls, and alterations in neuronal function were observed in all brain structures examined, including several distinct differences between subregions within each structure. Chronic ethanol exposure induced hyperexcitability of the ILC, as well as a shift toward excitation in synaptic drive and hyperexcitability of vBNST neurons; in contrast, there was a net inhibition of the CeA. This study reveals extensive effects of chronic ethanol exposure on the basal function of cortico-limbic brain regions, suggests that there may be complex interactions between these regions in the regulation of ethanol-dependent alterations in anxiety state, and highlights the need for future examination of projection-specific effects of ethanol in cortico-limbic circuitry.

  12. Effects of chronic ethanol exposure on neuronal function in the prefrontal cortex and extended amygdala.

    Science.gov (United States)

    Pleil, Kristen E; Lowery-Gionta, Emily G; Crowley, Nicole A; Li, Chia; Marcinkiewcz, Catherine A; Rose, Jamie H; McCall, Nora M; Maldonado-Devincci, Antoniette M; Morrow, A Leslie; Jones, Sara R; Kash, Thomas L

    2015-12-01

    Chronic alcohol consumption and withdrawal leads to anxiety, escalated alcohol drinking behavior, and alcohol dependence. Alterations in the function of key structures within the cortico-limbic neural circuit have been implicated in underlying the negative behavioral consequences of chronic alcohol exposure in both humans and rodents. Here, we used chronic intermittent ethanol vapor exposure (CIE) in male C57BL/6J mice to evaluate the effects of chronic alcohol exposure and withdrawal on anxiety-like behavior and basal synaptic function and neuronal excitability in prefrontal cortical and extended amygdala brain regions. Forty-eight hours after four cycles of CIE, mice were either assayed in the marble burying test (MBT) or their brains were harvested and whole-cell electrophysiological recordings were performed in the prelimbic and infralimbic medial prefrontal cortex (PLC and ILC), the lateral and medial central nucleus of the amygdala (lCeA and mCeA), and the dorsal and ventral bed nucleus of the stria terminalis (dBNST and vBNST). Ethanol-exposed mice displayed increased anxiety in the MBT compared to air-exposed controls, and alterations in neuronal function were observed in all brain structures examined, including several distinct differences between subregions within each structure. Chronic ethanol exposure induced hyperexcitability of the ILC, as well as a shift toward excitation in synaptic drive and hyperexcitability of vBNST neurons; in contrast, there was a net inhibition of the CeA. This study reveals extensive effects of chronic ethanol exposure on the basal function of cortico-limbic brain regions, suggests that there may be complex interactions between these regions in the regulation of ethanol-dependent alterations in anxiety state, and highlights the need for future examination of projection-specific effects of ethanol in cortico-limbic circuitry. PMID:26188147

  13. Subregional Shape Alterations in the Amygdala in Patients with Panic Disorder

    Science.gov (United States)

    Kim, Geon Ha; Kang, Hee Jin; Kim, Bori R.; Jeon, Saerom; Im, Jooyeon Jamie; Hyun, Heejung; Moon, Sohyeon; Lim, Soo Mee; Lyoo, In Kyoon

    2016-01-01

    Background The amygdala has been known to play a pivotal role in mediating fear-related responses including panic attacks. Given the functionally distinct role of the amygdalar subregions, morphometric measurements of the amygdala may point to the pathophysiological mechanisms underlying panic disorder. The current study aimed to determine the global and local morphometric alterations of the amygdala related to panic disorder. Methods Volumetric and surface-based morphometric approach to high-resolution three-dimensional T1-weighted images was used to examine the structural variations of the amygdala, with respect to extent and location, in 23 patients with panic disorder and 31 matched healthy individuals. Results There were no significant differences in bilateral amygdalar volumes between patients with panic disorder and healthy individuals despite a trend-level right amygdalar volume reduction related to panic disorder (right, β = -0.23, p = 0.09, Cohen's d = 0.51; left, β = -0.18, p = 0.19, Cohen's d = 0.45). Amygdalar subregions were localized into three groups including the superficial, centromedial, and laterobasal groups based on the cytoarchitectonically defined probability map. Surface-based morphometric analysis revealed shape alterations in the laterobasal and centromedial groups of the right amygdala in patients with panic disorder (false discovery rate corrected p panic disorder, which may be attributed to the cause or effects of amygdalar hyperactivation. PMID:27336300

  14. An oxytocin receptor polymorphism predicts amygdala reactivity and antisocial behavior in men.

    Science.gov (United States)

    Waller, Rebecca; Corral-Frías, Nadia S; Vannucci, Bianca; Bogdan, Ryan; Knodt, Annchen R; Hariri, Ahmad R; Hyde, Luke W

    2016-08-01

    Variability in oxytocin (OXT) signaling is associated with individual differences in sex-specific social behavior across species. The effects of OXT signaling on social behavior are, in part, mediated through its modulation of amygdala function. Here, we use imaging genetics to examine sex-specific effects of three single-nucleotide polymorphisms in the human oxytocin receptor gene (OXTR; rs1042778, rs53576 and rs2254298) on threat-related amygdala reactivity and social behavior in 406 Caucasians. Analyses revealed that among men but not women, OXTR rs1042778 TT genotype was associated with increased right amygdala reactivity to angry facial expressions, which was uniquely related to higher levels of antisocial behavior among men. Moderated meditation analysis suggested a trending indirect effect of OXTR rs1042778 TT genotype on higher antisocial behavior via increased right amygdala reactivity to angry facial expressions in men. Our results provide evidence linking genetic variation in OXT signaling to individual differences in amygdala function. The results further suggest that these pathways may be uniquely important in shaping antisocial behavior in men. PMID:27036876

  15. Effects of voluntary exercise on anxiety-like behavior and voluntary morphine consumption in rat pups borne from morphine-dependent mothers during pregnancy.

    Science.gov (United States)

    Haydari, Sakineh; Miladi-Gorji, Hossein; Mokhtari, Amin; Safari, Manouchehr

    2014-08-22

    Exposure to morphine during pregnancy produced long-term effects in offspring behaviors. Recent studies have shown that voluntary exercise decreases the severity of anxiety behaviors in both morphine-dependent and withdrawn rats. Thus, the aims of the present study were to examine whether maternal exercise decreases prenatal dependence-induced anxiety and also, voluntary consumption of morphine in animal models of craving in rat pups. Pregnant rats were made dependent by chronic administration of morphine in drinking water simultaneously with access to a running wheel that lasted at least 21 days. Then, anxiety-like behaviors using the elevated plus-maze (EPM) and voluntary consumption of morphine using a two-bottle choice paradigm (TBC) were tested in male rat pups. The results showed that the rat pups borne from exercising morphine-dependent mothers exhibited an increase in EPM open arm time (Pexercising morphine-dependent mothers was less in the second (Pexercise decreases the severity of the anxiogenic-like behaviors and voluntary consumption of morphine in rat pups.

  16. Adolescent exposure to cocaine increases anxiety-like behavior and induces morphologic and neurochemical changes in the hippocampus of adult rats.

    Science.gov (United States)

    Zhu, W; Mao, Z; Zhu, C; Li, M; Cao, C; Guan, Y; Yuan, J; Xie, G; Guan, X

    2016-01-28

    Repeated exposure to cocaine during adolescence may affect both physical and psychological conditions in the brain, and increase the risk of psychiatric disorders and addiction behaviors in adulthood. Adolescence represents a critical development period for the hippocampus. Moreover, different regions of the hippocampus are involved in different functions. Dorsal hippocampus (dHP) has been implicated in learning and memory, whereas ventral hippocampus (vHP) plays an important role in emotional processing. In this study, the rats that were exposed to cocaine during adolescence (postnatal days, P28-P42) showed higher anxiety-like behavior in the elevated plus maze test in adulthood (P80), but displayed normal spatial learning and memory in the Morris water maze test. Furthermore, repeated exposure to cocaine during adolescence lead to alterations in morphology of pyramidal neurons, activities of astrocytes, and levels of proteins that involved in synaptic transmission, apoptosis, inflammation and addiction in both dHP and vHP of adult rats. These findings suggest that repeated exposure to cocaine during adolescence in rats may elicit morphologic and neurochemical changes in the hippocampus when the animals reach adulthood. These changes may contribute to the increased susceptibility for psychiatric disorders and addiction seen in adults. PMID:26621120

  17. Methylphenidate facilitates learning-induced amygdala plasticity

    OpenAIRE

    Tye, Kay M.; Tye, Lynne D.; Cone, Jackson J.; Hekkelman, Evelien F; Janak, Patricia H.; Bonci, Antonello

    2010-01-01

    Although methylphenidate (Ritalin) has been used therapeutically for nearly 60 years, the mechanisms by which it acutely modifies behavioral performance are poorly understood. Here we combined intra–lateral amygdala in vivo pharmacology and ex vivo electrophysiology to show that acute administration of methylphenidate, as well as a selective dopamine transporter inhibitor, facilitated learning-induced strengthening of cortico-amygdala synapses through a postsynaptic increase in AMPA receptor–...

  18. Using the Amygdala in decision making

    OpenAIRE

    Carrere, Maxime; Alexandre, Frédéric

    2015-01-01

    International audience; Decision making is often described as composed of multiple loops, mainly the limbic, associative, and motor loops, in the Prefrontal Cortex and Basal Ganglia. While the various nuclei of the Amygdala has been traditionaly considered for their role in fear prediction and respondent conditioning [9, 4, 7], structural similitudes have been reported between the central amygdala (CeA) and structures involved in decision making the nucleus accumbens and the pallidum [5]. Par...

  19. Regulation of emotional memory by hydrogen sulfide: role of GluN2B-containing NMDA receptor in the amygdala.

    Science.gov (United States)

    Wang, Can-Ming; Yang, Yuan-Jian; Zhang, Jie-Ting; Liu, Jue; Guan, Xin-Lei; Li, Ming-Xing; Lu, Hai-Feng; Wu, Peng-Fei; Chen, Jian-Guo; Wang, Fang

    2015-01-01

    As an endogenous gaseous molecule, hydrogen sulfide (H2 S) has attracted extensive attention because of its multiple biological effects. However, the effect of H2 S on amygdala-mediated emotional memory has not been elucidated. Here, by employing Pavlovian fear conditioning, an animal model widely used to explore the neural substrates of emotion, we determined whether H2 S could regulate emotional memory. It was shown that the H2 S levels in the amygdala of rats were significantly elevated after cued fear conditioning. Both intraamygdala and systemic administrations of H2 S markedly enhanced amygdala-dependent cued fear memory in rats. Moreover, it was found that H2 S selectively increased the surface expression and currents of NMDA-type glutamate receptor subunit 2B (GluN2B)-containing NMDA receptors (NMDARs) in lateral amygdala of rats, whereas blockade of GluN2B-containing NMDARs in lateral amygdala eliminated the effects of H2 S to enhance amygdalar long-term potentiation and cued fear memory. These results demonstrate that H2 S can regulate amygdala-dependent emotional memory by promoting the function of GluN2B-containing NMDARs in amygdala, suggesting that H2 S-associated signaling may hold potential as a new target for the treatment of emotional disorders. In our study, the effect of hydrogen sulfide (H2 S) on amygdala-mediated emotional memory was investigated. It was found that H2 S could enhance amygdala-dependent emotional memory and long-term potentiation (LTP) in rats by selectively increasing the function of GluN2B-containing NMDA receptors in the amygdala. These results suggest that H2 S-associated signaling may be a new target for the treatment of emotional disorders. PMID:25279828

  20. Structural Connectivity of the Developing Human Amygdala

    Science.gov (United States)

    Saygin, Zeynep M.; Osher, David E.; Koldewyn, Kami; Martin, Rebecca E.; Finn, Amy; Saxe, Rebecca; Gabrieli, John D.E.; Sheridan, Margaret

    2015-01-01

    A large corpus of research suggests that there are changes in the manner and degree to which the amygdala supports cognitive and emotional function across development. One possible basis for these developmental differences could be the maturation of amygdalar connections with the rest of the brain. Recent functional connectivity studies support this conclusion, but the structural connectivity of the developing amygdala and its different nuclei remains largely unstudied. We examined age related changes in the DWI connectivity fingerprints of the amygdala to the rest of the brain in 166 individuals of ages 5-30. We also developed a model to predict age based on individual-subject amygdala connectivity, and identified the connections that were most predictive of age. Finally, we segmented the amygdala into its four main nucleus groups, and examined the developmental changes in connectivity for each nucleus. We observed that with age, amygdalar connectivity becomes increasingly sparse and localized. Age related changes were largely localized to the subregions of the amygdala that are implicated in social inference and contextual memory (the basal and lateral nuclei). The central nucleus’ connectivity also showed differences with age but these differences affected fewer target regions than the basal and lateral nuclei. The medial nucleus did not exhibit any age related changes. These findings demonstrate increasing specificity in the connectivity patterns of amygdalar nuclei across age. PMID:25875758

  1. Structural connectivity of the developing human amygdala.

    Directory of Open Access Journals (Sweden)

    Zeynep M Saygin

    Full Text Available A large corpus of research suggests that there are changes in the manner and degree to which the amygdala supports cognitive and emotional function across development. One possible basis for these developmental differences could be the maturation of amygdalar connections with the rest of the brain. Recent functional connectivity studies support this conclusion, but the structural connectivity of the developing amygdala and its different nuclei remains largely unstudied. We examined age related changes in the DWI connectivity fingerprints of the amygdala to the rest of the brain in 166 individuals of ages 5-30. We also developed a model to predict age based on individual-subject amygdala connectivity, and identified the connections that were most predictive of age. Finally, we segmented the amygdala into its four main nucleus groups, and examined the developmental changes in connectivity for each nucleus. We observed that with age, amygdalar connectivity becomes increasingly sparse and localized. Age related changes were largely localized to the subregions of the amygdala that are implicated in social inference and contextual memory (the basal and lateral nuclei. The central nucleus' connectivity also showed differences with age but these differences affected fewer target regions than the basal and lateral nuclei. The medial nucleus did not exhibit any age related changes. These findings demonstrate increasing specificity in the connectivity patterns of amygdalar nuclei across age.

  2. Structural connectivity of the developing human amygdala.

    Science.gov (United States)

    Saygin, Zeynep M; Osher, David E; Koldewyn, Kami; Martin, Rebecca E; Finn, Amy; Saxe, Rebecca; Gabrieli, John D E; Sheridan, Margaret

    2015-01-01

    A large corpus of research suggests that there are changes in the manner and degree to which the amygdala supports cognitive and emotional function across development. One possible basis for these developmental differences could be the maturation of amygdalar connections with the rest of the brain. Recent functional connectivity studies support this conclusion, but the structural connectivity of the developing amygdala and its different nuclei remains largely unstudied. We examined age related changes in the DWI connectivity fingerprints of the amygdala to the rest of the brain in 166 individuals of ages 5-30. We also developed a model to predict age based on individual-subject amygdala connectivity, and identified the connections that were most predictive of age. Finally, we segmented the amygdala into its four main nucleus groups, and examined the developmental changes in connectivity for each nucleus. We observed that with age, amygdalar connectivity becomes increasingly sparse and localized. Age related changes were largely localized to the subregions of the amygdala that are implicated in social inference and contextual memory (the basal and lateral nuclei). The central nucleus' connectivity also showed differences with age but these differences affected fewer target regions than the basal and lateral nuclei. The medial nucleus did not exhibit any age related changes. These findings demonstrate increasing specificity in the connectivity patterns of amygdalar nuclei across age. PMID:25875758

  3. Awareness of Emotional Stimuli Determines the Behavioral Consequences of Amygdala Activation and Amygdala-Prefrontal Connectivity.

    Science.gov (United States)

    Lapate, R C; Rokers, B; Tromp, D P M; Orfali, N S; Oler, J A; Doran, S T; Adluru, N; Alexander, A L; Davidson, R J

    2016-01-01

    Conscious awareness of negative cues is thought to enhance emotion-regulatory capacity, but the neural mechanisms underlying this effect are unknown. Using continuous flash suppression (CFS) in the MRI scanner, we manipulated visual awareness of fearful faces during an affect misattribution paradigm, in which preferences for neutral objects can be biased by the valence of a previously presented stimulus. The amygdala responded to fearful faces independently of awareness. However, when awareness of fearful faces was prevented, individuals with greater amygdala responses displayed a negative bias toward unrelated novel neutral faces. In contrast, during the aware condition, inverse coupling between the amygdala and prefrontal cortex reduced this bias, particularly among individuals with higher structural connectivity in the major white matter pathway connecting the prefrontal cortex and amygdala. Collectively, these results indicate that awareness promotes the function of a critical emotion-regulatory network targeting the amygdala, providing a mechanistic account for the role of awareness in emotion regulation. PMID:27181344

  4. Comparing the anticonvulsant effects of low frequency stimulation of different brain sites on the amygdala kindling acquisition in rats.

    Science.gov (United States)

    Esmaeilpour, Khadijeh; Masoumi-Ardakani, Yaser; Sheibani, Vahid; Shojaei, Amir; Harandi, Shaahin; Mirnajafi-Zadeh, Javad

    2013-01-01

    Low frequency stimulation (LFS) is a potential alternative therapy for epilepsy. However, it seems that the anticonvulsant effects of LFS depend on its target sites in the brain. Thus, the present study was designed to compare the anticonvulsant effects of LFS administered to amygdala, piriform cortex and substantia nigra on amygdala kindling acquisition. In control group, rats were kindled in a chronic manner (one stimulation per 24 h). In other experimental groups, animals received low-frequency stimulation (8 packages at 100 s intervals, each package contained 200 monophasic square-wave pulses, 0.1 ms pulse duration at 1 Hz andAD threshold intensity) in amygdala, piriform cortex or substantia nigra 60 seconds after the kindling stimulation, the AD duration and daily seizure stages were recorded. The obtained results showed that administration of LFS in all three regions reduced electrical and behavioral parameters of the kindling procedure. However LFS has a stronger inhibitory effect on kindling development when applied in substantia nigra compared to the amygdala and piriform cortex which reinforce the view that the substantia nigra mediates a crucial role in amygdala-kindled seizures. LFS had also greater inhibitory effects when applied to the amygdala compared to piriform cortex. Thus, it may be suggested that antiepileptogenic effect of LFS depends on its target site and different brain areas exert different inhibitory effects on kindling acquisition according to the seizure focus.

  5. Comparing the anticonvulsant effects of low frequency stimulation of different brain sites on the amygdala kindling acquisition in rats.

    Science.gov (United States)

    Esmaeilpour, Khadijeh; Masoumi-Ardakani, Yaser; Sheibani, Vahid; Shojaei, Amir; Harandi, Shaahin; Mirnajafi-Zadeh, Javad

    2013-01-01

    Low frequency stimulation (LFS) is a potential alternative therapy for epilepsy. However, it seems that the anticonvulsant effects of LFS depend on its target sites in the brain. Thus, the present study was designed to compare the anticonvulsant effects of LFS administered to amygdala, piriform cortex and substantia nigra on amygdala kindling acquisition. In control group, rats were kindled in a chronic manner (one stimulation per 24 h). In other experimental groups, animals received low-frequency stimulation (8 packages at 100 s intervals, each package contained 200 monophasic square-wave pulses, 0.1 ms pulse duration at 1 Hz andAD threshold intensity) in amygdala, piriform cortex or substantia nigra 60 seconds after the kindling stimulation, the AD duration and daily seizure stages were recorded. The obtained results showed that administration of LFS in all three regions reduced electrical and behavioral parameters of the kindling procedure. However LFS has a stronger inhibitory effect on kindling development when applied in substantia nigra compared to the amygdala and piriform cortex which reinforce the view that the substantia nigra mediates a crucial role in amygdala-kindled seizures. LFS had also greater inhibitory effects when applied to the amygdala compared to piriform cortex. Thus, it may be suggested that antiepileptogenic effect of LFS depends on its target site and different brain areas exert different inhibitory effects on kindling acquisition according to the seizure focus. PMID:25337354

  6. Chronic Administration of Benzo(a)pyrene Induces Memory Impairment and Anxiety-Like Behavior and Increases of NR2B DNA Methylation

    Science.gov (United States)

    Zhang, Wenping; Tian, Fengjie; Zheng, Jinping; Li, Senlin; Qiang, Mei

    2016-01-01

    Background Recently, an increasing number of human and animal studies have reported that exposure to benzo(a)pyrene (BaP) induces neurological abnormalities and is also associated with adverse effects, such as tumor formation, immunosuppression, teratogenicity, and hormonal disorders. However, the exact mechanisms underlying BaP-induced impairment of neurological function remain unclear. The aim of this study was to examine the regulating mechanisms underlying the impact of chronic BaP exposure on neurobehavioral performance. Methods C57BL mice received either BaP in different doses (1.0, 2.5, 6.25 mg/kg) or olive oil twice a week for 90 days. Memory and emotional behaviors were evaluated using Y-maze and open-field tests, respectively. Furthermore, levels of mRNA expression were measured by using qPCR, and DNA methylation of NMDA receptor 2B subunit (NR2B) was examined using bisulfate pyrosequencing in the prefrontal cortex and hippocampus. Results Compared to controls, mice that received BaP (2.5, 6.25 mg/kg) showed deficits in short-term memory and an anxiety-like behavior. These behavioral alterations were associated with a down-regulation of the NR2B gene and a concomitant increase in the level of DNA methylation in the NR2B promoter in the two brain regions. Conclusions Chronic BaP exposure induces an increase in DNA methylation in the NR2B gene promoter and down-regulates NR2B expression, which may contribute to its neurotoxic effects on behavioral performance. The results suggest that NR2B vulnerability represents a target for environmental toxicants in the brain. PMID:26901155

  7. Chronic Administration of Benzo(apyrene Induces Memory Impairment and Anxiety-Like Behavior and Increases of NR2B DNA Methylation.

    Directory of Open Access Journals (Sweden)

    Wenping Zhang

    Full Text Available Recently, an increasing number of human and animal studies have reported that exposure to benzo(apyrene (BaP induces neurological abnormalities and is also associated with adverse effects, such as tumor formation, immunosuppression, teratogenicity, and hormonal disorders. However, the exact mechanisms underlying BaP-induced impairment of neurological function remain unclear. The aim of this study was to examine the regulating mechanisms underlying the impact of chronic BaP exposure on neurobehavioral performance.C57BL mice received either BaP in different doses (1.0, 2.5, 6.25 mg/kg or olive oil twice a week for 90 days. Memory and emotional behaviors were evaluated using Y-maze and open-field tests, respectively. Furthermore, levels of mRNA expression were measured by using qPCR, and DNA methylation of NMDA receptor 2B subunit (NR2B was examined using bisulfate pyrosequencing in the prefrontal cortex and hippocampus.Compared to controls, mice that received BaP (2.5, 6.25 mg/kg showed deficits in short-term memory and an anxiety-like behavior. These behavioral alterations were associated with a down-regulation of the NR2B gene and a concomitant increase in the level of DNA methylation in the NR2B promoter in the two brain regions.Chronic BaP exposure induces an increase in DNA methylation in the NR2B gene promoter and down-regulates NR2B expression, which may contribute to its neurotoxic effects on behavioral performance. The results suggest that NR2B vulnerability represents a target for environmental toxicants in the brain.

  8. Single episode of mild murine malaria induces neuroinflammation, alters microglial profile, impairs adult neurogenesis, and causes deficits in social and anxiety-like behavior.

    Science.gov (United States)

    Guha, Suman K; Tillu, Rucha; Sood, Ankit; Patgaonkar, Mandar; Nanavaty, Ishira N; Sengupta, Arjun; Sharma, Shobhona; Vaidya, Vidita A; Pathak, Sulabha

    2014-11-01

    Cerebral malaria is associated with cerebrovascular damage and neurological sequelae. However, the neurological consequences of uncomplicated malaria, the most prevalent form of the disease, remain uninvestigated. Here, using a mild malaria model, we show that a single Plasmodium chabaudi adami infection in adult mice induces neuroinflammation, neurogenic, and behavioral changes in the absence of a blood-brain barrier breach. Using cytokine arrays we show that the infection induces differential serum and brain cytokine profiles, both at peak parasitemia and 15days post-parasite clearance. At the peak of infection, along with the serum, the brain also exhibited a definitive pro-inflammatory cytokine profile, and gene expression analysis revealed that pro-inflammatory cytokines were also produced locally in the hippocampus, an adult neurogenic niche. Hippocampal microglia numbers were enhanced, and we noted a shift to an activated profile at this time point, accompanied by a striking redistribution of the microglia to the subgranular zone adjacent to hippocampal neuronal progenitors. In the hippocampus, a distinct decline in progenitor turnover and survival was observed at peak parasitemia, accompanied by a shift from neuronal to glial fate specification. Studies in transgenic Nestin-GFP reporter mice demonstrated a decline in the Nestin-GFP(+)/GFAP(+) quiescent neural stem cell pool at peak parasitemia. Although these cellular changes reverted to normal 15days post-parasite clearance, specific brain cytokines continued to exhibit dysregulation. Behavioral analysis revealed selective deficits in social and anxiety-like behaviors, with no change observed in locomotor, cognitive, and depression-like behaviors, with a return to baseline at recovery. Collectively, these findings indicate that even a single episode of mild malaria results in alterations of the brain cytokine profile, causes specific behavioral dysfunction, is accompanied by hippocampal microglial

  9. Reduction of anxiety-like and depression-like behaviors in rats after one month of drinking Aronia melanocarpa berry juice.

    Science.gov (United States)

    Tomić, Mirko; Ignjatović, Đurđica; Tovilović-Kovačević, Gordana; Krstić-Milošević, Dijana; Ranković, Slavica; Popović, Tamara; Glibetić, Marija

    2016-07-13

    The treatment of mood and anxiety disorders by nutraceuticals is gaining growing awareness. Berries of Aronia melanocarpa (Black chokeberry) and their extracts, exceptionally abundant in diverse phenolic compounds, have become famous for the highest in vitro antioxidant activity among fruits and notable health benefits (e.g. anti-diabetic, anti-inflammatory, cardioprotective). This study was designed to investigate the behavioral effects of month-long unlimited consumption of Aronia master juice (AJ) and/or juice reconstruct without polyphenols (RJ), in young male rats. AJ was initially evaluated for its content of phenolic compounds by spectrophotometric assays and HPLC-DAD. Rats that were supplied with three various water concentrations of AJ and RJ, respectively: 20% + 0% (ARO group), 5% + 15% (RAJ) and 0 + 20% (PLC), were compared with those which consumed only water (CTL). Daily drinking of AJ solution was significantly elevated from the second or third week onward, which was most expressed in the ARO group. Only this group displayed behavioral variations, manifested by certain hyperactivity in open field tests and prominent reductions of anxiety-like behaviors in the elevated plus maze. The ARO rats also expressed an alleviation of depression-like behavior in forced swimming tests. These findings demonstrate the beneficial behavioral effects of the one-month-long free drinking of phenolic-rich AJ in rats (>20 ml per kg b. mass daily) that may be recognized as stimulating, anxiolytic-like and antidepressant-like. The in vitro assays suggested that MAO-A/MAO-B inhibitions by the phenolic compounds of AJ might be the possible in vivo mechanisms for such behavioral actions. PMID:27273205

  10. Chronic high fat feeding increases anxiety-like behaviour and reduces transcript abundance of glucocorticoid signalling genes in the hippocampus of female rats.

    Science.gov (United States)

    Sivanathan, Shathveekan; Thavartnam, Kabriya; Arif, Shahneen; Elegino, Trisha; McGowan, Patrick O

    2015-06-01

    The consumption of diets high in saturated fats and obesity have been associated with impaired physical and mental health. Previous studies indicate that chronic high fat diet consumption leads to systemic inflammation in humans and non-human animal models. Studies in non-human animals suggest that altered physiological responses to stress are also a consequence of high fat diet consumption. Glucocorticoid signalling mechanisms may link immune and stress-related pathways in the brain, and were shown to be significantly altered in the brains of female rat offspring of mothers exposed to chronic high fat diet during pregnancy and lactation. For adult females, the consequence of chronic high fat diet consumption on these signalling pathways and their relationship to stress-related behaviour is not known. In this study, we examined the effects of chronic consumption of a high fat diet compared to a low fat control diet among adult female Long Evans rats. We found significant differences in weight gain, caloric intake, anxiety-related behaviours, and glucocorticoid-related gene expression over a 10-week exposure period. As expected, rats in the high fat diet group gained the most weight and consumed the greatest number of calories. Rats in the high fat diet group showed significantly greater levels of anxiety-related behaviour in the Light Dark and Open Field tasks compared to rats in the low fat diet group. Rats consuming high fat diet also exhibited reduced transcript abundance in the hippocampus of stress-related mineralocorticoid receptor and glucocorticoid receptor genes, as well as nuclear factor kappa beta gene expression, implicated in inflammatory processes. Together, these data indicate that chronic high fat diet consumption may increase anxiety-like behaviour at least in part via alterations in glucocorticoid signalling mechanisms in limbic brain regions.

  11. Characterization of a shortened model of diet alternation in female rats: effects of the CB1 receptor antagonist rimonabant on food intake and anxiety-like behavior.

    Science.gov (United States)

    Blasio, Angelo; Rice, Kenner C; Sabino, Valentina; Cottone, Pietro

    2014-10-01

    The prevalence of eating disorders and obesity in western societies is epidemic and increasing in severity. Preclinical research has focused on the development of animal models that can mimic the maladaptive patterns of food intake observed in certain forms of eating disorders and obesity. This study was aimed at characterizing a recently established model of palatable diet alternation in female rats. For this purpose, females rats were fed either continuously with a regular chow diet (Chow/Chow) or intermittently with a regular chow diet for 2 days and a palatable, high-sucrose diet for 1 day (Chow/Palatable). Following diet cycling, rats were administered rimonabant (0, 0.3, 1, 3 mg/kg intraperitoneally) during access to either palatable diet or chow diet and were assessed for food intake and body weight. Finally, rats were pretreated with rimonabant (0, 3 mg/kg, intraperitoneally) and tested in the elevated plus maze during withdrawal from the palatable diet. Female rats with alternating access to palatable food cycled their intake, overeating during access to the palatable diet and undereating upon returning to the regular chow diet. Rimonabant treatment resulted in increased chow hypophagia and anxiety-like behavior in Chow/Palatable rats. No effect of drug treatment was observed on the compulsive eating of palatable food in the diet-cycled rats. The results of this study suggest that withdrawal from alternating access to the palatable diet makes individuals vulnerable to the anxiogenic effects of rimonabant and provides etiological factors potentially responsible for the emergence of severe psychiatric side-effects following rimonabant treatment in obese patients. PMID:25011007

  12. Effects of a post-weaning cafeteria diet in young rats: metabolic syndrome, reduced activity and low anxiety-like behaviour.

    Science.gov (United States)

    Lalanza, Jaume F; Caimari, Antoni; del Bas, Josep M; Torregrosa, Daniel; Cigarroa, Igor; Pallàs, Mercè; Capdevila, Lluís; Arola, Lluís; Escorihuela, Rosa M

    2014-01-01

    Among adolescents, overweight, obesity and metabolic syndrome are rapidly increasing in recent years as a consequence of unhealthy palatable diets. Animal models of diet-induced obesity have been developed, but little is known about the behavioural patterns produced by the consumption of such diets. The aim of the present study was to determine the behavioural and biochemical effects of a cafeteria diet fed to juvenile male and female rats, as well as to evaluate the possible recovery from these effects by administering standard feeding during the last week of the study. Two groups of male and female rats were fed with either a standard chow diet (ST) or a cafeteria (CAF) diet from weaning and for 8 weeks. A third group of males (CAF withdrawal) was fed with the CAF diet for 7 weeks and the ST in the 8th week. Both males and females developed metabolic syndrome as a consequence of the CAF feeding, showing overweight, higher adiposity and liver weight, increased plasma levels of glucose, insulin and triglycerides, as well as insulin resistance, in comparison with their respective controls. The CAF diet reduced motor activity in all behavioural tests, enhanced exploration, reduced anxiety-like behaviour and increased social interaction; this last effect was more pronounced in females than in males. When compared to animals only fed with a CAF diet, CAF withdrawal increased anxiety in the open field, slightly decreased body weight, and completely recovered the liver weight, insulin sensitivity and the standard levels of glucose, insulin and triglycerides in plasma. In conclusion, a CAF diet fed to young animals for 8 weeks induced obesity and metabolic syndrome, and produced robust behavioural changes in young adult rats, whereas CAF withdrawal in the last week modestly increased anxiety, reversed the metabolic alterations and partially reduced overweight.

  13. Acquisition of contextual Pavlovian fear conditioning is blocked by application of an NMDA receptor antagonist D,L-2-amino-5-phosphonovaleric acid to the basolateral amygdala.

    Science.gov (United States)

    Fanselow, M S; Kim, J J

    1994-02-01

    Rats, with chronic cannula placed bilaterally in the amygdala, received infusions of the N-methyl-D-aspartate (NMDA) receptor antagonist D,L-2-amino-5-phosphonovaleric acid (APV) before contextual Pavlovian fear conditioning. Administration of APV to the basolateral nucleus prevented acquisition of fear. Central nucleus infusions had no effect. It is concluded that an NMDA-mediated process near the basolateral region of the amygdala (e.g., lateral or basolateral nucleus) is essential for the learning of fear.

  14. Prediction of economic choice by primate amygdala neurons

    OpenAIRE

    Grabenhorst, F.; Hernadi, I.; Schultz, W.

    2012-01-01

    The amygdala is a key structure of the brain’s reward system. Existing theories view its role in decision-making as restricted to an early valuation stage that provides input to decision mechanisms in downstream brain structures. However, the extent to which the amygdala itself codes information about economic choices is unclear. Here, we report that individual neurons in the primate amygdala predict behavioral choices in an economic decision task. We recorded the activity of amygdala neurons...

  15. Prior Multiple Ethanol Withdrawals Enhance Stress-Induced Anxiety-Like Behavior: Inhibition by CRF1- and Benzodiazepine-Receptor Antagonists and a 5-HT1a-Receptor Agonist

    OpenAIRE

    Breese, George R.; Overstreet, David H.; KNAPP, DARIN J.; Navarro, Montserrat

    2005-01-01

    Repeated withdrawals from chronic ethanol induce a persistent adaptive change. Further, stress substitutes for the initial two withdrawals of a multiple-withdrawal protocol to sensitize rats to withdrawal-induced anxiety-like behavior (‘anxiety’). Therefore, it was tested whether the persistent adaptation induced by multiple-withdrawal exposures allows stress to elicit anxiety after a period of abstinence. Social interaction was used to assess the degree of anxiety induced by 45 min of restra...

  16. Dopamine D3 receptor-dependent changes in alpha6 GABAA subunit expression in striatum modulate anxiety-like behaviour: Responsiveness and tolerance to diazepam.

    Science.gov (United States)

    Leggio, Gian Marco; Torrisi, Sebastiano Alfio; Castorina, Alessandro; Platania, Chiara Bianca Maria; Impellizzeri, Agata Antonia Rita; Fidilio, Annamaria; Caraci, Filippo; Bucolo, Claudio; Drago, Filippo; Salomone, Salvatore

    2015-09-01

    Increasing evidence indicates that central dopamine (DA) neurotransmission is involved in pathophysiology of anxiety, in particular the DA receptor subtype 3 (D3R). We previously reported that D3R null mice (D3R(-/-)) exhibit low baseline anxiety levels and that acutely administrated diazepam is more effective in D3R(-/-) than in wild type (WT) when tested in the elevated plus maze test (EPM). Here we tested the hypothesis that genetic deletion or pharmacological blockade of D3R affect GABAA subunit expression, which in turn modulates anxiety-like behaviour as well as responsiveness and tolerance to diazepam. D3R(-/-) mice exhibited tolerance to diazepam (0.5mg/kg, i.p.), assessed by EPM, as fast as after 3 day-treatment, performing similarly to untreated D3R(-/-) mice; conversely, WT exhibited tolerance to diazepam after a 14-21 day-treatment. Analysis of GABAA α6 subunit mRNA expression by qPCR in striatum showed that it was about 15-fold higher in D3R(-/-) than in WT. Diazepam treatment did not modify α6 expression in D3R(-/-), but progressively increased α6 expression in WT, to the level of untreated D3R(-/-) after 14-21 day-treatment. BDNF mRNA expression in striatum was remarkably (>10-fold) increased after 3 days of diazepam-treatment in both WT and D3R(-/-); such expression level, however, slowly declined below control levels, by 14-21 days. Following a 7 day-treatment with the selective D3R antagonist SB277011A, WT exhibited a fast tolerance to diazepam accompanied by a robust increase in α6 subunit expression. In conclusion, genetic deletion or pharmacological blockade of D3R accelerate the development of tolerance to repeated administrations of diazepam and increase α6 subunit expression, a GABAA subunit that has been linked to diazepam insensitivity. Modulation of GABAA receptor by DA transmission may be involved in the mechanisms of anxiety and, if occurring in humans, may have therapeutic relevance following repeated use of drugs targeting D3R

  17. Excitatory amino acid receptors in the basolateral amygdala regulate anxiety responses in the social interaction test.

    Science.gov (United States)

    Sajdyk, T J; Shekhar, A

    1997-08-01

    Blocking GABA(A) receptors in the basolateral amygdala (BLA) elicits increases in heart rate (HR), blood pressure (BP) and anxiety responses by enhancing a glutamate mediated excitation. The present study was conducted to determine the role of the ionotropic glutamate receptors within the BLA in regulating HR, BP and experimental anxiety. Blocking basal glutamate excitation had no significant effect on HR or BP, but did elicit a significant anxiolytic-like effect.

  18. FMRI connectivity analysis of acupuncture effects on an amygdala-associated brain network

    Directory of Open Access Journals (Sweden)

    Zhao Baixiao

    2008-11-01

    Full Text Available Abstract Background Recently, increasing evidence has indicated that the primary acupuncture effects are mediated by the central nervous system. However, specific brain networks underpinning these effects remain unclear. Results In the present study using fMRI, we employed a within-condition interregional covariance analysis method to investigate functional connectivity of brain networks involved in acupuncture. The fMRI experiment was performed before, during and after acupuncture manipulations on healthy volunteers at an acupuncture point, which was previously implicated in a neural pathway for pain modulation. We first identified significant fMRI signal changes during acupuncture stimulation in the left amygdala, which was subsequently selected as a functional reference for connectivity analyses. Our results have demonstrated that there is a brain network associated with the amygdala during a resting condition. This network encompasses the brain structures that are implicated in both pain sensation and pain modulation. We also found that such a pain-related network could be modulated by both verum acupuncture and sham acupuncture. Furthermore, compared with a sham acupuncture, the verum acupuncture induced a higher level of correlations among the amygdala-associated network. Conclusion Our findings indicate that acupuncture may change this amygdala-specific brain network into a functional state that underlies pain perception and pain modulation.

  19. Amygdala regulates risk of predation in rats foraging in a dynamic fear environment.

    Science.gov (United States)

    Choi, June-Seek; Kim, Jeansok J

    2010-12-14

    In a natural environment, foragers constantly face the risk of encountering predators. Fear is a defensive mechanism evolved to protect animals from danger by balancing the animals' needs for primary resources with the risk of predation, and the amygdala is implicated in mediating fear responses. However, the functions of fear and amygdala in foraging behavior are not well characterized because of the technical difficulty in quantifying prey-predator interaction with real (unpredictable) predators. Thus, the present study investigated the rat's foraging behavior in a seminaturalistic environment when confronted with a predator-like robot programmed to surge toward the animal seeking food. Rats initially fled into the nest and froze (demonstrating fear) and then cautiously approached and seized the food as a function of decreasing nest-food and increasing food-robot distances. The likelihood of procuring food increased and decreased via lesioning/inactivating and disinhibiting the amygdala, respectively. These results indicate that the amygdala bidirectionally regulates risk behavior in rats foraging in a dynamic fear environment.

  20. The Emotional Gatekeeper: A Computational Model of Attentional Selection and Suppression through the Pathway from the Amygdala to the Inhibitory Thalamic Reticular Nucleus.

    Directory of Open Access Journals (Sweden)

    Yohan J John

    2016-02-01

    Full Text Available In a complex environment that contains both opportunities and threats, it is important for an organism to flexibly direct attention based on current events and prior plans. The amygdala, the hub of the brain's emotional system, is involved in forming and signaling affective associations between stimuli and their consequences. The inhibitory thalamic reticular nucleus (TRN is a hub of the attentional system that gates thalamo-cortical signaling. In the primate brain, a recently discovered pathway from the amygdala sends robust projections to TRN. Here we used computational modeling to demonstrate how the amygdala-TRN pathway, embedded in a wider neural circuit, can mediate selective attention guided by emotions. Our Emotional Gatekeeper model demonstrates how this circuit enables focused top-down, and flexible bottom-up, allocation of attention. The model suggests that the amygdala-TRN projection can serve as a unique mechanism for emotion-guided selection of signals sent to cortex for further processing. This inhibitory selection mechanism can mediate a powerful affective 'framing' effect that may lead to biased decision-making in highly charged emotional situations. The model also supports the idea that the amygdala can serve as a relevance detection system. Further, the model demonstrates how abnormal top-down drive and dysregulated local inhibition in the amygdala and in the cortex can contribute to the attentional symptoms that accompany several neuropsychiatric disorders.

  1. The Emotional Gatekeeper: A Computational Model of Attentional Selection and Suppression through the Pathway from the Amygdala to the Inhibitory Thalamic Reticular Nucleus.

    Science.gov (United States)

    John, Yohan J; Zikopoulos, Basilis; Bullock, Daniel; Barbas, Helen

    2016-02-01

    In a complex environment that contains both opportunities and threats, it is important for an organism to flexibly direct attention based on current events and prior plans. The amygdala, the hub of the brain's emotional system, is involved in forming and signaling affective associations between stimuli and their consequences. The inhibitory thalamic reticular nucleus (TRN) is a hub of the attentional system that gates thalamo-cortical signaling. In the primate brain, a recently discovered pathway from the amygdala sends robust projections to TRN. Here we used computational modeling to demonstrate how the amygdala-TRN pathway, embedded in a wider neural circuit, can mediate selective attention guided by emotions. Our Emotional Gatekeeper model demonstrates how this circuit enables focused top-down, and flexible bottom-up, allocation of attention. The model suggests that the amygdala-TRN projection can serve as a unique mechanism for emotion-guided selection of signals sent to cortex for further processing. This inhibitory selection mechanism can mediate a powerful affective 'framing' effect that may lead to biased decision-making in highly charged emotional situations. The model also supports the idea that the amygdala can serve as a relevance detection system. Further, the model demonstrates how abnormal top-down drive and dysregulated local inhibition in the amygdala and in the cortex can contribute to the attentional symptoms that accompany several neuropsychiatric disorders. PMID:26828203

  2. Amygdala kindling disrupts trace and delay fear conditioning with parallel changes in Fos protein expression throughout the limbic brain.

    Science.gov (United States)

    Botterill, J J; Fournier, N M; Guskjolen, A J; Lussier, A L; Marks, W N; Kalynchuk, L E

    2014-04-18

    Amygdala kindling is well known to increase unconditioned fear and anxiety. However, relatively little is known about whether this form of kindling causes functional changes within the neural circuitry that mediates fear learning and the retrieval of fear memories. To address this issue, we examined the effect of short- (i.e., 30 stimulations) and long-term (i.e., 99 stimulations) amygdala kindling in rats on trace and delay fear conditioning, which are aversive learning tasks that rely predominantly on the hippocampus and amygdala, respectively. After memory retrieval, we analyzed the pattern of neural activity with Fos, the protein product of the immediate early gene c-fos. We found that kindling had no effect on acquisition of the trace fear conditioning task but it did selectively impair retrieval of this fear memory. In contrast, kindling disrupted both acquisition and retrieval of fear memory in the delay fear conditioning task. We also found that kindling-induced impairments in memory retrieval were accompanied by decreased Fos expression in several subregions of the hippocampus, parahippocampus, and amygdala. Interestingly, decreased freezing in the trace conditioning task was significantly correlated with dampened Fos expression in hippocampal and parahippocampal regions whereas decreased freezing in the delay conditioning task was significantly correlated with dampened Fos expression in hippocampal, parahippocampal, and amygdaloid circuits. Overall, these results suggest that amygdala kindling promotes functional changes in brain regions involved in specific types of fear learning and memory.

  3. Voluntary wheel-running attenuates insulin and weight gain and affects anxiety-like behaviors in C57BL6/J mice exposed to a high-fat diet.

    Science.gov (United States)

    Hicks, Jasmin A; Hatzidis, Aikaterini; Arruda, Nicole L; Gelineau, Rachel R; De Pina, Isabella Monteiro; Adams, Kenneth W; Seggio, Joseph A

    2016-09-01

    It is widely accepted that lifestyle plays a crucial role on the quality of life in individuals, particularly in western societies where poor diet is correlated to alterations in behavior and the increased possibility of developing type-2 diabetes. While exercising is known to produce improvements to overall health, there is conflicting evidence on how much of an effect exercise has staving off the development of type-2 diabetes or counteracting the effects of diet on anxiety. Thus, this study investigated the effects of voluntary wheel-running access on the progression of diabetes-like symptoms and open field and light-dark box behaviors in C57BL/6J mice fed a high-fat diet. C57BL/6J mice were placed into either running-wheel cages or cages without a running-wheel, given either regular chow or a high-fat diet, and their body mass, food consumption, glucose tolerance, insulin and c-peptide levels were measured. Mice were also exposed to the open field and light-dark box tests for anxiety-like behaviors. Access to a running-wheel partially attenuated the obesity and hyperinsulinemia associated with high-fat diet consumption in these mice, but did not affect glucose tolerance or c-peptide levels. Wheel-running strongly increased anxiety-like and decreased explorative-like behaviors in the open field and light-dark box, while high-fat diet consumption produced smaller increases in anxiety. These results suggest that voluntary wheel-running can assuage some, but not all, of the physiological problems associated with high-fat diet consumption, and can modify anxiety-like behaviors regardless of diet consumed. PMID:27154535

  4. Noise stress changes mRNA expressions of corticotropin-releasing hormone, its receptors in amygdala, and anxiety-related behaviors

    Science.gov (United States)

    Eraslan, Evren; Akyazi, Ibrahim; Ergül-Ekiz, Elif; Matur, Erdal

    2015-01-01

    Noise is a psychological, environmental stressor that activates limbic sites in the brain. Limbic sites such as the amygdala and the amygdaloid corticotropin-releasing hormone (CRH) system play an important role in integrating stress response. We investigated the association between noise exposures, CRH-related molecules in the amygdala, and behavioral alterations. In total 54 Sprague-Dawley rats were divided into the following three groups: Control (CON), acute noise exposure (ANE), and chronic noise exposure (CNE). The ANE group was exposed to 100 dB white noise only once in 4 h and the CNE group was exposed to the same for 4 h per day for 30 days. Expression profiles of CRH and its receptors CRH-R1 and CRH-R2 were analyzed by quantitative real-time polymerase chain reaction (qPCR). The same stress procedure was applied to the ANE and CNE groups for behavior testing. The anxiety responses of the animals after acute and chronic stress exposure were measured in the defensive withdrawal test. CNE upregulated CRH and CRH-R1 mRNA levels but downregulated CRH-R2 mRNA levels. ANE led to a decrease in both CRH-R1 and CRH-R2 expression. In the defensive withdrawal test, while the ANE increased, CNE reduced anxiety-like behaviors. The present study shows that the exposure of rats to white noise (100 dB) leads to behavioral alterations and molecule-specific changes in the CRH system. Behavioral alterations can be related to these molecular changes in the amygdala. PMID:25913553

  5. [Emotion, amygdala, and autonomic nervous system].

    Science.gov (United States)

    Ueyama, Takashi

    2012-10-01

    Emotion refers to the dynamic changes of feeling accompanied by the alteration of physical and visceral activities. Autonomic nervous system (sympathetic and parasympathetic) regulates the visceral activities. Therefore, monitoring and analyzing autonomic nervous activity help understand the emotional changes. To this end, the survey of the expression of immediate early genes (IEGs), such as c-Fos in the brain and target organs, and the viral transneuronal labeling method using the pseudorabies virus (PRV) have enabled the visualization of the neurocircuitry of emotion. By comparing c-Fos expression and data from PRV or other neuroanatomical labeling techniques, the central sites that regulate emotional stress-induced autonomic activation can be deduced. Such regions have been identified in the limbic system (e. g., the extended amygdaloid complex; lateral septum; and infralimbic, insular, and ventromedial temporal cortical regions), as well as in several hypothalamic and brainstem nuclei. The amygdala is structurally diverse and comprises several subnuclei, which play a role in emotional process via projections from the cortex and a variety of subcortical structures. All amygdaloid subnuclei receive psychological information from other limbic systems, while the lateral and central subnuclei receive peripheral and sensory information. Output to the hypothalamus and peripheral sympathetic system mainly originates from the medial amygdala. As estrogen receptor α, estrogen receptor β, and androgen receptor are expressed in the medial amygdala, sex steroids may modulate the autonomic nervous activities.

  6. Human Amygdala Represents the Complete Spectrum of Subjective Valence

    OpenAIRE

    Jin, Jingwen; Zelano, Christina; Gottfried, Jay A.; Mohanty, Aprajita

    2015-01-01

    Although the amygdala is a major locus for hedonic processing, how it encodes valence information is poorly understood. Given the hedonic potency of odor stimuli and the amygdala's anatomical proximity to the peripheral olfactory system, we combined high-resolution fMRI with pattern-based multivariate techniques to examine how valence information is encoded in the amygdala. Ten human subjects underwent fMRI scanning while smelling 9 odorants that systematically varied in perceived valence. Re...

  7. Stress reduction correlates with structural changes in the amygdala

    OpenAIRE

    Hölzel, Britta K.; Carmody, James; Evans, Karleyton C.; Hoge, Elizabeth A.; Dusek, Jeffery A; Morgan, Lucas; Pitman, Roger K.; Lazar, Sara W.

    2009-01-01

    Stress has significant adverse effects on health and is a risk factor for many illnesses. Neurobiological studies have implicated the amygdala as a brain structure crucial in stress responses. Whereas hyperactive amygdala function is often observed during stress conditions, cross-sectional reports of differences in gray matter structure have been less consistent. We conducted a longitudinal MRI study to investigate the relationship between changes in perceived stress with changes in amygdala ...

  8. The Human Amygdala and Pain: Evidence from Neuroimaging

    OpenAIRE

    Simons, Laura; Moulton, Eric A.; Linnman, Clas; Carpino, Elizabeth; Becerra, Lino; Borsook, David

    2012-01-01

    The amygdala, a small deep brain structure involved in behavioral processing through interactions with other brain regions, has garnered increased attention in recent years in relation to pain processing. As pain is a multidimensional experience that encompasses physical sensation, affect, and cognition, the amygdala is well suited to play a part in this process. Multiple neuroimaging studies of pain in humans have reported activation in the amygdala. Here we summarize these studies by perfor...

  9. Bidirectional communication between amygdala and fusiform gyrus during facial recognition

    OpenAIRE

    Herrington, John D.; Taylor, James M.; Grupe, Daniel W.; Curby, Kim M.; Schultz, Robert T.

    2011-01-01

    Decades of research have documented the specialization of fusiform gyrus (FG) for facial information processes. Recent theories indicate that FG activity is shaped by input from amygdala, but effective connectivity from amygdala to FG remains undocumented. In this fMRI study, 39 participants completed a face recognition task. 11 participants underwent the same experiment approximately four months later. Robust face-selective activation of FG, amygdala, and lateral occipital cortex were observ...

  10. Dysfunctional amygdala activation and connectivity with the prefrontal cortex in current cocaine users

    NARCIS (Netherlands)

    Crunelle, C.L.; Kaag, A.M.; Munkhof, H.E. van den; Reneman, L.; Homberg, J.R.; Sabbe, B.; Brink, W. van den; Wingen, G. van

    2015-01-01

    OBJECTIVES: Stimulant use is associated with increased anxiety and a single administration of dexamphetamine increases amygdala activation to biologically salient stimuli in healthy individuals. Here, we investigate how current cocaine use affects amygdala activity and amygdala connectivity with the

  11. Transient elevation of amygdala alpha 2 adrenergic receptor binding sites during the early stages of amygdala kindling.

    Science.gov (United States)

    Chen, M J; Vigil, A; Savage, D D; Weiss, G K

    1990-03-01

    Enhanced noradrenergic neurotransmission retards but does not prevent the development of kindling. We previously reported that locus coeruleus (LC) alpha 2 adrenergic receptor binding sites are transiently elevated during the early stages of kindling development. Since the firing activity of LC noradrenergic neurons is partially regulated via an alpha 2 receptor-mediated recurrent inhibition, the transient elevation in LC alpha 2 receptors could decrease LC activity and consequently facilitate the development of kindling. Transient elevation of alpha 2 receptor binding sites during early stages of kindling may also occur on noradrenergic axon terminals projecting to forebrain sites. Using in vitro neurotransmitter autoradiography techniques, we investigated this hypothesis by measuring specific [3H]idazoxan binding in 5 different areas of rat forebrain at 2 different stages of kindling development. After 2 class 1 kindled seizures, specific [3H]idazoxan binding was elevated significantly in the amygdala, but not in other forebrain regions. No differences in specific [3H]idazoxan binding were observed in any of the 5 brain regions in rats kindled to a single class 5 kindled motor seizure. Saturation of binding experiments indicated that the increase in amygdala [3H]idazoxan binding, following 2 class 1 kindled motor seizures, was due to an increase in the total number of alpha 2 receptor binding sites without a change in the affinity of the binding sites for [3H]idazoxan. Thus, the transient increase in alpha 2 receptors that occurs in the LC in the early stages of kindling also occurs in the forebrain region in which the kindled seizure originates.

  12. FAST and SLOW amygdala kindling rat strains: comparison of amygdala, hippocampal, piriform and perirhinal cortex kindling.

    Science.gov (United States)

    McIntyre, D C; Kelly, M E; Dufresne, C

    1999-07-01

    In our companion paper, we selectively bred offspring of a Long Evans Hooded and Wistar rat cross for either fast or slow rates of amygdala kindling (Racine et al., 1999. Development of kindling-prone and kindling resistant rats: Selective breeding and electrophysiological studies, Epilepsy Res. 35, 183-195). Within 10 generations, there was no overlap in the distribution of kindling rates between these newly developed FAST and SLOW kindling strains. In the present report, we compared the local excitability, kindling rates, and convulsion profiles of kindling sites in either the amygdala, dorsal hippocampus, piriform cortex or perirhinal cortex in the two strains. Local excitability, measured as the local afterdischarge (AD) threshold and its duration, showed varied effects between structures and strains. Before kindling, the AD threshold was lower in the FAST than the SLOW rats in the hippocampus, piriform and perirhinal cortices, but not the amygdala (the selection structure). Also, the duration of the AD threshold duration was significantly longer in the FAST than in the SLOW rats in all structures, except the CA1 hippocampus. Most of these differences were maintained after kindling. Kindling itself was significantly faster in the FAST compared with the SLOW rats in all structures; however, the different structural kindling rates showed proportional differences between strains that were about five times different in the amygdala compared with only about two times different in the hippocampus. This suggested a selection bias for the amygdala and its networks. As in other rat strains, the fastest kindling rates were seen in the perirhinal cortex followed by the piriform cortex, amygdala and hippocampus in both FAST and SLOW rats. Other important differences between strains and structures occurred in the stage-5 convulsion profiles, including latency to forelimb clonus, clonus duration and duration of associated local afterdischarges. The differences in kindling

  13. Impact of family history and depression on amygdala volume.

    LENUS (Irish Health Repository)

    Saleh, Karim

    2012-07-30

    Family history of depression significantly impacts life-long depression risk. Family history could impact the stress and emotion regulation system that involves the amygdala. This study\\'s purpose was to investigate family history\\'s effect on amygdala volumes, and differences in first degree relatives with and without major depressive disorder (MDD). Participants, aged 18-65, were healthy volunteers (N=52) with (n=26) and without (n=26) first degree family history, and patients with MDD (N=48) with (n=27) and without (n=21)first-degree family history recruited for structural magnetic resonance imaging (MRI). Participants underwent clinical assessment followed by manual amygdala tracing. Patients with MDD without family history showed significantly larger right amygdala without a family history of MDD. These effects had larger right amygdala than healthy controls without MDD family history. These effects were pronounced in females. Family history and gender impacted amygdala volumes in all participants, providing a rationale for the inconsistent results in MDD amygdala studies. Higher familial risk in depression seems to be associated with smaller amygdala volumes, whereas depression alone is associated with larger amygdala volumes. Ultimately, these findings highlight consideration of family history and gender in research and treatment strategies.

  14. Lifespan anxiety is reflected in human amygdala cortical connectivity

    Science.gov (United States)

    He, Ye; Xu, Ting; Zhang, Wei

    2016-01-01

    Abstract The amygdala plays a pivotal role in processing anxiety and connects to large‐scale brain networks. However, intrinsic functional connectivity (iFC) between amygdala and these networks has rarely been examined in relation to anxiety, especially across the lifespan. We employed resting‐state functional MRI data from 280 healthy adults (18–83.5 yrs) to elucidate the relationship between anxiety and amygdala iFC with common cortical networks including the visual network, somatomotor network, dorsal attention network, ventral attention network, limbic network, frontoparietal network, and default network. Global and network‐specific iFC were separately computed as mean iFC of amygdala with the entire cerebral cortex and each cortical network. We detected negative correlation between global positive amygdala iFC and trait anxiety. Network‐specific associations between amygdala iFC and anxiety were also detectable. Specifically, the higher iFC strength between the left amygdala and the limbic network predicted lower state anxiety. For the trait anxiety, left amygdala anxiety–connectivity correlation was observed in both somatomotor and dorsal attention networks, whereas the right amygdala anxiety–connectivity correlation was primarily distributed in the frontoparietal and ventral attention networks. Ventral attention network exhibited significant anxiety–gender interactions on its iFC with amygdala. Together with findings from additional vertex‐wise analysis, these data clearly indicated that both low‐level sensory networks and high‐level associative networks could contribute to detectable predictions of anxiety behaviors by their iFC profiles with the amygdala. This set of systems neuroscience findings could lead to novel functional network models on neural correlates of human anxiety and provide targets for novel treatment strategies on anxiety disorders. Hum Brain Mapp 37:1178–1193, 2016. © 2015 The Authors Human Brain Mapping

  15. Amygdala habituation: a reliable fMRI phenotype.

    Science.gov (United States)

    Plichta, Michael M; Grimm, Oliver; Morgen, Katrin; Mier, Daniela; Sauer, Carina; Haddad, Leila; Tost, Heike; Esslinger, Christine; Kirsch, Peter; Schwarz, Adam J; Meyer-Lindenberg, Andreas

    2014-12-01

    Amygdala function is of high interest for cognitive, social and psychiatric neuroscience, emphasizing the need for reliable assessments in humans. Previous work has indicated unsatisfactorily low within-subject reliability of amygdala activation fMRI measures. Based on basic science evidence for strong habituation of amygdala response to repeated stimuli, we investigated whether a quantification of habituation provides additional information beyond the usual estimate of the overall mean activity. We assessed the within-subject reliability of amygdala habituation measures during a facial emotion matching paradigm in 25 healthy subjects. We extracted the amygdala signal decrement across the course of the fMRI run for the two test-retest measurement sessions and compared reliability estimates with previous findings based on mean response amplitude. Retest-reliability of the session-wise amygdala habituation was significantly higher than the evoked amygdala mean amplitude (intraclass correlation coefficients (ICC)=0.53 vs. 0.16). To test the task-specificity of this finding, we compared the retest-reliability of amygdala habituation across two different tasks. Significant amygdala response decrement was also seen in a cognitive task (n-back working memory) that did not per se activate the amygdala, but was totally unreliable in that context (ICC~0.0), arguing for task-specificity. Together the results show that emotion-dependent amygdala habituation is a robust and considerably more reliable index than the mean amplitude, and provides a robust potential endpoint for within-subject designs including pharmaco-fMRI studies. PMID:25284303

  16. Amygdala temporal dynamics: temperamental differences in the timing of amygdala response to familiar and novel faces

    Directory of Open Access Journals (Sweden)

    Shelton Richard C

    2009-12-01

    Full Text Available Abstract Background Inhibited temperament - the predisposition to respond to new people, places or things with wariness or avoidance behaviors - is associated with increased risk for social anxiety disorder and major depression. Although the magnitude of the amygdala's response to novelty has been identified as a neural substrate of inhibited temperament, there may also be differences in temporal dynamics (latency, duration, and peak. We hypothesized that persons with inhibited temperament would have faster responses to novel relative to familiar neutral faces compared to persons with uninhibited temperament. We used event-related functional magnetic resonance imaging to measure the temporal dynamics of the blood oxygen level dependent (BOLD response to both novel and familiar neutral faces in participants with inhibited or uninhibited temperament. Results Inhibited participants had faster amygdala responses to novel compared with familiar faces, and both longer and greater amygdala response to all faces. There were no differences in peak response. Conclusion Faster amygdala response to novelty may reflect a computational bias that leads to greater neophobic responses and represents a mechanism for the development of social anxiety.

  17. Neural responses to threat and reward interact to predict stress-related problem drinking: A novel protective role of the amygdala

    Directory of Open Access Journals (Sweden)

    Nikolova Yuliya S

    2012-11-01

    Full Text Available Abstract Background Research into neural mechanisms of drug abuse risk has focused on the role of dysfunction in neural circuits for reward. In contrast, few studies have examined the role of dysfunction in neural circuits of threat in mediating drug abuse risk. Although typically regarded as a risk factor for mood and anxiety disorders, threat-related amygdala reactivity may serve as a protective factor against substance use disorders, particularly in individuals with exaggerated responsiveness to reward. Findings We used well-established neuroimaging paradigms to probe threat-related amygdala and reward-related ventral striatum reactivity in a sample of 200 young adult students from the ongoing Duke Neurogenetics Study. Recent life stress and problem drinking were assessed using self-report. We found a significant three-way interaction between threat-related amygdala reactivity, reward-related ventral striatum reactivity, and recent stress, wherein individuals with higher reward-related ventral striatum reactivity exhibit higher levels of problem drinking in the context of stress, but only if they also have lower threat-related amygdala reactivity. This three-way interaction predicted both contemporaneous problem drinking and problem drinking reported three-months later in a subset of participants. Conclusions These findings suggest complex interactions between stress and neural responsiveness to both threat and reward mediate problem drinking. Furthermore, they highlight a novel protective role for threat-related amygdala reactivity against drug use in individuals with high neural reactivity to reward.

  18. Disorganized attachment in infancy predicts greater amygdala volume in adulthood.

    Science.gov (United States)

    Lyons-Ruth, K; Pechtel, P; Yoon, S A; Anderson, C M; Teicher, M H

    2016-07-15

    Early life stress in rodents is associated with increased amygdala volume in adulthood. In humans, the amygdala develops rapidly during the first two years of life. Thus, disturbed care during this period may be particularly important to amygdala development. In the context of a 30-year longitudinal study of impoverished, highly stressed families, we assessed whether disorganization of the attachment relationship in infancy was related to amygdala volume in adulthood. Amygdala volumes were assessed among 18 low-income young adults (8M/10F, 29.33±0.49years) first observed in infancy (8.5±5.6months) and followed longitudinally to age 29. In infancy (18.58±1.02mos), both disorganized infant attachment behavior and disrupted maternal communication were assessed in the standard Strange Situation Procedure (SSP). Increased left amygdala volume in adulthood was associated with both maternal and infant components of disorganized attachment interactions at 18 months of age (overall r=0.679, pimportance of quality of early care for amygdala development in human children as well as in rodents. The long-term prediction found here suggests that the first two years of life may be an early sensitive period for amygdala development during which clinical intervention could have particularly important consequences for later child outcomes. PMID:27060720

  19. Amygdala signals subjective appetitiveness and aversiveness of mixed gambles

    DEFF Research Database (Denmark)

    Gelskov, Sofie V.; Henningsson, Susanne; Madsen, Kristoffer Hougaard;

    2015-01-01

    People are more sensitive to losses than to equivalent gains when making financial decisions. We used functional magnetic resonance imaging (fMRI) to illuminate how the amygdala contributes to loss aversion. The blood oxygen level dependent (BOLD) response of the amygdala was mapped while healthy...

  20. The amygdala to periaqueductal gray pathway: plastic changes induced by audiogenic kindling and reversal by gabapentin.

    Science.gov (United States)

    Tupal, S; Faingold, C L

    2012-09-26

    Repeated, periodic induction of AGS (AGS kindling) in GEPR-9s increases seizure duration and induces an additional generalized clonus phase [post-tonic clonus (PTC)], which involves expansion of the localized brainstem AGS network to the amygdala. The pathway between central amygdala (CeA) and ventrolateral periaqueductal gray (vlPAG) is implicated in several disorders, including pain and anxiety. This pathway is also implicated in the network of audiogenic seizures (AGS) in genetically epilepsy-prone rats (GEPR-9s). We examined AGS kindling-induced changes in vlPAG extracellular action potentials evoked by electrical stimuli in CeA in awake, behaving GEPR-9s, using chronically-implanted stimulation electrodes in CeA and microwire recording electrodes in vlPAG. The effect of gabapentin, an anticonvulsant drug that is also effective in pain and anxiety disorders, on the CeA to vlPAG pathway in AGS-kindled GEPR-9s was also evaluated. Electrical stimulation in CeA evoked consistent, short latency and intensity-dependent vlPAG neuronal firing increases. However, in AGS-kindled GEPR-9s these responses showed a precipitous firing increase with increasing stimulus intensity, as compared to non-kindled GEPR-9s. Gabapentin (50mg/kg, i.p.) significantly reduced vlPAG neuronal responses to CeA stimulation to pre-AGS-kindled levels and reversibly blocked PTC in AGS-kindled GEPR-9s. These data suggest that the amygdala to vlPAG pathway may be critical in mediating the emergence of PTC during AGS kindling. The ability of gabapentin to suppress this pathway may be important for its anticonvulsant effects in AGS-kindled GEPR-9s, and this effect may contribute to gabapentin's effectiveness in anxiety and pain in which the amygdala to PAG pathway is also implicated.

  1. Subregional differences in intrinsic amygdala hyperconnectivity and hypoconnectivity in autism spectrum disorder.

    Science.gov (United States)

    Kleinhans, Natalia M; Reiter, Maya A; Neuhaus, Emily; Pauley, Greg; Martin, Nathalie; Dager, Stephen; Estes, Annette

    2016-07-01

    The amygdala is a complex structure with distinct subregions and dissociable functional networks. The laterobasal subregion of the amygdala is hypothesized to mediate the presentation and severity of autism symptoms, although very little data are available regarding amygdala dysfunction at the subregional level. In this study, we investigated the relationship between abnormal amygdalar intrinsic connectivity, autism symptom severity, and anxiety and depressive symptoms. We collected resting state fMRI data on 31 high functioning adolescents and adults with autism spectrum disorder and 38 typically developing (TD) controls aged 14-45. Twenty-five participants with ASD and 28 TD participants were included in the final analyses. ASD participants were administered the Autism Diagnostic Interview-Revised and the Autism Diagnostic Observation Schedule. Adult participants were administered the Beck Depression Inventory II and the Beck Anxiety Inventory. Functional connectivity analyses were conducted from three amygdalar subregions: centromedial (CM), laterobasal (LB) and superficial (SF). In addition, correlations with the behavioral measures were tested in the adult participants. In general, the ASD group showed significantly decreased connectivity from the LB subregion and increased connectivity from the CM and SF subregions compared to the TD group. We found evidence that social symptoms are primarily associated with under-connectivity from the LB subregion whereas over-connectivity and under-connectivity from the CM, SF and LB subregions are related to co-morbid depression and anxiety in ASD, in brain regions that were distinct from those associated with social dysfunction, and in different patterns than were observed in mildly symptomatic TD participants. Our findings provide new evidence for functional subregional differences in amygdala pathophysiology in ASD. Autism Res 2016, 9: 760-772. © 2015 International Society for Autism Research, Wiley Periodicals, Inc

  2. The role of the amygdala in face perception and evaluation.

    Science.gov (United States)

    Todorov, Alexander

    2012-03-01

    Faces are one of the most significant social stimuli and the processes underlying face perception are at the intersection of cognition, affect, and motivation. Vision scientists have had a tremendous success of mapping the regions for perceptual analysis of faces in posterior cortex. Based on evidence from (a) single unit recording studies in monkeys and humans; (b) human functional localizer studies; and (c) meta-analyses of neuroimaging studies, I argue that faces automatically evoke responses not only in these regions but also in the amygdala. I also argue that (a) a key property of faces represented in the amygdala is their typicality; and (b) one of the functions of the amygdala is to bias attention to atypical faces, which are associated with higher uncertainty. This framework is consistent with a number of other amygdala findings not involving faces, suggesting a general account for the role of the amygdala in perception.

  3. Medial amygdala lesions selectively block aversive Pavlovian-instrumental transfer in rats.

    Directory of Open Access Journals (Sweden)

    Margaret Grace McCue

    2014-09-01

    Full Text Available Pavlovian conditioned stimuli (CSs play an important role in the reinforcement and motivation of instrumental active avoidance (AA. Conditioned threats can also invigorate ongoing AA responding (aversive Pavlovian-instrumental transfer or PIT. The neural circuits mediating AA are poorly understood, although lesion studies suggest that lateral, basal and central amygdala nuclei, as well as infralimbic prefrontal cortex, make key, and sometimes opposing, contributions. We recently completed an extensive analysis of brain c-Fos expression in good vs. poor avoiders following an AA test (Martinez et al 2013, Learning and Memory. This analysis identified medial amygdala (MeA as a potentially important region for Pavlovian motivation of instrumental actions. MeA is known to mediate defensive responding to innate threats as well as social behaviors, but its role in mediating aversive Pavlovian-instrumental interactions is unknown. We evaluated the effect of MeA lesions on Pavlovian conditioning, Sidman two-way AA conditioning (shuttling and aversive PIT in rats. Mild footshocks served as the unconditioned stimulus in all conditioning phases. MeA lesions had no effect on AA but blocked the expression of aversive PIT and 22 kHz ultrasonic vocalizations in the AA context. Interestingly, MeA lesions failed to affect Pavlovian freezing to discrete threats but reduced freezing to contextual threats when assessed outside of the AA chamber. These findings differentiate MeA from lateral and central amygdala, as lesions of these nuclei disrupt Pavlovian freezing and aversive PIT, but have opposite effects on AA performance. Taken together, these results suggest that MeA plays a selective role in the motivation of instrumental avoidance by general or uncertain Pavlovian threats.

  4. Activity dependent protein degradation is critical for the formation and stability of fear memory in the amygdala.

    Directory of Open Access Journals (Sweden)

    Timothy J Jarome

    Full Text Available Protein degradation through the ubiquitin-proteasome system [UPS] plays a critical role in some forms of synaptic plasticity. However, its role in memory formation in the amygdala, a site critical for the formation of fear memories, currently remains unknown. Here we provide the first evidence that protein degradation through the UPS is critically engaged at amygdala synapses during memory formation and retrieval. Fear conditioning results in NMDA-dependent increases in degradation-specific polyubiquitination in the amygdala, targeting proteins involved in translational control and synaptic structure and blocking the degradation of these proteins significantly impairs long-term memory. Furthermore, retrieval of fear memory results in a second wave of NMDA-dependent polyubiquitination that targets proteins involved in translational silencing and synaptic structure and is critical for memory updating following recall. These results indicate that UPS-mediated protein degradation is a major regulator of synaptic plasticity necessary for the formation and stability of long-term memories at amygdala synapses.

  5. A link between serotonin-related gene polymorphisms, amygdala activity, and placebo-induced relief from social anxiety.

    Science.gov (United States)

    Furmark, Tomas; Appel, Lieuwe; Henningsson, Susanne; Ahs, Fredrik; Faria, Vanda; Linnman, Clas; Pissiota, Anna; Frans, Orjan; Bani, Massimo; Bettica, Paolo; Pich, Emilio Merlo; Jacobsson, Eva; Wahlstedt, Kurt; Oreland, Lars; Långström, Bengt; Eriksson, Elias; Fredrikson, Mats

    2008-12-01

    Placebo may yield beneficial effects that are indistinguishable from those of active medication, but the factors underlying proneness to respond to placebo are widely unknown. Here, we used functional neuroimaging to examine neural correlates of anxiety reduction resulting from sustained placebo treatment under randomized double-blind conditions, in patients with social anxiety disorder. Brain activity was assessed during a stressful public speaking task by means of positron emission tomography before and after an 8 week treatment period. Patients were genotyped with respect to the serotonin transporter-linked polymorphic region (5-HTTLPR) and the G-703T polymorphism in the tryptophan hydroxylase-2 (TPH2) gene promoter. Results showed that placebo response was accompanied by reduced stress-related activity in the amygdala, a brain region crucial for emotional processing. However, attenuated amygdala activity was demonstrable only in subjects who were homozygous for the long allele of the 5-HTTLPR or the G variant of the TPH2 G-703T polymorphism, and not in carriers of short or T alleles. Moreover, the TPH2 polymorphism was a significant predictor of clinical placebo response, homozygosity for the G allele being associated with greater improvement in anxiety symptoms. Path analysis supported that the genetic effect on symptomatic improvement with placebo is mediated by its effect on amygdala activity. Hence, our study shows, for the first time, evidence of a link between genetically controlled serotonergic modulation of amygdala activity and placebo-induced anxiety relief. PMID:19052197

  6. Alexithymic features and automatic amygdala reactivity to facial emotion.

    Science.gov (United States)

    Kugel, Harald; Eichmann, Mischa; Dannlowski, Udo; Ohrmann, Patricia; Bauer, Jochen; Arolt, Volker; Heindel, Walter; Suslow, Thomas

    2008-04-11

    Alexithymic individuals have difficulties in identifying and verbalizing their emotions. The amygdala is known to play a central role in processing emotion stimuli and in generating emotional experience. In the present study automatic amygdala reactivity to facial emotion was investigated as a function of alexithymia (as assessed by the 20-Item Toronto Alexithymia Scale). The Beck-Depression Inventory (BDI) and the State-Trait-Anxiety Inventory (STAI) were administered to measure participants' depressivity and trait anxiety. During 3T fMRI scanning, pictures of faces bearing sad, happy, and neutral expressions masked by neutral faces were presented to 21 healthy volunteers. The amygdala was selected as the region of interest (ROI) and voxel values of the ROI were extracted, summarized by mean and tested among the different conditions. A detection task was applied to assess participants' awareness of the masked emotional faces shown in the fMRI experiment. Masked sad and happy facial emotions led to greater right amygdala activation than masked neutral faces. The alexithymia feature difficulties identifying feelings was negatively correlated with the neural response of the right amygdala to masked sad faces, even when controlling for depressivity and anxiety. Reduced automatic amygdala responsivity may contribute to problems in identifying one's emotions in everyday life. Low spontaneous reactivity of the amygdala to sad faces could implicate less engagement in the encoding of negative emotional stimuli. PMID:18314269

  7. Altered amygdala-prefrontal connectivity during emotion perception in schizophrenia.

    Science.gov (United States)

    Bjorkquist, Olivia A; Olsen, Emily K; Nelson, Brady D; Herbener, Ellen S

    2016-08-01

    Individuals with schizophrenia evidence impaired emotional functioning. Abnormal amygdala activity has been identified as an etiological factor underlying affective impairment in this population, but the exact nature remains unclear. The current study utilized psychophysiological interaction analyses to examine functional connectivity between the amygdala and medial prefrontal cortex (mPFC) during an emotion perception task. Participants with schizophrenia (SZ) and healthy controls (HC) viewed and rated positive, negative, and neutral images while undergoing functional neuroimaging. Results revealed a significant group difference in right amygdala-mPFC connectivity during perception of negative versus neutral images. Specifically, HC participants demonstrated positive functional coupling between the amygdala and mPFC, consistent with co-active processing of salient information. In contrast, SZ participants evidenced negative functional coupling, consistent with top-down inhibition of the amygdala by the mPFC. A significant positive correlation between connectivity strength during negative image perception and clinician-rated social functioning was also observed in SZ participants, such that weaker right amygdala-mPFC coupling during negative compared to neutral image perception was associated with poorer social functioning. Overall, results suggest that emotional dysfunction and associated deficits in functional outcome in schizophrenia may relate to abnormal interactions between the amygdala and mPFC during perception of emotional stimuli. This study adds to the growing literature on abnormal functional connections in schizophrenia and supports the functional disconnection hypothesis of schizophrenia. PMID:27083779

  8. The human amygdala and pain: evidence from neuroimaging.

    Science.gov (United States)

    Simons, Laura E; Moulton, Eric A; Linnman, Clas; Carpino, Elizabeth; Becerra, Lino; Borsook, David

    2014-02-01

    The amygdala, a small deep brain structure involved in behavioral processing through interactions with other brain regions, has garnered increased attention in recent years in relation to pain processing. As pain is a multidimensional experience that encompasses physical sensation, affect, and cognition, the amygdala is well suited to play a part in this process. Multiple neuroimaging studies of pain in humans have reported activation in the amygdala. Here, we summarize these studies by performing a coordinate-based meta-analysis within experimentally induced and clinical pain studies using an activation likelihood estimate analysis. The results are presented in relation to locations of peak activation within and outside of amygdala subregions. The majority of studies identified coordinates consistent with human amygdala cytoarchitecture indicating reproducibility in neuroanatomical labeling across labs, analysis methods, and imaging modalities. Differences were noted between healthy and clinical pain studies: in clinical pain studies, peak activation was located in the laterobasal region, suggestive of the cognitive-affective overlay present among individuals suffering from chronic pain; while the less understood superficial region of the amygdala was prominent among experimental pain studies. Taken together, these findings suggest several important directions for further research exploring the amygdala's role in pain processing. PMID:23097300

  9. Does bilateral damage to the human amygdala produce autistic symptoms?

    Science.gov (United States)

    Paul, Lynn K; Corsello, Christina; Tranel, Daniel; Adolphs, Ralph

    2010-09-01

    A leading neurological hypothesis for autism postulates amygdala dysfunction. This hypothesis has considerable support from anatomical and neuroimaging studies. Individuals with bilateral amygdala lesions show impairments in some aspects of social cognition. These impairments bear intriguing similarity to those reported in people with autism, such as impaired recognition of emotion in faces, impaired theory of mind abilities, failure to fixate eyes in faces, and difficulties in regulating personal space distance to others. Yet such neurological cases have never before been assessed directly to see if they meet criteria for autism spectrum disorders (ASD). Here we undertook such an investigation in two rare participants with developmental-onset bilateral amygdala lesions. We administered a comprehensive clinical examination, as well as the Autism Diagnostic Observation Schedule (ADOS), the Social Responsiveness Scale (SRS), together with several other standardized questionnaires. Results from the two individuals with amygdala lesions were compared with published norms from both healthy populations as well as from people with ASD. Neither participant with amygdala lesions showed any evidence of autism across the array of different measures. The findings demonstrate that amygdala lesions in isolation are not sufficient for producing autistic symptoms. We suggest instead that it may be abnormal connectivity between the amygdala and other structures that contributes to autistic symptoms at a network level. PMID:20700516

  10. Temporary amygdala inhibition reduces stress effects in female mice.

    Science.gov (United States)

    Dalooei, Jila Rezaeian; Sahraei, Hedayat; Meftahi, Gholam Hossein; Khosravi, Maryam; Bahari, Zahra; Hatef, Boshra; Mohammadi, Alireza; Nicaeili, Fateme; Eftekhari, Fateme; Ghamari, Fateme; Hadipour, Mohamadmehdi; Kaka, Gholamreza

    2016-09-01

    The current study investigated the effect of temporary inhibition of amygdala in response to metabolic changes caused by stress in female mice. Unilateral and bilateral amygdala cannulation was carried out, and after a week of recovery, 2% lidocaine hydrochloride was injected into the mice amygdalae five minutes before the induction of stress. A communication box was employed to induce stress for four consecutive days and plasma corticosterone, food and water intake, weight changes, and anorexia were measured as stress-induced metabolic changes. Results demonstrated that stress, increases stress, increased plasma corticosterone concentrations, weight, food, and water intake. Temporary inhibition of the amygdala slightly decreased plasma corticosterone concentrations, but did not fully reduce the effect of stress. The bilateral injection of lidocaine hydrochloride to the amygdala reduced the effect of stress and reduced water intake and weight. Unilateral injection of lidocaine hydrochloride into the left and right amygdala reduced food intake. In conclusion, the present study demonstrated that the left side and right side of amygdala nuclei play a different role in metabolic responses in stress. PMID:27489731

  11. Cortical kindling induces elevated levels of AMPA and GABA receptor subunit mRNA within the amygdala/piriform region and is associated with behavioral changes in the rat.

    Science.gov (United States)

    Henderson, Amy K; Galic, Michael A; Teskey, G Campbell

    2009-11-01

    Cortical kindling causes alterations within the motor cortex and results in long-standing motor deficits. Less attention has been directed to other regions that also participate in the epileptiform activity. We examined if cortical kindling could induce changes in excitatory and inhibitory receptor subunit mRNA in the amygdala/piriform regions and if such changes are associated with behavioral deficits. After cortical kindling, amygdala/piriform regions were dissected to analyze mRNA levels of NMDA, AMPA, and GABA receptor subunits using reverse transcription polymerase chain reaction, or rats were subjected to a series of behavioral tests. Kindled rats had significantly greater amounts of GluR1 and GluR2 AMPA receptor mRNA, and alpha1 and alpha2 GABA receptor subunit mRNA, compared with sham controls, which was associated with greater anxiety-like behaviors in the elevated plus maze and reduced freezing behaviors in the fear conditioning task. In summary, cortical kindling produces dynamic receptor subunit changes in regions in addition to the seizure focus.

  12. Connections of the corticomedial amygdala in the golden hamster. I. Efferents of the ''vomeronasal amygdala''

    International Nuclear Information System (INIS)

    The medial (M) an posteromedial cortical (C3) amygdaloid nuclei and the nucleus of the accessory olfactory tract (NAOT) are designated the ''vomeronasal amygdala'' because they are the only components of the amygdala to receive a direct projection from the accessory olfactory bulb (AOB). The efferents of M and C3 were traced after injections of 3H-proline into the amygdala in male golden hamsters. Frozen sections of the brains were processed for autoradiography. The efferents of the ''vomeronasal amygdala'' are largely to areas which are primary and secondary terminal areas along the vomeronasal pathway, although the efferents from C3 and M terminate in different layers in these areas than do the projections from the vomeronasal nerve or the AOB. Specifically, C3 projects ipsilaterally to the internal granule cell layer of the AOB, the cellular layer of NAOT, and layer Ib of M. Additional fibers from C3 terminate in a retrocommissural component of the bed nucleus of the strain terminalis (BNST) bilaterally, and in the cellular layers of the contralateral C3. The medial nucleus projects to the cellular layer of the ipsilateral NAOT, layer Ib of C3, and bilaterally to the medial component of BNST. Projections from M to non-vomeronasal areas terminate in the medial preoptic area-anterior hypothalamic junction, ventromedial nucleus of the hypothalamus, ventral premammillary nucleus and possibly in the ventral subiculum. These results demonstrate reciprocal connections between primary and secondary vomeronasal areas between the secondary areas themselves. They suggest that M, but not C3, projects to areas outside this vomeronasal network. The medial amygdaloid nucleus is therefore an important link between the vomeronasal organ and areas of the brain not receiving direct vomeronasal input

  13. The acceleration of amygdala kindling epileptogenesis by chronic low-dose corticosterone involves both mineralocorticoid and glucocorticoid receptors.

    Science.gov (United States)

    Kumar, Gaurav; Couper, Abbie; O'Brien, Terence J; Salzberg, Michael R; Jones, Nigel C; Rees, Sandra M; Morris, Margaret J

    2007-08-01

    We have previously demonstrated that low-dose corticosterone (CS) administration, used as a model of the effect of chronic stress, accelerates epileptogenesis in the electrical amygdala kindling rat model of temporal lobe epilepsy (TLE). This current study examined the relative contributions to this effect of mineralocorticoid (MR) and glucocorticoid (GR) subtypes of glucocorticoid receptors. Female non-epileptic wistar rats 10-13 weeks of age were implanted with a bipolar electrode into the left amygdala. Five treatment groups were subjected to rapid amygdala kindling: water-control (n=9), CS treated (6 mg/100 ml added to drinking water; n=9), CS+spironolactone (MR antagonist, 50 mg/kg sc; n=9), CS+mifepristone (GR antagonist, 25 mg/kg sc; n=9), and CS+both antagonists (n=7). Rats were injected with vehicle or the relevant antagonist twice daily for the entire kindling period. Experimental groups differed significantly in the number of stimulations required to reach the 'fully kindled state' (Racine, 1972) ANOVA, F(4,38)=2.73, p=0.04). Amygdala kindling was accelerated in the CS-treated group compared with water controls (mean stimulations for full kindling: 45.2 vs. 86.5, pkindling rates in these groups not significantly different from water-treated subjects (p=0.26 and 0.29, respectively). The kindling rates in the MR and GR antagonist treatment groups did not significantly differ from each other (p=0.93), nor from the combined treatment group (mean stimulations: 62.8, p=0.59 and 0.54, respectively). This study demonstrates that activation of both high-affinity (MR) and low-affinity (GR) glucocorticoid receptors are involved in mediating CS-induced acceleration of amygdala kindling epileptogenesis.

  14. Lipopolysaccharide affects exploratory behaviors toward novel objects by impairing cognition and/or motivation in mice: Possible role of activation of the central amygdala.

    Science.gov (United States)

    Haba, Ryota; Shintani, Norihito; Onaka, Yusuke; Wang, Hyper; Takenaga, Risa; Hayata, Atsuko; Baba, Akemichi; Hashimoto, Hitoshi

    2012-03-17

    Lipopolysaccharide (LPS) produces a series of systemic and psychiatric changes called sickness behavior. In the present study, we characterized the LPS-induced decrease in novel object exploratory behaviors in BALB/c mice. As already reported, LPS (0.3-5 μg/mouse) induced dose- and time-dependent decreases in locomotor activity, food intake, social interaction, and exploration for novel objects, and an increase in immobility in the forced-swim test. Although the decrease in locomotor activity was ameliorated by 10h postinjection, novel object exploratory behaviors remained decreased at 24h and were observed even with the lowest dose of LPS. In an object exploration test, LPS shortened object exploration time but did not affect moving time or the frequency of object exploration. Although pre-exposure to the same object markedly decreased the duration of exploration and LPS did not change this reduction, LPS significantly impaired the exploration of a novel object that replaced the familiar one. LPS did not affect anxiety-like behaviors in open-field and elevated plus-maze tests. An LPS-induced increase in the number of c-Fos-immunoreactive cells was observed in several brain regions within 6h of LPS administration, but the number of cells quickly returned to control levels, except in the central amygdala where the increase continued for 24h. These results suggest that LPS most prominently affects object exploratory behaviors by impairing cognition and/or motivation including continuous attention and curiosity toward objects, and that this may be associated with activation of brain nuclei such as the central amygdala.

  15. Heritable influences on amygdala and orbitofrontal cortex contribute to genetic variation in core dimensions of personality

    Science.gov (United States)

    Lewis, G.J.; Panizzon, M.S.; Eyler, L.; Fennema-Notestine, C.; Chen, C.-H.; Neale, M.C.; Jernigan, T.L.; Lyons, M.J.; Dale, A.M.; Kremen, W.S.; Franz, C.E.

    2015-01-01

    While many studies have reported that individual differences in personality traits are genetically influenced, the neurobiological bases mediating these influences have not yet been well characterized. To advance understanding concerning the pathway from genetic variation to personality, here we examined whether measures of heritable variation in neuroanatomical size in candidate regions (amygdala and medial orbitofrontal cortex) were associated with heritable effects on personality. A sample of 486 middle-aged (mean = 55 years) male twins (complete MZ pairs = 120; complete DZ pairs = 84) underwent structural brain scans and also completed measures of two core domains of personality: positive and negative emotionality. After adjusting for estimated intracranial volume, significant phenotypic (rp) and genetic (rg) correlations were observed between left amygdala volume and positive emotionality (rp = .16, p < .01; rg = .23, p < .05, respectively). In addition, after adjusting for mean cortical thickness, genetic and nonshared-environmental correlations (re) between left medial orbitofrontal cortex thickness and negative emotionality were also observed (rg = .34, p < .01; re = −.19, p < .05, respectively). These findings support a model positing that heritable bases of personality are, at least in part, mediated through individual differences in the size of brain structures, although further work is still required to confirm this causal interpretation. PMID:25263286

  16. Corticotropin releasing factor and catecholamines enhance glutamatergic neurotransmission in the lateral subdivision of the central amygdala.

    Science.gov (United States)

    Silberman, Yuval; Winder, Danny G

    2013-07-01

    Glutamatergic neurotransmission in the central nucleus of the amygdala (CeA) plays an important role in many behaviors including anxiety, memory consolidation and cardiovascular responses. While these behaviors can be modulated by corticotropin releasing factor (CRF) and catecholamine signaling, the mechanism(s) by which these signals modify CeA glutamatergic neurotransmission remains unclear. Utilizing whole-cell patch-clamp electrophysiology recordings from neurons in the lateral subdivision of the CeA (CeAL), we show that CRF, dopamine (DA) and the β-adrenergic receptor agonist isoproterenol (ISO) all enhance the frequency of spontaneous excitatory postsynaptic currents (sEPSC) without altering sEPSC kinetics, suggesting they increase presynaptic glutamate release. The effect of CRF on sEPSCs was mediated by a combination of CRFR1 and CRFR2 receptors. While previous work from our lab suggests that CRFRs mediate the effect of catecholamines on excitatory transmission in other subregions of the extended amygdala, blockade of CRFRs in the CeAL failed to significantly alter effects of DA and ISO on glutamatergic transmission. These findings suggest that catecholamine and CRF enhancement of glutamatergic transmission onto CeAL neurons occurs via distinct mechanisms. While CRF increased spontaneous glutamate release in the CeAL, CRF caused no significant changes to optogenetically evoked glutamate release in this region. The dissociable effects of CRF on different types of glutamatergic neurotransmission suggest that CRF may specifically regulate spontaneous excitatory transmission.

  17. Divergent Routing of Positive and Negative Information from the Amygdala during Memory Retrieval.

    Science.gov (United States)

    Beyeler, Anna; Namburi, Praneeth; Glober, Gordon F; Simonnet, Clémence; Calhoon, Gwendolyn G; Conyers, Garrett F; Luck, Robert; Wildes, Craig P; Tye, Kay M

    2016-04-20

    Although the basolateral amygdala (BLA) is known to play a critical role in the formation of memories of both positive and negative valence, the coding and routing of valence-related information is poorly understood. Here, we recorded BLA neurons during the retrieval of associative memories and used optogenetic-mediated phototagging to identify populations of neurons that synapse in the nucleus accumbens (NAc), the central amygdala (CeA), or ventral hippocampus (vHPC). We found that despite heterogeneous neural responses within each population, the proportions of BLA-NAc neurons excited by reward predictive cues and of BLA-CeA neurons excited by aversion predictive cues were higher than within the entire BLA. Although the BLA-vHPC projection is known to drive behaviors of innate negative valence, these neurons did not preferentially code for learned negative valence. Together, these findings suggest that valence encoding in the BLA is at least partially mediated via divergent activity of anatomically defined neural populations.

  18. Does bilateral damage to the human amygdala produce autistic symptoms?

    OpenAIRE

    Paul, Lynn K.; Corsello, Christina; Tranel, Daniel; Adolphs, Ralph

    2010-01-01

    A leading neurological hypothesis for autism postulates amygdala dysfunction. This hypothesis has considerable support from anatomical and neuroimaging studies. Individuals with bilateral amygdala lesions show impairments in some aspects of social cognition. These impairments bear intriguing similarity to those reported in people with autism, such as impaired recognition of emotion in faces, impaired theory of mind abilities, failure to fixate eyes in faces, and difficulties in regulating per...

  19. Female vulnerability to the development of depression-like behavior in a rat model of intimate partner violence is related to anxious temperament, coping responses and amygdala vasopressin receptor 1a expression.

    Directory of Open Access Journals (Sweden)

    Guillaume L Poirier

    2013-05-01

    Full Text Available Exposure to violence is traumatic and an important source of mental health disturbance, yet the factors associated with victimization remain incompletely understood. The aim of the present study was to investigate factors related to vulnerability to depression-like behaviors in females. An animal model of intimate partner violence, which was previously shown to produce long-lasting behavioral effects in females as a result of male partner aggression, was used. The associations among the degree of partner aggression, the long-term consequences on depressive-like behavior, and the impact of the anxious temperament of the female were examined. In a separate group, pre-selected neural markers were evaluated in the amygdala and the lateral septum of females. Expression was examined by analyses of targeted candidate genes, serotonin transporter (slc6a4, vasopressin receptor 1a, (avpr1a, and oxytocin receptor (oxtr. Structural equation modeling revealed that the female’s temperament moderated depressive-like behavior that was induced by cohabitation aggression from the male partner. More specifically, increased floating in the forced swim test following male aggression was most apparent in females exhibiting more anxiety-like behavior (i.e., less open arm exploration in an elevated plus-maze prior to the cohabitation. Aggression reduced slc6a4 levels in the lateral septum. However, the interaction between partner aggression and the anxious temperament of the female affected the expression of avpr1a in the amygdala. Although aggression reduced levels of this marker in females with high anxiety, no such pattern was observed in females with low anxiety. These results identify important characteristics in females that moderate the impact of male aggression. Furthermore, these results provide potential therapeutic targets of interest in the amygdala and the lateral septum to help improve post-stress behavioral pathology and increase resilience to social

  20. Juvenile obesity enhances emotional memory and amygdala plasticity through glucocorticoids.

    Science.gov (United States)

    Boitard, Chloé; Maroun, Mouna; Tantot, Frédéric; Cavaroc, Amandine; Sauvant, Julie; Marchand, Alain; Layé, Sophie; Capuron, Lucile; Darnaudery, Muriel; Castanon, Nathalie; Coutureau, Etienne; Vouimba, Rose-Marie; Ferreira, Guillaume

    2015-03-01

    In addition to metabolic and cardiovascular disorders, obesity is associated with adverse cognitive and emotional outcomes. Its growing prevalence during adolescence is particularly alarming since recent evidence indicates that obesity can affect hippocampal function during this developmental period. Adolescence is a decisive period for maturation of the amygdala and the hypothalamic-pituitary-adrenal (HPA) stress axis, both required for lifelong cognitive and emotional processing. However, little data are available on the impact of obesity during adolescence on amygdala function. Herein, we therefore evaluate in rats whether juvenile high-fat diet (HFD)-induced obesity alters amygdala-dependent emotional memory and whether it depends on HPA axis deregulation. Exposure to HFD from weaning to adulthood, i.e., covering adolescence, enhances long-term emotional memories as assessed by odor-malaise and tone-shock associations. Juvenile HFD also enhances emotion-induced neuronal activation of the basolateral complex of the amygdala (BLA), which correlates with protracted plasma corticosterone release. HFD exposure restricted to adulthood does not modify all these parameters, indicating adolescence is a vulnerable period to the effects of HFD-induced obesity. Finally, exaggerated emotional memory and BLA synaptic plasticity after juvenile HFD are alleviated by a glucocorticoid receptor antagonist. Altogether, our results demonstrate that juvenile HFD alters HPA axis reactivity leading to an enhancement of amygdala-dependent synaptic and memory processes. Adolescence represents a period of increased susceptibility to the effects of diet-induced obesity on amygdala function. PMID:25740536

  1. Tension-related activity in the orbitofrontal cortex and amygdala: an fMRI study with music.

    Science.gov (United States)

    Lehne, Moritz; Rohrmeier, Martin; Koelsch, Stefan

    2014-10-01

    Tonal music is characterized by a continuous flow of tension and resolution. This flow of tension and resolution is closely related to processes of expectancy and prediction and is a key mediator of music-evoked emotions. However, the neural correlates of subjectively experienced tension and resolution have not yet been investigated. We acquired continuous ratings of musical tension for four piano pieces. In a subsequent functional magnetic resonance imaging experiment, we identified blood oxygen level-dependent signal increases related to musical tension in the left lateral orbitofrontal cortex (pars orbitalis of the inferior frontal gyrus). In addition, a region of interest analysis in bilateral amygdala showed activation in the right superficial amygdala during periods of increasing tension (compared with decreasing tension). This is the first neuroimaging study investigating the time-varying changes of the emotional experience of musical tension, revealing brain activity in key areas of affective processing.

  2. Tension-related activity in the orbitofrontal cortex and amygdala: an fMRI study with music.

    Science.gov (United States)

    Lehne, Moritz; Rohrmeier, Martin; Koelsch, Stefan

    2014-10-01

    Tonal music is characterized by a continuous flow of tension and resolution. This flow of tension and resolution is closely related to processes of expectancy and prediction and is a key mediator of music-evoked emotions. However, the neural correlates of subjectively experienced tension and resolution have not yet been investigated. We acquired continuous ratings of musical tension for four piano pieces. In a subsequent functional magnetic resonance imaging experiment, we identified blood oxygen level-dependent signal increases related to musical tension in the left lateral orbitofrontal cortex (pars orbitalis of the inferior frontal gyrus). In addition, a region of interest analysis in bilateral amygdala showed activation in the right superficial amygdala during periods of increasing tension (compared with decreasing tension). This is the first neuroimaging study investigating the time-varying changes of the emotional experience of musical tension, revealing brain activity in key areas of affective processing. PMID:23974947

  3. Amygdala's involvement in facilitating associative learning-induced plasticity: a promiscuous role for the amygdala in memory acquisition.

    Science.gov (United States)

    Chau, Lily S; Galvez, Roberto

    2012-01-01

    It is widely accepted that the amygdala plays a critical role in acquisition and consolidation of fear-related memories. Some of the more widely employed behavioral paradigms that have assisted in solidifying the amygdala's role in fear-related memories are associative learning paradigms. With most associative learning tasks, a neutral conditioned stimulus (CS) is paired with a salient unconditioned stimulus (US) that elicits an unconditioned response (UR). After multiple CS-US pairings, the subject learns that the CS predicts the onset or delivery of the US, and thus elicits a learned conditioned response (CR). Most fear-related associative paradigms have suggested that an aspect of the fear association is stored in the amygdala; however, some fear-motivated associative paradigms suggest that the amygdala is not a site of storage, but rather facilitates consolidation in other brain regions. Based upon various learning theories, one of the most likely sites for storage of long-term memories is the neocortex. In support of these theories, findings from our laboratory, and others, have demonstrated that trace-conditioning, an associative paradigm where there is a separation in time between the CS and US, induces learning-specific neocortical plasticity. The following review will discuss the amygdala's involvement, either as a site of storage or facilitating storage in other brain regions such as the neocortex, in fear- and non-fear-motivated associative paradigms. In this review, we will discuss recent findings suggesting a broader role for the amygdala in increasing the saliency of behaviorally relevant information, thus facilitating acquisition for all forms of memory, both fear- and non-fear-related. This proposed promiscuous role of the amygdala in facilitating acquisition for all memories further suggests a potential role of the amygdala in general learning disabilities.

  4. Inhibition of adenylyl cyclase in amygdala blocks the effect of audiogenic seizure kindling in genetically epilepsy-prone rats.

    Science.gov (United States)

    Tupal, Srinivasan; Faingold, Carl

    2010-01-01

    Genetically epilepsy-prone rats of the severe seizure strain (GEPR-9s) exhibit audiogenic seizures (AGS) beginning with wild running and ending with tonic hind limb extension (TE). AGS kindling in GEPR-9s involves periodic repetition of >/=14 seizures over 7-21 days and results in prolonged seizures and an additional phase of generalized post-tonic clonus (PTC) that follows TE. AGS kindling behavior changes are long-lasting and involve expansion of the requisite seizure neuronal network from the brainstem to include the amygdala, mediated by neuroplasticity in lateral amygdala. Recent evidence indicates that focal activation of adenylyl cyclase (AC) in lateral amygdala leads to precipitous acquisition of AGS-kindled seizure behaviors, suggesting that activation of AC activity is important in development and maintenance of AGS kindling. The present study further examined the role of AC in AGS-kindled seizures in GEPR-9s by focally inhibiting AC in the amygdala. Bilateral microinjection of an AC inhibitor, SQ22,536 (0.25 and 0.50 nmol/side), in AGS-kindled GEPR-9s selectively blocked PTC during AGS at 1 h after microinjection, but the pre-kindled AGS behaviors remained intact. The incidence of PTC during AGS returned to pre-drug levels 12 h after the lower dose of SQ22,536 (0.25 nmol/side). However, after the higher dose of SQ22,536 (0.5 nmol/side), complete return to AGS with PTC was seen in all GEPR-9s at 120 h. These results indicate that maintenance of AGS kindling-mediated PTC in GEPR-9s may involve activation of AC. These data provide further evidence for the involvement of AC in the epileptogenic mechanisms subserving AGS kindling.

  5. Short-term environmental enrichment is sufficient to counter stress-induced anxiety and associated structural and molecular plasticity in basolateral amygdala.

    Science.gov (United States)

    Ashokan, Archana; Hegde, Akshaya; Mitra, Rupshi

    2016-07-01

    Moderate levels of anxiety enable individual animals to cope with stressors through avoidance, and could be an adaptive trait. However, repeated stress exacerbates anxiety to pathologically high levels. Dendritic remodeling in the basolateral amygdala is proposed to mediate potentiation of anxiety after stress. Similarly, modulation of brain-derived neurotrophic factor is thought to be important for the behavioral effects of stress. In the present study, we investigate if relatively short periods of environmental enrichment in adulthood can confer resilience against stress-induced anxiety and concomitant changes in neuronal arborisation and brain derived neurotrophic factor within basolateral amygdala. Two weeks of environmental enrichment countermanded the propensity of increased anxiety following chronic immobilization stress. Environmental enrichment concurrently reduced dendritic branching and spine density of projection neurons of the basolateral amygdala. Moreover, stress increased abundance of BDNF mRNA in the basolateral amygdala in agreement with the dendritic hypertrophy post-stress and role of BDNF in promoting dendritic arborisation. In contrast, environmental enrichment prevented stress-induced rise in the BDNF mRNA abundance. Gain in body weights and adrenal weights remained unaffected by exposure to environmental enrichment. These observations suggest that a short period of environmental enrichment can provide resilience against maladaptive effects of stress on hormonal, neuronal and molecular mediators of anxiogenesis. PMID:27128967

  6. Ensemble coding of context-dependent fear memory in the amygdala

    Directory of Open Access Journals (Sweden)

    Caitlin A Orsini

    2013-12-01

    Full Text Available After fear conditioning, presenting the conditioned stimulus (CS alone yields a context-specific extinction memory; fear is suppressed in the extinction context, but renews in any other context. The context-dependence of extinction is mediated by a brain circuit consisting of the hippocampus, prefrontal cortex and amygdala. In the present work, we sought to determine at what level of this circuit context-dependent representations of the CS emerge. To explore this question, we used cellular compartment analysis of temporal activity by fluorescent in situ hybridization (catFISH. This method exploits the intracellular expression profile of the immediate early gene, Arc, to visualize neuronal activation patterns to two different behavioral experiences. Rats were fear conditioned in one context and extinguished in another; twenty-four hours later, they were sequentially exposed to the CS in the extinction context and another context. Control rats were also tested in each context, but were never extinguished. We assessed Arc mRNA expression within the basal amygdala (BA, lateral amygdala (LA, ventral hippocampus (VH, prelimbic cortex (PL and infralimbic cortex (IL. We observed that the sequential retention tests induced context-dependent patterns of Arc expression in the BA, LA, and IL of extinguished rats; this was not observed in non-extinguished controls. In general, non-extinguished animals had proportionately greater numbers of non-selective (double-labeled neurons than extinguished animals. Collectively, these findings suggest that extinction learning results in pattern separation, particularly within the BA, in which unique neuronal ensembles represent fear memories after extinction.

  7. Paradoxical facilitation of working memory after basolateral amygdala damage.

    Directory of Open Access Journals (Sweden)

    Barak Morgan

    Full Text Available Working memory is a vital cognitive capacity without which meaningful thinking and logical reasoning would be impossible. Working memory is integrally dependent upon prefrontal cortex and it has been suggested that voluntary control of working memory, enabling sustained emotion inhibition, was the crucial step in the evolution of modern humans. Consistent with this, recent fMRI studies suggest that working memory performance depends upon the capacity of prefrontal cortex to suppress bottom-up amygdala signals during emotional arousal. However fMRI is not well-suited to definitively resolve questions of causality. Moreover, the amygdala is neither structurally or functionally homogenous and fMRI studies do not resolve which amygdala sub-regions interfere with working memory. Lesion studies on the other hand can contribute unique causal evidence on aspects of brain-behaviour phenomena fMRI cannot "see". To address these questions we investigated working memory performance in three adult female subjects with bilateral basolateral amygdala calcification consequent to Urbach-Wiethe Disease and ten healthy controls. Amygdala lesion extent and functionality was determined by structural and functional MRI methods. Working memory performance was assessed using the Wechsler Adult Intelligence Scale-III digit span forward task. State and trait anxiety measures to control for possible emotional differences between patient and control groups were administered. Structural MRI showed bilateral selective basolateral amygdala damage in the three Urbach-Wiethe Disease subjects and fMRI confirmed intact functionality in the remaining amygdala sub-regions. The three Urbach-Wiethe Disease subjects showed significant working memory facilitation relative to controls. Control measures showed no group anxiety differences. Results are provisionally interpreted in terms of a 'cooperation through competition' networks model that may account for the observed paradoxical

  8. Selective involvement of the amygdala in systemic lupus erythematosus.

    Directory of Open Access Journals (Sweden)

    Bart J Emmer

    2006-12-01

    Full Text Available BACKGROUND: Antibodies specifically affect the amygdala in a mouse model of systemic lupus erythematosus (SLE. The aim of our study was to investigate whether there is also specific involvement of the amygdala in human SLE. METHODS AND FINDINGS: We analyzed a group of 37 patients with neuropsychiatric SLE (NP-SLE, 21 patients with SLE, and a group of 12 healthy control participants with diffusion weighted imaging (DWI. In addition, in a subset of eight patients, plasma was available to determine their anti-NMDAR antibody status. From the structural magnetic resonance imaging data, the amygdala and the hippocampus were segmented, as well as the white and gray matter, and the apparent diffusion coefficient (ADC was retrieved. ADC values between controls, patients with SLE, and patients with NP-SLE were tested using analysis of variance with post-hoc Bonferroni correction. No differences were found in the gray or white matter segments. The average ADC in the amygdala of patients with NP-SLE and SLE (940 x 10(-6 mm2/s; p = 0.006 and 949 x 10(-6 mm2/s; p = 0.019, respectively was lower than in healthy control participants (1152 x 10(-6 mm2/s. Mann-Whitney analysis revealed that the average ADC in the amygdala of patients with anti-NMDAR antibodies (n = 4; 802 x 10(-6 mm2/s was lower (p = 0.029 than the average ADC of patients without anti-NMDAR antibodies (n = 4; 979 x 10(-6 mm2/s and also lower (p = 0.001 than in healthy control participants. CONCLUSIONS: This is the first study to our knowledge to observe damage in the amygdala in patients with SLE. Patients with SLE with anti-NMDAR antibodies had more severe damage in the amygdala compared to SLE patients without anti-NMDAR antibodies.

  9. Abnormal amygdala activation profile in pedophilia.

    Science.gov (United States)

    Sartorius, Alexander; Ruf, Matthias; Kief, Christine; Demirakca, Traute; Bailer, Josef; Ende, Gabriele; Henn, Fritz A; Meyer-Lindenberg, Andreas; Dressing, Harald

    2008-08-01

    Despite considerable public interest research in neurobiological correlates of pedophilia is scarce. Since amygdala activation is central for emotional valuation, arousal, and salience, we investigated the activation profile of this structure in 10 male subjects with pedophilia (exclusively attracted to boys), all convicted sex-offenders and sentenced to forensic psychiatric treatment along with ten male heterosexual matched controls. We used a sexually non-explicit functional Magnetic Resonance Imaging (fMRI) paradigm with images of men, women, boys or girls randomly embedded in neutral target/non-target geometrical symbols. We applied statistical parametric mapping (SPM2) and SPSS 14 for image processing and analysis. While controls activated significantly less to pictures of children compared to adults, the activation profile was reversed in subjects with pedophilia, who exhibited significantly more activation to children than adults. The highest activation was observed for boys in the patient group, and for women in control participants. Our data show enhanced activation to children's pictures even in an incidental context and suggest the provocative hypothesis that a normally present mechanism for reduced emotional arousal for children relative to adults is reversed in pedophilia, suggesting a neural substrate associated with deviant sexual preference in this condition. More extensive research in this field would be of benefit for both the victims and the offenders.

  10. Amygdala volume is reduced in early course schizophrenia.

    Science.gov (United States)

    Rich, Alyson M; Cho, Youngsun T; Tang, Yanqing; Savic, Aleksandar; Krystal, John H; Wang, Fei; Xu, Ke; Anticevic, Alan

    2016-04-30

    Subcortical structural alterations have been implicated in the neuropathology of schizophrenia. Yet, the extent of anatomical alterations for subcortical structures across illness phases remains unknown. To assess this, magnetic resonance imaging (MRI) was used to examine volume differences of major subcortical structures: thalamus, nucleus accumbens, caudate, putamen, globus pallidus, amygdala and hippocampus. These differences were examined across four groups: (i) healthy comparison subjects (HCS, n=96); (ii) individuals at high risk (HR, n=21) for schizophrenia; (iii) early-course schizophrenia patients (EC-SCZ, n=28); and (iv) chronic schizophrenia patients (C-SCZ, n=20). Raw gray matter volumes and volumetric ratios (volume of specific structure/total gray matter volume) were extracted using automated segmentation tools. EC-SCZ group exhibited smaller bilateral amygdala volumetric ratios, compared to HCS and HR subjects. Findings did not change when corrected for age, level of education and medication use. Amygdala raw volumes did not differ among groups once adjusted for multiple comparisons, but the smaller amygdala volumetric ratio in EC-SCZ survived Bonferroni correction. Other structures were not different across the groups following Bonferroni correction. Smaller amygdala volumes during early illness course may reflect pathophysiologic changes specific to illness development, including disrupted salience processing and acute stress responses. PMID:27035063

  11. Diverting attention suppresses human amygdala responses to faces

    Directory of Open Access Journals (Sweden)

    Carmen eMorawetz

    2010-12-01

    Full Text Available Recent neuroimaging studies disagree as to whether the processing of emotion-laden visual stimuli is dependent upon the availability of attentional resources or entirely capacity-free. Two main factors have been proposed to be responsible for the discrepancies: the differences in the perceptual attentional demands of the tasks used to divert attentional resources from emotional stimuli and the spatial location of the affective stimuli in the visual field. To date, no neuroimaging report addressed these two issues in the same set of subjects. Therefore, the aim of the study was to investigate the effects of high and low attentional load as well as different stimulus locations on face processing in the amygdala using fMRI to provide further evidence for one of the two opposing theories. We were able for the first time to directly test the interaction of attentional load and spatial location. The results revealed a strong attenuation of amygdala activity when the attentional load was high. The eccentricity of the emotional stimuli did not affect responses in the amygdala and no interaction effect between attentional load and spatial location was found. We conclude that the processing of emotional stimuli in the amygdala is strongly dependent on the availability of attentional resources without a preferred processing of stimuli presented in the periphery and provide firm evidence for the concept of the attentional load theory of emotional processing in the amygdala.

  12. Evidence for smaller right amygdala volumes in posttraumatic stress disorder following childhood trauma

    NARCIS (Netherlands)

    I.M. Veer; N.Y.L. Oei; M.A. van Buchem; Ph. Spinhoven; B.M. Elzinga; S.A.R.B. Rombouts

    2015-01-01

    Hippocampus and amygdala volumes in posttraumatic stress disorder (PTSD) related to childhood trauma are relatively understudied, albeit the potential importance to the disorder. Whereas some studies reported smaller hippocampal volumes, little evidence was found for abnormal amygdala volumes. Here

  13. Color harmony represented by activity in the medial orbitofrontal cortex and amygdala

    Directory of Open Access Journals (Sweden)

    Takashi eIkeda

    2015-07-01

    Full Text Available Observing paired colors with a different hue (in terms of chroma and lightness engenders pleasantness from such harmonious combinations; however, negative reactions can emerge from disharmonious combinations. Currently, neural mechanisms underlying the aesthetic and emotional aspects of color perception remain unknown. The current study reports evidence regarding the neural correlates of color harmony and disharmony. Functional magnetic resonance imaging was used to assess brain regions activated by harmonious or disharmonious color combinations in comparison to other stimuli. Results showed that the left medial orbitofrontal cortex and left amygdala were activated when participants observed harmonious and disharmonious stimuli, respectively. Taken together, these findings suggest that color disharmony may depend on stimulus properties and more automatic neural processes mediated by the amygdala, whereas color harmony is harder to discriminate based on color characteristics and is reflected by the aesthetic value represented in the medial orbitofrontal cortex. This study has a limitation that we could not exclude the effect of preference for color combination, which has a strong positive correlation with color harmony.

  14. Amphetamine sensitization and amygdala kindling: pharmacological evaluation of catecholaminergic and cholinergic mechanisms.

    Science.gov (United States)

    Kirkby, R D; Kokkinidis, L

    1991-03-01

    Chronic pharmacological experiments were conducted to evaluate the relationship between sensitization induced by repeated administration of amphetamine (AMPH) and electrical stimulation of the amygdala. While AMPH withdrawal did not influence the kindling process, AMPH administered during the kindling procedure increased the rate at which seizures evolved, and under these conditions withdrawal from chronic AMPH further facilitated the propensity to kindle. Haloperidol (HAL) treatment failed to block the stimulant-induced increase in kindling acquisition indicating that changes in dopamine (DA) are not necessary for the AMPH/kindling synergism to develop. Scopolamine dose-dependently retarded kindling evolution irrespective of prior AMPH pretreatment also ruling out a cholinergic mechanism in the kindling sensitization. Subsequent experiments assessed the interactive effects of AMPH and desipramine (DMI) on the kindling process. Animals chronically exposed to AMPH and switched to DMI treatment during the kindling procedure kindled faster than control subjects. In addition, withdrawal from DMI preexposure advanced the AMPH-induced increase in kindling rate. These results were discussed in terms of the role of norepinephrine-mediated inhibition of the kindling process, and were related to drug-elicited alterations in beta-adrenergic receptor functioning. Taken together, these findings implicate the amygdala as an important structure in the development of non-DA forms of AMPH sensitization.

  15. Oxytocin promotes facial emotion recognition and amygdala reactivity in adults with asperger syndrome.

    Science.gov (United States)

    Domes, Gregor; Kumbier, Ekkehardt; Heinrichs, Markus; Herpertz, Sabine C

    2014-02-01

    The neuropeptide oxytocin has recently been shown to enhance eye gaze and emotion recognition in healthy men. Here, we report a randomized double-blind, placebo-controlled trial that examined the neural and behavioral effects of a single dose of intranasal oxytocin on emotion recognition in individuals with Asperger syndrome (AS), a clinical condition characterized by impaired eye gaze and facial emotion recognition. Using functional magnetic resonance imaging, we examined whether oxytocin would enhance emotion recognition from facial sections of the eye vs the mouth region and modulate regional activity in brain areas associated with face perception in both adults with AS, and a neurotypical control group. Intranasal administration of the neuropeptide oxytocin improved performance in a facial emotion recognition task in individuals with AS. This was linked to increased left amygdala reactivity in response to facial stimuli and increased activity in the neural network involved in social cognition. Our data suggest that the amygdala, together with functionally associated cortical areas mediate the positive effect of oxytocin on social cognitive functioning in AS.

  16. β-Adrenergic activation enhances NMDA-induced current in pyramidal cells of the basolateral nucleus of amygdala

    Institute of Scientific and Technical Information of China (English)

    LIU Xinqiu; CAO Xiaohua; LI Bao-ming

    2005-01-01

    NMDA receptor (NMDA-R) in the amygdala complex is critical for both long-term potentiation (LTP) and formation of conditioned fear memory. It is reported that activation of β-adrenoceptors (β-AR) in the amygdala facilitates LTP and enhances memory consolidation. The present study examined the regulatory effect of β-AR activation on NMDA-R mediated current in pyramidal cells of the basolateral nucleus of amygdala (BLA), using whole-cell recording technique. Bath application of the β-AR agonist isoproterenol enhanced NMDA-induced current, and this facilitatory effect was blocked by co-administered propranolol, a β-AR antagonist. The facilitatory effect of isoproterenol on NMDA-induced current could not be induced when the protein kinase A (PKA) inhibitor Rp-cAMPs was added in electrode internal solution.The present results suggest that β-AR activation in the BLA could modulate NMDA-R activity directly and positively, probably via PKA.

  17. Intradentate colchicine retards the development of amygdala kindling.

    Science.gov (United States)

    Dasheiff, R M; McNamara, J O

    1982-04-01

    The mechanisms underlying the kindling model of epilepsy are unknown. Presumably, an altered network of neural circuits underlie amygdala kindling. Biochemical and radiohistochemical studies have pointed to the dentate granule cells (DGC) of the hippocampal formation as a member of this altered circuit. To test the role of these cells, colchicine, a neurotoxin of DGC, was directly injected into the dentate gyrus. Prior destruction of DGC retarded the development of amygdala kindling. Destruction of DGC after kindling was completed did not reverse the kindling effect. We conclude that DGC play a key role in the development, but not the permanence, of amygdala kindling. We propose a model whereby the greater the input to the hippocampal formation, the faster limbic kindling will proceed.

  18. Intact rapid detection of fearful faces in the absence of the amygdala

    OpenAIRE

    Tsuchiya, Naotsugu; Moradi, Farshad; Felsen, Csilla; Yamazaki, Madoka; Adolphs, Ralph

    2009-01-01

    The amygdala is thought to process fear-related stimuli rapidly and nonconsciously. We found that an individual with complete bilateral amygdala lesions, who cannot recognize fear from faces, nonetheless showed normal rapid detection and nonconscious processing of those same fearful faces. We conclude that the amygdala is not essential for early stages of fear processing but, instead, modulates recognition and social judgment.

  19. Meta-Analysis of Amygdala Volumes in Children and Adolescents with Bipolar Disorder

    Science.gov (United States)

    Pfeifer, Jonathan C.; Welge, Jeffrey; Strakowski. Stephen M.; Adler, Caleb M.; Delbello, Melissa P.

    2008-01-01

    The size of amygdala of bipolar youths and adults is investigated using neuroimaging studies. Findings showed that smaller volumes of amygdala were observed in youths with bipolar youths compared with children and adolescents without bipolar disorder. The structural amygdala abnormalities in bipolar youths are examined further.

  20. 双酚A暴露对成年小鼠焦虑行为的影响磁%Effects of BPA exposure on anxiety-like behavior in adult mice

    Institute of Scientific and Technical Information of China (English)

    徐晓虹; 王喻; 董芳妮

    2014-01-01

    为研究双酚A(bisphenol-A,BPA)暴露可能对成年小鼠神经行为的影响,将成年小鼠暴露于BPA(0.04,0.4,4和40 mg/(kg· d)12周后,发现BPA(0.04~4 mg/(kg· d))可降低雄鼠血清和脑内的睾酮水平,但对雌鼠血清和脑内的雌二醇水平没有影响.旷场、明暗箱、镜子迷宫和高架十字迷宫等行为模型的检测结果显示,BPA暴露12周对小鼠的活动性和探究意愿没有显著影响,但明显增加雌鼠却减少雄鼠在高架十字迷宫中进入开放臂的次数和开放臂停留时间,表明成年期BPA暴露可加剧雄鼠而减轻雌鼠的焦虑情绪.这些结果提示,长期BPA暴露可性别特异性地影响成年小鼠的焦虑状态,脑内性激素水平的改变可能与此有关.%Bisphenol-A ( BPA) , an environmental endocrine disruptor, attracted attention because of its ad-verse effects on the brain and behavioral development.Previous evidence indicated that perinatal exposure to low levels of BPA affected anxiety-and depression-like behaviors in adult rodents.Because sex hormones played a critical role in neurobehavior in adulthood, it seemed possible that exposure to BPA would have wide-spread effects on these emotional behaviors in adulthood.In the present study, anxiety-and depression-like behaviors were tested after exposure the adult mice to BPA (0.04, 0.4, 4, 40 mg/(kg· d)) for 12 weeks by open field, elevated plus maze, light-dark transition task and mirrored maze.The results showed that, BPA reduced the number of open arm entries and the time spent in open arms in the elevated plus maze of males but increased those of females.These results suggested a BPA-induced enhancement of anxiety-like behavior in males and an anxiolytic effect of BPA in females.Furthermore, BPA (0.04~4 mg/(kg· d)) significantly decreased serum and brain levels of testosterone in males, but no significant influence was found in serum and brain levels of

  1. 左右利手(爪)小鼠模型抑郁和焦虑样行为研究%A study on depression- and anxiety-like behavior in left- and right-handed mice

    Institute of Scientific and Technical Information of China (English)

    曾坤; 王杰思; 李敏; 赵媚

    2012-01-01

    Objective To investigate the relationship between handedness and depression- or anxiety-like behavior in mice. Methods Behavior measuring "handedness" devices were used to test 20 C57BL/6J male mice. After twelve typical paw preference mice, including 6 left-handed and 6 right-handed were identified, these mice underwent spontaneous activity, forced swimming and elevated plus-maze behavioral test. Results Neither total moving distance and duration of spontaneous activity nor the immobility time in the forced swimming test were different between left- and right-handed mice. However, Elevated plus-maze test demonstrated that left-handed mice spend more time in the open arm compared with right-handed mice in the [left handed (47.5 ± 8.689)s vs right handed(26.53± 2.414)s, P < 0.05]. Conclusion Right-handed mice are more susceptible to anxiety-like behavior but not depression-like behavior than left-handed mice.%目的 通过小鼠模型来研究利手是否与抑郁和焦虑样行为有关.方法 利用利爪行为测定装置测试了20只C57BL/6J雄性小鼠,共得到12只有明显用爪偏好的小鼠,其中左利爪6只,右利爪6只,对其进行自发活动和强迫游泳以及高架十字迷宫行为测试,观察两组小鼠在各项测试中的表现.结果 自发活动测试显示左右利爪小鼠的移动距离和时间差异均无统计学意义;强迫游泳实验中左右利爪小鼠的不动时间的差异无统计学意义;高架十字迷宫实验中,左利爪小鼠进入开放臂的时间明显比右利爪小鼠长[左利爪(47.5±8.689)s vs右利爪(26.53±2.414)s,P< 0.05],差异具有统计学意义.结论 提示右利爪小鼠较左利爪小鼠更易出现焦虑样行为,但不同利爪小鼠的抑郁样行为没有差异.

  2. Bilateral lesions of the central but not anterior or posterior parts of the piriform cortex retard amygdala kindling in rats.

    Science.gov (United States)

    Schwabe, K; Ebert, U; Löscher, W

    2000-01-01

    The piriform cortex is thought to be involved in temporal lobe seizure propagation, such as that occurring during kindling of the amygdala or hippocampus. A number of observations suggested that the circuits of the piriform cortex might act as a critical pathway for limbic seizure discharges to assess motor systems, but direct evidence for this suggestion is scarce. Furthermore, the piriform cortex is not a homogeneous structure, which complicates studies on its role in limbic epileptogenesis. We have previously reported data indicating that the central part of the piriform cortex might be particularly involved during amygdala kindling. In order to further evaluate the role of different parts of the piriform cortex during kindling development, we bilaterally destroyed either the central, anterior or posterior piriform cortex by microinjections of ibotenate two weeks before onset of amygdala kindling. Lesions of the anterior piriform cortex hardly affected kindling acquisition, except that fewer animals exhibited stage 3 (unilateral forelimb) seizures compared to sham controls. Lesions of the central piriform cortex significantly retarded kindling, which was due to a decreased progression from stage 3 to stage 4/5 seizures, i.e. the lesioned rats needed significantly longer for the acquisition of generalized clonic seizures in the late stages of kindling development. Lesions of the posterior piriform cortex did not significantly affect kindling development. The data demonstrate that different parts of the piriform cortex mediate qualitatively different effects on amygdala kindling. The central piriform cortex seems to be a neural substrate involved in the continuous development of kindling from stage 3 to stages 4/5, indicating that this part of the piriform cortex may have preferred access, either directly or indirectly, to structures capable of supporting generalized kindled seizure expression.

  3. Prenatal stress alters amygdala functional connectivity in preterm neonates.

    Science.gov (United States)

    Scheinost, Dustin; Kwon, Soo Hyun; Lacadie, Cheryl; Sze, Gordon; Sinha, Rajita; Constable, R Todd; Ment, Laura R

    2016-01-01

    Exposure to prenatal and early-life stress results in alterations in neural connectivity and an increased risk for neuropsychiatric disorders. In particular, alterations in amygdala connectivity have emerged as a common effect across several recent studies. However, the impact of prenatal stress exposure on the functional organization of the amygdala has yet to be explored in the prematurely-born, a population at high risk for neuropsychiatric disorders. We test the hypothesis that preterm birth and prenatal exposure to maternal stress alter functional connectivity of the amygdala using two independent cohorts. The first cohort is used to establish the effects of preterm birth and consists of 12 very preterm neonates and 25 term controls, all without prenatal stress exposure. The second is analyzed to establish the effects of prenatal stress exposure and consists of 16 extremely preterm neonates with prenatal stress exposure and 10 extremely preterm neonates with no known prenatal stress exposure. Standard resting-state functional magnetic resonance imaging and seed connectivity methods are used. When compared to term controls, very preterm neonates show significantly reduced connectivity between the amygdala and the thalamus, the hypothalamus, the brainstem, and the insula (p preterm neonates without exposure to prenatal stress, extremely preterm neonates with exposure to prenatal stress show significantly less connectivity between the left amygdala and the thalamus, the hypothalamus, and the peristriate cortex (p preterm birth. Functional connectivity from the amygdala to other subcortical regions is decreased in preterm neonates compared to term controls. In addition, these data, for the first time, suggest that prenatal stress exposure amplifies these decreases.

  4. The intercalated nuclear complex of the primate amygdala.

    Science.gov (United States)

    Zikopoulos, Basilis; John, Yohan J; García-Cabezas, Miguel Ángel; Bunce, Jamie G; Barbas, Helen

    2016-08-25

    The organization of the inhibitory intercalated cell masses (IM) of the primate amygdala is largely unknown despite their key role in emotional processes. We studied the structural, topographic, neurochemical and intrinsic connectional features of IM neurons in the rhesus monkey brain. We found that the intercalated neurons are not confined to discrete cell clusters, but form a neuronal net that is interposed between the basal nuclei and extends to the dorsally located anterior, central, and medial nuclei of the amygdala. Unlike the IM in rodents, which are prominent in the anterior half of the amygdala, the primate inhibitory net stretched throughout the antero-posterior axis of the amygdala, and was most prominent in the central and posterior extent of the amygdala. There were two morphologic types of intercalated neurons: spiny and aspiny. Spiny neurons were the most abundant; their somata were small or medium size, round or elongated, and their dendritic trees were round or bipolar, depending on location. The aspiny neurons were on average slightly larger and had varicose dendrites with no spines. There were three non-overlapping neurochemical populations of IM neurons, in descending order of abundance: (1) Spiny neurons that were positive for the striatal associated dopamine- and cAMP-regulated phosphoprotein (DARPP-32+); (2) Aspiny neurons that expressed the calcium-binding protein calbindin (CB+); and (3) Aspiny neurons that expressed nitric oxide synthase (NOS+). The unique combinations of structural and neurochemical features of the three classes of IM neurons suggest different physiological properties and function. The three types of IM neurons were intermingled and likely interconnected in distinct ways, and were innervated by intrinsic neurons within the amygdala, or by external sources, in pathways that underlie fear conditioning and anxiety. PMID:27256508

  5. Shared Genetic Factors Influence Amygdala Volumes and Risk for Alcoholism

    Science.gov (United States)

    Dager, Alecia D; McKay, D Reese; Kent, Jack W; Curran, Joanne E; Knowles, Emma; Sprooten, Emma; Göring, Harald HH; Dyer, Thomas D; Pearlson, Godfrey D; Olvera, Rene L; Fox, Peter T; Lovallo, William R; Duggirala, Ravi; Almasy, Laura; Blangero, John; Glahn, David C

    2015-01-01

    Alcohol abuse and dependence (alcohol use disorders, AUDs) are associated with brain shrinkage. Subcortical structures including the amygdala, hippocampus, ventral striatum, dorsal striatum, and thalamus subserve reward functioning and may be particularly vulnerable to alcohol-related damage. These structures may also show pre-existing deficits impacting the development and maintenance of AUD. It remains unclear whether there are common genetic features underlying both subcortical volumes and AUD. In this study, structural brain images were acquired from 872 Mexican-American individuals from extended pedigrees. Subcortical volumes were obtained using FreeSurfer, and quantitative genetic analyses were performed in SOLAR. We hypothesized the following: (1) reduced subcortical volumes in individuals with lifetime AUD relative to unrelated controls; (2) reduced subcortical volumes in individuals with current relative to past AUD; (3) in non-AUD individuals, reduced subcortical volumes in those with a family history of AUD compared to those without; and (4) evidence for common genetic underpinnings (pleiotropy) between AUD risk and subcortical volumes. Results showed that individuals with lifetime AUD showed larger ventricular and smaller amygdala volumes compared to non-AUD individuals. For the amygdala, there were no differences in volume between current vs past AUD, and non-AUD individuals with a family history of AUD demonstrated reductions compared to those with no such family history. Finally, amygdala volume was genetically correlated with the risk for AUD. Together, these results suggest that reduced amygdala volume reflects a pre-existing difference rather than alcohol-induced neurotoxic damage. Our genetic correlation analysis provides evidence for a common genetic factor underlying both reduced amygdala volumes and AUD risk. PMID:25079289

  6. Lesions of the nucleus basalis magnocellularis induced by 192 IgG-saporin block memory enhancement with posttraining norepinephrine in the basolateral amygdala

    OpenAIRE

    Power, Ann E.; Thal, Leon J.; McGaugh, James L.

    2002-01-01

    Extensive evidence indicates that drugs and stress hormones act in the basolateral amygdala (BLA) to modulate memory consolidation. The BLA projects to the nucleus basalis magnocellularis (NBM), which sends broad cholinergic projections to the neocortex. NBM-cortex projections have been implicated in learning, memory storage, and plasticity. The current study investigated whether the cholinergic NBM-cortex projections are involved in BLA-mediated modulation of memory consolidation. Bilateral ...

  7. Rescue of Impaired Fear Extinction and Normalization of Cortico-Amygdala Circuit Dysfunction in a Genetic Mouse Model by Dietary Zinc Restriction

    OpenAIRE

    Whittle, Nigel; Hauschild, Markus; Lubec, Gert; Holmes, Andrew; Singewald, Nicolas

    2010-01-01

    Fear extinction is impaired in neuropsychiatric disorders, including posttraumatic stress disorder. Identifying drugs that facilitate fear extinction in animal models provides leads for novel pharmacological treatments for these disorders. Zinc (Zn) is expressed in neurons in a cortico-amygdala circuit mediating fear extinction, and modulates neurotransmitter systems regulating extinction. We previously found that the 129S1/SvImJ mouse strain (S1) exhibited a profound impairment in fear extin...

  8. New insights on amygdala: Basomedial amygdala regulates the physiological response to social novelty.

    Science.gov (United States)

    Mesquita, Laura Tavares; Abreu, Aline Rezende; de Abreu, Alessandra Rezende; de Souza, Aline Arlindo; de Noronha, Sylvana Rendeiro; Silva, Fernanda Cacilda; Campos, Glenda Siqueira Viggiano; Chianca, Deoclecio Alves; de Menezes, Rodrigo Cunha

    2016-08-25

    The amygdala has been associated with a variety of functions linked to physiological, behavioral and endocrine responses during emotional situations. This brain region is comprised of multiple sub-nuclei. These sub-nuclei belong to the same structure, but may be involved in different functions, thereby making the study of each sub-nuclei important. Yet, the involvement of the basomedial amygdala (BMA) in the regulation of emotional states has yet to be defined. Therefore, the aim of our study was to investigate the regulatory role of the BMA on the responses evoked during a social novelty model and whether the regulatory role depended on an interaction with the dorsomedial hypothalamus (DMH). Our results showed that the chemical inhibition of the BMA by the microinjection of muscimol (γ-aminobutyric acid (GABAA) agonist) promoted increases in mean arterial pressure (MAP) and heart rate (HR), whereas the chemical inhibition of regions near the BMA did not induce such cardiovascular changes. In contrast, the BMA chemical activation by the bilateral microinjection of bicuculline methiodide (BMI; GABAA antagonist), blocked the increases in MAP and HR observed when an intruder rat was suddenly introduced into the cage of a resident rat, and confined to the small cage for 15min. Additionally, the increase in HR and MAP induced by BMA inhibition were eliminated by DMH chemical inhibition. Thus, our data reveal that the BMA is under continuous GABAergic influence, and that its hyperactivation can reduce the physiological response induced by a social novelty condition, possibly by inhibiting DMH neurons. PMID:27261213

  9. Toward a systems-oriented approach to the role of the extended amygdala in adaptive responding.

    Science.gov (United States)

    Waraczynski, Meg

    2016-09-01

    Research into the structure and function of the basal forebrain macrostructure called the extended amygdala (EA) has recently seen considerable growth. This paper reviews that work, with the objectives of identifying underlying themes and developing a common goal towards which investigators of EA function might work. The paper begins with a brief review of the structure and the ontological and phylogenetic origins of the EA. It continues with a review of research into the role of the EA in both aversive and appetitive states, noting that these two seemingly disparate avenues of research converge on the concept of reinforcement - either negative or positive - of adaptive responding. These reviews lead to a proposal as to where the EA may fit in the organization of the basal forebrain, and an invitation to investigators to place their findings in a unifying conceptual framework of the EA as a collection of neural ensembles that mediate adaptive responding.

  10. Synaptic and non-synaptic mechanisms of amygdala recruitment into temporolimbic epileptiform activities.

    Science.gov (United States)

    Klueva, Julia; Munsch, Thomas; Albrecht, Doris; Pape, Hans-Christian

    2003-11-01

    Lateral amygdala (LA) activity during synchronized-epileptiform discharges in temporolimbic circuits was investigated in rat horizontal slices containing the amygdala, hippocampus (Hip), perirhinal (Prh) and lateral entorhinal (LEnt) cortex, through multiple-site extra- and intracellular recording techniques and measurement of the extracellular K+ concentration. Application of 4-aminopyridine (50 microm) induced epileptiform discharges in all regions under study. Slow interictal-like burst discharges persisted in the Prh/LEnt/LA after disconnection of the Hip, seemed to originate in the Prh as shown from time delay analyses, and often preceded the onset of ictal-like activity. Disconnection of the amygdala resulted in de-synchronization of epileptiform discharges in the LA from those in the Prh/LEnt. Interictal-like activity was intracellularly reflected in LA projection neurons as gamma-aminobutyric acid (GABA)A/B receptor-mediated synaptic responses, and depolarizing electrogenic events (spikelets) residing on the initial phase of the GABA response. Spikelets were considered antidromically conducted ectopic action potentials generated at axon terminals, as they were graded in amplitude, were not abolished through hyperpolarizing membrane responses (which effectively blocked evoked orthodromic action potentials), lacked a clear prepotential or synaptic potential, were not affected through blockers of gap junctions, and were blocked through remote application of tetrodotoxin at putative target areas of LA projection neurons. Remote application of a GABAB receptor antagonist facilitated spikelet generation. A transient elevation in the extracellular K+ level averaging 3 mm above baseline occurred in conjunction with interictal-like activity in all areas under study. We conclude that interictal-like discharges in the LA/LEnt/Prh spread in a predictable manner through the synaptic network with the Prh playing a leading role. The rise in extracellular K+ may provide a

  11. Dexamethasone Treatment Leads to Enhanced Fear Extinction and Dynamic Fkbp5 Regulation in Amygdala.

    Science.gov (United States)

    Sawamura, Takehito; Klengel, Torsten; Armario, Antonio; Jovanovic, Tanja; Norrholm, Seth D; Ressler, Kerry J; Andero, Raül

    2016-02-01

    Posttraumatic stress disorder (PTSD) is both a prevalent and debilitating trauma-related disorder associated with dysregulated fear learning at the core of many of its signs and symptoms. Improvements in the currently available psychological and pharmacological treatments are needed in order to improve PTSD treatment outcomes and to prevent symptom relapse. In the present study, we used a putative animal model of PTSD that included presentation of immobilization stress (IMO) followed by fear conditioning (FC) a week later. We then investigated the acute effects of GR receptor activation on the extinction (EXT) of conditioned freezing, using dexamethasone administered systemically which is known to result in suppression of the HPA axis. In our previous work, IMO followed by tone-shock-mediated FC was associated with impaired fear EXT. In this study, we administered dexamethasone 4 h before EXT training and then examined EXT retention (RET) 24 h later to determine whether dexamethasone suppression rescued EXT deficits. Dexamethasone treatment produced dose-dependent enhancement of both EXT and RET. Dexamethasone was also associated with reduced amygdala Fkbp5 mRNA expression following EXT and after RET. Moreover, DNA methylation of the Fkbp5 gene occurred in a dose-dependent and time course-dependent manner within the amygdala. Additionally, we found dynamic changes in epigenetic regulation, including Dnmt and Tet gene pathways, as a function of both fear EXT and dexamethasone suppression of the HPA axis. Together, these data suggest that dexamethasone may serve to enhance EXT by altering Fkbp5-mediated glucocorticoid sensitivity via epigenetic regulation of Fkbp5 expression.

  12. Plasticity-related genes in brain development and amygdala-dependent learning.

    Science.gov (United States)

    Ehrlich, D E; Josselyn, S A

    2016-01-01

    Learning about motivationally important stimuli involves plasticity in the amygdala, a temporal lobe structure. Amygdala-dependent learning involves a growing number of plasticity-related signaling pathways also implicated in brain development, suggesting that learning-related signaling in juveniles may simultaneously influence development. Here, we review the pleiotropic functions in nervous system development and amygdala-dependent learning of a signaling pathway that includes brain-derived neurotrophic factor (BDNF), extracellular signaling-related kinases (ERKs) and cyclic AMP-response element binding protein (CREB). Using these canonical, plasticity-related genes as an example, we discuss the intersection of learning-related and developmental plasticity in the immature amygdala, when aversive and appetitive learning may influence the developmental trajectory of amygdala function. We propose that learning-dependent activation of BDNF, ERK and CREB signaling in the immature amygdala exaggerates and accelerates neural development, promoting amygdala excitability and environmental sensitivity later in life. PMID:26419764

  13. Interactions between chemical and electrical kindling of the rat amygdala.

    Science.gov (United States)

    Wasterlain, C G; Morin, A M; Jonec, V

    1982-09-16

    Holtzman rats were implanted with a chemitrode into the left basolateral amygdala, which could then be stimulated electrically (400 microA, 1 s, AC) or chemically by injection of carbachol (1 microliter, 2.7 nmoles, sterile, isotonic). Group A received a daily injection of carbachol and developed kindled seizures. Group B received carbachol mixed with equimolar atropine, which blocked seizures and kindling. After 20 injections, both groups were stimulated electrically once a day and kindled at similar rates. Two additional groups received electrical or sham stimulation, followed by carbachol kindling. No transfer effects were observed. Four additional groups received 27 nmoles of atropine through the chemitrode, followed 15 min later by electrical stimulation, sham stimulation, carbachol injection or saline injection, respectively. Atropine completely blocked carbachol kindling but did not alter the rate of electrical kindling. No different in the number of QNB binding sites was observed in the amygdala of rats sacrificed two weeks after full electrical kindling. The lack of interaction between electrical and carbachol kindling and the failure of atropine to block electrical kindling of the amygdala suggest that the activation of local muscarinic synapses, while essential for carbachol kindling, is not required for electrical kindling of the rat amygdala.

  14. A Model of Differential Amygdala Activation in Psychopathy

    Science.gov (United States)

    Moul, Caroline; Killcross, Simon; Dadds, Mark R.

    2012-01-01

    This article introduces a novel hypothesis regarding amygdala function in psychopathy. The first part of this article introduces the concept of psychopathy and describes the main cognitive and affective impairments demonstrated by this population; that is, a deficit in fear-recognition, lower conditioned fear responses and poor performance in…

  15. The Role of the Basolateral Amygdala in Punishment

    Science.gov (United States)

    Dit-Bressel, Philip Jean-Richard; McNally, Gavan P.

    2015-01-01

    Aversive stimuli not only support fear conditioning to their environmental antecedents, they also punish behaviors that cause their occurrence. The amygdala, especially the basolateral nucleus (BLA), has been critically implicated in Pavlovian fear learning but its role in punishment remains poorly understood. Here, we used a within-subjects…

  16. Dynamic modulation of amygdala-hippocampal connectivity by emotional arousal

    NARCIS (Netherlands)

    Fastenrath, M.; Coynel, D.; Spalek, K.; Milnik, A.; Gschwind, L.; Roozendaal, B.; Papassotiropoulos, A.; Quervain, D.J. de

    2014-01-01

    Positive and negative emotional events are better remembered than neutral events. Studies in animals suggest that this phenomenon depends on the influence of the amygdala upon the hippocampus. In humans, however, it is largely unknown how these two brain structures functionally interact and whether

  17. GABAergic mechanisms contributing to categorical amygdala responses to chemosensory signals.

    Science.gov (United States)

    Westberry, Jenne M; Meredith, Michael

    2016-09-01

    Chemosensory stimuli from conspecific and heterospecific animals, elicit categorically different immediate-early gene response-patterns in medial amygdala in male hamsters and mice. We previously showed that conspecific signals activate posterior (MeP) as well as anterior medial amygdala (MeA), and especially relevant heterospecific signals such as chemosensory stimuli from potential predators also activate MeP in mice. Other heterospecific chemosignals activate MeA, but not MeP. Here we show that male hamster amygdala responds significantly differentially to different conspecific signals, by activating different proportions of cells of different phenotype, possibly leading to differential activation of downstream circuits. Heterospecific signals that fail to activate MeP do activate GABA-immunoreactive cells in the adjacent caudal main intercalated nucleus (mICNc) and elicit selective suppression of MeP cells bearing GABA-Receptors, suggesting GABA inhibition in MeP by GABAergic cells in mICNc. Overall, work presented here suggests that medial amygdala may discriminate between important conspecific social signals, distinguish them from the social signals of other species and convey that information to brain circuits eliciting appropriate social behavior. PMID:27329335

  18. Disconnection Between Amygdala and Medial Prefrontal Cortex in Psychotic Disorders.

    Science.gov (United States)

    Mukherjee, Prerona; Sabharwal, Amri; Kotov, Roman; Szekely, Akos; Parsey, Ramin; Barch, Deanna M; Mohanty, Aprajita

    2016-07-01

    Distracting emotional information impairs attention more in schizophrenia (SCZ) than in never-psychotic individuals. However, it is unclear whether this impairment and its neural circuitry is indicative generally of psychosis, or specifically of SCZ, and whether it is even more specific to certain SCZ symptoms (eg, deficit syndrome). It is also unclear if this abnormality contributes to impaired behavioral performance and real-world functioning. Functional imaging data were recorded while individuals with SCZ, bipolar disorder with psychosis (BDP) and no history of psychotic disorders (CON) attended to identity of faces while ignoring their emotional expressions. We examined group differences in functional connectivity between amygdala, involved in emotional evaluation, and sub-regions of medial prefrontal cortex (MPFC), involved in emotion regulation and cognitive control. Additionally, we examined correlation of this connectivity with deficit syndrome and real-world functioning. Behaviorally, SCZ showed the worst accuracy when matching the identity of emotional vs neutral faces. Neurally, SCZ showed lower amygdala-MPFC connectivity than BDP and CON. BPD did not differ from CON, neurally or behaviorally. In patients, reduced amygdala-MPFC connectivity during emotional distractors was related to worse emotional vs neutral accuracy, greater deficit syndrome severity, and unemployment. Thus, reduced amygdala-MPFC functional connectivity during emotional distractors reflects a deficit that is specific to SCZ. This reduction in connectivity is associated with worse clinical and real-world functioning. Overall, these findings provide support for the specificity and clinical utility of amygdala-MPFC functional connectivity as a potential neural marker of SCZ. PMID:26908926

  19. Phosphodiesterase 4 inhibitor rolipram prevents depression- and anxiety-like behaviors in rats exposed to chronic restraint stress%磷酸二酯酶4抑制剂咯利普兰逆转慢性束缚应激诱导的大鼠抑郁和焦虑样行为

    Institute of Scientific and Technical Information of China (English)

    张俊芳; 张忠敏; 赵鑫; 刘爱明; 郭洁洁; 沈璐艳; 王钦文; 王闯

    2012-01-01

    difference of the locomotor activity among all groups before stress was observed. After repeated stress, the body weight,and the crossing, rearing and grooming in open field test were lower than those in control group, and LiCl and rolipram reversed these effects significantly. In addition, in comparison with con-trol group, the immobility in forced swimming test was increased, the climbing in forced swimmming test and the open -arm exploration in elevated plus - maze were decreased and the expression of p - CREB, BDNF, p - Ser21 - GSK3α and p - Ser9 - GSK3β was down - regulated. Stress induced depression - and anxiety - like behaviors, and rolipram reversed these changes. The LiCl showed similar effects as rolipram except for the expression of p - CREB and BDNF. No significant difference of the expression of p - Tyr279 - GSK3α, p -Tyr216 - GSK3β, total GSK3α and total GSK3β among all groups was found. (2)The expression of PDE4D was increased, the expression of PKA, p - CREB and p - Ser9 - GSK3β was de-creased in the hippocampus induce by restraint stress. However, the effect of rolipram on the expression of PKA, p - CREB and p - Ser9 - GSK3β was blocked by PKA inhibitor H89. CONCLUSION: Rolipram significantly reduces the depression -and anxiety - like behaviors, possibly through CREB/BDNF signaling and inhibitory serine - phosphorylation of GSK3 -mediated signaling. Importantly, the CREB/BDNF signaling also plays a key role in the down - regulation of serine - phos-phorylation of GSK3.

  20. Amygdala Signaling during Foraging in a Hazardous Environment.

    Science.gov (United States)

    Amir, Alon; Lee, Seung-Chan; Headley, Drew B; Herzallah, Mohammad M; Pare, Denis

    2015-09-23

    We recorded basolateral amygdala (BL) neurons in a seminaturalistic foraging task. Rats had to leave their nest to retrieve food in an elongated arena inhabited by a mechanical predator. There were marked trial-to-trial variations in behavior. After poking their head into the foraging arena and waiting there for a while, rats either retreated to their nest or initiated foraging. Before initiating foraging, rats waited longer on trials that followed failed than successful trials indicating that prior experience influenced behavior. Upon foraging initiation, most principal cells (Type-1) reduced their firing rate, while in a minority (Type-2) it increased. When rats aborted foraging, Type-1 cells increased their firing rates, whereas in Type-2 cells it did not change. Surprisingly, the opposite activity profiles of Type-1 and Type-2 units were also seen in control tasks devoid of explicit threats or rewards. The common correlate of BL activity across these tasks was movement velocity, although an influence of position was also observed. Thus depending on whether rats initiated movement or not, the activity of BL neurons decreased or increased, regardless of whether threat or rewards were present. Therefore, BL activity not only encodes threats or rewards, but is closely related to behavioral output. We propose that higher order cortical areas determine task-related changes in BL activity as a function of reward/threat expectations and internal states. Because Type-1 and Type-2 cells likely form differential connections with the central amygdala (controlling freezing), this process would determine whether movement aimed at attaining food or exploration is suppressed or facilitated. Significance statement: For decades, amygdala research has been dominated by pavlovian and operant conditioning paradigms. This work has led to the view that amygdala neurons signal threats or rewards, in turn causing defensive or approach behaviors. However, the artificial circumstances of

  1. Estrogen receptor beta activation prevents glucocorticoid receptor-dependent effects of the central nucleus of the amygdala on behavior and neuroendocrine function.

    Science.gov (United States)

    Weiser, Michael J; Foradori, Chad D; Handa, Robert J

    2010-06-01

    Neuropsychiatric disorders such as anxiety and depression have formidable economic and societal impacts. A dysregulation of the hypothalamo-pituitary-adrenal (HPA) axis leading to elevated endogenous glucocorticoid levels is often associated with such disorders. Chronically high glucocorticoid levels may act upon the central nucleus of the amygdala (CeA) to alter normally adaptive responses into those that are maladaptive and detrimental. In addition to glucocorticoids, other steroid hormones such as estradiol and androgens can also modify hormonal and behavioral responses to threatening stimuli. In particular, estrogen receptor beta (ERbeta) agonists have been shown to be anxiolytic. Consequently, these experiments addressed the hypothesis that the selective stimulation of glucocorticoid receptor (GR) in the CeA would increase anxiety-like behaviors and HPA axis reactivity to stress, and further, that an ERbeta agonist could modulate these effects. Young adult female Sprague-Dawley rats were ovariectomized and bilaterally implanted via stereotaxic surgery with a wax pellet containing the selective GR agonist RU28362 or a blank pellet, to a region just dorsal to the CeA. Four days later, animals were administered the ERbeta agonist S-DPN or vehicle (with four daily sc injections). Anxiety-type behaviors were measured using the elevated plus maze (EPM). Central RU28362 implants caused significantly higher anxiety-type behaviors in the EPM and greater plasma CORT levels than controls given a blank central implant. Moreover, S-DPN treated animals, regardless of type of central implant, displayed significantly lower anxiety-type behaviors and post-EPM plasma CORT levels than vehicle treated controls or vehicle treated animals implanted with RU28362. These results indicate that selective activation of GR within the CeA is anxiogenic, and peripheral administration of an ERbeta agonist can overcome this effect. These data suggest that estradiol signaling via ERbeta

  2. Behavioral and neurophysiological evidence that lateral paracapsular GABAergic synapses in the basolateral amygdala contribute to the acquisition and extinction of fear learning.

    Science.gov (United States)

    Skelly, M J; Chappell, A M; Ariwodola, O J; Weiner, J L

    2016-01-01

    The lateral/basolateral amygdala (BLA) is crucial to the acquisition and extinction of Pavlovian fear conditioning, and synaptic plasticity in this region is considered to be a neural correlate of learned fear. We recently reported that activation of BLA β3-adrenoreceptors (β3-ARs) selectively enhances lateral paracapsular (LPC) feed-forward GABAergic inhibition onto BLA pyramidal neurons, and that intra-BLA infusion of a β3-AR agonist reduces measures of unconditioned anxiety-like behavior. Here, we utilized a combination of behavioral and electrophysiological approaches to characterize the role of BLA LPCs in the acquisition of fear and extinction learning in adult male Long-Evans rats. We report that intra-BLA microinjection of β3-AR agonists (BRL37344 or SR58611A, 1μg/0.5μL/side) prior to training fear conditioning or extinction blocks the expression of these behaviors 24h later. Furthermore,ex vivo low-frequency stimulation of the external capsule (LFS; 1Hz, 15min), which engages LPC synapses, induces LTP of BLA fEPSPs, while application of a β3-AR agonist (SR58611A, 5μM) induces LTD of fEPSPs when combined with LFS. Interestingly, fEPSP LTP is not observed in recordings from fear conditioned animals, suggesting that fear learning may engage the same mechanisms that induce synaptic plasticity at this input. In support of this, we find that LFS produces LTD of inhibitory postsynaptic currents (iLTD) at LPC GABAergic synapses, and that this effect is also absent following fear conditioning. Taken together, these data provide preliminary evidence that modulation of LPC GABAergic synapses can influence the acquisition and extinction of fear learning and related synaptic plasticity in the BLA.

  3. Acute stress modulates genotype effects on amygdala processing in humans

    OpenAIRE

    Cousijn, Helena; Rijpkema, Mark; Qin, Shaozheng; van Marle, Hein J. F.; Franke, Barbara; Hermans, Erno J.; van Wingen, Guido; Fernández, Guillén

    2010-01-01

    Probing gene–environment interactions that affect neural processing is crucial for understanding individual differences in behavior and disease vulnerability. Here, we tested whether the current environmental context, which affects the acute brain state, modulates genotype effects on brain function in humans. We manipulated the context by inducing acute psychological stress, which increases noradrenergic activity, and probed its effect on tonic activity and phasic responses in the amygdala us...

  4. Gender effects on amygdala morphometry in adolescent marijuana users

    OpenAIRE

    McQueeny, Tim; Padula, Claudia B.; Price, Jenessa; Medina, Krista Lisdahl; Logan, Patrick; Tapert, Susan F.

    2011-01-01

    Adolescent developments in limbic structures and the endogenous cannabinoid system suggest that teenagers may be more vulnerable to the negative consequences of marijuana use. This study examined the relationships between amygdala volume and internalizing symptoms in teenaged chronic marijuana users. Participants were 35 marijuana users and 47 controls ages 16–19 years. Exclusions included psychiatric (e.g., mood and anxiety) or neurologic disorders. Substance use, internalizing (anxiety/depr...

  5. Categorization of biologically relevant chemical signals in the medial amygdala

    OpenAIRE

    Samuelsen, Chad L.; Meredith, Michael

    2009-01-01

    Many species employ chemical signals to convey messages between members of the same species (conspecific), but chemosignals may also provide information to another species (heterospecific). Here, we found that conspecific chemosignals (male, female mouse urine) increased immediate early gene-protein (IEG) expression in both anterior and posterior medial amygdala of male mice, whereas most heterospecific chemosignals (e.g.: hamster vaginal fluid, steer urine) increased expression only in anter...

  6. Impaired recognition of social emotions following amygdala damage

    OpenAIRE

    Adolphs, Ralph; Baron-Cohen, Simon; Tranel, Daniel

    2002-01-01

    Lesion, functional imaging, and single-unit studies in human and nonhuman animals have demonstrated a role for the amygdala in processing stimuli with emotional and social significance. We investigated the recognition of a wide variety of facial expressions, including basic emotions (e.g., happiness, anger) and social emotions (e.g., guilt, admiration, flirtatiousness). Prior findings with a standardized set of stimuli indicated that recognition of social emotions can be signaled by the eye r...

  7. Hippocampus and amygdala morphology in attention-deficit/hyperactivity disorder

    DEFF Research Database (Denmark)

    Plessen, Kerstin J; Bansal, Ravi; Zhu, Hongtu;

    2006-01-01

    CONTEXT: Limbic structures are implicated in the genesis of attention-deficit/hyperactivity disorder (ADHD) by the presence of mood and cognitive disturbances in affected individuals and by elevated rates of mood disorders in family members of probands with ADHD. OBJECTIVE: To study the morphology...... healthy controls. MAIN OUTCOME MEASURES: Volumes and measures of surface morphology for the hippocampus and amygdala. RESULTS: The hippocampus was larger bilaterally in the ADHD group than in the control group (t = 3.35; P

  8. Amygdala involvement in human avoidance, escape and approach behavior

    OpenAIRE

    Schlund, Michael W.; Cataldo, Michael F

    2010-01-01

    Many forms of psychopathology and substance abuse problems are characterized by chronic ritualized forms of avoidance and escape behavior that are designed to control or modify external or internal (i.e, thoughts, emotions, bodily sensations) threats. In this functional magnetic resonance imaging investigation, we examined amygdala reactivity to threatening cues when avoidance responding consistently prevented contact with an upcoming aversive event (money loss). In addition, we examined esca...

  9. Postnatal maturation of GABAergic transmission in the rat basolateral amygdala

    OpenAIRE

    David E Ehrlich; Ryan, Steven J.; Hazra, Rimi; Guo, Ji-Dong; Rainnie, Donald G.

    2013-01-01

    Many psychiatric disorders, including anxiety and autism spectrum disorders, have early ages of onset and high incidence in juveniles. To better treat and prevent these disorders, it is important to first understand normal development of brain circuits that process emotion. Healthy and maladaptive emotional processing involve the basolateral amygdala (BLA), dysfunction of which has been implicated in numerous psychiatric disorders. Normal function of the adult BLA relies on a fine balance of ...

  10. Psychopaths Show Enhanced Amygdala Activation during Fear Conditioning.

    Science.gov (United States)

    Schultz, Douglas H; Balderston, Nicholas L; Baskin-Sommers, Arielle R; Larson, Christine L; Helmstetter, Fred J

    2016-01-01

    Psychopathy is a personality disorder characterized by emotional deficits and a failure to inhibit impulsive behavior and is often subdivided into "primary" and "secondary" psychopathic subtypes. The maladaptive behavior related to primary psychopathy is thought to reflect constitutional "fearlessness," while the problematic behavior related to secondary psychopathy is motivated by other factors. The fearlessness observed in psychopathy has often been interpreted as reflecting a fundamental deficit in amygdala function, and previous studies have provided support for a low-fear model of psychopathy. However, many of these studies fail to use appropriate screening procedures, use liberal inclusion criteria, or have used unconventional approaches to assay amygdala function. We measured brain activity with BOLD imaging in primary and secondary psychopaths and non-psychopathic control subjects during Pavlovian fear conditioning. In contrast to the low-fear model, we observed normal fear expression in primary psychopaths. Psychopaths also displayed greater differential BOLD activity in the amygdala relative to matched controls. Inverse patterns of activity were observed in the anterior cingulate cortex (ACC) for primary versus secondary psychopaths. Primary psychopaths exhibited a pattern of activity in the dorsal and ventral ACC consistent with enhanced fear expression, while secondary psychopaths exhibited a pattern of activity in these regions consistent with fear inhibition. These results contradict the low-fear model of psychopathy and suggest that the low fear observed for psychopaths in previous studies may be specific to secondary psychopaths. PMID:27014154

  11. Electrical amygdala kindling in alcohol-withdrawal kindled rats.

    Science.gov (United States)

    Ulrichsen, J; Woldbye, D P; Madsen, T M; Clemmesen, L; Haugbøl, S; Olsen, C H; Laursen, H; Bolwig, T G; Hemmingsen, R

    1998-01-01

    Repeated alcohol withdrawal has been shown to kindle seizure activity. The purpose of the present investigation was to study electrical amygdala kindling in rats previously exposed to alcohol-withdrawal kindling. In three independent experiments, male Wistar rats were subjected to multiple episodes each consisting of 2 days of severe alcohol intoxication and 5 days of alcohol withdrawal. In the first experiment, the alcohol-withdrawal kindled animals were divided into two groups depending on whether spontaneous alcohol-withdrawal seizures were observed in episodes 10-13. In the second and third experiments, the alcohol-withdrawal kindled animals were compared to a group in which alcohol-withdrawal kindling was prevented by diazepam treatment during the withdrawal reactions in order to discriminate between the effect of withdrawal and intoxication. Electrical kindling was initiated 28-35 days after the last alcohol dose by exposing the animals to daily electrical stimulations of the right amygdala. The results showed that amygdala kindling was facilitated in alcohol-withdrawal kindled animals which showed spontaneous withdrawal seizure activity, compared with animals exposed to multiple episodes of alcohol withdrawal which did not develop withdrawal seizures or with animals exposed to a single episode of alcohol intoxication. When compared to the control group, the alcohol-withdrawal kindled group with seizures also kindled at a faster rate, but the difference did not reach statistical significance and therefore the results must be regarded as preliminary at present.

  12. Psychopaths Show Enhanced Amygdala Activation during Fear Conditioning.

    Science.gov (United States)

    Schultz, Douglas H; Balderston, Nicholas L; Baskin-Sommers, Arielle R; Larson, Christine L; Helmstetter, Fred J

    2016-01-01

    Psychopathy is a personality disorder characterized by emotional deficits and a failure to inhibit impulsive behavior and is often subdivided into "primary" and "secondary" psychopathic subtypes. The maladaptive behavior related to primary psychopathy is thought to reflect constitutional "fearlessness," while the problematic behavior related to secondary psychopathy is motivated by other factors. The fearlessness observed in psychopathy has often been interpreted as reflecting a fundamental deficit in amygdala function, and previous studies have provided support for a low-fear model of psychopathy. However, many of these studies fail to use appropriate screening procedures, use liberal inclusion criteria, or have used unconventional approaches to assay amygdala function. We measured brain activity with BOLD imaging in primary and secondary psychopaths and non-psychopathic control subjects during Pavlovian fear conditioning. In contrast to the low-fear model, we observed normal fear expression in primary psychopaths. Psychopaths also displayed greater differential BOLD activity in the amygdala relative to matched controls. Inverse patterns of activity were observed in the anterior cingulate cortex (ACC) for primary versus secondary psychopaths. Primary psychopaths exhibited a pattern of activity in the dorsal and ventral ACC consistent with enhanced fear expression, while secondary psychopaths exhibited a pattern of activity in these regions consistent with fear inhibition. These results contradict the low-fear model of psychopathy and suggest that the low fear observed for psychopaths in previous studies may be specific to secondary psychopaths.

  13. Psychopaths show enhanced amygdala activation during fear conditioning

    Directory of Open Access Journals (Sweden)

    Douglas eSchultz

    2016-03-01

    Full Text Available Psychopathy is a personality disorder characterized by emotional deficits and a failure to inhibit impulsive behavior and is often subdivided into primary and secondary psychopathic subtypes. The maladaptive behavior related to primary psychopathy is thought to reflect constitutional fearlessness, while the problematic behavior related to secondary psychopathy is motivated by other factors. The fearlessness observed in psychopathy has often been interpreted as reflecting a fundamental deficit in amygdala function, and previous studies have provided support for a low-fear model of psychopathy. However, many of these studies fail to use appropriate screening procedures, use liberal inclusion criteria, or have used unconventional approaches to assay amygdala function. We measured brain activity with BOLD imaging in primary and secondary psychopaths and non-psychopathic control subjects during Pavlovian fear conditioning. In contrast to the low-fear model, we observed normal fear expression in primary psychopaths. Psychopaths also displayed greater differential BOLD activity in the amygdala relative to matched controls. Inverse patterns of activity were observed in the anterior cingulate cortex (ACC for primary versus secondary psychopaths. Primary psychopaths exhibited a pattern of activity in the dorsal and ventral ACC consistent with enhanced fear expression, while secondary psychopaths exhibited a pattern of activity in these regions consistent with fear inhibition. These results contradict the low-fear model of psychopathy and suggest that the low fear observed for psychopaths in previous studies may be specific to secondary psychopaths.

  14. Prefrontal-amygdala fear networks come into focus.

    Science.gov (United States)

    Arruda-Carvalho, Maithe; Clem, Roger L

    2015-01-01

    The ability to form associations between aversive threats and their predictors is fundamental to survival. However, fear and anxiety in excess are detrimental and are a hallmark of psychiatric diseases such as post-traumatic stress disorder (PTSD). PTSD symptomatology includes persistent and intrusive thoughts of an experienced trauma, suggesting an inability to downregulate fear when a corresponding threat has subsided. Convergent evidence from human and rodent studies supports a role for the medial prefrontal cortex (mPFC)-amygdala network in both PTSD and the regulation of fear memory expression. In particular, current models stipulate that the prelimbic (PL) and infralimbic (IL) subdivisions of the rodent mPFC bidirectionally regulate fear expression via differential recruitment of amygdala neuronal subpopulations. However, an array of recent studies that employ new technical approaches has fundamentally challenged this interpretation. Here we explore how a new emphasis on the contribution of inhibitory neuronal populations, subcortical structures and the passage of time is reshaping our understanding of mPFC-amygdala circuits and their control over fear. PMID:26578902

  15. Rapid amygdala responses during trace fear conditioning without awareness.

    Directory of Open Access Journals (Sweden)

    Nicholas L Balderston

    Full Text Available The role of consciousness in learning has been debated for nearly 50 years. Recent studies suggest that conscious awareness is needed to bridge the gap when learning about two events that are separated in time, as is true for trace fear conditioning. This has been repeatedly shown and seems to apply to other forms of classical conditioning as well. In contrast to these findings, we show that individuals can learn to associate a face with the later occurrence of a shock, even if they are unable to perceive the face. We used a novel application of magnetoencephalography (MEG to non-invasively record neural activity from the amygdala, which is known to be important for fear learning. We demonstrate rapid (∼ 170-200 ms amygdala responses during the stimulus free period between the face and the shock. These results suggest that unperceived faces can serve as signals for impending threat, and that rapid, automatic activation of the amygdala contributes to this process. In addition, we describe a methodology that can be applied in the future to study neural activity with MEG in other subcortical structures.

  16. Rapid amygdala responses during trace fear conditioning without awareness.

    Science.gov (United States)

    Balderston, Nicholas L; Schultz, Douglas H; Baillet, Sylvain; Helmstetter, Fred J

    2014-01-01

    The role of consciousness in learning has been debated for nearly 50 years. Recent studies suggest that conscious awareness is needed to bridge the gap when learning about two events that are separated in time, as is true for trace fear conditioning. This has been repeatedly shown and seems to apply to other forms of classical conditioning as well. In contrast to these findings, we show that individuals can learn to associate a face with the later occurrence of a shock, even if they are unable to perceive the face. We used a novel application of magnetoencephalography (MEG) to non-invasively record neural activity from the amygdala, which is known to be important for fear learning. We demonstrate rapid (∼ 170-200 ms) amygdala responses during the stimulus free period between the face and the shock. These results suggest that unperceived faces can serve as signals for impending threat, and that rapid, automatic activation of the amygdala contributes to this process. In addition, we describe a methodology that can be applied in the future to study neural activity with MEG in other subcortical structures.

  17. Prefrontal-amygdala fear networks come into focus

    Directory of Open Access Journals (Sweden)

    Maithe eArruda-Carvalho

    2015-10-01

    Full Text Available The ability to form associations between aversive threats and their predictors is fundamental to survival. However, fear and anxiety in excess are detrimental and are a hallmark of psychiatric diseases such as post-traumatic stress disorder (PTSD. PTSD symptomatology includes persistent and intrusive thoughts of an experienced trauma, suggesting an inability to downregulate fear when a corresponding threat has subsided. Convergent evidence from human and rodent studies supports a role for the medial prefrontal cortex (mPFC-amygdala network in both PTSD and the regulation of fear memory expression. In particular, current models stipulate that the prelimbic and infralimbic subdivisions of the rodent mPFC bidirectionally regulate fear expression via differential recruitment of amygdala neuronal subpopulations. However, an array of recent studies that employ new technical approaches has fundamentally challenged this interpretation. Here we explore how a new emphasis on the contribution of inhibitory neuronal populations, subcortical structures and the passage of time is reshaping our understanding of mPFC-amygdala circuits and their control over fear.

  18. Abnormal fear conditioning and amygdala processing in an animal model of autism

    OpenAIRE

    Markram, Kamila; Rinaldi, Tania; La Mendola, Deborah; Sandi, Carmen; Markram, Henry

    2008-01-01

    A core feature of autism spectrum disorders is the impairment in social interactions. Among other brain regions, a deficit in amygdala processing has been suggested to underlie this impairment, but whether the amygdala is processing fear abnormally in autism, is yet not clear. We used the valproic acid (VPA) rat model of autism to (a) screen for autism-like symptoms in rats, (b) test for alterations in amygdala-dependent fear processing, and (c) evaluate neuronal reactivity and synaptic plast...

  19. Bi-Directional Tuning of Amygdala Sensitivity in Combat Veterans Investigated with fMRI.

    Directory of Open Access Journals (Sweden)

    Tom Brashers-Krug

    Full Text Available Combat stress can be followed by persistent emotional consequences. It is thought that these emotional consequences are caused in part by increased amygdala reactivity. It is also thought that amygdala hyper-reactivity results from decreased inhibition from portions of the anterior cingulate cortex (ACC in which activity is negatively correlated with activity in the amygdala. However, experimental support for these proposals has been inconsistent.We showed movies of combat and civilian scenes during a functional magnetic resonance imaging (fMRI session to 50 veterans of recent combat. We collected skin conductance responses (SCRs as measures of emotional arousal. We examined the relation of blood oxygenation-level dependent (BOLD signal in the amygdala and ACC to symptom measures and to SCRs.Emotional arousal, as measured with SCR, was greater during the combat movie than during the civilian movie and did not depend on symptom severity. As expected, amygdala signal during the less-arousing movie increased with increasing symptom severity. Surprisingly, during the more-arousing movie amygdala signal decreased with increasing symptom severity. These differences led to the unexpected result that amygdala signal in highly symptomatic subjects was lower during the more-arousing movie than during the less-arousing movie. Also unexpectedly, we found no significant inverse correlation between any portions of the amygdala and ACC. Rather, signal throughout more than 80% of the ACC showed a strong positive correlation with signal throughout more than 90% of the amygdala.Amygdala reactivity can be tuned bi-directionally, either up or down, in the same person depending on the stimulus and the degree of post-traumatic symptoms. The exclusively positive correlations in BOLD activity between the amygdala and ACC contrast with findings that have been cited as evidence for inhibitory control of the amygdala by the ACC. The conceptualization of post

  20. The Amygdala and the Relevance Detection Theory of Autism: An Evolutionary Perspective

    OpenAIRE

    Tiziana Zalla; Marco Sperduti

    2013-01-01

    In the last few decades, there has been increasing interest in the role of the amygdala in psychiatric disorders and in particular its contribution to the socio-emotional impairments in autism spectrum disorders (ASDs). Given that the amygdala is a component structure of the “social brain”, several theoretical explanations compatible with amygdala dysfunction have been proposed to account for socio-emotional impairments in ASDs, including abnormal eye contact, gaze monitoring, face processing...

  1. Amygdala Subregions Tied to SSRI and Placebo Response in Patients with Social Anxiety Disorder

    OpenAIRE

    Faria, Vanda; Appel, Lieuwe; Åhs, Fredrik; Linnman, Clas; Pissiota, Anna; Frans, Örjan; Bani, Massimo; Bettica, Paolo; Pich, Emilio M; Jacobsson, Eva; Wahlstedt, Kurt; Fredrikson, Mats; Furmark, Tomas

    2012-01-01

    The amygdala is a key structure in the pathophysiology of anxiety disorders, and a putative target for anxiolytic treatments. Selective serotonin reuptake inhibitors (SSRIs) and placebo seem to induce anxiolytic effects by attenuating amygdala responsiveness. However, conflicting amygdala findings have also been reported. Moreover, the neural profile of responders and nonresponders is insufficiently characterized and it remains unknown whether SSRIs and placebo engage common or distinct amygd...

  2. The Role of Amygdala in Emotional and Social Functions: Implications for Temporal Lobe Epilepsy

    OpenAIRE

    Cristinzio Perrin, Chiara; Vuilleumier, Patrik

    2007-01-01

    Temporal lobe epilepsy is among the most frequent causes of chronic and drug-resistant seizure disorders. It is typically associated with lesions involving critical limbic structures within the anterior medial temporal lobe, such as the amygdala and hippocampus. While the role of the hippocampus and adjacent cortical regions in memory function is now well established, the role of the amygdala and related brain circuits is still poorly known. The amygdala is a complex neural structure implicat...

  3. The impact of puberty and social anxiety on amygdala activation to faces in adolescence

    OpenAIRE

    Ferri, Jamie; Bress, Jennifer N.; Eaton, Nicholas R.; Proudfit, Greg Hajcak

    2014-01-01

    Adolescence is associated with the onset of puberty, shifts in social and emotional behavior, and an increased vulnerability to social anxiety disorder. These transitions coincide with changes in amygdala response to social and affective stimuli. Utilizing an emotional face-matching task, we examined amygdala response to peer-aged neutral and fearful faces in relation to puberty and social anxiety in a sample of 60 adolescent females between the ages of 8 and 15. We observed amygdala activati...

  4. Understanding amygdala responsiveness to fearful expressions through the lens of psychopathy and altruism.

    Science.gov (United States)

    Marsh, Abigail A

    2016-06-01

    Because the face is the central focus of human social interactions, emotional facial expressions provide a unique window into the emotional lives of others. They play a particularly important role in fostering empathy, which entails understanding and responding to others' emotions, especially distress-related emotions such as fear. This Review considers how fearful facial as well as vocal and postural expressions are interpreted, with an emphasis on the role of the amygdala. The amygdala may be best known for its role in the acquisition and expression of conditioned fear, but it also supports the perception and recognition of others' fear. Various explanations have been supplied for the amygdala's role in interpreting and responding to fearful expressions. They include theories that amygdala responses to fearful expressions 1) reflect heightened vigilance in response to uncertain danger, 2) promote heightened attention to the eye region of faces, 3) represent a response to an unconditioned aversive stimulus, or 4) reflect the generation of an empathic fear response. Among these, only empathic fear explains why amygdala lesions would impair fear recognition across modalities. Supporting the possibility of a link between fundamental empathic processes and amygdala responses to fear is evidence that impaired fear recognition in psychopathic individuals results from amygdala dysfunction, whereas enhanced fear recognition in altruistic individuals results from enhanced amygdala function. Empathic concern and caring behaviors may be fostered by sensitivity to signs of acute distress in others, which relies on intact functioning of the amygdala. PMID:26366635

  5. Association between amygdala volume and anxiety level: magnetic resonance imaging (MRI) study in autistic children.

    Science.gov (United States)

    Juranek, Jenifer; Filipek, Pauline A; Berenji, Gholam R; Modahl, Charlotte; Osann, Kathryn; Spence, M Anne

    2006-12-01

    Our objective was to evaluate brain-behavior relationships between amygdala volume and anxious/depressed scores on the Child Behavior Checklist in a well-characterized population of autistic children. Volumes for the amygdala, hippocampus, and whole brain were obtained from three-dimensional magnetic resonance images (MRIs) captured from 42 children who met the criteria for autistic disorder. Anxious/depressed symptoms were assessed in these children by the Anxious/Depressed subscale of the Child Behavior Checklist. To investigate the association between anxious/depressed scores on the Child Behavior Checklist and amygdala volume, data were analyzed using linear regression methods with Pearson correlation coefficients. A multivariate model was used to adjust for potential covariates associated with amygdala volume, including age at MRI and total brain size. We found that anxious/depressed symptoms were significantly correlated with increased total amygdala volume (r = .386, P = .012) and right amygdala volume (r = .469, P = .002). The correlation between anxious/depressed symptoms and left amygdala volume did not reach statistical significance (r = .249, P = .112). Child Behavior Checklist anxious/depressed scores were found to be a significant predictor of amygdala total (P = .014) and right amygdala (P = .002) volumes. In conclusion, we have identified a significant brain-behavior relationship between amygdala volume and anxious/depressed scores on the Child Behavior Checklist in our autistic cohort. This specific relationship has not been reported in autism. However, the existing literature on human psychiatry and behavior supports our reported evidence for a neurobiologic relationship between symptoms of anxiety and depression with amygdala structure and function. Our results highlight the importance of characterizing comorbid psychiatric symptomatology in autism. The abundance of inconsistent findings in the published literature on autism might reflect

  6. Progressively Disrupted Intrinsic Functional Connectivity of Basolateral Amygdala in Very Early Alzheimer’s Disease

    Science.gov (United States)

    Ortner, Marion; Pasquini, Lorenzo; Barat, Martina; Alexopoulos, Panagiotis; Grimmer, Timo; Förster, Stefan; Diehl-Schmid, Janine; Kurz, Alexander; Förstl, Hans; Zimmer, Claus; Wohlschläger, Afra; Sorg, Christian; Peters, Henning

    2016-01-01

    Very early Alzheimer’s disease (AD) – i.e., AD at stages of mild cognitive impairment (MCI) and mild dementia – is characterized by progressive structural and neuropathologic changes, such as atrophy or tangle deposition in medial temporal lobes, including hippocampus and entorhinal cortex and also adjacent amygdala. While progressively disrupted intrinsic connectivity of hippocampus with other brain areas has been demonstrated by many studies, amygdala connectivity was rarely investigated in AD, notwithstanding its known relevance for emotion processing and mood disturbances, which are both important in early AD. Intrinsic functional connectivity (iFC) patterns of hippocampus and amygdala overlap in healthy persons. Thus, we hypothesized that increased alteration of iFC patterns along AD is not limited to the hippocampus but also concerns the amygdala, independent from atrophy. To address this hypothesis, we applied structural and functional resting-state MRI in healthy controls (CON, n = 33) and patients with AD in the stages of MCI (AD-MCI, n = 38) and mild dementia (AD-D, n = 36). Outcome measures were voxel-based morphometry (VBM) values and region-of-interest-based iFC maps of basolateral amygdala, which has extended cortical connectivity. Amygdala VBM values were progressively reduced in patients (CON > AD-MCI and AD-D). Amygdala iFC was progressively reduced along impairment severity (CON > AD-MCI > AD-D), particularly for hippocampus, temporal lobes, and fronto-parietal areas. Notably, decreased iFC was independent of amygdala atrophy. Results demonstrate progressively impaired amygdala intrinsic connectivity in temporal and fronto-parietal lobes independent from increasing amygdala atrophy in very early AD. Data suggest that early AD disrupts intrinsic connectivity of medial temporal lobe key regions, including that of amygdala.

  7. Activation of corticotropin releasing factor-containing neurons in the rat central amygdala and bed nucleus of the stria terminalis following exposure to two different anxiogenic stressors.

    Science.gov (United States)

    Butler, Ryan K; Oliver, Elisabeth M; Sharko, Amanda C; Parilla-Carrero, Jeffrey; Kaigler, Kris F; Fadel, Jim R; Wilson, Marlene A

    2016-05-01

    Rats exposed to the odor of a predator or to the elevated plus maze (EPM) express unique unconditioned fear behaviors. The extended amygdala has previously been demonstrated to mediate the response to both predator odor and the EPM. We seek to determine if divergent amygdalar microcircuits are associated with the different behavioral responses. The current experiments compared activation of corticotropin-releasing factor (CRF)-containing neuronal populations in the central amygdala and bed nucleus of the stria terminalis (BNST) of rats exposed to either the EPM (5 min) versus home cage controls, or predator (ferret) odor versus butyric acid, or no odor (30 min). Sections of the brains were prepared for dual-labeled immunohistochemistry and counts of c-Fos co-localized with CRF were made in the centrolateral and centromedial amygdala (CLA and CMA) as well as the dorsolateral (dl), dorsomedial (dm), and ventral (v) BNST. Ferret odor-exposed rats displayed an increase in duration and a decrease in latency of defensive burying versus control rats. Exposure to both predator stress and EPM induced neuronal activation in the BNST, but not the central amygdala, and similar levels of neuronal activation were seen in both the high and low anxiety groups in the BNST after EPM exposure. Dual-labeled immunohistochemistry showed a significant increase in the percentage of CRF/c-Fos co-localization in the vBNST of ferret odor-exposed rats compared to control and butyric acid-exposed groups as well as EPM-exposed rats compared to home cage controls. In addition, an increase in the percentage of CRF-containing neurons co-localized with c-Fos was observed in the dmBNST after EPM exposure. No changes in co-localization of CRF with c-Fos was observed with these treatments in either the CLA or CMA. These results suggest that predator odor and EPM exposure activates CRF neurons in the BNST to a much greater extent than CRF neurons of the central amygdala, and indicates unconditioned

  8. Ex vivo dissection of optogenetically activated mPFC and hippocampal inputs to neurons in the basolateral amygdala: implications for fear and emotional memory

    Directory of Open Access Journals (Sweden)

    Cora eHübner

    2014-03-01

    Full Text Available Many lines of evidence suggest that a reciprocally interconnected network comprising the amygdala, ventral hippocampus (vHC, and medial prefrontal cortex (mPFC participates in different aspects of the acquisition and extinction of conditioned fear responses and fear behavior. This could at least in part be mediated by direct connections from mPFC or vHC to amygdala to control amygdala activity and output. However, currently the interactions between mPFC and vHC afferents and their specific targets in the amygdala are still poorly understood. Here, we use an ex-vivo optogenetic approach to dissect synaptic properties of inputs from mPFC and vHC to defined neuronal populations in the basal amygdala (BA, the area that we identify as a major target of these projections. We find that BA principal neurons (PNs and local BA interneurons (INs receive monosynaptic excitatory inputs from mPFC and vHC. In addition, both these inputs also recruit GABAergic feedforward inhibition in a substantial fraction of PNs, in some neurons this also comprises a slow GABAB-component. Amongst the innervated PNs we identify neurons that project back to subregions of the mPFC, indicating a loop between neurons in mPFC and BA, and a pathway from vHC to mPFC via BA. Interestingly, mPFC inputs also recruit feedforward inhibition in a fraction of INs, suggesting that these inputs can activate dis-inhibitory circuits in the BA. A general feature of both mPFC and vHC inputs to local INs is that excitatory inputs display faster rise and decay kinetics than in PNs, which would enable temporally precise signaling. However, mPFC and vHC inputs to both PNs and INs differ in their presynaptic release properties, in that vHC inputs are more depressing. In summary, our data describe novel wiring, and features of synaptic connections from mPFC and vHC to amygdala that could help to interpret functions of these interconnected brain areas at the network level.

  9. Dopaminergic drug effects during reversal learning depend on anatomical connections between the orbitofrontal cortex and the amygdala.

    Directory of Open Access Journals (Sweden)

    Marieke E. van der Schaaf

    2013-08-01

    Full Text Available Dopamine in the striatum is known to be important for reversal learning. However, the striatum does not act in isolation and reversal learning is also well accepted to depend on the orbitofrontal cortex (OFC and the amygdala. Here we assessed whether dopaminergic drug effects on human striatal BOLD signalling during reversal learning is associated with anatomical connectivity in an orbitofrontal-limbic-striatal network, as measured with diffusion tensor imaging. By using a fibre-based approach, we demonstrate that dopaminergic drug effects on striatal BOLD signal varied as a function of fractional anisotropy (FA in a pathway connecting the OFC with the amygdala. Moreover, our experimental design allowed us to establish that these white-matter dependent drug effects were mediated via D2 receptors. Thus, white matter dependent effects of the D2 receptor agonist bromocriptine on striatal BOLD signal were abolished by co-administration with the D2 receptor antagonist sulpiride. These data provide fundamental insight into the mechanism of action of dopaminergic drug effects during reversal learning. In addition, they may have important clinical implications by suggesting that white matter integrity can help predict dopaminergic drug effects on brain function, ultimately contributing to individual tailoring of dopaminergic drug treatment strategies in psychiatry.

  10. Dopamine D(2)/D(3)-receptor and transporter densities in nucleus accumbens and amygdala of type 1 and 2 alcoholics.

    Science.gov (United States)

    Tupala, E; Hall, H; Bergström, K; Särkioja, T; Räsänen, P; Mantere, T; Callaway, J; Hiltunen, J; Tiihonen, J

    2001-05-01

    Alcohol acts through mechanisms involving the brain neurotransmitter dopamine (DA) with the nucleus accumbens as the key zone for mediating these effects. We evaluated the densities of DA D(2)/D(3) receptors and transporters in the nucleus accumbens and amygdala of post-mortem human brains by using [(125)l]epidepride and [(125)I]PE2I as radioligands in whole hemispheric autoradiography of Cloninger type 1 and 2 alcoholics and healthy controls. When compared with controls, the mean binding of [(125)I]epidepride to DA D(2)/D(3) receptors was 20% lower in the nucleus accumbens and 41% lower in the amygdala, and [(125)I]PE2I binding to DA transporters in the nucleus accumbens was 39% lower in type 1 alcoholics. These data indicate that dopaminergic functions in these limbic areas may be impaired among type 1 alcoholics, due to the substantially lower number of receptor sites. Our results suggest that such a reduction may result in the chronic overuse of alcohol as an attempt to stimulate DA function. PMID:11326293

  11. Acute nicotine enhances spontaneous recovery of contextual fear and changes c-fos early gene expression in infralimbic cortex, hippocampus, and amygdala.

    Science.gov (United States)

    Kutlu, Munir G; Tumolo, Jessica M; Holliday, Erica; Garrett, Brendan; Gould, Thomas J

    2016-08-01

    Exposure therapy, which focuses on extinguishing fear-triggering cues and contexts, is widely used to treat post-traumatic stress disorder (PTSD). Yet, PTSD patients who received successful exposure therapy are vulnerable to relapse of fear response after a period of time, a phenomenon known as spontaneous recovery (SR). Increasing evidence suggests ventral hippocampus, basolateral amygdala, and infralimbic cortex may be involved in SR. PTSD patients also show high rates of comorbidity with nicotine dependence. While the comorbidity between smoking and PTSD might suggest nicotine may alter SR, the effects of nicotine on SR of contextual fear are unknown. In the present study, we tested the effects of acute nicotine administration on SR of extinguished contextual fear memories and c-fos immediate early gene immunohistochemistry in mice. Our results demonstrated that acute nicotine enhanced SR of extinguished fear whereas acute nicotine did not affect retrieval of unextinguished contextual memories. This suggests that the effect of acute nicotine on SR is specific for memories that have undergone extinction treatment. C-fos immunoreactive (IR) cells in the ventral hippocampus and basolateral amygdala were increased in the nicotine-treated mice following testing for SR, whereas the number of IR cells in the infralimbic cortex was decreased in the same group. Overall, this study suggests that nicotine may adversely affect context-specific relapse of fear memories and this effect is potentially mediated by the suppression of cortical regions and increased activity in the ventral hippocampus and amygdala. PMID:27421892

  12. Abnormal fear conditioning and amygdala processing in an animal model of autism

    DEFF Research Database (Denmark)

    Markram, Kamila; Rinaldi, Tania; La Mendola, Deborah;

    2008-01-01

    acid (VPA) rat model of autism to (a) screen for autism-like symptoms in rats, (b) test for alterations in amygdala-dependent fear processing, and (c) evaluate neuronal reactivity and synaptic plasticity in the lateral amygdala by means of in vitro single-cell electrophysiological recordings. VPA...

  13. EXAMINATION OF THE ANTICONVULSANT PROPERTIES OF VOLTAGE-SENSITIVE CALCIUM CHANNEL INHIBITORS IN AMYGDALA KINDLED SEIZURES

    Science.gov (United States)

    Representatives from three different classes of voltage-sensitive calcium (VSC) channel inhibitors were assessed for their protection against amygdala kindled seizures. dult male long Evans rats (n=12) were implanted with electrodes in the amygdala and were stimulated once daily ...

  14. Learning Enhances Intrinsic Excitability in a Subset of Lateral Amygdala Neurons

    Science.gov (United States)

    Sehgal, Megha; Ehlers, Vanessa L.; Moyer, James R., Jr.

    2014-01-01

    Learning-induced modulation of neuronal intrinsic excitability is a metaplasticity mechanism that can impact the acquisition of new memories. Although the amygdala is important for emotional learning and other behaviors, including fear and anxiety, whether learning alters intrinsic excitability within the amygdala has received very little…

  15. The responsive amygdala: treatment-induced alterations in functional connectivity in pediatric complex regional pain syndrome.

    Science.gov (United States)

    Simons, L E; Pielech, M; Erpelding, N; Linnman, C; Moulton, E; Sava, S; Lebel, A; Serrano, P; Sethna, N; Berde, C; Becerra, L; Borsook, D

    2014-09-01

    The amygdala is a key brain region with efferent and afferent neural connections that involve complex behaviors such as pain, reward, fear, and anxiety. This study evaluated resting state functional connectivity of the amygdala with cortical and subcortical regions in a group of chronic pain patients (pediatric complex regional pain syndrome) with age-sex matched control subjects before and after intensive physical-biobehavioral pain treatment. Our main findings include (1) enhanced functional connectivity from the amygdala to multiple cortical, subcortical, and cerebellar regions in patients compared with control subjects, with differences predominantly in the left amygdala in the pretreated condition (disease state); (2) dampened hyperconnectivity from the left amygdala to the motor cortex, parietal lobe, and cingulate cortex after intensive pain rehabilitation treatment within patients with nominal differences observed among healthy control subjects from time 1 to time 2 (treatment effects); (3) functional connectivity to several regions key to fear circuitry (prefrontal cortex, bilateral middle temporal lobe, bilateral cingulate, hippocampus) correlated with higher pain-related fear scores; and (4) decreases in pain-related fear associated with decreased connectivity between the amygdala and the motor and somatosensory cortex, cingulate, and frontal areas. Our data suggest that there are rapid changes in amygdala connectivity after an aggressive treatment program in children with chronic pain and intrinsic amygdala functional connectivity activity serving as a potential indicator of treatment response. PMID:24861582

  16. Subchronic duloxetine administration alters the extended amygdala circuitry in healthy individuals

    NARCIS (Netherlands)

    Marle, H.J.F. van; Tendolkar, I.; Urner, M.; Verkes, R.J.; Fernandez, G.S.E.; Wingen, G.A. van

    2011-01-01

    Neuroimaging studies have consistently linked depression to hyperactivation of a (para)limbic affective processing network centered around the amygdala. Recent studies have started to investigate how antidepressant drugs affect amygdala reactivity in healthy individuals, but the influence of their s

  17. Mechanisms Contributing to the Induction and Storage of Pavlovian Fear Memories in the Lateral Amygdala

    Science.gov (United States)

    Kim, Dongbeom; Pare, Denis; Nair, Satish S.

    2013-01-01

    The relative contributions of plasticity in the amygdala vs. its afferent pathways to conditioned fear remain controversial. Some believe that thalamic and cortical neurons transmitting information about the conditioned stimulus (CS) to the lateral amygdala (LA) serve a relay function. Others maintain that thalamic and/or cortical plasticity is…

  18. The Amygdala Is Not Necessary for Unconditioned Stimulus Inflation after Pavlovian Fear Conditioning in Rats

    Science.gov (United States)

    Rabinak, Christine A.; Orsini, Caitlin A.; Zimmerman, Joshua M.; Maren, Stephen

    2009-01-01

    The basolateral complex (BLA) and central nucleus (CEA) of the amygdala play critical roles in associative learning, including Pavlovian conditioning. However, the precise role for these structures in Pavlovian conditioning is not clear. Recent work in appetitive conditioning paradigms suggests that the amygdala, particularly the BLA, has an…

  19. The BOLD signal in the amygdala does not differentiate between dynamic facial expressions

    NARCIS (Netherlands)

    van der Gaag, Christiaan; Minderaa, Ruud B.; Keysers, Christian

    2007-01-01

    The amygdala has been considered to be essential for recognizing fear in other people's facial expressions. Recent studies shed doubt on this interpretation. Here we used movies of facial expressions instead of static photographs to investigate the putative fear selectivity of the amygdala using fMR

  20. Modulation of instrumental responding by a conditioned threat stimulus requires lateral and central amygdala

    Directory of Open Access Journals (Sweden)

    Vincent eCampese

    2015-10-01

    Full Text Available Two studies explored the role of the amygdala in response modulation by an aversive conditioned stimulus (CS in rats. Experiment 1 investigated the role of amygdala circuitry in conditioned suppression using a paradigm in which licking for sucrose was inhibited by a tone CS that had been previously paired with footshock. Electrolytic lesions of the lateral amygdala impaired suppression relative to sham-operated animals, and produced the same pattern of results when applied to central amygdala. In addition, disconnection of the lateral and central amygdala, by unilateral lesion of each on opposite sides of the brain, also impaired suppression relative to control subjects that received lesions of both areas on the same side. In each case, lesions were placed following Pavlovian conditioning and instrumental training, but before testing. This procedure produced within-subjects measures of the effects of lesion on freezing and between-group comparisons for the effects on suppression. Experiment 2 extended this analysis to a task where an aversive CS suppressed shuttling responses that had been previously food reinforced and also found effects of bilateral lesions of the central amygdala in a pre-post design. Together, these studies demonstrate that connections between the lateral and central amygdala constitute a serial circuit involved in processing aversive Pavlovian stimuli, and add to a growing body of findings implicating central amygdala in the modulation of instrumental behavior.

  1. Amygdala Habituation and Prefrontal Functional Connectivity in Youth with Autism Spectrum Disorders

    Science.gov (United States)

    Swartz, Johnna R.; Wiggins, Jillian Lee; Carrasco, Melissa; Lord, Catherine; Monk, Christopher S.

    2013-01-01

    Objective: Amygdala habituation, the rapid decrease in amygdala responsiveness to the repeated presentation of stimuli, is fundamental to the nervous system. Habituation is important for maintaining adaptive levels of arousal to predictable social stimuli and decreased habituation is associated with heightened anxiety. Input from the ventromedial…

  2. The left amygdala: A shared substrate of alexithymia and empathy.

    Science.gov (United States)

    Goerlich-Dobre, Katharina Sophia; Lamm, Claus; Pripfl, Juergen; Habel, Ute; Votinov, Mikhail

    2015-11-15

    Alexithymia, a deficit in emotional self-awareness, and deficits in empathy, which encompasses the awareness of other's emotions, are related constructs that are both associated with a range of psychopathological disorders. Neuroimaging studies suggest that there is overlap between the neural bases of alexithymia and empathy, but no systematic comparison has been conducted so far. The aim of this structural magnetic resonance imaging study was to disentangle the overlap and differences between the morphological profiles of the cognitive and affective dimensions of alexithymia and empathy, and to find out to what extent these differ between women and men. High-resolution T1 anatomical images were obtained from 125 healthy right-handers (18-42 years), 70 women and 55 men. By means of voxel-based morphometry, region of interest (ROI) analyses were performed on gray matter volumes of several anatomically defined a-priori regions previously linked to alexithymia and empathy. Partial correlations were conducted within the female and male group using ROI parameter estimates as dependent variables and the cognitive and affective dimensions of alexithymia and empathy, respectively, as predictors, controlling for age. Results were considered significant if they survived Holm-Bonferroni correction for multiple comparisons. The left amygdala was identified as a key substrate of both alexithymia and empathy. This association was characterized by an opposite pattern: The cognitive alexithymia dimension was linked to smaller, the two empathy dimensions to larger left amygdala volume. While sex-specific effects were not observed for empathy, they were evident for the affective alexithymia dimension: Men-but not women-with difficulty fantasizing had smaller gray matter volume in the middle cingulate cortex. Moreover, structural covariance patterns between the left amygdala and other emotion-related brain regions differed markedly between alexithymia and empathy. These differences

  3. Repeatedly stressed rats have enhanced vulnerability to amygdala kindling epileptogenesis.

    Science.gov (United States)

    Jones, Nigel C; Lee, Han Ee; Yang, Meng; Rees, Sandra M; Morris, Margaret J; O'Brien, Terence J; Salzberg, Michael R

    2013-02-01

    Psychiatric disorders associated with elevated stress levels, such as depression, are present in many epilepsy patients, including those with mesial Temporal Lobe Epilepsy (mTLE). Evidence suggests that these psychiatric disorders can predate the onset of epilepsy, suggesting a causal/contributory role. Prolonged exposure to elevated corticosterone, used as a model of chronic stress/depression, accelerates limbic epileptogenesis in the amygdala kindling model. The current study examined whether exposure to repeated stress could similarly accelerate experimental epileptogenesis. Female adult non-epileptic Wistar rats were implanted with a bipolar electrode into the left amygdala, and were randomly assigned into stressed (n=18) or non-stressed (n=19) groups. Rats underwent conventional amygdala kindling (two electrical stimulations per day) until 5 Class V seizures had been experienced ('the fully kindled state'). Stressed rats were exposed to 30min restraint immediately prior to each kindling stimulation, whereas non-stressed rats received control handling. Restraint stress increased circulating corticosterone levels (pre-stress: 122±17ng/ml; post-stress: 632±33ng/ml), with no habituation observed over the experiment. Stressed rats reached the 'fully kindled state' in significantly fewer stimulations than non-stressed rats (21±1 vs 33±3 stimulations; p=0.022; ANOVA), indicative of a vulnerability to epileptogenesis. Further, seizure durations were significantly longer in stressed rats (p<0.001; ANOVA). These data demonstrate that exposure to repeated experimental stress accelerates the development of limbic epileptogenesis, an effect which may be related to elevated corticosterone levels. This may have implications for understanding the effects of chronic stress and depression in disease onset and progression of mTLE in humans.

  4. Amygdala Regulation Following fMRI-Neurofeedback without Instructed Strategies.

    Science.gov (United States)

    Marxen, Michael; Jacob, Mark J; Müller, Dirk K; Posse, Stefan; Ackley, Elena; Hellrung, Lydia; Riedel, Philipp; Bender, Stephan; Epple, Robert; Smolka, Michael N

    2016-01-01

    Within the field of functional magnetic resonance imaging (fMRI) neurofeedback, most studies provide subjects with instructions or suggest strategies to regulate a particular brain area, while other neuro-/biofeedback approaches often do not. This study is the first to investigate the hypothesis that subjects are able to utilize fMRI neurofeedback to learn to differentially modulate the fMRI signal from the bilateral amygdala congruent with the prescribed regulation direction without an instructed or suggested strategy and apply what they learned even when feedback is no longer available. Thirty-two subjects were included in the analysis. Data were collected at 3 Tesla using blood oxygenation level dependent (BOLD)-sensitivity optimized multi-echo EPI. Based on the mean contrast between up- and down-regulation in the amygdala in a post-training scan without feedback following three neurofeedback sessions, subjects were able to regulate their amygdala congruent with the prescribed directions with a moderate effect size of Cohen's d = 0.43 (95% conf. int. 0.23-0.64). This effect size would be reduced, however, through stricter exclusion criteria for subjects that show alterations in respiration. Regulation capacity was positively correlated with subjective arousal ratings and negatively correlated with agreeableness and susceptibility to anger. A learning effect over the training sessions was only observed with end-of-block feedback (EoBF) but not with continuous feedback (trend). The results confirm the above hypothesis. Further studies are needed to compare effect sizes of regulation capacity for approaches with and without instructed strategies. PMID:27199706

  5. Increased amygdala response to shame in remitted major depressive disorder.

    Directory of Open Access Journals (Sweden)

    Erdem Pulcu

    Full Text Available Proneness to self-blaming moral emotions such as shame and guilt is increased in major depressive disorder (MDD, and may play an important role in vulnerability even after symptoms have subsided. Social psychologists have argued that shame-proneness is relevant for depression vulnerability and is distinct from guilt. Shame depends on the imagined critical perception of others, whereas guilt results from one's own judgement. The neuroanatomy of shame in MDD is unknown. Using fMRI, we compared 21 participants with MDD remitted from symptoms with no current co-morbid axis-I disorders, and 18 control participants with no personal or family history of MDD. The MDD group exhibited higher activation of the right amygdala and posterior insula for shame relative to guilt (SPM8. This neural difference was observed despite equal levels of rated negative emotional valence and frequencies of induced shame and guilt experience across groups. These same results were found in the medication-free MDD subgroup (N = 15. Increased amygdala and posterior insula activations, known to be related to sensory perception of emotional stimuli, distinguish shame from guilt responses in remitted MDD. People with MDD thus exhibit changes in the neural response to shame after symptoms have subsided. This supports the hypothesis that shame and guilt play at least partly distinct roles in vulnerability to MDD. Shame-induction may be a more sensitive probe of residual amygdala hypersensitivity in MDD compared with facial emotion-evoked responses previously found to normalize on remission.

  6. Comparison between substantia innominata and amygdala kindling in rats.

    Science.gov (United States)

    Mori, N; Hoshino, S; Kumashiro, H

    1990-11-26

    Kindling was induced in rats by electrical stimulation of the lateral portion of the substantia innominata (SI). The pattern of seizure development was similar to that of amygdala (AM) kindling. However, lateral SI kindling was associated with ipsilateral head turning as an initial manifestation. In addition, lateral SI kindling had a higher afterdischarge threshold than AM kindling, and the generalized seizure triggering threshold was more unstable in SI kindling than in AM kindling. These findings suggest that lateral SI participates in, but is not essential for, AM seizure development in rats.

  7. Cannabinoids and Glucocorticoids in the Basolateral Amygdala Modulate Hippocampal-Accumbens Plasticity After Stress.

    Science.gov (United States)

    Segev, Amir; Akirav, Irit

    2016-03-01

    Acute stress results in release of glucocorticoids, which are potent modulators of learning and plasticity. This process is presumably mediated by the basolateral amygdala (BLA) where cannabinoids CB1 receptors have a key role in regulating the hypothalamic-pituitary-adrenal (HPA) axis. Growing attention has been focused on nucleus accumbens (NAc) plasticity, which regulates mood and motivation. The NAc integrates affective and context-dependent input from the BLA and ventral subiculum (vSub), respectively. As our previous data suggest that the CB1/2 receptor agonist WIN55,212-2 (WIN) and glucocorticoid receptor (GR) antagonist RU-38486 (RU) can prevent the effects of stress on emotional memory, we examined whether intra-BLA WIN and RU can reverse the effects of acute stress on NAc plasticity. Bilateral, ipsilateral, and contralateral BLA administration of RU or WIN reversed the stress-induced impairment in vSub-NAc long-term potentiation (LTP) and the decrease in cAMP response element-binding protein (CREB) activity in the NAc. BLA CB1 receptors were found to mediate the preventing effects of WIN on plasticity, but not the preventing effects of RU, after stress. Inactivating the ipsilateral BLA, but not the contralateral BLA, impaired LTP. The possible mechanisms underlying the effects of BLA on NAc plasticity are discussed; the data suggest that BLA-induced changes in the NAc may be mediated through neural pathways in the brain's stress circuit rather than peripheral pathways. The results suggest that glucocorticoid and cannabinoid systems in the BLA can restore normal function of the NAc and hence may have a central role in the treatment of a variety of stress-related disorders. PMID:26289146

  8. Sustained lentiviral-mediated overexpression of microRNA124a in the dentate gyrus exacerbates anxiety- and autism-like behaviors associated with neonatal isolation in rats.

    Science.gov (United States)

    Bahi, Amine

    2016-09-15

    Autism spectrum disorders (ASD) are highly disabling psychiatric disorders. Despite a strong genetic etiology, there are no efficient therapeutic interventions that target the core symptoms of ASD. Emerging evidence suggests that dysfunction of microRNA (miR) machinery may contribute to the underlying molecular mechanisms involved in ASD. Here, we report a stress model demonstrating that neonatal isolation-induced long-lasting hippocampal elevation of miR124a was associated with reduced expression of its target BDNF mRNA. In addition, we investigated the impact of lentiviral-mediated overexpression of miR124a into the dentate gyrus (DG) on social interaction, repetitive- and anxiety-like behaviors in the neonatal isolation (Iso) model of autism. Rats isolated from the dams on PND 1 to PND 11 were assessed for their social interaction, marble burying test (MBT) and repetitive self-grooming behaviors as adults following miR124a overexpression. Also, anxiety-like behavior and locomotion were evaluated in the elevated plus maze (EPM) and open-field (OF) tests. Results show that, consistent with previously published reports, Iso rats displayed decreased social interaction contacts but increased repetitive- and anxiety-like behaviors. Interestingly, across both autism- and anxiety-like behavioral assays, miR124a overexpression in the DG significantly exacerbated repetitive behaviors, social impairments and anxiety with no effect on locomotor activity. Our novel findings attribute neonatal isolation-inducible cognitive impairments to induction of miR124a and consequently suppressed BDNF mRNA, opening venues for intercepting these miR124a-mediated damages. They also highlight the importance of studying microRNAs in the context of ASD and identify miR124a as a novel potential therapeutic target for improving mood disorders. PMID:27211062

  9. NMDA receptor blockade in the basolateral amygdala disrupts consolidation of stimulus-reward memory and extinction learning during reinstatement of cocaine-seeking in an animal model of relapse

    OpenAIRE

    Feltenstein, Matthew W.; See, Ronald E.

    2007-01-01

    Previous research from our laboratory has implicated the basolateral amygdala (BLA) complex in the acquisition and consolidation of cue-cocaine associations, as well as extinction learning, which may regulate the long-lasting control of conditioned stimuli (CS) over drug-seeking behavior. Given the well established role of NMDA glutamate receptor activation in other forms of amygdalar-based learning, we predicted that BLA-mediated drug-cue associative learning would be NMDA receptor dependent...

  10. Input-specific contributions to valence processing in the amygdala.

    Science.gov (United States)

    Correia, Susana S; Goosens, Ki A

    2016-10-01

    Reward and punishment are often thought of as opposing processes: rewards and the environmental cues that predict them elicit approach and consummatory behaviors, while punishments drive aversion and avoidance behaviors. This framework suggests that there may be segregated brain circuits for these valenced behaviors. The basolateral amygdala (BLA) is one brain region that contributes to both types of motivated behavior. Individual neurons in the BLA can favor positive over negative valence, or vice versa, but these neurons are intermingled, showing no anatomical segregation. The amygdala receives inputs from many brain areas and current theories posit that encoding of positive versus negative valence by BLA neurons is determined by the wiring of each neuron. Specifically, many projections from other brain areas that respond to positive and negative valence stimuli and predictive cues project strongly to the BLA and likely contribute to valence processing within the BLA. Here we review three of these areas, the basal forebrain, the dorsal raphe nucleus and the ventral tegmental area, and discuss how these may promote encoding of positive and negative valence within the BLA. PMID:27634144

  11. Consolidation of altered associability information by amygdala central nucleus.

    Science.gov (United States)

    Schiffino, Felipe L; Holland, Peter C

    2016-09-01

    The surprising omission of a reinforcer can enhance the associability of the stimuli that were present when the reward prediction error was induced, so that they more readily enter into new associations in the future. Previous research from this laboratory identified brain circuit elements critical to the enhancement of stimulus associability by the omission of an expected event and to the subsequent expression of that altered associability in more rapid learning. These elements include the amygdala, the midbrain substantia nigra, the basal forebrain substantia innominata, the dorsolateral striatum, the secondary visual cortex, and the posterior parietal cortex. Here, we found that consolidation of a surprise-enhanced associability memory in a serial prediction task depends on processing in the amygdala central nucleus (CeA) after completion of sessions that included the surprising omission of an expected event. Post-surprise infusions of anisomycin, lidocaine, or muscimol prevented subsequent display of surprise-enhanced associability. Because previous studies indicated that CeA function is unnecessary for the expression of associability enhancements that were induced previously when CeA function was intact (Holland & Gallagher, 2006), we interpreted these results as indicating that post-surprise activity of CeA ("surprise replay") is necessary for the consolidation of altered associability memories elsewhere in the brain, such as the posterior parietal cortex (Schiffino et al., 2014a). PMID:27427328

  12. Endocannabinoid Signaling within the Basolateral Amygdala Integrates Multiple Stress Hormone Effects on Memory Consolidation

    Science.gov (United States)

    Atsak, Piray; Hauer, Daniela; Campolongo, Patrizia; Schelling, Gustav; Fornari, Raquel V; Roozendaal, Benno

    2015-01-01

    Glucocorticoid hormones are known to act synergistically with other stress-activated neuromodulatory systems, such as norepinephrine and corticotropin-releasing factor (CRF), within the basolateral complex of the amygdala (BLA) to induce optimal strengthening of the consolidation of long-term memory of emotionally arousing experiences. However, as the onset of these glucocorticoid actions appear often too rapid to be explained by genomic regulation, the neurobiological mechanism of how glucocorticoids could modify the memory-enhancing properties of norepinephrine and CRF remained elusive. Here, we show that the endocannabinoid system, a rapidly activated retrograde messenger system, is a primary route mediating the actions of glucocorticoids, via a glucocorticoid receptor on the cell surface, on BLA neural plasticity and memory consolidation. Furthermore, glucocorticoids recruit downstream endocannabinoid activity within the BLA to interact with both the norepinephrine and CRF systems in enhancing memory consolidation. These findings have important implications for understanding the fine-tuned crosstalk between multiple stress hormone systems in the coordination of (mal)adaptive stress and emotional arousal effects on neural plasticity and memory consolidation. PMID:25547713

  13. Histamine in the basolateral amygdala promotes inhibitory avoidance learning independently of hippocampus

    Science.gov (United States)

    Benetti, Fernando; Furini, Cristiane Regina Guerino; de Carvalho Myskiw, Jociane; Provensi, Gustavo; Passani, Maria Beatrice; Baldi, Elisabetta; Bucherelli, Corrado; Munari, Leonardo; Izquierdo, Ivan; Blandina, Patrizio

    2015-01-01

    Recent discoveries demonstrated that recruitment of alternative brain circuits permits compensation of memory impairments following damage to brain regions specialized in integrating and/or storing specific memories, including both dorsal hippocampus and basolateral amygdala (BLA). Here, we first report that the integrity of the brain histaminergic system is necessary for long-term, but not for short-term memory of step-down inhibitory avoidance (IA). Second, we found that phosphorylation of cyclic adenosine monophosphate (cAMP) responsive-element-binding protein, a crucial mediator in long-term memory formation, correlated anatomically and temporally with histamine-induced memory retrieval, showing the active involvement of histamine function in CA1 and BLA in different phases of memory consolidation. Third, we found that exogenous application of histamine in either hippocampal CA1 or BLA of brain histamine-depleted rats, hence amnesic, restored long-term memory; however, the time frame of memory rescue was different for the two brain structures, short lived (immediately posttraining) for BLA, long lasting (up to 6 h) for the CA1. Moreover, long-term memory was formed immediately after training restoring of histamine transmission only in the BLA. These findings reveal the essential role of histaminergic neurotransmission to provide the brain with the plasticity necessary to ensure memorization of emotionally salient events, through recruitment of alternative circuits. Hence, our findings indicate that the histaminergic system comprises parallel, coordinated pathways that provide compensatory plasticity when one brain structure is compromised. PMID:25918368

  14. Involvement of basolateral amygdala GABAA receptors in the effect of dexamethasone on memory in rats

    Institute of Scientific and Technical Information of China (English)

    Lotfollah KHAJEHPOUR; Acieh ALIZADEH-MAKVANDI; Mahnaz KESMATI; Hooman ESHAGH-HAROONI

    2011-01-01

    In this study we investigated whether GABAA receptors of the basolateral amygdala (BLA) interact with the effect of dexamethasone on the retrieval stage of memory.Adult male Wistar rats were bilaterally cannulated in the BLA by stereotaxic surgery.The animals were trained in step-through apparatus by induction of electric shock (1.5 mA,3 s) and were tested for memory retrieval after 1 d.The time of latency for entering the dark compartment of the instrument and the time spent by rats in this chamber were recorded for evaluation of the animals' retrieval in passive avoidance memory.Administration of dexamethasone (0.3 and 0.9 mg/kg,subcutaneously (s.c.)),immediately after training,enhanced memory retrieval.This effect was reduced by intra-BLA microinjection of muscimol (0.125,0.250 and 0.500 μg/rat),when administered before 0.9 mg/kg of dexamethasone.Microinjection of bicuculline (0.75 μg/rat,intra-BLA) with an ineffective dose of dexamethasone (0.1 mg/kg,s.c.) increased memory retrieval.However,the same doses of muscimol and bicuculline without dexamethasone did not affect memory processes.Our data support reports that dexamethasone enhances memory retrieval.It seems that GABAA receptors of the BLA mediate the effect of dexamethasone on memory retrieval in rats.

  15. Histamine in the basolateral amygdala promotes inhibitory avoidance learning independently of hippocampus.

    Science.gov (United States)

    Benetti, Fernando; Furini, Cristiane Regina Guerino; de Carvalho Myskiw, Jociane; Provensi, Gustavo; Passani, Maria Beatrice; Baldi, Elisabetta; Bucherelli, Corrado; Munari, Leonardo; Izquierdo, Ivan; Blandina, Patrizio

    2015-05-12

    Recent discoveries demonstrated that recruitment of alternative brain circuits permits compensation of memory impairments following damage to brain regions specialized in integrating and/or storing specific memories, including both dorsal hippocampus and basolateral amygdala (BLA). Here, we first report that the integrity of the brain histaminergic system is necessary for long-term, but not for short-term memory of step-down inhibitory avoidance (IA). Second, we found that phosphorylation of cyclic adenosine monophosphate (cAMP) responsive-element-binding protein, a crucial mediator in long-term memory formation, correlated anatomically and temporally with histamine-induced memory retrieval, showing the active involvement of histamine function in CA1 and BLA in different phases of memory consolidation. Third, we found that exogenous application of histamine in either hippocampal CA1 or BLA of brain histamine-depleted rats, hence amnesic, restored long-term memory; however, the time frame of memory rescue was different for the two brain structures, short lived (immediately posttraining) for BLA, long lasting (up to 6 h) for the CA1. Moreover, long-term memory was formed immediately after training restoring of histamine transmission only in the BLA. These findings reveal the essential role of histaminergic neurotransmission to provide the brain with the plasticity necessary to ensure memorization of emotionally salient events, through recruitment of alternative circuits. Hence, our findings indicate that the histaminergic system comprises parallel, coordinated pathways that provide compensatory plasticity when one brain structure is compromised. PMID:25918368

  16. Rimonabant Precipitates Anxiety in Rats Withdrawn from Palatable Food: Role of the Central Amygdala

    OpenAIRE

    Blasio, Angelo; Iemolo, Attilio; Sabino, Valentina; Petrosino, Stefania; Steardo, Luca; Rice, Kenner C.; Orlando, Pierangelo; Iannotti, Fabio Arturo; Di Marzo, Vincenzo; Zorrilla, Eric P.; Cottone, Pietro

    2013-01-01

    The anti-obesity medication rimonabant, an antagonist of cannabinoid type-1 (CB1) receptor, was withdrawn from the market because of adverse psychiatric side effects, including a negative affective state. We investigated whether rimonabant precipitates a negative emotional state in rats withdrawn from palatable food cycling. The effects of systemic administration of rimonabant on anxiety-like behavior, food intake, body weight, and adrenocortical activation were assessed in female rats during...

  17. Prenatal Thyroxine Treatment Disparately Affects Peripheral and Amygdala Thyroid Hormone Levels

    OpenAIRE

    Shukla, Pradeep K.; Sittig, Laura J.; Andrus, Brian M; Schaffer, Daniel J.; Batra, Kanchi K.; Redei, Eva E.

    2009-01-01

    A prenatal hypothyroid state is associated with behavioral abnormalities in adulthood. Wistar–Kyoto (WKY) rats exhibit hypothyroidism and increased depressive and anxiety-like behaviors. Thus, the WKY could illuminate the mechanisms by which the reversal of developmental hypothyroidism in humans and animals results in adult behavioral improvement. We examined the outcome of maternal thyroxine (T4) treatment on thyroid hormone-regulated functions and adult behavior of the WKY offspring. Pregna...

  18. Role of capsaicin-sensitive C-fiber afferents in neuropathic pain-induced synaptic potentiation in the nociceptive amygdala

    Directory of Open Access Journals (Sweden)

    Nakao Ayano

    2012-07-01

    Full Text Available Abstract Background Neurons in the capsular part of the central nucleus of the amygdala (CeC, a region also called "nociceptive amygdala," receive nociceptive information from the dorsal horn via afferent pathways relayed from the lateral parabrachial nucleus (LPB. As the central amygdala is known to be involved in the acquisition and expression of emotion, this pathway is thought to play central roles in the generation of affective responses to nociceptive inputs. Excitatory synaptic transmission between afferents arising from the LPB and these CeC neurons is potentiated in arthritic, visceral, neuropathic, inflammatory and muscle pain models. In neuropathic pain models following spinal nerve ligation (SNL, in which we previously showed a robust LPB-CeC potentiation, the principal behavioral symptom is tactile allodynia triggered by non-C-fiber low-threshold mechanoreceptor afferents. Conversely, recent anatomical studies have revealed that most of the spinal neurons projecting to the LPB receive C-fiber afferent inputs. Here, we examined the hypothesis that these C-fiber-mediated inputs are necessary for the full establishment of robust synaptic potentiation of LPB-CeC transmission in the rats with neuropathic pain. Results Postnatal capsaicin treatment, which has been shown to denervate the C-fibers expressing transient receptor potential vanilloid type-1 (TRPV1 channels, completely abolished eye-wiping responses to capsaicin eye instillation in rats, but this treatment did not affect mechanical allodynia in the nerve-ligated animals. However, the postnatal capsaicin treatment prevented LPB-CeC synaptic potentiation after SNL, unlike in the vehicle-treated rats, primarily due to the decreased incidence of potentiated transmission by elimination of TRPV1-expressing C-fiber afferents. Conclusions C-fiber-mediated afferents in the nerve-ligated animals may be a required facilitator of the establishment of nerve injury-evoked synaptic

  19. Traumatic Stress Promotes Hyperalgesia via Corticotropin-Releasing Factor-1 Receptor (CRFR1) Signaling in Central Amygdala.

    Science.gov (United States)

    Itoga, Christy A; Roltsch Hellard, Emily A; Whitaker, Annie M; Lu, Yi-Ling; Schreiber, Allyson L; Baynes, Brittni B; Baiamonte, Brandon A; Richardson, Heather N; Gilpin, Nicholas W

    2016-09-01

    Hyperalgesia is an exaggerated response to noxious stimuli produced by peripheral or central plasticity. Stress modifies nociception, and humans with post-traumatic stress disorder (PTSD) exhibit co-morbid chronic pain and amygdala dysregulation. Predator odor stress produces hyperalgesia in rodents. Systemic blockade of corticotropin-releasing factor (CRF) type 1 receptors (CRFR1s) reduces stress-induced thermal hyperalgesia. We hypothesized that CRF-CRFR1 signaling in central amygdala (CeA) mediates stress-induced hyperalgesia in rats with high stress reactivity. Adult male Wistar rats were exposed to predator odor stress in a conditioned place avoidance paradigm and indexed for high (Avoiders) and low (Non-Avoiders) avoidance of predator odor-paired context, or were unstressed Controls. Rats were tested for the latency to withdraw hindpaws from thermal stimuli (Hargreaves test). We used pharmacological, molecular, and immunohistochemical techniques to assess the role of CRF-CRFR1 signaling in CeA in stress-induced hyperalgesia. Avoiders exhibited higher CRF peptide levels in CeA that did not appear to be locally synthesized. Intra-CeA CRF infusion mimicked stress-induced hyperalgesia. Avoiders exhibited thermal hyperalgesia that was reversed by systemic or intra-CeA injection of a CRFR1 antagonist. Finally, intra-CeA infusion of tetrodotoxin produced thermal hyperalgesia in unstressed rats and blocked the anti-hyperalgesic effect of systemic CRFR1 antagonist in stressed rats. These data suggest that rats with high stress reactivity exhibit hyperalgesia that is mediated by CRF-CRFR1 signaling in CeA.

  20. Abnormal amygdala connectivity in patients with primary insomnia: Evidence from resting state fMRI

    International Nuclear Information System (INIS)

    Background: Neurobiological mechanisms underlying insomnia are poorly understood. Previous findings indicated that dysfunction of the emotional circuit might contribute to the neurobiological mechanisms underlying insomnia. The present study will test this hypothesis by examining alterations in functional connectivity of the amygdala in patients with primary insomnia (PI). Methods: Resting-state functional connectivity analysis was used to examine the temporal correlation between the amygdala and whole-brain regions in 10 medication-naive PI patients and 10 age- and sex-matched healthy controls. Additionally, the relationship between the abnormal functional connectivity and insomnia severity was investigated. Results: We found decreased functional connectivity mainly between the amygdala and insula, striatum and thalamus, and increased functional connectivity mainly between the amygdala and premotor cortex, sensorimotor cortex in PI patients as compared to healthy controls. The connectivity of the amygdala with the premotor cortex in PI patients showed significant positive correlation with the total score of the Pittsburgh Sleep Quality Index (PSQI). Conclusions: The decreased functional connectivity between the amygdala and insula, striatum, and thalamus suggests that dysfunction in the emotional circuit might contribute to the neurobiological mechanisms underlying PI. The increased functional connectivity of the amygdala with the premotor and sensorimotor cortex demonstrates a compensatory mechanism to overcome the negative effects of sleep deficits and maintain the psychomotor performances in PI patients.

  1. Neuroimaging study of the human amygdala. Toward an understanding of emotional and stress responses

    International Nuclear Information System (INIS)

    The amygdala plays a critical role in the neural system involved in emotional responses and conditioned fear. The dysfunction of this system is thought to be a cause of several neuropsychiatric disorders. A neuroimaging study provides a unique opportunity for noninvasive investigation of the human amygdala. We studied the activity of this structure in normal subjects and patients with schizophrenia by using the face recognition task. Our results showed that the amygdala was activated by presentation of face stimuli, and negative face activated the amygdala to a greater extent than a neutral face. Under the happy face condition, the activation of the amygdala was higher in the schizophrenic patients than in control subjects. A single nucleotide polymorphism in the regulatory region of the serotonin type 3 receptor gene had modulatory effects on the amygdaloid activity. The emotion regulation had a significant impact on neural interaction between the amygdala and prefrontal cortices. Thus, studies on the human amygdala would greatly contribute to the elucidation of the neural system that determines emotional and stress responses. To clarify the relevance of the neural dysfunction and neuropsychiatric disorders, further studies using physiological, genetic, and hormonal approaches are essential. (author)

  2. Double dissociation of amygdala and hippocampal contributions to trace and delay fear conditioning.

    Science.gov (United States)

    Raybuck, Jonathan D; Lattal, K Matthew

    2011-01-19

    A key finding in studies of the neurobiology of learning memory is that the amygdala is critically involved in Pavlovian fear conditioning. This is well established in delay-cued and contextual fear conditioning; however, surprisingly little is known of the role of the amygdala in trace conditioning. Trace fear conditioning, in which the CS and US are separated in time by a trace interval, requires the hippocampus and prefrontal cortex. It is possible that recruitment of cortical structures by trace conditioning alters the role of the amygdala compared to delay fear conditioning, where the CS and US overlap. To investigate this, we inactivated the amygdala of male C57BL/6 mice with GABA (A) agonist muscimol prior to 2-pairing trace or delay fear conditioning. Amygdala inactivation produced deficits in contextual and delay conditioning, but had no effect on trace conditioning. As controls, we demonstrate that dorsal hippocampal inactivation produced deficits in trace and contextual, but not delay fear conditioning. Further, pre- and post-training amygdala inactivation disrupted the contextual but the not cued component of trace conditioning, as did muscimol infusion prior to 1- or 4-pairing trace conditioning. These findings demonstrate that insertion of a temporal gap between the CS and US can generate amygdala-independent fear conditioning. We discuss the implications of this surprising finding for current models of the neural circuitry involved in fear conditioning.

  3. Differential Activation of Amygdala Arc Expression By Positive and Negatively Valenced Emotional Learning Conditions

    Directory of Open Access Journals (Sweden)

    Erica eYoung

    2013-12-01

    Full Text Available Norepinephrine is released in the amygdala following negatively arousing learning conditions. This event initiates a cascade of changes including the transcription of activity-regulated cytoskeleton-associated protein (Arc expression, an early-immediate gene associated with memory encoding. Recent evidence suggests that the valence of emotionally laden encounters may generate lateralized, as opposed to symmetric release of this transmitter in the right or left amygdala. It is currently not clear if valence-induced patterns of selective norepinephrine output across hemispheres are also reproduced in downstream pathways of cellular signaling necessary for memory formation. This question was addressed by determining if Arc expression is differentially distributed across the right and left amygdala following exposure to positively or negatively valenced learning conditions respectively. Male Sprague Dawley rats were randomly assigned to groups exposed to the Homecage only, 5 auditory tones only, or 5 auditory tones paired with footshock (0.35mA during Pavlovian fear conditioning. Western blot analysis revealed that Arc expression in the right amygdala was elevated significantly above that observed in the left amygdala 60 and 90 minutes following fear conditioning. Similarly, subjects exposed to a a negatively valenced outcome consisting of an unexpected reduction in food rewards showed a greater level of Arc expression in only the right, but not left basolateral amygdala. Presenting a positively valenced event involving an unexpected increase in food reward magnitude following bar pressing, resulted in significantly greater Arc expression in the left, but not right basolateral amygdala (p

  4. Role of amygdala MAPK activation on immobility behavior of forced swim rats.

    Science.gov (United States)

    Huang, Tung-Yi; Lin, Chih-Hung

    2006-10-01

    The role of amygdala mitogen-activated protein kinase (MAPK) in rats during a forced swim test was investigated. The variation of amygdala MAPK level was studied in control rats and early-life maternally deprived rats. A forced swim test was carried out to estimate the immobility level. The data showed that the immobility time of rats that received maternal deprivation in early life was longer than that of control rats and Western blot analysis also showed that the amygdala phospho-MAPK level in maternally deprived rats was almost two times higher than in control rats. Intra-amygdala infusion of PD098059 or U0126, MEK inhibitors, suppressed immobility behavior during the forced swim test in both rats. Western blot analysis also showed that the amygdala MAPK activities in both rats infused with MEK inhibitors were also suppressed in parallel with expression of immobility behavior. The suppressed MAPK activities as well as the restoration of immobility time returned to the original level 48 h later. These results suggest that amygdala MAPK activation might play a role in the regulation of immobility behavior in rats during the forced swim test. Moreover, it could provide a hint that amygdala MAPK activation might be involved in the formation of depression-like behavior.

  5. Evidence for smaller right amygdala volumes in posttraumatic stress disorder following childhood trauma.

    Science.gov (United States)

    Veer, Ilya M; Oei, Nicole Y L; van Buchem, Mark A; Spinhoven, Philip; Elzinga, Bernet M; Rombouts, Serge A R B

    2015-09-30

    Hippocampus and amygdala volumes in posttraumatic stress disorder (PTSD) related to childhood trauma are relatively understudied, albeit the potential importance to the disorder. Whereas some studies reported smaller hippocampal volumes, little evidence was found for abnormal amygdala volumes. Here we investigated hippocampus and amygdala volumes and shapes in an adult sample of PTSD patients related to childhood trauma. T1-weighted MR images were acquired from 12 female PTSD patients with trauma related to physical, sexual, and/or emotional abuse before age 18, and from 12 matched controls. Hippocampus and amygdala were segmented, and volumes were calculated and corrected for the total intracranial volume. Additionally, a shape analysis was done on the surface of the structures to explore abnormalities in specific subnuclei. Smaller right amygdala volumes were found in PTSD patients as compared with the controls. This difference appeared to be located specifically in the basolateral and superficial nuclei groups. Severity of sexual abuse during childhood was negatively correlated with the size of the amygdala. No difference in hippocampal volumes was found. Although our results are not conclusive, traumatic events in childhood might impede normal development of the amygdala, which could render a person more vulnerable to develop PTSD later in life. PMID:26211620

  6. Neural mechanisms of social decision-making in the primate amygdala.

    Science.gov (United States)

    Chang, Steve W C; Fagan, Nicholas A; Toda, Koji; Utevsky, Amanda V; Pearson, John M; Platt, Michael L

    2015-12-29

    Social decisions require evaluation of costs and benefits to oneself and others. Long associated with emotion and vigilance, the amygdala has recently been implicated in both decision-making and social behavior. The amygdala signals reward and punishment, as well as facial expressions and the gaze of others. Amygdala damage impairs social interactions, and the social neuropeptide oxytocin (OT) influences human social decisions, in part, by altering amygdala function. Here we show in monkeys playing a modified dictator game, in which one individual can donate or withhold rewards from another, that basolateral amygdala (BLA) neurons signaled social preferences both across trials and across days. BLA neurons mirrored the value of rewards delivered to self and others when monkeys were free to choose but not when the computer made choices for them. We also found that focal infusion of OT unilaterally into BLA weakly but significantly increased both the frequency of prosocial decisions and attention to recipients for context-specific prosocial decisions, endorsing the hypothesis that OT regulates social behavior, in part, via amygdala neuromodulation. Our findings demonstrate both neurophysiological and neuroendocrinological connections between primate amygdala and social decisions. PMID:26668400

  7. Neuroimaging Study of the Human Amygdala - Toward an Understanding of Emotional and Stress Responses -

    Science.gov (United States)

    Iidaka, Tetsuya

    The amygdala plays a critical role in the neural system involved in emotional responses and conditioned fear. The dysfunction of this system is thought to be a cause of several neuropsychiatric disorders. A neuroimaging study provides a unique opportunity for noninvasive investigation of the human amygdala. We studied the activity of this structure in normal subjects and patients with schizophrenia by using the face recognition task. Our results showed that the amygdala was activated by presentation of face stimuli, and negative face activated the amygdala to a greater extent than a neutral face. Under the happy face condition, the activation of the amygdala was higher in the schizophrenic patients than in control subjects. A single nucleotide polymorphism in the regulatory region of the serotonin type 3 receptor gene had modulatory effects on the amygdaloid activity. The emotion regulation had a significant impact on neural interaction between the amygdala and prefrontal cortices. Thus, studies on the human amygdala would greatly contribute to the elucidation of the neural system that determines emotional and stress responses. To clarify the relevance of the neural dysfunction and neuropsychiatric disorders, further studies using physiological, genetic, and hormonal approaches are essential.

  8. Inhibitory effect of ketamine on lighting amygdala of rats

    Institute of Scientific and Technical Information of China (English)

    Jiguo Zhang; Bin Yang; Jing Zhang; Feng Zhang; Wang Yue

    2006-01-01

    BACKGROUND: Ketamine is a noncompetitive antagonist of N-methyl-D-aspartic acid receptor. Some researchers suggest that N-methyl-D-aspartic acid (NMDA) receptor is closely related to epileptic attack.OBJECTIVE: To observe inhibitory effect of ketamine on lighting amygdala of rats and analyze pathway of anti-lighting.DESIGN: Randomized controlled animal study.SETTING: Department of Pharmacology and Department of Management, Pharmacological College of Taishan Medical College; Department of Pharmacology, Medical College of Qingdao University.MATERIALS: Sixty adult female Wistar rats, of clean grade, weighing 180-200 g, were provided by Animal Center of Qingdao Institute of Drug Control. Ketamine hydrochloride was provided by the First Pharmacological Factory of the First Biochemical Pharmacology Company of Shanghai, and nicardipine, an antagonist of calcium ions, was provided by Sigma Company.METHODS: The experiment was completed in the Department of Pharmacology, Medical College of Qingdao University from March to November 2004. ① Model establishing: After anesthesia, left and right amygdalas were inserted with double electrodes. The top was separated about 0.25 mm, and the other end was welded with a micro-plug, respectively. Electrode and micro-plug were fixed with dental base acrylic resin powder at the surface of cranium. Two weeks after recovery, right amygdala was stimulated with constant current once a day. According to Racine technique, attacking intensity was divided into 5 grades: grade I:closing eyes, a little tingling of beards and twitching face; grade Ⅱ: nodding, chewing accompanying with twitching face; grade Ⅲ: raising one of a forelimb and clonus; grade Ⅳ: standing accompanying with bilateral forelimbs; grade Ⅴ: standing accompanying with falling down. Rats with grades Ⅳ and Ⅴ were used to establish secondarily generalized epilepsy. If 3 successive attacks of grade Ⅴ were observed, the lighting was to be successful. ② Effect of

  9. Amygdala Connectivity Differs Among Chronic, Early Course, and Individuals at Risk for Developing Schizophrenia

    Science.gov (United States)

    Anticevic, Alan; Tang, Yanqing; Cho, Youngsun T.; Repovs, Grega; Cole, Michael W.; Savic, Aleksandar; Wang, Fei; Krystal, John H.; Xu, Ke

    2014-01-01

    Alterations in circuits involving the amygdala have been repeatedly implicated in schizophrenia neuropathology, given their role in stress, affective salience processing, and psychosis onset. Disturbances in amygdala whole-brain functional connectivity associated with schizophrenia have yet to be fully characterized despite their importance in psychosis. Moreover, it remains unknown if there are functional alterations in amygdala circuits across illness phases. To evaluate this possibility, we compared whole-brain amygdala connectivity in healthy comparison subjects (HCS), individuals at high risk (HR) for schizophrenia, individuals in the early course of schizophrenia (EC-SCZ), and patients with chronic schizophrenia (C-SCZ). We computed whole-brain resting-state connectivity using functional magnetic resonance imaging at 3T via anatomically defined individual-specific amygdala seeds. We identified significant alterations in amygdala connectivity with orbitofrontal cortex (OFC), driven by reductions in EC-SCZ and C-SCZ (effect sizes of 1.0 and 0.97, respectively), but not in HR for schizophrenia, relative to HCS. Reduced amygdala-OFC coupling was associated with schizophrenia symptom severity (r = .32, P < .015). Conversely, we identified a robust increase in amygdala connectivity with a brainstem region around noradrenergic arousal nuclei, particularly for HR individuals relative to HCS (effect size = 1.54), but not as prominently for other clinical groups. These results suggest that deficits in amygdala-OFC coupling could emerge during the initial episode of schizophrenia (EC-SCZ) and may present as an enduring feature of the illness (C-SCZ) in association with symptom severity but are not present in individuals with elevated risk for developing schizophrenia. Instead, in HR individuals, there appears to be increased connectivity in a circuit implicated in stress response. PMID:24366718

  10. General and specific responsiveness of the amygdala during explicit emotion recognition in females and males

    Directory of Open Access Journals (Sweden)

    Windischberger Christian

    2009-08-01

    Full Text Available Abstract Background The ability to recognize emotions in facial expressions relies on an extensive neural network with the amygdala as the key node as has typically been demonstrated for the processing of fearful stimuli. A sufficient characterization of the factors influencing and modulating amygdala function, however, has not been reached now. Due to lacking or diverging results on its involvement in recognizing all or only certain negative emotions, the influence of gender or ethnicity is still under debate. This high-resolution fMRI study addresses some of the relevant parameters, such as emotional valence, gender and poser ethnicity on amygdala activation during facial emotion recognition in 50 Caucasian subjects. Stimuli were color photographs of emotional Caucasian and African American faces. Results Bilateral amygdala activation was obtained to all emotional expressions (anger, disgust, fear, happy, and sad and neutral faces across all subjects. However, only in males a significant correlation of amygdala activation and behavioral response to fearful stimuli was observed, indicating higher amygdala responses with better fear recognition, thus pointing to subtle gender differences. No significant influence of poser ethnicity on amygdala activation occurred, but analysis of recognition accuracy revealed a significant impact of poser ethnicity that was emotion-dependent. Conclusion Applying high-resolution fMRI while subjects were performing an explicit emotion recognition task revealed bilateral amygdala activation to all emotions presented and neutral expressions. This mechanism seems to operate similarly in healthy females and males and for both in-group and out-group ethnicities. Our results support the assumption that an intact amygdala response is fundamental in the processing of these salient stimuli due to its relevance detecting function.

  11. Amygdala subregions tied to SSRI and placebo response in patients with social anxiety disorder.

    Science.gov (United States)

    Faria, Vanda; Appel, Lieuwe; Åhs, Fredrik; Linnman, Clas; Pissiota, Anna; Frans, Örjan; Bani, Massimo; Bettica, Paolo; Pich, Emilio M; Jacobsson, Eva; Wahlstedt, Kurt; Fredrikson, Mats; Furmark, Tomas

    2012-09-01

    The amygdala is a key structure in the pathophysiology of anxiety disorders, and a putative target for anxiolytic treatments. Selective serotonin reuptake inhibitors (SSRIs) and placebo seem to induce anxiolytic effects by attenuating amygdala responsiveness. However, conflicting amygdala findings have also been reported. Moreover, the neural profile of responders and nonresponders is insufficiently characterized and it remains unknown whether SSRIs and placebo engage common or distinct amygdala subregions or different modulatory cortical areas. We examined similarities and differences in the neural response to SSRIs and placebo in patients with social anxiety disorder (SAD). Positron emission tomography (PET) with oxygen-15-labeled water was used to assess regional cerebral blood flow (rCBF) in 72 patients with SAD during an anxiogenic public speaking task, before and after 6-8 weeks of treatment under double-blind conditions. Response rate was determined by the Clinical Global Impression-Improvement scale. Conjunction analysis revealed a common rCBF-attenuation from pre- to post-treatment in responders to SSRIs and placebo in the left basomedial/basolateral and right ventrolateral amygdala. This rCBF pattern correlated with behavioral measures of reduced anxiety and differentiated responders from nonresponders. However, nonanxiolytic treatment effects were also observed in the amygdala. All subgroups, including nonresponders, showed deactivation of the left lateral part of the amygdala. No rCBF differences were found between SSRI responders and placebo responders. This study provides new insights into the brain dynamics underlying anxiety relief by demonstrating common amygdala targets for pharmacologically and psychologically induced anxiety reduction, and by showing that the amygdala is functionally heterogeneous in anxiolysis. PMID:22617357

  12. Mothers’ amygdala response to positive or negative infant affect is modulated by personal relevance

    Directory of Open Access Journals (Sweden)

    Lane eStrathearn

    2013-10-01

    Full Text Available Understanding, prioritizing and responding to infant affective cues is a key component of motherhood, with long-term implications for infant socio-emotional development. This important task includes identifying unique characteristics of one’s own infant, as they relate to differences in affect valence—happy or sad—while monitoring one’s own level of arousal. The amygdala has traditionally been understood to respond to affective valence; in the present study, we examined the potential effect of personal relevance on amygdala response, by testing whether mothers’ amygdala response to happy and sad infant face cues would be modulated by infant identity. We used functional MRI to measure amygdala activation in 39 first-time mothers, while they viewed happy, neutral and sad infant faces of both their own and a matched unknown infant. Emotional arousal to each face was rated using the Self Assessment Manikin Scales. Mixed-effects linear regression models were used to examine significant predictors of amygdala response. Overall, both arousal ratings and amygdala activation were greater when mothers viewed their own infant’s face compared with unknown infant faces. Sad faces were rated as more arousing than happy faces, regardless of infant identity. However, within the amygdala, a highly significant interaction effect was noted between infant identity and valence. For own-infant faces, amygdala activation was greater for happy than sad faces, whereas the opposite trend was seen for unknown-infant faces. Our findings suggest that the amygdala response to positive and negative valenced cues is modulated by personal relevance. Positive facial expressions from one’s own infant may play a particularly important role in eliciting maternal responses and strengthening the mother-infant bond.

  13. Auditory responses in the amygdala to social vocalizations

    Science.gov (United States)

    Gadziola, Marie A.

    The underlying goal of this dissertation is to understand how the amygdala, a brain region involved in establishing the emotional significance of sensory input, contributes to the processing of complex sounds. The general hypothesis is that communication calls of big brown bats (Eptesicus fuscus) transmit relevant information about social context that is reflected in the activity of amygdalar neurons. The first specific aim analyzed social vocalizations emitted under a variety of behavioral contexts, and related vocalizations to an objective measure of internal physiological state by monitoring the heart rate of vocalizing bats. These experiments revealed a complex acoustic communication system among big brown bats in which acoustic cues and call structure signal the emotional state of a sender. The second specific aim characterized the responsiveness of single neurons in the basolateral amygdala to a range of social syllables. Neurons typically respond to the majority of tested syllables, but effectively discriminate among vocalizations by varying the response duration. This novel coding strategy underscores the importance of persistent firing in the general functioning of the amygdala. The third specific aim examined the influence of acoustic context by characterizing both the behavioral and neurophysiological responses to natural vocal sequences. Vocal sequences differentially modify the internal affective state of a listening bat, with lower aggression vocalizations evoking the greatest change in heart rate. Amygdalar neurons employ two different coding strategies: low background neurons respond selectively to very few stimuli, whereas high background neurons respond broadly to stimuli but demonstrate variation in response magnitude and timing. Neurons appear to discriminate the valence of stimuli, with aggression sequences evoking robust population-level responses across all sound levels. Further, vocal sequences show improved discrimination among stimuli

  14. Neuropeptides in the posterodorsal medial amygdala modulate central cardiovascular reflex responses in awake male rats

    Energy Technology Data Exchange (ETDEWEB)

    Quagliotto, E. [Departamento de Ciências Básicas da Saúde/Fisiologia, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS (Brazil); Programa de Pós-Graduação em Neurociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Casali, K.R. [Instituto de Ciência e Tecnologia, Universidade Federal de São Paulo, São José dos Campos, SP (Brazil); Dal Lago, P. [Departamento de Fisioterapia, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS (Brazil); Rasia-Filho, A.A. [Departamento de Ciências Básicas da Saúde/Fisiologia, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS (Brazil); Programa de Pós-Graduação em Neurociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil)

    2014-11-21

    The rat posterodorsal medial amygdala (MePD) links emotionally charged sensory stimuli to social behavior, and is part of the supramedullary control of the cardiovascular system. We studied the effects of microinjections of neuroactive peptides markedly found in the MePD, namely oxytocin (OT, 10 ng and 25 pg; n=6/group), somatostatin (SST, 1 and 0.05 μM; n=8 and 5, respectively), and angiotensin II (Ang II, 50 pmol and 50 fmol; n=7/group), on basal cardiovascular activity and on baroreflex- and chemoreflex-mediated responses in awake adult male rats. Power spectral and symbolic analyses were applied to pulse interval and systolic arterial pressure series to identify centrally mediated sympathetic/parasympathetic components in the heart rate variability (HRV) and arterial pressure variability (APV). No microinjected substance affected basal parameters. On the other hand, compared with the control data (saline, 0.3 µL; n=7), OT (10 ng) decreased mean AP (MAP{sub 50}) after baroreflex stimulation and increased both the mean AP response after chemoreflex activation and the high-frequency component of the HRV. OT (25 pg) increased overall HRV but did not affect any parameter of the symbolic analysis. SST (1 μM) decreased MAP{sub 50}, and SST (0.05 μM) enhanced the sympathovagal cardiac index. Both doses of SST increased HRV and its low-frequency component. Ang II (50 pmol) increased HRV and reduced the two unlike variations pattern of the symbolic analysis (P<0.05 in all cases). These results demonstrate neuropeptidergic actions in the MePD for both the increase in the range of the cardiovascular reflex responses and the involvement of the central sympathetic and parasympathetic systems on HRV and APV.

  15. Post-training depletions of basolateral amygdala serotonin fail to disrupt discrimination, retention, or reversal learning

    Directory of Open Access Journals (Sweden)

    G. Jesus eOchoa

    2015-05-01

    Full Text Available In goal-directed pursuits, the basolateral amygdala (BLA is critical in learning about changes in the value of rewards. BLA-lesioned rats show enhanced reversal learning, a task employed to measure the flexibility of response to changes in reward. Similarly, there is a trend for enhanced discrimination learning, suggesting that BLA may modulate formation of stimulus-reward associations. There is a parallel literature on the importance of serotonin (5HT in new stimulus-reward and reversal learning. Recent postulations implicate 5HT in learning from punishment. Whereas dopaminergic involvement is critical in behavioral activation and reinforcement, 5HT may be most critical for aversive processing and behavioral inhibition, complementary cognitive processes. Given these findings, a 5HT-mediated mechanism in BLA may mediate the facilitated learning observed previously. The present study investigated the effects of selective 5HT lesions in BLA using 5,7-dihydroxytryptamine (5,7-DHT versus infusions of saline (Sham on discrimination, retention, and deterministic reversal learning. Rats were required to reach an 85% correct pairwise discrimination and single reversal criterion prior to surgery. Postoperatively, rats were then tested on the 1 retention of the pretreatment discrimination pair 2 discrimination of a novel pair and 3 reversal learning performance. We found statistically comparable preoperative learning rates between groups, intact postoperative retention, and unaltered novel discrimination and reversal learning in 5,7-DHT rats. These findings suggest that 5HT in BLA is not required for formation and flexible adjustment of new stimulus-reward associations when the strategy to efficiently solve the task has already been learned. Given the complementary role of orbitofrontal cortex in reward learning and its interconnectivity with BLA, these findings add to the list of dissociable mechanisms for BLA and orbitofrontal cortex in reward learning.

  16. Post-training depletions of basolateral amygdala serotonin fail to disrupt discrimination, retention, or reversal learning.

    Science.gov (United States)

    Ochoa, Jesus G; Stolyarova, Alexandra; Kaur, Amandeep; Hart, Evan E; Bugarin, Amador; Izquierdo, Alicia

    2015-01-01

    In goal-directed pursuits, the basolateral amygdala (BLA) is critical in learning about changes in the value of rewards. BLA-lesioned rats show enhanced reversal learning, a task employed to measure the flexibility of response to changes in reward. Similarly, there is a trend for enhanced discrimination learning, suggesting that BLA may modulate formation of stimulus-reward associations. There is a parallel literature on the importance of serotonin (5HT) in new stimulus-reward and reversal learning. Recent postulations implicate 5HT in learning from punishment. Whereas, dopaminergic involvement is critical in behavioral activation and reinforcement, 5HT may be most critical for aversive processing and behavioral inhibition, complementary cognitive processes. Given these findings, a 5HT-mediated mechanism in BLA may mediate the facilitated learning observed previously. The present study investigated the effects of selective 5HT lesions in BLA using 5,7-dihydroxytryptamine (5,7-DHT) vs. infusions of saline (Sham) on discrimination, retention, and deterministic reversal learning. Rats were required to reach an 85% correct pairwise discrimination and single reversal criterion prior to surgery. Postoperatively, rats were then tested on the (1) retention of the pretreatment discrimination pair, (2) discrimination of a novel pair, and (3) reversal learning performance. We found statistically comparable preoperative learning rates between groups, intact postoperative retention, and unaltered novel discrimination and reversal learning in 5,7-DHT rats. These findings suggest that 5HT in BLA is not required for formation and flexible adjustment of new stimulus-reward associations when the strategy to efficiently solve the task has already been learned. Given the complementary role of orbitofrontal cortex in reward learning and its interconnectivity with BLA, these findings add to the list of dissociable mechanisms for BLA and orbitofrontal cortex in reward learning. PMID

  17. Modulation of Long-Term Potentiation of Cortico-Amygdala Synaptic Responses and Auditory Fear Memory by Dietary Polyunsaturated Fatty Acid

    Science.gov (United States)

    Yamada, Daisuke; Wada, Keiji; Sekiguchi, Masayuki

    2016-01-01

    Converging evidence suggests that an imbalance of ω3 to ω6 polyunsaturated fatty acid (PUFA) in the brain is involved in mental illnesses such as anxiety disorders. However, the underlying mechanism is unknown. We previously reported that the dietary ratio of ω3 to ω6 PUFA alters this ratio in the brain, and influences contextual fear memory. In addition to behavioral change, enhancement of cannabinoid CB1 receptor-mediated short-term synaptic plasticity and facilitation of the agonist sensitivity of CB1 receptors have been observed in excitatory synaptic responses in the basolateral nucleus of the amygdala (BLA). However, it is not known whether long-term synaptic plasticity in the amygdala is influenced by the dietary ratio of ω3 to ω6 PUFA. In the present study, we examined long-term potentiation (LTP) of optogenetically-evoked excitatory synaptic responses in synapses between the terminal of the projection from the auditory cortex (ACx) and the pyramidal cells in the lateral nucleus of the amygdala. We found that LTP in this pathway was attenuated in mice fed with a high ω3 to ω6 PUFA ratio diet (0.97), compared with mice fed with a low ω3 to ω6 PUFA ratio diet (0.14). Furthermore, mice in the former condition showed reduced fear responses in an auditory fear conditioning test, compared with mice in the latter condition. In both electrophysiological and behavioral experiments, the effect of a diet with a high ω3 to ω6 PUFA diet ratio was completely blocked by treatment with a CB1 receptor antagonist. Furthermore, a significant reduction was observed in cholesterol content, but not in the level of an endogenous CB1 receptor agonist, 2-arachidonoylglycerol (2-AG), in brain samples containing the amygdala. These results suggest that the balance of ω3 to ω6 PUFA has an impact on fear memory and cortico-amygdala synaptic plasticity, both in a CB1 receptor–dependent manner. PMID:27601985

  18. Mesolimbic dopaminergic supersensitivity following electrical kindling of the amygdala

    Energy Technology Data Exchange (ETDEWEB)

    Csernansky, J.G.; Mellentin, J.; Beauclair, L.; Lombrozo, L.

    1988-02-01

    Limbic seizures developed in rats following daily electrical stimulation of the basolateral nucleus of the amygdala. Animals were designated as kindled after five complete (stage 5) behavioral seizures were observed. A subgroup, designated as superkindled, received three additional weeks of electrical stimulations. Kindled rats were significantly subsensitive to the stereotypy-inducing effects of apomorphine, a direct dopamine agonist, compared to controls. Superkindled rats were supersensitive to the effects of apomorphine. However, both kindled and superkindled rats demonstrated an increase in /sup 3/H-spiperone Bmax values, reflecting dopamine D2-receptor densities, in the nucleus accumbens ipsilateral to the stimulating electrode. The number of interictal spikes recorded from the stimulating amygdaloid electrode during the last week of kindling was correlated with changes in apomorphine sensitivity in individual animals.

  19. Ifenprodil and arcaine alter amygdala-kindling development.

    Science.gov (United States)

    Yourick, D L; Repasi, R T; Rittase, W B; Staten, L D; Meyerhoff, J L

    1999-04-29

    The NMDA receptor complex is thought to be altered in kindling, an animal model for complex partial epilepsy. This receptor complex has several modulatory sites including those for glutamate, glycine and polyamines with activation resulting in altered cation channel opening. Two NMDA receptor effectors, ifenprodil and arcaine, were evaluated for effects on the acquisition of electrical kindling of the amygdala. Rats were administered 0, 3.2, 10, 32 and 100 microg of ifenprodil or 0, 32 or 100 microg of arcaine, intracerebroventricularly, 10 min before a daily kindling stimulus. Ifenprodil, at low doses, enhanced kindling acquisition, while the highest dose, 100 microg, inhibited kindling. Arcaine increased the number of trials required to reach fully generalized (stage 5) seizures at the 100 microg dose. Since these agents had mixed actions on kindling development, it is unclear whether these or similar NMDA effectors would be useful in the modulation of complex partial seizures.

  20. Somatostatin-like immunoreactivity in the amygdala of the pig.

    Directory of Open Access Journals (Sweden)

    Agnieszka Bossowska

    2008-06-01

    Full Text Available The distribution and morphology of neurons containing somatostatin (SOM was investigated in the amygdala (CA of the pig. The SOM-immunoreactive (SOM-IR cell bodies and fibres were present in all subdivisions of the porcine CA, however, their number and density varied depending on the nucleus studied. The highest density of SOM-positive somata was observed in the layer III of the cortical nuclei, in the anterior (magnocellular part of the basomedial nucleus and in the caudal (large-celled part of the lateral nucleus. Moderate to high numbers of SOM-IR cells were also observed in the medial and basolateral nuclei. Many labeled neurons were also consistently observed in the lateral part of the central nucleus. In the remaining CA regions, the density of SOM-positive cell bodies varied from moderate to low. In any CA region studied SOM-IR neurons formed heterogeneous population consisting of small, rounded or slightly elongated cell bodies, with a few poorly branched smooth dendrites. In general, morphological features of these cells clearly resembled the non-pyramidal Golgi type II interneurons. The routine double-labeling studies with antisera directed against SOM and neuropeptide Y (NPY demonstrated that a large number of SOM-IR cell bodies and fibers in all studied CA areas contained simultaneously NPY. In contrast, co-localization of SOM and cholecystokinin (CCK or SOM and vasoactive intestinal polypeptide (VIP was never seen in cell bodies and fibres in any of nuclei studied. In conclusion, SOM-IR neurons of the porcine amygdala form large and heterogeneous subpopulation of, most probably, interneurons that often contain additionally NPY. On the other hand, CCK- and/or VIP-IR neurons belonged to another, discrete subpopulations of porcine CA neurons.

  1. Amygdala volume predicts inter-individual differences in fearful face recognition.

    Science.gov (United States)

    Zhao, Ke; Yan, Wen-Jing; Chen, Yu-Hsin; Zuo, Xi-Nian; Fu, Xiaolan

    2013-01-01

    The present study investigates the relationship between inter-individual differences in fearful face recognition and amygdala volume. Thirty normal adults were recruited and each completed two identical facial expression recognition tests offline and two magnetic resonance imaging (MRI) scans. Linear regression indicated that the left amygdala volume negatively correlated with the accuracy of recognizing fearful facial expressions and positively correlated with the probability of misrecognizing fear as surprise. Further exploratory analyses revealed that this relationship did not exist for any other subcortical or cortical regions. Nor did such a relationship exist between the left amygdala volume and performance recognizing the other five facial expressions. These mind-brain associations highlight the importance of the amygdala in recognizing fearful faces and provide insights regarding inter-individual differences in sensitivity toward fear-relevant stimuli. PMID:24009767

  2. Amygdala volume predicts inter-individual differences in fearful face recognition.

    Directory of Open Access Journals (Sweden)

    Ke Zhao

    Full Text Available The present study investigates the relationship between inter-individual differences in fearful face recognition and amygdala volume. Thirty normal adults were recruited and each completed two identical facial expression recognition tests offline and two magnetic resonance imaging (MRI scans. Linear regression indicated that the left amygdala volume negatively correlated with the accuracy of recognizing fearful facial expressions and positively correlated with the probability of misrecognizing fear as surprise. Further exploratory analyses revealed that this relationship did not exist for any other subcortical or cortical regions. Nor did such a relationship exist between the left amygdala volume and performance recognizing the other five facial expressions. These mind-brain associations highlight the importance of the amygdala in recognizing fearful faces and provide insights regarding inter-individual differences in sensitivity toward fear-relevant stimuli.

  3. A review of neuroimaging studies of race-related prejudice: Does amygdala response reflect threat?

    Directory of Open Access Journals (Sweden)

    Adam Mourad Chekroud

    2014-03-01

    Full Text Available Prejudice is an enduring and pervasive aspect of human cognition. An emergent trend in modern psychology has focused on understanding how cognition is linked to neural function, leading researchers to investigate the neural correlates of prejudice. Research in this area, using racial group memberships, quickly highlighted the amygdala as a neural structure of importance. In this article, we offer a critical review of social neuroscientific studies of the amygdala in race-related prejudice. Rather than the dominant interpretation that amygdala activity reflects a racial or outgroup bias per se, we argue that the observed pattern of sensitivity in this literature is best considered in terms of potential threat. More specifically, we argue that negative culturally-learned associations between black males and potential threat better explain the observed pattern of amygdala activity. Finally, we consider future directions for the field, and offer specific experiments and predictions to directly address unanswered questions.

  4. Pavlovian fear conditioning as a behavioral assay for hippocampus and amygdala function: cautions and caveats.

    Science.gov (United States)

    Maren, Stephen

    2008-10-01

    Pavlovian fear conditioning has become an important model for investigating the neural substrates of learning and memory in rats, mice and humans. The hippocampus and amygdala are widely believed to be essential for fear conditioning to contexts and discrete cues, respectively. Indeed, this parsing of function within the fear circuit has been used to leverage fear conditioning as a behavioral assay of hippocampal and amygdala function, particularly in transgenic mouse models. Recent work, however, blurs the anatomical segregation of cue and context conditioning and challenges the necessity for the hippocampus and amygdala in fear learning. Moreover, nonassociative factors may influence the performance of fear responses under a variety of conditions. Caution must therefore be exercised when using fear conditioning as a behavioral assay for hippocampal- and amygdala-dependent learning.

  5. Trait aggressiveness is not related to structural connectivity between orbitofrontal cortex and amygdala.

    Directory of Open Access Journals (Sweden)

    Frederike Beyer

    Full Text Available Studies in both pathological and healthy samples have suggested altered functional connectivity between orbitofrontal cortex (OFC and amygdala as a possible cause of anger and aggression. In patient populations presenting with pathological aggression, there is also evidence for changes in structural connectivity between OFC and amygdala. In healthy samples, however, the relationship between white matter integrity and aggression has not been studied to date. Here, we investigated the relationship between trait aggressiveness and structural OFC-amygdala connectivity in a large sample (n = 93 of healthy young men. Using diffusion tensor imaging, we measured the distribution of fractional anisotropy and mean diffusivity along the uncinate fascicle bilaterally. We found no differences in either measure between participants high and low in physical aggressiveness, or between those high and low in trait anger. Our results therefore argue against a direct relationship between structural OFC-amygdala connectivity and normal-range trait aggressiveness.

  6. The Rhesus Monkey Connectome Predicts Disrupted Functional Networks Resulting from Pharmacogenetic Inactivation of the Amygdala.

    Science.gov (United States)

    Grayson, David S; Bliss-Moreau, Eliza; Machado, Christopher J; Bennett, Jeffrey; Shen, Kelly; Grant, Kathleen A; Fair, Damien A; Amaral, David G

    2016-07-20

    Contemporary research suggests that the mammalian brain is a complex system, implying that damage to even a single functional area could have widespread consequences across the system. To test this hypothesis, we pharmacogenetically inactivated the rhesus monkey amygdala, a subcortical region with distributed and well-defined cortical connectivity. We then examined the impact of that perturbation on global network organization using resting-state functional connectivity MRI. Amygdala inactivation disrupted amygdalocortical communication and distributed corticocortical coupling across multiple functional brain systems. Altered coupling was explained using a graph-based analysis of experimentally established structural connectivity to simulate disconnection of the amygdala. Communication capacity via monosynaptic and polysynaptic pathways, in aggregate, largely accounted for the correlational structure of endogenous brain activity and many of the non-local changes that resulted from amygdala inactivation. These results highlight the structural basis of distributed neural activity and suggest a strategy for linking focal neuropathology to remote neurophysiological changes. PMID:27477019

  7. Enhanced noradrenergic activity in the amygdala contributes to hyperarousal in an animal model of PTSD.

    Science.gov (United States)

    Ronzoni, Giacomo; Del Arco, Alberto; Mora, Francisco; Segovia, Gregorio

    2016-08-01

    Increased activity of the noradrenergic system in the amygdala has been suggested to contribute to the hyperarousal symptoms associated with post-traumatic stress disorder (PTSD). However, only two studies have examined the content of noradrenaline or its metabolites in the amygdala of rats previously exposed to traumatic stress showing inconsistent results. The aim of this study was to investigate the effects of an inescapable foot shock (IFS) procedure (1) on reactivity to novelty in an open-field (as an index of hyperarousal), and (2) on noradrenaline release in the amygdala during an acute stress. To test the role of noradrenaline in amygdala, we also investigated the effects of microinjections of propranolol, a β-adrenoreceptor antagonist, and clenbuterol, a β-adrenoreceptor agonist, into the amygdala of IFS and control animals. Finally, we evaluated the expression of mRNA levels of β-adrenoreceptors (β1 and β2) in the amygdala, the hippocampus and the prefrontal cortex. Male Wistar rats (3 months) were stereotaxically implanted with bilateral guide cannulae. After recovering from surgery, animals were exposed to IFS (10 shocks, 0.86mA, and 6s per shock) and seven days later either microdialysis or microinjections were performed in amygdala. Animals exposed to IFS showed a reduced locomotion compared to non-shocked animals during the first 5min in the open-field. In the amygdala, IFS animals showed an enhanced increase of noradrenaline induced by stress compared to control animals. Bilateral microinjections of propranolol (0.5μg) into the amygdala one hour before testing in the open-field normalized the decreased locomotion observed in IFS animals. On the other hand, bilateral microinjections of clenbuterol (30ng) into the amygdala of control animals did not change the exploratory activity induced by novelty in the open field. IFS modified the mRNA expression of β1 and β2 adrenoreceptors in the prefrontal cortex and the hippocampus. These results

  8. Age-related effect of serotonin transporter genotype on amygdala and prefrontal cortex function in adolescence

    OpenAIRE

    Wiggins, Jillian Lee; Bedoyan, Jirair K.; Carrasco, Melisa; Swartz, Johnna R.; Martin, Donna M.; Monk, Christopher S.

    2012-01-01

    The S and LG alleles of the serotonin transporter-linked polymorphic region (5-HTTLPR) lower serotonin transporter expression. These low expressing alleles are linked to increased risk for depression and brain activation patterns found in depression (increased amygdala activation and decreased amygdala-prefrontal cortex connectivity). Paradoxically, serotonin transporter blockade relieves depression symptoms. Rodent models suggest that decreased serotonin transporter in early life produces de...

  9. Changes in extracellular levels of amygdala amino acids in genetically fast and slow kindling rat strains.

    Science.gov (United States)

    Shin, Rick S; Anisman, Hymie; Merali, Zul; McIntyre, Dan C

    2002-08-01

    A neurochemical basis for many of the epilepsies has long been suspected to result from an imbalance between excitatory and inhibitory neurotransmitter mechanisms. Data supporting changes in extrasynaptic amino acid levels during epileptogenesis, however, remain controversial. In the present study, we used in vivo microdialysis to measure the levels of extracellular GABA (gamma-aminobutyric acid) and glutamate during seizure development in rats with a genetic predisposition for (Fast), or against (Slow), amygdala kindling. Dialysates were collected from both amygdalae before, during, and up to 12 min after a threshold-triggered amygdala afterdischarge (AD). One hour later, samples were again collected from both amygdalae in response to a hippocampal threshold AD. Daily amygdala kindling commenced the next day but without dialysis. After the rats were fully kindled, the same protocol was again employed. Amino acid levels were not consistently increased above baseline with triggered seizures in either strain. Instead, before kindling, a focal seizure in the Slow rats was associated with a large decrease in GABA in the non-stimulated amygdala, while amino acid levels in the Fast rats remained near baseline in both amygdalae. Similar results were seen after kindling. By contrast, before and after kindling, hippocampal stimulation caused large decreases in all amino acid levels in both amygdalae in both strains. These data suggest that, in response to direct stimulation, extracellular amino acid concentrations remain stable in tissues associated with either greater natural (Fast) or induced (kindled Fast/Slow) excitability, but are lowered with indirect stimulation (hippocampus) and/or low excitability.

  10. The Amygdala and the Relevance Detection Theory of Autism: An Evolutionary Perspective

    Directory of Open Access Journals (Sweden)

    Tiziana eZalla

    2013-12-01

    Full Text Available In the last few decades, there has been increasing interest in the role of the amygdala in psychiatric disorders and in particular its contribution to the socio-emotional impairments in autism spectrum disorders (ASDs. Given that the amygdala is a component structure of the social brain, several theoretical explanations compatible with amygdala dysfunction have been proposed to account for socio-emotional impairments in ASDs, including abnormal eye contact, gaze monitoring, face processing, mental state understanding and empathy. Nevertheless, many theoretical accounts, based on the Amygdala Theory of Autism, fail to elucidate the complex pattern of impairments observed in this population, which extends beyond the social domain. As posited by the Relevance Detector theory (Sander, Grafman and Zalla, 2003, the human amygdala is a critical component of a brain circuit involved in the appraisal of self-relevant events that include, but are not restricted to, social stimuli. Here, we propose that the behavioral and social-emotional features of ASDs may be better understood in terms of a disruption in a ‘Relevance Detector Network’ affecting the processing of stimuli that are relevant for the organism’s self-regulating functions. In the present review, we will first summarize the main literature supporting the involvement of the amygdala in socio-emotional disturbances in ASDs. Next, we will present a revised version of the amygdala Relevance Detector hypothesis and we will show that this theoretical framework can provide a better understanding of the heterogeneity of the impairments and symptomatology of ASDs. Finally, we will discuss some predictions of our model, and suggest new directions in the investigation of the role of the amygdala within the more generally disrupted cortical connectivity framework as a model of neural organization of the autistic brain.

  11. Role of Anxiety in the Pathophysiology of Irritable Bowel Syndrome: Importance of the Amygdala

    OpenAIRE

    BrentMyers; BeverleyGreenwood-VanMeerveld

    2009-01-01

    A common characteristic of irritable bowel syndrome (IBS) is that symptoms, including abdominal pain and abnormal bowel habits, are often triggered or exacerbated during periods of stress and anxiety. However, the impact of anxiety and affective disorders on the gastrointestinal (GI) tract is poorly understood and may in part explain the lack of effective therapeutic approaches to treat IBS. The amygdala is an important structure for regulating anxiety with the central nucleus of the amygdala...

  12. The Responsive Amygdala: Treatment-induced Alterations in Functional Connectivity in Pediatric Complex Regional Pain Syndrome

    OpenAIRE

    Simons, LE; Pielech, M; Erpelding, N; Linnman, C; Moulton, E; Sava, S; Lebel, A.; Serrano, P.; Sethna, N; Berde, C; Becerra, L.; Borsook, D.

    2014-01-01

    The amygdala is a key brain region with efferent and afferent neural connections that involve complex behaviors such as pain, reward, fear and anxiety. This study evaluated resting state functional connectivity of the amygdala with cortical and subcortical regions in a group of chronic pain patients (pediatric complex regional pain syndrome) with age-gender matched controls before and after intensive physical-biobehavioral pain treatment. Our main findings include (1) enhanced ...

  13. Effects of neonatal amygdala lesions on fear learning, conditioned inhibition, and extinction in adult macaques.

    Science.gov (United States)

    Kazama, Andy M; Heuer, Eric; Davis, Michael; Bachevalier, Jocelyne

    2012-06-01

    Fear conditioning studies have demonstrated the critical role played by the amygdala in emotion processing. Although all lesion studies until now investigated the effect of adult-onset damage on fear conditioning, the current study assessed fear-learning abilities, as measured by fear-potentiated startle, in adult monkeys that had received neonatal neurotoxic amygdala damage or sham-operations. After fear acquisition, their abilities to learn and use a safety cue to modulate their fear to the conditioned cue, and, finally, to extinguish their response to the fear conditioned cue were measured with the AX+/BX- Paradigm. Neonatal amygdala damage retarded, but did not completely abolish, the acquisition of a learned fear. After acquisition of the fear signal, four of the six animals with neonatal amygdala lesions discriminated between the fear and safety cues and were also able to use the safety signal to reduce the potentiated-startle response and to extinguish the fear response when the air-blast was absent. In conclusion, the present results support the critical contribution of the amygdala during the early phases of fear conditioning that leads to quick, robust responses to potentially threatening stimuli, a highly adaptive process across all species and likely to be present in early infancy. The neonatal amygdala lesions also indicated the presence of amygdala-independent alternate pathways that are capable to support fear learning in the absence of a functional amygdala. This parallel processing of fear responses within these alternate pathways was also sufficient to support the ability to flexibly modulate the magnitude of the fear responses.

  14. A model of amygdala-hippocampal-prefrontal interaction in fear conditioning and extinction in animals

    OpenAIRE

    Moustafa, Ahmed A.; Gilbertson, Mark W.; Orr, Scott P.; Herzallah, Mohammad M.; Servatius, Richard J.; Myers, Catherine E.

    2012-01-01

    Empirical research has shown that the amygdala, hippocampus, and ventromedial prefrontal cortex (vmPFC) are involved in fear conditioning. However, the functional contribution of each brain area and the nature of their interactions are not clearly understood. Here, we extend existing neural network models of the functional roles of the hippocampus in classical conditioning to include interactions with the amygdala and prefrontal cortex. We apply the model to fear conditioning, in which animal...

  15. The Impact of Early Amygdala Damage on Juvenile Rhesus Macaque Social Behavior

    OpenAIRE

    Bliss-Moreau, Eliza; Moadab, Gilda; Bauman, Melissa D.; Amaral, David G.

    2013-01-01

    The present experiments continue a longitudinal study of rhesus macaque social behavior following bilateral neonatal ibotenic acid lesions of the amygdala or hippocampus, or sham operations. Juvenile animals (approximately 1.5- 2.5 years of age) were tested in four different social contexts—alone, while interacting with one familiar peer, while interacting with one unfamiliar peer, and in their permanent social groups. During infancy, the amygdala-lesioned animals displayed more interest in c...

  16. Oscillatory interaction between amygdala and hippocampus coordinates behavioral modulation based on reward expectation

    Directory of Open Access Journals (Sweden)

    Satoshi eTerada

    2013-12-01

    Full Text Available The aim of this study is to examine how the amygdala and hippocampus interact for behavioral performance modulated by different reward expectations. We simultaneously recorded neuronal spikes and local field potential from the basolateral amygdala and hippocampal CA1 while rats were performing a light-side discrimination task with different expectations of a high or low probability of reward delivery. Here, we report the following results. First, the rats actually modulated their behavioral performance on their expectations of a high or low probability of reward. Second, we found more neurons related to reward expectation in the amygdala and more neurons related to task performance in the hippocampus. Third, a prominent increase in the coherence of high-frequency oscillations (HFOs (90-150Hz between the amygdala and the hippocampus was present during high reward expectation. Fourth, coherent HFOs during inter-trial intervals and theta coherence during trials had significant correlations with the behavioral goal-selection time. Finally, cross-frequency couplings of LFPs within and across the amygdala and hippocampus occurred during ITI. These results suggest that the amygdala and hippocampus have different functional roles in the present task with different reward expectations, and the distinctive band of coherence between the amygdala and the hippocampus contributes to behavioral modulation on the basis of reward expectations. We propose that the amygdala influences firing rates and the strength of synchronization of hippocampal neurons through coherent oscillation, which is a part of the mechanism of how reward expectations modulate goal-directed behavior.

  17. Individual differences in social behavior predict amygdala response to fearful facial expressions in Williams syndrome

    OpenAIRE

    Haas, Brian W.; Hoeft, Fumiko; Searcy, Yvonne M.; Mills, Debra; Bellugi, Ursula; Reiss, Allan

    2009-01-01

    Williams syndrome is a genetic condition often paired with abnormal social functioning and behavior. In particular, those with WS are characterized as being relatively hypersocial, overly emotional/empathic, and socially uninhibited or fearless. In addition, WS is associated with abnormal amygdala structure and function. Very little is known however about the relationship between specific social behaviors and altered amygdala function in WS. This study was designed to compare three models tha...

  18. Unconscious Processing of Negative Animals and Objects: Role of the Amygdala Revealed by fMRI

    OpenAIRE

    Fang, Zhiyong; Li, Han; Chen, Gang; Yang, Jiongjiong

    2016-01-01

    Previous studies have shown that emotional stimuli can be processed through the amygdala without conscious awareness. The amygdala is also involved in processing animate and social information. However, it is unclear whether different categories of pictures (e.g., animals, objects) elicit different activity in the amygdale and other regions without conscious awareness. The objective of this study was to explore whether the factors of category, emotion and picture context modulate brain activa...

  19. Evidence for altered amygdala activation in schizophrenia in an adaptive emotion recognition task.

    Science.gov (United States)

    Mier, Daniela; Lis, Stefanie; Zygrodnik, Karina; Sauer, Carina; Ulferts, Jens; Gallhofer, Bernd; Kirsch, Peter

    2014-03-30

    Deficits in social cognition seem to present an intermediate phenotype for schizophrenia, and are known to be associated with an altered amygdala response to faces. However, current results are heterogeneous with respect to whether this altered amygdala response in schizophrenia is hypoactive or hyperactive in nature. The present study used functional magnetic resonance imaging to investigate emotion-specific amygdala activation in schizophrenia using a novel adaptive emotion recognition paradigm. Participants comprised 11 schizophrenia outpatients and 16 healthy controls who viewed face stimuli expressing emotions of anger, fear, happiness, and disgust, as well as neutral expressions. The adaptive emotion recognition approach allows the assessment of group differences in both emotion recognition performance and associated neuronal activity while also ensuring a comparable number of correctly recognized emotions between groups. Schizophrenia participants were slower and had a negative bias in emotion recognition. In addition, they showed reduced differential activation during recognition of emotional compared with neutral expressions. Correlation analyses revealed an association of a negative bias with amygdala activation for neutral facial expressions that was specific to the patient group. We replicated previous findings of affected emotion recognition in schizophrenia. Furthermore, we demonstrated that altered amygdala activation in the patient group was associated with the occurrence of a negative bias. These results provide further evidence for impaired social cognition in schizophrenia and point to a central role of the amygdala in negative misperceptions of facial stimuli in schizophrenia.

  20. Amygdala kindling in immature rats: proconvulsant effect of the organophosphate insecticide-chlorpyrifos.

    Science.gov (United States)

    Wurpel, J N; Hirt, P C; Bidanset, J H

    1993-01-01

    Administration of the organophosphate insecticide, chlorpyrifos to immature rats exerted a proconvulsant effect on seizures induced by kindling. Chlorpyrifos was administered to 16 or 17 day old rats in a dose range of 0.3 to 10 mg/kg, subcutaneously. Amygdala kindling was performed by stimulating the rats every 15 minutes to a total of 20 stimulations. Kindling occurred more rapidly in the chlorpyrifos treated rats than vehicle treated rats, the proconvulsant effect was dose-dependent. The proconvulsant effect of chlorpyrifos was more pronounced in the early stages of kindling, indicating a possible increase in local excitability of the amygdala in the presence of chlorpyrifos. Chlorpyrifos also reduced the after discharge threshold in the amygdala in a dose-dependent manner and increased the duration of after discharges elicited by electrical stimulus, indicating an increase in excitability of the amygdala. The effects of chlorpyrifos on kindling were additive with xylene: the proconvulsant effect in the early stages of kindling was greatly enhanced by xylene. Xylene, administered alone as a 0.2% solution, reduced the after discharge threshold of the amygdala, increased the after discharge duration and increased the rate of kindling. These experiments demonstrate a proconvulsant effect of chlorpyrifos in amygdala kindling and this proconvulsant action is additive with xylene.

  1. Post-traumatic stress and age variation in amygdala volumes among youth exposed to trauma.

    Science.gov (United States)

    Weems, Carl F; Klabunde, Megan; Russell, Justin D; Reiss, Allan L; Carrión, Victor G

    2015-12-01

    Theoretically, normal developmental variation in amygdala volumes may be altered under conditions of severe stress. The purpose of this article was to examine whether posttraumatic stress moderates the association between age and amygdala volumes in youth exposed to traumatic events who are experiencing symptoms of post-traumatic stress disorder (PTSD). Volumetric imaging was conducted on two groups of youth aged 9-17 years: 28 with exposure to trauma and PTSD symptoms (boys = 15, girls = 13) and 26 matched (age, IQ) comparison youth (Controls; boys = 12, girls = 14). There was a significant group by age interaction in predicting right amygdala volumes. A positive association between age and right amygdala volumes was observed, but only in PTSD youth. These associations with age remained when controlling for IQ, total brain volumes and sex. Moreover, older youth with PTSD symptoms had relatively larger right amygdala volumes than controls. Findings provide evidence that severe stress may influence age-related variation in amygdala volumes. Results further highlight the importance of utilizing age as an interactive variable in pediatric neuroimaging research, in so far as age may act as an important moderator of group differences.

  2. Mindful attention to breath regulates emotions via increased amygdala-prefrontal cortex connectivity.

    Science.gov (United States)

    Doll, Anselm; Hölzel, Britta K; Mulej Bratec, Satja; Boucard, Christine C; Xie, Xiyao; Wohlschläger, Afra M; Sorg, Christian

    2016-07-01

    Mindfulness practice is beneficial for emotion regulation; however, the neural mechanisms underlying this effect are poorly understood. The current study focuses on effects of attention-to-breath (ATB) as a basic mindfulness practice on aversive emotions at behavioral and brain levels. A key finding across different emotion regulation strategies is the modulation of amygdala and prefrontal activity. It is unclear how ATB relevant brain areas in the prefrontal cortex integrate with amygdala activation during emotional stimulation. We proposed that, during emotional stimulation, ATB down-regulates activation in the amygdala and increases its integration with prefrontal regions. To address this hypothesis, 26 healthy controls were trained in mindfulness-based attention-to-breath meditation for two weeks and then stimulated with aversive pictures during both attention-to-breath and passive viewing while undergoing fMRI. Data were controlled for breathing frequency. Results indicate that (1) ATB was effective in regulating aversive emotions. (2) Left dorso-medial prefrontal cortex was associated with ATB in general. (3) A fronto-parietal network was additionally recruited during emotional stimulation. (4) ATB down regulated amygdala activation and increased amygdala-prefrontal integration, with such increased integration being associated with mindfulness ability. Results suggest amygdala-dorsal prefrontal cortex integration as a potential neural pathway of emotion regulation by mindfulness practice. PMID:27033686

  3. Basolateral amygdala lesion inhibits the development of pain chronicity in neuropathic pain rats.

    Directory of Open Access Journals (Sweden)

    Zheng Li

    Full Text Available BACKGROUND: Chronicity of pain is one of the most interesting questions in chronic pain study. Clinical and experimental data suggest that supraspinal areas responsible for negative emotions such as depression and anxiety contribute to the chronicity of pain. The amygdala is suspected to be a potential structure for the pain chronicity due to its critical role in processing negative emotions and pain information. OBJECTIVE: This study aimed to investigate whether amygdala or its subregions, the basolateral amygdala (BLA and the central medial amygdala (CeA, contributes to the pain chronicity in the spared nerve injury (SNI-induced neuropathic pain model of rats. METHODOLOGY/PRINCIPAL FINDINGS: (1 Before the establishment of the SNI-induced neuropathic pain model of rats, lesion of the amygdaloid complex with stereotaxic injection of ibotenic acid (IBO alleviated mechanical allodynia significantly at days 7 and 14, even no mechanical allodynia at day 28 after SNI; Lesion of the BLA, but not the CeA had similar effects; (2 however, 7 days after SNI when the neuropathic pain model was established, lesion of the amygdala complex or the BLA or the CeA, mechanical allodynia was not affected. CONCLUSION: These results suggest that BLA activities in the early stage after nerve injury might be crucial to the development of pain chronicity, and amygdala-related negative emotions and pain-related memories could promote pain chronicity.

  4. Resting-state connectivity of the amygdala is altered following Pavlovian fear conditioning.

    Science.gov (United States)

    Schultz, Douglas H; Balderston, Nicholas L; Helmstetter, Fred J

    2012-01-01

    Neural plasticity in the amygdala is necessary for the acquisition and storage of memory in Pavlovian fear conditioning, but most neuroimaging studies have focused only on stimulus-evoked responses during the conditioning session. This study examined changes in the resting-state functional connectivity (RSFC) of the amygdala before and after Pavlovian fear conditioning, an emotional learning task. Behavioral results from the conditioning session revealed that participants learned normally and fMRI data recorded during learning identified a number of stimulus-evoked changes that were consistent with previous work. A direct comparison between the pre- and post-conditioning amygdala connectivity revealed a region of dorsal prefrontal cortex (PFC) in the superior frontal gyrus that showed a significant increase in connectivity following the conditioning session. A behavioral measure of explicit memory performance was positively correlated with the change in amygdala connectivity within a neighboring region in the superior frontal gyrus. Additionally, an implicit autonomic measure of conditioning was positively correlated with the change in connectivity between the amygdala and the anterior cingulate cortex (ACC). The resting-state data show that amygdala connectivity is altered following Pavlovian fear conditioning and that these changes are also related to behavioral outcomes. These alterations may reflect the operation of a consolidation process that strengthens neural connections to support memory after the learning event.

  5. Resting-state connectivity of the amygdala is altered following Pavlovian fear conditioning

    Directory of Open Access Journals (Sweden)

    Douglas H Schultz

    2012-08-01

    Full Text Available Neural plasticity in the amygdala is necessary for the acquisition and storage of memory in Pavlovian fear conditioning, but most neuroimaging studies have focused only on stimulus-evoked responses during the conditioning session. This study examined changes in the resting-state functional connectivity (RSFC of the amygdala before and after Pavlovian fear conditioning, an emotional learning task. Behavioral results from the conditioning session revealed that participants learned normally and FMRI data recorded during learning identified a number of stimulus-evoked changes that were consistent with previous work. A direct comparison between the pre and post-conditioning amygdala connectivity revealed a region of dorsal prefrontal cortex (PFC in the superior frontal gyrus that showed a significant increase in connectivity following the conditioning session. A behavioral measure of explicit memory performance was positively correlated with the change in amygdala connectivity within a neighboring region in the superior frontal gyrus. Additionally, an implicit autonomic measure of conditioning was positively correlated with the change in connectivity between the amygdala and the anterior cingulate cortex. The resting-state data show that amygdala connectivity is altered following Pavlovian fear conditioning and that these changes are also related to behavioral outcomes. These alterations may reflect the operation of a consolidation process that strengthens neural connections to support memory after the learning event.

  6. Amygdala responsivity to high-level social information from unseen faces.

    Science.gov (United States)

    Freeman, Jonathan B; Stolier, Ryan M; Ingbretsen, Zachary A; Hehman, Eric A

    2014-08-01

    Previous research shows that the amygdala automatically responds to a face's trustworthiness when a face is clearly visible. However, it is unclear whether the amygdala could evaluate such high-level facial information without a face being consciously perceived. Using a backward masking paradigm, we demonstrate in two functional neuroimaging experiments that the human amygdala is sensitive to subliminal variation in facial trustworthiness. Regions in the amygdala tracked how untrustworthy a face appeared (i.e., negative-linear responses) as well as the overall strength of a face's trustworthiness signal (i.e., nonlinear responses), despite faces not being subjectively seen. This tracking was robust across blocked and event-related designs and both real and computer-generated faces. The findings demonstrate that the amygdala can be influenced by even high-level facial information before that information is consciously perceived, suggesting that the amygdala's processing of social cues in the absence of awareness may be more extensive than previously described. PMID:25100591

  7. State-dependent amygdala stimulation-induced cardiovascular effects in rats.

    Science.gov (United States)

    Chiou, Ruei-Jen; Kuo, Chung-Chih; Liang, Keng-Chen; Yen, Chen-Tung

    2009-12-31

    Stimulation of the amygdala is known to produce pressor, depressor, or has no effects. The present study was performed to test whether amygdala cardiovascular effects are influenced by consciousness states and by different types of anesthetics. Adult rats were set up for stimulation amygdala and measurement of blood pressure in a chronic preparation. After recovery, same sites of the amygdala were stimulated electrically for several trials with the rat under conscious or anesthetic states induced by pentobarbital, urethane, ketamine, alpha-chloralose and urethane plus alpha-chloralose, respectively. The interval between any two stimulation trials was at least 2 days. The stimulation was an 80-Hz, 0.5-ms, 100-micro A square wave pulse train lasting for 15 s. Cardiovascular responsive sites were found in the central, medial, and basolateral nuclei of the amygdala. In stimulating these responsive sites, significantly different cardiovascular effects were induced under a conscious state and an anesthetized state of the animal, yet no significant differences were found among the various anesthetic agents. We conclude, that the cardiovascular influence of the amygdala is state-dependent in the rat.

  8. Primate amygdala neurons evaluate the progress of self-defined economic choice sequences

    Science.gov (United States)

    Grabenhorst, Fabian; Hernadi, Istvan; Schultz, Wolfram

    2016-01-01

    The amygdala is a prime valuation structure yet its functions in advanced behaviors are poorly understood. We tested whether individual amygdala neurons encode a critical requirement for goal-directed behavior: the evaluation of progress during sequential choices. As monkeys progressed through choice sequences toward rewards, amygdala neurons showed phasic, gradually increasing responses over successive choice steps. These responses occurred in the absence of external progress cues or motor preplanning. They were often specific to self-defined sequences, typically disappearing during instructed control sequences with similar reward expectation. Their build-up rate reflected prospectively the forthcoming choice sequence, suggesting adaptation to an internal plan. Population decoding demonstrated a high-accuracy progress code. These findings indicate that amygdala neurons evaluate the progress of planned, self-defined behavioral sequences. Such progress signals seem essential for aligning stepwise choices with internal plans. Their presence in amygdala neurons may inform understanding of human conditions with amygdala dysfunction and deregulated reward pursuit. DOI: http://dx.doi.org/10.7554/eLife.18731.001 PMID:27731795

  9. In the eye of the beholder: internally driven uncertainty of danger recruits the amygdala and dorsomedial prefrontal cortex.

    Science.gov (United States)

    Zaretsky, Michal; Mendelsohn, Avi; Mintz, Matti; Hendler, Talma

    2010-10-01

    Interpretation of emotional context is a pivotal aspect of understanding social situations. A critical component of this process is assessment of danger levels in the surrounding, which may have a direct effect on the organism's survival. The limbic system has been implicated in mediating this assessment. In situations of uncertainty, the evaluation process may also call for greater involvement of prefrontal cortex for decision-making and planning of an appropriate behavioral response. In the following study, morphed face images depicting emotional expressions were used to examine brain correlates of subjective uncertainty and perceptual ambiguity regarding danger. Fear and neutral expressions of 20 faces were morphed, and each of the face videos was divided into three sequences of equal length representing three levels of objective certainty regarding the expressions neutral, fear, and ambiguous. Sixteen subjects were scanned in a 1.5-T scanner while viewing 60 x 6-sec video sequences and were asked to report their subjective certainty regarding the level of danger surrounding the face on a four-level scale combining definite/maybe and danger/no-danger values. The individual responses were recorded and used as the basis for a "subjective protocol" versus an "objective protocol." Significant activations of the amygdala, dorsomedial prefrontal cortex, and dorsolateral prefrontal cortex were observed under the subjective protocol of internally driven uncertainty, but not under objective stimuli-based ambiguity. We suggest that this brain network is involved in generating subjective assessment of social affective cues. This study provides further support to the "relevance detector" theory of the amygdala and implicates its importance to behavior relying heavily on subjective assessment of danger, such as in the security domain context.

  10. PKA and ERK, but not PKC, in the amygdala contribute to pain-related synaptic plasticity and behavior

    Directory of Open Access Journals (Sweden)

    Ramsey Cara

    2008-07-01

    Full Text Available Abstract The laterocapsular division of the central nucleus of the amygdala (CeLC has emerged as an important site of pain-related plasticity and pain modulation. Glutamate and neuropeptide receptors in the CeLC contribute to synaptic and behavioral changes in the arthritis pain model, but the intracellular signaling pathways remain to be determined. This study addressed the role of PKA, PKC, and ERK in the CeLC. Adult male Sprague-Dawley rats were used in all experiments. Whole-cell patch-clamp recordings of CeLC neurons were made in brain slices from normal rats and from rats with a kaolin/carrageenan-induced monoarthritis in the knee (6 h postinduction. Membrane-permeable inhibitors of PKA (KT5720, 1 μM; cAMPS-Rp, 10 μM and ERK (U0126, 1 μM activation inhibited synaptic plasticity in slices from arthritic rats but had no effect on normal transmission in control slices. A PKC inhibitor (GF109203x, 1 μM and an inactive structural analogue of U0126 (U0124, 1 μM had no effect. The NMDA receptor-mediated synaptic component was inhibited by KT5720 or U0126; their combined application had additive effects. U0126 did not inhibit synaptic facilitation by forskolin-induced PKA-activation. Administration of KT5720 (100 μM, concentration in microdialysis probe or U0126 (100 μM into the CeLC, but not striatum (placement control, inhibited audible and ultrasonic vocalizations and spinal reflexes of arthritic rats but had no effect in normal animals. GF109203x (100 μM and U0124 (100 μM did not affect pain behavior. The data suggest that in the amygdala PKA and ERK, but not PKC, contribute to pain-related synaptic facilitation and behavior by increasing NMDA receptor function through independent signaling pathways.

  11. MEK Inhibitors Reverse cAMP-Mediated Anxiety in Zebrafish

    DEFF Research Database (Denmark)

    Lundegaard, Pia R.; Anastasaki, Corina; Grant, Nicola J.;

    2015-01-01

    Altered phosphodiesterase (PDE)-cyclic AMP (cAMP) activity is frequently associated with anxiety disorders, but current therapies act by reducing neuronal excitability rather than targeting PDE-cAMP-mediated signaling pathways. Here, we report the novel repositioning of anti-cancer MEK inhibitors...... as anxiolytics in a zebrafish model of anxiety-like behaviors. PDE inhibitors or activators of adenylate cyclase cause behaviors consistent with anxiety in larvae and adult zebrafish. Small-molecule screening identifies MEK inhibitors as potent suppressors of cAMP anxiety behaviors in both larvae and adult...... zebrafish, while causing no anxiolytic behavioral effects on their own. The mechanism underlying cAMP-induced anxiety is via crosstalk to activation of the RAS-MAPK signaling pathway. We propose that targeting crosstalk signaling pathways can be an effective strategy for mental health disorders, and advance...

  12. Paternal responsiveness is associated with, but not mediated by reduced neophobia in male California mice (Peromyscus californicus).

    Science.gov (United States)

    Chauke, Miyetani; de Jong, Trynke R; Garland, Theodore; Saltzman, Wendy

    2012-08-20

    Hormones associated with pregnancy and parturition have been implicated in facilitating the onset of maternal behavior via reductions in neophobia, anxiety, and stress responsiveness. To determine whether the onset of paternal behavior has similar associations in biparental male California mice (Peromyscus californicus), we compared paternal responsiveness, neophobia (novel-object test), and anxiety-like behavior (elevated plus maze, EPM) in isolated virgins (housed alone), paired virgins (housed with another male), expectant fathers (housed with pregnant pairmate), and new fathers (housed with pairmate and pups). Corticotropin-releasing hormone (CRH) and Fos immunoreactivity (IR) were quantified in brain tissues following exposure to a predator-odor stressor or under baseline conditions. New fathers showed lower anxiety-like behavior than expectant fathers and isolated virgins in EPM tests. In all housing conditions, stress elevated Fos-IR in the hypothalamic paraventricular nucleus (PVN). Social isolation reduced overall (baseline and stress-induced) Fos- and colocalized Fos/CRH-IR, and increased overall CRH-IR, in the PVN. In the central nucleus of the amygdala, social isolation increased stress-induced CRH-IR and decreased stress-induced activation of CRH neurons. Across all housing conditions, paternally behaving males displayed more anxiety-related behavior than nonpaternal males in the EPM, but showed no differences in CRH- or Fos-IR. Finally, the latency to engage in paternal behavior was positively correlated with the latency to approach a novel object. These results suggest that being a new father does not reduce anxiety, neophobia, or neural stress responsiveness. Low levels of neophobia, however, were associated with, but not necessary for paternal responsiveness. PMID:22634280

  13. Chronic ethanol exposure decreases CB1 receptor function at GABAergic synapses in the rat central amygdala.

    Science.gov (United States)

    Varodayan, Florence P; Soni, Neeraj; Bajo, Michal; Luu, George; Madamba, Samuel G; Schweitzer, Paul; Parsons, Loren H; Roberto, Marisa

    2016-07-01

    The endogenous cannabinoids (eCBs) influence the acute response to ethanol and the development of tolerance, dependence and relapse. Chronic alcohol exposure alters eCB levels and Type 1 cannabinoid receptor (CB1 ) expression and function in brain regions associated with addiction. CB1 inhibits GABA release, and GABAergic dysregulation in the central nucleus of the amygdala (CeA) is critical in the transition to alcohol dependence. We investigated possible disruptions in CB1 signaling of rat CeA GABAergic transmission following intermittent ethanol exposure. In the CeA of alcohol-naive rats, CB1 agonist WIN 55,212-2 (WIN) decreased the frequency of spontaneous and miniature GABAA receptor-mediated inhibitory postsynaptic currents (s/mIPSCs). This effect was prevented by CB1 antagonism, but not Type 2 cannabinoid receptor (CB2 ) antagonism. After 2-3 weeks of intermittent ethanol exposure, these WIN inhibitory effects were attenuated, suggesting ethanol-induced impairments in CB1 function. The CB1 antagonist AM251 revealed a tonic eCB/CB1 control of GABAergic transmission in the alcohol-naive CeA that was occluded by calcium chelation in the postsynaptic cell. Chronic ethanol exposure abolished this tonic CB1 influence on mIPSC, but not sIPSC, frequency. Finally, acute ethanol increased CeA GABA release in both naive and ethanol-exposed rats. Although CB1 activation prevented this effect, the AM251- and ethanol-induced GABA release were additive, ruling out a direct participation of CB1 signaling in the ethanol effect. Collectively, these observations demonstrate an important CB1 influence on CeA GABAergic transmission and indicate that the CeA is particularly sensitive to alcohol-induced disruptions of CB1 signaling.

  14. Neuromyelitis optica spectrum disorder presenting with repeated hypersomnia due to involvement of the hypothalamus and hypothalamus-amygdala linkage.

    Science.gov (United States)

    Kume, Kodai; Deguchi, Kazushi; Ikeda, Kazuyo; Takata, Tadayuki; Kokudo, Yohei; Kamada, Masaki; Touge, Tetsuo; Takahashi, Toshiyuki; Kanbayashi, Takashi; Masaki, Tsutomu

    2015-06-01

    We report the case of a 46-year-old Japanese woman with neuromyelitis optica spectrum disorder presenting with repeated hypersomnia accompanied by decreased CSF orexin level. First episode associated with hypothalamic-pituitary dysfunction showed bilateral hypothalamic lesions that can cause secondary damage to the orexin neurons. The second episode associated with impaired memory showed a left temporal lesion involving the amygdala. The mechanism remains unknown, but the reduced blood flow in the hypothalamus ipsilateral to the amygdala lesion suggested trans-synaptic hypothalamic dysfunction secondary to the impaired amygdala. A temporal lesion involving the amygdala and hypothalamus could be responsible for hypersomnia due to neuromyelitis optica spectrum disorder.

  15. The basolateral amygdala mediates the effects of cues associated with meal interruption on feeding behavior

    OpenAIRE

    Galarce, Ezequiel M.; McDannald, Michael A; Holland, Peter C.

    2010-01-01

    Considerable evidence shows that environmental cues that signal food delivery when rats are food-deprived can substantially potentiate feeding later when rats are food-sated. Similarly, cues associated with meal interruption, food removal or impending food scarcity may also induce increased eating. For example, after learning the association between a discrete “interruption” stimulus and the unexpected termination of food trials, sated rats show enhanced food consumption when exposed to that ...

  16. Accumbens Shell AMPA Receptors Mediate Expression of Extinguished Reward Seeking through Interactions with Basolateral Amygdala

    Science.gov (United States)

    Millan, E. Zayra; McNally, Gavan P.

    2011-01-01

    Extinction is the reduction in drug seeking when the contingency between drug seeking behavior and the delivery of drug reward is broken. Here, we investigated a role for the nucleus accumbens shell (AcbSh). Rats were trained to respond for 4% (v/v) alcoholic beer in one context (Context A) followed by extinction in a second context (Context B).…

  17. Increased N-Ethylmaleimide-Sensitive Factor Expression in Amygdala and Perirhinal Cortex during Habituation of Taste Neophobia

    Directory of Open Access Journals (Sweden)

    Beatriz Gómez-Chacón

    2016-01-01

    Full Text Available Interactions between GluR2 and N-ethylmaleimide-sensitive factor (NSF mediate AMPA receptors trafficking. This might be linked with molecular mechanisms related with memory formation. Previous research has shown basolateral amygdala (BLA dependent activity changes in the perirhinal cortex (PRh during the formation of taste memory. In the present experiments we investigate both the behavioral performance and the expression profile of NSF and GluR2 genes in several brain areas, including PRh, BLA, and hippocampus. Twenty-one naïve male Wistar rats were exposed to a saccharin solution (0.4% during the first (novel, the second (Familiar I, and the sixth presentation (Familiar II. Total RNA was extracted and gene expression was measured by quantitative PCR (qPCR using TaqMan gene expression assays. In addition the expression of the synaptic plasticity related immediate early genes, Homer 1 and Narp, was also assessed. We have found increased expression of NSF gene in BLA and PRh in Group Familiar I in comparison with Familiar II. No changes in the expression of GluR2, Homer 1, and Narp genes were found. The results suggest the relevance of a potential network in the temporal lobe for taste recognition memory and open new possibilities for understanding the molecular mechanisms mediating the impact of sensory experience on brain circuit function.

  18. Increased N-Ethylmaleimide-Sensitive Factor Expression in Amygdala and Perirhinal Cortex during Habituation of Taste Neophobia

    Science.gov (United States)

    Gómez-Chacón, Beatriz; Gámiz, Fernando; Foster, Thomas C.

    2016-01-01

    Interactions between GluR2 and N-ethylmaleimide-sensitive factor (NSF) mediate AMPA receptors trafficking. This might be linked with molecular mechanisms related with memory formation. Previous research has shown basolateral amygdala (BLA) dependent activity changes in the perirhinal cortex (PRh) during the formation of taste memory. In the present experiments we investigate both the behavioral performance and the expression profile of NSF and GluR2 genes in several brain areas, including PRh, BLA, and hippocampus. Twenty-one naïve male Wistar rats were exposed to a saccharin solution (0.4%) during the first (novel), the second (Familiar I), and the sixth presentation (Familiar II). Total RNA was extracted and gene expression was measured by quantitative PCR (qPCR) using TaqMan gene expression assays. In addition the expression of the synaptic plasticity related immediate early genes, Homer 1 and Narp, was also assessed. We have found increased expression of NSF gene in BLA and PRh in Group Familiar I in comparison with Familiar II. No changes in the expression of GluR2, Homer 1, and Narp genes were found. The results suggest the relevance of a potential network in the temporal lobe for taste recognition memory and open new possibilities for understanding the molecular mechanisms mediating the impact of sensory experience on brain circuit function. PMID:26839712

  19. Interaction of the amygdala with the frontal lobe in reward memory.

    Science.gov (United States)

    Gaffan, D; Murray, E A; Fabre-Thorpe, M

    1993-07-01

    Five cynomolgus monkeys (Macaca fascicularis) were assessed for their ability to associate visual stimuli with food reward. They learned a series of new two-choice visual discriminations between coloured patterns displayed on a touch-sensitive monitor screen; the feedback for correct choice was delivery of food. Normal learning in this task is known to be dependent on the amygdala. The monkeys received brain lesions which were designed to disconnect the amygdala from interaction with other brain structures thought to be involved in this memory task. All the monkeys received an amygdalectomy in one hemisphere and lesions in the other hemisphere of some of the projection targets of the amygdala, namely the ventral striatum, the mediodorsal thalamus and the ventromedial prefrontal cortex. The rate of learning new problems was assessed before and after each operation. Disconnection of the amygdala from the ventral striatum was without effect on learning rate. An earlier study had shown that disconnection of the amygdala from either the mediodorsal thalamus or the ventromedial prefrontal cortex produced only a mild impairment, significantly less severe than that produced by bilateral lesions of any of these three structures. The present results show, however, that disconnection of the amygdala from both the mediodorsal thalamus and the ventromedial prefrontal cortex in the same animal, by crossed unilateral lesions of the amygdala in one hemisphere and of both the mediodorsal thalamus and the ventromedial prefrontal cortex in the other hemisphere, produces an impairment as severe as that which follows bilateral lesions of any of these three structures.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8281307

  20. Amygdala enlargement in patients with mesial temporal lobe epilepsy without hippocampal sclerosis

    Directory of Open Access Journals (Sweden)

    Ana Carolina Coan

    2013-10-01

    Full Text Available Purpose: Patients with mesial temporal lobe epilepsy (MTLE without MRI abnormalities (MTLE-NL represent a challenge for definition of underlying pathology and for presurgical evaluation. In a recent study we observed significant amygdala enlargement in 14% of MTLE patients with MRI signs of HS. Areas of gray matter volume (GMV increase could represent structural abnormalities related to the epileptogenic zone or part of a developmental abnormality. Our objective was to look for undetected areas of increased GMV in MTLE-NL using post processing MRI techniques to better understand the pathophysiology of this condition.Methods: We evaluated 66 patients with MTLE-NL on visual analysis and 82 controls. Voxel-based morphometry (VBM group analysis was performed with VBM8/SPM8 looking for areas of increased GMV. We then performed automatic amygdala volumetry using Freesurfer software and T2 relaxometry to confirm VBM findings.Results: VBM group-analysis demonstrated increased amygdala volume in the MTLE-NL group compared to controls. Individual volumetric analysis confirmed amygdala enlargement (AE in eight (12% patients. Overall, from all patients with AE and defined epileptic focus, four (57% had the predominant increased volume ipsilateral to the epileptic focus. These results were cross-validated by a secondary VBM analysis including subgroups of patients according to the volumetric data. T2 relaxometry demonstrated no amygdala hyperintense signal in any individual with significant amygdala enlargement. There were no clinical differences between patients with and without AE.Discussion: This exploratory study demonstrates the occurrence of AE in 12% of patients with MTLE-NL. This finding supports the hypothesis that there might be a subgroup of patients with MTLE-NL in which the enlarged amygdala could be related to the epileptogenic process. Further studies are necessary but this finding could be of great importance in the understanding of MTLE-NL.

  1. Intra-amygdala inhibition of ERK(1/2) potentiates the discriminative stimulus effects of alcohol.

    Science.gov (United States)

    Besheer, Joyce; Fisher, Kristen R; Cannady, Reginald; Grondin, Julie J M; Hodge, Clyde W

    2012-03-17

    Extracellular signal-regulated kinase (ERK(1/2)) has been implicated in modulating drug seeking behavior and is a target of alcohol and other drugs of abuse. Given that the discriminative stimulus (subjective/interoceptive) effects of drugs are determinants of abuse liability and can influence drug seeking behavior, we examined the role of ERK(1/2) in modulating the discriminative stimulus effects of alcohol. Using drug discrimination procedures, rats were trained to discriminate a moderate intragastric (IG) alcohol dose (1g/kg) versus water (IG). Following an alcohol (1g/kg) discrimination session phosphorylated ERK(1/2) (pERK(1/2)) immunoreactivity (IR) was significantly elevated in the amygdala, but not the nucleus accumbens. Therefore, we hypothesized that intra-amygdala inhibition of ERK(1/2) would disrupt expression of the discriminative stimulus effects of alcohol. However, intra-amygdala or accumbens administration of the MEK/ERK(1/2) inhibitor U0126 (1 and 3μg) had no effect on the discriminative stimulus effects of the training dose of alcohol (1g/kg). Contrary to our hypothesis, intra-amygdala infusion of U0126 (3μg) potentiated the discriminative stimulus effects of a low alcohol dose (0.5g/kg) and had no effect following nucleus accumbens infusion. Importantly, site-specific inhibition of pERK(1/2) in each brain region was confirmed. Therefore, the increase in pERK(1/2) IR in the amygdala following systemic alcohol administration may be reflective of the widespread effects of alcohol on the brain (activation/inhibition of brain circuits), whereas the site specific microinjection studies confirmed functional involvement of intra-amygdala ERK(1/2). These findings show that activity of the ERK signaling pathway in the amygdala can influence the discriminative stimulus effects of alcohol.

  2. Attentional bias towards and away from fearful faces is modulated by developmental amygdala damage.

    Science.gov (United States)

    Pishnamazi, Morteza; Tafakhori, Abbas; Loloee, Sogol; Modabbernia, Amirhossein; Aghamollaii, Vajiheh; Bahrami, Bahador; Winston, Joel S

    2016-08-01

    The amygdala is believed to play a major role in orienting attention towards threat-related stimuli. However, behavioral studies on amygdala-damaged patients have given inconsistent results-variously reporting decreased, persisted, and increased attention towards threat. Here we aimed to characterize the impact of developmental amygdala damage on emotion perception and the nature and time-course of spatial attentional bias towards fearful faces. We investigated SF, a 14-year-old with selective bilateral amygdala damage due to Urbach-Wiethe disease (UWD), and ten healthy controls. Participants completed a fear sensitivity questionnaire, facial expression classification task, and dot-probe task with fearful or neutral faces for spatial cueing. Three cue durations were used to assess the time-course of attentional bias. SF expressed significantly lower fear sensitivity, and showed a selective impairment in classifying fearful facial expressions. Despite this impairment in fear recognition, very brief (100 msec) fearful cues could orient SF's spatial attention. In healthy controls, the attentional bias emerged later and persisted longer. SF's attentional bias was due solely to facilitated engagement to fear, while controls showed the typical phenomenon of difficulty in disengaging from fear. Our study is the first to demonstrate the separable effects of amygdala damage on engagement and disengagement of spatial attention. The findings indicate that multiple mechanisms contribute in biasing attention towards fear, which vary in their timing and dependence on amygdala integrity. It seems that the amygdala is not essential for rapid attention to emotion, but probably has a role in assessment of biological relevance. PMID:27173975

  3. Amygdala kindling alters protein kinase C activity in dentate gyrus.

    Science.gov (United States)

    Chen, S J; Desai, M A; Klann, E; Winder, D G; Sweatt, J D; Conn, P J

    1992-11-01

    Kindling is a use-dependent form of synaptic plasticity and a widely used model of epilepsy. Although kindling has been widely studied, the molecular mechanisms underlying induction of this phenomenon are not well understood. We determined the effect of amygdala kindling on protein kinase C (PKC) activity in various regions of rat brain. Kindling stimulation markedly elevated basal (Ca(2+)-independent) and Ca(2+)-stimulated phosphorylation of an endogenous PKC substrate (which we have termed P17) in homogenates of dentate gyrus, assayed 2 h after kindling stimulation. The increase in P17 phosphorylation appeared to be due at least in part to persistent PKC activation, as basal PKC activity assayed in vitro using an exogenous peptide substrate was increased in kindled dentate gyrus 2 h after the last kindling stimulation. A similar increase in basal PKC activity was observed in dentate gyrus 2 h after the first kindling stimulation. These results document a kindling-associated persistent PKC activation and suggest that the increased activity of PKC could play a role in the induction of the kindling effect.

  4. Amygdala mechanisms of Pavlovian psychostimulant conditioning and relapse.

    Science.gov (United States)

    Buffalari, Deanne M; See, Ronald E

    2010-01-01

    Psychostimulant addiction often consists of periods of sustained drug abstinence disrupted by periods of relapse and renewed heavy drug use. Prevention of relapse remains the greatest challenge to the successful treatment of drug addiction. Drug-associated cues are a primary trigger for relapse, as they can elicit intense craving for the drug. These cues become associated with the drug reward through Pavlovian learning processes that develop over multiple drug-cue pairings. The amygdala (AMY) is critical for such drug-related learning. Intrinsic and extrinsic circuitry position the AMY to integrate cue and drug-related information and influence drug-seeking and drug-taking behaviors. Animal models of conditioned drug reward, drug use, and relapse have confirmed the necessary role of the AMY for drug conditioned cues to control motivated behavior. Neurons within the AMY are responsive to the primary effects of psychostimulants, and more critically, they also respond to the presentation of drug-associated cues. The mechanisms by which conditioned cues come to influence drug-seeking behavior likely involve long-term plasticity and neuroadaptations within the AMY. A greater understanding of the associative learning mechanisms that depend upon the AMY and related limbic and cortical structures, and the process by which drug cues come to gain control over behavior that maintains the addictive state, will facilitate the development of more effective addiction treatments.

  5. The basolateral amygdala in reward learning and addiction.

    Science.gov (United States)

    Wassum, Kate M; Izquierdo, Alicia

    2015-10-01

    Sophisticated behavioral paradigms partnered with the emergence of increasingly selective techniques to target the basolateral amygdala (BLA) have resulted in an enhanced understanding of the role of this nucleus in learning and using reward information. Due to the wide variety of behavioral approaches many questions remain on the circumscribed role of BLA in appetitive behavior. In this review, we integrate conclusions of BLA function in reward-related behavior using traditional interference techniques (lesion, pharmacological inactivation) with those using newer methodological approaches in experimental animals that allow in vivo manipulation of cell type-specific populations and neural recordings. Secondly, from a review of appetitive behavioral tasks in rodents and monkeys and recent computational models of reward procurement, we derive evidence for BLA as a neural integrator of reward value, history, and cost parameters. Taken together, BLA codes specific and temporally dynamic outcome representations in a distributed network to orchestrate adaptive responses. We provide evidence that experiences with opiates and psychostimulants alter these outcome representations in BLA, resulting in long-term modified action.

  6. The basolateral amygdala in reward learning and addiction.

    Science.gov (United States)

    Wassum, Kate M; Izquierdo, Alicia

    2015-10-01

    Sophisticated behavioral paradigms partnered with the emergence of increasingly selective techniques to target the basolateral amygdala (BLA) have resulted in an enhanced understanding of the role of this nucleus in learning and using reward information. Due to the wide variety of behavioral approaches many questions remain on the circumscribed role of BLA in appetitive behavior. In this review, we integrate conclusions of BLA function in reward-related behavior using traditional interference techniques (lesion, pharmacological inactivation) with those using newer methodological approaches in experimental animals that allow in vivo manipulation of cell type-specific populations and neural recordings. Secondly, from a review of appetitive behavioral tasks in rodents and monkeys and recent computational models of reward procurement, we derive evidence for BLA as a neural integrator of reward value, history, and cost parameters. Taken together, BLA codes specific and temporally dynamic outcome representations in a distributed network to orchestrate adaptive responses. We provide evidence that experiences with opiates and psychostimulants alter these outcome representations in BLA, resulting in long-term modified action. PMID:26341938

  7. Gastrin-releasing peptide signaling plays a limited and subtle role in amygdala physiology and aversive memory.

    Directory of Open Access Journals (Sweden)

    Frederique Chaperon

    Full Text Available Links between synaptic plasticity in the lateral amygdala (LA and Pavlovian fear learning are well established. Neuropeptides including gastrin-releasing peptide (GRP can modulate LA function. GRP increases inhibition in the LA and mice lacking the GRP receptor (GRPR KO show more pronounced and persistent fear after single-trial associative learning. Here, we confirmed these initial findings and examined whether they extrapolate to more aspects of amygdala physiology and to other forms of aversive associative learning. GRP application in brain slices from wildtype but not GRPR KO mice increased spontaneous inhibitory activity in LA pyramidal neurons. In amygdala slices from GRPR KO mice, GRP did not increase inhibitory activity. In comparison to wildtype, short- but not long-term plasticity was increased in the cortico-lateral amygdala (LA pathway of GRPR KO amygdala slices, whereas no changes were detected in the thalamo-LA pathway. In addition, GRPR KO mice showed enhanced fear evoked by single-trial conditioning and reduced spontaneous firing of neurons in the central nucleus of the amygdala (CeA. Altogether, these results are consistent with a potentially important modulatory role of GRP/GRPR signaling in the amygdala. However, administration of GRP or the GRPR antagonist (D-Phe(6, Leu-NHEt(13, des-Met(14-Bombesin (6-14 did not affect amygdala LTP in brain slices, nor did they affect the expression of conditioned fear following intra-amygdala administration. GRPR KO mice also failed to show differences in fear expression and extinction after multiple-trial fear conditioning, and there were no differences in conditioned taste aversion or gustatory neophobia. Collectively, our data indicate that GRP/GRPR signaling modulates amygdala physiology in a paradigm-specific fashion that likely is insufficient to generate therapeutic effects across amygdala-dependent disorders.

  8. Gastrin-releasing peptide signaling plays a limited and subtle role in amygdala physiology and aversive memory.

    Science.gov (United States)

    Chaperon, Frederique; Fendt, Markus; Kelly, Peter H; Lingenhoehl, Kurt; Mosbacher, Johannes; Olpe, Hans-Rudolf; Schmid, Peter; Sturchler, Christine; McAllister, Kevin H; van der Putten, P Herman; Gee, Christine E

    2012-01-01

    Links between synaptic plasticity in the lateral amygdala (LA) and Pavlovian fear learning are well established. Neuropeptides including gastrin-releasing peptide (GRP) can modulate LA function. GRP increases inhibition in the LA and mice lacking the GRP receptor (GRPR KO) show more pronounced and persistent fear after single-trial associative learning. Here, we confirmed these initial findings and examined whether they extrapolate to more aspects of amygdala physiology and to other forms of aversive associative learning. GRP application in brain slices from wildtype but not GRPR KO mice increased spontaneous inhibitory activity in LA pyramidal neurons. In amygdala slices from GRPR KO mice, GRP did not increase inhibitory activity. In comparison to wildtype, short- but not long-term plasticity was increased in the cortico-lateral amygdala (LA) pathway of GRPR KO amygdala slices, whereas no changes were detected in the thalamo-LA pathway. In addition, GRPR KO mice showed enhanced fear evoked by single-trial conditioning and reduced spontaneous firing of neurons in the central nucleus of the amygdala (CeA). Altogether, these results are consistent with a potentially important modulatory role of GRP/GRPR signaling in the amygdala. However, administration of GRP or the GRPR antagonist (D-Phe(6), Leu-NHEt(13), des-Met(14))-Bombesin (6-14) did not affect amygdala LTP in brain slices, nor did they affect the expression of conditioned fear following intra-amygdala administration. GRPR KO mice also failed to show differences in fear expression and extinction after multiple-trial fear conditioning, and there were no differences in conditioned taste aversion or gustatory neophobia. Collectively, our data indicate that GRP/GRPR signaling modulates amygdala physiology in a paradigm-specific fashion that likely is insufficient to generate therapeutic effects across amygdala-dependent disorders.

  9. Altered amygdala connectivity in individuals with chronic traumatic brain injury and comorbid depressive symptoms

    Directory of Open Access Journals (Sweden)

    Kihwan eHan

    2015-11-01

    Full Text Available Depression is one of the most common psychiatric conditions in individuals with chronic Traumatic Brain Injury (TBI. Though depression has detrimental effects in TBI and network dysfunction is a 'hallmark' of TBI and depression, there have not been any prior investigations of connectivity-based neuroimaging biomarkers for comorbid depression in TBI. We utilized resting-state functional magnetic resonance imaging to identify altered amygdala connectivity in individuals with chronic TBI (eight years post-injury on average exhibiting comorbid depressive symptoms (N=31, relative to chronic TBI individuals having minimal depressive symptoms (N=23. Connectivity analysis of these participant sub-groups revealed that the TBI-plus-depressive symptoms group showed relative increases in amygdala connectivity primarily in the regions that are part of the salience, somatomotor, dorsal attention and visual networks (pvoxel<0.01, pcluster<0.025. Relative increases in amygdala connectivity in the TBI-plus-depressive symptoms group were also observed within areas of the limbic-cortical mood-regulating circuit (the left dorsomedial and right dorsolateral prefrontal cortices and thalamus and the brainstem. Further analysis revealed that spatially-dissociable patterns of correlation between amygdala connectivity and symptom severity according to subtypes (Cognitive and Affective of depressive symptoms (pvoxel<0.01, pcluster<0.025. Taken together, these results suggest that amygdala connectivity may be a potentially effective neuroimaging biomarker for comorbid depressive symptoms in chronic TBI.

  10. Fluoxetine pretreatment promotes neuronal survival and maturation after auditory fear conditioning in the rat amygdala.

    Directory of Open Access Journals (Sweden)

    Lizhu Jiang

    Full Text Available The amygdala is a critical brain region for auditory fear conditioning, which is a stressful condition for experimental rats. Adult neurogenesis in the dentate gyrus (DG of the hippocampus, known to be sensitive to behavioral stress and treatment of the antidepressant fluoxetine (FLX, is involved in the formation of hippocampus-dependent memories. Here, we investigated whether neurogenesis also occurs in the amygdala and contributes to auditory fear memory. In rats showing persistent auditory fear memory following fear conditioning, we found that the survival of new-born cells and the number of new-born cells that differentiated into mature neurons labeled by BrdU and NeuN decreased in the amygdala, but the number of cells that developed into astrocytes labeled by BrdU and GFAP increased. Chronic pretreatment with FLX partially rescued the reduction in neurogenesis in the amygdala and slightly suppressed the maintenance of the long-lasting auditory fear memory 30 days after the fear conditioning. The present results suggest that adult neurogenesis in the amygdala is sensitive to antidepressant treatment and may weaken long-lasting auditory fear memory.

  11. Implications of newborn amygdala connectivity for fear and cognitive development at 6-months-of-age.

    Science.gov (United States)

    Graham, Alice M; Buss, Claudia; Rasmussen, Jerod M; Rudolph, Marc D; Demeter, Damion V; Gilmore, John H; Styner, Martin; Entringer, Sonja; Wadhwa, Pathik D; Fair, Damien A

    2016-04-01

    The first year of life is an important period for emergence of fear in humans. While animal models have revealed developmental changes in amygdala circuitry accompanying emerging fear, human neural systems involved in early fear development remain poorly understood. To increase understanding of the neural foundations of human fear, it is important to consider parallel cognitive development, which may modulate associations between typical development of early fear and subsequent risk for fear-related psychopathology. We, therefore, examined amygdala functional connectivity with rs-fcMRI in 48 neonates (M=3.65 weeks, SD=1.72), and measured fear and cognitive development at 6-months-of-age. Stronger, positive neonatal amygdala connectivity to several regions, including bilateral anterior insula and ventral striatum, was prospectively associated with higher fear at 6-months. Stronger amygdala connectivity to ventral anterior cingulate/anterior medial prefrontal cortex predicted a specific phenotype of higher fear combined with more advanced cognitive development. Overall, findings demonstrate unique profiles of neonatal amygdala functional connectivity related to emerging fear and cognitive development, which may have implications for normative and pathological fear in later years. Consideration of infant fear in the context of cognitive development will likely contribute to a more nuanced understanding of fear, its neural bases, and its implications for future mental health. PMID:26499255

  12. Mindfulness meditation training alters stress-related amygdala resting state functional connectivity: a randomized controlled trial.

    Science.gov (United States)

    Taren, Adrienne A; Gianaros, Peter J; Greco, Carol M; Lindsay, Emily K; Fairgrieve, April; Brown, Kirk Warren; Rosen, Rhonda K; Ferris, Jennifer L; Julson, Erica; Marsland, Anna L; Bursley, James K; Ramsburg, Jared; Creswell, J David

    2015-12-01

    Recent studies indicate that mindfulness meditation training interventions reduce stress and improve stress-related health outcomes, but the neural pathways for these effects are unknown. The present research evaluates whether mindfulness meditation training alters resting state functional connectivity (rsFC) of the amygdala, a region known to coordinate stress processing and physiological stress responses. We show in an initial discovery study that higher perceived stress over the past month is associated with greater bilateral amygdala-subgenual anterior cingulate cortex (sgACC) rsFC in a sample of community adults (n = 130). A follow-up, single-blind randomized controlled trial shows that a 3-day intensive mindfulness meditation training intervention (relative to a well-matched 3-day relaxation training intervention without a mindfulness component) reduced right amygdala-sgACC rsFC in a sample of stressed unemployed community adults (n = 35). Although stress may increase amygdala-sgACC rsFC, brief training in mindfulness meditation could reverse these effects. This work provides an initial indication that mindfulness meditation training promotes functional neuroplastic changes, suggesting an amygdala-sgACC pathway for stress reduction effects.

  13. Infusions of alpha-2 noradrenergic agonists and antagonists into the amygdala: effects on kindling.

    Science.gov (United States)

    Pelletier, M R; Corcoran, M E

    1993-12-31

    We reported previously that activation of alpha-2 adrenoceptors with infusions of clonidine into the amygdala/pyriform region is sufficient to retard kindling. To characterize further the involvement in kindling of alpha-2 receptors in the amygdala/pyriform, we exposed rats to unilateral intraamygdaloid infusions of a variety of noradrenergic drugs followed by either low-frequency stimulation of the amygdala, to induce rapid kindling, or conventional high-frequency stimulation. Infusions and electrical stimulation were administered once every 48 h. The prophylactic effects of clonidine were blocked by simultaneous infusion of idazoxan, an alpha-2 adrenergic antagonist, which suggests strongly that these effects were produced at an alpha-2 receptor. Intraamygdaloid infusions of xylazine, another alpha-2 agonist, also significantly retarded low-frequency kindling. Unexpectedly, intraamygdaloid infusions of the alpha-2 antagonists idazoxan, yohimbine, and SK&F 104856 failed to accelerate kindling. Infusion of the alpha-1 antagonist corynanthine also failed to affect kindling. We propose that the alpha-2 adrenoceptors in the amygdala/pyriform region contribute to the prophylactic effects of systemically administered clonidine and that the facilitation of kindling observed after systemic administration of alpha-2 antagonists may be due to blockade of alpha-2 adrenoceptors outside of the amygdala/pyriform region.

  14. Identification of QTLs involved in the development of amygdala kindling in the rat.

    Science.gov (United States)

    Hashimoto, Ryoko; Voigt, Birger; Ishimaru, Yuji; Hokao, Ryoji; Chiba, Shigeru; Serikawa, Tadao; Sasa, Masashi; Kuramoto, Takashi

    2013-01-01

    Amygdala kindling is useful for modeling human epilepsy development. It has been known that genetic factors are involved in the development of amygdala kindling. The purpose of this study was to identify the loci that are responsible for the development of amygdala kindling. To achieve this, rat strains from a LEXF/FXLE recombinant inbred (RI) strain panel were used. The phenotypes of amygdala kindling-related parameters for seven RI strains and parental LE/Stm and F344/Stm strains were determined. They included the afterdischarge threshold (ADT), the afterdischarge duration (ADD), and the kindling rate, an incidence of development of kindling. Quantitative trait loci (QTL) analysis was performed to identify linkage relationships between these phenotypes and 1,033 SNP markers. Although no significant differences in pre-kindling ADT and ADD were observed, a significant difference in the kindling rate was found for the LEXF/FXLE RI strain. Two QTLs for the amygdala kindling rate (Agkr1 and Agkr2) were identified on rat chromosome 2. These findings clearly prove the existence of genetic influences that are involved in kindling development and suggest that substantial genetic components contribute to the progression of partial seizures into generalized seizures.

  15. The joyful, yet balanced, amygdala: moderated responses to positive but not negative stimuli in trait happiness.

    Science.gov (United States)

    Cunningham, William A; Kirkland, Tabitha

    2014-06-01

    Although much is known about the neural dynamics of maladaptive affective styles, the mechanisms of happiness and well-being are less clear. One possibility is that the neural processes of trait happiness are the opposite of those involved in depression/anxiety: 'rose-colored glasses' cause happy people to focus on positive cues while remaining oblivious to threats. Specifically, because negative affective styles have been associated with increased amygdala activation to negative stimuli, it may be happy people will not show this enhanced response, and may even show reduced amygdala activation to negative stimuli. Alternatively, if well-being entails appropriate sensitivity to information, happy people may process any relevant cues-positive or negative-to facilitate appropriate responding. This would mean that happiness is associated with increased amygdala activation to both positive and negative stimuli. Forty-two participants viewed affective stimuli during functional magnetic resonance imaging scanning. Happier participants showed greater amygdala responses to positive stimuli. Moreover, no significant relationships were found between happiness and responses to negative stimuli. In other words, for happy people, a tuning toward positive did not come at the cost of losing sensitivity to negativity. This work suggests that trait happiness is associated with a balanced amygdala response to positivity and negativity.

  16. The amygdala excitatory/inhibitory balance in a valproate-induced rat autism model.

    Directory of Open Access Journals (Sweden)

    Hui-Ching Lin

    Full Text Available The amygdala is an important structure contributing to socio-emotional behavior. However, the role of the amygdala in autism remains inconclusive. In this study, we used the 28-35 days valproate (VPA-induced rat model of autism to observe the autistic phenotypes and evaluate their synaptic characteristics in the lateral nucleus (LA of the amygdala. The VPA-treated offspring demonstrated less social interaction, increased anxiety, enhanced fear learning and impaired fear memory extinction. Slice preparation and electrophysiological recordings of the amygdala showed significantly enhanced long-term potentiation (LTP while stimulating the thalamic-amygdala pathway of the LA. In addition, the pair pulse facilitation (PPF at 30- and 60-ms intervals decreased significantly. Whole-cell recordings of the LA pyramidal neurons showed an increased miniature excitatory postsynaptic current (EPSC frequency and amplitude. The relative contributions of the AMPA receptor and NMDA receptor to the EPSCs did not differ significantly between groups. These results suggested that the enhancement of the presynaptic efficiency of excitatory synaptic transmission might be associated with hyperexcitibility and enhanced LTP in LA pyramidal neurons. Disruption of the synaptic excitatory/inhibitory (E/I balance in the LA of VPA-treated rats might play certain roles in the development of behaviors in the rat that may be relevant to autism. Further experiments to demonstrate the direct link are warranted.

  17. The joyful, yet balanced, amygdala: moderated responses to positive but not negative stimuli in trait happiness.

    Science.gov (United States)

    Cunningham, William A; Kirkland, Tabitha

    2014-06-01

    Although much is known about the neural dynamics of maladaptive affective styles, the mechanisms of happiness and well-being are less clear. One possibility is that the neural processes of trait happiness are the opposite of those involved in depression/anxiety: 'rose-colored glasses' cause happy people to focus on positive cues while remaining oblivious to threats. Specifically, because negative affective styles have been associated with increased amygdala activation to negative stimuli, it may be happy people will not show this enhanced response, and may even show reduced amygdala activation to negative stimuli. Alternatively, if well-being entails appropriate sensitivity to information, happy people may process any relevant cues-positive or negative-to facilitate appropriate responding. This would mean that happiness is associated with increased amygdala activation to both positive and negative stimuli. Forty-two participants viewed affective stimuli during functional magnetic resonance imaging scanning. Happier participants showed greater amygdala responses to positive stimuli. Moreover, no significant relationships were found between happiness and responses to negative stimuli. In other words, for happy people, a tuning toward positive did not come at the cost of losing sensitivity to negativity. This work suggests that trait happiness is associated with a balanced amygdala response to positivity and negativity. PMID:23563851

  18. Human Neural Stem Cells Overexpressing Choline Acetyltransferase Restore Unconditioned Fear in Rats with Amygdala Injury

    Directory of Open Access Journals (Sweden)

    Kyungha Shin

    2016-01-01

    Full Text Available Amygdala is involved in the fear memory that recognizes certain environmental cues predicting threatening events. Manipulation of neurotransmission within the amygdala affects the expression of conditioned and unconditioned emotional memories such as fear freezing behaviour. We previously demonstrated that F3.ChAT human neural stem cells (NSCs overexpressing choline acetyltransferase (ChAT improve cognitive function of Alzheimer’s disease model rats with hippocampal or cholinergic nerve injuries by increasing acetylcholine (ACh level. In the present study, we examined the effect of F3.ChAT cells on the deficit of unconditioned fear freezing. Rats given N-methyl-d-aspartate (NMDA in their amygdala 2 weeks prior to cat odor exposure displayed very short resting (freezing time compared to normal animals. NMDA induced neuronal degeneration in the amygdala, leading to a decreased ACh concentration in cerebrospinal fluid. However, intracerebroventricular transplantation of F3.ChAT cells attenuated amygdala lesions 4 weeks after transplantation. The transplanted cells were found in the NMDA-injury sites and produced ChAT protein. In addition, F3.ChAT-receiving rats recuperated freezing time staying remote from the cat odor source, according to the recovery of brain ACh concentration. The results indicate that human NSCs overexpressing ChAT may facilitate retrieval of unconditioned fear memory by increasing ACh level.

  19. Human Neural Stem Cells Overexpressing Choline Acetyltransferase Restore Unconditioned Fear in Rats with Amygdala Injury.

    Science.gov (United States)

    Shin, Kyungha; Cha, Yeseul; Kim, Kwang Sei; Choi, Ehn-Kyoung; Choi, Youngjin; Guo, Haiyu; Ban, Young-Hwan; Kim, Jong-Choon; Park, Dongsun; Kim, Yun-Bae

    2016-01-01

    Amygdala is involved in the fear memory that recognizes certain environmental cues predicting threatening events. Manipulation of neurotransmission within the amygdala affects the expression of conditioned and unconditioned emotional memories such as fear freezing behaviour. We previously demonstrated that F3.ChAT human neural stem cells (NSCs) overexpressing choline acetyltransferase (ChAT) improve cognitive function of Alzheimer's disease model rats with hippocampal or cholinergic nerve injuries by increasing acetylcholine (ACh) level. In the present study, we examined the effect of F3.ChAT cells on the deficit of unconditioned fear freezing. Rats given N-methyl-d-aspartate (NMDA) in their amygdala 2 weeks prior to cat odor exposure displayed very short resting (freezing) time compared to normal animals. NMDA induced neuronal degeneration in the amygdala, leading to a decreased ACh concentration in cerebrospinal fluid. However, intracerebroventricular transplantation of F3.ChAT cells attenuated amygdala lesions 4 weeks after transplantation. The transplanted cells were found in the NMDA-injury sites and produced ChAT protein. In addition, F3.ChAT-receiving rats recuperated freezing time staying remote from the cat odor source, according to the recovery of brain ACh concentration. The results indicate that human NSCs overexpressing ChAT may facilitate retrieval of unconditioned fear memory by increasing ACh level. PMID:27087745

  20. Amygdala subnuclei resting-state functional connectivity sex and estrogen differences.

    Science.gov (United States)

    Engman, Jonas; Linnman, Clas; Van Dijk, Koene R A; Milad, Mohammed R

    2016-01-01

    The amygdala is a hub in emotional processing, including that of negative affect. Healthy men and women have distinct differences in amygdala responses, potentially setting the stage for the observed sex differences in the prevalence of fear, anxiety, and pain disorders. Here, we examined how amygdala subnuclei resting-state functional connectivity is affected by sex, as well as explored how the functional connectivity is related to estrogen levels. Resting-state functional connectivity was measured using functional magnetic resonance imaging (fMRI) with seeds placed in the left and right laterobasal (LB) and centromedial (CM) amygdala. Sex differences were studied in 48 healthy men and 48 healthy women, matched for age, while the association with estrogen was analyzed in a subsample of 24 women, for whom hormone levels had been assessed. For the hormone analyses, the subsample was further divided into a lower and higher estrogen levels group based on a median split. We found distinct sex differences in the LB and CM amygdala resting-state functional connectivity, as well as preliminary evidence for an association between estrogen levels and connectivity patterns. These results are potentially valuable in explaining why women are more afflicted by conditions of negative affect than are men, and could imply a mechanistic role for estrogen in modulating emotion. PMID:26406106

  1. Reduced amygdala responsivity during conditioning to trauma-related stimuli in posttraumatic stress disorder.

    Science.gov (United States)

    Diener, Slawomira J; Nees, Frauke; Wessa, Michèle; Wirtz, Gustav; Frommberger, Ulrich; Penga, Tina; Ruttorf, Michaela; Ruf, Matthias; Schmahl, Christian; Flor, Herta

    2016-10-01

    Exaggerated conditioned fear responses and impaired extinction along with amygdala overactivation have been observed in posttraumatic stress disorder (PTSD). These fear responses might be triggered by cues related to the trauma through higher-order conditioning, where reminders of the trauma may serve as unconditioned stimuli (US) and could maintain the fear response. We compared arousal, valence, and US expectancy ratings and BOLD brain responses using fMRI in 14 traumatized persons with PTSD and 14 without PTSD (NPTSD) and 13 matched healthy controls (HC) in a differential aversive conditioning paradigm. The US were trauma-specific pictures for the PTSD and NPTSD group and equally aversive and arousing for the HC; the conditioned stimuli (CS) were graphic displays. During conditioning, the PTSD patients compared to the NPTSD and HC indicated higher arousal to the conditioned stimulus that was paired with the trauma picture (CS+) compared to the unpaired (CS-), increased dissociation during acquisition and extinction, and failure to extinguish the CS/US-association compared to NPTSD. During early and late acquisition, the PTSD patients showed a significantly lower amygdala activation to CS+ versus CS- and a negative interaction between activation in the amygdala and dorsolateral prefrontal cortex (PFC), while NPTSD and HC displayed a negative interaction between amygdala and medial PFC. These findings suggest maladaptive anticipatory coping with trauma-related stimuli in patients with PTSD, indicated by enhanced conditioning, with related abnormal amygdala reactivity and connectivity, and delayed extinction. PMID:27412783

  2. Robust selectivity for faces in the human amygdala in the absence of expressions.

    Science.gov (United States)

    Mende-Siedlecki, Peter; Verosky, Sara C; Turk-Browne, Nicholas B; Todorov, Alexander

    2013-12-01

    There is a well-established posterior network of cortical regions that plays a central role in face processing and that has been investigated extensively. In contrast, although responsive to faces, the amygdala is not considered a core face-selective region, and its face selectivity has never been a topic of systematic research in human neuroimaging studies. Here, we conducted a large-scale group analysis of fMRI data from 215 participants. We replicated the posterior network observed in prior studies but found equally robust and reliable responses to faces in the amygdala. These responses were detectable in most individual participants, but they were also highly sensitive to the initial statistical threshold and habituated more rapidly than the responses in posterior face-selective regions. A multivariate analysis showed that the pattern of responses to faces across voxels in the amygdala had high reliability over time. Finally, functional connectivity analyses showed stronger coupling between the amygdala and posterior face-selective regions during the perception of faces than during the perception of control visual categories. These findings suggest that the amygdala should be considered a core face-selective region.

  3. Human amygdala response to dynamic facial expressions of positive and negative surprise.

    Science.gov (United States)

    Vrticka, Pascal; Lordier, Lara; Bediou, Benoît; Sander, David

    2014-02-01

    Although brain imaging evidence accumulates to suggest that the amygdala plays a key role in the processing of novel stimuli, only little is known about its role in processing expressed novelty conveyed by surprised faces, and even less about possible interactive encoding of novelty and valence. Those investigations that have already probed human amygdala involvement in the processing of surprised facial expressions either used static pictures displaying negative surprise (as contained in fear) or "neutral" surprise, and manipulated valence by contextually priming or subjectively associating static surprise with either negative or positive information. Therefore, it still remains unresolved how the human amygdala differentially processes dynamic surprised facial expressions displaying either positive or negative surprise. Here, we created new artificial dynamic 3-dimensional facial expressions conveying surprise with an intrinsic positive (wonderment) or negative (fear) connotation, but also intrinsic positive (joy) or negative (anxiety) emotions not containing any surprise, in addition to neutral facial displays either containing ("typical surprise" expression) or not containing ("neutral") surprise. Results showed heightened amygdala activity to faces containing positive (vs. negative) surprise, which may either correspond to a specific wonderment effect as such, or to the computation of a negative expected value prediction error. Findings are discussed in the light of data obtained from a closely matched nonsocial lottery task, which revealed overlapping activity within the left amygdala to unexpected positive outcomes. PMID:24219397

  4. Deep Brain Stimulation of the Basolateral Amygdala: Targeting Technique and Electrodiagnostic Findings.

    Science.gov (United States)

    Langevin, Jean-Philippe; Chen, James W Y; Koek, Ralph J; Sultzer, David L; Mandelkern, Mark A; Schwartz, Holly N; Krahl, Scott E

    2016-01-01

    The amygdala plays a critical role in emotion regulation. It could prove to be an effective neuromodulation target in the treatment of psychiatric conditions characterized by failure of extinction. We aim to describe our targeting technique, and intra-operative and post-operative electrodiagnostic findings associated with the placement of deep brain stimulation (DBS) electrodes in the amygdala. We used a transfrontal approach to implant DBS electrodes in the basolateral nucleus of the amygdala (BLn) of a patient suffering from severe post-traumatic stress disorder. We used microelectrode recording (MER) and awake intra-operative neurostimulation to assist with the placement. Post-operatively, the patient underwent monthly surveillance electroencephalograms (EEG). MER predicted the trajectory of the electrode through the amygdala. The right BLn showed a higher spike frequency than the left BLn. Intra-operative neurostimulation of the BLn elicited pleasant memories. The monthly EEG showed the presence of more sleep patterns over time with DBS. BLn DBS electrodes can be placed using a transfrontal approach. MER can predict the trajectory of the electrode in the amygdala and it may reflect the BLn neuronal activity underlying post-traumatic stress disorder PTSD. The EEG findings may underscore the reduction in anxiety. PMID:27517963

  5. Mindfulness meditation training alters stress-related amygdala resting state functional connectivity: a randomized controlled trial.

    Science.gov (United States)

    Taren, Adrienne A; Gianaros, Peter J; Greco, Carol M; Lindsay, Emily K; Fairgrieve, April; Brown, Kirk Warren; Rosen, Rhonda K; Ferris, Jennifer L; Julson, Erica; Marsland, Anna L; Bursley, James K; Ramsburg, Jared; Creswell, J David

    2015-12-01

    Recent studies indicate that mindfulness meditation training interventions reduce stress and improve stress-related health outcomes, but the neural pathways for these effects are unknown. The present research evaluates whether mindfulness meditation training alters resting state functional connectivity (rsFC) of the amygdala, a region known to coordinate stress processing and physiological stress responses. We show in an initial discovery study that higher perceived stress over the past month is associated with greater bilateral amygdala-subgenual anterior cingulate cortex (sgACC) rsFC in a sample of community adults (n = 130). A follow-up, single-blind randomized controlled trial shows that a 3-day intensive mindfulness meditation training intervention (relative to a well-matched 3-day relaxation training intervention without a mindfulness component) reduced right amygdala-sgACC rsFC in a sample of stressed unemployed community adults (n = 35). Although stress may increase amygdala-sgACC rsFC, brief training in mindfulness meditation could reverse these effects. This work provides an initial indication that mindfulness meditation training promotes functional neuroplastic changes, suggesting an amygdala-sgACC pathway for stress reduction effects. PMID:26048176

  6. A network of amygdala connections predict individual differences in trait anxiety.

    Science.gov (United States)

    Greening, Steven G; Mitchell, Derek G V

    2015-12-01

    In this study we demonstrate that the pattern of an amygdala-centric network contributes to individual differences in trait anxiety. Individual differences in trait anxiety were predicted using maximum likelihood estimates of amygdala structural connectivity to multiple brain targets derived from diffusion-tensor imaging (DTI) and probabilistic tractography on 72 participants. The prediction was performed using a stratified sixfold cross validation procedure using a regularized least square regression model. The analysis revealed a reliable network of regions predicting individual differences in trait anxiety. Higher trait anxiety was associated with stronger connections between the amygdala and dorsal anterior cingulate cortex, an area implicated in the generation of emotional reactions, and inferior temporal gyrus and paracentral lobule, areas associated with perceptual and sensory processing. In contrast, higher trait anxiety was associated with weaker connections between amygdala and regions implicated in extinction learning such as medial orbitofrontal cortex, and memory encoding and environmental context recognition, including posterior cingulate cortex and parahippocampal gyrus. Thus, trait anxiety is not only associated with reduced amygdala connectivity with prefrontal areas associated with emotion modulation, but also enhanced connectivity with sensory areas. This work provides novel anatomical insight into potential mechanisms behind information processing biases observed in disorders of emotion.

  7. Recurrent hypoglycemia increases anxiety and amygdala norepinephrine release during subsequent hypoglycemia

    Directory of Open Access Journals (Sweden)

    Ewan eMcNay

    2015-11-01

    Full Text Available Recurrent hypoglycemia (RH is a common and debilitating side effect of therapy in patients with both type 1 and, increasingly, type 2 diabetes. Previous studies in rats have shown marked effects of RH on subsequent hippocampal behavioral, metabolic, and synaptic processes. In addition to impaired memory, patients experiencing RH report alterations in cognitive processes that include mood and anxiety, suggesting that RH may also affect amygdala function. We tested the impact of RH on amygdala function using an elevated plus-maze test of anxiety together with in vivo amygdala microdialysis for norepinephrine (NEp, a widely used marker of basolateral amygdala cognitive processes. In contrast to findings in the hippocampus and pre-frontal cortex, neither RH nor acute hypoglycemia alone significantly affected plus-maze performance or NEp release. However, animals tested when hypoglycemic who had previously experienced RH had elevated amygdala NEp during plus-maze testing, accompanied by increased anxiety (i.e. less time spent in the open arms of the plus-maze. The results show that RH has widespread effects on subsequent brain function, which vary by neural system.

  8. Central amygdala opioid transmission is necessary for increased high-fat intake following 24-h food deprivation, but not following intra-accumbens opioid administration.

    Science.gov (United States)

    Parker, Kyle E; Johns, Howard W; Floros, Ted G; Will, Matthew J

    2014-03-01

    Previous research has demonstrated a dissociation of certain neural mediators that contribute to the increased consumption of a high-fat diet that follows intra-accumbens (Acb) administration of μ-opioid receptor agonists vs. 24-h food deprivation. These two models, both which induce rapid consumption of the diet, have been shown to involve a distributed corticolimbic circuitry, including the amygdala. Specifically, the central amygdala (CeA) has been shown to be involved in high-fat feeding within both opioid and food-deprivation driven models. The present experiments were conducted to examine the more specific role of CeA opioid transmission in mediating high-fat feeding driven by either intra-Acb administration of the μ-opioid agonist d-Ala2-NMe-Phe4-Glyol5-enkephalin (DAMGO) or 24-h home cage food deprivation. Injection of DAMGO into the Acb (0.25 μg/0.5 μl/side) increased consumption of the high-fat diet, but this feeding was unaffected by administration of opioid antagonist, naltrexone (5 μg/0.25 μl/side) administered into the CeA. In contrast, intra-CeA naltrexone administration attenuated high-fat intake driven by 24-h food deprivation, demonstrating a specific role for CeA opioid transmission in high-fat consumption. Intra-CeA naltrexone administration alone had no effect on baseline feeding levels within either feeding model. These findings suggest that CeA opioid transmission mediates consumption of a palatable high-fat diet driven by short-term negative-energy balance (24-h food deprivation), but not intra-Acb opioid receptor activation.

  9. Infusions of AP5 into the basolateral amygdala impair the formation, but not the expression, of step-down inhibitory avoidance

    Directory of Open Access Journals (Sweden)

    Roesler R.

    2000-01-01

    Full Text Available We evaluated the effects of infusions of the NMDA receptor antagonist D,L-2-amino-5-phosphonopentanoic acid (AP5 into the basolateral nucleus of the amygdala (BLA on the formation and expression of memory for inhibitory avoidance. Adult male Wistar rats (215-300 g were implanted under thionembutal anesthesia (30 mg/kg, ip with 9.0-mm guide cannulae aimed 1.0 mm above the BLA. Bilateral infusions of AP5 (5.0 µg were given 10 min prior to training, immediately after training, or 10 min prior to testing in a step-down inhibitory avoidance task (0.3 mA footshock, 24-h interval between training and the retention test session. Both pre- and post-training infusions of AP5 blocked retention test performance. When given prior to the test, AP5 did not affect retention. AP5 did not affect training performance, and a control experiment showed that the impairing effects were not due to alterations in footshock sensitivity. The results suggest that NMDA receptor activation in the BLA is involved in the formation, but not the expression, of memory for inhibitory avoidance in rats. However, the results do not necessarily imply that the role of NMDA receptors in the BLA is to mediate long-term storage of fear-motivated memory within the amygdala.

  10. 5-HT1A and benzodiazepine receptors in the basolateral amygdala modulate anxiety in the social interaction test, but not in the elevated plus-maze.

    Science.gov (United States)

    Gonzalez, L E; Andrews, N; File, S E

    1996-09-01

    In order to investigate the role of the 5-HT1A receptors of the amygdala in modulating anxiety, rats were implanted with bilateral cannulae aimed at the basolateral nucleus of the amygdala complex and infused with either artificial cerebrospinal fluid (aCSF) or the selective 5-HT1A receptor agonist 8-OH-DPAT (50-200 ng) and tested in two animal models of anxiety. In the elevated plus-maze test, no significant effects were detected in this dose range. In contrast, 8-OH-DPAT caused an overall reduction in levels of social investigation, thus indicating anxiogenic actions in the social interaction test. At 50 ng, 8-OH-DPAT had a selective action on anxiety, while at 200 ng there was a concomitant reduction in locomotor activity and, in some animals, signs of the 5-HT1A syndrome. Evidence that the anxiogenic effect of 8-OH-DPAT (50 ng) was due to activation of 5-HT1A receptors came from the finding that (-)-tertatolol, a 5-HT1A receptor antagonist, reversed this effect at a dose (1.5 micrograms) which was silent when given alone. The benzodiazepine receptor agonist, midazolam (1 and 2 micrograms) was bilaterally administered into the basolateral nucleus of the amygdala and evoked clear-cut anxiolytic effects in the social interaction test. These data indicate that the agonist activation of post-synaptic 5-HT1A receptors in the basolateral nucleus of the amygdala may produce anxiogenic effects, while agonist activation of BDZ receptors in the same areas evokes anxiolytic effects. Our results from the social interaction test are similar to those previously reported from tests of anxiety using punished paradigms, but contrast with those found in the elevated plus-maze. Thus, it is concluded that either the two tests have different sensitivities to midazolam and 8-OH-DPAT or more intriguingly, the tests are evoking fundamentally different states of anxiety, with that evoked by the plus-maze being mediated via brain areas or receptors different from those studied here.

  11. Impact of basal forebrain cholinergic inputs on basolateral amygdala neurons.

    Science.gov (United States)

    Unal, Cagri T; Pare, Denis; Zaborszky, Laszlo

    2015-01-14

    In addition to innervating the cerebral cortex, basal forebrain cholinergic (BFc) neurons send a dense projection to the basolateral nucleus of the amygdala (BLA). In this study, we investigated the effect of near physiological acetylcholine release on BLA neurons using optogenetic tools and in vitro patch-clamp recordings. Adult transgenic mice expressing cre-recombinase under the choline acetyltransferase promoter were used to selectively transduce BFc neurons with channelrhodopsin-2 and a reporter through the injection of an adeno-associated virus. Light-induced stimulation of BFc axons produced different effects depending on the BLA cell type. In late-firing interneurons, BFc inputs elicited fast nicotinic EPSPs. In contrast, no response could be detected in fast-spiking interneurons. In principal BLA neurons, two different effects were elicited depending on their activity level. When principal BLA neurons were quiescent or made to fire at low rates by depolarizing current injection, light-induced activation of BFc axons elicited muscarinic IPSPs. In contrast, with stronger depolarizing currents, eliciting firing above ∼ 6-8 Hz, these muscarinic IPSPs lost their efficacy because stimulation of BFc inputs prolonged current-evoked afterdepolarizations. All the effects observed in principal neurons were dependent on muscarinic receptors type 1, engaging different intracellular mechanisms in a state-dependent manner. Overall, our results suggest that acetylcholine enhances the signal-to-noise ratio in principal BLA neurons. Moreover, the cholinergic engagement of afterdepolarizations may contribute to the formation of stimulus associations during fear-conditioning tasks where the timing of conditioned and unconditioned stimuli is not optimal for the induction of synaptic plasticity.

  12. The effects of various lesions and knife-cuts on septal and amygdala kindling in the rat.

    Science.gov (United States)

    Racine, R J; Paxinos, G; Mosher, J M; Kairiss, E W

    1988-06-28

    Large bilateral aspiration lesions of the hippocampus had no significant effect on septal kindling, whereas large bilateral DC lesions of the pyriform lobe resulted in a small but significant increase in the number of septal stimulations required to complete kindling. Bilateral aspiration lesions of the dorsal hippocampus or large bilateral DC lesions of the ventral hippocampus had no effect on amygdala kindling. Small DC lesions of the stria terminalis significantly facilitated amygdala kindling. Unilateral or bilateral ventral knife-cuts delivered in a coronal plane anterior to the amygdala, disrupting communication with anterior pyriform structures, produced a small but nearly significant increase in the number of stimulations required for amygdala kindling. Similar cuts placed posterior to the amygdala, disrupting communication with the hippocampus, significantly facilitated kindling. Cuts that were medially placed, to disrupt the ventral amygdala-fugal pathway, had no effect on amygdala kindling. These results show that the hippocampus is not critical for either septal or amygdala kindling. The pyriform lobe structures appear to play a facilitatory role in kindling, but none of the lesions or knife-cuts were capable of blocking or even severely retarding kindling.

  13. Decreased expression of extracellular matrix proteins and trophic factors in the amygdala complex of depressed mice after chronic immobilization stress

    Directory of Open Access Journals (Sweden)

    Jung Soonwoong

    2012-06-01

    Full Text Available Abstract Background The amygdala plays an essential role in controlling emotional behaviors and has numerous connections to other brain regions. The functional role of the amygdala has been highlighted by various studies of stress-induced behavioral changes. Here we investigated gene expression changes in the amygdala in the chronic immobilization stress (CIS-induced depression model. Results Eight genes were decreased in the amygdala of CIS mice, including genes for neurotrophic factors and extracellular matrix proteins. Among these, osteoglycin, fibromodulin, insulin-like growth factor 2 (Igf2, and insulin-like growth factor binding protein 2 (Igfbp2 were further analyzed for histological expression changes. The expression of osteoglycin and fibromodulin simultaneously decreased in the medial, basolateral, and central amygdala regions. However, Igf2 and Igfbp2 decreased specifically in the central nucleus of the amygdala. Interestingly, this decrease was found only in the amygdala of mice showing higher immobility, but not in mice displaying lower immobility, although the CIS regimen was the same for both groups. Conclusions These results suggest that the responsiveness of the amygdala may play a role in the sensitivity of CIS-induced behavioral changes in mice.

  14. Amygdala recruitment in schizophrenia in response to aversive emotional material: a meta-analysis of neuroimaging studies.

    Science.gov (United States)

    Anticevic, Alan; Van Snellenberg, Jared X; Cohen, Rachel E; Repovs, Grega; Dowd, Erin C; Barch, Deanna M

    2012-05-01

    Emotional dysfunction has long been established as a critical clinical feature of schizophrenia. In the past decade, there has been extensive work examining the potential contribution of abnormal amygdala activation to this dysfunction in patients with schizophrenia. A number of studies have demonstrated under-recruitment of the amygdala in response to emotional stimuli, while others have shown intact recruitment of this region. To date, there have been few attempts to synthesize this literature using quantitative criteria or to use a formal meta-analytic approach to examine which variables may moderate the magnitude of between-group differences in amygdala activation in response to aversive emotional stimuli. We conducted a meta-analysis of amygdala activation in patients with schizophrenia, using a bootstrapping approach to investigate: (a) evidence for amygdala under-recruitment in schizophrenia and (b) variables that may moderate the magnitude of between-group differences in amygdala activation. We demonstrate that patients with schizophrenia show statistically significant, but modest, under-recruitment of bilateral amygdala (mean effect size = -0.20 SD). However, present findings indicate that this under-recruitment is dependent on the use of a neutral vs emotion interaction contrast and is not apparent if amygdala activation by patients and controls is evaluated in a negative emotional condition only. PMID:21123853

  15. NMDA Receptor- and ERK-Dependent Histone Methylation Changes in the Lateral Amygdala Bidirectionally Regulate Fear Memory Formation

    Science.gov (United States)

    Gupta-Agarwal, Swati; Jarome, Timothy J.; Fernandez, Jordan; Lubin, Farah D.

    2014-01-01

    It is well established that fear memory formation requires de novo gene transcription in the amygdala. We provide evidence that epigenetic mechanisms in the form of histone lysine methylation in the lateral amygdala (LA) are regulated by NMDA receptor (NMDAR) signaling and involved in gene transcription changes necessary for fear memory…

  16. Mediation Analysis

    OpenAIRE

    David P. MacKinnon; Fairchild, Amanda J.; Fritz, Matthew S.

    2007-01-01

    Mediating variables are prominent in psychological theory and research. A mediating variable transmits the effect of an independent variable on a dependent variable. Differences between mediating variables and confounders, moderators, and covariates are outlined. Statistical methods to assess mediation and modern comprehensive approaches are described. Future directions for mediation analysis are discussed.

  17. Volumes of the hippocampus and amygdala in patients with borderline personality disorder: a meta-analysis.

    Science.gov (United States)

    Nunes, Paulo Menezes; Wenzel, Amy; Borges, Karinne Tavares; Porto, Cristianne Ribeiro; Caminha, Renato Maiato; de Oliveira, Irismar Reis

    2009-08-01

    Individuals with borderline personality disorder (BPD) often exhibit impulsive and aggressive behavior. The hippocampus and amygdala form part of the limbic system, which plays a central role in controlling such expressions of emotional reactivity. There are mixed results in the literature regarding whether patients with BPD have smaller hippocampal and amygdalar volume relative to healthy controls. To clarify the precise nature of these mixed results, we performed a meta-analysis to aggregate data on the size of the hippocampus and amygdala in patients with BPD. Seven publications involving six studies and a total of 104 patients with BPD and 122 healthy controls were included. A significantly smaller volume was found in both the right and left hippocampi and amygdala of patients with BPD compared to healthy controls. These findings raise the possibility that reduced hippocampal and amygdalar volumes are biological substrates of some symptoms of BPD. PMID:19663654

  18. Pavlovian fear conditioning activates a common pattern of neurons in the lateral amygdala of individual brains.

    Directory of Open Access Journals (Sweden)

    Hadley C Bergstrom

    Full Text Available Understanding the physical encoding of a memory (the engram is a fundamental question in neuroscience. Although it has been established that the lateral amygdala is a key site for encoding associative fear memory, it is currently unclear whether the spatial distribution of neurons encoding a given memory is random or stable. Here we used spatial principal components analysis to quantify the topography of activated neurons, in a select region of the lateral amygdala, from rat brains encoding a Pavlovian conditioned fear memory. Our results demonstrate a stable, spatially patterned organization of amygdala neurons are activated during the formation of a Pavlovian conditioned fear memory. We suggest that this stable neuronal assembly constitutes a spatial dimension of the engram.

  19. Pavlovian fear conditioning activates a common pattern of neurons in the lateral amygdala of individual brains.

    Science.gov (United States)

    Bergstrom, Hadley C; McDonald, Craig G; Johnson, Luke R

    2011-01-12

    Understanding the physical encoding of a memory (the engram) is a fundamental question in neuroscience. Although it has been established that the lateral amygdala is a key site for encoding associative fear memory, it is currently unclear whether the spatial distribution of neurons encoding a given memory is random or stable. Here we used spatial principal components analysis to quantify the topography of activated neurons, in a select region of the lateral amygdala, from rat brains encoding a Pavlovian conditioned fear memory. Our results demonstrate a stable, spatially patterned organization of amygdala neurons are activated during the formation of a Pavlovian conditioned fear memory. We suggest that this stable neuronal assembly constitutes a spatial dimension of the engram.

  20. Impaired declarative memory for emotional material following bilateral amygdala damage in humans.

    Science.gov (United States)

    Adolphs, R; Cahill, L; Schul, R; Babinsky, R

    1997-01-01

    Everyday experience suggests that highly emotional events are often the most memorable, an observation supported by psychological and pharmacological studies in humans. Although studies in animals have shown that nondeclarative emotional memory (behaviors associated with emotional situations) may be impaired by lesions of the amygdala, little is known about the neural underpinnings of emotional memory in humans, especially in regard to declarative memory (memory for facts that can be assessed verbally). We investigated the declarative memory of two rare patients with selective bilateral amygdala damage. Both subjects showed impairments in long-term declarative memory for emotionally arousing material. The data support the hypothesis that the human amygdala normally enhances acquisition of declarative knowledge regarding emotionally arousing stimuli. PMID:10456070

  1. Amygdala and dorsomedial prefrontal cortex responses to appearance-based and behavior-based person impressions.

    Science.gov (United States)

    Baron, Sean G; Gobbini, M I; Engell, Andrew D; Todorov, Alexander

    2011-10-01

    We explored the neural correlates of learning about people when the affective value of both facial appearance and behavioral information is manipulated. Participants were presented with faces that were either rated as high or low on trustworthiness. Subsequently, we paired these faces with positive, negative, or no behavioral information. Prior to forming face-behavior associations, a cluster in the right amygdala responded more strongly to untrustworthy than to trustworthy faces. During learning, a cluster in the dorsomedial prefrontal cortex (dmPFC) responded more strongly to faces paired with behaviors than faces not paired with behaviors. We also observed that the activity in the dmPFC was correlated with behavioral learning performance assessed after scanning. Interestingly, individual differences in the initial amygdala response to face trustworthiness prior to learning modulated the relationship between dmPFC activity and learning. This finding suggests that the activity of the amygdala can affect the interaction between dmPFC activity and learning.

  2. Identification and Characterization of GABAergic Projection Neurons from Ventral Hippocampus to Amygdala

    Directory of Open Access Journals (Sweden)

    Robert Lübkemann

    2015-07-01

    Full Text Available GABAergic local circuit neurons are critical for the network activity and functional interaction of the amygdala and hippocampus. Previously, we obtained evidence for a GABAergic contribution to the hippocampal projection into the basolateral amygdala. Using fluorogold retrograde labeling, we now demonstrate that this projection indeed has a prominent GABAergic component comprising 17% of the GABAergic neurons in the ventral hippocampus. A majority of the identified GABAergic projection neurons are located in the stratum oriens of area CA1, but cells are also found in the stratum pyramidale and stratum radiatum. We could detect the expression of different markers of interneuron subpopulations, including parvalbumin and calbindin, somatostatin, neuropeptide Y, and cholecystokinin in such retrogradely labeled GABA neurons. Thus GABAergic projection neurons to the amygdala comprise a neurochemically heterogeneous group of cells from different interneuron populations, well situated to control network activity patterns in the amygdalo-hippocampal system.

  3. Preschool anxiety disorders predict different patterns of amygdala-prefrontal connectivity at school-age.

    Directory of Open Access Journals (Sweden)

    Kimberly L H Carpenter

    Full Text Available In this prospective, longitudinal study of young children, we examined whether a history of preschool generalized anxiety, separation anxiety, and/or social phobia is associated with amygdala-prefrontal dysregulation at school-age. As an exploratory analysis, we investigated whether distinct anxiety disorders differ in the patterns of this amygdala-prefrontal dysregulation.Participants were children taking part in a 5-year study of early childhood brain development and anxiety disorders. Preschool symptoms of generalized anxiety, separation anxiety, and social phobia were assessed with the Preschool Age Psychiatric Assessment (PAPA in the first wave of the study when the children were between 2 and 5 years old. The PAPA was repeated at age 6. We conducted functional MRIs when the children were 5.5 to 9.5 year old to assess neural responses to viewing of angry and fearful faces.A history of preschool social phobia predicted less school-age functional connectivity between the amygdala and the ventral prefrontal cortices to angry faces. Preschool generalized anxiety predicted less functional connectivity between the amygdala and dorsal prefrontal cortices in response to fearful faces. Finally, a history of preschool separation anxiety predicted less school-age functional connectivity between the amygdala and the ventral prefrontal cortices to angry faces and greater school-age functional connectivity between the amygdala and dorsal prefrontal cortices to angry faces.Our results suggest that there are enduring neurobiological effects associated with a history of preschool anxiety, which occur over-and-above the effect of subsequent emotional symptoms. Our results also provide preliminary evidence for the neurobiological differentiation of specific preschool anxiety disorders.

  4. Altered resting-state amygdala functional connectivity after 36 hours of total sleep deprivation.

    Directory of Open Access Journals (Sweden)

    Yongcong Shao

    Full Text Available Recent neuroimaging studies have identified a potentially critical role of the amygdala in disrupted emotion neurocircuitry in individuals after total sleep deprivation (TSD. However, connectivity between the amygdala and cerebral cortex due to TSD remains to be elucidated. In this study, we used resting-state functional MRI (fMRI to investigate the functional connectivity changes of the basolateral amygdala (BLA and centromedial amygdala (CMA in the brain after 36 h of TSD.Fourteen healthy adult men aged 25.9 ± 2.3 years (range, 18-28 years were enrolled in a within-subject crossover study. Using the BLA and CMA as separate seed regions, we examined resting-state functional connectivity with fMRI during rested wakefulness (RW and after 36 h of TSD.TSD resulted in a significant decrease in the functional connectivity between the BLA and several executive control regions (left dorsolateral prefrontal cortex [DLPFC], right dorsal anterior cingulate cortex [ACC], right inferior frontal gyrus [IFG]. Increased functional connectivity was found between the BLA and areas including the left posterior cingulate cortex/precuneus (PCC/PrCu and right parahippocampal gyrus. With regard to CMA, increased functional connectivity was observed with the rostral anterior cingulate cortex (rACC and right precentral gyrus.These findings demonstrate that disturbance in amygdala related circuits may contribute to TSD psychophysiology and suggest that functional connectivity studies of the amygdala during the resting state may be used to discern aberrant patterns of coupling within these circuits after TSD.

  5. Facilitation of synaptic transmission and pain responses by CGRP in the amygdala of normal rats

    Directory of Open Access Journals (Sweden)

    Ji Guangchen

    2010-02-01

    Full Text Available Abstract Calcitonin gene-related peptide (CGRP plays an important role in peripheral and central sensitization. CGRP also is a key molecule in the spino-parabrachial-amygdaloid pain pathway. Blockade of CGRP1 receptors in the spinal cord or in the amygdala has antinociceptive effects in different pain models. Here we studied the electrophysiological mechanisms of behavioral effects of CGRP in the amygdala in normal animals without tissue injury. Whole-cell patch-clamp recordings of neurons in the latero-capsular division of the central nucleus of the amygdala (CeLC in rat brain slices showed that CGRP (100 nM increased excitatory postsynaptic currents (EPSCs at the parabrachio-amygdaloid (PB-CeLC synapse, the exclusive source of CGRP in the amygdala. Consistent with a postsynaptic mechanism of action, CGRP increased amplitude, but not frequency, of miniature EPSCs and did not affect paired-pulse facilitation. CGRP also increased neuronal excitability. CGRP-induced synaptic facilitation was reversed by an NMDA receptor antagonist (AP5, 50 μM or a PKA inhibitor (KT5720, 1 μM, but not by a PKC inhibitor (GF109203X, 1 μM. Stereotaxic administration of CGRP (10 μM, concentration in microdialysis probe into the CeLC by microdialysis in awake rats increased audible and ultrasonic vocalizations and decreased hindlimb withdrawal thresholds. Behavioral effects of CGRP were largely blocked by KT5720 (100 μM but not by GF109203X (100 μM. The results show that CGRP in the amygdala exacerbates nocifensive and affective behavioral responses in normal animals through PKA- and NMDA receptor-dependent postsynaptic facilitation. Thus, increased CGRP levels in the amygdala might trigger pain in the absence of tissue injury.

  6. Culture but not gender modulates amygdala activation during explicit emotion recognition

    Directory of Open Access Journals (Sweden)

    Derntl Birgit

    2012-05-01

    Full Text Available Abstract Background Mounting evidence indicates that humans have significant difficulties in understanding emotional expressions from individuals of different ethnic backgrounds, leading to reduced recognition accuracy and stronger amygdala activation. However, the impact of gender on the behavioral and neural reactions during the initial phase of cultural assimilation has not been addressed. Therefore, we investigated 24 Asians students (12 females and 24 age-matched European students (12 females during an explicit emotion recognition task, using Caucasian facial expressions only, on a high-field MRI scanner. Results Analysis of functional data revealed bilateral amygdala activation to emotional expressions in Asian and European subjects. However, in the Asian sample, a stronger response of the amygdala emerged and was paralleled by reduced recognition accuracy, particularly for angry male faces. Moreover, no significant gender difference emerged. We also observed a significant inverse correlation between duration of stay and amygdala activation. Conclusion In this study we investigated the “alien-effect” as an initial problem during cultural assimilation and examined this effect on a behavioral and neural level. This study has revealed bilateral amygdala activation to emotional expressions in Asian and European females and males. In the Asian sample, a stronger response of the amygdala bilaterally was observed and this was paralleled by reduced performance, especially for anger and disgust depicted by male expressions. However, no gender difference occurred. Taken together, while gender exerts only a subtle effect, culture and duration of stay as well as gender of poser are shown to be relevant factors for emotion processing, influencing not only behavioral but also neural responses in female and male immigrants.

  7. Neuroanatomical and functional characterization of CRF neurons of the amygdala using a novel transgenic mouse model.

    Science.gov (United States)

    De Francesco, P N; Valdivia, S; Cabral, A; Reynaldo, M; Raingo, J; Sakata, I; Osborne-Lawrence, S; Zigman, J M; Perelló, M

    2015-03-19

    The corticotropin-releasing factor (CRF)-producing neurons of the amygdala have been implicated in behavioral and physiological responses associated with fear, anxiety, stress, food intake and reward. To overcome the difficulties in identifying CRF neurons within the amygdala, a novel transgenic mouse line, in which the humanized recombinant Renilla reniformis green fluorescent protein (hrGFP) is under the control of the CRF promoter (CRF-hrGFP mice), was developed. First, the CRF-hrGFP mouse model was validated and the localization of CRF neurons within the amygdala was systematically mapped. Amygdalar hrGFP-expressing neurons were located primarily in the interstitial nucleus of the posterior limb of the anterior commissure, but also present in the central amygdala. Secondly, the marker of neuronal activation c-Fos was used to explore the response of amygdalar CRF neurons in CRF-hrGFP mice under different experimental paradigms. C-Fos induction was observed in CRF neurons of CRF-hrGFP mice exposed to an acute social defeat stress event, a fasting/refeeding paradigm or lipopolysaccharide (LPS) administration. In contrast, no c-Fos induction was detected in CRF neurons of CRF-hrGFP mice exposed to restraint stress, forced swimming test, 48-h fasting, acute high-fat diet (HFD) consumption, intermittent HFD consumption, ad libitum HFD consumption, HFD withdrawal, conditioned HFD aversion, ghrelin administration or melanocortin 4 receptor agonist administration. Thus, this study fully characterizes the distribution of amygdala CRF neurons in mice and suggests that they are involved in some, but not all, stress or food intake-related behaviors recruiting the amygdala. PMID:25595987

  8. Anxiety-like behaviors in mice lacking GIT2

    OpenAIRE

    Schmalzigaug, Robert; Rodriguiz, Ramona M.; Phillips, Lindsey E.; Davidson, Collin E.; Wetsel, William C.; Premont, Richard T.

    2008-01-01

    G protein-coupled receptor kinase-interactor 2 (GIT2) is a signaling scaffold protein that also functions as GTPase-activating protein (GAPs) for ADP-ribosylation factor (Arf) small GTP-binding proteins. GIT2 has been implicated in the regulation of G protein-coupled receptor trafficking and cell adhesion and migration. To evaluate possible neurobehavioral functions of GIT2 in vivo, we evaluated GIT2-knockout (KO) mice for abnormalities in emotionality and mood. Male and female GIT2-KO mice p...

  9. Connections of the corticomedial amygdala in the golden hamster. I. Efferents of the ''vomeronasal amygdala''

    Energy Technology Data Exchange (ETDEWEB)

    Kevetter, G.A.; Winans, S.S.

    1981-03-20

    The medial (M) an posteromedial cortical (C3) amygdaloid nuclei and the nucleus of the accessory olfactory tract (NAOT) are designated the ''vomeronasal amygdala'' because they are the only components of the amygdala to receive a direct projection from the accessory olfactory bulb (AOB). The efferents of M and C3 were traced after injections of /sup 3/H-proline into the amygdala in male golden hamsters. Frozen sections of the brains were processed for autoradiography. The efferents of the ''vomeronasal amygdala'' are largely to areas which are primary and secondary terminal areas along the vomeronasal pathway, although the efferents from C3 and M terminate in different layers in these areas than do the projections from the vomeronasal nerve or the AOB. Specifically, C3 projects ipsilaterally to the internal granule cell layer of the AOB, the cellular layer of NAOT, and layer Ib of M. Additional fibers from C3 terminate in a retrocommissural component of the bed nucleus of the strain terminalis (BNST) bilaterally, and in the cellular layers of the contralateral C3. The medial nucleus projects to the cellular layer of the ipsilateral NAOT, layer Ib of C3, and bilaterally to the medial component of BNST. Projections from M to non-vomeronasal areas terminate in the medial preoptic area-anterior hypothalamic junction, ventromedial nucleus of the hypothalamus, ventral premammillary nucleus and possibly in the ventral subiculum. These results demonstrate reciprocal connections between primary and secondary vomeronasal areas between the secondary areas themselves. They suggest that M, but not C3, projects to areas outside this vomeronasal network. The medial amygdaloid nucleus is therefore an important link between the vomeronasal organ and areas of the brain not receiving direct vomeronasal input.

  10. CRF1 receptor activation increases the response of neurons in the basolateral nucleus of the amygdala to afferent stimulation

    Directory of Open Access Journals (Sweden)

    2008-07-01

    Full Text Available The basolateral nucleus (BLA of the amygdala contributes to the consolidation of memories for emotional or stressful events. The nucleus contains a high density of CRF1 receptors that are activated by corticotropin-releasing factor (CRF. Modulation of the excitability of neurons in the BLA by CRF may regulate the immediate response to stressful events and the formation of associated memories. In the present study, CRF was found to increase the amplitude of field potentials recorded in the BLA following excitatory afferent stimulation, in vitro. The increase was mediated by CRF1 receptors, since it could be blocked by the selective, non-peptide antagonists, NBI30775 and NBI35583, but not by the CRF2-selective antagonist, astressin 2B. Furthermore, the CRF2-selective agonist, urocortin II had no effect on field potential amplitude. The increase induced by CRF was long-lasting, could not be reversed by subsequent administration of NBI35583, and required the activation of protein kinase C. This effect of CRF in the BLA may be important for increasing the salience of aversive stimuli under stressful conditions, and for enhancing the consolidation of associated memories. The results provide further justification for studying the efficacy of selective antagonists of the CRF1 receptor to reduce memory formation linked to emotional or traumatic events, and suggest that these compounds might be useful as prophylactic treatment for stress-related illness such as post-traumatic stress disorder.

  11. Inhibition of projections from the basolateral amygdala to the entorhinal cortex disrupts the acquisition of contextual fear

    Directory of Open Access Journals (Sweden)

    Dennis R. Sparta

    2014-05-01

    Full Text Available The development of excessive fear and/or stress responses to environmental cues such as contexts associated with a traumatic event is a hallmark of post-traumatic stress disorder (PTSD. The basolateral amygdala (BLA has been implicated as a key structure mediating contextual fear conditioning. In addition, the hippocampus has an integral role in the encoding and processing of contexts associated with strong, salient stimuli such as fear. Given that both the BLA and hippocampus play an important role in the regulation of contextual fear conditioning, examining the functional connectivity between these two structures may elucidate a role for this pathway in the development of PTSD. Here, we used optogenetic strategies to demonstrate that the BLA sends a strong glutamatergic projection to the hippocampal formation through the entorhinal cortex (EC. Next, we photoinhibited glutamatergic fibers from the BLA terminating in the EC during the acquisition or expression of contextual fear conditioning. In mice that received optical inhibition of the BLA-to-EC pathway during the acquisition session, we observed a significant decrease in freezing behavior in a context re-exposure session. In contrast, we observed no differences in freezing behavior in mice that were only photoinhibited during the context re-exposure session. These data demonstrate an important role for the BLA-to-EC glutamatergic pathway in the acquisition of contextual fear conditioning.

  12. Enhanced amygdala reactivity to emotional faces in adults reporting childhood emotional maltreatment

    NARCIS (Netherlands)

    van Harmelen, Anne-Laura; van Tol, Marie-Jose; Demenescu, Liliana R.; van der Wee, Nic J. A.; Veltman, Dick J.; Aleman, Andre; van Buchem, Mark A.; Spinhoven, Philip; Penninx, Brenda W. J. H.; Elzinga, Bernet M.

    2013-01-01

    In the context of chronic childhood emotional maltreatment (CEM; emotional abuse and/or neglect), adequately responding to facial expressions is an important skill. Over time, however, this adaptive response may lead to a persistent vigilance for emotional facial expressions. The amygdala and the me

  13. Neonatal Amygdala Lesions and Stress Responsivity in Rats : Relevance to schizophrenia

    NARCIS (Netherlands)

    Terpstra, Jeroen

    2004-01-01

    "Stress responsiveness in an animal model with relevance to schizophrenia” Rats bearing lesions of the amygdala made on postnatal day 7 (D7 AMX) model aspects of neurodevelopmental psychopathologies, such as schizophrenia. Adult D7 AMX rats display impaired pre-pulse inhibition, impaired behaviora

  14. Amygdala responses to unpleasant pictures are influenced by task demands and positive affect trait

    Directory of Open Access Journals (Sweden)

    Tiago Arruda Sanchez

    2015-03-01

    Full Text Available The role of attention in emotional processing is still the subject of debate. Recent studies have found that high positive affect in approach motivation narrows attention. Furthermore, the positive affect trait has been suggested as an important component for determining human variability in threat reactivity. We employed fMRI to investigate whether different states of attention control would modulate amygdala responses to highly unpleasant pictures relative to neutral and whether this modulation would be influenced by the positive affect trait. Participants (n=22, 12 male were scanned while viewing neutral (people or unpleasant pictures (mutilated bodies flanked by two peripheral bars. They were instructed to (a judge the picture content as unpleasant or neutral or (b to judge the difference in orientation between the bars in an easy condition (0º or 90º orientation difference or (c in a hard condition (0º or 6º orientation difference. Whole brain analysis revealed a task main effect of brain areas related to the experimental manipulation of attentional control, including the amygdala, dorsolateral prefrontal cortex and posterior parietal cortex. ROI analysis showed an inverse correlation (r = -0.51, p < 0.01 between left amygdala activation and positive affect level when participants viewed unpleasant stimuli and judged bar orientation in the easy condition. This result suggests that subjects with high positive affect exhibit lower amygdala reactivity to distracting unpleasant pictures. In conclusion, the current study suggests that positive affect modulates attention effect on unpleasant pictures, therefore attenuating emotional responses.

  15. Medial Amygdala Lesions in Male Rats Reduce Aggressive Behavior : Interference With Experience

    NARCIS (Netherlands)

    Vochteloo, J.D.; Koolhaas, J.M.

    1987-01-01

    The medial nucleus of the amygdala (am) has been implicated in a variety of social behaviors. The present experiment will test the hypothesis that the effect of am lesions on intermale aggressive behavior is due to interference with social learning processes. Small electrolytic lesions of the am had

  16. Endocannabinoids in the rat basolateral amygdala enhance memory consolidation and enable glucocorticoid modulation of memory

    NARCIS (Netherlands)

    Campolongo, Patrizia; Roozendaal, Benno; Trezza, Viviana; Hauer, Daniela; Schelling, Gustav; McGaugh, James L.; Cuomo, Vincenzo

    2009-01-01

    Extensive evidence indicates that the basolateral complex of the amygdala (BLA) modulates the consolidation of memories for emotionally arousing experiences, an effect that involves the activation of the glucocorticoid system. Because the BLA expresses high densities of cannabinoid CB1 receptors, th

  17. Empathic control through coordinated interaction of amygdala, theory of mind and extended pain matrix brain regions.

    Science.gov (United States)

    Bruneau, Emile G; Jacoby, Nir; Saxe, Rebecca

    2015-07-01

    Brain regions in the "pain matrix", can be activated by observing or reading about others in physical pain. In previous research, we found that reading stories about others' emotional suffering, by contrast, recruits a different group of brain regions mostly associated with thinking about others' minds. In the current study, we examined the neural circuits responsible for deliberately regulating empathic responses to others' pain and suffering. In Study 1, a sample of college-aged participants (n=18) read stories about physically painful and emotionally distressing events during functional magnetic resonance imaging (fMRI), while either actively empathizing with the main character or trying to remain objective. In Study 2, the same experiment was performed with professional social workers, who are chronically exposed to human suffering (n=21). Across both studies activity in the amygdala was associated with empathic regulation towards others' emotional pain, but not their physical pain. In addition, psychophysiological interaction (PPI) analysis and Granger causal modeling (GCM) showed that amygdala activity while reading about others' emotional pain was preceded by and positively coupled with activity in the theory of mind brain regions, and followed by and negatively coupled with activity in regions associated with physical pain and bodily sensations. Previous work has shown that the amygdala is critically involved in the deliberate control of self-focused distress - the current results extend the central importance of amygdala activity to the control of other-focused empathy, but only when considering others' emotional pain. PMID:25913703

  18. Are you gonna leave me? Separation anxiety is associated with increased amygdala responsiveness and volume.

    Science.gov (United States)

    Redlich, Ronny; Grotegerd, Dominik; Opel, Nils; Kaufmann, Carolin; Zwitserlood, Pienie; Kugel, Harald; Heindel, Walter; Donges, Uta-Susan; Suslow, Thomas; Arolt, Volker; Dannlowski, Udo

    2015-02-01

    The core feature of separation anxiety is excessive distress when faced with actual or perceived separation from people to whom the individual has a strong emotional attachment. So far little is known about the neurobiological underpinnings of separation anxiety. Therefore, we investigated functional (amygdala responsiveness and functional connectivity during threat-related emotion processing) and structural (grey matter volume) imaging markers associated with separation anxiety as measured with the Relationship Scale Questionnaire in a large sample of healthy adults from the Münster Neuroimaging Cohort (N = 320). We used a robust emotional face-matching task and acquired high-resolution structural images for morphometric analyses using voxel-based morphometry. The main results were positive associations of separation anxiety scores with amygdala reactivity to emotional faces as well as increased amygdala grey matter volumes. A functional connectivity analysis revealed positive associations between separation anxiety and functional coupling of the amygdala with areas involved in visual processes and attention, including several occipital and somatosensory areas. Taken together, the results suggest a higher emotional involvement in subjects with separation anxiety while watching negative facial expressions, and potentially secondary neuro-structural adaptive processes. These results could help to understand and treat (adult) separation anxiety.

  19. The amygdala, top-down effects, and selective attention to features

    NARCIS (Netherlands)

    Jacobs, Richard H. A. H.; Renken, Remco; Aleman, Andre; Cornelissen, Frans W.

    2012-01-01

    While the amygdalar role in fear conditioning is well established, it also appears to be involved in a wide spectrum of other functions concerning emotional information. For example, the amygdala is thought to be involved in guiding spatial attention to emotionally relevant information such as the e

  20. A Model of Amygdala-Hippocampal-Prefrontal Interaction in Fear Conditioning and Extinction in Animals

    Science.gov (United States)

    Moustafa, Ahmed A.; Gilbertson, Mark W.; Orr, Scott P.; Herzallah, Mohammad M.; Servatius, Richard J.; Myers, Catherine E.

    2013-01-01

    Empirical research has shown that the amygdala, hippocampus, and ventromedial prefrontal cortex (vmPFC) are involved in fear conditioning. However, the functional contribution of each brain area and the nature of their interactions are not clearly understood. Here, we extend existing neural network models of the functional roles of the hippocampus…

  1. Amygdala Kindling in the WAG-Rij Rat Model of Absence Epilepsy

    NARCIS (Netherlands)

    Aker, R.G.; Yananli, H.R.; Gurbanova, A.A.; Özkaynakçi, A.E.; Ates, N.; Luijtelaar, E.L.J.M. van; Onat, F.Y.

    2006-01-01

    Summary: Purpose: The kindling model in rats with genetic absence epilepsy is suitable for studying mechanisms involved in the propagation and generalization of seizure activity in the convulsive and nonconvulsive components of epilepsy. In the present study, we compared the amygdala kindling rate a

  2. EFFECT OF DIFFERENT AGONISTIC EXPERIENCES ON BEHAVIORAL SEIZURES IN FULLY AMYGDALA KINDLED RATS

    NARCIS (Netherlands)

    BELDHUIS, HJA; KOOLHAAS, JM; BOHUS, B

    1992-01-01

    Fully amygdala kindled rats were exposed to two different inter-male agonistic experiences in order to study the interaction between epilepsy and acute social stress. Victory experience did not influence the severity of seizure behaviour, whereas a single acute defeat modified both ictal and postict

  3. Kindling-Induced Changes in Plasticity of the Rat Amygdala and Hippocampus

    Science.gov (United States)

    Schubert, Manja; Siegmund, Herbert; Pape, Hans-Christian; Albrecht, Doris

    2005-01-01

    Temporal lobe epilepsy (TLE) is often accompanied by interictal behavioral abnormalities, such as fear and memory impairment. To identify possible underlying substrates, we analyzed long-term synaptic plasticity in two relevant brain regions, the lateral amygdala (LA) and the CA1 region of the hippocampus, in the kindling model of epilepsy. Wistar…

  4. Effect of different agonistic experiences on behavioural seizures in fully amygdala kindled rats

    NARCIS (Netherlands)

    Beldhuis, Hans J.A.; Koolhaas, Jaap M.; Bohus, Bela

    1992-01-01

    Fully amygdala kindled rats were exposed to two different inter-male agonistic experiences in order to study the interaction between epilepsy and acute social stress. Victory experience did not influence the severity of seizure behaviour, whereas a single acute defeat modified both ictal and postict

  5. Structural Variation within the Amygdala and Ventromedial Prefrontal Cortex Predict Memory for Impressions in Older Adults

    Directory of Open Access Journals (Sweden)

    Brittany Shane Cassidy

    2012-08-01

    Full Text Available Research has shown that lesions to regions involved in social and emotional cognition disrupt socioemotional processing and memory. We investigated how structural variation of regions involved in socioemotional memory (ventromedial prefrontal cortex [vmPFC], amygdala, as opposed to a region implicated in explicit memory (hippocampus, affected memory for impressions in young and older adults. Anatomical MRI scans for fifteen young and fifteen older adults were obtained and reconstructed to gather information about cortical thickness and subcortical volume. Young adults had greater amygdala and hippocampus volumes than old, and thicker left vmPFC than old, although right vmPFC thickness did not differ across the age groups. Participants formed behavior-based impressions and responded to interpersonally meaningful, social but interpersonally irrelevant, or non-social prompts, and completed a memory test. Results showed that greater left amygdala volume predicted enhanced overall memory for impressions in older but not younger adults. Increased right vmPFC thickness in older, but not younger, adults correlated with enhanced memory for impressions formed in the interpersonally meaningful context. Hippocampal volume was not predictive of social memory in young or older adults. These findings demonstrate the importance of structural variation in regions linked to socioemotional processing in the retention of impressions with age, and suggest that the amygdala and vmPFC play an integral role when encoding and retrieving social information.

  6. Noradrenergic activation of the basolateral amygdala modulates the consolidation of object-in-context recognition memory

    NARCIS (Netherlands)

    Barsegyan, A.; McGaugh, J.L.; Roozendaal, B.

    2014-01-01

    Noradrenergic activation of the basolateral complex of the amygdala (BLA) is well known to enhance the consolidation of long-term memory of highly emotionally arousing training experiences. The present study investigated whether such noradrenergic activation of the BLA also influences the consolidat

  7. Memory-enhancing corticosterone treatment increases amygdala norepinephrine and Arc protein expression in hippocampal synaptic fractions

    NARCIS (Netherlands)

    McReynolds, Jayme R.; Donowho, Kyle; Abdi, Amin; McGaugh, James L.; Roozendaal, Benno; McIntyre, Christa K.

    2010-01-01

    Considerable evidence indicates that glucocorticoid hormones enhance the consolidation of memory for emotionally arousing events through interactions with the noradrenergic system of the basolateral complex of the amygdala (BLA). We previously reported that intra-BLA administration of a beta-adrenoc

  8. Modeling a Negative Response Bias in the Human Amygdala by Noradrenergic-Glucocorticoid Interactions

    NARCIS (Netherlands)

    Kukolja, Juraj; Schlaepfer, Thomas E.; Keysers, Christian; Klingmueller, Dietrich; Maier, Wolfgang; Fink, Gereon R.; Hurlemann, Rene

    2008-01-01

    An emerging theme in the neuroscience of emotion is the question of how acute stress shapes, and distorts, social-emotional behavior. The prevailing neurocircuitry models of social-emotional behavior emphasize the central role of the amygdala. Acute stress leads to increased central levels of norepi

  9. Estrogen receptor-a in medial amygdala neurons regulates body weight

    Science.gov (United States)

    Estrogen receptor–a (ERa) activity in the brain prevents obesity in both males and females. However, the ERa-expressing neural populations that regulate body weight remain to be fully elucidated. Here we showed that single-minded–1 (SIM1) neurons in the medial amygdala (MeA) express abundant levels ...

  10. Function of the centromedial amygdala in reward devaluation and open-field activity.

    Science.gov (United States)

    Kawasaki, K; Glueck, A C; Annicchiarico, I; Papini, M R

    2015-09-10

    The present research aimed at determining the role played by the amygdala in reward devaluation using transient inactivation induced by lidocaine microinfusions into the centromedial region. Two situations involving reward devaluation were tested in rats: consummatory successive negative contrast (cSNC) and anticipatory negative contrast (ANC). In cSNC, rats exposed to a downshift from 32% to 4% sucrose consume less 4% sucrose than rats always exposed to 4% sucrose. Extensive evidence suggests that reward devaluation in the cSNC situation is accompanied by negative emotion. In ANC, rats consume less 4% sucrose when each session is closely followed by access to 32% sucrose rather than by 4% sucrose. Evidence suggests that reward devaluation in the ANC situation does not involve negative emotions; rather, ANC appears to involve Pavlovian anticipation of the higher value solution. To test the effects of lidocaine microinfusions in a situation known to induce negative emotion, but unrelated to reward devaluation, animals were also exposed to a lighted open field. Centromedial amygdala inactivation reduced the cSNC effect and increased exploratory behavior in the open field, both effects consistent with a reduction in negative emotional state. However, no detectable effects of amygdala inactivation were observed in the ANC situation. These results suggest that, first, the function of the amygdala is not unique to reward devaluation and, second, it is concerned with tagging the devaluation experience with aversive valence. PMID:26141844

  11. Context Fear Learning Specifically Activates Distinct Populations of Neurons in Amygdala and Hypothalamus

    Science.gov (United States)

    Trogrlic, Lidia; Wilson, Yvette M.; Newman, Andrew G.; Murphy, Mark

    2011-01-01

    The identity and distribution of neurons that are involved in any learning or memory event is not known. In previous studies, we identified a discrete population of neurons in the lateral amygdala that show learning-specific activation of a c-"fos"-regulated transgene following context fear conditioning. Here, we have extended these studies to…

  12. A Discrete Population of Neurons in the Lateral Amygdala Is Specifically Activated by Contextual Fear Conditioning

    Science.gov (United States)

    Wilson, Yvette M.; Murphy, Mark

    2009-01-01

    There is no clear identification of the neurons involved in fear conditioning in the amygdala. To search for these neurons, we have used a genetic approach, the "fos-tau-lacZ" (FTL) mouse, to map functionally activated expression in neurons following contextual fear conditioning. We have identified a discrete population of neurons in the lateral…

  13. Back to basics: Making predictions in the orbitofrontal-amygdala circuit.

    Science.gov (United States)

    Sharpe, Melissa J; Schoenbaum, Geoffrey

    2016-05-01

    Underlying many complex behaviors are simple learned associations that allow humans and animals to anticipate the consequences of their actions. The orbitofrontal cortex and basolateral amygdala are two regions which are crucial to this process. In this review, we go back to basics and discuss the literature implicating both these regions in simple paradigms requiring the development of associations between stimuli and the motivationally-significant outcomes they predict. Much of the functional research surrounding this ability has suggested that the orbitofrontal cortex and basolateral amygdala play very similar roles in making these predictions. However, electrophysiological data demonstrates critical differences in the way neurons in these regions respond to predictive cues, revealing a difference in their functional role. On the basis of these data and theories that have come before, we propose that the basolateral amygdala is integral to updating information about cue-outcome contingencies whereas the orbitofrontal cortex is critical to forming a wider network of past and present associations that are called upon by the basolateral amygdala to benefit future learning episodes. The tendency for orbitofrontal neurons to encode past and present contingencies in distinct neuronal populations may facilitate its role in the formation of complex, high-dimensional state-specific associations. PMID:27112314

  14. SRC Inhibition Reduces NR2B Surface Expression and Synaptic Plasticity in the Amygdala

    Science.gov (United States)

    Sinai, Laleh; Duffy, Steven; Roder, John C.

    2010-01-01

    The Src protein tyrosine kinase plays a central role in the regulation of N-methyl-d-aspartate receptor (NMDAR) activity by regulating NMDAR subunit 2B (NR2B) surface expression. In the amygdala, NMDA-dependent synaptic plasticity resulting from convergent somatosensory and auditory inputs contributes to emotional memory; however, the role of Src…

  15. Differential Involvement of Amygdala and Cortical NMDA Receptors Activation upon Encoding in Odor Fear Memory

    Science.gov (United States)

    Hegoburu, Chloé; Parrot, Sandrine; Ferreira, Guilaume; Mouly, Anne-Marie

    2014-01-01

    Although the basolateral amygdala (BLA) plays a crucial role for the acquisition of fear memories, sensory cortices are involved in their long-term storage in rats. However, the time course of their respective involvement has received little investigation. Here we assessed the role of the glutamatergic N-methyl-D-aspartate (NMDA) receptors in the…

  16. Conscious and unconscious processing of fear after right amygdala damage : A single case ERP-study

    NARCIS (Netherlands)

    Heutink, J.H.C.; Brouwer, W.H.; de Jong, B.M.; Bouma, J.M.

    2011-01-01

    In this study, we describe a 58-year-old male patient (FZ) with a right-amygdala lesion after temporal lobe infarction. FZ is unable to recognize fearful facial expressions. Instead, he consistently misinterprets expressions of fear for expressions of surprise. Employing EEG/ERP measures, we investi

  17. Optogenetic Activation of Presynaptic Inputs in Lateral Amygdala Forms Associative Fear Memory

    Science.gov (United States)

    Kwon, Jeong-Tae; Nakajima, Ryuichi; Hyung-Su, Kim; Jeong, Yire; Augustine, George J.; Han, Jin-Hee

    2014-01-01

    In Pavlovian fear conditioning, the lateral amygdala (LA) has been highlighted as a key brain site for association between sensory cues and aversive stimuli. However, learning-related changes are also found in upstream sensory regions such as thalamus and cortex. To isolate the essential neural circuit components for fear memory association, we…

  18. Facilitation of Memory for Extinction of Drug-Induced Conditioned Reward: Role of Amygdala and Acetylcholine

    Science.gov (United States)

    Schroeder, Jason P.; Packard, Mark G.

    2004-01-01

    eThese experiments examined the effects of posttrial peripheral and intra-amygdala injections of the cholinergic muscarinic receptor agonist oxotremorine on memory consolidation underlying extinction of amphetamine conditioned place preference (CPP) behavior. Male Long-Evans rats were initially trained and tested for an amphetamine (2 mg/kg) CPP.…

  19. Amygdala atrophy affects emotion-related activity in face-responsive regions in frontotemporal degeneration.

    Science.gov (United States)

    De Winter, François-Laurent; Van den Stock, Jan; de Gelder, Beatrice; Peeters, Ronald; Jastorff, Jan; Sunaert, Stefan; Vanduffel, Wim; Vandenberghe, Rik; Vandenbulcke, Mathieu

    2016-09-01

    In the healthy brain, modulatory influences from the amygdala commonly explain enhanced activation in face-responsive areas by emotional facial expressions relative to neutral expressions. In the behavioral variant frontotemporal dementia (bvFTD) facial emotion recognition is impaired and has been associated with atrophy of the amygdala. By combining structural and functional MRI in 19 patients with bvFTD and 20 controls we investigated the neural effects of emotion in face-responsive cortex and its relationship with amygdalar gray matter (GM) volume in neurodegeneration. Voxel-based morphometry revealed decreased GM volume in anterior medio-temporal regions including amygdala in patients compared to controls. During fMRI, we presented dynamic facial expressions (fear and chewing) and their spatiotemporally scrambled versions. We found enhanced activation for fearful compared to neutral faces in ventral temporal cortex and superior temporal sulcus in controls, but not in patients. In the bvFTD group left amygdalar GM volume correlated positively with emotion-related activity in left fusiform face area (FFA). This correlation was amygdala-specific and driven by GM in superficial and basolateral (BLA) subnuclei, consistent with reported amygdalar-cortical networks. The data suggests that anterior medio-temporal atrophy in bvFTD affects emotion processing in distant posterior areas. PMID:27389802

  20. The amygdala and FFA track both social and non-social face dimensions.

    Science.gov (United States)

    Said, Christopher P; Dotsch, Ron; Todorov, Alexander

    2010-10-01

    The amygdala is thought to perform a number of social functions, and has received much attention for its role in processing social properties of faces. In particular, it has been shown to respond more to facial expressions than to neutral faces, and more to positively valenced and negatively valenced faces than faces in the middle of the continuum. However, when these findings are viewed in the context of a multidimensional face space, an important question emerges. Face space is a vector space where every face can be represented as a point in the space. The origin of the space represents the average face. In this context, positively valenced and negatively valenced faces are further away from the average face than faces in the middle of the continuum. It is therefore unclear if the amygdala response to positively valenced and negatively valenced faces is due to their social properties or to their general distance from the average face. Here, we compared the amygdala response to a set of faces that varied along two dimensions centered around the average face but differing in social content. In both the amygdala and much of the posterior face network, we observed a similar response to both dimensions, with stronger responses to the extremes of the dimensions than to faces near the average face. These findings suggest that the responses in these regions to socially relevant faces may be partially due to general distance from the average face.

  1. Reprint of: The amygdala and FFA track both social and non-social face dimensions.

    Science.gov (United States)

    Said, Christopher P; Dotsch, Ron; Todorov, Alexander

    2011-03-01

    The amygdala is thought to perform a number of social functions, and has received much attention for its role in processing social properties of faces. In particular, it has been shown to respond more to facial expressions than to neutral faces, and more to positively valenced and negatively valenced faces than faces in the middle of the continuum. However, when these findings are viewed in the context of a multidimensional face space, an important question emerges. Face space is a vector space where every face can be represented as a point in the space. The origin of the space represents the average face. In this context, positively valenced and negatively valenced faces are further away from the average face than faces in the middle of the continuum. It is therefore unclear if the amygdala response to positively valenced and negatively valenced faces is due to their social properties or to their general distance from the average face. Here, we compared the amygdala response to a set of faces that varied along two dimensions centered around the average face but differing in social content. In both the amygdala and much of the posterior face network, we observed a similar response to both dimensions, with stronger responses to the extremes of the dimensions than to faces near the average face. These findings suggest that the responses in these regions to socially relevant faces may be partially due to general distance from the average face.

  2. Amygdala atrophy affects emotion-related activity in face-responsive regions in frontotemporal degeneration

    NARCIS (Netherlands)

    De Winter, François-Laurent; Van den Stock, Jan; de Gelder, Beatrice; Peeters, Ronald; Jastorff, Jan; Sunaert, Stefan; Vanduffel, Wim; Vandenberghe, Rik; Vandenbulcke, Mathieu

    2016-01-01

    In the healthy brain, modulatory influences from the amygdala commonly explain enhanced activation in face-responsive areas by emotional facial expressions relative to neutral expressions. In the behavioral variant frontotemporal dementia (bvFTD) facial emotion recognition is impaired and has been a

  3. Filling the Gap : Relationship Between the Serotonin-Transporter-Linked Polymorphic Region and Amygdala Activation

    NARCIS (Netherlands)

    Bastiaansen, Jojanneke A.; Servaas, Michelle N.; Marsman, Jan-Bernard; Ormel, Johan; Nolte, Ilja M.; Riese, Harriette; Aleman, Andre

    2014-01-01

    The alleged association between the serotonin-transporter-linked polymorphic region (5-HTTLPR) and amygdala activation forms a cornerstone of the common view that carrying the short allele of this polymorphism is a potential risk factor for affective disorders. The authors of a recent meta-analysis

  4. Progression of Amygdala Volumetric Abnormalities in Adolescents after Their First Manic Episode

    Science.gov (United States)

    Bitter, Samantha M.; Mills, Neil P.; Adler, Caleb M.; Strakowski, Stephen M.; DelBello, Melissa P.

    2011-01-01

    Objective: Although previous neuroimaging studies suggest that adolescents with bipolar disorder exhibit smaller amygdala volumes compared with healthy adolescents, whether these abnormalities are present at illness onset or instead develop over time remains unclear. The aim of this study was to conduct a prospective longitudinal investigation…

  5. Intrinsic Functional Connectivity of Amygdala-Based Networks in Adolescent Generalized Anxiety Disorder

    Science.gov (United States)

    Roy, Amy K.; Fudge, Julie L.; Kelly, Clare; Perry, Justin S. A.; Daniele, Teresa; Carlisi, Christina; Benson, Brenda; Castellanos, F. Xavier; Milham, Michael P.; Pine, Daniel S.; Ernst, Monique

    2013-01-01

    Objective: Generalized anxiety disorder (GAD) typically begins during adolescence and can persist into adulthood. The pathophysiological mechanisms underlying this disorder remain unclear. Recent evidence from resting state functional magnetic resonance imaging (R-fMRI) studies in adults suggests disruptions in amygdala-based circuitry; the…

  6. Food labels promote healthy choices by a decision bias in the amygdala.

    Science.gov (United States)

    Grabenhorst, Fabian; Schulte, Frank P; Maderwald, Stefan; Brand, Matthias

    2013-07-01

    Food labeling is the major health policy strategy to counter rising obesity rates. Based on traditional economic theory, such strategies assume that detailed nutritional information will necessarily help individuals make better, healthier choices. However, in contrast to the well-known utility of labels in food marketing, evidence for the efficacy of nutritional labeling is mixed. Psychological and behavioral economic theories suggest that successful marketing strategies activate automati