WorldWideScience

Sample records for amsr-e ice concentration

  1. Retrieving the antarctic sea-ice concentration based on AMSR-E 89 GHz data

    Institute of Scientific and Technical Information of China (English)

    YU Qinglong; WANG Hui; WAN Liying; BI Haibo

    2013-01-01

    Sea-ice concentration is a key item in global climate change research. Recent progress in remotely sensed sea-ice concentration product has been stimulated by the use of a new sensor, advanced microwave scan-ning radiometer for EOS (AMSR-E), which offers a spatial resolution of 6 km×4 km at 89GHz. A new inver-sion algorithm named LASI (linear ASI) using AMSR-E 89GHz data was proposed and applied in the antarc-tic sea areas. And then comparisons between the LASI ice concentration products and those retrieved by the other two standard algorithms, ASI (arctic radiation and turbulence interaction study sea-ice algorithm) and bootstrap, were made. Both the spatial and temporal variability patterns of ice concentration differ-ences, LASI minus ASI and LASI minus bootstrap, were investigated. Comparative data suggest a high result consistency, especially between LASI and ASI. On the other hand, in order to estimate the LASI ice concen-tration errors introduced by the tie-points uncertainties, a sensitivity analysis was carried out. Additionally an LASI algorithm error estimation based on the field measurements was also completed. The errors suggest that the moderate to high ice concentration areas (>70%) are less affected (never exceeding 10%) than those in the low ice concentration. LASI and ASI consume 75 and 112 s respectively when processing the same AMSR-E time series thourghout the year 2010. To conclude, by using the LASI algorithm, not only the sea-ice concentration can be retrieved with at least an equal quality as that of the two extensively demonstrated operational algorithms, ASI and bootstrap, but also in a more efficient way than ASI.

  2. A study of multiyear ice concentration retrieval algorithms using AMSR-E data

    Institute of Scientific and Technical Information of China (English)

    HAO Guanghua; SU Jie

    2015-01-01

    In recent years, the rapid decline of Arctic sea ice area (SIA) and sea ice extent (SIE), especially for the multiyear (MY) ice, has led to significant effect on climate change. The accurate retrieval of MY ice concentration retrieval is very important and challenging to understand the ongoing changes. Three MY ice concentration retrieval algorithms were systematically evaluated. A similar total ice concentration was yielded by these algorithms, while the retrieved MY sea ice concentrations differs from each other. The MY SIA derived from NASA TEAM algorithm is relatively stable. Other two algorithms created seasonal fluctuations of MY SIA, particularly in autumn and winter. In this paper, we proposed an ice concentration retrieval algorithm, which developed the NASA TEAM algorithm by adding to use AMSR-E 6.9 GHz brightness temperature data and sea ice concentration using 89.0 GHz data. Comparison with the reference MY SIA from reference MY ice, indicates that the mean difference and root mean square (rms) difference of MY SIA derived from the algorithm of this study are 0.65×106 km2 and 0.69×106 km2 during January to March, –0.06×106 km2 and 0.14×106 km2 during September to December respectively. Comparison with MY SIE obtained from weekly ice age data provided by University of Colorado show that, the mean difference and rms difference are 0.69×106 km2 and 0.84×106 km2, respectively. The developed algorithm proposed in this study has smaller difference compared with the reference MY ice and MY SIE from ice age data than the Wang’s, Lomax’ and NASA TEAM algorithms.

  3. Impact of Surface Roughness on AMSR-E Sea Ice Products

    Science.gov (United States)

    Stroeve, Julienne C.; Markus, Thorsten; Maslanik, James A.; Cavalieri, Donald J.; Gasiewski, Albin J.; Heinrichs, John F.; Holmgren, Jon; Perovich, Donald K.; Sturm, Matthew

    2006-01-01

    This paper examines the sensitivity of Advanced Microwave Scanning Radiometer (AMSR-E) brightness temperatures (Tbs) to surface roughness by a using radiative transfer model to simulate AMSR-E Tbs as a function of incidence angle at which the surface is viewed. The simulated Tbs are then used to examine the influence that surface roughness has on two operational sea ice algorithms, namely: 1) the National Aeronautics and Space Administration Team (NT) algorithm and 2) the enhanced NT algorithm, as well as the impact of roughness on the AMSR-E snow depth algorithm. Surface snow and ice data collected during the AMSR-Ice03 field campaign held in March 2003 near Barrow, AK, were used to force the radiative transfer model, and resultant modeled Tbs are compared with airborne passive microwave observations from the Polarimetric Scanning Radiometer. Results indicate that passive microwave Tbs are very sensitive even to small variations in incidence angle, which can cause either an over or underestimation of the true amount of sea ice in the pixel area viewed. For example, this paper showed that if the sea ice areas modeled in this paper mere assumed to be completely smooth, sea ice concentrations were underestimated by nearly 14% using the NT sea ice algorithm and by 7% using the enhanced NT algorithm. A comparison of polarization ratios (PRs) at 10.7,18.7, and 37 GHz indicates that each channel responds to different degrees of surface roughness and suggests that the PR at 10.7 GHz can be useful for identifying locations of heavily ridged or rubbled ice. Using the PR at 10.7 GHz to derive an "effective" viewing angle, which is used as a proxy for surface roughness, resulted in more accurate retrievals of sea ice concentration for both algorithms. The AMSR-E snow depth algorithm was found to be extremely sensitive to instrument calibration and sensor viewing angle, and it is concluded that more work is needed to investigate the sensitivity of the gradient ratio at 37 and

  4. Remote sensing of multiyear sea ice using AMSR-E 89 GHz data

    Science.gov (United States)

    Heygster, Georg; Wang, Huanhuan

    Sea ice plays an important role in the global climate system. The change of sea ice can strongly influence the atmosphere in Arctic which will enhance the global climate change. Passive microwave remote sensing has been used for sea ice detection for more than thirty years since microwave emission penetrates clouds and is independent of day/night condition. There are already several well-validated sea ice retrieval algorithms such as NASA TEAM and Bootstrap algorithm, but they used the lower frequencies with lower resolution. The new radiometer AMSR-E has the advantage of higher horizontal resolution than the previous SSM/I radiometer, especially at 89 GHz. The total ice concentration retrieval algorithm using this data has been well established while for multiyear ice(MYI) there has been few research until now. In this work, the AMSR-E 89 GHz brightness temperature data is used to retrieval MYI concentration. AMSR-E 89 GHz brightness temperature from three test regions are analyzed: first-year ice, multiyear ice and open water. Based on their different response to brightness temperature and polarization difference, a new algorithm is developed and the daily maps and time series of both total ice and MYI areas in the Arctic are calculated for the whole year 2007. Comparing to results from the NASA TEAM algorithm and the Lomax's algorithm, our total ice agrees quite well with the others while the MYI results still differ. Lomax's MYI gives highest value and strongest increasing in winter which is unphysical. Our MYI results also show increasing during winter but are much closer to the NASA TEAM results. In addition, both our algorithm and the NASA TEAM algorithm show MYI in regions which should be clear of MYI through the whole year. It would be a plausible explanation that both MYI algorithms in addition to MYI also detect refrozen first-year ice, but to different extents. Excluding these cases from the MYI retrievals remains a task for future work.

  5. AMSR-E/Aqua Daily L3 12.5 km Tb, Sea Ice Conc., & Snow Depth Polar Grids V002

    Data.gov (United States)

    National Aeronautics and Space Administration — The AMSR-E/Aqua Level 3 12.5 km daily sea ice product includes 18.7 - 89.0 GHz TBs, sea ice concentration averages (asc & desc), and 5-day snow depth over sea...

  6. An algorithm to detect sea ice leads using AMSR-E passive microwave imagery

    Directory of Open Access Journals (Sweden)

    J. Röhrs

    2010-02-01

    Full Text Available Leads are major sites of energy fluxes and brine releases at the air-ocean interface of sea ice covered oceans. This study presents an algorithm to detect leads that are broader than 3 km in the entire Arctic Ocean. The algorithm detected 50% of the lead area that is visible in optical satellite images. Passive microwave imagery from the Advanced Microwave Scanning Radiometer – Earth Observation System (AMSR-E is used, allowing daily observations that are independent of daylight or cloud conditions. Using unique signatures of thin ice in the brightness temperature ratio between the 89 GHz and 19 GHz channels, the algorithm allowed to detect thin ice features in the ice cover and is optimized to detect leads. Leads were mapped for the period from 2002–2009 excluding the summer months. Several frequently reoccurring large scale lead patterns were found, especially in regions where sea ice is known to drift out of the Arctic Ocean. The maximum lead occurrence in the Arctic is located in the Beaufort Sea, low lead occurrence was found in the inner Arctic Ocean close to the North Pole.

  7. A Comparison of Snow Depth on Sea Ice Retrievals Using Airborne Altimeters and an AMSR-E Simulator

    Science.gov (United States)

    Cavalieri, D. J.; Marksu, T.; Ivanoff, A.; Miller, J. A.; Brucker, L.; Sturm, M.; Maslanik, J. A.; Heinrichs, J. F.; Gasiewski, A.; Leuschen, C.; Krabill, W.; Sonntag, J.

    2011-01-01

    A comparison of snow depths on sea ice was made using airborne altimeters and an Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) simulator. The data were collected during the March 2006 National Aeronautics and Space Administration (NASA) Arctic field campaign utilizing the NASA P-3B aircraft. The campaign consisted of an initial series of coordinated surface and aircraft measurements over Elson Lagoon, Alaska and adjacent seas followed by a series of large-scale (100 km ? 50 km) coordinated aircraft and AMSR-E snow depth measurements over portions of the Chukchi and Beaufort seas. This paper focuses on the latter part of the campaign. The P-3B aircraft carried the University of Colorado Polarimetric Scanning Radiometer (PSR-A), the NASA Wallops Airborne Topographic Mapper (ATM) lidar altimeter, and the University of Kansas Delay-Doppler (D2P) radar altimeter. The PSR-A was used as an AMSR-E simulator, whereas the ATM and D2P altimeters were used in combination to provide an independent estimate of snow depth. Results of a comparison between the altimeter-derived snow depths and the equivalent AMSR-E snow depths using PSR-A brightness temperatures calibrated relative to AMSR-E are presented. Data collected over a frozen coastal polynya were used to intercalibrate the ATM and D2P altimeters before estimating an altimeter snow depth. Results show that the mean difference between the PSR and altimeter snow depths is -2.4 cm (PSR minus altimeter) with a standard deviation of 7.7 cm. The RMS difference is 8.0 cm. The overall correlation between the two snow depth data sets is 0.59.

  8. Use of high frequency radiometer and altimeter on board AMSU-B, AMSR-E and Altika/SARAL for observations of the Antarctic ice sheet surface.

    Science.gov (United States)

    Adodo, Fifi; Picard, Ghislain; Remy, Frederique

    2016-04-01

    Snow surface properties quickly evolved according to local weather conditions, therefore are climate change indicator. These snow surface properties such as grain size, density, accumulation rate etc... are very important for evaluation and monitoring of the impact of global warming on the polar ice sheet. In order to retrieve these snowpack properties, we explore the high frequency microwave radiometer variable( Brightness Temperature (Tb)) on the Antarctic ice sheet on-board AMSU-B , AMSR-E in combination with the ALTIKA altimeter (37GHz) waveform parameters (Backscatter coefficient, Trailing edge Slope(TeS) and Leading edge Width(LeW)). We compare the radiometer brightness temperature to calculations with the DMRT- ML radiative transfer model which simulates brightness temperature in vertical and horizontal polarizations. With some assumptions, this combination allows a good retrieval of snowpack properties. We showed positive trend of the grains size on the Antarctic plateau especially at Dome C during the two last decades. This work will provide a higher accuracy of the estimation of snowpack surfaces properties and contribute to monitoring the ice sheet surface mass balance, well constraining of meteorological and glaciological models.

  9. Sea Ice Brightness Temperature as a Function of Ice Thickness: Computed curves for AMSR-E and SMOS (frequencies from 1.4 to 89 GHz)

    CERN Document Server

    Mills, Peter

    2012-01-01

    The relationship between sea ice thickness and microwave brightness temperature is explored. Parameterized ice profiles are fed to a radiative-transfer-based sea ice emissivity model (Microwave Emmission of Layered Snowpack, MEMLS). Complex permittivities, required as input for the simulation, are determined using a semi-empirical mixture model. Since the thickness-radiance relation is not fixed but can vary significantly depending upon past and current weather conditions, we determine a range of brightness temperature values for each thickness. This is done using a bootstrap model in which the salinities are varied based on variances supplied with the thickness-salinity curve and the complex permittivities are varied based on variance supplied by the mixture model. The results suggest that scattering is one of the most important parameters determining sea ice brightness temperature, especially for new and forming ice. Further work must be done to accurately model both scattering and complex permittivities in...

  10. 基于 AMSR-E 遥感数据应用强度比参数确定多年冰的方法探讨%USE OF CONTRAST RATIO TO DETECT MULTI-YEAR ICE USING AMSR-E PASSIVE MICROWAVE DATA

    Institute of Scientific and Technical Information of China (English)

    张树刚; 郭发东; 张继明; 刘雷; 白雪娇

    2016-01-01

    研究发现,AMSR-E的垂直极化的18.7 GHz ( V18.7)和36.5 GHz ( V36.5)的亮温比值在一年冰覆盖区域主要是相应频段的海冰微波发射率之比,而在多年冰覆盖区域受海冰微波发射率和海冰温度共同影响,并且海冰年龄越大亮温比值也越大。应用强度比参数可以比较好地确定冬季一年冰与多年冰之间的阈值,其中,在该阈值处,强度比梯度达到最大。该阈值呈现明显的季节性变化规律,在冬季阈值比较稳定,而在夏季受海水的影响变化范围比较大。应用强度比方法确定的多年冰范围,与NASA Team2( NT2)方法相比在大西洋扇区差异非常小;而在太平洋扇区出现比较大的差异。对比发现强度比法确定的多年冰范围一般大于NT2法。%This study found that the ratio of vertically polarized brightness temperature of AMSR -E passive microwave data at 18.7 and 36.5 is the ratio of sea ice microwave emissivity for first-year ice.However, for multi-year ice, this ra-tio is also affected by sea ice temperature .Furthermore , the ratio for older ice is larger than for younger ice .The contrast ratio is a suitable parameter with which to ascertain the threshold between first-year and multi-year ice be-cause the maximum gradient of the contrast ratio appears at the threshold .This threshold varies seasonally;it is rel-atively steady during winter but changes considerably during summer because of the influence of meltwater .Little difference was found in the multi-year ice coverage of the Arctic section of the Atlantic Ocean when ascertained by the contrast ratio and NASA Team2 (NT2) algorithm;however, large differences were found in the Arctic section of the Pacific Ocean.In comparison to the NT2, the coverage of multi-year ice is commonly found to be larger when ascertained using the contrast ratio .

  11. NASA Team 2 Sea Ice Concentration Algorithm Retrieval Uncertainty

    Science.gov (United States)

    Brucker, Ludovic; Cavalieri, Donald J.; Markus, Thorsten; Ivanoff, Alvaro

    2014-01-01

    Satellite microwave radiometers are widely used to estimate sea ice cover properties (concentration, extent, and area) through the use of sea ice concentration (IC) algorithms. Rare are the algorithms providing associated IC uncertainty estimates. Algorithm uncertainty estimates are needed to assess accurately global and regional trends in IC (and thus extent and area), and to improve sea ice predictions on seasonal to interannual timescales using data assimilation approaches. This paper presents a method to provide relative IC uncertainty estimates using the enhanced NASA Team (NT2) IC algorithm. The proposed approach takes advantage of the NT2 calculations and solely relies on the brightness temperatures (TBs) used as input. NT2 IC and its associated relative uncertainty are obtained for both the Northern and Southern Hemispheres using the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) TB. NT2 IC relative uncertainties estimated on a footprint-by-footprint swath-by-swath basis were averaged daily over each 12.5-km grid cell of the polar stereographic grid. For both hemispheres and throughout the year, the NT2 relative uncertainty is less than 5%. In the Southern Hemisphere, it is low in the interior ice pack, and it increases in the marginal ice zone up to 5%. In the Northern Hemisphere, areas with high uncertainties are also found in the high IC area of the Central Arctic. Retrieval uncertainties are greater in areas corresponding to NT2 ice types associated with deep snow and new ice. Seasonal variations in uncertainty show larger values in summer as a result of melt conditions and greater atmospheric contributions. Our analysis also includes an evaluation of the NT2 algorithm sensitivity to AMSR-E sensor noise. There is a 60% probability that the IC does not change (to within the computed retrieval precision of 1%) due to sensor noise, and the cumulated probability shows that there is a 90% chance that the IC varies by less than

  12. Detection and characterization of drizzle cells within marine stratocumulus using AMSR-E 89 GHz passive microwave measurements

    Directory of Open Access Journals (Sweden)

    M. A. Miller

    2012-07-01

    Full Text Available This empirical study demonstrates the feasibility of using 89 GHz Advanced Microwave Scanning Radiometer – Earth Observing System (AMSR-E passive microwave brightness temperature data to detect heavily drizzling cells within marine stratocumulus. A binary heavy drizzle product is described that can be used to determine areal and feature statistics of drizzle cells within the major marine stratocumulus regions. Current satellite liquid water path (LWP and cloud radar products capable of detecting drizzle are either lacking in resolution (AMSR-E LWP, diurnal coverage (MODIS LWP, or spatial coverage (CloudSat. The AMSR-E 89 GHz data set at 6 × 4 km spatial resolution is sufficient for resolving individual heavily drizzling cells. Radiant emission at 89 GHz by liquid-water cloud and precipitation particles from drizzling cells in marine stratocumulus regions yields local maxima in brightness temperature against an otherwise cloud-free background brightness temperature. The background brightness temperature is primarily constrained by column-integrated water vapor and sea surface temperature. Clouds containing ice are screened out. Once heavily drizzling pixels are identified, connected pixels are grouped into discrete drizzle cell features. The identified drizzle cells are used in turn to determine several spatial statistics for each satellite scene, including drizzle cell number and size distribution. The identification of heavily drizzling cells within marine stratocumulus regions with satellite data facilitates analysis of seasonal and regional drizzle cell occurrence and the interrelation between drizzle and changes in cloud fraction.

  13. Vacancy Concentration in Ice

    DEFF Research Database (Denmark)

    Mogensen, O. E.; Eldrup, Morten Mostgaard

    1977-01-01

    Based on the diffusion constant for self-diffusion in ice, which is believed to take place by a vacancy mechanism, we estimate the relative vacancy concentration near the melting point to be at least ∼ 10−6, i.e. much higher than previous estimates of about 10−10.......Based on the diffusion constant for self-diffusion in ice, which is believed to take place by a vacancy mechanism, we estimate the relative vacancy concentration near the melting point to be at least ∼ 10−6, i.e. much higher than previous estimates of about 10−10....

  14. Detection and characterization of heavy drizzle cells within subtropical marine stratocumulus using AMSR-E 89-GHz passive microwave measurements

    Directory of Open Access Journals (Sweden)

    M. A. Miller

    2013-01-01

    Full Text Available This empirical study demonstrates the feasibility of using 89-GHz Advanced Microwave Scanning Radiometer–Earth Observing System (AMSR-E passive microwave brightness temperature data to detect heavily drizzling cells within subtropical marine stratocumulus. For the purpose of this paper, we define heavily drizzling cells as areas ≥ 6 km × 4 km with C-band Z > 0 dBZ; equivalent to > 0.084 mm h−1. A binary heavy drizzle product is described that can be used to determine areal and feature statistics of drizzle cells within the major marine stratocumulus regions. Current satellite liquid water path (LWP and cloud radar products capable of detecting drizzle are either lacking in resolution (AMSR-E LWP, diurnal coverage (MODIS LWP, or spatial coverage (CloudSat. The AMSR-E 89-GHz data set at 6 km × 4 km spatial resolution is sufficient for resolving individual heavily drizzling cells. Radiant emission at 89 GHz by liquid-water cloud and precipitation particles from drizzling cells in marine stratocumulus regions yields local maxima in brightness temperature against an otherwise cloud-free background brightness temperature. The background brightness temperature is primarily constrained by column-integrated water vapor for moderate sea surface temperatures. Clouds containing ice are screened out. Once heavily drizzling pixels are identified, connected pixels are grouped into discrete drizzle cell features. The identified drizzle cells are used in turn to determine several spatial statistics for each satellite scene, including drizzle cell number and size distribution. The identification of heavily drizzling cells within marine stratocumulus regions with satellite data facilitates analysis of seasonal and regional drizzle cell occurrence and the interrelation between drizzle and changes in cloud fraction.

  15. Sensitivity of the Arctic sea ice concentration forecasts to different atmospheric forcing:a case study

    Institute of Scientific and Technical Information of China (English)

    YANG Qinghua; LIU Jiping; ZHANG Zhanhai; SUI Cuijuan; XING Jianyong; LI Ming; LI Chunhua; ZHAO Jiechen; ZHANG Lin

    2014-01-01

    A regional Arctic configuration of the Massachusetts Institute of Technology general circulation model (MIT-gcm) is used as the coupled ice-ocean model for forecasting sea ice conditions in the Arctic Ocean at the Na-tional Marine Environmental Forecasting Center of China (NMEFC), and the numerical weather prediction from the National Center for Environmental Prediction Global Forecast System (NCEP GFS) is used as the atmospheric forcing. To improve the sea ice forecasting, a recently developed Polar Weather Research and Forecasting model (Polar WRF) model prediction is also tested as the atmospheric forcing. Their forecasting performances are evaluated with two different satellite-derived sea ice concentration products as initializa-tions: (1) the Special Sensor Microwave Imager/Sounder (SSMIS) and (2) the Advanced Microwave Scanning Radiometer for EOS (AMSR-E). Three synoptic cases, which represent the typical atmospheric circulations over the Arctic Ocean in summer 2010, are selected to carry out the Arctic sea ice numerical forecasting experiments. The evaluations suggest that the forecasts of sea ice concentrations using the Polar WRF atmo-spheric forcing show some improvements as compared with that of the NCEP GFS.

  16. Research on Monitoring of Soil Humidity Based on AMSR-E Data

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    [Objective] The aim was to establish AMSR-E soil humidity monitoring model to realize the real-time monitoring of soil humidity.[Method] By dint of evaporation(small type) in Guangxi,daily precipitation,daily average maximum temperature,daily minimum relative humidity,≤ 5 mm precipitation day,as well as AMSR-E soil humidity data,with Stepwise regression method,soil humidity real-time monitoring was studied based on GIS technology,and monitoring result.[Result] The low soil humidity in Guangxi on September 2...

  17. Flood and Waterlogging Monitoring over Huaihe River Basin by AMSR-E Data Analysis

    Institute of Scientific and Technical Information of China (English)

    ZHENG Wei; LIU Chuang; XIN Zhongbao; WANG Zhengxing

    2008-01-01

    In this paper,we investigated the potential of Advanced Microwave Scanning Radiometer for Earth Observation System (AMSR-E) for flood monitoring.The proposed approach was based on the polarized ratio index (PRI),which was computed by using AMSR-E data at 37GHz,vertically and horizontally polarized brightness temperature values and the water surface fraction (WSF) got by using the PRI at 37GHz.Moderate Resolution Imaging Spectroradiometer (MODIS) data were used to validate the WSF values.The analysis of flood and waterlogging using the WSF map on July 6,2003 indicates that the use of WSF for flood and waterlogging disaster assessment is feasible.Utilizing the correlation of WSF derived from AMSR-E and water area derived from MODIS,the water area of the Huaihe River Basin were computed by only using AMSR-E data in the summer of 2003,which overcame the influence of cloud on water estimation using MODIS data during flood.

  18. Cloud-type dependencies of MODIS and AMSR-E liquid water path differences

    OpenAIRE

    Torre Juárez, M.; B. H. Kahn; E. J. Fetzer

    2009-01-01

    Comparisons of cloud liquid water path (LWP) retrievals are presented from the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Advanced Microwave Scanning Radiometer (AMSR-E) located aboard the Aqua spacecraft. LWP differences as a function of cloud top height, cloud fraction, cloud top temperature, LWP, cloud effective radius and cloud optical thickness are quantified in most geophysical conditions. The assumption of vertica...

  19. Detection and correction of AMSR-E radio-frequency interference

    Science.gov (United States)

    Wu, Ying; Weng, Fuzhong

    2011-10-01

    Radio-frequency interference (RFI) affects greatly the quality of the data and retrieval products from space-borne microwave radiometry. Analysis of the Advanced Microwave Scanning Radiometer on the Earth Observing System (AMSR-E) Aqua satellite observations reveals very strong and widespread RFI contaminations on the C- and X-band data. Fortunately, the strong and moderate RFI signals can be easily identified using an index on observed brightness temperature spectrum. It is the weak RFI that is difficult to be separated from the nature surface emission. In this study, a new algorithm is proposed for RFI detection and correction. The simulated brightness temperature is used as a background signal ( B) and a departure of the observation from the background ( O-B) is utilized for detection of RFI. It is found that the O-B departure can result from either a natural event (e.g., precipitation or flooding) or an RFI signal. A separation between the nature event and RFI is further realized based on the scattering index (SI). A positive SI index and low brightness temperatures at high frequencies indicate precipitation. In the RFI correction, a relationship between AMSR-E measurements at 10.65 GHz and those at 18.7 or 6.925 GHz is first developed using the AMSR-E training data sets under RFI-free conditions. Contamination of AMSR-E measurements at 10.65 GHz is then predicted from the RFI-free measurements at 18.7 or 6.925 GHz using this relationship. It is shown that AMSR-E measurements with the RFI-correction algorithm have better agreement with simulations in a variety of surface conditions.

  20. Subsurface Emission Effects in AMSR-E Measurements: Implications for Land Surface Microwave Emissivity Retrieval

    Science.gov (United States)

    Galantowicz, John F.; Moncet, Jean-Luc; Liang, Pan; Lipton, Alan E.; Uymin, Gennady; Prigent, Catherine; Grassotti, Christopher

    2011-01-01

    An analysis of land surface microwave emission time series shows that the characteristic diurnal signature associated with subsurface emission in sandy deserts carry over to arid and semi-arid region worldwide. Prior work found that diurnal variation of Special Sensor Microwave/Imager (SSM/I) brightness temperatures in deserts was small relative to International Satellite Cloud Climatology Project land surface temperature (LST) variation and that the difference varied with surface type and was largest in sand sea regions. Here we find more widespread subsurface emission effects in Advanced Microwave Scanning Radiometer-EOS (AMSR-E) measurements. The AMSR-E orbit has equator crossing times near 01:30 and 13 :30 local time, resulting in sampling when near-surface temperature gradients are likely to be large and amplifying the influence of emission depth on effective emitting temperature relative to other factors. AMSR-E measurements are also temporally coincident with Moderate Resolution Imaging Spectroradiometer (MODIS) LST measurements, eliminating time lag as a source of LST uncertainty and reducing LST errors due to undetected clouds. This paper presents monthly global emissivity and emission depth index retrievals for 2003 at 11, 19, 37, and 89 GHz from AMSR-E, MODIS, and SSM/I time series data. Retrieval model fit error, stability, self-consistency, and land surface modeling results provide evidence for the validity of the subsurface emission hypothesis and the retrieval approach. An analysis of emission depth index, emissivity, precipitation, and vegetation index seasonal trends in northern and southern Africa suggests that changes in the emission depth index may be tied to changes in land surface moisture and vegetation conditions

  1. Assimilation of AMSR-E snow water equivalent data in a spatially-lumped snow model

    Science.gov (United States)

    Dziubanski, David J.; Franz, Kristie J.

    2016-09-01

    Accurately initializing snow model states in hydrologic prediction models is important for estimating future snowmelt, water supplies, and flooding potential. While ground-based snow observations give the most reliable information about snowpack conditions, they are spatially limited. In the north-central USA, there are no continual observations of hydrologically critical snow variables. Satellites offer the most likely source of spatial snow data, such as the snow water equivalent (SWE), for this region. In this study, we test the impact of assimilating SWE data from the Advanced Microwave Scanning Radiometer - Earth Observing System (AMSR-E) instrument into the US National Weather Service (NWS) SNOW17 model for seven watersheds in the Upper Mississippi River basin. The SNOW17 is coupled with the NWS Sacramento Soil Moisture Accounting (SACSMA) model, and both simulated SWE and discharge are evaluated. The ensemble Kalman filter (EnKF) assimilation framework is applied and updating occurs on a daily cycle for water years 2006-2011. Prior to assimilation, AMSR-E data is bias corrected using data from the National Operational Hydrologic Remote Sensing Center (NOHRSC) airborne snow survey program. An average AMSR-E SWE bias of -17.91 mm was found for the study basins. SNOW17 and SAC-SMA model parameters from the North Central River Forecast Center (NCRFC) are used. Compared to a baseline run without assimilation, the SWE assimilation improved discharge for five of the seven study sites, in particular for high discharge magnitudes associated with snow melt runoff. SWE and discharge simulations suggest that the SNOW17 is underestimating SWE and snowmelt rates in the study basins. Deep snow conditions and periods of snowmelt may have introduced error into the assimilation due to difficulty obtaining accurate brightness temperatures under these conditions. Overall results indicate that the AMSR-E data and EnKF are viable and effective solutions for improving simulations

  2. The construction and application of the AMSR-E global microwave emissivity database

    Science.gov (United States)

    Lijuan, Shi; Yubao, Qiu; Jingjing, Niu; Wenbo, Wu

    2014-03-01

    Land surface microwave emissivity is an important parameter to describe the characteristics of terrestrial microwave radiation, and is the necessary input amount for inversion various geophysical parameters. We use brightness temperature of the Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) and synchronous land surface temperature and atmospheric temperature-humidity profile data obtained from the MODIS which aboard on satellite AQUA the same as AMSR-E, to retrieved microwave emissivity under clear sky conditions. After quality control, evaluation and design, the global microwave emissivity database of AMSR-E under clear sky conditions is established. This database include 2002-2011 years, different regions, different surface coverage, dual-polarized, 6.9,10.65, 18.7, 23.8, 36.5 and 89GHz, ascending and descending orbit, spatial resolution 25km, global 0.05 degrees, instantaneous and half-month averaged emissivity data. The database can provide the underlying surface information for precipitation algorithm, water-vapor algorithm, and long-resolution mode model (General Circulation Model (GCM) etc.). It also provides underlying surface information for the satellite simulator, and provides basic prior knowledge of land surface radiation for future satellite sensors design. The emissivity database or the fast emissivity obtained can get ready for climate model, energy balance, data assimilation, geophysical model simulation, inversion and estimates of the physical parameters under the cloud cover conditions.

  3. The construction and application of the AMSR-E global microwave emissivity database

    International Nuclear Information System (INIS)

    Land surface microwave emissivity is an important parameter to describe the characteristics of terrestrial microwave radiation, and is the necessary input amount for inversion various geophysical parameters. We use brightness temperature of the Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) and synchronous land surface temperature and atmospheric temperature-humidity profile data obtained from the MODIS which aboard on satellite AQUA the same as AMSR-E, to retrieved microwave emissivity under clear sky conditions. After quality control, evaluation and design, the global microwave emissivity database of AMSR-E under clear sky conditions is established. This database include 2002–2011 years, different regions, different surface coverage, dual-polarized, 6.9,10.65, 18.7, 23.8, 36.5 and 89GHz, ascending and descending orbit, spatial resolution 25km, global 0.05 degrees, instantaneous and half-month averaged emissivity data. The database can provide the underlying surface information for precipitation algorithm, water-vapor algorithm, and long-resolution mode model (General Circulation Model (GCM) etc.). It also provides underlying surface information for the satellite simulator, and provides basic prior knowledge of land surface radiation for future satellite sensors design. The emissivity database or the fast emissivity obtained can get ready for climate model, energy balance, data assimilation, geophysical model simulation, inversion and estimates of the physical parameters under the cloud cover conditions

  4. A comparison of Argo nominal surface and near-surface temperature for validation of AMSR-E SST

    Science.gov (United States)

    Liu, Zenghong; Chen, Xingrong; Sun, Chaohui; Wu, Xiaofen; Lu, Shaolei

    2016-06-01

    Satellite SST (sea surface temperature) from the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) is compared with in situ temperature observations from Argo profiling floats over the global oceans to evaluate the advantages of Argo NST (near-surface temperature: water temperature less than 1 m from the surface). By comparing Argo nominal surface temperature (~5 m) with its NST, a diurnal cycle caused by daytime warming and nighttime cooling was found, along with a maximum warming of 0.08±0.36°C during 14:00-15:00 local time. Further comparisons between Argo 5-m temperature/Argo NST and AMSR-E SST retrievals related to wind speed, columnar water vapor, and columnar cloud water indicate warming biases at low wind speed (28 mm during daytime. The warming tendency is more remarkable for AMSR-E SST/Argo 5-m temperature compared with AMSR-E SST/Argo NST, owing to the effect of diurnal warming. This effect of diurnal warming events should be excluded before validation for microwave SST retrievals. Both AMSR-E nighttime SST/Argo 5-m temperature and nighttime SST/Argo NST show generally good agreement, independent of wind speed and columnar water vapor. From our analysis, Argo NST data demonstrated their advantages for validation of satellite-retrieved SST.

  5. An Updated Geophysical Model for AMSR-E and SSMIS Brightness Temperature Simulations over Oceans

    Directory of Open Access Journals (Sweden)

    Elizaveta Zabolotskikh

    2014-03-01

    Full Text Available In this study, we considered the geophysical model for microwave brightness temperature (BT simulation for the Atmosphere-Ocean System under non-precipitating conditions. The model is presented as a combination of atmospheric absorption and ocean emission models. We validated this model for two satellite instruments—for Advanced Microwave Sounding Radiometer-Earth Observing System (AMSR-E onboard Aqua satellite and for Special Sensor Microwave Imager/Sounder (SSMIS onboard F16 satellite of Defense Meteorological Satellite Program (DMSP series. We compared simulated BT values with satellite BT measurements for different combinations of various water vapor and oxygen absorption models and wind induced ocean emission models. A dataset of clear sky atmospheric and oceanic parameters, collocated in time and space with satellite measurements, was used for the comparison. We found the best model combination, providing the least root mean square error between calculations and measurements. A single combination of models ensured the best results for all considered radiometric channels. We also obtained the adjustments to simulated BT values, as averaged differences between the model simulations and satellite measurements. These adjustments can be used in any research based on modeling data for removing model/calibration inconsistencies. We demonstrated the application of the model by means of the development of the new algorithm for sea surface wind speed retrieval from AMSR-E data.

  6. Retrievals of All-Weather Daily Air Temperature Using MODIS and AMSR-E Data

    Directory of Open Access Journals (Sweden)

    Keunchang Jang

    2014-09-01

    Full Text Available Satellite optical-infrared remote sensing from the Moderate Resolution Imaging Spectroradiometer (MODIS provides effective air temperature (Ta retrieval at a spatial resolution of 5 km. However, frequent cloud cover can result in substantial signal loss and remote sensing retrieval error in MODIS Ta. We presented a simple pixel-wise empirical regression method combining synergistic information from MODIS Ta and 37 GHz frequency brightness temperature (Tb retrievals from the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E for estimating surface level Ta under both clear and cloudy sky conditions in the United States for 2006. The instantaneous Ta retrievals showed favorable agreement with in situ air temperature records from 40 AmeriFlux tower sites; mean R2 correspondence was 86.5 and 82.7 percent, while root mean square errors (RMSE for the Ta retrievals were 4.58 K and 4.99 K for clear and cloudy sky conditions, respectively. Daily mean Ta was estimated using the instantaneous Ta retrievals from day/night overpasses, and showed favorable agreement with local tower measurements (R2 = 0.88; RMSE = 3.48 K. The results of this study indicate that the combination of MODIS and AMSR-E sensor data can produce Ta retrievals with reasonable accuracy and relatively fine spatial resolution (~5 km for clear and cloudy sky conditions.

  7. Global-Scale Evaluation of Roughness Effects on C-Band AMSR-E Observations

    Directory of Open Access Journals (Sweden)

    Shu Wang

    2015-05-01

    Full Text Available Quantifying roughness effects on ground surface emissivity is an important step in obtaining high-quality soil moisture products from large-scale passive microwave sensors. In this study, we used a semi-empirical method to evaluate roughness effects (parameterized here by the  parameter on a global scale from AMSR-E (Advanced Microwave Scanning Radiometer for EOS observations. AMSR-E brightness temperatures at 6.9 GHz obtained from January 2009 to September 2011, together with estimations of soil moisture from the SMOS (Soil Moisture and Ocean Salinity L3 products and of soil temperature from ECMWF’s (European Centre for Medium-range Weather Forecasting were used as inputs in a retrieval process. In the first step, we retrieved a parameter (referred to as the  parameter accounting for the combined effects of roughness and vegetation. Then, global MODIS NDVI data were used to decouple the effects of vegetation from those of surface roughness. Finally, global maps of the Hr parameters were produced and discussed. Initial results showed that some spatial patterns in the  values could be associated with the main vegetation types (higher values of  were retrieved generally in forested regions, intermediate values were obtained over crops and grasslands, and lower values were obtained over shrubs and desert and topography. For instance, over the USA, lower values of  were retrieved in relatively flat regions while relatively higher values were retrieved in hilly regions.

  8. Applications of an AMSR-E RFI Detection and Correction Algorithm in 1-DVAR over Land

    Institute of Scientific and Technical Information of China (English)

    吴莹; 翁富忠

    2014-01-01

    Land retrievals using passive microwave radiometers are sensitive to small fluctuations in land brightness temperatures. As such, the radio-frequency interference (RFI) signals emanating from man-made microwave radiation transmitters can result in large errors in land retrievals. RFI in C-and X-band channels can con-taminate remotely sensed measurements, as experienced with the Advanced Microwave Scanning Radiometer (AMSR-E) and the WindSat sensor. In this work, applications of an RFI detection and correction algorithm in retrieving a comprehensive suite of geophysical parameters from AMSR-E measurements using the one-dimensional variational retrieval (1-DVAR) method are described. The results indicate that the values of retrieved parameters, such as land skin temperature (LST), over these areas contaminated by RFI are much higher than those from the global data assimilation system (GDAS) products. The results also indicate that the differences between new retrievals and GDAS products are decreased evidently through taking into account the RFI correction algorithm. In addition, the convergence metric (χ2) of 1-DVAR is found to be a new method for identifying regions where land retrievals are affected by RFI. For example, in those regions with much stronger RFI, such as Europe and Japan, χ2 of 1-DVAR is so large that convergence cannot be reached and retrieval results may not be reliable or cannot be obtained. Furthermore,χ2 also decreases with the RFI-corrected algorithm for those regions with moderate or weak RFI. The results of RFI detected byχ2 are almost consistent with those identified by the spectral difference method.

  9. Evaluation of Enhanced High Resolution MODIS/AMSR-E SSTs and the Impact on Regional Weather Forecast

    Science.gov (United States)

    Schiferl, Luke D.; Fuell, Kevin K.; Case, Jonathan L.; Jedlovec, Gary J.

    2010-01-01

    Over the last few years, the NASA Short-term Prediction Research and Transition (SPoRT) Center has been generating a 1-km sea surface temperature (SST) composite derived from retrievals of the Moderate Resolution Imaging Spectroradiometer (MODIS) for use in operational diagnostics and regional model initialization. With the assumption that the day-to-day variation in the SST is nominal, individual MODIS passes aboard the Earth Observing System (EOS) Aqua and Terra satellites are used to create and update four composite SST products each day at 0400, 0700, 1600, and 1900 UTC, valid over the western Atlantic and Caribbean waters. A six month study from February to August 2007 over the marine areas surrounding southern Florida was conducted to compare the use of the MODIS SST composite versus the Real-Time Global SST analysis to initialize the Weather Research and Forecasting (WRF) model. Substantial changes in the forecast heat fluxes were seen at times in the marine boundary layer, but relatively little overall improvement was measured in the sensible weather elements. The limited improvement in the WRF model forecasts could be attributed to the diurnal changes in SST seen in the MODIS SST composites but not accounted for by the model. Furthermore, cloud contamination caused extended periods when individual passes of MODIS were unable to update the SSTs, leading to substantial SST latency and a cool bias during the early summer months. In order to alleviate the latency problems, the SPoRT Center recently enhanced its MODIS SST composite by incorporating information from the Advanced Microwave Scanning Radiometer-EOS (AMSR-E) instruments as well as the Operational Sea Surface Temperature and Sea Ice Analysis. These enhancements substantially decreased the latency due to cloud cover and improved the bias and correlation of the composites at available marine point observations. While these enhancements improved upon the modeled cold bias using the original MODIS SSTs

  10. Long-Term Evaluation of the AMSR-E Soil Moisture Product Over the Walnut Gulch Watershed, AZ

    Science.gov (United States)

    Bolten, J. D.; Jackson, T. J.; Lakshmi, V.; Cosh, M. H.; Drusch, M.

    2005-12-01

    The Advanced Microwave Scanning Radiometer -Earth Observing System (AMSR-E) was launched aboard NASA's Aqua satellite on May 4th, 2002. Quantitative estimates of soil moisture using the AMSR-E provided data have required routine radiometric data calibration and validation using comparisons of satellite observations, extended targets and field campaigns. The currently applied NASA EOS Aqua ASMR-E soil moisture algorithm is based on a change detection approach using polarization ratios (PR) of the calibrated AMSR-E channel brightness temperatures. To date, the accuracy of the soil moisture algorithm has been investigated on short time scales during field campaigns such as the Soil Moisture Experiments in 2004 (SMEX04). Results have indicated self-consistency and calibration stability of the observed brightness temperatures; however the performance of the moisture retrieval algorithm has been poor. The primary objective of this study is to evaluate the quality of the current version of the AMSR-E soil moisture product for a three year period over the Walnut Gulch Experimental Watershed (150 km2) near Tombstone, AZ; the northern study area of SMEX04. This watershed is equipped with hourly and daily recording of precipitation, soil moisture and temperature via a network of raingages and a USDA-NRCS Soil Climate Analysis Network (SCAN) site. Surface wetting and drying are easily distinguished in this area due to the moderately-vegetated terrain and seasonally intense precipitation events. Validation of AMSR-E derived soil moisture is performed from June 2002 to June 2005 using watershed averages of precipitation, and soil moisture and temperature data from the SCAN site supported by a surface soil moisture network. Long-term assessment of soil moisture algorithm performance is investigated by comparing temporal variations of moisture estimates with seasonal changes and precipitation events. Further comparisons are made with a standard soil dataset from the European

  11. An Assessment of the Use of AMSR E 10 GHz Data for Soil Moisture Estimation in SMEX02

    Science.gov (United States)

    Hsu, A. Y.; Jackson, T. J.; O'Neill, P. E.

    2003-12-01

    The launch of the Advanced Microwave Scanning Radiometer (AMSR-E) on board the NASA EOS Aqua Satellite has drawn much interest from the scientific community that has been waiting for a low frequency spaceborne microwave radiometer (instrument was developed by the National Space Development Agency of Japan (NASDA) and makes dual-polarized microwave measurements at six frequencies: 6.9, 10.7, 18.7, 23.8, 36.5, and 89 GHz. Early examinations of AMSR-E measurements have shown evidence of extensive Radio-Frequency Interference (RFI) in the 6.9 GHz channels, especially over the continental U.S. Due to the contamination of 6.9 GHz data by RFI, it may be necessary to use the next lowest frequency, 10.7 GHz, for soil moisture retrieval. This frequency has been available on the TRMM Microwave Imager for several years; however, the TRMM sensor only provides data between 38 N to 38 S in latitude whereas AMSR-E provides global coverage. We examined the impact of alternative frequencies on soil moisture retrieval using data from the Soil Moisture Experiments in 2002 (SMEX02). SMEX02 took place in Walnut Creek Watershed and surrounding region of Iowa from June 24 to July 12. The experiment focused on microwave remote sensing of soil moisture in an agricultural setting. Land cover in the Walnut Creek Watershed consists of a patchwork of corn and soybean fields, with some isolated forested zones. This presents a challenge to soil moisture retrieval using AMSR-E 10 GHz data. Extensive vegetation sampling was conducted during SMEX02 to provide information to estimate vegetation parameters required by retrieval algorithm. The maps of AMSR-E 10 GHz data over the SMEX02 area from July 2 to 13 show the decrease of brightness temperature (TB) due to precipitation, although the range is not as profound as expected at L band. The Normalized Difference Polarization Index (NDPI), defined as (TBv-TBh)/(TBv+TBh), computed for various frequencies can be considered as indicators of surface

  12. Potential for Monitoring Snow Cover in Boreal Forests by Combining MODIS Snow Cover and AMSR-E SWE Maps

    Science.gov (United States)

    Riggs, George A.; Hall, Dorothy K.; Foster, James L.

    2009-01-01

    Monitoring of snow cover extent and snow water equivalent (SWE) in boreal forests is important for determining the amount of potential runoff and beginning date of snowmelt. The great expanse of the boreal forest necessitates the use of satellite measurements to monitor snow cover. Snow cover in the boreal forest can be mapped with either the Moderate Resolution Imaging Spectroradiometer (MODIS) or the Advanced Microwave Scanning Radiometer for EOS (AMSR-E) microwave instrument. The extent of snow cover is estimated from the MODIS data and SWE is estimated from the AMSR-E. Environmental limitations affect both sensors in different ways to limit their ability to detect snow in some situations. Forest density, snow wetness, and snow depth are factors that limit the effectiveness of both sensors for snow detection. Cloud cover is a significant hindrance to monitoring snow cover extent Using MODIS but is not a hindrance to the use of the AMSR-E. These limitations could be mitigated by combining MODIS and AMSR-E data to allow for improved interpretation of snow cover extent and SWE on a daily basis and provide temporal continuity of snow mapping across the boreal forest regions in Canada. The purpose of this study is to investigate if temporal monitoring of snow cover using a combination of MODIS and AMSR-E data could yield a better interpretation of changing snow cover conditions. The MODIS snow mapping algorithm is based on snow detection using the Normalized Difference Snow Index (NDSI) and the Normalized Difference Vegetation Index (NDVI) to enhance snow detection in dense vegetation. (Other spectral threshold tests are also used to map snow using MODIS.) Snow cover under a forest canopy may have an effect on the NDVI thus we use the NDVI in snow detection. A MODIS snow fraction product is also generated but not used in this study. In this study the NDSI and NDVI components of the snow mapping algorithm were calculated and analyzed to determine how they changed

  13. Sea Ice Concentration and Extent

    Science.gov (United States)

    Comiso, Josefino C.

    2014-01-01

    Among the most seasonal and most dynamic parameters on the surface of the Earth is sea ice which at any one time covers about 3-6% of the planet. In the Northern Hemisphere, sea ice grows in extent from about 6 x 10(exp 6) sq km to 16 x 10(exp 6) sq km, while in the Southern Hemisphere, it grows from about 3 x 10(exp 6) sq km to about 19 x 10(exp 6) sq km (Comiso, 2010; Gloersen et al., 1992). Sea ice is up to about 2-3 m thick in the Northern Hemisphere and about 1 m thick in the Southern Hemisphere (Wadhams, 2002), and compared to the average ocean depth of about 3 km, it is a relatively thin, fragile sheet that can break due to waves and winds or melt due to upwelling of warm water. Being constantly advected by winds, waves, and currents, sea ice is very dynamic and usually follows the directions of the many gyres in the polar regions. Despite its vast expanse, the sea ice cover was previously left largely unstudied and it was only in recent years that we have understood its true impact and significance as related to the Earths climate, the oceans, and marine life.

  14. The sensitivity of land emissivity estimates from AMSR-E at C and X bands to surface properties

    Directory of Open Access Journals (Sweden)

    H. Norouzi

    2011-11-01

    Full Text Available Microwave observations at low frequencies exhibit more sensitivity to surface and subsurface properties with little interference from the atmosphere. The objective of this study is to develop a global land emissivity product using passive microwave observations from the Advanced Microwave Scanning Radiometer – Earth Observing System (AMSR-E and to investigate its sensitivity to land surface properties. The developed product complements existing land emissivity products from SSM/I and AMSU by adding land emissivity estimates at two lower frequencies, 6.9 and 10.65 GHz (C- and X-band, respectively. Observations at these low frequencies penetrate deeper into the soil layer. Ancillary data used in the analysis, such as surface skin temperature and cloud mask, are obtained from International Satellite Cloud Climatology Project (ISCCP. Atmospheric properties are obtained from the TIROS Operational Vertical Sounder (TOVS observations to determine the small upwelling and downwelling atmospheric emissions as well as the atmospheric transmission. A sensitivity test confirms the small effect of the atmosphere but shows that skin temperature accuracy can significantly affect emissivity estimates. Retrieved emissivities at C- and X-bands and their polarization differences exhibit similar patterns of variation with changes in land cover type, soil moisture, and vegetation density as seen at SSM/I-like frequencies (Ka and Ku bands. The emissivity maps from AMSR-E at these higher frequencies agree reasonably well with the existing SSM/I-based product. The inherent discrepancy introduced by the difference between SSM/I and AMSR-E frequencies, incidence angles, and calibration has been assessed. Significantly greater standard deviation of estimated emissivities compared to SSM/I land emissivity product was found over desert regions. Large differences between emissivity estimates from ascending and descending overpasses were found at lower frequencies due to the

  15. Intercomparison of passive microwave sea ice concentration retrievals over the high-concentration Arctic sea ice

    DEFF Research Database (Denmark)

    andersen, susanne; Tonboe, R.; Kaleschke, L.;

    2007-01-01

    [1] Measurements of sea ice concentration from the Special Sensor Microwave Imager (SSM/I) using seven different algorithms are compared to ship observations, sea ice divergence estimates from the Radarsat Geophysical Processor System, and ice and water surface type classification of 59 wide......-swath synthetic aperture radar (SAR) scenes. The analysis is confined to the high-concentration Arctic sea ice, where the ice cover is near 100%. During winter the results indicate that the variability of the SSM/I concentration estimates is larger than the true variability of ice concentration. Results from...... a trusted subset of the SAR scenes across the central Arctic allow the separation of the ice concentration uncertainty due to emissivity variations and sensor noise from other error sources during the winter of 2003-2004. Depending on the algorithm, error standard deviations from 2.5 to 5.0% are found...

  16. GRACE and AMSR-E-based estimates of winter season solid precipitation accumulation in the Arctic drainage region

    Science.gov (United States)

    Seo, Ki-Weon; Ryu, Dongryeol; Kim, Baek-Min; Waliser, Duane E.; Tian, Baijun; Eom, Jooyoung

    2010-10-01

    Solid precipitation plays a major role in controlling the winter hydrological cycle and spring discharge in the Arctic region. However, it has not been well documented due to sharply decreasing numbers of precipitation gauges, gauge measurement biases, as well as limitations of conventional satellite methods in high latitudes. In this study, we document the winter season solid precipitation accumulation in the Arctic region using the latest new satellite measurements from the Gravity Recovery and Climate Experiment (GRACE) and the Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E). GRACE measures the winter total water (mainly from snow water equivalent (SWE)) storage change through gravity changes while AMSR-E measures the winter SWE through passive microwave measurements. The GRACE and AMSR-E measurements are combined with in situ and numerical model estimates of discharge and evapotranspiration to estimate the winter season solid precipitation accumulation in the Arctic region using the water budget equation. These two satellite-based estimates are then compared to the conventional estimates from two global precipitation products, such as the Global Precipitation Climatology Project (GPCP) and Climate Prediction Center's Merged Analysis of Precipitation (CMAP), and three reanalyses, the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis, the European Centre for Medium-Range Weather Forecasts' ERA-Interim, and the Japan Meteorological Agency's Climate Data Assimilation System (JCDAS) reanalysis. The GRACE-based estimate is very close to the GPCP and ERA-Interim estimates. The AMSR-E-based estimate is the most different from the other estimates. This GRACE-based measurement of winter season solid precipitation accumulation can provide a new valuable benchmark to understand the hydrological cycle, to validate and evaluate the model simulation, and to improve data assimilation in the

  17. Arctic and Southern Ocean Sea Ice Concentrations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Monthly sea ice concentration for Arctic (1901 to 1995) and Southern oceans (1973 to 1990) were digitized on a standard 1-degree grid (cylindrical projection) to...

  18. Statistical Analysis of the Correlation between Microwave Emission Anomalies and Seismic Activity Based on AMSR-E Satellite Data

    Science.gov (United States)

    qin, kai; Wu, Lixin; De Santis, Angelo; Zhang, Bin

    2016-04-01

    Pre-seismic thermal IR anomalies and ionosphere disturbances have been widely reported by using the Earth observation system (EOS). To investigate the possible physical mechanisms, a series of detecting experiments on rock loaded to fracturing were conducted. Some experiments studies have demonstrated that microwave radiation energy will increase under the loaded rock in specific frequency and the feature of radiation property can reflect the deformation process of rock fracture. This experimental result indicates the possibility that microwaves are emitted before earthquakes. Such microwaves signals are recently found to be detectable before some earthquake cases from the brightness temperature data obtained by the microwave-radiometer Advanced Microwave-Scanning Radiometer for the EOS (AMSR-E) aboard the satellite Aqua. This suggested that AMSR-E with vertical- and horizontal-polarization capability for six frequency bands (6.925, 10.65, 18.7, 23.8, 36.5, and 89.0 GHz) would be feasible to detect an earthquake which is associated with rock crash or plate slip. However, the statistical analysis of the correlation between satellite-observed microwave emission anomalies and seismic activity are firstly required. Here, we focus on the Kamchatka peninsula to carry out a statistical study, considering its high seismicity activity and the dense orbits covering of AMSR-E in high latitudes. 8-years (2003-2010) AMSR-E microwave brightness temperature data were used to reveal the spatio-temporal association between microwave emission anomalies and 17 earthquake events (M>5). Firstly, obvious spatial difference of microwave brightness temperatures between the seismic zone at the eastern side and the non-seismic zone the western side within the Kamchatka peninsula are found. Secondly, using both vertical- and horizontal-polarization to extract the temporal association, it is found that abnormal changes of microwave brightness temperatures appear generally 2 months before the

  19. A COMPARISON BETWEEN TWO ALGORITHMS FOR THE RETRIEVAL OF SOIL MOISTURE USING AMSR-E DATA

    Directory of Open Access Journals (Sweden)

    Simonetta ePaloscia

    2015-04-01

    Full Text Available A comparison between two algorithms for estimating soil moisture with microwave satellite data was carried out by using the datasets collected on the four Agricultural Research Service (ARS watershed sites in the US from 2002 to 2009. These sites collectively represent a wide range of ground conditions and precipitation regimes (from natural to agricultural surfaces and from desert to humid regions and provide long-term in-situ data. One of the algorithms is the artificial neural network-based algorithm developed by the Institute of Applied Physics of the National Research Council (IFAC-CNR (HydroAlgo and the second one is the Single Channel Algorithm (SCA developed by USDA-ARS (US Department of Agriculture-Agricultural Research Service. Both algorithms are based on the same radiative transfer equations but are implemented very differently. Both made use of datasets provided by the Japanese Aerospace Exploration Agency (JAXA, within the framework of Advanced Microwave Scanning Radiometer–Earth Observing System (AMSR-E and Global Change Observation Mission–Water GCOM/AMSR-2 programs. Results demonstrated that both algorithms perform better than the mission specified accuracy, with Root Mean Square Error (RMSE ≤0.06 m3/m3 and Bias <0.02 m3/m3. These results expand on previous investigations using different algorithms and sites. The novelty of the paper consists of the fact that it is the first intercomparison of the HydroAlgo algorithm with a more traditional retrieval algorithm, which offers an approach to higher spatial resolution products.

  20. Identifying AMSR-E radio-frequency interference over winter land

    Science.gov (United States)

    Zhang, Sibo; Guan, Li

    2015-09-01

    Satellite microwave emission mixed with signals from active sensors is referred to as radio-frequency interference (RFI). RFI affects greatly the quality of data and retrieval products from space-borne microwave radiometry. An accurate RFI detection will not only enhance geophysical retrievals over land but also provide evidence of the much-needed protection of the microwave frequency band for satellite remote sensing technologies. It is difficult to detect RFI from space-borne microwave radiometer data over winter land, because RFI signals are usually mixed with snow in mid-high latitudes. A modified principal component analysis (PCA) method is proposed in this paper for detecting microwave low frequency RFI signals. Only three original variables, one RFI index (sensitive to RFI signal) and two scattering indices (sensitive to snow scattering), are included in the vector for principal component analysis in this modified method instead of the nine or seven RFI index original variables used in a normal PCA algorithm. The principal component with higher correlation and contribution to the original RFI index is the RFI-related principal component. In the absence of a reliable validation data set of the "true" RFI, the consistency in the identified RFI distribution obtained from this method compared to other independent methods, such as the spectral difference method, the normalized PCA method, and the double PCA method, give confidence to the RFI signals' identification over land. The simple and reliable modified PCA method could successfully detect RFI not only in summer but also in winter AMSR-E data.

  1. MODIS_LST与AMSR-E_BT的相关性及地表温度反演%The Correlation Analysis Between MODIS_LST and AMSR-E_BT and Study of LST Retrieval Method

    Institute of Scientific and Technical Information of China (English)

    时洪涛; 宋冬梅; 单新建; 崔建勇; 臧琳; 沈晨; 屈春燕; 任鹏; 邵红梅

    2016-01-01

    本文以2007年和2008年MODIS每日地表温度(LST)数据及AMSR-E地表亮温(BT)数据为研究对象,结合土地覆盖类型数据,统计分析MODIS_LST与AMSR-E_BT在不同土地覆盖类型、频率和极化方式条件下的相关性.结果表明,频率在18.7、23.8和36.5 GHz的AMSR-E-BT与MODIS_LST的相关性较大,且在垂直极化通道上的相关性较在水平极化上大;不同土地覆盖类型,与MODIS_LST相关性较大所对应的AMSR-E微波通道不同.同时,考虑混合像元问题对相关性的影响,对25种不同地物类型组合下MODIS_LST与AMSR-E-BT的相关性进行统计分析,发现混合像元中地物类型越多,则二者相关性越小.最后,采用多元线性回归分析法,根据不同土地覆盖类型建立反演回归模型,对部分研究区域MODIS-LST进行反演,误差平均在±3.15 K以内,与不考虑下垫面覆盖的模型比较,反演MODIS_LST精度平均提高了1.5 K.%By taking MODIS daily land surface temperature (LST) data and AMSR-E brightness temperature (BT) data from 2007 to 2008 as the input, combining with the land cover type data, the statistics and analysis of the relativity between MODIS_LST and AMSR-E_BT in different land cover types, channels and polarization ways are produced. Based on the International Geosphere-Bio-sphere Program (IGBP) vegetation classification scheme, land cover data is re-classified into seven types, including water, forest land, grass land, farmland, urban land, desert land and other land cover types. The statistical result shows that the correlation is ap-parent between MODIS_LST and AMSR-E_BT in 18.7 GHz, 23.8 GHz and 36.5 GHz channel, and it reveals a higher correlation in the vertical channel compared to the horizontal channel. Moreover, this paper finds out that the microwave channel of AMSR-E_BT, which has the highest relativity with MODIS-LST, is different with respect to different land cover types. In addition, by con-sidering the impact of mixed pixel, this

  2. Land Surface Microwave Emissivities Derived from AMSR-E and MODIS Measurements with Advanced Quality Control

    Science.gov (United States)

    Moncet, Jean-Luc; Liang, Pan; Galantowicz, John F.; Lipton, Alan E.; Uymin, Gennady; Prigent, Catherine; Grassotti, Christopher

    2011-01-01

    A microwave emissivity database has been developed with data from the Advanced Microwave Scanning Radiometer-EOS (AMSR-E) and with ancillary land surface temperature (LST) data from the Moderate Resolution Imaging Spectroradiometer (MODIS) on the same Aqua spacecraft. The primary intended application of the database is to provide surface emissivity constraints in atmospheric and surface property retrieval or assimilation. An additional application is to serve as a dynamic indicator of land surface properties relevant to climate change monitoring. The precision of the emissivity data is estimated to be significantly better than in prior databases from other sensors due to the precise collocation with high-quality MODIS LST data and due to the quality control features of our data analysis system. The accuracy of the emissivities in deserts and semi-arid regions is enhanced by applying, in those regions, a version of the emissivity retrieval algorithm that accounts for the penetration of microwave radiation through dry soil with diurnally varying vertical temperature gradients. These results suggest that this penetration effect is more widespread and more significant to interpretation of passive microwave measurements than had been previously established. Emissivity coverage in areas where persistent cloudiness interferes with the availability of MODIS LST data is achieved using a classification-based method to spread emissivity data from less-cloudy areas that have similar microwave surface properties. Evaluations and analyses of the emissivity products over homogeneous snow-free areas are presented, including application to retrieval of soil temperature profiles. Spatial inhomogeneities are the largest in the vicinity of large water bodies due to the large water/land emissivity contrast and give rise to large apparent temporal variability in the retrieved emissivities when satellite footprint locations vary over time. This issue will be dealt with in the future by

  3. The sensitivity of land emissivity estimates from AMSR-E at C and X bands to surface properties

    Directory of Open Access Journals (Sweden)

    H. Norouzi

    2011-06-01

    Full Text Available Microwave observations at low frequencies exhibit more sensitivity to surface and subsurface properties with little interference from the atmosphere. The objective of this study is to develop a global land emissivity product using passive microwave observations from the Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E and to investigate its sensitivity to land surface properties. The developed product complements existing land emissivity products from SSM/I and AMSU by adding land emissivity estimates at two lower frequencies, 6.9 and 10.65 GHz (C- and X-band, respectively. Observations at these low frequencies penetrate deeper into the soil layer. Ancillary data used in the analysis, such as surface skin temperature and cloud mask, are obtained from International Satellite Cloud Climatology Project (ISCCP. Atmospheric properties are obtained from the TIROS Operational Vertical Sounder (TOVS observations to determine the small upwelling and downwelling atmospheric emissions as well as the atmospheric transmission. A sensitivity test confirms the small effect of the atmosphere but shows that skin temperature accuracy can significantly affect emissivity estimates. Retrieved emissivities at C- and X-bands and their polarization differences exhibit similar patterns of variation with changes in land cover type, soil moisture, and vegetation density as seen at SSM/I-like frequencies (Ka and Ku bands. The emissivity maps from AMSR-E at these higher frequencies agree reasonably well with the existing SSM/I-based product. The inherent but small discrepancy introduced by the difference between SSM/I and AMSR-E frequencies and incidence angles has been examined and found to be small. Large differences between emissivity estimates from ascending and descending overpasses were found at the lower frequencies due to the inconsistency between the thermal IR skin temperatures and passive microwave brightness temperatures which can come from

  4. A physics-based statistical algorithm for retrieving land surface temperature from AMSR-E passive microwave data

    Institute of Scientific and Technical Information of China (English)

    MAO KeBiao; SHI JianCheng; LI ZhaoLiang; QIN ZhiHao; LI ManChun; XU Bin

    2007-01-01

    AMSR-E and MODIS are two EOS (Earth Observing System) instruments on board the Aqua satellite. A regression analysis between the brightness of all AMSR-E bands and the MODIS land surface temperature product indicated that the 89 GHz vertical polarization is the best single band to retrieve land surface temperature. According to simulation analysis with AIEM, the difference of different frequencies can eliminate the influence of water in soil and atmosphere, and also the surface roughness partly. The analysis results indicate that the radiation mechanism of surface covered snow is different from others. In order to retrieve land surface temperature more accurately, the land surface should be at least classified into three types: water covered surface, snow covered surface, and non-water and non-snow covered land surface. In order to improve the practicality and accuracy of the algorithm, we built different equations for different ranges of temperature. The average land surface temperature error is about 2-3℃ relative to the MODIS LST product.

  5. A physics-based statistical algorithm for retrieving land surface temperature from AMSR-E passive microwave data

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    AMSR-E and MODIS are two EOS (Earth Observing System) instruments on board the Aqua satellite. A regression analysis between the brightness of all AMSR-E bands and the MODIS land surface tem-perature product indicated that the 89 GHz vertical polarization is the best single band to retrieve land surface temperature. According to simulation analysis with AIEM,the difference of different frequen-cies can eliminate the influence of water in soil and atmosphere,and also the surface roughness partly. The analysis results indicate that the radiation mechanism of surface covered snow is different from others. In order to retrieve land surface temperature more accurately,the land surface should be at least classified into three types:water covered surface,snow covered surface,and non-water and non-snow covered land surface. In order to improve the practicality and accuracy of the algorithm,we built different equations for different ranges of temperature. The average land surface temperature er-ror is about 2―3℃ relative to the MODIS LST product.

  6. The EUMETSAT sea ice concentration climate data record

    Science.gov (United States)

    Tonboe, Rasmus T.; Eastwood, Steinar; Lavergne, Thomas; Sørensen, Atle M.; Rathmann, Nicholas; Dybkjær, Gorm; Toudal Pedersen, Leif; Høyer, Jacob L.; Kern, Stefan

    2016-09-01

    An Arctic and Antarctic sea ice area and extent dataset has been generated by EUMETSAT's Ocean and Sea Ice Satellite Application Facility (OSISAF) using the record of microwave radiometer data from NASA's Nimbus 7 Scanning Multichannel Microwave radiometer (SMMR) and the Defense Meteorological Satellite Program (DMSP) Special Sensor Microwave/Imager (SSM/I) and Special Sensor Microwave Imager and Sounder (SSMIS) satellite sensors. The dataset covers the period from October 1978 to April 2015 and updates and further developments are planned for the next phase of the project. The methodology for computing the sea ice concentration uses (1) numerical weather prediction (NWP) data input to a radiative transfer model for reduction of the impact of weather conditions on the measured brightness temperatures; (2) dynamical algorithm tie points to mitigate trends in residual atmospheric, sea ice, and water emission characteristics and inter-sensor differences/biases; and (3) a hybrid sea ice concentration algorithm using the Bristol algorithm over ice and the Bootstrap algorithm in frequency mode over open water. A new sea ice concentration uncertainty algorithm has been developed to estimate the spatial and temporal variability in sea ice concentration retrieval accuracy. A comparison to US National Ice Center sea ice charts from the Arctic and the Antarctic shows that ice concentrations are higher in the ice charts than estimated from the radiometer data at intermediate sea ice concentrations between open water and 100 % ice. The sea ice concentration climate data record is available for download at www.osi-saf.org, including documentation.

  7. Detection of radio-frequency interference signals from AMSR-E data over the United States with snow cover

    Science.gov (United States)

    Feng, Chengcheng; Zou, Xiaolei; Zhao, Juan

    2016-06-01

    Radio Frequency Interference (RFI) causes severe contamination to passive and active microwave sensing observations and corresponding retrieval products. RFI signals should be detected and filtered before applying the microwave data to retrieval and data assimilation. It is difficult to detect RFI over land surfaces covered by snow because of the scattering effect of snow surface. The double principal component analysis (DPCA) method is adopted in this study, and its ability in identifying RFI signals in AMSR-E data over snow covered regions is investigated. Results show that the DPCA method can detect RFI signals effectively in spite of the impact of snow scattering, and the detected RFI signals persistent over time. Compared to other methods, such as PCA and normalized PCA, DPCA is more robust and suitable for operational application.

  8. Estimation of Land Surface Temperature through Blending MODIS and AMSR-E Data with the Bayesian Maximum Entropy Method

    Directory of Open Access Journals (Sweden)

    Xiaokang Kou

    2016-01-01

    Full Text Available Land surface temperature (LST plays a major role in the study of surface energy balances. Remote sensing techniques provide ways to monitor LST at large scales. However, due to atmospheric influences, significant missing data exist in LST products retrieved from satellite thermal infrared (TIR remotely sensed data. Although passive microwaves (PMWs are able to overcome these atmospheric influences while estimating LST, the data are constrained by low spatial resolution. In this study, to obtain complete and high-quality LST data, the Bayesian Maximum Entropy (BME method was introduced to merge 0.01° and 0.25° LSTs inversed from MODIS and AMSR-E data, respectively. The result showed that the missing LSTs in cloudy pixels were filled completely, and the availability of merged LSTs reaches 100%. Because the depths of LST and soil temperature measurements are different, before validating the merged LST, the station measurements were calibrated with an empirical equation between MODIS LST and 0~5 cm soil temperatures. The results showed that the accuracy of merged LSTs increased with the increasing quantity of utilized data, and as the availability of utilized data increased from 25.2% to 91.4%, the RMSEs of the merged data decreased from 4.53 °C to 2.31 °C. In addition, compared with the filling gap method in which MODIS LST gaps were filled with AMSR-E LST directly, the merged LSTs from the BME method showed better spatial continuity. The different penetration depths of TIR and PMWs may influence fusion performance and still require further studies.

  9. Results from Assimilating AMSR-E Soil Moisture Estimates into a Land Surface Model Using an Ensemble Kalman Filter in the Land Information System

    Science.gov (United States)

    Blankenship, Clay B.; Crosson, William L.; Case, Jonathan L.; Hale, Robert

    2010-01-01

    Improve simulations of soil moisture/temperature, and consequently boundary layer states and processes, by assimilating AMSR-E soil moisture estimates into a coupled land surface-mesoscale model Provide a new land surface model as an option in the Land Information System (LIS)

  10. Long time series of soil moisture obtained using neural networks: application to AMSR-E and SMOS

    Science.gov (United States)

    Rodriguez-Fernandez, Nemesio J.; Kerr, Yann H.; de Jeu, Rcihard A. M.; van der Schalie, Robin; Wigneron, Jean Pierre; Ayaari, Amen al; Dolman, Han; Drusch, Matthias; Mecklenburg, Sussane

    2015-04-01

    The Soil Moisture and Ocean Salinity (SMOS) satellite is the first mission specifically designed to measure soil moisture (hereafter SM) from space. The instrument on-board SMOS is a L-band aperture synthesis radiometer, with full-polarization and multi-angular capabilities (Mecklenburg et al. 2012). The operational SM retrieval algorithm is based on a physical model (Kerr et al. 2012). In addition, Rodriguez-Fernandez et al. (2014) have recently implemented an inverse model based in neural networks using the approach of Aires & Prigent (2006), which consists in training the neural networks with numerical weather prediction models (ECMWF, Balsamo et al. 2009). In the context of an ESA funded project (de Jeu et al, this conference, session CL 5.7), we have studied this neural network approach to create a consistent soil moisture dataset from 2003 to 2014 using NASA/JAXA Advanced Scanning Microwave Radiometer (AMSR-E) and ESA SMOS radiometers as input data. Two neural networks algorithms have been defined and optimized using AMSR-E or SMOS as input data in the periods 2003-Oct 2011 and 2010-2014, respectively. The two missions overlapping period has been used to demonstrate the consistency of the SM dataset produced with both algorithms by comparing monthly averages of SM and by comparing with time series of in situ measurements at selected locations and other SM products such as the SMOS operational SM, ECMWF model SM, and AMSR-E LPRM SM (Owe et al. 2008). Finally, the long time series of SM obtained with neural networks will be compared to in-situ measurements and ECMWF ERA-Interim SM at selected locations. This long-term soil moisture dataset can be used for hydrological and climate applications and it is the first step towards a longer dataset which will include additional sensors. References Aires, F. & Prigent, C. Toward a new generation of satellite surface products? Journal of Geophysical Research: Atmospheres (1984--2012), Wiley Online Library, 2006, 11

  11. Arctic Sea Ice Concentration and Extent from Danish Meteorological Institute Sea Ice Charts, 1901-1956

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set provides estimates of Arctic sea ice extent and concentration from 1901 to 1956 created from a collection of historic, hand-drawn sea ice charts from...

  12. Assimilation of ice and water observations from SAR imagery to improve estimates of sea ice concentration

    Directory of Open Access Journals (Sweden)

    K. Andrea Scott

    2015-09-01

    Full Text Available In this paper, the assimilation of binary observations calculated from synthetic aperture radar (SAR images of sea ice is investigated. Ice and water observations are obtained from a set of SAR images by thresholding ice and water probabilities calculated using a supervised maximum likelihood estimator (MLE. These ice and water observations are then assimilated in combination with ice concentration from passive microwave imagery for the purpose of estimating sea ice concentration. Due to the fact that the observations are binary, consisting of zeros and ones, while the state vector is a continuous variable (ice concentration, the forward model used to map the state vector to the observation space requires special consideration. Both linear and non-linear forward models were investigated. In both cases, the assimilation of SAR data was able to produce ice concentration analyses in closer agreement with image analysis charts than when assimilating passive microwave data only. When both passive microwave and SAR data are assimilated, the bias between the ice concentration analyses and the ice concentration from ice charts is 19.78%, as compared to 26.72% when only passive microwave data are assimilated. The method presented here for the assimilation of SAR data could be applied to other binary observations, such as ice/water information from visual/infrared sensors.

  13. Evaluation of AMSR-E Derived Soil Moisture over Northern China

    Institute of Scientific and Technical Information of China (English)

    ZHANG An-Zhi; JIA Gen-Suo; WANG He-Song; ZHAO Tian-Bao; FENG Jin-Ming; MA Zhu-Guo

    2011-01-01

    In this study, the authors evaluated two remotely sensed surface soil moisture datasets derived from the Advanced Microwave Scanning Radiometer of the Earth Observing System (AMSR-E) over northern China. The soil moisture datasets were derived from algorithms developed by the National Snow and Ice Data Center (NSIDC) and jointly developed by the Vrije Universiteit Amsterdam and NASA Goddard Space Flight Center (VUA-NASA). The NSIDC and VUA-NASA products were compared to in situ soil moisture data from nine enhanced coordinated observation stations. The VUANASA dataset presented a strong correlation with top layer in situ soil moisture observations, and the correlation coefficients ranged from 0.34 to 0.73 (p〈0.01). The correlation coefficients decreased as the observed soil layer depth increased. The correlation coefficients between the NSIDC retrievals and the top layer in situ observations were between -0.10 and 0.62 (p〈0.01). Furthermore, VUA-NASA soil moisture variations agreed well with in situ soil moisture dynamics and responded sensitively to precipitation events. In contrast, the NSIDC dataset failed to capture signals of soil moisture dynamics. The analyses demonstrated that the VUA-NASA product was capable of representing soil moisture conditions over northern China.

  14. Microwave emissivity of fresh water ice--Lake ice and Antarctic ice pack--Radiative transfer simulations versus satellite radiances

    CERN Document Server

    Mills, Peter

    2012-01-01

    Microwave emissivity models of sea ice are poorly validated empirically. Typical validation studies involve using averaged or stereotyped profiles of ice parameters against averaged radiance measurements. Measurement sites are rarely matched and even less often point-by-point. Because of saline content, complex permittivity of sea ice is highly variable and difficult to predict. Therefore, to check the validity of a typical, plane-parallel, radiative-transfer-based ice emissivity model, we apply it to fresh water ice instead of salt-water ice. Radiance simulations for lake ice are compared with measurements over Lake Superior from the Advanced Microwave Scanning Radiometer on EOS (AMSR-E). AMSR-E measurements are also collected over Antarctic icepack. For each pixel, a thermodynamic model is driven by four years of European Center for Medium Range Weather Forecasts (ECMWF) reanalysis data and the resulting temperature profiles used to drive the emissivity model. The results suggest that the relatively simple ...

  15. GHRSST Level 2P Global Subskin Sea Surface Temperature from the Advanced Scanning Microwave Radiometer - Earth Observing System (AMSR-E) on the NASA Aqua Satellite (GDS versions 1 and 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Advanced Microwave Scanning Radiometer (AMSR-E) was launched on 4 May 2002, aboard NASA's Aqua spacecraft. The National Space Development Agency of Japan...

  16. GHRSST Level 2P Gridded Global Subskin Sea Surface Temperature from the Advanced Scanning Microwave Radiometer - Earth Observing System (AMSR-E) on the NASA Aqua Satellite (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Advanced Microwave Scanning Radiometer (AMSR-E) was launched on 4 May 2002, aboard NASA's Aqua spacecraft. The National Space Development Agency of Japan...

  17. GHRSST Level 2P Regional Subskin Sea Surface Temperature from the Advanced Microwave Scanning Radiometer - Earth Observing System (AMSR-E) on the NASA Aqua satellite for the Atlantic Ocean (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Advanced Microwave Scanning Radiometer (AMSR-E) was launched on 4 May 2002, aboard NASA's Aqua spacecraft. The National Space Development Agency of Japan...

  18. On the measure of sea ice area from sea ice concentration data sets

    Science.gov (United States)

    Boccolari, Mauro; Parmiggiani, Flavio

    2015-10-01

    The measure of sea ice surface variability provides a fundamental information on the climatology of the Arctic region. Sea ice extension is conventionally measured by two parameters, i.e. Sea Ice Extent (SIE) and Sea Ice Area (SIA), both parameters being derived from Sea Ice Concentration (SIC) data sets. In this work a new parameter (CSIA) is introduced, which takes into account only the compact sea-ice, which is defined as the sea-ice having concentration at least equal the 70%. Aim of this study is to compare the performances of the two parameters, SIA and CSIA, in analyzing the trends of three monthly time-series of the whole Arctic region. The SIC data set used in this study was produced by the Institute of Environmental Physics of the University of Bremen and covers the period January 2003 - December 2014, i.e. the period in which the data set is built using the new AMSR passive microwave sensor.

  19. GLERL Great Lakes Ice Concentration Data Base, 1960-1979

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Ice concentration grids for 1960 to 1979 are archived for half-month periods, generally December through April. Data values are coded to the nearest ten percent for...

  20. Heterogeneous ice slurry flow and concentration distribution in horizontal pipes

    International Nuclear Information System (INIS)

    Highlights: • A Mixture CFD model is applied to describe heterogeneous ice slurry flow. • The ice slurry rheological behavior is considered piecewise. • The coupled flow and concentration profiles in heterogeneous slurry flow is acquired. • The current numerical model achieves good balance between precision and universality. -- Abstract: Ice slurry is an energy-intensive solid–liquid mixture fluid which may play an important role in various cooling purposes. Knowing detailed flow information is important from the system design point of view. However, the heterogeneous ice slurry flow makes it difficult to be quantified due to the complex two phase flow characteristic. The present study applies a Mixture computational fluid dynamics (CFD) model based on different rheological behavior to characterize the heterogeneous ice slurry flow. The Mixture CFD model was firstly validated by three different experiments. Then the validated Mixture CFD model was applied to solve the ice slurry isothermal flow by considering the rheological behavior piecewise. Finally, the numerical solutions have displayed the coupled flow information, such as slurry velocity, ice particle concentration and pressure drop distribution. The results show that, the ice slurry flow distribution will appear varying degree of asymmetry under different operating conditions. The rheological behavior will be affected by the asymmetric flow distributions. When mean flow velocity is high, Thomas equation can be appropriate for describing ice slurry viscosity. While with the decreasing of mean flow velocity, the ice slurry behaves Bingham rheology. As compared with experimental pressure drop results, the relative errors of numerical computation are almost within ±15%. The Mixture CFD model is validated to be an effective model for describing heterogeneous ice slurry flow and could supply plentiful flow information

  1. Multi-Decadal Variability of Polynya Characteristics and Ice Production in the North Water Polynya by Means of Passive Microwave and Thermal Infrared Satellite Imagery

    Directory of Open Access Journals (Sweden)

    Andreas Preußer

    2015-11-01

    Full Text Available The North Water (NOW Polynya is a regularly-forming area of open-water and thin-ice, located between northwestern Greenland and Ellesmere Island (Canada at the northern tip of Baffin Bay. Due to its large spatial extent, it is of high importance for a variety of physical and biological processes, especially in wintertime. Here, we present a long-term remote sensing study for the winter seasons 1978/1979 to 2014/2015. Polynya characteristics are inferred from (1 sea ice concentrations and brightness temperatures from passive microwave satellite sensors (Advanced Microwave Scanning Radiometer (AMSR-E and AMSR2, Scanning Multichannel Microwave Radiometer (SMMR, Special Sensor Microwave Imager/Sounder (SSM/I-SSMIS and (2 thin-ice thickness distributions, which are calculated using MODIS ice-surface temperatures and European Center for Medium-Range Weather Forecasts (ECMWF atmospheric reanalysis data in a 1D thermodynamic energy-balance model. Daily ice production rates are retrieved for each winter season from 2002/2003 to 2014/2015, assuming that all heat loss at the ice surface is balanced by ice growth. Two different cloud-cover correction schemes are applied on daily polynya area and ice production values to account for cloud gaps in the MODIS composites. Our results indicate that the NOW polynya experienced significant seasonal changes over the last three decades considering the overall frequency of polynya occurrences, as well as their spatial extent. In the 1980s, there were prolonged periods of a more or less closed ice cover in northern Baffin Bay in winter. This changed towards an average opening on more than 85% of the days between November and March during the last decade. Noticeably, the sea ice cover in the NOW polynya region shows signs of a later-appearing fall freeze-up, starting in the late 1990s. Different methods to obtain daily polynya area using passive microwave AMSR-E/AMSR2 data and SSM/I-SSMIS data were applied. A comparison

  2. Melt ponds and marginal ice zone from new algorithm of sea ice concentration retrieval

    Science.gov (United States)

    Repina, Irina; Tikhonov, Vasiliy; Komarova, Nataliia; Raev, Mikhail; Sharkov, Evgeniy

    2016-04-01

    Studies of spatial and temporal properties of sea ice distribution in polar regions help to monitor global environmental changes and reveal their natural and anthropogenic factors, as well as make forecasts of weather, marine transportation and fishing conditions, assess perspectives of mineral mining on the continental shelf, etc. Contact methods of observation are often insufficient to meet the goals, very complicated technically and organizationally and not always safe for people involved. Remote sensing techniques are believed to be the best alternative. Its include monitoring of polar regions by means of passive microwave sensing with the aim to determine spatial distribution, types, thickness and snow cover of ice. However, the algorithms employed today to retrieve sea ice characteristics from passive microwave sensing data for different reasons give significant errors, especially in summer period and also near ice edges and in cases of open ice. A new algorithm of sea ice concentration retrieval in polar regions from satellite microwave radiometry data is discussed. Beside estimating sea ice concentration, the algorithm makes it possible to indicate ice areas with melting snow and melt ponds. Melt ponds are an important element of the Arctic climate system. Covering up to 50% of the surface of drifting ice in summer, they are characterized by low albedo values and absorb several times more incident shortwave radiation than the rest of the snow and ice cover. The change of melt ponds area in summer period 1987-2015 is investigated. The marginal ice zone (MIZ) is defined as the area where open ocean processes, including specifically ocean waves, alter significantly the dynamical properties of the sea ice cover. Ocean wave fields comprise short waves generated locally and swell propagating from the large ocean basins. Depending on factors like wind direction and ocean currents, it may consist of anything from isolated, small and large ice floes drifting over a

  3. The implementation of sea ice model on a regional high-resolution scale

    Science.gov (United States)

    Prasad, Siva; Zakharov, Igor; Bobby, Pradeep; McGuire, Peter

    2015-09-01

    The availability of high-resolution atmospheric/ocean forecast models, satellite data and access to high-performance computing clusters have provided capability to build high-resolution models for regional ice condition simulation. The paper describes the implementation of the Los Alamos sea ice model (CICE) on a regional scale at high resolution. The advantage of the model is its ability to include oceanographic parameters (e.g., currents) to provide accurate results. The sea ice simulation was performed over Baffin Bay and the Labrador Sea to retrieve important parameters such as ice concentration, thickness, ridging, and drift. Two different forcing models, one with low resolution and another with a high resolution, were used for the estimation of sensitivity of model results. Sea ice behavior over 7 years was simulated to analyze ice formation, melting, and conditions in the region. Validation was based on comparing model results with remote sensing data. The simulated ice concentration correlated well with Advanced Microwave Scanning Radiometer for EOS (AMSR-E) and Ocean and Sea Ice Satellite Application Facility (OSI-SAF) data. Visual comparison of ice thickness trends estimated from the Soil Moisture and Ocean Salinity satellite (SMOS) agreed with the simulation for year 2010-2011.

  4. Estimation of Summer Rainfall over an Arid Area using AMSR-E Measurements:A Case Study in Xinjiang,China

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Rainfall estimate in arid region using passive microwave remote sensing techniques has been a complex issue for some time.The main reason for this difficulty is that the high and variable emissivity of land surfaces greatly aggravates the complexity of the signatures from the rain cloud.The Xinjiang area,located in the northwest of China,holds all the typical characteristics of arid climate.A rainfall algorithm has been developed for this region by using the Advanced Microwave Scanning Radiometer for Earth Observing System(AMSR-E) measurements.The algorithm attempts to use all 12 chan-nels on the AMSR-E instrument and a two-step method calibrated over 11 days of hourly rain-gauge data.First,Stepwise Discriminant Analysis(SDA) used to optimally estimate rain pixels based on all 12 channels,although only three channels were found to be necessary.Next,a rain predicator scattering index was used to estimate rain rates.A linear relationship between the rain rates and the scattering index above the threshold of 3.0K was constructed with a simple approximately linear function.The estimated rain rates were compared with the rain-gauge data used to calibrate the method,and a good relationship was found with a root-mean-square error of 2.1mm/h.The numerical calculations and comparisons show that the algorithm works well in the Xinjiang area.

  5. Seasonal variations in sea ice motion and effects on sea ice concentration in the Canada Basin

    Science.gov (United States)

    Serreze, Mark C.; Barry, Roger G.; McLaren, Alfred S.

    1989-08-01

    Drifting buoy data, surface pressure, and geostrophic wind analyses from the Arctic Ocean Buoy Program are used to examine seasonal features of the sea ice motion in the Canada Basin for 1979-1985. Although the 7-year annual mean motion in this region is clockwise, the month-to-month motion is highly variable. In late summer to early autumn, the circulation can become net anticlockwise for periods lasting at least 30 days. Results from a linear model demonstrate that these "reversals" of ice motion in the Beaufort Gyre are a wind-driven response to persistent cyclonic activity that contrasts sharply with the predominantly anticyclonic regimes of spring, late autumn, and winter. Model-predicted ice divergences of 0.5% or more per day which can occur during periods of anticlockwise ice motion are in good agreement with values calculated from optimally interpolated velocity gradient fields. Visible band imagery and passive microwave data confirm associated large areal reductions in ice concentration of approximately 20%. Data from under-ice submarine sonar transects and surface pressure records prior to the study period point to frequent recurrences of these late summer to early autumn ice conditions.

  6. Recent increase in Antarctic Peninsula ice core uranium concentrations

    Science.gov (United States)

    Potocki, Mariusz; Mayewski, Paul A.; Kurbatov, Andrei V.; Simões, Jefferson C.; Dixon, Daniel A.; Goodwin, Ian; Carleton, Andrew M.; Handley, Michael J.; Jaña, Ricardo; Korotkikh, Elena V.

    2016-09-01

    Understanding the distribution of airborne uranium is important because it can result in both chemical and radiological toxicity. Ice cores offer the most robust reconstruction of past atmospheric levels of toxic substances. Here we present the first sub-annually dated, continuously sampled ice core documenting change in U levels in the Southern Hemisphere. The ice core was recovered from the Detroit Plateau, northern Antarctic Peninsula, in 2007 by a joint Brazilian-Chilean-US team. It displays a significant increase in U concentration that coincides with reported mining activities in the Southern Hemisphere, notably Australia. Raw U concentrations in the Detroit Plateau ice core increased by as much as 102 between the 1980s and 2000s accompanied by increased variability in recent years. Decadal mean U concentrations increased by a factor of ∼3 from 1980 to 2007, reaching a mean of 205 pg/L from 2000 to 2007. The fact that other terrestrial source dust elements such as Ce, La, Pr, and Ti do not show a similar increase and that the increased U concentrations are enriched above natural crustal levels, supports an anthropogenic source for the U as opposed to a change in atmospheric circulation.

  7. Retrieval Snow Depth by Artificial Neural Network Methodology from Integrated AMSR-E and In-situ Data——A Case Study in Qinghai-Tibet Plateau

    Institute of Scientific and Technical Information of China (English)

    CAO Yungang; YANG Xiuchun; ZHU Xiaohua

    2008-01-01

    On the basis of artificial neural network (ANN) model, this paper presents an algorithm for inversing snow depth with use of AMSR-E (Advanced Microwave Scanning Radiometer-Earth Observing System (EOS)) dataset, i.e., brightness temperature at 18.7 and 36.5GHz in Qinghai-Tibet Plateau during the snow season of 2002-2003. In order to overcome the overfitting problem in ANN modeling, this methodology adopts a Bayesian regularization approach. The experiments are performed to compare the results obtained from the ANN-based algorithm with those obtained from other existing algorithms, i.e., Chang algorithm, spectral polarization difference (SPD) algorithm, and tempera-ture gradient (TG) algorithm. The experimental results show that the presented algorithm has the highest accuracy in estimating snow depth. In addition, the effects of the noises in damsels on model fitting can be decreased due to adopt-ing the Bayesian regularization approach.

  8. Cyclone impact on sea ice in the central Arctic Ocean: a statistical study

    Directory of Open Access Journals (Sweden)

    A. Kriegsmann

    2013-03-01

    Full Text Available This study investigates the impact of cyclones on the Arctic Ocean sea ice for the first time in a statistical manner. We apply the coupled ice–ocean model NAOSIM which is forced by the ECMWF analyses for the period 2006–2008. Cyclone position and radius detected in the ECMWF data are used to extract fields of wind, ice drift, and concentration from the ice–ocean model. Composite fields around the cyclone centre are calculated for different cyclone intensities, the four seasons, and different regions of the Arctic Ocean. In total about 3500 cyclone events are analyzed. In general, cyclones reduce the ice concentration on the order of a few percent increasing towards the cyclone centre. This is confirmed by independent AMSR-E satellite data. The reduction increases with cyclone intensity and is most pronounced in summer and on the Siberian side of the Arctic Ocean. For the Arctic ice cover the impact of cyclones has climatologic consequences. In winter, the cyclone-induced openings refreeze so that the ice mass is increased. In summer, the openings remain open and the ice melt is accelerated via the positive albedo feedback. Strong summer storms on the Siberian side of the Arctic Ocean may have been important reasons for the recent ice extent minima in 2007 and 2012.

  9. Comparison of NASA Team2 and AES-York Ice Concentration Algorithms Against Operational Ice Charts From the Canadian Ice Service

    Science.gov (United States)

    Shokr, Mohammed; Markus, Thorsten

    2006-01-01

    Ice concentration retrieved from spaceborne passive-microwave observations is a prime input to operational sea-ice-monitoring programs, numerical weather prediction models, and global climate models. Atmospheric Environment Service (AES)- York and the Enhanced National Aeronautics and Space Administration Team (NT2) are two algorithms that calculate ice concentration from Special Sensor Microwave/Imager observations. This paper furnishes a comparison between ice concentrations (total, thin, and thick types) output from NT2 and AES-York algorithms against the corresponding estimates from the operational analysis of Radarsat images in the Canadian Ice Service (CIS). A new data fusion technique, which incorporates the actual sensor's footprint, was developed to facilitate this study. Results have shown that the NT2 and AES-York algorithms underestimate total ice concentration by 18.35% and 9.66% concentration counts on average, with 16.8% and 15.35% standard deviation, respectively. However, the retrieved concentrations of thin and thick ice are in much more discrepancy with the operational CIS estimates when either one of these two types dominates the viewing area. This is more likely to occur when the total ice concentration approaches 100%. If thin and thick ice types coexist in comparable concentrations, the algorithms' estimates agree with CIS'S estimates. In terms of ice concentration retrieval, thin ice is more problematic than thick ice. The concept of using a single tie point to represent a thin ice surface is not realistic and provides the largest error source for retrieval accuracy. While AES-York provides total ice concentration in slightly more agreement with CIS'S estimates, NT2 provides better agreement in retrieving thin and thick ice concentrations.

  10. Investigating the Relative Contributions of Secondary Ice Formation Processes to Ice Crystal Number Concentrations Within Mixed-Phase Clouds

    Science.gov (United States)

    Sullivan, S.; Nenes, A.

    2015-12-01

    Measurements of the in-cloud ice nuclei concentration can be three or four orders of magnitude less than those of the in-cloud ice crystal number concentration. Different secondary formation processes, active after initial ice nucleation, have been proposed to explain this discrepancy, but their relative importance, and even the exact physics of each mechanism, are still unclear. We construct a simple bin microphysics model (2IM) including depositional growth, the Hallett-Mossop process, ice-ice collisions, and ice-ice aggregation, with temperature- and supersaturation-dependent efficiencies for each process. 2IM extends the time-lag collision model of Yano and Phillips to additional bins and incorporates the aspect ratio evolution of Jensen and Harrington. Model output and measured ice crystal size distributions are compared to answer three questions: (1) how important is ice-ice aggregation relative to ice-ice collision around -15°C, where the Hallett-Mossop process is no longer active; (2) what process efficiencies lead to the best reproduction of observed ice crystal size distributions; and (3) does ice crystal aspect ratio affect the dominant secondary formation process. The resulting parameterization is intended for eventual use in larger-scale mixed-phase cloud schemes.

  11. In-situ aircraft observations of ice concentrations within clouds over the Antarctic Peninsula and Larsen Ice Shelf

    Directory of Open Access Journals (Sweden)

    D. P. Grosvenor

    2012-12-01

    Full Text Available In-situ aircraft observations of ice crystal concentrations in Antarctic clouds are presented for the first time. Orographic, layer and wave clouds around the Antarctic Peninsula and Larsen Ice shelf regions were penetrated by the British Antarctic Survey's Twin Otter aircraft, which was equipped with modern cloud physics probes. The clouds studied were mostly in the free troposphere and hence ice crystals blown from the surface are unlikely to have been a major source for the ice phase. The temperature range covered by the experiments was 0 to −21 °C. The clouds were found to contain supercooled liquid water in most regions and at heterogeneous ice formation temperatures ice crystal concentrations (60 s averages were often less than 0.07 l−1, although values up to 0.22 l−1 were observed. Estimates of observed aerosol concentrations were used as input into the DeMott et al. (2010 ice nuclei (IN parameterisation. The observed ice crystal number concentrations were generally in broad agreement with the IN predictions, although on the whole the predicted values were higher. Possible reasons for this are discussed and include the lack of IN observations in this region with which to characterise the parameterisation, and/or problems in relating ice concentration measurements to IN concentrations. Other IN parameterisations significantly overestimated the number of ice particles. Generally ice particle concentrations were much lower than found in clouds in middle latitudes for a given temperature.

    Higher ice crystal concentrations were sometimes observed at temperatures warmer than −9 °C, with values of several per litre reached. These were attributable to secondary ice particle production by the Hallett Mossop process. Even in this temperature range it was observed that there were regions with little or no ice that were dominated by supercooled liquid water. It is likely that in some cases this was due to a

  12. Pyramidal ice crystal scattering phase functions and concentric halos

    Directory of Open Access Journals (Sweden)

    C. Liu

    Full Text Available Phase functions have been calculated using the Monte Carlo/geometric ray tracing method for single hexagonal pyramidal ice crystals (such as solid and hollow bullets randomly oriented in space and horizontal plane, in order to study the concentric halo formations. Results from three dimensional model calculations show that 9° halo can be as bright as the common 22° halo for pyramidal angle of 28°, and the 18°, 20°, 24° and 35° halos cannot be seen due to the strong 22° halo domination in the scattering phase function between 18° and 35°. For solid pyramidal ice crystals randomly oriented horizontally, the 35° arc can be produced and its intensity depends on the incident ray solar angle and the particle aspect ratio.

  13. A Downscaling Method for Improving the Spatial Resolution of AMSR-E Derived Soil Moisture Product Based on MSG-SEVIRI Data

    Directory of Open Access Journals (Sweden)

    Wei Zhao

    2013-12-01

    Full Text Available Soil moisture is a vital parameter in various land surface processes, and microwave remote sensing is widely used to estimate regional soil moisture. However, the application of the retrieved soil moisture data is restricted by its coarse spatial resolution. To overcome this weakness, many methods were proposed to downscale microwave soil moisture data. The traditional method is the microwave-optical/IR synergistic approach, in which land surface temperature (LST, vegetation index and surface albedo are key parameters. However, due to the uncertainty in absolute LST estimation, this approach is partly dependent on the accuracy of LST estimation. To eliminate the impacts of LST estimation, an improved downscaling method is proposed in this study to downscale Advanced Microwave Scanning Radiometer on the Earth Observing System (AMSR-E Land Parameter Retrieval Model (LPRM soil moisture product with visible and thermal data of Meteosat Second Generation (MSG—Spinning Enhanced Visible and Infrared Imager (SEVIRI. Two temperature temporal variation parameters related to soil moisture, including mid-morning rising rate and daily maximum temperature time, are introduced in the proposed method to replace LST. The proposed method and the traditional method are both applied to the Iberian Peninsula area for July and August 2007. Comparison of the two results shows that the coefficient of determination (R-squared has an average improvement of 0.08 and the root mean square error has a systematic decrease. The downscaled soil moisture by the proposed method was validated by REMEDHUS soil moisture network in the study area, and site specific validation gets poor correlation between the two datasets because of the low spatial representativeness of site measurement for one MSG-SEVIRI pixel. Although the comparisons at 15 km and network scale show an improvement over the site specific comparison, it is found that the downscaling method systematically degrades

  14. Summer sea ice in the recent Arctic: morphological properties in the Pacific sector from the CHINARE 2010 cruise

    Directory of Open Access Journals (Sweden)

    H. Xie

    2012-05-01

    Full Text Available The Chinese National Arctic Research Expedition (CHINARE in the summer 2010, primarily from 21 July to 28 August, in the ice zone of Arctic Pacific Sector, between 150° W to 180° W to 88.5° N, conducted comprehensive scientific studies on atmosphere-ice-ocean interactions, using icebreaker R.V. Xuelong. Measurements made included underway visual observations of snow and ice conditions at half-hourly time scale and EM31-measured ice thickness at one 12-day and eight short-term (3–4 h each ice stations. The visual observation data are compared with AMSR-E ice concentration, ice thickness measured by a hanging EM31 from the vessel, and video-recorded image-derived ice concentration and pond coverage. A grid of 8 profiles of ice thickness measurements (four repeats was conducted at the 12-day ice station (∼86°50' N–87°20' N in the central Arctic and an average 2 cm day−1 melt rate, primarily bottom melt, was found, after surface melting had almost ceased. The high bottom melt rate, as compared with previous results from other studies, is consistent with the high floe speed (mean 0.17 m s−1 that is also larger than that previously reported. We also found that the daily AMSR-E ice concentration data can be used to map the marginal ice zone (MIZ and its change. There are clear differences between the MIZ and pack ice zone in terms of ice concentration, thickness, ice type, floe size, as well as pond coverage. Results indicate that, as compared with the 2005 data from the Healy/Oden Trans-Arctic Expedition for the Arctic Pacific Sector (9 August to 10 September, the 2010 was first-year ice dominant (vs. the multiyear ice dominant in 2005, 70% or less in ice concentration (vs. 90% in 2005, 94–114 cm in ice thickness (vs. 150 cm in 2005. No snow cover was observed on the ice south of 78° N and 8–10 cm mean snow depth due to new snowfall events, which melted away after 17 August (vs. no snow cover south of 84.3° N

  15. Sea ice concentration and sea ice drift for the Arctic summer using C- and L-band SAR

    Science.gov (United States)

    Johansson, Malin; Berg, Anders; Eriksson, Leif

    2014-05-01

    The decreasing amount of sea ice and changes from multi-year ice to first year ice within the Arctic Ocean opens up for increased maritime activities. These activities include transportation, fishing and tourism. One of the major threats for the shipping is the presence of sea ice. Should an oil spill occur, the search and rescue is heavily dependent on constant updates of sea ice movements, both to enable a safer working environment and to potentially prevent the oil from reaching the sea ice. It is therefore necessary to have accurate and updated sea ice charts for the Arctic Ocean during the entire year. During the melt season that ice is subject to melting conditions making satellite observations of sea ice more difficult. This period coincides with the peak in marine shipping activities and therefore requires highly accurate sea ice concentration estimates. Synthetic Aperture Radar (SAR) are not hindered by clouds and do not require daylight. The continuous record and high temporal resolution makes C-band data preferable as input data for operational sea ice mapping. However, with C-band SAR it is sometimes difficult to distinguish between a wet sea ice surface and surrounding open water. L-band SAR has a larger penetration depth and has been shown to be less sensitive to less sensitive than C-band to the melt season. Inclusion of L-band data into sea chart estimates during the melt season in particular could therefore improve sea ice monitoring. We compare sea ice concentration melt season observations using Advanced Land Observing Satellite (ALOS) L-band images with Envisat ASAR C-band images. We evaluate if L-band images can be used to improve separation of wet surface ice from open water and compare with results for C-band.

  16. A mission planning tool for the Characterization of Sea Ice (CASIE) mission to Svalbard, Norway, in July 2009

    Science.gov (United States)

    Kerr, J. M.; Enomoto, F.; Johan, S.; Crocker, R. I.; Fladeland, M. M.; Long, D.; Maslanik, J. A.; Sullivan, D.; Wegrzyn, K.

    2009-12-01

    Team members from NASA Ames Research Center developed a mission planning tool using Google Earth to support mission planning and monitoring during the Characterization of Sea Ice (CASIE) 2009 Mission to Svalbard, Norway. The tool allowed both deployed and non-deployed team members to view near-real time satellite imagery, ancillary information and flight paths before, during and after flights. MODIS, QuikSCAT, and AMSR-E data were displayed in Google Earth as ground overlays. MODIS data included two true color images (one each from Aqua and Terra) and a false color image (bands 3, 6, and 7) from Terra. The images were converted from GeoTIFF format to KML format using GDAL and provided cloud information to flight planners. The QuikSCAT and AMSR-E satellite imagery provided information on ice location and concentration, which allowed flight planners to locate areas for data collection. Ancillary information included sounding data, icing and snow cover forecasts, cloud pressure, perceptible water, and surface temperature data. Before flying, flight paths were created in Google Earth and then converted into shapefiles for input into flight software. While in-flight, the plane sent position, temperature, and humidity data to the base station in Ny-Ålesund. These data were converted into KML format and displayed within Google Earth in near-real time. The simultaneous display of satellite data, weather forecasts, and real-time data from the aircraft allowed mission planners to make real time mission operation decisions and allowed for remote mission monitoring by team members not deployed to Svalbard.

  17. Improving Simulated Soil Moisture Fields Through Assimilation of AMSR-E Soil Moisture Retrievals with an Ensemble Kalman Filter and a Mass Conservation Constraint

    Science.gov (United States)

    Li, Bailing; Toll, David; Zhan, Xiwu; Cosgrove, Brian

    2011-01-01

    Model simulated soil moisture fields are often biased due to errors in input parameters and deficiencies in model physics. Satellite derived soil moisture estimates, if retrieved appropriately, represent the spatial mean of soil moisture in a footprint area, and can be used to reduce model bias (at locations near the surface) through data assimilation techniques. While assimilating the retrievals can reduce model bias, it can also destroy the mass balance enforced by the model governing equation because water is removed from or added to the soil by the assimilation algorithm. In addition, studies have shown that assimilation of surface observations can adversely impact soil moisture estimates in the lower soil layers due to imperfect model physics, even though the bias near the surface is decreased. In this study, an ensemble Kalman filter (EnKF) with a mass conservation updating scheme was developed to assimilate the actual value of Advanced Microwave Scanning Radiometer (AMSR-E) soil moisture retrievals to improve the mean of simulated soil moisture fields by the Noah land surface model. Assimilation results using the conventional and the mass conservation updating scheme in the Little Washita watershed of Oklahoma showed that, while both updating schemes reduced the bias in the shallow root zone, the mass conservation scheme provided better estimates in the deeper profile. The mass conservation scheme also yielded physically consistent estimates of fluxes and maintained the water budget. Impacts of model physics on the assimilation results are discussed.

  18. Comparing model and measured ice crystal concentrations in orographic clouds during the INUPIAQ campaign

    Science.gov (United States)

    Farrington, Robert J.; Connolly, Paul J.; Lloyd, Gary; Bower, Keith N.; Flynn, Michael J.; Gallagher, Martin W.; Field, Paul R.; Dearden, Chris; Choularton, Thomas W.

    2016-04-01

    This paper assesses the reasons for high ice number concentrations observed in orographic clouds by comparing in situ measurements from the Ice NUcleation Process Investigation And Quantification field campaign (INUPIAQ) at Jungfraujoch, Switzerland (3570 m a.s.l.) with the Weather Research and Forecasting model (WRF) simulations over real terrain surrounding Jungfraujoch. During the 2014 winter field campaign, between 20 January and 28 February, the model simulations regularly underpredicted the observed ice number concentration by 103 L-1. Previous literature has proposed several processes for the high ice number concentrations in orographic clouds, including an increased ice nucleating particle (INP) concentration, secondary ice multiplication and the advection of surface ice crystals into orographic clouds. We find that increasing INP concentrations in the model prevents the simulation of the mixed-phase clouds that were witnessed during the INUPIAQ campaign at Jungfraujoch. Additionally, the inclusion of secondary ice production upwind of Jungfraujoch into the WRF simulations cannot consistently produce enough ice splinters to match the observed concentrations. A flux of surface hoar crystals was included in the WRF model, which simulated ice concentrations comparable to the measured ice number concentrations, without depleting the liquid water content (LWC) simulated in the model. Our simulations therefore suggest that high ice concentrations observed in mixed-phase clouds at Jungfraujoch are caused by a flux of surface hoar crystals into the orographic clouds.

  19. The melting sea ice of Arctic polar cap in the summer solstice month and the role of ocean

    Science.gov (United States)

    Lee, S.; Yi, Y.

    2014-12-01

    The Arctic sea ice is becoming smaller and thinner than climatological standard normal and more fragmented in the early summer. We investigated the widely changing Arctic sea ice using the daily sea ice concentration data. Sea ice data is generated from brightness temperature data derived from the sensors: Defense Meteorological Satellite Program (DMSP)-F13 Special Sensor Microwave/Imagers (SSM/Is), the DMSP-F17 Special Sensor Microwave Imager/Sounder (SSMIS) and the Advanced Microwave Scanning Radiometer - Earth Observing System (AMSR-E) instrument on the NASA Earth Observing System (EOS) Aqua satellite. We tried to figure out appearance of arctic sea ice melting region of polar cap from the data of passive microwave sensors. It is hard to explain polar sea ice melting only by atmosphere effects like surface air temperature or wind. Thus, our hypothesis explaining this phenomenon is that the heat from deep undersea in Arctic Ocean ridges and the hydrothermal vents might be contributing to the melting of Arctic sea ice.

  20. Assimilation of sea surface temperature, sea ice concentration and sea ice drift in a model of the Southern Ocean

    OpenAIRE

    Barth, Alexander; Canter, Martin; Van Schaeybroeck, Bert; Vannitsem, Stéphane; Massonnet, François; Zunz, Violette; Mathiot, Pierre; Alvera Azcarate, Aïda; Beckers, Jean-Marie

    2015-01-01

    Current ocean models have relatively large errors and biases in the Southern Ocean. The aim of this study is to provide a reanalysis from 1985 to 2006 assimilating sea surface temperature, sea ice concentration and sea ice drift. In the following it is also shown how surface winds in the Southern Ocean can be improved using sea ice drift estimated from infrared radiometers. Such satellite observations are available since the late seventies and have the potential to improve the wind forcing be...

  1. Sea and Freshwater Ice Concentration from VIIRS on Suomi NPP and the Future JPSS Satellites

    Directory of Open Access Journals (Sweden)

    Yinghui Liu

    2016-06-01

    Full Text Available Information on ice is important for shipping, weather forecasting, and climate monitoring. Historically, ice cover has been detected and ice concentration has been measured using relatively low-resolution space-based passive microwave data. This study presents an algorithm to detect ice and estimate ice concentration in clear-sky areas over the ocean and inland lakes and rivers using high-resolution data from the Visible Infrared Imaging Radiometer Suite (VIIRS onboard the Suomi National Polar Orbiting Partnership (S-NPP and on future Joint Polar Satellite System (JPSS satellites, providing spatial detail that cannot be obtained with passive microwave data. A threshold method is employed with visible and infrared observations to identify ice, then a tie-point algorithm is used to determine the representative reflectance/temperature of pure ice, estimate the ice concentration, and refine the ice cover mask. The VIIRS ice concentration is validated using observations from Landsat 8. Results show that VIIRS has an overall bias of −0.3% compared to Landsat 8 ice concentration, with a precision (uncertainty of 9.5%. Biases and precision values for different ice concentration subranges from 0% to 100% can be larger.

  2. Modeling the relative contributions of secondary ice formation processes to ice crystal number concentrations within mixed-phase clouds

    Science.gov (United States)

    Sullivan, Sylvia; Hoose, Corinna; Nenes, Athanasios

    2016-04-01

    Measurements of in-cloud ice crystal number concentrations can be three or four orders of magnitude greater than the in-cloud ice nuclei number concentrations. This discrepancy can be explained by various secondary ice formation processes, which occur after initial ice nucleation, but the relative importance of these processes, and even the exact physics of each, is still unclear. A simple bin microphysics model (2IM) is constructed to investigate these knowledge gaps. 2IM extends the time-lag collision parameterization of Yano and Phillips, 2011 to include rime splintering, ice-ice aggregation, and droplet shattering and to incorporate the aspect ratio evolution as in Jensen and Harrington, 2015. The relative contribution of the secondary processes under various conditions are shown. In particular, temperature-dependent efficiencies are adjusted for ice-ice aggregation versus collision around -15°C, when rime splintering is no longer active, and the effect of aspect ratio on the process weighting is explored. The resulting simulations are intended to guide secondary ice formation parameterizations in larger-scale mixed-phase cloud schemes.

  3. Satellite Remote Sensing of Pan-arctic Vegetation Productivity, Soil Respiration and net CO2 Exchange Using MODIS and AMSR-E Data

    Science.gov (United States)

    Nirala, M. L.; Heinsch, F. A.; Kimball, J. S.; Zhao, M.; Running, S.; Oechel, W.; McDonald, K.; Njoku, E.

    2005-05-01

    We have developed an approach for regional assessment and monitoring of land-atmosphere carbon dioxide (CO2) exchange, soil heterotrophic respiration (Rh) and vegetation productivity for arctic tundra using global satellite remote sensing at optical and microwave wavelengths. We use C- and X-band brightness temperatures from AMSR-E to extract surface wetness and temperature, and MODIS data to derive land cover, Leaf Area Index (LAI) and Net Primary Production (NPP) information. Calibration and validation activities involve comparisons between satellite remote sensing and tundra CO2 eddy flux tower and biophysical measurement networks and hydro-ecological process model simulations. We analyze spatial and temporal anomalies and environmental drivers of land-atmosphere net CO2 exchange at weekly and annual time steps. Surface soil moisture status and temperature as detected from satellite remote sensing observations are found to be major drivers spatial and temporal patterns of tundra net CO2 exchange and photosynthetic and respiration processes. We also find that satellite microwave measurements are capable of capturing seasonal variations and regional patterns in tundra soil heterotrophic respiration and CO2 exchange, while our ability to extract spatial patterns at the scale of surface heterogeneity is limited by the coarse spatial scale of the satellite remote sensing footprint. Our results also indicate that carbon cycle response to climate change is non-linear and strongly coupled to arctic surface hydrology. This work was performed at The University of Montana and Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

  4. Sensitivity of Lunar Resource Economic Model to Lunar Ice Concentration

    Science.gov (United States)

    Blair, Brad; Diaz, Javier

    2002-01-01

    Lunar Prospector mission data indicates sufficient concentration of hydrogen (presumed to be in the form of water ice) to form the basis for lunar in-situ mining activities to provide a source of propellant for near-Earth and solar system transport missions. A model being developed by JPL, Colorado School of Mines, and CSP, Inc. generates the necessary conditions under which a commercial enterprise could earn a sufficient rate of return to develop and operate a LEO propellant service for government and commercial customers. A combination of Lunar-derived propellants, L-1 staging, and orbital fuel depots could make commercial LEO/GEO development, inter-planetary missions and the human exploration and development of space more energy, cost, and mass efficient.

  5. Recent Increases in Snow Accumulation and Decreases in Sea-Ice Concentration Recorded in a Coastal NW Greenland Ice Core

    Science.gov (United States)

    Osterberg, E. C.; Thompson, J. T.; Wong, G. J.; Hawley, R. L.; Kelly, M. A.; Lutz, E.; Howley, J.; Ferris, D. G.

    2013-12-01

    A significant rise in summer temperatures over the past several decades has led to widespread retreat of the Greenland Ice Sheet (GIS) margin and surrounding sea ice. Recent observations from geodetic stations and GRACE show that ice mass loss progressed from South Greenland up to Northwest Greenland by 2005 (Khan et al., 2010). Observations from meteorological stations at the U.S. Thule Air Force Base, remote sensing platforms, and climate reanalyses indicate a 3.5C mean annual warming in the Thule region and a 44% decrease in summer (JJAS) sea-ice concentrations in Baffin Bay from 1980-2010. Mean annual precipitation near Thule increased by 12% over this interval, with the majority of the increase occurring in fall (SON). To improve projections of future ice loss and sea-level rise in a warming climate, we are currently developing multi-proxy records (lake sediment cores, ice cores, glacial geologic data, glaciological models) of Holocene climate variability and cryospheric response in NW Greenland, with a focus on past warm periods. As part of our efforts to develop a millennial-length ice core paleoclimate record from the Thule region, we collected and analyzed snow pit samples and short firn cores (up to 20 m) from the coastal region of the GIS (2Barrel site; 76.9317 N, 63.1467 W) and the summit of North Ice Cap (76.938 N, 67.671 W) in 2011 and 2012, respectively. The 2Barrel ice core was sampled using a continuous ice core melting system at Dartmouth, and subsequently analyzed for major anion and trace element concentrations and stable water isotope ratios. Here we show that the 2Barrel ice core spanning 1990-2010 records a 25% increase in mean annual snow accumulation, and is positively correlated (r = 0.52, pice concentrations in northern Baffin Bay near Thule (Figure 1). We hypothesize that the positive correlation represents a significant Na contribution from frost flowers growing on fall frazil ice. Ongoing analyses will evaluate the relationship between

  6. Cloud ice caused by atmospheric mineral dust - Part 1: Parameterization of ice nuclei concentration in the NMME-DREAM model

    Science.gov (United States)

    Nickovic, Slobodan; Cvetkovic, Bojan; Madonna, Fabio; Rosoldi, Marco; Pejanovic, Goran; Petkovic, Slavko; Nikolic, Jugoslav

    2016-09-01

    Dust aerosols are very efficient ice nuclei, important for heterogeneous cloud glaciation even in regions distant from desert sources. A new generation of ice nucleation parameterizations, including dust as an ice nucleation agent, opens the way towards a more accurate treatment of cold cloud formation in atmospheric models. Using such parameterizations, we have developed a regional dust-atmospheric modelling system capable of predicting, in real time, dust-induced ice nucleation. We executed the model with the added ice nucleation component over the Mediterranean region, exposed to moderate Saharan dust transport, over two periods lasting 15 and 9 days, respectively. The model results were compared against satellite and ground-based cloud-ice-related measurements, provided by SEVIRI (Spinning Enhanced Visible and InfraRed Imager) and the CNR-IMAA Atmospheric Observatory (CIAO) in Potenza, southern Italy. The predicted ice nuclei concentration showed a reasonable level of agreement when compared against the observed spatial and temporal patterns of cloud ice water. The developed methodology permits the use of ice nuclei as input into the cloud microphysics schemes of atmospheric models, assuming that this approach could improve the predictions of cloud formation and associated precipitation.

  7. Sensitivity of Arctic warming to sea ice concentration

    Science.gov (United States)

    Yim, Bo Young; Min, Hong Sik; Kim, Baek-Min; Jeong, Jee-Hoon; Kug, Jong-Seong

    2016-06-01

    We examine the sensitivity of Arctic amplification (AA) to background sea ice concentration (SIC) under greenhouse warming by analyzing the data sets of the historical and Representative Concentration Pathway 8.5 runs of the Coupled Model Intercomparison Project Phase 5. To determine whether the sensitivity of AA for a given radiative forcing depends on background SIC state, we examine the relationship between the AA trend and mean SIC on moving 30 year windows from 1960 to 2100. It is found that the annual mean AA trend varies depending on the mean SIC condition. In particular, some models show a highly variable AA trend in relation to the mean SIC clearly. In these models, the AA trend tends to increase until the mean SIC reaches a critical level (i.e., 20-30%), and the maximum AA trend is almost 3 to 5 times larger than the trend in the early stage of global warming (i.e., 50-60%, 60-70%). However, the AA trend tends to decrease after that. Further analysis shows that the sensitivity of AA trend to mean SIC condition is closely related to the feedback processes associated with summer surface albedo and winter turbulent heat flux in the Arctic Ocean.

  8. A sea ice concentration estimation algorithm utilizing radiometer and SAR data

    Science.gov (United States)

    Karvonen, J.

    2014-09-01

    We have studied the possibility of combining the high-resolution synthetic aperture radar (SAR) segmentation and ice concentration estimated by radiometer brightness temperatures. Here we present an algorithm for mapping a radiometer-based concentration value for each SAR segment. The concentrations are estimated by a multi-layer perceptron (MLP) neural network which has the AMSR-2 (Advanced Microwave Scanning Radiometer 2) polarization ratios and gradient ratios of four radiometer channels as its inputs. The results have been compared numerically to the gridded Finnish Meteorological Institute (FMI) ice chart concentrations and high-resolution AMSR-2 ASI (ARTIST Sea Ice) algorithm concentrations provided by the University of Hamburg and also visually to the AMSR-2 bootstrap algorithm concentrations, which are given in much coarser resolution. The differences when compared to FMI daily ice charts were on average small. When compared to ASI ice concentrations, the differences were a bit larger, but still small on average. According to our comparisons, the largest differences typically occur near the ice edge and sea-land boundary. The main advantage of combining radiometer-based ice concentration estimation and SAR segmentation seems to be a more precise estimation of the boundaries of different ice concentration zones.

  9. A sea ice concentration estimation algorithm utilizing radiometer and SAR data

    Directory of Open Access Journals (Sweden)

    J. Karvonen

    2014-09-01

    Full Text Available We have studied the possibility of combining the high-resolution synthetic aperture radar (SAR segmentation and ice concentration estimated by radiometer brightness temperatures. Here we present an algorithm for mapping a radiometer-based concentration value for each SAR segment. The concentrations are estimated by a multi-layer perceptron (MLP neural network which has the AMSR-2 (Advanced Microwave Scanning Radiometer 2 polarization ratios and gradient ratios of four radiometer channels as its inputs. The results have been compared numerically to the gridded Finnish Meteorological Institute (FMI ice chart concentrations and high-resolution AMSR-2 ASI (ARTIST Sea Ice algorithm concentrations provided by the University of Hamburg and also visually to the AMSR-2 bootstrap algorithm concentrations, which are given in much coarser resolution. The differences when compared to FMI daily ice charts were on average small. When compared to ASI ice concentrations, the differences were a bit larger, but still small on average. According to our comparisons, the largest differences typically occur near the ice edge and sea–land boundary. The main advantage of combining radiometer-based ice concentration estimation and SAR segmentation seems to be a more precise estimation of the boundaries of different ice concentration zones.

  10. Factors affecting ice crystal purity during freeze concentration process for urine treatment

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Freeze concentration has great potential in treating wastewaters containing soluble pollutions. It is important for freeze concentration process to produce ice crystals with large size and high purity. In this work raw urines of 4660-7914 mg/L in COD,512.71-872.41 mg/L in NH3-N and 22600-28800μs/cm in e lectric conductivity were studied. Urines were frozen by a digital refrigerated circulator bath. Ice crystals were purified by ice-water steep and vacuum filtration. The COD,NH3-N,and electric conductivity levels of the melted ices were measured to reflect ice crystal purity. Effects of coolant temperature, ice crystal shape, initial solution temperature, solution concentration, ice seeding, re-crystallization process and crystallization time on ice crystal purity were analyzed. The results show that an appropriate coolant temperature, suspended ice crystals,an initial solution temperature of about 6 C, introduction of seed ice, addition of re-crystallization process. And crystallization time of less than 30 min are in favor of producing ice crystals with hith purity.Under such conditions, more than 99 percent of inorganic salts, COD and NH3-N sources in raw urine could be removed.

  11. Impact of surface wind biases on the Antarctic sea ice concentration budget in climate models

    Science.gov (United States)

    Lecomte, O.; Goosse, H.; Fichefet, T.; Holland, P. R.; Uotila, P.; Zunz, V.; Kimura, N.

    2016-09-01

    We derive the terms in the Antarctic sea ice concentration budget from the output of three models, and compare them to observations of the same terms. Those models include two climate models from the 5th Coupled Model Intercomparison Project (CMIP5) and one ocean-sea ice coupled model with prescribed atmospheric forcing. Sea ice drift and wind fields from those models, in average over April-October 1992-2005, all exhibit large differences with the available observational or reanalysis datasets. However, the discrepancies between the two distinct ice drift products or the two wind reanalyses used here are sometimes even greater than those differences. Two major findings stand out from the analysis. Firstly, large biases in sea ice drift speed and direction in exterior sectors of the sea ice covered region tend to be systematic and consistent with those in winds. This suggests that sea ice errors in these areas are most likely wind-driven, so as errors in the simulated ice motion vectors. The systematic nature of these biases is less prominent in interior sectors, nearer the coast, where sea ice is mechanically constrained and its motion in response to the wind forcing more depending on the model rheology. Second, the intimate relationship between winds, sea ice drift and the sea ice concentration budget gives insight on ways to categorize models with regard to errors in their ice dynamics. In exterior regions, models with seemingly too weak winds and slow ice drift consistently yield a lack of ice velocity divergence and hence a wrong wintertime sea ice growth rate. In interior sectors, too slow ice drift, presumably originating from issues in the physical representation of sea ice dynamics as much as from errors in surface winds, leads to wrong timing of the late winter ice retreat. Those results illustrate that the applied methodology provides a valuable tool for prioritizing model improvements based on the ice concentration budget-ice drift biases-wind biases

  12. Observational uncertainty of Arctic sea-ice concentration significantly affects seasonal climate forecasts

    Science.gov (United States)

    Bunzel, Felix; Notz, Dirk; Baehr, Johanna; Müller, Wolfgang; Fröhlich, Kristina

    2016-04-01

    We examine how the choice of a particular satellite-retrieved sea-ice concentration dataset used for initialising seasonal climate forecasts impacts the prediction skill of Arctic sea-ice area and Northern hemispheric 2-meter air temperatures. To do so, we performed two assimilation runs with the Max Planck Institute Earth System Model (MPI-ESM) from 1979 to 2012, where atmospheric and oceanic parameters as well as sea-ice concentration were assimilated using Newtonian relaxation. The two assimilation runs differ only in the sea-ice concentration dataset used for assimilating sea ice. In the first run, we use sea-ice concentrations as derived by the NASA-Team algorithm, while in the second run we use sea-ice concentrations as derived from the Bootstrap algorithm. A major difference between these two sea-ice concentration data products involves the treatment of melt ponds. While for both products melt ponds appear as open water in the raw satellite data, the Bootstrap algorithm more strongly attempts to offset this systematic bias by synthetically increasing the retrieved ice concentration during summer months. For each year of the two assimilation runs we performed a 10-member ensemble of hindcast experiments starting on 1 May and 1 November with a hindcast length of 6 months. For hindcasts started in November, initial differences in Arctic sea-ice area and surface temperature decrease rapidly throughout the freezing period. For hindcasts started in May, initial sea-ice area differences increase over time. By the end of the melting period, this causes significant differences in 2-meter air temperature of regionally more than 3°C. Hindcast skill for surface temperatures over Europe and North America is higher with Bootstrap initialization during summer and with NASA Team initialisation during winter. This implies that the choice of the sea-ice data product and, thus, the observational uncertainty also affects forecasts of teleconnections that depend on Northern

  13. Evaluation of the operational SAR based Baltic sea ice concentration products

    Science.gov (United States)

    Karvonen, Juha

    Sea ice concentration is an important ice parameter both for weather and climate modeling and sea ice navigation. We have developed an fully automated algorithm for sea ice concentration retrieval using dual-polarized ScanSAR wide mode RADARSAT-2 data. RADARSAT-2 is a C-band SAR instrument enabling dual-polarized acquisition in ScanSAR mode. The swath width for the RADARSAT-2 ScanSAR mode is about 500 km, making it very suitable for operational sea ice monitoring. The polarization combination used in our concentration estimation is HH/HV. The SAR data is first preprocessed, the preprocessing consists of geo-rectification to Mercator projection, incidence angle correction fro both the polarization channels. and SAR mosaicking. After preprocessing a segmentation is performed for the SAR mosaics, and some single-channel and dual-channel features are computed for each SAR segment. Finally the SAR concentration is estimated based on these segment-wise features. The algorithm is similar as introduced in Karvonen 2014. The ice concentration is computed daily using a daily RADARSAT-2 SAR mosaic as its input, and it thus gives the concentration estimated at each Baltic Sea location based on the most recent SAR data at the location. The algorithm has been run in an operational test mode since January 2014. We present evaluation of the SAR-based concentration estimates for the Baltic ice season 2014 by comparing the SAR results with gridded the Finnish Ice Service ice charts and ice concentration estimates from a radiometer algorithm (AMSR-2 Bootstrap algorithm results). References: J. Karvonen, Baltic Sea Ice Concentration Estimation Based on C-Band Dual-Polarized SAR Data, IEEE Transactions on Geoscience and Remote Sensing, in press, DOI: 10.1109/TGRS.2013.2290331, 2014.

  14. Retrieval of sea surface temperature from AMSR-E and MODIS in the Northern Indian Ocean%基于AMSR-E与MODIS数据海表面温度遥感反演研究

    Institute of Scientific and Technical Information of China (English)

    霍文娟; 韩震

    2013-01-01

    海洋表面温度是海洋环境的重要参数.遥感技术是进行海表面温度研究的有效手段之一.以印度洋北部海域为研究区域,利用Aqua卫星上的微波数据(AMSR-E)和光学数据(MODIS),进行了海表温度反演研究.首先对AMSR-E L2A数据和MODIS L1B数据进行预处理,然后将AMSR-E的各极化通道亮温数据与实测海表温度进行相关性分析,通过多元线性回归建立AMSR-E海表温度的反演模型,而MODIS海表温度则通过采用线性多通道算法得到,最后以AMSR-E亮温数据为主,MODIS海表温度数据为辅,采用多元线性回归的方法建立了海表温度反演模型.利用该模型反演印度洋北部海域海表温度,反演结果与实测数据相比,其均方根误差为0.323 97℃.研究亮点:以印度洋北部海域为研究区域,综合利用同一卫星(AQUA)上的微波数据(AMSR-E)和光学数据(MODIS)来反演海洋表面温度,在一定程度上结合微波遥感和热红外遥感各自的优势,实现全天候全海域的海洋表面温度遥感观测,反演结果的精度也略有提高.

  15. Amazonian mid- to high-latitude glaciation on Mars: Supply-limited ice sources, ice accumulation patterns, and concentric crater fill glacial flow and ice sequestration

    Science.gov (United States)

    Fastook, James L.; Head, James W.

    2014-02-01

    Concentric crater fill (CCF) occurs in the interior of impact craters in mid- to high latitudes on Mars and is interpreted to have formed by glacial ice flow and debris covering. We use the characteristics and orientation of deposits comprising CCF, the thickness of pedestal deposits in mid- to high-latitude pedestal craters (Pd), the volumes of the current polar caps, and information about regional slopes and ice rheology to address questions about (1) the maximum thickness of regional ice deposits during the Late Amazonian, (2) the likelihood that these deposits flowed regionally, (3) the geological regions and features most likely to induce ice-flow, and (4) the locations and environments in which ice is likely to have been sequestered up to the present. We find that regional ice flow under Late Amazonian climate conditions requires ice thicknesses exceeding many hundreds of meters for slopes typical of the vast majority of the surface of Mars, a thickness for the mid-latitudes that is well in excess of the total volume available from polar ice reservoirs. This indicates that although conditions for mid- to high-latitude glaciation may have persisted for tens to hundreds of millions of years, the process is “supply limited”, with a steady state reached when the polar ice cap water ice supply becomes exhausted. Impact craters are by far the most abundant landform with associated slopes (interior wall and exterior rim) sufficiently high to induce glacial ice flow under Late Amazonian climate conditions, and topographic slope data show that Amazonian impact craters have been clearly modified, undergoing crater interior slope reduction and floor shallowing. We show that these trends are the predictable response of ice deposition and preferential accumulation and retention in mid- to high-latitude crater interiors during episodes of enhanced spin-axis obliquity. We demonstrate that flow from a single episode of an inter-crater terrain layer comparable to Pedestal

  16. Sea Ice Surface Temperature Product from the Moderate Resolution Imaging Spectroradiometer (MODIS)

    Science.gov (United States)

    Hall, Dorothy K.; Key, Jeffrey R.; Casey, Kimberly A.; Riggs, George A.; Cavalieri, Donald J.

    2003-01-01

    Global sea ice products are produced from the Earth Observing System (EOS) Moderate Resolution Imaging Spectroradiometer (MODIS) on board both the Terra and Aqua satellites. Daily sea ice extent and ice-surface temperature (IST) products are available at 1- and 4-km resolution. Validation activities have been undertaken to assess the accuracy of the MODIS IST product at the South Pole station in Antarctica and in the Arctic Ocean using near-surface air-temperature data from a meteorological station and drifting buoys. Results from the study areas show that under clear skies, the MODIS ISTs are very close to those of the near-surface air temperatures with a bias of -1.1 and -1.2 K, and an uncertainty of 1.6 and 1.7 K, respectively. It is shown that the uncertainties would be reduced if the actual temperature of the ice surface were reported instead of the near-surface air temperature. It is not possible to get an accurate IST from MODIS in the presence of even very thin clouds or fog, however using both the Advanced Microwave Scanning Radiometer-EOS (AMSR-E) and the MODIS on the Aqua satellite, it may be possible to develop a relationship between MODIS-derived IST and ice temperature derived from the AMSR-E. Since the AMSR-E measurements are generally unaffected by cloud cover, they may be used to complement the MODIS IST measurements.

  17. Retrieved sea surface temperature analysis of MODIS and AMSR-E aboard AQUA satellite for the northern Indian Ocean%AQUA卫星的MODIS和AMSR-E反演的印度洋北部海域海表温度特征对比分析

    Institute of Scientific and Technical Information of China (English)

    霍文娟; 韩震

    2013-01-01

    In this paper, the northern Indian Ocean served as the study area. Characteristics of sea surface temperature retrieved from MODIS and AMSR-E sensor aboard AQUA satellite were analyzed from three aspects, namely, the location,the temperature curve and the inversion accuracy. The main characteristics showed that the difference of MODIS SST and the AMSR-E SST changed with the latitude obviously; AMSR-E SST failed to offer accurate sea surface temperature in the coastal region; the diversity of MODIS SST and AMSR-E SST changed with the temperature differences. In this paper, the retrieval accuracy of AMSR-E SST was often better than that of MODIS SST. The result of this study had important reference to the sea surface temperature quantitative inversion using the thermal infrared and passive microwave remote sensing technology.%以印度洋北部海域为研究区域,分别从地理位置、温度曲线和反演精度3个方面对AQUA卫星上的MODIS和AMSR-E反演的海表温度特征进行了对比分析。其主要特征表现为MODIS SST与AMSR-E SST之间的差异随纬度变化较为明显;在近岸区域,AMSR-E SST无法获得准确的海表面温度;MODIS SST与AMSR-E SST之间的差异随温度而不同;在本次研究中,AMSR-E SST反演精度总体优于MODIS SST。本次研究结果对利用热红外遥感和被动微波遥感进行海洋表面温度的定量反演具有重要的参考价值。

  18. Global Daily Sea Ice Concentration Reprocessing Data Set for 1978-2007 from the EUMETSAT Ocean and Sea Ice Satellite Application Facility (NCEI Accession 0068294)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data constitute the reprocessed sea ice concentration data set from the EUMETSAT Ocean and Sea Ice Satellite Application Facility (OSI SAF), covering the...

  19. Evaluation of the operational SAR based Baltic Sea ice concentration products

    Science.gov (United States)

    Karvonen, Juha

    2015-07-01

    Sea ice concentration is an important ice parameter both for weather and climate modeling and sea ice navigation. We have developed an fully automated algorithm for sea ice concentration retrieval using dual-polarized ScanSAR wide mode RADARSAT-2 data. RADARSAT-2 is a C-band SAR (Synthetic Aperture Radar) instrument enabling dual-polarized acquisition in ScanSAR mode. The swath width for the RADARSAT-2 ScanSAR mode is about 500 km, making it very suitable for operational sea ice monitoring. The polarization combination used in our concentration estimation is HH/HV. The SAR data is first preprocessed; the preprocessing consists of geo-rectification to Mercator projection, incidence angle correction for both the polarization channels, and SAR mosaicking. After preprocessing a segmentation is performed for the SAR mosaics, and some features are computed for each SAR segment. Finally the SAR concentration is estimated based on these segment-wise features. The algorithm is basically similar as introduced in Karvonen 2014. The ice concentration is computed daily using a daily RADARSAT-2 SAR mosaic as its input, and it thus gives the concentration estimated at each grid cell (pixel) based on the most recent SAR data at the location. The algorithm has been run in an operational test mode since January 2014. We present evaluation of the SAR-based concentration estimates for the Baltic ice season 2014 by comparing the SAR results with gridded Finnish Meteorological Institute (FMI) ice charts and ice concentration estimates from a radiometer algorithm.

  20. What Controls the Low Ice Number Concentration in the Upper Tropical Troposphere?

    Science.gov (United States)

    Penner, J.; Zhou, C.; Lin, G.; Liu, X.; Wang, M.

    2015-12-01

    Cirrus clouds in the tropical tropopause play a key role in regulating the moisture entering the stratosphere through their dehydrating effect. Low ice number concentrations and high supersaturations were frequently were observed in these clouds. However, low ice number concentrations are inconsistent with cirrus cloud formation based on homogeneous freezing. Different mechanisms have been proposed to explain this discrepancy, including the inhibition of homogeneous freezing by pre-existing ice crystals and/or glassy organic aerosol heterogeneous ice nuclei (IN) and limiting the formation of ice number from high frequency gravity waves. In this study, we examined the effect from three different parameterizations of in-cloud updraft velocities, the effect from pre-existing ice crystals, the effect from different water vapor deposition coefficients (α=0.1 or 1), and the effect from 0.1% of secondary organic aerosol (SOA) acting as glassy heterogeneous ice nuclei (IN) in CAM5. Model simulated ice crystal numbers are compared against an aircraft observational dataset. Using grid resolved large-scale updraft velocity in the ice nucleation parameterization generates ice number concentrations in better agreement with observations for temperatures below 205K while using updraft velocities based on the model-generated turbulence kinetic energy generates ice number concentrations in better agreement with observations for temperatures above 205K. A larger water vapor deposition coefficient (α=1) can efficiently reduce the ice number at temperatures below 205K but less so at higher temperatures. Glassy SOA IN are most effective at reducing the ice number concentrations when the effective in-cloud updraft velocities are moderate (~0.05-0.2 m s-1). Including the removal of water vapor on pre-existing ice can also effectively reduce the ice number and diminish the effects from the additional glassy SOA heterogeneous IN. We also re-evaluate whether IN seeding in cirrus cloud is

  1. Measurements of ice nuclei concentrations and compositions in the maritime tropics

    Science.gov (United States)

    McMeeking, G. R.; Danielczok, A.; Bingemer, H.; Klein, H.; Hill, T. C.; Franc, G. D.; Martinez, M.; Venero, I.; Mayol-Bracero, O. L.; Ardon-Dryer, K.; Levin, Z.; Anderson, J.; Twohy, C. H.; Toohey, D. W.; DeMott, P. J.

    2011-12-01

    Tropical maritime cumulus clouds represent an important component of the global water cycle, but the relative roles of primary and secondary ice production in these clouds are poorly understood. Heterogeneous ice nuclei (IN) are responsible for ice initiation in towering tropical cumulus clouds, so information regarding their abundance, distribution, source compositions and dependence on cloud temperature is crucial to understanding the ice production processes. Here we present recent measurements of ice nuclei (IN) concentrations measured from ground-based and airborne (NSF/NCAR C-130) platforms during the Ice in Clouds-Tropical experiment, which took place in July 2011 over the Caribbean Sea near St. Croix in the US Virgin Islands. IN measurement techniques included airborne ambient and cloud particle residual measurements using a continuous flow diffusion chamber and off-line analysis of samples collected from the aircraft and two ground sites located on the island of Puerto Rico. Off-line measurements of IN concentrations included analysis by the Frankfurt Ice Nuclei Deposition FreezinG Experiment (FRIDGE) system and drop freezing via two methods of particles collected from filter samples. The measurement period included some periods with a strong Saharan dust influence that resulted in higher IN concentrations compared to clean maritime conditions. First analysis of IN physical, chemical and biological composition, and investigation of relationships between IN concentrations and total aerosol concentrations, composition and size are also presented.

  2. Sea ice thickness and concentration in Arctic obtaining from remote sensing images

    Institute of Scientific and Technical Information of China (English)

    Lu Peng; Li Zhijun; Dong Xilu; Zhang Zhanhai; Chen Zhi

    2004-01-01

    Based on the sea ice digital videos and photos along the investigation route in the Second Chinese National Arctic Research Expedition (CHINARE) during July and September, 2003, collections of sea ice thickness and concentration in the area of latitude range of 74.11°N-79.56°N and longitude range of 144.17°W-169.95°W are finished. This paper discusses the methods of obtaining ice/snow thicknesses from ship-side videos and ice concentrations from aerial photos, and illustrates the measures should be taken in analysis and in-situ investigation processes to improve the reliability of the parameters. The methods in this paper are somewhat universal and can be used in the research of Bohai Sea and Polar Regions sea ice.

  3. NOAA Climate Data Record (CDR) of Passive Microwave Sea Ice Concentration, Version 2

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Passive Microwave Sea Ice Concentration Climate Data Record (CDR) dataset is generated using daily gridded brightness temperatures from the Defense...

  4. NOAA/NSIDC Climate Data Record of Passive Microwave Sea Ice Concentration

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set provides a Climate Data Record (CDR) of sea ice concentration from passive microwave data. It provides a consistent, daily and monthly time series of...

  5. A sea ice concentration estimation algorithm utilizing radiometer and SAR data

    Directory of Open Access Journals (Sweden)

    J. Karvonen

    2014-04-01

    Full Text Available We have studied the possibility of combining the high-resolution SAR segmentation and ice concentration estimated by radiometer brightness temperatures. Here we present an algorithm for mapping a radiometer-based concentration value for each SAR segment. The concentrations are estimated by a MLP neural network which has the AMSR-2 radiometer polarization ratios and gradient ratios of four radiometer channels as its inputs. The results have been compared numerically to the gridded FMI ice chart concentrations and high-resolution AMSR-2 ASI algorithm concentrations provided by University of Hamburg and also visually to the AMSR-2 bootstrap algorithm concentrations, which are given in much coarser resolution. The results when compared to FMI ice charts were very promising.

  6. European Marine Background Ice Nucleating Particle concentrations Measured at the Mace Head Station, Ireland.

    Science.gov (United States)

    Atkinson, James; Kanji, Zamin A.; Ovadnevaite, Jurgita; Ceburnis, Darius; O'Dowd, Colin

    2016-04-01

    Ice formation is an important process which controls cloud microphysical properties and can be critical in the creation of precipitation, therefore influencing the hydrological cycle and energy budget of the Earth. Ice Nucleating Particles (INP) can greatly increase the temperature and rate of ice formation, but the sources and geographical distributions of these particles is not well understood. Mace Head in Ireland is a coastal site on the north eastern edge of Europe with prevailing winds generally from the Atlantic Ocean with little continental influence. Observations of INP concentration from August 2015 using the Horizontal Ice Nucleation Chamber (HINC) at temperature of -30 C are presented. Correlations between the INP and meteorological conditions and aerosol compositions are made, as well as comparisons with commonly used INP concentration parameterisations. Observed INP concentrations are generally low, suggesting that oceanic sources in this region do not contribute significant numbers of INP to the global distribution.

  7. Influences of Ice Crystal Number Concentrations and Habits on Arctic Mixed-Phase Cloud Dynamics

    Science.gov (United States)

    Komurcu, Muge

    2016-09-01

    Mixed-phase clouds are frequently present in the Arctic atmosphere, and strongly affect the surface energy budget. In this study, the influences of ice crystal number concentrations and crystal growth habits on the Arctic mixed-phase cloud microphysics and dynamics are investigated for internally and externally driven cloud systems using an eddy-resolving model. Separate simulations are performed with increasing ice concentrations and different ice crystal habits. It is found that the habit influence on cloud microphysics and dynamics is as pronounced as increasing the ice crystal concentrations for internally driven clouds and more dominant for externally driven clouds. Habit influence can lead to a 10 % reduction in surface incident longwave radiation flux. Sensitivity tests are performed to identify the interactions between processes affecting cloud dynamics that allow for persistent clouds (i.e., the radiative cooling at cloud top, ice precipitation stabilization at cloud-base). When cloud-base stabilization influences of ice precipitation are weak, cloud dynamics is more sensitive to radiative cooling. Additional sensitivity simulations are done with increasing surface latent and sensible heat fluxes to identify the influences of external forcing on cloud dynamics. It is found that the magnitude of cloud circulations for an externally driven cloud system with strong precipitation and weak surface fluxes is similar to a weakly precipitating, optically thick, internally driven cloud. For cloud systems with intense ice precipitation obtained through either increasing ice crystal concentrations or assuming ice crystal shapes that grow rapidly and fall fast, the cloud layer may collapse despite the moistening effect of surface fluxes.

  8. Effect of elevated CO2 concentration on microalgal communities in Antarctic pack ice

    Science.gov (United States)

    Coad, Thomas; McMinn, Andrew; Nomura, Daiki; Martin, Andrew

    2016-09-01

    Increased anthropogenic CO2 emissions are causing changes to oceanic pH and CO2 concentrations that will impact many marine organisms, including microalgae. Phytoplankton taxa have shown mixed responses to these changes with some doing well while others have been adversely affected. Here, the photosynthetic response of sea-ice algal communities from Antarctic pack ice (brine and infiltration microbial communities) to a range of CO2 concentrations (400 ppm to 11,000 ppm in brine algae experiments, 400 ppm to 20,000 ppm in the infiltration ice algae experiment) was investigated. Incubations were conducted as part of the Sea-Ice Physics and Ecosystem Experiment II (SIPEX-2) voyage, in the austral spring (September-November), 2012. In the brine incubations, maximum quantum yield (Fv/Fm) and relative electron transfer rate (rETRmax) were highest at ambient and 0.049% (experiment 1) and 0.19% (experiment 2) CO2 concentrations, although, Fv/Fm was consistently between 0.53±0.10-0.68±0.01 across all treatments in both experiments. Highest rETRmax was exhibited by brine cultures exposed to ambient CO2 concentrations (60.15). In a third experiment infiltration ice algal communities were allowed to melt into seawater modified to simulate the changed pH and CO2 concentrations of future springtime ice-edge conditions. Ambient and 0.1% CO2 treatments had the highest growth rates and Fv/Fm values but only the highest CO2 concentration produced a significantly lower rETRmax. These experiments, conducted on natural Antarctic sea-ice algal communities, indicate a strong level of tolerance to elevated CO2 concentrations and suggest that these communities might not be adversely affected by predicted changes in CO2 concentration over the next century.

  9. A new algorithm to measure sea ice concentration from passive microwave remote sensing

    Science.gov (United States)

    Repina, Irina; Sharkov, Evgeniy; Komarova, Nataliya; Raev, Mikhail; Tikhonov, Vasilii; Boyarskiy, Dmitriy

    Studies of spatial and temporal properties of sea ice distribution in polar regions help to monitor global environmental changes and reveal their natural and anthropogenic factors, as well as make forecasts of weather, marine transportation and fishing conditions, assess perspectives of mineral mining on the continental shelf, etc. Contact methods of observation are often insufficient to meet the goals, very complicated technically and organizationally and not always safe for people involved. Remote sensing techniques are believed to be the best alternative. Its include monitoring of polar regions by means of passive microwave sensing with the aim to determine spatial distribution, types, thickness and snow cover of ice. However, the algorithms employed today to retrieve sea ice characteristics from passive microwave sensing data for different reasons give significant errors, especially in summer period and also near ice edges and in cases of open ice. One of the error sources is the current practice of using empirical dependencies and adjustment coefficients for the retrieval of ice characteristics and neglecting the physics of the process. We discuss an electrodynamic model of the sea surface - sea ice - snow cover - atmosphere system developed with account taken of physical and structural properties of the ambient. Model calculations of ice brightness temperature in different concentrations and snow covers are in good agreement with SSM/I measurement data. On the base of this model we develop a new algorithm for the retrieval of sea ice concentration from passive microwave sensing data - Variation Arctic Sea Ice Algorithm (VASIA). In contrast to the well-known techniques (NASA TEAM, Bootstrap, ASI, NORSEX et al), it takes into account the real physical parameters of ice, snow and open water rather than empirical and adjustment coefficients. Satellite data were provided by the POLE-RT-Fields SSM/I and SSMIS data collection for polar regions retrieved from the

  10. Concentration and environmental significance of lead in surface snow of Antarctic ice sheet (III)

    Institute of Scientific and Technical Information of China (English)

    秦大河; 任贾文; 孙俊英; 陈瓞延; 文克玲; 李良权

    1995-01-01

    Lead as an ultra-trace heavy metal becomes one of popular topics in glaciochemistry of the Antarctic ice sheet, because of its very low concertration (pg·g-1) and background and its sensitivity to the quality of the environment. The lead concentration of surface snow of the Antarctic ice sheet (corresponding to modern precipitation) applying LEAF technique by Chinese scholars has systematically been studied for the first time in the world. The distribution principle of lead concentration of surface snow of the Antarctic ice sheet is "low in the west and high in the east" along the route of 1990 International Trans-Antarctic Expedition (ITAE). The concentration of lead in East Antarctica is 2 - 3 fold higher than that in Larsen ice shelf and Antarctic Peninsula, which majorly results from the activity of pre-Soviet Antarctic Expedition The concentration of lead in Larsen ice shelf and Antarctic Peninsula can be regarded as the background value of modern precipitation of the Antarctic ice sheet in the en

  11. Satellite passive microwave measurements of sea ice concentration: an optimal algorithm and challenges

    Directory of Open Access Journals (Sweden)

    N. Ivanova

    2015-02-01

    Full Text Available Sea ice concentration has been measured globally with satellite microwave radiometers for over 30 years. However there is still a need for better understanding of corresponding challenges and consequently identifying an optimal method for sea ice concentration retrieval suitable for climate monitoring. The method should minimize inter-sensor calibration discrepancies and sensitivity to error sources with climatic trends (e.g. atmospheric water vapour and water surface roughening by wind. This article presents the results of an extensive algorithm inter-comparison and validation experiment. Thirty sea ice algorithms entered the experiment where their skills were evaluated over low and high sea ice concentrations, thin ice and areas covered by melt ponds. In addition, atmospheric correction of input brightness temperatures and dynamic tie-points approach were suggested. A selection of thirteen algorithms is shown in the article to demonstrate the results. Based on the findings, an optimal approach was suggested to retrieve sea ice concentration globally for climate monitoring purposes.

  12. Understanding Ice Supersaturation, Particle Growth, and Number Concentration in Cirrus Clouds

    Science.gov (United States)

    Comstock, Jennifer M.; Lin, Ruei-Fong; Starr, David O'C.; Yang, Ping

    2008-01-01

    Many factors control the ice supersaturation and microphysical properties in cirrus clouds. We explore the effects of dynamic forcing, ice nucleation mechanisms, and ice crystal growth rate on the evolution and distribution of water vapor and cloud properties in nighttime cirrus clouds using a one-dimensional cloud model with bin microphysics and remote sensing measurements obtained at the Department of Energy's Atmospheric Radiation Measurement (ARM) Climate Research Facility located near Lamont, OK. We forced the model using both large-scale vertical ascent and, for the first time, mean mesoscale velocity derived from radar Doppler velocity measurements. Both heterogeneous and homogeneous nucleation processes are explored, where a classical theory heterogeneous scheme is compared with empirical representations. We evaluated model simulations by examining both bulk cloud properties and distributions of measured radar reflectivity, lidar extinction, and water vapor profiles, as well as retrieved cloud microphysical properties. Our results suggest that mesoscale variability is the primary mechanism needed to reproduce observed quantities. Model sensitivity to the ice growth rate is also investigated. The most realistic simulations as compared with observations are forced using mesoscale waves, include fast ice crystal growth, and initiate ice by either homogeneous or heterogeneous nucleation. Simulated ice crystal number concentrations (tens to hundreds particles per liter) are typically two orders of magnitude smaller than previously published results based on aircraft measurements in cirrus clouds, although higher concentrations are possible in isolated pockets within the nucleation zone.

  13. A Pleistocene ice core record of atmospheric O2 concentrations

    Science.gov (United States)

    Stolper, D. A.; Bender, M. L.; Dreyfus, G. B.; Yan, Y.; Higgins, J. A.

    2016-09-01

    The history of atmospheric O2 partial pressures (PO2) is inextricably linked to the coevolution of life and Earth’s biogeochemical cycles. Reconstructions of past PO2 rely on models and proxies but often markedly disagree. We present a record of PO2 reconstructed using O2/N2 ratios from ancient air trapped in ice. This record indicates that PO2 declined by 7 per mil (0.7%) over the past 800,000 years, requiring that O2 sinks were ~2% larger than sources. This decline is consistent with changes in burial and weathering fluxes of organic carbon and pyrite driven by either Neogene cooling or increasing Pleistocene erosion rates. The 800,000-year record of steady average carbon dioxide partial pressures (PCO2) but declining PO2 provides distinctive evidence that a silicate weathering feedback stabilizes PCO2 on million-year time scales.

  14. Concentrating Antarctic Meteorites on Blue ice Fields: The Frontier Mountain Meteorite Trap

    Science.gov (United States)

    Sandford, Scott A.; DeVincenzi, D. (Technical Monitor)

    2002-01-01

    The collection of meteorites in Antarctica has greatly stimulated advancement in the field of meteoritics by providing the community with significant numbers of rare and unique meteorites types and by yielding large numbers of meteorites that sample older infall epochs (Grady et al., 1998). The majority of Antarctic meteorites are found on blue ice fields, where they are thought to be concentrated by wind and glacial drift (cf. Cassidy et al., 1992). The basic "ice flow model" describes the concentration of meteorites by the stagnation or slowing of ice as it moves against a barrier located in a zone with low snow accumulation. However, our limited knowledge of the details of the actual concentration mechanisms prevents establishing firm conclusions concerning the past meteorite flux from the Antarctic record (Zolensky, 1998). The terrestrial ages of Antarctic meteorites indicate that their concentration occurs on time scales of tens to hundreds of thousands of years (Nishiizumi et al., 1989). It is a challenge to measure a mechanism that operates so slowly, and since such time scales can span more than one glacial epoch one cannot assume that the snow accumulation rates, ice velocities and directions, etc. that are measured today are representative of those extant over the age of the trap. Testing the basic "ice flow model" therefore requires the careful measurement of meteorite locations, glacialogical ice flow data, ice thicknesses, bedrock and surface topology, ice ablation and snow accumulation rates, and mass transport by wind over an extended period of time in a location where these quantities can be interpreted in the context of past glacialogical history.

  15. Comparing modelled and measured ice crystal concentrations in orographic clouds during the INUPIAQ campaign

    Science.gov (United States)

    Farrington, Robert; Connolly, Paul J.; Lloyd, Gary; Bower, Keith N.; Flynn, Michael J.; Gallagher, Martin W.; Field, Paul R.; Dearden, Chris; Choularton, Thomas W.; Hoyle, Chris

    2016-04-01

    At temperatures between -35°C and 0°C, the presence of insoluble aerosols acting as ice nuclei (IN) is the only way in which ice can nucleate under atmospheric conditions. Previous field and laboratory campaigns have suggested that mineral dust present in the atmosphere act as IN at temperatures warmer than -35°C (e.g. Sassen et al. 2003); however, the cause of ice nucleation at temperatures greater than -10°C is less certain. In-situ measurements of aerosol properties and cloud micro-physical processes are required to drive the improvement of aerosol-cloud processes in numerical models. As part of the Ice NUcleation Process Investigation and Quantification (INUPIAQ) project, two field campaigns were conducted in the winters of 2013 and 2014 (Lloyd et al. 2014). Both campaigns included measurements of cloud micro-physical properties at the summit of Jungfraujoch in Switzerland (3580m asl), using cloud probes, including the Two-Dimensional Stereo Hydrometeor Spectrometer (2D-S), the Cloud Particle Imager 3V (CPI-3V) and the Cloud Aerosol Spectrometer with Depolarization (CAS-DPOL). The first two of these probes measured significantly higher ice number concentrations than those observed in clouds at similar altitudes from aircraft. In this contribution, we assess the source of the high ice number concentrations observed by comparing in-situ measurements at Jungfraujoch with WRF simulations applied to the region around Jungfraujoch. During the 2014 field campaign the model simulations regularly simulated ice particle concentrations that were 3 orders of magnitude per litre less than the observed ice number concentration, even taking into account the aerosol properties measured upwind. WRF was used to investigate a number of potential sources of the high ice crystal concentrations, including: an increased ice nucleating particle (INP) concentration, secondary ice multiplication and the advection of surface ice or snow crystals into the clouds. It was found that the

  16. Closure between ice-nucleating particle and ice crystal number concentrations in ice clouds embedded in Saharan dust: Lidar observation during the BACCHUS Cyprus 2015 campaign

    Science.gov (United States)

    Mamouri, Rodanthi-Elisavet; Ansmann, Albert; Bühl, Johannes; Engelmann, Ronny; Baars, Holger; Nisantzi, Argyro; Hadjimitsis, Diofantos; Atkinson, James; Kanji, Zamin; Vrekoussis, Michalis; Sciare, Jean; Mihalopoulos, Nikos

    2016-04-01

    For the first time, we compare ice-nucleating particle number concentration (INPC) derived from polarization lidar (Mamouri and Ansmann, 2015) with ice crystal number concentrations (ICNC) in ice cloud layers embedded in the observed Saharan dust layers (at heights above 6 km and corresponding temperatures from -20 to -40°C). ICNC is estimated from the respective cirrus extinction profiles obtained with the same polarization lidar in combination with Doppler lidar measurements of the ice crystal sedimentation speed from which the mean size of the crystals can be estimated. Good agreement between INPC and ICNC was obtained for two case studies of the BACCHUS Cyprus 2015 field campaign with focus on INPC profiling. The campaign was organized by the Cyprus Institute, Nicosia, where a lidar was deployed. Additionaly, observations of AERONET and EALINET Lidar stations during the BACCHUS Cyprus 2015 field campaign, performed by Cyprus University of Technology in Limassol. Both, INPC and ICNC were found in the range from 10-50 1/L. Lidar-derived INPC values were also compared with in-situ INPC measurements (Horizontal Ice Nucleation Chamber, HINC, ETH Zurich, deployed at Agia Marina, at 500 m a.s.l., 30 km west of the lidar site). Reasonable and partly good agreement (during dust events) was found between the two retrievals. The findings of these closure studies corroborate the applicability of available INPC parameterization schemes (DeMott et al., 2010, 2015) implemented in the lidar retrieval scheme, and more generally INPC profiling by using active remote sensing (at ground and in space with CALIPSO and EarthCARE lidars).

  17. Brief communication: The challenge and benefit of using sea ice concentration satellite data products with uncertainty estimates in summer sea ice data assimilation

    Science.gov (United States)

    Yang, Qinghua; Losch, Martin; Losa, Svetlana N.; Jung, Thomas; Nerger, Lars; Lavergne, Thomas

    2016-04-01

    Data assimilation experiments that aim at improving summer ice concentration and thickness forecasts in the Arctic are carried out. The data assimilation system used is based on the MIT general circulation model (MITgcm) and a local singular evolutive interpolated Kalman (LSEIK) filter. The effect of using sea ice concentration satellite data products with appropriate uncertainty estimates is assessed by three different experiments using sea ice concentration data of the European Space Agency Sea Ice Climate Change Initiative (ESA SICCI) which are provided with a per-grid-cell physically based sea ice concentration uncertainty estimate. The first experiment uses the constant uncertainty, the second one imposes the provided SICCI uncertainty estimate, while the third experiment employs an elevated minimum uncertainty to account for a representation error. Using the observation uncertainties that are provided with the data improves the ensemble mean forecast of ice concentration compared to using constant data errors, but the thickness forecast, based on the sparsely available data, appears to be degraded. Further investigating this lack of positive impact on the sea ice thicknesses leads us to a fundamental mismatch between the satellite-based radiometric concentration and the modeled physical ice concentration in summer: the passive microwave sensors used for deriving the vast majority of the sea ice concentration satellite-based observations cannot distinguish ocean water (in leads) from melt water (in ponds). New data assimilation methodologies that fully account or mitigate this mismatch must be designed for successful assimilation of sea ice concentration satellite data in summer melt conditions. In our study, thickness forecasts can be slightly improved by adopting the pragmatic solution of raising the minimum observation uncertainty to inflate the data error and ensemble spread.

  18. Dating a tropical ice core by time-frequency analysis of ion concentration depth profiles

    Science.gov (United States)

    Gay, M.; De Angelis, M.; Lacoume, J.-L.

    2014-09-01

    Ice core dating is a key parameter for the interpretation of the ice archives. However, the relationship between ice depth and ice age generally cannot be easily established and requires the combination of numerous investigations and/or modelling efforts. This paper presents a new approach to ice core dating based on time-frequency analysis of chemical profiles at a site where seasonal patterns may be significantly distorted by sporadic events of regional importance, specifically at the summit area of Nevado Illimani (6350 m a.s.l.), located in the eastern Bolivian Andes (16°37' S, 67°46' W). We used ion concentration depth profiles collected along a 100 m deep ice core. The results of Fourier time-frequency and wavelet transforms were first compared. Both methods were applied to a nitrate concentration depth profile. The resulting chronologies were checked by comparison with the multi-proxy year-by-year dating published by de Angelis et al. (2003) and with volcanic tie points. With this first experiment, we demonstrated the efficiency of Fourier time-frequency analysis when tracking the nitrate natural variability. In addition, we were able to show spectrum aliasing due to under-sampling below 70 m. In this article, we propose a method of de-aliasing which significantly improves the core dating in comparison with annual layer manual counting. Fourier time-frequency analysis was applied to concentration depth profiles of seven other ions, providing information on the suitability of each of them for the dating of tropical Andean ice cores.

  19. Numerical Analysis of Effects of Atmospheric Ice Nuclei Concentrations on Radiant Properties of Cold Clouds

    Institute of Scientific and Technical Information of China (English)

    LI Juan; MAO Jietai; HU Zhijin; YOU Laiguang; ZHANG Qiang

    2005-01-01

    Numerical simulations of 18 precipitation days from June to September in 1996 with the 3D convective cloud model of CAMS (Chinese Academy of Meteorological Sciences, Version 2000) were conducted. In these simulations, the concentration of IN (ice nuclei) was assumed to increase by 5 times. The results show that when IN concentrations increase, the amounts of precipitation decrease, cloud tops heighten and the areas of cloud tops increase in 80 percent simulated clouds. Moreover, in 95 percent simulated clouds, the sizes of ice crystals in clouds decrease and quantities increase. These results mean that the physical properties of clouds will change when IN concentration increases. The radiant properties of clouds and climate may also change directly and indirectly.

  20. Immersion freezing in concentrated solution droplets for a variety of ice nucleating particles

    Science.gov (United States)

    Wex, Heike; Kohn, Monika; Grawe, Sarah; Hartmann, Susan; Hellner, Lisa; Herenz, Paul; Welti, Andre; Lohmann, Ulrike; Kanji, Zamin; Stratmann, Frank

    2016-04-01

    The measurement campaign LINC (Leipzig Ice Nucleation counter Comparison) was conducted in September 2015, during which ice nucleation measurements as obtained with the following instruments were compared: - LACIS (Leipzig Aerosol Cloud Interaction Simulator, see e.g. Wex et al., 2014) - PIMCA-PINC (Portable Immersion Mode Cooling Chamber together with PINC) - PINC (Portable Ice Nucleation Chamber, Chou et al., 2011) - SPIN (SPectrometer for Ice Nuclei, Droplet Measurement Technologies) While LACIS and PIMCA-PINC measured immersion freezing, PINC and SPIN varied the super-saturation during the measurements and collected data also for relative humidities below 100% RHw. A suite of different types of ice nucleating particles were examined, where particles were generated from suspensions, subsequently dried and size selected. For the following samples, data for all four instruments are available: K-feldspar, K-feldspar treated with nitric acid, Fluka-kaolinite and birch pollen. Immersion freezing measurements by LACIS and PIMCA-PINC were in excellent agreement. Respective parameterizations from these measurement were used to model the ice nucleation behavior below water vapor saturation, assuming that the process can be described as immersion freezing in concentrated solutions. This is equivalent to simply including a concentration dependent freezing point depression in the immersion freezing parameterization, as introduced for coated kaolinite particles in Wex et al. (2014). Overall, measurements performed below water vapor saturation were reproduced by the model, and it will be discussed in detail, why deviations were observed in some cases. Acknowledgement: Part of this work was funded by the DFG Research Unit FOR 1525 INUIT, grant WE 4722/1-2. Literature: Chou, C., O. Stetzer, E. Weingartner, Z. Juranyi, Z. A. Kanji, and U. Lohmann (2011), Ice nuclei properties within a Saharan dust event at the Jungfraujoch in the Swiss Alps, Atmos. Chem. Phys., 11(10), 4725

  1. Verification of a New NOAA/NSIDC Passive Microwave Sea-Ice Concentration Climate Record

    Science.gov (United States)

    Meier, Walter N.; Peng, Ge; Scott, Donna J.; Savoie, Matt H.

    2014-01-01

    A new satellite-based passive microwave sea-ice concentration product developed for the National Oceanic and Atmospheric Administration (NOAA)Climate Data Record (CDR) programme is evaluated via comparison with other passive microwave-derived estimates. The new product leverages two well-established concentration algorithms, known as the NASA Team and Bootstrap, both developed at and produced by the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC). The sea ice estimates compare well with similar GSFC products while also fulfilling all NOAA CDR initial operation capability (IOC) requirements, including (1) self describing file format, (2) ISO 19115-2 compliant collection-level metadata,(3) Climate and Forecast (CF) compliant file-level metadata, (4) grid-cell level metadata (data quality fields), (5) fully automated and reproducible processing and (6) open online access to full documentation with version control, including source code and an algorithm theoretical basic document. The primary limitations of the GSFC products are lack of metadata and use of untracked manual corrections to the output fields. Smaller differences occur from minor variations in processing methods by the National Snow and Ice Data Center (for the CDR fields) and NASA (for the GSFC fields). The CDR concentrations do have some differences from the constituent GSFC concentrations, but trends and variability are not substantially different.

  2. Verification of a new NOAA/NSIDC passive microwave sea-ice concentration climate record

    Directory of Open Access Journals (Sweden)

    Walter N. Meier

    2014-12-01

    Full Text Available A new satellite-based passive microwave sea-ice concentration product developed for the National Oceanic and Atmospheric Administration (NOAA Climate Data Record (CDR programme is evaluated via comparison with other passive microwave-derived estimates. The new product leverages two well-established concentration algorithms, known as the NASA Team and Bootstrap, both developed at and produced by the National Aeronautics and Space Administration (NASA Goddard Space Flight Center (GSFC. The sea-ice estimates compare well with similar GSFC products while also fulfilling all NOAA CDR initial operation capability (IOC requirements, including (1 self-describing file format, (2 ISO 19115-2 compliant collection-level metadata, (3 Climate and Forecast (CF compliant file-level metadata, (4 grid-cell level metadata (data quality fields, (5 fully automated and reproducible processing and (6 open online access to full documentation with version control, including source code and an algorithm theoretical basic document. The primary limitations of the GSFC products are lack of metadata and use of untracked manual corrections to the output fields. Smaller differences occur from minor variations in processing methods by the National Snow and Ice Data Center (for the CDR fields and NASA (for the GSFC fields. The CDR concentrations do have some differences from the constituent GSFC concentrations, but trends and variability are not substantially different.

  3. NASA, Navy, and AES/York sea ice concentration comparison of SSM/I algorithms with SAR derived values

    Science.gov (United States)

    Jentz, R. R.; Wackerman, C. C.; Shuchman, R. A.; Onstott, R. G.; Gloersen, Per; Cavalieri, Don; Ramseier, Rene; Rubinstein, Irene; Comiso, Joey; Hollinger, James

    1991-01-01

    Previous research studies have focused on producing algorithms for extracting geophysical information from passive microwave data regarding ice floe size, sea ice concentration, open water lead locations, and sea ice extent. These studies have resulted in four separate algorithms for extracting these geophysical parameters. Sea ice concentration estimates generated from each of these algorithms (i.e., NASA/Team, NASA/Comiso, AES/York, and Navy) are compared to ice concentration estimates produced from coincident high-resolution synthetic aperture radar (SAR) data. The SAR concentration estimates are produced from data collected in both the Beaufort Sea and the Greenland Sea in March 1988 and March 1989, respectively. The SAR data are coincident to the passive microwave data generated by the Special Sensor Microwave/Imager (SSM/I).

  4. Estimating Trapped Gas Concentrations as Bubbles Within Lake Ice Using Ground Penetrating Radar

    Science.gov (United States)

    Fantello, N.; Parsekian, A.; Walter Anthony, K. M.

    2015-12-01

    Climate warming is currently one of the most important issues that we are facing. The degradation of permafrost beneath thermokarst lakes has been associated with enhanced methane emissions and it presents a positive feedback to climate warming. Thermokarst lakes release methane to the atmosphere mainly by ebullition (bubbling) but there are a large number of uncertainties regarding the magnitude and variability of these emissions. Here we present a methodology to estimate the amount of gas released from thermokarst lakes through ebullition using ground-penetrating radar (GPR). This geophysical technique is well suited for this type of problem because it is non-invasive, continuous, and requires less effort and time than the direct visual inspection. We are studying GPR data collected using 1.2 GHz frequency antennas in Brooklyn Lake, Laramie, WY, in order to quantify the uncertainties in the method. Although this is not a thermokarst lake, gas bubbles are trapped in the ice and spatial variability in bubble concentration within the ice is evident. To assess the variability in bulk physical properties of the ice due to bubbles, we gathered GPR data from different types of ice. We compared the velocity of the groundwave and reflection obtained from radargrams, and found on each case a larger value for the groundwave velocity suggesting a non-homogeneous medium and that the concentration of bubbles is prone to be near the surface instead of at greater depths. We use a multi-phase dielectric-mixing model to estimate the amount of gas present in a sample of volume of ice and found an uncertainty in relative permittivity (estimated using reflection velocity) of 0.0294, which translates to an uncertainty of 1.1% in gas content; and employing groundwave velocity we found 0.0712 and 2.9%, respectively. If locations of gas seeps in lakes could be detected and quantified using GPR along with field measurements, this could help to constrain future lake-source carbon gas

  5. Unexpectedly high ultrafine aerosol concentrations above East Antarctic sea-ice

    Directory of Open Access Journals (Sweden)

    R. S. Humphries

    2015-10-01

    Full Text Available The effect of aerosols on clouds and their radiative properties is one of the largest uncertainties in our understanding of radiative forcing. A recent study has concluded that better characterisation of pristine, natural aerosol processes leads to the largest reduction in these uncertainties. Antarctica, being far from anthropogenic activities, is an ideal location for the study of natural aerosol processes. Aerosol measurements in Antarctica are often limited to boundary layer air-masses at spatially sparse coastal and continental research stations, with only a handful of studies in the sea ice region. In this paper, the first observational study of sub-micron aerosols in the East Antarctic sea ice region is presented. Measurements were conducted aboard the ice-breaker Aurora Australis in spring 2012 and found that boundary layer condensation nuclei (CN3 concentrations exhibited a five-fold increase moving across the Polar Front, with mean Polar Cell concentrations of 1130 cm−3 – higher than any observed elsewhere in the Antarctic and Southern Ocean region. The absence of evidence for aerosol growth suggested that nucleation was unlikely to be local. Air parcel trajectories indicated significant influence from the free troposphere above the Antarctic continent, implicating this as the likely nucleation region for surface aerosol, a similar conclusion to previous Antarctic aerosol studies. The highest aerosol concentrations were found to correlate with low pressure systems, suggesting that the passage of cyclones provided an accelerated pathway, delivering air-masses quickly from the free-troposphere to the surface. After descent from the Antarctic free troposphere, trajectories suggest that sea ice boundary layer air-masses travelled equator-ward into the low albedo Southern Ocean region, transporting with them emissions and these aerosol nuclei where, after growth, may potentially impact on the region's radiative balance. The high aerosol

  6. Unexpectedly high ultrafine aerosol concentrations above East Antarctic sea-ice

    Science.gov (United States)

    Humphries, R. S.; Klekociuk, A. R.; Schofield, R.; Keywood, M.; Ward, J.; Wilson, S. R.

    2015-10-01

    The effect of aerosols on clouds and their radiative properties is one of the largest uncertainties in our understanding of radiative forcing. A recent study has concluded that better characterisation of pristine, natural aerosol processes leads to the largest reduction in these uncertainties. Antarctica, being far from anthropogenic activities, is an ideal location for the study of natural aerosol processes. Aerosol measurements in Antarctica are often limited to boundary layer air-masses at spatially sparse coastal and continental research stations, with only a handful of studies in the sea ice region. In this paper, the first observational study of sub-micron aerosols in the East Antarctic sea ice region is presented. Measurements were conducted aboard the ice-breaker Aurora Australis in spring 2012 and found that boundary layer condensation nuclei (CN3) concentrations exhibited a five-fold increase moving across the Polar Front, with mean Polar Cell concentrations of 1130 cm-3 - higher than any observed elsewhere in the Antarctic and Southern Ocean region. The absence of evidence for aerosol growth suggested that nucleation was unlikely to be local. Air parcel trajectories indicated significant influence from the free troposphere above the Antarctic continent, implicating this as the likely nucleation region for surface aerosol, a similar conclusion to previous Antarctic aerosol studies. The highest aerosol concentrations were found to correlate with low pressure systems, suggesting that the passage of cyclones provided an accelerated pathway, delivering air-masses quickly from the free-troposphere to the surface. After descent from the Antarctic free troposphere, trajectories suggest that sea ice boundary layer air-masses travelled equator-ward into the low albedo Southern Ocean region, transporting with them emissions and these aerosol nuclei where, after growth, may potentially impact on the region's radiative balance. The high aerosol concentrations and

  7. Potential ocean–atmosphere preconditioning of late autumn Barents-Kara sea ice concentration anomaly

    OpenAIRE

    King, Martin P.; García-Serrano, Javier

    2016-01-01

    Many recent studies have revealed the importance of the climatic state in November on the seasonal climate of the subsequent winter. In particular, it has been shown that interannual variability of sea ice concentration (SIC) over the Barents-Kara (BK) seas in November is linked to winter atmospheric circulation anomaly that projects on the North Atlantic Oscillation. Understanding the lead lag processes involving the different components of the climate system from autumn to winter is therefo...

  8. Detection of microbial concentration in ice-cream using the impedance technique.

    Science.gov (United States)

    Grossi, M; Lanzoni, M; Pompei, A; Lazzarini, R; Matteuzzi, D; Riccò, B

    2008-06-15

    The detection of microbial concentration, essential for safe and high quality food products, is traditionally made with the plate count technique, that is reliable, but also slow and not easily realized in the automatic form, as required for direct use in industrial machines. To this purpose, the method based on impedance measurements represents an attractive alternative since it can produce results in about 10h, instead of the 24-48h needed by standard plate counts and can be easily realized in automatic form. In this paper such a method has been experimentally studied in the case of ice-cream products. In particular, all main ice-cream compositions of real interest have been considered and no nutrient media has been used to dilute the samples. A measurement set-up has been realized using benchtop instruments for impedance measurements on samples whose bacteria concentration was independently measured by means of standard plate counts. The obtained results clearly indicate that impedance measurement represents a feasible and reliable technique to detect total microbial concentration in ice-cream, suitable to be implemented as an embedded system for industrial machines. PMID:18353628

  9. Circumpolar Arctic greening: Relationships to summer sea-ice concentrations, land temperatures and disturbance regimes

    Science.gov (United States)

    Walker, D. A.; Bhatt, U. S.; Epstein, H. E.; Raynolds, M. K.; Frost, G. V.; Leibman, M. O.; Khomutov, A.; Jia, G.; Comiso, J. C.; Pinzon, J. E.; Tucker, C. J.; Webber, P. J.; Tweedie, C. E.

    2009-12-01

    The global distribution of Arctic tundra vegetation is closely tied to the presence of summer sea ice. Models predict that the reduction of sea ice will cause large changes to summer land-surface temperatures. Warming combined with increased natural and anthropogenic disturbance are expected to greatly increase arctic tundra productivity. To examine where tundra productivity is changing most rapidly, we studied 1982-2008 trends of sea-ice concentrations, summer warmth index (SWI) and the annual Maximum Normalized Difference Vegetation Index (MaxNDVI). We summarize the results according to the tundra adjacent to 14 Arctic seas. Sea-ice concentrations have declined and summer land temperatures have increased in all parts of the Arctic coast. The overall percentage increase in Arctic MaxNDVI was +7%. The trend was much greater in North America (+11%) than in Eurasia (+4%). Large percentage increases of MaxNDVI occurred inland from Davis Straight (+20%), Baffin Bay (+18%), Canadian Archipelago (+14%), Beaufort Sea (+12%), and Laptev Sea (+8%). Declines occurred in the W. Chukchi (-6%) and E. Bering (-5%) seas. The changes in NDVI are strongly correlated to changes in summer ground temperatures. Two examples from a 900-km north-south Arctic transect in Russia and long-term observations at a High Arctic site in Canada provide insights to where the changes in productivity are occurring most rapidly. At tree line near Kharp in northwest Siberia, alder shrubs are expanding vigorously in fire-disturbed areas; seedling establishment is occurring primarily in areas with disturbed mineral soils, particularly nonsorted circles. In the Low Arctic tundra areas of the central Yamal Peninsula greening is concentrated in riparian areas and upland landslides associated with degrading massive ground ice, where low-willow shrublands replace the zonal sedge, dwarf-shrub tundra growing on nutrient-poor sands. In polar desert landscapes near the Barnes Ice Cap, Baffin Island, Canada

  10. Effect of AMSR-E data interference on the retrieval of land surface parameters%AMSR-E观测资料干扰对反演地表参数的影响

    Institute of Scientific and Technical Information of China (English)

    张思勃; 官莉

    2015-01-01

    针对星载微波成像仪低频窗区通道观测数据中存在大范围无线电频率干扰(简称RFI)的情况,以微波扫描辐射计(AMSR-E)为例,首先用改进的主成分分析方法对RFI进行识别;进而探讨RFI存在对反演地表参数的影响.然后,利用经过线性拟合RFI订正后的AMSR-E观测资料,采用一维变分1D-Var方法进行地表参数反演,通过对美国地区陆地RFI订正前、后地表反演产品(地表温度及降水率)的比较,发现RFI干扰使得受影响区域反演的地表温度及降水率异常偏高,存在较大误差.因此,在使用星载微波成像仪低频窗区通道观测进行地表参数反演和资料同化前必须进行有效地RFI识别和订正,改进的主成分分析识别方法和线性拟合的RFI订正算法对陆地上观测是有效的.

  11. Potential ocean–atmosphere preconditioning of late autumn Barents-Kara sea ice concentration anomaly

    Directory of Open Access Journals (Sweden)

    Martin P. King

    2016-02-01

    Full Text Available Many recent studies have revealed the importance of the climatic state in November on the seasonal climate of the subsequent winter. In particular, it has been shown that interannual variability of sea ice concentration (SIC over the Barents-Kara (BK seas in November is linked to winter atmospheric circulation anomaly that projects on the North Atlantic Oscillation. Understanding the lead–lag processes involving the different components of the climate system from autumn to winter is therefore important. This note presents dynamical interpretation for the ice-ocean–atmosphere relationships that can affect the BK SIC anomaly in late autumn. It is found that cyclonic (anticyclonic wind anomaly over the Arctic in October, by Ekman drift, can be responsible for positive (negative SIC in the BK seas in November. The results also suggest that ocean heat transport via the Barents Sea Opening in September and October can contribute to BK SIC anomaly in November.

  12. Whey protein phospholipid concentrate and delactosed permeate: Applications in caramel, ice cream, and cake.

    Science.gov (United States)

    Levin, M A; Burrington, K J; Hartel, R W

    2016-09-01

    Whey protein phospholipid concentrate (WPPC) and delactosed permeate (DLP) are 2 coproducts of cheese whey processing that are currently underutilized. Past research has shown that WPPC and DLP can be used together as a functional dairy ingredient in foods such as ice cream, soup, and caramel. However, the scope of the research has been limited to a single WPPC supplier. The variability of the composition and functionality of WPPC was previously studied. The objective of this research was to expand on the previous study and examine the potential applications of WPPC and DLP blends in foods. In ice cream, WPPC was added as a natural emulsifier to replace synthetic emulsifiers. The WPPC decreased the amount of partially coalesced fat and increased the drip-through rate. In caramel, DLP and WPPC replaced sweetened condensed skim milk and lecithin. Cold flow increased significantly, and hardness and stickiness decreased. In cake, DLP and WPPC were added as a total replacement of eggs, with no change in yield, color, or texture. Overall, WPPC and DLP can be utilized as functional dairy ingredients at a lower cost in ice cream and cake but not in chewy caramel.

  13. Whey protein phospholipid concentrate and delactosed permeate: Applications in caramel, ice cream, and cake.

    Science.gov (United States)

    Levin, M A; Burrington, K J; Hartel, R W

    2016-09-01

    Whey protein phospholipid concentrate (WPPC) and delactosed permeate (DLP) are 2 coproducts of cheese whey processing that are currently underutilized. Past research has shown that WPPC and DLP can be used together as a functional dairy ingredient in foods such as ice cream, soup, and caramel. However, the scope of the research has been limited to a single WPPC supplier. The variability of the composition and functionality of WPPC was previously studied. The objective of this research was to expand on the previous study and examine the potential applications of WPPC and DLP blends in foods. In ice cream, WPPC was added as a natural emulsifier to replace synthetic emulsifiers. The WPPC decreased the amount of partially coalesced fat and increased the drip-through rate. In caramel, DLP and WPPC replaced sweetened condensed skim milk and lecithin. Cold flow increased significantly, and hardness and stickiness decreased. In cake, DLP and WPPC were added as a total replacement of eggs, with no change in yield, color, or texture. Overall, WPPC and DLP can be utilized as functional dairy ingredients at a lower cost in ice cream and cake but not in chewy caramel. PMID:27344387

  14. Forecasting Antarctic Sea Ice Concentrations Using Results of Temporal Mixture Analysis

    Science.gov (United States)

    Chi, Junhwa; Kim, Hyun-Cheol

    2016-06-01

    Sea ice concentration (SIC) data acquired by passive microwave sensors at daily temporal frequencies over extended areas provide seasonal characteristics of sea ice dynamics and play a key role as an indicator of global climate trends; however, it is typically challenging to study long-term time series. Of the various advanced remote sensing techniques that address this issue, temporal mixture analysis (TMA) methods are often used to investigate the temporal characteristics of environmental factors, including SICs in the case of the present study. This study aims to forecast daily SICs for one year using a combination of TMA and time series modeling in two stages. First, we identify temporally meaningful sea ice signatures, referred to as temporal endmembers, using machine learning algorithms, and then we decompose each pixel into a linear combination of temporal endmembers. Using these corresponding fractional abundances of endmembers, we apply a autoregressive model that generally fits all Antarctic SIC data for 1979 to 2013 to forecast SIC values for 2014. We compare our results using the proposed approach based on daily SIC data reconstructed from real fractional abundances derived from a pixel unmixing method and temporal endmember signatures. The proposed method successfully forecasts new fractional abundance values, and the resulting images are qualitatively and quantitatively similar to the reference data.

  15. Study of solute incorporation into ice-layer on freeze concentration with ice-lining; Ice lining toketsu noshukuho ni okeru hyosho sochu eno yoshitsu torikomi ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Yamazaki, Y.; Shinozaki, K. [Fujisawa Pharmaceutical Co. Ltd., Osaka (Japan); Hirata, Y. [Osaka University, Osaka (Japan)

    1997-07-10

    The mechanism of solute incorporation into an ice-layer in freeze concentration with ice-lining was studied by changing the impeller speed N and the difference between the brine temperature and the freezing point of the feed solution {Delta}T in 10 kg/m{sup 3} CCNa solution. The effect of N on the apparent partition coefficient of the solute K, is more serious than that of {Delta}T. The growth rate of the ice layer is 10{sup -7} - 10{sup -6}m/s under the condition of {Delta}T=2.8 - 7.9degC and N = 20-400 min{sup -1}. The growth rate had a little effect on solute incorporation into the ice-layer. K values depended on the surface condition of the ice layer, which is effected by the mixing speed of the impeller. The ice layer formed at low mixing speed has a complex rough shape, and has much solute because of adhesion to a large surface area. Therefore, it is recommended that freeze concentration is performed by making an ice layer with smooth surface at high mixing speed. 9 refs., 6 figs.

  16. Variations of ion concentrations in the deep ice core and surface snow at NEEM, Greenland

    Science.gov (United States)

    Goto-Azuma, K.; Wegner, A.; Hansson, M.; Hirabayashi, M.; Kuramoto, T.; Miyake, T.; Motoyama, H.; NEEM Aerosol Consortium members

    2012-04-01

    Discrete samples were collected from the CFA (Continuous Flow Analysis) melt fractions during the field campaign carried out at NEEM, Greenland in 2009-2011, and were distributed to different laboratories. Ionic species were analyzed at National Institute of Polar Research (Japan) and Alfred Wegener Institute for Polar and Marine Research (Germany). Here we present and compare the ion concentration data obtained by both institutes. Most of the ions show good agreement between the two institutes. As is indicated with the CFA data (Bigler and the NEEM Aerosol Consortium members, EGU 2012), ion chromatograph data also display that calcium and sodium, mainly originated from terrestrial dust and sea-salt, respectively, show large variations associated with Dansgaard-Oeschger (DO) events. Chloride, fluoride, sulfate, sodium, potassium and magnesium also show such variations, as has been already reported for other Greenland ice cores. New ion data obtained from the NEEM deep core also show large variability of oxalate and phosphate concentrations during DO events. Acetate, which is thought to be mainly derived from biomass burning, as is oxalate, appears to show variability associated with DO events, but to a lesser extent. On the other hand, nitrate, ammonium and methanesulfonate do not show such variations. Together with ion data from the deep ice core, we present those from the pits dug during the NEEM field campaign to discuss seasonal variations of ionic species. The seasonal and millennial scale variations of ions are thought to be caused by changes in atmospheric circulation and source strength.

  17. Small molecule ice recrystallization inhibitors enable freezing of human red blood cells with reduced glycerol concentrations.

    Science.gov (United States)

    Capicciotti, Chantelle J; Kurach, Jayme D R; Turner, Tracey R; Mancini, Ross S; Acker, Jason P; Ben, Robert N

    2015-01-01

    In North America, red blood cells (RBCs) are cryopreserved in a clinical setting using high glycerol concentrations (40% w/v) with slow cooling rates (~1°C/min) prior to storage at -80°C, while European protocols use reduced glycerol concentrations with rapid freezing rates. After thawing and prior to transfusion, glycerol must be removed to avoid intravascular hemolysis. This is a time consuming process requiring specialized equipment. Small molecule ice recrystallization inhibitors (IRIs) such as β-PMP-Glc and β-pBrPh-Glc have the ability to prevent ice recrystallization, a process that contributes to cellular injury and decreased cell viability after cryopreservation. Herein, we report that addition of 110 mM β-PMP-Glc or 30 mM β-pBrPh-Glc to a 15% glycerol solution increases post-thaw RBC integrity by 30-50% using slow cooling rates and emphasize the potential of small molecule IRIs for the preservation of cells.

  18. Sea ice concentration from satellite passive microwave algorithms: inter-comparison, validation and selection of an optimal algorithm

    Science.gov (United States)

    Ivanova, Natalia; Pedersen, Leif T.; Lavergne, Thomas; Tonboe, Rasmus T.; Saldo, Roberto; Mäkynen, Marko; Heygster, Georg; Rösel, Anja; Kern, Stefan; Dybkjær, Gorm; Sørensen, Atle; Brucker, Ludovic; Shokr, Mohammed; Korosov, Anton; Hansen, Morten W.

    2015-04-01

    Sea ice concentration (SIC) has been derived globally from satellite passive microwave observations since the 1970s by a multitude of algorithms. However, existing datasets and algorithms, although agreeing in the large-scale picture, differ substantially in the details and have disadvantages in summer and fall due to presence of melt ponds and thin ice. There is thus a need for understanding of the causes for the differences and identifying the most suitable method to retrieve SIC. Therefore, during the ESA Climate Change Initiative effort 30 algorithms have been implemented, inter-compared and validated by a standardized reference dataset. The algorithms were evaluated over low and high sea ice concentrations and thin ice. Based on the findings, an optimal approach to retrieve sea ice concentration globally for climate purposes was suggested and validated. The algorithm was implemented with atmospheric correction and dynamical tie points in order to produce the final sea ice concentration dataset with per-pixel uncertainties. The issue of melt ponds was addressed in particular because they are interpreted as open water by the algorithms and thus SIC can be underestimated by up to 40%. To improve our understanding of this issue, melt-pond signatures in AMSR2 images were investigated based on their physical properties with help of observations of melt pond fraction from optical (MODIS and MERIS) and active microwave (SAR) satellite measurements.

  19. Determination of Mercury Resistant Genes and Heavy Metal Concentrations in Drift Ice Collected from Antarctic and Okhotsk oceans

    OpenAIRE

    能田, 淳; 登坂, 唯香; 中島, 千絵; 大久保, 寅彦; 石原, 加奈子; 鈴木, 定彦; 伊村, 智; 田村, 豊

    2010-01-01

    This work presents investigation of metal concentrations and metal resistant genes found in melted ice samples from D'Urville Sea in Antarctica and Japanese coast side of Okhotsk Sea to understand the characteristics of specific genes identified. Only a center part of ice core was melted with a careful process to remove and avoid the contaminants during the transportation, handling, and storage. Directly after the melting process, InstaGene and EXTRAGEN extraction analyses were deployed to id...

  20. Predictability of ice concentration anomalies in the high latitudes of the North Atlantic using a statistical approach

    OpenAIRE

    Garcia, Katharine Shanebrook

    1988-01-01

    Approved for public release; distribution is unlimited Based on a 27 year data record from the COADS and SEIC data sets, a statistical analysis of ice concentration, sea surface temperature (SST), air temperature, U and V wind components, and sea level pressure anomaly data was conducted for five locations in the ice-covered waters of the North Atlantic. Spectral densities and autocorrelations of the time series for each variable were calculated to establish a measure of persistence and p...

  1. Interactions between Arctic sea ice drift, concentration and thickness modeled by NEMO-LIM3 at different resolutions

    Science.gov (United States)

    Docquier, David; Massonnet, François; Raulier, Jonathan; Lecomte, Olivier; Fichefet, Thierry

    2016-04-01

    Sea ice concentration and thickness have substantially decreased in the Arctic since the beginning of the satellite era. As a result, mechanical strength has decreased allowing more fracturing and leading to increased sea ice drift. However, recent studies have highlighted that the interplay between sea ice thermodynamics and dynamics is poorly represented in contemporary global climate model (GCM) simulations. Thus, the considerable inter-model spread in terms of future sea ice extent projections could be reduced by better understanding the interactions between drift, concentration and thickness. This study focuses on the results coming from the global coupled ocean-sea ice model NEMO-LIM3 between 1979 and 2012. Three different simulations are forced by the Drakkar Forcing Set (DFS) 5.2 and run on the global tripolar ORCA grid at spatial resolutions of 0.25, 1° and 2°. The relation between modeled sea ice drift, concentration and thickness is further analyzed, compared to observations and discussed in the framework of the above-mentioned poor representation. It is proposed as a process-based metric for evaluating model performance. This study forms part of the EU Horizon 2020 PRIMAVERA project aiming at developing a new generation of advanced and well-evaluated high-resolution GCMs.

  2. An Intercomparison of Predicted Sea Ice Concentration from Global Ocean Forecast System & Arctic Cap Nowcast/Forecast System

    Science.gov (United States)

    Rosemond, K.

    2015-12-01

    The objective of this research is to provide an evaluation of improvements in marginal ice zone (MIZ) and pack ice estimations from the Global Ocean Forecast System (GOFS) model compared to the current operational model, the Arctic Cap Nowcast/Forecast System (ACNFS). This will be determined by an intercomparison between the subjectively estimated operational ice concentration data from the National Ice Center (NIC) MIZ analysis and the ice concentration estimates from GOFS and ACNFS. This will help ascertain which nowcast from the models compares best to the NIC operational data stream needed for vessel support. It will also provide a quantitative assessment of GOFS and ACNFS performance and be used in the Operational Evaluation (OPEVAL) report from the NIC to NRL. The intercomparison results are based on statistical evaluations through a series of map overlays from both models ACNFS, GOFS with the NIC's MIZ data. All data was transformed to a common grid and difference maps were generated to determine which model had the greatest difference compared to the MIZ ice concentrations. This was provided daily for both the freeze-up and meltout seasons. Results indicated the GOFS model surpassed the ACNFS model, however both models were comparable. These results will help US Navy and NWS Anchorage ice forecasters understand model biases and know which model guidance is likely to provide the best estimate of future ice conditions.The objective of this research is to provide an evaluation of improvements in marginal ice zone (MIZ) and pack ice estimations from the Global Ocean Forecast System (GOFS) model compared to the current operational model, the Arctic Cap Nowcast/Forecast System (ACNFS). This will be determined by an intercomparison between the subjectively estimated operational ice concentration data from the National Ice Center (NIC) MIZ analysis and the ice concentration estimates from GOFS and ACNFS. This will help ascertain which nowcast from the models

  3. High concentrations of biological aerosol particles and ice nuclei during and after rain

    Science.gov (United States)

    Huffman, J. A.; Prenni, A. J.; DeMott, P. J.; Pöhlker, C.; Mason, R. H.; Robinson, N. H.; Fröhlich-Nowoisky, J.; Tobo, Y.; Després, V. R.; Garcia, E.; Gochis, D. J.; Harris, E.; Müller-Germann, I.; Ruzene, C.; Schmer, B.; Sinha, B.; Day, D. A.; Andreae, M. O.; Jimenez, J. L.; Gallagher, M.; Kreidenweis, S. M.; Bertram, A. K.; Pöschl, U.

    2013-07-01

    Bioaerosols are relevant for public health and may play an important role in the climate system, but their atmospheric abundance, properties, and sources are not well understood. Here we show that the concentration of airborne biological particles in a North American forest ecosystem increases significantly during rain and that bioparticles are closely correlated with atmospheric ice nuclei (IN). The greatest increase of bioparticles and IN occurred in the size range of 2-6 μm, which is characteristic for bacterial aggregates and fungal spores. By DNA analysis we found high diversities of airborne bacteria and fungi, including groups containing human and plant pathogens (mildew, smut and rust fungi, molds, Enterobacteriaceae, Pseudomonadaceae). In addition to detecting known bacterial and fungal IN (Pseudomonas sp., Fusarium sporotrichioides), we discovered two species of IN-active fungi that were not previously known as biological ice nucleators (Isaria farinosa and Acremonium implicatum). Our findings suggest that atmospheric bioaerosols, IN, and rainfall are more tightly coupled than previously assumed.

  4. Sea ice terminology

    Energy Technology Data Exchange (ETDEWEB)

    1980-09-01

    A group of definitions of terms related to sea ice is presented, as well as a graphic representation of late winter ice zonation of the Beaufort Sea Coast. Terms included in the definition list are belt, bergy bit, bight, brash ice, calving, close pack ice, compacting, compact pack ice, concentration, consolidated pack ice, crack, diffuse ice edge, fast ice, fast-ice boundary, fast-ice edge, first-year ice, flaw, flaw lead, floe, flooded ice, fractured, fractured zone, fracturing, glacier, grey ice, grey-white ice, growler, hummock, iceberg, iceberg tongue, ice blink, ice boundary, ice cake, ice edge, ice foot, ice free, ice island, ice shelf, large fracture, lead, medium fracture, multiyear ice, nilas, old ice, open pack ice, open water, pack ice, polar ice, polynya, puddle, rafted ice, rafting, ram, ridge, rotten ice, second-year ice, shearing, shore lead, shore polynya, small fracture, strip, tabular berg, thaw holes, very close pack ice, very open pack ice, water sky, young coastal ice, and young ice.

  5. Ice crystal concentrations in wave clouds: dependencies on temperature, D0.5 μm aerosol particle concentration and duration of cloud processing

    Directory of Open Access Journals (Sweden)

    L. Peng

    2014-10-01

    Full Text Available Model equations used to either diagnose or prognose the concentration of heterogeneously nucleated ice crystals depend on combinations of cloud temperature, aerosol properties, and elapsed time of supersaturated-vapor or supercooled-liquid conditions. The validity of these equations is questioned. For example, there is concern that practical limitations on aerosol particle time-of-exposure to supercooled-liquid conditions, within ice nucleus counters, can bias model equations that have been constrained by ice nuclei (IN measurements. In response to this concern, this work analyzes airborne measurements of crystals made within the downwind glaciated portions of middle-tropospheric wave clouds. A streamline model is used to connect a measurement of aerosol concentration, made upwind of a cloud, to a downwind ice crystal (IC concentration. Four parameters were derived for 80 streamlines: (1 minimum cloud temperature along the streamline, (2 aerosol particle concentration (diameter, D>0.5 μm measured within ascending air, upwind of the cloud, (3 IC concentration measured in descending air downwind, and (4 the duration of water-saturated conditions along the streamline. The latter are between 38 to 507 s and the minimum temperatures are between −34 to −14 °C. Values of minimum temperature, D>0.5 μm aerosol concentration and IC concentration were fitted using the equation developed for IN by DeMott et al. (2010; D10. Overall, there is reasonable agreement among measured IC concentrations, IN concentrations derived using D10's fit equation, and IC concentrations derived by fitting the wave cloud measurements with the equation developed by D10.

  6. L-band radiometry for sea ice applications

    Science.gov (United States)

    Heygster, G.; Hedricks, S.; Mills, P.; Kaleschke, L.; Stammer, D.; Tonboe, R.

    2009-04-01

    Peake (1976). This expression was used by Menashi et al. (1993) to derive the thickness of sea ice from UHF (0.6 GHz) radiometer. Second, retrieval algorithms for sea ice parameters with emphasis on ice-water discrimination from L-band observations considering the specific SMOS observations modes and geometries are investigated. A modified Menashi model with the permittivity depending on brine volume and temperature suggests a thickness sensitivity of up to 150 cm for low salinity (multi year or brackish) sea ice at low temperatures. At temperatures approaching the melting point the thickness sensitivity reduces to a few centimetres. For first year ice the modelled thickness sensitivity is roughly half a meter. Runs of the model MEMLS with input data generated from a 1-d thermodynamic sea ice model lead to similar conclusio. The results of the forward model may strongly vary with the input microphysical details. E.g. if the permittivity is modelled to depend in addition on the sea ice thickness as supported by several former field campaigns for thin ice, the model predictions change strongly. Prior to the launch of SMOS, an important source of observational data is the SMOS Sea-Ice campaign held near Kokkola, Finland, March 2007 conducted as an add-on of the POL-ICE campaign. Co-incident L-band observations taken with the EMIRAD instrument of the Technical University of Denmark, ice thickness values determined from the EM bird of AWI and in situ observations during the campaign are combined. Although the campaign data are to be use with care, for selected parts of the flights the sea ice thickness can be retrieved correctly. However, as the instrumental conditions and calibration were not optimal, more in situ data, preferably from the Arctic, will be needed before drawing clear conclusions about a future the sea ice thickness product based on SMOS data. Use of additional information from other microwave sensors like AMSR-E might be needed to constrain the conditions, e

  7. Microwave emissivity of freshwater ice, Part II: Modelling the Great Bear and Great Slave Lakes

    CERN Document Server

    Mills, Peter

    2012-01-01

    Lake ice within three Advanced Microwave Scanning Radiometer on EOS (AMSR-E) pixels over the Great Bear and Great Slave Lakes have been simulated with the Canadian Lake Ice Model (CLIMo). The resulting thicknesses and temperatures were fed to a radiative transfer-based ice emissivity model and compared to the satellite measurements at three frequencies---6.925 GHz, 10.65 GHz and 18.7 GHz. Excluding the melt season, the model was found to have strong predictive power, returning a correlation of 0.926 and a residual of 0.78 Kelvin at 18 GHz, vertical polarization. Discrepencies at melt season are thought to be caused by the presence of dirt in the snow cover which makes the microwave signature more like soil rather than ice. Except at 18 GHz, all results showed significant bias compared to measured values. Further work needs to be done to determine the source of this bias.

  8. Anomalously high arsenic concentration in a West Antarctic ice core and its relationship to copper mining in Chile

    Science.gov (United States)

    Schwanck, Franciele; Simões, Jefferson C.; Handley, Michael; Mayewski, Paul A.; Bernardo, Ronaldo T.; Aquino, Francisco E.

    2016-01-01

    Arsenic variability records are preserved in snow and ice cores and can be utilized to reconstruct air pollution history. The Mount Johns ice core (79°55‧S; 94°23‧W and 91.2 m depth) was collected from the West Antarctic Ice Sheet in the 2008/09 austral summer. Here, we report the As concentration variability as determined by 2137 samples from the upper 45 m of this core using ICP-SFMS (CCI, University of Maine, USA). The record covers approximately 125 years (1883-2008) showing a mean concentration of 4.32 pg g-1. The arsenic concentration in the core follows global copper mining evolution, particularly in Chile (the largest producer of Cu). From 1940 to 1990, copper-mining production increased along with arsenic concentrations in the MJ core, from 1.92 pg g-1 (before 1900) to 7.94 pg g-1 (1950). In the last two decades, environmental regulations for As emissions have been implemented, forcing smelters to treat their gases to conform to national and international environmental standards. In Chile, decontamination plants required by the government started operating from 1993 to 2000. Thereafter, Chilean copper production more than doubled while As emission levels declined, and the same reduction was observed in the Mount Johns ice core. After 1999, arsenic concentrations in our samples decreased to levels comparable to the period before 1900.

  9. Development of an efficient static-type ice thermal energy storage vessel using a low concentration aqueous solution

    Science.gov (United States)

    Sasaguchi, Kengo; Yoshiyama, Tomoaki; Nozoe, Testushi; Baba, Yoshiyuki

    If an aqueous solution with low concentration is used for static-type ice-storage-vessels, even when a large amount of solution (aqueous ethylene glycol in this study) is solidified and bridging of ice developed around cold tubes occurs, the pressure increase can be prevented by the existence of a continuous liquid phase in the solid-liquid two-phase layer (mushy layer) which opens to an air gap at the top of a vessel. Therefore, one can continue to solidify an aqueous solution after bridging occurs, achieving a high ice packing factor (IPF) which is defined as the ratio of mass of created ice to initial mass of water in a vessel. In the present study, experiments using small-scale test cells have been conducted with initial concentration, C 0, of aqueous ethylene glycol ranged from 0 mass % to 5.0%. It was seen that the IPF obtained using the solution with C 0≤1.0% is much greater than the IPF of 65%-70% using pure water for which the solidification must be stopped before bridging, and that a large pressure increase is not observed during solidification of the solution with C 0≥0.5%. Therefore, if we use the solution with 0.5%≤C 0≤1.0%, we can probably obtain a large IPF without a large pressure increase for real ice-storage-vessels.

  10. Variations of ice nuclei concentration induced by rain and snowfall within a local forested site in Japan

    Science.gov (United States)

    Hara, Kazutaka; Maki, Teruya; Kobayashi, Fumihisa; Kakikawa, Makiko; Wada, Masashi; Matsuki, Atsushi

    2016-02-01

    Biological ice nuclei (IN) such as certain species of bacteria and fungi are believed to have impacts on ice nucleation in mixed-phase clouds at temperatures warmer than -15 °C. Recent studies have indicated that rain is closely related to increases of biological IN in the near-surface atmosphere. However, variations of IN concentrations during rain and snowfall have not been compared. In the present study, field measurements of atmospheric IN were carried out under fine, cloudy, rain and snow at a local forested site in Japan. IN concentrations at -7 °C in spring were dramatically increased by rain, and concentrations associated with rain (0.86-2.2 m-3) were greater than 2.6 times higher than the mean concentration during fine weather (0.33 m-3). In winter, concentrations associated with rain (1.6 to >5.7 m-3) were also higher than those under cloudy sky (1.1 m-3), but increases were not observed during snowfall (0.21-0.4 m-3). Detectable IN concentrations associated with rain considerably decreased after heat treatment at 90 °C, indicating that IN increased during rain were likely biological substances such as heat-sensitive ice nucleation active proteins. Consequently, different types of precipitation may have varying effects on IN concentration associated with biological substances.

  11. A long-term and reproducible passive microwave sea ice concentration data record for climate studies and monitoring

    Directory of Open Access Journals (Sweden)

    G. Peng

    2013-05-01

    Full Text Available A long-term, consistent, and reproducible satellite-based passive microwave sea ice concentration climate data record (CDR is available for climate studies, monitoring, and model validation with an initial operation capability (IOC. The daily and monthly sea ice concentration data are on the National Snow and Ice Data Center (NSIDC polar stereographic grid with nominal 25 × 25 km grid cells in both the Southern and Northern Hemisphere Polar Regions from 9 July 1987 to 31 December 2007 with an update through 2011 underway. The data files are available in the NetCDF data format at http://nsidc.org/data/g02202.html and archived by the National Oceanic and Atmospheric Administration (NOAA's National Climatic Data Center (NCDC under the satellite climate data record program (http://www.ncdc.noaa.gov/cdr/operationalcdrs.html. The description and basic characteristics of the NOAA/NSIDC passive microwave sea ice concentration CDR are presented here. The CDR provides similar spatial and temporal variability as the heritage products to the user communities with the additional documentation, traceability, and reproducibility that meet current standards and guidelines for climate data records. The dataset along with detailed data processing steps and error source information can be found at: doi:10.7265/N5B56GN3.

  12. A new single-moment microphysics scheme for cloud-resolving models using observed dependence of ice concentration on temperature.

    Science.gov (United States)

    Khairoutdinov, M.

    2015-12-01

    The representation of microphysics, especially ice microphysics, remains one of the major uncertainties in cloud-resolving models (CRMs). Most of the cloud schemes use the so-called bulk microphysics approach, in which a few moments of such distributions are used as the prognostic variables. The System for Atmospheric Modeling (SAM) is the CRM that employs two such schemes. The single-moment scheme, which uses only mass for each of the water phases, and the two-moment scheme, which adds the particle concentration for each of the hydrometeor category. Of the two, the single-moment scheme is much more computationally efficient as it uses only two prognostic microphysics variables compared to ten variables used by the two-moment scheme. The efficiency comes from a rather considerable oversimplification of the microphysical processes. For instance, only a sum of the liquid and icy cloud water is predicted with the temperature used to diagnose the mixing ratios of different hydrometeors. The main motivation for using such simplified microphysics has been computational efficiency, especially in the applications of SAM as the super-parameterization in global climate models. Recently, we have extended the single-moment microphysics by adding only one additional prognostic variable, which has, nevertheless, allowed us to separate the cloud ice from liquid water. We made use of some of the recent observations of ice microphysics collected at various parts of the world to parameterize several aspects of ice microphysics that have not been explicitly represented before in our sing-moment scheme. For example, we use the observed broad dependence of ice concentration on temperature to diagnose the ice concentration in addition to prognostic mass. Also, there is no artificial separation between the pristine ice and snow, often used by bulk models. Instead we prescribed the ice size spectrum as the gamma distribution, with the distribution shape parameter controlled by the

  13. Influence of the ambient humidity on the concentration of natural deposition-mode ice-nucleating particles

    Science.gov (United States)

    López, M. L.; Ávila, E. E.

    2016-01-01

    This study reports measurements of deposition-mode ice-nucleating particle (INP) concentrations at ground level during the period July-December 2014 in Córdoba, Argentina. Ambient air was sampled into a cloud chamber where the INP concentration was measured at a temperature of -25 °C and a 15 % supersaturation over ice. Measurements were performed on days with different thermodynamic conditions, including rainy days. The effect of the relative humidity at ground level (RHamb) on the INP concentration was analyzed. The number of INPs activated varied from 1 L-1 at RHamb of 25 % to 30 L-1 at RHamb of 90 %. In general, a linear trend between the INP concentration and the RHamb was found, suggesting that this variability must be related to the effectiveness of the aerosols acting as INPs. From the backward trajectories analysis, it was found that the link between INP concentration and RHamb is independent of the origin of the air masses. The role of biological INPs and nucleation occurring in pores and cavities was discussed as a possible mechanism to explain the increase of the INP concentration during high ambient relative humidity events. This work provides valuable measurements of deposition-mode INP concentrations from the Southern Hemisphere where INP data are sparse so far.

  14. The effect of greenhouse gas concentrations and ice sheets on the glacial AMOC in a coupled climate model

    Science.gov (United States)

    Klockmann, Marlene; Mikolajewicz, Uwe; Marotzke, Jochem

    2016-09-01

    Simulations with the Max Planck Institute Earth System Model (MPI-ESM) are used to study the sensitivity of the AMOC and the deep-ocean water masses during the Last Glacial Maximum to different sets of forcings. Analysing the individual contributions of the glacial forcings reveals that the ice sheets cause an increase in the overturning strength and a deepening of the North Atlantic Deep Water (NADW) cell, while the low greenhouse gas (GHG) concentrations cause a decrease in overturning strength and a shoaling of the NADW cell. The effect of the orbital configuration is negligible. The effects of the ice sheets and the GHG reduction balance each other in the deep ocean so that no shoaling of the NADW cell is simulated in the full glacial state. Experiments in which different GHG concentrations with linearly decreasing radiative forcing are applied to a setup with glacial ice sheets and orbital configuration show that GHG concentrations below the glacial level are necessary to cause a shoaling of the NADW cell with respect to the pre-industrial state in MPI-ESM. For a pCO2 of 149 ppm, the simulated overturning state and the deep-ocean water masses are in best agreement with the glacial state inferred from proxy data. Sensitivity studies confirm that brine release and shelf convection in the Southern Ocean are key processes for the shoaling of the NADW cell. Shoaling occurs only when Southern Ocean shelf water contributes significantly to the formation of Antarctic Bottom Water.

  15. Estimation of Sea Ice Thickness Distributions through the Combination of Snow Depth and Satellite Laser Altimetry Data

    Science.gov (United States)

    Kurtz, Nathan T.; Markus, Thorsten; Cavalieri, Donald J.; Sparling, Lynn C.; Krabill, William B.; Gasiewski, Albin J.; Sonntag, John G.

    2009-01-01

    Combinations of sea ice freeboard and snow depth measurements from satellite data have the potential to provide a means to derive global sea ice thickness values. However, large differences in spatial coverage and resolution between the measurements lead to uncertainties when combining the data. High resolution airborne laser altimeter retrievals of snow-ice freeboard and passive microwave retrievals of snow depth taken in March 2006 provide insight into the spatial variability of these quantities as well as optimal methods for combining high resolution satellite altimeter measurements with low resolution snow depth data. The aircraft measurements show a relationship between freeboard and snow depth for thin ice allowing the development of a method for estimating sea ice thickness from satellite laser altimetry data at their full spatial resolution. This method is used to estimate snow and ice thicknesses for the Arctic basin through the combination of freeboard data from ICESat, snow depth data over first-year ice from AMSR-E, and snow depth over multiyear ice from climatological data. Due to the non-linear dependence of heat flux on ice thickness, the impact on heat flux calculations when maintaining the full resolution of the ICESat data for ice thickness estimates is explored for typical winter conditions. Calculations of the basin-wide mean heat flux and ice growth rate using snow and ice thickness values at the 70 m spatial resolution of ICESat are found to be approximately one-third higher than those calculated from 25 km mean ice thickness values.

  16. Oxygen 18 isotopic analysis of sub-glacial concentrations of the Laurentide Ice Sheet

    International Nuclear Information System (INIS)

    Calcareous concretions occuring on Grenvillian gneiss have been discovered north of Hull, Quebec. Their structure and isotopic composition (delta(subPDB)18O approximately equal to -26%; delta(subPDB)13C approximately equal to 0%; 14C age > 35 000 BP) indicate subglacial conditions of precipitation. It is concluded that they were deposited at the base of the Laurentide ice sheet. Assuming equilibrium conditions with the subglacial film of water during precipitation of calcite, it is possible to define a -27.5 to -31.8% (vs. 'standard mean ocean water' (SMOW)) range for the oxygen-18 content of ice. (auth)

  17. The sensitivity of the oxygen isotopes of ice core sulfate to changing oxidant concentrations since the preindustrial

    Directory of Open Access Journals (Sweden)

    E. D. Sofen

    2010-08-01

    Full Text Available Changes in tropospheric oxidant concentrations since preindustrial times have implications for the ozone radiative forcing, lifetimes of reduced trace gases, aerosol formation, and human health but are highly uncertain. Measurements of the triple oxygen isotopes of sulfate in ice cores (described by Δ17OSO4 = δ17O − 0.52 × δ18O provide one of the few constraints on paleo-oxidants. We use the GEOS-Chem global atmospheric chemical transport model to simulate changes in oxidant concentrations and the Δ17OSO4 between 1850 and 1990 to assess the sensitivity of Δ17OSO4 measurements in Greenland and Antarctic ice cores to changing tropospheric oxidant concentrations. The model indicates a 42% increase in the concentration of global mean tropospheric O3, a 10% decrease in OH, and a 58% increase in H2O2 between the preindustrial and present. Modeled Δ17OSO4 is consistent with measurements from ice core and aerosol samples. Model results indicate that the observed decrease in the Arctic Δ17OSO4 in spite of increasing O3 is due to the combined effects of increased sulfate formation by O2 catalyzed by anthropogenic transition metals and increased cloud water acidity. In Antarctica, the Δ17OSO4 is sensitive to relative changes of oxidant concentrations, but in a nonlinear fashion. Sensitivity studies explore the uncertainties in preindustrial emissions of oxidant precursors.

  18. A comparative study on three EOF analysis techniques using decades of Arctic sea-ice concentration data

    Institute of Scientific and Technical Information of China (English)

    陈新保; 刘信陶; 李松年; Chow Annie

    2015-01-01

    Change in Arctic sea ice extent is one of the indicators of global climate changes. Spatio-temporal change and change patterns can be identified using various methods to facilitate human understanding global climate changes. Three empirical orthogonal function (EOF) techniques are discussed and applied to decades of sea-ice concentration (SIC) dataset in Arctic area for identifying independent patterns. It was found that: 1) discrepancies exist in magnitude and scope for each EOF pattern, however, the first two leading EOFs of variability possess high similarities in structure and shape; 2) Even though there are somewhat differences in amplitude of each PC mode, the first two leading PC modes maintain consistent in overall trend and periodicity; 3) There are significant discrepancies and inconsistencies in the third and fourth leading EOF and PC modes. The accuracies of three techniques are further validated in representing the physical phenomena of SIC anomaly patterns.

  19. Oxygen-18 concentrations in recent precipitation and ice cores on the Tibetan Plateau

    Science.gov (United States)

    Tian, L.; Yao, T.; Schuster, P. F.; White, J. W. C.; Ichiyanagi, K.; Pendall, E.; Pu, J.; Yu, W.

    2003-05-01

    A detailed study of the climatic significance of δ18O in precipitation was completed on a 1500 km southwest-northeast transect of the Tibetan Plateau in central Asia. Precipitation samples were collected at four meteorological stations for up to 9 years. This study shows that the gradual impact of monsoon precipitation affects the spatial variation of δ18O-T relationship along the transect. Strong monsoon activity in the southern Tibetan Plateau results in high precipitation rates and more depleted heavy isotopes. This depletion mechanism is described as a precipitation "amount effect" and results in a poor δ18O-T relationship at both seasonal and annual scales. In the middle of the Tibetan Plateau, the effects of the monsoon are diminished but continue to cause a reduced correlation of δ18O and temperature at the annual scale. At the monthly scale, however, a significant δ18O-T relationship does exist. To the north of the Tibetan Plateau beyond the extent of the effects of monsoon precipitation, δ18O in precipitation shows a strong temperature dependence. δ18O records from two shallow ice cores and historic air temperature data were compared to verify the modern δ18O-T relationship. δ18O in Dunde ice core was positively correlated with air temperature from a nearby meteorological station in the north of the plateau. The δ18O variation in an ice core from the southern Plateau, however, was inversely correlated with precipitation amount at a nearby meteorological station and also the accumulation record in the ice core. The long-term variation of δ18O in the ice core record in the monsoon regions of the southern Tibetan Plateau suggest past monsoon seasons were probably more expansive. It is still unclear, however, how changes in large-scale atmosphere circulation might influence summer monsoon precipitation on the Tibetan Plateau.

  20. Great Lakes Ice Charts

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Charts show ice extent and concentration three times weekly during the ice season, for all lakes except Ontario, from the 1973/74 ice season through the 2001/2002...

  1. Baffin Bay Ice Drift and Export: 2002-2007

    Science.gov (United States)

    Kwok, Ron

    2007-01-01

    Multiyear estimates of sea ice drift in Baffin Bay and Davis Strait are derived for the first time from the 89 GHz channel of the AMSR-E instrument. Uncertainties in the drift estimates, assessed with Envisat ice motion, are approximately 2-3 km/day. A persistent atmospheric trough, between the coast of Greenland and Baffin Island, drives the prevailing southward drift pattern with average daily displacements in excess of 18-20 km during winter. Over the 5-year record, the ice export ranges between 360 and 675 x 10(exp 3) km(exp 2), with an average of 530 x 10(exp 3) km(exp 2). Sea ice area inflow from the Nares Strait, Lancaster Sound and Jones Sound potentially contribute up to a third of the net area outflow while ice production at the North Water Polynya contributes the balance. Rough estimates of annual volume export give approximately 500-800 km(exp 3). Comparatively, these are approximately 70% and approximately 30% of the annual area and Strait.

  2. First in situ determination of gas transport coefficients (DO2, DAr and DN2) from bulk gas concentration measurements (O2, N2, Ar) in natural sea ice

    DEFF Research Database (Denmark)

    Crabeck, O.; Delille, B.; Rysgaard, Søren;

    2014-01-01

    We report bulk gas concentrations of O2, N2, and Ar, as well as their transport coefficients, in natural landfast subarctic sea ice in southwest Greenland. The observed bulk ice gas composition was 27.5% O2, 71.4% N2, and 1.09% Ar. Most previous studies suggest that convective transport is the main...... driver of gas displacement in sea ice and have neglected diffusion processes. According to our data, brines were stratified within the ice, so that no convective transport could occur within the brine system. There- fore, diffusive transport was the main driver of gas migration. By analyzing the temporal...... evolution of an internal gas peak within the ice, we deduced the bulk gas transport coefficients for oxygen (DO2), argon (DAr), and nitrogen (DN2). The values fit to the few existing estimates from experimental work, and are close to the diffusivity values in water (1025 cm2 s21). We suggest that gas...

  3. Influence of atmospheric ice nucleus concentrations on cold cloud radiant properties and cold cloud reflectivity changes in past years

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    PAL satellite dataset which have long temporal span is used in the study. Relationship between cold cloud reflectivity and aerosol concentration in Beijing is analyzed as an example. From analysis, cold cloud reflectivity is found to be well correlated with aerosol optical depth. Meanwhile, it is retro-correlated with surface visibility. The results mean that cold cloud reflectivity is possibly influenced by ice nucleus concentration changes. Analysis about cold cloud reflectivity changes during the period 1982-1999 in Beijing shows that reflectivity increases in earlier years and decreases in later years. The data of cold cloud reflectivity in China show that reflectivity in some regions has changed. For the reason that cold cloud is very important in global climate system, those changes of cold cloud reflectivity can lead to climate changes finally.

  4. Ex-vivo changes in amino acid concentrations from blood stored at room temperature or on ice: implications for arginine and taurine measurements

    Directory of Open Access Journals (Sweden)

    McNeil Yvette R

    2009-11-01

    Full Text Available Abstract Background Determination of the plasma concentrations of arginine and other amino acids is important for understanding pathophysiology, immunopathology and nutritional supplementation in human disease. Delays in processing of blood samples cause a change in amino acid concentrations, but this has not been precisely quantified. We aimed to describe the concentration time profile of twenty-two amino acids in blood from healthy volunteers, stored at room temperature or on ice. Methods Venous blood was taken from six healthy volunteers and stored at room temperature or in an ice slurry. Plasma was separated at six time points over 24 hours and amino acid levels were determined by high-performance liquid chromatography. Results Median plasma arginine concentrations decreased rapidly at room temperature, with a 6% decrease at 30 minutes, 25% decrease at 2 hours and 43% decrease at 24 hours. Plasma ornithine increased exponentially over the same period. Plasma arginine was stable in blood stored on ice, with a Conclusion Plasma arginine concentrations in stored blood fall rapidly at room temperature, but remain stable on ice for at least 24 hours. Blood samples taken for the determination of plasma amino acid concentrations either should be placed immediately on ice or processed within 30 minutes of collection.

  5. Enhanced tropospheric BrO concentrations over the Antarctic sea ice belt in mid winter observed from MAX-DOAS observations on board the research vessel Polarstern

    OpenAIRE

    Wagner, T.; Ibrahim, O.; R. Sinreich; Frieß, U.; Platt, U.

    2007-01-01

    We present Multi AXis-Differential Optical Absorption Spectroscopy (MAX-DOAS) observations of tropospheric BrO carried out on board the German research vessel Polarstern during the Antarctic winter 2006. Polarstern entered the area of first year sea ice around Antarctica on 24 June 2006 and stayed within this area until 15 August 2006. For the period when the ship cruised inside the first year sea ice belt, enhanced BrO concentrations were almost continuously observed. One interesting excepti...

  6. The Increase of the Ice-free Season as Further Indication of the Rapid Decline of the Arctic sea ice

    Science.gov (United States)

    Rodrigues, J.

    2008-12-01

    The unprecedented depletion of sea ice in large sectors of the Arctic Ocean in the summer of 2007 has been the subject of many publications which highlight the spectacular disappearance of the sea ice at the time of minimum ice cover or emphasise the losses at very high latitudes. However, minimum values can be strongly affected by specific circumstances occurring in a comparatively short time interval. The unusually clear skies and the presence of a particular wind pattern over the Arctic Ocean may partly explain the record minimum attained in September 2007. In this contribution, instead of limiting ourselves to the September minimum or the March maximum, we consider the ice conditions throughout the year, opting for a less used, and hopefully more convenient approach. We chose as variables to describe the evolution of the sea ice situation in the Arctic Ocean and peripheral seas in the 1979-2007 period the length of the ice- free season (LIFS) and the inverse sea ice index (ISII). The latter is a quantity that measures the degree of absence of sea ice in a year and varies between zero (when there is a perennial ice cover) and one (when there is open water all year round). We used sea ice concentration data obtained from passive microwave satellite imagery and processed with the Bootstrap algorithm for the SMMR and SSM/I periods, and with the Enhanced NASA Team algorithm for the AMSR-E period. From a linear fit of the observed data, we found that the average LIFS in the Arctic went from 118 days in the late 1970s to 148 days in 2006, which represents an average rate of increase of 1.1 days/year. In the period 2001-2007 the LIFS increased monotonically at an average rate of 5.5 days/year, in good agreement with the general consensus that the Arctic sea ice is currently in an accelerated decline. We also found that 2007 was the longest ice- free season on record (168 days). The ISII also reached a maximum in 2007 . We also investigated what happened at the regional

  7. Analysis of a link between fall Arctic sea ice concentration and atmospheric patterns in the following winter

    Directory of Open Access Journals (Sweden)

    Susanna Hopsch

    2012-05-01

    Full Text Available The impact of anomalous fall Arctic sea ice concentrations (SICs on atmospheric patterns in the following winter is revisited by analysing results for two time periods: the most recent, satellite-era period (1979–2010 and a longer time-period (1950–2010. On the basis of September SICs for each time-period, an index was constructed which was used to identify anomalous high/low SIC years for both the original, as well as for the linearly detrended sea ice index. Identified years were then used to derive composites for the following winter's monthly atmospheric variables. Mid-troposphere geopotential height composites for winter months are in general reminiscent of the North Atlantic Oscillation pattern with high latitude maximum shifted towards the Barents Sea. Also, lower troposphere temperatures indicate the presence of cooler conditions over the continents during low SIC years. However, differences in the composite patterns are significant only for areas with limited spatial extent. While suggested pathways in previously published studies seem reasonable, our results show that these findings are not yet robust enough from a statistical significance perspective. More data (e.g. provided by longer, climate-quality reanalysis datasets are needed before conclusions of impacts and feedbacks can be drawn with certainty.

  8. Data sets for snow cover monitoring and modelling from the National Snow and Ice Data Center

    Science.gov (United States)

    Holm, M.; Daniels, K.; Scott, D.; McLean, B.; Weaver, R.

    2003-04-01

    A wide range of snow cover monitoring and modelling data sets are pending or are currently available from the National Snow and Ice Data Center (NSIDC). In-situ observations support validation experiments that enhance the accuracy of remote sensing data. In addition, remote sensing data are available in near-real time, providing coarse-resolution snow monitoring capability. Time series data beginning in 1966 are valuable for modelling efforts. NSIDC holdings include SMMR and SSM/I snow cover data, MODIS snow cover extent products, in-situ and satellite data collected for NASA's recent Cold Land Processes Experiment, and soon-to-be-released ASMR-E passive microwave products. The AMSR-E and MODIS sensors are part of NASA's Earth Observing System flying on the Terra and Aqua satellites Characteristics of these NSIDC-held data sets, appropriateness of products for specific applications, and data set access and availability will be presented.

  9. On the observation of unusual high concentration of small chain-like aggregate ice crystals and large ice water contents near the top of a deep convective cloud during the CIRCLE-2 experiment

    Directory of Open Access Journals (Sweden)

    J.-F. Gayet

    2012-01-01

    Full Text Available During the CIRCLE-2 experiment carried out over Western Europe in May 2007, combined in situ and remote sensing observations allowed to describe microphysical and optical properties near-top of an overshooting convective cloud (11 080 m/−58 °C. The airborne measurements were performed with the DLR Falcon aircraft specially equipped with a unique set of instruments for the extensive in situ cloud measurements of microphysical and optical properties (Polar Nephelometer, FSSP-300, Cloud Particle Imager and PMS 2-D-C and nadir looking remote sensing observations (DLR WALES Lidar. Quasi-simultaneous space observations from MSG/SEVIRI, CALIPSO/CALIOP-WFC-IIR and CloudSat/CPR combined with airborne RASTA radar reflectivity from the French Falcon aircraft flying above the DLR Falcon depict very well convective cells which overshoot by up to 600 m the tropopause level. Unusual high values of the concentration of small ice particles, extinction, ice water content (up to 70 cm−3, 30 km−1 and 0.5 g m−3, respectively are experienced. The mean effective diameter and the maximum particle size are 43 μm and about 300 μm, respectively. This very dense cloud causes a strong attenuation of the WALES and CALIOP lidar returns. The SEVIRI retrieved parameters confirm the occurrence of small ice crystals at the top of the convective cell. Smooth and featureless phase functions with asymmetry factors of 0.776 indicate fairly uniform optical properties. Due to small ice crystals the power-law relationship between ice water content (IWC and radar reflectivity appears to be very different from those usually found in cirrus and anvil clouds. For a given equivalent reflectivity factor, IWCs are significantly larger for the overshooting cell than for the cirrus. Assuming the same prevalent microphysical properties over the depth of the overshooting cell, RASTA reflectivity profiles scaled into ice water content show that retrieved

  10. On the observation of unusual high concentration of small chain-like aggregate ice crystals and large ice water contents near the top of a deep convective cloud during the CIRCLE-2 experiment

    Directory of Open Access Journals (Sweden)

    J.-F. Gayet

    2011-08-01

    Full Text Available During the CIRCLE-2 experiment carried out over Western Europe in May 2007, combined in situ and remote sensing observations allowed to describe microphysical and optical properties near-top of an overshooting convective cloud (11 080 m/−58 °C. The airborne measurements were performed with the DLR Falcon aircraft specially equipped with a unique set of instruments for the extensive in situ cloud measurements of microphysical and optical properties (Polar Nephelometer, FSSP-300, Cloud Particle Imager and PMS 2D-C and nadir looking remote sensing observations (DLR WALES Lidar. Quasi-simultaneous space observations from MSG/SEVIRI, CALIPSO/CALIOP-WFC-IIR and CloudSat/CPR combined with airborne RASTA radar reflectivity from the French Falcon aircraft flying above the DLR Falcon depict very well convective cells which overshoot by up to 600 m the tropopause level. Unusual high values of the concentration of small ice particles, extinction, ice water content (up to 70 cm−3, 30 km−1 and 0.5 g m−3, respectively are experienced. This very dense cloud causes a strong attenuation of the WALES and CALIOP lidar returns. The mean effective diameter is of 43 μm and the maximum particle size is about 300 μm. The SEVIRI retrieved parameters confirm the occurrence of small ice crystals at the top of the convective cell. Smooth and featureless phase functions with asymmetry factors of 0.776 indicate fairly uniform optical properties. Due to small ice crystals the power-law relationship between ice water content (IWC and radar reflectivity appears to be very different from those usually found in cirrus and anvil clouds. For a given equivalent reflectivity factor, IWCs are significantly larger for the overshooting cell than for the cirrus. Assuming the same prevalent microphysical properties over the depth of the overshooting cell, RASTA reflectivity profiles scaled into ice water content show that retrieved IWC up to 1 g

  11. Impacts of alternative fuels in aviation on microphysical aerosol properties and predicted ice nuclei concentration at aircraft cruise altitude

    Science.gov (United States)

    Weinzierl, B.; D'Ascoli, E.; Sauer, D. N.; Kim, J.; Scheibe, M.; Schlager, H.; Moore, R.; Anderson, B. E.; Ullrich, R.; Mohler, O.; Hoose, C.

    2015-12-01

    In the past decades air traffic has been substantially growing affecting air quality and climate. According to the International Civil Aviation Authority (ICAO), in the next few years world passenger and freight traffic is expected to increase annually by 6-7% and 4-5%, respectively. One possibility to reduce aviation impacts on the atmosphere and climate might be the replacement of fossil fuels by alternative fuels. However, so far the effects of alternative fuels on particle emissions from aircraft engines and their ability to form contrails remain uncertain. To study the effects of alternative fuels on particle emissions and the formation of contrails, the Alternative Fuel Effects on Contrails and Cruise Emissions (ACCESS) field experiment was conducted in California. In May 2014, the DLR Falcon 20 and the NASA HU-25 jet aircraft were instrumented with an extended aerosol and trace gas payload probing different types of fuels including JP-8 and JP-8 blended with HEFA (Hydroprocessed Esters and Fatty Acids) while the NASA DC8 aircraft acted as the source aircraft for ACCESS-2. Emission measurements were taken in the DC8 exhaust plumes at aircraft cruise level between 9-12 km altitude and at distances between 50 m and 20 km behind the DC8 engines. Here, we will present results from the ACCESS-2 aerosol measurements which show a 30-60% reduction of the non-volatile (mainly black carbon) particle number concentration in the aircraft exhaust for the HEFA-blend compared to conventional JP-8 fuel. Size-resolved particle emission indices show the largest reductions for larger particle sizes suggesting that the HEFA blend contains fewer and smaller black carbon particles. We will combine the airborne measurements with a parameterization of deposition nucleation developed during a number of ice nucleation experiments at the AIDA chamber in Karlsruhe and discuss the impact of alternative fuels on the abundance of potential ice nuclei at cruise conditions.

  12. 10Be concentrations in an ice core from Akademii Nauk (Russian Arctic) for validation of the age-depth relationship: development of a sample scheme

    OpenAIRE

    Albedyll, Luisa von

    2015-01-01

    This bachelor’s thesis aims to develop a sample scheme for the Akademii Nauk ice core from the Russian Arctic in order to reconstruct the long-term variations of the 10Be concentration. These long-term variations are assumed to vary globally simultaneous and are therefore used to synchronize different 10Be records for the purpose of dating (“wiggle matching”). This is done in order to validate an existing age-depth relationship of this ice core covering a time span of around 3 000...

  13. ICESat Observations of Seasonal and Interannual Variations of Sea-Ice Freeboard and Estimated Thickness in the Weddell Sea, Antarctica (2003-2009)

    Science.gov (United States)

    Yi, Donghui; Robbins, John W.

    2010-01-01

    Sea-ice freeboard heights for 17 ICESat campaign periods from 2003 to 2009 are derived from ICESat data. Freeboard is combined with snow depth from Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E) data and nominal densities of snow, water and sea ice, to estimate sea-ice thickness. Sea-ice freeboard and thickness distributions show clear seasonal variations that reflect the yearly cycle of growth and decay of the Weddell Sea (Antarctica) pack ice. During October-November, sea ice grows to its seasonal maximum both in area and thickness; the mean freeboards are 0.33-0.41 m and the mean thicknesses are 2.10-2.59 m. During February-March, thinner sea ice melts away and the sea-ice pack is mainly distributed in the west Weddell Sea; the mean freeboards are 0.35-0.46 m and the mean thicknesses are 1.48-1.94 m. During May-June, the mean freeboards and thicknesses are 0.26-0.29 m and 1.32-1.37 m, respectively. The 6 year trends in sea-ice extent and volume are (0.023+/-0.051) x 10(exp 6)sq km/a (0.45%/a) and (0.007+/-1.0.092) x 10(exp 3)cu km/a (0.08%/a); however, the large standard deviations indicate that these positive trends are not statistically significant.

  14. A new high-precision technique for measurement of N2O concentration in polar ice cores with small amount of samples

    Science.gov (United States)

    Ryu, Yeongjun; Yang, Ji-Woong; Ahn, Jinho

    2016-04-01

    Nitrous oxide, one of the major greenhouse gases, has about 300 times higher GWP for 100 years, although its mixing ratio is a thousand time less than that of CO2. Since N2O has important roles in biogeochemical nitrogen cycles, atmospheric ozone destruction, and long term scale climate feedback, it is crucial to comprehend the underlying mechanisms that lead changes in global inventories of greenhouse gases in the past. Because previous data from ice core studies have large uncertainty of 5 ppbv with relatively low temporal resolutions, they are not sufficient for interpreting centennial to multi-centennial variations. Here we present a new high-precision technique for measuring N2O concentration of ancient air occluded in ice cores. We use a wet extraction method (melting-refreezing method) to extract gas from the ice core, and GC-ECD to determine N2O concentration. The optimized setting for GC-ECD permits high sensitivity for N2O, and minimizes volume of ice core sample that is requisite to get reliable results. Here we present preliminary results that we obtained from 15 ~ 20 g of ice core samples. The values for solubility correction is measured by an additional melting-refreezing process. The amount of correction is about 3 ppbv for 329.88 ppbv N2O standard gas air (calibrated from NOAA) with an uncertainty of < 1 ppbv. We also compare the results with those from a dry extraction method for validation, and present preliminary results from Styx ice core, Antarctica. The updated results will be presented at the meeting.

  15. SST, Aqua AMSR-E, 0.25 degrees, Global

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA OceanWatch provides sea surface temperature (SST) products derived from microwave sensors, which can measure ocean temperatures even in the presence of clouds....

  16. IOMASA SEA ICE DEVELOPMENTS

    DEFF Research Database (Denmark)

    Andersen, Søren; Tonboe, Rasmus; Heygster, Georg;

    2005-01-01

    Sensitivity studies show that the radiometer ice concentration estimate can be biased by +10% by anomalous atmospheric emissivity and -20% by anomalous ice surface emissivity. The aim of the sea ice activities in EU 5th FP project IOMASA is to improve sea ice concentration estimates at higher...... spatial resolution. The project is in the process of facilitating an ice concentration observing system through validation and a better understanding of the microwave radiative transfer of the sea ice and overlying snow layers. By use of a novel modelling approach, it is possible to better detect...... and determine the circumstances that may lead to anomalous sea ice concentration retrieval as well as to assess and possibly minimize the sensitivities of the retrieval system. Through an active partnership with the SAF on Ocean and Sea Ice, a prototype system will be implemented as an experimental product...

  17. Two-way coupled ice sheet-earth system simulations: Consequences of raising CO2 concentration for Greenland and the interacting climate system

    Science.gov (United States)

    Rodehacke, Christian; Vizcaino, Miren; Mikolajewicz, Uwe

    2013-04-01

    The observed distinct warming in the Arctic and the northward flow of tropical water masses seem to trigger enhanced melting of the Greenland ice sheet, which adds more fresh water into the ambient ocean. A continuation of the observed accelerated melting during the last decade would stabilize the water column in the adjacent deep water formation sides. With our fully coupled ice sheet-earth system model we approach the questions if this weakens the formation of deep water masses and reduces the thermohaline driven meridional overturning circulation (MOC). We have performed idealized future projections to investigate the response of the interaction under raising atmospheric carbon dioxide concentration with our two-way coupled ice sheet-earth system model system. We will present the building blocks of our fully coupled system, which includes a physical based calculation of the ice sheet's surface mass balance and ice sheet-ocean interaction; The ESM instead is subject to orographic changes and receives fresh water fluxes, for example. Since the behavior of an ice sheet in the near future is controlled by both the external forcing and by its initial conditions, we have performed Latin Hyper Cube (LHC) simulations with the ice sheet model over more than one glacial-interglacial cycle utilizing standard techniques to obtain a reasonable initial state. According to several quantities the best performing LHC member is exposed afterwards to boundary conditions determined from energy balance calculations again obtained from simulated forcing fields. Finally the fully coupled system is brought into a quasi-equilibrium under pre-industrial conditions before idealized scenarios have been started. In contrast to commonly used strategies, our coupled ice sheet inherits the memory of a glacial cycle simulations obtain exclusively from ESM fields. Furthermore we use a mass conserving scheme, do neither apply flux corrections nor utilize anomaly coupling. Under different CO2

  18. Enhanced tropospheric BrO concentrations over the Antarctic sea ice belt in mid winter observed from MAX-DOAS observations on board the research vessel Polarstern

    Directory of Open Access Journals (Sweden)

    T. Wagner

    2007-02-01

    Full Text Available We present Multi AXis-Differential Optical Absorption Spectroscopy (MAX-DOAS observations of tropospheric BrO carried out on board the German research vessel Polarstern during the Antarctic winter 2006. Polarstern entered the area of first year sea ice around Antarctica on 24 June 2006 and stayed within this area until 15 August 2006. For the period when the ship cruised inside the first year sea ice belt, enhanced BrO concentrations were almost continuously observed. One interesting exception appeared on 7 July 2006, when the sun elevation angle was < about –2.8° indicating that for low insulation the photolysis of Br2 and/or HOBr is too slow to provide sufficient amounts of Br radicals. Before and after the period inside the first year sea ice belt, typically low BrO concentrations were observed. Our observations indicate that enhanced BrO concentrations around Antarctica exist about one month earlier than observed by satellite instruments. The small BrO concentrations over the open oceans indicate a short atmospheric lifetime of activated bromine without contact to areas of first year sea ice. From detailed radiative transfer simulations we find that MAX-DOAS observations are about one order of magnitude more sensitive to near-surface BrO than satellite observations. In contrast to satellite observations the MAX-DOAS sensitivity hardly decreases for large solar zenith angles and is almost independent from the ground albedo. Thus this technique is very well suited for observations in polar regions close to the solar terminator. Furthermore, combination of both techniques could yield additional information on the vertical distribution of BrO in the lower troposphere.

  19. Remote sensing of sea ice: advances during the DAMOCLES project

    Directory of Open Access Journals (Sweden)

    G. Heygster

    2012-01-01

    Full Text Available In the Arctic, global warming is particularly pronounced so that we need to monitor its development continuously. On the other hand, the vast and hostile conditions make in situ observation difficult, so that available satellite observations should be exploited in the best possible way to extract geophysical information. Here, we give a résumé of the sea ice remote sensing efforts of the EU project DAMOCLES (Developing Arctic Modeling and Observing Capabilities for Long-term Environmental Studies. The monthly variation of the microwave emissivity of first-year and multiyear sea ice has been derived for the frequencies of the microwave imagers like AMSR-E and sounding frequencies of AMSU, and has been used to develop an optimal estimation method to retrieve sea ice and atmospheric parameters simultaneously. A sea ice microwave emissivity model has been used together with a thermodynamic model to establish relations between the emisivities at 6 GHz and 50 GHz. At the latter frequency, the emissivity is needed for assimilation into atmospheric circulation models, but more difficult to observe directly. A method to determine the effective size of the snow grains from observations in the visible range (MODIS is developed and applied. The bidirectional reflectivity distribution function (BRDF of snow, which is an essential input parameter to the retrieval, has been measured in situ on Svalbard during the DAMOCLES campaign, and a BRDF model assuming aspherical particles is developed. Sea ice drift and deformation is derived from satellite observations with the scatterometer ASCAT (62.5 km grid spacing, with visible AVHRR observations (20 km, with the synthetic aperture radar sensor ASAR (10 km, and a multi-sensor product (62.5 km with improved angular resolution (Continuous Maximum Cross Correlation, CMCC method is presented. CMCC is also used to derive the sea ice deformation, important for formation of sea ice leads (diverging deformation and

  20. Rapid measurement of perchlorate in polar ice cores down to sub-ng L(-1) levels without pre-concentration.

    Science.gov (United States)

    Peterson, Kari; Cole-Dai, Jihong; Brandis, Derek; Cox, Thomas; Splett, Scott

    2015-10-01

    An ion chromatography-electrospray ionization-tandem mass spectrometry (IC-ESI-MS/MS) method has been developed for rapid and accurate measurement of perchlorate in polar snow and ice core samples in which perchlorate concentrations are expected to be as low as 0.1 ng L(-1). Separation of perchlorate from major inorganic species in snow is achieved with an ion chromatography system interfaced to an AB SCIEX triple quadrupole mass spectrometer operating in multiple reaction monitoring mode. Under optimized conditions, the limit of detection and lower limit of quantification without pre-concentration have been determined to be 0.1 and 0.3 ng L(-1), respectively, with a linear dynamic range of 0.3-10.0 ng L(-1) in routine measurement. These represent improvements over previously reported methods using similar analytical techniques. The improved method allows fast, accurate, and reproducible perchlorate quantification down to the sub-ng L(-1) level and will facilitate perchlorate measurement in the study of natural perchlorate production with polar ice cores in which perchlorate concentrations are anticipated to vary in the low and sub-ng L(-1) range. Initial measurements of perchlorate in ice core samples from central Greenland show that typical perchlorate concentrations in snow dated prior to the Industrial Revolution are about 0.8 ng L(-1), while perchlorate concentrations are significantly higher in recent (post-1980) snow, suggesting that anthropogenic sources are a significant contributor to perchlorate in the current environment. PMID:26297465

  1. Amery ice shelf DEM and its marine ice distribution

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The Amery Ice Shelf is the largest ice shelf in East Antarctica. A new DEM was generated for this ice shelf, using kriging to interpolate the data from ICESat altimetry and the AIS-DEM. The ice thickness distribution map is converted from the new DEM, assuming hydrostatic equilibrium. The Amery Ice Shelf marine ice, up to 230 m thick, is concentrated in the northwest of the ice shelf. The volume of the marine ice is 2.38×103 km3 and accounts for about 5.6% of the shelf volume.

  2. On the ice nucleation spectrum

    OpenAIRE

    D. Barahona

    2011-01-01

    This work presents a novel formulation of the ice nucleation spectrum, i.e. the function relating the ice crystal concentration to cloud formation conditions and aerosol properties. The new formulation relies on a statistical view of the ice nucleation process and explicitly accounts for the dependency of the ice crystal concentration on temperature, supersaturation, cooling rate, and particle size, and, in the case of heterogeneous ice nucleation, on the distributions of particle area and su...

  3. The interpretation of spikes and trends in concentration of nitrate in polar ice cores, based on evidence from snow and atmospheric measurements

    Directory of Open Access Journals (Sweden)

    E. W. Wolff

    2008-09-01

    Full Text Available Nitrate is frequently measured in ice cores, but its interpretation remains immature. Using daily snow surface concentrations of nitrate at Halley (Antarctica for 2004–2005, we show that sharp spikes (>factor 2 in nitrate concentration can occur from day to day. Some of these spikes will be preserved in ice cores. Many of them are associated with sharp increases in the concentration of sea salt in the snow. There is also a close association between the concentrations of aerosol nitrate and sea salt aerosol. This evidence is consistent with many of the spikes in deposited nitrate being due to the conversion or trapping of gas-phase nitrate, i.e. to enhanced deposition rather than enhanced atmospheric concentrations of NOy. Previously, sharp spikes in nitrate concentration (with concentration increases of up to a factor 4 seen in probably just one snowfall have been assigned to sharp production events such as solar proton events (SPEs. We find that it is unlikely that SPEs can produce spikes of the kind seen. Taken together with our evidence that such spikes can be produced depositionally, we find that it is not possible to track past SPEs without carrying out a new multi-site and multi-analyte programme. Seasonal and interannual trends in nitrate concentration in cores from any single site cannot be interpreted in terms of production changes until the recycling of nitrate from central Antarctica to coastal Antarctica is better quantified. It might be possible to assess the interannual input of NOy to the Antarctic lower troposphere by using a network of cores to estimate variability in the total annual deposition across the continent (which we estimate to be 9±2×107kg/a – as NO3, but it will first have to be established that the outflow across the coast can be ignored.

  4. Study on producing technology of the high concentration ozone ice%高浓度臭氧冰制取技术的研究

    Institute of Scientific and Technical Information of China (English)

    刁石强; 石红; 郝淑贤; 吴燕燕; 岑剑伟

    2011-01-01

    用臭氧发生器制取高浓度臭氧气体,经高效涡旋气-水混合泵与水循环混合溶解臭氧而取得高浓度的臭氧水,然后把高浓度臭氧水持续地送入快速制冰机中制成鳞片状的臭氧冰。通过对影响制取臭氧冰浓度的臭氧气体流量、水温、混合压力、水pH和水质等条件进行研究,最终确定臭氧冰的生产工艺。实验结果表明,在水的pH为4.0,水温接近0℃,臭氧气体流量2.5L/min,混合泵出水压力0.2MPa的条件下进行循环混合,能制出高浓度的臭氧水和臭氧冰,所制得臭氧冰的臭氧浓度达16.7mg/L。%High concentration ozone,produced by ozone generator,was mixed with water by vortex pump to obtain the high concentration ozone water,and then the high concentration ozone water was inducted continuously to the fast ice-making machine,the flake ice was made.The impacts of flow rate,water temperature,mixing pressure,and water pH value and water quality were studied.The results showed that when the water pH reached 4.0,the water temperature closed to 0℃,the ozone gas flow rate was 2.5L/min,pressure of mixing pump was 0.2MPa,the high ozone concentration of water and ice could be produced,its concentration reached 16.7mg/L in the ice.

  5. 格陵兰海海冰外缘线变化特征分析%Variability of the Greenland Sea Ice Edge

    Institute of Scientific and Technical Information of China (English)

    牟龙江; 赵进平

    2013-01-01

    格陵兰海作为北冰洋的边缘海之一,容纳了北极输出的海冰,其海冰外缘线的变化既受北极海冰输出量的影响,也受局地海冰融化和冻结过程的影响.利用2003年1月到2011年6月AMSR-E卫星亮温数据反演的海冰密集度产品,对格陵兰海海冰外缘线的变化特征进行了分析.结果表明,格陵兰海海冰外缘线不仅存在一年的变化周期,还存在比较显著的半年变化周期,与海冰在春秋两季向岸收缩有关.格陵兰海冬季的海冰外缘线极大值呈逐年下降的趋势,体现了北极增暖导致的冬季海冰范围减小;而夏季海冰外缘线离岸距离的极小值呈上升趋势,表明夏季来自北冰洋的海冰输出量增大.2003-2004年是格陵兰海夏季海冰融化最严重的2年.2007年北冰洋夏季海冰覆盖范围达到历史最小;而格陵兰海夏季的最小海冰范围最大,表明2007年北冰洋海冰的输出量大于其他年份.此外,夏季格陵兰岛冰雪融化形成的地表径流对海冰外缘线有一定的影响.对海冰外缘线影响最大的不是格陵兰海的局地风场,而是弗拉姆海峡(Fram Strait)区域的经向风,它直接驱动了北冰洋海冰向格陵兰海的输运,进而对格陵兰海海冰外缘线的分布产生滞后的影响.%The Greenland Sea,a marginal sea of the Arctic Ocean,accommodates ice flux from the Arctic.The Greenland Sea ice edge is affected by ice export from the Arctic Ocean and also by local sea ice melting and freezing processes.The sea ice concentration product inverted from brightness temperature data on the AMSR-E microwave sensor from January 2003 to June 2011 is used to discuss the variability of the Greenland Sea ice edge in this paper.The study shows that the Greenland Sea ice edge did not only show annual periodic variations,but also significant semi-annual periodic variations associated with sea ice extent changes in spring and autumn.The maximum of winter sea ice edge had a

  6. NEW CONSTRAINT ON ESTIMATION OF THE ANTHROPOGENIC CO_2 BUDGET : RELATIONSHIP BETWEEN CONCENTRATION AND δ^<13>C OF ATMOSPHERIC CO_2 DETERMINED FROM ICE CORE ANALYSIS

    OpenAIRE

    カトウ, キクオ; コマキ, カオリ; Kikuo, Kato; Kaori, KOMAKI

    1997-01-01

    Studies on ice cores from Antarctica and Greenland revealed variations in the concentration and δ^C of ancient atmospheric CO_2. Since the Industrial Revolution, addition of anthropogenic CO_2 to the atmosphere has caused a significant increase in atmospheric CO_2,accompanied by a decrease in δ^C of atmospheric CO_2. The relationship between them shows that the δ^C value of CO_2 which remained in the atmosphere is significantly larger than -25‰ of that originated from coal burning and defores...

  7. On the ice nucleation spectrum

    OpenAIRE

    D. Barahona

    2012-01-01

    This work presents a novel formulation of the ice nucleation spectrum, i.e. the function relating the ice crystal concentration to cloud formation conditions and aerosol properties. The new formulation is physically-based and explicitly accounts for the dependency of the ice crystal concentration on temperature, supersaturation, cooling rate, and particle size, surface area and composition. This is achieved by introducing the concepts of ice nucleation coefficient (the numb...

  8. Better constraints on the sea-ice state using global sea-ice data assimilation

    Directory of Open Access Journals (Sweden)

    P. Mathiot

    2012-06-01

    Full Text Available Short-term and decadal sea-ice prediction systems need a realistic initial state, generally obtained using ice-ocean model simulations with data assimilation. However, only sea-ice concentration and velocity data are currently assimilated. In this work, an Ensemble Kalman Filter system is used to assimilate observed ice concentration and freeboard (i.e. thickness of emerged sea ice data into a global coupled ocean–sea-ice model. The impact and effectiveness of our data assimilation system is assessed in two steps: firstly, through the assimilation of synthetic data (i.e., model-generated data and, secondly, through the assimilation of satellite data. While ice concentrations are available daily, freeboard data used in this study are only available during six one-month periods spread over 2005–2007. Our results show that the simulated Arctic and Antarctic sea-ice extents are improved by the assimilation of synthetic ice concentration data. Assimilation of synthetic ice freeboard data improves the simulated sea-ice thickness field. Using real ice concentration data enhances the model realism in both hemispheres. Assimilation of ice concentration data significantly improves the total hemispheric sea-ice extent all year long, especially in summer. Combining the assimilation of ice freeboard and concentration data leads to better ice thickness, but does not further improve the ice extent. Moreover, the improvements in sea-ice thickness due to the assimilation of ice freeboard remain visible well beyond the assimilation periods.

  9. Application of Ice-nucleation Active Bacteria in Freeze Concentration of Foods%冰核活性细菌及其在食品冻结浓缩中的应用

    Institute of Scientific and Technical Information of China (English)

    胡卓炎; 何松; 孙福在; 赵廷昌; 钟士清

    2001-01-01

    Freeze concentration of foods using ice-nucleation active bacteria was reviewed. It indicated that bacterial ice nuclei can not only increase the freezing point, but also shorten the freezing time of the treated foods. Furthermore, larger ice crystals can be made during the freezing. It suggested that this bacteria should be applied to freeze concentration of foods to obtain a concentrated product for efficient freezing and retaining its original flavor. This paper reviewed the ice-made mechanism, preliminary treatments, freezing efficiency, freezing texture and applications of ice-nucleation active bacteria in freeze concentration of foods. Finally, it looked ahead the prospects of this technique in the future.%介绍冰核细菌的成冰机制、预处理工艺及在食品中的冷冻效率、冰晶形成结构与应用方面的最新进展,最后展望未来的发展趋势。

  10. 基于相场法的液态食品冷冻浓缩冰晶生长数值模拟%Numericalsimulation of ice crystal growth of liquid food freeze concentration based on phase-field method

    Institute of Scientific and Technical Information of China (English)

    陈梅英; 冯力; 欧忠辉; 林河通; 卓艳云; 陈锦权

    2014-01-01

    The quality of products produced through freeze concentration is better than that produced through evaporation concentration and has lower energy consumed. But freeze concentration has been limited for industrial production because of the loss of soluble solids caused by ice crystal entrainment. Reducing the ice crystal entrainment and losses is critical for industrial production of freeze concentration. The breakthrough is to control ice crystal growth behavior. In order to develop a freeze concentration process mathematical model for simulating the evolution of ice crystal growth from the microscopic structure, through regarding liquid food as water and solute in binary system, the phase-field model theory was applied, liquid food system was treated as water and solute in binary system. The effects of ice crystal growth and solute concentration distribution over crystallized time were studied. Results showed that the crystallized time could affect the growth of lateral branch. Ice crystal growed gradually when the main branch become thinner and the secondary dendritic arms were well-developed. Solute field and phase field profiles were consistent. The solute concentration of ice crystals contained was greater, and the regional solute concentration distribution also changed. The precipitatied solute by crystallization was not completely dissoluted into the liquid phase since the solute diffusion velocity was much less than the ice crystal growth rate. The solute concentrated on the ice front of solid liquid interface. The solute concentration distribution was different in different parts of the solid-liquid interface. The solute concentration between crystal branches was the highest since the well-developed lateral dendritic branch captured the partion of the solute. The solute of lateral interface of ice crystals was enriched. The speed in the lateral ice crystals was slower than in the tip of ice crystals, which caused not sufficiently diffusion of the solute in

  11. On the Ice Nucleation Spectrum

    Science.gov (United States)

    Barahona, D.

    2012-01-01

    This work presents a novel formulation of the ice nucleation spectrum, i.e. the function relating the ice crystal concentration to cloud formation conditions and aerosol properties. The new formulation is physically-based and explicitly accounts for the dependency of the ice crystal concentration on temperature, supersaturation, cooling rate, and particle size, surface area and composition. This is achieved by introducing the concepts of ice nucleation coefficient (the number of ice germs present in a particle) and nucleation probability dispersion function (the distribution of ice nucleation coefficients within the aerosol population). The new formulation is used to generate ice nucleation parameterizations for the homogeneous freezing of cloud droplets and the heterogeneous deposition ice nucleation on dust and soot ice nuclei. For homogeneous freezing, it was found that by increasing the dispersion in the droplet volume distribution the fraction of supercooled droplets in the population increases. For heterogeneous ice nucleation the new formulation consistently describes singular and stochastic behavior within a single framework. Using a fundamentally stochastic approach, both cooling rate independence and constancy of the ice nucleation fraction over time, features typically associated with singular behavior, were reproduced. Analysis of the temporal dependency of the ice nucleation spectrum suggested that experimental methods that measure the ice nucleation fraction over few seconds would tend to underestimate the ice nuclei concentration. It is shown that inferring the aerosol heterogeneous ice nucleation properties from measurements of the onset supersaturation and temperature may carry significant error as the variability in ice nucleation properties within the aerosol population is not accounted for. This work provides a simple and rigorous ice nucleation framework where theoretical predictions, laboratory measurements and field campaign data can be

  12. Method for determination of levoglucosan in snow and ice at trace concentration levels using ultra-performance liquid chromatography coupled with triple quadrupole mass spectrometry.

    Science.gov (United States)

    You, Chao; Song, Lili; Xu, Baiqing; Gao, Shaopeng

    2016-02-01

    A method is developed for determination of levoglucosan at trace concentration levels in complex matrices of snow and ice samples. This method uses an injection mixture comprising acetonitrile and melt sample at a ratio of 50/50 (v/v). Samples are analyzed using ultra-performance liquid chromatography system combined with triple tandem quadrupole mass spectrometry (UPLC-MS/MS). Levoglucosan is analyzed on BEH Amide column (2.1 mm × 100 mm, 1.7 um), and a Z-spray electrospray ionization source is used for levoglucosan ionization. The polyether sulfone filter is selected for filtrating insoluble particles due to less impact on levoglucosan. The matrix effect is evaluated by using a standard addition method. During the method validation, limit of detection (LOD), linearity, recovery, repeatability and reproducibility were evaluated using standard addition method. The LOD of this method is 0.11 ng mL(-1). Recoveries vary from 91.2% at 0.82 ng mL(-1) to 99.3% at 4.14 ng mL(-1). Repeatability ranges from 17.9% at a concentration of 0.82 ng mL(-1) to 2.8% at 4.14 ng mL(-1). Reproducibility ranges from 15.1% at a concentration of 0.82 ng mL(-1) to 1.9% at 4.14 ng mL(-1). This method can be implemented using less than 0.50 mL sample volume in low and middle latitude regions like the Tibetan Plateau. PMID:26653482

  13. Geochemical and isotopic signatures of ice shelves and ice shelf circulation in marine sediments

    Science.gov (United States)

    White, Duanne; Fink, David; Simon, Krista; Post, Alix; Galton-Fenzi, Ben; Yokoyama, Yusuke

    2016-04-01

    Ice shelves are a key component of the ice sheet drainage network. Most ice lost from the present day Antarctic ice sheet occurs via ice shelves, so ice shelf processes (e.g. calving and basal melt) modulate ice sheet mass balance. Knowledge of the past distribution and geometry of ice shelves will help understand their sensitivity to climate forcing, and the response of ice sheets to changes and loss of ice shelves. However, detecting the presence or absence of past ice shelves in the sedimentary record is challenging. In this study, we compare concentrations of elemental and isotopic tracers in modern sediments in open water in Prydz Bay to those being deposited underneath the Amery Ice Shelf at ten sites across the region. Our results suggest that sub-ice shelf and open water sediments differ in their acid-extractable elemental concentrations. Also, meteoric Be-10 concentrations are on average lower in sub-ice shelf settings than they are in open water environments. However, the Be-10 concentration is modulated by sub-ice shelf ocean circulation, so that there is overlap between the sediment concentrations in these two environments. In combination, we suggest that these tracers can be used as proxies to reconstruct former ice shelf geometries and sub-shelf circulation.

  14. Ice Cores

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Records of past temperature, precipitation, atmospheric trace gases, and other aspects of climate and environment derived from ice cores drilled on glaciers and ice...

  15. Ice cores

    DEFF Research Database (Denmark)

    Svensson, Anders

    2014-01-01

    Ice cores from Antarctica, from Greenland, and from a number of smaller glaciers around the world yield a wealth of information on past climates and environments. Ice cores offer unique records on past temperatures, atmospheric composition (including greenhouse gases), volcanism, solar activity......, dustiness, and biomass burning, among others. In Antarctica, ice cores extend back more than 800,000 years before present (Jouzel et al. 2007), whereas. Greenland ice cores cover the last 130,000 years...

  16. Arctic sea-ice ridges—Safe heavens for sea-ice fauna during periods of extreme ice melt?

    Science.gov (United States)

    Gradinger, Rolf; Bluhm, Bodil; Iken, Katrin

    2010-01-01

    The abundances and distribution of metazoan within-ice meiofauna (13 stations) and under-ice fauna (12 stations) were investigated in level sea ice and sea-ice ridges in the Chukchi/Beaufort Seas and Canada Basin in June/July 2005 using a combination of ice coring and SCUBA diving. Ice meiofauna abundance was estimated based on live counts in the bottom 30 cm of level sea ice based on triplicate ice core sampling at each location, and in individual ice chunks from ridges at four locations. Under-ice amphipods were counted in situ in replicate ( N=24-65 per station) 0.25 m 2 quadrats using SCUBA to a maximum water depth of 12 m. In level sea ice, the most abundant ice meiofauna groups were Turbellaria (46%), Nematoda (35%), and Harpacticoida (19%), with overall low abundances per station that ranged from 0.0 to 10.9 ind l -1 (median 0.8 ind l -1). In level ice, low ice algal pigment concentrations (3 m where abundances were up to 42-fold higher compared with level ice. We propose that the summer ice melt impacted meiofauna and under-ice amphipod abundance and distribution through (a) flushing, and (b) enhanced salinity stress at thinner level sea ice (less than 3 m thickness). We further suggest that pressure ridges, which extend into deeper, high-salinity water, become accumulation regions for ice meiofauna and under-ice amphipods in summer. Pressure ridges thus might be crucial for faunal survival during periods of enhanced summer ice melt. Previous estimates of Arctic sea ice meiofauna and under-ice amphipods on regional and pan-Arctic scales likely underestimate abundances at least in summer because they typically do not include pressure ridges.

  17. Ice Cream

    NARCIS (Netherlands)

    Scholten, E.

    2014-01-01

    Ice cream is a popular dessert, which owes its sensorial properties (mouth feel) to its complex microstructure. The microstructure is a result of the combination of the ingredients and the production process. Ice cream is produced by simultaneous freezing and shearing of the ice cream mix, which res

  18. Improved ice loss estimate of the northwestern Greenland ice sheet

    DEFF Research Database (Denmark)

    Kjeldsen, K. K.; Khan, Shfaqat Abbas; Wahr, J.;

    2013-01-01

    We estimate ice volume change rates in the northwest Greenland drainage basin during 2003–2009 using Ice, Cloud and land Elevation Satellite (ICESat) laser altimeter data. Elevation changes are often reported to be largest near the frontal portion of outlet glaciers. To improve the volume change...... estimate, we supplement the ICESat data with altimeter surveys from NASA's Airborne Topographic Mapper from 2002 to 2010 and NASA's Land, Vegetation and Ice Sensor from 2010. The Airborne data are mainly concentrated along the ice margin and thus have a significant impact on the estimate of the volume...... change. Our results show that adding Airborne Topographic Mapper and Land, Vegetation and Ice Sensor data to the ICESat data increases the catchment-wide estimate of ice volume loss by 11%, mainly due to an improved volume loss estimate along the ice sheet margin. Furthermore, our results show...

  19. 果汁冷冻浓缩中生物冰核的成冰作用及初步应用%Bacterial ice nucleation and its applications in the freeze concentration of fruit juice

    Institute of Scientific and Technical Information of China (English)

    何松; 胡卓炎; 孙福在; 赵廷昌; 钟士清

    2001-01-01

    介绍了冰核细菌促进成冰的机制,并结合国外有关报道和我们的研究结果,论述了冰核细菌在食品冷冻浓缩中导致冰晶形成的结构、冷冻效率、应用前的预处理及食用级冰核细菌在果汁中的应用情况,最后展望了未来的研究方向。%Freeze concentration of foods using ice-nucleation active bacteria was reviewed, including the ice formation mechanism, freezing texture, freezing efficiency, preliminary treatments of this bacterium before it was applied, and applications of food-gradeice-nucleation active bacteria in freeze concentration of fruit juice.

  20. Concentration and 14C Content of Total Organic Carbon and Black Carbon in Small (<100 ug C) Samples from Low-Latitude Alpine Ice Cores

    Science.gov (United States)

    Kehrwald, N. M.; Czimczik, C. I.; Santos, G. M.; Thompson, L. G.; Ziolkowski, L.

    2008-12-01

    Many low latitude glaciers are receding with consequences for the regional energy budget and hydrology. Ice loss has been linked to climate change and the deposition of organic aerosols such as black carbon (BC) which is formed during incomplete combustion. Little is known about how the contents of BC and total organic carbon (TOC) in aerosols change over time and how anthropogenic activities (e.g. land-use change) impact this variability. Low-latitude ice cores are located closer to population centers than polar ice caps and can provide a regional synthesis of TOC and BC variability. Radiocarbon (14C) may be used to partition BC aerosols into fossil (>50 kyrs) and modern sources (e.g. fossil-fuels vs. wildfires). We quantified TOC, BC, and their 14C content in three low-latitude ice cores: Naimona'nyi (30°27'N, 81°91'E) and Dasuopu (28°23'N, 85°43'E), Tibet, and Quelccaya (13°56'S; 70°50'W), Peru. Aerosols (52-256 g ice on filters) were separated into TOC and BC using thermal oxidation (CTO- 375). 14C was measured by AMS. TOC contents were 0.11-0.87, 0.05-0.43, and 0.06-0.19 μg C (g ice) -1 for Naimona'nyi, Dasuopu, and Quelccaya, respectively. BC contents were 18±8, 27±4, and 29±12 %TOC. Procedural blanks were 0.8 ± 0.4 μg C (TOC) and 1.2 ± 0.6 μg C (BC). In ice cores well dated through annual layer counting and/or independent ages (e.g. volcanic horizons) such as Quelccaya, the ability to separate BC from TOC, as well as partition BC into fossil and modern contributions has potential for reconstructing pre- and post-industrial changes in aerosol composition and their impact on the energy budget.

  1. Legal Ice?

    DEFF Research Database (Denmark)

    Strandsbjerg, Jeppe

    The idealised land|water dichotomy is most obviously challenged by ice when ‘land practice’ takes place on ice or when ‘maritime practice’ is obstructed by ice. Both instances represent disparity between the legal codification of space and its social practice. Logically, then, both instances call...... for alternative legal thought and practice; in the following I will emphasise the former and reflect upon the relationship between ice, law and politics. Prior to this workshop I had worked more on the relationship between cartography, geography and boundaries than specifically on ice. Listening to all...

  2. Determination of Large-Scale Cloud Ice Water Concentration by Combining Surface Radar and Satellite Data in Support of ARM SCM Activities

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Guosheng

    2013-03-15

    Single-column modeling (SCM) is one of the key elements of Atmospheric Radiation Measurement (ARM) research initiatives for the development and testing of various physical parameterizations to be used in general circulation models (GCMs). The data required for use with an SCM include observed vertical profiles of temperature, water vapor, and condensed water, as well as the large-scale vertical motion and tendencies of temperature, water vapor, and condensed water due to horizontal advection. Surface-based measurements operated at ARM sites and upper-air sounding networks supply most of the required variables for model inputs, but do not provide the horizontal advection term of condensed water. Since surface cloud radar and microwave radiometer observations at ARM sites are single-point measurements, they can provide the amount of condensed water at the location of observation sites, but not a horizontal distribution of condensed water contents. Consequently, observational data for the large-scale advection tendencies of condensed water have not been available to the ARM cloud modeling community based on surface observations alone. This lack of advection data of water condensate could cause large uncertainties in SCM simulations. Additionally, to evaluate GCMs’ cloud physical parameterization, we need to compare GCM results with observed cloud water amounts over a scale that is large enough to be comparable to what a GCM grid represents. To this end, the point-measurements at ARM surface sites are again not adequate. Therefore, cloud water observations over a large area are needed. The main goal of this project is to retrieve ice water contents over an area of 10 x 10 deg. surrounding the ARM sites by combining surface and satellite observations. Built on the progress made during previous ARM research, we have conducted the retrievals of 3-dimensional ice water content by combining surface radar/radiometer and satellite measurements, and have produced 3

  3. Modified PIC Method for Sea Ice Dynamics

    Institute of Scientific and Technical Information of China (English)

    WANG Rui-xue; JI Shun-ying; SHEN Hung-tao; YUE Qian-jin

    2005-01-01

    The sea ice cover displays various dynamical characteristics such as breakup, rafting, and ridging under external forces. To model the ice dynamic process accurately, the effective numerical modeling method should be established. In this paper, a modified particle-in-cell (PIC) method for sea ice dynamics is developed coupling the finite difference (FD) method and smoothed particle hydrodynamics (SPH). In this method, the ice cover is first discretized into a series of Lagrangian ice particles which have their own sizes, thicknesses, concentrations and velocities. The ice thickness and concentration at Eulerian grid positions are obtained by interpolation with the Gaussian function from their surrounding ice particles. The momentum of ice cover is solved with FD approach to obtain the Eulerian cell velocity, which is used to estimate the ice particle velocity with the Gaussian function also. The thickness and concentration of ice particles are adjusted with particle mass density and smooth length, which are adjusted with the redistribution of ice particles. With the above modified PIC method, numerical simulations for ice motion in an idealized rectangular basin and the ice dynamics in the Bohai Sea are carried out. These simulations show that this modified PIC method is applicable to sea ice dynamics simulation.

  4. Nudging资料同化对北极海冰 密集度预报的改进%Improving Arctic sea ice concentration forecasts with a Nudging data assimilation method

    Institute of Scientific and Technical Information of China (English)

    赵杰臣; 杨清华; 李明; 李群; 李春花; 田忠翔; 张林

    2016-01-01

    The rapid decrease of Arctic sea ice in summer makes shipping in the Arctic possible.The accurate sea iceforecasts are urgently required to well service the Arctic shipping activities.A numerical Arctic forecasting systemwas built based on MIT general circulation model (MITgcm)ice-ocean coupled model and the Nudging data assimilationmethod was applied into this model and assimilate the Advanced Microwave Scanning Radiometer 2(AMSR2)sea ice concentration data.Three different kinds of Nudging assimilation schemes were firstly accessedand the results showed that all three nudging schemes can largely improve the initial sea ice concentration fields.For comparison,two forecasting experiments with and without Nudging assimilation but with the same forcingwere designed to evaluate the role of nudging data assimilation.By comparing with the assimilated satellite-deriveddata and the ship-basedinsitu sea ice concentration observations,it was shown that the nudging assimilation significantlyimproved the 24—120 h sea ice concentration forecasts.The results showed that improvements occurrednot only in the whole Arctic sea ice concentration forecasts,but also in the single point forecasts.The persistenceforecasts performed better in 24—120 h forecast than Nudging experiments when sea ice chance little in August.%北极夏季海冰的快速减少使得北极航道提前开通成为可能.为了给北极冰区船运活动提供及时可靠有效的海冰预报保障,急需提高海冰预报水平.本文基于麻省理工大学通用环流模式(MIT-gcm),使用牛顿松弛逼近(Nudging)资料同化方法将德国不莱梅大学的第二代先进微波辐射成像仪(AMSR2)海冰密集度资料同化到模式中,建立了北极海冰数值预报系统.设计试验对比3种不同Nudging系数计算方案的改进效果,结果表明选择合适参数后,不同方案均能显著改进海冰密集度初始场.通过设计有无Nudging同化的两组预报试验,结合卫星遥

  5. Role of ice dynamics in anomalous ice conditions in the Beaufort Sea during 2006 and 2007

    Science.gov (United States)

    Hutchings, J. K.; Rigor, I. G.

    2012-05-01

    A new record minimum in summer sea ice extent was set in 2007 and an unusual polynya formed in the Beaufort Sea ice cover during the summer of 2006. Using a combination of visual observations from cruises, ice drift, and satellite passive microwave sea ice concentration, we show that ice dynamics during preceding years included events that preconditioned the Beaufort ice pack for the unusual patterns of opening observed in both summers. Intrusions of first year ice from the Chukchi Sea to the Northern Beaufort, and increased pole-ward ice transport from the western Arctic during summer has led to reduced replenishment of multiyear ice, older than five years, in the western Beaufort, resulting in a younger, thinner ice pack in most of the Beaufort. We find ice younger than five years melts out completely by the end of summer, south of 76N. The 2006 unusual polynya was bounded to the south by an ice tongue composed of sea ice older than 5 years, and formed when first year and second year ice melted between 76N and the older ice to the south. In this paper we demonstrate that a recent shift in ice circulation patterns in the western Arctic preconditions the Beaufort ice pack for increased seasonal ice zone extent.

  6. 冷冻浓缩过程中制冷面的冰淤塞的检测与表征(Ⅰ)%Ice Fouling on the Cooler Surface in Freeze Concentration-determination and Representation(Ⅰ)

    Institute of Scientific and Technical Information of China (English)

    秦贯丰; 廖力奋; 左远志

    2011-01-01

    冷冻浓缩是一种可望替代或部分替代传统蒸发浓缩或反渗透浓缩、用于对食品溶液或生物溶液进行浓缩或预浓缩的特殊方法.然而在冷冻浓缩的实践中发现,冰层对制冷面的包覆,即冰淤塞,即使换热面是在很小的过冷下度下(如过冷温度只有0.2℃)仍然是不可避免的.冰淤塞使制冷面的传热系数显著下降.本研究还发现冰晶在制冷面上直接释放结晶潜热使制冷面的温度跃升,即热响应,标志着制冷面上冰晶开始生成.随后,薄冰层铺展开并最终覆盖整个制冷面.覆盖完成可用金属表面与溶液之间交流阻抗的变化及增加来表征.%Freeze concentration is an excellent alternative to conventional evaporation and reverse osmosis for concentration or pre-concentration of many liquid foods. However, the build-up of an ice layer on the cooler surface, which is known as ice fouling and unavoidable even at a low degree of supercooling, e.g. Around 0.2 ℃. This significantly reduces the heat-extraction rate and increases the cost of freeze concentration. In this study, the onset time of ice fouling on the subcooled metal surface can be indicated by the step increase of the surface temperature due to the release of the latent heat of ice fusion. A method was developed to indicate the ice fouling induction time on the cooler surface according to an increase of the AC impedance between the solution and the cooler surface.

  7. Sea Ice

    Science.gov (United States)

    Perovich, D.; Gerland, S.; Hendricks, S.; Meier, Walter N.; Nicolaus, M.; Richter-Menge, J.; Tschudi, M.

    2013-01-01

    During 2013, Arctic sea ice extent remained well below normal, but the September 2013 minimum extent was substantially higher than the record-breaking minimum in 2012. Nonetheless, the minimum was still much lower than normal and the long-term trend Arctic September extent is -13.7 per decade relative to the 1981-2010 average. The less extreme conditions this year compared to 2012 were due to cooler temperatures and wind patterns that favored retention of ice through the summer. Sea ice thickness and volume remained near record-low levels, though indications are of slightly thicker ice compared to the record low of 2012.

  8. Reconstructing the atmospheric concentration and emissions of CF4, C2F6 and C3F8 prior to direct atmospheric measurements, using air from polar firn and ice

    Science.gov (United States)

    Trudinger, Cathy; Etheridge, David; Sturges, William; Vollmer, Martin; Miller, Benjamin; Worton, David; Rigby, Matt; Krummel, Paul; Martinerie, Patricia; Witrant, Emmanuel; Rayner, Peter; Battle, Mark; Blunier, Thomas; Fraser, Paul; Laube, Johannes; Mani, Frances; Mühle, Jens; O'Doherty, Simon; Schwander, Jakob; Steele, Paul

    2015-04-01

    Perfluorocarbons are very potent and long-lived greenhouse gases in the atmosphere, released predominantly during aluminium production, electronic chip manufacture and refrigeration. Mühle et al. (2010) presented records of the concentration and inferred emissions of CF4 (PFC-14), C2F6 (PFC-116) and C3F8 (PFC-218) from the 1970s up to 2008, using measurements from the Cape Grim Air Archive and a suite of tanks with old Northern Hemisphere air, and the AGAGE in situ network. Mühle et al. (2010) also estimated pre-industrial concentrations of these compounds from a small number of polar firn and ice core samples. Here we present measurements of air from polar firn at four sites (DSSW20K, EDML, NEEM and South Pole) and from air bubbles trapped in ice at two sites (DE08 and DE08-2), along with recent atmospheric measurements to give a continuous record of concentration from preindustrial levels up to the present. We estimate global emissions (with uncertainties) consistent with the concentration records. The uncertainty analysis takes into account uncertainties in characterisation of the age of air in firn and ice by the use of two different (independently-calibrated) firn models (the CSIRO and LGGE-GIPSA firn models). References Mühle, J., A.L. Ganesan, B.R. Miller, P.K. Salameh, C.M. Harth, B.R. Greally, M. Rigby, L.W. Porter, L. P. Steele, C.M. Trudinger, P.B. Krummel, S. O'Doherty, P.J. Fraser, P.G. Simmonds, R.G. Prinn, and R.F. Weiss, Perfluorocarbons in the global atmosphere: tetrafluoromethane, hexafluoroethane, and octafluoropropane, Atmos. Chem. Phys., 10, 5145-5164, doi:10.5194/acp-10-5145-2010, 2010.

  9. A study on the dynamic tie points ASI algorithm in the Arctic Ocean

    Institute of Scientific and Technical Information of China (English)

    HAO Guanghua; SU Jie

    2015-01-01

    Sea ice concentration is an important parameter for polar sea ice monitoring. Based on 89 GHz AMSR-E (Advanced Microwave Scanning Radiometer for Earth Observing System) data, a gridded high-resolution passive microwave sea ice concentration product can be obtained using the ASI (the Arctic Radiation And Turbulence Interaction Study (ARTIST) Sea Ice) retrieval algorithm. Instead of using fixed-point values, we developed ASI algorithm based on daily changed tie points, called as the dynamic tie point ASI algorithm in this study. Here the tie points are expressed as the brightness temperature polarization difference of open water and 100% sea ice. In 2010, the yearly-averaged tie points of open water and sea ice in Arctic are estimated to be 50.8 K and 7.8 K, respectively. It is confirmed that the sea ice concentrations retrieved by the dynamic tie point ASI algorithm can increase (decrease) the sea ice concentrations in low-value (high-value) areas. This improved the sea ice concentrations by present retrieval algorithm from microwave data to some extent. Comparing with the products using fixed tie points, the sea ice concentrations retrieved from AMSR-E data by using the dynamic tie point ASI algorithm are closer to those obtained from MODIS (Moderate-resolution Imaging Spectroradiometer) data. In 40 selected cloud-free sample regions, 95% of our results have smaller mean differences and 75% of our results have lower root mean square (RMS) differences compare with those by the fixed tie points.

  10. Continuous Chemistry in Ice Cores

    DEFF Research Database (Denmark)

    Kjær, Helle Astrid

    Ice cores provide high resolution records of past climate and environment. In recent years the use of continuous flow analysis (CFA) systems has increased the measurement throughput, while simultaneously decreasing the risk of contaminating the ice samples. CFA measurements of high temporal....... The method was applied to a firn core from the North East Greenland Ice Stream (NEGIS) and to glacial sections of the Greenland NEEM ice core. In the NEGIS firn core concentrations were about 2.7 nM PO3−4 and there was no evidence of any recent anthropogenic impact during the past 300 years. Sources of DRP...... into the ice due to scattering by individual snow grains at the very surface and by air bubbles in the upper part of the ice. However light is produced in situ by Cherenkov radiation from cosmic rays. As part of this thesis the penetration of light on surface layers of snow at NEEM was determined andthe 1/e...

  11. Arctic sea ice decline contributes to thinning lake ice trend in northern Alaska

    Science.gov (United States)

    Alexeev, Vladimir A.; Arp, Christopher D.; Jones, Benjamin M.; Cai, Lei

    2016-07-01

    Field measurements, satellite observations, and models document a thinning trend in seasonal Arctic lake ice growth, causing a shift from bedfast to floating ice conditions. September sea ice concentrations in the Arctic Ocean since 1991 correlate well (r = +0.69, p characterizing lake ice conditions. A lake ice growth model forced with Weather Research and Forecasting model output produced a 7% decrease in lake ice growth when 2007/08 sea ice was imposed on 1991/92 climatology and a 9% increase in lake ice growth for the opposing experiment. Here, we clearly link early winter ‘ocean-effect’ snowfall and warming to reduced lake ice growth. Future reductions in sea ice extent will alter hydrological, biogeochemical, and habitat functioning of Arctic lakes and cause sub-lake permafrost thaw.

  12. Determining the ice seasons severity during 1982-2015 using the ice extents sum as a new characteristic

    Science.gov (United States)

    Rjazin, Jevgeni; Pärn, Ove

    2016-04-01

    Sea ice is a key climate factor and it restricts considerably the winter navigation in sever seasons on the Baltic Sea. So determining ice conditions severity and describing ice cover behaviour at severe seasons interests scientists, engineers and navigation managers. The present study is carried out to determine the ice seasons severity degree basing on the ice seasons 1982 to 2015. A new integrative characteristic is introduced to describe the ice season severity. It is the sum of ice extents of the ice season id est the daily ice extents of the season are summed. The commonly used procedure to determine the ice season severity degree by the maximal ice extent is in this research compared to the new characteristic values. The remote sensing data on the ice concentrations on the Baltic Sea published in the European Copernicus Programme are used to obtain the severity characteristic values. The ice extents are calculated on these ice concentration data. Both the maximal ice extent of the season and a newly introduced characteristic - the ice extents sum are used to classify the winters with respect of severity. The most severe winter of the reviewed period is 1986/87. Also the ice seasons 1981/82, 1984/85, 1985/86, 1995/96 and 2002/03 are classified as severe. Only three seasons of this list are severe by both the criteria. They are 1984/85, 1985/86 and 1986/87. We interpret this coincidence as the evidence of enough-during extensive ice cover in these three seasons. In several winters, for example 2010/11 ice cover extended enough for some time, but did not endure. At few other ice seasons as 2002/03 the Baltic Sea was ice-covered in moderate extent, but the ice cover stayed long time. At 11 winters the ice extents sum differed considerably (> 10%) from the maximal ice extent. These winters yield one third of the studied ice seasons. The maximal ice extent of the season is simple to use and enables to reconstruct the ice cover history and to predict maximal ice

  13. Using Sea Ice Age as a Proxy for Sea Ice Thickness

    Science.gov (United States)

    Stroeve, J. C.; Tschudi, M. A.; Maslanik, J. A.

    2014-12-01

    Since the beginning of the modern satellite record starting in October 1978, the Arctic sea ice cover has been shrinking, with the largest changes observed at the end of the melt season in September. Through 2013, the September ice extent has declined at a rate of -14.0% dec-1, or -895,300 km2 dec-1. The seven lowest September extents in the satellite record have all occurred in the past seven years. This reduction in ice extent is accompanied by large reductions in winter ice thicknesses that are primarily explained by changes in the ocean's coverage of multiyear ice (MYI). Using the University of Colorado ice age product developed by J. Maslanik and C. Fowler, and currently produced by M. Tschudi we present recent changes in the distribution of ice age from the mid 1980s to present. The CU ice age product is based on (1) the use of ice motion to track areas of sea ice and thus estimate how long the ice survives within the Arctic, and (2) satellite imagery of sea ice concentration to determine when the ice disappears. Age is assigned on a yearly basis, with the age incremented by one year if the ice survives summer melt and stays within the Arctic domain. Age is counted from 1 to 10 years, with all ice older than 10 years assigned to the "10+" age category. The position of the ice is calculated on weekly time steps on NSIDC's 12.5-km EASE-grid. In the mid-1980s, MYI accounted for 70% of total winter ice extent, whereas by the end of 2012 it had dropped to less than 20%. This reflects not only a change in ice type, but also a general thinning of the ice pack, as older ice tends to be thicker ice. Thus, with older ice being replaced by thinner first-year ice, the ice pack is more susceptible to melting out than it was in 1980's. It has been suggested that ice age may be a useful proxy for long-term changes in ice thickness. To assess the relationship between ice age and thickness, and how this may be changing over time, we compare the ice age fields to several

  14. Improved ice loss estimate of the northwestern Greenland ice sheet

    Science.gov (United States)

    Kjeldsen, Kristian K.; Khan, Shfaqat Abbas; Wahr, John; Korsgaard, Niels J.; KjæR, Kurt H.; BjøRk, Anders A.; Hurkmans, Ruud; Broeke, Michiel R.; Bamber, Jonathan L.; Angelen, Jan H.

    2013-02-01

    We estimate ice volume change rates in the northwest Greenland drainage basin during 2003-2009 using Ice, Cloud and land Elevation Satellite (ICESat) laser altimeter data. Elevation changes are often reported to be largest near the frontal portion of outlet glaciers. To improve the volume change estimate, we supplement the ICESat data with altimeter surveys from NASA's Airborne Topographic Mapper from 2002 to 2010 and NASA's Land, Vegetation and Ice Sensor from 2010. The Airborne data are mainly concentrated along the ice margin and thus have a significant impact on the estimate of the volume change. Our results show that adding Airborne Topographic Mapper and Land, Vegetation and Ice Sensor data to the ICESat data increases the catchment-wide estimate of ice volume loss by 11%, mainly due to an improved volume loss estimate along the ice sheet margin. Furthermore, our results show a significant acceleration in mass loss at elevations above 1200 m. Both the improved mass loss estimate along the ice sheet margin and the acceleration at higher elevations have implications for predictions of the elastic adjustment of the lithosphere caused by present-day ice mass changes. Our study shows that the use of ICESat data alone to predict elastic uplift rates biases the predicted rates by several millimeters per year at GPS locations along the northwestern coast.

  15. Climate Impacts of Ice Nucleation

    Science.gov (United States)

    Gettelman, Andrew; Liu, Xiaohong; Barahona, Donifan; Lohmann, Ulrike; Chen, Celia

    2012-01-01

    Several different ice nucleation parameterizations in two different General Circulation Models (GCMs) are used to understand the effects of ice nucleation on the mean climate state, and the Aerosol Indirect Effects (AIE) of cirrus clouds on climate. Simulations have a range of ice microphysical states that are consistent with the spread of observations, but many simulations have higher present-day ice crystal number concentrations than in-situ observations. These different states result from different parameterizations of ice cloud nucleation processes, and feature different balances of homogeneous and heterogeneous nucleation. Black carbon aerosols have a small (0.06 Wm(exp-2) and not statistically significant AIE when included as ice nuclei, for nucleation efficiencies within the range of laboratory measurements. Indirect effects of anthropogenic aerosols on cirrus clouds occur as a consequence of increasing anthropogenic sulfur emissions with different mechanisms important in different models. In one model this is due to increases in homogeneous nucleation fraction, and in the other due to increases in heterogeneous nucleation with coated dust. The magnitude of the effect is the same however. The resulting ice AIE does not seem strongly dependent on the balance between homogeneous and heterogeneous ice nucleation. Regional effects can reach several Wm2. Indirect effects are slightly larger for those states with less homogeneous nucleation and lower ice number concentration in the base state. The total ice AIE is estimated at 0.27 +/- 0.10 Wm(exp-2) (1 sigma uncertainty). This represents a 20% offset of the simulated total shortwave AIE for ice and liquid clouds of 1.6 Wm(sup-2).

  16. The effect of the size of the system, aspect ratio and impurities concentration on the dynamic of emergent magnetic monopoles in artificial spin ice systems

    International Nuclear Information System (INIS)

    In this work we study the dynamical properties of a finite array of nanomagnets in artificial kagome spin ice at room temperature. The dynamic response of the array of nanomagnets is studied by implementing a “frustrated celular autómata” (FCA), based in the charge model and dipolar model. The FCA simulations allow us to study in real-time and deterministic way, the dynamic of the system, with minimal computational resource. The update function is defined according to the coordination number of vertices in the system. Our results show that for a set geometric parameters of the array of nanomagnets, the system exhibits high density of Dirac strings and high density emergent magnetic monopoles. A study of the effect of disorder in the arrangement of nanomagnets is incorporated in this work. - Highlights: • The dynamics of magnetic monopoles in spin ice systems strongly dependent on the size of the system. • Number of emerging magnetic monopoles, in the phase of magnetic reversal, depend of the aspect. • Different systems can be created based on this idea, for information technology

  17. Observational Evidence of a Hemispheric-wide Ice-ocean Albedo Feedback Effect on Antarctic Sea-ice Decay

    Science.gov (United States)

    Nihashi, Sohey; Cavalieri, Donald J.

    2007-01-01

    The effect of ice-ocean albedo feedback (a kind of ice-albedo feedback) on sea-ice decay is demonstrated over the Antarctic sea-ice zone from an analysis of satellite-derived hemispheric sea ice concentration and European Centre for Medium-Range Weather Forecasts (ERA-40) atmospheric data for the period 1979-2001. Sea ice concentration in December (time of most active melt) correlates better with the meridional component of the wind-forced ice drift (MID) in November (beginning of the melt season) than the MID in December. This 1 month lagged correlation is observed in most of the Antarctic sea-ice covered ocean. Daily time series of ice , concentration show that the ice concentration anomaly increases toward the time of maximum sea-ice melt. These findings can be explained by the following positive feedback effect: once ice concentration decreases (increases) at the beginning of the melt season, solar heating of the upper ocean through the increased (decreased) open water fraction is enhanced (reduced), leading to (suppressing) a further decrease in ice concentration by the oceanic heat. Results obtained fi-om a simple ice-ocean coupled model also support our interpretation of the observational results. This positive feedback mechanism explains in part the large interannual variability of the sea-ice cover in summer.

  18. Dielectric Signatures of Annealing in Glacier Ice

    Science.gov (United States)

    Grimm, R. E.; Stillman, D. E.; MacGregor, J. A.

    2015-12-01

    We analyzed the dielectric spectra of 49 firn and ice samples from ice sheets and glaciers to better understand how differing ice formation and evolution affect electrical properties. The dielectric relaxation of ice is well known and its characteristic frequency increases with the concentration of soluble impurities in the ice lattice. We found that meteoric ice and firn generally possess two such relaxations, indicating distinct crystal populations or zonation. Typically, one population is consistent with that of relatively pure ice, and the other is significantly more impure. However, high temperatures (e.g., temperate ice), long residence times (e.g., ancient ice from Mullins Glacier, Antarctica), or anomalously high impurity concentrations favor the development of a single relaxation. These relationships suggest that annealing causes two dielectrically distinct populations to merge into one population. The dielectric response of temperate ice samples indicates increasing purity with increasing depth, suggesting final rejection of impurities from the lattice. Separately, subglacially frozen samples from the Vostok 5G ice core possess a single relaxation whose variable characteristic frequency likely reflects the composition of the source water. Multi-frequency electrical measurements on cores and in the field can track annealing of glacier ice.

  19. Ice stratigraphy at the Pakitsoq ice margin, West Greenland, derived from gas records

    DEFF Research Database (Denmark)

    Schaefer, H.; Petrenko, V. V.; Brook, E. J.;

    2009-01-01

    Horizontal ice-core sites, where ancient ice is exposed at the glacier surface, offer unique opportunities for paleo-studies of trace components requiring large sample volumes. Following previous work at the Pakitsoq ice margin in West Greenland, we use a combination of geochemical parameters...... measured in the ice matrix (delta O-18(ice)) and air occlusions (delta O-18(atm), delta N-15 of N-2 and methane concentration) to date ice layers from specific climatic intervals. The data presented here expand our understanding of the stratigraphy and three-dimensional structure of ice layers outcropping...... at Pakitsoq. Sections containing ice from every distinct climatic interval during Termination I, including Last Glacial Maximum, Bolling/Allerod, Younger Dryas and the early Holocene, are identified. In the early Holocene, we find evidence for climatic fluctuations similar to signals found in deep ice cores...

  20. AMS14C dating and stable isotope plots of Late Pleistocene ice-wedge ice

    International Nuclear Information System (INIS)

    Strategy for AMS14C dating of organic micro inclusions from syngenetic ice-wedge ice is considered. AMS14C dates are interpreted in terms of fictitious aging of ice-wedge and permafrost sediments due to high concentration of allochthonous organic material. The dating of organic material from small sample, gives the reliable 14C age. The 14C dates from syngenetic ice-wedges are compared with the dates of the host sediments surrounding syngenetic ice wedges. AMS14C dating of small samples of ice-wedge ice yields to set δ18O plots from ice-wedges to the time scale and to correlate them with ice core δ18O record

  1. A spongy icing model for aircraft icing

    Institute of Scientific and Technical Information of China (English)

    Li Xin; Bai Junqiang; Hua Jun; Wang Kun; Zhang Yang

    2014-01-01

    Researches have indicated that impinging droplets can be entrapped as liquid in the ice matrix and the temperature of accreting ice surface is below the freezing point. When liquid entrapment by ice matrix happens, this kind of ice is called spongy ice. A new spongy icing model for the ice accretion problem on airfoil or aircraft has been developed to account for entrapped liquid within accreted ice and to improve the determination of the surface temperature when enter-ing clouds with supercooled droplets. Different with conventional icing model, this model identifies icing conditions in four regimes:rime, spongy without water film, spongy with water film and glaze. By using the Eulerian method based on two-phase flow theory, the impinging droplet flow was investigated numerically. The accuracy of the Eulerian method for computing the water collection efficiency was assessed, and icing shapes and surface temperature distributions predicted with this spongy icing model agree with experimental results well.

  2. Breakup of Pack Ice, Antarctic Ice Shelf

    Science.gov (United States)

    1991-01-01

    Breakup of Pack Ice along the periphery of the Antarctic Ice Shelf (53.5S, 3.0E) produced this mosaic of ice floes off the Antarctic Ice Shelf. Strong offshore winds, probably associated with strong katabatic downdrafts from the interior of the continent, are seen peeling off the edges of the ice shelf into long filamets of sea ice, icebergs, bergy bits and growlers to flow northward into the South Atlantic Ocean. 53.5S, 3.0E

  3. SST, Aqua AMSR-E, 0.25 degrees, Global, Near Real Time

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA OceanWatch provides sea surface temperature (SST) products derived from microwave sensors, which can measure ocean temperatures even in the presence of clouds....

  4. A comparison between two algorithms for the retrieval of soil moisture using AMSR-E data

    Science.gov (United States)

    A comparison between two algorithms for estimating soil moisture with microwave satellite data was carried out by using the datasets collected on the four Agricultural Research Service (ARS) watershed sites in the US from 2002 to 2009. These sites collectively represent a wide range of ground condit...

  5. A COMPARISON BETWEEN TWO ALGORITHMS FOR THE RETRIEVAL OF SOIL MOISTURE USING AMSR-E DATA

    OpenAIRE

    Simonetta ePaloscia; Emanuele eSanti; Simone ePettinato; Iliana eMladenova; Tom eJackson; Michael eCosh

    2015-01-01

    A comparison between two algorithms for estimating soil moisture with microwave satellite data was carried out by using the datasets collected on the four Agricultural Research Service (ARS) watershed sites in the US from 2002 to 2009. These sites collectively represent a wide range of ground conditions and precipitation regimes (from natural to agricultural surfaces and from desert to humid regions) and provide long-term in-situ data. One of the algorithms is the artificial neural network-ba...

  6. A comparison between two algorithms for the retrieval of soil moisture using AMSR-E data

    OpenAIRE

    Paloscia, Simonetta; santi, emanuele; Pettinato, Simone; Mladenova, Iliana; Jackson, Thomas; Bindlish, Rajat; Cosh, Michael

    2015-01-01

    A comparison between two algorithms for estimating soil moisture with microwave satellite data was carried out by using the datasets collected on the four Agricultural Research Service (ARS) watershed sites in the US from 2002 to 2009. These sites collectively represent a wide range of ground conditions and precipitation regimes (from natural to agricultural surfaces and from desert to humid regions) and provide long-term in-situ data. One of the algorithms is the artificial neural network-ba...

  7. SMEX03 AMSR-E Daily Gridded Soil Moisture and Brightness Temperatures, Oklahoma

    Data.gov (United States)

    National Aeronautics and Space Administration — Notice to Data Users: The documentation for this data set was provided solely by the Principal Investigator(s) and was not further developed, thoroughly reviewed,...

  8. SMEX03 AMSR-E Daily Gridded Soil Moisture and Brightness Temperatures, Brazil

    Data.gov (United States)

    National Aeronautics and Space Administration — Notice to Data Users: The documentation for this data set was provided solely by the Principal Investigator(s) and was not further developed, thoroughly reviewed,...

  9. Retrievals of All-Weather Daily Air Temperature Using MODIS and AMSR-E Data

    OpenAIRE

    Keunchang Jang; Sinkyu Kang; John S. Kimball; Suk Young Hong

    2014-01-01

    Satellite optical-infrared remote sensing from the Moderate Resolution Imaging Spectroradiometer (MODIS) provides effective air temperature (Ta) retrieval at a spatial resolution of 5 km. However, frequent cloud cover can result in substantial signal loss and remote sensing retrieval error in MODIS Ta. We presented a simple pixel-wise empirical regression method combining synergistic information from MODIS Ta and 37 GHz frequency brightness temperature (Tb) retrievals from the Advanced Microw...

  10. Monolayer ice

    NARCIS (Netherlands)

    Zangi, R; Mark, AE

    2003-01-01

    We report results from molecular dynamics simulations of water under confinement and at ambient conditions that predict a first-order freezing transition from a monolayer of liquid water to a monolayer of ice induced by increasing the distance between the confining parallel plates. Since a slab geom

  11. Sensitivity of Cirrus Properties to Ice Nuclei Abundance

    Science.gov (United States)

    Jensen, Eric

    2014-01-01

    The relative importance of heterogeneous and homogeneous ice nucleation for cirrus formation remains an active area of debate in the cloud physics community. From a theoretical perspective, a number of modeling studies have investigated the sensitivity of ice number concentration to the nucleation mechanism and the abundance of ice nuclei. However, these studies typically only addressed ice concentration immediately after ice nucleation. Recent modeling work has shown that the high ice concentrations produced by homogeneous freezing may not persist very long, which is consistent with the low frequency of occurrence of high ice concentrations indicated by cirrus measurements. Here, I use idealized simulations to investigate the impact of ice nucleation mechanism and ice nuclei abundance on the full lifecycle of cirrus clouds. The primary modeling framework used includes different modes of ice nucleation, deposition growth/sublimation, aggregation, sedimentation, and radiation. A limited number of cloud-resolving simulations that treat radiation/dynamics interactions will also been presented. I will show that for typical synoptic situations with mesoscale waves present, the time-averaged cirrus ice crystal size distributions and bulk cloud properties are less sensitive to ice nucleation processes than might be expected from the earlier simple ice nucleation calculations. I will evaluate the magnitude of the ice nuclei impact on cirrus for a range of temperatures and mesoscale wave specifications, and I will discuss the implications for cirrus aerosol indirect effects in general.

  12. An Observational Study of Atmospheric Ice Nuclei Concentration in Spring and Summer in Shenyang%沈阳春夏季大气冰核浓度的观测研究

    Institute of Scientific and Technical Information of China (English)

    周德平; 洪也; 王扬锋; 刘宁微; 张云海; 李丽光

    2012-01-01

    Observation and research on the distribution of atmospheric ice nuclei (IN) concentration was started in 2010, in order to understand the temporal and spatial distributions of IN concentrations in Shenyang area. Ground measurement was made by Bigg mixing chamber and sampling of IN aerosols was done by membrane filter method. Airborne IN measurements were made on the artificial precipitation aeroplane Y-12 which being lended by Wheather Modification Office of Liaoning Province during April-September 2011. Sampling membrane filter processing conditions is unified in the activation temperature about -15 ℃ and from ice saturation to 3% water supersaturation. According to some of the observation data, IN concentration and its temperature distribution parameters in spring and summer in Shenyang is given. The monthly variation of IN concentrations from March-June and the distribution characteristics in different weather conditions are analyzed. And the changes of IN concentration with particle size and height are given primipa- rously.%为了解沈阳地区大气冰核浓度的时空分布状况,2010年起开始对沈阳地区的大气冰核浓度分布进行观测和研究.地面采用Bigg型混合云室法和滤膜法进行冰核气溶胶的采样测量,高空利用辽宁省人工影响天气办公室租用的人工增雨飞机进行滤膜法采样.采样滤膜的处理都是统一在活化温度-15℃及冰面过饱和度20%、水面过饱和度3%的湿度条件下进行的.根据取得的部分观测资料,给出了沈阳春夏季大气冰核的浓度及冰核温度谱分布参数,分析了冰核浓度在3~6月各月以及在不同天气状况下的分布特征,初步给出了大气冰核浓度的尺度谱分布及其随高度的变化.

  13. Predictability of the Arctic sea ice edge

    Science.gov (United States)

    Goessling, H. F.; Tietsche, S.; Day, J. J.; Hawkins, E.; Jung, T.

    2016-02-01

    Skillful sea ice forecasts from days to years ahead are becoming increasingly important for the operation and planning of human activities in the Arctic. Here we analyze the potential predictability of the Arctic sea ice edge in six climate models. We introduce the integrated ice-edge error (IIEE), a user-relevant verification metric defined as the area where the forecast and the "truth" disagree on the ice concentration being above or below 15%. The IIEE lends itself to decomposition into an absolute extent error, corresponding to the common sea ice extent error, and a misplacement error. We find that the often-neglected misplacement error makes up more than half of the climatological IIEE. In idealized forecast ensembles initialized on 1 July, the IIEE grows faster than the absolute extent error. This means that the Arctic sea ice edge is less predictable than sea ice extent, particularly in September, with implications for the potential skill of end-user relevant forecasts.

  14. Concentrations of sunscreens and antioxidant pigments in Arctic Calanus spp. in relation to ice cover, ultraviolet radiation, and the phytoplankton spring bloom

    DEFF Research Database (Denmark)

    Hylander, Samuel; Kiørboe, Thomas; Snoeijs, Pauline;

    2015-01-01

    Arctic zooplankton ascend to shallow depths during spring to graze on the yearly occurring phytoplankton bloom. However, in surface waters they are exposed to detrimental ultraviolet radiation (UVR) levels. Here, we quantified concentrations of substances known to have UVR-protective functions...

  15. Decadal trends in the Antarctic sea ice extent ultimately controlled by ice-ocean feedback

    Directory of Open Access Journals (Sweden)

    H. Goosse

    2013-09-01

    Full Text Available The large natural variability of the Antarctic sea ice is a key characteristic of the system that might be responsible for the small positive trend in sea ice extent observed since 1979. In order to gain insight in the processes responsible for this variability, we have analysed in a control simulation performed with a coupled climate model a strong positive ice-ocean feedback that amplifies sea ice variations. When sea ice concentration increases in a region, in particular close to the ice edge, the mixed layer depth tends to decrease. This can be caused by a net inflow of ice and thus of freshwater that stabilizes the water column. Another stabilizing mechanism at interannual time scales that appears more widespread in our simulation is associated with the downward salt transport due to the seasonal cycle of ice formation: brine is released in winter when ice is formed and mixed over a deep layer while the freshwater flux caused by ice melting is included in a shallow layer, resulting in a net vertical transport of salt. Because of this stronger stratification due to the presence of sea ice, more heat is stored at depth in the ocean and the vertical oceanic heat flux is reduced, which contributes to maintain a higher ice extent. This positive feedback is not associated with a particular spatial pattern. Consequently, the spatial distribution of the trend in ice concentration is largely imposed by the wind changes that can provide the initial perturbation. A positive freshwater flux could alternatively be the initial trigger but the amplitude of the final response of the sea ice extent is finally set up by the amplification related to ice-ocean feedback. Initial conditions have also an influence as the chance to have a large increase in ice extent is higher if starting from a state characterized by a low value.

  16. The micro-orifice uniform deposit impactor-droplet freezing technique (MOUDI-DFT for measuring concentrations of ice nucleating particles as a function of size: improvements and initial validation

    Directory of Open Access Journals (Sweden)

    R. H. Mason

    2015-02-01

    Full Text Available The micro-orifice uniform deposit impactor-droplet freezing technique (MOUDI-DFT combines particle collection by inertial impaction (via the MOUDI and a microscope-based immersion freezing apparatus (the DFT to measure atmospheric concentrations of ice nucleating particles (INPs as a function of size and temperature. In the first part of this study we improved upon this recently introduced technique. Using optical microscopy, we investigated the non-uniformity of MOUDI aerosol deposits at spatial resolutions of 1, 0.25 mm, and for some stages when necessary 0.10 mm. The results from these measurements show that at a spatial resolution of 1 mm and less, the concentration of particles along the MOUDI aerosol deposit can vary by an order of magnitude or more. Since the total area of a MOUDI aerosol deposit ranges from 425 to 605 mm2 and the area analyzed by the DFT is approximately 1.2 mm2, this non-uniformity needs to be taken into account when using the MOUDI-DFT to determine atmospheric concentrations of INPs. Measurements of the non-uniformity of the MOUDI aerosol deposits were used to select positions on the deposits that had relatively small variations in particle concentration and to build substrate holders for the different MOUDI stages. These substrate holders improve reproducibility by holding the substrate in the same location for each measurement and ensure that DFT analysis is only performed on substrate regions with relatively small variations in particle concentration. In addition, the deposit non-uniformity was used to determine correction factors that take the non-uniformity into account when determining atmospheric concentrations of INPs. In the second part of this study, the MOUDI-DFT utilizing the new substrate holders was compared to the continuous flow diffusion chamber (CFDC technique of Colorado State University. The intercomparison was done using INP concentrations found by the two instruments during ambient measurements of

  17. Air-ice carbon pathways inferred from a sea ice tank experiment

    Directory of Open Access Journals (Sweden)

    Marie Kotovitch

    2016-06-01

    Full Text Available Abstract Given rapid sea ice changes in the Arctic Ocean in the context of climate warming, better constraints on the role of sea ice in CO2 cycling are needed to assess the capacity of polar oceans to buffer the rise of atmospheric CO2 concentration. Air-ice CO2 fluxes were measured continuously using automated chambers from the initial freezing of a sea ice cover until its decay during the INTERICE V experiment at the Hamburg Ship Model Basin. Cooling seawater prior to sea ice formation acted as a sink for atmospheric CO2, but as soon as the first ice crystals started to form, sea ice turned to a source of CO2, which lasted throughout the whole ice growth phase. Once ice decay was initiated by warming the atmosphere, the sea ice shifted back again to a sink of CO2. Direct measurements of outward ice-atmosphere CO2 fluxes were consistent with the depletion of dissolved inorganic carbon in the upper half of sea ice. Combining measured air-ice CO2 fluxes with the partial pressure of CO2 in sea ice, we determined strongly different gas transfer coefficients of CO2 at the air-ice interface between the growth and the decay phases (from 2.5 to 0.4 mol m−2 d−1 atm−1. A 1D sea ice carbon cycle model including gas physics and carbon biogeochemistry was used in various configurations in order to interpret the observations. All model simulations correctly predicted the sign of the air-ice flux. By contrast, the amplitude of the flux was much more variable between the different simulations. In none of the simulations was the dissolved gas pathway strong enough to explain the large fluxes during ice growth. This pathway weakness is due to an intrinsic limitation of ice-air fluxes of dissolved CO2 by the slow transport of dissolved inorganic carbon in the ice. The best means we found to explain the high air-ice carbon fluxes during ice growth is an intense yet uncertain gas bubble efflux, requiring sufficient bubble nucleation and upwards rise. We

  18. A comparison of new calculations of 10be production in the earths polar atmosphere by cosmic rays with 10be concentration measurements in polar ice cores between 1939-2005 - a troubling lack of concordance paper #1

    CERN Document Server

    Webber, W R

    2010-01-01

    Using new calculations of 10Be production in the Earths atmosphere which are based on direct measurements of the 11-year solar modulation effects on galactic cosmic rays and spacecraft measurements of the cosmic ray energy spectrum, we have calculated the yearly average production of 10Be in the Earths atmosphere by galactic and solar cosmic rays since 1939. During the last six 11-year cycles the average amplitude of these production changes is 36%. These predictions are compared with measurements of 10Be concentration in polar ice cores in both the Northern and Southern hemisphere over the same time period. We find a large scatter between the predicted and measured yearly average data sets and a low cross correlation ~0.30. Also the normalized regression line slope between 10Be production changes and 10Be concentration changes is found to be only 0.4-0.6; much less than the value of 1.0 expected for a simple proportionality between these quantities, as is typically used for historical projections of the rela...

  19. Methodology of satellite microwave diagnostics of latitudinal-zonal and seasonal variations of frozen soil and sea ice

    Directory of Open Access Journals (Sweden)

    V. V. Melentiev

    2013-01-01

    Full Text Available In the frame of the work we have had investigated the utility of 6.9GHz dual polarization passive microwave data from the sensor AMSR-E for quantitative assessment of spatial and temporal variations of permafrost, seasonally frozen grounds and sea ice properties along the transect 70° E in 2005–2008 years. Analysis of the factors which could be detected with using study of the spatial-temporal variations of the microwave emissivity (brightness temperatures of the system «Earth-atmosphere» was carried out with using in situ data obtained from meteorological stations situated along the investigated transect of the Western Siberia and geocryologic station Marre-Sale (Yamal Peninsula. A new method of visualization of the brightness temperatures in spatial-temporal dimensions was suggested and practical applied. Eight latitudinal zones with intrinsic peculiarities of the spatial and seasonal variability of the brightness temperatures were revealed and investigated in many details. Comparison of the location of these zones with geographic distribution of biomes in Western Siberia was provided and it shows that satellite passive microwave information can be used for classification of the territories inside biomes. In frame of this study the annual brightness temperatures course for tundra zone area has been strictly divided into four periods (seasons characterized by different types of microwave emissivity variations. For boreal needle-leaved forest zone these seasons are manifested weaker. Comprehensive analysis of the satellite microwave survey data and corresponding the in situ data has shown satisfactory correlation between the brightness temperatures of the tundra areas on the Yamal Peninsula and their thermodynamic ground-trough temperatures at the square of geocryologic station Marre-Sale during winter period of stable frozen conditions and vegetation period. In these periods one-channel satellite microwave survey could be applied for the

  20. Assimilation of sea ice motion in a finite-element sea ice model

    Science.gov (United States)

    Rollenhagen, K.; Timmermann, R.; Janjić, T.; SchröTer, J.; Danilov, S.

    2009-05-01

    A finite-element sea ice model (FESIM) is applied in a data assimilation study with the singular evolutive interpolated Kalman (SEIK) filter. The model has been configured for a regional Arctic domain and is forced with a combination of daily NCEP reanalysis data for 2-m air temperature and 10-m winds with monthly mean humidities from the ECMWF reanalysis and climatological fields for precipitation and cloudiness. We assimilate 3-day mean ice drift fields derived from passive microwave satellite data. Based on multivariate covariances (which describe the statistical relationship between anomalies in different model fields), the sea ice drift data assimilation produces not only direct modifications of the ice drift but also updates for sea ice concentration and thickness, which in turn yield sustainable corrections of ice drift. We use observed buoy trajectories as an independent data set to validate the analyzed sea ice drift field. A good agreement between modeled and observed tracks is achieved already in the reference simulation. Application of the SEIK filter with satellite-derived drift fields further improves the agreement. Spatial and temporal variability of ice thickness increases due to the assimilation procedure; a comparison to thickness data from a submarine-based upward looking sonar indicates that the thickness distribution becomes more realistic. Validation with regard to satellite data shows that the velocity data assimilation has only a small effect on ice concentration, but a general improvement of the ice concentration within the pack is still evident.

  1. Ice Observatory

    Science.gov (United States)

    blugerman, n.

    2015-10-01

    My project is to make ice observatories to perceive astral movements as well as light phenomena in the shape of cosmic rays and heat, for example.I find the idea of creating an observation point in space, that in time will change shape and eventually disappear, in consonance with the way we humans have been approaching the exploration of the universe since we started doing it. The transformation in the elements we use to understand big and small transformations, within the universe elements.

  2. Ice warriors

    Energy Technology Data Exchange (ETDEWEB)

    Woof, M.

    2004-02-01

    Sitting under a glacier, SNSK's productive Svea North longwall mine is like no other. Situated on the Norwegian archipelago of Spitzbergen this is one of the Europe's two top producing coal mines and produced 2.7 mt of coal in 2003. A long tunnel has recently been built under the glacier with a conveyor system, to overcome problems of hauling coal along the ice road. The building of this tunnel is described in the article. The longwall mining operation and equipment used is described. 4 figs.

  3. Ice ages

    International Nuclear Information System (INIS)

    The Earth's climate undergoes great changes in cycles of 104 to 105 years. Deep sea sediments contain proof of these changes. The critical parameter is the O18/O16 isotope ratio. The astronomical theory is discussed of ice ages based on the changes in the shape of the Earth's orbit around the sun. Forecasts for the future are given - in the coming years the climate is expected to get warmer owing to increased CO2 levels in the atmosphere, and then a long cooler period is expected to follow. (M.D.)

  4. Charging of ice-vapor interfaces: applications to thunderstorms

    Directory of Open Access Journals (Sweden)

    J. Nelson

    2003-01-01

    Full Text Available The build-up of intrinsic Bjerrum and ionic defects at ice-vapor interfaces electrically charges ice surfaces and thus gives rise to many phenomena including thermoelectricity, ferroelectric ice films, sparks from objects in blizzards, electromagnetic emissions accompanying cracking in avalanches, glaciers, and sea ice, and charge transfer during ice-ice collisions in thunderstorms. Fletcher's theory of the ice surface in equilibrium proposed that the Bjerrum defects have a higher rate of creation at the surface than in the bulk, which produces a high concentration of surface D defects that then attract a high concentration of OH- ions at the surface. Here, we add to this theory the effect of a moving interface caused by growth or sublimation. This effect can increase the amount of ionic surface charges more than 10-fold for growth rates near 1 mm s-1 and can extend the spatial separation of interior charges in qualitative agreement with many observations. In addition, ice-ice collisions should generate sufficient pressure to melt ice at the contact region and we argue that the ice particle with the initially sharper point at contact loses more mass of melt than the other particle. A simple analytic model of this process with parameters that are consistent with observations leads to predicted collisional charge exchange that semiquantitatively explains the negative charging region of thunderstorms. The model also has implications for snowflake formation, ferroelectric ice, polarization of ice in snowpacks, and chemical reactions in ice surfaces

  5. Atmospheric Methane in Ice Cores

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The reconstruction of air trapped in ice cores provides us the most direct information about atmospheric CH4 variations in the past history. Ice core records from the "Three Poles (Antarctica, Greenland and Tibetan Plateau)" reveal the detailed fluctuations of atmospheric CH4 concentration with time and are allowed to quantify the CH4 differences among latitudes. These data are indispensably in the farther study of the relationship between greenhouse gases and climatic change, and of the past changes in terrestrial CH4 emissions. Ice cores reconstruction indicates that atmospheric CH4 concentration has increased quickly since industrialization, and the present day's level of atmospheric CH4 (1800 ppbv) is unprecedented during the past Glacial-Interglacial climate cycles.

  6. Solar radiation interactions with seasonal sea ice

    Science.gov (United States)

    Ehn, Jens Kristian

    movement towards the surface ice of the ice cover and the formation of surface features---such as frost flowers or slush layers---is required to understand the albedo of newly formed sea ice. The sea ice had reached its maximum thickness by late April in both FB and BB (˜1.8 m vs. 1.5-1.7 m). However, surface conditions differed notably as surface melting had not been initiated in FB, while melting had progressed to an advanced stage in BB, illustrating the difference in climate between the two regions (Arctic vs. sub-Arctic). The shortwave partitioning between the atmosphere, sea ice and the ocean---as well as within the sea ice---was strongly affected by diurnal freeze-thaw processes and synoptic weather events that controlled the optical characteristics of the surface. In spring, in situ measurements with a high vertical resolution were conducted within the bottom sea ice layers. The optical properties were strongly affected by ice algae present in the bottom few centimeters. Particulate absorption decreased quickly within the ice above the living algae layer, and showed characteristics of detrital matter. The optical properties for the bottom layers of the sea ice were found to significantly differ from interior ice. This is expected as the bottom ice is very porous and has a lamellar platelet structure, in addition to containing high concentrations of biological matter. These findings emphasize the importance of processes occurring near the surface and bottom boundaries in determining radiative transfer in sea ice covers. Ultimately, a focus on linking numerous aspects of sea ice physics and biology is required in order to predict the seasonal evolution of the sea ice cover in a changing climate.

  7. Freezing phenomena in ice-water systems

    Energy Technology Data Exchange (ETDEWEB)

    Akyurt, M.; Zaki, G.; Habeebullah, B. [Fakieh Center for Applied Research, Makkah Al-Mukarramah (Saudi Arabia); King Abdulaziz University, Jeddah (Saudi Arabia). Dept. of Mechanical Engineering

    2002-09-01

    The characteristics of solidification and melting are reviewed. The properties of water and ice and the phase diagram of water are discussed with special emphasis on ice density. A concise account of the freezing process and the Stefan problem is presented. To this end, the four stages of freezing are identified, supercooling, nucleation and the formation of dendritic ice, the growth of concentric rings of solid ice at 0{sup o}C and the final cooling of the solid ice are treated in some detail. The subject of bursting of pipes is given particular emphasis. Attention is drawn to a common misconception on pipe bursting and to misleading relationships for the computation of freezing time for ice blockage. Several current applications of melting and freezing systems are outlined. (author)

  8. Potassium chloride-bearing ice VII and ice planet dynamics

    Science.gov (United States)

    Frank, Mark R.; Scott, Henry P.; Aarestad, Elizabeth; Prakapenka, Vitali B.

    2016-02-01

    Accurate modeling of planetary interiors requires that the pressure-volume-temperature (PVT) properties of phases present within the body be well understood. The high-pressure polymorphs of H2O have been studied extensively due to the abundance of ice phases in icy moons and, likely, vast number of extra-solar planetary bodies, with only select studies evaluating impurity-laden ices. In this study, ice formed from a 1.6 mol percent KCl-bearing aqueous solution was studied up to 32.89 ± 0.19 GPa and 625 K, and the incorporation of K+ and Cl- ionic impurities into the ice VII structure was documented. The compression data at 295 K were fit with a third order Birch-Murnaghan equation of state and yielded a bulk modulus (KT0), its pressure derivative (KT0‧), and zero pressure volume (V0) of 24.7 ± 0.9 GPa, 4.44 ± 0.09, and 39.2 ± 0.2 Å3, respectively. The impurity-laden ice was found to be 6-8% denser than ice VII formed from pure H2O. Thermal expansion coefficients were also determined for several isothermal compression curves at elevated temperatures, and a PVT equation of state was obtained. The melting curve of ice VII with incorporated K+ and Cl- was estimated by fitting experimental data up to 10.2 ± 0.4 GPa, where melting occurred at 625 K, to the Simon-Glatzel equation. The melting curve of this impurity-laden ice is systematically depressed relative to that of pure H2O by approximately 45 K and 80 K at 4 and 11 GPa, respectively. A portion of the K+ and Cl- contained within the ice VII structure was observed to exsolve with increasing temperature. This suggests that an internal differentiating process could concentrate a K-rich phase deep within H2O-rich planets, and we speculate that this could supply an additional source of heat through the radioactive decay of 40K. Our data illustrate ice VII can incorporate significant concentrations of K+ and Cl- and increasing the possibility of deep-sourced and solute-rich plumes in moderate to large sized H2O

  9. Image Techniques for Identifying Sea-Ice Parameters

    Directory of Open Access Journals (Sweden)

    Qin Zhang

    2014-10-01

    Full Text Available The estimation of ice forces are critical to Dynamic Positioning (DP operations in Arctic waters. Ice conditions are important for the analysis of ice-structure interaction in an ice field. To monitor sea-ice conditions, cameras are used as field observation sensors on mobile sensor platforms in Arctic. Various image processing techniques, such as Otsu thresholding, k-means clustering, distance transform, Gradient Vector Flow (GVF Snake, mathematical morphology, are then applied to obtain ice concentration, ice types, and floe size distribution from sea-ice images to ensure safe operations of structures in ice covered regions. Those techniques yield acceptable results, and their effectiveness are demonstrated in case studies.

  10. Recent wind driven high sea ice export in the Fram Strait contributes to Arctic sea ice decline

    Directory of Open Access Journals (Sweden)

    L. H. Smedsrud

    2011-05-01

    Full Text Available Arctic sea ice area decrease has been visible for two decades, and continues at a steady rate. Apart from melting, the southward drift through Fram Strait is the main loss. We present high resolution sea ice drift across 79° N from 2004 to 2010. The ice drift is based on radar satellite data and correspond well with variability in local geostrophic wind. The underlying current contributes with a constant southward speed close to 5 cm s−1, and drives about 33 % of the ice export. We use geostrophic winds derived from reanalysis data to calculate the Fram Strait ice area export back to 1957, finding that the sea ice area export recently is about 25 % larger than during the 1960's. The increase in ice export occurred mostly during winter and is directly connected to higher southward ice drift velocities, due to stronger geostrophic winds. The increase in ice drift is large enough to counteract a decrease in ice concentration of the exported sea ice. Using storm tracking we link changes in geostrophic winds to more intense Nordic Sea low pressure systems. Annual sea ice export likely has a significant influence on the summer sea ice variability and we find low values in the 60's, the late 80's and 90's, and particularly high values during 2005–2008. The study highlight the possible role of variability in ice export as an explanatory factor for understanding the dramatic loss of Arctic sea ice the last decades.

  11. Ice-shelf – ocean interactions at Fimbul Ice Shelf, Antarctica from oxygen isotope ratio measurements

    Directory of Open Access Journals (Sweden)

    K. W. Nicholls

    2007-09-01

    Full Text Available Melt water from the floating ice shelves at the margins of the southeastern Weddell Sea makes a significant contribution to the fresh water budget of the region. In February 2005 a multi-institution team conducted an oceanographic campaign at Fimbul Ice Shelf on the Greenwich Meridian as part of the Autosub Under Ice programme. This included a mission of the autonomous submarine Autosub 25 km into the cavity beneath Fimbul Ice Shelf, and a number of ship-based hydrographic sections on the continental shelf and adjacent to the ice shelf front. The measurements reveal two significant sources of glacial melt water at Fimbul Ice Shelf: the main cavity under the ice shelf and an ice tongue that protrudes from the main ice front and out over the continental slope into deep water. Glacial melt water is concentrated in a 200 m thick Ice Shelf Water (ISW layer below the base of the ice shelf at 150–200 m, with a maximum glacial melt concentration of up to 1.16%. Some glacial melt is found throughout the water column, and much of this is from sources other than Fimbul Ice Shelf. However, at least 0.2% of the water in the ISW layer cannot be accounted for by other processes and must have been contributed by the ice shelf. Just downstream of Fimbul Ice Shelf we observe locally created ISW mixing out across the continental slope. The ISW formed here is much less dense than that formed in the southwest Weddell Sea, and will ultimately contribute a freshening (and reduction in δ18O to the upper 100–150 m of the water column in the southeast Weddell Sea.

  12. Ice-shelf – ocean interactions at Fimbul Ice Shelf, Antarctica from oxygen isotope ratio measurements

    Directory of Open Access Journals (Sweden)

    K. W. Nicholls

    2008-03-01

    Full Text Available Melt water from the floating ice shelves at the margins of the southeastern Weddell Sea makes a significant contribution to the fresh water budget of the region. In February 2005 a multi-institution team conducted an oceanographic campaign at Fimbul Ice Shelf on the Greenwich Meridian as part of the Autosub Under Ice programme. This included a mission of the autonomous submarine Autosub 25 km into the cavity beneath Fimbul Ice Shelf, and a number of ship-based hydrographic sections on the continental shelf and adjacent to the ice shelf front. The measurements reveal two significant sources of glacial melt water at Fimbul Ice Shelf: the main cavity under the ice shelf and an ice tongue, Trolltunga, that protrudes from the main ice front and out over the continental slope into deep water. Glacial melt water is concentrated in a 200 m thick Ice Shelf Water (ISW layer below the base of the ice shelf at 150–200 m, with a maximum glacial melt concentration of up to 1.16%. Some glacial melt is found throughout the water column, and much of this is from sources other than Fimbul Ice Shelf. However, at least 0.2% of the water in the ISW layer cannot be accounted for by other processes and must have been contributed by the ice shelf. Just downstream of Fimbul Ice Shelf we observe locally created ISW mixing out across the continental slope. The ISW formed here is much less dense than that formed in the southwest Weddell Sea, and will ultimately contribute a freshening (and reduction in δ18O to the upper 100–150 m of the water column in the southeast Weddell Sea.

  13. A prelanding assessment of the ice table depth and ground ice characteristics in Martian permafrost at the Phoenix landing site

    Science.gov (United States)

    Mellon, M.T.; Boynton, W.V.; Feldman, W.C.; Arvidson, R. E.; Titus, Joshua T.N.; Bandfield, L.; Putzig, N.E.; Sizemore, H.G.

    2009-01-01

    We review multiple estimates of the ice table depth at potential Phoenix landing sites and consider the possible state and distribution of subsurface ice. A two-layer model of ice-rich material overlain by ice-free material is consistent with both the observational and theoretical lines of evidence. Results indicate ground ice to be shallow and ubiquitous, 2-6 cm below the surface. Undulations in the ice table depth are expected because of the thermodynamic effects of rocks, slopes, and soil variations on the scale of the Phoenix Lander and within the digging area, which can be advantageous for analysis of both dry surficial soils and buried ice-rich materials. The ground ice at the ice table to be sampled by the Phoenix Lander is expected to be geologically young because of recent climate oscillations. However, estimates of the ratio of soil to ice in the ice-rich subsurface layer suggest that that the ice content exceeds the available pore space, which is difficult to reconcile with existing ground ice stability and dynamics models. These high concentrations of ice may be the result of either the burial of surface snow during times of higher obliquity, initially high-porosity soils, or the migration of water along thin films. Measurement of the D/H ratio within the ice at the ice table and of the soil-to-ice ratio, as well as imaging ice-soil textures, will help determine if the ice is indeed young and if the models of the effects of climate change on the ground ice are reasonable. Copyright 2008 by the American Geophysical Union.

  14. Antarctic Sea Ice-a Habitat for Extremophiles

    OpenAIRE

    D. Thomas; Dieckmann, Gerhard

    2002-01-01

    The pack ice of Earth's polar oceans appears to be frozen white desert, devoid of life. However, beneath the snow lies a unique habitat for a group of bacteria and microscopic plants and animals that are encased in an ice matrix at low temperatures and light levels, with the only liquid being pockets of concentrated brines. Survival in these conditions requires a complex suite of physiological and metabolic adaptations, but sea-ice organisms thrive in the ice, and their prolific growth ensure...

  15. Toy models of ice formation in turbulent overcooled water

    CERN Document Server

    De Santi, Francesca

    2016-01-01

    A study of ice formation in stationary turbulent conditions is carried out in various limit regimes with regard to crystal growth rate, overcooling and ice entrainment at the water surface. Analytical expressions of the temperature, salinity and ice concentration mean profiles are provided, and the role of fluctuations in ice production is numerically quantified. A lower bound on the ratio of sensible heat flux to latent heat flux to the atmosphere is derived.

  16. Arctic sea ice decline contributes to thinning lake ice trend in northern Alaska

    Science.gov (United States)

    Alexeev, Vladimir; Arp, Christopher D.; Jones, Benjamin M.; Cai, Lei

    2016-01-01

    Field measurements, satellite observations, and models document a thinning trend in seasonal Arctic lake ice growth, causing a shift from bedfast to floating ice conditions. September sea ice concentrations in the Arctic Ocean since 1991 correlate well (r = +0.69,p model experiments to simulate winters with years of high (1991/92) and low (2007/08) sea ice extent for which we also had field measurements and satellite imagery characterizing lake ice conditions. A lake ice growth model forced with Weather Research and Forecasting model output produced a 7% decrease in lake ice growth when 2007/08 sea ice was imposed on 1991/92 climatology and a 9% increase in lake ice growth for the opposing experiment. Here, we clearly link early winter 'ocean-effect' snowfall and warming to reduced lake ice growth. Future reductions in sea ice extent will alter hydrological, biogeochemical, and habitat functioning of Arctic lakes and cause sub-lake permafrost thaw.

  17. Discrete element modeling of ice loads on ship hulls in broken ice fields

    Institute of Scientific and Technical Information of China (English)

    JI Shunying; LI Zilin; LI Chunhua; SHANG Jie

    2013-01-01

    Ice loads on a ship hull affect the safety of the hull structure and the ship maneuvering performance in ice-covered regions. A discrete element method (DEM) is used to simulate the interaction between drifting ice floes and a moving ship. The pancake ice floes are modelled with three-dimensional (3-D) dilated disk elements considering the buoyancy, drag force and additional mass induced by the current. The ship hull is modelled with 3D disks with overlaps. Ice loads on the ship hull are determined through the contact detection between ice floe element and ship hull element and the contact force calculation. The influences of different ice conditions (current velocities and directions, ice thicknesses, concentrations and ice floe sizes) and ship speeds are also examined on the dynamic ice force. The simulated results are compared qualitatively well with the existing field data and other numerical results. This work can be helpful in the ship structure design and the navigation security in ice-covered fields.

  18. Study on the Retrieval of Snow Depth from FY3B/MWRI in the Atctic

    Science.gov (United States)

    Li, Lele; Chen, Haihua; Guan, Lei

    2016-06-01

    temperatures. Given the high albedo and low thermal conductivity, snow is regarded as one of the key reasons for the amplification of the warming in polar regions. The distributions of sea ice and snow depth are essential to the whole thermal conduction in the Arctic. This study focused on the retrieval of snow depth on sea ice from brightness temperatures of the MicroWave Radiometer Imager (MWRI) onboard the FengYun (FY)-3B satellite during the period from December 1, 2010 to April 30, 2011. After cross calibrated to the Advanced Microwave Scanning Radiometer-EOS (AMSR-E) Level 2A data, the MWRI brightness temperatures were applied to calculate the sea ice concentrations based on the Arctic Radiation and Turbulence Interaction Study Sea Ice (ASI) algorithm. According to the proportional relationship between the snow depth and the surface scattering in 18.7 and 36.5 GHz, the snow depths were derived. In order to eliminate the influence of uncertainties in grain sizes of snow as well as sporadic weather effects, the seven-day averaged snow depths were calculated. Then the results were compared with the snow depths from the AMSR-E Level 3 Sea Ice products. The bias of differences between the MWRI and the AMSR-E Level 3 products are ranged between -1.09 and -0.32 cm while the standard deviations and the correlation coefficients are ranged from 2.47 to 2.88 cm and from 0.78 to 0.90 for different months. As a result, it could be summarized that FY3B/MWRI showed a promising prospect in retrieving snow depth on sea ice.

  19. Importance of Chemical Composition of Ice Nuclei on the Formation of Arctic Ice Clouds

    Science.gov (United States)

    Keita, Setigui Aboubacar; Girard, Eric

    2016-09-01

    Ice clouds play an important role in the Arctic weather and climate system but interactions between aerosols, clouds and radiation remain poorly understood. Consequently, it is essential to fully understand their properties and especially their formation process. Extensive measurements from ground-based sites and satellite remote sensing reveal the existence of two Types of Ice Clouds (TICs) in the Arctic during the polar night and early spring. TICs-1 are composed by non-precipitating small (radar-unseen) ice crystals of less than 30 μm in diameter. The second type, TICs-2, are detected by radar and are characterized by a low concentration of large precipitating ice crystals ice crystals (>30 μm). To explain these differences, we hypothesized that TIC-2 formation is linked to the acidification of aerosols, which inhibits the ice nucleating properties of ice nuclei (IN). As a result, the IN concentration is reduced in these regions, resulting to a lower concentration of larger ice crystals. Water vapor available for deposition being the same, these crystals reach a larger size. Current weather and climate models cannot simulate these different types of ice clouds. This problem is partly due to the parameterizations implemented for ice nucleation. Over the past 10 years, several parameterizations of homogeneous and heterogeneous ice nucleation on IN of different chemical compositions have been developed. These parameterizations are based on two approaches: stochastic (that is nucleation is a probabilistic process, which is time dependent) and singular (that is nucleation occurs at fixed conditions of temperature and humidity and time-independent). The best approach remains unclear. This research aims to better understand the formation process of Arctic TICs using recently developed ice nucleation parameterizations. For this purpose, we have implemented these ice nucleation parameterizations into the Limited Area version of the Global Multiscale Environmental Model

  20. Importance of Chemical Composition of Ice Nuclei on the Formation of Arctic Ice Clouds

    Science.gov (United States)

    Keita, Setigui Aboubacar; Girard, Eric

    2016-04-01

    Ice clouds play an important role in the Arctic weather and climate system but interactions between aerosols, clouds and radiation remain poorly understood. Consequently, it is essential to fully understand their properties and especially their formation process. Extensive measurements from ground-based sites and satellite remote sensing reveal the existence of two Types of Ice Clouds (TICs) in the Arctic during the polar night and early spring. TICs-1 are composed by non-precipitating small (radar-unseen) ice crystals of less than 30 μm in diameter. The second type, TICs-2, are detected by radar and are characterized by a low concentration of large precipitating ice crystals ice crystals (>30 μm). To explain these differences, we hypothesized that TIC-2 formation is linked to the acidification of aerosols, which inhibits the ice nucleating properties of ice nuclei (IN). As a result, the IN concentration is reduced in these regions, resulting to a lower concentration of larger ice crystals. Water vapor available for deposition being the same, these crystals reach a larger size. Current weather and climate models cannot simulate these different types of ice clouds. This problem is partly due to the parameterizations implemented for ice nucleation. Over the past 10 years, several parameterizations of homogeneous and heterogeneous ice nucleation on IN of different chemical compositions have been developed. These parameterizations are based on two approaches: stochastic (that is nucleation is a probabilistic process, which is time dependent) and singular (that is nucleation occurs at fixed conditions of temperature and humidity and time-independent). The best approach remains unclear. This research aims to better understand the formation process of Arctic TICs using recently developed ice nucleation parameterizations. For this purpose, we have implemented these ice nucleation parameterizations into the Limited Area version of the Global Multiscale Environmental Model

  1. Validation and evaluation of a workstation for monitoring sea ice

    Science.gov (United States)

    McIntyre, Neil; Boardman, Diane; Darwin, David; Sullivan, Ken

    1994-12-01

    Demand for reliable sea ice information comes from many quarters including ship routing and resource exploitation companies, weather forecasting agencies and glaciological research institution. For operational purposes, this information is typically required for local regions on short timescales. To explore this market a prototype sea ice workstation has been developed. The workstation uses data from several current earth observation sensors, combining the advantages of regional survey, all-weather capability and high-resolution imagery. The output from the workstation is an integrated sea ice chart which can be used to display combinations of ice edge, ice type, ice concentrations, ice motion vectors and sea surface temperatures. During the course of its development significant new progress in automated ice classification has been achieved together with the enhancement of existing ice motion algorithms. The quality of the sea ice information from each geophysical algorithm was assessed through validation campaigns which collected independent datasets. The results of this analysis show the ice type classification to be most accurate in identifying multi-year ice; this is probably the most critical ice category for navigational purposes. A program of end-user evaluation has also been started in which sea ice charts are supplied to operational organizations and value-added services. This will continue during 1994 and provide feedback on the use of the workstation in a semi-operational environment.

  2. Ice Lithography for Nanodevices

    DEFF Research Database (Denmark)

    Han, Anpan; Kuan, A.; Wang, J.;

    Water vapor is condensed onto a cold sample, coating it with a thin-film of ice. The ice is sensitive to electron beam lithography exposure. 10 nm ice patterns are transferred into metals by “melt-off”. Non-planar samples are coated with ice, and we pattern on cantilevers, AFM tips, and suspended...

  3. Recent changes in the dynamic properties of declining Arctic sea ice: A model study

    Science.gov (United States)

    Zhang, Jinlun; Lindsay, Ron; Schweiger, Axel; Rigor, Ignatius

    2012-10-01

    Results from a numerical model simulation show significant changes in the dynamic properties of Arctic sea ice during 2007-2011 compared to the 1979-2006 mean. These changes are linked to a 33% reduction in sea ice volume, with decreasing ice concentration, mostly in the marginal seas, and decreasing ice thickness over the entire Arctic, particularly in the western Arctic. The decline in ice volume results in a 37% decrease in ice mechanical strength and 31% in internal ice interaction force, which in turn leads to an increase in ice speed (13%) and deformation rates (17%). The increasing ice speed has the tendency to drive more ice out of the Arctic. However, ice volume export is reduced because the rate of decrease in ice thickness is greater than the rate of increase in ice speed, thus retarding the decline of Arctic sea ice volume. Ice deformation increases the most in fall and least in summer. Thus the effect of changes in ice deformation on the ice cover is likely strong in fall and weak in summer. The increase in ice deformation boosts ridged ice production in parts of the central Arctic near the Canadian Archipelago and Greenland in winter and early spring, but the average ridged ice production is reduced because less ice is available for ridging in most of the marginal seas in fall. The overall decrease in ridged ice production contributes to the demise of thicker, older ice. As the ice cover becomes thinner and weaker, ice motion approaches a state of free drift in summer and beyond and is therefore more susceptible to changes in wind forcing. This is likely to make seasonal or shorter-term forecasts of sea ice edge locations more challenging.

  4. Wave-Ice interaction

    Institute of Scientific and Technical Information of China (English)

    沈奚海莉

    2001-01-01

    The growth and movement of sea ice cover are influenced by the presence of wave field. Inturn, the wave field is influenced by the presence of ice cover. Their interaction is not fully understood.In this paper, we discuss some current understanding on wave attenuation when it propagates through frag-mented ice cover, ice drift due to the wave motion, and the growth characteristics of ice cover in wave field.

  5. Self-releasing submerged ice maker

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, W.E. Jr.; Greer, M.E.; Stickler, L.A. [Univ. of Missouri-Columbia, Independence, MO (United States)

    1989-03-01

    This study reports the results of a series of experiments which investigated a thermal storage technology whereby slush ice is grown on a submerged cold surface and the resultant growth of slush ice released without auxiliary thermal or mechanical means. The process investigated consists of growing slush ice from an electrolyte solution of low molarity. The cold surface (substrate) upon which the slush ice forms is submerged in the bulk solution. As the buoyancy force on the ice crystals exceeds the adhesion to the cold surface, the slush ice is forced from the substrate and floats away, to the top of the solution. The results of this study reveal the relative insensitivity of the growth rate of ice crystals to solution initial bulk concentration over the range of values tested and to concentration of electrolyte during accumulation of ice crystals. The critical parameter appears to be substrate temperature, which generally cannot be less than approximately 2{degrees}C below the freezing point temperature of the solution, as apparent adhesion increases rapidly with decreasing substrate temperature.

  6. Dust ice nuclei effects on cirrus clouds

    Directory of Open Access Journals (Sweden)

    M. Kuebbeler

    2013-04-01

    Full Text Available In order to study aerosol-cloud interactions in cirrus clouds we apply a new multiple-mode ice microphysical scheme to the general circulation model ECHAM5-HAM. The multiple-mode ice microphysical scheme allows to analyse the competition between homogeneous freezing of solution droplets, deposition nucleation of pure dust particles, immersion freezing of coated dust particles and pre-existing ice. We base the freezing efficiencies of coated and pure dust particles on most recent laboratory data. The effect of pre-existing ice, which was neglected in previous ice nucleation parameterizations, is to deplete water vapour by depositional growth and thus prevent homogeneous and heterogeneous freezing from occurring. In a first step, we extensively tested the model and validated the results against in-situ measurements from various aircraft campaigns. The results compare well with observations; properties like ice crystal size and number concentration as well as supersaturation are predicted within the observational spread. We find that heterogeneous nucleation on mineral dust particles and the consideration of pre-existing ice in the nucleation process may lead to significant effects: globally, ice crystal number and mass are reduced by 10% and 5%, whereas the ice crystals size is increased by 3%. The reductions in ice crystal number are most pronounced in the tropics and mid-latitudes on the Northern Hemisphere. While changes in the microphysical and radiative properties of cirrus clouds in the tropics are mostly driven by considering pre-existing ice, changes in the northern hemispheric mid-latitudes mainly result from heterogeneous nucleation. The so called negative Twomey-effect in cirrus clouds is represented in ECHAM5-HAM. The net change in the radiation budget is −0.94 W m−2, implying that both, heterogeneous nucleation on dust and pre-existing ice have the potential to modulate cirrus properties in climate simulations and thus should be

  7. First continuous phosphate record from Greenland ice cores

    Directory of Open Access Journals (Sweden)

    H. A. Kjær

    2011-11-01

    Full Text Available A continuous and highly sensitive absorption method for detection of soluble phosphate in ice cores has been developed using a molybdate reagent and a 2 m liquid waveguide (LWCC. The method is optimized to meet the low concentrations of phosphate in Greenland ice, it has a detection limit of around 0.1 ppb and a depth resolution of approximately 2 cm. The new method has been applied to obtain phosphate concentrations from segments of two Northern Greenland ice cores: from a shallow firn core covering the most recent 120 yr and from the recently obtained deep NEEM ice core in which sections from the late glacial period have been analysed. Phosphate concentrations in 20th century ice are around 0.32 ppb with no indication of anthropogenic influence in the most recent ice. In the glacial part of the NEEM ice core concentrations in the cold stadial periods are significantly higher, in the range of 6–24 ppb, while interstadial ice concentrations are around 2 ppb. In the shallow firn core, a strong correlation between concentrations of phosphate and insoluble dust suggests a similar deposition pattern for phosphate and dust. In the glacial ice, phosphate and dust also correlate quite strongly, however it is most likely that this correlation originates from the phosphate binding to dust during transport, with only a fraction coming directly from dust. Additionally a constant ratio between phosphate and potassium concentrations shows evidence of a possible biogenic land source.

  8. Sea ice classification using dual polarization SAR data

    International Nuclear Information System (INIS)

    Sea ice is an indicator of climate change and also a threat to the navigation security of ships. Polarimetric SAR images are useful in the sea ice detection and classification. In this paper, backscattering coefficients and texture features derived from dual polarization SAR images are used for sea ice classification. Firstly, the HH image is recalculated based on the angular dependences of sea ice types. Then the effective gray level co-occurrence matrix (GLCM) texture features are selected for the support vector machine (SVM) classification. In the end, because sea ice concentration can provide a better separation of pancake ice from old ice, it is used to improve the SVM result. This method provides a good classification result, compared with the sea ice chart from CIS

  9. Stochastic ice stream dynamics

    Science.gov (United States)

    Mantelli, Elisa; Bertagni, Matteo Bernard; Ridolfi, Luca

    2016-08-01

    Ice streams are narrow corridors of fast-flowing ice that constitute the arterial drainage network of ice sheets. Therefore, changes in ice stream flow are key to understanding paleoclimate, sea level changes, and rapid disintegration of ice sheets during deglaciation. The dynamics of ice flow are tightly coupled to the climate system through atmospheric temperature and snow recharge, which are known exhibit stochastic variability. Here we focus on the interplay between stochastic climate forcing and ice stream temporal dynamics. Our work demonstrates that realistic climate fluctuations are able to (i) induce the coexistence of dynamic behaviors that would be incompatible in a purely deterministic system and (ii) drive ice stream flow away from the regime expected in a steady climate. We conclude that environmental noise appears to be crucial to interpreting the past behavior of ice sheets, as well as to predicting their future evolution.

  10. Spatial-temporal characters of Antarctic sea ice variation

    Institute of Scientific and Technical Information of China (English)

    Ma Lijuan; Lu Longhua; Bian Lingen

    2004-01-01

    Using sea ice concentration dataset covering the period of 1968-2002 obtained from the Hadley Center of UK, this paper investigates characters of Antarctic sea ice variations .The finding demonstrates that the change of mean sea-ice extent is almost consistent with that of sea-ice area, so sea-ice extent can be chosen to go on this research. The maximum and the minimum of Antarctic sea ice appear in September and February respectively. The maximum and the maximal variation of sea ice appear in Weddell Sea and Ross Sea, while the minimum and the minimal variation of sea-ice appear in Antarctic Peninsula. In recent 35 years, as a whole, Antarctic sea ice decreased distinctly. Moreover, there are 5 subdivision characteristic regions considering their different variations. Hereinto, the sea-ice extent of Weddell Sea and Ross Sea regions extends and area increases, while the sea-ice extent of the other three regions contracts and area decreases. They are all of obvious 2-4 years and 5-7 years significant oscillation periods. It is of significance for further understanding the sea-ice-air interaction in Antarctica region and discussing the relationship between sea-ice variation and atmospheric circulation.

  11. SUCCESS Evidence for Cirrus Cloud Ice Nucleation Mechanisms

    Science.gov (United States)

    Jensen, Eric; Gore, Warren J. Y. (Technical Monitor)

    1997-01-01

    During the SUCCESS mission, several measurements were made which should improve our understanding of ice nucleation processes in cirrus clouds. Temperature and water vapor concentration were made with a variety of instruments on the NASA DC-8. These observations should provide accurate upper tropospheric humidities. In particular, we will evaluate what humidities are required for ice nucleation. Preliminary results suggest that substantial supersaturations frequently exist in the upper troposphere. The leading-edge region of wave-clouds (where ice nucleation occurs) was sampled extensively at temperatures near -40 and -60C. These observations should give precise information about conditions required for ice nucleation. In addition, we will relate the observed aerosol composition and size distributions to the ice formation observed to evaluate the role of soot or mineral particles on ice nucleation. As an alternative technique for determining what particles act as ice nuclei, numerous samples of aerosols inside ice crystals were taken. In some cases, large numbers of aerosols were detected in each crystal, indicating that efficient scavenging occurred. Analysis of aerosols in ice crystals when only one particle per crystal was detected should help with the ice nucleation issue. Direct measurements of the ice nucleating activity of ambient aerosols drawn into airborne cloud chambers were also made. Finally, measurements of aerosols and ice crystals in contrails should indicate whether aircraft exhaust soot particles are effective ice nuclei.

  12. Uranium series dating of Allan Hills ice

    Science.gov (United States)

    Fireman, E. L.

    1986-03-01

    Uranium-238 decay series nuclides dissolved in Antarctic ice samples were measured in areas of both high and low concentrations of volcanic glass shards. Ice from the Allan Hills site (high shard content) had high Ra-226, Th-230 and U-234 activities but similarly low U-238 activities in comparison with Antarctic ice samples without shards. The Ra-226, Th-230 and U-234 excesses were found to be proportional to the shard content, while the U-238 decay series results were consistent with the assumption that alpha decay products recoiled into the ice from the shards. Through this method of uranium series dating, it was learned that the Allen Hills Cul de Sac ice is approximately 325,000 years old.

  13. Uranium series dating of Allan Hills ice

    Science.gov (United States)

    Fireman, E. L.

    1986-01-01

    Uranium-238 decay series nuclides dissolved in Antarctic ice samples were measured in areas of both high and low concentrations of volcanic glass shards. Ice from the Allan Hills site (high shard content) had high Ra-226, Th-230 and U-234 activities but similarly low U-238 activities in comparison with Antarctic ice samples without shards. The Ra-226, Th-230 and U-234 excesses were found to be proportional to the shard content, while the U-238 decay series results were consistent with the assumption that alpha decay products recoiled into the ice from the shards. Through this method of uranium series dating, it was learned that the Allen Hills Cul de Sac ice is approximately 325,000 years old.

  14. Ice storm `98

    Energy Technology Data Exchange (ETDEWEB)

    Soulard, F.; Trant, D.; Filoso, J.; Van Wesenbeeck, P. [Statistics Canada, Ottawa, ON (Canada). Environment Statistics Program

    1998-12-31

    As much as 100 millimeters of freezing rain fell on central and eastern Canada between January 4 to 10, 1998. This study concentrates on Canada`s St. Lawrence River Valley where total precipitation exceeded 73 mm in Kingston, 85 mm in Ottawa and 100 mm in areas south of Montreal. By comparison, the largest previously recorded ice storms left between 30 and 40 mm of ice. A state of emergency was declared for the affected regions. 56 per cent of Quebec`s population and 11 per cent of Ontario`s population were affected by the storm. Over 1000 power transmission towers collapsed and more than 30,000 wooden utility poles were brought down. In Quebec, nearly 1.4 million customers were left without electricity. In Ontario that number was about 230,000. While some manufacturers benefited directly from the storm, including makers of hydro and telephone poles, batteries and specialized electrical equipment, the overall economic losses for Montreal and Ottawa were high as estimates run to $585 million and $114 million, respectively. Almost 5 million sugar maple taps in Quebec and Ontario were located and suffered some damage in the affected areas. Nearly one-quarter (274,000) of all dairy cows were also located in the affected areas. Since in the absence of electricity they could not be milked, many of them suffered from mastitis. Many succumbed, others that survived may never attain their former level of productivity. As of June 1998, over 600,000 insurance claims totaling one billion dollars had been filed by Canadian households and businesses from the area affected by the ice storm.1 fig.

  15. Forecasting Turbine Icing Events

    DEFF Research Database (Denmark)

    Davis, Neil; Hahmann, Andrea N.; Clausen, Niels-Erik;

    2012-01-01

    In this study, we present a method for forecasting icing events. The method is validated at two European wind farms in with known icing events. The icing model used was developed using current ice accretion methods, and newly developed ablation algorithms. The model is driven by inputs from the WRF...... accumulations, which have not been seen in observations. In addition to the model evaluation we were able to investigate the potential occurrence of ice induced power loss at two wind parks in Europe using observed data. We found that the potential loss during an icing event is large even when the turbine...

  16. Forecasting Turbine Icing Events

    DEFF Research Database (Denmark)

    Davis, Neil; Hahmann, Andrea N.; Clausen, Niels-Erik;

    In this study, we present a method for forecasting icing events. The method is validated at two European wind farms in with known icing events. The icing model used was developed using current ice accretion methods, and newly developed ablation algorithms. The model is driven by inputs from the WRF...... accumulations, which have not been seen in observations. In addition to the model evaluation we were able to investigate the potential occurrence of ice induced power loss at two wind parks in Europe using observed data. We found that the potential loss during an icing event is large even when the turbine...

  17. Interactions Between Ice Thickness, Bottom Ice Algae, and Transmitted Spectral Irradiance in the Chukchi Sea

    Science.gov (United States)

    Arntsen, A. E.; Perovich, D. K.; Polashenski, C.; Stwertka, C.

    2015-12-01

    The amount of light that penetrates the Arctic sea ice cover impacts sea-ice mass balance as well as ecological processes in the upper ocean. The seasonally evolving macro and micro spatial variability of transmitted spectral irradiance observed in the Chukchi Sea from May 18 to June 17, 2014 can be primarily attributed to variations in snow depth, ice thickness, and bottom ice algae concentrations. This study characterizes the interactions among these dominant variables using observed optical properties at each sampling site. We employ a normalized difference index to compute estimates of Chlorophyll a concentrations and analyze the increased attenuation of incident irradiance due to absorption by biomass. On a kilometer spatial scale, the presence of bottom ice algae reduced the maximum transmitted irradiance by about 1.5 orders of magnitude when comparing floes of similar snow and ice thicknesses. On a meter spatial scale, the combined effects of disparities in the depth and distribution of the overlying snow cover along with algae concentrations caused maximum transmittances to vary between 0.0577 and 0.282 at a single site. Temporal variability was also observed as the average integrated transmitted photosynthetically active radiation increased by one order of magnitude to 3.4% for the last eight measurement days compared to the first nine. Results provide insight on how interrelated physical and ecological parameters of sea ice in varying time and space may impact new trends in Arctic sea ice extent and the progression of melt.

  18. Recent Improvements in the U.S. Navy's Ice Modeling Using Merged CryoSat-2/SMOS Ice Thickness

    Science.gov (United States)

    Allard, Richard; Hebert, David; Posey, Pamela; Wallcraft, Alan; Li, Li; Johnston, William; Phelps, Michael; Ridout, Andy; Shepherd, Andrew; Tilling, Rachel

    2016-04-01

    The U.S. Navy's Arctic Cap Nowcast/Forecast System (ACNFS) is composed of the Community Ice CodE (CICE) coupled to the HYbrid Community Ocean Model (HYCOM). The system assimilates ocean and ice observations including ice concentration from the Advanced Microwave Scanning Radiometer 2 (AMSR2), Special Sensor Microwave Imager Sounder (SSMIS) and ice edge data from the National Ice Center's Interactive Multisensor Snow and Ice Mapping System (IMS). In this study, we perform a series of experiments in which the ACNFS is initialized with a blended ice thickness field from CryoSat-2 and the Soil Moisture and Ocean Salinity (SMOS) Missions. CryoSat-2 produces a sea ice thickness product which is more accurate for thicknesses greater than 0.46 m while SMOS ice thickness is best for thicknesses less than 0.46 m. The experiments begin in March 2012 and continue through April 2015. ACNFS ice thickness is compared against NASA IceBridge, WHOI Upward Looking Sonar, and Cold Regions Research and Engineering Laboratory (CRREL) ice mass balance buoy data. Preliminary results show reduced ice thickness errors using this blended technique.

  19. Mirabilite solubility in equilibrium sea ice brines

    Science.gov (United States)

    Butler, Benjamin Miles; Papadimitriou, Stathys; Santoro, Anna; Kennedy, Hilary

    2016-06-01

    The sea ice microstructure is permeated by brine channels and pockets that contain concentrated seawater-derived brine. Cooling the sea ice results in further formation of pure ice within these pockets as thermal equilibrium is attained, resulting in a smaller volume of increasingly concentrated residual brine. The coupled changes in temperature and ionic composition result in supersaturation of the brine with respect to mirabilite (Na2SO4·10H2O) at temperatures below -6.38 °C, which consequently precipitates within the sea ice microstructure. Here, mirabilite solubility in natural and synthetic seawater derived brines, representative of sea ice at thermal equilibrium, has been measured in laboratory experiments between 0.2 and -20.6 °C, and hence we present a detailed examination of mirabilite dynamics within the sea ice system. Below -6.38 °C mirabilite displays particularly large changes in solubility as the temperature decreases, and by -20.6 °C its precipitation results in 12.90% and 91.97% reductions in the total dissolved Na+ and SO42- concentrations respectively, compared to that of conservative seawater concentration. Such large non-conservative changes in brine composition could potentially impact upon the measurement of sea ice brine salinity and pH, whilst the altered osmotic conditions may create additional challenges for the sympagic organisms that inhabit the sea ice system. At temperatures above -6.38 °C, mirabilite again displays large changes in solubility that likely aid in impeding its identification in field samples of sea ice. Our solubility measurements display excellent agreement with that of the FREZCHEM model, which was therefore used to supplement our measurements to colder temperatures. Measured and modelled solubility data were incorporated into a 1D model for the growth of first-year Arctic sea ice. Model results ultimately suggest that mirabilite has a near ubiquitous presence in much of the sea ice on Earth, and illustrate the

  20. Experimental and Numerical Investigations of an Ice-slurry Generator

    Institute of Scientific and Technical Information of China (English)

    洪若瑜; 董梁; 尚德义; 徐建生; Kawaji M

    2004-01-01

    A new test facility equipped with refrigerant and brine circulation systems, and a rotating-scraper ice-slurry generator was constructed to analyze the ice-slurry flow and heat transfer accompanied by phase change in an industrial generator. The axial and transverse brine temperature and ice fraction concentration profiles in the ice generator were measured. The heat transfer efficiency lower than the average was identified in the upper half of the ice generator and its cause was determined by conducting three-dimensional numerical simulation using a commercial CFD code, FLUENT. Approaches of improving the brine-side heat transfer rates were investigated by incorporating extra mixing blades from numerical simulation.

  1. Ices in space

    Science.gov (United States)

    Greenberg, J. Mayo; van de Bult, C. E. P. M.; Allamandola, Louis J.

    The chemical and physical properties of ice grains in interstellar space have been studied in the laboratory and theoretically modeled to compare with astronomical spectra between 2700 and 3700/cm. The observed polarization of starlight in this region clearly indicates that elongated particles are involved. Absorption characteristics for various shaped grains whose radii vary from approximately 0.1 to 1.0 micrometer, containing either pure amorphous H20 or amorphous mixtures of H20 with NH3, have been calculated with the aim of narrowing the range of acceptable grain parameters. By comparing the band shapes for spherical, spheroidal, and cylindrical grains with astronomical spectra we show that elongated particles whose radii are approximately equal to 0.15 micrometer produce an acceptable match and that both spherical and elongated particles whose radii are greater than or equal to 0.5 micrometer are definitely not consistent with observations. Details of the band shape are shown to depend on particle size, shape, and composition. Similar profiles can be produced by using different combinations of particle shape and composition. For example, the NH3 signature at 2.97 micrometer, which is prominent in a spherical grain, is greatly suppressed when in an elongated grain. This is exactly equivalent to reducing the concentration of NH3 in a spherical grain. A morphological grain model is used to explain the large variations in the observed strength of the 3.07 micrometer ice band from one region of space to another.

  2. Parameterizing Size Distribution in Ice Clouds

    Energy Technology Data Exchange (ETDEWEB)

    DeSlover, Daniel; Mitchell, David L.

    2009-09-25

    PARAMETERIZING SIZE DISTRIBUTIONS IN ICE CLOUDS David L. Mitchell and Daniel H. DeSlover ABSTRACT An outstanding problem that contributes considerable uncertainty to Global Climate Model (GCM) predictions of future climate is the characterization of ice particle sizes in cirrus clouds. Recent parameterizations of ice cloud effective diameter differ by a factor of three, which, for overcast conditions, often translate to changes in outgoing longwave radiation (OLR) of 55 W m-2 or more. Much of this uncertainty in cirrus particle sizes is related to the problem of ice particle shattering during in situ sampling of the ice particle size distribution (PSD). Ice particles often shatter into many smaller ice fragments upon collision with the rim of the probe inlet tube. These small ice artifacts are counted as real ice crystals, resulting in anomalously high concentrations of small ice crystals (D < 100 µm) and underestimates of the mean and effective size of the PSD. Half of the cirrus cloud optical depth calculated from these in situ measurements can be due to this shattering phenomenon. Another challenge is the determination of ice and liquid water amounts in mixed phase clouds. Mixed phase clouds in the Arctic contain mostly liquid water, and the presence of ice is important for determining their lifecycle. Colder high clouds between -20 and -36 oC may also be mixed phase but in this case their condensate is mostly ice with low levels of liquid water. Rather than affecting their lifecycle, the presence of liquid dramatically affects the cloud optical properties, which affects cloud-climate feedback processes in GCMs. This project has made advancements in solving both of these problems. Regarding the first problem, PSD in ice clouds are uncertain due to the inability to reliably measure the concentrations of the smallest crystals (D < 100 µm), known as the “small mode”. Rather than using in situ probe measurements aboard aircraft, we employed a treatment of ice

  3. Application of the HY-1 satellite to sea ice monitoring and forecasting

    Institute of Scientific and Technical Information of China (English)

    LUO Yawei; WU Huiding; ZHANG Yunfei; SUN Congrong; LIU Yu

    2004-01-01

    The HY-1A satellite is the first oceanic satellite of China. During the winter of 2002~2003, the data of the HY-1A were applied to the sea ice monitoring and forecasting for the Bohai Sea of China for the first time. The sea ice retrieval system of the HY-1A has been constructed. It receives 1B data from the satellite, outputs sea ice images and provides digital products of ice concentration, ice thickness and ice edge, which can be used as important information for sea ice monitoring and the initial fields of the numeric sea ice forecast and as one of the reference data for the sea ice forecasting verification. The sea ice retrieval system of the satellite is described, including its processes, methods and parameters. The retrieving results and their application to the sea ice monitoring and forecasting for the Bohai Sea are also discussed.

  4. Results of the Sea Ice Model Intercomparison Project: Evaluation of sea ice rheology schemes for use in climate simulations

    Science.gov (United States)

    Kreyscher, Martin; Harder, Markus; Lemke, Peter; Flato, Gregory M.

    2000-05-01

    A hierarchy of sea ice rheologies is evaluated on the basis of a comprehensive set of observational data. The investigations are part of the Sea Ice Model Intercomparison Project (SIMIP). Four different sea ice rheology schemes are compared: a viscous-plastic rheology, a cavitating-fluid model, a compressible Newtonian fluid, and a simple free drift approach with velocity correction. The same grid, land boundaries, and forcing fields are applied to all models. As verification data, there are (1) ice thickness data from upward looking sonars (ULS), (2) ice concentration data from the passive microwave radiometers SMMR and SSM/I, (3) daily buoy drift data obtained by the International Arctic Buoy Program (IABP), and (4) satellite-derived ice drift fields based on the 85 GHz channel of SSM/I. All models are optimized individually with respect to mean drift speed and daily drift speed statistics. The impact of ice strength on the ice cover is best revealed by the spatial pattern of ice thickness, ice drift on different timescales, daily drift speed statistics, and the drift velocities in Fram Strait. Overall, the viscous-plastic rheology yields the most realistic simulation. In contrast, the results of the very simple free-drift model with velocity correction clearly show large errors in simulated ice drift as well as in ice thicknesses and ice export through Fram Strait compared to observation. The compressible Newtonian fluid cannot prevent excessive ice thickness buildup in the central Arctic and overestimates the internal forces in Fram Strait. Because of the lack of shear strength, the cavitating-fluid model shows marked differences to the statistics of observed ice drift and the observed spatial pattern of ice thickness. Comparison of required computer resources demonstrates that the additional cost for the viscous-plastic sea ice rheology is minor compared with the atmospheric and oceanic model components in global climate simulations.

  5. Ice Adhesion Testing Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Uses Evaluate and compare the relative performance of materials and surfcae coating based on their ability to aid in ice removal Test the effectiveness of de-icing...

  6. Bacterial Ice Crystal Controlling Proteins

    OpenAIRE

    Lorv, Janet S. H.; Rose, David R; Glick, Bernard R.

    2014-01-01

    Across the world, many ice active bacteria utilize ice crystal controlling proteins for aid in freezing tolerance at subzero temperatures. Ice crystal controlling proteins include both antifreeze and ice nucleation proteins. Antifreeze proteins minimize freezing damage by inhibiting growth of large ice crystals, while ice nucleation proteins induce formation of embryonic ice crystals. Although both protein classes have differing functions, these proteins use the same ice binding mechanisms. R...

  7. Antarctic Sea Ice Variability and Trends, 1979-2010

    Science.gov (United States)

    Parkinson, C. L.; Cavalieri, D. J.

    2012-01-01

    In sharp contrast to the decreasing sea ice coverage of the Arctic, in the Antarctic the sea ice cover has, on average, expanded since the late 1970s. More specifically, satellite passive-microwave data for the period November 1978 - December 2010 reveal an overall positive trend in ice extents of 17,100 +/- 2,300 square km/yr. Much of the increase, at 13,700 +/- 1,500 square km/yr, has occurred in the region of the Ross Sea, with lesser contributions from the Weddell Sea and Indian Ocean. One region, that of the Bellingshausen/Amundsen Seas, has, like the Arctic, instead experienced significant sea ice decreases, with an overall ice extent trend of -8,200 +/- 1,200 square km/yr. When examined through the annual cycle over the 32-year period 1979-2010, the Southern Hemisphere sea ice cover as a whole experienced positive ice extent trends in every month, ranging in magnitude from a low of 9,100 +/- 6,300 square km/yr in February to a high of 24,700 +/- 10,000 square km/yr in May. The Ross Sea and Indian Ocean also had positive trends in each month, while the Bellingshausen/Amundsen Seas had negative trends in each month, and the Weddell Sea and Western Pacific Ocean had a mixture of positive and negative trends. Comparing ice-area results to ice-extent results, in each case the ice-area trend has the same sign as the ice-extent trend, but differences in the magnitudes of the two trends identify regions with overall increasing ice concentrations and others with overall decreasing ice concentrations. The strong pattern of decreasing ice coverage in the Bellingshausen/Amundsen Seas region and increasing ice coverage in the Ross Sea region is suggestive of changes in atmospheric circulation. This is a key topic for future research.

  8. Antarctic sea ice variability and trends, 1979–2010

    Directory of Open Access Journals (Sweden)

    D. J. Cavalieri

    2012-03-01

    Full Text Available In sharp contrast to the decreasing sea ice coverage of the Arctic, in the Antarctic the sea ice cover has, on average, expanded since the late 1970s. More specifically, satellite passive-microwave data for the period November 1978–December 2010 reveal an overall positive trend in ice extents of 17 100 ± 2300 km2 yr−1. Much of the increase, at 13 700 ± 1500 km2 yr−1, has occurred in the region of the Ross Sea, with lesser contributions from the Weddell Sea and Indian Ocean. One region, that of the Bellingshausen/Amundsen Seas, has, like the Arctic, instead experienced significant sea ice decreases, with an overall ice extent trend of −8200 ± 1200 km2 yr−1. When examined through the annual cycle over the 32-yr period 1979–2010, the Southern Hemisphere sea ice cover as a whole experienced positive ice extent trends in every month, ranging in magnitude from a low of 9100 ± 6300 km2 yr−1 in February to a high of 24 700 ± 10 000 km2 yr−1 in May. The Ross Sea and Indian Ocean also had positive trends in each month, while the Bellingshausen/Amundsen Seas had negative trends in each month, and the Weddell Sea and Western Pacific Ocean had a mixture of positive and negative trends. Comparing ice-area results to ice-extent results, in each case the ice-area trend has the same sign as the ice-extent trend, but differences in the magnitudes of the two trends identify regions with overall increasing ice concentrations and others with overall decreasing ice concentrations. The strong pattern of decreasing ice coverage in the Bellingshausen/Amundsen Seas region and increasing ice coverage in the Ross Sea region is suggestive of changes in atmospheric circulation. This is a key topic for future research.

  9. Polar Sea Ice Monitoring Using HY-2A Scatterometer Measurements

    Directory of Open Access Journals (Sweden)

    Mingming Li

    2016-08-01

    Full Text Available A sea ice detection algorithm based on Fisher’s linear discriminant analysis is developed to segment sea ice and open water for the Ku-band scatterometer onboard the China’s Hai Yang 2A Satellite (HY-2A/SCAT. Residual classification errors are reduced through image erosion/dilation techniques and sea ice growth/retreat constraint methods. The arctic sea-ice-type classification is estimated via a time-dependent threshold derived from the annual backscatter trends based on previous HY-2A/SCAT derived sea ice extent. The extent and edge of the sea ice obtained in this study is compared with the Special Sensor Microwave Imager/Sounder (SSMIS sea ice concentration data and the Sentinel-1 SAR imagery for verification, respectively. Meanwhile, the classified sea ice type is compared with a multi-sensor sea ice type product based on data from the Advanced Scatterometer (ASCAT and SSMIS. Results show that HY-2A/SCAT is powerful in providing sea ice extent and type information, while differences in the sensitivities of active/passive products are found. In addition, HY-2A/SCAT derived sea ice products are also proved to be valuable complements for existing polar sea ice data products.

  10. Canadian ice caps as sources of environmental data

    International Nuclear Information System (INIS)

    Seven surface-to-bedrock ice cores, varying from 129 to 337 m in length, have been recovered from Canadian high Arctic ice caps since 1964. While one (Meighen Island) consists entirely of Holocene ice, the others (Devon and Agassiz ice caps) cover time spans of 100,000 years, similar to those from Greenland. The authors relatively thin ice caps provide simple drilling conditions but give records of various parameters from several holes down a flow line. Comparison of these records continues to provide information on signal-to-noise ratios and ice cap rheology. The major disadvantage of thin ice caps is poor resolution in ice more than 5,000 to 10,000 years old. This is offset, however, by the relative ease of retrieval of significant numbers of pollen grains from all levels in the ice. Thus the authors have been able to use pollen as a paleoenvironmental tool leading, for example, to identification of basal ice layers as Sangamonian in age. Similarly, although annual melting of snow at the surface precludes the possibility of using ice cores for gas analysis, the persistence of variable melt layer concentrations through the Holocene ice has given a continuous melt layer record showing gradual deterioration of summer climate from a warm peak 8,000 to 9,000 years ago, to a cold minimum 200 years ago

  11. Recent sea-ice reduction and possible causes

    Science.gov (United States)

    Park, Doo-Sun R.

    2016-04-01

    Arctic sea-ice extent has been rapidly declining since the late 20th century. Given the accelerating rate of the sea-ice decline, an ice-free Arctic Ocean is expected to occur within this century. This rapid sea-ice melting is attributable to various Arctic environmental changes, such as increased downward infrared radiation (IR), sea-ice preconditioning, temperate ocean water inflow, and sea-ice export. However, their relative contributions are uncertain. Assessing the relative contributions is essential for improving our prediction of the future state of the Arctic sea ice. Most of the previous research had focused on summer sea ice, which is however sensitive to previous winter sea ice, suggesting that winter sea-ice processes are also important for understanding sea-ice variability and its trend. Here we show, for the Arctic winter of 1979-2011, that a positive trend of downward IR accounts for nearly half of the sea-ice concentration (SIC) decline. Furthermore, we show that the Arctic downward IR increase is driven by horizontal atmospheric water flux into the Arctic, and not by evaporation from the Arctic Ocean. The rest of the SIC decline likely comes from warm ocean.

  12. Ice cloud processing of ultra-viscous/glassy aerosol particles leads to enhanced ice nucleation ability

    Directory of Open Access Journals (Sweden)

    R. Wagner

    2012-09-01

    Full Text Available The ice nucleation potential of airborne glassy aqueous aerosol particles has been investigated by controlled expansion cooling cycles in the AIDA aerosol and cloud chamber of the Karlsruhe Institute of Technology at temperatures between 247 and 216 K. Four different solutes were used as proxies for oxygenated organic matter found in the atmosphere: raffinose, 4-hydroxy-3-methoxy-DL-mandelic acid (HMMA, levoglucosan, and a multi-component mixture of raffinose with five dicarboxylic acids and ammonium sulphate. Similar to previous experiments with citric acid aerosols, all particles were found to nucleate ice heterogeneously before reaching the homogeneous freezing threshold provided that the freezing cycles were started well below the respective glass transition temperatures of the compounds; this is discussed in detail in a separate article. In this contribution, we identify a further mechanism by which glassy aerosols can promote ice nucleation below the homogeneous freezing limit. If the glassy aerosol particles are probed in freezing cycles started only a few degrees below their respective glass transition temperatures, they enter the liquid regime of the state diagram upon increasing relative humidity (moisture-induced glass-to-liquid transition before being able to act as heterogeneous ice nuclei. Ice formation then only occurs by homogeneous freezing at elevated supersaturation levels. When ice forms the remaining solution freeze concentrates and re-vitrifies. If these ice cloud processed glassy aerosol particles are then probed in a second freezing cycle at the same temperature, they catalyse ice formation at a supersaturation threshold between 5 and 30% with respect to ice. By analogy with the enhanced ice nucleation ability of insoluble ice nuclei like mineral dusts after they nucleate ice once, we refer to this phenomenon as pre-activation. We propose a number of possible explanations for why glassy aerosol particles that have re

  13. Ice cloud processing of ultra-viscous/glassy aerosol particles leads to enhanced ice nucleation ability

    Directory of Open Access Journals (Sweden)

    B. J. Murray

    2012-04-01

    Full Text Available The ice nucleation potential of airborne glassy aqueous aerosol particles has been investigated by controlled expansion cooling cycles in the AIDA aerosol and cloud chamber of the Karlsruhe Institute of Technology at temperatures between 247 and 216 K. Four different solutes were used as proxies for oxygenated organic matter found in the atmosphere: raffinose, 4-hydroxy-3-methoxy-DL-mandelic acid (HMMA, levoglucosan, and a multi-component mixture of raffinose with five dicarboxylic acids and ammonium sulphate. Similar to previous experiments with citric acid aerosols, all particles were found to nucleate ice heterogeneously before reaching the homogeneous freezing threshold provided that the freezing cycles were started well below the respective glass transition temperatures of the compounds; this is discussed in detail in a separate article. In this contribution, we identify a further mechanism by which glassy aerosols can promote ice nucleation below the homogeneous freezing limit. If the glassy aerosol particles are probed in freezing cycles started only a few degrees below their respective glass transition temperatures, they enter the liquid regime of the state diagram upon increasing relative humidity (moisture-induced glass-to-liquid transition before being able to act as heterogeneous ice nuclei. Ice formation then only occurs by homogeneous freezing at elevated supersaturation levels. When ice forms the remaining solution freeze concentrates and re-vitrifies. If these ice cloud processed glassy aerosol particles are then probed in a second freezing cycle at the same temperature, they catalyse ice formation at a supersaturation threshold between 5 and 30% with respect to ice. By analogy with the enhanced ice nucleation ability of insoluble ice nuclei like mineral dusts after they nucleate ice once, we refer to this phenomenon as pre-activation. We propose a number of possible explanations for why glassy aerosols that have re-vitrified in

  14. Ice cloud processing of ultra-viscous/glassy aerosol particles leads to enhanced ice nucleation ability

    Science.gov (United States)

    Wagner, R.; Möhler, O.; Saathoff, H.; Schnaiter, M.; Skrotzki, J.; Leisner, T.; Wilson, T. W.; Malkin, T. L.; Murray, B. J.

    2012-09-01

    The ice nucleation potential of airborne glassy aqueous aerosol particles has been investigated by controlled expansion cooling cycles in the AIDA aerosol and cloud chamber of the Karlsruhe Institute of Technology at temperatures between 247 and 216 K. Four different solutes were used as proxies for oxygenated organic matter found in the atmosphere: raffinose, 4-hydroxy-3-methoxy-DL-mandelic acid (HMMA), levoglucosan, and a multi-component mixture of raffinose with five dicarboxylic acids and ammonium sulphate. Similar to previous experiments with citric acid aerosols, all particles were found to nucleate ice heterogeneously before reaching the homogeneous freezing threshold provided that the freezing cycles were started well below the respective glass transition temperatures of the compounds; this is discussed in detail in a separate article. In this contribution, we identify a further mechanism by which glassy aerosols can promote ice nucleation below the homogeneous freezing limit. If the glassy aerosol particles are probed in freezing cycles started only a few degrees below their respective glass transition temperatures, they enter the liquid regime of the state diagram upon increasing relative humidity (moisture-induced glass-to-liquid transition) before being able to act as heterogeneous ice nuclei. Ice formation then only occurs by homogeneous freezing at elevated supersaturation levels. When ice forms the remaining solution freeze concentrates and re-vitrifies. If these ice cloud processed glassy aerosol particles are then probed in a second freezing cycle at the same temperature, they catalyse ice formation at a supersaturation threshold between 5 and 30% with respect to ice. By analogy with the enhanced ice nucleation ability of insoluble ice nuclei like mineral dusts after they nucleate ice once, we refer to this phenomenon as pre-activation. We propose a number of possible explanations for why glassy aerosol particles that have re-vitrified in contact

  15. A prognostic model of the sea ice floe size and thickness distribution

    OpenAIRE

    Horvat, C.; E. Tziperman

    2015-01-01

    Sea ice exhibits considerable seasonal and longer-term variations in extent, concentration, thickness and age, and is characterized by a complex and continuously changing distribution of floe sizes and thicknesses. Models of sea ice used in current climate models keep track of its concentration and of the distribution of ice thicknesses, but do not account for the floe size distribution an...

  16. Examination of Icing Induced Loss of Control and Its Mitigations

    Science.gov (United States)

    Reehorst, Andrew L.; Addy, Harold E., Jr.; Colantonio, Renato O.

    2010-01-01

    Factors external to the aircraft are often a significant causal factor in loss of control (LOC) accidents. In today s aviation world, very few accidents stem from a single cause and typically have a number of causal factors that culminate in a LOC accident. Very often the "trigger" that initiates an accident sequence is an external environment factor. In a recent NASA statistical analysis of LOC accidents, aircraft icing was shown to be the most common external environmental LOC causal factor for scheduled operations. When investigating LOC accident or incidents aircraft icing causal factors can be categorized into groups of 1) in-flight encounter with super-cooled liquid water clouds, 2) take-off with ice contamination, or 3) in-flight encounter with high concentrations of ice crystals. As with other flight hazards, icing induced LOC accidents can be prevented through avoidance, detection, and recovery mitigations. For icing hazards, avoidance can take the form of avoiding flight into icing conditions or avoiding the hazard of icing by making the aircraft tolerant to icing conditions. Icing detection mitigations can take the form of detecting icing conditions or detecting early performance degradation caused by icing. Recovery from icing induced LOC requires flight crew or automated systems capable of accounting for reduced aircraft performance and degraded control authority during the recovery maneuvers. In this report we review the icing induced LOC accident mitigations defined in a recent LOC study and for each mitigation describe a research topic required to enable or strengthen the mitigation. Many of these research topics are already included in ongoing or planned NASA icing research activities or are being addressed by members of the icing research community. These research activities are described and the status of the ongoing or planned research to address the technology needs is discussed

  17. Introduction of parameterized sea ice drag coefficients into ice free-drift modeling

    Institute of Scientific and Technical Information of China (English)

    LU Peng; LI Zhijun; HAN Hongwei

    2016-01-01

    Many interesting characteristics of sea ice drift depend on the atmospheric drag coefficient (Ca) and oceanic drag coefficient (Cw). Parameterizations of drag coefficients rather than constant values provide us a way to look insight into the dependence of these characteristics on sea ice conditions. In the present study, the parameterized ice drag coefficients are included into a free-drift sea ice dynamic model, and the wind factorα and the deflection angleθ between sea ice drift and wind velocity as well as the ratio ofCa toCw are studied to investigate their dependence on the impact factors such as local drag coefficients, floe and ridge geometry. The results reveal that in an idealized steady ocean,Ca/Cw increases obviously with the increasing ice concentration for small ice floes in the marginal ice zone, while it remains at a steady level (0.2–0.25) for large floes in the central ice zone. The wind factorα increases rapidly at first and approaches a steady level of 0.018 whenA is greater than 20%. And the deflection angleθ drops rapidly from an initial value of approximate 80° and decreases slowly asA is greater than 20% without a steady level likeα. The values of these parameters agree well with the previously reported observations in Arctic. The ridging intensity is an important parameter to determine the dominant contribution of the ratio of skin friction drag coefficient (Cs’/Cs) and the ratio of ridge form drag coefficient (Cr’/Cr) to the value of Ca/Cw,α, andθ, because of the dominance of ridge form drag for large ridging intensity and skin friction for small ridging intensity among the total drag forces. Parameterization of sea ice drag coefficients has the potential to be embedded into ice dynamic models to better account for the variability of sea ice in the transient Arctic Ocean.

  18. Ice sheet in peril

    OpenAIRE

    Hvidberg, Christine Schøtt

    2016-01-01

    Earth's large ice sheets in Greenland and Antarctica are major contributors to sea level change. At present, the Greenland Ice Sheet (see the photo) is losing mass in response to climate warming in Greenland (1), but the present changes also include a long-term response to past climate transitions. On page 590 of this issue, MacGregor et al. (2) estimate the mean rates of snow accumulation and ice flow of the Greenland Ice Sheet over the past 9000 years based on an ice sheet-wide dated radar ...

  19. Ice sheet in peril

    DEFF Research Database (Denmark)

    Hvidberg, Christine Schøtt

    2016-01-01

    Earth's large ice sheets in Greenland and Antarctica are major contributors to sea level change. At present, the Greenland Ice Sheet (see the photo) is losing mass in response to climate warming in Greenland (1), but the present changes also include a long-term response to past climate transitions....... On page 590 of this issue, MacGregor et al. (2) estimate the mean rates of snow accumulation and ice flow of the Greenland Ice Sheet over the past 9000 years based on an ice sheet-wide dated radar stratigraphy (3). They show that the present changes of the Greenland Ice Sheet are partly an ongoing...... response to the last deglaciation. The results help to clarify how sensitive the ice sheet is to climate changes....

  20. Autonomous Aerial Ice Observation for Ice Defense

    Directory of Open Access Journals (Sweden)

    Joakim Haugen

    2014-10-01

    Full Text Available One of the tasks in ice defense is to gather information about the surrounding ice environment using various sensor platforms. In this manuscript we identify two monitoring tasks known in literature, namely dynamic coverage and target tracking, and motivate how these tasks are relevant in ice defense using RPAS. An optimization-based path planning concept is outlined for solving these tasks. A path planner for the target tracking problem is elaborated in more detail and a hybrid experiment, which consists of both a real fixed-wing aircraft and simulated objects, is included to show the applicability of the proposed framework.

  1. Evaluation of the sea ice proxy IP against observational and diatom proxy data in the SW Labrador Sea

    DEFF Research Database (Denmark)

    Weckström, K.; Andersen, M.L.; Kuijpers, A.;

    2013-01-01

    to the sediments SE of Newfoundland, where conditions are generally ice-free year round. The IP25 fluxes NE of Newfoundland agree well with multi-decadal North Atlantic Oscillation (NAO) trends in the study area, which in previous studies have been shown to affect the climatic and sea ice conditions in the region......The recent rapid decline in Arctic sea ice cover has increased the need to improve the accuracy of the sea ice component in climate models and to provide detailed long-term sea ice concentration records, which are only available via proxy data. Recently, the highly branched isoprenoid IP25......, identified in marine sediments underlying seasonal sea ice, has emerged as a potential sea ice specific proxy for past sea ice cover. We tested the reliability of this biomarker as a sea ice proxy against observational sea ice data (sea ice concentrations from the global HadISST1 database) and against a more...

  2. Towards the inclusion of wave-ice interactions in large-scale models for the Marginal Ice Zone

    CERN Document Server

    Williams, Timothy; Dumont, Dany; Squire, Vernon; Bertino, Laurent

    2012-01-01

    A wave-ice interaction model for the marginal ice zone (MIZ) is reported, which involves both the attenuation of ocean surface waves by sea ice and the concomitant breaking of the ice by waves. It is specifically designed to embed wave-ice interactions in an operational ice/ocean model for the first time. We investigate different methods of including the wave forcing, and different criteria for determining if they cause floes to break. We also investigate and discuss the effects of using various attenuation models, finding that predicted MIZ widths are quite sensitive to the choice of model. Additional sensitivity tests are performed on: (i) different parameterizations of the floe size distribution (FSD), including the initial FSD used; (ii) the properties of the wave field; and (iii) the sea ice properties such as concentration, thickness and breaking strain. Results are relatively insensitive to FSD parameterization but vary noticeably and systematically with its initial configuration, as they do with prope...

  3. Sea ice variability and trends in the Weddell Sea for 1979-2006

    OpenAIRE

    Schwegmann, Sandra; Timmermann, Ralph; Gerdes, Rüdiger; Lemke, Peter

    2012-01-01

    Sea ice concentration in the Weddell Sea is subject to regional climate variability. The magnitude and origin of local trends in the sea ice coverage were studied using the bootstrap algorithm sea ice concentration data from the NSIDC for 1979-2006. The impact of atmospheric forcing such as air temperature, wind speed, and cloud coverage, gained from NCEP/NCAR reanalysis, on sea ice was assessed by analyzing correlation coefficients between the respective atmospheric component and the satelli...

  4. Temporal dynamics of ikaite in experimental sea ice

    DEFF Research Database (Denmark)

    Rysgaard, Søren; Wang, F.; Galley, R.J.;

    2014-01-01

    ikaite precipitation. The observed ikaite concentrations were on the same order of magnitude as modeled by FREZCHEM, which further supports the notion that ikaite concentration in sea ice increases with decreasing temperature. Thus, varying snow conditions may play a key role in ikaite precipitation......Ikaite (CaCO3·6H2O) is a metastable phase of calcium carbonate that normally forms in a cold environment and/or under high pressure. Recently, ikaite crystals have been found in sea ice, and it has been suggested that their precipitation may play an important role in air–sea CO2 exchange in ice......-covered seas. Little is known, however, of the spatial and temporal dynamics of ikaite in sea ice. Here we present evidence for highly dynamic ikaite precipitation and dissolution in sea ice grown at an outdoor pool of the Sea-ice Environmental Research Facility (SERF) in Manitoba, Canada. During...

  5. Buoyant Rover for Under-Ice Exploration

    Science.gov (United States)

    Berisford, D. F.; Leichty, J. M.; Klesh, A. T.; Matthews, J. B.; Hand, K. P.

    2012-12-01

    We have designed, constructed and tested a prototype robotic mobility platform for exploring the underside of ice sheets in frozen lake or ocean environments. The ice-water interface often provides some of the most interesting and dynamic chemistry in partially frozen systems, as dissolved impurities are rejected from the advancing freezing front. Higher concentrations of microorganisms can be found in this region, and the topography of the ice underside can help reveal the history of its formation. Furthermore, in lake environments ice cover can serve to trap gases released from biological and geological processes in the subsurface. The rover uses a two-wheeled design with a flexible dragging tail, enabling it to fit into a 10-inch diameter ice borehole. The sealed air-filled cylindrical body, along with closed-cell foam inside of cone-shaped wheels, provides buoyancy force to enable roving along the underside of the ice. The prototype contains two cameras that stream live video via a tethered connection to a ground station and uses semi-autonomous control via a PC. Preliminary testing of the prototype in a cold lab and in northern Alaskan thermokarst lakes demonstrates the utility and simplicity of this type of robotic platform for exploring the ice-water interface. This technology has potential future use in landed missions to icy ocean worlds in the solar system.

  6. ESR of ice and environmental assessment

    International Nuclear Information System (INIS)

    In the environment of the earth, liquid water exists abundantly, but it cannot be seen in other environment in the solar system. The environment covered with solid water is seen in many celestial bodies, but these ices are not pure water, and contain NH3, SO2, CH4, CO, CO2 and others. Also the existence of solid CO2 on Mars, solid SO2 on Io and solid CH4 on Triton has been known. In many celestial bodies without atmosphere and with ice, it is considered that the ice causes dissociation and ionization due to the effects of ultraviolet ray, solar wind and cosmic γ ray. As the basis of examining these phenomena, the authors made various ices, and studied on the irradiation effect of gamma ray and ultraviolet ray in the laboratory. It became clear by the research using ESR that various kinds of radicals were formed in the ices by the irradiation. The age of the radicals formed in ices means the age of the events that extinguish the radicals occurred on the surfaces of the celestial bodies after ice formation. The problems in the principle of age measurement are the real formation of radicals, the stability of radicals, and the saturation of radical concentration. The research of these problems for H2O and SO2 is reported. (K.I.)

  7. Heterogeneous Ice Nuclei Measurements in Monte Cimone, Italy

    Science.gov (United States)

    Rudich, Y.; Reicher, N.; Schrod, J.; Bingemer, H. G.

    2013-12-01

    Supercooled liquid droplets may coexist with ice crystals below the freezing point in mixed phase clouds. Although pure liquid droplets will not freeze spontaneously until the homogeneous freezing temperature -38°C, ice crystals exist at warmer temperatures due to the presence of ice nuclei (IN), that allow heterogeneous freezing on their surface. Only a small portion of the natural and anthropogenic aerosols serve as ice nuclei. Each aerosol type has its own ability to create and grow ice. IN ability varies with chemical and physical properties and with the environmental characteristics, as temperature and humidity. In this study, samples of aerosol particles were collected on a daily basis over a period of two weeks, on top of Monte Cimone in Italy (44.18°N, 10.70°E, 2165m asl), as part of the PEGASOS (Pan-European Gas-AeroSOl-climate interaction Study) project. The aerosols precipitated electrostatically onto a silicon wafer for an offline measurement of the ice nucleation ability, using the FRankfurt Ice Nuclei Deposition FreezinG Experiment (FRIDGE). The FRIDGE is a vacuum diffusion chamber that generates the sub-freezing temperatures and the supersaturations above ice, simulating conditions that exist inside a mixed phase cloud. On top of the chamber, a camera monitors the formation of ice crystals and a new counting algorithm reports the number concentration of ice crystals. During this campaign, a Saharan dust storm reached the sampling area and the ice nuclei concentrations were higher compared to the daily ice nuclei concentrations for the rest of the campaign. This result supports the previous findings that dust particles are among the most effective and important natural sources of ice nuclei.

  8. Modelling snow ice and superimposed ice on landfast sea ice in Kongsfjorden, Svalbard

    OpenAIRE

    Wang, Caixin; Cheng, Bin; Wang, Keguang; Gerland, Sebastian; Pavlova, Olga

    2015-01-01

    Snow ice and superimposed ice formation on landfast sea ice in a Svalbard fjord, Kongsfjorden, was investigated with a high-resolution thermodynamic snow and sea-ice model, applying meteorological weather station data as external forcing. The model shows that sea-ice formation occurs both at the ice bottom and at the snow/ice interface. Modelling results indicated that the total snow ice and superimposed ice, which formed at the snow/ice interface, was about 14 cm during the simulation period...

  9. Land Ice: Greenland & Antarctic ice mass anomaly

    Data.gov (United States)

    National Aeronautics and Space Administration — Data from NASA's Grace satellites show that the land ice sheets in both Antarctica and Greenland are losing mass. The continent of Antarctica (left chart) has been...

  10. Determination of changes in the state of the Arctic ice pack using the NPS Pan-Arctic coupled ice-ocean model

    OpenAIRE

    McNamara, Terry P.

    2006-01-01

    This thesis provides an analysis of the diminishing sea ice trend in the Arctic Ocean by examining the NPS 1/12-degree pan-Arctic coupled ice-ocean model. While many previous studies have analyzed changes in ice extent and concentration, this research focuses on ice thickness as it gives a better indication of ice volume variability. The skill of the model is examined by comparing its output to sea ice thickness data gathered during the last two decades. The first dataset used is the collecti...

  11. Multiyear Arctic Ice Classification Using ASCAT and SSMIS

    OpenAIRE

    David B. Lindell; Long, David G.

    2016-01-01

    The concentration, type, and extent of sea ice in the Arctic can be estimated based on measurements from satellite active microwave sensors, passive microwave sensors, or both. Here, data from the Advanced Scatterometer (ASCAT) and the Special Sensor Microwave Imager/Sounder (SSMIS) are employed to broadly classify Arctic sea ice type as first-year (FY) or multiyear (MY). Combining data from both active and passive sensors can improve the performance of MY and FY ice classification. The class...

  12. Greenland ice core evidence of the 79 AD Vesuvius eruption

    OpenAIRE

    C. Barbante; N. M. Kehrwald; P. Marianelli; B. M. Vinther; Steffensen, J. P.; Cozzi, G; C. U. Hammer; Clausen, H. B.; Siggaard-Andersen, M.-L.

    2013-01-01

    Volcanic tephra are independent age horizons and can synchronize strata of various paleoclimate records including ice and sediment cores. The Holocene section of the Greenland Ice Core Project (GRIP) ice core is dated by multi-parameter annual layer counting, and contains peaks in acidity, SO42− and microparticle concentrations at a depth of 429.1 to 429.3 m, which have not previously been definitively ascribed to a volcanic eruption. Here, we identify tephra particles...

  13. The Arctic Ocean ice balance - A Kalman smoother estimate

    Science.gov (United States)

    Thomas, D. R.; Rothrock, D. A.

    1993-01-01

    The methodology of Kalman filtering and smoothing is used to integrate a 7-year time series of buoy-derived ice motion fields and satellite passive microwave observations. The result is a record of the concentrations of open water, first-year ice, and multiyear ice that we believe is better than the estimates based on the microwave data alone. The Kalman procedure interprets the evolution of the ice cover in terms of advection, melt, growth, ridging, and aging of first-year into multiyear ice. Generally, the regions along the coasts of Alaska and Siberia and the area just north of Fram Strait are sources of first-year ice, with the rest of the Arctic Ocean acting as a sink for first-year ice via ridging and aging. All the Arctic Ocean except for the Beaufort and Chukchi seas is a source of multiyear ice, with the Chukchi being the only internal multiyear ice sink. Export through Fram Strait is a major ice sink, but we find only about two-thirds the export and greater interannual variation than found in previous studies. There is no discernible trend in the area of multiyear ice in the Arctic Ocean during the 7 years.

  14. The origins of ice crystals measured in mixed phase clouds at High-Alpine site Jungfraujoch

    Directory of Open Access Journals (Sweden)

    G. Lloyd

    2015-07-01

    Full Text Available During the winter of 2013 and 2014 measurements of cloud microphysical properties over a five week period at the high Alpine site Jungfraujoch, Switzerland were carried out as part of the Cloud Aerosol Characterisation Experiments (CLACE and the Ice Nucleation Process Investigation and Quantification project (INUPIAQ Measurements of aerosol properties at a second, lower site, Schilthorn, Switzerland, were used as input for a primary ice nucleation scheme to predict ice nuclei concentrations at Jungfraujoch Frequent, rapid transitions in the ice and liquid properties of the clouds at Jungfraujoch were identified that led to large fluctuations in ice mass fractions over temporal scales of seconds to hours. During the measurement period we observed high concentrations of ice particles that exceeded 1000 L−1 at temperatures around −15 °C, verified by multiple instruments These concentrations could not be explained using the usual primary ice nucleation schemes, which predicted ice nucleus concentrations several orders of magnitude smaller than the peak ice crystal number concentrations. Secondary ice production through the Hallet–Mossop process as a possible explanation was ruled out, as the cloud was rarely within the active temperature range for this process It is shown that other mechanisms of secondary ice particle production cannot explain the highest ice particle concentrations. We describe 4 possible mechanisms that could lead to high cloud ice concentrations generated from the snow covered surfaces surrounding the measurement site. Of these we show that hoar frost crystals generated at the cloud enveloped snow surface could be the most important source of cloud ice concentrations Blowing snow was also observed to make significant contributions at higher wind speeds when ice crystal concentrations were −1.

  15. Widespread Excess Ice in Arcadia Planitia, Mars

    CERN Document Server

    Bramson, Ali M; Putzig, Nathaniel E; Sutton, Sarah; Plaut, Jeffrey J; Brothers, T Charles; Holt, John W

    2015-01-01

    The distribution of subsurface water ice on Mars is a key constraint on past climate, while the volumetric concentration of buried ice (pore-filling versus excess) provides information about the process that led to its deposition. We investigate the subsurface of Arcadia Planitia by measuring the depth of terraces in simple impact craters and mapping a widespread subsurface reflection in radar sounding data. Assuming that the contrast in material strengths responsible for the terracing is the same dielectric interface that causes the radar reflection, we can combine these data to estimate the dielectric constant of the overlying material. We compare these results to a three-component dielectric mixing model to constrain composition. Our results indicate a widespread, decameters-thick layer that is excess water ice ~10^4 km^3 in volume. The accumulation and long-term preservation of this ice is a challenge for current Martian climate models.

  16. DMSP and DMS cycling within Antarctic sea ice during the winter-spring transition

    Science.gov (United States)

    Damm, E.; Nomura, D.; Martin, A.; Dieckmann, G. S.; Meiners, K. M.

    2016-09-01

    This study describes within-ice concentrations of dimethylsulfoniopropionate (DMSP), its degradation product dimethylsulphide (DMS), as well as nutrients and chlorophyll a, that were sampled during the Sea Ice Physics and Ecosystems eXperiment-2 (SIPEX-2) in 2012. DMSP is a methylated substrate produced in large amounts annually by ice-associated microalgae, while DMS plays a significant role in carbon and sulphur cycling in the Southern Ocean. In the East Antarctic study area between 115-125°E and 64-66°S, ice and slush cores, brine, under-ice seawater and zooplankton (Antarctic krill) samples were collected at 6 ice stations. The pack-ice was characterised by high snow loading which initiated flooding events and triggered nutrient supply to the sea-ice surface, while variation in ice conditions influenced sea-ice permeability. This ranged from impermeable surface and middle sections of the sea ice, to completely permeable ice cores at some stations. Chlorophyll a maxima shifted from the sea-ice surface horizon at the first station to the sea ice bottom layer at the last station. Highest DMSP concentrations were detected in brine samples at the sea-ice surface, reflecting a mismatch with respect to the distribution of chlorophyll a. Our data suggest enhanced DMSP production by sea-ice surface algal communities and its release into brine during freezing and melting, which in turn is coupled to flooding events early in the season. A time-cycle of DMS production by DMSP degradation and DMS efflux is evident at the sea ice-snow interface when slush is formed during melt. Seawater under the ice contained only low concentrations of DMSP and DMS, even when brine drainage was evident and the sea ice became permeable. We postulate that in situ grazing by zooplankton may act as sink for the DMSP produced early in the season.

  17. High-resolution wave forecasting system for the seasonally ice-covered Baltic Sea

    Science.gov (United States)

    Tuomi, Laura; Lehtiranta, Jonni

    2016-04-01

    When forecasting surface waves in seasonally ice-covered seas, the inclusion of ice conditions in the modelling is important. The ice cover affects the propagation and also changes the fetch over which the waves grow. In wave models the ice conditions are often still given as a boundary condition and handled by excluding areas where the ice concentration exceeds a certain threshold value. The ice data used are typically based on satellite analysis or expert analysis of local Ice Services who combine data from different sources. This type of data is sufficiently accurate to evaluate the near-real time ice concentrations, but when making forecasts it is also important to account for the possible changes in ice conditions. For example in a case of a high wind situation, there can be rapid changes in the ice field, when the wind and waves may push the ice towards shores and cause fragmentation of ice field. To enhance handling of ice conditions in the Baltic Sea wave forecasts, utilisation of ice model data was studied. Ice concentration, thickness produced by FMI's operational ice model HELMI were used to provide ice data to wave model as follows: Wave model grid points where the ice concentration was more than or equal to 70% and the ice thickness more than1 cm, were excluded from calculations. Ice concentrations smaller than that were taken into account as additional grid obstructions by decreasing the wave energy passed from one grid cell to another. A challenge in evaluating wave forecast accuracy in partly ice covered areas it that there's typically no wave buoy data available, since the buoys have to be recovered well before the sea area freezes. To evaluate the accuracy of wave forecast in partially ice covered areas, significant wave heights from altimeter's ERS2, Envisat, Jason-1 and Jason-2 were extracted from Ifremer database. Results showed that the more frequent update of the ice data was found to improve the wave forecast especially during high wind

  18. The signature analysis of summer Antarctic sea-ice distribution by ship-based sea-ice observation

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Based on the Chinese 19th National Antarctic Research Expedition,we carried out ship-based Antarctic sea-ice observa-tion on icebreaker Xue Long using Antarctic sea-ice process and climate (ASPeCt) criteria during austral summer.Sea-ice distribution data were obtained along nearly 6,500 km of the ship’s track.The measurement parameters included sea-ice thickness,sea-ice concentration,snow thickness,and floe size.Analysis showed the presence of the large spatial varia-tions of the observed sea-ice characteristics.Sea-ice concentration varied between 0 and 80 percent and reached its peak value in Weddell Sea because of the specific dynamical process affecting in summer sea-ice melting.There are large areas of open water along the study section.Sea ice and the upper snow thickness of the section varied between 10 cm and 210 cm and 2 cm and 80 cm,respectively,and each reaches its peak values near Amery ice shelf.The floe size varied from less than 10 cm and the maximum of more than 2,000 km along the section.

  19. Atmospheric Pb variations in Central Asia since 1955 from Muztagata ice core record, eastern Pamirs

    Institute of Scientific and Technical Information of China (English)

    LI Zhen; YAO Tandong; TIAN Lide; XU Baiqing; LI Yuefang

    2006-01-01

    A Muztagata ice core recovered at 7010 m altitude in East Pamirs provides a Pb concentration record from 1955 to 2000. The result reveals increasing Pb concentrations from 1955 to 1993, with two Pb concentration peaks in 1980 and 1993. After 1993, Pb concentrations in ice core show an obviously declining trend. Analysis shows that the lead in the Muztagata ice core mainly came from anthropogenic emissions from countries in Central Asia, while the local emission had little contribution.

  20. 3.1 $\\mu$m H$_{2}$O Ice Absorption in LINER-Type Ultraluminous Infrared Galaxies with Cool Far-Infrared Colors the Centrally-Concentrated Nature of Their Deeply Buried Energy Sources

    CERN Document Server

    Imanishi, M; Imanishi, Masatoshi; Maloney, Philip R.

    2003-01-01

    Ground-based 2.8--4.1 $\\mu$m slit spectra of the nuclei of seven ultraluminous infrared galaxies (ULIRGs) that are classified optically as LINERs and have cool far-infrared colors are presented. All the nuclei show 3.3 $\\mu$m polycyclic aromatic hydrocarbon (PAH) emission, with equivalent widths that are systematically lower than those in starburst galaxies. Strong 3.1 $\\mu$m H$_{2}$O ice absorption, with optical depth greater than 0.6, is also detected in five nuclei, and 3.4 $\\mu$m carbonaceous dust absorption is detected clearly in one of the five nuclei. It is quantitatively demonstrated that the large optical depths of the H$_{2}$O ice absorption in the five sources, and the 3.4 $\\mu$m absorption in one source, are incompatible with a geometry in which the energy sources are spatially mixed with dust and molecular gas, as is expected for a typical starburst, but instead require that a large amount of nuclear dust (including ice-covered grains) and molecular gas be distributed in a screen in front of the ...

  1. Ice Nucleation and Dehydration in the Tropical Tropopause Layer

    Science.gov (United States)

    Jensen, Eric J.; Diskin, Glenn S.; Lawson, R Paul; Lance, Sara; Bui, Thaopaul Van; Hlavka, Dennis L.; Mcgill, Matthew J.; Pfister, Leonhard; Toon, Owen B.; Gao, Rushan

    2013-01-01

    Optically thin cirrus near the tropical tropopause regulate the humidity of air entering the stratosphere, which in turn has a strong influence on the Earth's radiation budget and climate. Recent highaltitude, unmanned aircraft measurements provide evidence for two distinct classes of cirrus formed in the tropical tropopause region: (i) vertically extensive cirrus with low ice number concentrations, low extinctions, and large supersaturations (up to approx. 70%) with respect to ice; and (ii) vertically thin cirrus layers with much higher ice concentrations that effectively deplete the vapor in excess of saturation. The persistent supersaturation in the former class of cirrus is consistent with the long time-scales (several hours or longer) for quenching of vapor in excess of saturation given the low ice concentrations and cold tropical tropopause temperatures. The low-concentration clouds are likely formed on a background population of insoluble particles with concentrations less than 100 L-1 (often less than 20 L-1), whereas the high ice concentration layers (with concentrations up to 10,000 L-1) can only be produced by homogeneous freezing of an abundant population of aqueous aerosols. These measurements, along with past high-altitude aircraft measurements, indicate that the low-concentration cirrus occur frequently in the tropical tropopause region, whereas the high-concentration cirrus occur infrequently. The predominance of the low-concentration clouds means cirrus near the tropical tropopause may typically allow entry of air into the stratosphere with as much as approx. 1.7 times the ice saturation mixing ratio.

  2. Halogen-based reconstruction of Russian Arctic sea ice area from the Akademii Nauk ice core (Severnaya Zemlya)

    Science.gov (United States)

    Spolaor, A.; Opel, T.; McConnell, J. R.; Maselli, O. J.; Spreen, G.; Varin, C.; Kirchgeorg, T.; Fritzsche, D.; Saiz-Lopez, A.; Vallelonga, P.

    2016-01-01

    The role of sea ice in the Earth climate system is still under debate, although it is known to influence albedo, ocean circulation, and atmosphere-ocean heat and gas exchange. Here we present a reconstruction of 1950 to 1998 AD sea ice in the Laptev Sea based on the Akademii Nauk ice core (Severnaya Zemlya, Russian Arctic). The chemistry of halogens bromine (Br) and iodine (I) is strongly active and influenced by sea ice dynamics, in terms of physical, chemical and biological process. Bromine reacts on the sea ice surface in autocatalyzing "bromine explosion" events, causing an enrichment of the Br / Na ratio and hence a bromine excess (Brexc) in snow compared to that in seawater. Iodine is suggested to be emitted from algal communities growing under sea ice. The results suggest a connection between Brexc and spring sea ice area, as well as a connection between iodine concentration and summer sea ice area. The correlation coefficients obtained between Brexc and spring sea ice (r = 0.44) as well as between iodine and summer sea ice (r = 0.50) for the Laptev Sea suggest that these two halogens could become good candidates for extended reconstructions of past sea ice changes in the Arctic.

  3. Accelerated dissolution of iron oxides in ice

    Directory of Open Access Journals (Sweden)

    D. Jeong

    2012-11-01

    Full Text Available Iron dissolution from mineral dusts and soil particles is vital as a source of bioavailable iron in various environmental media. In this work, the dissolution of iron oxide particles trapped in ice was investigated as a new pathway of iron supply. The dissolution experiments were carried out in the absence and presence of various organic complexing ligands under dark condition. In acidic pH conditions (pH 2, 3, and 4, the dissolution of iron oxides was greatly enhanced in the ice phase compared to that in water. The dissolved iron was mainly in the ferric form, which indicates that the dissolution is not a reductive process. The extent of dissolved iron was greatly affected by the kind of organic complexing ligands and the surface area of iron oxides. The iron dissolution was most pronounced with high surface area iron oxides and in the presence of strong iron binding ligands. The enhanced dissolution of iron oxides in ice is mainly ascribed to the "freeze concentration effect", which concentrates iron oxide particles, organic ligands, and protons in the liquid like ice grain boundary region and accelerates the dissolution of iron oxides. The ice-enhanced dissolution effect gradually decreased when decreasing the freezing temperature from −10 to −196 °C, which implies that the presence and formation of the liquid-like ice grain boundary region play a critical role. The proposed phenomenon of enhanced dissolution of iron oxides in ice may provide a new pathway of bioavailable iron production. The frozen atmospheric ice with iron-containing dust particles in the upper atmosphere thaws upon descending and may provide bioavailable iron upon deposition onto the ocean surface.

  4. Accelerated dissolution of iron oxides in ice

    Directory of Open Access Journals (Sweden)

    D. Jeong

    2012-08-01

    Full Text Available Iron dissolution from mineral dusts and soil particles is vital as a source of bioavailable iron in various environmental media. In this work, the dissolution of iron oxide particles trapped in ice was investigated as a~new pathway of iron supply. The dissolution experiments were carried out in the absence and presence of various organic complexing ligands under dark condition. In acidic pH conditions (pH 2, 3, and 4, the dissolution of iron oxides was greatly enhanced in the ice phase compared to that in water. The dissolved iron was mainly in the ferric form, which indicates that the dissolution is not a reductive process. The extent of dissolved iron was greatly affected by the kind of organic complexing ligands and the type of iron oxides. The iron dissolution was most pronounced with high surface area iron oxides and in the presence of strong iron binding ligands. The enhanced dissolution of iron oxides in ice is mainly ascribed to the "freeze concentration effect", which concentrates iron oxide particles, organic ligands, and protons in the liquid-like ice grain boundary region and accelerates the dissolution of iron oxides. The ice-enhanced dissolution effect gradually decreased when decreasing the freezing temperature from −10 °C to −196 °C, which implies that the presence and formation of the liquid-like ice grain boundary region play a critical role. The proposed phenomenon of enhanced dissolution of iron oxides in ice may provide a new pathway of bioavailable iron production. The frozen atmospheric ice with iron-containing dust particles in the upper atmosphere thaws upon descending and may provide bioavailable iron upon deposition onto the ocean surface.

  5. Naled ice growth

    Science.gov (United States)

    Schohl, G. A.; Ettema, R.

    1986-02-01

    Based on theoretical formulation and dimensional analysis, supported by the results of laboratory experiments, a theory and a detailed description of naled ice growth are presented. The theory, concepts, and data should be of interest to engineers concerned with the effects of naleds (also referred to as aufeis or icings) on engineering works. The growth of a two dimensional, or laterally confined (flume), naled is shown to depend primarily on seven, independent, dimensionless parameters. The early, two dimensional, phase of growth, a naled consists of a mixture of ice and water, or ice-water slush, forming on a frigid base. The influence of two of the three remaining parameters is not felt until after a transition time has passed. The continuing, cyclic process by which slush layers form and eventually freeze results in the ice laminations that are a feature of naled ice.

  6. Sea Ice and Oceanographic Conditions.

    Science.gov (United States)

    Oceanus, 1986

    1986-01-01

    The coastal waters of the Beaufort Sea are covered with ice three-fourths of the year. These waters (during winter) are discussed by considering: consolidation of coastal ice; under-ice water; brine circulation; biological energy; life under the ice (including kelp and larger animals); food chains; and ice break-up. (JN)

  7. Kagome spin ice

    Science.gov (United States)

    Mellado, Paula

    Spin ice in magnetic pyrochlore oxides is a peculiar magnetic state. Like ordinary water ice, these materials are in apparent violation with the third law of thermodynamics, which dictates that the entropy of a system in thermal equilibrium vanishes as its temperature approaches absolute zero. In ice, a "zero-point" entropy is retained down to low temperatures thanks to a high number of low-energy positions of hydrogen ions associated with the Bernal-Fowler ice-rules. Spins in pyrochlore oxides Ho2Ti 2O7 and Dy2Ti2O7 exhibit a similar degeneracy of ground states and thus also have a sizable zero-point entropy. A recent discovery of excitations carrying magnetic charges in pyrochlore spin ice adds another interesting dimension to these magnets. This thesis is devoted to a theoretical study of a two-dimensional version of spin ice whose spins reside on kagome, a lattice of corner-sharing triangles. It covers two aspects of this frustrated classical spin system: the dynamics of artificial spin ice in a network of magnetic nanowires and the thermodynamics of crystalline spin ice. Magnetization dynamics in artificial spin ice is mediated by the emission, propagation and absorption of domain walls in magnetic nanowires. The dynamics shows signs of self-organized behavior such as avalanches. The theoretical model compares favorably to recent experiments. The thermodynamics of the microscopic version of spin ice on kagome is examined through analytical calculations and numerical simulations. The results show that, in addition to the high-temperature paramagnetic phase and the low-temperature phase with magnetic order, spin ice on kagome may have an intermediate phase with fluctuating spins and ordered magnetic charges. This work is concluded with a calculation of the entropy of kagome spin ice at zero temperature when one of the sublattices is pinned by an applied magnetic field and the system breaks up into independent spin chains, a case of dimensional reduction.

  8. On the Importance of High Frequency Gravity Waves for Ice Nucleation in the Tropical Tropopause Layer

    Science.gov (United States)

    Jensen, Eric J.

    2016-01-01

    Recent investigations of the influence of atmospheric waves on ice nucleation in cirrus have identified a number of key processes and sensitivities: (1) ice concentrations produced by homogeneous freezing are strongly dependent on cooling rates, with gravity waves dominating upper tropospheric cooling rates; (2) rapid cooling driven by high-frequency waves are likely responsible for the rare occurrences of very high ice concentrations in cirrus; (3) sedimentation and entrainment tend to decrease ice concentrations as cirrus age; and (4) in some situations, changes in temperature tendency driven by high-frequency waves can quench ice nucleation events and limit ice concentrations. Here we use parcel-model simulations of ice nucleation driven by long-duration, constant-pressure balloon temperature time series, along with an extensive dataset of cold cirrus microphysical properties from the recent ATTREX high-altitude aircraft campaign, to statistically examine the importance of high-frequency waves as well as the consistency between our theoretical understanding of ice nucleation and observed ice concentrations. The parcel-model simulations indicate common occurrence of peak ice concentrations exceeding several hundred per liter. Sedimentation and entrainment would reduce ice concentrations as clouds age, but 1-D simulations using a wave parameterization (which underestimates rapid cooling events) still produce ice concentrations higher than indicated by observations. We find that quenching of nucleation events by high-frequency waves occurs infrequently and does not prevent occurrences of large ice concentrations in parcel simulations of homogeneous freezing. In fact, the high-frequency variability in the balloon temperature data is entirely responsible for production of these high ice concentrations in the simulations.

  9. An ice lithography instrument

    Science.gov (United States)

    Han, Anpan; Chervinsky, John; Branton, Daniel; Golovchenko, J. A.

    2011-06-01

    We describe the design of an instrument that can fully implement a new nanopatterning method called ice lithography, where ice is used as the resist. Water vapor is introduced into a scanning electron microscope (SEM) vacuum chamber above a sample cooled down to 110 K. The vapor condenses, covering the sample with an amorphous layer of ice. To form a lift-off mask, ice is removed by the SEM electron beam (e-beam) guided by an e-beam lithography system. Without breaking vacuum, the sample with the ice mask is then transferred into a metal deposition chamber where metals are deposited by sputtering. The cold sample is then unloaded from the vacuum system and immersed in isopropanol at room temperature. As the ice melts, metal deposited on the ice disperses while the metals deposited on the sample where the ice had been removed by the e-beam remains. The instrument combines a high beam-current thermal field emission SEM fitted with an e-beam lithography system, cryogenic systems, and a high vacuum metal deposition system in a design that optimizes ice lithography for high throughput nanodevice fabrication. The nanoscale capability of the instrument is demonstrated with the fabrication of nanoscale metal lines.

  10. Antarctic sea ice variability and trends, 1979–2010

    Directory of Open Access Journals (Sweden)

    D. J. Cavalieri

    2012-08-01

    Full Text Available In sharp contrast to the decreasing sea ice coverage of the Arctic, in the Antarctic the sea ice cover has, on average, expanded since the late 1970s. More specifically, satellite passive-microwave data for the period November 1978–December 2010 reveal an overall positive trend in ice extents of 17 100 ± 2300 km2 yr−1. Much of the increase, at 13 700 ± 1500 km2 yr−1, has occurred in the region of the Ross Sea, with lesser contributions from the Weddell Sea and Indian Ocean. One region, that of the Bellingshausen/Amundsen Seas, has (like the Arctic instead experienced significant sea ice decreases, with an overall ice extent trend of −8200 ± 1200 km2 yr−1. When examined through the annual cycle over the 32-yr period 1979–2010, the Southern Hemisphere sea ice cover as a whole experienced positive ice extent trends in every month, ranging in magnitude from a low of 9100 ± 6300 km2 yr−1 in February to a high of 24 700 ± 10 000 km2 yr−1 in May. The Ross Sea and Indian Ocean also had positive trends in each month, while the Bellingshausen/Amundsen Seas had negative trends in each month, and the Weddell Sea and western Pacific Ocean had a mixture of positive and negative trends. Comparing ice-area results to ice-extent results, in each case the ice-area trend has the same sign as the ice-extent trend, but the magnitudes of the two trends differ, and in some cases these differences allow inferences about the corresponding changes in sea ice concentrations. The strong pattern of decreasing ice coverage in the Bellingshausen/Amundsen Seas region and increasing ice coverage in the Ross Sea region is suggestive of changes in atmospheric circulation. This is a key topic for future research.

  11. Mapping and assessing variability in the Antarctic marginal ice zone, pack ice and coastal polynyas in two sea ice algorithms with implications on breeding success of snow petrels

    Science.gov (United States)

    Stroeve, Julienne C.; Jenouvrier, Stephanie; Campbell, G. Garrett; Barbraud, Christophe; Delord, Karine

    2016-08-01

    Sea ice variability within the marginal ice zone (MIZ) and polynyas plays an important role for phytoplankton productivity and krill abundance. Therefore, mapping their spatial extent as well as seasonal and interannual variability is essential for understanding how current and future changes in these biologically active regions may impact the Antarctic marine ecosystem. Knowledge of the distribution of MIZ, consolidated pack ice and coastal polynyas in the total Antarctic sea ice cover may also help to shed light on the factors contributing towards recent expansion of the Antarctic ice cover in some regions and contraction in others. The long-term passive microwave satellite data record provides the longest and most consistent record for assessing the proportion of the sea ice cover that is covered by each of these ice categories. However, estimates of the amount of MIZ, consolidated pack ice and polynyas depend strongly on which sea ice algorithm is used. This study uses two popular passive microwave sea ice algorithms, the NASA Team and Bootstrap, and applies the same thresholds to the sea ice concentrations to evaluate the distribution and variability in the MIZ, the consolidated pack ice and coastal polynyas. Results reveal that the seasonal cycle in the MIZ and pack ice is generally similar between both algorithms, yet the NASA Team algorithm has on average twice the MIZ and half the consolidated pack ice area as the Bootstrap algorithm. Trends also differ, with the Bootstrap algorithm suggesting statistically significant trends towards increased pack ice area and no statistically significant trends in the MIZ. The NASA Team algorithm on the other hand indicates statistically significant positive trends in the MIZ during spring. Potential coastal polynya area and amount of broken ice within the consolidated ice pack are also larger in the NASA Team algorithm. The timing of maximum polynya area may differ by as much as 5 months between algorithms. These

  12. Bacterial ice crystal controlling proteins.

    Science.gov (United States)

    Lorv, Janet S H; Rose, David R; Glick, Bernard R

    2014-01-01

    Across the world, many ice active bacteria utilize ice crystal controlling proteins for aid in freezing tolerance at subzero temperatures. Ice crystal controlling proteins include both antifreeze and ice nucleation proteins. Antifreeze proteins minimize freezing damage by inhibiting growth of large ice crystals, while ice nucleation proteins induce formation of embryonic ice crystals. Although both protein classes have differing functions, these proteins use the same ice binding mechanisms. Rather than direct binding, it is probable that these protein classes create an ice surface prior to ice crystal surface adsorption. Function is differentiated by molecular size of the protein. This paper reviews the similar and different aspects of bacterial antifreeze and ice nucleation proteins, the role of these proteins in freezing tolerance, prevalence of these proteins in psychrophiles, and current mechanisms of protein-ice interactions. PMID:24579057

  13. Ecosystem model intercomparison of under-ice and total primary production in the Arctic Ocean

    Science.gov (United States)

    Jin, Meibing; Popova, Ekaterina E.; Zhang, Jinlun; Ji, Rubao; Pendleton, Daniel; Varpe, Øystein; Yool, Andrew; Lee, Younjoo J.

    2016-01-01

    Previous observational studies have found increasing primary production (PP) in response to declining sea ice cover in the Arctic Ocean. In this study, under-ice PP was assessed based on three coupled ice-ocean-ecosystem models participating in the Forum for Arctic Modeling and Observational Synthesis (FAMOS) project. All models showed good agreement with under-ice measurements of surface chlorophyll-a concentration and vertically integrated PP rates during the main under-ice production period, from mid-May to September. Further, modeled 30-year (1980-2009) mean values and spatial patterns of sea ice concentration compared well with remote sensing data. Under-ice PP was higher in the Arctic shelf seas than in the Arctic Basin, but ratios of under-ice PP over total PP were spatially correlated with annual mean sea ice concentration, with higher ratios in higher ice concentration regions. Decreases in sea ice from 1980 to 2009 were correlated significantly with increases in total PP and decreases in the under-ice PP/total PP ratio for most of the Arctic, but nonsignificantly related to under-ice PP, especially in marginal ice zones. Total PP within the Arctic Circle increased at an annual rate of between 3.2 and 8.0 Tg C/yr from 1980 to 2009. This increase in total PP was due mainly to a PP increase in open water, including increases in both open water area and PP rate per unit area, and therefore much stronger than the changes in under-ice PP. All models suggested that, on a pan-Arctic scale, the fraction of under-ice PP declined with declining sea ice cover over the last three decades.

  14. Hydrogen behavior in ice condenser containments

    Energy Technology Data Exchange (ETDEWEB)

    Lundstroem, P.; Hongisto, O. [Power Plant Lab., Helsinki (Finland); Theofanous, T.G. [Univ. of California, Santa Barbara, CA (United States)] [and others

    1995-09-01

    A new hydrogen management strategy is being developed for the Loviisa ice condenser containment. The strategy relies on containment-wide natural circulations that develop, once the ice condenser doors are forced open, to effectively produce a well-mixed behavior, and a correspondingly slow rise in hydrogen concentration. Levels can then be kept low by a distributed catalytic recombiner system, and (perhaps) an igniter system as a backup, while the associated energy releases can be effectively dissipated in the ice bed. Verification and fine-tuning of the approach is carried out experimentally in the VICTORIA facility and by associated scaling/modelling studies. VICTORIA represents an 1/15th scale model of the Loviisa containment, hydrogen is simulated by helium, and local concentration measurements are obtained by a newly developed instrument specifically for this purpose, called SPARTA. This paper is focused on experimental results from several key experiments that provide a first delineation of key behaviors.

  15. Ice Velocity Estimation Using SAR Data in PANDA Section, East Antarctica

    Science.gov (United States)

    Deng, F.; Zhou, C.; Zhou, Y.

    2015-12-01

    Ice-flow velocity is a significant parameter in dynamic models of the Antarctic ice sheet, indicating how ice is transported from the interior to the ocean and how ice mass evolves. PANDA (Prydz Bay - Amery Ice shelf - Dome A) section is the key area of Chinese expedition in the Antarctic, and many scientific studies have been conducted here. In this research, SAR images including ERS-1/2, Envisat and ALOS were applied to estimate the ice velocity of PANDA Section using DInSAR and offset-tracking methods. Compared to MEaSUREs velocity (ice velocity map of the Antarctic released by National Snow and Ice Data Center) of 450 m resolution, our result with 200 m resolution achieved similar accuracy. Ice mass of PANDA section flows into the ocean mainly through Amery Ice Shelf and Polar Record Glacier. The ice velocity at the front edge of Amery Ice shelf is almost 1500 m/a, and the ice velocity of Polar Record Glacier can reach as high as 800 m/a. At most inner area of PANDA section, ice velocity is below 40 m/a. Due to the blocking of rocks and nunataks, ice flow feature in Grove Mountains area is quite complicated, which can help to demonstrate the meteorite concentration mechanism in this area.

  16. The early twentieth century warming and winter Arctic sea ice

    Directory of Open Access Journals (Sweden)

    V. A. Semenov

    2012-11-01

    Full Text Available The Arctic has featured the strongest surface warming over the globe during the recent decades, and the temperature increase has been accompanied by a rapid decline in sea ice extent. However, little is known about Arctic sea ice change during the early twentieth century warming (ETCW during 1920–1940, also a period of a strong surface warming, both globally and in the Arctic. Here, we investigate the sensitivity of Arctic winter surface air temperature (SAT to sea ice during 1875–2008 by means of simulations with an atmospheric general circulation model (AGCM forced by estimates of the observed sea surface temperature (SST and sea ice concentration. The Arctic warming trend since the 1960s is very well reproduced by the model. In contrast, ETCW in the Arctic is hardly captured. This is consistent with the fact that the sea ice extent in the forcing data does not strongly vary during ETCW. AGCM simulations with observed SST but fixed sea ice reveal a strong dependence of winter SAT on sea ice extent. In particular, the warming during the recent decades is strongly underestimated by the model, if the sea ice extent does not decline and varies only seasonally. This suggests that a significant reduction of winter Arctic sea ice extent may have also accompanied the early twentieth century warming, pointing toward an important link between anomalous sea ice extent and Arctic surface temperature variability.

  17. The early twentieth century warming and winter Arctic sea ice

    Directory of Open Access Journals (Sweden)

    V. A. Semenov

    2012-06-01

    Full Text Available The Arctic featured the strongest surface warming over the globe during the recent decades, and the temperature increase was accompanied by a rapid decline in sea ice extent. However, little is known about Arctic sea ice change during the Early Twentieth Century Warming (ETCW during 1920–1940, also a period of a strong surface warming, both globally and in the Arctic. Here, we investigate the sensitivity of Arctic winter surface air temperature (SAT to sea ice during 1875–2008 by means of simulations with an atmospheric general circulation model (AGCM forced by estimates of the observed sea surface temperature (SST and sea ice concentration. The Arctic warming trend since the 1960s is very well reproduced by the model. In contrast, ETCW in the Arctic is hardly captured. This is consistent with the fact that the sea ice extent in the forcing data does not strongly vary during ETCW. AGCM simulations with observed SST but fixed sea ice reveal a strong dependence of winter SAT on sea ice extent. In particular, the warming during the recent decades is strongly underestimated by the model, if the sea ice extent does not decline and varies only seasonally. This suggests that a significant reduction of Arctic sea ice extent may have also accompanied the Early Twentieth Century Warming, pointing toward an important link between anomalous sea ice extent and Arctic surface temperature variability.

  18. A calorimetric study on the low temperature dynamics of doped ice V and its reversible phase transition to hydrogen ordered ice XIII.

    Science.gov (United States)

    Salzmann, Christoph G; Radaelli, Paolo G; Finney, John L; Mayer, Erwin

    2008-11-01

    Doped ice V samples made from solutions containing 0.01 M HCl (DCl), HF (DF), or KOH (KOD) in H(2)O (D(2)O) were slow-cooled from 250 to 77 K at 0.5 GPa. The effect of the dopant on the hydrogen disorder --> order transition and formation of hydrogen ordered ice XIII was studied by differential scanning calorimetry (DSC) with samples recovered at 77 K. DSC scans of acid-doped samples are consistent with a reversible ice XIII ice V phase transition at ambient pressure, showing an endothermic peak on heating due to the hydrogen ordered ice XIII --> disordered ice V phase transition, and an exothermic peak on subsequent cooling due to the ice V --> ice XIII phase transition. The equilibrium temperature (T(o)) for the ice V ice XIII phase transition is 112 K for both HCl doped H(2)O and DCl doped D(2)O. From the maximal enthalpy change of 250 J mol(-1) on the ice XIII --> ice V phase transition and T(o) of 112 K, the change in configurational entropy for the ice XIII --> ice V transition is calculated as 2.23 J mol(-1) K(-1) which is 66% of the Pauling entropy. For HCl, the most effective dopant, the influence of HCl concentration on the formation of ice XIII was determined: on decreasing the concentration of HCl from 0.01 to 0.001 M, its effectiveness is only slightly lowered. However, further HCl decrease to 0.0001 M drastically lowered its effectiveness. HF (DF) doping is less effective in inducing formation of ice XIII than HCl (DCl) doping. On heating at a rate of 5 K min(-1), kinetic unfreezing starts in pure ice V at approximately 132 K, whereas in acid doped ice XIII it starts at about 105 K due to acceleration of reorientation of water molecules. KOH doping does not lead to formation of hydrogen ordered ice XIII, a result which is consistent with our powder neutron diffraction study (C. G. Salzmann, P. G. Radaelli, A. Hallbrucker, E. Mayer, J. L. Finney, Science, 2006, 311, 1758). We further conjecture whether or not ice XIII has a stable region in the water/ice

  19. Global warming releases microplastic legacy frozen in Arctic Sea ice

    Science.gov (United States)

    Obbard, Rachel W.; Sadri, Saeed; Wong, Ying Qi; Khitun, Alexandra A.; Baker, Ian; Thompson, Richard C.

    2014-06-01

    When sea ice forms it scavenges and concentrates particulates from the water column, which then become trapped until the ice melts. In recent years, melting has led to record lows in Arctic Sea ice extent, the most recent in September 2012. Global climate models, such as that of Gregory et al. (2002), suggest that the decline in Arctic Sea ice volume (3.4% per decade) will actually exceed the decline in sea ice extent, something that Laxon et al. (2013) have shown supported by satellite data. The extent to which melting ice could release anthropogenic particulates back to the open ocean has not yet been examined. Here we show that Arctic Sea ice from remote locations contains concentrations of microplastics at least two orders of magnitude greater than those that have been previously reported in highly contaminated surface waters, such as those of the Pacific Gyre. Our findings indicate that microplastics have accumulated far from population centers and that polar sea ice represents a major historic global sink of man-made particulates. The potential for substantial quantities of legacy microplastic contamination to be released to the ocean as the ice melts therefore needs to be evaluated, as do the physical and toxicological effects of plastics on marine life.

  20. Definition of Arctic and Antarctic Sea Ice Variation Index

    Institute of Scientific and Technical Information of China (English)

    Chen Hongxia; Liu Na; Pan Zengdi; Zhang Qinghua

    2004-01-01

    It is well known that varying of the sea ice not only in the Antarctic but also in the Arctic has an active influence on the globe atmosphere and ocean. In order to understand the sea ice variation in detail, for the first time, an objective index of the Arctic and Antarctic sea ice variation is defined by projecting the monthly sea ice concentration anomalies poleward of 20°N or 20°S onto the EOF (empirical orthogonal function)-1 spatial pattern. Comparing with some work in former studies of polar sea ice, the index has the potential for clarifying the variability of sea ice in northern and southern high latitudes.

  1. Antarctic Sea Ice-a Habitat for Extremophiles

    Science.gov (United States)

    Thomas, D. N.; Dieckmann, G. S.

    2002-01-01

    The pack ice of Earth's polar oceans appears to be frozen white desert, devoid of life. However, beneath the snow lies a unique habitat for a group of bacteria and microscopic plants and animals that are encased in an ice matrix at low temperatures and light levels, with the only liquid being pockets of concentrated brines. Survival in these conditions requires a complex suite of physiological and metabolic adaptations, but sea-ice organisms thrive in the ice, and their prolific growth ensures they play a fundamental role in polar ecosystems. Apart from their ecological importance, the bacterial and algae species found in sea ice have become the focus for novel biotechnology, as well as being considered proxies for possible life forms on ice-covered extraterrestrial bodies.

  2. Antarctic Sea ice--a habitat for extremophiles.

    Science.gov (United States)

    Thomas, D N; Dieckmann, G S

    2002-01-25

    The pack ice of Earth's polar oceans appears to be frozen white desert, devoid of life. However, beneath the snow lies a unique habitat for a group of bacteria and microscopic plants and animals that are encased in an ice matrix at low temperatures and light levels, with the only liquid being pockets of concentrated brines. Survival in these conditions requires a complex suite of physiological and metabolic adaptations, but sea-ice organisms thrive in the ice, and their prolific growth ensures they play a fundamental role in polar ecosystems. Apart from their ecological importance, the bacterial and algae species found in sea ice have become the focus for novel biotechnology, as well as being considered proxies for possible life forms on ice-covered extraterrestrial bodies. PMID:11809961

  3. A natural artefact in Greenland ice-core CO2 measurements

    OpenAIRE

    DELMAS, ROBERT J.

    2011-01-01

    Paleoatmospheric concentrations of CO2 over the last ice ages have been revealed by ice-core analysis. According to the time period (ice age or interglacial) and the hemisphere considered, the ice containing the analysed air bubbles can be either alkaline or acid. It is shown that the interaction between acid and alkaline impurities, when they co-exist naturally in ice, could lead to the production of excess CO2 in ice samples, and therefore to erroneously-high CO2 values of no paleoatmospher...

  4. Sea Ice Microbial Communities: Distribution, Abundance, and Diversity of Ice Bacteria in McMurdo Sound, Antarctica, in 1980

    OpenAIRE

    Sullivan, Cornelius W.; Palmisano, Anna C.

    1984-01-01

    An abundant and diverse bacterial community was found within brine channels of annual sea ice and at the ice-seawater interface in McMurdo Sound, Antarctica, in 1980. The mean bacterial standing crop was 1.4 × 1011 cells m−2 (9.8 mg of C m−2); bacterial concentrations as high as 1.02 × 1012 cells m−3 were observed in ice core melt water. Vertical profiles of ice cores 1.3 to 2.5 m long showed that 47% of the bacterial numbers and 93% of the bacterial biomass were located in the bottom 20 cm o...

  5. Sputtering of water ice

    DEFF Research Database (Denmark)

    Baragiola, R.A.; Vidal, R.A.; Svendsen, W.;

    2003-01-01

    We present results of a range of experiments of sputtering of water ice together with a guide to the literature. We studied how sputtering depends on the projectile energy and fluence, ice growth temperature, irradiation temperature and external electric fields. We observed luminescence from...

  6. Proceedings of ICED'09

    DEFF Research Database (Denmark)

    . The ICED series of conferences has a long tradition, which started in 1981 with the first ICED in Rome. A total of 379 papers were presented at ICED’09, each double-blind reviewed by multiple reviewers. The papers included research papers and case studies on a variety of topics concerned with design...

  7. Ice Core Investigations

    Science.gov (United States)

    Krim, Jessica; Brody, Michael

    2008-01-01

    What can glaciers tell us about volcanoes and atmospheric conditions? How does this information relate to our understanding of climate change? Ice Core Investigations is an original and innovative activity that explores these types of questions. It brings together popular science issues such as research, climate change, ice core drilling, and air…

  8. Testing The Ice

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The country’s fourth scientific expedition tothe North Pole starts OBSERVATION STATIONS:Members of China’s fourth Arctic expedition set up polar bear-proof "apple houses" on the ice surface of the Arctic Ocean on August 8 The Chinese ice breaker Xuelong

  9. Blending sequential scanning multichannel microwave radiometer and buoy data into a sea ice model

    Science.gov (United States)

    Thomas, D. R.; Rothrock, D. A.

    1989-08-01

    A method is presented for determining the concentrations of open water and of several ice types using multichannel satellite passive microwave data. The method uses the Kalman filter and provides the "best fit" to a time series of data. A crucial element of the procedure is a physical model of how the concentrations of ice types change with time in response to freezing, melting, aging of one ice type to another, and creation of open water by divergence of the ice cover. A measurement model relates the state of the ice cover to the multivariate microwave data. The procedure offers three distinct advantages over algorithms that interpret separately data from each instant in time: it provides a framework for incorporating additional data into the diagnosis of ice concentrations, it takes into account the known uncertainty in the microwave observations and the pure type signatures, and it allows the resolution of ice types with ambiguous signatures. Two examples are presented which make use of scanning multichannel microwave radiometer data and surface temperature and ice velocity data from drifting buoys to estimate the concentrations of open water, first-year, second-year, and older multiyear ice for a Lagrangian region of ice. Two other examples include melt ponds in place of second-year ice. Some of the parameters in the physical model (melt rates) and in the measurement model (signature of second-year ice or of frozen melt ponds) are unknown. Reasonable, but arbitrary, values of the unknown parameters are used in the examples.

  10. SMILES ice cloud products

    Science.gov (United States)

    MilláN, L.; Read, W.; Kasai, Y.; Lambert, A.; Livesey, N.; Mendrok, J.; Sagawa, H.; Sano, T.; Shiotani, M.; Wu, D. L.

    2013-06-01

    Upper tropospheric water vapor and clouds play an important role in Earth's climate, but knowledge of them, in particular diurnal variation in deep convective clouds, is limited. An essential variable to understand them is cloud ice water content. The Japanese Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES) on board the International Space Station (ISS) samples the atmosphere at different local times allowing the study of diurnal variability of atmospheric parameters. We describe a new ice cloud data set consisting of partial Ice Water Path and Ice Water Content. Preliminary comparisons with EOS-MLS, CloudSat-CPR and CALIOP-CALIPSO are presented. Then, the diurnal variation over land and over open ocean for partial ice water path is reported. Over land, a pronounced diurnal variation peaking strongly in the afternoon/early evening was found. Over the open ocean, little temporal dependence was encountered. This data set is publicly available for download in HDF5 format.

  11. Using blue-ice moraines to constrain elevation changes of the West Antarctic Ice Sheet in the southern Ellsworth Mountains

    Science.gov (United States)

    Sugden, David; Woodward, John; Dunning, Stuart; Hein, Andy; Marrero, Shasta; Le-Brocq, Anne

    2014-05-01

    Observations in the Weddell Sea sector of the Antarctic Ice Sheet have not yet allowed the dating of elevated glacier trimlines and associated deposits in the Ellsworth Mountains. This uncertainty limits the value of models of changing ice-sheet configuration, volume and, by extension, sea level during glacial cycles and earlier. Here we present the emerging results of a study into the origin and evolution of blue-ice moraines in the Heritage Range, southern Ellsworth Mountains, and begin to unravel the long record of ice-sheet history they hold. Our findings so far are: (a) Ground Penetrating Radar shows that the blue-ice moraines are equilibrium forms bringing basal debris to the ice surface; the compressive ice flow is caused by enhanced ablation at the mountain foot. (b) Moraines are concentrated in embayments that focus katabatic winds and their location is largely controlled by topography. (c) The elevated blue-ice moraines in the southern Ellsworth Mountains hold a continuous record of West Antarctic Ice Sheet history going back 600,000 years; so far we have not found evidence of de-glacial intervals. (d) Thinning since the LGM (~40 ka?) is blue-ice moraine formation.

  12. Hydrocarbon biodegradation by Arctic sea-ice and sub-ice microbial communities during microcosm experiments, Northwest Passage (Nunavut, Canada).

    Science.gov (United States)

    Garneau, Marie-Ève; Michel, Christine; Meisterhans, Guillaume; Fortin, Nathalie; King, Thomas L; Greer, Charles W; Lee, Kenneth

    2016-10-01

    The increasing accessibility to navigation and offshore oil exploration brings risks of hydrocarbon releases in Arctic waters. Bioremediation of hydrocarbons is a promising mitigation strategy but challenges remain, particularly due to low microbial metabolic rates in cold, ice-covered seas. Hydrocarbon degradation potential of ice-associated microbes collected from the Northwest Passage was investigated. Microcosm incubations were run for 15 days at -1.7°C with and without oil to determine the effects of hydrocarbon exposure on microbial abundance, diversity and activity, and to estimate component-specific hydrocarbon loss. Diversity was assessed with automated ribosomal intergenic spacer analysis and Ion Torrent 16S rRNA gene sequencing. Bacterial activity was measured by (3)H-leucine uptake rates. After incubation, sub-ice and sea-ice communities degraded 94% and 48% of the initial hydrocarbons, respectively. Hydrocarbon exposure changed the composition of sea-ice and sub-ice communities; in sea-ice microcosms, Bacteroidetes (mainly Polaribacter) dominated whereas in sub-ice microcosms, the contribution of Epsilonproteobacteria increased, and that of Alphaproteobacteria and Bacteroidetes decreased. Sequencing data revealed a decline in diversity and increases in Colwellia and Moritella in oil-treated microcosms. Low concentration of dissolved organic matter (DOM) in sub-ice seawater may explain higher hydrocarbon degradation when compared to sea ice, where DOM was abundant and composed of labile exopolysaccharides. PMID:27387912

  13. [Relationships between temperature change and microbial amount in inactive ice wedges in Yitulihe, Northeast China].

    Science.gov (United States)

    Yang, Si-Zhong; Jin, Hui-Jun; Wen, Xi; Luo, Dong-Liang; Yu, Shao-Peng

    2009-11-01

    Ice-wedge is an indicator of paleoclimate change. The delta18 O concentration in different layers could reflect the change of paleotemperature during ice-wedge growth. In the late 1980s, inactive ice wedges were found in Yitulihe, Northeast China, which were the south-most ones so far and were important in climatic and environmental research. In this paper, the delta18 O concentration and microbial number in the inactive ice-wedges were analyzed by using stable isotope, fluorescence microscopy counting, and flow cytometer (FCM). During the ice-wedge growth in Yitulihe area, there were three short-term paleotemperature fluctuation, and three times of fluctuation in microbial amount in different ice-wedge layer. Correlation analysis indicated that there was a converging relationship between the temperature change and microbial amount in the ice-wedges. The lower the temperature when ice-wedge layer formed, the less the microbes survived in the layer. PMID:20136017

  14. Study on nitrobenzene ratio in water-ice system under different conditions

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A series of ice freezing-thawing experiments are performed under different nitro- benzene concentrations of 1.7, 8, 17, 170, and 1700 μg/L. A special flume, made of stainless steel and glass, is built to simulate the flowing water for the experiments. The ice frozen in cold room has similar crystal structure of natural ice, therefore the behaviors of nitrobenzene in the ice frozen in cold room is also believed to be similar to that in natural ice. The results of the experiments reveal that the freezing rate of ice decreases with the increase of nitrobenzene concentration in water, and that the nitrobenzene ratio in water-ice system becomes higher with the increase of freezing rate. In addition, the nitrobenzene in ice does not move and is only re- leased into water after melt.

  15. Study on nitrobenzene ratio in water-ice system under different conditions

    Institute of Scientific and Technical Information of China (English)

    LI ZhiJun; WANG Xin; LI QingShan; XU ShiGuo; XU XiangZhou; BAI Yan

    2008-01-01

    A aeries of ice freezing-thawing experiments are performed under different nitro-benzene concentrations of 1.7, 8, 17, 170, and 1700 μg/L. A special flume, made of stainless steel and glass, is built to simulate the flowing water for the experiments. The ice frozen in cold room has similar crystal structure of natural ice, therefore the behaviors of nitrobenzene in the ice frozen in cold room is also believed to be similar to that in natural ice. The results of the experiments reveal that the freezing rate of ice decreases with the increase of nitrobenzene concentration in water, and that the nitrobenzene ratio in water-ice system becomes higher with the increase of freezing rate. In addition, the nitrobenzene in ice does not move and is only re-leased into water after melt.

  16. GLERL Radiation Transfer Through Freshwater Ice

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Radiation transmittance (ratio of transmitted to incident radiation) through clear ice, refrozen slush ice and brash ice, from ice surface to ice-water interface in...

  17. Sea-ice indicators of polar bear habitat

    Science.gov (United States)

    Stern, Harry L.; Laidre, Kristin L.

    2016-09-01

    Nineteen subpopulations of polar bears (Ursus maritimus) are found throughout the circumpolar Arctic, and in all regions they depend on sea ice as a platform for traveling, hunting, and breeding. Therefore polar bear phenology - the cycle of biological events - is linked to the timing of sea-ice retreat in spring and advance in fall. We analyzed the dates of sea-ice retreat and advance in all 19 polar bear subpopulation regions from 1979 to 2014, using daily sea-ice concentration data from satellite passive microwave instruments. We define the dates of sea-ice retreat and advance in a region as the dates when the area of sea ice drops below a certain threshold (retreat) on its way to the summer minimum or rises above the threshold (advance) on its way to the winter maximum. The threshold is chosen to be halfway between the historical (1979-2014) mean September and mean March sea-ice areas. In all 19 regions there is a trend toward earlier sea-ice retreat and later sea-ice advance. Trends generally range from -3 to -9 days decade-1 in spring and from +3 to +9 days decade-1 in fall, with larger trends in the Barents Sea and central Arctic Basin. The trends are not sensitive to the threshold. We also calculated the number of days per year that the sea-ice area exceeded the threshold (termed ice-covered days) and the average sea-ice concentration from 1 June through 31 October. The number of ice-covered days is declining in all regions at the rate of -7 to -19 days decade-1, with larger trends in the Barents Sea and central Arctic Basin. The June-October sea-ice concentration is declining in all regions at rates ranging from -1 to -9 percent decade-1. These sea-ice metrics (or indicators of habitat change) were designed to be useful for management agencies and for comparative purposes among subpopulations. We recommend that the National Climate Assessment include the timing of sea-ice retreat and advance in future reports.

  18. Ecosystems on ice: the microbial ecology of Markham Ice Shelf in the high Arctic.

    Science.gov (United States)

    Vincent, Warwick F; Mueller, Derek R; Bonilla, Sylvia

    2004-04-01

    Microbial communities occur throughout the cryosphere in a diverse range of ice-dominated habitats including snow, sea ice, glaciers, permafrost, and ice clouds. In each of these environments, organisms must be capable of surviving freeze-thaw cycles, persistent low temperatures for growth, extremes of solar radiation, and prolonged dormancy. These constraints may have been especially important during global cooling events in the past, including the Precambrian glaciations. One analogue of these early Earth conditions is the thick, landfast sea ice that occurs today at certain locations in the Arctic and Antarctic. These ice shelves contain liquid water for a brief period each summer, and support luxuriant microbial mat communities. Our recent studies of these mats on the Markham Ice Shelf (Canadian high Arctic) by high performance liquid chromatography (HPLC) showed that they contain high concentrations of chlorophylls a and b, and several carotenoids notably lutein, echinenone and beta-carotene. The largest peaks in the HPLC chromatograms were two UV-screening compounds known to be produced by cyanobacteria, scytonemin, and its decomposition product scytonemin-red. Microscopic analyses of the mats showed that they were dominated by the chlorophyte genera cf. Chlorosarcinopsis, Pleurastrum, Palmellopsis, and Bracteococcus, and cyanobacteria of the genera Nostoc, Phormidium, Leptolyngbya, and Gloeocapsa. From point transects and localized sampling we estimated a total standing stock on this ice shelf of up to 11,200 tonnes of organic matter. These observations underscore the ability of microbial communities to flourish despite the severe constraints imposed by the cryo-ecosystem environment.

  19. Climatic and environmental records in Guliya Ice Cap

    Institute of Scientific and Technical Information of China (English)

    姚檀栋; 焦克勤; 田力德; 李忠勤; 李月芳; 刘景寿; 皇翠兰; 谢超; L.G.Thompson; E.M.Thompson

    1995-01-01

    The Guliya Ice Cap is the largest (with a total area of 376.1 m2 and an area cf 131 2 m2 at the flat top), highest (6 700 m a. s.l.) and coldest (with an ice temperature of -19℃ at 10 m depth) ice cap found in Central Asia so far. From 1990 to 1992, the oxygen isotope ratios, microparticle concentrations, anions, cations of a large number of samples from snow pits and ice cores were analysed to study the climatic and environmental characteristics of the Guliya Ice Cap. Being frozen to bedrock and with extremely low ice temperature, the ideal climatic and environmental informarion was recorded in Guliya Ice Cap. The distinct annual and seasonal cycle characteristics of the oxygen isotope ratio, microparticle concentration, anion and cation provide bases to date precisely the high-resolution time series in the ice cap. Oxygen isotope ratios decreased, microparticle concentrations and various chemical elements increased in the colder periods, while oxygen isotope values increased, microparticle concentrat

  20. Obliquity-paced Pliocene West Antarctic ice sheet oscillations

    Science.gov (United States)

    Naish, T.; Powell, R.; Levy, R.; Wilson, G.; Scherer, R.; Talarico, F.; Krissek, L.; Niessen, F.; Pompilio, M.; Wilson, T.; Carter, L.; DeConto, R.; Huybers, P.; McKay, R.; Pollard, D.; Ross, J.; Winter, D.; Barrett, P.; Browne, G.; Cody, R.; Cowan, E.; Crampton, J.; Dunbar, G.; Dunbar, N.; Florindo, F.; Gebhardt, C.; Graham, I.; Hannah, M.; Hansaraj, D.; Harwood, D.; Helling, D.; Henrys, S.; Hinnov, L.; Kuhn, G.; Kyle, P.; Laufer, A.; Maffioli, P.; Magens, D.; Mandernack, K.; McIntosh, W.; Millan, C.; Morin, R.; Ohneiser, C.; Paulsen, T.; Persico, D.; Raine, I.; Reed, J.; Riesselman, C.; Sagnotti, L.; Schmitt, D.; Sjunneskog, C.; Strong, P.; Taviani, M.; Vogel, S.; Wilch, T.; Williams, T.

    2009-01-01

    Thirty years after oxygen isotope records from microfossils deposited in ocean sediments confirmed the hypothesis that variations in the Earth's orbital geometry control the ice ages, fundamental questions remain over the response of the Antarctic ice sheets to orbital cycles. Furthermore, an understanding of the behaviour of the marine-based West Antarctic ice sheet (WAIS) during the 'warmer-than-present' early-Pliocene epoch (???5-3 Myr ago) is needed to better constrain the possible range of ice-sheet behaviour in the context of future global warming. Here we present a marine glacial record from the upper 600 m of the AND-1B sediment core recovered from beneath the northwest part of the Ross ice shelf by the ANDRILL programme and demonstrate well-dated, ???40-kyr cyclic variations in ice-sheet extent linked to cycles in insolation influenced by changes in the Earth's axial tilt (obliquity) during the Pliocene. Our data provide direct evidence for orbitally induced oscillations in the WAIS, which periodically collapsed, resulting in a switch from grounded ice, or ice shelves, to open waters in the Ross embayment when planetary temperatures were up to ???3??C warmer than today and atmospheric CO 2 concentration was as high as ???400 p.p.m.v. (refs 5, 6). The evidence is consistent with a new ice-sheet/ice-shelf model that simulates fluctuations in Antarctic ice volume of up to +7 m in equivalent sea level associated with the loss of the WAIS and up to +3 m in equivalent sea level from the East Antarctic ice sheet, in response to ocean-induced melting paced by obliquity. During interglacial times, diatomaceous sediments indicate high surface-water productivity, minimal summer sea ice and air temperatures above freezing, suggesting an additional influence of surface melt under conditions of elevated CO2. ??2009 Macmillan Publishers Limited. All rights reserved.

  1. Modelling snow ice and superimposed ice on landfast sea ice in Kongsfjorden, Svalbard

    Directory of Open Access Journals (Sweden)

    Caixin Wang

    2015-08-01

    Full Text Available Snow ice and superimposed ice formation on landfast sea ice in a Svalbard fjord, Kongsfjorden, was investigated with a high-resolution thermodynamic snow and sea-ice model, applying meteorological weather station data as external forcing. The model shows that sea-ice formation occurs both at the ice bottom and at the snow/ice interface. Modelling results indicated that the total snow ice and superimposed ice, which formed at the snow/ice interface, was about 14 cm during the simulation period, accounting for about 15% of the total ice mass and 35% of the total ice growth. Introducing a time-dependent snow density improved the modelled results, and a time-dependent oceanic heat flux parameterization yielded reasonable ice growth at the ice bottom. Model results suggest that weather conditions, in particular air temperature and precipitation, as well as snow thermal properties and surface albedo are the most critical factors for the development of snow ice and superimposed ice in Kongsfjorden. While both warming air and higher precipitation led to increased snow ice and superimposed ice forming in Kongsfjorden in the model runs, the processes were more sensitive to precipitation than to air temperature.

  2. Performance of a Southern Ocean sea ice forecast model

    Science.gov (United States)

    Heil, P.; Roberts, A.; Budd, W.

    2003-12-01

    The presentation examines the forecast peformance of an oriented fracture sea ice model applied to the Southern Ocean to predict sea ice state up to five days in advance. The model includes a modified Coulombic elastic-viscous-plastic rheology, enthalpy conserving thermodynamics and a new method of parameterising thickness distribution mechanics. 15 ice thickness classes are employed within each grid cell with a horizontal resolution of 50km. The model provides considerable insight into the thickness evolution and climatology of Antarctic sea ice. To date, thickness evolution of the Southern Ocean sea ice zone has mostly been assessed using course two-category models in climate simulations and results presented in this talk provide much greater detail over some existing model output. Simulations are presented from the model driven with NCEP-2 atmospheric analyses, NOAA sea surface temperatures, and mean climatogological currents generated using an eddy resolving ocean model. Analyses are generated by nudging ice concentrations with daily satellite derived open water fractions, and simulations using this method are compared to those without. There are important considerations in assimilating passive microwave ice concentration data into thickness distribution models, and particular attention is given to the treatment of lead ice and the impact this has on estimated total Southern Ocean sea ice volume. It is shown that nudging the model with satellite derived concentrations has an impact on ice mechanics as judged from simulated buoy tracks. A comparison with sonar soundings of sea ice draft is also favourable but shows variation with location. Whilst 5 day forecasts are reasonably skilled, predictive performance changes with season. Application of this research to operational ocean data assimilation systems is discussed in the final stages of the talk.

  3. Sea-ice extent provides a limited metric of model performance

    Directory of Open Access Journals (Sweden)

    D. Notz

    2013-06-01

    Full Text Available We examine the common practice of using sea-ice extent as the primary metric to evaluate modeled sea-ice coverage. Based on this analysis, we recommend a possible best practice for model evaluation. We find that for Arctic summer sea ice, model biases in sea-ice extent can be qualitatively different compared to biases in the geophysically more meaningful sea-ice area. These differences come about by a different frequency distribution of high-concentration sea-ice: while in summer about half of the CMIP5 models and satellite retrievals based on the Bootstrap and the ASI algorithm show a compact ice cover with large areas of high concentration sea ice, the other half of the CMIP5 models and satellite retrievals based on the NASA Team algorithm show a loose ice cover. The different behaviour of the CMIP5 models can be explained by their different distribution of excess heat between lateral melt and sea-ice thinning. Differences in grid geometry and round-off errors during interpolation only have a minor impact on the different biases in sea-ice extent and sea-ice area. Because of regional cancellation of biases in the integrative measures sea-ice extent and sea-ice area, these measures show little correlation with the more meaningful mean absolute bias in sea-ice concentration. Comparing the uncertainty arising directly from the satellite retrievals with those that arise from internal variability, we find that the latter by far dominates the uncertainty estimate for trends in sea-ice extent and area: much of the differences between modeled and observed trends can simply be explained by internal variability. Only for the absolute value of sea-ice area, differences between observations and models are so large that they cannot be explained by either observational uncertainty nor internal variability.

  4. Eutectic phase in water-ice

    DEFF Research Database (Denmark)

    Monnard, Pierre-Alain; Ziock, Hans-Joachim

    2008-01-01

    medium, which is known to disfavor such reactions. Thus, it was proposed early on that these polymerizations had to be supported by particular environments, such as mineral surfaces and eutectic phases in water-ice, which would have led to the concentration of the monomers out of the bulk aqueous medium...

  5. Stacking disorder in ice I.

    Science.gov (United States)

    Malkin, Tamsin L; Murray, Benjamin J; Salzmann, Christoph G; Molinero, Valeria; Pickering, Steven J; Whale, Thomas F

    2015-01-01

    Traditionally, ice I was considered to exist in two well-defined crystalline forms at ambient pressure: stable hexagonal ice (ice Ih) and metastable cubic ice (ice Ic). However, it is becoming increasingly evident that what has been called cubic ice in the past does not have a structure consistent with the cubic crystal system. Instead, it is a stacking-disordered material containing cubic sequences interlaced with hexagonal sequences, which is termed stacking-disordered ice (ice Isd). In this article, we summarise previous work on ice with stacking disorder including ice that was called cubic ice in the past. We also present new experimental data which shows that ice which crystallises after heterogeneous nucleation in water droplets containing solid inclusions also contains stacking disorder even at freezing temperatures of around -15 °C. This supports the results from molecular simulations, that the structure of ice that crystallises initially from supercooled water is always stacking-disordered and that this metastable ice can transform to the stable hexagonal phase subject to the kinetics of recrystallization. We also show that stacking disorder in ice which forms from water droplets is quantitatively distinct from ice made via other routes. The emerging picture of ice I is that of a very complex material which frequently contains stacking disorder and this stacking disorder can vary in complexity depending on the route of formation and thermal history. PMID:25380218

  6. Ice and mineral licks used by caribou in winter

    Directory of Open Access Journals (Sweden)

    Douglas C. Heard

    1990-09-01

    Full Text Available In winter, barren-ground caribou obtain minerals from ice and soil licks. Between December and April we have seen caribou cratering on the surface of frozen lakes and licking the ice. Ice samples from eight licks on four lakes contained concentrations of calcium, magnesium, sodium, potassium, phosphorus, chloride and sulphate many times higher than in the surrounding unlicked ice or than would be expected in lake water. Soil licks being used in March and June had high concentrations of calcium, magnesium, sodium phosphorus and potassium. In winter caribou may be seeking supplements of all of the major mineral elements (calcium, magnesium, sodium and potassium at ice and soil licks because lichens, their staple winter diet, are low in minerals and may also reduce the absorption of some minerals.

  7. Physical controls on the storage of methane in land fast sea ice

    DEFF Research Database (Denmark)

    Zhou, Jiayun; Tison, Jean Louis; Carnat, Gauthier;

    2014-01-01

    the overall higher CH4 concentrations in brine than in the under-ice water. As sea ice thickened, gas bubble formation became less efficient so that CH4 was then mainly trapped in the dissolved state. The increase of sea ice permeability during ice melt marks the end of CH4 storage.......We report on methane (CH4) dynamics in landfast sea ice, brine and under-ice seawater at Barrow in 2009. The CH4 concentrations in under-ice water ranged between 25.9 and 116.4 nmol L−1sw, indicating a superaturation of 700 to 3100% relative to the atmosphere. In comparison, the CH4 concentrations...... in ice, ranged between 3.4 and 17.2 nmol L−1ice, and the deduced CH4 concentrations in brine, between 13.2 and 677.7 nmol L−1br. We investigated on the processes explaining the difference in CH4 concentrations between sea ice, brine and the under-ice water, and suggest that two physical processes...

  8. Numerical modelling of thermodynamics and dynamics of sea ice in the Baltic Sea

    Directory of Open Access Journals (Sweden)

    A. Herman

    2011-04-01

    Full Text Available In this paper, a numerical dynamic-thermo-dynamic sea-ice model for the Baltic Sea is used to analyze the variability of ice conditions in three winter seasons. The modelling results are validated with station (water temperature and satellite data (ice concentration as well as by qualitative comparisons with the Swedish Meteorological and Hydrological Institute ice charts. Analysis of the results addresses two major questions. One concerns effects of meteorological forcing on the spatio-temporal distribution of ice concentration in the Baltic. Patterns of correlations between air temperature, wind speed, and ice-covered area are demonstrated to be different in larger, more open sub-basins (e.g., the Bothnian Sea than in the smaller ones (e.g., the Bothnian Bay. Whereas the correlations with the air temperature are positive in both cases, the influence of wind is pronounced only in large basins, leading to increase/decrease of areas with small/large ice concentrations, respectively. The other question concerns the role of ice dynamics in the evolution of the ice cover. By means of simulations with the dynamic model turned on and off, the ice dynamics is shown to play a crucial role in interactions between the ice and the upper layers of the water column, especially during periods with highly varying wind speeds and directions. In particular, due to the fragmentation of the ice cover and the modified surface fluxes, the ice dynamics influences the rate of change of the total ice volume, in some cases by as much as 1 km3 per day. As opposed to most other numerical studies on the sea-ice in the Baltic Sea, this work concentrates on the short-term variability of the ice cover and its response to the synoptic-scale forcing.

  9. Frost flower chemical signature in winter snow on Vestfonna ice cap, Nordaustlandet, Svalbard

    OpenAIRE

    E. Beaudon; Moore, J

    2009-01-01

    The chemistry of snow and ice cores from Svalbard is influenced by variations in local sea ice margin and distance to open water. Snow pits sampled at two summits of Vestfonna ice cap (Nordaustlandet, Svalbard), exhibit spatially heterogeneous soluble ions concentrations despite similar accumulation rates, reflecting the importance of small-scale weather patterns on this island ice cap. The snow pack on the western summit shows higher average values of marine species and a winter snow layer t...

  10. Sublimation of ice particles from rocket exhausts in the upper atmosphere

    OpenAIRE

    Platov, Y. V.; Kosch, Mike J.

    2003-01-01

    The process of sublimation of ice particles from a rocket exhaust in the upper atmosphere is examined. Heating by solar radiation and losses of energy by means thermal radiation and sublimation are taken into account in the thermal balance of the ice particles. The time dependences of size and temperature of the ice particles are obtained. An estimation of water vapor concentration around the rocket trajectory is made. The process of sublimation of the rocket exhaust ice particles may be impo...

  11. Parameterizing the competition between homogeneous and heterogeneous freezing in ice cloud formation – polydisperse ice nuclei

    Directory of Open Access Journals (Sweden)

    D. Barahona

    2009-08-01

    Full Text Available This study presents a comprehensive ice cloud formation parameterization that computes the ice crystal number, size distribution, and maximum supersaturation from precursor aerosol and ice nuclei. The parameterization provides an analytical solution of the cloud parcel model equations and accounts for the competition effects between homogeneous and heterogeneous freezing, and, between heterogeneous freezing in different modes. The diversity of heterogeneous nuclei is described through a nucleation spectrum function which is allowed to follow any form (i.e., derived from classical nucleation theory or from observations. The parameterization reproduces the predictions of a detailed numerical parcel model over a wide range of conditions, and several expressions for the nucleation spectrum. The average error in ice crystal number concentration was −2.0±8.5% for conditions of pure heterogeneous freezing, and, 4.7±21% when both homogeneous and heterogeneous freezing were active. The formulation presented is fast and free from requirements of numerical integration.

  12. Microwave emission from high Arctic Sea ice during freeze-up

    Science.gov (United States)

    Hollinger, J. P.; Troy, B. E.; Ramseier, R. O.; Asmus, K. W.; Hartman, M. F.; Luther, C. A.

    1984-09-01

    A cooperative sea ice remote sensing experiment was conducted in the eastern Beaufort Sea and Mould Bay area during the freeze-up period in October 1981. Airborne millimeter-wave imagery at 90, 140, and 220 GHz, and nadir microwave radiometric measurements at 19, 22, and 31 GHz, were made from a U. S. Naval Research Laboratory aircraft, while the Canadian Atmospheric Environment Service conducted an extensive concurrent surface measurement program. This study demonstrates for the first time the high-resolution capability of 90 GHz to investigate detailed ice morphology and to define ice types. The 140 and 220 GHz imagery is the first ever made of sea ice at these high frequencies. Emissivities are determined for young ice, second-year ice (SY), multiyear ice (MY), new ice, old shorefast ice, and open water. The young ice exhibits the emissivity typical of first-year (FY) ice types, i.e., near unity and independent of frequency. The emissivities of new ice and open water increase with frequency, and that of MY ice decreases with frequency. Those of SY ice and old shorefast ice, measured here for the first time, also decrease with frequency but are larger in value than the MY emissivity. Ice type discrimination is optimum at 90 GHz, i.e., the spread in microwave signature between FY ice and old ice (SY and MY) is greatest at 90 GHz. The MY emissivity is lower than that of open water at both 90 and 140 GHz. The measurements presented here provide a basis for development of algorithms to exploit the potential of the Mission Sensor Microwave/Imager (SSM/I) to be launched on a Defense Meteorological Satellite in 1985 and, in particular, the 85.5-GHz SSM/I channels for ice type, concentration, and edge determination.

  13. Cyclic steps on ice

    Science.gov (United States)

    Yokokawa, M.; Izumi, N.; Naito, K.; Parker, G.; Yamada, T.; Greve, R.

    2016-05-01

    Boundary waves often form at the interface between ice and fluid flowing adjacent to it, such as ripples under river ice covers, and steps on the bed of supraglacial meltwater channels. They may also be formed by wind, such as the megadunes on the Antarctic ice sheet. Spiral troughs on the polar ice caps of Mars have been interpreted to be cyclic steps formed by katabatic wind blowing over ice. Cyclic steps are relatives of upstream-migrating antidunes. Cyclic step formation on ice is not only a mechanical but also a thermodynamic process. There have been very few studies on the formation of either cyclic steps or upstream-migrating antidunes on ice. In this study, we performed flume experiments to reproduce cyclic steps on ice by flowing water, and found that trains of steps form when the Froude number is larger than unity. The features of those steps allow them to be identified as ice-bed analogs of cyclic steps in alluvial and bedrock rivers. We performed a linear stability analysis and obtained a physical explanation of the formation of upstream-migrating antidunes, i.e., precursors of cyclic steps. We compared the results of experiments with the predictions of the analysis and found the observed steps fall in the range where the analysis predicts interfacial instability. We also found that short antidune-like undulations formed as a precursor to the appearance of well-defined steps. This fact suggests that such antidune-like undulations correspond to the instability predicted by the analysis and are precursors of cyclic steps.

  14. Ikaite crystal distribution in Arctic winter sea ice and implications for CO2 system dynamics

    Directory of Open Access Journals (Sweden)

    D. F. McGinnnis

    2012-12-01

    Full Text Available The precipitation of ikaite (CaCO3·6H2O in polar sea ice is critical to the efficiency of the sea ice-driven carbon pump and potentially important to the global carbon cycle, yet the spatial and temporal occurrence of ikaite within the ice is poorly known. We report unique observations of ikaite in unmelted ice and vertical profiles of ikaite abundance and concentration in sea ice for the crucial season of winter. Ice was examined from two locations: a 1 m thick land-fast ice site and a 0.3 m thick polynya site, both in the Young Sound area (74° N, 20° W of NE Greenland. Ikaite crystals, ranging in size from a few µm to 700 µm were observed to concentrate in the interstices between the ice platelets in both granular and columnar sea ice. In vertical sea-ice profiles from both locations, ikaite concentration determined from image analysis, decreased with depth from surfaceice values of 700–900 µmol kg−1 ice (~ 25 × 106 crystals kg−1 to bottom-layer values of 100–200 µmol kg−1 ice (1–7 × 106 kg−1, all of which are much higher (4–10 times than those reported in the few previous studies. Direct measurements of total alkalinity (TA in surface layers fell within the same range as ikaite concentration whereas TA concentrations in bottom layers were twice as high. This depth-related discrepancy suggests interior ice processes where ikaite crystals form in surface sea ice layers and partly dissolved in bottom layers. From these findings and model calculations we relate sea ice formation and melt to observed pCO2 conditions in polar surface waters, and hence, the air-sea CO2 flux.

  15. PROTONIC PHOTOCONDUCTIVITY OF ICE

    OpenAIRE

    Petrenko, V.; Ebinuma, T.; Maeno, N.

    1987-01-01

    A number of attempts have been made to find the protonic photoconductivity of ice (abbreviated as PPC hereafter), but most of them were not successful. Camp and Spears (1) tried to excite PPC of pure ice single crystals by a xenon lamp and concluded that the probability of photodissociation of ice, if any, is very small. De Haas et al. (2) and Itagaki et al. (3) used gamma-rays, X-rays, or electron beams, and found a change in the electrical conductivity. Very high-energy beams were used in t...

  16. Initial Cooling Experiment (ICE)

    CERN Multimedia

    Photographic Service

    1978-01-01

    In 1977, in a record-time of 9 months, the magnets of the g-2 experiment were modified and used to build a proton/antiproton storage ring: the "Initial Cooling Experiment" (ICE). It served for the verification of the cooling methods to be used for the "Antiproton Project". Stochastic cooling was proven the same year, electron cooling followed later. Also, with ICE the experimental lower limit for the antiproton lifetime was raised by 9 orders of magnitude: from 2 microseconds to 32 hours. For its previous life as g-2 storage ring, see 7405430. More on ICE: 7711282, 7809081, 7908242.

  17. 趣话ice

    Institute of Scientific and Technical Information of China (English)

    刘奉越

    2002-01-01

    在英语中,ice是一个很普通的词,它的基本含义是“冰,冰块”。如:The sportsman slipped on the ice and one of his legs was broken.(这个运动员在冰上滑倒了,一条腿摔断了。)它还可指“冰淇淋”,相当于ice cream。如.After having two ices I felt uncomfortable.

  18. Ice nucleation terminology

    Directory of Open Access Journals (Sweden)

    G. Vali

    2014-08-01

    Full Text Available Progress in the understanding of ice nucleation is being hampered by the lack of uniformity in how some terms are used in the literature. This even extends to some ambiguity of meanings attached to some terms. Suggestions are put forward here for common use of terms. Some are already well established and clear of ambiguities. Others are less engrained and will need a conscious effort in adoption. Evolution in the range of systems where ice nucleation is being studied enhances the need for a clear nomenclature. The ultimate limit in the clarity of definitions is, of course, the limited degree to which ice nucleation processes are understood.

  19. Milankovitch solar rdiation variations and ice age ice sheet sizes

    International Nuclear Information System (INIS)

    The fluctuations in the size of ice age ice sheets are caclulated using glacier mechanics and the Milankovitch solar radiation variations. The calculations are greatly simplified by considering only two-dimensional ice sheets with profiles that would be appropriate if ice obeyed the flow law of a perfectly plastic solid. The solar radiation variations seem to be large enough to account for ice ages. (author)

  20. Vortex ice in nanostructured superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Reichhardt, Charles [Los Alamos National Laboratory; Reichhardt, Cynthia J [Los Alamos National Laboratory; Libal, Andras J [Los Alamos National Laboratory

    2008-01-01

    We demonstrate using numerical simulations of nanostructured superconductors that it is possible to realize vortex ice states that are analogous to square and kagome ice. The system can be brought into a state that obeys either global or local ice rules by applying an external current according to an annealing protocol. We explore the breakdown of the ice rules due to disorder in the nanostructure array and show that in square ice, topological defects appear along grain boundaries, while in kagome ice, individual defects appear. We argue that the vortex system offers significant advantages over other artificial ice systems.

  1. Effects of preexisting ice crystals on cirrus clouds and comparison between different ice nucleation parameterizations with the Community Atmosphere Model (CAM5

    Directory of Open Access Journals (Sweden)

    X. Shi

    2014-07-01

    Full Text Available In order to improve the treatment of ice nucleation in a more realistic manner in the Community Atmospheric Model version 5.3 (CAM5.3, the effects of preexisting ice crystals on ice nucleation in cirrus clouds are considered. In addition, by considering the in-cloud variability in ice saturation ratio, homogeneous nucleation takes place spatially only in a portion of cirrus cloud rather than in the whole area of cirrus cloud. With these improvements, the two unphysical limiters used in the representation of ice nucleation are removed. Compared to observations, the ice number concentrations and the probability distributions of ice number concentration are both improved with the updated treatment. The preexisting ice crystals significantly reduce ice number concentrations in cirrus clouds, especially at mid- to high latitudes in the upper troposphere (by a factor of ~10. Furthermore, the contribution of heterogeneous ice nucleation to cirrus ice crystal number increases considerably. Besides the default ice nucleation parameterization of Liu and Penner (2005, hereafter LP in CAM5.3, two other ice nucleation parameterizations of Barahona and Nenes (2009, hereafter BN and Kärcher et al. (2006, hereafter KL are implemented in CAM5.3 for the comparison. In-cloud ice crystal number concentration, percentage contribution from heterogeneous ice nucleation to total ice crystal number, and preexisting ice effects simulated by the three ice nucleation parameterizations have similar patterns in the simulations with present-day aerosol emissions. However, the change (present-day minus pre-industrial times in global annual mean column ice number concentration from the KL parameterization (3.24 × 106 m−2 is obviously less than that from the LP (8.46 × 106 m−2 and BN (5.62 × 106 m−2 parameterizations. As a result, experiment using the KL parameterization predicts a much smaller anthropogenic aerosol longwave indirect forcing (0.24 W m−2 than that

  2. Effects of Pre-Existing Ice Crystals on Cirrus Clouds and Comparison between Different Ice Nucleation Parameterizations with the Community Atmosphere Model (CAM5)

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Xiangjun; Liu, Xiaohong; Zhang, Kai

    2015-01-01

    In order to improve the treatment of ice nucleation in a more realistic manner in the Community Atmospheric Model version 5.3 (CAM5.3), the effects of preexisting ice crystals on ice nucleation in cirrus clouds are considered. In addition, by considering the in-cloud variability in ice saturation ratio, homogeneous nucleation takes place spatially only in a portion of cirrus cloud rather than in the whole area of cirrus cloud. With these improvements, the two unphysical limiters used in the representation of ice nucleation are removed. Compared to observations, the ice number concentrations and the probability distributions of ice number concentration are both improved with the updated treatment. The preexisting ice crystals significantly reduce ice number concentrations in cirrus clouds, especially at mid- to high latitudes in the upper troposphere (by a factor of ~10). Furthermore, the contribution of heterogeneous ice nucleation to cirrus ice crystal number increases considerably.Besides the default ice nucleation parameterization of Liu and Penner (2005, hereafter LP) in CAM5.3, two other ice nucleation parameterizations of Barahona and Nenes (2009, hereafter BN) and Kärcher et al. (2006, hereafter KL) are implemented in CAM5.3 for the comparison. In-cloud ice crystal number concentration, percentage contribution from heterogeneous ice nucleation to total ice crystal number, and preexisting ice effects simulated by the three ice nucleation parameterizations have similar patterns in the simulations with present-day aerosol emissions. However, the change (present-day minus pre-industrial times) in global annual mean column ice number concentration from the KL parameterization (3.24×106 m-2) is obviously less than that from the LP (8.46×106 m-2) and BN (5.62×106 m-2) parameterizations. As a result, experiment using the KL parameterization predicts a much smaller anthropogenic aerosol longwave indirect forcing (0.24 W m-2) than that using the LP (0.46 W m-2

  3. The lunar thermal ice pump

    Energy Technology Data Exchange (ETDEWEB)

    Schorghofer, Norbert [Institute for Astronomy and NASA Astrobiology Institute, University of Hawaii, Honolulu, HI 96822 (United States); Aharonson, Oded, E-mail: norbert@hawaii.edu [Helen Kimmel Center for Planetary Science, Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot, 76100 (Israel)

    2014-06-20

    It has long been suggested that water ice can exist in extremely cold regions near the lunar poles, where sublimation loss is negligible. The geographic distribution of H-bearing regolith shows only a partial or ambiguous correlation with permanently shadowed areas, thus suggesting that another mechanism may contribute to locally enhancing water concentrations. We show that under suitable conditions, water molecules can be pumped down into the regolith by day-night temperature cycles, leading to an enrichment of H{sub 2}O in excess of the surface concentration. Ideal conditions for pumping are estimated and found to occur where the mean surface temperature is below 105 K and the peak surface temperature is above 120 K. These conditions complement those of the classical cold traps that are roughly defined by peak temperatures lower than 120 K. On the present-day Moon, an estimated 0.8% of the global surface area experiences such temperature variations. Typically, pumping occurs on pole-facing slopes in small areas, but within a few degrees of each pole the equator-facing slopes are preferred. Although pumping of water molecules is expected over cumulatively large areas, the absolute yield of this pump is low; at best, a few percent of the H{sub 2}O delivered to the surface could have accumulated in the near-surface layer in this way. The amount of ice increases with vapor diffusivity and is thus higher in the regolith with large pore spaces.

  4. The lunar thermal ice pump

    International Nuclear Information System (INIS)

    It has long been suggested that water ice can exist in extremely cold regions near the lunar poles, where sublimation loss is negligible. The geographic distribution of H-bearing regolith shows only a partial or ambiguous correlation with permanently shadowed areas, thus suggesting that another mechanism may contribute to locally enhancing water concentrations. We show that under suitable conditions, water molecules can be pumped down into the regolith by day-night temperature cycles, leading to an enrichment of H2O in excess of the surface concentration. Ideal conditions for pumping are estimated and found to occur where the mean surface temperature is below 105 K and the peak surface temperature is above 120 K. These conditions complement those of the classical cold traps that are roughly defined by peak temperatures lower than 120 K. On the present-day Moon, an estimated 0.8% of the global surface area experiences such temperature variations. Typically, pumping occurs on pole-facing slopes in small areas, but within a few degrees of each pole the equator-facing slopes are preferred. Although pumping of water molecules is expected over cumulatively large areas, the absolute yield of this pump is low; at best, a few percent of the H2O delivered to the surface could have accumulated in the near-surface layer in this way. The amount of ice increases with vapor diffusivity and is thus higher in the regolith with large pore spaces.

  5. Ice Cream Stick Math.

    Science.gov (United States)

    Paddock, Cynthia

    1992-01-01

    Described is a teaching technique which uses the collection of ice cream sticks as a means of increasing awareness of quantity in a self-contained elementary special class for students with learning disabilities and mild mental retardation. (DB)

  6. Global ice sheet modeling

    International Nuclear Information System (INIS)

    The University of Maine conducted this study for Pacific Northwest Laboratory (PNL) as part of a global climate modeling task for site characterization of the potential nuclear waste respository site at Yucca Mountain, NV. The purpose of the study was to develop a global ice sheet dynamics model that will forecast the three-dimensional configuration of global ice sheets for specific climate change scenarios. The objective of the third (final) year of the work was to produce ice sheet data for glaciation scenarios covering the next 100,000 years. This was accomplished using both the map-plane and flowband solutions of our time-dependent, finite-element gridpoint model. The theory and equations used to develop the ice sheet models are presented. Three future scenarios were simulated by the model and results are discussed

  7. Optical properties of sea ice in Liaodong Bay, China

    Science.gov (United States)

    Xu, Zhantang; Yang, Yuezhong; Wang, Guifen; Cao, Wenxi; Li, Zhijun; Sun, Zhaohua

    2012-03-01

    Many industrial, agricultural, and residential areas surrounding Liaodong Bay are responsible for much of the particulate matter (PM) and colored dissolved organic matter (CDOM) found in the sea ice in the bay. Understanding the optical properties of "dirty" sea ice is important for analyzing remote sensing data and calculating energy balances. We designed a hyperspectral radiation instrument to observe the optical properties of sea ice. The results show that albedo peaks ranged from 0.3 to 0.85 and that the peaks shifted to a longer wavelength for high PM and CDOM concentrations. The absorption and scattering coefficients for sea ice were obtained. The bulk absorption coefficient shows that bulk absorption is primarily determined by PM and CDOM at shorter wavelengths, while pure ice and brine pockets become more important at longer wavelengths. Scattering coefficients for sea ice ranged from 197 to 1072 m-1, and showed consistent variations with gas bubble and brine pocket concentrations. The effects of PM and CDOM on the bulk absorption coefficient of sea ice were studied. At 440 nm, particulates accounted for 55-98% and CDOM accounted for 2-37% of the bulk absorption. Ratios between particulate absorption and bulk absorption for sea ice were almost constant from 400 to 550 nm, and began to decrease sharply for wavelengths >550 nm. Ratios between CDOM and bulk absorption decreased almost linearly with increasing wavelength.

  8. UAV applications for thermodynamic profiling: Emphasis on ice fog research

    Science.gov (United States)

    Gultepe, Ismail; Heymsfield, Andrew J.; Fernando, Harindra J. S.; Hoch, Sebastian W.; Ware, Randolph

    2016-04-01

    Ice fog occurs often over the Arctic, cold climatic, and mountainous regions for about 30% of time where temperature (T) can go down to -10°C or below. Ice Nucleation (IN) and cooling processes play an important role by the controlling the intensity of ice fog conditions that affect aviation application, transportation, and local climate. Ice fog can also occur at T above -10°C but close to 0°C it occurs due to freezing of supercooled droplets that include an IN. To better document ice fog conditions, observations from the ice fog events of the Indirect and Semi-Direct Aerosol effects on Climate (ISDAC) project, Barrow, Alaska, Fog Remote Sensing And Modeling (FRAM) project Yellowknife, Northwest Territories, and the Mountain Terrain Atmospheric Modeling and Observations (MATERHORN) project, Heber City, Utah, were analyzed.. Measurements difficulties of small ice fog particles at cold temperatures and low-level flying restrictions prevent observations from aircraft within the surface boundary layer. However, unmanned Aerial Vehicles (UAVs) can be operated safely to measure IN number concentration, Relative Humidity with respect to ice (RHi), T, horizontal wind speed (Uh) and direction, and ice crystal spectra less than about 500 micron. Thermodynamic profiling by a Radiometrics Profiling Microwave Radiometer (PMWR) and Vaisala CL51 ceilometer was used to describe ice fog conditions in the vertical and its time development. In this presentation, ice fog characteristics and its thermodynamic environment will be presented using both ground-based and airborne platforms such as a UAV with new sensors. Some examples of measurements from the UAV for future research, and challenges related to both ice fog measurements and visibility parameterization will also be presented.

  9. Layered kagome spin ice

    Science.gov (United States)

    Hamp, James; Dutton, Sian; Mourigal, Martin; Mukherjee, Paromita; Paddison, Joseph; Ong, Harapan; Castelnovo, Claudio

    Spin ice materials provide a rare instance of emergent gauge symmetry and fractionalisation in three dimensions: the effective degrees of freedom of the system are emergent magnetic monopoles, and the extensively many `ice rule' ground states are those devoid of monopole excitations. Two-dimensional (kagome) analogues of spin ice have also been shown to display a similarly rich behaviour. In kagome ice however the ground-state `ice rule' condition implies the presence everywhere of magnetic charges. As temperature is lowered, an Ising transition occurs to a charge-ordered state, which can be mapped to a dimer covering of the dual honeycomb lattice. A second transition, of Kosterlitz-Thouless or three-state Potts type, occurs to a spin-ordered state at yet lower temperatures, due to small residual energy differences between charge-ordered states. Inspired by recent experimental capabilities in growing spin ice samples with selective (layered) substitution of non-magnetic ions, in this work we investigate the fate of the two ordering transitions when individual kagome layers are brought together to form a three-dimensional pyrochlore structure coupled by long range dipolar interactions. We also consider the response to substitutional disorder and applied magnetic fields.

  10. Ice slurry accumulation

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, K.G.; Kauffeld, M.

    1998-06-01

    More and more refrigeration systems are designed with secondary loops, thus reducing the refrigerant charge of the primary refrigeration plant. In order not to increase energy consumption by introducing a secondary refrigerant, alternatives to the well established single phase coolants (brines) and different concepts of the cooling plant have to be evaluated. Combining the use of ice-slurry - mixture of water, a freezing point depressing agent (antifreeze) and ice particles - as melting secondary refrigerant and the use of a cool storage makes it possible to build plants with secondary loops without increasing the energy consumption and investment. At the same time the operating costs can be kept at a lower level. The accumulation of ice-slurry is compared with other and more traditional storage systems. The method is evaluated and the potential in different applications is estimated. Aspects of practically use of ice-slurry has been examined in the laboratory at the Danish Technological Institute (DTI). This paper will include the final conclusions from this work concerning tank construction, agitator system, inlet, outlet and control. The work at DTI indicates that in some applications systems with ice-slurry and accumulation tanks have a great future. These applications are described by a varying load profile and a process temperature suiting the temperature of ice-slurry (-3 - -8/deg. C). (au)

  11. Loss of sea ice during winter north of Svalbard

    Directory of Open Access Journals (Sweden)

    Ingrid H. Onarheim

    2014-06-01

    Full Text Available Sea ice loss in the Arctic Ocean has up to now been strongest during summer. In contrast, the sea ice concentration north of Svalbard has experienced a larger decline during winter since 1979. The trend in winter ice area loss is close to 10% per decade, and concurrent with a 0.3°C per decade warming of the Atlantic Water entering the Arctic Ocean in this region. Simultaneously, there has been a 2°C per decade warming of winter mean surface air temperature north of Svalbard, which is 20–45% higher than observations on the west coast. Generally, the ice edge north of Svalbard has retreated towards the northeast, along the Atlantic Water pathway. By making reasonable assumptions about the Atlantic Water volume and associated heat transport, we show that the extra oceanic heat brought into the region is likely to have caused the sea ice loss. The reduced sea ice cover leads to more oceanic heat transferred to the atmosphere, suggesting that part of the atmospheric warming is driven by larger open water area. In contrast to significant trends in sea ice concentration, Atlantic Water temperature and air temperature, there is no significant temporal trend in the local winds. Thus, winds have not caused the long-term warming or sea ice loss. However, the dominant winds transport sea ice from the Arctic Ocean into the region north of Svalbard, and the local wind has influence on the year-to-year variability of the ice concentration, which correlates with surface air temperatures, ocean temperatures, as well as the local wind.

  12. The impact of ice layers on gas transport through firn at the North Greenland Eemian Ice Drilling (NEEM) site, Greenland

    Science.gov (United States)

    Keegan, K.; Albert, M. R.; Baker, I.

    2014-10-01

    Typically, gas transport through firn is modeled in the context of an idealized firn column. However, in natural firn, imperfections are present, which can alter transport dynamics and therefore reduce the accuracy of reconstructed climate records. For example, ice layers have been found in several firn cores collected in the polar regions. Here, we examined the effects of two ice layers found in a NEEM, Greenland firn core on gas transport through the firn. These ice layers were found to have permeability values of 3.0 and 4.0 × 10-10 m2, and are therefore not impermeable layers. However, the shallower ice layer was found to be significantly less permeable than the surrounding firn, and can therefore retard gas transport. Large closed bubbles were found in the deeper ice layer, which will have an altered gas composition than that expected because they were closed near the surface after the water phase was present. The bubbles in this layer represent 12% of the expected closed porosity of this firn layer after the firn-ice transition depth is reached, and will therefore bias the future ice core gas record. The permeability and thickness of the ice layers at the North Greenland Eemian Ice Drilling (NEEM) site suggest that they do not disrupt the firn-air concentration profiles and that they do not need to be accounted for in gas transport models at NEEM.

  13. Interaction of ice binding proteins with ice, water and ions.

    Science.gov (United States)

    Oude Vrielink, Anneloes S; Aloi, Antonio; Olijve, Luuk L C; Voets, Ilja K

    2016-03-01

    Ice binding proteins (IBPs) are produced by various cold-adapted organisms to protect their body tissues against freeze damage. First discovered in Antarctic fish living in shallow waters, IBPs were later found in insects, microorganisms, and plants. Despite great structural diversity, all IBPs adhere to growing ice crystals, which is essential for their extensive repertoire of biological functions. Some IBPs maintain liquid inclusions within ice or inhibit recrystallization of ice, while other types suppress freezing by blocking further ice growth. In contrast, ice nucleating proteins stimulate ice nucleation just below 0 °C. Despite huge commercial interest and major scientific breakthroughs, the precise working mechanism of IBPs has not yet been unraveled. In this review, the authors outline the state-of-the-art in experimental and theoretical IBP research and discuss future scientific challenges. The interaction of IBPs with ice, water and ions is examined, focusing in particular on ice growth inhibition mechanisms. PMID:26787386

  14. Characterization of sea-ice kinematic in the Arctic outflow region using buoy data

    Directory of Open Access Journals (Sweden)

    Ruibo Lei

    2016-01-01

    Full Text Available Data from four ice-tethered buoys deployed in 2010 were used to investigate sea-ice motion and deformation from the Central Arctic to Fram Strait. Seasonal and long-term changes in ice kinematics of the Arctic outflow region were further quantified using 42 ice-tethered buoys deployed between 1979 and 2011. Our results confirmed that the dynamic setting of the transpolar drift stream (TDS and Fram Strait shaped the motion of the sea ice. Ice drift was closely aligned with surface winds, except during quiescent conditions, or during short-term reversal of the wind direction opposing the TDS. Meridional ice velocity south of 85°N showed a distinct seasonal cycle, peaking between late autumn and early spring in agreement with the seasonality of surface winds. Inertia-induced ice motion was strengthened as ice concentration decreased in summer. As ice drifted southward into the Fram Strait, the meridional ice speed increased dramatically, while associated zonal ice convergence dominated the ice-field deformation. The Arctic atmospheric Dipole Anomaly (DA influenced ice drift by accelerating the meridional ice velocity. Ice trajectories exhibited less meandering during the positive phase of DA and vice versa. From 2005 onwards, the buoy data exhibit high Arctic sea-ice outflow rates, closely related to persistent positive DA anomaly. However, the long-term data from 1979 to 2011 do not show any statistically significant trend for sea-ice outflow, but exhibit high year-to-year variability, associated with the change in the polarity of DA.

  15. The origins of ice crystals measured in mixed-phase clouds at the high-alpine site Jungfraujoch

    Science.gov (United States)

    Lloyd, G.; Choularton, T. W.; Bower, K. N.; Gallagher, M. W.; Connolly, P. J.; Flynn, M.; Farrington, R.; Crosier, J.; Schlenczek, O.; Fugal, J.; Henneberger, J.

    2015-11-01

    During the winter of 2013 and 2014 measurements of cloud microphysical properties over a 5-week period at the high-alpine site Jungfraujoch, Switzerland, were carried out as part of the Cloud Aerosol Characterisation Experiments (CLACE) and the Ice Nucleation Process Investigation and Quantification project (INUPIAQ). Measurements of aerosol properties at a second, lower site, Schilthorn, Switzerland, were used as input for a primary ice nucleation scheme to predict ice nuclei concentrations at Jungfraujoch. Frequent, rapid transitions in the ice and liquid properties of the clouds at Jungfraujoch were identified that led to large fluctuations in ice mass fractions over temporal scales of seconds to hours. During the measurement period we observed high concentrations of ice particles that exceeded 1000 L-1 at temperatures around -15 °C, verified by multiple instruments. These concentrations could not be explained using the usual primary ice nucleation schemes, which predicted ice nucleus concentrations several orders of magnitude smaller than the peak ice crystal number concentrations. Secondary ice production through the Hallett-Mossop process as a possible explanation was ruled out, as the cloud was rarely within the active temperature range for this process. It is shown that other mechanisms of secondary ice particle production cannot explain the highest ice particle concentrations. We describe four possible mechanisms that could lead to high cloud ice concentrations generated from the snow-covered surfaces surrounding the measurement site. Of these we show that hoar frost crystals generated at the cloud enveloped snow surface could be the most important source of cloud ice concentrations. Blowing snow was also observed to make significant contributions at higher wind speeds when ice crystal concentrations were < 100 L-1.

  16. Meteorites constrain the age of Antarctic ice at the Frontier Mountain blue ice field (northern Victoria Land)

    Science.gov (United States)

    Folco, L.; Welten, K. C.; Jull, A. J. T.; Nishiizumi, K.; Zeoli, A.

    2006-08-01

    We show that meteorites can provide chronological constraints upon the age of the ice cropping out at the Frontier Mountain meteorite trap (Antarctica) when their terrestrial age is placed in a glaciological context. Amongst the over 700 meteorites found so far, Frontier Mountain (FRO) 84001, 99028, 93005 and 93054 were most likely not wind-drifted across the ice field, since their masses (772-1665 g) are much heavier than the local ˜ 200 g wind transport threshold. The four meteorites were found along a stretch of ice where a representative section of the Frontier Mountain blue ice crops out. Based on the bedding of englacial tephra layers, the structure of the ice along the section appears to be essentially an up-glacier dipping monocline. The 14C terrestrial age of FRO 8401, 99028 and 93005 are 13 ± 2, 21 ± 3 and 27 ± 2 ky, respectively; the 41Ca/ 36Cl age of FRO 93054 is 40 ± 10 ky. The terrestrial ages of the four meteorites increase from the top to the bottom layers of the monocline. This geographic distribution is best explained by delivery of meteorites at the ice surface through the "ice-flow model" (i.e., englacial transport from the snow accumulation zone and exhumation in the blue ice area through ablation) rather than direct fall. Since the effect of ablation in decoupling terrestrial ages of meteorites and the age of the ice on which they sit must have been minor (most likely ≤ 7 ky) based on the local ice dynamics, we conclude that the age of the bulk of the ice body currently under ablation at Frontier Mountain is up to ˜ 50 ky old. This result has implications on both the meteorite concentrations mechanism at Frontier Mountain and the regional ice dynamics.

  17. Tropical tropopause ice clouds: a dynamic approach to the mystery of low crystal numbers

    Directory of Open Access Journals (Sweden)

    P. Spichtinger

    2013-10-01

    Full Text Available The occurrence of high, persistent ice supersaturation inside and outside cold cirrus in the tropical tropopause layer (TTL remains an enigma that is intensely debated as the "ice supersaturation puzzle". However, it was recently confirmed that observed supersaturations are consistent with very low ice crystal concentrations, which is incompatible with the idea that homogeneous freezing is the major method of ice formation in the TTL. Thus, the tropical tropopause "ice supersaturation puzzle" has become an "ice nucleation puzzle". To explain the low ice crystal concentrations, a number of mainly heterogeneous freezing methods have been proposed. Here, we reproduce in situ measurements of frequencies of occurrence of ice crystal concentrations by extensive model simulations, driven by the special dynamic conditions in the TTL, namely the superposition of slow large-scale updraughts with high-frequency short waves. From the simulations, it follows that the full range of observed ice crystal concentrations can be explained when the model results are composed from scenarios with consecutive heterogeneous and homogeneous ice formation and scenarios with pure homogeneous ice formation occurring in very slow (−1 and faster (> 1 cm s−1 large-scale updraughts, respectively. This statistical analysis shows that about 80% of TTL cirrus can be explained by "classical" homogeneous ice nucleation, while the remaining 20% stem from heterogeneous and homogeneous freezing occurring within the same environment. The mechanism limiting ice crystal production via homogeneous freezing in an environment full of gravity waves is the shortness of the gravity waves, which stalls freezing events before a higher ice crystal concentration can be formed.

  18. Constitutive Models for Debris-bearing Ice Layers

    Science.gov (United States)

    Moore, P. L.

    2013-12-01

    Rock debris is incorporated within many glaciers and ice sheets, particularly in basal ice layers and englacial debris bands. Field observations and laboratory experiments have shown that debris inclusions can both strengthen and weaken ice by as much as two orders of magnitude compared to debris-free ice under the same conditions. Nevertheless, models of glacier flow usually neglect any effect of debris-bearing layers. Where debris-bearing ice is present, proper treatment of its deformation could profoundly impact model results. A three-phase mechanical model is presented that reproduces many of the key observations of debris-bearing ice rheology. First order variables in the model are limited to debris concentration, particle size, solute concentration and temperature. At low debris concentrations (less than about 40% by volume), the mixture is treated under the framework of a dispersion-strengthened metal alloy but with a fluidity that is enhanced by premelted water at ice-debris interfaces. While debris strengthens the ice by interfering with the motion of dislocations, thermally-activated detachment can reduce the effect at temperatures close to melting. At these warm temperatures, recovery aided by unfrozen interfacial water acts to weaken the mixture, an effect that is further ehnanced by the presence of solutes at particle surfaces. Whether the debris-bearing ice is stronger or weaker than debris-free ice in the model depends strongly on the specific surface area of the debris and on a parameter that describes the thermal detachment of dislocations. As debris concentrations exceed about 40%, dispersion-strengthened ice flow still governs bulk deformation but the effective viscosity is further increased by enhanced strain rates in the ice "matrix" as the average inter-particle distance declines. At still higher concentrations (greater than about 52% by volume for sand), deformation is primarily frictional. The mixture is thus treated as a dilatant Coulomb

  19. Preservation of a Preglacial Landscape Under the Center of the Greenland Ice Sheet

    Science.gov (United States)

    Bierman, Paul R.; Corbett, Lee B.; Graly, Joseph A.; Neumann, Thomas Allen; Lini, Andrea; Crosby, Benjamin T.; Rood, Dylan H.

    2014-01-01

    Continental ice sheets typically sculpt landscapes via erosion; under certain conditions, ancient landscapes can be preserved beneath ice and can survive extensive and repeated glaciation. We used concentrations of atmospherically produced cosmogenic beryllium-10, carbon, and nitrogen to show that ancient soil has been preserved in basal ice for millions of years at the center of the ice sheet at Summit, Greenland. This finding suggests ice sheet stability through the Pleistocene (i.e., the past 2.7 million years). The preservation of this soil implies that the ice has been non-erosive and frozen to the bed for much of that time, that there was no substantial exposure of central Greenland once the ice sheet became fully established, and that preglacial landscapes can remain preserved for long periods under continental ice sheets

  20. Million year old ice found under meter thick debris layer in Antarctica

    Science.gov (United States)

    Bibby, Theodore; Putkonen, Jaakko; Morgan, Daniel; Balco, Greg; Shuster, David L.

    2016-07-01

    Cosmogenic nuclide measurements associated with buried glacier ice in Ong Valley, in the Transantarctic Mountains, suggest the preservation of ancient ice. There are three glacial tills on the valley floor which have formed from the concentration of regolith contained within sublimating glacier ice. Two tills are less than 1 m thick and underlain by ice. Measurements of cosmogenic 10Be, 26Al, and 21Ne show that (i) the youngest buried ice unit and corresponding till are at least 11-13 ka, (ii) another ice unit and corresponding intermediate-age till are at least 1.1 Ma old under any circumstances and most likely older than 1.78 Ma, and (iii) the oldest till is at least 1.57 Ma and most likely greater than 2.63 Ma. These observations highlight the longevity of ice under thin debris layers and the potential to sample ancient ice for paleoclimate/paleoatmosphere information close to the present land surface.

  1. An analytical model for wind-driven Arctic summer sea ice drift

    Science.gov (United States)

    Park, H.-S.; Stewart, A. L.

    2016-01-01

    The authors present an analytical model for wind-driven free drift of sea ice that allows for an arbitrary mixture of ice and open water. The model includes an ice-ocean boundary layer with an Ekman spiral, forced by transfers of wind-input momentum both through the sea ice and directly into the open water between the ice floes. The analytical tractability of this model allows efficient calculation of the ice velocity provided that the surface wind field is known and that the ocean geostrophic velocity is relatively weak. The model predicts that variations in the ice thickness or concentration should substantially modify the rotation of the velocity between the 10 m winds, the sea ice, and the ocean. Compared to recent observational data from the first ice-tethered profiler with a velocity sensor (ITP-V), the model is able to capture the dependencies of the ice speed and the wind/ice/ocean turning angles on the wind speed. The model is used to derive responses to intensified southerlies on Arctic summer sea ice concentration, and the results are shown to compare closely with satellite observations.

  2. Comprehensive two-dimensional river ice model based on boundary-fitted coordinate transformation method

    Directory of Open Access Journals (Sweden)

    Ze-yu MAO

    2014-01-01

    Full Text Available River ice is a natural phenomenon in cold regions, influenced by meteorology, geomorphology, and hydraulic conditions. River ice processes involve complex interactions between hydrodynamic, mechanical, and thermal processes, and they are also influenced by weather and hydrologic conditions. Because natural rivers are serpentine, with bends, narrows, and straight reaches, the commonly-used one-dimensional river ice models and two-dimensional models based on the rectangular Cartesian coordinates are incapable of simulating the physical phenomena accurately. In order to accurately simulate the complicated river geometry and overcome the difficulties of numerical simulation resulting from both complex boundaries and differences between length and width scales, a two-dimensional river ice numerical model based on a boundary-fitted coordinate transformation method was developed. The presented model considers the influence of the frazil ice accumulation under ice cover and the shape of the leading edge of ice cover during the freezing process. The model is capable of determining the velocity field, the distribution of water temperature, the concentration distribution of frazil ice, the transport of floating ice, the progression, stability, and thawing of ice cover, and the transport, accumulation, and erosion of ice under ice cover. A MacCormack scheme was used to solve the equations numerically. The model was validated with field observations from the Hequ Reach of the Yellow River. Comparison of simulation results with field data indicates that the model is capable of simulating the river ice process with high accuracy.

  3. Less winter cloud aids summer 2013 Arctic sea ice return from 2012 minimum

    International Nuclear Information System (INIS)

    In September 2012, Arctic sea ice cover reached a record minimum for the satellite era. The following winter the sea ice quickly returned, carrying through to the summer when ice extent was 48% greater than the same time in 2012. Most of this rebound in the ice cover was in the Chukchi and Beaufort Seas, areas experiencing the greatest decline in sea ice over the last three decades. A variety of factors, including ice dynamics, oceanic and atmospheric heat transport, wind, and solar insolation anomalies, may have contributed to the rebound. Here we show that another factor, below-average Arctic cloud cover in January–February 2013, resulted in a more strongly negative surface radiation budget, cooling the surface and allowing for greater ice growth. More thick ice was observed in March 2013 relative to March 2012 in the western Arctic Ocean, and the areas of ice growth estimated from the negative cloud cover anomaly and advected from winter to summer with ice drift data, correspond well with the September ice concentration anomaly pattern. Therefore, decreased wintertime cloud cover appears to have played an important role in the return of the sea ice cover the following summer, providing a partial explanation for large year-to-year variations in an otherwise decreasing Arctic sea ice cover. (paper)

  4. Annual layering in the NGRIP ice core during the Eemian

    DEFF Research Database (Denmark)

    Svensson, Anders; Bigler, Matthias; Kettner, Ernesto;

    2011-01-01

    records and visual stratigraphy, and stratigraphic layer counting has been performed back to 60 ka. In the deepest part of the core, however, the ice is close to the pressure melting point, the visual stratigraphy is dominated by crystal boundaries, and annual layering is not visible to the naked eye....... In this study, we apply a newly developed setup for high-resolution ice core impurity analysis to produce continuous records of dust, sodium and ammonium concentrations as well as conductivity of melt water. We analyzed three 2.2m sections of ice from the Eemian and the glacial inception. In all of the analyzed......The Greenland NGRIP ice core continuously covers the period from present day back to 123 ka before present, which includes several thousand years of ice from the previous interglacial period, MIS 5e or the Eemian. In the glacial part of the core, annual layers can be identified from impurity...

  5. Fine-resolution simulation of surface current and sea ice in the Arctic Mediterranean Seas

    Institute of Scientific and Technical Information of China (English)

    LIU Xiying; ZHANG Xuehong; YU Rucong; LIU Hailong; LI Wei

    2007-01-01

    A fine-resolution model is developed for ocean circulation simulation in the National Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG),Chinese Academy of Sciences, and is applied to simulate surface current and sea ice variations in the Arctic Mediterranean Seas. A dynamic sea ice model in elastic-viscous-plastic rheology and a thermodynamic sea ice model are employed. A 200-year simulation is performed and a dimatological average of a 10-year period (141 st-150 th) is presented with focus on sea ice concentration and surface current variations in the Arctic Mediterranean Seas. The model is able to simulate well the East Greenland Current, Beaufort Gyre and the Transpolar Drift, but the simulated West Spitsbergen Current is small and weak. In the March climatology, the sea ice coverage can be simulated well except for a bit more ice in east of Spitsbergen Island. The result is also good for the September scenario except for less ice concentration east of Greenland and greater ice concentration near the ice margin. The extra ice east of Spitsbergen Island is caused by sea ice current convergence forced by atmospheric wind stress.

  6. Ikaite crystal distribution in winter sea ice and implications for CO2 system dynamics

    DEFF Research Database (Denmark)

    Rysgaard, Søren; Søgaard, D.H.; Cooper, M.;

    2013-01-01

    the same range as ikaite concentration, whereas TA concentrations in the lower half of the sea ice were twice as high. This depth-related discrepancy suggests interior ice processes where ikaite crystals form in surface sea ice layers and partly dissolve in layers below. Melting of sea ice and dissolution......The precipitation of ikaite (CaCO3 ⋅ 6H2O) in polar sea ice is critical to the efficiency of the sea ice-driven carbon pump and potentially important to the global carbon cycle, yet the spatial and temporal occurrence of ikaite within the ice is poorly known. We report unique observations of ikaite...... in unmelted ice and vertical profiles of ikaite abundance and concentration in sea ice for the crucial season of winter. Ice was examined from two locations: a 1 m thick land-fast ice site and a 0.3 m thick polynya site, both in the Young Sound area (74° N, 20° W) of NE Greenland. Ikaite crystals, ranging...

  7. Providing Real-time Sea Ice Modeling Support to the U.S. Coast Guard

    Science.gov (United States)

    Allard, Richard; Dykes, James; Hebert, David; Posey, Pamela; Rogers, Erick; Wallcraft, Alan; Phelps, Michael; Smedstad, Ole Martin; Wang, Shouping; Geiszler, Dan

    2016-04-01

    The Naval Research Laboratory (NRL) supported the U.S. Coast Guard Research Development Center (RDC) through a demonstration project during the summer and autumn of 2015. Specifically, a modeling system composed of a mesoscale atmospheric model, regional sea ice model, and regional wave model were loosely coupled to provide real-time 72-hr forecasts of environmental conditions for the Beaufort/Chukchi Seas. The system components included a 2-km regional Community Ice CodE (CICE) sea ice model, 15-km Coupled Ocean Atmosphere Mesoscale Prediction System (COAMPS) atmospheric model, and a 5-km regional WAVEWATCH III wave model. The wave model utilized modeled sea ice concentration fields to incorporate the effects of sea ice on waves. The other modeling components assimilated atmosphere, ocean, and ice observations available from satellite and in situ sources. The modeling system generated daily 72-hr forecasts of synoptic weather (including visibility), ice drift, ice thickness, ice concentration and ice strength for missions within the economic exclusion zone off the coast of Alaska and a transit to the North Pole in support of the National Science Foundation GEOTRACES cruise. Model forecasts graphics were shared on a common web page with selected graphical products made available via ftp for bandwidth limited users. Model ice thickness and ice drift show very good agreement compared with Cold Regions Research and Engineering Laboratory (CRREL) Ice Mass Balance buoys. This demonstration served as a precursor to a fully coupled atmosphere-ocean-wave-ice modeling system under development. National Ice Center (NIC) analysts used these model data products (CICE and COAMPS) along with other existing model and satellite data to produce the predicted 48-hr position of the ice edge. The NIC served as a liaison with the RDC and NRL to provide feedback on the model predictions. This evaluation provides a baseline analysis of the current models for future comparison studies

  8. Modeling Commercial Turbofan Engine Icing Risk With Ice Crystal Ingestion

    Science.gov (United States)

    Jorgenson, Philip C. E.; Veres, Joseph P.

    2013-01-01

    The occurrence of ice accretion within commercial high bypass aircraft turbine engines has been reported under certain atmospheric conditions. Engine anomalies have taken place at high altitudes that have been attributed to ice crystal ingestion, partially melting, and ice accretion on the compression system components. The result was degraded engine performance, and one or more of the following: loss of thrust control (roll back), compressor surge or stall, and flameout of the combustor. As ice crystals are ingested into the fan and low pressure compression system, the increase in air temperature causes a portion of the ice crystals to melt. It is hypothesized that this allows the ice-water mixture to cover the metal surfaces of the compressor stationary components which leads to ice accretion through evaporative cooling. Ice accretion causes a blockage which subsequently results in the deterioration in performance of the compressor and engine. The focus of this research is to apply an engine icing computational tool to simulate the flow through a turbofan engine and assess the risk of ice accretion. The tool is comprised of an engine system thermodynamic cycle code, a compressor flow analysis code, and an ice particle melt code that has the capability of determining the rate of sublimation, melting, and evaporation through the compressor flow path, without modeling the actual ice accretion. A commercial turbofan engine which has previously experienced icing events during operation in a high altitude ice crystal environment has been tested in the Propulsion Systems Laboratory (PSL) altitude test facility at NASA Glenn Research Center. The PSL has the capability to produce a continuous ice cloud which are ingested by the engine during operation over a range of altitude conditions. The PSL test results confirmed that there was ice accretion in the engine due to ice crystal ingestion, at the same simulated altitude operating conditions as experienced previously in

  9. Implementation of a one-dimensional enthalpy sea-ice model in a simple pycnocline prediction model for sea-ice data assimilation studies

    Science.gov (United States)

    Wu, Xinrong; Zhang, Shaoqing; Liu, Zhengyu

    2016-02-01

    To further explore enthalpy-based sea-ice assimilation, a one-dimensional (1D) enthalpy sea-ice model is implemented into a simple pycnocline prediction model. The 1D enthalpy sea-ice model includes the physical processes such as brine expulsion, flushing, and salt diffusion. After being coupled with the atmosphere and ocean components, the enthalpy sea-ice model can be integrated stably and serves as an important modulator of model variability. Results from a twin experiment show that the sea-ice data assimilation in the enthalpy space can produce smaller root-mean-square errors of model variables than the traditional scheme that assimilates the observations of ice concentration, especially for slow-varying states. This study provides some insights into the improvement of sea-ice data assimilation in a coupled general circulation model.

  10. IDEOLOGICALLY CHALLENGING ENTERTAINMENT (ICE

    Directory of Open Access Journals (Sweden)

    Dana Lori Chalmers

    2015-09-01

    Full Text Available Ideologically Challenging Entertainment (ICE is entertainment that challenges ‘us vs. them’ ideologies associated with radicalization, violent conflict and terrorism. ICE presents multiple perspectives on a conflict through mainstream entertainment. This article introduces the theoretical underpinnings of ICE, the first ICE production and the audience responses to it. The first ICE production was Two Merchants: The Merchant of Venice adapted to challenge ideologies of the Arab-Israeli Conflict. A mixed-methods study of audience responses explored whether this production inspired audiences to shift their ideological views. Each performance included two versions of the adaptation: a Jewish dominated society with an Arab Muslim minority, contrasted with an Arab Muslim dominated society and a Jewish minority. A mixed-methods study of audience responses explored whether this production inspired audiences to shift their ideological views to become more tolerant of differences away from ideological radicalization. Of audience members who did not initially agree with the premise of the production, 40% reconsidered their ideological views, indicating increased tolerance, greater awareness of and desire to change their own prejudices. In addition, 86% of the audience expressed their intention to discuss the production with others, thereby encouraging critical engagement with, and broader dissemination of the message. These outcomes suggest that high quality entertainment – as defined by audience responses to it - can become a powerful tool in the struggle against radicalised ideologies.

  11. Data archaeology at ICES

    Science.gov (United States)

    Dooley, Harry D.

    1992-01-01

    This paper provides a brief overview of the function of the International Council for the Exploration of the Sea (ICES), both past and present, in particular in the context of its interest in compiling oceanographic data sets. Details are provided of the procedures it adopted to ensure adequate internationally collaborative marine investigations during the first part of the century, such as how it provided a forum for action by its member states, how it coordinated and published the results of scientific programs, and how it provided a foundation, through scientists employed in the ICES Office, for the establishment of the original oceanographic marine databases and associated products, and the scientific interpretation of the results. The growth and expansion of this area of ICES activity is then traced, taking into account the changing conditions for oceanographic data management resulting from the establishment of the National Data Centres, as well as the World Data Centres for Oceanography, which were created to meet the needs of the International Geophysical Year (IGY). Finally, there is a discussion of the way in which the very existence of ICES has proved to be a valuable source of old data, some of which have not yet been digitized, but which can be readily retrieved because they have been very carefully documented throughout the years. Lessons from this activity are noted, and suggestions are made on how the past experiences of ICES can be utilized to ensure the availability of marine data to present and future generations of scientists.

  12. The ICES system

    International Nuclear Information System (INIS)

    ICES is an integrated system used in the various engineering fields. It is made up of the Basic System and the applied Subsystems. ICES is controlled by the Operating System of the computer, from which it calls for suitable services: space allocation, loading of the modules etc... To be able to use software of this type on a computer the Operating System should be made more general. The Subsystems are developed with special programs included in the ICES Basic System. Each Subsystem is associated with an area of application. In other words, a Subsystem can only treat a previously defined ''class of problems''. The engineer (user) communicates with the Subsystem using a language oriented towards the problem (POL) also previously defined using the CDL language. The use of the (POL) language makes the engineer-computer contact much easier. The applied programs written in ICETRAN, once supplied as input to the ICETRAN Precompiler, become Fortran programs with special characteristics. A Fortran compiler produces the corresponding object programs with which, using the ICES ''Link-edit'' procedures, one obtains the modules which can be executed by an ICES Subsystem

  13. Iron biogeochemistry in Antarctic pack ice during SIPEX-2

    Science.gov (United States)

    Lannuzel, Delphine; Chever, Fanny; van der Merwe, Pier C.; Janssens, Julie; Roukaerts, Arnout; Cavagna, Anne-Julie; Townsend, Ashley T.; Bowie, Andrew R.; Meiners, Klaus M.

    2016-09-01

    Our study quantified the spatial and temporal distribution of Fe and ancillary biogeochemical parameters at six stations visited during an interdisciplinary Australian Antarctic marine science voyage (SIPEX-2) within the East Antarctic first-year pack ice zone during September-October 2012. Unlike previous studies in the area, the sea ice Chlorophyll a, Particulate Organic Carbon and Nitrogen (POC and PON) maxima did not occur at the ice/water interface because of the snow loading and dynamic processes under which the sea ice formed. Iron in sea ice ranged from 0.9 to 17.4 nM for the dissolved (0.2 μm) fraction. Our results highlight that the concentration of particulate Fe in sea ice was highest when approaching the continent. The high POC concentration and high particulate iron to aluminium ratio in sea ice samples demonstrate that 71% of the particulate Fe was biogenic in composition. Our estimated Fe flux from melting pack ice to East Antarctic surface waters over a 30 day melting period was 0.2 μmol/m2/d of DFe, 2.7 μmol/m2/d of biogenic PFe and 1.3 μmol/m2/d of lithogenic PFe. These estimates suggest that the fertilization potential of the particulate fraction of Fe may have been previously underestimated due to the assumption that it is primarily lithogenic in composition. Our new measurements and calculated fluxes indicate that a large fraction of the total Fe pool within sea ice may be bioavailable and therefore, effective in promoting primary productivity in the marginal ice zone.

  14. Ice Cores of the National Ice Core Laboratory

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The U.S. National Ice Core Laboratory (NICL) is a facility for storing, curating, and studying ice cores recovered from the polar regions of the world. It provides...

  15. High-frequency gravity waves and homogeneous ice nucleation in tropical tropopause layer cirrus

    Science.gov (United States)

    Jensen, Eric J.; Ueyama, Rei; Pfister, Leonhard; Bui, Theopaul V.; Alexander, M. Joan; Podglajen, Aurélien; Hertzog, Albert; Woods, Sarah; Lawson, R. Paul; Kim, Ji-Eun; Schoeberl, Mark R.

    2016-06-01

    The impact of high-frequency gravity waves on homogeneous-freezing ice nucleation in cold cirrus clouds is examined using parcel model simulations driven by superpressure balloon measurements of temperature variability experienced by air parcels in the tropical tropopause region. We find that the primary influence of high-frequency waves is to generate rapid cooling events that drive production of numerous ice crystals. Quenching of ice nucleation events by temperature tendency reversal in the highest-frequency waves does occasionally produce low ice concentrations, but the overall impact of high-frequency waves is to increase the occurrence of high ice concentrations. The simulated ice concentrations are considerably higher than indicated by in situ measurements of cirrus in the tropical tropopause region. One-dimensional simulations suggest that although sedimentation reduces mean ice concentrations, a discrepancy of about a factor of 3 with observed ice concentrations remains. Reconciliation of numerical simulations with the observed ice concentrations will require inclusion of physical processes such as heterogeneous nucleation and entrainment.

  16. Electrical conductivity measurements from the GISP2 and GRIP Greenland ice cores

    DEFF Research Database (Denmark)

    Dahl-Jensen, Dorthe; Clausen, Henrik Brink; Taylor, K. C.;

    1993-01-01

    THE direct-current electrical conductivity of glacial ice depends on its acidity1-3, and can also indicate changes in climate, as ice formed in cold, dusty periods has a high concentration of alkaline dust1,4,5, which significantly reduces the conductivity6,7 compared to warmer, less dusty periods....... Here we present electrical conductivity records for the Greenland Ice Sheet Project 2 (GISP2) and Greenland Ice-core Project (GRIP) ice cores, drilled 28 km apart to enable direct comparison of the results. The upper parts of both records are consistent with previous evidence from other Greenland cores...

  17. Relationship between Ice Nucleation Frequency of Bacteria and Frost Injury.

    Science.gov (United States)

    Lindow, S E; Hirano, S S; Barchet, W R; Arny, D C; Upper, C D

    1982-10-01

    Not every cell of a given bacterial isolate that has ice-nucleating properties can serve as an ice nucleus at any given time and temperature. The ratio between the number of ice nuclei and number of bacterial cells in a culture (i.e. nucleation frequency) was found to vary with incubation temperature, growth medium composition, culture age, and genotype. Optimal conditions for ice nucleus production in vitro included incubation of the bacterial cells at 20 to 24 degrees C on nutrient agar containing glycerol. The relationship between nucleation frequency and frost injury was examined by subjecting corn seedlings to -4 degrees C immediately after they were sprayed with bacterial suspensions with different nucleation frequencies and by following both ice nucleus concentration and bacterial population size on leaves of corn seedlings as a function of time after bacterial application. The amount of frost injury to growth chamber-grown corn seedlings at -4 degrees C was a function of the number of ice nuclei active at that temperature on the leaves. The number of ice nuclei, in turn, is the product of the nucleation frequency and population size of ice-nucleation-active bacteria present on the leaves. PMID:16662619

  18. Selective incorporation of dissolved organic matter (DOM) during sea ice formation

    DEFF Research Database (Denmark)

    Müller, Susan; Vähätalo, Anssi V.; Stedmon, Colin;

    2013-01-01

    as concentrations of dissolved organic carbon (DOC), dissolved organic nitrogen (DON), dissolved carbohydrates (dCHOs) and dissolved uronic acids (dUAs) were measured. Enrichment factors (EFs), calculated from salinity-normalized concentrations of DOM in bulk ice, brine and frost flowers relative to under-ice water...

  19. The Great Ice Age

    Science.gov (United States)

    Ray, Louis L.

    1992-01-01

    The Great Ice Age, a recent chapter in the Earth's history, was a period of recurring widespread glaciations. During the Pleistocene Epoch of the geologic time scale, which began about a million or more years ago, mountain glaciers formed on all continents, the icecaps of Antarctica and Greenland were more extensive and thicker than today, and vast glaciers, in places as much as several thousand feet thick, spread across northern North America and Eurasia. So extensive were these glaciers that almost a third of the present land surface of the Earth was intermittently covered by ice. Even today remnants of the great glaciers cover almost a tenth of the land, indicating that conditions somewhat similar to those which produced the Great Ice Age are still operating in polar and subpolar climates.

  20. EASE-Grid Sea Ice Age

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set provides weekly estimates of sea ice age for the Arctic Ocean from remotely sensed sea ice motion and sea ice extent. The ice age data are derived...

  1. Projecting Antarctic ice discharge using response functions from SeaRISE ice-sheet models

    Directory of Open Access Journals (Sweden)

    A. Levermann

    2012-08-01

    Full Text Available The largest uncertainty in projections of future sea-level change still results from the potentially changing dynamical ice discharge from Antarctica. While ice discharge can alter through a number of processes, basal ice-shelf melting induced by a warming ocean has been identified as a major if not the major cause for possible additional ice flow across the grounding line. Here we derive dynamic ice-sheet response functions for basal ice-shelf melting using experiments carried out within the Sea-level Response to Ice Sheet Evolution (SeaRISE intercomparison project with five different Antarctic ice-sheet models. As used here these response functions provide separate contributions for four different Antarctic drainage regions. Under the assumptions of linear-response theory we project future ice-discharge for each model, each region and each of the four Representative Concentration Pathways (RCP using oceanic temperatures from 19 comprehensive climate models of the Coupled Model Intercomparison Project, CMIP-5, and two ocean models from the EU-project Ice2Sea. Uncertainty in the climatic forcing, the oceanic response and the ice-model differences is combined into an uncertainty range of future Antarctic ice-discharge induced from basal ice-shelf melt. The additional ice-loss (Table 6 is clearly scenario-dependent and results in a median of 0.07 m (66%-range: 0.04–0.10 m; 90%-range: −0.01–0.26 m of global sea-level equivalent for the low-emission RCP-2.6 scenario and yields 0.1 m (66%-range: 0.06–0.14 m; 90%-range: −0.01–0.45 m for the strongest RCP-8.5. If only models with an explicit representation of ice-shelves are taken into account the scenario dependence remains and the values change to: 0.05 m (66%-range: 0.03–0.08 m for RCP-2.6 and 0.07 m (66%-range: 0.04–0.11 m for RCP-8.5. These results were obtained using a time delay between the surface warming signal and the subsurface oceanic warming as observed in the CMIP-5 models

  2. Fully coupled ice sheet-earth system model: How does the Greenlandic ice sheet interact in a changing climate

    Science.gov (United States)

    Rodehacke, C.; Mikolajewicz, U.; Vizcaino, M.

    2012-04-01

    As ice sheets belong to the slowest climate components, they are usually not interactively coupled in current climate models. Therefore, long-term climate projections are incomplete and only the consideration of ice sheet interactions allows tackling fundamental questions, such as how do ice sheets modify the reaction of the climate systems under a strong CO2 forcing? The earth system model MPI-ESM, with the atmosphere model ECHAM6 and ocean model MPIOM, is coupled to the modified ice sheet model PISM. This ice sheet model, which is developed at the University of Fairbanks, represents the ice sheet of Greenland at a horizontal resolution of 10 km. The coupling is performed by calculating the surface mass balance based on 6-hourly atmospheric data to determine the boundary condition for the ice sheet model. The response of the ice sheet to this forcing, which includes orographic changes and fresh water fluxes, are passed back to the ESM. In contrast to commonly used strategies, we use a mass conserving scheme and do therefore neither apply flux corrections nor utilize anomaly coupling. Under a strong CO2 forcing a disintegrating Greenlandic ice sheet contributes to a rising sea level and has the potential to alter the formation of deep water masses in the adjacent formation sites Labrador Sea and Nordic Seas. We will present results for an idealized forcing with a growing atmospheric CO2 concentration that rises by 1% per year until four-times the pre-industrial level has been reached. We will discuss the reaction of the ice sheet and immediate responses of the ocean to ice loss.

  3. Greenland Ice sheet mass balance from satellite and airborne altimetry

    Science.gov (United States)

    Khan, S. A.; Bevis, M. G.; Wahr, J. M.; Wouters, B.; Sasgen, I.; van Dam, T. M.; van den Broeke, M. R.; Hanna, E.; Huybrechts, P.; Kjaer, K.; Korsgaard, N. J.; Bjork, A. A.; Kjeldsen, K. K.

    2013-12-01

    Ice loss from the Greenland Ice Sheet (GrIS) is dominated by loss in the marginal areas. Dynamic induced ice loss and its associated ice surface lowering is often largest close to the glacier calving front and may vary from rates of tens of meters per years to a few meters per year over relatively short distances. Hence, high spatial resolution data are required to accurately estimate volume changes. Here, we estimate ice volume change rate of the Greenland ice sheet using data from Ice, Cloud and land Elevation Satellite (ICESat) laser altimeter during 2003-2009 and CryoSat-2 data during 2010-2012. To improve the volume change estimate we supplement the ICESat and CryoSat data with altimeter surveys from NASA's Airborne Topographic Mapper (ATM) during 2003-2012 and NASA's Land, Vegetation and Ice Sensor (LVIS) during 2007-2012. The Airborne data are mainly concentrated along the ice margin and therefore significantly improve the estimate of the total volume change. Furthermore, we divide the GrIS into six major drainage basins and provide volume loss estimates during 2003-2006, 2006-2009 and 2009-2012 for each basin and separate between melt induced and dynamic ice loss. In order to separate dynamic ice loss from melt processes, we use SMB values from the Regional Atmospheric Climate Model (RACMO2) and SMB values from a positive degree day runoff retention model (Janssens & Huybrechts 2000, Hanna et al. 2011 JGR, updated for this study). Our results show increasing SMB ice loss over the last decade, while dynamic ice loss increased during 2003-2009, but has since been decreasing. Finally, we assess the estimated mass loss using GPS observations from stations located along the edge of the GrIS and measurements from the Gravity Recovery and Climate Experiment (GRACE) satellite gravity mission. Hanna, E., et al. (2011), Greenland Ice Sheet surface mass balance 1870 to 2010 based on Twentieth Century Reanalysis, and links with global climate forcing, J. Geophys. Res

  4. Evidence of Historical Supernovae in Ice Cores

    Science.gov (United States)

    Young, Donna

    2011-05-01

    Within the framework of the U.S. Greenland Ice Core Science Project (GISP2), an ice core, known as the GISP H-Core, was collected in June, 1992 adjacent to the GISP2 summit drill site. The project scientists, Gisela A.M. Dreschhoff and Edward J. Zeller, were interested in dating solar proton events with volcanic eruptions. The GISP2-H 122-meter firn and ice core is a record of 415 years of liquid electrical conductivity (LEC) and nitrate concentrations, spanning the years 1992 at the surface through 1577 at the bottom. At the National Ice Core Laboratory in Denver, Colorado, the core (beneath the 12-meter firn) was sliced into 1.5 cm sections and analyzed. The resulting data set consisted of 7,776 individual analyses. The ultrahigh resolution sampling technique resulted in a time resolution of one week near the surface and one month at depth. The liquid electrical conductivity (LEC) sequence contains signals from a number of known volcanic eruptions and provides a dating system at specific locations along the core. The terrestrial and solar background nitrate records show seasonal and annual variations, respectively. However, major nitrate anomalies within the record do not correspond to any known terrestrial or solar events. There is evidence that these nitrate anomalies could be a record of supernovae events. Cosmic X-rays ionize atmospheric nitrogen, producing excess nitrate that is then deposited in the Polar Regions. The GISP2-H ice core has revealed nitrate anomalies at the times of the Tycho and Kepler supernovae. The Cassiopeia A supernova event may be documented in the core as well. We have developed a classroom activity for high school and college students, in which they examine several lines of evidence in the Greenland ice core, discriminating among nearby and mid-latitude volcanic activity, solar proton events, and supernovae. Students infer the date of the Cassiopeia A supernova.

  5. The effect of gum tragacanth on the rheological properties of salep based ice cream mix.

    Science.gov (United States)

    Kurt, Abdullah; Cengiz, Alime; Kahyaoglu, Talip

    2016-06-01

    The influence of concentration (0-0.5%, w/w) of gum tragacanth (GT) on thixotropy, dynamic, and creep-recovery rheological properties of ice cream mixes prepared with milk or water based were investigated. These properties were used to evaluate the viscoelastic behavior and internal structure of ice cream network. The textural properties of ice cream were also evaluated. Thixotropy values of samples were reduced by increasing GT concentration. The dynamic and creep-recovery analyses exhibited that GT addition increased both ice cream elastic and viscous behaviors. The increasing of Burger's model parameters with GT concentration indicated higher resistance network to the stress and more elastic behavior of samples. The applying of Cox-Merz rule is possible by using shift factor (α). GT also led to an increase in Young's modulus and the stickiness of ice creams. The obtained results highlighted the possible application of GT as a valuable member to promote structural properties of ice cream. PMID:27083350

  6. ICE Online Detainee Locator System

    Data.gov (United States)

    Department of Homeland Security — The Online Detainee Locator datasets provide the location of a detainee who is currently in ICE custody, or who was release from ICE custody for any reason with the...

  7. Glaciochemical investigations on the subterranean ice deposit of Vukušić Ice Cave, Velebit Mountain, Croatia

    Science.gov (United States)

    Kern, Z.; Fórizs, I.; Horvatinčić, N.; Széles, É.; Bočić, N.; Nagy, B.

    2010-09-01

    The 3H activity, 18O/16O and 2H/1H ratio and concentration of 33 metals and metalloids have been analysed on ice core samples from the perennial subterranean cave ice deposit of Vukušić Ice Cave, Velebit Mt. The tritium data suggested that the ice deposition at 2-2.4 m depth is build from precipitation fallen ~45 years before sampling and the uppermost ice layer could be estimated between early 1970s and early 1980s or between ~1954 and 1960. Both the fluctuation range of stable water isotopes and the derived isotopic waterline of the ice agree reasonably well with the corresponding data of the local precipitation. This fact predicts that the potential of Vukušić Ice Cave's ice deposit is superior for paleoclimatological studies to the nearby Ledena Pit. Principal component analysis helped to select three groups of elements. The Ca-Mg governed group (PC1) encompasses the bedrock related components; hence the fluctuation of these elements might reflect the past intensities of the dissolution process of the adjacent epikarst. The Zn governed group (PC2) preserves probably an atmospheric deposition signal and related to the emission of regional non-ferrous metallurgy. PC3 is governed by Al and Fe. This probably carries the distal, non-karstic crustal signal hence might be related to the past atmospheric circulation (i.e. wind direction and speed).

  8. Biological and physical processes influencing sea ice, under-ice algae, and dimethylsulfoniopropionate during spring in the Canadian Arctic Archipelago

    Science.gov (United States)

    Galindo, V.; Levasseur, M.; Mundy, C. J.; Gosselin, M.; Tremblay, J.-É.; Scarratt, M.; Gratton, Y.; Papakiriakou, T.; Poulin, M.; Lizotte, M.

    2014-06-01

    This study presents temporal variations in concentrations of chlorophyll a (Chl a), particulate and dissolved dimethylsulfoniopropionate (DMSPp and DMSPd) in the sea ice and underlying water column in the Canadian Arctic Archipelago during the spring of 2010 and 2011. During both years, bottom ice Chl a, DMSPp and DMSPd concentrations were high (up to 1328 µg L-1, 15,082 nmol L-1, and 6110 nmol L-1, respectively) in May and decreased thereafter. The release of bottom ice algae and DMSPp in the water column was gradual in 2010 and rapid (8 days) in 2011. Bottom brine drainage during the presnowmelt period in 2010 and a rapid loss of the snow cover in 2011 coinciding with rain events explain most of the difference between the 2 years. During both years, less than 13% of the DMSPd lost from the ice was detected in the water column, suggesting a rapid microbial consumption. An under-ice diatom bloom developed in both years. In 2010, the bloom was dominated by centric diatoms while in 2011 pennates dominated, likely reflecting seeding by ice algae following the faster snowmelt progression induced by rainfall events in 2011. Both under-ice blooms were associated with high DMSPp concentrations (up to 185 nmol L-1), but pennate diatoms showed DMSPp/Chl a ratios twice higher than centrics. These results highlight the key role of snowmelt and precipitation on the temporal pattern of ice-DMSP release to the water column and on the timing, taxonomic composition, and DMSP content of phytoplankton under-ice blooms in the Arctic.

  9. A forward model for calculating the AMSR brightness temperatures of sea-ice and ocean as seen through the atmosphere

    DEFF Research Database (Denmark)

    Pedersen, Leif Toudal; Hofmann-Bang, Dorthe

    SSM/I retrievals, with ocean and atmosphere retrievals by Remote Sensing Systems, with SST data from the Ocean and Sea Ice SAF and with sea ice concentrations and MY-fractions of the NASA Team and Comiso Bootstrap sea ice algorithms. The forward model is the level 0 emissivity and radiative transfer...

  10. Dual-Polarised Doppler X-band Radar Observations of Mixed Phased Clouds from the UK's Ice in Clouds Experiment-Dust (ICE-D)

    Science.gov (United States)

    Neely, Ryan; Blyth, Alan; Bennett, Lindsay; Dufton, David; Cui, Zhiqiang; McQuaid, Jim; Price, Hannah; Murray, Benjamin; Huang, Yahui

    2016-04-01

    Here we present dual-polarised X-band radar and in situ observations of convective, altocumulus and altostratus clouds relatively close to the Sahara desert in order to examine the impact of dust on the formation of ice and precipitation. These initial results come the UK's Ice in Clouds Experiment - Dust (UK ICE-D). UK ICE-D was an aircraft and ground-based project based in Cape Verde off the coast of Senegal, Africa during August 2015. The overall goal of this experiment was to determine how desert dust affects primary nucleation of ice particles in convective and layer clouds as well as the subsequent development of precipitation and glaciation of the clouds. This was accomplished by making focused observations when dust was present in high concentrations and when almost no dust was present. Here we focus on examining the differences in hydrometeor types derived from the dual-polarised X-band radar observations observed in the high and low dust loadings with specific emphasis on the role of supercooled rain drops in these two situations.

  11. Ice recrystallization inhibition in ice cream as affected by ice structuring proteins from winter wheat grass.

    Science.gov (United States)

    Regand, A; Goff, H D

    2006-01-01

    Ice recrystallization in quiescently frozen sucrose solutions that contained some of the ingredients commonly found in ice cream and in ice cream manufactured under commercial conditions, with or without ice structuring proteins (ISP) from cold-acclimated winter wheat grass extract (AWWE), was assessed by bright field microscopy. In sucrose solutions, critical differences in moisture content, viscosity, ionic strength, and other properties derived from the presence of other ingredients (skim milk powder, corn syrup solids, locust bean gum) caused a reduction in ice crystal growth. Significant ISP activity in retarding ice crystal growth was observed in all solutions (44% for the most complex mix) containing 0.13% total protein from AWWE. In heat-shocked ice cream, ice recrystallization rates were significantly reduced 40 and 46% with the addition of 0.0025 and 0.0037% total protein from AWWE. The ISP activity in ice cream was not hindered by its inclusion in mix prior to pasteurization. A synergistic effect between ISP and stabilizer was observed, as ISP activity was reduced in the absence of stabilizer in ice cream formulations. A remarkably smoother texture for ice creams containing ISP after heat-shock storage was evident by sensory evaluation. The efficiency of ISP from AWWE in controlling ice crystal growth in ice cream has been demonstrated.

  12. A coupled multi-category sea ice model and POM for Baffin Bay and the Labrador Sea

    Institute of Scientific and Technical Information of China (English)

    TANG Zhi-li

    2008-01-01

    An overview of the seasonal variation of sea-ice cover in Baffin Bay and the Labrador Sea is given. A coupled ice-ocean model, CECOM, has been developed to study the seasonal variation and associated ice-ocean processes. The sea-ice component of the model is a multi-category ice model in which mean concentration and thickness are expressed in terms of a thickness distribution function. Ten categories of ice thickness are specified in the model. Sea ice is coupled dynamically and thermodynamically to the Princeton Ocean Model. Selected results from the model including the seasonal variation of sea ice in Baffin Bay, the North Water polynya and ice growth and melt over the Labrador Shelf are presented.

  13. Ice crystal ingestion by turbofans

    Science.gov (United States)

    Rios Pabon, Manuel A.

    This Thesis will present the problem of inflight icing in general and inflight icing caused by the ingestion of high altitude ice crystals produced by high energy mesoscale convective complexes in particular, and propose a new device to prevent it based on dielectric barrier discharge plasma. Inflight icing is known to be the cause of 583 air accidents and more than 800 deaths in more than a decade. The new ice crystal ingestion problem has caused more than 100 flights to lose engine power since the 1990's, and the NTSB identified it as one of the causes of the Air France flight 447 accident in 1-Jun2008. The mechanics of inflight icing not caused by ice crystals are well established. Aircraft surfaces exposed to supercooled liquid water droplets will accrete ice in direct proportion of the droplet catch and the freezing heat transfer process. The multiphase flow droplet catch is predicted by the simple sum of forces on each spherical droplet and a droplet trajectory calculation based on Lagrangian or Eulerian analysis. The most widely used freezing heat transfer model for inflight icing caused by supercooled droplets was established by Messinger. Several computer programs implement these analytical models to predict inflight icing, with LEWICE being based on Lagrangian analysis and FENSAP being based on Eulerian analysis as the best representatives among them. This Thesis presents the multiphase fluid mechanics particular to ice crystals, and explains how it differs from the established droplet multiphase flow, and the obstacles in implementing the former in computational analysis. A new modification of the Messinger thermal model is proposed to account for ice accretion produced by ice crystal impingement. Because there exist no computational and experimental ways to fully replicate ice crystal inflight icing, and because existing ice protections systems consume vast amounts of energy, a new ice protection device based on dielectric barrier discharge plasma is

  14. Incorporation of iron and organic matter into young Antarctic sea ice during its initial growth stages

    Directory of Open Access Journals (Sweden)

    Julie Janssens

    2016-08-01

    Full Text Available Abstract This study reports concentrations of iron (Fe and organic matter in young Antarctic pack ice and during its initial growth stages in situ. Although the importance of sea ice as an Fe reservoir for oceanic waters of the Southern Ocean has been clearly established, the processes leading to the enrichment of Fe in sea ice have yet to be investigated and quantified. We conducted two in situ sea-ice growth experiments during a winter cruise in the Weddell Sea. Our aim was to improve the understanding of the processes responsible for the accumulation of dissolved Fe (DFe and particulate Fe (PFe in sea ice, and of particulate organic carbon and nitrogen, dissolved organic carbon, extracellular polymeric substances, inorganic macro-nutrients (silicic acid, nitrate and nitrite, phosphate and ammonium, chlorophyll a and bacteria. Enrichment indices, calculated for natural young ice and ice newly formed in situ, indicate that during Antarctic winter all of the measured forms of particulate matter were enriched in sea ice compared to underlying seawater, and that enrichment started from the initial stages of sea-ice formation. Some dissolved material (DFe and ammonium was also enriched in the ice but at lower enrichment indices than the particulate phase, suggesting that size is a key factor for the incorporation of impurities in sea ice. Low chlorophyll a concentrations and the fit of the macro-nutrients (with the exception of ammonium with their theoretical dilution lines indicated low biological activity in the ice. From these and additional results we conclude that physical processes are the dominant mechanisms leading to the enrichment of DFe, PFe, organic matter and bacteria in young sea ice, and that PFe and DFe are decoupled during sea-ice formation. Our study thus provides unique quantitative insight into the initial incorporation of impurities, in particular DFe and PFe, into Antarctic sea ice.

  15. Effect of Cd on GSH and GSH-related enzymes of Chlamydomonas sp. ICE-L existing in Antarctic ice

    Institute of Scientific and Technical Information of China (English)

    DING Yu; MIAO Jin-lai; LI Guang-you; WANG Quan-fu; KAN Guang-feng; WANG Guo-dong

    2005-01-01

    Glutathione(GSH) and GSH-related enzymes play a great role in protecting organisms from oxidative damage. The GSH level and GSH-related enzymes activities were investigated as well as the growth yield and malonyldialdehyde(MDA) content in the Antarctic ice microalga Chlamydomonas sp. ICE-L exposure to the different cadmium concentration in this paper. The results showed that the higher concentration Cd inhibited the growth of ICE-L significantly and Cd would induce formation of MDA. At the same time, it is clear that GSH level, glutathione peroxidases(GPx) activity and glutathione S-transferases(GST), activity were higher in ICE-L exposed to Cd than the control. But GR activity dropped notably when ICE-L were cultured in the medium containing Cd. Increase of GSH level, GPx and GST activities acclimate to oxidative stress induced by Cd and protect Antarctic ice microalga Chlamydomonas sp. ICE-L from toxicity caused by Cd exposure. These parameters may be used to assess the biological impact of Cd in the Antarctic pole region environment.

  16. Experiments on the resistance of a large transport vessel navigating in the Arctic region in pack ice conditions

    Science.gov (United States)

    Huang, Yan; Li, Wei; Wang, Yinghui; Wu, Baoshan

    2016-07-01

    In this study, we carried out model tests to investigate the ice failure process and the resistance experienced by a transport vessel navigating in the Arctic region in pack ice conditions. We tested different navigation velocities, ice plate sizes, and ice concentrations. During the tests, we closely observed several phenomena, including the modes of interaction of the ice ship and the moving and failure modes of ice. We also measured the vessel resistances under different conditions. The test results indicate that the navigation velocity is a significant determinant of the moving and failure modes of ice. Moreover, vessel resistance is remarkably dependent on the ice concentration and navigation velocity. The variances of the mean and maximum resistance are also compared and discussed in detail.

  17. Experiments on the Resistance of a Large Transport Vessel Navigating in the Arctic Region in Pack Ice Conditions

    Institute of Scientific and Technical Information of China (English)

    Yan Huang; Wei Li; Yinghui Wang; Baoshan Wu

    2016-01-01

    In this study, we carried out model tests to investigate the ice failure process and the resistance experienced by a transport vessel navigating in the Arctic region in pack ice conditions. We tested different navigation velocities, ice plate sizes, and ice concentrations. During the tests, we closely observed several phenomena, including the modes of interaction of the ice ship and the moving and failure modes of ice. We also measured the vessel resistances under different conditions. The test results indicate that the navigation velocity is a significant determinant of the moving and failure modes of ice. Moreover, vessel resistance is remarkably dependent on the ice concentration and navigation velocity. The variances of the mean and maximum resistance are also compared and discussed in detail.

  18. Effect of okra cell wall and polysaccharide on physical properties and stability of ice cream.

    Science.gov (United States)

    Yuennan, Pilapa; Sajjaanantakul, Tanaboon; Goff, H Douglas

    2014-08-01

    Stabilizers are used in ice cream to increase mix viscosity, promote smooth texture, and improve frozen stability. In this study, the effects of varying concentrations (0.00%, 0.15%, 0.30%, and 0.45%) of okra cell wall (OKW) and its corresponding water-soluble polysaccharide (OKP) on the physical characteristics of ice cream were determined. Ice cream mix viscosity was measured as well as overrun, meltdown, and consumer acceptability. Ice recrystallization was determined after ice cream was subjected to temperature cycling in the range of -10 to -20 °C for 10 cycles. Mix viscosity increased significantly as the concentrations of OKW and OKP increased. The addition of either OKW or OKP at 0.15% to 0.45% significantly improved the melting resistance of ice cream. OKW and OKP at 0.15% did not affect sensory perception score for flavor, texture, and overall liking of the ice cream. OKW and OKP (0.15%) reduced ice crystal growth to 107% and 87%, respectively, as compared to 132% for the control (0.00%). Thus, our results suggested the potential use of OKW and OKP at 0.15% as a stabilizer to control ice cream quality and retard ice recrystallization. OKP, however, at 0.15% exhibited greater effect on viscosity increase and on ice recrystallization inhibition than OKW. PMID:25040189

  19. The Physics of Ice Sheets

    Science.gov (United States)

    Bassis, J. N.

    2008-01-01

    The great ice sheets in Antarctica and Greenland are vast deposits of frozen freshwater that contain enough to raise sea level by approximately 70 m if they were to completely melt. Because of the potentially catastrophic impact that ice sheets can have, it is important that we understand how ice sheets have responded to past climate changes and…

  20. Solute effects on ice recrystallization: an assessment technique.

    Science.gov (United States)

    Knight, C A; Hallett, J; DeVries, A L

    1988-02-01

    Reliable assessment of the effect of a solute upon ice recrystallization is accomplished with "splat cooling," the impaction of a small solution droplet onto a very cold metal plate. The ice disc has extremely small crystals, and recrystallization can be followed without confusing effects caused by grain nucleation. This method confirms the exceptionally strong recrystallization inhibition effect of antifreeze protein from Antarctic fish and shows that grain growth rate is a sensitive function of both grain size and solute concentration.

  1. Winter spring dynamics in sea-ice carbon cycling in the coastal Arctic Ocean

    Science.gov (United States)

    Riedel, Andrea; Michel, Christine; Gosselin, Michel; LeBlanc, Bernard

    2008-12-01

    An understanding of microbial interactions in first-year sea ice on Arctic shelves is essential for identifying potential responses of the Arctic Ocean carbon cycle to changing sea-ice conditions. This study assessed dissolved and particulate organic carbon (DOC, POC), exopolymeric substances (EPS), chlorophyll a, bacteria and protists, in a seasonal (24 February to 20 June 2004) investigation of first-year sea ice and associated surface waters on the Mackenzie Shelf. The dynamics of and relationships between different sea-ice carbon pools were investigated for the periods prior to, during and following the sea-ice-algal bloom, under high and low snow cover. A predominantly heterotrophic sea-ice community was observed prior to the ice-algal bloom under high snow cover only. However, the heterotrophic community persisted throughout the study with bacteria accounting for, on average, 44% of the non-diatom particulate carbon biomass overall the study period. There was an extensive accumulation of sea-ice organic carbon following the onset of the ice-algal bloom, with diatoms driving seasonal and spatial trends in particulate sea-ice biomass. DOC and EPS were also significant sea-ice carbon contributors such that sea-ice DOC concentrations were higher than, or equivalent to, sea-ice-algal carbon concentrations prior to and following the algal bloom, respectively. Sea-ice-algal carbon, DOC and EPS-carbon concentrations were significantly interrelated under high and low snow cover during the algal bloom ( r values ≥ 0.74, p algae are primarily responsible for the large pools of DOC and EPS-carbon and that similar stressors and/or processes could be involved in regulating their release. This study demonstrates that DOC can play a major role in organic carbon cycling on Arctic shelves.

  2. Distribution of dissolved and particulate trace metals in Arctic sea ice

    Science.gov (United States)

    Taylor, M.; Hendy, I. L.; Aciego, S.; Meyer, K.

    2014-12-01

    Iron (Fe) is an essential biolimiting micronutrient, however, the bioavailablility of Fe is dependent on source and speciation. In a high nutrient/low chlorophyll region of the ocean such as the Arctic, sea ice is an important aggregator of dissolved and particulate Fe from aerosol, lithogenic, and biogenic sources. While particulate Fe is less bioavailable than dissolved Fe, it is far more abundant in sea ice. As a result, sea ice directly enhances productivity by ice entrapment of mineral dust particulates containing Fe, which can be released into the surface ocean waters during melting. In seawater underlying sea ice, Fe can be concentrated up to two orders of magnitude higher than in the ice-free open ocean (Lannuzel et al., 2011). A transect of sea ice cores were collected in the spring of 2014 offshore of Barrow, AK, and the Canadian Arctic Archipelago to capture a gradient of sediment contributions from shelf sediments to aeolian sediments. At Barrow, AK, land fast first year ice was sampled. In the Canadian Arctic, both multi-year (pack ice) and first year (land fast) ice cores were retrieved. First year ice cores were between 100-150 cm thick and the multi year core was 195 cm thick. Cores were subsampled by depth and filtered. The resulting ice core sediments were analyzed for elemental composition, and multistep Fe-leaching experiments were conducted to determine the fraction of soluble Fe. Thus we have ascertained the solubility of particulate Fe prior to onset of melt season. Dissolved trace metals were also analyzed to ascertain changes in concentration with ice core depth of lithogenic elements (Mn, Al) and biologically important elements (Si, Mo, Cu, Zn). Preliminary results show some enrichment of lithogenic inputs near surface, indicating dust deposition, and lower portions of the cores, suggesting resuspended sediments from the continental shelf. Concentrations of some biologically important elements decrease with depth, suggesting possible

  3. Ice formation and development in aged, wintertime cumulus over the UK: observations and modelling

    Science.gov (United States)

    Crawford, I.; Bower, K. N.; Choularton, T. W.; Dearden, C.; Crosier, J.; Westbrook, C.; Capes, G.; Coe, H.; Connolly, P. J.; Dorsey, J. R.; Gallagher, M. W.; Williams, P.; Trembath, J.; Cui, Z.; Blyth, A.

    2012-06-01

    In situ high resolution aircraft measurements of cloud microphysical properties were made in coordination with ground based remote sensing observations of a line of small cumulus clouds, using Radar and Lidar, as part of the Aerosol Properties, PRocesses And InfluenceS on the Earth's climate (APPRAISE) project. A narrow but extensive line (~100 km long) of shallow convective clouds over the southern UK was studied. Cloud top temperatures were observed to be higher than -8 °C, but the clouds were seen to consist of supercooled droplets and varying concentrations of ice particles. No ice particles were observed to be falling into the cloud tops from above. Current parameterisations of ice nuclei (IN) numbers predict too few particles will be active as ice nuclei to account for ice particle concentrations at the observed, near cloud top, temperatures (-7.5 °C). The role of mineral dust particles, consistent with concentrations observed near the surface, acting as high temperature IN is considered important in this case. It was found that very high concentrations of ice particles (up to 100 L-1) could be produced by secondary ice particle production providing the observed small amount of primary ice (about 0.01 L-1) was present to initiate it. This emphasises the need to understand primary ice formation in slightly supercooled clouds. It is shown using simple calculations that the Hallett-Mossop process (HM) is the likely source of the secondary ice. Model simulations of the case study were performed with the Aerosol Cloud and Precipitation Interactions Model (ACPIM). These parcel model investigations confirmed the HM process to be a very important mechanism for producing the observed high ice concentrations. A key step in generating the high concentrations was the process of collision and coalescence of rain drops, which once formed fell rapidly through the cloud, collecting ice particles which caused them to freeze and form instant large riming particles. The

  4. Greenland Ice Sheet Retreat Since the Little Ice Age

    OpenAIRE

    Beitch, Marci Jillian

    2014-01-01

    Late 20th century and 21st century satellite imagery of the perimeter of the Greenland Ice Sheet (GrIS) provide high resolution observations of the ice sheet margins. Examining changes in ice margin positions over time yield measurements of GrIS area change and rates of margin retreat. However, longer records of ice sheet margin change are needed to establish more accurate predictions of the ice sheet's future response to global conditions. In this study, the trimzone, the area of deglaciated...

  5. Basil seed gum as a novel stabilizer for structure formation and reduction of ice recrystallization in ice cream

    OpenAIRE

    BahramParvar, Maryam; Goff, H

    2013-01-01

    International audience Basil seed gum (BSG), as a novel source of hydrocolloid, was used at two concentrations (0.1% or 0.2%) to stabilize ice cream, and its impact on selected physical and structural properties, especially ice crystal size, was compared to a commercial blend of carboxymethyl cellulose and guar gums (0.1% or 0.2%) and to an unstabilized control. Samples were temperature cycled at subzero temperatures and ice crystal size was measured before and after cycling. There was no ...

  6. Methane excess in Arctic surface water- triggered by sea ice formation and melting

    Science.gov (United States)

    Damm, E.; Rudels, B.; Schauer, U.; Mau, S.; Dieckmann, G.

    2015-11-01

    Arctic amplification of global warming has led to increased summer sea ice retreat, which influences gas exchange between the Arctic Ocean and the atmosphere where sea ice previously acted as a physical barrier. Indeed, recently observed enhanced atmospheric methane concentrations in Arctic regions with fractional sea-ice cover point to unexpected feedbacks in cycling of methane. We report on methane excess in sea ice-influenced water masses in the interior Arctic Ocean and provide evidence that sea ice is a potential source. We show that methane release from sea ice into the ocean occurs via brine drainage during freezing and melting i.e. in winter and spring. In summer under a fractional sea ice cover, reduced turbulence restricts gas transfer, then seawater acts as buffer in which methane remains entrained. However, in autumn and winter surface convection initiates pronounced efflux of methane from the ice covered ocean to the atmosphere. Our results demonstrate that sea ice-sourced methane cycles seasonally between sea ice, sea-ice-influenced seawater and the atmosphere, while the deeper ocean remains decoupled. Freshening due to summer sea ice retreat will enhance this decoupling, which restricts the capacity of the deeper Arctic Ocean to act as a sink for this greenhouse gas.

  7. Size of bacterial ice-nucleation sites measured in situ by radiation inactivation analysis

    International Nuclear Information System (INIS)

    Four bacterial species are known to catalyze ice formation at temperatures just below 00C. To better understand the relationship between the molecular structure of bacterial ice-nucleation site(s) and the quantitative and qualitative features of the ice-nucleation-active phenotype, the authors determined by γ-radiation analysis the in situ size of ice-nucleation sites in strains of Pseudomonas syringae and Erwinia herbicola and in Escherichia coli HB101 carrying the plasmid pICE1.1. Lyophilized cells of each bacterial strain were irradiated with a flux of γ radiation from 0 to 10.2 Mrad. Differential concentrations of active ice nuclei decreased as a first-order function of radiation dose in all strains as temperature was decreased from -20C to -140C in 10C intervals. Sizes of ice nuclei were calculated from the +-radiation flux at which 37% of initial ice nuclei active within each 10C temperature interval remained. The minimum mass of a functional ice nucleus was about 150 kDa for all strains. The size of ice nuclei increased logarithmically with increasing temperature from -120CC to -20C, where the estimated nucleant mass was 19,000 kDa. The ice nucleant in these three bacterial species may represent an oligomeric structure, composed at least in part of an ice gene product that can self-associate to assume many possible sizes

  8. Ice formation on nitric acid coated dust particles: Laboratory and modeling studies

    Energy Technology Data Exchange (ETDEWEB)

    Kulkarni, Gourihar R.; Zhang, Kai; Zhao, Chun; Nandasiri, Manjula I.; Shutthanandan, V.; Liu, Xiaohong; Fast, Jerome D.; Berg, Larry K.

    2015-08-16

    Changes in the ice nucleation characteristics of atmospherically relevant mineral dust particles due to nitric acid coating are not well understood. Further, the atmospheric implications of dust coating on ice-cloud properties under different assumptions of primary ice nucleation mechanisms are unknown. We investigated ice nucleation ability of Arizona test dust, illite, K-feldspar and quartz as a function of temperature (-25 to -30°C) and relative humidity with respect to water (75 to 110%). Particles were size selected at 250 nm and transported (bare or coated) to the ice nucleation chamber to determine the fraction of particles nucleating ice at various temperature and water saturation conditions. All dust nucleated ice at water-subsaturated conditions, but the coated particles showed a reduction in their ice nucleation ability compared to bare particles. However, at water-supersaturated conditions, we observed that bare and coated particles had nearly similar ice nucleation characteristics. X-ray diffraction patterns indicated that structural properties of bare dust particles modified after acid treatment. We found that lattice parameters were slightly different, but crystallite sizes of the coated particles were reduced compared to bare particles. Next, single-column model results show that simulated ice crystal number concentrations mostly depends upon fraction of particles that are coated, primary ice nucleation mechanisms, and the competition between ice nucleation mechanisms to nucleate ice. In general, we observed that coating modify the ice-cloud properties and the picture of ice and mixed-phase cloud evolution is complex when different primary ice nucleation mechanisms are competing for fixed water vapor mass.

  9. Melting ice, growing trade?

    Directory of Open Access Journals (Sweden)

    Sami Bensassi

    2016-05-01

    Full Text Available Abstract Large reductions in Arctic sea ice, most notably in summer, coupled with growing interest in Arctic shipping and resource exploitation have renewed interest in the economic potential of the Northern Sea Route (NSR. Two key constraints on the future viability of the NSR pertain to bathymetry and the future evolution of the sea ice cover. Climate model projections of future sea ice conditions throughout the rest of the century suggest that even under the most “aggressive” emission scenario, increases in international trade between Europe and Asia will be very low. The large inter-annual variability of weather and sea ice conditions in the route, the Russian toll imposed for transiting the NSR, together with high insurance costs and scarce loading/unloading opportunities, limit the use of the NSR. We show that even if these obstacles are removed, the duration of the opening of the NSR over the course of the century is not long enough to offer a consequent boost to international trade at the macroeconomic level.

  10. Ice Cream Wars

    Institute of Scientific and Technical Information of China (English)

    TAMMYTANG

    2004-01-01

    In early March, most Chinese can only vaguely sense a trace of warmth in the spring winds. For thecountry's ice cream producers however, the hot season has already arrived as they scramble for a niche position in thecountry's huge and lucrative

  11. Ikaite crystal distribution in Arctic winter sea ice and implications for CO2 system dynamics

    DEFF Research Database (Denmark)

    Rysgaard, Søren; Søgaard, D. H.; Cooper, M.;

    2012-01-01

    concentration whereas TA concentrations in bottom layers were twice as high. This depth-related discrepancy suggests interior ice processes where ikaite crystals form in surface sea ice layers and partly dissolved in bottom layers. From these findings and model calculations we relate sea ice formation and melt......The precipitation of ikaite (CaCO3·6H2O) in polar sea ice is critical to the efficiency of the sea ice-driven carbon pump and potentially important to the global carbon cycle, yet the spatial and temporal occurrence of ikaite within the ice is poorly known. We report unique observations of ikaite...... in unmelted ice and vertical profiles of ikaite abundance and concentration in sea ice for the crucial season of winter. Ice was examined from two locations: a 1 m thick land-fast ice site and a 0.3 m thick polynya site, both in the Young Sound area (74° N, 20° W) of NE Greenland. Ikaite crystals, ranging...

  12. Effect of biopolymers on structure and ice recrystallization in dynamically frozen ice cream model systems.

    Science.gov (United States)

    Regand, A; Goff, H D

    2002-11-01

    Ice crystal growth and microstructure of sugarsolutions prepared with stabilizers (carboxymethyl cellulose [CMC], xanthan gum, locust bean gum [LBG], and gelatin) with or without milk solids-nonfat (MSNF) after freezing in a scraped surface heat exchanger and temperature cycling (5 cycles from -6 degrees C to -20 degrees C) were studied. Ice crystal growth was calculated from brightfield microscopic images acquired from samples before and after cycling. Freeze-substitution and low-temperature embedding (LR-Gold resin) were sample preparation techniques utilized for structure analyses by light microscopy and transmission electron microscopy. Differential staining for carbohydrates and proteins allowed the identification of stabilizer gel-like structures in LBG, gelatin, and gelatin/MSNF solutions. In the absence of milk proteins, xanthan and LBG were the most effective at retarding recrystallization, while in their presence, only xanthan had an effect. Cryo-gelation of the LBG was observed but is not the only mechanism of stabilizer action. Thermodynamic incompatibility between biopolymers was observed to promote localized high concentrations of milk proteins located at the ice crystal interface, probably exerting a water-holding action that significantly enhanced the stabilizer effect. Qualitatively, solution heterogeneity (phase separation) was directly proportional to ice crystal growth inhibition. It is suggested that water-holding by stabilizer and proteins, and in some cases steric hindrance induced by a stabilizer gel-like network, caused a reduction in the kinetics of the ice recrystallization phenomena and promoted mechanisms of melt-regrow instead of melt-diffuse-grow recrystallization, thus resulting in the preservation of the ice crystal size and in a small span of the ice crystal size distribution.

  13. Sea ice inertial oscillation magnitudes in the Arctic basin

    Directory of Open Access Journals (Sweden)

    F. Gimbert

    2012-06-01

    Full Text Available An original method to quantify the amplitude of inertial motion of oceanic and ice drifters, through the introduction of a non-dimensional parameter M defined from a spectral analysis, is presented. A strong seasonal dependence of the magnitude of sea ice inertial oscillations is revealed, in agreement with the corresponding annual cycles of sea ice extent, concentration, thickness, advection velocity, and deformation rates. The spatial pattern of the magnitude of the sea ice inertial oscillations over the Arctic basin is also in agreement with the sea ice thickness and concentration patterns. This argues for a strong link between the magnitude of inertial motion on one hand, the dissipation of energy through mechanical processes, and the cohesiveness of the cover on the other hand. Finally, a significant pluri-annual evolution towards greater magnitudes of inertial oscillations in recent years, in both summer and winter, is reported, thus concomitant with reduced sea ice thickness, concentration and spatial extent.

  14. Dependence of NAO variability on coupling with sea ice

    Science.gov (United States)

    Strong, Courtenay; Magnusdottir, Gudrun

    2011-05-01

    The variance of the North Atlantic Oscillation index (denoted N) is shown to depend on its coupling with area-averaged sea ice concentration anomalies in and around the Barents Sea (index denoted B). The observed form of this coupling is a negative feedback whereby positive N tends to produce negative B, which in turn forces negative N. The effects of this feedback in the system are examined by modifying the feedback in two modeling frameworks: a statistical vector autoregressive model ( F VAR) and an atmospheric global climate model ( F CAM) customized so that sea ice anomalies on the lower boundary are stochastic with adjustable sensitivity to the model's evolving N. Experiments show that the variance of N decreases nearly linearly with the sensitivity of B to N, where the sensitivity is a measure of the negative feedback strength. Given that the sea ice concentration field has anomalies, the variance of N goes down as these anomalies become more sensitive to N. If the sea ice concentration anomalies are entirely absent, the variance of N is even smaller than the experiment with the most sensitive anomalies. Quantifying how the variance of N depends on the presence and sensitivity of sea ice anomalies to N has implications for the simulation of N in global climate models. In the physical system, projected changes in sea ice thickness or extent could alter the sensitivity of B to N, impacting the within-season variability and hence predictability of N.

  15. Numerical investigations of future ice conditions in the Baltic Sea.

    Science.gov (United States)

    Haapala, J; Meier, H E; Rinne, J

    2001-08-01

    Global climate changes is expected to have an effect on the physical and ecological characteristics of the Baltic Sea. Estimates of future climate on the regional scale can be obtained by using either statistical or dynamical downscaling methods of global AOGCM scenario results. In this paper, we use 2 different coupled ice-ocean models of the Baltic Sea to simulate present and future ice conditions around 100 years from present. Two 10-year time slice experiments have been performed using the results of atmospheric climate model simulations as forcing, one representing pre-industrial climate conditions (control simulation), and the other global warming with a 150% increase in CO2 greenhouse gas concentration (scenario simulation). Present-day climatological ice conditions and interannual variability are realistically reproduced by the models. The simulated range of the maximum annual ice extent in the Baltic in both models together is 180 to 420 x 10(3) km2 in the control simulation and 45 to 270 x 10(3) km2 in the scenario simulation. The range of the maximum annual ice thickness is from 32 to 96 cm and from 11 to 60 cm in the control and scenario simulations, respectively. In contrast to earlier estimates, sea ice is still formed every winter in the Northern Bothnian Bay and in the most Eastern parts of the Gulf of Finland. Overall, the simulated changes of quantities such as ice extent and ice thickness, as well as their interannual variations are relatively similar in both models, which is remarkable, because the 2 coupled ice-ocean model systems have been developed independently. This increases the reliability of future projections of ice conditions in the Baltic Sea. PMID:11697256

  16. Laboratory testing of a flexible boom for ice management

    International Nuclear Information System (INIS)

    Combating oil spills in the Arctic is a major challenge. Drilling or producing oil or gas in the marginal ice zone (MIZ) may allow booms to be deployed upstream of an offshore structure to clear the water of ice, thereby enabling conventional oil spill countermeasures to be used. Such a boom would be kept in place by two ice-going service vessels or by moored buoys. SINTEF NHL and NRC have performed a number of small-scale tests with a flexible boom in the NRC ice basin in Ottawa. The purpose of the tests was to measure the effectiveness of using a flexible boom for collecting ice, and to determine the loads associated with collecting the ice. In the tests, various boom configurations were towed against a broken ice field consisting of ice pieces typically 50--100 mm across and 30 mm thick. The ice concentration was usually 10/10, but it was reduced to 8/10 and 5/10 for two tests. The boom was towed at speeds of 20 and 50 mm-s-1. Both the width of the boom and the slackness of the boom were varied over reasonable ranges. Two six-component dynamometers were used to support the boom. Thus, the force components on each end of the boom were measured. Further, two video cameras were used to record the effectiveness of each boom configuration. In this paper, the full results of this test program are presented and the application of the test results to the full-scale situation are discussed. The tests show that, under certain conditions, the use of boom is feasible for ice management in oil-contaminated water

  17. Experimental investigation of ice slurry heat transfer in horizontal tube

    Energy Technology Data Exchange (ETDEWEB)

    Grozdek, Marino; Khodabandeh, Rahmatollah; Lundqvist, Per; Palm, Bjoern; Melinder, Aake [Department of Energy Technology, Division of Applied Thermodynamics and Refrigeration, Royal Institute of Technology, Brinellvaegen 68, 10044 Stockholm (Sweden)

    2009-09-15

    Heat transfer of ice slurry flow based on ethanol-water mixture in a circular horizontal tube has been experimentally investigated. The secondary fluid was prepared by mixing ethanol and water to obtain initial alcohol concentration of 10.3% (initial freezing temperature -4.4 C). The heat transfer tests were conducted to cover laminar and slightly turbulent flow with ice mass fraction varying from 0% to 22% depending on test performed. Measured heat transfer coefficients of ice slurry are found to be higher than those for single phase fluid, especially for laminar flow conditions and high ice mass fractions where the heat transfer is increased with a factor 2 in comparison to the single phase flow. In addition, experimentally determined heat transfer coefficients of ice slurry flow were compared to the analytical results, based on the correlation by Sieder and Tate for laminar single phase regime, by Dittus-Boelter for turbulent single phase regime and empirical correlation by Christensen and Kauffeld derived for laminar/turbulent ice slurry flow in circular horizontal tubes. It was found that the classical correlation proposed by Sieder and Tate for laminar forced convection in smooth straight circular ducts cannot be used for heat transfer prediction of ice slurry flow since it strongly underestimates measured values, while, for the turbulent flow regime the simple Dittus-Boelter relation predicts the heat transfer coefficient of ice slurry flow with high accuracy but only up to an ice mass fraction of 10% and Re{sub cf} > 2300 regardless of imposed heat flux. For higher ice mass fractions and regardless of the flow regime, the correlation proposed by Christensen and Kauffeld gives good agreement with experimental results. (author)

  18. Dissolved organic carbon (DOC in Arctic ground ice

    Directory of Open Access Journals (Sweden)

    M. Fritz

    2015-01-01

    Full Text Available Thermal permafrost degradation and coastal erosion in the Arctic remobilize substantial amounts of organic carbon (OC and nutrients which have been accumulated in late Pleistocene and Holocene unconsolidated deposits. Their vulnerability to thaw subsidence, collapsing coastlines and irreversible landscape change is largely due to the presence of large amounts of massive ground ice such as ice wedges. However, ground ice has not, until now, been considered to be a source of dissolved organic carbon (DOC, dissolved inorganic carbon (DIC and other elements, which are important for ecosystems and carbon cycling. Here we show, using geochemical data from a large number of different ice bodies throughout the Arctic, that ice wedges have the greatest potential for DOC storage with a maximum of 28.6 mg L−1 (mean: 9.6 mg L−1. Variation in DOC concentration is positively correlated with and explained by the concentrations and relative amounts of typically terrestrial cations such as Mg2+ and K+. DOC sequestration into ground ice was more effective during the late Pleistocene than during the Holocene, which can be explained by rapid sediment and OC accumulation, the prevalence of more easily degradable vegetation and immediate incorporation into permafrost. We assume that pristine snowmelt is able to leach considerable amounts of well-preserved and highly bioavailable DOC as well as other elements from surface sediments, which are rapidly stored in ground ice, especially in ice wedges, even before further degradation. In the Yedoma region ice wedges represent a significant DOC (45.2 Tg and DIC (33.6 Tg pool in permafrost areas and a fresh-water reservoir of 4172 km3. This study underlines the need to discriminate between particulate OC and DOC to assess the availability and vulnerability of the permafrost carbon pool for ecosystems and climate feedback upon mobilization.

  19. Dynamic Ice-Water Interactions Form Europa's Chaos Terrains

    Science.gov (United States)

    Blankenship, D. D.; Schmidt, B. E.; Patterson, G. W.; Schenk, P.

    2011-12-01

    Unique to the surface of Europa, chaos terrain is diagnostic of the properties and dynamics of its icy shell. We present a new model that suggests large melt lenses form within the shell and that water-ice interactions above and within these lenses drive the production of chaos. This model is consistent with key observations of chaos, predicts observables for future missions, and indicates that the surface is likely still active today[1]. We apply lessons from ice-water interaction in the terrestrial cryosphere to hypothesize a dynamic lense-collapse model to for Europa's chaos terrain. Chaos terrain morphology, like that of Conamara chaos and Thera Macula, suggests a four-phase formation [1]: 1) Surface deflection occurs as ice melts over ascending thermal plumes, as regularly occurs on Earth as subglacial volcanoes activate. The same process can occur at Europa if thermal plumes cause pressure melt as they cross ice-impurity eutectics. 2) Resulting hydraulic gradients and driving forces produce a sealed, pressurized melt lense, akin to the hydraulic sealing of subglacial caldera lakes. On Europa, the water cannot escape the lense due to the horizontally continuous ice shell. 3) Extension of the brittle ice lid above the lense opens cracks, allowing for the ice to be hydrofractured by pressurized water. Fracture, brine injection and percolation within the ice and possible iceberg toppling produces ice-melange-like granular matrix material. 4) Refreezing of the melt lense and brine-filled pores and cracks within the matrix results in raised chaos. Brine soaking and injection concentrates the ice in brines and adds water volume to the shell. As this englacial water freezes, the now water-filled ice will expand, not unlike the process of forming pingos and other "expansion ice" phenomena on Earth. The refreezing can raise the surface and create the oft-observed matrix "domes" In this presentation, we describe how catastrophic ice-water interactions on Earth have

  20. Crystal Ice Formation of Solution and Its Removal Phenomena From Cooled Solid Surface

    Science.gov (United States)

    Hirata, Tetsuo; Ishikawa, Masaaki; Nagasaka, Kouji

    Experimental studies for freezing phenomena of ethylene glycol solution on cooled plate have been performed. A polyvinyl chloride as well as an acrylic resin plates are used for the cooled plates. It is found that the crystal ice formed at the cooled plate is removed from the plate due to buoyancy force acting the crystal ice. It means that ice formation on a cooled plate without deposit ice layer is possible by the present method. It is shown that the cooled plate surface is under cooled about 1.0~1.5 degree below the freezing temperature of the solution during the crystal ice formation and its removal phenomena. The degree of under cooled temperature is unaffected by the cooling temperature of the plate. For higher concentration of solution, it is found that the number of the removed crystal ice per unit time is increased and the volume of each removed ice is decreased.

  1. Sensitivity of partially purified ice nucleation activity of Fusarium acuminatum SRSF 616.

    Science.gov (United States)

    Humphreys, T L; Castrillo, L A; Lee, M R

    2001-05-01

    Factors that affect bacterial ice nucleation, including growth medium, growth phase, nutrient deprivation, and cold-temperature exposure, were investigated in the ice nucleation active (INA) fungus Fusarium acuminatum SRSF 616. Ice nucleation activity remained relatively constant throughout the growth cycle, and the cell-free culture supernatant consistently displayed higher ice nucleation activity than the hyphal pellet. Although nutrient starvation and low-temperature exposure enhance bacterial ice nucleation activity, reducing the concentration of C, N, or P in synthetischer nährstoffarmer broth (SNB) did not increase fungal ice nucleation activity, nor did exposure to 4 degrees C or 15 degrees C. From the SNB supernatant, selected INA chromatography fractions were obtained that demonstrated increased sensitivity to proteinase K and heat compared with culture supernatant. We propose that partial purification of the fungal ice nuclei resulted in removal of low-molecular-weight stabilizing factors. PMID:11400053

  2. Modelling the Antarctic Ice Sheet

    DEFF Research Database (Denmark)

    Pedersen, Jens Olaf Pepke; Holm, A.

    2015-01-01

    The Antarctic ice sheet is a major player in the Earth’s climate system and is by far the largest depository of fresh water on the planet. Ice stored in the Antarctic ice sheet (AIS) contains enough water to raise sea level by about 58 m, and ice loss from Antarctica contributed significantly...... Science) Antarctic Ice Sheet (DAIS) model (Shaffer 2014) is forced by reconstructed time series of Antarctic temperature, global sea level and ocean subsurface temperature over the last two glacial cycles. In this talk a modelling work of the Antarctic ice sheet over most of the Cenozoic era using...... the DAIS model will be presented. G. Shaffer (2014) Formulation, calibration and validation of the DAIS model (version 1), a simple Antarctic ice sheet model sensitive to variations of sea level and ocean subsurface temperature, Geosci. Model Dev., 7, 1803‐1818...

  3. Spatial Variability of Barrow-Area Shore-Fast Sea Ice and Its Relationships to Passive Microwave Emissivity

    Science.gov (United States)

    Maslanik, J. A.; Rivas, M. Belmonte; Holmgren, J.; Gasiewski, A. J.; Heinrichs, J. F.; Stroeve, J. C.; Klein, M.; Markus, T.; Perovich, D. K.; Sonntag, J. G.; Tape, K.

    2006-01-01

    Aircraft-acquired passive microwave data, laser radar height observations, RADARSAT synthetic aperture radar imagery, and in situ measurements obtained during the AMSR-Ice03 experiment are used to investigate relationships between microwave emission and ice characteristics over several space scales. The data fusion allows delineation of the shore-fast ice and pack ice in the Barrow area, AK, into several ice classes. Results show good agreement between observed and Polarimetric Scanning Radiometer (PSR)-derived snow depths over relatively smooth ice, with larger differences over ridged and rubbled ice. The PSR results are consistent with the effects on snow depth of the spatial distribution and nature of ice roughness, ridging, and other factors such as ice age. Apparent relationships exist between ice roughness and the degree of depolarization of emission at 10,19, and 37 GHz. This depolarization .would yield overestimates of total ice concentration using polarization-based algorithms, with indications of this seen when the NT-2 algorithm is applied to the PSR data. Other characteristics of the microwave data, such as effects of grounding of sea ice and large contrast between sea ice and adjacent land, are also apparent in the PSR data. Overall, the results further demonstrate the importance of macroscale ice roughness conditions such as ridging and rubbling on snow depth and microwave emissivity.

  4. Sea ice characteristics between the middle Weddell Sea and the Prydz Bay, Antarctica during the austral summer of 2003

    Institute of Scientific and Technical Information of China (English)

    TANG Shulin; KANG Jiancheng; ZHOU Shangzhe; LI Zhijun

    2005-01-01

    The antarctic sea ice was investigated upon five occasions between January 4 and February 15, 2003. The investigations included: (1)estimation of sea ice distribution by ship-based observations between the middle Weddell Sea and the Prydz Bay; (2) estimation of sea ice distribution by aerial photography in the Prydz Bay; (3) direct measurements of fast ice thickness and snow cover, as well as ice core sampling in Nella Fjord; (4) estimation of melting sea ice distribution near the Zhongshan Station; and (5) observation of sea ice early freeze near the Zhongshan Station. On average, sea ice covered 14.4% of the study area. The highest sea ice concentration (80%)was observed in the Weddell Sea. First-year ice was dominant (99.7%~99.8%). Sea ice distributions in the Prydz Bay were more variable due to complex inshore topography, proximity of the Larsemann Hills, and/or grounded icebergs. The average thickness of landfast ice in Nella Fjord was 169.5 cm. Wind-blown snow redistribution plays an important role in affecting the ice thickness in Nella Fjord. Preliminary freezing of sea ice near the Zhongshan Station follows the first two phases of the pancake cycle.

  5. Coupling and feedback between Pacific sea ice and the Western Pacific pattern

    Science.gov (United States)

    Matthewman, N. J.; Magnusdottir, G.

    2010-12-01

    Coupling between sea ice variability in the Pacific basin and large scale modes of atmospheric variability are examined using weekly averaged data for December-April between 1979 and 2008. We define the large scale patterns of variability for sea ice concentration and 500hPa geopotential height over the Pacific basin and North America using Empirical Orthogonal Functions (EOFs). The patterns associated with the leading two EOFs of sea ice variability are a dipole in sea ice concentration with centers of action in the Bering Sea and Sea of Okhotsk (first EOF, ICE1), and an advance or retreat of sea ice in both seas simultaneously (second EOF, ICE2). Correlation analysis between the 500hPa geopotential height field and the principal component of the ICE2 pattern shows a large non-local response in geopotential height to changes in the ICE2 sea ice pattern. At extratropical latitudes this response in 500hPa geopotential height has two strong centers of action over the Bering Strait and Hudson Bay, with two somewhat weaker centers of action in the subtropics over the Western Pacific Ocean and the Atlantic Ocean. Further analysis suggests this response is due to sea ice in the Bering Sea region of the the ICE2 pattern, rather than the Sea of Okhotsk. This response pattern closely resembles a leading mode of 500hPa geopotential height variability, the Western Pacific (WP) pattern, indicating a coupled relationship between the WP pattern and the overall advance and retreat of sea ice in the Pacific basin. By considering intraseasonal time series of the principal components (indices) associated with the ICE2 and WP patterns, causality and coupling between the two is quantified using a stochastically forced Vector Autoregressive (VAR) model. Fitting the VAR model to observed time series for each index, we find that co-dependence between the ICE2 and WP significantly improves model performance compared with model configurations where dependence in either direction is

  6. Comparing springtime ice-algal chlorophyll a and physical properties of multi-year and first-year sea ice from the Lincoln Sea.

    Directory of Open Access Journals (Sweden)

    Benjamin A Lange

    Full Text Available With near-complete replacement of Arctic multi-year ice (MYI by first-year ice (FYI predicted to occur within this century, it remains uncertain how the loss of MYI will impact the abundance and distribution of sea ice associated algae. In this study we compare the chlorophyll a (chl a concentrations and physical properties of MYI and FYI from the Lincoln Sea during 3 spring seasons (2010-2012. Cores were analysed for texture, salinity, and chl a. We identified annual growth layers for 7 of 11 MYI cores and found no significant differences in chl a concentration between the bottom first-year-ice portions of MYI, upper old-ice portions of MYI, and FYI cores. Overall, the maximum chl a concentrations were observed at the bottom of young FYI. However, there were no significant differences in chl a concentrations between MYI and FYI. This suggests little or no change in algal biomass with a shift from MYI to FYI and that the spatial extent and regional variability of refrozen leads and younger FYI will likely be key factors governing future changes in Arctic sea ice algal biomass. Bottom-integrated chl a concentrations showed negative logistic relationships with snow depth and bulk (snow plus ice integrated extinction coefficients; indicating a strong influence of snow cover in controlling bottom ice algal biomass. The maximum bottom MYI chl a concentration was observed in a hummock, representing the thickest ice with lowest snow depth of this study. Hence, in this and other studies MYI chl a biomass may be under-estimated due to an under-representation of thick MYI (e.g., hummocks, which typically have a relatively thin snowpack allowing for increased light transmission. Therefore, we suggest the on-going loss of MYI in the Arctic Ocean may have a larger impact on ice-associated production than generally assumed.

  7. Comparing springtime ice-algal chlorophyll a and physical properties of multi-year and first-year sea ice from the Lincoln Sea.

    Science.gov (United States)

    Lange, Benjamin A; Michel, Christine; Beckers, Justin F; Casey, J Alec; Flores, Hauke; Hatam, Ido; Meisterhans, Guillaume; Niemi, Andrea; Haas, Christian

    2015-01-01

    With near-complete replacement of Arctic multi-year ice (MYI) by first-year ice (FYI) predicted to occur within this century, it remains uncertain how the loss of MYI will impact the abundance and distribution of sea ice associated algae. In this study we compare the chlorophyll a (chl a) concentrations and physical properties of MYI and FYI from the Lincoln Sea during 3 spring seasons (2010-2012). Cores were analysed for texture, salinity, and chl a. We identified annual growth layers for 7 of 11 MYI cores and found no significant differences in chl a concentration between the bottom first-year-ice portions of MYI, upper old-ice portions of MYI, and FYI cores. Overall, the maximum chl a concentrations were observed at the bottom of young FYI. However, there were no significant differences in chl a concentrations between MYI and FYI. This suggests little or no change in algal biomass with a shift from MYI to FYI and that the spatial extent and regional variability of refrozen leads and younger FYI will likely be key factors governing future changes in Arctic sea ice algal biomass. Bottom-integrated chl a concentrations showed negative logistic relationships with snow depth and bulk (snow plus ice) integrated extinction coefficients; indicating a strong influence of snow cover in controlling bottom ice algal biomass. The maximum bottom MYI chl a concentration was observed in a hummock, representing the thickest ice with lowest snow depth of this study. Hence, in this and other studies MYI chl a biomass may be under-estimated due to an under-representation of thick MYI (e.g., hummocks), which typically have a relatively thin snowpack allowing for increased light transmission. Therefore, we suggest the on-going loss of MYI in the Arctic Ocean may have a larger impact on ice-associated production than generally assumed. PMID:25901605

  8. Lake ice cover and its influence on lake ecology in a Finnish lake district

    Science.gov (United States)

    Leppäranta, Matti; Arvola, Lauri

    2014-05-01

    A wintertime research program on the physics and biology of lakes in Häme lake district in Finland has been performed in the last five years. The set of study lakes contains a wide spectrum in size, depth and trophic status. In this region the lakes freeze over annually for 4-6 months and the mean ice thickness is around 0.5 m. The ice sheet consists of congelation ice and snow-ice. The snow-ice fraction ranges from 0 to 90 per cent depending on the snow fall history and its magnitude makes a major contribution to the ice properties and conditions in the water body beneath the ice, in particular the mechanical strength and optical thickness are much less than for congelation ice. The e-folding depth of light intensity was 50-100 cm for congelation ice and 5-10 cm for snow. A numerical model has been developed to simulate the annual cycle of ice stratigraphy, temperature and thickness. The water bodies had a 1-4 m thick upper mixed layer thick thermocline, and in deeper lakes a lower homogeneous layer. Fall cooling process was crucial to determine the temperature of the lower layer at freeze-up, anything within 0-4°C. Oxygen concentration decreased in winter, especially close to the bottom sediments, and carbon dioxide concentration increased due to respiration activity. Phytoplankton production and biomass level were low or very low and, therefore, heterotrophic and mixotrophic species were abundant. Oxygen depletion in the hypolimnium had several chemical and ecological consequences, such as release of phosphorus from the bottom sediments. In spring, just before the ice-out, photosynthesis was at a high level beneath the ice due to improved light conditions and started to elevate the oxygen concentration in the topmost water layer. Primary production under the ice is limited or prohibited by low level of available light.

  9. Synchronizing ice cores from the Renland and Agassiz ice caps to the Greenland Ice Core Chronology

    DEFF Research Database (Denmark)

    Vinther, Bo Møllesøe; Clausen, Henrik Brink; Fischer, D. A.;

    2008-01-01

    Four ice cores from the Agassiz ice cap in the Canadian high arctic and one ice core from the Renland ice cap in eastern Greenland have been synchronized to the Greenland Ice Core Chronology 2005 (GICC05) which is based on annual layer counts in the DYE-3, GRIP and NGRIP ice cores. Volcanic...... reference horizons, seen in electrical conductivity measurements (ECM) have been used to carry out the synchronization throughout the Holocene. The Agassiz ice cores have been matched to the NGRIP ice core ECM signal, while the Renland core has been matched to the GRIP ice core ECM signal, thus tying...... the cores to GICC05. Furthermore, it has been possible to synchronize the Renland ice core to NGRIP-GICC05 in the glacial period back to 60,000 years b2k (years before A.D. 2000), on the basis of a matching of transitions between stadials and interstadials. This work brings the total number of ice core...

  10. Oceanographic conditions beneath Fimbul Ice Shelf, Antarctica

    OpenAIRE

    Abrahamsen, Einar Povl

    2012-01-01

    Antarctic ice shelves play a key role in the global climate system, acting as important sites for the cooling of shelf waters, thereby facilitating deep and bottom water formation. Many of the processes that take place under large ice shelves can be observed more conveniently beneath smaller ice shelves such as Fimbul Ice Shelf, an ice shelf in the eastern Weddell Sea. Fimbul Ice Shelf and nearby ice shelves might also play a significant regional role: although no bottom water is produced in ...

  11. Rapidly Melting Ice Caps of Northern Baffin Island: Insights From Cosmogenic and Conventional Radiocarbon Dating

    Science.gov (United States)

    Anderson, R. K.; Miller, G. H.; Briner, J. P.; Lifton, N.; Devogel, S. B.

    2006-12-01

    The interior plateau of northern Baffin Island in the eastern Canadian Arctic is home to several small (lichen trimlines across much of the plateau. These trimlines represent previous multi-year snow or ice cover and their aerial extent can be measured via satellite imagery. Based on these measurements, modern ice caps represent only ~3% of ice-cap extent during the Little Ice Age. Radiocarbon dating of moss, preserved beneath the ice caps due to their cold-based nature, suggests a sudden expansion of ice cover around 520 calendar years before present (cal BP), indicated by a mode of 7 dates of approximately this age. This coincides with a pulse of global volcanic activity; predicted cooling from increased aerosol loading may have triggered rapid ice-cap growth. However, dead moss emerging at three sites is more than 1000 years old, with a maximum age of 1326±15 cal BP, indicating that portions of the remaining ice caps have remained intact from more than 1000 years Further constraints on ice cap size are provided by 14C cosmogenic exposure dating. 14C concentrations in rocks at the modern ice margin are too low to be the result of continuous exposure since deglaciation followed by shielding for 500-1000 years by ice cover. Exposure history modeling indicates at least one additional prior period of ice cover of approximately 1000 years. This cold interval most likely occurred sometime since 4 ka, after the Holocene Thermal Maximum in the Arctic and coeval with the onset of Neoglaciation. Radiocarbon dating reveals that some plateau ice caps have been continuously present for more than 1000 years, whereas others formed early in the Little Ice Age (~520 cal BP). Even without additional warming, continuation of curre