Analytic representations of Yang-Mills amplitudes
Bjerrum-Bohr, N. E. J.; Bourjaily, Jacob L.; Damgaard, Poul H.; Feng, Bo
2016-12-01
Scattering amplitudes in Yang-Mills theory can be represented in the formalism of Cachazo, He and Yuan (CHY) as integrals over an auxiliary projective space-fully localized on the support of the scattering equations. Because solving the scattering equations is difficult and summing over the solutions algebraically complex, a method of directly integrating the terms that appear in this representation has long been sought. We solve this important open problem by first rewriting the terms in a manifestly Möbius-invariant form and then using monodromy relations (inspired by analogy to string theory) to decompose terms into those for which combinatorial rules of integration are known. The result is the foundations of a systematic procedure to obtain analytic, covariant forms of Yang-Mills tree-amplitudes for any number of external legs and in any number of dimensions. As examples, we provide compact analytic expressions for amplitudes involving up to six gluons of arbitrary helicities.
Analytic Representations of Yang-Mills Amplitudes
Bjerrum-Bohr, N E J; Damgaard, Poul H; Feng, Bo
2016-01-01
Scattering amplitudes in Yang-Mills theory can be represented in the formalism of Cachazo, He and Yuan (CHY) as integrals over an auxiliary projective space---fully localized on the support of the scattering equations. Because solving the scattering equations is difficult and summing over the solutions algebraically complex, a method of directly integrating the terms that appear in this representation has long been sought. We solve this important open problem by first rewriting the terms in a manifestly Mobius-invariant form and then using monodromy relations (inspired by analogy to string theory) to decompose terms into those for which combinatorial rules of integration are known. The result is a systematic procedure to obtain analytic, covariant forms of Yang-Mills tree-amplitudes for any number of external legs and in any number of dimensions. As examples, we provide compact analytic expressions for amplitudes involving up to six gluons of arbitrary helicities.
Analytic amplitude models for forward scattering
Kang, K; Ezhela, Vladimir V; Gauron, P; Kuyanov, Yu V; Lugovsky, S B; Nicolescu, Basarab; Tkachenko, N P; Kuyanov, Yu. V.
2002-01-01
We report on fits of a large class of analytic amplitude models for forward scattering against the comprehensive data for all available reactions. To differentiate the goodness of the fits of many possible parametrizations to a large sample of data, we developed and used a set of quantitative indicators measuring statistical quality of the fits over and beyond the typical criterion of the $\\Chi^2 /dof$. These indicators favor models with a universal $ log^2 s$ Pomeron term, which enables one to extend the fit down to $\\sqrt s = 4$ GeV.
Analytic Evolution of Singular Distribution Amplitudes in QCD
Energy Technology Data Exchange (ETDEWEB)
Radyushkin, Anatoly V. [Old Dominion University, Norfolk, VA (United States); Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Tandogan Kunkel, Asli [Old Dominion University, Norfolk, VA (United States); Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)
2014-03-01
We describe a method of analytic evolution of distribution amplitudes (DA) that have singularities, such as non-zero values at the end-points of the support region, jumps at some points inside the support region and cusps. We illustrate the method by applying it to the evolution of a flat (constant) DA, anti-symmetric at DA and then use it for evolution of the two-photon generalized distribution amplitude. Our approach has advantages over the standard method of expansion in Gegenbauer polynomials, which requires infinite number of terms in order to accurately reproduce functions in the vicinity of singular points, and over a straightforward iteration of an initial distribution with evolution kernel. The latter produces logarithmically divergent terms at each iteration, while in our method the logarithmic singularities are summed from the start, which immediately produces a continuous curve, with only one or two iterations needed afterwards in order to get rather precise results.
Analytic Amplitudes for Hadronic Forward Scattering COMPETE Update
Nicolescu, Basarab; Ezhela, Vladimir V; Gauron, P; Kang, K; Kuyanov, Yu V; Lugovsky, S B; Martynov, E S; Razuvaev, E A; Tkachenko, N P; Kuyanov, Yu. V.
2002-01-01
We consider several classes of analytic parametrizations of hadronic scattering amplitudes, and compare their predictions to all available forward data in hadron-hadron, gamma-p and gamma-gamma reactions. Although these parametrizations are very close for SQRTs larger than 9 GeV, it turns out that they differ markedly at low energy, where a universal Pomeron term like ln**2 s enables one to extend the fit down to SQRTs equal to 4 GeV. We present predictions on the total cross sections and on the ratio of the real part to the imaginary part of the elastic amplitude (RHO parameter) for present and future pp and antipp colliders, and on total cross sections for gamma-p into hadrons at cosmic-ray energies and for gamma-gamma into hadrons up to SQRTs equal to 1 TeV.
Method of Analytic Evolution of Flat Distribution Amplitudes in QCD
Tandogan, Asli
2011-01-01
A new analytical method of performing ERBL evolution is described. The main goal is to develop an approach that works for distribution amplitudes that do not vanish at the end points, for which the standard method of expansion in Gegenbauer polynomials is inefficient. Two cases of the initial DA are considered: a purely flat DA, given by the same constant for all x, and an antisymmetric DA given by opposite constants for x 1/2. For a purely flat DA, the evolution is governed by an overall (x (1-x))^t dependence on the evolution parameter t times a factor that was calculated as an expansion in t. For an antisymmetric flat DA, an extra overall factor |1-2x|^{2t} appears due to a jump at x=1/2. A good convergence was observed in the t < 1/2 region. For larger t, one can use the standard method of the Gegenbauer expansion.
Analytic Evolution of Singular Distribution Amplitudes in QCD
Energy Technology Data Exchange (ETDEWEB)
Tandogan Kunkel, Asli [Old Dominion Univ., Norfolk, VA (United States)
2014-08-01
Distribution amplitudes (DAs) are the basic functions that contain information about the quark momentum. DAs are necessary to describe hard exclusive processes in quantum chromodynamics. We describe a method of analytic evolution of DAs that have singularities such as nonzero values at the end points of the support region, jumps at some points inside the support region and cusps. We illustrate the method by applying it to the evolution of a at (constant) DA, antisymmetric at DA, and then use the method for evolution of the two-photon generalized distribution amplitude. Our approach to DA evolution has advantages over the standard method of expansion in Gegenbauer polynomials [1, 2] and over a straightforward iteration of an initial distribution with evolution kernel. Expansion in Gegenbauer polynomials requires an infinite number of terms in order to accurately reproduce functions in the vicinity of singular points. Straightforward iteration of an initial distribution produces logarithmically divergent terms at each iteration. In our method the logarithmic singularities are summed from the start, which immediately produces a continuous curve. Afterwards, in order to get precise results, only one or two iterations are needed.
Analytical approximations for stick-slip vibration amplitudes
DEFF Research Database (Denmark)
Thomsen, Jon Juel; Fidlin, A.
2003-01-01
The classical "mass-on-moving-belt" model for describing friction-induced vibrations is considered, with a friction law describing friction forces that first decreases and then increases smoothly with relative interface speed. Approximate analytical expressions are derived for the conditions...
Maharana, Jnanadeva
2017-01-01
The properties of the high energy behavior of the scattering amplitude of massive, neutral, and spinless particles in higher dimensional field theories are investigated. The axiomatic formulation of Lehmann, Symanzik, and Zimmermann (LSZ) is adopted. The analyticity properties of the causal, the retarded, and the advanced functions associated with the four point elastic amplitudes are studied. The analog of the Lehmann-Jost-Dyson representation is obtained in higher dimensional field theories. The generalized J-L-D representation is utilized to derive the t-plane analyticity property of the amplitude. The existence of an ellipse analogous to the Lehmann ellipse is demonstrated. Thus a fixed-t dispersion relation can be written down with a finite number of subtractions due to the temperedness of the amplitudes. The domain of analyticity of scattering amplitude in s and t variables is extended by imposing unitarity constraints. A generalized version of Martin's theorem is derived to prove the existence of such a domain in D-dimensional field theories. It is shown that the amplitude can be expanded in a power series in t which converges for |" separators=" t | < R , R being s-independent. The positivity properties of absorptive amplitudes are derived to prove the t-plane analyticity of amplitude. In the extended analyticity domain dispersion relations are written with two subtractions. The bound on the total cross section is derived from LSZ axioms without any extra ad hoc assumptions.
Maharana, Jnanadeva
2016-01-01
The properties of the high energy behavior of the scattering amplitude of massive, neutral and spinless particles in higher dimensional field theories are investigated. The axiomatic formulation of Lehmann, Symanzik and Zimmermann is adopted. The analyticity properties of the causal, the retarded and the advanced functions associated with the four point elastic amplitudes are studied. The analog of the Lehmann-Jost-Dyson representation is obtained in higher dimensional field theories. The generalized J-L-D representation is utilized to derive the t-plane analyticity property of the amplitude. The existence of an ellipse analogous to the Lehmann ellipse is demonstrated. Thus a fixed-t dispersion relation can be written down with finite number of subtractions due to the temperedness of the amplitudes. The domain of analyticity of scattering amplitude in $s$ and $t$ variables is extended by imposing unitarity constraints. A generalized version of Martin's theorem is derived to prove the existence of such a domai...
Analytical approximations for the amplitude and period of a relaxation oscillator
Directory of Open Access Journals (Sweden)
Golkhou Vahid
2009-01-01
Full Text Available Abstract Background Analysis and design of complex systems benefit from mathematically tractable models, which are often derived by approximating a nonlinear system with an effective equivalent linear system. Biological oscillators with coupled positive and negative feedback loops, termed hysteresis or relaxation oscillators, are an important class of nonlinear systems and have been the subject of comprehensive computational studies. Analytical approximations have identified criteria for sustained oscillations, but have not linked the observed period and phase to compact formulas involving underlying molecular parameters. Results We present, to our knowledge, the first analytical expressions for the period and amplitude of a classic model for the animal circadian clock oscillator. These compact expressions are in good agreement with numerical solutions of corresponding continuous ODEs and for stochastic simulations executed at literature parameter values. The formulas are shown to be useful by permitting quick comparisons relative to a negative-feedback represillator oscillator for noise (10× less sensitive to protein decay rates, efficiency (2× more efficient, and dynamic range (30 to 60 decibel increase. The dynamic range is enhanced at its lower end by a new concentration scale defined by the crossing point of the activator and repressor, rather than from a steady-state expression level. Conclusion Analytical expressions for oscillator dynamics provide a physical understanding for the observations from numerical simulations and suggest additional properties not readily apparent or as yet unexplored. The methods described here may be applied to other nonlinear oscillator designs and biological circuits.
Directory of Open Access Journals (Sweden)
R. A. Jafari-Talookolaei
2011-01-01
Full Text Available The aim of this paper is to present analytical and exact expressions for the frequency and buckling of large amplitude vibration of the symmetrical laminated composite beam (LCB with simple and clamped end conditions. The equations of motion are derived by using Hamilton's principle. The influences of axial force, Poisson effect, shear deformation, and rotary inertia are taken into account in the formulation. First, the geometric nonlinearity based on the von Karman's assumptions is incorporated in the formulation while retaining the linear behavior for the material. Then, the displacement fields used for the analysis are coupled using the equilibrium equations of the composite beam. Substituting this coupled displacement fields in the potential and kinetic energies and using harmonic balance method, we obtain the ordinary differential equation in time domain. Finally, applying first order of homotopy analysis method (HAM, we get the closed form solutions for the natural frequency and deflection of the LCB. A detailed numerical study is carried out to highlight the influences of amplitude of vibration, shear deformation and rotary inertia, slenderness ratios, and layup in the case of laminates on the natural frequency and buckling load.
Meggiolaro, E
2005-01-01
We shall discuss about the infrared finitness and some analyticity properties of the loop-loop scattering amplitudes in gauge theories, when going from Minkowskian to Euclidean theory, and we shall see how they can be related to the still unsolved problem of the s-dependence of the hadron-hadron total cross-sections.
Full Complex Amplitude Digital Holograms:Design,Fabrication and Optical Characterization
Institute of Scientific and Technical Information of China (English)
Neto L G; Cardona P S P; Cirino G A; Mansanoc R D; Verdonck P
2004-01-01
Diffractive optical elements have a large number of industrial applications, such as beam shaping and optical filtering. Traditionally, these elements modulate the phase of the incoming light or its amplitude, but not both. To overcome this limitation, full complex-amplitude modulation diffractive optical elements were developed. Well-established integrated circuit fabrication steps were employed to fabricate the devices with high precision. Using this approach, the new element's optical performances are improved also for near field operations. With this device it is possible to obtain 100% efficient spatial filtering and low noise reconstructed images.
Analytic one-loop amplitudes for a Higgs boson plus four partons
Energy Technology Data Exchange (ETDEWEB)
Dixon, Lance J.; Sofianatos, Yorgos; /SLAC
2009-06-02
We compute the one-loop QCD amplitudes for the processes H{anti q}q{anti Q}Q and H{anti q}qgg, the latter restricted to the case of opposite-helicity gluons. Analytic expressions are presented for the color- and helicity-decomposed amplitudes. The coupling of the Higgs boson to gluons is treated by an effective interaction in the limit of large top quark mass. The Higgs field is split into a complex field {phi} and its complex conjugate {phi}{sup {dagger}}. The split is useful because amplitudes involving {phi} have different analytic structure from those involving {phi}{sup {dagger}}. We compute the cut-containing pieces of the amplitudes using generalized unitarity. The remaining rational parts are obtained by on-shell recursion. Our results for H{anti q}q{anti Q}Q agree with previous semi-numerical computations. We also show how to convert existing semi-numerical results for the production of a scalar Higgs boson into analogous results for a pseudoscalar Higgs boson.
An analytical model for the amplitude of lee waves forming on the boundary layer inversion
Sachsperger, Johannes; Serafin, Stefano; Stiperski, Ivana; Grubišić, Vanda
2016-04-01
Lee waves are horizontally propagating gravity waves with a typical wavelength of 5-15 km that may be generated when stratified flow is lifted over a mountain. A frequently observed type of such waves is that of interfacial lee waves. Those develop, similar to surface waves on a free water surface, when the upstream flow features a density discontinuity. Such conditions are often present for example at the capping inversion in boundary layer flow. The dynamics of interfacial lee waves can be described concisely with linear interfacial gravity wave theory. However, while this theoretical framework accurately describes the wavelength, it fails to properly predict the amplitude of lee waves. It is well known that large amplitude lee waves may lead to low-level turbulence, which poses a potential hazard for aviation. Therefore, this property of interfacial lee waves deserves further attention. In this study, we develop a simple analytical model for the amplitude of lee waves forming on the boundary layer inversion. This model is based on the energetics of two-layer flow. We obtain an expression for the wave amplitude by equating the energy loss across an internal jump with the energy radiation through lee waves. The verification of the result with water tank experiments of density-stratified two-layer flow over two-dimensional topography from the HYDRALAB campaign shows good agreement between theory and observations. This new analytical model may be useful in determining potential hazards of interfacial lee waves with negligible computational cost as compared to numerical weather prediction models.
Off-shell amplitudes as boundary integrals of analytically continued Wilson line slope
Kotko, Piotr; Stasto, Anna M
2016-01-01
One of the methods to calculate tree-level multi-gluon scattering amplitudes is to use the Berends-Giele recursion relation involving off-shell currents or off-shell amplitudes. As shown in recent works using for example the light-front perturbation theory, solutions to these recursions naturally collapse into gauge invariant and gauge-dependent components, at least for some helicity configurations. In this work, we show that such structure is helicity independent and emerges from analytic properties of matrix elements of Wilson line operators, where the slope of the straight gauge path is shifted in certain complex direction. This is similar to the procedure leading to the Britto-Cachazo-Feng-Witten (BCFW) recursion, however we apply a complex shift of the Wilson line slope instead of shifting an external momentum. While the boundary integrals over the complex shift in BCFW procedure vanish for certain deformations, here they are non-zero and are equal to the off-shell amplitudes.
Directory of Open Access Journals (Sweden)
G. H. Gudmundsson
2008-07-01
Full Text Available New analytical solutions describing the effects of small-amplitude perturbations in boundary data on flow in the shallow-ice-stream approximation are presented. These solutions are valid for a non-linear Weertman-type sliding law and for Newtonian ice rheology. Comparison is made with corresponding solutions of the shallow-ice-sheet approximation, and with solutions of the full Stokes equations. The shallow-ice-stream approximation is commonly used to describe large-scale ice stream flow over a weak bed, while the shallow-ice-sheet approximation forms the basis of most current large-scale ice sheet models. It is found that the shallow-ice-stream approximation overestimates the effects of bed topography perturbations on surface profile for wavelengths less than about 5 to 10 ice thicknesses, the exact number depending on values of surface slope and slip ratio. For high slip ratios, the shallow-ice-stream approximation gives a very simple description of the relationship between bed and surface topography, with the corresponding transfer amplitudes being close to unity for any given wavelength. The shallow-ice-stream estimates for the timescales that govern the transient response of ice streams to external perturbations are considerably more accurate than those based on the shallow-ice-sheet approximation. In particular, in contrast to the shallow-ice-sheet approximation, the shallow-ice-stream approximation correctly reproduces the short-wavelength limit of the kinematic phase speed given by solving a linearised version of the full Stokes system. In accordance with the full Stokes solutions, the shallow-ice-sheet approximation predicts surface fields to react weakly to spatial variations in basal slipperiness with wavelengths less than about 10 to 20 ice thicknesses.
Gudimetla, V S Rao; Holmes, Richard B; Riker, Jim F
2012-12-01
An analytical expression for the log-amplitude correlation function for plane wave propagation through anisotropic non-Kolmogorov turbulent atmosphere is derived. The closed-form analytic results are based on the Rytov approximation. These results agree well with wave optics simulation based on the more general Fresnel approximation as well as with numerical evaluations, for low-to-moderate strengths of turbulence. The new expression reduces correctly to the previously published analytic expressions for the cases of plane wave propagation through both nonisotropic Kolmogorov turbulence and isotropic non-Kolmogorov turbulence cases. These results are useful for understanding the potential impact of deviations from the standard isotropic Kolmogorov spectrum.
van Rooij, Linda G. M.; de Vries, Linda S.; van Huffelen, Alexander C.; Toet, Mona C.
2010-01-01
Background Amplitude integrated electroencephalography (aEEG) is a valuable tool for evaluating neonatal encephalopathy and identifying electrographic seizures. Objective To compare seizure activity and background pattern (BGP) between one-channel and two-channel aEEG recordings in full-term neonate
Gudimetla, V S Rao; Holmes, Richard B; Riker, Jim F
2014-01-01
An analytical expression for the log-amplitude correlation function based on the Rytov approximation is derived for spherical wave propagation through an anisotropic non-Kolmogorov refractive turbulent atmosphere. The expression reduces correctly to the previously published analytic expressions for the case of spherical wave propagation through isotropic Kolmogorov turbulence. These results agree well with a wave-optics simulation based on the more general Fresnel approximation, as well as with numerical evaluations, for low-to-moderate strengths of turbulence. These results are useful for understanding the potential impact of deviations from the standard isotropic Kolmogorov spectrum.
Midazolam and amplitude-integrated EEG in asphyxiated full-term neonates
van Leuven, K; Groenendaal, F; Toet, MC; Schobben, AFAM; Bos, SAJ; de Vries, LS; Rademaker, CMA
2004-01-01
Aim: In the present, prospective study, the relation between the levels of midazolam, its two active metabolites-1-hydroxy-midazolam (OH-midazolam) and 1-hydroxy-midazolam-glucuronide (glumidazolam)-and the aEEG were examined. Patients and methods: Fifteen full-term neonates with seizures due to hyp
Analytic Result for the Two-loop Six-point NMHV Amplitude in N = 4 Super Yang-Mills Theory
Energy Technology Data Exchange (ETDEWEB)
Dixon, Lance J.; /SLAC; Drummond, James M.; /CERN /Annecy, LAPTH; Henn, Johannes M.; /Humboldt U., Berlin /Princeton, Inst. Advanced Study
2012-02-15
We provide a simple analytic formula for the two-loop six-point ratio function of planar N = 4 super Yang-Mills theory. This result extends the analytic knowledge of multi-loop six-point amplitudes beyond those with maximal helicity violation. We make a natural ansatz for the symbols of the relevant functions appearing in the two-loop amplitude, and impose various consistency conditions, including symmetry, the absence of spurious poles, the correct collinear behavior, and agreement with the operator product expansion for light-like (super) Wilson loops. This information reduces the ansatz to a small number of relatively simple functions. In order to fix these parameters uniquely, we utilize an explicit representation of the amplitude in terms of loop integrals that can be evaluated analytically in various kinematic limits. The final compact analytic result is expressed in terms of classical polylogarithms, whose arguments are rational functions of the dual conformal cross-ratios, plus precisely two functions that are not of this type. One of the functions, the loop integral {Omega}{sup (2)}, also plays a key role in a new representation of the remainder function R{sub 6}{sup (2)} in the maximally helicity violating sector. Another interesting feature at two loops is the appearance of a new (parity odd) x (parity odd) sector of the amplitude, which is absent at one loop, and which is uniquely determined in a natural way in terms of the more familiar (parity even) x (parity even) part. The second non-polylogarithmic function, the loop integral {tilde {Omega}}{sup (2)}, characterizes this sector. Both {Omega}{sup (2)} and {tilde {Omega}}{sup (2)} can be expressed as one-dimensional integrals over classical polylogarithms with rational arguments.
Energy Technology Data Exchange (ETDEWEB)
Navelet-Noualhier, H. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires
1967-06-15
Helicity amplitudes are expressed via the spinor amplitudes in terms of the Joos invariant which have been shown by Williams to be free from kinematical singularities. This procedure allows to analyze the kinematical singularities of helicity amplitudes and separate them out, which results into the definition of regularized helicity amplitudes. A crossing matrix for helicity amplitudes, is written down, corresponding to the continuation path used to cross spinor amplitudes. We verify explicitly that the corresponding crossing matrix for regularized helicity amplitudes is uniform as it should be. Kinematical constraints which generalize, to the case of arbitrary spins and masses, relations which must hold between helicity amplitudes at some values of the energy variable in {pi}N {yields} {pi}N, {pi}{pi} {yields} NN-bar and NN-bar {yields} NN-bar reactions, appear as a consequence of the existence of poles in the crossing matrix between regularized helicity amplitudes. An english version of this work has been written with G. Cohen-Tannoudji and A. Morel and submitted for publication to Annals of Physics. (author) [French] Les amplitudes d'helicite pour une reaction a deux corps sont exprimees, par l'intermediaire des amplitudes spinorielles, en fonction d'amplitudes invariantes de Joos qui sont, comme l'a montre Williams, sans singularites cinematiques. Ce procede nous permet d'analyser puis d'eliminer les singularites cinematiques des amplitudes d'helicite. Ceci nous conduit a la definition d'amplitudes d'helicite 'regularisees'. Une relation de 'croisement' entre amplitudes d'helicite est ecrite; elle realise leur prolongement analytique le long du chemin utilise pour 'croiser' les amplitudes spinorielles. Nous verifions que les elements de la matrice de croisement entre amplitudes d'helicite 'regularisees' sont bien uniformes. Les contraintes cinematiques qui
Energy Technology Data Exchange (ETDEWEB)
Nicolescu, Basarab [LPNHE, Unite de Recherche des Universites Paris 6 et Paris 7, associee au CNRS, Theory Group, Universite Pierre et Marie Curie, 4 Place Jussieu, 75252 Paris Cedex 05 (France)
2004-07-01
We consider several classes of analytic parametrizations of hadronic scattering amplitudes (the COMPETE analysis), and compare their predictions to all available forward data (pp, {pi}p, Kp, {gamma}p, {gamma}{gamma}, {sigma}p). Although these parametrizations are very close for {radical}s {>=} 9 GeV, it turns out that they differ markedly at low energy, where a universal Pomeron term {approx} ln{sup 2} s enables one to extend the fit down to {radical}s = 4 GeV. We present predictions on the total cross sections and on the ratio of the real part to the imaginary part of the elastic amplitude ({rho} parameter) for present and future pp colliders, and on total cross sections for {gamma}p {yields} hadrons at cosmic-ray energies and for it{gamma}{gamma} {yields} hadrons up to {radical}s = 1 TeV. The ln{sup 2} s behaviour of total cross sections, first obtained by Heisenberg 50 years ago, receives now increased interest both on phenomenological and theoretical levels. We present a modification of the Heisenberg's model in connection with the presence of glueballs and we show that it leads to a realistic description of all existing hadron total cross-sections data, in agreement with the COMPETE analysis.
Full and semi-analytic analyses of two-pump parametric amplification with pump depletion
DEFF Research Database (Denmark)
Steffensen, Henrik; Ott, Johan Raunkjær; Rottwitt, Karsten;
2011-01-01
This paper solves the four coupled equations describing non-degenerate four-wave mixing, with the focus on amplifying a signal in a fiber optical parametric amplifier (FOPA). Based on the full analytic solution, a simple approximate solution describing the gain is developed. The advantage of this...
Manufactured analytical solutions for isothermal full-Stokes ice sheet models
Directory of Open Access Journals (Sweden)
A. Sargent
2010-08-01
Full Text Available We present the detailed construction of a manufactured analytical solution to time-dependent and steady-state isothermal full-Stokes ice sheet problems. The solutions are constructed for two-dimensional flowline and three-dimensional full-Stokes ice sheet models with variable viscosity. The construction is done by choosing for the specified ice surface and bed a velocity distribution that satisfies both mass conservation and the kinematic boundary conditions. Then a compensatory stress term in the conservation of momentum equations and their boundary conditions is calculated to make the chosen velocity distributions as well as the chosen pressure field into exact solutions. By substituting different ice surface and bed geometry formulas into the derived solution formulas, analytical solutions for different geometries can be constructed.
The boundary conditions can be specified as essential Dirichlet conditions or as periodic boundary conditions. By changing a parameter value, the analytical solutions allow investigation of algorithms for a different range of aspect ratios as well as for different, frozen or sliding, basal conditions. The analytical solutions can also be used to estimate the numerical error of the method in the case when the effects of the boundary conditions are eliminated, that is, when the exact solution values are specified as inflow and outflow boundary conditions.
Osredkar,Damjan; Derganc, Metka; Paro-Panjan, Darja; Neubauer, David
2006-01-01
Aim: To assess the diagnostic value of amplitude-integrated electroencephalography (EEG) in comparison to standard EEG in newborns without severe hypoxic-ischemic encephalopathy who were at risk for seizures. Methods: The study included a consecutive series of 18 term newborns without severe hypoxic-ischemic encephalopathy, but with clinical signs suspicious of epileptic seizures, history of loss of social contact, disturbance of muscle tone, hyperirritability, and/or jitteriness. Amplitud...
Manufactured analytical solutions for isothermal full-Stokes ice sheet models
Directory of Open Access Journals (Sweden)
A. Sargent
2010-04-01
Full Text Available We present the detailed construction of an exact solution to time-dependent and steady-state isothermal full-Stokes ice sheet problems. The solutions are constructed for two-dimensional flowline and three-dimensional full-Stokes ice sheet models with variable viscosity. The construction is done by choosing for the specified ice surface and bed a velocity distribution that satisfies both mass conservation and the kinematic boundary conditions. Then a compensatory stress term in the conservation of momentum equations and their boundary conditions is calculated to make the chosen velocity distributions as well as the chosen pressure field into exact solutions. By substituting different ice surface and bed geometry formulas into the derived solution formulas, analytical solutions for different geometries can be constructed.
The boundary conditions can be specified as essential Dirichlet conditions or as periodic boundary conditions. By changing a parameter value, the analytical solutions allow investigation of algorithms for a different range of aspect ratios as well as for different, frozen or sliding, basal conditions. The analytical solutions can also be used to estimate the numerical error of the method in the case when the effects of the boundary conditions are eliminated, that is, when the exact solution values are specified as inflow and outflow boundary conditions.
Thomas, Robert E; Overy, Catherine; Knowles, Peter J; Alavi, Ali; Booth, George H
2015-01-01
Unbiased stochastic sampling of the one- and two-body reduced density matrices is achieved in full configuration interaction quantum Monte Carlo with the introduction of a second, "replica" ensemble of walkers, whose population evolves in imaginary time independently from the first, and which entails only modest additional computational overheads. The matrices obtained from this approach are shown to be representative of full configuration-interaction quality, and hence provide a realistic opportunity to achieve high-quality results for a range of properties whose operators do not necessarily commute with the hamiltonian. A density-matrix formulated quasi-variational energy estimator having been already proposed and investigated, the present work extends the scope of the theory to take in studies of analytic nuclear forces, molecular dipole moments and polarisabilities, with extensive comparison to exact results where possible. These new results confirm the suitability of the sampling technique and, where suf...
Energy Technology Data Exchange (ETDEWEB)
Bartels, Jochen; Kormilitzin, Andrey [Hamburg Univ. (Germany). II. Inst. fuer Theoretische Physik; Lipatov, Lev [Hamburg Univ. (Germany). II. Inst. fuer Theoretische Physik; St. Petersburg Nuclear Physics Institute, St. Petersburg (Russian Federation)
2013-11-15
We investigate the analytic structure of the 2 {yields} 5 scattering amplitude in the planar limit of N=4 SYM in multi-Regge kinematics in all physical regions. We demonstrate the close connection between Regge pole and Regge cut contributions: in a selected class of kinematic regions (Mandelstam regions) the usual factorizing Regge pole formula develops unphysical singularities which have to be absorbed and compensated by Regge cut contributions. This leads, in the corrections to the BDS formula, to conformal invariant 'renormalized' Regge pole expressions in the remainder function. We compute these renormalized Regge poles for the 2 {yields} 5 scattering amplitude.
Bartels, Jochen; Lipatov, Lev
2013-01-01
We investigate the analytic structure of the $2\\to5$ scattering amplitude in the planar limit of $\\mathcal{N}=4$ SYM in multi-Regge kinematics in all physical regions. We demonstrate the close connection between Regge pole and Regge cut contributions: in a selected class of kinematic regions (Mandelstam regions) the usual factorizing Regge pole formula develops unphysical singularities which have to be absorbed and compensated by Regge cut contributions. This leads, in the corrections to the BDS formula, to conformal invariant 'renormalized' Regge pole expressions in the remainder function. We compute these renormalized Regge poles for the $2\\to5$ scattering amplitude.
A Big Data Analytics Pipeline for the Analysis of TESS Full Frame Images
Wampler-Doty, Matthew; Pierce Doty, John
2015-12-01
We present a novel method for producing a catalogue of extra-solar planets and transients using the full frame image data from TESS. Our method involves (1) creating a fast Monte Carlo simulation of the TESS science instruments, (2) using the simulation to create a labeled dataset consisting of exoplanets with various orbital durations as well as transients (such as tidal disruption events), (3) using supervised machine learning to find optimal matched filters, Support Vector Machines (SVMs) and statistical classifiers (i.e. naïve Bayes and Markov Random Fields) to detect astronomical objects of interest and (4) “Big Data” analysis to produce a catalogue based on the TESS data. We will apply the resulting methods to all stars in the full frame images. We hope that by providing libraries that conform to industry standards of Free Open Source Software we may invite researchers from the astronomical community as well as the wider data-analytics community to contribute to our effort.
EXTENSION OF THE 1D FOUR-GROUP ANALYTIC NODAL METHOD TO FULL MULTIGROUP
Energy Technology Data Exchange (ETDEWEB)
B. D. Ganapol; D. W. Nigg
2008-09-01
In the mid 80’s, a four-group/two-region, entirely analytical 1D nodal benchmark appeared. It was readily acknowledged that this special case was as far as one could go in terms of group number and still achieve an analytical solution. In this work, we show that by decomposing the solution to the multigroup diffusion equation into homogeneous and particular solutions, extension to any number of groups is a relatively straightforward exercise using the mathematics of linear algebra.
One-loop triple collinear splitting amplitudes in QCD
Badger, Simon; Peraro, Tiziano
2015-01-01
We study the factorisation properties of one-loop scattering amplitudes in the triple collinear limit and extract the universal splitting amplitudes for processes initiated by a gluon. The splitting amplitudes are derived from the analytic Higgs plus four partons amplitudes. We present compact results for primitive helicity splitting amplitudes making use of super-symmetric decompositions. The universality of the collinear factorisation is checked numerically against the full colour six parton squared matrix elements.
Contreras, Bret; Vigotsky, Andrew D; Schoenfeld, Brad J; Beardsley, Chris; Cronin, John
2016-02-01
Front, full, and parallel squats are some of the most popular squat variations. The purpose of this investigation was to compare mean and peak electromyography (EMG) amplitude of the upper gluteus maximus, lower gluteus maximus, biceps femoris, and vastus lateralis of front, full, and parallel squats. Thirteen healthy women (age = 28.9 ± 5.1 y; height = 164 ± 6.3 cm; body mass = 58.2 ± 6.4 kg) performed 10 repetitions of their estimated 10-repetition maximum of each respective variation. There were no statistical (P ≤ .05) differences between full, front, and parallel squats in any of the tested muscles. Given these findings, it can be concluded that the front, full, or parallel squat can be performed for similar EMG amplitudes. However, given the results of previous research, it is recommended that individuals use a full range of motion when squatting, assuming full range can be safely achieved, to promote more favorable training adaptations. Furthermore, despite requiring lighter loads, the front squat may provide a similar training stimulus to the back squat.
Nehmetallah, George; Donoghue, John; Banerjee, Partha; Khoury, Jed; Yamamoto, Michiharu; Peyghambarian, Nasser
2016-04-01
In this work, brief theoretical modeling, analysis, and novel numerical verification of a photorefractive polymer based four wave mixing (FWM) setup for defect detection has been developed. The numerical simulation helps to validate our earlier experimental results to perform defect detection in periodic amplitude and phase objects using FWM. Specifically, we develop the theory behind the detection of isolated defects, and random defects in amplitude, and phase periodic patterns. In accordance with the developed theory, the results show that this technique successfully detects the slightest defects through band-pass intensity filtering and requires minimal additional post image processing contrast enhancement. This optical defect detection technique can be applied to the detection of production line defects, e.g., scratch enhancement, defect cluster enhancement, and periodic pattern dislocation enhancement. This technique is very useful in quality control systems, production line defect inspection, and computer vision.
Twist-2 at seven loops in planar N=4 SYM theory: Full result and analytic properties
Marboe, Christian
2016-01-01
The anomalous dimension of twist-2 operators of arbitrary spin in planar N=4 SYM theory is found at seven loops by using the quantum spectral curve to compute values at fixed spin, and reconstructing the general result using the LLL-algorithm together with modular arithmetic. The result of the analytic continuation to negative spin is presented, and its relation with the recently computed correction to the BFKL and double-logarithmic equation is discussed.
Malaeke, Hasan; Moeenfard, Hamid
2016-03-01
The objective of this paper is to study large amplitude flexural-extensional free vibration of non-uniform cantilever beams carrying a both transversely and axially eccentric tip mass. The effects of variable axial force is also taken into account. Hamilton's principle is utilized to obtain the partial differential equations governing the nonlinear vibration of the system as well as the corresponding boundary conditions. A numerical finite difference scheme is proposed to find the natural frequencies and mode shapes of the system which is validated specifically for a beam with linearly varying cross section. Using a single mode approximation in conjunction with the Lagrange method, the governing equations are reduced to a set of two nonlinear ordinary differential equations in terms of end displacement components of the beam which are coupled due to the presence of the transverse eccentricity. These temporal coupled equations are then solved analytically using the multiple time scales perturbation technique. The obtained analytical results are compared with the numerical ones and excellent agreement is observed. The qualitative and quantitative knowledge resulting from this research is expected to enable the study of the effects of eccentric tip mass and non-uniformity on the large amplitude flexural-extensional vibration of beams for improved dynamic performance.
Hubert, C; Houari, S; Rozet, E; Lebrun, P; Hubert, Ph
2015-05-22
When using an analytical method, defining an analytical target profile (ATP) focused on quantitative performance represents a key input, and this will drive the method development process. In this context, two case studies were selected in order to demonstrate the potential of a quality-by-design (QbD) strategy when applied to two specific phases of the method lifecycle: the pre-validation study and the validation step. The first case study focused on the improvement of a liquid chromatography (LC) coupled to mass spectrometry (MS) stability-indicating method by the means of the QbD concept. The design of experiments (DoE) conducted during the optimization step (i.e. determination of the qualitative design space (DS)) was performed a posteriori. Additional experiments were performed in order to simultaneously conduct the pre-validation study to assist in defining the DoE to be conducted during the formal validation step. This predicted protocol was compared to the one used during the formal validation. A second case study based on the LC/MS-MS determination of glucosamine and galactosamine in human plasma was considered in order to illustrate an innovative strategy allowing the QbD methodology to be incorporated during the validation phase. An operational space, defined by the qualitative DS, was considered during the validation process rather than a specific set of working conditions as conventionally performed. Results of all the validation parameters conventionally studied were compared to those obtained with this innovative approach for glucosamine and galactosamine. Using this strategy, qualitative and quantitative information were obtained. Consequently, an analyst using this approach would be able to select with great confidence several working conditions within the operational space rather than a given condition for the routine use of the method. This innovative strategy combines both a learning process and a thorough assessment of the risk involved.
Grüneis, Heidelinde; Penker, Marianne; Höferl, Karl-Michael
2016-01-01
Our scientific view on climate change adaptation (CCA) is unsatisfying in many ways: It is often dominated by a modernistic perspective of planned pro-active adaptation, with a selective focus on measures directly responding to climate change impacts and thus it is far from real-life conditions of those who are actually affected by climate change. Farmers have to simultaneously adapt to multiple changes. Therefore, also empirical climate change adaptation research needs a more integrative perspective on real-life climate change adaptations. This also has to consider "hidden" adaptations, which are not explicitly and directly motivated by CCA but actually contribute to the sector's adaptability to climate change. The aim of the present study is to develop and test an analytic framework that contributes to a broader understanding of CCA and to bridge the gap between scientific expertise and practical action. The framework distinguishes three types of CCA according to their climate related motivations: explicit adaptations, multi-purpose adaptations, and hidden adaptations. Although agriculture is among the sectors that are most affected by climate change, results from the case study of Tyrolean mountain agriculture show that climate change is ranked behind other more pressing "real-life-challenges" such as changing agricultural policies or market conditions. We identified numerous hidden adaptations which make a valuable contribution when dealing with climate change impacts. We conclude that these hidden adaptations have not only to be considered to get an integrative und more realistic view on CCA; they also provide a great opportunity for linking adaptation strategies to farmers' realities.
O'Mullane, Anthony P; Zhang, Jie; Brajter-Toth, Anna; Bond, Alan M
2008-06-15
An analytical evaluation of the higher ac harmonic components derived from large amplitude Fourier transformed voltammetry is provided for the reversible oxidation of ferrocenemethanol (FcMeOH) and oxidation of uric acid by an EEC mechanism in a pH 7.4 phosphate buffer at a glassy carbon (GC) electrode. The small background current in the analytically optimal fifth harmonic is predominantly attributed to faradaic current associated with the presence of electroactive functional groups on the GC electrode surface, rather than to capacitive current which dominates the background in the dc, and the initial three ac harmonics. The detection limits for the dc and the first to fifth harmonic ac components are 1.9, 5.89, 2.1, 2.5, 0.8, and 0.5 microM for FcMeOH, respectively, using a sine wave modulation of 100 mV at 21.46 Hz and a dc sweep rate of 111.76 mV s (-1). Analytical performance then progressively deteriorates in the sixth and higher harmonics. For the determination of uric acid, the capacitive background current was enhanced and the reproducibility lowered by the presence of surface active uric acid, but the rapid overall 2e (-) rather than 1e (-) electron transfer process gives rise to a significantly enhanced fifth harmonic faradaic current which enabled a detection limit of 0.3 microM to be achieved which is similar to that reported using chemically modified electrodes. Resolution of overlapping voltammetric signals for a mixture of uric acid and dopamine is also achieved using higher fourth or fifth harmonic components, under very low background current conditions. The use of higher fourth and fifth harmonics exhibiting highly favorable faradaic to background (noise) current ratios should therefore be considered in analytical applications under circumstances where the electron transfer rate is fast.
Full field reservoir modeling of shale assets using advanced data-driven analytics
Directory of Open Access Journals (Sweden)
Soodabeh Esmaili
2016-01-01
Full Text Available Hydrocarbon production from shale has attracted much attention in the recent years. When applied to this prolific and hydrocarbon rich resource plays, our understanding of the complexities of the flow mechanism (sorption process and flow behavior in complex fracture systems - induced or natural leaves much to be desired. In this paper, we present and discuss a novel approach to modeling, history matching of hydrocarbon production from a Marcellus shale asset in southwestern Pennsylvania using advanced data mining, pattern recognition and machine learning technologies. In this new approach instead of imposing our understanding of the flow mechanism, the impact of multi-stage hydraulic fractures, and the production process on the reservoir model, we allow the production history, well log, completion and hydraulic fracturing data to guide our model and determine its behavior. The uniqueness of this technology is that it incorporates the so-called “hard data” directly into the reservoir model, so that the model can be used to optimize the hydraulic fracture process. The “hard data” refers to field measurements during the hydraulic fracturing process such as fluid and proppant type and amount, injection pressure and rate as well as proppant concentration. This novel approach contrasts with the current industry focus on the use of “soft data” (non-measured, interpretive data such as frac length, width, height and conductivity in the reservoir models. The study focuses on a Marcellus shale asset that includes 135 wells with multiple pads, different landing targets, well length and reservoir properties. The full field history matching process was successfully completed using this data driven approach thus capturing the production behavior with acceptable accuracy for individual wells and for the entire asset.
Getting more out of biomedical documents with GATE's full lifecycle open source text analytics.
Directory of Open Access Journals (Sweden)
Hamish Cunningham
Full Text Available This software article describes the GATE family of open source text analysis tools and processes. GATE is one of the most widely used systems of its type with yearly download rates of tens of thousands and many active users in both academic and industrial contexts. In this paper we report three examples of GATE-based systems operating in the life sciences and in medicine. First, in genome-wide association studies which have contributed to discovery of a head and neck cancer mutation association. Second, medical records analysis which has significantly increased the statistical power of treatment/outcome models in the UK's largest psychiatric patient cohort. Third, richer constructs in drug-related searching. We also explore the ways in which the GATE family supports the various stages of the lifecycle present in our examples. We conclude that the deployment of text mining for document abstraction or rich search and navigation is best thought of as a process, and that with the right computational tools and data collection strategies this process can be made defined and repeatable. The GATE research programme is now 20 years old and has grown from its roots as a specialist development tool for text processing to become a rather comprehensive ecosystem, bringing together software developers, language engineers and research staff from diverse fields. GATE now has a strong claim to cover a uniquely wide range of the lifecycle of text analysis systems. It forms a focal point for the integration and reuse of advances that have been made by many people (the majority outside of the authors' own group who work in text processing for biomedicine and other areas. GATE is available online under GNU open source licences and runs on all major operating systems. Support is available from an active user and developer community and also on a commercial basis.
Full field reservoir modeling of shale assets using advanced data-driven analytics
Institute of Scientific and Technical Information of China (English)
Soodabeh Esmaili; Shahab D. Mohaghegh
2016-01-01
Hydrocarbon production from shale has attracted much attention in the recent years. When applied to this prolific and hydrocarbon rich resource plays, our understanding of the complexities of the flow mechanism (sorption process and flow behavior in complex fracture systems-induced or natural) leaves much to be desired. In this paper, we present and discuss a novel approach to modeling, history matching of hydrocarbon production from a Marcellus shale asset in southwestern Pennsylvania using advanced data mining, pattern recognition and machine learning technologies. In this new approach instead of imposing our understanding of the flow mechanism, the impact of multi-stage hydraulic fractures, and the production process on the reservoir model, we allow the production history, well log, completion and hydraulic fracturing data to guide our model and determine its behavior. The uniqueness of this tech-nology is that it incorporates the so-called “hard data” directly into the reservoir model, so that the model can be used to optimize the hydraulic fracture process. The “hard data” refers to field measure-ments during the hydraulic fracturing process such as fluid and proppant type and amount, injection pressure and rate as well as proppant concentration. This novel approach contrasts with the current industry focus on the use of “soft data” (non-measured, interpretive data such as frac length, width, height and conductivity) in the reservoir models. The study focuses on a Marcellus shale asset that in-cludes 135 wells with multiple pads, different landing targets, well length and reservoir properties. The full field history matching process was successfully completed using this data driven approach thus capturing the production behavior with acceptable accuracy for individual wells and for the entire asset.
Yoo, Ji Ho; Köckert, Hansjochen; Mullaney, John C.; Stephens, Susanna L.; Evans, Corey J.; Walker, Nicholas R.; Le Roy, Robert. J.
2016-12-01
Pure rotational spectra of PbI and InI are interpreted to yield a full analytic potential energy function for each molecule. Rotational spectra for PbI have been retrieved from literature sources to perform the analysis. Rotational transition frequencies for excited vibrational states of InI (0 program, dPOTFIT. The well-depth parameter, De , is fixed at a literature value, while values of the equilibrium distance re and EMO exponent-coefficient expansion (potential-shape) parameters are determined from the fits. Comparison with potential functions determined after including older mid-IR and visible electronic transition data shows that our analysis of the pure microwave data alone yields potential energy functions that accurately predict (to better than 1%) the overtone vibrational energies far beyond the range spanned by the levels for which the microwave data is available.
Latyshev, A V
2016-01-01
In the present work the second Stokes problem about behaviour of the rarefied gas filling half-space is formulated. A plane limiting half-space makes harmonious fluctuations with variable amplitude in the plane. The amplitude changes on the exponential law. The kinetic equation with model integral of collisions in the form $\\tau$-model is used. The case of diffusion reflexions of gas molecules from a wall is considered. Eigen solutions (continuous modes) of the initial kinetic equation corresponding to the continuous spectrum are searched. Properties of dispersion function are studied. It is investigated the discrete spectrum of the problem consisting of zero of the dispersion functions in the complex plane. It is shown, that number of zero of dispersion function to equally doubled index of problem coefficient. The problem coefficient is understood as the relation of boundary values of dispersion function from above and from below on the real axis. Further are eigen solutions (discrete modes) of the initial k...
Amplitude dependent closest tune approach
Tomas Garcia, Rogelio; Franchi, Andrea; Maclean, Ewen Hamish; CERN. Geneva. ATS Department
2016-01-01
Recent observations in the LHC point to the existence of an amplitude dependent closest tune approach. However this dynamical behavior and its underlying mechanism remain unknown. This effect is highly relevant for the LHC as an unexpectedly closest tune approach varying with amplitude modifies the frequency content of the beam and, hence, the Landau damping. Furthermore the single particle stability would also be affected by this effect as it would modify how particles with varying amplitudes approach and cross resonances. We present analytic derivations that lead to a mechanism generating an amplitude dependent closest tune approach.
Realini, Marco; Conti, Claudia; Botteon, Alessandra; Colombo, Chiara; Matousek, Pavel
2017-01-16
We present, for the first time, a portable full micro-Spatially Offset Raman Spectroscopy (micro-SORS) prototype permitting the in situ analysis of thin, highly turbid stratified layers at depths not accessible to conventional Raman microscopy. The technique is suitable for the characterisation of painted layers in panels, canvases and mural paintings, painted statues and decorated objects in cultural heritage or stratified polymers, and biological, catalytic and forensics samples where invasive analysis is undesirable or impossible to perform. The new device is characterised conceptually in polymer and paint layer systems. The provision of portability with full micro-SORS delivers subsurface micro-SORS capability unlocking the non-invasive and non-destructive potential of micro-SORS at its most effective form permitting it to be applied to large and non-portable objects in situ without recourse to removing micro-fragments for laboratory analysis on benchtop Raman microscopes.
CHY formula and MHV amplitudes
Du, Yi-jian; Wu, Yong-shi
2016-01-01
In this paper, we study the relation between the Cachazo-He-Yuan (CHY) formula and the maximal-helicity-violating (MHV) amplitudes of Yang-Mills and gravity in four dimensions. We prove that only one special rational solution of the scattering equations found by Weinzierl support the MHV amplitudes. Namely, localized at this solution, the integrated CHY formula reproduces the Parke-Taylor formula for Yang-Mills amplitudes as well as the Hodges formula for gravitational amplitudes. This is achieved by developing techniques, in a manifestly M\\"obius covariant formalism, to explicitly compute relevant reduced Pfaffians/determinants. We observe and prove two interesting properties (or identities), which facilitate the computations. We also check that all the other $(n-3)!-1$ solutions to the scattering equations do not support the MHV amplitudes, and prove analytically that this is indeed true for the other special rational solution proposed by Weinzierl, that actually supports the anti-MHV amplitudes.
Directory of Open Access Journals (Sweden)
AHMED M. EL-KHATIB
2013-10-01
Full Text Available The full energy peak efficiency of HPGe detector is computed using a new analytical approach. The approach explains the effect of self-attenuation of the source matrix, the attenuation by the source container and the detector housing materials on the detector efficiency. The experimental calibration process was done using radioactive spherical sources containing aqueous 152Eu radionuclide which produces photons with a wide range of energies from 121 up to 1408 keV. The comparison shows a good agreement between the measured and calculated efficiencies for the detector using spherical sources.
Protostring scattering amplitudes
Thorn, Charles B.
2016-11-01
We calculate some tree-level scattering amplitudes for a generalization of the protostring, which is a novel string model implied by the simplest string bit models. These bit models produce a light-cone world sheet which supports s integer moded Grassmann fields. In the generalization we supplement this Grassmann world-sheet system with d =24 -s transverse coordinate world-sheet fields. The protostring corresponds to s =24 and the bosonic string to s =0 . The interaction vertex is a simple overlap with no operator insertions at the break/join point. Assuming that s is even we calculate the multistring scattering amplitudes by bosonizing the Grassmann fields, each pair equivalent to one compactified bosonic field, and applying Mandelstam's interacting string formalism to a system of s /2 compactified and d uncompactified bosonic world-sheet fields. We obtain all amplitudes for open strings with no oscillator excitations and for closed strings with no oscillator excitations and zero winding number. We then study in detail some simple special cases. Multistring processes with maximal helicity violation have much simpler amplitudes. We also specialize to general four-string amplitudes and discuss their high energy behavior. Most of these models are not covariant under the full Lorentz group O (d +1 ,1 ). The exceptions are the bosonic string whose Lorentz group is O (25 ,1 ) and the protostring whose Lorentz group is O (1 ,1 ). The models in between only enjoy an O (1 ,1 )×O (d ) spacetime symmetry.
Differential equations, associators, and recurrences for amplitudes
Directory of Open Access Journals (Sweden)
Georg Puhlfürst
2016-01-01
Full Text Available We provide new methods to straightforwardly obtain compact and analytic expressions for ϵ-expansions of functions appearing in both field and string theory amplitudes. An algebraic method is presented to explicitly solve for recurrence relations connecting different ϵ-orders of a power series solution in ϵ of a differential equation. This strategy generalizes the usual iteration by Picard's method. Our tools are demonstrated for generalized hypergeometric functions. Furthermore, we match the ϵ-expansion of specific generalized hypergeometric functions with the underlying Drinfeld associator with proper Lie algebra and monodromy representations. We also apply our tools for computing ϵ-expansions for solutions to generic first-order Fuchsian equations (Schlesinger system. Finally, we set up our methods to systematically get compact and explicit α′-expansions of tree-level superstring amplitudes to any order in α′.
Capretti, Antonio; Negro, Luca Dal; Miano, Giovanni
2013-01-01
We present a full-wave analytical solution for the problem of second-harmonic generation from spherical particles made of lossy centrosymmetric materials. Both the local-surface and nonlocalbulk nonlinear sources are included in the generation process, under the undepleted-pump approximation. The solution is derived in the framework of the Mie theory by expanding the pump field, the non-linear sources and the second-harmonic fields in series of spherical vector wave functions. We apply the proposed solution to the second-harmonic generation properties of noble metal nano-spheres as function of the polarization, the pump wavelength and the particle size. This approach provides a rigorous methodology to understand second-order optical processes in metal nanoparticles, and to design novel nanoplasmonic devices in the nonlinear regime.
Scattering amplitudes in gauge theories
Henn, Johannes M
2014-01-01
At the fundamental level, the interactions of elementary particles are described by quantum gauge field theory. The quantitative implications of these interactions are captured by scattering amplitudes, traditionally computed using Feynman diagrams. In the past decade tremendous progress has been made in our understanding of and computational abilities with regard to scattering amplitudes in gauge theories, going beyond the traditional textbook approach. These advances build upon on-shell methods that focus on the analytic structure of the amplitudes, as well as on their recently discovered hidden symmetries. In fact, when expressed in suitable variables the amplitudes are much simpler than anticipated and hidden patterns emerge. These modern methods are of increasing importance in phenomenological applications arising from the need for high-precision predictions for the experiments carried out at the Large Hadron Collider, as well as in foundational mathematical physics studies on the S-matrix in quantum ...
Scattering Amplitudes in Gauge Theories
Schubert, Ulrich
2014-01-01
This thesis is focused on the development of new mathematical methods for computing multi-loop scattering amplitudes in gauge theories. In this work we combine, for the first time, the unitarity-based construction for integrands, and the recently introduced integrand-reduction through multivariate polynomial division. After discussing the generic features of this novel reduction algorithm, we will apply it to the one- and two-loop five-point amplitudes in ${\\cal N}=4$ sYM. The integrands of the multiple-cuts are generated from products of tree-level amplitudes within the super-amplitudes formalism. The corresponding expressions will be used for the analytic reconstruction of the polynomial residues. Their parametric form is known a priori, as derived by means of successive polynomial divisions using the Gr\\"obner basis associated to the on-shell denominators. The integrand reduction method will be exploited to investigate the color-kinematic duality for multi-loop ${\\cal N}=4$ sYM scattering amplitudes. Our a...
Scattering amplitudes in gauge theories
Energy Technology Data Exchange (ETDEWEB)
Henn, Johannes M. [Institute for Advanced Study, Princeton, NJ (United States). School of Natural Sciences; Plefka, Jan C. [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik
2014-03-01
First monographical text on this fundamental topic. Course-tested, pedagogical and self-contained exposition. Includes exercises and solutions. At the fundamental level, the interactions of elementary particles are described by quantum gauge field theory. The quantitative implications of these interactions are captured by scattering amplitudes, traditionally computed using Feynman diagrams. In the past decade tremendous progress has been made in our understanding of and computational abilities with regard to scattering amplitudes in gauge theories, going beyond the traditional textbook approach. These advances build upon on-shell methods that focus on the analytic structure of the amplitudes, as well as on their recently discovered hidden symmetries. In fact, when expressed in suitable variables the amplitudes are much simpler than anticipated and hidden patterns emerge. These modern methods are of increasing importance in phenomenological applications arising from the need for high-precision predictions for the experiments carried out at the Large Hadron Collider, as well as in foundational mathematical physics studies on the S-matrix in quantum field theory. Bridging the gap between introductory courses on quantum field theory and state-of-the-art research, these concise yet self-contained and course-tested lecture notes are well-suited for a one-semester graduate level course or as a self-study guide for anyone interested in fundamental aspects of quantum field theory and its applications. The numerous exercises and solutions included will help readers to embrace and apply the material presented in the main text.
Softness and Amplitudes' Positivity for Spinning Particles
Bellazzini, Brando
2016-01-01
We derive positivity bounds for scattering amplitudes of particles with arbitrary spin using unitarity, analyticity and crossing symmetry. The bounds imply the positivity of certain low-energy coefficients of the effective action that controls the dynamics of the light degrees of freedom. We show that low-energy amplitudes strictly softer than $O(p^4)$ do not admit unitary ultraviolet completions unless the theory is free. This enforces a bound on the energy growth of scattering amplitudes in the region of validity of the effective theory. We discuss explicit examples including the Goldstino from spontaneous supersymmetry breaking, and the theory of a spin-1/2 fermion with a shift symmetry.
Nonsinglet pentagons and NMHV amplitudes
Directory of Open Access Journals (Sweden)
A.V. Belitsky
2015-07-01
Full Text Available Scattering amplitudes in maximally supersymmetric gauge theory receive a dual description in terms of the expectation value of the super Wilson loop stretched on a null polygonal contour. This makes the analysis amenable to nonperturbative techniques. Presently, we elaborate on a refined form of the operator product expansion in terms of pentagon transitions to compute twist-two contributions to NMHV amplitudes. To start with, we provide a novel derivation of scattering matrices starting from Baxter equations for flux-tube excitations propagating on magnon background. We propose bootstrap equations obeyed by pentagon form factors with nonsinglet quantum numbers with respect to the R-symmetry group and provide solutions to them to all orders in 't Hooft coupling. These are then successfully confronted against available perturbative calculations for NMHV amplitudes to four-loop order.
Amplitudes, acquisition and imaging
Energy Technology Data Exchange (ETDEWEB)
Bloor, Robert
1998-12-31
Accurate seismic amplitude information is important for the successful evaluation of many prospects and the importance of such amplitude information is increasing with the advent of time lapse seismic techniques. It is now widely accepted that the proper treatment of amplitudes requires seismic imaging in the form of either time or depth migration. A key factor in seismic imaging is the spatial sampling of the data and its relationship to the imaging algorithms. This presentation demonstrates that acquisition caused spatial sampling irregularity can affect the seismic imaging and perturb amplitudes. Equalization helps to balance the amplitudes, and the dealing strategy improves the imaging further when there are azimuth variations. Equalization and dealiasing can also help with the acquisition irregularities caused by shot and receiver dislocation or missing traces. 2 refs., 2 figs.
Computing Maximally Supersymmetric Scattering Amplitudes
Stankowicz, James Michael, Jr.
This dissertation reviews work in computing N = 4 super-Yang--Mills (sYM) and N = 8 maximally supersymmetric gravity (mSUGRA) scattering amplitudes in D = 4 spacetime dimensions in novel ways. After a brief introduction and overview in Ch. 1, the various techniques used to construct amplitudes in the remainder of the dissertation are discussed in Ch. 2. This includes several new concepts such as d log and pure integrand bases, as well as how to construct the amplitude using exactly one kinematic point where it vanishes. Also included in this chapter is an outline of the Mathematica package on shell diagrams and numerics.m (osdn) that was developed for the computations herein. The rest of the dissertation is devoted to explicit examples. In Ch. 3, the starting point is tree-level sYM amplitudes that have integral representations with residues that obey amplitude relations. These residues are shown to have corresponding residue numerators that allow a double copy prescription that results in mSUGRA residues. In Ch. 4, the two-loop four-point sYM amplitude is constructed in several ways, showcasing many of the techniques of Ch. 2; this includes an example of how to use osdn. The two-loop five-point amplitude is also presented in a pure integrand representation with comments on how it was constructed from one homogeneous cut of the amplitude. On-going work on the two-loop n-point amplitude is presented at the end of Ch. 4. In Ch. 5, the three-loop four-point amplitude is presented in the d log representation and in the pure integrand representation. In Ch. 6, there are several examples of four- through seven-loop planar diagrams that illustrate how considerations of the singularity structure of the amplitude underpin dual-conformal invariance. Taken with the previous examples, this is additional evidence that the structure known to exist in the planar sector extends to the full theory. At the end of this chapter is a proof that all mSUGRA amplitudes have a pole at
Generalised Unitarity for Dimensionally Regulated Amplitudes
Bobadilla, W J Torres; Mastrolia, P; Mirabella, E
2015-01-01
We present a novel set of Feynman rules and generalised unitarity cut-conditions for computing one-loop amplitudes via d-dimensional integrand reduction algorithm. Our algorithm is suited for analytic as well as numerical result, because all ingredients turn out to have a four-dimensional representation. We will apply this formalism to NLO QCD corrections.
Real topological string amplitudes
Narain, K. S.; Piazzalunga, N.; Tanzini, A.
2017-03-01
We discuss the physical superstring correlation functions in type I theory (or equivalently type II with orientifold) that compute real topological string amplitudes. We consider the correlator corresponding to holomorphic derivative of the real topological amplitude G_{χ } , at fixed worldsheet Euler characteristic χ. This corresponds in the low-energy effective action to N=2 Weyl multiplet, appropriately reduced to the orientifold invariant part, and raised to the power g' = -χ + 1. We show that the physical string correlator gives precisely the holomorphic derivative of topological amplitude. Finally, we apply this method to the standard closed oriented case as well, and prove a similar statement for the topological amplitude F_g.
A Numerical Unitarity Formalism for Evaluating One-Loop Amplitudes
Ellis, Richard Keith; Kunszt, Z
2008-01-01
Recent progress in unitarity techniques for one-loop scattering amplitudes makes a numerical implementation of this method possible. We present a 4-dimensional unitarity method for calculating the cut-constructible part of amplitudes and implement the method in a numerical procedure. Our technique can be applied to any one-loop scattering amplitude and offers the possibility that one-loop calculations can be performed in an automatic fashion, as tree-level amplitudes are currently done. Instead of individual Feynman diagrams, the ingredients for our one-loop evaluation are tree-level amplitudes, which are often already known. To study the practicality of this method we evaluate the cut-constructible part of the 4, 5 and 6 gluon one-loop amplitudes numerically, using the analytically known 4, 5 and 6 gluon tree-level amplitudes. Comparisons with analytic answers are performed to ascertain the numerical accuracy of the method.
Exact solution to the Coulomb wave using the linearized phase-amplitude method
Directory of Open Access Journals (Sweden)
Shuji Kiyokawa
2015-08-01
Full Text Available The author shows that the amplitude equation from the phase-amplitude method of calculating continuum wave functions can be linearized into a 3rd-order differential equation. Using this linearized equation, in the case of the Coulomb potential, the author also shows that the amplitude function has an analytically exact solution represented by means of an irregular confluent hypergeometric function. Furthermore, it is shown that the exact solution for the Coulomb potential reproduces the wave function for free space expressed by the spherical Bessel function. The amplitude equation for the large component of the Dirac spinor is also shown to be the linearized 3rd-order differential equation.
Scattering Amplitudes via Algebraic Geometry Methods
Søgaard, Mads; Damgaard, Poul Henrik
This thesis describes recent progress in the understanding of the mathematical structure of scattering amplitudes in quantum field theory. The primary purpose is to develop an enhanced analytic framework for computing multiloop scattering amplitudes in generic gauge theories including QCD without Feynman diagrams. The study of multiloop scattering amplitudes is crucial for the new era of precision phenomenology at the Large Hadron Collider (LHC) at CERN. Loop-level scattering amplitudes can be reduced to a basis of linearly independent integrals whose coefficients are extracted from generalized unitarity cuts. We take advantage of principles from algebraic geometry in order to extend the notion of maximal cuts to a large class of two- and three-loop integrals. This allows us to derive unique and surprisingly compact formulae for the coefficients of the basis integrals. Our results are expressed in terms of certain linear combinations of multivariate residues and elliptic integrals computed from products of ...
Open String Amplitudes in Various Gauges
Fuji, H; Suzuki, H; Fuji, Hiroyuki; Nakayama, Shinsaku; Suzuki, Hisao
2007-01-01
Recently, Schnabl constructed the analytic solution of the open string tachyon. Subsequently, the absence of the physical states at the vacuum was proved. The development relies heavily on the use of the gauge condition different from the ordinary one. It was shown that the choice of gauge simplifies the analysis drastically. When we perform the calculation of the amplitudes in Schnabl gauge, we find that the off-shell amplitudes of the Schnabl gauge is still very complicated. In this paper, we propose the use of the propagator in the modified Schnabl gauge and show that this modified use of the Schnabl gauge simplifies the computation of the off-shell amplitudes drastically. We also compute the amplitudes of open superstring in this gauge.
Accurate Period Approximation for Any Simple Pendulum Amplitude
Institute of Scientific and Technical Information of China (English)
XUE De-Sheng; ZHOU Zhao; GAO Mei-Zhen
2012-01-01
Accurate approximate analytical formulae of the pendulum period composed of a few elementary functions for any amplitude are constructed.Based on an approximation of the elliptic integral,two new logarithmic formulae for large amplitude close to 180° are obtained.Considering the trigonometric function modulation results from the dependence of relative error on the amplitude,we realize accurate approximation period expressions for any amplitude between 0 and 180°.A relative error less than 0.02％ is achieved for any amplitude.This kind of modulation is also effective for other large-amplitude logarithmic approximation expressions.%Accurate approximate analytical formulae of the pendulum period composed of a few elementary functions for any amplitude are constructed. Based on an approximation of the elliptic integral, two new logarithmic formulae for large amplitude close to 180° are obtained. Considering the trigonometric function modulation results from the dependence of relative error on the amplitude, we realize accurate approximation period expressions for any amplitude between 0 and 180°. A relative error less than 0.02% is achieved for any amplitude. This kind of modulation is also effective for other large-amplitude logarithmic approximation expressions.
Protostring Scattering Amplitudes
Thorn, Charles B
2016-01-01
We calculate some tree level scattering amplitudes for a generalization of the protostring, which is a novel string model implied by the simplest string bit models. These bit models produce a lightcone worldsheet which supports $s$ integer moded Grassmann fields. In the generalization we supplement this Grassmann worldsheet system with $d=24-s$ transverse coordinate worldsheet fields. The protostring corresponds to $s=24$ and the bosonic string to $s=0$. The interaction vertex is a simple overlap with no operator insertions at the break/join point. Assuming that $s$ is even we calculate the multi-string scattering amplitudes by bosonizing the Grassmann fields, each pair equivalent to one compactified bosonic field, and applying Mandelstam's interacting string formalism to a system of $s/2$ compactified and $d$ uncompactified bosonic worldsheet fields. We obtain all amplitudes for open strings with no oscillator excitations and for closed strings with no oscillator excitations and zero winding number. We then ...
Parametric instabilities of large amplitude Alfven waves with obliquely propagating sidebands
Vinas, A. F.; Goldstein, M. L.
1992-01-01
This paper presents a brief report on properties of the parametric decay and modulational, filamentation, and magnetoacoustic instabilities of a large amplitude, circularly polarized Alfven wave. We allow the daughter and sideband waves to propagate at an arbitrary angle to the background magnetic field so that the electrostatic and electromagnetic characteristics of these waves are coupled. We investigate the dependance of these instabilities on dispersion, plasma/beta, pump wave amplitude, and propagation angle. Analytical and numerical results are compared with numerical simulations to investigate the full nonlinear evolution of these instabilities.
The QCD triple Pomeron coupling from string amplitudes
Bialas, A; Peschanski, R
1998-01-01
Using the recent solution of the triple Pomeron coupling in the QCD dipole picture as a closed string amplitude with six legs, its analytical form in terms of hypergeometric functions and numerical value are derived.
New structures in scattering amplitudes: A review
Benincasa, Paolo
2014-02-01
We review some recent developments in the understanding of field theories in the perturbative regime. In particular, we discuss the notions of analyticity, unitarity and locality, and therefore the singularity structure of scattering amplitudes in general interacting theories. We describe their tree-level structure and their on-shell representations, as well as the links between the tree-level structure itself and the structure of the loop amplitudes. Finally, we describe the on-shell diagrammatics recently proposed both on general grounds and in the remarkable example of planar supersymmetric theories.
The Holevo capacity of a generalized amplitude-damping channel
Institute of Scientific and Technical Information of China (English)
Hou Li-Zhen; Fang Mao-Fa
2007-01-01
The Holevo capacity of a generalized amplitude-damping channel is investigated by using a numerical method.It is shown that the Holevo capacity depends on the channel parameters representing the ambient temperature and fidelity. In particular, under a special condition, the Holevo capacity of the generalized amplitude-damping channel can be written as an analytical expression.
Weak Boson Production Amplitude Zeros; Equalities of the Helicity Amplitudes
Mamedov, F
2002-01-01
We investigate the radiation amplitude zeros exhibited by many Standard Model amplitudes for triple weak gauge boson production processes. We show that $WZ\\gamma$ production amplitudes have especially rich structure in terms of zeros, these amplitudes have zeros originating from several different sources. It is also shown that TYPE I current null zone is the special case of the equality of the specific helicity amplitudes.
Periods and Superstring Amplitudes
Stieberger, S
2016-01-01
Scattering amplitudes which describe the interaction of physical states play an important role in determining physical observables. In string theory the physical states are given by vibrations of open and closed strings and their interactions are described (at the leading order in perturbation theory) by a world-sheet given by the topology of a disk or sphere, respectively. Formally, for scattering of N strings this leads to N-3-dimensional iterated real integrals along the compactified real axis or N-3-dimensional complex sphere integrals, respectively. As a consequence the physical observables are described by periods on M_{0,N} - the moduli space of Riemann spheres of N ordered marked points. The mathematical structure of these string amplitudes share many recent advances in arithmetic algebraic geometry and number theory like multiple zeta values, single-valued multiple zeta values, Drinfeld, Deligne associators, Hopf algebra and Lie algebra structures related to Grothendiecks Galois theory. We review the...
Quantitative Seismic Amplitude Analysis
Dey, A. K.
2011-01-01
The Seismic Value Chain quantifies the cyclic interaction between seismic acquisition, imaging and reservoir characterization. Modern seismic innovation to address the global imbalance in hydrocarbon supply and demand requires such cyclic interaction of both feed-forward and feed-back processes. Currently, the seismic value chain paradigm is in a feed-forward mode. Modern seismic data now have the potential to yield the best images in terms of spatial resolution, amplitude accuracy, and incre...
Amplitude metrics for cellular circadian bioluminescence reporters.
St John, Peter C; Taylor, Stephanie R; Abel, John H; Doyle, Francis J
2014-12-01
Bioluminescence rhythms from cellular reporters have become the most common method used to quantify oscillations in circadian gene expression. These experimental systems can reveal phase and amplitude change resulting from circadian disturbances, and can be used in conjunction with mathematical models to lend further insight into the mechanistic basis of clock amplitude regulation. However, bioluminescence experiments track the mean output from thousands of noisy, uncoupled oscillators, obscuring the direct effect of a given stimulus on the genetic regulatory network. In many cases, it is unclear whether changes in amplitude are due to individual changes in gene expression level or to a change in coherence of the population. Although such systems can be modeled using explicit stochastic simulations, these models are computationally cumbersome and limit analytical insight into the mechanisms of amplitude change. We therefore develop theoretical and computational tools to approximate the mean expression level in large populations of noninteracting oscillators, and further define computationally efficient amplitude response calculations to describe phase-dependent amplitude change. At the single-cell level, a mechanistic nonlinear ordinary differential equation model is used to calculate the transient response of each cell to a perturbation, whereas population-level dynamics are captured by coupling this detailed model to a phase density function. Our analysis reveals that amplitude changes mediated at either the individual-cell or the population level can be distinguished in tissue-level bioluminescence data without the need for single-cell measurements. We demonstrate the effectiveness of the method by modeling experimental bioluminescence profiles of light-sensitive fibroblasts, reconciling the conclusions of two seemingly contradictory studies. This modeling framework allows a direct comparison between in vitro bioluminescence experiments and in silico ordinary
Amplitude and Frequency Control: Stability of Limit Cycles in Phase-Shift and Twin-T Oscillators
Directory of Open Access Journals (Sweden)
J. P. Dada
2008-01-01
Full Text Available We show a technique for external direct current (DC control of the amplitudes of limit cycles both in the Phase-shift and Twin-T oscillators. We have found that amplitudes of the oscillator output voltage depend on the DC control voltage. By varying the total impedance of each oscillator oscillatory network, frequencies of oscillations are controlled using potentiometers. The main advantage of the proposed circuits is that both the amplitude and frequency of the waveforms generated can be independently controlled. Analytical, numerical, and experimental methods are used to determine the boundaries of the states of the oscillators. Equilibrium points, stable limit cycles, and divergent states are found. Analytical results are compared with the numerical and experimental solutions, and a good agreement is obtained.
Twist decomposition of proton structure from BFKL and BK amplitudes
Motyka, Leszek
2014-01-01
An analysis of twist composition of Balitsky-Kovchegov (BK) amplitude is performed in the double logarithmic limit. In this limit the BK evolution of color dipole -- proton scattering is equivalent to BFKL evolution which follows from vanishing of the Bartels vertex in the collinear limit. We perform twist decomposition of the BFKL/BK amplitude for proton structure functions and find compact analytic expressions that provide accurate approximations for higher twist amplitudes. The BFKL/BK higher twist amplitudes are much smaller than those following from eikonal saturation models.
Effective gluon interactions from superstring disk amplitudes
Energy Technology Data Exchange (ETDEWEB)
Oprisa, D.
2006-05-15
In this thesis an efficient method for the calculation of the N-point tree-level string amplitudes is presented. Furthermore it is shown that the six-gluon open-superstring disk amplitude can be expressed by a basis of six triple hypergeometric functions, which encode the full {alpha}' dependence. In this connection material for obtaining the {alpha}' expansion of these functions is derived. Hereby many Euler-Zagier sums are calculated including multiple harmonic series. (HSI)
Dispersion relations with crossing symmetry for pipi D and F wave amplitudes
Kaminski, R
2011-01-01
A set of once subtracted dispersion relations with imposed crossing symmetry condition for the pipi D- and F-wave amplitudes is derived and analyzed. An example of numerical calculations in the effective two pion mass range from the threshold to 1.1 GeV is presented. It is shown that these new dispersion relations impose quite strong constraints on the analyzed pipi interactions and are very useful tools to test the pipi amplitudes. One of the goals of this work is to provide a complete set of equations required for easy use. Full analytical expressions are presented. Along with the well known dispersion relations successful in testing the pipi S- and P-wave amplitudes, those presented here for the D and F waves give a complete set of tools for analyzes of the pipi interactions.
Directory of Open Access Journals (Sweden)
Dr. Yones Lotfi
2001-05-01
Full Text Available Method and Materials; this cross sectional descriptive and analytic survey was done at Golestan navy hospital in Tehran, between June 1998 and March 1999 on total of 69 male subject (104 ears, 50 acoustic trauma & 54 noise induced H.L between 20 to 40 ears old. Results: The mean acoustic reflex threshold at 1 kHz showed there is no significant difference between two groups. 2- The intensity elicited maximum reflex amplitude at 1 kHz didn;t produce at a significant linear correlation with subjects age and ear canal volume in both groups. 3- The intensity elicited maximum reflex amplitude in NIHL group wasn't shown a significant correlation with ear compliance and gradient. 4- The mean Intensity (SPL elicited maximum reflex amplitude in NIHL group was more than mean intensity (SPL in acoustic trauma group. 5- The mean intensity (SL elicited maximum reflex amplitude in NIHL group was More than mean intensity (SL in acoustic trauma group. Conclusion: Acoustic reflex amplitude is reduced for subjects with NIHL compared with acoustic trauma subjects.
Peak forces and lateral resolution in amplitude modulation force microscopy in liquid
Directory of Open Access Journals (Sweden)
Horacio V. Guzman
2013-12-01
Full Text Available The peak forces exerted on soft and rigid samples by a force microscope have been modeled by performing numerical simulations of the tip motion in liquid. The forces are obtained by using two contact mechanics models, Hertz and Tatara. We present a comparison between the numerical simulations and three analytical models for a wide variety of probe and operational parameters. In general, the forces derived from analytical expressions are not in good quantitative agreement with the simulations when the Young modulus and the set-point amplitude are varied. The only exception is the parametrized approximation that matches the results given by Hertz contact mechanics for soft materials and small free amplitudes. We also study the elastic deformation of the sample as a function of the imaging conditions for materials with a Young modulus between 25 MPa and 2 GPa. High lateral resolution images are predicted by using both small free amplitudes (less than 2 nm for soft materials and high set-point amplitudes.
PULSE AMPLITUDE DISTRIBUTION RECORDER
Cowper, G.
1958-08-12
A device is described for automatica1ly recording pulse annplitude distribution received from a counter. The novelty of the device consists of the over-all arrangement of conventional circuit elements to provide an easy to read permanent record of the pulse amplitude distribution during a certain time period. In the device a pulse analyzer separates the pulses according to annplitude into several channels. A scaler in each channel counts the pulses and operates a pen marker positioned over a drivable recorder sheet. Since the scalers in each channel have the sanne capacity, the control circuitry permits counting of the incoming pulses until one scaler reaches capacity, whereupon the input is removed and an internal oscillator supplies the necessary pulses to fill up the other scalers. Movement of the chart sheet is initiated wben the first scaler reaches capacity to thereby give a series of marks at spacings proportional to the time required to fill the remaining scalers, and accessory equipment marks calibration points on the recorder sheet to facilitate direct reading of the number of external pulses supplied to each scaler.
Phonological awareness and sinusoidal amplitude modulation in phonological dislexia
Directory of Open Access Journals (Sweden)
Yolanda Peñaloza-López
2016-04-01
Full Text Available ABSTRACT Objective Dyslexia is the difficulty of children in learning to read and write as results of neurological deficiencies. The objective was to test the Phonological awareness (PA and Sinusoidal amplitude modulation (SAM threshold in children with Phonological dyslexia (PD. Methods We performed a case-control, analytic, cross sectional study. We studied 14 children with PD and 14 control children from 7 to 11 years of age, by means of PA measurement and by SAM test. The mean age of dyslexic children was 8.39 years and in the control group was 8.15. Results Children with PD exhibited inadequate skills in PA, and SAM. We found significant correlations between PA and SAM at 4 Hertz frequency, and calculated regression equations that predicts between one-fourth and one-third of variance of measurements. Conclusion Alterations in PA and SAM found can help to explain basis of deficient language processing exhibited by children with PD.
Differential equations, associators, and recurrences for amplitudes
Puhlfürst, Georg; Stieberger, Stephan
2016-01-01
We provide new methods to straightforwardly obtain compact and analytic expressions for ɛ-expansions of functions appearing in both field and string theory amplitudes. An algebraic method is presented to explicitly solve for recurrence relations connecting different ɛ-orders of a power series solution in ɛ of a differential equation. This strategy generalizes the usual iteration by Picard's method. Our tools are demonstrated for generalized hypergeometric functions. Furthermore, we match the ɛ-expansion of specific generalized hypergeometric functions with the underlying Drinfeld associator with proper Lie algebra and monodromy representations. We also apply our tools for computing ɛ-expansions for solutions to generic first-order Fuchsian equations (Schlesinger system). Finally, we set up our methods to systematically get compact and explicit α‧-expansions of tree-level superstring amplitudes to any order in α‧.
New structures in scattering amplitudes: a review
Benincasa, Paolo
2013-01-01
We review some recent developments in the understanding of field theories in the perturbative regime. In particular, we discuss the notions of analyticity, unitarity and locality, and therefore the singularity structure of scattering amplitudes in general interacting theories. We describe their tree-level structure and their on-shell representations, as well as the links between the tree-level structure itself and the structure of the loop amplitudes. Finally, we describe the on-shell diagrammatics recently proposed both on general grounds and in the remarkable example of planar supersymmetric theories. This review is partially based on lectures given at: Dipartimento di Fisica and INFN, Universit\\`a di Bologna; Departamento de F{\\i}sica de Part{\\i}culas, Universidade de Santiago de Compostela; and as part of the program Strings@ar Lectures on Advanced Topics of High Energy Physics held at the IAFE
Differential Equations, Associators, and Recurrences for Amplitudes
Puhlfuerst, Georg
2015-01-01
We provide new methods to straightforwardly obtain compact and analytic expressions for epsilon-expansions of functions appearing in both field and string theory amplitudes. An algebraic method is presented to explicitly solve for recurrence relations connecting different epsilon-orders of a power series solution in epsilon of a differential equation. This strategy generalizes the usual iteration by Picard's method. Our tools are demonstrated for generalized hypergeometric functions. Furthermore, we match the epsilon-expansion of specific generalized hypergeometric functions with the underlying Drinfeld associator with proper Lie algebra and monodromy representations. We also setup up our tools for computing epsilon-expansions for solutions to generic first-order Fuchsian equations (Schlesinger system). Finally, we apply our methods to systematically get compact and explicit alpha'-expansions of tree-level superstring amplitudes to any order in alpha'.
A description of seismic amplitude techniques
Shadlow, James
2014-02-01
The acquisition of seismic data is a non-invasive technique used for determining the sub surface geology. Changes in lithology and fluid fill affect the seismic wavelet. Analysing seismic data for direct hydrocarbon indicators (DHIs), such as full stack amplitude anomalies, or amplitude variation with offset (AVO), can help a seismic interpreter relate the geophysical response to real geology and, more importantly, to distinguish the presence of hydrocarbons. Inversion is another commonly used technique that attempts to tie the seismic data back to the geology. Much has been written about these techniques, and attempting to gain an understanding on the theory and application of them by reading through various journals can be quite daunting. The purpose of this paper is to briefly outline DHI analysis, including full stack amplitude anomalies, AVO and inversion and show the relationship between all three. The equations presented have been included for completeness, but the reader can pass over the mathematical detail.
A Closed Form Solution for Nonlinear Oscillators Frequencies Using Amplitude-Frequency Formulation
Directory of Open Access Journals (Sweden)
A. Barari
2012-01-01
Full Text Available Many nonlinear systems in industry including oscillators can be simulated as a mass-spring system. In reality, all kinds of oscillators are nonlinear due to the nonlinear nature of springs. Due to this nonlinearity, most of the studies on oscillation systems are numerically carried out while an analytical approach with a closed form expression for system response would be very useful in different applications. Some analytical techniques have been presented in the literature for the solution of strong nonlinear oscillators as well as approximate and numerical solutions. In this paper, Amplitude-Frequency Formulation (AFF approach is applied to analyze some periodic problems arising in classical dynamics. Results are compared with another approximate analytical technique called Energy Balance Method developed by the authors (EBM and also numerical solutions. Close agreement of the obtained results reveal the accuracy of the employed method for several practical problems in engineering.
Bootstrapping a Five-Loop Amplitude from Steinmann Relations
Caron-Huot, Simon; McLeod, Andrew; von Hippel, Matt
2016-01-01
The analytic structure of scattering amplitudes is restricted by Steinmann relations, which enforce the vanishing of certain discontinuities of discontinuities. We show that these relations dramatically simplify the function space for the hexagon function bootstrap in planar maximally supersymmetric Yang-Mills theory. Armed with this simplification, along with the constraints of dual conformal symmetry and Regge exponentiation, we obtain the complete five-loop six-particle amplitude.
Multiloop Integrand Reduction for Dimensionally Regulated Amplitudes
Mastrolia, P; Ossola, G; Peraro, T
2013-01-01
We present the integrand reduction via multivariate polynomial division as a natural technique to encode the unitarity conditions of Feynman amplitudes. We derive a recursive formula for the integrand reduction, valid for arbitrary dimensionally regulated loop integrals with any number of loops and external legs, which can be used to obtain the decomposition of any integrand analytically with a finite number of algebraic operations. The general results are illustrated by applications to two-loop Feynman diagrams in QED and QCD, showing that the proposed reduction algorithm can also be seamlessly applied to integrands with denominators appearing with arbitrary powers.
Directory of Open Access Journals (Sweden)
Stoyanov Svetlin
2015-03-01
Full Text Available An analytical solution for a specific case of the forced Duffing oscillator is proposed. The excitation force contains two harmonics with significant difference frequencies. This case corresponds to a presence of a defect in the machinery and is in the art of the machinery vibration diagnostics. The results obtained show an amplitude modulation. Therefore, the presence of an amplitude modulation in the vibration signal may be used as an indicator for a malfunction. Analytical solution derived clarifies how the amplitude modulation occurs. Also, a numerical solution is realized and compared with the analytical one. For this, the Duffing equation is solved numerically and then, the spectrograms of vibrations are obtained through a Discrete-time Fourier Transform.
Graviton amplitudes from collinear limits of gauge amplitudes
Energy Technology Data Exchange (ETDEWEB)
Stieberger, Stephan, E-mail: stephan.stieberger@mpp.mpg.de [Max-Planck-Institut für Physik, Werner-Heisenberg-Institut, 80805 München (Germany); Taylor, Tomasz R. [Department of Physics, Northeastern University, Boston, MA 02115 (United States)
2015-05-11
We express all tree-level graviton amplitudes in Einstein's gravity as the collinear limits of a linear combination of pure Yang–Mills amplitudes in which each graviton is represented by two gauge bosons, each of them carrying exactly one half of graviton's momentum and helicity.
ABJM amplitudes and the positive orthogonal Grassmannian
Energy Technology Data Exchange (ETDEWEB)
Huang, Yu-tin [School of Natural Sciences, Institute for Advanced Study,Princeton, NJ 08540 (United States); Wen, CongKao [Centre for Research in String Theory, Department of Physics,Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom)
2014-02-25
A remarkable connection between perturbative scattering amplitudes of four dimensional planar SYM, and the stratification of the positive Grassmannian, was revealed in the seminal work of Arkani-Hamed et al. Similar extension for three-dimensional ABJM theory was proposed. Here we establish a direct connection between planar scattering amplitudes of ABJM theory, and singularities thereof, to the stratification of the positive orthogonal Grassmannian. In particular, scattering processes are constructed through on-shell diagrams, which are simply iterative gluing of the fundamental four-point amplitude. Each diagram is then equivalent to the merging of fundamental OG{sub 2} orthogonal Grassmannian to form a larger OG{sub k}, where 2k is the number of external particles. The invariant information that is encoded in each diagram is precisely this stratification. This information can be easily read off via permutation paths of the on-shell diagram, which also can be used to derive a canonical representation of OG{sub k} that manifests the vanishing of consecutive minors as the singularity of all on-shell diagrams. Quite remarkably, for the BCFW recursion representation of the tree-level amplitudes, the on-shell diagram manifests the presence of all physical factorization poles, as well as the cancellation of the spurious poles. After analytically continuing the orthogonal Grassmannian to split signature, we reveal that each on-shell diagram in fact resides in the positive cell of the orthogonal Grassmannian, where all minors are positive. In this language, the amplitudes of ABJM theory is simply an integral of a product of dlog forms, over the positive orthogonal Grassmannian.
Stora's fine notion of divergent amplitudes
Directory of Open Access Journals (Sweden)
Joseph C. Várilly
2016-11-01
Full Text Available Stora and coworkers refined the notion of divergent quantum amplitude, somewhat upsetting the standard power-counting recipe. This unexpectedly clears the way to new prototypes for free and interacting field theories of bosons of any mass and spin.
The scattering amplitude for rationally extended shape invariant Eckart potentials
Energy Technology Data Exchange (ETDEWEB)
Yadav, Rajesh Kumar, E-mail: rajeshastrophysics@gmail.com [Department of Physics, Banaras Hindu University, Varanasi-221005 (India); Khare, Avinash, E-mail: khare@iiserpune.ac.in [Raja Ramanna Fellow, Indian Institute of Science Education and Research (IISER), Pune-411021 (India); Mandal, Bhabani Prasad, E-mail: bhabani.mandal@gmail.com [Department of Physics, Banaras Hindu University, Varanasi-221005 (India)
2015-01-23
Highlights: • Bound states of rationally extended Eckart potentials have been discussed. • These potentials exhibit extended shape invariant properties. • The potentials which are isospectral to the conventional Eckart potential are considered. • The scattering amplitude of these potentials has been obtained. • For a check, m=0 provide the scattering amplitude for the conventional potential. - Abstract: We consider the rationally extended exactly solvable Eckart potentials which exhibit extended shape invariance property. These potentials are isospectral to the conventional Eckart potential. The scattering amplitude for these rationally extended potentials is calculated analytically for the generalized mth (m=1,2,3,...) case by considering the asymptotic behavior of the scattering state wave functions which are written in terms of some new polynomials related to the Jacobi polynomials. As expected, in the m=0 limit, this scattering amplitude goes over to the scattering amplitude for the conventional Eckart potential.
On discrete-amplitude signal analysis and its applications
Institute of Scientific and Technical Information of China (English)
孙洪; 姚天任
1997-01-01
Discrete-amplitude signal analysis is studied. A reconstruction theorem of an arbitrary signal quantized in amplitude hut continuous in time, from 2 bits of its binary representation, is devised. A new concept of discrete-amplitude multiresolution (DAM), with the signal representation precision taken as its scale, is proposed. The singularities and the residue reducing effect of 2-bit reconstruction of some discrete-time signals are investigated. Two practical examples of applying the discrete-amplitude signal analysis to data compression and signal detection are presented It is shown both analytically and practically that the discrete-amplitude signal analysis is of simple formulation, parallel processing and efficient computation, and is well suited to hardware implementation and real-time signal processing
Gluon scattering amplitudes at strong coupling
Energy Technology Data Exchange (ETDEWEB)
Alday, Luis F. [Institute for Theoretical Physics and Spinoza Institute, Utrecht University, 3508 TD Utrecht (Netherlands); Maldacena, Juan [School of Natural Sciences, Institute for Advanced Study, Princeton, NJ 08540 (United States)
2007-06-15
We describe how to compute planar gluon scattering amplitudes at strong coupling in N = 4 super Yang Mills by using the gauge/string duality. The computation boils down to finding a certain classical string configuration whose boundary conditions are determined by the gluon momenta. The results are infrared divergent. We introduce the gravity version of dimensional regularization to define finite quantities. The leading and subleading IR divergencies are characterized by two functions of the coupling that we compute at strong coupling. We compute also the full finite form for the four point amplitude and we find agreement with a recent ansatz by Bern, Dixon and Smirnov.
Singularity Structure of Maximally Supersymmetric Scattering Amplitudes
DEFF Research Database (Denmark)
Arkani-Hamed, Nima; Bourjaily, Jacob L.; Cachazo, Freddy
2014-01-01
We present evidence that loop amplitudes in maximally supersymmetric (N=4) Yang-Mills theory (SYM) beyond the planar limit share some of the remarkable structures of the planar theory. In particular, we show that through two loops, the four-particle amplitude in full N=4 SYM has only logarithmic ...... singularities and is free of any poles at infinity—properties closely related to uniform transcendentality and the UV finiteness of the theory. We also briefly comment on implications for maximal (N=8) supergravity theory (SUGRA)....
Large amplitude oscillatory elongation flow
DEFF Research Database (Denmark)
Rasmussen, Henrik K.; Laillé, Philippe; Yu, Kaijia
2008-01-01
A filament stretching rheometer (FSR) was used for measuring the elongation flow with a large amplitude oscillative elongation imposed upon the flow. The large amplitude oscillation imposed upon the elongational flow as a function of the time t was defined as epsilon(t) =(epsilon) over dot(0)t + ...
Closed string amplitudes as single-valued open string amplitudes
Energy Technology Data Exchange (ETDEWEB)
Stieberger, Stephan, E-mail: stephan.stieberger@mpp.mpg.de [Max-Planck-Institut für Physik, Werner-Heisenberg-Institut, 80805 München (Germany); Taylor, Tomasz R. [Department of Physics, Northeastern University, Boston, MA 02115 (United States)
2014-04-15
We show that the single trace heterotic N-point tree-level gauge amplitude A{sub N}{sup HET} can be obtained from the corresponding type I amplitude A{sub N}{sup I} by the single-valued (sv) projection: A{sub N}{sup HET}=sv(A{sub N}{sup I}). This projection maps multiple zeta values to single-valued multiple zeta values. The latter represent a subclass of multiple zeta values originating from single-valued multiple polylogarithms at unity. Similar relations between open and closed string amplitudes or amplitudes of different string vacua can be established. As a consequence the α{sup ′}-expansion of a closed string amplitude is dictated by that of the corresponding open string amplitude. The combination of single-valued projections, Kawai–Lewellen–Tye relations and Mellin correspondence reveal a unity of all tree-level open and closed superstring amplitudes together with the maximally supersymmetric Yang–Mills and supergravity theories.
Connecting physical resonant amplitudes and lattice QCD
Bolton, Daniel R; Wilson, David J
2015-01-01
We present a determination of the isovector, $P$-wave $\\pi\\pi$ scattering phase shift obtained by extrapolating recent lattice QCD results from the Hadron Spectrum Collaboration using $m_\\pi =236$ MeV. The finite volume spectra are described using extensions of L\\"uscher's method to determine the infinite volume Unitarized Chiral Perturbation Theory scattering amplitude. We exploit the pion mass dependence of this effective theory to obtain the scattering amplitude at $m_\\pi= 140$ MeV. The scattering phase shift is found to be in good agreement with experiment up to center of mass energies of 1.2 GeV. The analytic continuation of the scattering amplitude to the complex plane yields a $\\rho$-resonance pole at $E_\\rho= \\left[755(2)(1)(^{20}_{02})-\\frac{i}{2}\\,129(3)(1)(^{7}_{1})\\right]~{\\rm MeV}$. The techniques presented illustrate a possible pathway towards connecting lattice QCD observables of few-body, strongly interacting systems to experimentally accessible quantities.
Complete N-point superstring disk amplitude II. Amplitude and hypergeometric function structure
Energy Technology Data Exchange (ETDEWEB)
Mafra, Carlos R., E-mail: crmafra@aei.mpg.de [Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut, 14476 Potsdam (Germany); Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106 (United States); Schlotterer, Oliver, E-mail: olivers@mppmu.mpg.de [Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106 (United States); Max-Planck-Institut für Physik, Werner-Heisenberg-Institut, 80805 München (Germany); Stieberger, Stephan, E-mail: stephan.stieberger@mpp.mpg.de [Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106 (United States); Max-Planck-Institut für Physik, Werner-Heisenberg-Institut, 80805 München (Germany)
2013-08-21
Using the pure spinor formalism in part I (Mafra et al., preprint [1]) we compute the complete tree-level amplitude of N massless open strings and find a striking simple and compact form in terms of minimal building blocks: the full N-point amplitude is expressed by a sum over (N−3)! Yang–Mills partial subamplitudes each multiplying a multiple Gaussian hypergeometric function. While the former capture the space–time kinematics of the amplitude the latter encode the string effects. This result disguises a lot of structure linking aspects of gauge amplitudes as color and kinematics with properties of generalized Euler integrals. In this part II the structure of the multiple hypergeometric functions is analyzed in detail: their relations to monodromy equations, their minimal basis structure, and methods to determine their poles and transcendentality properties are proposed. Finally, a Gröbner basis analysis provides independent sets of rational functions in the Euler integrals.
Remane, Daniela; Meyer, Markus R; Wissenbach, Dirk K; Maurer, Hans H
2011-06-01
Multi-analyte procedures are of great interest in clinical and forensic toxicology making the analytical process much simpler, faster, and cheaper and allow monitoring of analytes of different drug classes in one single body sample. The aim of the present study was to validate an ultra high performance liquid chromatographic-tandem mass spectrometric approach for fast target screening and quantification of 34 antidepressants in plasma after simple liquid-liquid extraction as part of a multi-analyte procedure for over 130 drugs. The validation process including recovery, matrix effects, process efficiency, ion suppression/enhancement of co-eluting analytes (already published), selectivity, cross talk, accuracy and precision, stabilities, and limits of quantification and detection showed that the approach was selective, sensitive, accurate, and precise for 28 of the 34 tested drugs. The applicability was successfully tested by analyzing authentic plasma samples and external quality control samples. Furthermore, it could be shown that time- and cost-saving one-point calibration was applicable for 21 drugs for daily routine and especially in emergency cases.
Model selection for amplitude analysis
Guegan, Baptiste; Stevens, Justin; Williams, Mike
2015-01-01
Model complexity in amplitude analyses is often a priori under-constrained since the underlying theory permits a large number of amplitudes to contribute to most physical processes. The use of an overly complex model results in reduced predictive power and worse resolution on unknown parameters of interest. Therefore, it is common to reduce the complexity by removing from consideration some subset of the allowed amplitudes. This paper studies a data-driven method for limiting model complexity through regularization during regression in the context of a multivariate (Dalitz-plot) analysis. The regularization technique applied greatly improves the performance. A method is also proposed for obtaining the significance of a resonance in a multivariate amplitude analysis.
Laser beam complex amplitude measurement by phase diversity.
Védrenne, Nicolas; Mugnier, Laurent M; Michau, Vincent; Velluet, Marie-Thérèse; Bierent, Rudolph
2014-02-24
The control of the optical quality of a laser beam requires a complex amplitude measurement able to deal with strong modulus variations and potentially highly perturbed wavefronts. The method proposed here consists in an extension of phase diversity to complex amplitude measurements that is effective for highly perturbed beams. Named camelot for Complex Amplitude MEasurement by a Likelihood Optimization Tool, it relies on the acquisition and processing of few images of the beam section taken along the optical path. The complex amplitude of the beam is retrieved from the images by the minimization of a Maximum a Posteriori error metric between the images and a model of the beam propagation. The analytical formalism of the method and its experimental validation are presented. The modulus of the beam is compared to a measurement of the beam profile, the phase of the beam is compared to a conventional phase diversity estimate. The precision of the experimental measurements is investigated by numerical simulations.
Some Heterodox Analytic Philosophy
Directory of Open Access Journals (Sweden)
Guillermo E. Rosado Haddock
2013-04-01
Full Text Available Analytic philosophy has been the most influential philosophical movement in 20th century philosophy. It has surely contributed like no other movement to the elucidation and demarcation of philosophical problems. Nonetheless, the empiricist and sometimes even nominalist convictions of orthodox analytic philosophers have served them to inadequately render even philosophers they consider their own and to propound very questionable conceptions.
Factorization of Chiral String Amplitudes
Huang, Yu-tin; Yuan, Ellis Ye
2016-01-01
We re-examine a closed-string model defined by altering the boundary conditions for one handedness of two-dimensional propagators in otherwise-standard string theory. We evaluate the amplitudes using Kawai-Lewellen-Tye factorization into open-string amplitudes. The only modification to standard string theory is effectively that the spacetime Minkowski metric changes overall sign in one open-string factor. This cancels all but a finite number of states: As found in earlier approaches, with enough supersymmetry (e.g., type II) the tree amplitudes reproduce those of the massless truncation of ordinary string theory. However, we now find for the other cases that additional fields, formerly thought to be auxiliary, describe new spin-2 states at the two adjacent mass levels (tachyonic and tardyonic). The tachyon is always a ghost, but can be avoided in the heterotic case.
Factorization of chiral string amplitudes
Huang, Yu-tin; Siegel, Warren; Yuan, Ellis Ye
2016-09-01
We re-examine a closed-string model defined by altering the boundary conditions for one handedness of two-dimensional propagators in otherwise-standard string theory. We evaluate the amplitudes using Kawai-Lewellen-Tye factorization into open-string amplitudes. The only modification to standard string theory is effectively that the spacetime Minkowski metric changes overall sign in one open-string factor. This cancels all but a finite number of states: as found in earlier approaches, with enough supersymmetry (e.g., type II) the tree amplitudes reproduce those of the massless truncation of ordinary string theory. However, we now find for the other cases that additional fields, formerly thought to be auxiliary, describe new spin-2 states at the two adjacent mass levels (tachyonic and tardyonic). The tachyon is always a ghost, but can be avoided in the heterotic case.
Shape of Pion Distribution Amplitude
Energy Technology Data Exchange (ETDEWEB)
Radyushkin, Anatoly
2009-11-01
A scenario is investigated in which the leading-twist pion distribution amplitude $\\varphi_\\pi (x)$ is approximated by the pion decay constant $f_\\pi$ for all essential values of the light-cone fraction $x$. A model for the light-front wave function $\\Psi (x, k_\\perp)$ is proposed that produces such a distribution amplitude and has a rapidly decreasing (exponential for definiteness) dependence on the light-front energy combination $ k_\\perp^2/x(1-x)$. It is shown that this model easily reproduces the fit of recent large-$Q^2$ BaBar data on the photon-pion transition form factor. Some aspects of scenario with flat pion distribution amplitude are discussed.
Low-amplitude vector screening solitons
Institute of Scientific and Technical Information of China (English)
Keqing Lu(卢克清); Xiangping Zhu(朱香平); Wei Zhao(赵卫); Yanlong Yang(杨延龙); Jinping Li(李金萍); Yanpeng Zhang(张彦鹏); Junchang Zhang(张君昌)
2004-01-01
We show self-coupled and cross-coupled vector beam evolution equations in the low-amplitude regime for screening solitons,which can exhibit the analytical solutions of bright-bright and dark-dark vector solitons.Our analysis indicates that these self-coupled vector solitons are obtained irrespective of the intensities of the two optical beams,whereas these cross-coupled vector solitons can be established when the intensities of the two optical beams are equal.Relevant examples are provided where the photorefractive crystal is lithium niobate(LiNbO3).The stability properties of these vector solitons have been investigated numerically and it has been found that they are stable.
High Frequency Amplitude Detector for GMI Magnetic Sensors
Directory of Open Access Journals (Sweden)
Aktham Asfour
2014-12-01
Full Text Available A new concept of a high-frequency amplitude detector and demodulator for Giant-Magneto-Impedance (GMI sensors is presented. This concept combines a half wave rectifier, with outstanding capabilities and high speed, and a feedback approach that ensures the amplitude detection with easily adjustable gain. The developed detector is capable of measuring high-frequency and very low amplitude signals without the use of diode-based active rectifiers or analog multipliers. The performances of this detector are addressed throughout the paper. The full circuitry of the design is given, together with a comprehensive theoretical study of the concept and experimental validation. The detector has been used for the amplitude measurement of both single frequency and pulsed signals and for the demodulation of amplitude-modulated signals. It has also been successfully integrated in a GMI sensor prototype. Magnetic field and electrical current measurements in open- and closed-loop of this sensor have also been conducted.
Milton, Graeme W
2016-01-01
The theory of inhomogeneous analytic materials is developed. These are materials where the coefficients entering the equations involve analytic functions. Three types of analytic materials are identified. The first two types involve an integer $p$. If $p$ takes its maximum value then we have a complete analytic material. Otherwise it is incomplete analytic material of rank $p$. For two-dimensional materials further progress can be made in the identification of analytic materials by using the well-known fact that a $90^\\circ$ rotation applied to a divergence free field in a simply connected domain yields a curl-free field, and this can then be expressed as the gradient of a potential. Other exact results for the fields in inhomogeneous media are reviewed. Also reviewed is the subject of metamaterials, as these materials provide a way of realizing desirable coefficients in the equations.
Quasi Distribution Amplitude of Heavy Quarkonia
Jia, Yu
2015-01-01
The recently-proposed quasi distributions point out a promising direction for lattice QCD to investigate the light-cone correlators, such as parton distribution functions (PDF) and distribution amplitudes (DA), directly in the $x$-space. Owing to its excessive simplicity, the heavy quarkonium can serve as an ideal theoretical laboratory to ascertain certain features of quasi-DA. In the framework of non-relativistic QCD (NRQCD) factorization, we compute the order-$\\alpha_s$ correction to both light-cone distribution amplitudes (LCDA) and quasi-DA associated with the lowest-lying quarkonia, with the transverse momentum UV cutoff interpreted as the renormalization scale. We confirm analytically that the quasi-DA of a quarkonium does reduce to the respective LCDA in the infinite-momentum limit. We also observe that, provided that the momentum of a charmonium reaches about 2-3 times its mass, the quasi-DAs already converge to the LCDAs to a decent level. These results might provide some useful guidance for the fut...
Bruce, William J; Maxwell, E A; Sneddon, I N
1963-01-01
Analytic Trigonometry details the fundamental concepts and underlying principle of analytic geometry. The title aims to address the shortcomings in the instruction of trigonometry by considering basic theories of learning and pedagogy. The text first covers the essential elements from elementary algebra, plane geometry, and analytic geometry. Next, the selection tackles the trigonometric functions of angles in general, basic identities, and solutions of equations. The text also deals with the trigonometric functions of real numbers. The fifth chapter details the inverse trigonometric functions
Federal Laboratory Consortium — The Analytical Labspecializes in Oil and Hydraulic Fluid Analysis, Identification of Unknown Materials, Engineering Investigations, Qualification Testing (to support...
Extracting amplitudes from photoproduction data
Workman, R. L.
2011-09-01
We consider the problems associated with amplitude extraction, from meson photoproduction data, over the first resonance regions. The notion of a complete experiment has motivated the FROST program at Jefferson Lab. Exercises applied to pion photoproduction data illustrate the problems to be confronted in any attempt to extract underlying resonance signals from these data (without introducing a model for the resonant process).
Employing Helicity Amplitudes for Resummation
Moult, Ian; Tackmann, Frank J; Waalewijn, Wouter J
2015-01-01
Many state-of-the-art QCD calculations for multileg processes use helicity amplitudes as their fundamental ingredients. We construct a simple and easy-to-use helicity operator basis in soft-collinear effective theory (SCET), for which the hard Wilson coefficients from matching QCD onto SCET are directly given in terms of color-ordered helicity amplitudes. Using this basis allows one to seamlessly combine fixed-order helicity amplitudes at any order they are known with a resummation of higher-order logarithmic corrections. In particular, the virtual loop amplitudes can be employed in factorization theorems to make predictions for exclusive jet cross sections without the use of numerical subtraction schemes to handle real-virtual infrared cancellations. We also discuss matching onto SCET in renormalization schemes with helicities in $4$- and $d$-dimensions. To demonstrate that our helicity operator basis is easy to use, we provide an explicit construction of the operator basis, as well as results for the hard m...
Employing Helicity Amplitudes for Resummation
Moult, I.; Stewart, I.W.; Tackmann, F.J.; Waalewijn, W.J.
2015-01-01
Many state-of-the-art QCD calculations for multileg processes use helicity amplitudes as their fundamental ingredients. We construct a simple and easy-to-use helicity operator basis in soft-collinear effective theory (SCET), for which the hard Wilson coefficients from matching QCD onto SCET are dire
Institute of Scientific and Technical Information of China (English)
HOU Chunfeng; LI Yan; YUAN Baohong; SUN Xiudong
2000-01-01
The low-amplitude spatial solitons in biased photovoltaic photorefractive crystals are investigated theoretically. The analytical solutions for both the bright and the dark low-amplitude screening-photovoltaic spatial solitons in photorefractive crystals are obtained. The expressions for the width of these solitons are given. The explicit expressions for the spatial deflection and angular deviation of the bright low-amplitude screening-photovoltaic spatial soliton are also presented by taking into account the effect of diffusion.
Discontinuities of BFKL amplitudes and the BDS ansatz
Directory of Open Access Journals (Sweden)
V.S. Fadin
2015-12-01
Full Text Available We perform an examination of discontinuities of multiple production amplitudes, which are required for further development of the BFKL approach. It turns out that the discontinuities of 2→2+n amplitudes obtained in the BFKL approach contradict to the BDS ansatz for amplitudes with maximal helicity violation in N=4 supersymmetric Yang–Mills theory with large number of colors starting with n=2. Explicit expressions for the discontinuities of the 2→3 and 2→4 amplitudes in the invariant mass of pairs of produced gluons are obtained in the planar N=4 SYM in the next-to-leading logarithmic approximation. These expressions can be used for checking the conjectured duality between the light-like Wilson loops and the MHV amplitudes.
High Amplitude Secondary Mass Drive
Energy Technology Data Exchange (ETDEWEB)
DYCK,CHRISTOPHER WILLIAM; ALLEN,JAMES J.; HUBER,ROBERT JOHN; SNIEGOWSKI,JEFFRY J.
2000-07-06
In this paper we describe a high amplitude electrostatic drive for surface micromachined mechanical oscillators that may be suitable for vibratory gyroscopes. It is an advanced design of a previously reported dual mass oscillator (Dyck, et. al., 1999). The structure is a 2 degree-of-freedom, parallel-plate driven motion amplifier, termed the secondary mass drive oscillator (SMD oscillator). During each cycle the device contacts the drive plates, generating large electrostatic forces. Peak-to-peak amplitudes of 54 {micro}m have been obtained by operating the structure in air with an applied voltage of 11 V. We describe the structure, present the analysis and design equations, and show recent results that have been obtained, including frequency response data, power dissipation, and out-of- plane motion.
Gauge and Gravity Amplitude Relations
Carrasco, John Joseph M
2015-01-01
In these lectures I talk about simplifications and universalities found in scattering amplitudes for gauge and gravity theories. In contrast to Ward identities, which are understood to arise from familiar symmetries of the classical action, these structures are currently only understood in terms of graphical organizational principles, such as the gauge-theoretic color-kinematics duality and the gravitational double-copy structure, for local representations of multi-loop S-matrix elements. These graphical principles make manifest new relationships in and between gauge and gravity scattering amplitudes. My lectures will focus on arriving at such graphical organizations for generic theories with examples presented from maximal supersymmetry, and their use in unitarity-based multi-loop integrand construction.
Infrared singularities in QCD amplitudes
Gardi, Einan
2009-01-01
We review recent progress in determining the infrared singularity structure of on-shell scattering amplitudes in massless gauge theories. We present a simple ansatz where soft singularities of any scattering amplitude of massless partons, to any loop order, are written as a sum over colour dipoles, governed by the cusp anomalous dimension. We explain how this formula was obtained, as the simplest solution to a newly-derived set of equations constraining the singularity structure to all orders. We emphasize the physical ideas underlying this derivation: the factorization of soft and collinear modes, the special properties of soft gluon interactions, and the notion of the cusp anomaly. Finally, we briefly discuss potential multi-loop contributions going beyond the sum-over-dipoles formula, which cannot be excluded at present.
Directory of Open Access Journals (Sweden)
S.V. Bystrov
2016-05-01
Full Text Available Subject of Research.We present research results for the signal uncertainty problem that naturally arises for the developers of servomechanisms, including analytical design of serial compensators, delivering the required quality indexes for servomechanisms. Method. The problem was solved with the use of Besekerskiy engineering approach, formulated in 1958. This gave the possibility to reduce requirements for input signal composition of servomechanisms by using only two of their quantitative characteristics, such as maximum speed and acceleration. Information about input signal maximum speed and acceleration allows entering into consideration the equivalent harmonic input signal with calculated amplitude and frequency. In combination with requirements for maximum tracking error, the amplitude and frequency of the equivalent harmonic effects make it possible to estimate analytically the value of the amplitude characteristics of the system by error and then convert it to amplitude characteristic of open-loop system transfer function. While previously Besekerskiy approach was mainly used in relation to the apparatus of logarithmic characteristics, we use this approach for analytical synthesis of consecutive compensators. Main Results. Proposed technique is used to create analytical representation of "input–output" and "error–output" polynomial dynamic models of the designed system. In turn, the desired model of the designed system in the "error–output" form of analytical representation of transfer functions is the basis for the design of consecutive compensator, that delivers the desired placement of state matrix eigenvalues and, consequently, the necessary set of dynamic indexes for the designed system. The given procedure of consecutive compensator analytical design on the basis of Besekerskiy engineering approach under conditions of signal uncertainty is illustrated by an example. Practical Relevance. The obtained theoretical results are
Pulse amplitude modulated chlorophyll fluorometer
Energy Technology Data Exchange (ETDEWEB)
Greenbaum, Elias; Wu, Jie
2015-12-29
Chlorophyll fluorometry may be used for detecting toxins in a sample because of changes in micro algae. A portable lab on a chip ("LOAC") based chlorophyll fluorometer may be used for toxin detection and environmental monitoring. In particular, the system may include a microfluidic pulse amplitude modulated ("PAM") chlorophyll fluorometer. The LOAC PAM chlorophyll fluorometer may analyze microalgae and cyanobacteria that grow naturally in source drinking water.
Burdette, A C
1971-01-01
Analytic Geometry covers several fundamental aspects of analytic geometry needed for advanced subjects, including calculus.This book is composed of 12 chapters that review the principles, concepts, and analytic proofs of geometric theorems, families of lines, the normal equation of the line, and related matters. Other chapters highlight the application of graphing, foci, directrices, eccentricity, and conic-related topics. The remaining chapters deal with the concept polar and rectangular coordinates, surfaces and curves, and planes.This book will prove useful to undergraduate trigonometric st
Scattering amplitudes over finite fields and multivariate functional reconstruction
Peraro, Tiziano
2016-01-01
Several problems in computer algebra can be efficiently solved by reducing them to calculations over finite fields. In this paper, we describe an algorithm for the reconstruction of multivariate polynomials and rational functions from their evaluation over finite fields. Calculations over finite fields can in turn be efficiently performed using machine-size integers in statically-typed languages. We then discuss the application of the algorithm to several techniques related to the computation of scattering amplitudes, such as the four- and six-dimensional spinor-helicity formalism, tree-level recursion relations, and multi-loop integrand reduction via generalized unitarity. The method has good efficiency and scales well with the number of variables and the complexity of the problem. As an example combining these techniques, we present the calculation of full analytic expressions for the two-loop five-point on-shell integrands of the maximal cuts of the planar penta-box and the non-planar double-pentagon topol...
Scattering amplitudes over finite fields and multivariate functional reconstruction
Peraro, Tiziano
2016-12-01
Several problems in computer algebra can be efficiently solved by reducing them to calculations over finite fields. In this paper, we describe an algorithm for the reconstruction of multivariate polynomials and rational functions from their evaluation over finite fields. Calculations over finite fields can in turn be efficiently performed using machine-size integers in statically-typed languages. We then discuss the application of the algorithm to several techniques related to the computation of scattering amplitudes, such as the four- and six-dimensional spinor-helicity formalism, tree-level recursion relations, and multi-loop integrand reduction via generalized unitarity. The method has good efficiency and scales well with the number of variables and the complexity of the problem. As an example combining these techniques, we present the calculation of full analytic expressions for the two-loop five-point on-shell integrands of the maximal cuts of the planar penta-box and the non-planar double-pentagon topologies in Yang-Mills theory, for a complete set of independent helicity configurations.
Air-segmented amplitude-modulated multiplexed flow analysis.
Inui, Koji; Uemura, Takeshi; Ogusu, Takeshi; Takeuchi, Masaki; Tanaka, Hideji
2011-01-01
Air-segmentation is applied to amplitude-modulated multiplexed flow analysis, which we proposed recently. Sample solutions, the flow rates of which are varied periodically, are merged with reagent and/or diluent solution. The merged stream is segmented by air-bubbles and, downstream, its absorbance is measured after deaeration. The analytes in the samples are quantified from the amplitudes of the respective wave components in the absorbance. The proposed method is applied to the determinations of a food dye, phosphate ions and nitrite ions. The air-segmentation is effective for limiting amplitude damping through the axial dispersion, resulting in an improvement in sensitivity. This effect is more pronounced at shorter control periods and longer flow path lengths.
Business analytics a practitioner's guide
Saxena, Rahul
2013-01-01
This book provides a guide to businesses on how to use analytics to help drive from ideas to execution. Analytics used in this way provides "full lifecycle support" for business and helps during all stages of management decision-making and execution.The framework presented in the book enables the effective interplay of business, analytics, and information technology (business intelligence) both to leverage analytics for competitive advantage and to embed the use of business analytics into the business culture. It lays out an approach for analytics, describes the processes used, and provides gu
Crisis in Amplitude Control Hides in Multistability
Li, Chunbiao; Sprott, Julien Clinton; Xing, Hongyan
2016-12-01
A crisis of amplitude control can occur when a system is multistable. This paper proposes a new chaotic system with a line of equilibria to demonstrate the threat to amplitude control from multistability. The new symmetric system has two coefficients for amplitude control, one of which is a partial amplitude controller, while the other is a total amplitude controller that simultaneously controls the frequency. The amplitude parameter rescales the basins of attraction and triggers a state switch among different states resulting in a failure of amplitude control to the desired state.
Organizational Models for Big Data and Analytics
Directory of Open Access Journals (Sweden)
Robert L. Grossman
2014-04-01
Full Text Available In this article, we introduce a framework for determining how analytics capability should be distributed within an organization. Our framework stresses the importance of building a critical mass of analytics staff, centralizing or decentralizing the analytics staff to support business processes, and establishing an analytics governance structure to ensure that analytics processes are supported by the organization as a whole.
Federal Laboratory Consortium — NETL’s analytical laboratories in Pittsburgh, PA, and Albany, OR, give researchers access to the equipment they need to thoroughly study the properties of materials...
Calculation of multi-loop superstring amplitudes
Danilov, G. S.
2016-12-01
The multi-loop interaction amplitudes in the closed, oriented superstring theory are obtained by the integration of local amplitudes. The local amplitude is represented by a sum over the spinning string local amplitudes. The spinning string local amplitudes are given explicitly through super-Schottky group parameters and through interaction vertex coordinates on the (1| 1) complex, non-split supermanifold. The obtained amplitudes are free from divergences. They are consistent with the world-sheet spinning string symmetries. The vacuum amplitude vanishes along with 1-, 2- and 3-point amplitudes of massless states. The vanishing of the above-mentioned amplitude occurs after the integration of the corresponding local amplitude has been performed over the super-Schottky group limiting points and over interaction vertex coordinate, except for those (3| 2) variables which are fixed due to SL(2)-symmetry.
Hadronic scattering amplitudes medium-energy constraints on asymptotic behaviour
Cudell, J R; Gauron, P; Kang, K; Kuyanov, Yu V; Lugovsky, S B; Nicolescu, Basarab; Tkachenko, N P; Kuyanov, Yu. V.
2002-01-01
We consider several classes of analytic parametrisations of hadronic scattering amplitudes, and compare their predictions to all available forward data (p p, pbar p, pi p, K p, gamma p, gamma gamma, Sigma p). Although these parametrisations are very close for sqrt(s) > 9 GeV, it turns out that they differ markedly at low energy, where a universal pomeron term ~log^2(s) enables one to extend the fit down to sqrt(s)=4 GeV.
Color-dressed recursive relations for multi-parton amplitudes
Duhr, C; Maltoni, F; Duhr, Claude; Hoeche, Stefan; Maltoni, Fabio
2006-01-01
Remarkable progress inspired by twistors has lead to very simple analytic expressions and to new recursive relations for multi-parton color-ordered amplitudes. We show how such relations can be extended to include color and present the corresponding color-dressed formulation for the Berends-Giele, BCF and a new kind of CSW recursive relations. A detailed comparison of the numerical efficiency of the different approaches to the calculation of multi-parton cross sections is performed.
The elastic QCD dipole amplitude at one-loop
Navelet, H
1999-01-01
We derive the analytic expression of the two one-loop dipole contributions to the elastic 4-gluon amplitude in QCD. The first one corresponds to the double QCD pomeron exchange, the other to an order alpha^2 correction to one-pomeron exchange. Both are expressed in terms of the square of the recently derived triple QCD pomeron vertex and involve a summation over all conformal Eigenvectors of the BFKL kernel.
Radiation Belt Electron Dynamics Driven by Large-Amplitude Whistlers
Khazanov, G. V.; Tel'nikhin, A. A.; Kronberg, T. K.
2013-01-01
Acceleration of radiation belt electrons driven by oblique large-amplitude whistler waves is studied. We show analytically and numerically that this is a stochastic process; the intensity of which depends on the wave power modified by Bessel functions. The type of this dependence is determined by the character of the nonlinear interaction due to coupling between action and phase. The results show that physically significant quantities have a relatively weak dependence on the wave power.
AMPLITUDE FLUCTUATIONS IN CURVATURE SENSING: COMPARISON OF TWO SCHEMES
Directory of Open Access Journals (Sweden)
V. V. Voitsekhovich
2010-01-01
Full Text Available Se investiga la influencia de las uctuaciones en amplitud sobre la calidad de la reconstrución de fases en la medición de la curvatura. Se comparan los dos es- quemas: el que emplea dos imágenes simétricas fuera de foco (esquema de Roddier y el que emplea una sola (esquema de Hickson. Se demuestra que la precisión de la reconstrucción de fases con el esquema de Hickson se ve fuertemente afectada por uctuaciones en amplitud incluso leves, mientras que el esquema de Roddier funciona bien incluso con grandes uctuaciones en amplitud.
Amplitude Modulation in the δ Sct star KIC 7106205
Directory of Open Access Journals (Sweden)
Bowman Dominic. M.
2015-01-01
Full Text Available The δ Sct star KIC 7106205 showed amplitude modulation in a single p mode, whilst all other p and g modes remained stable in amplitude and phase over 1470 d of the Kepler dataset. The data were divided into 30 time bins of equal length and a series of consecutive Fourier transforms was calculated. A fixed frequency, calculated from a least-squares fit of all data, allowed amplitude and phase for every mode in each time bin to be tracked. The missing p mode energy was not transferred to any other visible modes.
Design of optimal binary phase and amplitude filters for maximization of correlation peak sharpness
Downie, John D.
1991-01-01
Current binary-phase filters used for optical correlation are usually assumed to have uniform amplitude transmission. Here, a new type of filter is studied, the binary-phase-and-amplitude filter. If binary phase values of 0 and pi are assumed, the amplitude transmittance values of this type of filter can be optimized to maximize the peak sharpness. For a polarization-encoded binary-phase filter this can be translated into optimization of the rotation angle of the output polarizer following the filter-spatial-light modulator. An analytic expression is presented for the optimum polarizer angle and thus for the optimum binary-phase-and-amplitude filter design.
Leading Twist Parton Distribution Amplitudes in Heavy Vector Mesons
Directory of Open Access Journals (Sweden)
Gao Fei
2016-01-01
Full Text Available We employed QCD’s Dyson-Schwinger equations (DSEs for heavy quarks and obtained the leading twist parton distribution amplitudes (PDAs in heavy vector mesons J/Ψ and ϒ. We found that all of the amplitudes are narrower than the asymptotic form, while they deviate from δ function. This indicates that the interaction between the two continent quarks are still important in the mesons consisted of charm and bottom quarks.
Amplitude recruitment of cochlear potential
Institute of Scientific and Technical Information of China (English)
LI Xingqi; SUN Wei; SUN Jianhe; YU Ning; JIANG Sichang
2001-01-01
Intracellular recordings were made from outer hair cells (OHC) and the cochlear microphonics (CM) were recorded from scala media (SM) in three turn of guinea pig cochlea,the compound action potential (CAP) were recorded at the round window (RW) before and after the animal were exposed to white noise. The results suggest that the nonlinear properties with “saduration” of Input/output (I/O) function of OHC AC recepter potential and CM were founded; the nonlinear properties with “Low”, “Platean” and “high” of CAP also were investigated. After explosion, the threshold shift of CAP has about 10 dB. The I/O of OHC responses and CM were changed in a linearizing (i.e., nonlinearity loss), the “platean” of I/O CAP disappeared and the growth rate of CAP amplitude were larger than before explosion. The response amplitude recruitment of OHC appears to result from reduction in gain (i.e., hearing loss); It was due to the nonlinear growth function of OHC receptor potentials was changed in linearzing that the basilar membrance motion was changed in linearizing. Since intensity coding in the inner ear depends on an interactions of nonlinear basilar membrance and nerve fibers. So that it must lead to a linearizing of CAP as input responses.
Energy Technology Data Exchange (ETDEWEB)
2006-06-01
In the Analytical Microscopy group, within the National Center for Photovoltaic's Measurements and Characterization Division, we combine two complementary areas of analytical microscopy--electron microscopy and proximal-probe techniques--and use a variety of state-of-the-art imaging and analytical tools. We also design and build custom instrumentation and develop novel techniques that provide unique capabilities for studying materials and devices. In our work, we collaborate with you to solve materials- and device-related R&D problems. This sheet summarizes the uses and features of four major tools: transmission electron microscopy, scanning electron microscopy, the dual-beam focused-ion-beam workstation, and scanning probe microscopy.
COEFICIENTES DE TRANSMISSÃO E REFLEXÃO PELO MÉTODO DA AMPLITUDE VARIÁVEL
Directory of Open Access Journals (Sweden)
Éderson D'M. Costa
Full Text Available In this work, a simple derivation of the variable amplitude method using the variation of parameters to solve a differential equation is presented. The variable amplitude method was originally devised by Tikochinsky in 1977, using the quantum theory of scattering. The method is applied to two model potentials, the rectangular potential barrier and the Eckart potential, both with analytical solutions for the reflection coefficient. Numerical results will be compared with the exact values for several energies. The problem of calculating the reflection coefficient, usually involving extensive algebra as described in several textbooks, is reduced to solving a first order differential equation with initial condition. The method is very simple to apply, representing an attractive tool for teaching introductory quantum mechanics. A simple computer code is available from which reflection coefficients for the Eckart potential can be calculated.
Mathematical aspects of scattering amplitudes
Duhr, Claude
2014-01-01
In these lectures we discuss some of the mathematical structures that appear when computing multi-loop Feynman integrals. We focus on a specific class of special functions, the so-called multiple polylogarithms, and discuss introduce their Hopf algebra structure. We show how these mathematical concepts are useful in physics by illustrating on several examples how these algebraic structures are useful to perform analytic computations of loop integrals, in particular to derive functional equations among polylogarithms.
Mathematical aspects of scattering amplitudes
Duhr, Claude
2014-01-01
In these lectures we discuss some of the mathematical structures that appear when computing multi-loop Feynman integrals. We focus on a specific class of special functions, the so-called multiple polylogarithms, and discuss introduce their Hopf algebra structure. We show how these mathematical concepts are useful in physics by illustrating on several examples how these algebraic structures are useful to perform analytic computations of loop integrals, in particular to derive functional equati...
Mathematical Aspects of Scattering Amplitudes
Duhr, Claude
In these lectures we discuss some of the mathematical structures that appear when computing multi-loop Feynman integrals. We focus on a specific class of special functions, the so-called multiple polylogarithms, and introduce their Hopf algebra structure. We show how these mathematical concepts are useful in physics by illustrating on several examples how these algebraic structures are useful to perform analytic computations of loop integrals, in particular to derive functional equations among polylogarithms.
Spain, Barry; Ulam, S; Stark, M
1960-01-01
Analytical Quadrics focuses on the analytical geometry of three dimensions. The book first discusses the theory of the plane, sphere, cone, cylinder, straight line, and central quadrics in their standard forms. The idea of the plane at infinity is introduced through the homogenous Cartesian coordinates and applied to the nature of the intersection of three planes and to the circular sections of quadrics. The text also focuses on paraboloid, including polar properties, center of a section, axes of plane section, and generators of hyperbolic paraboloid. The book also touches on homogenous coordi
A generalized fidelity amplitude for open systems.
Gorin, T; Moreno, H J; Seligman, T H
2016-06-13
We consider a central system which is coupled via dephasing to an open system, i.e. an intermediate system which in turn is coupled to another environment. Considering the intermediate and far environment as one composite system, the coherences in the central system are given in the form of fidelity amplitudes for a certain perturbed echo dynamics in the composite environment. On the basis of the Born-Markov approximation, we derive a master equation for the reduction of that dynamics to the intermediate system alone. In distinction to an earlier paper (Moreno et al 2015 Phys. Rev. A 92, 030104. (doi:10.1103/PhysRevA.92.030104)), where we discussed the stabilizing effect of the far environment on the decoherence in the central system, we focus here on the possibility of using the measurable coherences in the central system for probing the open quantum dynamics in the intermediate system. We illustrate our results for the case of chaotic dynamics in the near environment, where we compare random matrix simulations with our analytical result.
DEFF Research Database (Denmark)
Seif El-Nasr, Magy; Drachen, Anders; Canossa, Alessandro
2013-01-01
Game Analytics has gained a tremendous amount of attention in game development and game research in recent years. The widespread adoption of data-driven business intelligence practices at operational, tactical and strategic levels in the game industry, combined with the integration of quantitative...
Grassmannian geometry of scattering amplitudes
Arkani-Hamed, Nima; Cachazo, Freddy; Goncharov, Alexander; Postnikov, Alexander; Trnka, Jaroslav
2016-01-01
Outlining a revolutionary reformulation of the foundations of perturbative quantum field theory, this book is a self-contained and authoritative analysis of the application of this new formulation to the case of planar, maximally supersymmetric Yang–Mills theory. The book begins by deriving connections between scattering amplitudes and Grassmannian geometry from first principles before introducing novel physical and mathematical ideas in a systematic manner accessible to both physicists and mathematicians. The principle players in this process are on-shell functions which are closely related to certain sub-strata of Grassmannian manifolds called positroids - in terms of which the classification of on-shell functions and their relations becomes combinatorially manifest. This is an essential introduction to the geometry and combinatorics of the positroid stratification of the Grassmannian and an ideal text for advanced students and researchers working in the areas of field theory, high energy physics, and the...
Relations Between Helicity Coupling Amplitude and L-S Coupling Amplitude
Institute of Scientific and Technical Information of China (English)
WU Ning; RUAN Tu-Nan
2001-01-01
Relations between helicity coupling amplitude and L-S coupling amplitude are discussed. The equivalence condition for these two kinematic analysis methods and the limitations of the L-S coupling amplitude are also studied in this paper.``
All One-loop Maximally Helicity Violating Gluonic Amplitudes in QCD
Energy Technology Data Exchange (ETDEWEB)
Berger, Carola F.; Bern, Zvi; Dixon, Lance J.; Forde, Darren; Kosower, David A.
2006-07-05
We use on-shell recursion relations to compute analytically the one-loop corrections to maximally-helicity-violating n-gluon amplitudes in QCD. The cut-containing parts have been computed previously; our work supplies the remaining rational parts for these amplitudes, which contain two gluons of negative helicity and the rest positive, in an arbitrary color ordering. We also present formulae specific to the six-gluon cases, with helicities (-+-+++) and (-++-++), as well as numerical results for six, seven, and eight gluons. Our construction of the n-gluon amplitudes illustrates the relatively modest growth in complexity of the on-shell-recursive calculation as the number of external legs increases. These amplitudes add to the growing body of one-loop amplitudes known for all n, which are useful for studies of general properties of amplitudes, including their twistor-space structure.
The Construction of Spin Foam Vertex Amplitudes
Directory of Open Access Journals (Sweden)
Eugenio Bianchi
2013-01-01
Full Text Available Spin foam vertex amplitudes are the key ingredient of spin foam models for quantum gravity. These fall into the realm of discretized path integral, and can be seen as generalized lattice gauge theories. They can be seen as an attempt at a 4-dimensional generalization of the Ponzano-Regge model for 3d quantum gravity. We motivate and review the construction of the vertex amplitudes of recent spin foam models, giving two different and complementary perspectives of this construction. The first proceeds by extracting geometric configurations from a topological theory of the BF type, and can be seen to be in the tradition of the work of Barrett, Crane, Freidel and Krasnov. The second keeps closer contact to the structure of Loop Quantum Gravity and tries to identify an appropriate set of constraints to define a Lorentz-invariant interaction of its quanta of space. This approach is in the tradition of the work of Smolin, Markopoulous, Engle, Pereira, Rovelli and Livine.
DEFF Research Database (Denmark)
include: re-identification, consumer behavior analysis, utilizing pupillary response for task difficulty measurement, logo detection, saliency prediction, classification of facial expressions, face recognition, face verification, age estimation, super-resolution, pose estimation, and pain recognition......This book collects the papers presented at two workshops during the 23rd International Conference on Pattern Recognition (ICPR): the Third Workshop on Video Analytics for Audience Measurement (VAAM) and the Second International Workshop on Face and Facial Expression Recognition (FFER) from Real...
Quantum Amplitude Amplification and Estimation
Brassard, G; Mosca, M; Tapp, A; Brassard, Gilles; Hoyer, Peter; Mosca, Michele; Tapp, Alain
2000-01-01
Consider a Boolean function $\\chi: X \\to \\{0,1\\}$ that partitions set $X$ between its good and bad elements, where $x$ is good if $\\chi(x)=1$ and bad otherwise. Consider also a quantum algorithm $\\mathcal A$ such that $A \\ket{0} = \\sum_{x\\in X} \\alpha_x \\ket{x}$ is a quantum superposition of the elements of $X$, and let $a$ denote the probability that a good element is produced if $A \\ket{0}$ is measured. If we repeat the process of running $A$, measuring the output, and using $\\chi$ to check the validity of the result, we shall expect to repeat $1/a$ times on the average before a solution is found. *Amplitude amplification* is a process that allows to find a good $x$ after an expected number of applications of $A$ and its inverse which is proportional to $1/\\sqrt{a}$, assuming algorithm $A$ makes no measurements. This is a generalization of Grover's searching algorithm in which $A$ was restricted to producing an equal superposition of all members of $X$ and we had a promise that a single $x$ existed such tha...
Vortex precession frequency and its amplitude-dependent shift in cylindrical nanomagnets
Energy Technology Data Exchange (ETDEWEB)
Metlov, Konstantin L., E-mail: metlov@fti.dn.ua [Donetsk Institute for Physics and Technology NAS, Donetsk 83114 (Ukraine)
2013-12-14
Frequency of free magnetic vortex precession in circular soft ferromagnetic nano-cylinders (magnetic dots) of various sizes is an important parameter, used in design of spintronic devices (such as spin-torque microwave nano-oscillators) and characterization of magnetic nanostructures. Here, using a recently developed collective-variable approach to non-linear dynamics of magnetic textures in planar nano-magnets, this frequency and its amplitude-dependent shift are computed analytically and plotted for the full range of cylinder geometries. The frequency shift is positive in large planar dots, but becomes negative in smaller and more elongated ones. At certain dot dimensions, a zero frequency shift is realized, which can be important for enhancing frequency stability of magnetic nano-oscillators.
Effect Of Vibration Amplitude Level On Seated Occupant Reaction Time
Directory of Open Access Journals (Sweden)
Amzar Azizan
2015-08-01
Full Text Available The past decade has seen the rapid development of vibration comfort in the automotive industry. However little attention has been paid to vibration drowsiness. Eighteen male volunteers were recruited for this experiment. Before commencing the experiment total transmitted acceleration measured at interfaces between the seat cushion and seatback to human body was adjusted to become 0.2 ms-2 r.m.s and 0.4 ms-2 r.m.s for each volunteer. Seated volunteers were exposed to Gaussian random vibration with frequency band 1-15 Hz at two level of amplitude low vibration amplitude and medium vibration amplitude for 20-minutes in separate days. For the purpose of drowsiness measurement volunteers were asked to complete 10-minutes PVT test before and after vibration exposure and rate their subjective drowsiness by giving score using Karolinska Sleepiness Scale KSS before vibration every 5-minutes interval and following 20-minutes of vibration exposure. Strong evidence of drowsiness was found as there was a significant increase in reaction time and number of lapse following exposure to vibration in both conditions. However the effect is more apparent in medium vibration amplitude. A steady increase of drowsiness level can also be observed in KSS in all volunteers. However no significant differences were found in KSS between low vibration amplitude and medium vibration amplitude. The results of this investigation suggest that exposure to vibration has an adverse effect on human alertness level and more pronounced at higher vibration amplitude. Taken together these findings suggest a role of vibration in promoting drowsiness especially at higher vibration amplitude.
Large amplitude electromagnetic solitons in intense laser plasma interaction
Institute of Scientific and Technical Information of China (English)
Li Bai-Wen; Ishiguro S; Skoric M M
2006-01-01
This paper shows that the standing, backward- and forward-accelerated large amplitude relativistic electromagnetic solitons induced by intense laser pulse in long underdense collisionless homogeneous plasmas can be observed by particle simulations. In addition to the inhomogeneity of the plasma density, the acceleration of the solitons also depends upon not only the laser amplitude but also the plasma length. The electromagnetic frequency of the solitons is between about half and one of the unperturbed electron plasma frequency. The electrostatic field inside the soliton has a one-cycle structure in space, while the transverse electric and magnetic fields have half-cycle and one-cycle structure respectively.Analytical estimates for the existence of the solitons and their electromagnetic frequencies qualitatively coincide with our simulation results.
Nth-powered amplitude squeezing in fan-states
Duc, T M
2002-01-01
Squeezing properties of the Hillery-type N-powered amplitude are investigated in the fan-state vertical bar xi; 2k, f> sub F which is linearly superposed by 2k 2k-quantum nonlinear coherent states in the phase-locked manner. The general expression of squeezing is derived analytically for arbitrary xi, k, N and f showing a multi-directional character of squeezing. For a given k, squeezing may appear to the even power N=2k if f ident to 1 and N>=2k if f not =1 and the number of directions along with the Nth-powered amplitude is squeezed is exactly equal to N, for both f ident to 1 (the light field) and f not =1 (the vibrational motion of the trapped ion). Discussions are also given elucidating the qualitative difference between the cases of f ident to 1 and f not =1.
Generalised unitarity for dimensionally regulated amplitudes within FDF
Bobadilla, William J Torres
2016-01-01
We review the Four-Dimensional-Formulation variant of the Four-Dimensional-Helicity scheme, by showing two applications of this regularisation scheme. The first one is the computation of one-loop helicity amplitudes, for which we present preliminary results for the analytic expressions of the one-loop Higgs plus five- gluon amplitudes. In the second part, we study the Colour-Kinematics duality for off-shell diagrams in gauge theories coupled to matter, showing in a diagrammatic way that the Jacobi relations for the kinematic numerators of off-shell diagrams, built with Feynman rules in axial gauge, reduce to definite set of violating terms due to the contributions of sub-graphs only.
Amplitude modulation control of escape from a potential well
Energy Technology Data Exchange (ETDEWEB)
Chacón, R. [Departamento de Física Aplicada, Escuela de Ingenierías Industriales, Universidad de Extremadura, Apartado Postal 382, E-06006 Badajoz (Spain); Martínez García-Hoz, A. [Departamento de Física Aplicada, Escuela Universitaria Politécnica, Universidad de Castilla-La Mancha, E-13400 Almadén (Ciudad Real) (Spain); Miralles, J.J. [Departamento de Física Aplicada, Escuela de Ingenieros Industriales, Universidad de Castilla-La Mancha, E-02071 Albacete (Spain); Martínez, P.J. [Departamento de Física Aplicada, E.I.N.A., Universidad de Zaragoza, E-50018 Zaragoza (Spain); Instituto de Ciencia de Materiales de Aragón, CSIC – Universidad de Zaragoza, E-50009 Zaragoza (Spain)
2014-03-01
We demonstrate the effectiveness of periodic amplitude modulations in controlling (suppressing and enhancing) escape from a potential well through the universal model of a damped Helmholtz oscillator subjected to an external periodic excitation (the escape-inducing excitation) whose amplitude is periodically modulated (the escape-controlling excitation). Analytical and numerical results show that this multiplicative control works reliably for different subharmonic resonances between the two periodic excitations involved, and that its effectiveness is comparable to those of different methods of additive control. Additionally, we demonstrate the robustness of the multiplicative control against the presence of low-intensity Gaussian noise. -- Highlights: •Multiplicative control of escape from a potential well has been demonstrated. •Theoretical predictions are obtained from a Melnikov analysis. •It has been shown the robustness of the multiplicative control against noise.
Renormalization of position space amplitudes in a massless QFT
Todorov, Ivan
2017-03-01
Ultraviolet renormalization of position space massless Feynman amplitudes has been shown to yield associate homogeneous distributions. Their degree is determined by the degree of divergence while their order—the highest power of logarithm in the dilation anomaly—is given by the number of (sub)divergences. In the present paper we review these results and observe that (convergent) integration over internal vertices does not alter the total degree of (superficial) ultraviolet divergence. For a conformally invariant theory internal integration is also proven to preserve the order of associate homogeneity. The renormalized 4-point amplitudes in the φ4 theory (in four space-time dimensions) are written as (non-analytic) translation invariant functions of four complex variables with calculable conformal anomaly. Our conclusion concerning the (off-shell) infrared finiteness of the ultraviolet renormalized massless φ4 theory agrees with the old result of Lowenstein and Zimmermann [23].
Analytical solutions of the simplified Mathieu’s equation
Directory of Open Access Journals (Sweden)
Nicolae MARCOV
2016-03-01
Full Text Available Consider a second order differential linear periodic equation. The periodic coefficient is an approximation of the Mathieu’s coefficient. This equation is recast as a first-order homogeneous system. For this system we obtain analytical solutions in an explicit form. The first solution is a periodic function. The second solution is a sum of two functions, the first is a continuous periodic function, but the second is an oscillating function with monotone linear increasing amplitude. We give a formula to directly compute the slope of this increase, without knowing the second numeric solution. The periodic term of the second solution may be computed directly. The coefficients of fundamental matrix of the system are analytical functions.
Analytical Model for Overmodulation in EDFAs in the Presence of ASE
Directory of Open Access Journals (Sweden)
MohadMehdi Karkhanehchi
2008-06-01
Full Text Available We investigate the effect of ASE(Amplified Spontaneous Emission on the gain modulation, that also referred to overmodulation. The gain modulation is the low-frequency (kHz amplitude modulation of the EDFA pump and the communication signal used for propagating line monitoring information. We develop the model of Novak and Moesle (2002, by including ASE, that they neglected. The derivation of an analytical model, for EDFA overmodulation response, has been presented. This model provides analytical expressions for the pump and input signal overmodulation responses, respectively. These expressions describe the output signal modulation index amplitude and phase, assuming small sinusoidal steady-state oscillations of the mean pump or input signal power. In this paper we show that ASE has some effects on predictions in the high gain/low saturation regime.
Rorty, Pragmatism, and Analytic Philosophy
Directory of Open Access Journals (Sweden)
Cheryl Misak
2013-07-01
Full Text Available One of Richard Rorty's legacies is to have put a Jamesian version of pragmatism on the contemporary philosophical map. Part of his argument has been that pragmatism and analytic philosophy are set against each other, with pragmatism almost having been killed off by the reigning analytic philosophy. The argument of this paper is that there is a better and more interesting reading of both the history of pragmatism and the history of analytic philosophy.
Directory of Open Access Journals (Sweden)
Daniel Alejandro Pérez Chamorro.
2012-12-01
Full Text Available For 50 years the philosophers of the Anglo-Saxon analytic tradition (E. Anscombre, P. Geach, A. Kenny, P. Foot have tried to follow the Thomas Aquinas School which they use as a source to surpass the Cartesian Epistemology and to develop the virtue ethics. Recently, J. Haldane has inaugurated a program of “analytical thomism” which main result until the present has been his “theory of identity mind/world”. Nevertheless, none of Thomás’ admirers has still found the means of assimilating his metaphysics of being.
Entanglement-Assisted Classical Capacity of a Generalized Amplitude Damping Channel
Institute of Scientific and Technical Information of China (English)
HOU Li-Zhen; FANG Mao-Fa
2007-01-01
The entanglement-assisted capacity of a generalized amplitude damping channel is investigated by using the properties of partial symmetry and concavity of mutual information. The numerical and analytical results of the entanglement-assisted capacity are obtained under certain conditions. It is shown that the entanglement-assisted capacity depends on the channel parameters representing the ambient temperature and dissipation, and the prior entanglement between sender and receiver can approximately double the classical capacity of the generalized amplitude damping channel.
The structure of instantaneous frequencies of periodic analytic signals
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
In this paper, the structure of analytic signals is investigated by means of the relation between analytic signals and functions in the Hardy space. It is shown that an analytic signal is made up of two parts, one depending on the amplitude of the signal and another on the boundary value of an inner function. Based on this result, properties of the instantaneous frequencies of these two parts are studied, and it is found that negative instantaneous frequencies are caused by the amplitude of a signal. Finally, such conditions that an analytic signal is of positive instantaneous frequency are presented.
Irreducible tensor basis and general Fierz relations for Bhabha scattering like amplitudes
Liu, Tao
2016-01-01
We construct an irreducible s- and t-channel tensor basis for Bhabha scattering like amplitudes based on the properties of the underlying Lorentz symmetry in four space-time dimensions. In the given basis the calculation of amplitude contractions like the amplitude square reduces to the contraction of their corresponding coefficient tensors. Further the basis retains the full amplitude information and thus can be applied in off-shell cases. The general Fierz transformations which relate the s- and t-channel basis with each other are obtained. As an example for application we use the basis to calculate the tree-level Bhabha scattering amplitude.
Identification of parameters in amplitude equations describing coupled wakes
Fullana, J M; Zaleski, S; Le Gal, P; Fullana, Jose Maria; Rossi, Maurice; Zaleski, Stephane; Le Gal, Patrice
1996-01-01
We study the flow behind an array of equally spaced parallel cylinders. A system of Stuart-Landau equations with complex parameters is used to model the oscillating wakes. Our purpose is to identify the 6 scalar parameters which most accurately reproduce the experimental data of Chauve and Le Gal [{Physica D {\\bf 58}}, pp 407--413, (1992)]. To do so, we perform a computational search for the minimum of a distance \\calj. We define \\calj as the sum-square difference of the data and amplitudes reconstructed using coupled equations. The search algorithm is made more efficient through the use of a partially analytical expression for the gradient \
On the singularities of massive superstring amplitudes
Energy Technology Data Exchange (ETDEWEB)
Foda, O.
1987-06-04
Superstring one-loop amplitudes with massive external states are shown to be in general ill-defined due to internal on-shell propagators. However, we argue that since any massive string state (in the uncompactified theory) has a finite lifetime to decay into massless particles, such amplitudes are not terms in the perturbative expansion of physical S-matrix elements: These can be defined only with massless external states. Consistent massive amplitudes repuire an off-shell formalism.
Discontinuities of multi-Regge amplitudes
Fadin, V S
2014-01-01
In the BFKL approach, discontinuities of multiple production amplitudes in invariant masses of produced particles are discussed. It turns out that they are in evident contradiction with the BDS ansatz for $n$-gluon amplitudes in the planar $N$=4 SYM at $n\\ge 6$. An explicit expression for the NLO discontinuity of the two-to-four amplitude in the invariant mass of two produced gluons is is presented.
DVCS amplitude with kinematical twist-3 terms
Radyushkin, A V
2000-01-01
We compute the amplitude of deeply virtual Compton scattering (DVCS) using the calculus of QCD string operators in coordinate representation. To restore the electromagnetic gauge invariance (transversality) of the twist-2 amplitude we include the operators of twist-3 which appear as total derivatives of twist-2 operators. Our results are equivalent to a Wandzura-Wilczek approximation for twist-3 skewed parton distributions. We find that this approximation gives a finite result for the amplitude of a longitudinally polarized virtual photon, while the amplitude for transverse polarization is divergent, i.e., factorization breaks down in this term.
Directory of Open Access Journals (Sweden)
Phillip Brooker
2016-07-01
Full Text Available In the few years since the advent of ‘Big Data’ research, social media analytics has begun to accumulate studies drawing on social media as a resource and tool for research work. Yet, there has been relatively little attention paid to the development of methodologies for handling this kind of data. The few works that exist in this area often reflect upon the implications of ‘grand’ social science methodological concepts for new social media research (i.e. they focus on general issues such as sampling, data validity, ethics, etc.. By contrast, we advance an abductively oriented methodological suite designed to explore the construction of phenomena played out through social media. To do this, we use a software tool – Chorus – to illustrate a visual analytic approach to data. Informed by visual analytic principles, we posit a two-by-two methodological model of social media analytics, combining two data collection strategies with two analytic modes. We go on to demonstrate each of these four approaches ‘in action’, to help clarify how and why they might be used to address various research questions.
Helrich, Carl S
2017-01-01
This advanced undergraduate textbook begins with the Lagrangian formulation of Analytical Mechanics and then passes directly to the Hamiltonian formulation and the canonical equations, with constraints incorporated through Lagrange multipliers. Hamilton's Principle and the canonical equations remain the basis of the remainder of the text. Topics considered for applications include small oscillations, motion in electric and magnetic fields, and rigid body dynamics. The Hamilton-Jacobi approach is developed with special attention to the canonical transformation in order to provide a smooth and logical transition into the study of complex and chaotic systems. Finally the text has a careful treatment of relativistic mechanics and the requirement of Lorentz invariance. The text is enriched with an outline of the history of mechanics, which particularly outlines the importance of the work of Euler, Lagrange, Hamilton and Jacobi. Numerous exercises with solutions support the exceptionally clear and concise treatment...
Propagation of Aberrations through Phase Induced Amplitude Apodization coronagraph
Pueyo, Laurent; Shaklan, Stuart; 10.1364/JOSAA.28.000189
2011-01-01
The specification of polishing requirements for the optics in coronagraphs dedicated to exo-planet detection requires careful and accurate optical modelling. Numerical representations of the propagation of aberrations through the system as well as simulations of the broadband wavefront compensation system using multiple DMs are critical when one devises an error budget for such a class of instruments. In this communication we introduce an analytical tool that serves this purpose for Phase Induced Amplitude Apodisation (PIAA) coronagraphs. We first start by deriving the analytical form of the propagation of a harmonic ripple through a PIAA unit. Using this result we derive the chromaticity of the field at any plane in the optical train of a telescope equipped with such a coronagraph. Finally we study the chromatic response of a sequential DM wavefront actuator correcting such a corrugated field and thus quantify the requirements on the manufacturing of PIAA mirrors
Large-amplitude ion-acoustic double layers in multispecies plasma
Jain, S. L.; Tiwari, R. S.; Sharma, S. R.
1990-06-01
The effect of second-ion species on the characteristics of large-amplitude ion-acoustic double layers (IADL) in a collisionless, unmagnetized plasma (consisting of hot and cold Maxwellian populations of electrons and two cold-ion species with different masses, concentrations, and charge states) is investigated. After deriving the criteria for the existence of large-amplitude IADL, it is found that the presence of a positive-ion impurity does not considerably modify the characteristics of large-amplitude IADL. However, the presence of negative-ion impurity significantly changes the characteristics of a large-amplitude IADL. An analytic discussion of small-amplitude IADL using a reductive perturbation method is also presented.
All-optical $\\mathcal{PT}$-symmetric amplitude to phase modulator
Gutiérrez, Oscar Ignacio Zaragoza; Rodríguez-Lara, B M
2015-01-01
We study electromagnetic field propagation through a planar three-waveguide coupler with linear gain and loss, in a configuration that is the optical analog of a quantum $\\mathcal{PT}$-symmetric system, and provide its closed-form analytic propagator. At an specific propagation length, we show that the device provides all-optical amplitude to phase modulation with a $\\pi$ modulation range, if an extra binary phase is allowed in the reference signal, as well as phase to amplitude modulation, with an amplitude modulation range that depends linearly on the gain-to-coupling ratio of the system.
Enhanced gauge groups in N=4 topological amplitudes and Lorentzian Borcherds algebras
Hohenegger, Stefan; Persson, Daniel
2011-11-01
We continue our study of algebraic properties of N=4 topological amplitudes in heterotic string theory compactified on T2, initiated in arXiv:1102.1821. In this work we evaluate a particular one-loop amplitude for any enhanced gauge group h⊂e8⊕e8, i.e. for arbitrary choice of Wilson line moduli. We show that a certain analytic part of the result has an infinite product representation, where the product is taken over the positive roots of a Lorentzian Kac-Moody algebra g++. The latter is obtained through double extension of the complement g=(e8⊕e8)/h. The infinite product is automorphic with respect to a finite index subgroup of the full T-duality group SO(2,18;Z) and, through the philosophy of Borcherds-Gritsenko-Nikulin, this defines the denominator formula of a generalized Kac-Moody algebra G(g++), which is an ’automorphic correction’ of g++. We explicitly give the root multiplicities of G(g++) for a number of examples.
Enhanced Gauge Groups in N=4 Topological Amplitudes and Lorentzian Borcherds Algebras
Hohenegger, Stefan
2011-01-01
We continue our study of algebraic properties of N=4 topological amplitudes in heterotic string theory compactified on T^2, initiated in arXiv:1102.1821. In this work we evaluate a particular one-loop amplitude for any enhanced gauge group h \\subset e_8 + e_8, i.e. for arbitrary choice of Wilson line moduli. We show that a certain analytic part of the result has an infinite product representation, where the product is taken over the positive roots of a Lorentzian Kac-Moody algebra g^{++}. The latter is obtained through double extension of the complement g= (e_8 + e_8)/h. The infinite product is automorphic with respect to a finite index subgroup of the full T-duality group SO(2,18;Z) and, through the philosophy of Borcherds-Gritsenko-Nikulin, this defines the denominator formula of a generalized Kac-Moody algebra G(g^{++}), which is an 'automorphic correction' of g^{++}. We explicitly give the root multiplicities of G(g^{++}) for a number of examples.
FEASIBILITY OF INVESTMENT IN BUSINESS ANALYTICS
Directory of Open Access Journals (Sweden)
Mladen Varga
2007-12-01
Full Text Available Trends in data processing for decision support show that business users need business analytics, i.e. analytical applications which incorporate a variety of business oriented data analysis techniques and task-specific knowledge. The paper discusses the feasibility of investment in two models of implementing business analytics: custom development and packed analytical applications. The consequences of both models are shown on two models of business analytics implementation in Croatia.
Croatian Analytical Terminology
Directory of Open Access Journals (Sweden)
Kastelan-Macan; M.
2008-04-01
Full Text Available Results of analytical research are necessary in all human activities. They are inevitable in making decisions in the environmental chemistry, agriculture, forestry, veterinary medicine, pharmaceutical industry, and biochemistry. Without analytical measurements the quality of materials and products cannot be assessed, so that analytical chemistry is an essential part of technical sciences and disciplines.The language of Croatian science, and analytical chemistry within it, was one of the goals of our predecessors. Due to the political situation, they did not succeed entirely, but for the scientists in independent Croatia this is a duty, because language is one of the most important features of the Croatian identity. The awareness of the need to introduce Croatian terminology was systematically developed in the second half of the 19th century, along with the founding of scientific societies and the wish of scientists to write their scientific works in Croatian, so that the results of their research may be applied in economy. Many authors of textbooks from the 19th and the first half of the 20th century contributed to Croatian analytical terminology (F. Rački, B. Šulek, P. Žulić, G. Pexidr, J. Domac, G. Janeček , F. Bubanović, V. Njegovan and others. M. DeŢelić published the first systematic chemical terminology in 1940, adjusted to the IUPAC recommendations. In the second half of 20th century textbooks in classic analytical chemistry were written by V. Marjanović-Krajovan, M. Gyiketta-Ogrizek, S. Žilić and others. I. Filipović wrote the General and Inorganic Chemistry textbook and the Laboratory Handbook (in collaboration with P. Sabioncello and contributed greatly to establishing the terminology in instrumental analytical methods.The source of Croatian nomenclature in modern analytical chemistry today are translated textbooks by Skoog, West and Holler, as well as by Günnzler i Gremlich, and original textbooks by S. Turina, Z.
Recursive generation of one-loop SM amplitudes
Energy Technology Data Exchange (ETDEWEB)
Actis, Stefano [Paul Scherrer Institut, Wuerenlingen (Switzerland); Paul Scherrer Institut, Villigen (Switzerland); Denner, Ansgar; Hofer, Lars; Scharf, Andreas [Universitaet Wuerzburg (Germany); Uccirati, Sandro [Universita di Torino, Turin (Italy)
2013-07-01
We introduce the computer code Recola for the recursive generation of tree-level and one-loop amplitudes in the full Standard Model, including electroweak corrections. The presented algorithm for the calculation of one-loop amplitudes uses Dyson-Schwinger recursion relations to determine the coefficients of the tensor integrals. As a first application of Recola we discuss Z+2jets production at the LHC and present results for the next-to-leading-order electroweak corrections to the dominant partonic channels.
Institute of Scientific and Technical Information of China (English)
Chen Guanghua; Ma Shiwei; Qin Tinghao; Wang Jian; Li Ming; Cao Jialin
2005-01-01
The instantaneous frequency (IF) estimation of the linear frequency modulated (LFM) signals with time-varying amplitude using the peak of the Wigner-Ville distribution (WVD) is studied. Theoretical analysis shows that the estimation on LFM signals with time-varying amplitude is unbiased, only if WVD of time-varying amplitude reaches its maximum at frequency zero no matter in which time. The statistical performance in the case of additive white Guassian noise is evaluated and an analytical expression for the variance is provided. The simulations using LFM signals with Gaussian envelope testify that IF can be estimated accurately using the peak of WVD for four models of amplitude variation. Furthermore the statistical result of estimation on the signals with amplitude descending before rising is better than that of the signals with constant amplitude when the amplitude variation rate is moderate.
Interlimb coupling strength scales with movement amplitude.
Peper, C Lieke E; de Boer, Betteco J; de Poel, Harjo J; Beek, Peter J
2008-05-23
The relation between movement amplitude and the strength of interlimb interactions was examined by comparing bimanual performance at different amplitude ratios (1:2, 1:1, and 2:1). For conditions with unequal amplitudes, the arm moving at the smaller amplitude was predicted to be more strongly affected by the contralateral arm than vice versa. This prediction was based on neurophysiological considerations and the HKB model of coupled oscillators. Participants performed rhythmic bimanual forearm movements at prescribed amplitude relations. After a brief mechanical perturbation of one arm, the relaxation process back to the initial coordination pattern was examined. This analysis focused on phase adaptations in the unperturbed arm, as these reflect the degree to which the movements of this arm were affected by the coupling influences stemming from the contralateral (perturbed) arm. The thus obtained index of coupling (IC) reflected the relative contribution of the unperturbed arm to the relaxation process. As predicted IC was larger when the perturbed arm moved at a larger amplitude than did the unperturbed arm, indicating that coupling strength scaled with movement amplitude. This result was discussed in relation to previous research regarding sources of asymmetry in coupling strength and the effects of amplitude disparity on interlimb coordination.
On the singularities of massive superstring amplitudes
Foda, O.
1987-01-01
Superstring one-loop amplitudes with massive external states are shown to be in general ill-defined due to internal on-shell propagators. However, we argue that since any massive string state (in the uncompactified theory) has a finite lifetime to decay into massless particles, such amplitudes are n
Mammalian cycles: internally defined periods and interaction-driven amplitudes
Directory of Open Access Journals (Sweden)
LR Ginzburg
2015-08-01
Full Text Available The cause of mammalian cycles—the rise and fall of populations over a predictable period of time—has remained controversial since these patterns were first observed over a century ago. In spite of extensive work on observable mammalian cycles, the field has remained divided upon what the true cause is, with a majority of opinions attributing it to either predation or to intra-species mechanisms. Here we unite the eigenperiod hypothesis, which describes an internal, maternal effect-based mechanism to explain the cycles’ periods with a recent generalization explaining the amplitude of snowshoe hare cycles in northwestern North America based on initial predator abundance. By explaining the period and the amplitude of the cycle with separate mechanisms, a unified and consistent view of the causation of cycles is reached. Based on our suggested theory, we forecast the next snowshoe hare cycle (predicted peak in 2016 to be of extraordinarily low amplitude.
Optimization of phase contrast in bimodal amplitude modulation AFM
Directory of Open Access Journals (Sweden)
Mehrnoosh Damircheli
2015-04-01
Full Text Available Bimodal force microscopy has expanded the capabilities of atomic force microscopy (AFM by providing high spatial resolution images, compositional contrast and quantitative mapping of material properties without compromising the data acquisition speed. In the first bimodal AFM configuration, an amplitude feedback loop keeps constant the amplitude of the first mode while the observables of the second mode have not feedback restrictions (bimodal AM. Here we study the conditions to enhance the compositional contrast in bimodal AM while imaging heterogeneous materials. The contrast has a maximum by decreasing the amplitude of the second mode. We demonstrate that the roles of the excited modes are asymmetric. The operational range of bimodal AM is maximized when the second mode is free to follow changes in the force. We also study the contrast in trimodal AFM by analyzing the kinetic energy ratios. The phase contrast improves by decreasing the energy of second mode relative to those of the first and third modes.
Amplitude of Accommodation and its Relation to Refractive Errors
Directory of Open Access Journals (Sweden)
Abraham Lekha
2005-01-01
Full Text Available Aims: To evaluate the relationship between amplitude of accommodation and refractive errors in the peri-presbyopic age group. Materials and Methods: Three hundred and sixteen right eyes of 316 consecutive patients in the age group 35-50 years who attended our outpatient clinic were studied. Emmetropes, hypermetropes and myopes with best-corrected visual acuity of 6/6 J1 in both eyes were included. The amplitude of accommodation (AA was calculated by measuring the near point of accommodation (NPA. In patients with more than ± 2 diopter sphere correction for distance, the NPA was also measured using appropriate soft contact lenses. Results: There was a statistically significant difference in AA between myopes and hypermetropes ( P P P P P P >0.5. Conclusion: Our study showed higher amplitude of accommodation among myopes between 35 and 44 years compared to emmetropes and hypermetropes
The Appell function F1 and Regge string scattering amplitudes
Directory of Open Access Journals (Sweden)
Jen-Chi Lee
2014-12-01
Full Text Available We show that each 26D open bosonic Regge string scattering amplitude (RSSA can be expressed in terms of one single Appell function F1 in the Regge limit. This result enables us to derive infinite number of recurrence relations among RSSA at arbitrary mass levels, which are conjectured to be related to the known SL(5,C dynamical symmetry of F1. In addition, we show that these recurrence relations in the Regge limit can be systematically solved so that all RSSA can be expressed in terms of one amplitude. All these results are dual to high energy symmetries of fixed angle string scattering amplitudes discovered previously [4–8].
Amplitudes and Correlators to Ten Loops Using Simple, Graphical Bootstraps
Bourjaily, Jacob L; Tran, Vuong-Viet
2016-01-01
We introduce two new graphical-level relations among possible contributions to the four-point correlation function and scattering amplitude in planar, maximally supersymmetric Yang-Mills theory. When combined with the rung rule, these prove powerful enough to fully determine both functions through ten loops. This then also yields the full five-point amplitude to eight loops and the parity-even part to nine loops. We derive these rules, illustrate their applications, compare their relative strengths for fixing coefficients, and survey some of the features of the previously unknown nine and ten loop expressions. Explicit formulae for amplitudes and correlators through ten loops are available at: http://goo.gl/JH0yEc.
Amplitudes and correlators to ten loops using simple, graphical bootstraps
Bourjaily, Jacob L.; Heslop, Paul; Tran, Vuong-Viet
2016-11-01
We introduce two new graphical-level relations among possible contributions to the four-point correlation function and scattering amplitude in planar, maximally supersymmetric Yang-Mills theory. When combined with the rung rule, these prove powerful enough to fully determine both functions through ten loops. This then also yields the full five-point amplitude to eight loops and the parity-even part to nine loops. We derive these rules, illustrate their applications, compare their relative strengths for fixing coefficients, and survey some of the features of the previously unknown nine and ten loop expressions. Explicit formulae for amplitudes and correlators through ten loops are available at: http://goo.gl/JH0yEc.
The Lorentzian proper vertex amplitude: Asymptotics
Engle, Jonathan; Zipfel, Antonia
2015-01-01
In previous work, the Lorentzian proper vertex amplitude for a spin-foam model of quantum gravity was derived. In the present work, the asymptotics of this amplitude are studied in the semi-classical limit. The starting point of the analysis is an expression for the amplitude as an action integral with action differing from that in the EPRL case by an extra `projector' term which scales linearly with spins only in the asymptotic limit. New tools are introduced to generalize stationary phase methods to this case. For the case of boundary data which can be glued to a non-degenerate Lorentzian 4-simplex, the asymptotic limit of the amplitude is shown to equal the single Feynman term, showing that the extra term in the asymptotics of the EPRL amplitude has been eliminated.
Amplitude image processing by diffractive optics.
Cagigal, Manuel P; Valle, Pedro J; Canales, V F
2016-02-22
In contrast to the standard digital image processing, which operates over the detected image intensity, we propose to perform amplitude image processing. Amplitude processing, like low pass or high pass filtering, is carried out using diffractive optics elements (DOE) since it allows to operate over the field complex amplitude before it has been detected. We show the procedure for designing the DOE that corresponds to each operation. Furthermore, we accomplish an analysis of amplitude image processing performances. In particular, a DOE Laplacian filter is applied to simulated astronomical images for detecting two stars one Airy ring apart. We also check by numerical simulations that the use of a Laplacian amplitude filter produces less noisy images than the standard digital image processing.
Mužík, Zbyněk
2006-01-01
Práce se zabývá problematikou měření ukazatelů souvisejících s provozem webových stránek a aplikací a technologickými prostředky k tomu sloužícími ? Web Analytics (WA). Hlavním cílem práce je otestovat a porovnat vybrané zástupce těchto nástrojů a podrobit je srovnání podle objektivních kriterií, dále také kritické zhodnocení možností WA nástrojů obecně. V první části se práce zaměřuje na popis různých způsobů měření provozu na WWW a definuje související metriky. Poskytuje také přehled dostup...
Analysis of Peak-to-Peak Current Ripple Amplitude in Seven-Phase PWM Voltage Source Inverters
Directory of Open Access Journals (Sweden)
Gabriele Grandi
2013-08-01
Full Text Available Multiphase systems are nowadays considered for various industrial applications. Numerous pulse width modulation (PWM schemes for multiphase voltage source inverters with sinusoidal outputs have been developed, but no detailed analysis of the impact of these modulation schemes on the output peak-to-peak current ripple amplitude has been reported. Determination of current ripple in multiphase PWM voltage source inverters is important for both design and control purposes. This paper gives the complete analysis of the peak-to-peak current ripple distribution over a fundamental period for multiphase inverters, with particular reference to seven-phase VSIs. In particular, peak-to-peak current ripple amplitude is analytically determined as a function of the modulation index, and a simplified expression to get its maximum value is carried out. Although reference is made to the centered symmetrical PWM, being the most simple and effective solution to maximize the DC bus utilization, leading to a nearly-optimal modulation to minimize the RMS of the current ripple, the analysis can be readily extended to either discontinuous or asymmetrical modulations, both carrier-based and space vector PWM. A similar approach can be usefully applied to any phase number. The analytical developments for all different sub-cases are verified by numerical simulations.
Interpretation of magnetic anomalies using the horizontal gradient analytic signal
Directory of Open Access Journals (Sweden)
H. A. Bake
2001-06-01
Full Text Available In recent years the analytic signal method has been of great utility in the interpretation of potential field data. The amplitude of the 3D analytic signal of magnetic data yields information on the location of the edges of the sources in both the horizontal and vertical dimensions, with the main advantage that the magnetic field and magnetic source parameters need not be known or assumed. Accurate detection of source body coordinates is becoming the main goal for interpreters and therefore enhanced techniques are acquiring an increasing revival in data interpretation. This paper presents a high-resolution approach for detecting source boundaries. These boundaries can be determined from the maxima of the analytic signal computed from the horizontal gradient of the field, defined here as a vector, the components of which are the analytic signals of x- and y-horizontal derivatives, respectively. Synthetic examples have shown the high resolving power of the proposed technique. This approach has also given very good results when applied to real data.
Vibrational shear flow of anisotropic viscoelastic fluid with small amplitudes
Institute of Scientific and Technical Information of China (English)
韩式方
2008-01-01
Using the constitutive equation of co-rotational derivative type for anisotropic viscoelastic fluid-liquid crystalline(LC),polymer liquids was developed.Two relaxation times are introduced in the equation:λn represents relaxation of the normal-symmetric stress components;λs represents relaxation of the shear-unsymmetric stress components.A vibrational rotating flow in gap between cylinders with small amplitudes is studied for the anisotropic viscoelastic fluid-liquid crystalline polymer.The time-dependent constitutive equation are linearized with respect to parameter of small amplitude.For the normal-symmetric part of stress tensor analytical expression of the shear stress is obtained by the constitutive equation.The complex viscosity,complex shear modulus,dynamic and imaginary viscosities,storage modulus and loss modulus are obtained for the normal-symmetric stress case which are defined by the common shear rate.For the shear-unsymmetric stress part,two shear stresses are obtained thus two complex viscosities and two complex shear modulus(i.e.first and second one) are given by the constitutive equation which are defined by rotating shear rate introduced by author.The dynamic and imaginary viscosities,storage modulus and loss modulus are given for each complex viscosities and complex shear modulus.Using the constituive equation the rotating flow with small amplitudes in gap between two coaxial cylinders is studied.
Model equation for strongly focused finite-amplitude sound beams
Kamakura; Ishiwata; Matsuda
2000-06-01
A model equation that describes the propagation of sound beams in a fluid is developed using the oblate spheroidal coordinate system. This spheroidal beam equation (SBE) is a parabolic equation and has a specific application to a theoretical prediction on focused, high-frequency beams from a circular aperture. The aperture angle does not have to be small. The theoretical background is basically along the same analytical lines as the composite method (CM) reported previously [B. Ystad and J. Berntsen, Acustica 82, 698-706 (1996)]. Numerical examples are displayed for the amplitudes of sound pressure along and across the beam axis when sinusoidal waves are radiated from the source with uniform amplitude distribution. The primitive approach to linear field analysis is readily extended to the case where harmonic generation in finite-amplitude sound beams becomes significant due to the inherent nonlinearity of the medium. The theory provides the propagation and beam pattern profiles that differ from the CM solution for each harmonic component.
DETERMINATION OF COORDINATES OF SEISMIC WAVE SOURCE BY AMPLITUDE METHOD OF PASSIVE LOCATION
Directory of Open Access Journals (Sweden)
Vasily D. Syten’ky
2015-10-01
Full Text Available The paper presents results of the mathematical synthesis of the method of passive location of a seismic wave source. The method employs measurements of regular attenuation of seismic oscillation amplitudes. If it is impossible to determine the location of a seismic event by means of direct measurements, indirect measurements are needed. A priori information for the mathematical synthesis was obtained from functional equations showing inverse proportions of measured amplitudes, arbitrary effective attenuation coefficients and corresponding coordinates. An original method was applied to process the data. The method providing for passive location of seismic waves sources has been developed; it is called the radial basic method. In the one-dimensional case, a distance is determined on the basis of seismic oscillation amplitudes measured by two seismographs that are located at a known base distance coinciding with the direction to the source of seismic waves. The distance is calculated from the receiver that is nearest to the source. If the base distance and the direct line between the seismograph and the seismic wave source do not coincide, a projection of the distance between the receivers to the given straight line is taken into account.Three seismographs were placed at mutually perpendicular base distances in a plane (i.e. the two-dimensional space. This allowed us to obtain an analytical equation for determining the direction to the seismic wave source using measured amplitudes. The value of the angle is taken into account when calculating the distance.For the seismic wave source located in the three-dimensional space, transition equations for combined coordinate systems (i.e. the Descartes (Cartesian, at the axes of which the seismographs were placed, and the spherical coordinate systems were applied, and analytical equations were obtained for determination of coordinates, such as distance/polar radius, elevation
Source-Space Cross-Frequency Amplitude-Amplitude Coupling in Tinnitus
Directory of Open Access Journals (Sweden)
Oliver Zobay
2015-01-01
Full Text Available The thalamocortical dysrhythmia (TCD model has been influential in the development of theoretical explanations for the neurological mechanisms of tinnitus. It asserts that thalamocortical oscillations lock a region in the auditory cortex into an ectopic slow-wave theta rhythm (4–8 Hz. The cortical area surrounding this region is hypothesized to generate abnormal gamma (>30 Hz oscillations (“edge effect” giving rise to the tinnitus percept. Consequently, the model predicts enhanced cross-frequency coherence in a broad range between theta and gamma. In this magnetoencephalography study involving tinnitus and control cohorts, we investigated this prediction. Using beamforming, cross-frequency amplitude-amplitude coupling (AAC was computed within the auditory cortices for frequencies (f1,f2 between 2 and 80 Hz. We find the AAC signal to decompose into two distinct components at low (f1,f230 Hz frequencies, respectively. Studying the correlation of AAC with several key covariates (age, hearing level (HL, tinnitus handicap and duration, and HL at tinnitus frequency, we observe a statistically significant association between age and low-frequency AAC. Contrary to the TCD predictions, however, we do not find any indication of statistical differences in AAC between tinnitus and controls and thus no evidence for the predicted enhancement of cross-frequency coupling in tinnitus.
Gearbox Vibration Signal Amplitude and Frequency Modulation
Directory of Open Access Journals (Sweden)
Fakher Chaari
2012-01-01
Full Text Available Gearboxes usually run under fluctuating load conditions during service, however most of papers available in the literature describe models of gearboxes under stationary load conditions. Main task of published papers is fault modeling for their detection. Considering real situation from industry, the assumption of stationarity of load conditions cannot be longer kept. Vibration signals issued from monitoring in maintenance operations differ from mentioned models (due to load non-stationarity and may be difficult to analyze which lead to erroneous diagnosis of the system. The objective of this paper is to study the influence of time varying load conditions on a gearbox dynamic behavior. To investigate this, a simple spur gear system without defects is modeled. It is subjected to a time varying load. The speed-torque characteristic of the driving motor is considered. The load variation induces speed variation, which causes a variation in the gearmesh stiffness period. Computer simulation shows deep amplitude modulations with sidebands that don't differ from those obtained when there is a defective tooth. In order to put in evidence the time varying load effects, Short Time Fourier Transform and then Smoothed Wigner-Ville distribution are used. Results show that the last one is well suited for the studied case.
Directory of Open Access Journals (Sweden)
Erik Duval
2012-06-01
Full Text Available This paper provides a brief introduction to the domain of ‘learning analytics’. We first explain the background and idea behind the concept. Then we give a brief overview of current research issues. We briefly list some more controversial issues before concluding.
Holographic Corrections to Meson Scattering Amplitudes
Armoni, Adi
2016-01-01
We compute meson scattering amplitudes using the holographic duality between confining gauge theories and string theory, in order to consider holographic corrections to the Veneziano amplitude and associated higher-point functions. The generic nature of such computations is explained, thanks to the well-understood nature of confining string backgrounds, and two different examples of the calculation in given backgrounds are used to illustrate the details. The effect we discover, whilst only qualitative, is re-obtainable in many such examples, in four-point but also higher point amplitudes.
Target tracking based on frequency spectrum amplitude
Institute of Scientific and Technical Information of China (English)
Guo Huidong; Zhang Xinhua; Xia Zhijun
2006-01-01
The amplitude of frequency spectrum can be integrated with probabilistic data association (PDA) to distinguish the target with clutter echoes, especially in low SNR underwater environment. A new target-tracking algorithm is presented which adopts the amplitude of frequency spectrum to improve target tracking in clutter. The probabilistic density distribution of frequency spectrum amplitude is analyzed. By simulation, the results show that the algorithm is superior to PDA. This approach enhances stability for the association probability and increases the performance of target tracking.
Quark-Loop Amplitudes for $W^{\\pm} H^{\\mp}$ Associated Hadroproduction
Barrientos-Bendezu, A A
2000-01-01
In this addendum to our paper entitled "W^+- H^-+ Associated Production at the Large Hadron Collider" [Phys. Rev. D 59, 015009 (1999)], we list analytic results for the helicity amplitudes of the partonic subprocess gg -> W^-H^+ induced by virtual quarks.
On the amplitude and phase errors of quadrature LC-tank CMOS oscillators
DEFF Research Database (Denmark)
Mazzanti, Andrea; Svelto, Francesco; Andreani, Pietro
2006-01-01
An analytic approach for the estimation of the phase and amplitude imbalances caused by component mismatches and parasitic magnetic fields in two popular quadrature LC oscillators is presented. Very simple and closed-form equations are derived, proving that, although the two topologies share...
Stora's fine notion of divergent amplitudes
Várilly, Joseph C
2016-01-01
Stora and coworkers refined the notion of divergent quantum amplitude, somewhat upsetting the standard power-counting recipe. This unexpectedly clears the way to new prototypes for free and interacting field theories of bosons of any mass and spin.
Open string amplitudes of closed topological vertex
Takasaki, Kanehisa
2016-01-01
The closed topological vertex is the simplest "off-strip" case of non-compact toric Calabi-Yau threefolds with acyclic web diagrams. By the diagrammatic method of topological vertex, open string amplitudes of topological string theory therein can be obtained by gluing a single topological vertex to an "on-strip" subdiagram of the tree-like web diagram. If non-trivial partitions are assigned to just two parallel external lines of the web diagram, the amplitudes can be calculated with the aid of techniques borrowed from the melting crystal models. These amplitudes are thereby expressed as matrix elements, modified by simple prefactors, of an operator product on the Fock space of 2D charged free fermions. This fermionic expression can be used to derive $q$-difference equations for generating functions of special subsets of the amplitudes. These $q$-difference equations may be interpreted as the defining equation of a quantum mirror curve.
Off-shell Amplitudes in Superstring Theory
Sen, Ashoke
2014-01-01
Computing the renormalized masses and S-matrix elements in string theory, involving states whose masses are not protected from quantum corrections, requires defining off-shell amplitude with certain factorization properties. While in the bosonic string theory one can in principle construct such an amplitude from string field theory, there is no fully consistent field theory for superstring and heterotic string theory. In this paper we give a practical construction of off-shell amplitudes satisfying the desired factorization property using the formalism of picture changing operators. We describe a systematic procedure for dealing with the spurious singularities of the integration measure that we encounter when the supermoduli space is not holomorphically projected. This procedure is also useful for computing on-shell amplitudes, as we demonstrate by computing the effect of Fayet-Iliopoulos D-terms in four dimensional heterotic string theory compactifications using this formalism.
Amplitudes for left-handed strings
Siegel, W
2015-01-01
We consider a class of string-like models introduced previously where all modes are left-handed, all states are massless, T-duality is manifest, and only a finite number of orders in the string tension can appear. These theories arise from standard string theories by a singular gauge limit and associated change in worldsheet boundary conditions. In this paper we show how to calculate amplitudes by using the gauge parameter as an infrared regulator. The amplitudes produce the Cachazo-He-Yuan delta-functions after some modular integration; the Mason-Skinner string-like action and amplitudes arise from the zero-tension (infinite-slope) limit. However, without the limit the amplitudes have the same problems as found in the Mason-Skinner formalism.
Feynman Amplitudes in Mathematics and Physics
Bloch, Spencer
2015-01-01
These are notes of lectures given at the CMI conference in August, 2014 at ICMAT in Madrid. The focus is on some mathematical questions associated to Feynman amplitudes, including Hodge structures, relations with string theory, and monodromy (Cutkosky rules).
Feynman amplitudes and limits of heights
Amini, O.; Bloch, S. J.; Burgos Gil, J. I.; Fresán, J.
2016-10-01
We investigate from a mathematical perspective how Feynman amplitudes appear in the low-energy limit of string amplitudes. In this paper, we prove the convergence of the integrands. We derive this from results describing the asymptotic behaviour of the height pairing between degree-zero divisors, as a family of curves degenerates. These are obtained by means of the nilpotent orbit theorem in Hodge theory.
Nucleon distribution amplitudes from lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Goeckeler, M. [Regensburg Univ. (Germany). Inst. fuer Theoretische Physik; Horsley, R. [Edinburgh Univ. (United Kingdom). School of Physics; Kaltenbrunner, T. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (DE). John von Neumann-Inst. fuer Computing NIC] (and others)
2008-04-15
We calculate low moments of the leading-twist and next-to-leading twist nucleon distribution amplitudes on the lattice using two flavors of clover fermions. The results are presented in the MS scheme at a scale of 2 GeV and can be immediately applied in phenomenological studies. We find that the deviation of the leading-twist nucleon distribution amplitude from its asymptotic form is less pronounced than sometimes claimed in the literature. (orig.)
Mechanical models of amplitude and frequency modulation
Energy Technology Data Exchange (ETDEWEB)
Bellomonte, L; Guastella, I; Sperandeo-Mineo, R M [GRIAF - Research Group on Teaching/Learning Physics, DI.F.TE.R. -Dipartimento di Fisica e Tecnologie Relative, University of Palermo, Viale delle Scienze, Edificio 18, 90128 Palermo (Italy)
2005-05-01
This paper presents some mechanical models for amplitude and frequency modulation. The equations governing both modulations are deduced alongside some necessary approximations. Computer simulations of the models are carried out by using available educational software. Amplitude modulation is achieved by using a system of two weakly coupled pendulums, whereas the frequency modulation is obtained by using a pendulum of variable length. Under suitable conditions (small oscillations, appropriate initial conditions, etc) both types of modulation result in significantly accurate and visualized simulations.
Employing Helicity Amplitudes for Resummation in SCET
Moult, Ian; Tackmann, Frank J; Waalewijn, Wouter J
2016-01-01
Helicity amplitudes are the fundamental ingredients of many QCD calculations for multi-leg processes. We describe how these can seamlessly be combined with resummation in Soft-Collinear Effective Theory (SCET), by constructing a helicity operator basis for which the Wilson coefficients are directly given in terms of color-ordered helicity amplitudes. This basis is crossing symmetric and has simple transformation properties under discrete symmetries.
Quartic amplitudes for Minkowski higher spin
Bengtsson, Anders K H
2016-01-01
The problem of finding general quartic interaction terms between fields of higher helicities on the light-front is discussed from the point of view of calculating the corresponding amplitudes directly from the cubic vertices using BCFW recursion. Amplitude based no-go results that has appeared in the literature are reviewed and discussed and it is pointed out how they may perhaps be circumvented.
New strings for old Veneziano amplitudes II Group-theoretic treatment
Kholodenko, A L
2004-01-01
In this part of our four parts work (e.g see Part I, hep-th/04102242) we use the theory of polynomial invariants of finite pseudo-reflection groups in order to reconstruct both the Veneziano and Veneziano-like (tachyon-free) amplitudes and the generating function producing these amplitudes. We demonstrate that such generating function can be produced with help of the finite dimensional quantum mechanical supersymmetric model (to be further discussed in Part III). Mathematical correctness of our arguments relies on important theorems by Shepard and Todd, Serre and Solomon documented in one of the monographs by Bourbaki. Based on these theorems, we explain why the developed new formalism leaves all earlier known results of conformal field theories unchanged. We also explain why these theorems impose very stringent requirements connecting the analytical form of the scattering amplitudes with the local symmetries of space-time in which such amplitudes act.
Multiloop Amplitudes of Light-cone Gauge NSR String Field Theory in Noncritical Dimensions
Ishibashi, Nobuyuki
2016-01-01
Feynman amplitudes of light-cone gauge superstring field theory are ill-defined because of various divergences. In a previous paper, one of the authors showed that taking the worldsheet theory to be the one in a linear dilaton background $\\Phi=-iQX^{1}$ with Feynman $i\\varepsilon$ $(\\varepsilon>0)$ and $Q^{2}>10$ yields finite amplitudes. In this paper, we apply this worldsheet theory to dimensional regularization of the light-cone gauge NSR superstring field theory. We concentrate on the amplitudes for even spin structure with external lines in the (NS,NS) sector. We show that the multiloop amplitudes are indeed regularized in our scheme and that they coincide with the results in the first-quantized formalism through the analytic continuation $Q\\to0$.
Multiloop amplitudes of light-cone gauge NSR string field theory in noncritical dimensions
Ishibashi, Nobuyuki; Murakami, Koichi
2017-01-01
Feynman amplitudes of light-cone gauge superstring field theory are ill-defined because of various divergences. In a previous paper, one of the authors showed that taking the worldsheet theory to be the one in a linear dilaton background Φ = - iQX 1 with Feynman iɛ ( ɛ > 0) and Q 2 > 10 yields finite amplitudes. In this paper, we apply this worldsheet theory to dimensional regularization of the light-cone gauge NSR superstring field theory. We concentrate on the amplitudes for even spin structure with external lines in the (NS,NS) sector. We show that the multiloop amplitudes are indeed regularized in our scheme and that they coincide with the results in the first-quantized formalism through the analytic continuation Q → 0.
Mirror symmetry, toric branes and topological string amplitudes as polynomials
Energy Technology Data Exchange (ETDEWEB)
Alim, Murad
2009-07-13
The central theme of this thesis is the extension and application of mirror symmetry of topological string theory. The contribution of this work on the mathematical side is given by interpreting the calculated partition functions as generating functions for mathematical invariants which are extracted in various examples. Furthermore the extension of the variation of the vacuum bundle to include D-branes on compact geometries is studied. Based on previous work for non-compact geometries a system of differential equations is derived which allows to extend the mirror map to the deformation spaces of the D-Branes. Furthermore, these equations allow the computation of the full quantum corrected superpotentials which are induced by the D-branes. Based on the holomorphic anomaly equation, which describes the background dependence of topological string theory relating recursively loop amplitudes, this work generalizes a polynomial construction of the loop amplitudes, which was found for manifolds with a one dimensional space of deformations, to arbitrary target manifolds with arbitrary dimension of the deformation space. The polynomial generators are determined and it is proven that the higher loop amplitudes are polynomials of a certain degree in the generators. Furthermore, the polynomial construction is generalized to solve the extension of the holomorphic anomaly equation to D-branes without deformation space. This method is applied to calculate higher loop amplitudes in numerous examples and the mathematical invariants are extracted. (orig.)
Remote identification of the vibration amplitude of ship hull
Directory of Open Access Journals (Sweden)
A. N. Pinchuk
2014-01-01
Full Text Available The aim is to develop the methodological support to determine vibration amplitude of the ship hull remotely using a coherent radar centimeter range based on the variation of the Doppler signal spectrum reflected from a vibrating surface.The paper presents a synthesized mathematical model of the radio signal reflected from the vibrating surface. It is the signal of coherent radar of continuous radiation with a known carrier frequency and the amplitude of the radiated signal. In the synthesis it was believed that the displacement in the radial direction with respect to the vibrating surface radar was sinusoidal.The dependences of the vibration amplitude on the value of the normalized Doppler radio signal spectrum at the second harmonic frequency are obtained. Cycle results of field experiments to study the variability of the sea surface, determining the level of its roughness, allows us to establish that the energy of surface waves of gravitational-capillary range has a high correlation with the wind speed. It is proved that the ratio of the spectral density levels at vibration frequency and its multiple frequencies is specified by the index of phase modulation linearly related to the amplitude of vibration of the ship hull.The results are significant for radar (radar detection of water targets using the coherent radar of centimeter range, ensuring the correct records of noise generated by the scattering of radio waves from the water surface.
The effect of speed of processing training on microsaccade amplitude.
Directory of Open Access Journals (Sweden)
Stephen Layfield
Full Text Available Older adults experience cognitive deficits that can lead to driving errors and a loss of mobility. Fortunately, some of these deficits can be ameliorated with targeted interventions which improve the speed and accuracy of simultaneous attention to a central and a peripheral stimulus called Speed of Processing training. To date, the mechanisms behind this effective training are unknown. We hypothesized that one potential mechanism underlying this training is a change in distribution of eye movements of different amplitudes. Microsaccades are small amplitude eye movements made when fixating on a stimulus, and are thought to counteract the "visual fading" that occurs when static stimuli are presented. Due to retinal anatomy, larger microsaccadic eye movements are needed to move a peripheral stimulus between receptive fields and counteract visual fading. Alternatively, larger microsaccades may decrease performance due to neural suppression. Because larger microsaccades could aid or hinder peripheral vision, we examine the distribution of microsaccades during stimulus presentation. Our results indicate that there is no statistically significant change in the proportion of large amplitude microsaccades during a Useful Field of View-like task after training in a small sample of older adults. Speed of Processing training does not appear to result in changes in microsaccade amplitude, suggesting that the mechanism underlying Speed of Processing training is unlikely to rely on microsaccades.
Research on High Frequency Amplitude Attenuation of Electric Fast Transient Generator
Directory of Open Access Journals (Sweden)
Huafu Zhang
2013-01-01
Full Text Available In order to solve the amplitude attenuation of electric fast transient (EFT generator operating in high frequency, the charging and discharging process of energy storage capacitor in EFT generator are analyzed, the main circuit voltage variation mathematical model is established, the parameters of main loop circuit and the parameters of switch driving waveform which affect burst amplitude are discussed. Through the simulation, this paper puts forward effective methods to overcome burst amplitude attenuation in high frequency. The simulation results show that when the frequency is low, the duty ratio of drive signal have little effect on energy storage capacitor voltage amplitude attenuation. when the charging resistance is less than 500 Ω, the duty ratio of drive signal is less than 0.125, the repetition frequency of burst reaches 1.2 MHz, the amplitude attenuation of energy storage capacitor voltage is less than 9%, the amplitude of burst satisfies IEC61000-4-4 standards.
Conjugate flows and amplitude bounds for internal solitary waves
Directory of Open Access Journals (Sweden)
N. I. Makarenko
2009-03-01
Full Text Available Amplitude bounds imposed by the conservation of mass, momentum and energy for strongly nonlinear waves in stratified fluid are considered. We discuss the theoretical scheme which allows to determine broadening limits for solitary waves in the terms of a given upstream density profile. Attention is focused on the continuously stratified flows having multiple broadening limits. The role of the mean density profile and the influence of fine-scale stratification are analyzed.
Multivariable controller for discrete stochastic amplitude-constrained systems
Directory of Open Access Journals (Sweden)
Hannu T. Toivonen
1983-04-01
Full Text Available A sub-optimal multivariable controller for discrete stochastic amplitude-constrained systems is presented. In the approach the regulator structure is restricted to the class of linear saturated feedback laws. The stationary covariances of the controlled system are evaluated by approximating the stationary probability distribution of the state by a gaussian distribution. An algorithm for minimizing a quadratic loss function is given, and examples are presented to illustrate the performance of the sub-optimal controller.
Radiative four-meson amplitudes in chiral perturbation theory
D'Ambrosio, G; Isidori, Gino; Neufeld, H
1996-01-01
We present a general discussion of radiative four--meson processes to O(p^4) in chiral perturbation theory. We propose a definition of ``generalized bremsstrahlung'' that takes full advantage of experimental information on the corresponding non--radiative process. We also derive general formulae for one--loop amplitudes which can be applied, for instance, to \\eta \\ra 3\\pi\\gamma, \\pi \\pi \\ra \\pi \\pi \\gamma and K \\ra 3\\pi\\gamma.
Classical gluon production amplitude in heavy-ion collisions
Directory of Open Access Journals (Sweden)
Chirilli Giovanni Antonio
2016-01-01
Full Text Available The distribution of quarks and gluons produced in the initial stages of nuclear collisions, known as the initial condition of the Quark-Gluon Plasma formation, is the fundamental building block of heavy-ion theory. I will present the scattering amplitude, beyond the leading order, of the classical gluon produced in heavy-ion collisions. The result is obtained in the framework of saturation physics and Wilson lines formalism.
Directory of Open Access Journals (Sweden)
A. G. Pavelyev
2012-01-01
Full Text Available By using the CHAllenge Minisatellite Payload (CHAMP radio occultation (RO data, a description of different types of the ionospheric impacts on the RO signals at the altitudes 30–90 km of the RO ray perigee is given and compared with the results of measurements obtained earlier in the satellite-to-Earth communication link at frequency 1.5415 GHz. An analytical model is introduced for describing propagation of radio waves in a stratified medium consisting of sectors with spherically symmetric refractivity distribution. This model gives analytical expressions for the phase, bending angle, and refractive attenuation of radio waves and is applied to the analysis of radio wave propagation phenomena along an extended path including the atmosphere and two parts of the ionosphere. The model explains significant amplitude and phase variations at altitudes 30–90 km of the RO ray perigee and attributes them to inclined ionospheric layers. Based on this analytical model, an innovative technique is introduced to locate layers in the atmosphere and ionosphere. A necessary and sufficient criterion is obtained for a layer to be located at the RO ray perigee. This criterion gives both qualitative and quantitative estimation of the displacement of an ionospheric and/or atmospheric layer from the RO ray perigee. This is important, in particular, for determining the location of wind shears and directions of the internal wave propagation in the lower ionosphere, and, possibly, in the atmosphere.
Scattering amplitudes in open superstring theory
Energy Technology Data Exchange (ETDEWEB)
Schlotterer, Oliver
2011-07-15
The present thesis deals with the theme field of the scattering amplitudes in theories of open superstrings. Especially two different formalisms for the handling of superstrings are introduced and applied for the calaculation of tree-level amplitudes - the Ramond- Neveu-Schwarz (RNS) and the Pure-Spinor (PS) formalism. The RNS approach is proved as flexible in order to describe compactification of the initially ten flat space-time dimensions to four dimensions. We solve the technical problems, which result from the interacting basing world-sheet theory with conformal symmetry. This is used to calculate phenomenologically relevant scattering amplitudes of gluons and quarks as well as production rates of massive harmonic vibrations, which were already identified as virtual exchange particles on the massless level. In the case of a low string mass scale in the range of some Tev the string-specific signatures in parton collisions can be observed in the near future in the LHC experiment at CERN and indicated as first experimental proof of the string theory. THose string effects occur universally for a wide class of string ground states respectively internal geometries and represent an elegant way to avoid the so-called landscape problem of the string theory. A further theme complex in this thesis is based on the PS formalism, which allows a manifestly supersymmetric treatment of scattering amplitudes in ten space-time dimension with sixteen supercharges. We introduce a family of superfields, which occur in massless amplitudes of the open string and can be naturally identified with diagrams of three-valued knots. Thereby we reach not only a compact superspace representation of the n-point field-theory amplitude but can also write the complete superstring n-point amplitude as minimal linear combination of partial amplitudes of the field theory as well as hypergeometric functions. The latter carry the string effects and are analyzed from different perspectives, above all
Remote Electro-Analytical Laboratory
Directory of Open Access Journals (Sweden)
Ratnanjali Gandhi
2011-02-01
Full Text Available Remote Laboratories are web based distance learning laboratories that have immense potential to disseminate technology in the area of practical science. These laboratories can be accessed through Internet. In the present paper, we will be discussing our experiences in setting up a remote analytical laboratory at our center. Further, we will discuss remote experiments in the area of electro-analytical chemistry & colorimetry and their role in strengthening the system of science education.
The Correlation between Electroencephalography Amplitude and Interictal Abnormalities: Audit study
Directory of Open Access Journals (Sweden)
Sami F. Al-Rawas
2014-10-01
Full Text Available Objectives: The aim of this study was to establish the relationship between background amplitude and interictal abnormalities in routine electroencephalography (EEG. Methods: This retrospective audit was conducted between July 2006 and December 2009 at the Department of Clinical Physiology at Sultan Qaboos University Hospital (SQUH in Muscat, Oman. A total of 1,718 electroencephalograms (EEGs were reviewed. All EEGs were from patients who had been referred due to epilepsy, syncope or headaches. EEGs were divided into four groups based on their amplitude: group one ≤20 μV; group two 21–35 μV; group three 36–50 μV, and group four >50 μV. Interictal abnormalities were defined as epileptiform discharges with or without associated slow waves. Abnormalities were identified during periods of resting, hyperventilation and photic stimulation in each group. Results: The mean age ± standard deviation of the patients was 27 ± 12.5 years. Of the 1,718 EEGs, 542 (31.5% were abnormal. Interictal abnormalities increased with amplitude in all four categories and demonstrated a significant association (P <0.05. A total of 56 EEGs (3.3% had amplitudes that were ≤20 μV and none of these showed interictal epileptiform abnormalities. Conclusion: EEG amplitude is an important factor in determining the presence of interictal epileptiform abnormalities in routine EEGs. This should be taken into account when investigating patients for epilepsy. A strong argument is made for considering long-term EEG monitoring in order to identify unexplained seizures which may be secondary to epilepsy. It is recommended that all tertiary institutions provide EEG telemetry services.
Speech production in amplitude-modulated noise
DEFF Research Database (Denmark)
Macdonald, Ewen N; Raufer, Stefan
2013-01-01
The Lombard effect refers to the phenomenon where talkers automatically increase their level of speech in a noisy environment. While many studies have characterized how the Lombard effect influences different measures of speech production (e.g., F0, spectral tilt, etc.), few have investigated...... the consequences of temporally fluctuating noise. In the present study, 20 talkers produced speech in a variety of noise conditions, including both steady-state and amplitude-modulated white noise. While listening to noise over headphones, talkers produced randomly generated five word sentences. Similar...... to previous studies, talkers raised the level of their voice in steady-state noise. While talkers also increased the level of their voice in amplitude-modulated noise, the increase was not as large as that observed in steady-state noise. Importantly, for the 2 and 4 Hz amplitude-modulated noise conditions...
Amplitude-modulated fiber-ring laser
DEFF Research Database (Denmark)
Caputo, J. G.; Clausen, Carl A. Balslev; Sørensen, Mads Peter
2000-01-01
Soliton pulses generated by a fiber-ring laser are investigated by numerical simulation and perturbation methods. The mathematical modeling is based on the nonlinear Schrödinger equation with perturbative terms. We show that active mode locking with an amplitude modulator leads to a self-starting......Soliton pulses generated by a fiber-ring laser are investigated by numerical simulation and perturbation methods. The mathematical modeling is based on the nonlinear Schrödinger equation with perturbative terms. We show that active mode locking with an amplitude modulator leads to a self......-starting of stable solitonic pulses from small random noise, provided the modulation depth is small. The perturbative analysis leads to a nonlinear coupled return map for the amplitude, phase, and position of the soliton pulses circulating in the fiber-ring laser. We established the validity of this approach...
Scattering Amplitudes and Worldsheet Models of QFTs
CERN. Geneva
2016-01-01
I will describe recent progress on the study of scattering amplitudes via ambitwistor strings and the scattering equations. Ambitwistor strings are worldsheet models of quantum field theories, inspired by string theory. They naturally lead to a representation of amplitudes based on the scattering equations. While worldsheet models and related ideas have had a wide-ranging impact on the modern study of amplitudes, their direct application at loop level is a very recent success. I will show how a major difficulty in the loop-level story, the technicalities of higher-genus Riemann surfaces, can be avoided by turning the higher-genus surface into a nodal Riemann sphere, with the nodes representing the loop momenta. I will present new formulas for the one-loop integrands of gauge theory and gravity, with or without supersymmetry, and also some two-loop results.
Spinfoam cosmology with the proper vertex amplitude
Vilensky, Ilya
2016-01-01
The proper vertex amplitude is derived from the EPRL vertex by restricting to a single gravitational sector in order to achieve the correct semi-classical behaviour. We apply the proper vertex to calculate a cosmological transition amplitude that can be viewed as the Hartle-Hawking wavefunction. To perform this calculation we deduce the integral form of the proper vertex and use extended stationary phase methods to estimate the large-volume limit. We show that the resulting amplitude satisfies an operator constraint whose classical analogue is the Hamiltonian constraint of the Friedmann-Robertson-Walker cosmology. We find that the constraint dynamically selects the relevant family of coherent states and demonstrate a similar dynamic selection in standard quantum mechanics.
On Arbitrary Phases in Quantum Amplitude Amplification
Hoyer, P
2000-01-01
We consider the use of arbitrary phases in quantum amplitude amplification which is a generalization of quantum searching. We prove that the phase condition in amplitude amplification is given by $\\tan(\\phi/2)=\\tan(\\phi/2)(1-2a)$, where $\\phi$ and $\\phi$ are the phases used and where $a$ is the success probability of the given algorithm. Thus the choice of phases depends nontrivially and nonlinearly on the success probability. Utilizing this condition, we give methods for constructing quantum algorithms that succeed with certainty and for implementing arbitrary rotations. We also conclude that phase errors of order up to $\\frac{1}{\\sqrt{a}}$ can be tolerated in amplitude amplification.
Nonlinear (Super)Symmetries and Amplitudes
Kallosh, Renata
2016-01-01
There is an increasing interest in nonlinear supersymmetries in cosmological model building. Independently, elegant expressions for the all-tree amplitudes in models with nonlinear symmetries, like D3 brane Dirac-Born-Infeld-Volkov-Akulov theory, were recently discovered. Using the generalized background field method we show how, in general, nonlinear symmetries of the action, bosonic and fermionic, constrain amplitudes beyond soft limits. The same identities control, for example, bosonic E_{7(7)} scalar sector symmetries as well as the fermionic goldstino symmetries. We present a universal derivation of the vanishing amplitudes in the single (bosonic or fermionic) soft limit. We explain why, universally, the double-soft limit probes the coset space algebra. We also provide identities describing the multiple-soft limit. We discuss loop corrections to N\\geq 5 supergravity, to the D3 brane, and the UV completion of constrained multiplets in string theory.
Amplitude analysis of $\\bar{K}N$ scattering
Fernandez-Ramirez, Cesar
2016-01-01
We present the results of a coupled-channel model for $\\bar{K}N$ scattering in the resonance region. The model fulfills unitarity, has the correct analytical properties for the amplitudes and the partial waves have the right threshold behavior. The parameters of the model have been established by fitting single-energy partial waves up to $J=7/2$ and up to 2.15 GeV of center-of-mass energy. The $\\Lambda^*$ and $\\Sigma^*$ spectra has been obtained, providing a comprehensive picture of the $S=-1$ hyperon spectrum. We use the structure of the hyperon spectrum and Regge phenomenology to gain insight on the nature of the $\\Lambda(1405)$ resonances.
Modified π π amplitude with σ pole
Bydžovský, P.; Kamiński, R.; Nazari, V.
2014-12-01
A set of well-known once subtracted dispersion relations with imposed crossing symmetry condition is used to modify unitary multichannel S (π π , K K ¯, and η η ) and P (π π , ρ 2 π , and ρ σ ) wave amplitudes mostly below 1 GeV. Before the modifications, these amplitudes significantly did not satisfy the crossing symmetry condition and did not describe the π π threshold region. Moreover, the pole of the S wave amplitude related with the f0(500 ) meson (former f0(600 ) or σ ) had much smaller imaginary part and bigger real one in comparison with those in the newest Particle Data Group Tables. Here, these amplitudes are supplemented by near threshold expansion polynomials and refitted to the experimental data in the effective two pion mass from the threshold to 1.8 GeV and to the dispersion relations up to 1.1 GeV. In result the self consistent, i.e., unitary and fulfilling the crossing symmetry condition, S and P wave amplitudes are formed and the σ pole becomes much narrower and lighter. To eliminate doubts about the uniqueness of the so obtained sigma pole position short and purely mathematical proof of the uniqueness of the results is also presented. This analysis is addressed to a wide group of physicists and aims at providing a very effective and easy method of modification of, many presently used, π π amplitudes with a heavy and broad σ meson without changing of their original mathematical structure.
Directory of Open Access Journals (Sweden)
Robert Lai
2012-07-01
Full Text Available China cyberattack has become aggressive, disruptive, stealthy, and sophisticated. Apparently, China’s advantage is more on the cognitive domain than technical domain since information systems security is art and science—in some case, it is more art than science. Knowledge is the best weapon for cyber warfare since one of the Sun Tze’s Art of War principles is “know your enemy”. Therefore, an analytic of China cyberattack must scrutinize the national interest, goals and philosophies, culture, worldview, and behavioral phenomena of China.
Directory of Open Access Journals (Sweden)
Robert Lai and Syed (Shawon Rahman
2012-06-01
Full Text Available China cyberattack has become aggressive, disruptive, stealthy, and sophisticated. Apparently, China’s advantage is more on the cognitive domain than technical domain since information systems security is art and science—in some case, it is more art than science. Knowledge is the best weapon for cyber warfare since one of the Sun Tze’s Art of War principles is “know your enemy”. Therefore, an analytic of China cyberattack must scrutinize the national interest, goals and philosophies, culture, worldview, and behavioral phenomena of China.
Topographic quantitative EEG amplitude in recovered alcoholics.
Pollock, V E; Schneider, L S; Zemansky, M F; Gleason, R P; Pawluczyk, S
1992-05-01
Topographic measures of electroencephalographic (EEG) amplitude were used to compare recovered alcoholics (n = 14) with sex- and age-matched control subjects. Delta, alpha, and beta activity did not distinguish the groups, but regional differences in theta distribution did. Recovered alcoholics showed more uniform distributions of theta amplitudes in bilateral anterior and posterior regions compared with controls. Because a minimum of 5 years had elapsed since the recovered alcoholic subjects fulfilled DSM-III-R criteria for alcohol abuse or dependence, it is unlikely these EEG theta differences reflect the effects of withdrawal.
Fatigue Reliability under Multiple-Amplitude Loads
DEFF Research Database (Denmark)
Talreja, R.
1979-01-01
A method to determine the fatigue of structures subjected to multiple-amplitude loads is presented. Unlike the more common cumulative damage methods, which are usually based on fatigue life data, the proposed method is based on tensile strength data. Assuming the Weibull distribution...... for the initial tensile strength and the fatigue life, the probability distributions for the residual tensile strength in both the crack initiation and the crack propagation stages of fatigue are determined. The method is illustrated for two-amplitude loads by means of experimental results obtained by testing...
Amplitude Models for Discrimination and Yield Estimation
Energy Technology Data Exchange (ETDEWEB)
Phillips, William Scott [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2016-09-01
This seminar presentation describes amplitude models and yield estimations that look at the data in order to inform legislation. The following points were brought forth in the summary: global models that will predict three-component amplitudes (R-T-Z) were produced; Q models match regional geology; corrected source spectra can be used for discrimination and yield estimation; three-component data increase coverage and reduce scatter in source spectral estimates; three-component efforts must include distance-dependent effects; a community effort on instrument calibration is needed.
Analytical model of internally coupled ears
DEFF Research Database (Denmark)
Vossen, Christine; Christensen-Dalsgaard, Jakob; Leo van Hemmen, J
2010-01-01
differences in the tympanic membrane vibrations. Both cues show strong directionality. The work presented herein sets out the derivation of a three dimensional analytical model of internally coupled ears that allows for calculation of a complete vibration profile of the membranes. The analytical model...... additionally provides the opportunity to incorporate the effect of the asymmetrically attached columella, which leads to the activation of higher membrane vibration modes. Incorporating this effect, the analytical model can explain measurements taken from the tympanic membrane of a living lizard, for example......, data demonstrating an asymmetrical spatial pattern of membrane vibration. As the analytical calculations show, the internally coupled ears increase the directional response, appearing in large directional internal amplitude differences (iAD) and in large internal time differences (iTD). Numerical...
Optical parametric amplification beyond the slowly varying amplitude approximation
Indian Academy of Sciences (India)
M Hosseini Farzad
2007-09-01
The coupled-wave equations describing optical parametric amplification (OPA) are usually solved in the slowly varying amplitude (SVA) approximation regime, in which the second-order derivatives of the signal and idler amplitudes are ignored and in fact the electromagnetic effects due to exit face of the medium is not involved. Here, an analytical plane-wave solution of these coupled-wave equations in a non-absorbing medium is presented. The solutions are derived beyond the SVA approximation up to order of = (coupling constant over the wave number). The intensity distributions of the signal and the idler waves show a periodic behavior about their corresponding distributions of SVA-adapted solution. This behavior can be explained by the interference of the forward propagating signal (idler) wave and the corresponding backward one resulted from the reflection by the end face of the medium. Furthermore, this interference pattern in the medium can in turn serve as a periodic source for the next generations of the signal and idler waves. Therefore, the superposition of the waves, generated from different points of this periodic source, at the exit face of the medium shows an oscillatory behavior of the transmitted signal (idler) wave in terms of normalized coupling constant, . This study also shows that this effect is more considerable for high intensity pump beam, high relative refractive index and short length of the nonlinear medium.
Detailed Study of Amplitude Nonlinearity in Piezoresistive Force Sensors
Directory of Open Access Journals (Sweden)
Pablo Gonzalez De Santos
2011-09-01
Full Text Available This article upgrades the RC linear model presented for piezoresistive force sensors. Amplitude nonlinearity is found in sensor conductance, and a characteristic equation is formulated for modeling its response under DC-driving voltages below 1 V. The feasibility of such equation is tested on four FlexiForce model A201-100 piezoresistive sensors by varying the sourcing voltage and the applied forces. Since the characteristic equation proves to be valid, a method is presented for obtaining a specific sensitivity in sensor response by calculating the appropriate sourcing voltage and feedback resistor in the driving circuit; this provides plug-and-play capabilities to the device and reduces the start-up time of new applications where piezoresistive devices are to be used. Finally, a method for bypassing the amplitude nonlinearity is presented with the aim of reading sensor capacitance.
Amplitude analysis of resonant production in three pions
Directory of Open Access Journals (Sweden)
Jackura Andrew
2016-01-01
Full Text Available We present some results on the analysis of three pion resonances. The analyses are motivated by the recent release of the largest data set on diffractively produced three pions by the COMPASS collaboration. We construct reaction amplitudes that satisfy fundamental S -matrix principles, which allows the use of models that have physical constraints to be used in fitting data. The models are motivated by the isobar model that satisfy unitarity constraints. The model consist of a Deck production amplitude with which final state interactions are constrained by unitarity. We employ the isobar model where two of the pions form a quasi-stable particle. The analysis is performed in the high-energy, single Regge limit. We specifically discuss the examples of the three pion JPC = 2−+ resonance in the ρπ and f2π channels.
Thermal lens spectrometry: Optimizing amplitude and shortening the transient time
Directory of Open Access Journals (Sweden)
Rubens Silva
2011-06-01
Full Text Available Based on a model introduced by Shen et al. for cw laser induced mode-mismatched dual-beam thermal lens spectrometry (TLS, we explore the parameters related with the geometry of the laser beams and the experimental apparatus that influence the amplitude and time evolution of the transient thermal lens (TL signal. By keeping the sample cell at the minimum waist of the excitation beam, our results show that high amplitude TL signals, very close to the optimized value, combined with short transient times may be obtained by reducing the curvature radius of the probe beam and the distance between the sample cell and the detector. We also derive an expression for the thermal diffusivity which is independent of the excitation laser beam waist, considerably improving the accuracy of the measurements. The sample used in the experiments was oleic acid, which is present in most of the vegetable oils and is very transparent in the visible spectral range.
Amplitude Suppression and Chaos Control in Epileptic EEG Signals
Directory of Open Access Journals (Sweden)
Kaushik Majumdar
2006-01-01
Full Text Available In this paper we have proposed a novel amplitude suppression algorithm for EEG signals collected during epileptic seizure. Then we have proposed a measure of chaoticity for a chaotic signal, which is somewhat similar to measuring sensitive dependence on initial conditions by measuring Lyapunov exponent in a chaotic dynamical system. We have shown that with respect to this measure the amplitude suppression algorithm reduces chaoticity in a chaotic signal (EEG signal is chaotic. We have compared our measure with the estimated largest Lyapunov exponent measure by the largelyap function, which is similar to Wolf's algorithm. They fit closely for all but one of the cases. How the algorithm can help to improve patient specific dosage titration during vagus nerve stimulation therapy has been outlined.
Is the effect of tinnitus on auditory steady-state response amplitude mediated by attention?
Directory of Open Access Journals (Sweden)
Eugen eDiesch
2012-05-01
Full Text Available Objectives: The amplitude of the auditory steady-state response (ASSR is enhanced in tinnitus. As ASSR ampli¬tude is also enhanced by attention, the effect of tinnitus on ASSR amplitude could be interpreted as an effect of attention mediated by tinnitus. As attention effects on the N1 are signi¬fi¬cantly larger than those on the ASSR, if the effect of tinnitus on ASSR amplitude were due to attention, there should be similar amplitude enhancement effects in tinnitus for the N1 component of the auditory evoked response. Methods: MEG recordings of auditory evoked responses which were previously examined for the ASSR (Diesch et al. 2010 were analysed with respect to the N1m component. Like the ASSR previously, the N1m was analysed in the source domain (source space projection. Stimuli were amplitude-modulated tones with one of three carrier fre¬quen¬cies matching the tinnitus frequency or a surrogate frequency 1½ octaves above the audio¬metric edge frequency in con¬trols, the audiometric edge frequency, and a frequency below the audio¬metric edgeResults: In the earlier ASSR study (Diesch et al., 2010, the ASSR amplitude in tinnitus patients, but not in controls, was significantly larger in the (surrogate tinnitus condition than in the edge condition. In the present study, both tinnitus patients and healthy controls show an N1m-amplitude profile identical to the one of ASSR amplitudes in healthy controls. N1m amplitudes elicited by tonal frequencies located at the audiometric edge and at the (surrogate tinnitus frequency are smaller than N1m amplitudes elicited by sub-edge tones and do not differ among each other.Conclusions: There is no N1-amplitude enhancement effect in tinnitus. The enhancement effect of tinnitus on ASSR amplitude cannot be accounted for in terms of attention induced by tinnitus.
Local integrands for two-loop all-plus Yang-Mills amplitudes
Badger, Simon; Peraro, Tiziano
2016-01-01
We express the planar five- and six-gluon two-loop Yang-Mills amplitudes with all positive helicities in compact analytic form using D-dimensional local integrands that are free of spurious singularities. The integrand is fixed from on-shell tree amplitudes in six dimensions using D-dimensional generalised unitarity cuts. The resulting expressions are shown to have manifest infrared behaviour at the integrand level. We also find simple representations of the rational terms obtained after integration in 4-2epsilon dimensions.
Institute of Scientific and Technical Information of China (English)
WU Zhen; YU Meng; DENG Mingxing
2006-01-01
In the design of crane, designers often have to study the trajectory of amplitude-adjusting of crane. The traditional methods, illustration and analytics both show their limits. In this paper, the simulation of process of amplitude-adjusting is presented and the optimization is also performed with virtual prototyping technology. From the comparison of original solution and optimal solution, the effectiveness of this technique is testified. On the platform ADAMS/View, the interactive optimization can be performed in a visual, intuitive and credible way, which deserves to be introduced to the design of crane.
New dispersion relations in the description of $\\pi\\pi$ scattering amplitudes
Kaminski, R; Grynkiewicz, P; Peláez, J R; Ynduráin, F J
2009-01-01
We present a set of once subtracted dispersion relations which implement crossing symmetry conditions for the $\\pi\\pi$ scattering amplitudes below 1 GeV. We compare and discuss the results obtained for the once and twice subtracted dispersion relations, known as Roy's equations, for three $\\pi\\pi$ partial JI waves, S0, P and S2. We also show that once subtracted dispersion relations provide a stringent test of crossing and analyticity for $\\pi\\pi$ partial wave amplitudes, remarkably precise in the 400 to 1.1 GeV region, where the resulting uncertainties are significantly smaller than those coming from standard Roy's equations, given the same input.
The CMU Baryon Amplitude Analysis Program
Bellis, Matt
2007-05-01
The PWA group at Carnegie Mellon University has developed a comprehensive approach and analysis package for the purpose of extracting the amplitudes for photoproduced baryon resonances. The end goal is to identify any missing resonances that are predicted by the constituent quark model, but not definitively observed in experiments. The data comes from the CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Lab.
Amplitude Correction Factors of KVN Observations
Lee, Sang-Sung; Oh, Chung Sik; Kim, Hyo Ryoung; Kim, Jongsoo; Jung, Taehyun; Oh, Se-Jin; Roh, Duk-Gyoo; Jung, Dong-Kyu; Yeom, Jae-Hwan
2015-01-01
We report results of investigation of amplitude calibration for very long baseline interferometry (VLBI) observations with Korean VLBI Network (KVN). Amplitude correction factors are estimated based on comparison of KVN observations at 22~GHz correlated by Daejeon hardware correlator and DiFX software correlator in Korea Astronomy and Space Science Institute (KASI) with Very Long Baseline Array (VLBA) observations at 22~GHz by DiFX software correlator in National Radio Astronomy Observatory (NRAO). We used the observations for compact radio sources, 3C~454.3 and NRAO~512, which are almost unresolved for baselines in a range of 350-477~km. Visibility data of the sources obtained with similar baselines at KVN and VLBA are selected, fringe-fitted, calibrated, and compared for their amplitudes. We found that visibility amplitudes of KVN observations should be corrected by factors of 1.10 and 1.35 when correlated by DiFX and Daejeon correlators, respectively. These correction factors are attributed to the combinat...
Audio steganography by amplitude or phase modification
Gopalan, Kaliappan; Wenndt, Stanley J.; Adams, Scott F.; Haddad, Darren M.
2003-06-01
This paper presents the results of embedding short covert message utterances on a host, or cover, utterance by modifying the phase or amplitude of perceptually masked or significant regions of the host. In the first method, the absolute phase at selected, perceptually masked frequency indices was changed to fixed, covert data-dependent values. Embedded bits were retrieved at the receiver from the phase at the selected frequency indices. Tests on embedding a GSM-coded covert utterance on clean and noisy host utterances showed no noticeable difference in the stego compared to the hosts in speech quality or spectrogram. A bit error rate of 2 out of 2800 was observed for a clean host utterance while no error occurred for a noisy host. In the second method, the absolute phase of 10 or fewer perceptually significant points in the host was set in accordance with covert data. This resulted in a stego with successful data retrieval and a slightly noticeable degradation in speech quality. Modifying the amplitude of perceptually significant points caused perceptible differences in the stego even with small changes of amplitude made at five points per frame. Finally, the stego obtained by altering the amplitude at perceptually masked points showed barely noticeable differences and excellent data recovery.
Particle Distribution Modification by Low Amplitude Modes
Energy Technology Data Exchange (ETDEWEB)
White, R. B.; Gorelenkov, N.; Heidbrink, W. W.; Van Zeeland, M. A.
2009-08-28
Modification of a high energy particle distribution by a spectrum of low amplitude modes is investigated using a guiding center code. Only through resonance are modes effective in modifying the distribution. Diagnostics are used to illustrate the mode-particle interaction and to find which effects are relevant in producing significant resonance, including kinetic Poincare plots and plots showing those orbits with time averaged mode-particle energy transfer. Effects of pitch angle scattering and drag are studied, as well as plasma rotation and time dependence of the equilibrium and mode frequencies. A specific example of changes observed in a DIII-D deuterium beam distribution in the presence of low amplitude experimentally validated Toroidal Alfven (TAE) eigenmodes and Reversed Shear Alfven (RSAE) eigenmodes is examined in detail. Comparison with experimental data shows that multiple low amplitude modes can account for significant modification of high energy beam particle distributions. It is found that there is a stochastic threshold for beam profile modification, and that the experimental amplitudes are only slightly above this threshold.
Hyperlogarithms and periods in Feynman amplitudes
Todorov, Ivan
2016-01-01
The role of hyperlogarithms and multiple zeta values (and their generalizations) in Feynman amplitudes is being gradually recognized since the mid 1990's. The present lecture provides a concise introduction to a fast developing subjects that attracts the attention to a wide range of specialists - from number theorists to particle physicists.
Microwave Imaging using Amplitude-only Data
DEFF Research Database (Denmark)
Rubæk, Tonny; Zhurbenko, Vitaliy
2010-01-01
This paper discuss how the performance of an imaging system is affected when the phase information of the measurements are removed from the data, leaving only amplitude information as input for the imaging algorithm. Simulated data are used for this purpose, and the images resulting from using am...
Connected formulas for amplitudes in standard model
He, Song; Zhang, Yong
2017-03-01
Witten's twistor string theory has led to new representations of S-matrix in massless QFT as a single object, including Cachazo-He-Yuan formulas in general and connected formulas in four dimensions. As a first step towards more realistic processes of the standard model, we extend the construction to QCD tree amplitudes with massless quarks and those with a Higgs boson. For both cases, we find connected formulas in four dimensions for all multiplicities which are very similar to the one for Yang-Mills amplitudes. The formula for quark-gluon color-ordered amplitudes differs from the pure-gluon case only by a Jacobian factor that depends on flavors and orderings of the quarks. In the formula for Higgs plus multi-parton amplitudes, the massive Higgs boson is effectively described by two additional massless legs which do not appear in the Parke-Taylor factor. The latter also represents the first twistor-string/connected formula for form factors.
Taming Tree Amplitudes In General Relativity
Benincasa, Paolo; Cachazo, Freddy; 10.1088/1126-6708/2007/11/057
2008-01-01
We give a proof of BCFW recursion relations for all tree-level amplitudes of gravitons in General Relativity. The proof follows the same basic steps as in the BCFW construction and it is an extension of the one given for next-to-MHV amplitudes by one of the authors and P. Svr\\v{c}ek in hep-th/0502160. The main obstacle to overcome is to prove that deformed graviton amplitudes vanish as the complex variable parameterizing the deformation is taken to infinity. This step is done by first proving an auxiliary recursion relation where the vanishing at infinity follows directly from a Feynman diagram analysis. The auxiliary recursion relation gives rise to a representation of gravity amplitudes where the vanishing under the BCFW deformation can be directly proven. Since all our steps are based only on Feynman diagrams, our proof completely establishes the validity of BCFW recursion relations. This means that many results in the literature that were derived assuming their validity become true statements.
Taming tree amplitudes in general relativity
Benincasa, Paolo; Boucher-Veronneau, Camille; Cachazo, Freddy
2007-11-01
We give a proof of BCFW recursion relations for all tree-level amplitudes of gravitons in General Relativity. The proof follows the same basic steps as in the BCFW construction and it is an extension of the one given for next-to-MHV amplitudes by one of the authors and P. Svrcek in hep-th/0502160. The main obstacle to overcome is to prove that deformed graviton amplitudes vanish as the complex variable parameterizing the deformation is taken to infinity. This step is done by first proving an auxiliary recursion relation where the vanishing at infinity follows directly from a Feynman diagram analysis. The auxiliary recursion relation gives rise to a representation of gravity amplitudes where the vanishing under the BCFW deformation can be directly proven. Since all our steps are based only on Feynman diagrams, our proof completely establishes the validity of BCFW recursion relations. This means that many results in the literature that were derived assuming their validity become true statements.
Analytical fundamentals of migration in reflection seismics
Directory of Open Access Journals (Sweden)
Ray Arnab K.
2016-06-01
Full Text Available We consider migration in reflection seismics from a completely analytical perspective. We review the basic geometrical ray-path approach to understanding the subject of migration, and discuss the limitations of this method. We stress the importance of the linear differential wave equation in migration. We also review briefly how a wavefield, travelling with a constant velocity, is extrapolated from the differential wave equation, with the aid of Fourier transforms. Then we present a non-numerical treatment by which we derive an asymptotic solution for both the amplitude and the phase of a planar subsurface wavefield that has a vertical velocity variation. This treatment entails the application of the Wentzel-Kramers-Brillouin approximation, whose self-consistency can be established due to a very slow logarithmic variation of the velocity in the vertical direction, a feature that holds more firmly at increasingly greater subsurface depths. For a planar subsurface wavefield, we also demonstrate an equivalence between two apparently different migration algorithms, namely, the constant-velocity Stolt Migration algorithm and the stationary-phase approximation method.
MacNeill, Sheila; Campbell, Lorna M.; Hawksey, Martin
2014-01-01
This article presents an overview of the development and use of analytics in the context of education. Using Buckingham Shum's three levels of analytics, the authors present a critical analysis of current developments in the domain of learning analytics, and contrast the potential value of analytics research and development with real world…
Analytical approximations for a conservative nonlinear singular oscillator in plasma physics
Directory of Open Access Journals (Sweden)
A. Mirzabeigy
2012-10-01
Full Text Available A modified variational approach and the coupled homotopy perturbation method with variational formulation are exerted to obtain periodic solutions of a conservative nonlinear singular oscillator in plasma physics. The frequency–amplitude relations for the oscillator which the restoring force is inversely proportional to the dependent variable are achieved analytically. The approximate frequency obtained using the coupled method is more accurate than the modified variational approach and ones obtained using other approximate methods and the discrepancy between the approximate frequency using this coupled method and the exact one is lower than 0.31% for the whole range of values of oscillation amplitude. The coupled method provides a very good accuracy and is a promising technique to a lot of practical engineering and physical problems.
Analyticity and the Holographic S-Matrix
Energy Technology Data Exchange (ETDEWEB)
Fitzpatrick, A.Liam; /Stanford U., Phys. Dept.; Kaplan, Jared; /SLAC
2012-04-03
We derive a simple relation between the Mellin amplitude for AdS/CFT correlation functions and the bulk S-Matrix in the flat spacetime limit, proving a conjecture of Penedones. As a consequence of the Operator Product Expansion, the Mellin amplitude for any unitary CFT must be a meromorphic function with simple poles on the real axis. This provides a powerful and suggestive handle on the locality vis-a-vis analyticity properties of the S-Matrix. We begin to explore analyticity by showing how the familiar poles and branch cuts of scattering amplitudes arise from the holographic description. For this purpose we compute examples of Mellin amplitudes corresponding to 1-loop and 2-loop Witten diagrams in AdS. We also examine the flat spacetime limit of conformal blocks, implicitly relating the S-Matrix program to the Bootstrap program for CFTs. We use this connection to show how the existence of small black holes in AdS leads to a universal prediction for the conformal block decomposition of the dual CFT.
Variable amplitude fatigue of autofrettaged diesel injection parts
Energy Technology Data Exchange (ETDEWEB)
Bergmann, J.W. [Materials Research and Testing Institute, Bauhaus University Weimar (Germany); Herz, E. [Robert Bosch GmbH, Stuttgart (Germany); Hertel, O.; Vormwald, M. [Technische Universitaet Darmstadt, FB 13 Bauingenieurwesen, Inst. fuer Stahlbau und Werkstoffmechechanik, Darmstadt (Germany); Thumser, R.
2008-10-15
Experimental and analytical investigations of constant and variable amplitude fatigue life of not autofrettaged and autofrettaged components have been performed. In variable amplitude loading the new standardised COmmon-RAil-Load sequence CORAL has been used as well as two-level-tests with small cycles at high mean stresses interrupted by large cycles for the evaluation of load sequence effects. The results of the two level tests show that small cycles with amplitudes far below the fatigue limit cause fatigue damage. Life calculations have been performed according to the nominal stress approach with S-N-curves and improved Miner's Rule, linear-elastic fracture mechanics with 3D-weight functions, elastic-plastic fracture mechanics applying an extended strip yield-model, and explicit 3D-FE-simulation of fatigue crack growth with predefined crack fronts. All approaches are appropriate for predicting realistic variable amplitude lives. From a practical point of view the explicit 3D-FE-simulation of fatigue crack growth is too time-consuming. However, such simulations show that the approaches based on linear-elastic fracture mechanics and elastic-plastic fracture mechanics with extended strip yield-model capture the essential physics of fatigue crack growth in a realistic way. (Abstract Copyright [2008], Wiley Periodicals, Inc.) [German] Die Lebensdauer nicht autofrettierter und autofrettierter Bauteile unter einstufiger und betriebsaehnlicher Innendruckbelastung wurde experimentell und analytisch untersucht. Als betriebsaehnliche Belastung wurde die COmmon-RAil-Load sequence CORAL entwickelt. Zur weiteren Klaerung von Lastfolgeeinfluessen wurden Zweistufenversuche durchgefuehrt mit dem Ergebnis, dass kleine Schwingspiele noch bei mitteldruckbewerteten Amplituden weit unterhalb der halben Dauerfestigkeit schaedigen. Die folgenden Lebensdauervorhersagemethoden wurden ueberprueft: Nennspannungskonzept mit Varianten der Miner-Regel linear-elastische Bruchmechanik mit
The two-loop six-point amplitude in ABJM theory
Huang, Yu-tin
2012-01-01
In this paper we present the first analytic computation of the six-point two-loop amplitude of ABJM theory. We show that the two-loop amplitude consist of corrections proportional to two distinct local Yangian invariants which can be identified as the tree- and the one-loop amplitude respectively. The two-loop correction proportional to the tree-amplitude is identical to the one-loop BDS result of N=4 SYM plus an additional remainder function, while the correction proportional to the one-loop amplitude is finite. Both the remainder and the finite correction are dual conformal invariant, which implies that the two-loop dual conformal anomaly equation for ABJM is again identical to that of one-loop N=4 SYM, as was first observed at four-point. We discuss the theory on the Higgs branch, showing that its amplitudes are infrared finite, but equal, in the small mass limit, to those obtained in dimensional regularization.
Neural processing of amplitude and formant rise time in dyslexia
Directory of Open Access Journals (Sweden)
Varghese Peter
2016-06-01
Full Text Available This study aimed to investigate how children with dyslexia weight amplitude rise time (ART and formant rise time (FRT cues in phonetic discrimination. Passive mismatch responses (MMR were recorded for a/ba/-/wa/contrast in a multiple deviant odd-ball paradigm to identify the neural response to cue weighting in 17 children with dyslexia and 17 age-matched control children. The deviant stimuli had either partial or full ART or FRT cues. The results showed that ART did not generate an MMR in either group, whereas both partial and full FRT cues generated MMR in control children while only full FRT cues generated MMR in children with dyslexia. These findings suggest that children, both controls and those with dyslexia, discriminate speech based on FRT cues and not ART cues. However, control children have greater sensitivity to FRT cues in speech compared to children with dyslexia.
Optical twists in phase and amplitude
DEFF Research Database (Denmark)
Daria, Vincent R.; Palima, Darwin; Glückstad, Jesper
2011-01-01
beams, the far field projection of the twisted optical beam maintains a high photon concentration even at higher values of topological charge. Optical twisters have therefore profound applications to fundamental studies of light and atoms such as in quantum entanglement of the OAM, toroidal traps......Light beams with helical phase profile correspond to photons having orbital angular momentum (OAM). A Laguerre-Gaussian (LG) beam is an example where its helical phase sets a phase-singularity at the optical axis and forms a ring-shaped transverse amplitude profile. Here, we describe a unique beam...... where both phase and amplitude express a helical profile as the beam propagates in free space. Such a beam can be accurately referred to as an optical twister. We characterize optical twisters and demonstrate their capacity to induce spiral motion on particles trapped along the twisters’ path. Unlike LG...
On Triple-Cut of Scattering Amplitudes
Mastrolia, Pierpaolo
2007-01-01
It is analysed the triple-cut of one-loop amplitudes in dimensional regularisation within spinor-helicity representation. The triple-cut is defined as a difference of two double-cuts with the same particle content, and a same propagator carrying, respectively, causal and anti-causal prescription in each of the two cuts. That turns out into an effective tool for extracting the coefficients of the three-point functions (and higher-point ones) from one-loop-amplitudes. The phase-space integration is oversimplified by using residues theorem to perform the integration over the spinor variables, via the holomorphic anomaly, and a trivial integration on the Feynman parameter. The results are valid for arbitrary values of dimensions.
Directory of Open Access Journals (Sweden)
S. Ayadi
2015-07-01
Full Text Available The simplest model of the laser is that of a single mode system homogenously broadened. The dynamical behavior of this laser is described by three differential equations, called Haken-Lorenz equations[1], similar to the Lorenz model [1] already known to predict deterministic chaos. In previous recent work [5-7] we have proposed a simple harmonic expansion method to obtain a series of harmonics terms that yield analytical solutions to the laser equations. ¶This method allows us to derive an analytical expression of the laser field amplitude when this last undergoes a periodic oscillations around zero mean value. We also obtain an analytical expression of the pulsing frequency.
Phase and amplitude binning for 4D-CT imaging
Abdelnour, A. F.; Nehmeh, S. A.; Pan, T.; Humm, J. L.; Vernon, P.; Schöder, H.; Rosenzweig, K. E.; Mageras, G. S.; Yorke, E.; Larson, S. M.; Erdi, Y. E.
2007-07-01
We compare the consistency and accuracy of two image binning approaches used in 4D-CT imaging. One approach, phase binning (PB), assigns each breathing cycle 2π rad, within which the images are grouped. In amplitude binning (AB), the images are assigned bins according to the breathing signal's full amplitude. To quantitate both approaches we used a NEMA NU2-2001 IEC phantom oscillating in the axial direction and at random frequencies and amplitudes, approximately simulating a patient's breathing. 4D-CT images were obtained using a four-slice GE Lightspeed CT scanner operating in cine mode. We define consistency error as a measure of ability to correctly bin over repeated cycles in the same field of view. Average consistency error μe ± σe in PB ranged from 18% ± 20% to 30% ± 35%, while in AB the error ranged from 11% ± 14% to 20% ± 24%. In PB nearly all bins contained sphere slices. AB was more accurate, revealing empty bins where no sphere slices existed. As a proof of principle, we present examples of two non-small cell lung carcinoma patients' 4D-CT lung images binned by both approaches. While AB can lead to gaps in the coronal images, depending on the patient's breathing pattern, PB exhibits no gaps but suffers visible artifacts due to misbinning, yielding images that cover a relatively large amplitude range. AB was more consistent, though often resulted in gaps when no data existed due to patients' breathing pattern. We conclude AB is more accurate than PB. This has important consequences to treatment planning and diagnosis.
Phase and amplitude binning for 4D-CT imaging
Energy Technology Data Exchange (ETDEWEB)
Abdelnour, A F [US Patent and Trademark Office, Alexandria, VA (United States); Nehmeh, S A [Memorial Sloan-Kettering Cancer Center, New York, NY (United States); Pan, T [M.D. Anderson Cancer Center, Houston, TX (United States); Humm, J L [Memorial Sloan-Kettering Cancer Center, New York, NY (United States); Vernon, P [GE Healthcare Technologies, Waukesha, WI (United States); Schoeder, H [Memorial Sloan-Kettering Cancer Center, New York, NY (United States); Rosenzweig, K E [Memorial Sloan-Kettering Cancer Center, New York, NY (United States); Mageras, G S [Memorial Sloan-Kettering Cancer Center, New York, NY (United States); Yorke, E [Memorial Sloan-Kettering Cancer Center, New York, NY (United States); Larson, S M [Memorial Sloan-Kettering Cancer Center, New York, NY (United States); Erdi, Y E [Memorial Sloan-Kettering Cancer Center, New York, NY (United States)
2007-07-21
We compare the consistency and accuracy of two image binning approaches used in 4D-CT imaging. One approach, phase binning (PB), assigns each breathing cycle 2{pi} rad, within which the images are grouped. In amplitude binning (AB), the images are assigned bins according to the breathing signal's full amplitude. To quantitate both approaches we used a NEMA NU2-2001 IEC phantom oscillating in the axial direction and at random frequencies and amplitudes, approximately simulating a patient's breathing. 4D-CT images were obtained using a four-slice GE Lightspeed CT scanner operating in cine mode. We define consistency error as a measure of ability to correctly bin over repeated cycles in the same field of view. Average consistency error {mu}{sub e} {+-} {sigma}{sub e} in PB ranged from 18% {+-} 20% to 30% {+-} 35%, while in AB the error ranged from 11% {+-} 14% to 20% {+-} 24%. In PB nearly all bins contained sphere slices. AB was more accurate, revealing empty bins where no sphere slices existed. As a proof of principle, we present examples of two non-small cell lung carcinoma patients' 4D-CT lung images binned by both approaches. While AB can lead to gaps in the coronal images, depending on the patient's breathing pattern, PB exhibits no gaps but suffers visible artifacts due to misbinning, yielding images that cover a relatively large amplitude range. AB was more consistent, though often resulted in gaps when no data existed due to patients' breathing pattern. We conclude AB is more accurate than PB. This has important consequences to treatment planning and diagnosis.
Scattering Amplitudes via Algebraic Geometry Methods
DEFF Research Database (Denmark)
Søgaard, Mads
unitarity cuts. We take advantage of principles from algebraic geometry in order to extend the notion of maximal cuts to a large class of two- and three-loop integrals. This allows us to derive unique and surprisingly compact formulae for the coefficients of the basis integrals. Our results are expressed...... in terms of certain linear combinations of multivariate residues and elliptic integrals computed from products of tree-level amplitudes. Several explicit examples are provided...
Nucleon and $N^* (1535)$ Distribution Amplitudes
Braun, V M; Göckeler, M; Hagen, C; Horsley, R; Nakamura, Y; Pleiter, D; Rakow, P E L; Schäfer, A; Schiel, R W; Schierholz, G; Stüben, H; Zanotti, J M
2010-01-01
The QCDSF collaboration has investigated the distribution amplitudes and wavefunction normalization constants of the nucleon and its parity partner, the $N^* (1535)$. We report on recent progress in the calculation of these quantities on configurations with two dynamical flavors of $\\mathcal{O}(a)$-improved Wilson fermions. New data at pion masses of approximately 270 MeV helps in significantly reducing errors in the extrapolation to the physical point.
Automatic generation of tree level helicity amplitudes
Stelzer, T
1994-01-01
The program MadGraph is presented which automatically generates postscript Feynman diagrams and Fortran code to calculate arbitrary tree level helicity amplitudes by calling HELAS[1] subroutines. The program is written in Fortran and is available in Unix and VMS versions. MadGraph currently includes standard model interactions of QCD and QFD, but is easily modified to include additional models such as supersymmetry.
Subleading Soft Factor for String Disk Amplitudes
Schwab, Burkhard U W
2014-01-01
We investigate the behavior of superstring disk scattering amplitudes in the presence of a soft external momentum at finite string tension. We prove that there are no $\\alpha'$-corrections to the field theory form of the subleading soft factor $S^{(1)}$. At the end of this work, we also comment on the possibility to find the corresponding subleading soft factors in closed string theory using our result and the KLT relations.
Automation of 2-loop Amplitude Calculations
Jones, S P
2016-01-01
Some of the tools and techniques that have recently been used to compute Higgs boson pair production at NLO in QCD are discussed. The calculation relies on the use of integral reduction, to reduce the number of integrals which must be computed, and expressing the amplitude in terms of a quasi-finite basis, which simplifies their numeric evaluation. Emphasis is placed on sector decomposition and Quasi-Monte Carlo (QMC) integration which are used to numerically compute the master integrals.
Ward identities for amplitudes with reggeized gluons
Energy Technology Data Exchange (ETDEWEB)
Bartles, J. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Universidad Tecnica Federico Santa Maria, Valparaiso (Chile). Dept. de Fisica; Lipatov, L.N. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; St. Petersburg Nuclear Physics Institute (Russian Federation); Vacca, G.P. [INFN, Sezione di Bologna (Italy)
2012-05-15
Starting from the effective action of high energy QCD we derive Ward identities for Green's functions of reggeized gluons. They follow from the gauge invariance of the effective action, and allow to derive new representations of amplitudes containing physical particles as well as reggeized gluons. We explicitly demonstrate their validity for the BFKL kernel, and we present a new derivation of the kernel.
Organizing Filament of Small Amplitude Scroll Waves
Institute of Scientific and Technical Information of China (English)
ZHOU TianShou; ZHANG SuoChun
2001-01-01
We theoretically analyze the organizing filament of small amplitude scroll waves in general excitable media by perturbation method and explicitly give the expressions of coefficients in Keener theory. In particular for the excitable media with equal diffusion, we obtain a close system for the motion of the filament. With an example of the Oregonator model, our results are in good agreement with those simulated by Winfree.``
Energy Technology Data Exchange (ETDEWEB)
Villanueva, Walter; Li, Hua [Division of Nuclear Power Safety, Royal Institute of Technology (KTH), Roslagstullsbacken 21, SE-10691 Stockholm (Sweden); Puustinen, Markku [Nuclear Engineering, LUT School of Energy Systems, Lappeenranta University of Technology (LUT), FIN-53851 Lappeenranta (Finland); Kudinov, Pavel, E-mail: pavel@safety.sci.kth.se [Division of Nuclear Power Safety, Royal Institute of Technology (KTH), Roslagstullsbacken 21, SE-10691 Stockholm (Sweden)
2015-12-15
Highlights: • Available data on steam injection into subcooled pool is generalized. • Scaling approach is proposed on amplitude and frequency of chugging oscillations. • The scaled amplitude has a maximum at Froude number Fr ≈ 2.8. • The scaled frequency has a minimum at Fr ≈ 6. • Both amplitude and frequency has a strong dependence on pool bulk temperature. - Abstract: Steam venting and condensation into a subcooled pool of water through a blowdown pipe can undergo a phenomenon called chugging, which is an oscillation of the steam–water interface inside the blowdown pipe. The momentum that is generated by the oscillations is directly proportional to the oscillations’ amplitude and frequency, according to the synthetic jet theory. Higher momentum can enhance pool mixing and positively affect the pool's pressure suppression capacity by reducing thermal stratification. In this paper, we present a generalization of available experimental data on the amplitude and frequency of oscillations during chugging. We use experimental data obtained in different facilities at different scales to suggest a scaling approach for non-dimensional amplitude and frequency of the oscillations. We demonstrate that the Froude number Fr (which relates the inertial forces to gravitational forces) can be used as a scaling criterion in this case. The amplitude has maximum at Fr ≈ 2.8. There is also a strong dependence of the amplitude on temperature; the lower the bulk temperature is the higher the scaled amplitude. A known analytical theory can only capture the decreasing trend in amplitude for Fr > 2.8 and fails to capture the increasing trend and the temperature dependence. Similarly, there is a minimum of the non-dimensional frequency at Fr ≈ 6. A strong dependence on temperature is also observed for Fr > 6; the lower the bulk temperature is the higher the scaled frequency. The known analytical theory is able to capture qualitatively the general trend in
Nicolescu, B
2004-01-01
The ln**2 behaviour of total cross sections, first obtained by Heisenberg 50 years ago, receives now increased interest both on phenomenological and theoretical levels. We present a modification of the Heisenberg's model in connection with the presence of glueballs and we show that it leads to a realistic description of all existing hadron total cross-section data, in agreement with the COMPETE analysis.
Analytic expression for epithermal neutron spectra amplitudes as a function of water content
Drake, Darrell
1993-01-01
The epithermal portion of an equilibrium neutron spectrum in a planetary body is a function of the water content of its material. The neutrons are produced at high energies but are moderated by elastic and inelastic scattering until they either are captured by surrounding nuclei or escape. We have derived an expression that explicitly shows the dependance of epithermal neutron spectra on water content. Additionally, we compared its predictions to calculations done by Boltzman transport code for infinite media for silicon, oxygen, and a possible lunar composition, and we have obtained very good agreement.
The effects of shape and amplitude on the velocity of scrape-off layer filaments
Omotani, J T; Easy, L; Walkden, N R
2015-01-01
A complete model of the dynamics of scrape-off layer filaments will be rather complex, including temperature evolution, three dimensional geometry and finite Larmor radius effects. However, the basic mechanism of $\\boldsymbol{E}\\times\\boldsymbol{B}$ advection due to electrostatic potential driven by the diamagnetic current can be captured in a much simpler model; a complete understanding of the physics in the simpler model will then aid interpretation of more complex simulations, by allowing the new effects to be disentangled. Here we consider such a simple model, which assumes cold ions and isothermal electrons and is reduced to two dimensions. We derive the scaling with width and amplitude of the velocity of isolated scrape-off layer filaments, allowing for arbitrary elliptical cross-sections, where previously only circular cross-sections have been considered analytically. We also put the scaling with amplitude in a new and more satisfactory form. The analytical results are extensively validated with two di...
Kannajosyula, H.; Lissenden, C. J.; Rose, J. L.
2013-01-01
We present a method for mode selection of guided wave modes and beam steering using purely amplitude variation across a one dimensional linear array of transducers. The method is distinct from apodization of phased array transducers that involves amplitude variation in addition to time delays and merely aims to improve the spectral characteristics of the transducer. The relationship between amplitude variation and the pitch of the array is derived by considering the resulting transduction as analogous to a spatio-temporal filter approach. It is also shown analytically and through numerical examples that the proposed method results in bidirectional guided waves when the steering angle is zero. Further, for non-zero steering angles, the waves travel in four directions, including the desired direction. Experimental studies are suggested.
The analytic renormalization group
Directory of Open Access Journals (Sweden)
Frank Ferrari
2016-08-01
Full Text Available Finite temperature Euclidean two-point functions in quantum mechanics or quantum field theory are characterized by a discrete set of Fourier coefficients Gk, k∈Z, associated with the Matsubara frequencies νk=2πk/β. We show that analyticity implies that the coefficients Gk must satisfy an infinite number of model-independent linear equations that we write down explicitly. In particular, we construct “Analytic Renormalization Group” linear maps Aμ which, for any choice of cut-off μ, allow to express the low energy Fourier coefficients for |νk|<μ (with the possible exception of the zero mode G0, together with the real-time correlators and spectral functions, in terms of the high energy Fourier coefficients for |νk|≥μ. Operating a simple numerical algorithm, we show that the exact universal linear constraints on Gk can be used to systematically improve any random approximate data set obtained, for example, from Monte-Carlo simulations. Our results are illustrated on several explicit examples.
Learning Analytics: drivers, developments and challenges
Directory of Open Access Journals (Sweden)
Rebecca Ferguson
2014-12-01
Full Text Available Learning analytics is a significant area of Technology-Enhanced Learning (TEL that has emerged during the last decade. This review of the field begins with an examination of the technological, educational and political factors that have driven the development of analytics in educational settings. It goes on to chart the emergence of learning analytics, including their origins in the 20th century, the development of data-driven analytics, the rise of learning-focused perspectives and the influence of national economic concerns. It next focuses on the relationships between learning analytics, educational data mining and academic analytics. Finally, it examines developing areas of learning analytics research, and identifies a series of future challenges.
Analytic solution for a quartic electron mirror
Energy Technology Data Exchange (ETDEWEB)
Straton, Jack C., E-mail: straton@pdx.edu
2015-01-15
A converging electron mirror can be used to compensate for spherical and chromatic aberrations in an electron microscope. This paper presents an analytical solution to a diode (two-electrode) electrostatic mirror including the next term beyond the known hyperbolic shape. The latter is a solution of the Laplace equation to second order in the variables perpendicular to and along the mirror's radius (z{sup 2}−r{sup 2}/2) to which we add a quartic term (kλz{sup 4}). The analytical solution is found in terms of Jacobi cosine-amplitude functions. We find that a mirror less concave than the hyperbolic profile is more sensitive to changes in mirror voltages and the contrary holds for the mirror more concave than the hyperbolic profile. - Highlights: • We find the analytical solution for electron mirrors whose curvature has z4 dependence added to the usual z{sup 2} – r{sup 2}/2 terms. • The resulting Jacobi cosine-amplitude function reduces to the well-known cosh solution in the limit where the new term is 0. • This quartic term gives a mirror designer additional flexibility for eliminating spherical and chromatic aberrations. • The possibility of using these analytical results to approximately model spherical tetrode mirrors close to axis is noted.
Two-loop gg → Hg amplitude mediated by a nearly massless quark
Melnikov, Kirill; Tancredi, Lorenzo; Wever, Christopher
2016-11-01
We analytically compute the two-loop scattering amplitude gg → Hg assuming that the mass of the quark, that mediates the ggH interaction, is vanishingly small. Our computation provides an important ingredient required to improve the theoretical description of the top-bottom interference effect in Higgs boson production in gluon fusion, and to elucidate its impact on the Higgs boson transverse momentum distribution.
Two-loop $gg \\to Hg$ amplitude mediated by a nearly massless quark
Melnikov, Kirill; Wever, Christopher
2016-01-01
We analytically compute the two-loop scattering amplitude $gg \\to Hg$ assuming that the mass of the quark, that mediates the ggH interaction, is vanishingly small. Our computation provides an important ingredient required to improve the theoretical description of the top-bottom interference effect in Higgs boson production in gluon fusion, and to elucidate its impact on the Higgs boson transverse momentum distribution.
Renormalization and applications of baryon distribution amplitudes QCD
Energy Technology Data Exchange (ETDEWEB)
Rohrwild, Juergen Holger
2009-07-17
Higher-twist effects are relevant for precision calculations of hard exclusive reactions. Furthermore, they reveal fine details of the hadron structure. In this work we construct an operator basis for arbitrary twist respecting the conformal symmetry of QCD (which is realized on 1-loop level). Using this basis the 1-loop renormalization kernels of twist 4 are constructed for baryon operators. The full spectrum of anomalous dimensions and the multiplicatively renormalizable operators is obtained. As an application of these results the radiative N{sup *}(1535) decay is discussed. Employing light-cone sum rule, the transition form factors can be directly related to the N{sup *} distribution amplitudes. (orig.)
Renormalization and applications of baryon distribution amplitudes in QCD
Energy Technology Data Exchange (ETDEWEB)
Rohrwild, Juergen Holger
2009-07-17
Higher-twist effects are relevant for precision calculations of hard exclusive reactions. Furthermore, they reveal fine details of the hadron structure. In this work we construct an operator basis for arbitrary twist respecting the conformal symmetry of QCD (which is realized on 1-loop level). Using this basis the 1-loop renormalization kernels of twist 4 are constructed for baryon operators. The full spectrum of anomalous dimensions and the multiplicatively renormalizable operators is obtained. As an application of these results the radiative N{sup *}(1535) decay is discussed. Employing light-cone sum rule, the transition form factors can be directly related to the N* distribution amplitudes. (orig.)
Shield Insertion to Minimize Noise Amplitude in Global Interconnects
Directory of Open Access Journals (Sweden)
Kalpana.A.B
2012-09-01
Full Text Available Shield insertion is an effective technique for minimise crosstalk noise and signal delay uncertainty .To reduce the effects of coupling uniform or simultaneous shielding may be used on either or both sides of a signal line. Shields are ground or power lines placed between two signal wires to prevent direct coupling between them as the shield width increases, the noise amplitude decreases, in this paper inserting a shield line between two coupled interconnects is shown to be more effective in reducing crosstalk noise for different technology nodes .
DEFF Research Database (Denmark)
Cortsen, Rikke Platz
2014-01-01
Alan Moore and his collaborating artists often manipulate time and space by drawing upon the formal elements of comics and making alternative constellations. This article looks at an element that is used frequently in comics of all kinds – the full page – and discusses how it helps shape spatio......, something that it shares with the full page in comics. Through an analysis of several full pages from Moore titles like Swamp Thing, From Hell, Watchmen and Promethea, it is made clear why the full page provides an apt vehicle for an apocalypse in comics....
Directory of Open Access Journals (Sweden)
Prof. Shubhada Talegaon
2015-10-01
Full Text Available Big Data analytics has started to impact all types of organizations, as it carries the potential power to extract embedded knowledge from big amounts of data and react according to it in real time. The current technology enables us to efficiently store and query large datasets, the focus is now on techniques that make use of the complete data set, instead of sampling. This has tremendous implications in areas like machine learning, pattern recognition and classification, sentiment analysis, social networking analysis to name a few. Therefore, there are a number of requirements for moving beyond standard data mining technique. Purpose of this paper is to understand various techniques to analysis data.
Clustering in analytical chemistry.
Drab, Klaudia; Daszykowski, Michal
2014-01-01
Data clustering plays an important role in the exploratory analysis of analytical data, and the use of clustering methods has been acknowledged in different fields of science. In this paper, principles of data clustering are presented with a direct focus on clustering of analytical data. The role of the clustering process in the analytical workflow is underlined, and its potential impact on the analytical workflow is emphasized.
VizieR Online Data Catalog: Kepler δ Sct stars amplitude modulation (Bowman+, 2016)
Bowman, D. M.; Kurtz, D. W.; Breger, M.; Murphy, S. J.; Holdsworth, D. L.
2016-06-01
We searched for amplitude modulation of pulsation modes in δ Sct stars observed by the Kepler Space Telescope. The number of pulsation modes out of a maximum of twelve that have constant amplitudes and variable amplitudes are given in the columns NoMod and AMod, respectively, along with stellar parameters from Huber et al. (2014, Cat. J/ApJS/211/2). Table 1 is the full version for all 983 δ Sct stars the abridged version of the paper. (1 data file).
Directory of Open Access Journals (Sweden)
A. G. Pavelyev
2011-03-01
Full Text Available Conditions for communication, navigation, and remote sensing in the ionosphere and atmosphere depend strongly on the ionospheric impact on the radio waves propagation. By use of the CHAllenge Minisatellite Payload (CHAMP radio occultation (RO data a description of different types of the ionospheric contributions to the RO signals at the altitudes 30–90 km of the RO ray perigee is introduced and compared with results of measurements obtained earlier in the communication link satellite-to-Earth at frequency 1.5415 GHz. An analytical model is introduced for description of the radio waves propagation in a stratified medium consisting of sectors having the spherically symmetric distributions of refractivity. Model presents analytical expressions for the phase path and refractive attenuation of radio waves. Model is applied for analysis of the radio waves propagation effects along a prolonged path including the atmosphere and two parts of the ionosphere. Model explains significant amplitude and phase variations at the altitudes 30–90 km of the RO ray perigee as connected with influence of the inclined ionospheric layers. An innovative eikonal acceleration technique is described and applied for the identification of the inclined ionospheric layers contributions and their location. Possibility to separate the influence of layered structures from contributions of irregularities and turbulence is analyzed.
Impact Representation of Generalized Distribution Amplitudes
Pire, B
2003-01-01
We develop an impact representation for the generalized distribution amplitude which describes the exclusive hadronization of a quark-antiquark pair to a pair of mesons. Experiments such as gamma^* gamma -> pi pi and gamma^* N -> pi pi N' are shown to probe the transverse size of the hadronization region of the quark antiquark pair that one can interpret as the transverse overlap of the two emerging mesons. An astonishing feature of this description is that low energy pi pi phase shift analysis can be used for understanding some properties of quark hadronization process.
Approximate formulas for moderately small eikonal amplitudes
Kisselev, A V
2015-01-01
The eikonal approximation for moderately small scattering amplitudes is considered. With the purpose of using for their numerical estimations, the formulas are derived which contain no Bessel functions, and, hence, no rapidly oscillating integrands. To obtain these formulas, the improper integrals of the first kind which contain products of the Bessel functions J_0(z) are studied. The expression with four functions J_0(z) is generalized. The expressions for the integrals with the product of five and six Bessel functions J_0(z) are also found. The known formula for the improper integral with two functions J_nu(z) is generalized for non-integer nu.
Approximate formulas for moderately small eikonal amplitudes
Kisselev, A. V.
2016-08-01
We consider the eikonal approximation for moderately small scattering amplitudes. To find numerical estimates of these approximations, we derive formulas that contain no Bessel functions and consequently no rapidly oscillating integrands. To obtain these formulas, we study improper integrals of the first kind containing products of the Bessel functions J0(z). We generalize the expression with four functions J0(z) and also find expressions for the integrals with the product of five and six Bessel functions. We generalize a known formula for the improper integral with two functions Jυ (az) to the case with noninteger υ and complex a.
Transition Distribution Amplitudes for gamma* gamma collisions
Lansberg, J P; Szymanowski, L
2008-01-01
We study the exclusive production of pi-pi and rho-pi in hard gamma* gamma scattering in the forward kinematical region where the virtuality of one photon provides us with a hard scale in the process. The newly introduced concept of Transition Distribution Amplitudes (TDA) is used to perform a QCD calculation of these reactions thanks to two simple models for TDAs. The sizable cross sections for rho-pi and pi-pi production may be tested at intense electron-positron colliders such as CLEO and B factories (Belle and BaBar).
In-Medium Pion Valence Distribution Amplitude
Tsushima, K
2016-01-01
After a brief review of the quark-based model for nuclear matter, and some pion properties in medium presented in our previous works, we report new results for the pion valence wave function as well as the valence distribution amplitude in medium, which are presented in our recent article. We find that both the in-medium pion valence distribution and the in-medium pion valence wave function, are substantially modified at normal nuclear matter density, due to the reduction in the pion decay constant.
Information transfer for small-amplitude signals.
Kostal, Lubomir; Lansky, Petr
2010-05-01
We study the optimality conditions of information transfer in systems with memory in the low signal-to-noise ratio regime of vanishing input amplitude. We find that the optimal mutual information is represented by a maximum variance of the signal time course, with correlation structure determined by the Fisher information matrix. We provide illustration of the method on a simple biologically inspired model of electrosensory neuron. Our general results apply also to the study of information transfer in single neurons subject to weak stimulation, with implications to the problem of coding efficiency in biological systems.
In-Medium Pion Valence Distribution Amplitude
Tsushima, K.; de Melo, J. P. B. C.
2017-03-01
After a brief review of the quark-based model for nuclear matter, and some pion properties in medium presented in our previous works, we report new results for the pion valence wave function as well as the valence distribution amplitude in medium, which are presented in our recent article. We find that both the in-medium pion valence distribution and the in-medium pion valence wave function, are substantially modified at normal nuclear matter density, due to the reduction in the pion decay constant.
Fatigue crack growth under variable amplitude loading
Sidawi, Jihad A.
1994-01-01
Fatigue crack growth tests were conducted on an Fe 510 E C-Mn steel and a submerged arc welded joint from the same material under constant, variable, and random loading amplitudes. Paris-Erdogan's crack growth rate law was tested for the evaluation of m and C using the stress intensity factor K, the J-integral, the effective stress intensity factor K(sub eff), and the root mean square stress intensity factor K(sub rms) fracture mechanics concepts. The effect of retardation and residual stresses resulting from welding was also considered. It was found that all concepts gave good life predictions in all cases.
Institute of Scientific and Technical Information of China (English)
2012-01-01
<正>Centre for Agriculture and Bioscience International( CABI) is a not-for-profit international Agricultural Information Institute with headquarters in Britain. It aims to improve people’s lives by providing information and applying scientific expertise to solve problems in agriculture and the environment. CABI Full-text is one of the publishing products of CABI.CABI’s full text repository is growing rapidly and has now been integrated into all our databases including CAB Abstracts,Global Health,our Internet Resources and Abstract Journals. There are currently over 60,000 full text articles available to access. These documents,made possible by agreement with third
Numerical analysis of relative phase and amplitude at the interaction two solitons in optical fibers
Directory of Open Access Journals (Sweden)
Jakšić Branimir
2011-01-01
Full Text Available In this paper presented the analysis propagation solitons pair in optical fiber from the standpoint of relative amplitude and relative phase. Consider the influence of changes relative phase and amplitude in the interaction of two solitons in optical fibers. Shows the simulation (in the space-time domain of movement solitons pairs in optical fiber with the change of these two parameters.
Spin-dependent np {yields}pn amplitude estimated from dp{yields}ppn
Energy Technology Data Exchange (ETDEWEB)
Glagolev, V.V.; Khvastunov, M.S.; Ladygina, N.B.; Piskunov, N.M. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Hlavacova, J. [Technical University, Park Komenskeho 2, SK-04200, Kosice (Slovakia); Martinska, G.; Urban, J. [University of P.J. Safarik, Jesenna 5, SK-04154 Kosice (Slovakia); Musinsky, J. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); University of P.J. Safarik, Jesenna 5, SK-04154 Kosice (Slovakia); Pastircak, B. [Institute of Experimental Physics SAS, Watsonova 47, SK-04353, Kosice (Slovakia); Siemiarczuk, T. [Institute of Nuclear Studies,ul. Hoza 69, Warsaw, PL-00 681 (Poland)
2002-12-01
An estimation of the spin-dependent part of the np{yields}pn charge exchange amplitude was made on the basis of dp{yields}(pp)n data, taken at 1.67 GeV/c per nucleon in a full solid-angle arrangement. The np{yields}pn amplitude turned out to be entirely spin-dependent. This result shows new possibilities for experiments using polarized deuteron beams and polarized proton targets. (orig.)
Institute of Scientific and Technical Information of China (English)
YANGXiao-Xue; LUOJin-Ming
2004-01-01
We present the explicit analytical expressions of the steady-state probability amplitudes and populations of atom levels in N-photon electromagnetically induced transparency for an arbitrary positive integer N.
Big Data Analytics in Healthcare
Directory of Open Access Journals (Sweden)
Ashwin Belle
2015-01-01
Full Text Available The rapidly expanding field of big data analytics has started to play a pivotal role in the evolution of healthcare practices and research. It has provided tools to accumulate, manage, analyze, and assimilate large volumes of disparate, structured, and unstructured data produced by current healthcare systems. Big data analytics has been recently applied towards aiding the process of care delivery and disease exploration. However, the adoption rate and research development in this space is still hindered by some fundamental problems inherent within the big data paradigm. In this paper, we discuss some of these major challenges with a focus on three upcoming and promising areas of medical research: image, signal, and genomics based analytics. Recent research which targets utilization of large volumes of medical data while combining multimodal data from disparate sources is discussed. Potential areas of research within this field which have the ability to provide meaningful impact on healthcare delivery are also examined.
New strings for old Veneziano amplitudes. II. Group-theoretic treatment
Kholodenko, A. L.
2006-09-01
In this part of our four parts work we use theory of polynomial invariants of finite pseudo-reflection groups in order to reconstruct both the Veneziano and Veneziano-like (tachyon-free) amplitudes and the generating function reproducing these amplitudes. We demonstrate that such generating function and amplitudes associated with it can be recovered with help of finite dimensional exactly solvableN=2 supersymmetric quantum mechanical model known earlier from works of Witten, Stone and others. Using the Lefschetz isomorphism theorem we replace traditional supersymmetric calculations by the group-theoretic thus solving the Veneziano model exactly using standard methods of representation theory. Mathematical correctness of our arguments relies on important theorems by Shepard and Todd, Serre and Solomon proven respectively in the early 50s and 60s and documented in the monograph by Bourbaki. Based on these theorems, we explain why the developed formalism leaves all known results of conformal field theories unchanged. We also explain why these theorems impose stringent requirements connecting analytical properties of scattering amplitudes with symmetries of space-time in which such amplitudes act.
Evolution of Fixed-End Strings and the Off-Shell Disk Amplitude
Orland, P
2001-01-01
An exact integral expression is found for the amplitude of a Bosonic string with ends separated by a fixed distance $R$ evolving over a time $T$ between arbi- trary initial and final configurations. It is impossible to make a covariant subtraction of a covariant quantity which would render the amplitude non-zero. It is suggested that this fact (and not the tachyon) is responsible for the lack of a continuum limit of regularized random-surface models with target-space dim- ension greater than one. It appears consistent, however, to remove this quantity by hand. The static potetial of Alvarez and Arvis $V(R)$ is recovered from the resulting finite amplitude for $R>R_{c}$. For $R
Institute of Scientific and Technical Information of China (English)
2014-01-01
<正>Centre for Agriculture and Bioscience International(CABI)is a not-for-profit international Agricultural Information Institute with headquarters in Britain.It aims to improve people’s lives by providing information and applying scientific expertise to solve problems in agriculture and the environment.CABI Full-text is one of the publishing products of CABI.CABI’s full text repository is growing rapidly
Jaber, Nizar
2016-01-06
© 2016 IOP Publishing Ltd. In this study, we demonstrate analytically and experimentally the excitations of the higher order modes of vibrations in electrostatically actuated clamped-clamped microbeam resonators. The concept is based on using partial electrodes with shapes that induce strong excitation of the mode of interest. The devices are fabricated using polyimide as a structural layer coated with nickel from the top and chrome and gold layers from the bottom. Experimentally, frequency sweeps with different electro-dynamical loading conditions are shown to demonstrate the excitation of the higher order modes of vibration. Using a half electrode, the second mode is excited with high amplitude of vibration compared with almost zero response using the full electrode. Also, using a two-third electrode configuration is shown to amplify the third mode resonance amplitude compared with the full electrode under the same electrical loading conditions. An analytical model is developed based on the Euler-Bernollui beam model and the Galerkin method to simulate the device response. Good agreement between the simulation results and the experimental data is reported.
An adaptive noise attenuation method for edge and amplitude preservation
Institute of Scientific and Technical Information of China (English)
Cai Han-Peng; He Zhen-Hua; Li Ya-Lin; He Guang-Ming; Zou Wen; Zhang Dong-Jun; Liu Pu
2014-01-01
Noise intensity distributed in seismic data varies with different frequencies or frequency bands; thus, noise attenuation on the full-frequency band affects the dynamic properties of the seismic reflection signal and the subsequent seismic data interpretation, reservoir description, hydrocarbon detection, etc. Hence, we propose an adaptive noise attenuation method for edge and amplitude preservation, wherein the wavelet packet transform is used to decompose the full-band seismic signal into multiband data and then process these data using nonlinear anisotropic dip-oriented edge-preservingfi ltering. In the fi ltering, the calculated diffusion tensor from the structure tensor can be exploited to establish the direction of smoothing. In addition, the fault confidence measure and discontinuity operator can be used to preserve the structural and stratigraphic discontinuities and edges, and the decorrelation criteria can be used to establish the number of iterations. These parameters can minimize the intervention and subjectivity of the interpreter, and simplify the application of the proposed method. We applied the proposed method to synthetic and real 3D marine seismic data. We found that the proposed method could be used to attenuate noise in seismic data while preserving the effective discontinuity information and amplitude characteristics in seismic refl ection waves, providing high-quality data for interpretation and analysis such as high-resolution processing, attribute analysis, and inversion.
Amplitude enhancement by a gold dimer
Hong, Xin; Wang, Jingxin; Jin, Zheng
2016-10-01
The unique optical properties such as brightness, non-bleaching, good bio-compatibility make gold particles ideal label candidates for molecular probes. Due to the strongly enhanced field, aggregation of gold nanoparticles finds themselves plenty of applications in bio-imaging. But limited by its small cross-section associated with nanometer sized particle, it is a big challenge to employ it in a single molecular detection. The field enhancement results from the effect of plasmonic coupling between two closely attached gold nanoparticle under the right excitation condition. With the aim to apply the gold dimer probe to find the molecules in our recently established optical detection method, we compared of the amplitude enhancement by the dimer relative to a single particle. The amplitude distribution under a highly focused illumination objective was calculated, whose results suggest that at the optimized excitation condition, the local field can be enhanced 190 fold. In consequence, experimental detection was carried out. Gold dimers were linked together by the hybridization of two single chain DNAs. Dimer and single particle probes were mixed together in one detection. Overwhelming contrast between these two kinds of probes were clearly exhibited in the experimental detection image. This method can provide a way to a high specific detection in early diagnosis.
The Construction of Spin Foam Vertex Amplitudes
Bianchi, Eugenio
2012-01-01
Spin foam vertex amplitudes are the key ingredient of spin foam models for quantum gravity. They fall into the realm of discretized path integral, and can be seen as generalized lattice gauge theories. They can be seen as an attempt at a 4 dimensional generalization of the Ponzano-Regge model for 3d quantum gravity. We motivate and review the construction of the vertex amplitudes of recent spin foam models, giving two different and complementary perspectives of this construction. The first proceeds by extracting geometric configurations from a topological theory of the BF type, and can be seen to be in the tradition of the work of Barret and Crane and Freidel and Krasnov. The second keeps closer contact to the structure of Loop Quantum Gravity and tries to identify an appropriate set of constraints to define a Lorentz-invariant interaction of its quanta of space. This approach is in the tradition of the work of Smolin, Markopoulous, Engle, Pereira, Rovelli and Livine.
Evaluation of Analytical Modeling Functions for the Phonation Onset Process
Directory of Open Access Journals (Sweden)
Simon Petermann
2016-01-01
Full Text Available The human voice originates from oscillations of the vocal folds in the larynx. The duration of the voice onset (VO, called the voice onset time (VOT, is currently under investigation as a clinical indicator for correct laryngeal functionality. Different analytical approaches for computing the VOT based on endoscopic imaging were compared to determine the most reliable method to quantify automatically the transient vocal fold oscillations during VO. Transnasal endoscopic imaging in combination with a high-speed camera (8000 fps was applied to visualize the phonation onset process. Two different definitions of VO interval were investigated. Six analytical functions were tested that approximate the envelope of the filtered or unfiltered glottal area waveform (GAW during phonation onset. A total of 126 recordings from nine healthy males and 210 recordings from 15 healthy females were evaluated. Three criteria were analyzed to determine the most appropriate computation approach: (1 reliability of the fit function for a correct approximation of VO; (2 consistency represented by the standard deviation of VOT; and (3 accuracy of the approximation of VO. The results suggest the computation of VOT by a fourth-order polynomial approximation in the interval between 32.2 and 67.8% of the saturation amplitude of the filtered GAW.
ABJM Amplitudes in U-gauge and a Soft Theorem
Chin, Seungbeom; Yun, Youngbin
2015-01-01
We report progress in computing and analyzing all tree amplitudes in ABJM theory. Inspired by the isomorphism between the orthogonal Grassmannian and the pure spinor geometries, we adopt a new gauge, called u-gauge, for evaluating the orthogonal Grassmannian integral for ABJM amplitudes. We carry out the integral explicitly for the 8-point amplitude and obtain the complete supersymmetric amplitude. The physical and spurious poles arise from the integral as expected from on-shell diagrams. We also derive a double scalar soft theorem of ABJM amplitudes and verify it for known amplitudes.
Color-kinematic duality in ABJM theory without amplitude relations
Sivaramakrishnan, Allic
2017-01-01
We explicitly show that the Bern-Carrasco-Johansson color-kinematic duality holds at tree level through at least eight points in Aharony-Bergman-Jafferis-Maldacena theory with gauge group SU(N) × SU(N). At six points we give the explicit form of numerators in terms of amplitudes, displaying the generalized gauge freedom that leads to amplitude relations. However, at eight points no amplitude relations follow from the duality, so the diagram numerators are fixed unique functions of partial amplitudes. We provide the explicit amplitude-numerator decomposition and the numerator relations for eight-point amplitudes.
Spurious cross-frequency amplitude-amplitude coupling in nonstationary, nonlinear signals
Yeh, Chien-Hung; Lo, Men-Tzung; Hu, Kun
2016-07-01
Recent studies of brain activities show that cross-frequency coupling (CFC) plays an important role in memory and learning. Many measures have been proposed to investigate the CFC phenomenon, including the correlation between the amplitude envelopes of two brain waves at different frequencies - cross-frequency amplitude-amplitude coupling (AAC). In this short communication, we describe how nonstationary, nonlinear oscillatory signals may produce spurious cross-frequency AAC. Utilizing the empirical mode decomposition, we also propose a new method for assessment of AAC that can potentially reduce the effects of nonlinearity and nonstationarity and, thus, help to avoid the detection of artificial AACs. We compare the performances of this new method and the traditional Fourier-based AAC method. We also discuss the strategies to identify potential spurious AACs.
The Prediction of Maximum Amplitudes of Solar Cycles and the Maximum Amplitude of Solar Cycle 24
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
We present a brief review of predictions of solar cycle maximum ampli-tude with a lead time of 2 years or more. It is pointed out that a precise predictionof the maximum amplitude with such a lead-time is still an open question despiteprogress made since the 1960s. A method of prediction using statistical character-istics of solar cycles is developed: the solar cycles are divided into two groups, ahigh rising velocity (HRV) group and a low rising velocity (LRV) group, dependingon the rising velocity in the ascending phase for a given duration of the ascendingphase. The amplitude of Solar Cycle 24 can be predicted after the start of thecycle using the formula derived in this paper. Now, about 5 years before the startof the cycle, we can make a preliminary prediction of 83.2-119.4 for its maximumamplitude.
Directory of Open Access Journals (Sweden)
Moses Iten
2005-08-01
Full Text Available “hey moses full on riot in lawson st the station’s on fire! been going since 4. molotov and more. full on,” reads an SMS message received on the backseat of a Tasmanian bus. What follows is a journey through the landscape of a Gunavidji, whose brothers have all gone to the land of the dead; metallic scraping in the glass cases of the Hobart Museum; a Palestinian woman giving up on her people; land-snails exposing cultural inaccuracies; photographing Australia’s war zone; entering the St Peter’s Basilica of Rome with bulldozers - all in the name of preparing to interview prominent Israeli writer Etgar Keret.
Institute of Scientific and Technical Information of China (English)
2013-01-01
<正>Centre for Agriculture and Bioscience International(CABI)is a not-for-profit international Agricultural Information Institute with headquarters in Britain.It aims to improve people’s lives by providing information and applying scientific expertise to solve problems in agriculture and the environment.CABI Full-text is one of the publishing products of CABI.CABI’s full text repository is growing rapidly and has now been integrated into all our databases including CAB Abstracts,Global Health
Institute of Scientific and Technical Information of China (English)
2013-01-01
<正>Centre for Agriculture and Bioscience International(CABI)is a not-for-profit international Agricultural Information Institute with headquarters in Britain.It aims to improve people’s lives by providing information and applying scientific expertise to solve problems in agriculture and the environment.CABI Full-text is one of the publishing products of CABI.CABI’s full text repository is growing rapidly and has now been integrated into all our databases including CAB Abstracts,Global Health,our Internet Resources and Jour-
RNS derivation of N-point disk amplitudes from the revisited S-matrix approach
Directory of Open Access Journals (Sweden)
Luiz Antonio Barreiro
2014-09-01
Full Text Available Recently, in [7] we proposed a revisited S-matrix approach to efficiently find the bosonic terms of the open superstring low energy effective lagrangian (OSLEEL. This approach allows to compute the α′N terms of the OSLEEL using open superstring n-point amplitudes in which n is considerably lower than (N+2 (which is the order of the required amplitude to obtain those α′N terms by means of the conventional S-matrix approach. In this work we use our revisited S-matrix approach to examine the structure of the scattering amplitudes, arriving at a closed form for them. This is a RNS derivation of the formula first found by Mafra, Schlotterer and Stieberger [21], using the pure spinor formalism. We have succeeded doing this for the 5, 6 and 7-point amplitudes. In order to achieve these results we have done a careful analysis of the kinematical structure of the amplitudes, finding as a by-product a purely kinematical derivation of the BCJ relations (for N=4,5,6 and 7. Also, following the spirit of the revisited S-matrix approach, we have found the α′ expansions for these amplitudes up to α′6 order in some cases, by only using the well known open superstring 4-point amplitude, cyclic symmetry and tree level unitarity: we have not needed to compute any numerical series or any integral involving polylogarithms, at any moment.
A Novel Method for Spectral Similarity Measure by Fusing Shape and Amplitude Features
Directory of Open Access Journals (Sweden)
J. G. Ding
2015-12-01
Full Text Available Spectral similarity measure is the basis of spectral information extraction. The description of spectral features is the key to spectral similarity measure. To express the spectral shape and amplitude features reasonably, this paper presents the definition of shape and amplitude feature vector, constructs the shape feature distance vector and amplitude feature distance vector, proposes the spectral similarity measure by fusing shape and amplitude features (SAF, and discloses the relationship of fusing SAF with Euclidean distance and spectral information divergence. Different measures were tested on the basis of United States Geological Survey (USGS mineral_beckman_430. Generally, measures by integrating SAF achieve the highest accuracy, followed by measures based on shape features and measures based on amplitude features. In measures by integrating SAF, fusing SAF shows the highest accuracy. Fusing SAF expresses the measured results with the inner product of shape and amplitude feature distance vectors, which integrate spectral shape and amplitude features well. Fusing SAF is superior to other similarity measures that integrate SAF, such as spectral similarity scale, spectral pan-similarity measure, and normalized spectral similarity score(NS3 .
Effect of Stress Amplitude on the Damping of Recycled Aggregate Concrete
Directory of Open Access Journals (Sweden)
Chaofeng Liang
2015-08-01
Full Text Available Damping characterizes the energy dissipation capacity of materials and structures, and it is affected by several external factors such as vibrating frequency, stress history, temperature, and stress amplitude. This study investigates the relationship between the damping and the stress amplitude of environment-friendly recycled aggregate concrete (RAC. First, a function model of a member’s loss factor and stress amplitude was derived based on Lazan’s damping-stress function. Then, the influence of stress amplitude on the loss tangent of RAC was experimentally investigated. Finally, parameters used to determine the newly derived function were obtained by numerical fitting. It is shown that the member’s loss factor is affected not only by the stress amplitude but also by factors such as the cross section shapes, boundary conditions, load types, and loading positions. The loss tangent of RAC increases with the stress amplitude, even at low stress amplitude. The damping energy exponent of RAC is not identically equal to 2.0, indicating that the damping is nonlinear. It is also found that the energy dissipation capacity of RAC is superior to that of natural aggregate concrete (NAC, and the energy dissipation capacity can be further improved by adding modified admixtures.
Institute of Scientific and Technical Information of China (English)
2013-01-01
<正>Centre for Agriculture and Bioscience International( CABI) is a not-for-profit international Agricultural Information Institute with headquarters in Britain. It aims to improve people’s lives by providing information and applying scientific expertise to solve problems in agriculture and the environment. CABI Full-text is one of the publishing products of CABI.
Institute of Scientific and Technical Information of China (English)
2013-01-01
<正>Centre for Agriculture and Bioscience International(CABI) is a not-for-profit international Agricultural Information Institute with headquarters in Britain. It aims to improve people’s lives by providing information and applying scientific expertise to solve problems in agriculture and the environment. CABI Full-text is one of the publishing products of CABI.
Institute of Scientific and Technical Information of China (English)
2011-01-01
<正>Centre for Agriculture and Bioscience International(CABI)is a not-for-profit international Agricultural Information Institute with headquarters in Britain. It aims to improve people s lives by providing information and applying scientific expertise to solve problems in agriculture and the environment. CABI Full-text is one of the publishing products of CABI.
Amplitude equations for isothermal double diffusive convection
Energy Technology Data Exchange (ETDEWEB)
Becerril, R.; Swift, J.B. [Center for Nonlinear Dynamics and Department of Physics, University of Texas, Austin, Texas 78712 (United States)
1997-05-01
Amplitude equations are derived for isothermal double diffusive convection near threshold for both the stationary and oscillatory instabilities as well as in the vicinity of the codimension-2 point. The convecting fluid is contained in a thin Hele-Shaw cell that renders the system two dimensional, and convection is sustained by vertical concentration gradients of two species with different diffusion rates. The locations of the tricritical point for the stationary instability and the codimension-2 point are found. It is shown that these points can be made well separated (in the Rayleigh number R{sub s} of the slow diffusing species) as the Lewis number varies. Hence the behavior near these points should be experimentally accessible. {copyright} {ital 1997} {ital The American Physical Society}
Amplitude determinant coupled cluster with pairwise doubles
Zhao, Luning
2016-01-01
Recently developed pair coupled cluster doubles (pCCD) theory successfully reproduces doubly occupied configuration interaction (DOCI) with mean field cost. However, the projective nature of pCCD makes the method non-variational and thus hard to improve systematically. As a variational alternative, we explore the idea of coupled-cluster-like expansions based on amplitude determinants and develop a specific theory similar to pCCD based on determinants of pairwise doubles. The new ansatz admits a variational treatment through Monte Carlo methods while remaining size-consistent and, crucially, polynomial cost. In the dissociations of LiH, HF, H2O and N2, the method performs very similarly to pCCD and DOCI, suggesting that coupled-cluster-like ansatzes and variational evaluation may not be mutually exclusive.
Nonlinear amplitude dynamics in flagellar beating
Oriola, David; Casademunt, Jaume
2016-01-01
The physical basis of flagellar and ciliary beating is a major problem in biology which is still far from completely understood. The fundamental cytoskeleton structure of cilia and flagella is the axoneme, a cylindrical array of microtubule doublets connected by passive crosslinkers and dynein motor proteins. The complex interplay of these elements leads to the generation of self-organized bending waves. Although many mathematical models have been proposed to understand this process, few attempts have been made to assess the role of dyneins on the nonlinear nature of the axoneme. Here, we investigate the nonlinear dynamics of flagella by considering an axonemal sliding control mechanism for dynein activity. This approach unveils the nonlinear selection of the oscillation amplitudes, which are typically either missed or prescribed in mathematical models. The explicit set of nonlinear equations are derived and solved numerically. Our analysis reveals the spatiotemporal dynamics of dynein populations and flagell...
Speech recognition with amplitude and frequency modulations
Zeng, Fan-Gang; Nie, Kaibao; Stickney, Ginger S.; Kong, Ying-Yee; Vongphoe, Michael; Bhargave, Ashish; Wei, Chaogang; Cao, Keli
2005-02-01
Amplitude modulation (AM) and frequency modulation (FM) are commonly used in communication, but their relative contributions to speech recognition have not been fully explored. To bridge this gap, we derived slowly varying AM and FM from speech sounds and conducted listening tests using stimuli with different modulations in normal-hearing and cochlear-implant subjects. We found that although AM from a limited number of spectral bands may be sufficient for speech recognition in quiet, FM significantly enhances speech recognition in noise, as well as speaker and tone recognition. Additional speech reception threshold measures revealed that FM is particularly critical for speech recognition with a competing voice and is independent of spectral resolution and similarity. These results suggest that AM and FM provide independent yet complementary contributions to support robust speech recognition under realistic listening situations. Encoding FM may improve auditory scene analysis, cochlear-implant, and audiocoding performance. auditory analysis | cochlear implant | neural code | phase | scene analysis
Presynaptic spike broadening reduces junctional potential amplitude.
Spencer, A N; Przysiezniak, J; Acosta-Urquidi, J; Basarsky, T A
1989-08-24
Presynaptic modulation of action potential duration may regulate synaptic transmission in both vertebrates and invertebrates. Such synaptic plasticity is brought about by modifications to membrane currents at presynaptic release sites, which, in turn, lead to changes in the concentration of cytosolic calcium available for mediating transmitter release. The 'primitive' neuromuscular junction of the jellyfish Polyorchis penicillatus is a useful model of presynaptic modulation. In this study, we show that the durations of action potentials in the motor neurons of this jellyfish are negatively correlated with the amplitude of excitatory junctional potentials. We present data from in vitro voltage-clamp experiments showing that short duration voltage spikes, which elicit large excitatory junctional potentials in vivo, produce larger and briefer calcium currents than do long duration action potentials, which elicit small excitatory junctional potentials.
Experimental generation of amplitude squeezed vector beams
Chille, Vanessa; Semmler, Marion; Banzer, Peter; Aiello, Andrea; Leuchs, Gerd; Marquardt, Christoph
2016-01-01
We present an experimental method for the generation of amplitude squeezed high-order vector beams. The light is modified twice by a spatial light modulator such that the vector beam is created by means of a collinear interferometric technique. A major advantage of this approach is that it avoids systematic losses, which are detrimental as they cause decoherence in continuous-variable quantum systems. The utilisation of a spatial light modulator (SLM) gives the flexibility to switch between arbitrary mode orders. The conversion efficiency with our setup is only limited by the efficiency of the SLM. We show the experimental generation of Laguerre-Gauss (LG) modes with radial indices up to 1 and azimuthal indices up to 3 with complex polarization structures and a quantum noise reduction up to -0.9dB$\\pm$0.1dB. The corresponding polarization structures are studied in detail by measuring the spatial distribution of the Stokes parameters.
Pion Distribution Amplitude from Lattice QCD
Braun, V M; Göckeler, M; Pérez-Rubio, P; Schäfer, A; Schiel, R W; Sternbeck, A
2015-01-01
We have calculated the second moment of the pion light-cone distribution amplitude using two flavors of dynamical (clover) fermions on lattices of different volumes, lattice spacings between $0.06 \\, \\mathrm {fm}$ and $0.08 \\, \\mathrm {fm}$ and pion masses down to $m_\\pi\\sim 150 \\, \\mathrm {MeV}$. Our result for the second Gegenbauer coefficient is $a_2 = 0.1364(154)(145)$ and for the width parameter $\\langle \\xi^2 \\rangle = 0.2361(41)(39)$. Both numbers refer to the scale $\\mu=2 \\, \\mathrm {GeV}$in the $\\overline{\\text{MS}}$ scheme, the first error is statistical including the uncertainty of the chiral extrapolation, and the second error is the estimated uncertainty coming from the nonperturbatively determined renormalization factors.
Determination of the pion distribution amplitude
Huang, Tao; Wu, Xing-Gang
2013-01-01
Right now, we have not enough knowledge to determine the hadron distribution amplitudes (DAs) which are universal physical quantities in the high energy processes involving hadron for applying pQCD to exclusive processes. Even for the simplest pion, one can't discriminate from different DA models. Inversely, one expects that processes involving pion can in principle provide strong constraints on the pion DA. For example, the pion-photon transition form factor (TFF) can get accurate information of the pion wave function or DA, due to the single pion in this process. However, the data from Belle and BABAR have a big difference on TFF in high $Q^2$ regions, at present, they are helpless for determining the pion DA. At the present paper, we think it is still possible to determine the pion DA as long as we perform a combined analysis of the most existing data of the processes involving pion such as $\\pi \\to \\mu \\bar{\
Directory of Open Access Journals (Sweden)
A. V. Artemyev
2013-04-01
Full Text Available The lifetimes of electrons trapped in Earth's radiation belts can be calculated from quasi-linear pitch-angle diffusion by whistler-mode waves, provided that their frequency spectrum is broad enough and/or their average amplitude is not too large. Extensive comparisons between improved analytical lifetime estimates and full numerical calculations have been performed in a broad parameter range representative of a large part of the magnetosphere from L ~ 2 to 6. The effects of observed very oblique whistler waves are taken into account in both numerical and analytical calculations. Analytical lifetimes (and pitch-angle diffusion coefficients are found to be in good agreement with full numerical calculations based on CRRES and Cluster hiss and lightning-generated wave measurements inside the plasmasphere and Cluster lower-band chorus waves measurements in the outer belt for electron energies ranging from 100 keV to 5 MeV. Comparisons with lifetimes recently obtained from electron flux measurements on SAMPEX, SCATHA, SAC-C and DEMETER also show reasonable agreement.
On the soft limit of tree-level string amplitudes
Bianchi, Massimo
2016-01-01
We study the soft behavior of string scattering amplitudes at three level with massless and massive external insertions, relying on different techniques to compute 4-points amplitudes respectively with open or closed strings.
Automating QCD amplitudes with on-shell methods
Badger, Simon
2016-01-01
We review some of the modern approaches to scattering amplitude computations in QCD and their application to precision LHC phenomenology. We emphasise the usefulness of momentum twistor variables in parameterising general amplitudes.
Analytical Chemistry in Russia.
Zolotov, Yuri
2016-09-06
Research in Russian analytical chemistry (AC) is carried out on a significant scale, and the analytical service solves practical tasks of geological survey, environmental protection, medicine, industry, agriculture, etc. The education system trains highly skilled professionals in AC. The development and especially manufacturing of analytical instruments should be improved; in spite of this, there are several good domestic instruments and other satisfy some requirements. Russian AC has rather good historical roots.
Chiral closed strings: four massless states scattering amplitude
Leite, Marcelo M.; Siegel, Warren
2017-01-01
We compute the scattering amplitudes of four massless states for chiral (closed) bosonic and type II superstrings using the Kawai-Lewellen-Tye ( KLT ) factorization method. The amplitude in the chiral bosonic case is identical to a field theory amplitude corresponding to the spin-2 tachyon, massless gravitational sector and massive spin-2 tardyon states of the spectrum. Chiral type II superstrings amplitude only possess poles associated with the massless gravitational sector. We briefly discuss the extension of the calculation to heterotic superstrings.
Chiral Closed strings: Four massless states scattering amplitude
Leite, Marcelo M
2016-01-01
We compute the scattering amplitudes of four massless states for chiral (closed) bosonic and type II superstrings using the Kawai-Lewellen-Tye ($KLT$) factorization method. The amplitude in the chiral bosonic case is identical to a field theory amplitude corresponding to the spin-$2$ tachyon, massless gravitational sector and massive spin-2 tardyon states of the spectrum. Chiral type II superstrings amplitude only possess poles associated with the massless gravitational sector. We briefly discuss the extension of the calculation to heterotic superstrings.
Analytical Electron Microscope
Federal Laboratory Consortium — The Titan 80-300 is a transmission electron microscope (TEM) equipped with spectroscopic detectors to allow chemical, elemental, and other analytical measurements to...
Science Update: Analytical Chemistry.
Worthy, Ward
1980-01-01
Briefly discusses new instrumentation in the field of analytical chemistry. Advances in liquid chromatography, photoacoustic spectroscopy, the use of lasers, and mass spectrometry are also discussed. (CS)
Flat-Cladding Fiber Bragg Grating Sensors for Large Strain Amplitude Fatigue Tests
Directory of Open Access Journals (Sweden)
Xijia Gu
2010-08-01
Full Text Available We have successfully developed a flat-cladding fiber Bragg grating sensor for large cyclic strain amplitude tests of up to ±8,000 με. The increased contact area between the flat-cladding fiber and substrate, together with the application of a new bonding process, has significantly increased the bonding strength. In the push-pull fatigue tests of an aluminum alloy, the plastic strain amplitudes measured by three optical fiber sensors differ only by 0.43% at a cyclic strain amplitude of ±7,000 με and 1.9% at a cyclic strain amplitude of ±8,000 με. We also applied the sensor on an extruded magnesium alloy for evaluating the peculiar asymmetric hysteresis loops. The results obtained were in good agreement with those measured from the extensometer, a further validation of the sensor.
High-Energy String Scattering Amplitudes and Signless Stirling Number Identity
Directory of Open Access Journals (Sweden)
Jen-Chi Lee
2012-07-01
Full Text Available We give a complete proof of a set of identities (7 proposed recently from calculation of high-energy string scattering amplitudes. These identities allow one to extract ratios among high-energy string scattering amplitudes in the fixed angle regime from high-energy amplitudes in the Regge regime. The proof is based on a signless Stirling number identity in combinatorial theory. The results are valid for arbitrary real values L rather than only for L=0,1 proved previously. The identities for non-integer real value L were recently shown to be realized in high-energy compactified string scattering amplitudes [He S., Lee J.C., Yang Y., arXiv:1012.3158]. The parameter L is related to the mass level of an excited string state and can take non-integer values for Kaluza-Klein modes.
Intraindividual reaction time variability affects P300 amplitude rather than latency
Directory of Open Access Journals (Sweden)
Anusha eRamchurn
2014-07-01
Full Text Available The neural correlates of intraindividual response variability were investigated in a serial choice reaction time (CRT task. Reaction times (RTs from the faster and slower portions of the RT distribution for the task were separately aggregated and associated P300 event-related potentials computed. Independent behavioral measures of executive function and IQ were also recorded. Across frontal, fronto-central, central, centro-parietal and parietal scalp regions, P300 amplitudes were significantly greater for faster relative to slower behavioral responses. However, P300 peak amplitude latencies did not differ according to the speed of the behavioral RT. Importantly, controlling for select independent measures of executive function attenuated shared variance in P300 amplitude for faster and slower trials. The findings suggest that P300 amplitude rather than latency is associated with the speed of behavioral RTs, and the possibility that fluctuations in executive control underlie variability in speeded responding.
A New Method to Study Analytic Inequalities
Directory of Open Access Journals (Sweden)
Xiao-Ming Zhang
2010-01-01
Full Text Available We present a new method to study analytic inequalities involving n variables. Regarding its applications, we proved some well-known inequalities and improved Carleman's inequality.
Amplitude Distribution of Emission Wave for Cracking Process
Directory of Open Access Journals (Sweden)
Shahidan Shahiron
2016-01-01
Full Text Available Acoustic emission technique is a method of assessment for structural health monitoring system. This technique is an effective tool for the evaluation of any system without destroying the material conditions. It enables early crack detections and has very high sensitivity to crack growth. The crack patterns in concrete beam have been identified according to the type of cracking process and the crack classifications using the AE data parameters are mainly based on the AE amplitude, rise time, and average frequency. These data parameters have been analysed using statistical methods of b-value analysis. This research paper will mainly focus on the utilization of statistical b-value analysis in evaluating the emission amplitude distribution of concrete beams. The beam specimens (150 × 250 × 1900 mm were prepared in the laboratory system and tested with the four point bending test using cyclic loading together with acoustic emission monitoring system. The results showed that this statistical analysis is promising in determining the cracking process in concrete beams.
Critical plane approach to multiaxial variable amplitude fatigue loading
Directory of Open Access Journals (Sweden)
Yingyu Wang
2015-07-01
Full Text Available A new critical plane approach based on the modified Manson-Coffin curve method (MMCCM is presented in this paper for predicting fatigue lifetime under variable amplitude (VA multiaxial fatigue loading. The critical plane is assumed to coincide with that material plane experiencing the maximum variance of the resolved shear strain. Fatigue damage is hypothesized to be a function of both the amplitude of the resolved shear strain and the so-called critical plane stress ratio. The latter quantity depends on the mean value and the variance of the stress perpendicular to the critical plane as well as on the variance of the shear stress resolved along the direction experiencing the maximum variance of the resolved shear strain. Load cycles are counted from the resolved shear strain time history by using the classic rain flow counting method. Palmgren-Miner’s linear damage rule is applied to estimate cumulative fatigue damage. The accuracy and reliability of the proposed approach is checked by using several experimental data taken from the literature. The estimated fatigue lives based on the new approach are seen to be in sound agreement with the experimental results.
Obliquely propagating large amplitude solitary waves in charge neutral plasmas
Directory of Open Access Journals (Sweden)
F. Verheest
2007-01-01
Full Text Available This paper deals in a consistent way with the implications, for the existence of large amplitude stationary structures in general plasmas, of assuming strict charge neutrality between electrons and ions. With the limit of pair plasmas in mind, electron inertia is retained. Combining in a fluid dynamic treatment the conservation of mass, momentum and energy with strict charge neutrality has indicated that nonlinear solitary waves (as e.g. oscillitons cannot exist in electron-ion plasmas, at no angle of propagation with respect to the static magnetic field. Specifically for oblique propagation, the proof has turned out to be more involved than for parallel or perpendicular modes. The only exception is pair plasmas that are able to support large charge neutral solitons, owing to the high degree of symmetry naturally inherent in such plasmas. The nonexistence, in particular, of oscillitons is attributed to the breakdown of the plasma approximation in dealing with Poisson's law, rather than to relativistic effects. It is hoped that future space observations will allow to discriminate between oscillitons and large wave packets, by focusing on the time variability (or not of the phase, since the amplitude or envelope graphs look very similar.
Centers for Disease Control (CDC) Podcasts
2008-08-04
The Eagle Books are a series of four books that are brought to life by wise animal characters - Mr. Eagle, Miss Rabbit, and Coyote - who engage Rain That Dances and his young friends in the joy of physical activity, eating healthy foods, and learning from their elders about health and diabetes prevention. Plate Full of Color teaches the value of eating a variety of colorful and healthy foods. Created: 8/4/2008 by National Center for Chronic Disease Prevention and Health Promotion (NCCDPHP). Date Released: 8/5/2008.
a Scaling Law for Amplitude-Squared Squeezing in Kerr Effect
Prakash, Hari; Kumar, Pankaj
We study amplitude-squared squeezing in interaction of coherent light with a nonlinear Kerr medium modelled as an anharmonic oscillator with interaction Hamiltonian H = ½ λ a+2 a2, where λ is proportional to χ(3) of the nonlinear medium and a is annihilation operator for the interacting field. We find the squeezing parameter S ( τ, r) in terms of a dimensionless interaction time τ = λ t and Kerr parameter r, which is product of, τ and the average number of photons and obtain almost complete amplitude-squared squeezing (i.e., S ≈ 0) for very small interaction time and very large intensity of the interacting light. We optimize squeezing parameter S ( τ, r) by an analytic estimation assuming high intensity of the interacting light and realistic values of Kerr nonlinearity following J.Bajer et al. [Czech. J. Phy. 52, 1313 (2002)] and obtain a scaling law for optimal amplitude-squared squeezing with minimum value Smin, at r = rmin for a given τ. The validity of the scaling law is checked numerically and analytically in the region of realistic values of Kerr nonlinearity and intensity of the interacting light.
The Analytical Hierarchy Process
DEFF Research Database (Denmark)
Barfod, Michael Bruhn
2007-01-01
The technical note gathers the theory behind the Analytical Hierarchy Process (AHP) and present its advantages and disadvantages in practical use.......The technical note gathers the theory behind the Analytical Hierarchy Process (AHP) and present its advantages and disadvantages in practical use....
Jackson, Brian
2010-01-01
Using a survey of 138 writing programs, I argue that we must be more explicit about what we think students should get out of analysis to make it more likely that students will transfer their analytical skills to different settings. To ensure our students take analytical skills with them at the end of the semester, we must simplify the task we…
DEFF Research Database (Denmark)
Andersen, Jens Enevold Thaulov; Karlberg, Bo
2009-01-01
The EuCheMS Division of Analytical Chemistry (DAC) maintains a website with informations on groups of analytical chemistry at European universities (www.dac-euchems. org). Everyone may contribute to the database and contributors are responsible for an annual update of the information. The service...
Learning Analytics Considered Harmful
Dringus, Laurie P.
2012-01-01
This essay is written to present a prospective stance on how learning analytics, as a core evaluative approach, must help instructors uncover the important trends and evidence of quality learner data in the online course. A critique is presented of strategic and tactical issues of learning analytics. The approach to the critique is taken through…
Understanding Business Analytics
2015-01-05
language are the limits of my mind. All I know is what I have words for.” - Ludwig Wittgenstein Defining Business Analytics The following are examples of...Michael Porter Figure 2: The analytic Process Step 2: Now that the problem statement has been defined, this needs to be reformulated into an
Energy Technology Data Exchange (ETDEWEB)
1990-01-01
This 43rd Annual Summer Symposium on Analytical Chemistry was held July 24--27, 1990 at Oak Ridge, TN and contained sessions on the following topics: Fundamentals of Analytical Mass Spectrometry (MS), MS in the National Laboratories, Lasers and Fourier Transform Methods, Future of MS, New Ionization and LC/MS Methods, and an extra session. (WET)
Analytical mass spectrometry. Abstracts
Energy Technology Data Exchange (ETDEWEB)
1990-12-31
This 43rd Annual Summer Symposium on Analytical Chemistry was held July 24--27, 1990 at Oak Ridge, TN and contained sessions on the following topics: Fundamentals of Analytical Mass Spectrometry (MS), MS in the National Laboratories, Lasers and Fourier Transform Methods, Future of MS, New Ionization and LC/MS Methods, and an extra session. (WET)
Comparison of superresolution effects with annular phase and amplitude filters.
Luo, Hongxin; Zhou, Changhe
2004-12-01
The characteristics of annular amplitude and phase filters are compared. The behavior of two-zone phase and amplitude filters as the inner zone is increased is studied in detail. Numerical simulations show that a phase filter can achieve a superresolution effect, a circular Dammann effect, and flat-topped intensity for different applications, whereas a two-zone amplitude filter can generate only a superresolution effect. The experimental results show that both amplitude and phase filters can achieve superresolution. Generally, a phase superresolution filter is recommended for its higher efficiency and its special diffraction patterns that are impossible to achieve with an amplitude filter.
Directory of Open Access Journals (Sweden)
Abhay Khalatkar
2014-01-01
Full Text Available Piezoelectric elements can be used as sensors and actuators in flexible structures. In this paper, using the most basic concepts of piezoelectric micropower generators, all useful mathematical equations for getting analytical output are discussed and derived for different piezo positions on cantilever beam and then 3D finite element modeling and simulation of generalized piezoelectric laminated beam problem with proper specifications and properties are done in ANSYS12.0. Experimental analysis is also done on the very practical problem to harvest energy (to get electric energy by applying some deflection (mechanical energy on piezo-bonded aluminum beam, that is, to harvest energy (at microlevel at least by using vibrations of 4-stroke car diesel engine with mounting of piezo cantilever beam. Here piezoelectric beam is used to measure the charge generated from the engine vibrations. The vibration amplitudes are measured with a Laser Vibrometer with considerations of maximum number of power cycles is to be covered for analysis. The vibration response data of displacement of the cantilever at free end measured from Vibrometer are considered for harmonic and analytical analyses as mean displacement amplitude of 3.98 mm at free end. The study further carried out for effect of different piezo positions and various engine speeds also. Then comparison is also done among obtained results from these three analyses to get validation of all derived mathematical equations.
Normality in Analytical Psychology
Directory of Open Access Journals (Sweden)
Steve Myers
2013-11-01
Full Text Available Although C.G. Jung’s interest in normality wavered throughout his career, it was one of the areas he identified in later life as worthy of further research. He began his career using a definition of normality which would have been the target of Foucault’s criticism, had Foucault chosen to review Jung’s work. However, Jung then evolved his thinking to a standpoint that was more aligned to Foucault’s own. Thereafter, the post Jungian concept of normality has remained relatively undeveloped by comparison with psychoanalysis and mainstream psychology. Jung’s disjecta membra on the subject suggest that, in contemporary analytical psychology, too much focus is placed on the process of individuation to the neglect of applications that consider collective processes. Also, there is potential for useful research and development into the nature of conflict between individuals and societies, and how normal people typically develop in relation to the spectrum between individuation and collectivity.
Analytics for metabolic engineering
Directory of Open Access Journals (Sweden)
Christopher J Petzold
2015-09-01
Full Text Available Realizing the promise of metabolic engineering has been slowed by challenges related to moving beyond proof-of-concept examples to robust and economically viable systems. Key to advancing metabolic engineering beyond trial-and-error research is access to parts with well-defined performance metrics that can be readily applied in vastly different contexts with predictable effects. As the field now stands, research depends greatly on analytical tools that assay target molecules, transcripts, proteins, and metabolites across different hosts and pathways. Screening technologies yield specific information for many thousands of strain variants while deep omics analysis provide a systems-level view of the cell factory. Efforts focused on a combination of these analyses yield quantitative information of dynamic processes between parts and the host chassis that drive the next engineering steps. Overall, the data generated from these types of assays aid better decision-making at the design and strain construction stages to speed progress in metabolic engineering research.
Mixing in modulated turbulence. Analytical results
Bos, Wouter
2016-01-01
Recent numerical results show that if a scalar is mixed by periodically forced turbulence, the average mixing rate is directly affected for forcing frequencies small compared to the integral turbulence frequency. We elucidate this by an analytical study using simple turbulence models for spectral transfer. Adding a large amplitude modulation to the forcing of the velocity field enhances the energy transfer and simultaneously diminishes the scalar transfer. Adding a modulation to a random stirring protocol will thus negatively influence the mixing rate. We further derive the asymptotic behaviour of the response of the passive scalar quantities in the same flow for low and high forcing frequencies.
Quo vadis, analytical chemistry?
Valcárcel, Miguel
2016-01-01
This paper presents an open, personal, fresh approach to the future of Analytical Chemistry in the context of the deep changes Science and Technology are anticipated to experience. Its main aim is to challenge young analytical chemists because the future of our scientific discipline is in their hands. A description of not completely accurate overall conceptions of our discipline, both past and present, to be avoided is followed by a flexible, integral definition of Analytical Chemistry and its cornerstones (viz., aims and objectives, quality trade-offs, the third basic analytical reference, the information hierarchy, social responsibility, independent research, transfer of knowledge and technology, interfaces to other scientific-technical disciplines, and well-oriented education). Obsolete paradigms, and more accurate general and specific that can be expected to provide the framework for our discipline in the coming years are described. Finally, the three possible responses of analytical chemists to the proposed changes in our discipline are discussed.
DEFF Research Database (Denmark)
Karlberg, B.; Grasserbauer, M.; Andersen, Jens Enevold Thaulov
2009-01-01
The European Analytical Column has once more invited a guest columnist to give his views on various matters related to analytical chemistry in Europe. This year, we have invited Professor Manfred Grasserbauer of the Vienna University of Technology to present some of the current challenges...... for European analytical chemistry. During the period 2002–07, Professor Grasserbauer was Director of the Institute for Environment and Sustainability, Joint Research Centre of the European Commission (EC), Ispra, Italy. There is no doubt that many challenges exist at the present time for all of us representing...... a major branch of chemistry, namely analytical chemistry. The global financial crisis is affecting all branches of chemistry, but analytical chemistry, in particular, since our discipline by tradition has many close links to industry. We have already noticed decreased industrial commitment with respect...
WFR-2D: an analytical model for PWAS-generated 2D ultrasonic guided wave propagation
Shen, Yanfeng; Giurgiutiu, Victor
2014-03-01
This paper presents WaveFormRevealer 2-D (WFR-2D), an analytical predictive tool for the simulation of 2-D ultrasonic guided wave propagation and interaction with damage. The design of structural health monitoring (SHM) systems and self-aware smart structures requires the exploration of a wide range of parameters to achieve best detection and quantification of certain types of damage. Such need for parameter exploration on sensor dimension, location, guided wave characteristics (mode type, frequency, wavelength, etc.) can be best satisfied with analytical models which are fast and efficient. The analytical model was constructed based on the exact 2-D Lamb wave solution using Bessel and Hankel functions. Damage effects were inserted in the model by considering the damage as a secondary wave source with complex-valued directivity scattering coefficients containing both amplitude and phase information from wave-damage interaction. The analytical procedure was coded with MATLAB, and a predictive simulation tool called WaveFormRevealer 2-D was developed. The wave-damage interaction coefficients (WDICs) were extracted from harmonic analysis of local finite element model (FEM) with artificial non-reflective boundaries (NRB). The WFR-2D analytical simulation results were compared and verified with full scale multiphysics finite element models and experiments with scanning laser vibrometer. First, Lamb wave propagation in a pristine aluminum plate was simulated with WFR-2D, compared with finite element results, and verified by experiments. Then, an inhomogeneity was machined into the plate to represent damage. Analytical modeling was carried out, and verified by finite element simulation and experiments. This paper finishes with conclusions and suggestions for future work.
Wynn-Williams, Gareth
1992-06-01
A brief glance at the night sky reveals a remarkable fact about the Universe: it is extremely patchy. The light we see on a moonless night comes from bright specks we call planets and stars. Between the stars we see blackness. Most of astronomy, not to mention geology, biology, and all humanistic studies, is concerned with what happens in and on these bright specks. Yet these lumps and specks, which include the Earth, the Sun, the planets of our solar system, and all the stars together occupy less than one billion billion billionth (10-27) of the total volume of the Universe. It is astonishing to think that the interstellar medium within our Galaxy, the Milky Way, is anything but empty space. But in most of the Galaxy, the density of interstellar matter is thousands of times lower than that of the best vacuum produced on Earth. In fact, there is enough interstellar matter in the Galaxy to make ten billion stars the size of the Sun. In this excellently crafted book, the author gives full treatment to the nature of the stuff between the stars and to the methods that astronomers use to study it. He explains where the matter came from in the first place, how it collects together in clouds and clumps, and the way in which new stars and planets form from material in space. Through his descriptions we see the matter as glorious gas clouds, such as the Orion Nebula, shimmering in rich hues of red and orange. Telescopes reveal inky black clouds, the molecule factories in which new stars and planets are made. Radio, infrared, and ultraviolet telescopes have given astronomers stunning new images of interstellar matter. The Fullness of Space is written for the general reader interested in science. It assumes no scientific or mathematical background, and the only equations in the whole book are found in the appendices. It is beautifully illustrated with many of the finest photographs available of dust clouds and bright nebulae. Readers from high school age to adult will find
Generating Functionals for Spin Foam Amplitudes
Hnybida, Jeff
2014-01-01
We construct a generating functional for the exact evalutation of a coherent representation of spin network amplitudes. This generating functional is defined for arbitrary graphs and depends only on a pair of spinors for each edge. The generating functional is a meromorphic polynomial in the spinor invariants which is determined by the cycle structure of the graph. The expansion of the spin network generating function is given in terms of a newly recognized basis of SU(2) intertwiners consisting of the monomials of the holomorphic spinor invariants. This basis is labelled by the degrees of the monomials and is thus discrete. It is also overcomplete, but contains the precise amount of data to specify points in the classical space of closed polyhedra, and is in this sense coherent. We call this new basis the discrete-coherent basis. We focus our study on the 4-valent basis, which is the first non-trivial dimension, and is also the case of interest for Quantum Gravity. We find simple relations between the new ba...
Open string topological amplitudes and gaugino masses
Antoniadis, Ignatios; Taylor, T R
2005-01-01
We show that the genus zero topological partition function $F^{(0,h)}$, on a world-sheet with $h$ boundaries, computes the moduli-dependent couplings of the higher derivative F-terms $(\\Tr W^2)^{h-1}$, where $W$ is the gauge N=1 chiral superfield. By string duality, these terms are also related to heterotic topological amplitudes studied in the past, with the topological twist applied only in the left-moving supersymmetric sector of the internal $N=(2,0)$ superconformal field theory. The holomorphic anomaly of these couplings relates them to terms of the form $\\Pi^n({\\rm Tr}W^2)^{h-2}$, where $\\Pi$'s represent chiral projections of non-holomorphic functions of chiral superfields. An important property of these couplings is that they violate R-symmetry for $h\\ge 3$. As a result, once supersymmetry is broken by D-term expectation values, $(\\Tr W^2)^2$ generates gaugino masses that can be hierarchically smaller than the scalar masses, behaving as $m_{1/2}\\sim m_0^4$ in string units. Similarly, $\\Pi{\\rm Tr}W^2$ g...
Effective anisotropy through traveltime and amplitude matching
Wang, Hui
2014-08-05
Introducing anisotropy to seismic wave propagation reveals more realistic physics of our Earth\\'s subsurface as compared to the isotropic assumption. However wavefield modeling, the engine of seismic inverse problems, in anisotropic media still suffers from computational burdens, in particular with complex anisotropy such as transversely isotropic (TI) and Orthorhombic anisotropy. We develop effective isotropic velocity and density models to package the effects of anisotropy such that the wave propagation behavior using these effective models approximate those of the original anisotropic model. We build these effective models through the high frequency asymptotic approximation based on the eikonal and transport equations. We match the geometrical behavior of the wave-fields, given by traveltimes, from the anisotropic and isotropic eikonal equations. This matching yields the effective isotropic velocity that approximates the kinematics of the anisotropic wavefield. Equivalently, we calculate the effective densities by equating the anisotropic and isotropic transport equations. The effective velocities and densities are then fed into the isotropic acoustic variable density wave equation to obtain cheaper anisotropic wavefields. We justify our approach by testing it on an elliptical anisotropic model. The numerical results demonstrate a good matching of both traveltime and amplitude between anisotropic and effective isotropic wavefields.
Casimir operator dependences of non-perturbative fermionic QCD amplitudes
Fried, H M; Hofmann, R
2015-01-01
In eikonal and quenched approximation, it is argued that the strong coupling fermionic QCD Green's functions and related amplitudes, when based on the newly discovered effective locality property, depart from a sole dependence on the SUc(3) quadratic Casimir operator, evaluated over the fundamental gauge group representation.Though noticed in non-relativistic Quark Models, an additional dependence on the cubic Casimir operator is in contradistinction with perturbation theory, and also with a number of non-perturbative approaches such as the MIT Bag, the Stochastic Vacuum Models and lattice simulations. It accounts for the full algebraic content of the rank-2 Lie algebra of SUc(3). We briefly discuss the orders of magnitude of quadratic and cubic Casimir operator contributions.
Casimir operator dependences of nonperturbative fermionic QCD amplitudes
Fried, H. M.; Grandou, T.; Hofmann, R.
2016-07-01
In eikonal and quenched approximations, it is argued that the strong coupling fermionic QCD Green’s functions and related amplitudes depart from a sole dependence on the SUc(3) quadratic Casimir operator, C2f, evaluated over the fundamental gauge group representation. Noted in nonrelativistic quark models and in a nonperturbative generalization of the Schwinger mechanism, an additional dependence on the cubic Casimir operator shows up, in contradistinction with perturbation theory and other nonperturbative approaches. However, it accounts for the full algebraic content of the rank-2 Lie algebra of SUc(3). Though numerically subleading effects, cubic Casimir dependences, here and elsewhere, appear to be a signature of the nonperturbative fermionic sector of QCD.
Summing up Open String Instantons and N=1 String Amplitudes
Mayr, Peter
2002-01-01
We compute the instanton expansions of the holomorphic couplings in the effective action of certain $\\cx N=1$ supersymmetric four-dimensional open string vacua. These include the superpotential $W(\\phi)$, the gauge kinetic function $f(\\phi)$ and a series of other holomorphic couplings which are known to be related to amplitudes of topological open strings at higher world-sheet topologies. The results are in full agreement with the interpretation of the holomorphic couplings as counting functions of BPS domain walls. Similar techniques are used to compute genus one partition function for the closed topological string on Calabi--Yau 4-fold which gives rise to a theory with the same number of supercharges in two dimensions.
Laëtitia Pedroso
2011-01-01
Ten years ago, standard issue clothing only gave CERN firemen partial protection but today our fire-fighters are equipped with state-of-the-art, full personal protective equipment. CERN's Fire Brigade team. For many years, the members of CERN's Fire Brigade went on call-outs clad in their work trousers and fire-rescue coats, which only afforded them partial protection. Today, textile manufacturing techniques have moved on a long way and CERN's firemen are now kitted out with state-of-the-art personal protective equipment. The coat and trousers are three-layered, comprising fire-resistant aramide, a protective membrane and a thermal lining. The CERN Fire Brigade' new state-of-the-art personal protection equipment. "This equipment is fully compliant with the standards in force and is therefore resistant to cuts, abrasion, electrical arcs with thermal effects and, of course, fire," explains Patrick Berlinghi, the CERN Fire Brigade's Logistics Officer. You might think that su...
Full Color Holographic Endoscopy
Osanlou, A.; Bjelkhagen, H.; Mirlis, E.; Crosby, P.; Shore, A.; Henderson, P.; Napier, P.
2013-02-01
The ability to produce color holograms from the human tissue represents a major medical advance, specifically in the areas of diagnosis and teaching. This has been achieved at Glyndwr University. In corporation with partners at Gooch & Housego, Moor Instruments, Vivid Components and peninsula medical school, Exeter, UK, for the first time, we have produced full color holograms of human cell samples in which the cell boundary and the nuclei inside the cells could be clearly focused at different depths - something impossible with a two-dimensional photographic image. This was the main objective set by the peninsula medical school at Exeter, UK. Achieving this objective means that clinically useful images essentially indistinguishable from the object human cells could be routinely recorded. This could potentially be done at the tip of a holo-endoscopic probe inside the body. Optimised recording exposure and development processes for the holograms were defined for bulk exposures. This included the optimisation of in-house recording emulsions for coating evaluation onto polymer substrates (rather than glass plates), a key step for large volume commercial exploitation. At Glyndwr University, we also developed a new version of our in-house holographic (world-leading resolution) emulsion.
Energy Technology Data Exchange (ETDEWEB)
Aguilar Benitez de Lugo, M.
1979-07-01
In this work we present several techniques developed for the extraction of the. Transversity amplitudes governing quasi two-body meson baryon reactions with hypercharge exchange. We review the methods used In processes having a pure spin configuration, as well as the more relevant results obtained with data from K{sup p} and Tp interactions at intermediate energies. The predictions of the additive quark model and the ones following from exchange degeneracy and etoxicity are discussed. We present a formalism for amplitude analysis developed for reactions with mixed spin configurations and discuss the methods of parametric estimation of the moduli and phases of.the amplitudes, as well as the various tests employed to check the goodness of the fits. The calculation of the generalized joint density matrices is given and we propose a method based on the generalization of the idea of multipole moments, which allows to investigate the structure of the decay angular correlations and establishes the quality of the fits and the validity of the simplifying assumptions currently used in this type of studies. (Author) 43 refs.
Howard, J. E.
2014-12-01
This study focusses on improving methods of accounting for atmospheric effects on infrasound amplitudes observed on arrays at regional distances in the southwestern United States. Recordings at ranges of 150 to nearly 300 km from a repeating ground truth source of small HE explosions are used. The explosions range in actual weight from approximately 2000-4000 lbs. and are detonated year-round which provides signals for a wide range of atmospheric conditions. Three methods of correcting the observed amplitudes for atmospheric effects are investigated with the data set. The first corrects amplitudes for upper stratospheric wind as developed by Mutschlecner and Whitaker (1999) and uses the average wind speed between 45-55 km altitudes in the direction of propagation to derive an empirical correction formula. This approach was developed using large chemical and nuclear explosions and is tested with the smaller explosions for which shorter wavelengths cause the energy to be scattered by the smaller scale structure of the atmosphere. The second approach isa semi-empirical method using ray tracing to determine wind speed at ray turning heights where the wind estimates replace the wind values in the existing formula. Finally, parabolic equation (PE) modeling is used to predict the amplitudes at the arrays at 1 Hz. The PE amplitudes are compared to the observed amplitudes with a narrow band filter centered at 1 Hz. An analysis is performed of the conditions under which the empirical and semi-empirical methods fail and full wave methods must be used.
Directory of Open Access Journals (Sweden)
M. Saifur Rahman
2012-12-01
Full Text Available Recently, a unified Krylov-Bogoliubov-Mitropolskii method has been presented (by Shamsul \\cite{1} for solving an $n$-th, $n=2$ or $n>2$, order nonlinear differential equation. Instead of amplitude(s and phase(s, a set of variables is used in \\cite{1} to obtain a general formula in which the nonlinear differential equations can be solved. By a simple variables transformation the usual form solutions (i.e., in terms of amplitude(s and phase(s have been found. In this paper a perturbation technique is developed to calculate the initial values of the variables used in \\cite{1}. By the noted transformation the initial amplitude(s and phase(s can be calculated quickly. Usually the conditional equations are nonlinear algebraic or transcendental equations; so that a numerical method is used to solve them. Rink \\cite{7} earlier employed an asymptotic method for solving the conditional equations of a second-order differential equation; but his derived results were not so good. The new results agree with their exact values (or numerical results nicely. The method can be applied whether the eigen-values of the unperturbed equation are purely imaginary, complex conjugate or real. Thus the derived solution is a general one and covers the three cases, i.e., un-damped, under-damped and over-damped.
2003-07-01
SOHO orbit hi-res Size hi-res: 324 kb Credits: SOHO (ESA & NASA) SOHO orbit Because of its static position, every three months the high-gain antenna loses sight of Earth. During this time, engineers will rotate the spacecraft by 180 degrees to regain full contact a few days later. Since 19 June 2003, SOHO's high-gain antenna (HGA), which transmits high-speed data to Earth, has been fixed in position following the discovery of a malfunction in its pointing mechanism. This resulted in a loss of signal through SOHO's usual 26-metre ground stations on 27 June 2003. However, 34-metre radio dishes continued to receive high-speed transmissions from the HGA until 1 July 2003. Since then, astronomers have been relying primarily on a slower transmission rate signal, sent through SOHO's backup antenna. It can be picked up whenever a 34-metre dish is available. However, this signal could not transmit all of SOHO's data. Some data was recorded on board, however, and downloaded using high-speed transmissions through the backup antenna when time on the largest, 70-metre dishes could be spared. SOHO itself orbits a point in space, 1.5 million kilometres closer to the Sun than the Earth, once every 6 months. To reorient the HGA for the next half of this orbit, engineers rolled the spacecraft through a half-circle on 8 July 2003. On 10 July, the 34-metre radio dish in Madrid re-established contact with SOHO's HGA. Then on the morning of 14 July 2003, normal operations with the spacecraft resumed through its usual 26-metre ground stations, as predicted. With the HGA now static, the blackouts, lasting between 9 and 16 days, will continue to occur every 3 months. Engineers will rotate SOHO by 180 degrees every time this occurs. This manoeuvre will minimise data losses. Stein Haugan, acting SOHO project scientist, says "It is good to welcome SOHO back to normal operations, as it proves that we have a good understanding of the situation and can confidently work around it."
Frequency dispersion of small-amplitude capillary waves in viscous fluids
Denner, Fabian
2016-01-01
This work presents a detailed study of the dispersion of capillary waves with small amplitude in viscous fluids using an analytically derived solution to the initial value problem of a small-amplitude capillary wave as well as direct numerical simulation. A rational parametrization for the dispersion of capillary waves in the underdamped regime is proposed, including predictions for the wavenumber of critical damping based on a harmonic oscillator model. The scaling resulting from this parametrization leads to a self-similar solution of the frequency dispersion of capillary waves that covers the entire underdamped regime, which allows an accurate evaluation of the frequency at a given wavenumber, irrespective of the fluid properties. This similarity also reveals characteristic features of capillary waves, for instance that critical damping occurs when the characteristic timescales of dispersive and dissipative mechanisms are balanced. In addition, the presented results suggest that the widely adopted hydrodyn...
FORCES AND MOMENTS OF THE LIQUID FINITE AMPLITUDE SLOSHING IN A LIQUID-SOLID COUPLED SYSTEM
Institute of Scientific and Technical Information of China (English)
苟兴宇; 李铁寿; 马兴瑞; 王本利
2001-01-01
Nonlinear coupling dynamics between a spring-mass system and a finite amplitude sloshing system with liquid in a cylindrical tank is investigated. Based on a group of nonlinear coupling equations of six degrees of freedoms, analytical formulae of forces and moments of the liquid large amplitude sloshing were obtained. Nonlinearity of the forces and moments of the sloshing was induced by integrating on final configuration of liquid sloshing and the nonlinear terms in the liquid pressure formula. The symmetry between the formula of Ox and Oy direction proves that the derivation is correct. According to the coupled mechanism, the formulae are available in other liquid-solid coupled systems.Simulations and corresponding experimental results arecompared. It is shown that the forces and moments formulae by integrating on the final sloshing configuration are more reasonable. The omitted high-dimensional modal bases and high-order nonlinear terms and the complexity of sloshing damping are main sources of errors.
Energy Technology Data Exchange (ETDEWEB)
Santos, Sergio [Laboratory of Energy and Nanosciences, Masdar Institute of Science and Technology, P.O. BOX 54224, Abu Dhabi (United Arab Emirates); Barcons, Victor [Departament de Disseny i Programacio de Sistemes Electronics, UPC - Universitat Politecnica de Catalunya Av. Bases, 61, 08242 Manresa (Spain); Verdaguer, Albert [Centre d' Investigacio en Nanociencia i Nanotecnologia (CIN2) (CSIC-ICN), Esfera UAB, Campus de la UAB, Edifici CM-7, 08193-Bellaterra, Catalunya (Spain); Chiesa, Matteo [Laboratory of Energy and Nanosciences, Masdar Institute of Science and Technology, P.O. BOX 54224, Abu Dhabi (United Arab Emirates); Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139-4307 (United States)
2011-12-01
In ambient conditions, nanometric water layers form on hydrophilic surfaces covering them and significantly changing their properties and characteristics. Here we report the excitation of subharmonics in amplitude modulation atomic force microscopy induced by intermittent water contacts. Our simulations show that there are several regimes of operation depending on whether there is perturbation of water layers. Single period orbitals, where subharmonics are never induced, follow only when the tip is either in permanent contact with the water layers or in pure noncontact where the water layers are never perturbed. When the water layers are perturbed subharmonic excitation increases with decreasing oscillation amplitude. We derive an analytical expression which establishes whether water perturbations compromise harmonic motion and show that the predictions are in agreement with numerical simulations. Empirical validation of our interpretation is provided by the observation of a range of values for apparent height of water layers when subharmonic excitation is predicted.
Sarri, G; Cecchetti, C A; Kar, S; Liseykina, T V; Yang, X H; Dieckmann, M E; Fuchs, J; Galimberti, M; Gizzi, L A; Jung, R; Kourakis, I; Osterholz, J; Pegoraro, F; Robinson, A P L; Romagnani, L; Willi, O; Borghesi, M
2012-01-01
The dynamics of magnetic fields with amplitude of several tens of Megagauss, generated at both sides of a solid target irradiated with a high intensity (? 1019W/cm2) picosecond laser pulse, has been spatially and temporally resolved using a proton imaging technique. The amplitude of the magnetic fields is sufficiently large to have a constraining effect on the radial expansion of the plasma sheath at the target surfaces. These results, supported by numerical simulations and simple analytical modeling, may have implications for ion acceleration driven by the plasma sheath at the rear side of the target as well as for the laboratory study of self-collimated high-energy plasma jets.
Parallel-coupled dual racetrack silicon micro-resonators for quadrature amplitude modulation.
Integlia, Ryan A; Yin, Lianghong; Ding, Duo; Pan, David Z; Gill, Douglas M; Jiang, Wei
2011-08-01
A parallel-coupled dual racetrack silicon micro-resonator structure is proposed and analyzed for M-ary quadrature amplitude modulation. The over-coupled, critically coupled, and under-coupled scenarios are systematically studied. Simulations indicate that only the over-coupled structures can generate arbitrary M-ary quadrature signals. Analytic study shows that the large dynamic range of amplitude and phase of a modulated over-coupled structure stems from the strong cross-coupling between two resonators, which can be understood through a delicate balance between the direct sum and the "interaction" terms. Potential asymmetries in the coupling constants and quality factors of the resonators are systematically studied. Compensations for these asymmetries by phase adjustment are shown feasible.
The resonant $\\pi^+\\gamma\\to\\pi^+\\pi^0$ amplitude from Quantum Chromodynamics
Briceno, Raul A; Edwards, Robert G; Shultz, Christian J; Thomas, Christopher E; Wilson, David J
2015-01-01
We present the first ab initio calculation of a radiative transition of a hadronic resonance within Quantum Chromodynamics (QCD). We compute the amplitude for $\\pi\\pi \\to \\pi\\gamma^\\star$, as a function of the energy of the $\\pi\\pi$ pair and the virtuality of the photon, in the kinematic regime where $\\pi\\pi$ couples strongly to the unstable $\\rho$ resonance. This exploratory calculation is performed using a lattice discretization of QCD with quark masses corresponding to $m_\\pi \\approx 400$ MeV. We obtain a description of the energy dependence of the transition amplitude, constrained at 48 kinematic points, that we can analytically continue to the $\\rho$ pole and identify from its residue the $\\rho \\to \\pi\\gamma^\\star$ form-factor.
Validity of the small-amplitude limit of the nuclear Born-Oppenheimer method
Energy Technology Data Exchange (ETDEWEB)
Zettili, Nouredine (Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran, 31261 (Saudi Arabia) Institut de Physique, Universite de Blida, Blida (Algeria))
1994-08-22
We examine here the validity of the small-amplitude limit of the nuclear Born-Oppenheimer (NBO) method by testing it on an analytically solvable model. To gain additional quantitative insight into its accuracy, we provide a comparison of its results with those of the small-amplitude limit of the time-dependent Hartree-Fock (TDHF) when applied to this model. A comparison of the exact, the random-phase approximation (RPA), and the NBO results reveals that the NBO energy is lower than its RPA counterpart and is in very good agreement with the exact spectrum. We also provide a quantitative assessment of the effects the approximations involved in the NBO method have on the results. We show that, when corrections to these approximations are considered, the NBO energy spectrum becomes much more accurate. ((orig.))
Validity of the small-amplitude limit of the nuclear Born-Oppenheimer method
Zettili, Nouredine
1994-08-01
We examine here the validity of the small-amplitude limit of the nuclear Born-Op-penheimer (NBO) method by testing it on an analytically solvable model. To gain additional quantitative insight into its accuracy, we provide a comparison of its results with those of the small-amplitude limit of the time-dependent Hartree-Fock (TDHF) when applied to this model. A comparison of the exact, the random-phase approximation (RPA), and the NBO results reveals that the NBO energy is lower than its RPA counterpart and is in very good agreement with the exact spectrum. We also provide a quantitative assessment of the effects the approximations involved in the NBO method have on the results. We show that, when corrections to these approximations are considered, the NBO energy spectrum becomes much more accurate.
Two-loop planar master integrals for Higgs$\\to 3$ partons with full heavy-quark mass dependence
Bonciani, Roberto; Frellesvig, Hjalte; Henn, Johannes M; Moriello, Francesco; Smirnov, Vladimir A
2016-01-01
We present the analytic computation of all the planar master integrals which contribute to the two-loop scattering amplitudes for Higgs$\\to 3$ partons, with full heavy-quark mass dependence. These are relevant for the NNLO corrections to fully inclusive Higgs production and to the NLO corrections to Higgs production in association with a jet, in the full theory. The computation is performed using the differential equations method. Whenever possible, a basis of master integrals that are pure functions of uniform weight is used. The result is expressed in terms of one-fold integrals of polylogarithms and elementary functions up to transcendental weight four. Two integral sectors are expressed in terms of elliptic functions. We show that by introducing a one-dimensional parametrization of the integrals the relevant second order differential equation can be readily solved, and the solution can be expressed to all orders of the dimensional regularization parameter in terms of iterated integrals over elliptic kerne...
Waisberg, Daniel
2015-01-01
A roadmap for turning Google Analytics into a centralized marketing analysis platform With Google Analytics Integrations, expert author Daniel Waisberg shows you how to gain a more meaningful, complete view of customers that can drive growth opportunities. This in-depth guide shows not only how to use Google Analytics, but also how to turn this powerful data collection and analysis tool into a central marketing analysis platform for your company. Taking a hands-on approach, this resource explores the integration and analysis of a host of common data sources, including Google AdWords, AdSens
Energy Technology Data Exchange (ETDEWEB)
Scholtz, Jean; Burtner, Edwin R.; Cook, Kristin A.
2016-06-13
This course will introduce the field of Visual Analytics to HCI researchers and practitioners highlighting the contributions they can make to this field. Topics will include a definition of visual analytics along with examples of current systems, types of tasks and end users, issues in defining user requirements, design of visualizations and interactions, guidelines and heuristics, the current state of user-centered evaluations, and metrics for evaluation. We encourage designers, HCI researchers, and HCI practitioners to attend to learn how their skills can contribute to advancing the state of the art of visual analytics
Analyticity and the Global Information Field
Directory of Open Access Journals (Sweden)
Evgeni A. Solov'ev
2015-03-01
Full Text Available The relation between analyticity in mathematics and the concept of a global information field in physics is reviewed. Mathematics is complete in the complex plane only. In the complex plane, a very powerful tool appears—analyticity. According to this property, if an analytic function is known on the countable set of points having an accumulation point, then it is known everywhere. This mysterious property has profound consequences in quantum physics. Analyticity allows one to obtain asymptotic (approximate results in terms of some singular points in the complex plane which accumulate all necessary data on a given process. As an example, slow atomic collisions are presented, where the cross-sections of inelastic transitions are determined by branch-points of the adiabatic energy surface at a complex internuclear distance. Common aspects of the non-local nature of analyticity and a recently introduced interpretation of classical electrodynamics and quantum physics as theories of a global information field are discussed.
Molodij, Guillaume
2014-01-01
I present expressions of the correlation between the log-amplitude and the phase of a wavefront propagating through the atmospheric turbulence. The properties of the angular correlation functions are discussed using usual synthetic turbulence profiles. The theoretical study is completed by practical implementations that can be envisioned to determine and eventually compensate the effects of the fluctuations of the intensity during the astronomical observations. The close formulation between the phase and the log-amplitude allows an analytic formulation in the Rytov approximation. Equations contain the product of an arbitrary number of hypergeometric functions that are evaluated using the Mellin transforms integration method.
Sedighi, H. M.; Shirazi, K. H.; Changizian, M.
2015-03-01
This paper exhibits the effect of the amplitude of vibrations on the pull-in instability and nonlinear natural frequency of a double-sided actuated microswitch by using a nonlinear frequency-amplitude relationship. The nonlinear governing equation of the microswitch pre-deformed by an electric field includes even and odd nonlinearities with a quintic nonlinear term. The study is performed by a new analytical method called the Hamiltonian approach (HA). It is demonstrated that the first term in series expansions is sufficient to produce an acceptable solution. Results obtained by numerical methods validate the soundness of the asymptotic procedure.
The two-loop helicity amplitudes for $gg \\to V_1 V_2 \\to 4~\\mathrm{leptons}$
von Manteuffel, Andreas
2015-01-01
We compute the two-loop massless QCD corrections to the helicity amplitudes for the production of two electroweak gauge bosons in the gluon fusion channel, $gg \\to V_1 V_2$, keeping the virtuality of the vector bosons $V_1$ and $V_2$ arbitrary and taking their decays into leptons into account. The amplitudes are expressed in terms of master integrals, whose representation has been optimised for fast and reliable numerical evaluation. We provide analytical results and a public C++ code for their numerical evaluation on HepForge at http://vvamp.hepforge.org .
ALOHA: Automatic libraries of helicity amplitudes for Feynman diagram computations
de Aquino, Priscila; Link, William; Maltoni, Fabio; Mattelaer, Olivier; Stelzer, Tim
2012-10-01
We present an application that automatically writes the HELAS (HELicity Amplitude Subroutines) library corresponding to the Feynman rules of any quantum field theory Lagrangian. The code is written in Python and takes the Universal FeynRules Output (UFO) as an input. From this input it produces the complete set of routines, wave-functions and amplitudes, that are needed for the computation of Feynman diagrams at leading as well as at higher orders. The representation is language independent and currently it can output routines in Fortran, C++, and Python. A few sample applications implemented in the MADGRAPH 5 framework are presented. Program summary Program title: ALOHA Catalogue identifier: AEMS_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEMS_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: http://www.opensource.org/licenses/UoI-NCSA.php No. of lines in distributed program, including test data, etc.: 6094320 No. of bytes in distributed program, including test data, etc.: 7479819 Distribution format: tar.gz Programming language: Python2.6 Computer: 32/64 bit Operating system: Linux/Mac/Windows RAM: 512 Mbytes Classification: 4.4, 11.6 Nature of problem: An effcient numerical evaluation of a squared matrix element can be done with the help of the helicity routines implemented in the HELAS library [1]. This static library contains a limited number of helicity functions and is therefore not always able to provide the needed routine in the presence of an arbitrary interaction. This program provides a way to automatically create the corresponding routines for any given model. Solution method: ALOHA takes the Feynman rules associated to the vertex obtained from the model information (in the UFO format [2]), and multiplies it by the different wavefunctions or propagators. As a result the analytical expression of the helicity routines is obtained. Subsequently, this expression is
The problems of accountable and analytical procuring of enterprise management
Directory of Open Access Journals (Sweden)
Kovalova Tatiana Volodymyrivna
2016-02-01
Full Text Available This article investigated main aspects of accountable and analytical procuring of enterprise management. It was found essence of accountable and analytical procuring of enterprise management, purpose, functions and tasks. It was determined main elements and essence of accountable and analytical information taking into consideration needs of modern management. In the article are exposed structural elements of accountable and analytical procuring. It was formed conceptual approaches of building accountable and analytical procuring of enterprise management. It was analyzed main problems of improving accountable and analytical informational procuring of taking managerial decisions with the aim of solving economic problems due to current situation of national economy.
Enzymes in Analytical Chemistry.
Fishman, Myer M.
1980-01-01
Presents tabular information concerning recent research in the field of enzymes in analytic chemistry, with methods, substrate or reaction catalyzed, assay, comments and references listed. The table refers to 128 references. Also listed are 13 general citations. (CS)
Metoda Analytic Network Process
2010-01-01
The thesis is concerned with Multi-Criteria Decision Making, in particular the Analytic Network Process method. The introductory part is dedicated to compile all the theory necessary to understand the method and utilized throughout the paper. The Analytic Hierarchy Process method is described and later generalized in the form of the ANP. Part of the paper is a description of available software products that are able to solve the ANP models. The main focus is on the application of the method, ...
Encyclopedia of analytical surfaces
Krivoshapko, S N
2015-01-01
This encyclopedia presents an all-embracing collection of analytical surface classes. It provides concise definitions and description for more than 500 surfaces and categorizes them in 38 classes of analytical surfaces. All classes are cross references to the original literature in an excellent bibliography. The encyclopedia is of particular interest to structural and civil engineers and serves as valuable reference for mathematicians.
Extreme Scale Visual Analytics
Energy Technology Data Exchange (ETDEWEB)
Steed, Chad A [ORNL; Potok, Thomas E [ORNL; Pullum, Laura L [ORNL; Ramanathan, Arvind [ORNL; Shipman, Galen M [ORNL; Thornton, Peter E [ORNL; Potok, Thomas E [ORNL
2013-01-01
Given the scale and complexity of today s data, visual analytics is rapidly becoming a necessity rather than an option for comprehensive exploratory analysis. In this paper, we provide an overview of three applications of visual analytics for addressing the challenges of analyzing climate, text streams, and biosurveilance data. These systems feature varying levels of interaction and high performance computing technology integration to permit exploratory analysis of large and complex data of global significance.
Nagin, Gleb
2011-01-01
Business analytics refers to the skills, technologies, applications and practisies for continuous iterative exploration and investigation of past business performance to gain insight and drive business planning. Business analytics focuses on developing new insights and understanding of business performance based on data and statistical methods. Business intelligence traditionally focuses on using a consistent set of metrics to both measure past performance and guide business planning, which i...
Intermediate algebra & analytic geometry
Gondin, William R
1967-01-01
Intermediate Algebra & Analytic Geometry Made Simple focuses on the principles, processes, calculations, and methodologies involved in intermediate algebra and analytic geometry. The publication first offers information on linear equations in two unknowns and variables, functions, and graphs. Discussions focus on graphic interpretations, explicit and implicit functions, first quadrant graphs, variables and functions, determinate and indeterminate systems, independent and dependent equations, and defective and redundant systems. The text then examines quadratic equations in one variable, system
Fields with Analytic Structure
Cluckers, Raf
2009-01-01
We present a unifying theory of fields with certain classes of analytic functions, called fields with analytic structure. Both real closed fields and Henselian valued fields are considered. For real closed fields with analytic structure, o-minimality is shown. For Henselian valued fields, both the model theory and the analytic theory are developed. We give a list of examples that comprises, to our knowledge, all principal, previously studied, analytic structures on Henselian valued fields, as well as new ones. The b-minimality is shown, as well as other properties useful for motivic integration on valued fields. The paper is reminiscent of [Denef, van den Dries, "p-adic and real subanalytic sets" Ann. of Math. (2) 128 (1988) 79--138], of [Cohen, Paul J. "Decision procedures for real and p-adic fields" Comm. Pure Appl. Math. 22 (1969) 131--151, and of [Fresnel, van der Put, "Rigid analytic geometry and its applications" Progress in Mathematics, 218 Birkhauser (2004)], and unifies work by van den Dries, Haskell...
Empirical parametrizations of the resonance amplitudes based on the Siegert's theorem
Ramalho, G
2016-01-01
We present parametrizations of the $\\gamma^\\ast N \\to N(1535)1/2^-$, $\\gamma^\\ast N \\to N(1520)3/2^-$ and $\\gamma^\\ast N \\to \\Delta(1232)3/2^+$ transition amplitudes that are compatible with the analytic constraints at the pseudothreshold (Siegert's theorem). The presented parametrizations also provide a fair description of the experimental data. For the case of the $\\gamma^\\ast N \\to \\Delta(1232)3/2^+$ transition, we discuss how the pion cloud parametrizations of the electric and the Coulomb quadrupole form factors can be adjusted according to the Siegert's theorem.
Smooth interpolation between orear-and fixed angle scaling behaviour of the scattering amplitude
Bugrij, A. I.; Chikovani, Z. E.; Jenkovsky, L. L.
1980-03-01
A unified picture of both soft and hard hadronic collisions is suggested. The basis idea is to use Regge trajectories of the type 10052_2005_Article_BF01477306_TeX2GIFE1.gif α (t) = α (0) - γ ln (1 + β sqrt {t_0 - t} ) in dual models with Mandelstam analyticity. The idea is applied to elastic proton-proton scattering to derive kinematical boundaries of the asymptotic (Regge- t R and scaling- S sc., t sc.) regimes, to fix the angular dependence in the scaling-and the t-dependence in the Regge domain of the scattering amplitude and to interpolate between the two asymptotic domains.
Arbitrary amplitude magnetosonic solitary and shock structures in spin quantum plasma
Energy Technology Data Exchange (ETDEWEB)
Sahu, Biswajit [Department of Mathematics, West Bengal State University, Barasat, Kolkata-700126 (India); Sinha, Anjana; Roychoudhury, Rajkumar; Khan, Manoranjan [Department of Instrumentation Science, Jadavpur University, Kolkata-700 032 (India)
2013-11-15
A nonlinear analysis is carried out for the arbitrary amplitude magnetosonic solitary and shock structures in spin quantum plasmas. A quantum magnetohydrodynamic model is used to describe the magnetosonic quantum plasma with the Bohm potential and the pressure like spin force for electrons. Analytical calculations are used to simplify the basic equations, which are then studied numerically. It is shown that the magnetic diffusivity is responsible for dissipation, which causes the shock-like structures rather than the soliton structures. Additionally, wave speed, Zeeman energy, and Bohm potential are found to have significant impact on the shock wave structures.
Detection of combined frequency and amplitude modulation.
Moore, B C; Sek, A
1992-12-01
This article is concerned with the detection of mixed modulation (MM), i.e., simultaneously occurring amplitude modulation (AM) and frequency modulation (FM). In experiment 1, an adaptive two-alternative forced-choice task was used to determine thresholds for detecting AM alone. Then, thresholds for detecting FM were determined for stimuli which had a fixed amount of AM in the signal interval only. The amount of AM was always less than the threshold for detecting AM alone. The FM thresholds depended significantly on the magnitude of the coexisting AM. For low modulation rates (4, 16, and 64 Hz), the FM thresholds did not depend significantly on the relative phase of modulation for the FM and AM. For a high modulation rate (256 Hz) strong effects of modulator phase were observed. These phase effects are as predicted by the model proposed by Hartmann and Hnath [Acustica 50, 297-312 (1982)], which assumes that detection of modulation at modulation frequencies higher than the critical modulation frequency is based on detection of the lower sideband in the modulated signal's spectrum. In the second experiment, psychometric functions were measured for the detection of AM alone and FM alone, using modulation rates of 4 and 16 Hz. Results showed that, for each type of modulation, d' is approximately a linear function of the square of the modulation index. Application of this finding to the results of experiment 1 suggested that, at low modulation rates, FM and AM are not detected by completely independent mechanisms. In the third experiment, psychometric functions were again measured for the detection of AM alone and FM alone, using a 10-Hz modulation rate. Detectability was then measured for combined AM and FM, with modulation depths selected so that each type of modulation would be equally detectable if presented alone. Significant effects of relative modulator phase were found when detectability was relatively high. These effects were not correctly predicted by either a
Amplitudes ratios in $\\rho^0$ leptoproductions and GPDs
Goloskokov, S V
2016-01-01
We investigate exclusive leptoproduction of $\\rho^0$ meson. These reactions were analyzed within the factorizing handbag approach. In our model good agreement of observables for light meson production with experimental data in a wide energy range was found. Using the model results we calculate the ratio of different helicity amplitudes for a transversely polarized proton target to the leading twist longitudinal amplitude. Our results are close to the amplitude ratios measured by HERMES.
Mass of nonrelativistic meson from leading twist distribution amplitudes
Energy Technology Data Exchange (ETDEWEB)
Braguta, V. V., E-mail: braguta@mail.ru [Institute for High Energy Physics (Russian Federation)
2011-01-15
In this paper distribution amplitudes of pseudoscalar and vector nonrelativistic mesons are considered. Using equations of motion for the distribution amplitudes, relations are derived which allow one to calculate the masses of nonrelativistic pseudoscalar and vector meson if the leading twist distribution amplitudes are known. These relations can be also rewritten as relations between the masses of nonrelativistic mesons and infinite series of QCD operators, what can be considered as an exact version of Gremm-Kapustin relation in NRQCD.
EW and QCD One-Loop Amplitudes with RECOLA
Actis, Stefano; Hofer, Lars; Scharf, Andreas; Uccirati, Sandro
2013-01-01
We present the computer code RECOLA for the computation of EW and QCD amplitudes in the Standard Model at next-to-leading order. One-loop amplitudes are represented as linear combinations of tensor integrals whose coefficients are calculated by means of recursive relations similar to Dyson-Schwinger equations. A novel treatment of colour enables us to recursively construct the colour structure of the amplitude efficiently. RECOLA is linked with the library COLLIER for the computation of the tensor integrals.
Amplitudes and Ultraviolet Behavior of N = 8 Supergravity
Energy Technology Data Exchange (ETDEWEB)
Bern, Zvi; /UCLA; Carrasco, John Joseph; /Stanford U., Phys. Dept.; Dixon, Lance J.; /SLAC /CERN; Johansson, Henrik; /Saclay, SPhT; Roiban, Radu; /Penn State U.
2011-05-20
In this contribution we describe computational tools that permit the evaluation of multi-loop scattering amplitudes in N = 8 supergravity, in terms of amplitudes in N = 4 super-Yang-Mills theory. We also discuss the remarkable ultraviolet behavior of N = 8 supergravity, which follows from these amplitudes, and is as good as that of N = 4 super-Yang-Mills theory through at least four loops.
N >= 4 Supergravity Amplitudes from Gauge Theory at One Loop
Bern, Z; Johansson, H
2011-01-01
We expose simple and practical relations between the integrated four- and five-point one-loop amplitudes of N >= 4 supergravity and the corresponding (super-)Yang-Mills amplitudes. The link between the amplitudes is simply understood using the recently uncovered duality between color and kinematics that leads to a double-copy structure for gravity. These examples provide additional direct confirmations of the duality and double-copy properties at loop level for a sample of different theories.
Theoretical Study of Amplitude Modulation Application during Radio Frequency Electrocoagulation
Directory of Open Access Journals (Sweden)
V. A. Karpuhin
2015-01-01
Full Text Available This article concerns the investigation results of influence of the amplitude-modulated acting signal parameters on the thermoelectric characteristics of biological tissues for a specified geometry of the working electrode section during RF mono-polar electrocoagulation. The geometric model ‘electrode - a biological tissue’ was suggested to study the distribution of power and temperature fields in biological tissue during mono-polar coagulation. The model of biological tissue is represented as a cylinder and the needle electrode is an ellipsoid immersed in the biological tissue. The heat and quasi-electrostatics equations are used as a mathematical model. These equations are solved in Comsol Multiphysics environment.As a result, we have got the following findings: the technique of calculating parameters of the PAM acting signal which has a fixed carrier frequency for the needle electrode of a specified geometry and the immersion depth in biological tissues is suggested. Parameters of PAM signal are determined for this electrode geometry. These parameters provide a 60 ... 80°C heating range of biological tissues near the working part of the tool for different amplitudes of acting signal during RF coagulation. It has been found out that both the temperature and the relaxation frequency of biological tissue depend on exposure time for the needle electrode of a specified geometry and immersion depth of the working part of tool into biological tissue.It is shown that the relaxation frequency of the biological tissue, subjected to the radiofrequency pulses, linearly depends on its heating temperature and can be used as a numerical criterion for maintaining the specified temperature conditions. It is found that the relaxation frequency of the biological tissue depends on the contact area of the tool working part and biological tissues. To reduce this dependence it is necessary to provide automatic current control of the output action.
LARGE AMPLITUDE FREE VIBRATIONS OF LAMINATED COMPOSITE PLATES
Institute of Scientific and Technical Information of China (English)
Wang Haowen; Gao Zheng; Zheng Zhaochang
2000-01-01
This paper deals with large amplitude free flexural vibrations of laminated composite plates using a 9-node Heterosis degenerated isoparametric quadrilateral element, including the effects of transverse shear and rotary inertia. The nonlinear dynamic equations of the plates are formulated in von Karman's sense. Amplitude-frequemcy relationships are obtained through dynamic response history using the Newmark numerical integration scheme. Detailed numerical results based on various parameters are presented for orthotropic laminated plates with different boundary conditions. The rectangular anti-symmetric cross-ply plates show the softening type of nonlinearity for initial small amplitudes. The displacement amplitudes decrease and nonlinear frequencies increase with the increment of time.
New relations for Einstein-Yang-Mills amplitudes
Stieberger, Stephan; Taylor, Tomasz R.
2016-12-01
We obtain new relations between Einstein-Yang-Mills (EYM) amplitudes involving N gauge bosons plus a single graviton and pure Yang-Mills amplitudes involving N gauge bosons plus one additional vector boson inserted in a way typical for a gauge boson of a "spectator" group commuting with the group associated to original N gauge bosons. We show that such EYM amplitudes satisfy U(1) decoupling relations similar to Kleiss-Kuijf relations for Yang-Mills amplitudes. We consider a D-brane embedding of EYM amplitudes in the framework of disk amplitudes involving open and closed strings. A new set of monodromy relations is derived for mixed open-closed amplitudes with one closed string inserted on the disk world-sheet and a number of open strings at the boundary. These relations allow expressing the latter in terms of pure open string amplitudes and, in the field-theory limit, they yield the U(1) decoupling relations for EYM amplitudes.
Method of differential-phase/absolute-amplitude QAM
Dimsdle, Jeffrey William
2007-07-17
A method of quadrature amplitude modulation involving encoding phase differentially and amplitude absolutely, allowing for a high data rate and spectral efficiency in data transmission and other communication applications, and allowing for amplitude scaling to facilitate data recovery; amplitude scale tracking to track-out rapid and severe scale variations and facilitate successful demodulation and data retrieval; 2.sup.N power carrier recovery; incoherent demodulation where coherent carrier recovery is not possible or practical due to signal degradation; coherent demodulation; multipath equalization to equalize frequency dependent multipath; and demodulation filtering.
Autism spectrum disorders and the amplitude of auditory brainstem response wave I.
Santos, Mariline; Marques, Cristina; Nóbrega Pinto, Ana; Fernandes, Raquel; Coutinho, Miguel Bebiano; Almeida E Sousa, Cecília
2017-04-01
To determine whether children with autism spectrum disorders (ASDs) have an increased number of wave I abnormal amplitudes in auditory brainstem responses (ABRs) than age- and sex-matched typically developing children. This analytical case-control study compared patients with ASDs between the ages of 2 and 6 years and children who had a language delay not associated with any other pathology. Amplitudes of ABR waves I and V; absolute latencies (ALs) of waves I, III, and V; and interpeak latencies (IPLs) I-III, III-IV, and I-V at 90 dB were compared between ASD patients and normally developing children. The study enrolled 40 children with documented ASDs and 40 age- and sex-matched control subjects. Analyses of the ABR showed that children with ASDs exhibited higher amplitudes of wave 1 than wave V (35%) more frequently than the control group (10%), and this difference between groups reached statistical significance by Chi-squared analysis. There were no significant differences in ALs and IPLs between ASD children and matched controls. To the best of our knowledge, this is the first case-control study testing the amplitudes of ABR wave I in ASD children. The reported results suggest a potential for the use of ABR recordings in children, not only for the clinical assessment of hearing status, but also for the possibility of using amplitude of ABR wave I as an early marker of ASDs allowing earlier diagnosis and intervention. Autism Res 2017. © 2017 International Society for Autism Research, Wiley Periodicals, Inc.
Effects of magnesium sulphate on amplitude-integrated continuous EEG in asphyxiated term neonates
Groenendaal, F; Rademaker, CMA; Toet, MC; de Vries, LS
2002-01-01
In this study it is hypothesized that magnesium sulphate in asphyxiated full-term neonates could lead to a gradual improvement in background pattern of the amplitude integrated EEG (aEEG), an early marker of hypoxic-ischaemic brain injury. In a double-blind, randomized, controlled pilot study of 22
Receipt of Input Signal Amplitudes in Microprocessor Protection of Electrical Installations
Directory of Open Access Journals (Sweden)
F. A. Romaniuk
2006-01-01
Full Text Available Frequency-independent methods for receipt of input signal amplitudes in microprocessor protection of an electrical installation in the aggregate with earlier analyzed digital filters are considered in the paper. The paper contains comparative analysis and specified characteristics have been obtained.
Superpixel-based spatial amplitude and phase modulation using a digital micromirror device
Goorden, Sebastianus A.; Bertolotti, Jacopo; Mosk, Allard P.
2014-01-01
We present a superpixel method for full spatial phase and amplitude control of a light beam using a digital micromirror device (DMD) combined with a spatial filter. We combine square regions of nearby micromirrors into superpixels by low pass filtering in a Fourier plane of the DMD. At each superpix
Klevansky, S P
2016-01-01
Recently Dai and Pennington have performed a comprehensive analysis of essentially all pion and kaon pair production data from two-photon collisions below 1.5 GeV, including all high statistics results from Belle, as well as the older data from Mark II at SLAC, CELLO at DESY, and Crystal Ball at SLAC. Imposing the basic constraints required by analyticity, unitarity, and crossing symmetry and making use of Low's low energy theorem for QED, they are able to extract the final-state strong-interaction scattering amplitudes for the intermediate pi pi->pi pi and pi pi-> K\\bar K reactions in a model-independent fashion. In addition, they provide good fits to the respective gamma gamma-> pi pi cross-sections that are known in the low-energy sector in the restricted angular range, | cos theta|pi pi cross-sections integrated over the full angular range. In this work, we use a version of chiral perturbation theory developed by Oller and Oset to evaluate the final-state strong-interaction amplitudes directly theoretical...
Learning Analytics: opportunities for schools
Directory of Open Access Journals (Sweden)
Giovanni Fulantelli
2014-12-01
Full Text Available La valutazione delle esperienze di apprendimento che avvengono in ambienti in cui le interazioni sono mediate dalle tecnologie è una sfida ardua che deve essere affrontata con approcci adeguati. Le tecniche di Learning Analytics si sono sviluppate recentemente con l’obiettivo di fornire gli strumenti necessari per ottimizzare le esperienze di apprendimento. Queste tecniche supportano i docenti nel prendere tempestivamente quelle decisioni che rendono il processo didattico più efficace, permettendo di intervenire sull’intero processo o sui singoli studenti in modo personalizzato. Sebbene le tecniche di Learning Analytics si siano sviluppate principalmente nei contesti di alta formazione online, questo articolo mette in evidenza come l’impiego di tali tecniche può portare benefici anche nei contesti scolastici. Di fatto, in questi contesti, le tecnologie sono sempre più utilizzate per supportare le esperienze di apprendimento formali e informali, come quelle basate su dispositivi mobili, serious game e social network, e i dati generati sono sempre più numerosi, richiedendo nuovi approcci di analisi che traggono vantaggio dall’impiego delle tecniche di Learning Analytics.
Roiban, Radu; Spradlin, Marcus; Volovich, Anastasia
2011-11-01
This issue aims to serve as an introduction to our current understanding of the structure of scattering amplitudes in gauge theory, an area which has seen particularly rapid advances in recent years following decades of steady progress. The articles contained herein provide a snapshot of the latest developments which we hope will serve as a valuable resource for graduate students and other scientists wishing to learn about the current state of the field, even if our continually evolving understanding of the subject might soon render this compilation incomplete. Why the fascination with scattering amplitudes, which have attracted the imagination and dedicated effort of so many physicists? Part of it stems from the belief, supported now by numerous examples, that unexpected simplifications of otherwise apparently complicated calculations do not happen by accident. Instead they provide a strong motivation to seek out an underlying explanation. The insight thereby gained can subsequently be used to make the next class of seemingly impossible calculations not only possible, but in some cases even trivial. This two-pronged strategy of exploring and exploiting the structure of gauge theory amplitudes appeals to a wide audience from formal theorists interested in mathematical structure for the sake of its own beauty to more phenomenologically-minded physicists eager to speed up the next generation of analysis software. Understandably it is the maximally supersymmetric 𝒩 = 4 Yang-Mills theory (SYM) which has the simplest structure and has correspondingly received the most attention. Rarely in theoretical physics are we fortunate enough to encounter a toy model which is simple enough to be solved completely yet rich enough to possess interesting non-trivial structure while simultaneously, and most importantly, being applicable (even if only as a good approximation) to a wide range of 'real' systems. The canonical example in quantum mechanics is of course the harmonic
Efetividade do Programa de Fisioterapia Aquática na amplitude de movimento em idosas
Directory of Open Access Journals (Sweden)
Eduardo Aguilar Arca
2014-03-01
Full Text Available O objetivo deste estudo foi verificar os efeitos de um programa de fisioterapia aquática na amplitude de movimento em mulheres idosas. Estudo quase-experimental, sem grupo-controle, com 16 idosas, avaliadas em três momentos da intervenção. Verificou-se que o programa de fisioterapia aquática produziu efeitos expressivos no ganho da amplitude de movimento em todas as articulações e eixos de movimentos estudados, além do engajamento de pessoas idosas em atividades físicas importante para essa fase da vida.
Change of amplitude of motion and force of hand for women after a radical mammectomy
Directory of Open Access Journals (Sweden)
Odinec T.E.
2009-12-01
Full Text Available The estimation of dynamometer of brush and amplitude of motion is rotined in a humeral joint for women. The features of remote postprocess period are considered after a radical mammectomy. Close correlation is rotined between amplitude of motion and index of function of the external breathing. The results of goniometer and dynamometer are presented. A hydrokinesitherapy is considered from position of perspective mean of rehabilitation of the functional state of women. The high degree of intercommunication is rotined between taking and bending in a humeral joint the vital capacity of lights.
On the amplitude/Wilson loop duality in N=2 SCQCD
Directory of Open Access Journals (Sweden)
Marta Leoni
2015-07-01
Full Text Available We compute the four-point amplitude with external adjoint particles in N=2 SCQCD at two loops using N=1 superspace Feynman diagrams, extending the results of arXiv:1406.7283. We consider the diagrammatic difference with the corresponding process of N=4 SYM finding a non-vanishing result, which is a non-trivial function of the kinematic variables. This demonstrates that in N=2 SCQCD, even in the sector with external particles in the vector multiplet, the amplitude/Wilson loop duality is inevitably broken at two loops.
DEFF Research Database (Denmark)
Romstad, Francis Pascal; Birkedal, Dan; Mørk, Jesper
2001-01-01
We present a new technique that measures the full amplitude and phase transfer curves of the modulator as a function of the applied bias, from which the small signal α-parameter can be calculated. The technique measures the amplitude and phase transfer functions simultaneously and directly......, compared to techniques where a time-consuming data analysis is necessary to calculate the a-parameter and an additional measurement is necessary to estimate the phase. Additionally, the chirp profile for all operation points can be calculated....
Increased Ocular Pulse Amplitude Associated with Unilateral Dysgenesis of the Orbital Roof
Directory of Open Access Journals (Sweden)
Ami Shah Vira
2015-05-01
Full Text Available Introduction: Two patients (one with neurofibromatosis type 1 presented with unilateral ocular pulsation. Methods: A CT scan of the orbits revealed extensive dysgenesis of the orbital roof with herniation of the frontal lobe into the orbit in both cases. PASCAL dynamic contour tonometry was performed. Results: The ipsilateral ocular pulse amplitude (OPA was greater than the contralateral side, and the ocular pulse waveform morphology more closely approximated the known intracranial waveform in these patients. Conclusions: We hypothesize that the greater OPA was due to stronger transmission of the intracranial pressure waveform amplitude and morphology in the absence of the orbital roof.
Directory of Open Access Journals (Sweden)
Anja S Euser
Full Text Available BACKGROUND: Although P300 amplitude reductions constitute a persistent finding in children of addicted parents, relatively little is known about the specificity of this finding. The major aim of this study was to investigate the association between parental rearing, adverse life events, stress-reactivity, substance use and psychopathology on the one hand, and P300 amplitude in response to both target and novel distracter stimuli on the other hand. Moreover, we assessed whether risk group status (i.e., having a parental history of Substance Use Disorders [SUD] uniquely contributed to P300 amplitude variation above and beyond these other variables. METHODS: Event-related potentials were recorded in high-risk adolescents with a parental history of SUD (HR;n=80 and normal-risk controls (NR;n=100 while performing a visual Novelty Oddball paradigm. Stress-evoked cortisol levels were assessed and parenting, life adversities, substance use and psychopathology were examined by using self-reports. RESULTS: HR adolescents displayed smaller P300 amplitudes in response to novel- and to target stimuli than NR controls, while the latter only approached significance. Interestingly, the effect of having a parental history of SUD on target-P300 disappeared when all other variables were taken into account. Externalizing problem behavior was a powerful predictor of target-P300. In contrast, risk group status uniquely predicted novelty-P300 amplitude reductions above and beyond all other factors. CONCLUSION: Overall, the present findings suggest that the P300 amplitude reduction to novel stimuli might be a more specific endophenotype for SUD than the target-P300 amplitude. This pattern of results underscores the importance of conducting multifactorial assessments when examining important cognitive processes in at-risk adolescents.
Directory of Open Access Journals (Sweden)
Jivkov Venelin S.
2016-12-01
Full Text Available The paper presents a geometrical approach to dynamics simulation of a rigid and flexible system, compiled of high speed rotating machine with eccentricity and considerable inertia and mass. The machine is mounted on a vertical flexible pillar with considerable height. The stiffness and damping of the column, as well as, of the rotor bearings and the shaft are taken into account. Non-stationary vibrations and transitional processes are analyzed. The major frequency and modal mode of the flexible column are used for analytical reduction of its mass, stiffness and damping properties. The rotor and the foundation are modelled as rigid bodies, while the flexibility of the bearings is estimated by experiments and the requirements of the manufacturer. The transition effects as a result of limited power are analyzed by asymptotic methods of averaging. Analytical expressions for the amplitudes and unstable vibrations throughout resonance are derived by quasi-static approach increasing and decreasing of the exciting frequency. Analytical functions give the possibility to analyze the influence of the design parameter of many structure applications as wind power generators, gas turbines, turbo-generators, and etc. A numerical procedure is applied to verify the effectiveness and precision of the simulation process.
Institute of Scientific and Technical Information of China (English)
He Zhang-Ming; Wang Deng-Long; Zhang Wei-Xi; Wang Feng-Jiao; Ding Jian-Wen
2008-01-01
By using Darboux transformation,this paper studies analytically the nonlinear dynamics of a one-dimensional growing Bose-Einstein condensate(BEC).It is shown that the growing model has an important effect on the amplitude of the soliton in the condensates.In the absence of the growing model,there exhibits the stable alternate bright solitons in the condensates.In the presence of the growing model,the obtained results show that the amplitude of the bright soliton decreases(increases)for the BEC growing coefficient Ω＜0(Ω＞0).Furthermore,we propose experimental protocols to manipulate the amplitude of the bright soliton by varying the scattering length via the Feshbach resonance in the fluture experiment.
Analytic QCD Binding Potentials
Fried, H M; Grandou, T; Sheu, Y -M
2011-01-01
This paper applies the analytic forms of a recent non-perturbative, manifestly gauge- and Lorentz-invariant description (of the exchange of all possible virtual gluons between quarks ($Q$) and/or anti-quarks ($\\bar{Q}$) in a quenched, eikonal approximation) to extract analytic forms for the binding potentials generating a model $Q$-$\\bar{Q}$ "pion", and a model $QQQ$ "nucleon". Other, more complicated $Q$, $\\bar{Q}$ contributions to such color-singlet states may also be identified analytically. An elementary minimization technique, relevant to the ground states of such bound systems, is adopted to approximate the solutions to a more proper, but far more complicated Schroedinger/Dirac equation; the existence of possible contributions to the pion and nucleon masses due to spin, angular momentum, and "deformation" degrees of freedom is noted but not pursued. Neglecting electromagnetic and weak interactions, this analysis illustrates how the one new parameter making its appearance in this exact, realistic formali...
Advances in analytical chemistry
Arendale, W. F.; Congo, Richard T.; Nielsen, Bruce J.
1991-01-01
Implementation of computer programs based on multivariate statistical algorithms makes possible obtaining reliable information from long data vectors that contain large amounts of extraneous information, for example, noise and/or analytes that we do not wish to control. Three examples are described. Each of these applications requires the use of techniques characteristic of modern analytical chemistry. The first example, using a quantitative or analytical model, describes the determination of the acid dissociation constant for 2,2'-pyridyl thiophene using archived data. The second example describes an investigation to determine the active biocidal species of iodine in aqueous solutions. The third example is taken from a research program directed toward advanced fiber-optic chemical sensors. The second and third examples require heuristic or empirical models.
Institute of Scientific and Technical Information of China (English)
MATHAI; Varghese
2010-01-01
We review the Reidemeister, Ray-Singer’s analytic torsion and the Cheeger-Mller theorem. We describe the analytic torsion of the de Rham complex twisted by a flux form introduced by the current authors and recall its properties. We define a new twisted analytic torsion for the complex of invariant differential forms on the total space of a principal circle bundle twisted by an invariant flux form. We show that when the dimension is even, such a torsion is invariant under certain deformation of the metric and the flux form. Under T-duality which exchanges the topology of the bundle and the flux form and the radius of the circular fiber with its inverse, the twisted torsion of invariant forms are inverse to each other for any dimension.
Mathai, Varghese
2009-01-01
We review the Reidemeister and Ray-Singer's analytic torsions and the Cheeger-M"uller theorem. We describe the analytic torsion of the de Rham complex twisted by a flux form introduced by the current authors and recall its properties. We define a new twisted analytic torsion for the complex of invariant differential forms on the total space of a principal circle bundle twisted by an invariant flux form. We show that when the dimension is even, such a torsion is invariant under certain deformation of the metric and the flux form. Under T-duality which exchanges the topology of the bundle and the flux form and the radius of the circular fiber with its inverse, the twisted torsions are inverse to each other for any dimensions.
Competing on talent analytics.
Davenport, Thomas H; Harris, Jeanne; Shapiro, Jeremy
2010-10-01
Do investments in your employees actually affect workforce performance? Who are your top performers? How can you empower and motivate other employees to excel? Leading-edge companies such as Google, Best Buy, Procter & Gamble, and Sysco use sophisticated data-collection technology and analysis to answer these questions, leveraging a range of analytics to improve the way they attract and retain talent, connect their employee data to business performance, differentiate themselves from competitors, and more. The authors present the six key ways in which companies track, analyze, and use data about their people-ranging from a simple baseline of metrics to monitor the organization's overall health to custom modeling for predicting future head count depending on various "what if" scenarios. They go on to show that companies competing on talent analytics manage data and technology at an enterprise level, support what analytical leaders do, choose realistic targets for analysis, and hire analysts with strong interpersonal skills as well as broad expertise.
Directory of Open Access Journals (Sweden)
Brean Are
2010-02-01
Full Text Available Abstract Background We have previously seen that idiopathic normal pressure hydrocephalus (iNPH patients having elevated intracranial pressure (ICP pulse amplitude consistently respond to shunt surgery. In this study we explored how the cerebrospinal fluid pressure (CSFP pulse amplitude determined during lumbar infusion testing, correlates with ICP pulse amplitude determined during over-night ICP monitoring and with response to shunt surgery. Our goal was to establish a more reliable screening procedure for selecting iNPH patients for shunt surgery using lumbar intrathecal infusion. Methods The study population consisted of all iNPH patients undergoing both diagnostic lumbar infusion testing and continuous over-night ICP monitoring during the period 2002-2007. The severity of iNPH was assessed using our NPH grading scale before surgery and 12 months after shunting. The CSFP pulse was characterized from the amplitude of single pressure waves. Results Totally 62 iNPH patients were included, 45 of them underwent shunt surgery, in whom 78% were shunt responders. Among the 45 shunted patients, resistance to CSF outflow (Rout was elevated (≥ 12 mmHg/ml/min in 44. The ICP pulse amplitude recorded over-night was elevated (i.e. mean ICP wave amplitude ≥ 4 mmHg in 68% of patients; 92% of these were shunt responders. In those with elevated overnight ICP pulse amplitude, we found also elevated CSFP pulse amplitude recorded during lumbar infusion testing, both during the opening phase following lumbar puncture and during a standardized period of lumbar infusion (15 ml Ringer over 10 min. The clinical response to shunting after 1 year strongly associated with the over-night ICP pulse amplitude, and also with the pulsatile CSFP during the period of lumbar infusion. Elevated CSFP pulse amplitude during lumbar infusion thus predicted shunt response with sensitivity of 88 and specificity of 60 (positive and negative predictive values of 89 and 60
Miracles in Scattering Amplitudes: from QCD to Gravity
Energy Technology Data Exchange (ETDEWEB)
Volovich, Anastasia [Brown Univ., Providence, RI (United States)
2016-10-09
The goal of my research project "Miracles in Scattering Amplitudes: from QCD to Gravity" involves deepening our understanding of gauge and gravity theories by exploring hidden structures in scattering amplitudes and using these rich structures as much as possible to aid practical calculations.
Baryon octet distribution amplitudes in Wandzura-Wilczek approximation
Energy Technology Data Exchange (ETDEWEB)
Anikin, I.V. [Joint Institute of Nuclear Research, Moscow (Russian Federation). Bogoliubov Lab. of Theoretical Physics; Regensburg Univ. (Germany). Inst. fuer Theoretische Physik; Manashov, A.N. [Regensburg Univ. (Germany). Inst. fuer Theoretische Physik; Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik
2015-12-15
We study higher twist distribution amplitudes for the SU{sub F}(3) baryon octet. We identify independent functions for all baryons in the isospin symmetry limit and calculate the Wandzura-Wilczek contributions to the twist-4 and 5 distributions amplitudes.
Threshold amplitudes in field theories and integrable systems
Gorsky, A S
1995-01-01
We discuss the threshold tree amplitudes in diverse nonintegrable quantum field theories in the framework of integrability. The amplitudes are related to some Baker functions defined on the auxiliary spectral curves and the nullification phenomena are shown to allow a topological interpretation.
Cross-Symmetric Expansion of $\\pi \\pi$ Amplitude Near Threshold
Bolokhov, A A; Manida, I S; Polyakov, M V; Sherman, S G
1996-01-01
The near-threshold expansion of the $\\pi \\pi$ amplitude is developed using the crossing-covariant independent variables. The independent threshold parameters entering the real part of the amplitude in an explicitly Lorentz-invariant way are free from restrictions of isotopic and crossing symmetries. Parameters of the expansion of the imaginary part are recovered by the perturbative unitarity relations.
Abnormal Selective Attention Normalizes P3 Amplitudes in PDD
Hoeksma, Marco R.; Kemner, Chantal; Kenemans, J. Leon; van Engeland, Herman
2006-01-01
This paper studied whether abnormal P3 amplitudes in PDD are a corollary of abnormalities in ERP components related to selective attention in visual and auditory tasks. Furthermore, this study sought to clarify possible age differences in such abnormalities. Children with PDD showed smaller P3 amplitudes than controls, but no abnormalities in…
pi-pi interaction amplitudes with chiral constraints
Kaminski, Robert
2000-01-01
The pi-pi interaction amplitudes have been calculated using a three coupled channel model both with and without constraints imposed by chiral models. Roy's equations have been used to compare the amplitudes and to study the role played by chiral constraints in the pi-pi interaction.
Investigating the amplitude of interactive footstep sounds and soundscape reproduction
DEFF Research Database (Denmark)
Turchet, Luca; Serafin, Stefania
2013-01-01
In this paper, we study the perception of amplitude of soundscapes and interactively generated footstep sounds provided both through headphones and a surround sound system. In particular, we investigate whether there exists a value for the amplitude of soundscapes and footstep sounds which is con...
One loop amplitude for Heterotic string on $T^2$
Sasmal, Soumya
2016-01-01
We revisit the results of one loop string amplitude calculations for the Heterotic string theory compactified on a torus with or without Wilson lines. We give the complete elliptic genus and the harmonic part of the CP-even amplitude for the gauge groups $SO(32)$, $E_8 \\times E_8$, $SO(16)^2$ and $SO(8)^4$.
Nonlinear ordinary differential equations analytical approximation and numerical methods
Hermann, Martin
2016-01-01
The book discusses the solutions to nonlinear ordinary differential equations (ODEs) using analytical and numerical approximation methods. Recently, analytical approximation methods have been largely used in solving linear and nonlinear lower-order ODEs. It also discusses using these methods to solve some strong nonlinear ODEs. There are two chapters devoted to solving nonlinear ODEs using numerical methods, as in practice high-dimensional systems of nonlinear ODEs that cannot be solved by analytical approximate methods are common. Moreover, it studies analytical and numerical techniques for the treatment of parameter-depending ODEs. The book explains various methods for solving nonlinear-oscillator and structural-system problems, including the energy balance method, harmonic balance method, amplitude frequency formulation, variational iteration method, homotopy perturbation method, iteration perturbation method, homotopy analysis method, simple and multiple shooting method, and the nonlinear stabilized march...
On the assessment of multiaxial fatigue damage under variable amplitude loading
Directory of Open Access Journals (Sweden)
V. Anes
2016-07-01
Full Text Available In this work, the performance of the SSF criterion is evaluated under variable amplitude loading conditions. The main objective was to inspect the validity of the hypothesis in which the SSF damage map remains valid for any high strength steel. In order to achieve that, fatigue life correlation of the 1050QT steel and 304L stainless steel was analyzed under multiaxial loading conditions. The loading block considered in the study comprises 360 proportional loading cycles with different stress amplitude ratios and stress levels. Despite being made of proportional branches, this loading block is a non-proportional loading due to its principal directions variation. This feature allows the evaluation of combined loading effects under variable amplitude loading conditions, which makes this loading block suitable to mimic the loading effects usually found in the field. Results show very good agreements, which reinforces the aforementioned hypothesis.
Directory of Open Access Journals (Sweden)
Kenneth R. Paap
2015-01-01
Full Text Available In this special issue on the brain mechanisms that lead to cognitive benefits of bilingualism we discussed six reasons why it will be very difficult to discover those mechanisms. Many of these problems apply to the article by Fernandez, Acosta, Douglass, Doshi, and Tartar that also appears in the special issue. These concerns include the following: 1 an overly optimistic assessment of the replicability of bilingual advantages in behavioral studies, 2 reliance on risky small samples sizes, 3 failures to match the samples on demographic characteristics such as immigrant status, and 4 language group differences that occur in neural measures (i.e., N2 amplitude, but not in the behavioral data. Furthermore the N2 amplitude measure in general suffers from valence ambiguity: larger N2 amplitudes reported for bilinguals are more likely to reflect poorer conflict resolution rather than enhanced inhibitory control.
QCD amplitudes with 2 initial spacelike legs via generalised BCFW recursion
van Hameren, Andreas; Serino, Mirko
2016-01-01
We complete the generalisation of the BCFW recursion relation to the off-shell case, allowing for the computation of tree-level scattering amplitudes for full High Energy Factorisation (HEF), i.e.\\ with both incoming partons having a non-vanishing transverse momentum. We provide explicit results for color-ordered amplitudes with two off-shell legs in massless QCD up to 4 point, continuing the program begun in two previous papers. For the 4-fermion amplitudes, which are not BCFW-recursible, we perform a diagrammatic computation, so as to offer a complete set of expressions. We show the squared $2 \\rightarrow 2$ matrix elements as function of the differences in rapidity and azimuthal angle of the final state particles, and explicitly show and discuss some plots.
Understanding and Ameliorating Non-Linear Phase and Amplitude Responses in AMCW Lidar
Directory of Open Access Journals (Sweden)
John P. Godbaz
2011-12-01
Full Text Available Amplitude modulated continuous wave (AMCW lidar systems commonly suffer from non-linear phase and amplitude responses due to a number of known factors such as aliasing and multipath inteference. In order to produce useful range and intensity information it is necessary to remove these perturbations from the measurements. We review the known causes of non-linearity, namely aliasing, temporal variation in correlation waveform shape and mixed pixels/multipath inteference. We also introduce other sources of non-linearity, including crosstalk, modulation waveform envelope decay and non-circularly symmetric noise statistics, that have been ignored in the literature. An experimental study is conducted to evaluate techniques for mitigation of non-linearity, and it is found that harmonic cancellation provides a significant improvement in phase and amplitude linearity.
Aggarwal, Charu C
2011-01-01
Social network analysis applications have experienced tremendous advances within the last few years due in part to increasing trends towards users interacting with each other on the internet. Social networks are organized as graphs, and the data on social networks takes on the form of massive streams, which are mined for a variety of purposes. Social Network Data Analytics covers an important niche in the social network analytics field. This edited volume, contributed by prominent researchers in this field, presents a wide selection of topics on social network data mining such as Structural Pr
Radioactive Materials Analytical Laboratory
Energy Technology Data Exchange (ETDEWEB)
Laing, W.R.; Corbin, L.T.
1979-01-01
The Radioactive Materials Analytical Laboratory was completed 15 years ago and has been used since as an analytical chemistry support lab for reactor, fuel development, and reprocessing programs. Additions have been made to the building on two occasions, and a third addition is planned for the future. Major maintenance items include replacement of ZnBr/sub 2/ windows, cleanup of lead glass windows, and servicing of the intercell conveyor. An upgrading program, now in progress, includes construction of new hot-cell instrumentation and the installation of new equipment such as an x-ray fluorescence analyzer and a spark source mass spectrometer.
Chen, Xiaoman
2003-01-01
The seminal 1989 work of Douglas and Paulsen on the theory of analytic Hilbert modules precipitated a number of major research efforts. This in turn led to some intriguing and valuable results, particularly in the areas of operator theory and functional analysis. With the field now beginning to blossom, the time has come to collect those results under one cover. Written by two of the most active and often-cited researchers in the field, Analytic Hilbert Modules reports on the progress made by the authors and others, including the characteristic space theory, rigidity, the equivalence problem, the Arveson modules, extension theory, and reproducing Hilbert spaces on n-dimensional complex space.
Foundations of predictive analytics
Wu, James
2012-01-01
Drawing on the authors' two decades of experience in applied modeling and data mining, Foundations of Predictive Analytics presents the fundamental background required for analyzing data and building models for many practical applications, such as consumer behavior modeling, risk and marketing analytics, and other areas. It also discusses a variety of practical topics that are frequently missing from similar texts. The book begins with the statistical and linear algebra/matrix foundation of modeling methods, from distributions to cumulant and copula functions to Cornish--Fisher expansion and o
Directory of Open Access Journals (Sweden)
Gavin Perry
Full Text Available Individual differences in the visual gamma (30-100 Hz response and their potential as trait markers of underlying physiology (particularly related to GABAergic inhibition have become a matter of increasing interest in recent years. There is growing evidence, however, that properties of the gamma response (e.g., its amplitude and frequency are highly stimulus dependent, and that individual differences in the gamma response may reflect individual differences in the stimulus tuning functions of gamma oscillations. Here, we measured the tuning functions of gamma amplitude and frequency to luminance contrast in eighteen participants using MEG. We used a grating stimulus in which stimulus contrast was modulated continuously over time. We found that both gamma amplitude and frequency were linearly modulated by stimulus contrast, but that the gain of this modulation (as reflected in the linear gradient varied across individuals. We additionally observed a stimulus-induced response in the beta frequency range (10-25 Hz, but neither the amplitude nor the frequency of this response was consistently modulated by the stimulus over time. Importantly, we did not find a correlation between the gain of the gamma-band amplitude and frequency tuning functions across individuals, suggesting that these may be independent traits driven by distinct neurophysiological processes.
Study of ambiguities in $\\pi^-p\\to \\Lambda K^0$ scattering amplitudes
Anisovich, A V; Klempt, E; Nikonov, V A; Sarantsev, A V; Thoma, U; Wunderlich, Y
2013-01-01
Amplitudes for the reaction $\\pi^-p\\to \\Lambda K^0$ are reconstructed from data on the differential cross section $d\\sigma/d\\Omega$, the recoil polarization $P$, and on the spin rotation parameter $\\beta$. At low energies, no data on $\\beta$ exist, resulting in ambiguities. An approximation using $S$ and $P$ waves leads only to a fair description of the data on $d\\sigma/d\\Omega$ and $P$; in this case, there are two sets of amplitudes. Including $D$ waves, the data on $d\\sigma/d\\Omega$ and $P$ are well reproduced by the fit but now, there are several distinct solutions which describe the data with identical precision. In the range where the spin rotation parameter $\\beta$ was measured, a full and unambiguous reconstruction of the partial wave amplitudes is possible. The energy-independent amplitudes are compared to the energy dependent amplitudes which resulted from a coupled channel fit (BnGa2011-02) to a large data set including both pion and photo-induced reactions. Significant deviations are observed. Cons...
Metabolic and respiratory costs of increasing song amplitude in zebra finches.
Directory of Open Access Journals (Sweden)
Sue Anne Zollinger
Full Text Available Bird song is a widely used model in the study of animal communication and sexual selection, and several song features have been shown to reflect the quality of the singer. Recent studies have demonstrated that song amplitude may be an honest signal of current condition in males and that females prefer high amplitude songs. In addition, birds raise the amplitude of their songs to communicate in noisy environments. Although it is generally assumed that louder song should be more costly to produce, there has been little empirical evidence to support this assumption. We tested the assumption by measuring oxygen consumption and respiratory patterns in adult male zebra finches (Taeniopygia guttata singing at different amplitudes in different background noise conditions. As background noise levels increased, birds significantly increased the sound pressure level of their songs. We found that louder songs required significantly greater subsyringeal air sac pressure than quieter songs. Though increased pressure is probably achieved by increasing respiratory muscle activity, these increases did not correlate with measurable increases in oxygen consumption. In addition, we found that oxygen consumption increased in higher background noise, independent of singing behaviour. This observation supports previous research in mammals showing that high levels of environmental noise can induce physiological stress responses. While our study did not find that increasing vocal amplitude increased metabolic costs, further research is needed to determine whether there are other non-metabolic costs of singing louder or costs associated with chronic noise exposure.
Institute of Scientific and Technical Information of China (English)
张彬; 楚晓亮; 李强
2002-01-01
Based on the treatment that a rectangular function can be expanded into an approximate sum of complex Gaussian functions with finite numbers, the analytical expression for the focusing intensity distribution of a laser beam with amplitude modulation (AM) and phase fluctuation (PF) through an aperture lens is derived. The typical numerical examples are given and compared with those obtained from numerically integral calculation. The results show that our method can significantly improve the numerical calculation efficiency.
Conformal higher spin scattering amplitudes from twistor space
Adamo, Tim; McLoughlin, Tristan
2016-01-01
We use the formulation of conformal higher spin (CHS) theories in twistor space to study their tree-level scattering amplitudes, finding expressions for all three-point anti-MHV amplitudes and all MHV amplitudes involving positive helicity conformal gravity particles and two negative helicity higher spins. This provides the on-shell analogue for the covariant coupling of CHS fields to a conformal gravity background. We discuss the restriction of the theory to a ghost-free unitary subsector, analogous to restricting conformal gravity to general relativity with a cosmological constant. We study the flat-space limit and show that the restricted amplitudes vanish, supporting the conjecture that in the unitary sector the S-matrix of CHS theories is trivial. However, by appropriately rescaling the amplitudes we find non-vanishing results which we compare with chiral flat-space higher spin theories.
New amplitude equation of single-mode laser
Institute of Scientific and Technical Information of China (English)
张莉; 曹力; 吴大进
2003-01-01
The white-gain model and the white-loss model of a single-mode laser are investigated in the presence of crosscorrelations between the real and imaginary parts of quantum noise as well as pump noise. It was found that, like the white cubic model (2001 Chin. Phys. Lett. 18 370), the amplitude equations are all decoupled from the phase equations for the two models, and the same novel term appears in the amplitude equations of the two models. So we can put the amplitude equations of all the models into a general form, that is, the new amplitude equation. We further use this new amplitude equation to study specifically the stationary properties of the laser intensity for the white-gain model.
Effective Field Theories from Soft Limits of Scattering Amplitudes.
Cheung, Clifford; Kampf, Karol; Novotny, Jiri; Trnka, Jaroslav
2015-06-05
We derive scalar effective field theories-Lagrangians, symmetries, and all-from on-shell scattering amplitudes constructed purely from Lorentz invariance, factorization, a fixed power counting order in derivatives, and a fixed order at which amplitudes vanish in the soft limit. These constraints leave free parameters in the amplitude which are the coupling constants of well-known theories: Nambu-Goldstone bosons, Dirac-Born-Infeld scalars, and Galilean internal shift symmetries. Moreover, soft limits imply conditions on the Noether current which can then be inverted to derive Lagrangians for each theory. We propose a natural classification of all scalar effective field theories according to two numbers which encode the derivative power counting and soft behavior of the corresponding amplitudes. In those cases where there is no consistent amplitude, the corresponding theory does not exist.
Simplicity in the structure of QED and gravity amplitudes
Energy Technology Data Exchange (ETDEWEB)
Badger, Simon [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Bjerrum-Bohr, N.E.J. [Institute for Advanced Study, Princeton, NJ (United States). School of Natural Sciences; Vanhove, Pierre [Institut des Hautes Etudes Scientifiques IHES, Bures sur Yvette (France); CEA, IPhT, CNRS, URA, Gif-sur-Yvette, (France). Inst. de Physique Theorique
2008-11-15
We investigate generic properties of one-loop amplitudes in unordered gauge theories in four dimensions. For such theories the organisation of amplitudes in manifestly crossing symmetric expressions poses restrictions on their structure and results in remarkable cancellations. We show that one-loop multi-photon amplitudes in QED with at least eight external photons are given only by scalar box integral functions. This QED 'no-triangle' property is true for all helicity configurations and has similarities to the 'notriangle' property found in the case of maximal N=8 supergravity. Results are derived both via a world-line formalism as well as using on-shell unitarity methods. We show that the simple structure of the loop amplitude originates from the extremely good BCFW scaling behaviour of the QED tree-amplitude. (orig.)
Discontinuites of BFKL amplitudes and the BDS ansatz
Fadin, V S
2015-01-01
We perform an examination of discontinuities of multiple production amplitudes, which are required for further development of the BFKL approach. It turns out that the discontinuities of 2 $\\to$ 2 + n amplitudes obtained in the BFKL approach contradict to the BDS ansatz for amplitudes with maximal helicity violation in N = 4 supersymmetric Yang-Mills theory with large number of colours starting with n = 2. Explicit expressions for the discontinuities of the 2 $\\to$ 3 and 2 $\\to$ 4 amplitudes in the invariant mass of pairs of produced gluons are obtained in the planar N=4 SYM in the next-to-leading logarithmic approximation. These expressions can be used for checking the conjectured duality between the light-like Wilson loops and the MHV amplitudes.
Discontinuities of BFKL amplitudes and the BDS ansatz
Fadin, V. S.; Fiore, R.
2015-12-01
We perform an examination of discontinuities of multiple production amplitudes, which are required for further development of the BFKL approach. It turns out that the discontinuities of 2 → 2 + n amplitudes obtained in the BFKL approach contradict to the BDS ansatz for amplitudes with maximal helicity violation in N = 4 supersymmetric Yang-Mills theory with large number of colors starting with n = 2. Explicit expressions for the discontinuities of the 2 → 3 and 2 → 4 amplitudes in the invariant mass of pairs of produced gluons are obtained in the planar N = 4 SYM in the next-to-leading logarithmic approximation. These expressions can be used for checking the conjectured duality between the light-like Wilson loops and the MHV amplitudes.
Bilocal expansion of Borel amplitude and hadronic tau decay width
Cvetic, G; Cvetic, Gorazd; Lee, Taekoon
2001-01-01
The singular part of Borel transform of a QCD amplitude near the infrared renormalon can be expanded in terms of higher order Wilson coefficients of the operators associated with the renormalon. In this paper we observe that this expansion gives nontrivial constraints on the Borel amplitude that can be used to improve the accuracy of the ordinary perturbative expansion of the Borel amplitude. In particular, we consider the Borel transform of the Adler function and its expansion around the first infrared renormalon due to the gluon condensate. Using the next-to-leading order Wilson coefficient of the gluon condensate operator, we obtain an exact constraint on the Borel amplitude at the first IR renormalon. We then extrapolate, using judiciously chosen conformal transformations and Pade approximants, the ordinary perturbative expansion of the Borel amplitude in such a way that this constraint is satisfied. This procedure allows us to predict the four-loop Adler function, which gives a result consistent with the...
New Formulas for Amplitudes from Higher-Dimensional Operators
He, Song
2016-01-01
In this paper we study tree-level amplitudes from higher-dimensional operators, including $F^3$ operator of gauge theory, and $R^2$, $R^3$ operators of gravity, in the Cachazo-He-Yuan formulation. As a generalization of the reduced Pfaffian in Yang-Mills theory, we find a new, gauge-invariant object that leads to gluon amplitudes with a single insertion of $F^3$, and gravity amplitudes by Kawai-Lewellen-Tye relations. When reduced to four dimensions for given helicities, the new object vanishes for any solution of scattering equations on which the reduced Pfaffian is non-vanishing. This intriguing behavior in four dimensions explains the vanishing of graviton helicity amplitudes produced by the Gauss-Bonnet $R^2$ term, and provides a scattering-equation origin of the decomposition into self-dual and anti-self-dual parts for $F^3$ and $R^3$ amplitudes.
Analytical Quality by Design: A Tool for Regulatory Flexibility and Robust Analytics
Directory of Open Access Journals (Sweden)
Ramalingam Peraman
2015-01-01
Full Text Available Very recently, Food and Drug Administration (FDA has approved a few new drug applications (NDA with regulatory flexibility for quality by design (QbD based analytical approach. The concept of QbD applied to analytical method development is known now as AQbD (analytical quality by design. It allows the analytical method for movement within method operable design region (MODR. Unlike current methods, analytical method developed using analytical quality by design (AQbD approach reduces the number of out-of-trend (OOT results and out-of-specification (OOS results due to the robustness of the method within the region. It is a current trend among pharmaceutical industry to implement analytical quality by design (AQbD in method development process as a part of risk management, pharmaceutical development, and pharmaceutical quality system (ICH Q10. Owing to the lack explanatory reviews, this paper has been communicated to discuss different views of analytical scientists about implementation of AQbD in pharmaceutical quality system and also to correlate with product quality by design and pharmaceutical analytical technology (PAT.
The Origin of Complex Quantum Amplitudes
Goyal, Philip; Knuth, Kevin H.; Skilling, John
2009-12-01
Physics is real. Measurement produces real numbers. Yet quantum mechanics uses complex arithmetic, in which √-1 is necessary but mysteriously relates to nothing else. By applying the same sort of symmetry arguments that Cox [1, 2] used to justify probability calculus, we are now able to explain this puzzle. The dual device/object nature of observation requires us to describe the world in terms of pairs of real numbers about which we never have full knowledge. These pairs combine according to complex arithmetic, using Feynman's rules.
Verrier, N; Gross, M
2015-01-01
Sideband holography can be used to get fields images (E0 and E1) of a vibrating object for both the carrier (E0) and the sideband (E1) frequency with respect to vibration. We propose here to record E0 and E1 sequentially, and to image the correlation E1E * 0 . We show that this correlation is insensitive the phase related to the object roughness and directly reflect the phase of the mechanical motion. The signal to noise can be improved by averaging the correlation over neighbor pixel. Experimental validation is made with vibrating cube of wood and with a clarinet reed. At 2 kHz, vibrations of amplitude down to 0.01 nm are detected.
The effects of shape and amplitude on the velocity of scrape-off layer filaments
Omotani, J. T.; Militello, F.; Easy, L.; Walkden, N. R.
2016-01-01
A complete model of the dynamics of scrape-off layer filaments will be rather complex, including temperature evolution, three dimensional geometry and finite Larmor radius effects. However, the basic mechanism of \\boldsymbol{E}× \\boldsymbol{B} advection due to electrostatic potential driven by the diamagnetic current can be captured in a much simpler model; a complete understanding of the physics in the simpler model will then aid interpretation of more complex simulations, by allowing the new effects to be disentangled. Here we consider such a simple model, which assumes cold ions and isothermal electrons and is reduced to two dimensions. We derive the scaling with width and amplitude of the velocity of isolated scrape-off layer filaments, allowing for arbitrary elliptical cross-sections, where previously only circular cross-sections have been considered analytically. We also put the scaling with amplitude in a new and more satisfactory form. The analytical results are extensively validated with two dimensional simulations and also compared, with reasonable agreement, to three dimensional simulations having minimal variation parallel to the magnetic field.
Bellan, Diego; Pignari, Sergio A.
2016-07-01
This work deals with the statistical characterization of real-time digital measurement of the amplitude of harmonics affected by frequency instability. In fact, in modern power systems both the presence of harmonics and frequency instability are well-known and widespread phenomena mainly due to nonlinear loads and distributed generation, respectively. As a result, real-time monitoring of voltage/current frequency spectra is of paramount importance as far as power quality issues are addressed. Within this framework, a key point is that in many cases real-time continuous monitoring prevents the application of sophisticated algorithms to extract all the information from the digitized waveforms because of the required computational burden. In those cases only simple evaluations such as peak search of discrete Fourier transform are implemented. It is well known, however, that a slight change in waveform frequency results in lack of sampling synchronism and uncertainty in amplitude estimate. Of course the impact of this phenomenon increases with the order of the harmonic to be measured. In this paper an approximate analytical approach is proposed in order to describe the statistical properties of the measured magnitude of harmonics affected by frequency instability. By providing a simplified description of the frequency behavior of the windows used against spectral leakage, analytical expressions for mean value, variance, cumulative distribution function, and probability density function of the measured harmonics magnitude are derived in closed form as functions of waveform frequency treated as a random variable.
The influence of noise sources on cross-correlation amplitudes
Hanasoge, Shravan M
2012-01-01
We use analytical examples and asymptotic forms to examine the mathematical structure and physical meaning of the seismic cross correlation measurement. We show that in general, cross correlations are not Green's functions of medium, and may be very different depending on the source distribution. The modeling of noise sources using spatial distributions as opposed to discrete collections of sources is emphasized. When stations are illuminated by spatially complex source distributions, cross correlations show arrivals at a variety of time lags, from zero to the maximum surface-wave arrival time. Here, we demonstrate the possibility of inverting for the source distribution using the energy of the full cross-correlation waveform. The interplay between the source distribution and wave attenuation in determining the functional dependence of cross correlation energies on station-pair distance is quantified. Without question, energies contain information about wave attenuation. However, the accurate interpretation o...
Multi-loop positivity of the planar N = 4 SYM six-point amplitude
Dixon, Lance J.; von Hippel, Matt; McLeod, Andrew J.; Trnka, Jaroslav
2017-02-01
We study the six-point NMHV ratio function in planar N = 4 SYM theory in the context of positive geometry. The Amplituhedron construction of the integrand for the amplitudes provides a kinematical region in which the integrand was observed to be positive. It is natural to conjecture that this property survives integration, i.e. that the final result for the ratio function is also positive in this region. Establishing such a result would imply that preserving positivity is a surprising property of the Minkowski contour of integration and it might indicate some deeper underlying structure. We find that the ratio function is positive everywhere we have tested it, including analytic results for special kinematical regions at one and two loops, as well as robust numerical evidence through five loops. There is also evidence for not just positivity, but monotonicity in a "radial" direction. We also investigate positivity of the MHV six-gluon amplitude. While the remainder function ceases to be positive at four loops, the BDS-like normalized MHV amplitude appears to be positive through five loops.
Dilute rigid dumbbell suspensions in large-amplitude oscillatory shear flow: Shear stress response
Bird, R. B.; Giacomin, A. J.; Schmalzer, A. M.; Aumnate, C.
2014-02-01
We examine the simplest relevant molecular model for large-amplitude shear (LAOS) flow of a polymeric liquid: the suspension of rigid dumbbells in a Newtonian solvent. We find explicit analytical expressions for the shear rate amplitude and frequency dependences of the first and third harmonics of the alternating shear stress response. We include a detailed comparison of these predictions with the corresponding results for the simplest relevant continuum model: the corotational Maxwell model. We find that the responses of both models are qualitatively similar. The rigid dumbbell model relies entirely on the dumbbell orientation to explain the viscoelastic response of the polymeric liquid, including the higher harmonics in large-amplitude oscillatory shear flow. Our analysis employs the general method of Bird and Armstrong ["Time-dependent flows of dilute solutions of rodlike macromolecules," J. Chem. Phys. 56, 3680 (1972)] for analyzing the behavior of the rigid dumbbell model in any unsteady shear flow. We derive the first three terms of the deviation of the orientational distribution function from the equilibrium state. Then, after getting the "paren functions," we use these for evaluating the shear stress for LAOS flow. We find the shapes of the shear stress versus shear rate loops predicted to be reasonable.
GRMHD simulations of visibility amplitude variability for Event Horizon Telescope images of Sgr A*
Medeiros, Lia; Ozel, Feryal; Psaltis, Dimitrios; Kim, Junhan; Marrone, Daniel P; Sadowski, Aleksander
2016-01-01
Synthesis imaging of the black hole in the center of the Milky Way, Sgr A*, with the Event Horizon Telescope (EHT) rests on the assumption of a stationary image. We explore the limitations of this assumption using high-cadence GRMHD simulations of Sgr A*. We employ analytic models that capture the basic characteristics of the images to understand the origin of the variability in the simulated visibility amplitudes. We find that, in all simulations, the visibility amplitudes for baselines oriented perpendicular to the spin axis of the black hole typically decrease smoothly over baseline lengths that are comparable to those of the EHT. On the other hand, the visibility amplitudes for baselines oriented parallel to the spin axis show significant structure with one or more minima. This suggests that fitting EHT observations with geometric models will lead to reasonably accurate determination of the orientation of the black-hole on the plane of the sky. However, in the disk-dominated models, the locations and dept...
A small-amplitude study of solitons near critical plasma compositions
Olivier, Carel P.; Verheest, Frank; Maharaj, Shimul K.
2016-12-01
The properties of small-amplitude solitons are established near critical plasma compositions in a generalized fluid plasma with an arbitrary number of species. The study is conducted via a Taylor series expansion of the Sagdeev potential. It is shown that there are two types of critical compositions, namely rich critical and poor critical compositions. The coexistence of positive and negative polarity solitons is shown to arise at rich critical compositions and near rich critical compositions. At poor critical compositions, no small-amplitude solitons exist, while weak double layers arise near poor critical compositions. A novel analytical expression is obtained for a small-amplitude acoustic speed soliton solution near rich critical compositions. These solitons have a Lorentzian shape with much fatter tails than regular solitons. A case study is also performed for a simple fluid model consisting of cold ions and two Boltzmann electron species. Exact agreement is obtained between the Sagdeev analysis and reductive perturbation theory. For the first time, we derive the same Lorentzian acoustic speed soliton from reductive perturbation theory.
Analytical and experimental study of vibrations in a gear transmission
Choy, F. K.; Ruan, Y. F.; Zakrajsek, J. J.; Oswald, F. B.; Coy, J. J.
1991-01-01
An analytical simulation of the dynamics of a gear transmission system is presented and compared to experimental results from a gear noise test rig at NASA Lewis. The analytical procedure developed couples the dynamic behaviors of the rotor-bearing-gear system with the response of the gearbox structure. Transient and steady-state vibrations of the gearbox system are presented in the time and frequency domains. The vibration characteristics of a simple single-mesh-gear noise test rig are modeled. The numerical simulations are compared to experimental data measured under typical operating conditions. The system natural frequencies, peak vibration amplitudes, and gear mesh frequencies are generally in good agreement.
Comprehensive analytical model to characterize randomness in optical waveguides.
Zhou, Junhe; Gallion, Philippe
2016-04-01
In this paper, the coupled mode theory (CMT) is used to derive the corresponding stochastic differential equations (SDEs) for the modal amplitude evolution inside optical waveguides with random refractive index variations. Based on the SDEs, the ordinary differential equations (ODEs) are derived to analyze the statistics of the modal amplitudes, such as the optical power and power variations as well as the power correlation coefficients between the different modal powers. These ODEs can be solved analytically and therefore, it greatly simplifies the analysis. It is demonstrated that the ODEs for the power evolution of the modes are in excellent agreement with the Marcuse' coupled power model. The higher order statistics, such as the power variations and power correlation coefficients, which are not exactly analyzed in the Marcuse' model, are discussed afterwards. Monte-Carlo simulations are performed to demonstrate the validity of the analytical model.
Analytics for Customer Engagement
Bijmolt, Tammo H. A.; Leeflang, Peter S. H.; Block, Frank; Eisenbeiss, Maik; Hardie, Bruce G. S.; Lemmens, Aurelie; Saffert, Peter
2010-01-01
In this article, we discuss the state of the art of models for customer engagement and the problems that are inherent to calibrating and implementing these models. The authors first provide an overview of the data available for customer analytics and discuss recent developments. Next, the authors di
Energy Technology Data Exchange (ETDEWEB)
Turcotte, Melissa [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Moore, Juston Shane [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2017-02-28
User Behaviour Analytics is the tracking, collecting and assessing of user data and activities. The goal is to detect misuse of user credentials by developing models for the normal behaviour of user credentials within a computer network and detect outliers with respect to their baseline.
Boyer, Carl B
2012-01-01
Designed as an integrated survey of the development of analytic geometry, this study presents the concepts and contributions from before the Alexandrian Age through the eras of the great French mathematicians Fermat and Descartes, and on through Newton and Euler to the "Golden Age," from 1789 to 1850.
Analytical Chemistry Laboratory
Anderson, Mark
2013-01-01
The Analytical Chemistry and Material Development Group maintains a capability in chemical analysis, materials R&D failure analysis and contamination control. The uniquely qualified staff and facility support the needs of flight projects, science instrument development and various technical tasks, as well as Cal Tech.
Matsumoto, Kohji
2002-01-01
The book includes several survey articles on prime numbers, divisor problems, and Diophantine equations, as well as research papers on various aspects of analytic number theory such as additive problems, Diophantine approximations and the theory of zeta and L-function Audience Researchers and graduate students interested in recent development of number theory
Buckingham Shum, Simon; Ferguson, Rebecca
2012-01-01
We propose that the design and implementation of effective "Social Learning Analytics (SLA)" present significant challenges and opportunities for both research and enterprise, in three important respects. The first is that the learning landscape is extraordinarily turbulent at present, in no small part due to technological drivers.…
Analytic two-loop form factors in N=4 SYM
Brandhuber, Andreas; Yang, Gang
2012-01-01
We derive a compact expression for the three-point MHV form factors of half-BPS operators in N=4super Yang-Mills at two loops. The main tools of our calculation are generalised unitarity applied at the form factor level, and the compact expressions for supersymmetric tree-level form factors and amplitudes entering the cuts. We confirm that infrared divergences exponentiate as expected, and that collinear factorisation is entirely captured by an ABDK/BDS ansatz. Next, we construct the two-loop remainder function obtained by subtracting this ansatz from the full two-loop form factor and compute it numerically. Using symbology, combined with various physical constraints and symmetries, we find a unique solution for its symbol. With this input we construct a remarkably compact analytic expression for the remainder function, which contains only classical polylogarithms, and compare it to our numerical results. Furthermore, we make the surprising observation that our remainder is equal to the maximally transcendent...
Directory of Open Access Journals (Sweden)
M.-H. R. Jen
2015-12-01
Full Text Available The stretch-induced wrinkling of thin films is solved through the modified von Kármán large deflection equations by first selecting the suitable deformation expressions that satisfy boundary conditions. Then, adopting the principle of minimum potential energy we obtain the deformations of simply supported rectangular thin films. The obtained significant deflections are nonlinearly elastic and of the lowest order of infinite solutions. The parameters of aspect ratio, the thickness and material of thin films are studied analytically and numerically. The highlighted results of wrinkle amplitude and load are in good agreement with experiments. The methodology also indicates the limit load impending plasticity and predicts the applied load precisely for each wrinkle. Further, it can be extended to the variety of multifunctional orthotropic and multi-layered thin films.
Energy Technology Data Exchange (ETDEWEB)
Radozycki, Tomasz [Cardinal Stefan Wyszynski University, Faculty of Mathematics and Natural Sciences, College of Sciences, Warsaw (Poland)
2015-09-15
The Lorentz transformation properties of the equal-time bound-state Bethe-Salpeter amplitude in the two-dimensional massless quantum electrodynamics (the so-called Schwinger model) are considered. It is shown that while boosting a bound state (a 'meson') this amplitude is subject to approximate Lorentz contraction. The effect is exact for large separations of constituent particles ('quarks'), while for small distances the deviation is more significant. For this phenomenon to appear, the full function, i.e. with the inclusion of all instanton contributions, has to be considered. The amplitude in each separate topological sector does not exhibit such properties. (orig.)